1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
28 #include "basic-block.h"
29 #include "gimple-pretty-print.h"
31 #include "pointer-set.h"
32 #include "tree-ssa-alias.h"
33 #include "internal-fn.h"
34 #include "gimple-expr.h"
38 #include "gimple-iterator.h"
39 #include "gimple-ssa.h"
41 #include "tree-phinodes.h"
42 #include "ssa-iterators.h"
43 #include "tree-ssa-loop-ivopts.h"
44 #include "tree-ssa-loop-niter.h"
45 #include "tree-ssa-loop.h"
48 #include "tree-chrec.h"
49 #include "tree-scalar-evolution.h"
50 #include "tree-data-ref.h"
53 #include "diagnostic-core.h"
54 #include "tree-inline.h"
55 #include "tree-pass.h"
56 #include "stringpool.h"
57 #include "tree-ssanames.h"
58 #include "wide-int-print.h"
61 #define SWAP(X, Y) do { affine_iv *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
63 /* The maximum number of dominator BBs we search for conditions
64 of loop header copies we use for simplifying a conditional
66 #define MAX_DOMINATORS_TO_WALK 8
70 Analysis of number of iterations of an affine exit test.
74 /* Bounds on some value, BELOW <= X <= UP. */
82 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
85 split_to_var_and_offset (tree expr
, tree
*var
, mpz_t offset
)
87 tree type
= TREE_TYPE (expr
);
92 mpz_set_ui (offset
, 0);
94 switch (TREE_CODE (expr
))
101 case POINTER_PLUS_EXPR
:
102 op0
= TREE_OPERAND (expr
, 0);
103 op1
= TREE_OPERAND (expr
, 1);
105 if (TREE_CODE (op1
) != INTEGER_CST
)
109 /* Always sign extend the offset. */
110 wi::to_mpz (op1
, offset
, SIGNED
);
112 mpz_neg (offset
, offset
);
116 *var
= build_int_cst_type (type
, 0);
117 wi::to_mpz (expr
, offset
, TYPE_SIGN (type
));
125 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
126 in TYPE to MIN and MAX. */
129 determine_value_range (struct loop
*loop
, tree type
, tree var
, mpz_t off
,
130 mpz_t min
, mpz_t max
)
133 enum value_range_type rtype
= VR_VARYING
;
135 /* If the expression is a constant, we know its value exactly. */
136 if (integer_zerop (var
))
143 get_type_static_bounds (type
, min
, max
);
145 /* See if we have some range info from VRP. */
146 if (TREE_CODE (var
) == SSA_NAME
&& INTEGRAL_TYPE_P (type
))
148 edge e
= loop_preheader_edge (loop
);
149 signop sgn
= TYPE_SIGN (type
);
150 gimple_stmt_iterator gsi
;
152 /* Either for VAR itself... */
153 rtype
= get_range_info (var
, &minv
, &maxv
);
154 /* Or for PHI results in loop->header where VAR is used as
155 PHI argument from the loop preheader edge. */
156 for (gsi
= gsi_start_phis (loop
->header
); !gsi_end_p (gsi
); gsi_next (&gsi
))
158 gimple phi
= gsi_stmt (gsi
);
160 if (PHI_ARG_DEF_FROM_EDGE (phi
, e
) == var
161 && (get_range_info (gimple_phi_result (phi
), &minc
, &maxc
)
164 if (rtype
!= VR_RANGE
)
172 minv
= wi::max (minv
, minc
, sgn
);
173 maxv
= wi::min (maxv
, maxc
, sgn
);
174 /* If the PHI result range are inconsistent with
175 the VAR range, give up on looking at the PHI
176 results. This can happen if VR_UNDEFINED is
178 if (wi::gt_p (minv
, maxv
, sgn
))
180 rtype
= get_range_info (var
, &minv
, &maxv
);
186 if (rtype
== VR_RANGE
)
189 gcc_assert (wi::le_p (minv
, maxv
, sgn
));
192 wi::to_mpz (minv
, minm
, sgn
);
193 wi::to_mpz (maxv
, maxm
, sgn
);
194 mpz_add (minm
, minm
, off
);
195 mpz_add (maxm
, maxm
, off
);
196 /* If the computation may not wrap or off is zero, then this
197 is always fine. If off is negative and minv + off isn't
198 smaller than type's minimum, or off is positive and
199 maxv + off isn't bigger than type's maximum, use the more
200 precise range too. */
201 if (nowrap_type_p (type
)
202 || mpz_sgn (off
) == 0
203 || (mpz_sgn (off
) < 0 && mpz_cmp (minm
, min
) >= 0)
204 || (mpz_sgn (off
) > 0 && mpz_cmp (maxm
, max
) <= 0))
217 /* If the computation may wrap, we know nothing about the value, except for
218 the range of the type. */
219 if (!nowrap_type_p (type
))
222 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
223 add it to MIN, otherwise to MAX. */
224 if (mpz_sgn (off
) < 0)
225 mpz_add (max
, max
, off
);
227 mpz_add (min
, min
, off
);
230 /* Stores the bounds on the difference of the values of the expressions
231 (var + X) and (var + Y), computed in TYPE, to BNDS. */
234 bound_difference_of_offsetted_base (tree type
, mpz_t x
, mpz_t y
,
237 int rel
= mpz_cmp (x
, y
);
238 bool may_wrap
= !nowrap_type_p (type
);
241 /* If X == Y, then the expressions are always equal.
242 If X > Y, there are the following possibilities:
243 a) neither of var + X and var + Y overflow or underflow, or both of
244 them do. Then their difference is X - Y.
245 b) var + X overflows, and var + Y does not. Then the values of the
246 expressions are var + X - M and var + Y, where M is the range of
247 the type, and their difference is X - Y - M.
248 c) var + Y underflows and var + X does not. Their difference again
250 Therefore, if the arithmetics in type does not overflow, then the
251 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
252 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
253 (X - Y, X - Y + M). */
257 mpz_set_ui (bnds
->below
, 0);
258 mpz_set_ui (bnds
->up
, 0);
263 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type
)), m
, UNSIGNED
);
264 mpz_add_ui (m
, m
, 1);
265 mpz_sub (bnds
->up
, x
, y
);
266 mpz_set (bnds
->below
, bnds
->up
);
271 mpz_sub (bnds
->below
, bnds
->below
, m
);
273 mpz_add (bnds
->up
, bnds
->up
, m
);
279 /* From condition C0 CMP C1 derives information regarding the
280 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
281 and stores it to BNDS. */
284 refine_bounds_using_guard (tree type
, tree varx
, mpz_t offx
,
285 tree vary
, mpz_t offy
,
286 tree c0
, enum tree_code cmp
, tree c1
,
289 tree varc0
, varc1
, tmp
, ctype
;
290 mpz_t offc0
, offc1
, loffx
, loffy
, bnd
;
292 bool no_wrap
= nowrap_type_p (type
);
301 STRIP_SIGN_NOPS (c0
);
302 STRIP_SIGN_NOPS (c1
);
303 ctype
= TREE_TYPE (c0
);
304 if (!useless_type_conversion_p (ctype
, type
))
310 /* We could derive quite precise information from EQ_EXPR, however, such
311 a guard is unlikely to appear, so we do not bother with handling
316 /* NE_EXPR comparisons do not contain much of useful information, except for
317 special case of comparing with the bounds of the type. */
318 if (TREE_CODE (c1
) != INTEGER_CST
319 || !INTEGRAL_TYPE_P (type
))
322 /* Ensure that the condition speaks about an expression in the same type
324 ctype
= TREE_TYPE (c0
);
325 if (TYPE_PRECISION (ctype
) != TYPE_PRECISION (type
))
327 c0
= fold_convert (type
, c0
);
328 c1
= fold_convert (type
, c1
);
330 if (TYPE_MIN_VALUE (type
)
331 && operand_equal_p (c1
, TYPE_MIN_VALUE (type
), 0))
336 if (TYPE_MAX_VALUE (type
)
337 && operand_equal_p (c1
, TYPE_MAX_VALUE (type
), 0))
350 split_to_var_and_offset (expand_simple_operations (c0
), &varc0
, offc0
);
351 split_to_var_and_offset (expand_simple_operations (c1
), &varc1
, offc1
);
353 /* We are only interested in comparisons of expressions based on VARX and
354 VARY. TODO -- we might also be able to derive some bounds from
355 expressions containing just one of the variables. */
357 if (operand_equal_p (varx
, varc1
, 0))
359 tmp
= varc0
; varc0
= varc1
; varc1
= tmp
;
360 mpz_swap (offc0
, offc1
);
361 cmp
= swap_tree_comparison (cmp
);
364 if (!operand_equal_p (varx
, varc0
, 0)
365 || !operand_equal_p (vary
, varc1
, 0))
368 mpz_init_set (loffx
, offx
);
369 mpz_init_set (loffy
, offy
);
371 if (cmp
== GT_EXPR
|| cmp
== GE_EXPR
)
373 tmp
= varx
; varx
= vary
; vary
= tmp
;
374 mpz_swap (offc0
, offc1
);
375 mpz_swap (loffx
, loffy
);
376 cmp
= swap_tree_comparison (cmp
);
380 /* If there is no overflow, the condition implies that
382 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
384 The overflows and underflows may complicate things a bit; each
385 overflow decreases the appropriate offset by M, and underflow
386 increases it by M. The above inequality would not necessarily be
389 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
390 VARX + OFFC0 overflows, but VARX + OFFX does not.
391 This may only happen if OFFX < OFFC0.
392 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
393 VARY + OFFC1 underflows and VARY + OFFY does not.
394 This may only happen if OFFY > OFFC1. */
403 x_ok
= (integer_zerop (varx
)
404 || mpz_cmp (loffx
, offc0
) >= 0);
405 y_ok
= (integer_zerop (vary
)
406 || mpz_cmp (loffy
, offc1
) <= 0);
412 mpz_sub (bnd
, loffx
, loffy
);
413 mpz_add (bnd
, bnd
, offc1
);
414 mpz_sub (bnd
, bnd
, offc0
);
417 mpz_sub_ui (bnd
, bnd
, 1);
422 if (mpz_cmp (bnds
->below
, bnd
) < 0)
423 mpz_set (bnds
->below
, bnd
);
427 if (mpz_cmp (bnd
, bnds
->up
) < 0)
428 mpz_set (bnds
->up
, bnd
);
440 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
441 The subtraction is considered to be performed in arbitrary precision,
444 We do not attempt to be too clever regarding the value ranges of X and
445 Y; most of the time, they are just integers or ssa names offsetted by
446 integer. However, we try to use the information contained in the
447 comparisons before the loop (usually created by loop header copying). */
450 bound_difference (struct loop
*loop
, tree x
, tree y
, bounds
*bnds
)
452 tree type
= TREE_TYPE (x
);
455 mpz_t minx
, maxx
, miny
, maxy
;
463 /* Get rid of unnecessary casts, but preserve the value of
468 mpz_init (bnds
->below
);
472 split_to_var_and_offset (x
, &varx
, offx
);
473 split_to_var_and_offset (y
, &vary
, offy
);
475 if (!integer_zerop (varx
)
476 && operand_equal_p (varx
, vary
, 0))
478 /* Special case VARX == VARY -- we just need to compare the
479 offsets. The matters are a bit more complicated in the
480 case addition of offsets may wrap. */
481 bound_difference_of_offsetted_base (type
, offx
, offy
, bnds
);
485 /* Otherwise, use the value ranges to determine the initial
486 estimates on below and up. */
491 determine_value_range (loop
, type
, varx
, offx
, minx
, maxx
);
492 determine_value_range (loop
, type
, vary
, offy
, miny
, maxy
);
494 mpz_sub (bnds
->below
, minx
, maxy
);
495 mpz_sub (bnds
->up
, maxx
, miny
);
502 /* If both X and Y are constants, we cannot get any more precise. */
503 if (integer_zerop (varx
) && integer_zerop (vary
))
506 /* Now walk the dominators of the loop header and use the entry
507 guards to refine the estimates. */
508 for (bb
= loop
->header
;
509 bb
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
) && cnt
< MAX_DOMINATORS_TO_WALK
;
510 bb
= get_immediate_dominator (CDI_DOMINATORS
, bb
))
512 if (!single_pred_p (bb
))
514 e
= single_pred_edge (bb
);
516 if (!(e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
519 cond
= last_stmt (e
->src
);
520 c0
= gimple_cond_lhs (cond
);
521 cmp
= gimple_cond_code (cond
);
522 c1
= gimple_cond_rhs (cond
);
524 if (e
->flags
& EDGE_FALSE_VALUE
)
525 cmp
= invert_tree_comparison (cmp
, false);
527 refine_bounds_using_guard (type
, varx
, offx
, vary
, offy
,
537 /* Update the bounds in BNDS that restrict the value of X to the bounds
538 that restrict the value of X + DELTA. X can be obtained as a
539 difference of two values in TYPE. */
542 bounds_add (bounds
*bnds
, const widest_int
&delta
, tree type
)
547 wi::to_mpz (delta
, mdelta
, SIGNED
);
550 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type
)), max
, UNSIGNED
);
552 mpz_add (bnds
->up
, bnds
->up
, mdelta
);
553 mpz_add (bnds
->below
, bnds
->below
, mdelta
);
555 if (mpz_cmp (bnds
->up
, max
) > 0)
556 mpz_set (bnds
->up
, max
);
559 if (mpz_cmp (bnds
->below
, max
) < 0)
560 mpz_set (bnds
->below
, max
);
566 /* Update the bounds in BNDS that restrict the value of X to the bounds
567 that restrict the value of -X. */
570 bounds_negate (bounds
*bnds
)
574 mpz_init_set (tmp
, bnds
->up
);
575 mpz_neg (bnds
->up
, bnds
->below
);
576 mpz_neg (bnds
->below
, tmp
);
580 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
583 inverse (tree x
, tree mask
)
585 tree type
= TREE_TYPE (x
);
587 unsigned ctr
= tree_floor_log2 (mask
);
589 if (TYPE_PRECISION (type
) <= HOST_BITS_PER_WIDE_INT
)
591 unsigned HOST_WIDE_INT ix
;
592 unsigned HOST_WIDE_INT imask
;
593 unsigned HOST_WIDE_INT irslt
= 1;
595 gcc_assert (cst_and_fits_in_hwi (x
));
596 gcc_assert (cst_and_fits_in_hwi (mask
));
598 ix
= int_cst_value (x
);
599 imask
= int_cst_value (mask
);
608 rslt
= build_int_cst_type (type
, irslt
);
612 rslt
= build_int_cst (type
, 1);
615 rslt
= int_const_binop (MULT_EXPR
, rslt
, x
);
616 x
= int_const_binop (MULT_EXPR
, x
, x
);
618 rslt
= int_const_binop (BIT_AND_EXPR
, rslt
, mask
);
624 /* Derives the upper bound BND on the number of executions of loop with exit
625 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
626 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
627 that the loop ends through this exit, i.e., the induction variable ever
628 reaches the value of C.
630 The value C is equal to final - base, where final and base are the final and
631 initial value of the actual induction variable in the analysed loop. BNDS
632 bounds the value of this difference when computed in signed type with
633 unbounded range, while the computation of C is performed in an unsigned
634 type with the range matching the range of the type of the induction variable.
635 In particular, BNDS.up contains an upper bound on C in the following cases:
636 -- if the iv must reach its final value without overflow, i.e., if
637 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
638 -- if final >= base, which we know to hold when BNDS.below >= 0. */
641 number_of_iterations_ne_max (mpz_t bnd
, bool no_overflow
, tree c
, tree s
,
642 bounds
*bnds
, bool exit_must_be_taken
)
646 tree type
= TREE_TYPE (c
);
647 bool bnds_u_valid
= ((no_overflow
&& exit_must_be_taken
)
648 || mpz_sgn (bnds
->below
) >= 0);
651 || (TREE_CODE (c
) == INTEGER_CST
652 && TREE_CODE (s
) == INTEGER_CST
653 && wi::mod_trunc (c
, s
, TYPE_SIGN (type
)) == 0)
654 || (TYPE_OVERFLOW_UNDEFINED (type
)
655 && multiple_of_p (type
, c
, s
)))
657 /* If C is an exact multiple of S, then its value will be reached before
658 the induction variable overflows (unless the loop is exited in some
659 other way before). Note that the actual induction variable in the
660 loop (which ranges from base to final instead of from 0 to C) may
661 overflow, in which case BNDS.up will not be giving a correct upper
662 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
664 exit_must_be_taken
= true;
667 /* If the induction variable can overflow, the number of iterations is at
668 most the period of the control variable (or infinite, but in that case
669 the whole # of iterations analysis will fail). */
672 max
= wi::mask
<widest_int
> (TYPE_PRECISION (type
) - wi::ctz (s
), false);
673 wi::to_mpz (max
, bnd
, UNSIGNED
);
677 /* Now we know that the induction variable does not overflow, so the loop
678 iterates at most (range of type / S) times. */
679 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type
)), bnd
, UNSIGNED
);
681 /* If the induction variable is guaranteed to reach the value of C before
683 if (exit_must_be_taken
)
685 /* ... then we can strengthen this to C / S, and possibly we can use
686 the upper bound on C given by BNDS. */
687 if (TREE_CODE (c
) == INTEGER_CST
)
688 wi::to_mpz (c
, bnd
, UNSIGNED
);
689 else if (bnds_u_valid
)
690 mpz_set (bnd
, bnds
->up
);
694 wi::to_mpz (s
, d
, UNSIGNED
);
695 mpz_fdiv_q (bnd
, bnd
, d
);
699 /* Determines number of iterations of loop whose ending condition
700 is IV <> FINAL. TYPE is the type of the iv. The number of
701 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
702 we know that the exit must be taken eventually, i.e., that the IV
703 ever reaches the value FINAL (we derived this earlier, and possibly set
704 NITER->assumptions to make sure this is the case). BNDS contains the
705 bounds on the difference FINAL - IV->base. */
708 number_of_iterations_ne (tree type
, affine_iv
*iv
, tree final
,
709 struct tree_niter_desc
*niter
, bool exit_must_be_taken
,
712 tree niter_type
= unsigned_type_for (type
);
713 tree s
, c
, d
, bits
, assumption
, tmp
, bound
;
716 niter
->control
= *iv
;
717 niter
->bound
= final
;
718 niter
->cmp
= NE_EXPR
;
720 /* Rearrange the terms so that we get inequality S * i <> C, with S
721 positive. Also cast everything to the unsigned type. If IV does
722 not overflow, BNDS bounds the value of C. Also, this is the
723 case if the computation |FINAL - IV->base| does not overflow, i.e.,
724 if BNDS->below in the result is nonnegative. */
725 if (tree_int_cst_sign_bit (iv
->step
))
727 s
= fold_convert (niter_type
,
728 fold_build1 (NEGATE_EXPR
, type
, iv
->step
));
729 c
= fold_build2 (MINUS_EXPR
, niter_type
,
730 fold_convert (niter_type
, iv
->base
),
731 fold_convert (niter_type
, final
));
732 bounds_negate (bnds
);
736 s
= fold_convert (niter_type
, iv
->step
);
737 c
= fold_build2 (MINUS_EXPR
, niter_type
,
738 fold_convert (niter_type
, final
),
739 fold_convert (niter_type
, iv
->base
));
743 number_of_iterations_ne_max (max
, iv
->no_overflow
, c
, s
, bnds
,
745 niter
->max
= widest_int::from (wi::from_mpz (niter_type
, max
, false),
746 TYPE_SIGN (niter_type
));
749 /* First the trivial cases -- when the step is 1. */
750 if (integer_onep (s
))
756 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
757 is infinite. Otherwise, the number of iterations is
758 (inverse(s/d) * (c/d)) mod (size of mode/d). */
759 bits
= num_ending_zeros (s
);
760 bound
= build_low_bits_mask (niter_type
,
761 (TYPE_PRECISION (niter_type
)
762 - tree_to_uhwi (bits
)));
764 d
= fold_binary_to_constant (LSHIFT_EXPR
, niter_type
,
765 build_int_cst (niter_type
, 1), bits
);
766 s
= fold_binary_to_constant (RSHIFT_EXPR
, niter_type
, s
, bits
);
768 if (!exit_must_be_taken
)
770 /* If we cannot assume that the exit is taken eventually, record the
771 assumptions for divisibility of c. */
772 assumption
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, c
, d
);
773 assumption
= fold_build2 (EQ_EXPR
, boolean_type_node
,
774 assumption
, build_int_cst (niter_type
, 0));
775 if (!integer_nonzerop (assumption
))
776 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
777 niter
->assumptions
, assumption
);
780 c
= fold_build2 (EXACT_DIV_EXPR
, niter_type
, c
, d
);
781 tmp
= fold_build2 (MULT_EXPR
, niter_type
, c
, inverse (s
, bound
));
782 niter
->niter
= fold_build2 (BIT_AND_EXPR
, niter_type
, tmp
, bound
);
786 /* Checks whether we can determine the final value of the control variable
787 of the loop with ending condition IV0 < IV1 (computed in TYPE).
788 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
789 of the step. The assumptions necessary to ensure that the computation
790 of the final value does not overflow are recorded in NITER. If we
791 find the final value, we adjust DELTA and return TRUE. Otherwise
792 we return false. BNDS bounds the value of IV1->base - IV0->base,
793 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
794 true if we know that the exit must be taken eventually. */
797 number_of_iterations_lt_to_ne (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
798 struct tree_niter_desc
*niter
,
799 tree
*delta
, tree step
,
800 bool exit_must_be_taken
, bounds
*bnds
)
802 tree niter_type
= TREE_TYPE (step
);
803 tree mod
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, *delta
, step
);
806 tree assumption
= boolean_true_node
, bound
, noloop
;
807 bool ret
= false, fv_comp_no_overflow
;
809 if (POINTER_TYPE_P (type
))
812 if (TREE_CODE (mod
) != INTEGER_CST
)
814 if (integer_nonzerop (mod
))
815 mod
= fold_build2 (MINUS_EXPR
, niter_type
, step
, mod
);
816 tmod
= fold_convert (type1
, mod
);
819 wi::to_mpz (mod
, mmod
, UNSIGNED
);
820 mpz_neg (mmod
, mmod
);
822 /* If the induction variable does not overflow and the exit is taken,
823 then the computation of the final value does not overflow. This is
824 also obviously the case if the new final value is equal to the
825 current one. Finally, we postulate this for pointer type variables,
826 as the code cannot rely on the object to that the pointer points being
827 placed at the end of the address space (and more pragmatically,
828 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
829 if (integer_zerop (mod
) || POINTER_TYPE_P (type
))
830 fv_comp_no_overflow
= true;
831 else if (!exit_must_be_taken
)
832 fv_comp_no_overflow
= false;
834 fv_comp_no_overflow
=
835 (iv0
->no_overflow
&& integer_nonzerop (iv0
->step
))
836 || (iv1
->no_overflow
&& integer_nonzerop (iv1
->step
));
838 if (integer_nonzerop (iv0
->step
))
840 /* The final value of the iv is iv1->base + MOD, assuming that this
841 computation does not overflow, and that
842 iv0->base <= iv1->base + MOD. */
843 if (!fv_comp_no_overflow
)
845 bound
= fold_build2 (MINUS_EXPR
, type1
,
846 TYPE_MAX_VALUE (type1
), tmod
);
847 assumption
= fold_build2 (LE_EXPR
, boolean_type_node
,
849 if (integer_zerop (assumption
))
852 if (mpz_cmp (mmod
, bnds
->below
) < 0)
853 noloop
= boolean_false_node
;
854 else if (POINTER_TYPE_P (type
))
855 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
857 fold_build_pointer_plus (iv1
->base
, tmod
));
859 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
861 fold_build2 (PLUS_EXPR
, type1
,
866 /* The final value of the iv is iv0->base - MOD, assuming that this
867 computation does not overflow, and that
868 iv0->base - MOD <= iv1->base. */
869 if (!fv_comp_no_overflow
)
871 bound
= fold_build2 (PLUS_EXPR
, type1
,
872 TYPE_MIN_VALUE (type1
), tmod
);
873 assumption
= fold_build2 (GE_EXPR
, boolean_type_node
,
875 if (integer_zerop (assumption
))
878 if (mpz_cmp (mmod
, bnds
->below
) < 0)
879 noloop
= boolean_false_node
;
880 else if (POINTER_TYPE_P (type
))
881 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
882 fold_build_pointer_plus (iv0
->base
,
883 fold_build1 (NEGATE_EXPR
,
887 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
888 fold_build2 (MINUS_EXPR
, type1
,
893 if (!integer_nonzerop (assumption
))
894 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
897 if (!integer_zerop (noloop
))
898 niter
->may_be_zero
= fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
901 bounds_add (bnds
, wi::to_widest (mod
), type
);
902 *delta
= fold_build2 (PLUS_EXPR
, niter_type
, *delta
, mod
);
910 /* Add assertions to NITER that ensure that the control variable of the loop
911 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
912 are TYPE. Returns false if we can prove that there is an overflow, true
913 otherwise. STEP is the absolute value of the step. */
916 assert_no_overflow_lt (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
917 struct tree_niter_desc
*niter
, tree step
)
919 tree bound
, d
, assumption
, diff
;
920 tree niter_type
= TREE_TYPE (step
);
922 if (integer_nonzerop (iv0
->step
))
924 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
925 if (iv0
->no_overflow
)
928 /* If iv0->base is a constant, we can determine the last value before
929 overflow precisely; otherwise we conservatively assume
932 if (TREE_CODE (iv0
->base
) == INTEGER_CST
)
934 d
= fold_build2 (MINUS_EXPR
, niter_type
,
935 fold_convert (niter_type
, TYPE_MAX_VALUE (type
)),
936 fold_convert (niter_type
, iv0
->base
));
937 diff
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, d
, step
);
940 diff
= fold_build2 (MINUS_EXPR
, niter_type
, step
,
941 build_int_cst (niter_type
, 1));
942 bound
= fold_build2 (MINUS_EXPR
, type
,
943 TYPE_MAX_VALUE (type
), fold_convert (type
, diff
));
944 assumption
= fold_build2 (LE_EXPR
, boolean_type_node
,
949 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
950 if (iv1
->no_overflow
)
953 if (TREE_CODE (iv1
->base
) == INTEGER_CST
)
955 d
= fold_build2 (MINUS_EXPR
, niter_type
,
956 fold_convert (niter_type
, iv1
->base
),
957 fold_convert (niter_type
, TYPE_MIN_VALUE (type
)));
958 diff
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, d
, step
);
961 diff
= fold_build2 (MINUS_EXPR
, niter_type
, step
,
962 build_int_cst (niter_type
, 1));
963 bound
= fold_build2 (PLUS_EXPR
, type
,
964 TYPE_MIN_VALUE (type
), fold_convert (type
, diff
));
965 assumption
= fold_build2 (GE_EXPR
, boolean_type_node
,
969 if (integer_zerop (assumption
))
971 if (!integer_nonzerop (assumption
))
972 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
973 niter
->assumptions
, assumption
);
975 iv0
->no_overflow
= true;
976 iv1
->no_overflow
= true;
980 /* Add an assumption to NITER that a loop whose ending condition
981 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
982 bounds the value of IV1->base - IV0->base. */
985 assert_loop_rolls_lt (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
986 struct tree_niter_desc
*niter
, bounds
*bnds
)
988 tree assumption
= boolean_true_node
, bound
, diff
;
989 tree mbz
, mbzl
, mbzr
, type1
;
990 bool rolls_p
, no_overflow_p
;
994 /* We are going to compute the number of iterations as
995 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
996 variant of TYPE. This formula only works if
998 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
1000 (where MAX is the maximum value of the unsigned variant of TYPE, and
1001 the computations in this formula are performed in full precision,
1002 i.e., without overflows).
1004 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
1005 we have a condition of the form iv0->base - step < iv1->base before the loop,
1006 and for loops iv0->base < iv1->base - step * i the condition
1007 iv0->base < iv1->base + step, due to loop header copying, which enable us
1008 to prove the lower bound.
1010 The upper bound is more complicated. Unless the expressions for initial
1011 and final value themselves contain enough information, we usually cannot
1012 derive it from the context. */
1014 /* First check whether the answer does not follow from the bounds we gathered
1016 if (integer_nonzerop (iv0
->step
))
1017 dstep
= wi::to_widest (iv0
->step
);
1020 dstep
= wi::sext (wi::to_widest (iv1
->step
), TYPE_PRECISION (type
));
1025 wi::to_mpz (dstep
, mstep
, UNSIGNED
);
1026 mpz_neg (mstep
, mstep
);
1027 mpz_add_ui (mstep
, mstep
, 1);
1029 rolls_p
= mpz_cmp (mstep
, bnds
->below
) <= 0;
1032 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type
)), max
, UNSIGNED
);
1033 mpz_add (max
, max
, mstep
);
1034 no_overflow_p
= (mpz_cmp (bnds
->up
, max
) <= 0
1035 /* For pointers, only values lying inside a single object
1036 can be compared or manipulated by pointer arithmetics.
1037 Gcc in general does not allow or handle objects larger
1038 than half of the address space, hence the upper bound
1039 is satisfied for pointers. */
1040 || POINTER_TYPE_P (type
));
1044 if (rolls_p
&& no_overflow_p
)
1048 if (POINTER_TYPE_P (type
))
1051 /* Now the hard part; we must formulate the assumption(s) as expressions, and
1052 we must be careful not to introduce overflow. */
1054 if (integer_nonzerop (iv0
->step
))
1056 diff
= fold_build2 (MINUS_EXPR
, type1
,
1057 iv0
->step
, build_int_cst (type1
, 1));
1059 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
1060 0 address never belongs to any object, we can assume this for
1062 if (!POINTER_TYPE_P (type
))
1064 bound
= fold_build2 (PLUS_EXPR
, type1
,
1065 TYPE_MIN_VALUE (type
), diff
);
1066 assumption
= fold_build2 (GE_EXPR
, boolean_type_node
,
1070 /* And then we can compute iv0->base - diff, and compare it with
1072 mbzl
= fold_build2 (MINUS_EXPR
, type1
,
1073 fold_convert (type1
, iv0
->base
), diff
);
1074 mbzr
= fold_convert (type1
, iv1
->base
);
1078 diff
= fold_build2 (PLUS_EXPR
, type1
,
1079 iv1
->step
, build_int_cst (type1
, 1));
1081 if (!POINTER_TYPE_P (type
))
1083 bound
= fold_build2 (PLUS_EXPR
, type1
,
1084 TYPE_MAX_VALUE (type
), diff
);
1085 assumption
= fold_build2 (LE_EXPR
, boolean_type_node
,
1089 mbzl
= fold_convert (type1
, iv0
->base
);
1090 mbzr
= fold_build2 (MINUS_EXPR
, type1
,
1091 fold_convert (type1
, iv1
->base
), diff
);
1094 if (!integer_nonzerop (assumption
))
1095 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
1096 niter
->assumptions
, assumption
);
1099 mbz
= fold_build2 (GT_EXPR
, boolean_type_node
, mbzl
, mbzr
);
1100 niter
->may_be_zero
= fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
1101 niter
->may_be_zero
, mbz
);
1105 /* Determines number of iterations of loop whose ending condition
1106 is IV0 < IV1. TYPE is the type of the iv. The number of
1107 iterations is stored to NITER. BNDS bounds the difference
1108 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1109 that the exit must be taken eventually. */
1112 number_of_iterations_lt (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
1113 struct tree_niter_desc
*niter
,
1114 bool exit_must_be_taken
, bounds
*bnds
)
1116 tree niter_type
= unsigned_type_for (type
);
1117 tree delta
, step
, s
;
1120 if (integer_nonzerop (iv0
->step
))
1122 niter
->control
= *iv0
;
1123 niter
->cmp
= LT_EXPR
;
1124 niter
->bound
= iv1
->base
;
1128 niter
->control
= *iv1
;
1129 niter
->cmp
= GT_EXPR
;
1130 niter
->bound
= iv0
->base
;
1133 delta
= fold_build2 (MINUS_EXPR
, niter_type
,
1134 fold_convert (niter_type
, iv1
->base
),
1135 fold_convert (niter_type
, iv0
->base
));
1137 /* First handle the special case that the step is +-1. */
1138 if ((integer_onep (iv0
->step
) && integer_zerop (iv1
->step
))
1139 || (integer_all_onesp (iv1
->step
) && integer_zerop (iv0
->step
)))
1141 /* for (i = iv0->base; i < iv1->base; i++)
1145 for (i = iv1->base; i > iv0->base; i--).
1147 In both cases # of iterations is iv1->base - iv0->base, assuming that
1148 iv1->base >= iv0->base.
1150 First try to derive a lower bound on the value of
1151 iv1->base - iv0->base, computed in full precision. If the difference
1152 is nonnegative, we are done, otherwise we must record the
1155 if (mpz_sgn (bnds
->below
) < 0)
1156 niter
->may_be_zero
= fold_build2 (LT_EXPR
, boolean_type_node
,
1157 iv1
->base
, iv0
->base
);
1158 niter
->niter
= delta
;
1159 niter
->max
= widest_int::from (wi::from_mpz (niter_type
, bnds
->up
, false),
1160 TYPE_SIGN (niter_type
));
1164 if (integer_nonzerop (iv0
->step
))
1165 step
= fold_convert (niter_type
, iv0
->step
);
1167 step
= fold_convert (niter_type
,
1168 fold_build1 (NEGATE_EXPR
, type
, iv1
->step
));
1170 /* If we can determine the final value of the control iv exactly, we can
1171 transform the condition to != comparison. In particular, this will be
1172 the case if DELTA is constant. */
1173 if (number_of_iterations_lt_to_ne (type
, iv0
, iv1
, niter
, &delta
, step
,
1174 exit_must_be_taken
, bnds
))
1178 zps
.base
= build_int_cst (niter_type
, 0);
1180 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1181 zps does not overflow. */
1182 zps
.no_overflow
= true;
1184 return number_of_iterations_ne (type
, &zps
, delta
, niter
, true, bnds
);
1187 /* Make sure that the control iv does not overflow. */
1188 if (!assert_no_overflow_lt (type
, iv0
, iv1
, niter
, step
))
1191 /* We determine the number of iterations as (delta + step - 1) / step. For
1192 this to work, we must know that iv1->base >= iv0->base - step + 1,
1193 otherwise the loop does not roll. */
1194 assert_loop_rolls_lt (type
, iv0
, iv1
, niter
, bnds
);
1196 s
= fold_build2 (MINUS_EXPR
, niter_type
,
1197 step
, build_int_cst (niter_type
, 1));
1198 delta
= fold_build2 (PLUS_EXPR
, niter_type
, delta
, s
);
1199 niter
->niter
= fold_build2 (FLOOR_DIV_EXPR
, niter_type
, delta
, step
);
1203 wi::to_mpz (step
, mstep
, UNSIGNED
);
1204 mpz_add (tmp
, bnds
->up
, mstep
);
1205 mpz_sub_ui (tmp
, tmp
, 1);
1206 mpz_fdiv_q (tmp
, tmp
, mstep
);
1207 niter
->max
= widest_int::from (wi::from_mpz (niter_type
, tmp
, false),
1208 TYPE_SIGN (niter_type
));
1215 /* Determines number of iterations of loop whose ending condition
1216 is IV0 <= IV1. TYPE is the type of the iv. The number of
1217 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1218 we know that this condition must eventually become false (we derived this
1219 earlier, and possibly set NITER->assumptions to make sure this
1220 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1223 number_of_iterations_le (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
1224 struct tree_niter_desc
*niter
, bool exit_must_be_taken
,
1229 if (POINTER_TYPE_P (type
))
1232 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1233 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1234 value of the type. This we must know anyway, since if it is
1235 equal to this value, the loop rolls forever. We do not check
1236 this condition for pointer type ivs, as the code cannot rely on
1237 the object to that the pointer points being placed at the end of
1238 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1239 not defined for pointers). */
1241 if (!exit_must_be_taken
&& !POINTER_TYPE_P (type
))
1243 if (integer_nonzerop (iv0
->step
))
1244 assumption
= fold_build2 (NE_EXPR
, boolean_type_node
,
1245 iv1
->base
, TYPE_MAX_VALUE (type
));
1247 assumption
= fold_build2 (NE_EXPR
, boolean_type_node
,
1248 iv0
->base
, TYPE_MIN_VALUE (type
));
1250 if (integer_zerop (assumption
))
1252 if (!integer_nonzerop (assumption
))
1253 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
1254 niter
->assumptions
, assumption
);
1257 if (integer_nonzerop (iv0
->step
))
1259 if (POINTER_TYPE_P (type
))
1260 iv1
->base
= fold_build_pointer_plus_hwi (iv1
->base
, 1);
1262 iv1
->base
= fold_build2 (PLUS_EXPR
, type1
, iv1
->base
,
1263 build_int_cst (type1
, 1));
1265 else if (POINTER_TYPE_P (type
))
1266 iv0
->base
= fold_build_pointer_plus_hwi (iv0
->base
, -1);
1268 iv0
->base
= fold_build2 (MINUS_EXPR
, type1
,
1269 iv0
->base
, build_int_cst (type1
, 1));
1271 bounds_add (bnds
, 1, type1
);
1273 return number_of_iterations_lt (type
, iv0
, iv1
, niter
, exit_must_be_taken
,
1277 /* Dumps description of affine induction variable IV to FILE. */
1280 dump_affine_iv (FILE *file
, affine_iv
*iv
)
1282 if (!integer_zerop (iv
->step
))
1283 fprintf (file
, "[");
1285 print_generic_expr (dump_file
, iv
->base
, TDF_SLIM
);
1287 if (!integer_zerop (iv
->step
))
1289 fprintf (file
, ", + , ");
1290 print_generic_expr (dump_file
, iv
->step
, TDF_SLIM
);
1291 fprintf (file
, "]%s", iv
->no_overflow
? "(no_overflow)" : "");
1295 /* Determine the number of iterations according to condition (for staying
1296 inside loop) which compares two induction variables using comparison
1297 operator CODE. The induction variable on left side of the comparison
1298 is IV0, the right-hand side is IV1. Both induction variables must have
1299 type TYPE, which must be an integer or pointer type. The steps of the
1300 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1302 LOOP is the loop whose number of iterations we are determining.
1304 ONLY_EXIT is true if we are sure this is the only way the loop could be
1305 exited (including possibly non-returning function calls, exceptions, etc.)
1306 -- in this case we can use the information whether the control induction
1307 variables can overflow or not in a more efficient way.
1309 if EVERY_ITERATION is true, we know the test is executed on every iteration.
1311 The results (number of iterations and assumptions as described in
1312 comments at struct tree_niter_desc in tree-ssa-loop.h) are stored to NITER.
1313 Returns false if it fails to determine number of iterations, true if it
1314 was determined (possibly with some assumptions). */
1317 number_of_iterations_cond (struct loop
*loop
,
1318 tree type
, affine_iv
*iv0
, enum tree_code code
,
1319 affine_iv
*iv1
, struct tree_niter_desc
*niter
,
1320 bool only_exit
, bool every_iteration
)
1322 bool exit_must_be_taken
= false, ret
;
1325 /* If the test is not executed every iteration, wrapping may make the test
1327 TODO: the overflow case can be still used as unreliable estimate of upper
1328 bound. But we have no API to pass it down to number of iterations code
1329 and, at present, it will not use it anyway. */
1330 if (!every_iteration
1331 && (!iv0
->no_overflow
|| !iv1
->no_overflow
1332 || code
== NE_EXPR
|| code
== EQ_EXPR
))
1335 /* The meaning of these assumptions is this:
1337 then the rest of information does not have to be valid
1338 if may_be_zero then the loop does not roll, even if
1340 niter
->assumptions
= boolean_true_node
;
1341 niter
->may_be_zero
= boolean_false_node
;
1342 niter
->niter
= NULL_TREE
;
1344 niter
->bound
= NULL_TREE
;
1345 niter
->cmp
= ERROR_MARK
;
1347 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1348 the control variable is on lhs. */
1349 if (code
== GE_EXPR
|| code
== GT_EXPR
1350 || (code
== NE_EXPR
&& integer_zerop (iv0
->step
)))
1353 code
= swap_tree_comparison (code
);
1356 if (POINTER_TYPE_P (type
))
1358 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1359 to the same object. If they do, the control variable cannot wrap
1360 (as wrap around the bounds of memory will never return a pointer
1361 that would be guaranteed to point to the same object, even if we
1362 avoid undefined behavior by casting to size_t and back). */
1363 iv0
->no_overflow
= true;
1364 iv1
->no_overflow
= true;
1367 /* If the control induction variable does not overflow and the only exit
1368 from the loop is the one that we analyze, we know it must be taken
1372 if (!integer_zerop (iv0
->step
) && iv0
->no_overflow
)
1373 exit_must_be_taken
= true;
1374 else if (!integer_zerop (iv1
->step
) && iv1
->no_overflow
)
1375 exit_must_be_taken
= true;
1378 /* We can handle the case when neither of the sides of the comparison is
1379 invariant, provided that the test is NE_EXPR. This rarely occurs in
1380 practice, but it is simple enough to manage. */
1381 if (!integer_zerop (iv0
->step
) && !integer_zerop (iv1
->step
))
1383 tree step_type
= POINTER_TYPE_P (type
) ? sizetype
: type
;
1384 if (code
!= NE_EXPR
)
1387 iv0
->step
= fold_binary_to_constant (MINUS_EXPR
, step_type
,
1388 iv0
->step
, iv1
->step
);
1389 iv0
->no_overflow
= false;
1390 iv1
->step
= build_int_cst (step_type
, 0);
1391 iv1
->no_overflow
= true;
1394 /* If the result of the comparison is a constant, the loop is weird. More
1395 precise handling would be possible, but the situation is not common enough
1396 to waste time on it. */
1397 if (integer_zerop (iv0
->step
) && integer_zerop (iv1
->step
))
1400 /* Ignore loops of while (i-- < 10) type. */
1401 if (code
!= NE_EXPR
)
1403 if (iv0
->step
&& tree_int_cst_sign_bit (iv0
->step
))
1406 if (!integer_zerop (iv1
->step
) && !tree_int_cst_sign_bit (iv1
->step
))
1410 /* If the loop exits immediately, there is nothing to do. */
1411 tree tem
= fold_binary (code
, boolean_type_node
, iv0
->base
, iv1
->base
);
1412 if (tem
&& integer_zerop (tem
))
1414 niter
->niter
= build_int_cst (unsigned_type_for (type
), 0);
1419 /* OK, now we know we have a senseful loop. Handle several cases, depending
1420 on what comparison operator is used. */
1421 bound_difference (loop
, iv1
->base
, iv0
->base
, &bnds
);
1423 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1426 "Analyzing # of iterations of loop %d\n", loop
->num
);
1428 fprintf (dump_file
, " exit condition ");
1429 dump_affine_iv (dump_file
, iv0
);
1430 fprintf (dump_file
, " %s ",
1431 code
== NE_EXPR
? "!="
1432 : code
== LT_EXPR
? "<"
1434 dump_affine_iv (dump_file
, iv1
);
1435 fprintf (dump_file
, "\n");
1437 fprintf (dump_file
, " bounds on difference of bases: ");
1438 mpz_out_str (dump_file
, 10, bnds
.below
);
1439 fprintf (dump_file
, " ... ");
1440 mpz_out_str (dump_file
, 10, bnds
.up
);
1441 fprintf (dump_file
, "\n");
1447 gcc_assert (integer_zerop (iv1
->step
));
1448 ret
= number_of_iterations_ne (type
, iv0
, iv1
->base
, niter
,
1449 exit_must_be_taken
, &bnds
);
1453 ret
= number_of_iterations_lt (type
, iv0
, iv1
, niter
, exit_must_be_taken
,
1458 ret
= number_of_iterations_le (type
, iv0
, iv1
, niter
, exit_must_be_taken
,
1466 mpz_clear (bnds
.up
);
1467 mpz_clear (bnds
.below
);
1469 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1473 fprintf (dump_file
, " result:\n");
1474 if (!integer_nonzerop (niter
->assumptions
))
1476 fprintf (dump_file
, " under assumptions ");
1477 print_generic_expr (dump_file
, niter
->assumptions
, TDF_SLIM
);
1478 fprintf (dump_file
, "\n");
1481 if (!integer_zerop (niter
->may_be_zero
))
1483 fprintf (dump_file
, " zero if ");
1484 print_generic_expr (dump_file
, niter
->may_be_zero
, TDF_SLIM
);
1485 fprintf (dump_file
, "\n");
1488 fprintf (dump_file
, " # of iterations ");
1489 print_generic_expr (dump_file
, niter
->niter
, TDF_SLIM
);
1490 fprintf (dump_file
, ", bounded by ");
1491 print_decu (niter
->max
, dump_file
);
1492 fprintf (dump_file
, "\n");
1495 fprintf (dump_file
, " failed\n\n");
1500 /* Substitute NEW for OLD in EXPR and fold the result. */
1503 simplify_replace_tree (tree expr
, tree old
, tree new_tree
)
1506 tree ret
= NULL_TREE
, e
, se
;
1511 /* Do not bother to replace constants. */
1512 if (CONSTANT_CLASS_P (old
))
1516 || operand_equal_p (expr
, old
, 0))
1517 return unshare_expr (new_tree
);
1522 n
= TREE_OPERAND_LENGTH (expr
);
1523 for (i
= 0; i
< n
; i
++)
1525 e
= TREE_OPERAND (expr
, i
);
1526 se
= simplify_replace_tree (e
, old
, new_tree
);
1531 ret
= copy_node (expr
);
1533 TREE_OPERAND (ret
, i
) = se
;
1536 return (ret
? fold (ret
) : expr
);
1539 /* Expand definitions of ssa names in EXPR as long as they are simple
1540 enough, and return the new expression. */
1543 expand_simple_operations (tree expr
)
1546 tree ret
= NULL_TREE
, e
, ee
, e1
;
1547 enum tree_code code
;
1550 if (expr
== NULL_TREE
)
1553 if (is_gimple_min_invariant (expr
))
1556 code
= TREE_CODE (expr
);
1557 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
1559 n
= TREE_OPERAND_LENGTH (expr
);
1560 for (i
= 0; i
< n
; i
++)
1562 e
= TREE_OPERAND (expr
, i
);
1563 ee
= expand_simple_operations (e
);
1568 ret
= copy_node (expr
);
1570 TREE_OPERAND (ret
, i
) = ee
;
1576 fold_defer_overflow_warnings ();
1578 fold_undefer_and_ignore_overflow_warnings ();
1582 if (TREE_CODE (expr
) != SSA_NAME
)
1585 stmt
= SSA_NAME_DEF_STMT (expr
);
1586 if (gimple_code (stmt
) == GIMPLE_PHI
)
1588 basic_block src
, dest
;
1590 if (gimple_phi_num_args (stmt
) != 1)
1592 e
= PHI_ARG_DEF (stmt
, 0);
1594 /* Avoid propagating through loop exit phi nodes, which
1595 could break loop-closed SSA form restrictions. */
1596 dest
= gimple_bb (stmt
);
1597 src
= single_pred (dest
);
1598 if (TREE_CODE (e
) == SSA_NAME
1599 && src
->loop_father
!= dest
->loop_father
)
1602 return expand_simple_operations (e
);
1604 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1607 /* Avoid expanding to expressions that contain SSA names that need
1608 to take part in abnormal coalescing. */
1610 FOR_EACH_SSA_TREE_OPERAND (e
, stmt
, iter
, SSA_OP_USE
)
1611 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (e
))
1614 e
= gimple_assign_rhs1 (stmt
);
1615 code
= gimple_assign_rhs_code (stmt
);
1616 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
)
1618 if (is_gimple_min_invariant (e
))
1621 if (code
== SSA_NAME
)
1622 return expand_simple_operations (e
);
1630 /* Casts are simple. */
1631 ee
= expand_simple_operations (e
);
1632 return fold_build1 (code
, TREE_TYPE (expr
), ee
);
1636 case POINTER_PLUS_EXPR
:
1637 /* And increments and decrements by a constant are simple. */
1638 e1
= gimple_assign_rhs2 (stmt
);
1639 if (!is_gimple_min_invariant (e1
))
1642 ee
= expand_simple_operations (e
);
1643 return fold_build2 (code
, TREE_TYPE (expr
), ee
, e1
);
1650 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1651 expression (or EXPR unchanged, if no simplification was possible). */
1654 tree_simplify_using_condition_1 (tree cond
, tree expr
)
1657 tree e
, te
, e0
, e1
, e2
, notcond
;
1658 enum tree_code code
= TREE_CODE (expr
);
1660 if (code
== INTEGER_CST
)
1663 if (code
== TRUTH_OR_EXPR
1664 || code
== TRUTH_AND_EXPR
1665 || code
== COND_EXPR
)
1669 e0
= tree_simplify_using_condition_1 (cond
, TREE_OPERAND (expr
, 0));
1670 if (TREE_OPERAND (expr
, 0) != e0
)
1673 e1
= tree_simplify_using_condition_1 (cond
, TREE_OPERAND (expr
, 1));
1674 if (TREE_OPERAND (expr
, 1) != e1
)
1677 if (code
== COND_EXPR
)
1679 e2
= tree_simplify_using_condition_1 (cond
, TREE_OPERAND (expr
, 2));
1680 if (TREE_OPERAND (expr
, 2) != e2
)
1688 if (code
== COND_EXPR
)
1689 expr
= fold_build3 (code
, boolean_type_node
, e0
, e1
, e2
);
1691 expr
= fold_build2 (code
, boolean_type_node
, e0
, e1
);
1697 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
1698 propagation, and vice versa. Fold does not handle this, since it is
1699 considered too expensive. */
1700 if (TREE_CODE (cond
) == EQ_EXPR
)
1702 e0
= TREE_OPERAND (cond
, 0);
1703 e1
= TREE_OPERAND (cond
, 1);
1705 /* We know that e0 == e1. Check whether we cannot simplify expr
1707 e
= simplify_replace_tree (expr
, e0
, e1
);
1708 if (integer_zerop (e
) || integer_nonzerop (e
))
1711 e
= simplify_replace_tree (expr
, e1
, e0
);
1712 if (integer_zerop (e
) || integer_nonzerop (e
))
1715 if (TREE_CODE (expr
) == EQ_EXPR
)
1717 e0
= TREE_OPERAND (expr
, 0);
1718 e1
= TREE_OPERAND (expr
, 1);
1720 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
1721 e
= simplify_replace_tree (cond
, e0
, e1
);
1722 if (integer_zerop (e
))
1724 e
= simplify_replace_tree (cond
, e1
, e0
);
1725 if (integer_zerop (e
))
1728 if (TREE_CODE (expr
) == NE_EXPR
)
1730 e0
= TREE_OPERAND (expr
, 0);
1731 e1
= TREE_OPERAND (expr
, 1);
1733 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
1734 e
= simplify_replace_tree (cond
, e0
, e1
);
1735 if (integer_zerop (e
))
1736 return boolean_true_node
;
1737 e
= simplify_replace_tree (cond
, e1
, e0
);
1738 if (integer_zerop (e
))
1739 return boolean_true_node
;
1742 te
= expand_simple_operations (expr
);
1744 /* Check whether COND ==> EXPR. */
1745 notcond
= invert_truthvalue (cond
);
1746 e
= fold_binary (TRUTH_OR_EXPR
, boolean_type_node
, notcond
, te
);
1747 if (e
&& integer_nonzerop (e
))
1750 /* Check whether COND ==> not EXPR. */
1751 e
= fold_binary (TRUTH_AND_EXPR
, boolean_type_node
, cond
, te
);
1752 if (e
&& integer_zerop (e
))
1758 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1759 expression (or EXPR unchanged, if no simplification was possible).
1760 Wrapper around tree_simplify_using_condition_1 that ensures that chains
1761 of simple operations in definitions of ssa names in COND are expanded,
1762 so that things like casts or incrementing the value of the bound before
1763 the loop do not cause us to fail. */
1766 tree_simplify_using_condition (tree cond
, tree expr
)
1768 cond
= expand_simple_operations (cond
);
1770 return tree_simplify_using_condition_1 (cond
, expr
);
1773 /* Tries to simplify EXPR using the conditions on entry to LOOP.
1774 Returns the simplified expression (or EXPR unchanged, if no
1775 simplification was possible).*/
1778 simplify_using_initial_conditions (struct loop
*loop
, tree expr
)
1786 if (TREE_CODE (expr
) == INTEGER_CST
)
1789 /* Limit walking the dominators to avoid quadraticness in
1790 the number of BBs times the number of loops in degenerate
1792 for (bb
= loop
->header
;
1793 bb
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
) && cnt
< MAX_DOMINATORS_TO_WALK
;
1794 bb
= get_immediate_dominator (CDI_DOMINATORS
, bb
))
1796 if (!single_pred_p (bb
))
1798 e
= single_pred_edge (bb
);
1800 if (!(e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
1803 stmt
= last_stmt (e
->src
);
1804 cond
= fold_build2 (gimple_cond_code (stmt
),
1806 gimple_cond_lhs (stmt
),
1807 gimple_cond_rhs (stmt
));
1808 if (e
->flags
& EDGE_FALSE_VALUE
)
1809 cond
= invert_truthvalue (cond
);
1810 expr
= tree_simplify_using_condition (cond
, expr
);
1817 /* Tries to simplify EXPR using the evolutions of the loop invariants
1818 in the superloops of LOOP. Returns the simplified expression
1819 (or EXPR unchanged, if no simplification was possible). */
1822 simplify_using_outer_evolutions (struct loop
*loop
, tree expr
)
1824 enum tree_code code
= TREE_CODE (expr
);
1828 if (is_gimple_min_invariant (expr
))
1831 if (code
== TRUTH_OR_EXPR
1832 || code
== TRUTH_AND_EXPR
1833 || code
== COND_EXPR
)
1837 e0
= simplify_using_outer_evolutions (loop
, TREE_OPERAND (expr
, 0));
1838 if (TREE_OPERAND (expr
, 0) != e0
)
1841 e1
= simplify_using_outer_evolutions (loop
, TREE_OPERAND (expr
, 1));
1842 if (TREE_OPERAND (expr
, 1) != e1
)
1845 if (code
== COND_EXPR
)
1847 e2
= simplify_using_outer_evolutions (loop
, TREE_OPERAND (expr
, 2));
1848 if (TREE_OPERAND (expr
, 2) != e2
)
1856 if (code
== COND_EXPR
)
1857 expr
= fold_build3 (code
, boolean_type_node
, e0
, e1
, e2
);
1859 expr
= fold_build2 (code
, boolean_type_node
, e0
, e1
);
1865 e
= instantiate_parameters (loop
, expr
);
1866 if (is_gimple_min_invariant (e
))
1872 /* Returns true if EXIT is the only possible exit from LOOP. */
1875 loop_only_exit_p (const struct loop
*loop
, const_edge exit
)
1878 gimple_stmt_iterator bsi
;
1882 if (exit
!= single_exit (loop
))
1885 body
= get_loop_body (loop
);
1886 for (i
= 0; i
< loop
->num_nodes
; i
++)
1888 for (bsi
= gsi_start_bb (body
[i
]); !gsi_end_p (bsi
); gsi_next (&bsi
))
1890 call
= gsi_stmt (bsi
);
1891 if (gimple_code (call
) != GIMPLE_CALL
)
1894 if (gimple_has_side_effects (call
))
1906 /* Stores description of number of iterations of LOOP derived from
1907 EXIT (an exit edge of the LOOP) in NITER. Returns true if some
1908 useful information could be derived (and fields of NITER has
1909 meaning described in comments at struct tree_niter_desc
1910 declaration), false otherwise. If WARN is true and
1911 -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
1912 potentially unsafe assumptions.
1913 When EVERY_ITERATION is true, only tests that are known to be executed
1914 every iteration are considered (i.e. only test that alone bounds the loop).
1918 number_of_iterations_exit (struct loop
*loop
, edge exit
,
1919 struct tree_niter_desc
*niter
,
1920 bool warn
, bool every_iteration
)
1925 enum tree_code code
;
1929 safe
= dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
);
1931 if (every_iteration
&& !safe
)
1934 niter
->assumptions
= boolean_false_node
;
1935 stmt
= last_stmt (exit
->src
);
1936 if (!stmt
|| gimple_code (stmt
) != GIMPLE_COND
)
1939 /* We want the condition for staying inside loop. */
1940 code
= gimple_cond_code (stmt
);
1941 if (exit
->flags
& EDGE_TRUE_VALUE
)
1942 code
= invert_tree_comparison (code
, false);
1957 op0
= gimple_cond_lhs (stmt
);
1958 op1
= gimple_cond_rhs (stmt
);
1959 type
= TREE_TYPE (op0
);
1961 if (TREE_CODE (type
) != INTEGER_TYPE
1962 && !POINTER_TYPE_P (type
))
1965 if (!simple_iv (loop
, loop_containing_stmt (stmt
), op0
, &iv0
, false))
1967 if (!simple_iv (loop
, loop_containing_stmt (stmt
), op1
, &iv1
, false))
1970 /* We don't want to see undefined signed overflow warnings while
1971 computing the number of iterations. */
1972 fold_defer_overflow_warnings ();
1974 iv0
.base
= expand_simple_operations (iv0
.base
);
1975 iv1
.base
= expand_simple_operations (iv1
.base
);
1976 if (!number_of_iterations_cond (loop
, type
, &iv0
, code
, &iv1
, niter
,
1977 loop_only_exit_p (loop
, exit
), safe
))
1979 fold_undefer_and_ignore_overflow_warnings ();
1985 niter
->assumptions
= simplify_using_outer_evolutions (loop
,
1986 niter
->assumptions
);
1987 niter
->may_be_zero
= simplify_using_outer_evolutions (loop
,
1988 niter
->may_be_zero
);
1989 niter
->niter
= simplify_using_outer_evolutions (loop
, niter
->niter
);
1993 = simplify_using_initial_conditions (loop
,
1994 niter
->assumptions
);
1996 = simplify_using_initial_conditions (loop
,
1997 niter
->may_be_zero
);
1999 fold_undefer_and_ignore_overflow_warnings ();
2001 /* If NITER has simplified into a constant, update MAX. */
2002 if (TREE_CODE (niter
->niter
) == INTEGER_CST
)
2003 niter
->max
= wi::to_widest (niter
->niter
);
2005 if (integer_onep (niter
->assumptions
))
2008 /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
2009 But if we can prove that there is overflow or some other source of weird
2010 behavior, ignore the loop even with -funsafe-loop-optimizations. */
2011 if (integer_zerop (niter
->assumptions
) || !single_exit (loop
))
2014 if (flag_unsafe_loop_optimizations
)
2015 niter
->assumptions
= boolean_true_node
;
2019 const char *wording
;
2020 location_t loc
= gimple_location (stmt
);
2022 /* We can provide a more specific warning if one of the operator is
2023 constant and the other advances by +1 or -1. */
2024 if (!integer_zerop (iv1
.step
)
2025 ? (integer_zerop (iv0
.step
)
2026 && (integer_onep (iv1
.step
) || integer_all_onesp (iv1
.step
)))
2027 : (integer_onep (iv0
.step
) || integer_all_onesp (iv0
.step
)))
2029 flag_unsafe_loop_optimizations
2030 ? N_("assuming that the loop is not infinite")
2031 : N_("cannot optimize possibly infinite loops");
2034 flag_unsafe_loop_optimizations
2035 ? N_("assuming that the loop counter does not overflow")
2036 : N_("cannot optimize loop, the loop counter may overflow");
2038 warning_at ((LOCATION_LINE (loc
) > 0) ? loc
: input_location
,
2039 OPT_Wunsafe_loop_optimizations
, "%s", gettext (wording
));
2042 return flag_unsafe_loop_optimizations
;
2045 /* Try to determine the number of iterations of LOOP. If we succeed,
2046 expression giving number of iterations is returned and *EXIT is
2047 set to the edge from that the information is obtained. Otherwise
2048 chrec_dont_know is returned. */
2051 find_loop_niter (struct loop
*loop
, edge
*exit
)
2054 vec
<edge
> exits
= get_loop_exit_edges (loop
);
2056 tree niter
= NULL_TREE
, aniter
;
2057 struct tree_niter_desc desc
;
2060 FOR_EACH_VEC_ELT (exits
, i
, ex
)
2062 if (!number_of_iterations_exit (loop
, ex
, &desc
, false))
2065 if (integer_nonzerop (desc
.may_be_zero
))
2067 /* We exit in the first iteration through this exit.
2068 We won't find anything better. */
2069 niter
= build_int_cst (unsigned_type_node
, 0);
2074 if (!integer_zerop (desc
.may_be_zero
))
2077 aniter
= desc
.niter
;
2081 /* Nothing recorded yet. */
2087 /* Prefer constants, the lower the better. */
2088 if (TREE_CODE (aniter
) != INTEGER_CST
)
2091 if (TREE_CODE (niter
) != INTEGER_CST
)
2098 if (tree_int_cst_lt (aniter
, niter
))
2107 return niter
? niter
: chrec_dont_know
;
2110 /* Return true if loop is known to have bounded number of iterations. */
2113 finite_loop_p (struct loop
*loop
)
2118 if (flag_unsafe_loop_optimizations
)
2120 flags
= flags_from_decl_or_type (current_function_decl
);
2121 if ((flags
& (ECF_CONST
|ECF_PURE
)) && !(flags
& ECF_LOOPING_CONST_OR_PURE
))
2123 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2124 fprintf (dump_file
, "Found loop %i to be finite: it is within pure or const function.\n",
2129 if (loop
->any_upper_bound
2130 || max_loop_iterations (loop
, &nit
))
2132 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2133 fprintf (dump_file
, "Found loop %i to be finite: upper bound found.\n",
2142 Analysis of a number of iterations of a loop by a brute-force evaluation.
2146 /* Bound on the number of iterations we try to evaluate. */
2148 #define MAX_ITERATIONS_TO_TRACK \
2149 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2151 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2152 result by a chain of operations such that all but exactly one of their
2153 operands are constants. */
2156 chain_of_csts_start (struct loop
*loop
, tree x
)
2158 gimple stmt
= SSA_NAME_DEF_STMT (x
);
2160 basic_block bb
= gimple_bb (stmt
);
2161 enum tree_code code
;
2164 || !flow_bb_inside_loop_p (loop
, bb
))
2167 if (gimple_code (stmt
) == GIMPLE_PHI
)
2169 if (bb
== loop
->header
)
2175 if (gimple_code (stmt
) != GIMPLE_ASSIGN
2176 || gimple_assign_rhs_class (stmt
) == GIMPLE_TERNARY_RHS
)
2179 code
= gimple_assign_rhs_code (stmt
);
2180 if (gimple_references_memory_p (stmt
)
2181 || TREE_CODE_CLASS (code
) == tcc_reference
2182 || (code
== ADDR_EXPR
2183 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt
))))
2186 use
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_USE
);
2187 if (use
== NULL_TREE
)
2190 return chain_of_csts_start (loop
, use
);
2193 /* Determines whether the expression X is derived from a result of a phi node
2194 in header of LOOP such that
2196 * the derivation of X consists only from operations with constants
2197 * the initial value of the phi node is constant
2198 * the value of the phi node in the next iteration can be derived from the
2199 value in the current iteration by a chain of operations with constants.
2201 If such phi node exists, it is returned, otherwise NULL is returned. */
2204 get_base_for (struct loop
*loop
, tree x
)
2209 if (is_gimple_min_invariant (x
))
2212 phi
= chain_of_csts_start (loop
, x
);
2216 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
2217 next
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
2219 if (TREE_CODE (next
) != SSA_NAME
)
2222 if (!is_gimple_min_invariant (init
))
2225 if (chain_of_csts_start (loop
, next
) != phi
)
2231 /* Given an expression X, then
2233 * if X is NULL_TREE, we return the constant BASE.
2234 * otherwise X is a SSA name, whose value in the considered loop is derived
2235 by a chain of operations with constant from a result of a phi node in
2236 the header of the loop. Then we return value of X when the value of the
2237 result of this phi node is given by the constant BASE. */
2240 get_val_for (tree x
, tree base
)
2244 gcc_checking_assert (is_gimple_min_invariant (base
));
2249 stmt
= SSA_NAME_DEF_STMT (x
);
2250 if (gimple_code (stmt
) == GIMPLE_PHI
)
2253 gcc_checking_assert (is_gimple_assign (stmt
));
2255 /* STMT must be either an assignment of a single SSA name or an
2256 expression involving an SSA name and a constant. Try to fold that
2257 expression using the value for the SSA name. */
2258 if (gimple_assign_ssa_name_copy_p (stmt
))
2259 return get_val_for (gimple_assign_rhs1 (stmt
), base
);
2260 else if (gimple_assign_rhs_class (stmt
) == GIMPLE_UNARY_RHS
2261 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
)
2263 return fold_build1 (gimple_assign_rhs_code (stmt
),
2264 gimple_expr_type (stmt
),
2265 get_val_for (gimple_assign_rhs1 (stmt
), base
));
2267 else if (gimple_assign_rhs_class (stmt
) == GIMPLE_BINARY_RHS
)
2269 tree rhs1
= gimple_assign_rhs1 (stmt
);
2270 tree rhs2
= gimple_assign_rhs2 (stmt
);
2271 if (TREE_CODE (rhs1
) == SSA_NAME
)
2272 rhs1
= get_val_for (rhs1
, base
);
2273 else if (TREE_CODE (rhs2
) == SSA_NAME
)
2274 rhs2
= get_val_for (rhs2
, base
);
2277 return fold_build2 (gimple_assign_rhs_code (stmt
),
2278 gimple_expr_type (stmt
), rhs1
, rhs2
);
2285 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2286 by brute force -- i.e. by determining the value of the operands of the
2287 condition at EXIT in first few iterations of the loop (assuming that
2288 these values are constant) and determining the first one in that the
2289 condition is not satisfied. Returns the constant giving the number
2290 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
2293 loop_niter_by_eval (struct loop
*loop
, edge exit
)
2296 tree op
[2], val
[2], next
[2], aval
[2];
2301 cond
= last_stmt (exit
->src
);
2302 if (!cond
|| gimple_code (cond
) != GIMPLE_COND
)
2303 return chrec_dont_know
;
2305 cmp
= gimple_cond_code (cond
);
2306 if (exit
->flags
& EDGE_TRUE_VALUE
)
2307 cmp
= invert_tree_comparison (cmp
, false);
2317 op
[0] = gimple_cond_lhs (cond
);
2318 op
[1] = gimple_cond_rhs (cond
);
2322 return chrec_dont_know
;
2325 for (j
= 0; j
< 2; j
++)
2327 if (is_gimple_min_invariant (op
[j
]))
2330 next
[j
] = NULL_TREE
;
2335 phi
= get_base_for (loop
, op
[j
]);
2337 return chrec_dont_know
;
2338 val
[j
] = PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
2339 next
[j
] = PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
2343 /* Don't issue signed overflow warnings. */
2344 fold_defer_overflow_warnings ();
2346 for (i
= 0; i
< MAX_ITERATIONS_TO_TRACK
; i
++)
2348 for (j
= 0; j
< 2; j
++)
2349 aval
[j
] = get_val_for (op
[j
], val
[j
]);
2351 acnd
= fold_binary (cmp
, boolean_type_node
, aval
[0], aval
[1]);
2352 if (acnd
&& integer_zerop (acnd
))
2354 fold_undefer_and_ignore_overflow_warnings ();
2355 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2357 "Proved that loop %d iterates %d times using brute force.\n",
2359 return build_int_cst (unsigned_type_node
, i
);
2362 for (j
= 0; j
< 2; j
++)
2364 val
[j
] = get_val_for (next
[j
], val
[j
]);
2365 if (!is_gimple_min_invariant (val
[j
]))
2367 fold_undefer_and_ignore_overflow_warnings ();
2368 return chrec_dont_know
;
2373 fold_undefer_and_ignore_overflow_warnings ();
2375 return chrec_dont_know
;
2378 /* Finds the exit of the LOOP by that the loop exits after a constant
2379 number of iterations and stores the exit edge to *EXIT. The constant
2380 giving the number of iterations of LOOP is returned. The number of
2381 iterations is determined using loop_niter_by_eval (i.e. by brute force
2382 evaluation). If we are unable to find the exit for that loop_niter_by_eval
2383 determines the number of iterations, chrec_dont_know is returned. */
2386 find_loop_niter_by_eval (struct loop
*loop
, edge
*exit
)
2389 vec
<edge
> exits
= get_loop_exit_edges (loop
);
2391 tree niter
= NULL_TREE
, aniter
;
2395 /* Loops with multiple exits are expensive to handle and less important. */
2396 if (!flag_expensive_optimizations
2397 && exits
.length () > 1)
2400 return chrec_dont_know
;
2403 FOR_EACH_VEC_ELT (exits
, i
, ex
)
2405 if (!just_once_each_iteration_p (loop
, ex
->src
))
2408 aniter
= loop_niter_by_eval (loop
, ex
);
2409 if (chrec_contains_undetermined (aniter
))
2413 && !tree_int_cst_lt (aniter
, niter
))
2421 return niter
? niter
: chrec_dont_know
;
2426 Analysis of upper bounds on number of iterations of a loop.
2430 static widest_int
derive_constant_upper_bound_ops (tree
, tree
,
2431 enum tree_code
, tree
);
2433 /* Returns a constant upper bound on the value of the right-hand side of
2434 an assignment statement STMT. */
2437 derive_constant_upper_bound_assign (gimple stmt
)
2439 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2440 tree op0
= gimple_assign_rhs1 (stmt
);
2441 tree op1
= gimple_assign_rhs2 (stmt
);
2443 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt
)),
2447 /* Returns a constant upper bound on the value of expression VAL. VAL
2448 is considered to be unsigned. If its type is signed, its value must
2452 derive_constant_upper_bound (tree val
)
2454 enum tree_code code
;
2457 extract_ops_from_tree (val
, &code
, &op0
, &op1
);
2458 return derive_constant_upper_bound_ops (TREE_TYPE (val
), op0
, code
, op1
);
2461 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
2462 whose type is TYPE. The expression is considered to be unsigned. If
2463 its type is signed, its value must be nonnegative. */
2466 derive_constant_upper_bound_ops (tree type
, tree op0
,
2467 enum tree_code code
, tree op1
)
2470 widest_int bnd
, max
, mmax
, cst
;
2473 if (INTEGRAL_TYPE_P (type
))
2474 maxt
= TYPE_MAX_VALUE (type
);
2476 maxt
= upper_bound_in_type (type
, type
);
2478 max
= wi::to_widest (maxt
);
2483 return wi::to_widest (op0
);
2486 subtype
= TREE_TYPE (op0
);
2487 if (!TYPE_UNSIGNED (subtype
)
2488 /* If TYPE is also signed, the fact that VAL is nonnegative implies
2489 that OP0 is nonnegative. */
2490 && TYPE_UNSIGNED (type
)
2491 && !tree_expr_nonnegative_p (op0
))
2493 /* If we cannot prove that the casted expression is nonnegative,
2494 we cannot establish more useful upper bound than the precision
2495 of the type gives us. */
2499 /* We now know that op0 is an nonnegative value. Try deriving an upper
2501 bnd
= derive_constant_upper_bound (op0
);
2503 /* If the bound does not fit in TYPE, max. value of TYPE could be
2505 if (wi::ltu_p (max
, bnd
))
2511 case POINTER_PLUS_EXPR
:
2513 if (TREE_CODE (op1
) != INTEGER_CST
2514 || !tree_expr_nonnegative_p (op0
))
2517 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
2518 choose the most logical way how to treat this constant regardless
2519 of the signedness of the type. */
2520 cst
= wi::sext (wi::to_widest (op1
), TYPE_PRECISION (type
));
2521 if (code
!= MINUS_EXPR
)
2524 bnd
= derive_constant_upper_bound (op0
);
2526 if (wi::neg_p (cst
))
2529 /* Avoid CST == 0x80000... */
2530 if (wi::neg_p (cst
))
2533 /* OP0 + CST. We need to check that
2534 BND <= MAX (type) - CST. */
2537 if (wi::ltu_p (bnd
, max
))
2544 /* OP0 - CST, where CST >= 0.
2546 If TYPE is signed, we have already verified that OP0 >= 0, and we
2547 know that the result is nonnegative. This implies that
2550 If TYPE is unsigned, we must additionally know that OP0 >= CST,
2551 otherwise the operation underflows.
2554 /* This should only happen if the type is unsigned; however, for
2555 buggy programs that use overflowing signed arithmetics even with
2556 -fno-wrapv, this condition may also be true for signed values. */
2557 if (wi::ltu_p (bnd
, cst
))
2560 if (TYPE_UNSIGNED (type
))
2562 tree tem
= fold_binary (GE_EXPR
, boolean_type_node
, op0
,
2563 wide_int_to_tree (type
, cst
));
2564 if (!tem
|| integer_nonzerop (tem
))
2573 case FLOOR_DIV_EXPR
:
2574 case EXACT_DIV_EXPR
:
2575 if (TREE_CODE (op1
) != INTEGER_CST
2576 || tree_int_cst_sign_bit (op1
))
2579 bnd
= derive_constant_upper_bound (op0
);
2580 return wi::udiv_floor (bnd
, wi::to_widest (op1
));
2583 if (TREE_CODE (op1
) != INTEGER_CST
2584 || tree_int_cst_sign_bit (op1
))
2586 return wi::to_widest (op1
);
2589 stmt
= SSA_NAME_DEF_STMT (op0
);
2590 if (gimple_code (stmt
) != GIMPLE_ASSIGN
2591 || gimple_assign_lhs (stmt
) != op0
)
2593 return derive_constant_upper_bound_assign (stmt
);
2600 /* Emit a -Waggressive-loop-optimizations warning if needed. */
2603 do_warn_aggressive_loop_optimizations (struct loop
*loop
,
2604 widest_int i_bound
, gimple stmt
)
2606 /* Don't warn if the loop doesn't have known constant bound. */
2607 if (!loop
->nb_iterations
2608 || TREE_CODE (loop
->nb_iterations
) != INTEGER_CST
2609 || !warn_aggressive_loop_optimizations
2610 /* To avoid warning multiple times for the same loop,
2611 only start warning when we preserve loops. */
2612 || (cfun
->curr_properties
& PROP_loops
) == 0
2613 /* Only warn once per loop. */
2614 || loop
->warned_aggressive_loop_optimizations
2615 /* Only warn if undefined behavior gives us lower estimate than the
2616 known constant bound. */
2617 || wi::cmpu (i_bound
, wi::to_widest (loop
->nb_iterations
)) >= 0
2618 /* And undefined behavior happens unconditionally. */
2619 || !dominated_by_p (CDI_DOMINATORS
, loop
->latch
, gimple_bb (stmt
)))
2622 edge e
= single_exit (loop
);
2626 gimple estmt
= last_stmt (e
->src
);
2627 if (warning_at (gimple_location (stmt
), OPT_Waggressive_loop_optimizations
,
2628 "iteration %E invokes undefined behavior",
2629 wide_int_to_tree (TREE_TYPE (loop
->nb_iterations
),
2631 inform (gimple_location (estmt
), "containing loop");
2632 loop
->warned_aggressive_loop_optimizations
= true;
2635 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
2636 is true if the loop is exited immediately after STMT, and this exit
2637 is taken at last when the STMT is executed BOUND + 1 times.
2638 REALISTIC is true if BOUND is expected to be close to the real number
2639 of iterations. UPPER is true if we are sure the loop iterates at most
2640 BOUND times. I_BOUND is a widest_int upper estimate on BOUND. */
2643 record_estimate (struct loop
*loop
, tree bound
, const widest_int
&i_bound
,
2644 gimple at_stmt
, bool is_exit
, bool realistic
, bool upper
)
2648 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2650 fprintf (dump_file
, "Statement %s", is_exit
? "(exit)" : "");
2651 print_gimple_stmt (dump_file
, at_stmt
, 0, TDF_SLIM
);
2652 fprintf (dump_file
, " is %sexecuted at most ",
2653 upper
? "" : "probably ");
2654 print_generic_expr (dump_file
, bound
, TDF_SLIM
);
2655 fprintf (dump_file
, " (bounded by ");
2656 print_decu (i_bound
, dump_file
);
2657 fprintf (dump_file
, ") + 1 times in loop %d.\n", loop
->num
);
2660 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
2661 real number of iterations. */
2662 if (TREE_CODE (bound
) != INTEGER_CST
)
2665 gcc_checking_assert (i_bound
== wi::to_widest (bound
));
2666 if (!upper
&& !realistic
)
2669 /* If we have a guaranteed upper bound, record it in the appropriate
2670 list, unless this is an !is_exit bound (i.e. undefined behavior in
2671 at_stmt) in a loop with known constant number of iterations. */
2674 || loop
->nb_iterations
== NULL_TREE
2675 || TREE_CODE (loop
->nb_iterations
) != INTEGER_CST
))
2677 struct nb_iter_bound
*elt
= ggc_alloc
<nb_iter_bound
> ();
2679 elt
->bound
= i_bound
;
2680 elt
->stmt
= at_stmt
;
2681 elt
->is_exit
= is_exit
;
2682 elt
->next
= loop
->bounds
;
2686 /* If statement is executed on every path to the loop latch, we can directly
2687 infer the upper bound on the # of iterations of the loop. */
2688 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, gimple_bb (at_stmt
)))
2691 /* Update the number of iteration estimates according to the bound.
2692 If at_stmt is an exit then the loop latch is executed at most BOUND times,
2693 otherwise it can be executed BOUND + 1 times. We will lower the estimate
2694 later if such statement must be executed on last iteration */
2699 widest_int new_i_bound
= i_bound
+ delta
;
2701 /* If an overflow occurred, ignore the result. */
2702 if (wi::ltu_p (new_i_bound
, delta
))
2705 if (upper
&& !is_exit
)
2706 do_warn_aggressive_loop_optimizations (loop
, new_i_bound
, at_stmt
);
2707 record_niter_bound (loop
, new_i_bound
, realistic
, upper
);
2710 /* Record the estimate on number of iterations of LOOP based on the fact that
2711 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
2712 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
2713 estimated number of iterations is expected to be close to the real one.
2714 UPPER is true if we are sure the induction variable does not wrap. */
2717 record_nonwrapping_iv (struct loop
*loop
, tree base
, tree step
, gimple stmt
,
2718 tree low
, tree high
, bool realistic
, bool upper
)
2720 tree niter_bound
, extreme
, delta
;
2721 tree type
= TREE_TYPE (base
), unsigned_type
;
2723 if (TREE_CODE (step
) != INTEGER_CST
|| integer_zerop (step
))
2726 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2728 fprintf (dump_file
, "Induction variable (");
2729 print_generic_expr (dump_file
, TREE_TYPE (base
), TDF_SLIM
);
2730 fprintf (dump_file
, ") ");
2731 print_generic_expr (dump_file
, base
, TDF_SLIM
);
2732 fprintf (dump_file
, " + ");
2733 print_generic_expr (dump_file
, step
, TDF_SLIM
);
2734 fprintf (dump_file
, " * iteration does not wrap in statement ");
2735 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
2736 fprintf (dump_file
, " in loop %d.\n", loop
->num
);
2739 unsigned_type
= unsigned_type_for (type
);
2740 base
= fold_convert (unsigned_type
, base
);
2741 step
= fold_convert (unsigned_type
, step
);
2743 if (tree_int_cst_sign_bit (step
))
2745 extreme
= fold_convert (unsigned_type
, low
);
2746 if (TREE_CODE (base
) != INTEGER_CST
)
2747 base
= fold_convert (unsigned_type
, high
);
2748 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, base
, extreme
);
2749 step
= fold_build1 (NEGATE_EXPR
, unsigned_type
, step
);
2753 extreme
= fold_convert (unsigned_type
, high
);
2754 if (TREE_CODE (base
) != INTEGER_CST
)
2755 base
= fold_convert (unsigned_type
, low
);
2756 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, extreme
, base
);
2759 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
2760 would get out of the range. */
2761 niter_bound
= fold_build2 (FLOOR_DIV_EXPR
, unsigned_type
, delta
, step
);
2762 widest_int max
= derive_constant_upper_bound (niter_bound
);
2763 record_estimate (loop
, niter_bound
, max
, stmt
, false, realistic
, upper
);
2766 /* Determine information about number of iterations a LOOP from the index
2767 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
2768 guaranteed to be executed in every iteration of LOOP. Callback for
2778 idx_infer_loop_bounds (tree base
, tree
*idx
, void *dta
)
2780 struct ilb_data
*data
= (struct ilb_data
*) dta
;
2781 tree ev
, init
, step
;
2782 tree low
, high
, type
, next
;
2783 bool sign
, upper
= true, at_end
= false;
2784 struct loop
*loop
= data
->loop
;
2785 bool reliable
= true;
2787 if (TREE_CODE (base
) != ARRAY_REF
)
2790 /* For arrays at the end of the structure, we are not guaranteed that they
2791 do not really extend over their declared size. However, for arrays of
2792 size greater than one, this is unlikely to be intended. */
2793 if (array_at_struct_end_p (base
))
2799 struct loop
*dloop
= loop_containing_stmt (data
->stmt
);
2803 ev
= analyze_scalar_evolution (dloop
, *idx
);
2804 ev
= instantiate_parameters (loop
, ev
);
2805 init
= initial_condition (ev
);
2806 step
= evolution_part_in_loop_num (ev
, loop
->num
);
2810 || TREE_CODE (step
) != INTEGER_CST
2811 || integer_zerop (step
)
2812 || tree_contains_chrecs (init
, NULL
)
2813 || chrec_contains_symbols_defined_in_loop (init
, loop
->num
))
2816 low
= array_ref_low_bound (base
);
2817 high
= array_ref_up_bound (base
);
2819 /* The case of nonconstant bounds could be handled, but it would be
2821 if (TREE_CODE (low
) != INTEGER_CST
2823 || TREE_CODE (high
) != INTEGER_CST
)
2825 sign
= tree_int_cst_sign_bit (step
);
2826 type
= TREE_TYPE (step
);
2828 /* The array of length 1 at the end of a structure most likely extends
2829 beyond its bounds. */
2831 && operand_equal_p (low
, high
, 0))
2834 /* In case the relevant bound of the array does not fit in type, or
2835 it does, but bound + step (in type) still belongs into the range of the
2836 array, the index may wrap and still stay within the range of the array
2837 (consider e.g. if the array is indexed by the full range of
2840 To make things simpler, we require both bounds to fit into type, although
2841 there are cases where this would not be strictly necessary. */
2842 if (!int_fits_type_p (high
, type
)
2843 || !int_fits_type_p (low
, type
))
2845 low
= fold_convert (type
, low
);
2846 high
= fold_convert (type
, high
);
2849 next
= fold_binary (PLUS_EXPR
, type
, low
, step
);
2851 next
= fold_binary (PLUS_EXPR
, type
, high
, step
);
2853 if (tree_int_cst_compare (low
, next
) <= 0
2854 && tree_int_cst_compare (next
, high
) <= 0)
2857 /* If access is not executed on every iteration, we must ensure that overlow may
2858 not make the access valid later. */
2859 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, gimple_bb (data
->stmt
))
2860 && scev_probably_wraps_p (initial_condition_in_loop_num (ev
, loop
->num
),
2861 step
, data
->stmt
, loop
, true))
2864 record_nonwrapping_iv (loop
, init
, step
, data
->stmt
, low
, high
, reliable
, upper
);
2868 /* Determine information about number of iterations a LOOP from the bounds
2869 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
2870 STMT is guaranteed to be executed in every iteration of LOOP.*/
2873 infer_loop_bounds_from_ref (struct loop
*loop
, gimple stmt
, tree ref
)
2875 struct ilb_data data
;
2879 for_each_index (&ref
, idx_infer_loop_bounds
, &data
);
2882 /* Determine information about number of iterations of a LOOP from the way
2883 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
2884 executed in every iteration of LOOP. */
2887 infer_loop_bounds_from_array (struct loop
*loop
, gimple stmt
)
2889 if (is_gimple_assign (stmt
))
2891 tree op0
= gimple_assign_lhs (stmt
);
2892 tree op1
= gimple_assign_rhs1 (stmt
);
2894 /* For each memory access, analyze its access function
2895 and record a bound on the loop iteration domain. */
2896 if (REFERENCE_CLASS_P (op0
))
2897 infer_loop_bounds_from_ref (loop
, stmt
, op0
);
2899 if (REFERENCE_CLASS_P (op1
))
2900 infer_loop_bounds_from_ref (loop
, stmt
, op1
);
2902 else if (is_gimple_call (stmt
))
2905 unsigned i
, n
= gimple_call_num_args (stmt
);
2907 lhs
= gimple_call_lhs (stmt
);
2908 if (lhs
&& REFERENCE_CLASS_P (lhs
))
2909 infer_loop_bounds_from_ref (loop
, stmt
, lhs
);
2911 for (i
= 0; i
< n
; i
++)
2913 arg
= gimple_call_arg (stmt
, i
);
2914 if (REFERENCE_CLASS_P (arg
))
2915 infer_loop_bounds_from_ref (loop
, stmt
, arg
);
2920 /* Determine information about number of iterations of a LOOP from the fact
2921 that pointer arithmetics in STMT does not overflow. */
2924 infer_loop_bounds_from_pointer_arith (struct loop
*loop
, gimple stmt
)
2926 tree def
, base
, step
, scev
, type
, low
, high
;
2929 if (!is_gimple_assign (stmt
)
2930 || gimple_assign_rhs_code (stmt
) != POINTER_PLUS_EXPR
)
2933 def
= gimple_assign_lhs (stmt
);
2934 if (TREE_CODE (def
) != SSA_NAME
)
2937 type
= TREE_TYPE (def
);
2938 if (!nowrap_type_p (type
))
2941 ptr
= gimple_assign_rhs1 (stmt
);
2942 if (!expr_invariant_in_loop_p (loop
, ptr
))
2945 var
= gimple_assign_rhs2 (stmt
);
2946 if (TYPE_PRECISION (type
) != TYPE_PRECISION (TREE_TYPE (var
)))
2949 scev
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, def
));
2950 if (chrec_contains_undetermined (scev
))
2953 base
= initial_condition_in_loop_num (scev
, loop
->num
);
2954 step
= evolution_part_in_loop_num (scev
, loop
->num
);
2957 || TREE_CODE (step
) != INTEGER_CST
2958 || tree_contains_chrecs (base
, NULL
)
2959 || chrec_contains_symbols_defined_in_loop (base
, loop
->num
))
2962 low
= lower_bound_in_type (type
, type
);
2963 high
= upper_bound_in_type (type
, type
);
2965 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
2966 produce a NULL pointer. The contrary would mean NULL points to an object,
2967 while NULL is supposed to compare unequal with the address of all objects.
2968 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
2969 NULL pointer since that would mean wrapping, which we assume here not to
2970 happen. So, we can exclude NULL from the valid range of pointer
2972 if (flag_delete_null_pointer_checks
&& int_cst_value (low
) == 0)
2973 low
= build_int_cstu (TREE_TYPE (low
), TYPE_ALIGN_UNIT (TREE_TYPE (type
)));
2975 record_nonwrapping_iv (loop
, base
, step
, stmt
, low
, high
, false, true);
2978 /* Determine information about number of iterations of a LOOP from the fact
2979 that signed arithmetics in STMT does not overflow. */
2982 infer_loop_bounds_from_signedness (struct loop
*loop
, gimple stmt
)
2984 tree def
, base
, step
, scev
, type
, low
, high
;
2986 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
2989 def
= gimple_assign_lhs (stmt
);
2991 if (TREE_CODE (def
) != SSA_NAME
)
2994 type
= TREE_TYPE (def
);
2995 if (!INTEGRAL_TYPE_P (type
)
2996 || !TYPE_OVERFLOW_UNDEFINED (type
))
2999 scev
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, def
));
3000 if (chrec_contains_undetermined (scev
))
3003 base
= initial_condition_in_loop_num (scev
, loop
->num
);
3004 step
= evolution_part_in_loop_num (scev
, loop
->num
);
3007 || TREE_CODE (step
) != INTEGER_CST
3008 || tree_contains_chrecs (base
, NULL
)
3009 || chrec_contains_symbols_defined_in_loop (base
, loop
->num
))
3012 low
= lower_bound_in_type (type
, type
);
3013 high
= upper_bound_in_type (type
, type
);
3015 record_nonwrapping_iv (loop
, base
, step
, stmt
, low
, high
, false, true);
3018 /* The following analyzers are extracting informations on the bounds
3019 of LOOP from the following undefined behaviors:
3021 - data references should not access elements over the statically
3024 - signed variables should not overflow when flag_wrapv is not set.
3028 infer_loop_bounds_from_undefined (struct loop
*loop
)
3032 gimple_stmt_iterator bsi
;
3036 bbs
= get_loop_body (loop
);
3038 for (i
= 0; i
< loop
->num_nodes
; i
++)
3042 /* If BB is not executed in each iteration of the loop, we cannot
3043 use the operations in it to infer reliable upper bound on the
3044 # of iterations of the loop. However, we can use it as a guess.
3045 Reliable guesses come only from array bounds. */
3046 reliable
= dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
);
3048 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
3050 gimple stmt
= gsi_stmt (bsi
);
3052 infer_loop_bounds_from_array (loop
, stmt
);
3056 infer_loop_bounds_from_signedness (loop
, stmt
);
3057 infer_loop_bounds_from_pointer_arith (loop
, stmt
);
3066 /* Compare wide ints, callback for qsort. */
3069 wide_int_cmp (const void *p1
, const void *p2
)
3071 const widest_int
*d1
= (const widest_int
*) p1
;
3072 const widest_int
*d2
= (const widest_int
*) p2
;
3073 return wi::cmpu (*d1
, *d2
);
3076 /* Return index of BOUND in BOUNDS array sorted in increasing order.
3077 Lookup by binary search. */
3080 bound_index (vec
<widest_int
> bounds
, const widest_int
&bound
)
3082 unsigned int end
= bounds
.length ();
3083 unsigned int begin
= 0;
3085 /* Find a matching index by means of a binary search. */
3086 while (begin
!= end
)
3088 unsigned int middle
= (begin
+ end
) / 2;
3089 widest_int index
= bounds
[middle
];
3093 else if (wi::ltu_p (index
, bound
))
3101 /* We recorded loop bounds only for statements dominating loop latch (and thus
3102 executed each loop iteration). If there are any bounds on statements not
3103 dominating the loop latch we can improve the estimate by walking the loop
3104 body and seeing if every path from loop header to loop latch contains
3105 some bounded statement. */
3108 discover_iteration_bound_by_body_walk (struct loop
*loop
)
3110 pointer_map_t
*bb_bounds
;
3111 struct nb_iter_bound
*elt
;
3112 vec
<widest_int
> bounds
= vNULL
;
3113 vec
<vec
<basic_block
> > queues
= vNULL
;
3114 vec
<basic_block
> queue
= vNULL
;
3115 ptrdiff_t queue_index
;
3116 ptrdiff_t latch_index
= 0;
3117 pointer_map_t
*block_priority
;
3119 /* Discover what bounds may interest us. */
3120 for (elt
= loop
->bounds
; elt
; elt
= elt
->next
)
3122 widest_int bound
= elt
->bound
;
3124 /* Exit terminates loop at given iteration, while non-exits produce undefined
3125 effect on the next iteration. */
3129 /* If an overflow occurred, ignore the result. */
3134 if (!loop
->any_upper_bound
3135 || wi::ltu_p (bound
, loop
->nb_iterations_upper_bound
))
3136 bounds
.safe_push (bound
);
3139 /* Exit early if there is nothing to do. */
3140 if (!bounds
.exists ())
3143 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3144 fprintf (dump_file
, " Trying to walk loop body to reduce the bound.\n");
3146 /* Sort the bounds in decreasing order. */
3147 bounds
.qsort (wide_int_cmp
);
3149 /* For every basic block record the lowest bound that is guaranteed to
3150 terminate the loop. */
3152 bb_bounds
= pointer_map_create ();
3153 for (elt
= loop
->bounds
; elt
; elt
= elt
->next
)
3155 widest_int bound
= elt
->bound
;
3159 /* If an overflow occurred, ignore the result. */
3164 if (!loop
->any_upper_bound
3165 || wi::ltu_p (bound
, loop
->nb_iterations_upper_bound
))
3167 ptrdiff_t index
= bound_index (bounds
, bound
);
3168 void **entry
= pointer_map_contains (bb_bounds
,
3169 gimple_bb (elt
->stmt
));
3171 *pointer_map_insert (bb_bounds
,
3172 gimple_bb (elt
->stmt
)) = (void *)index
;
3173 else if ((ptrdiff_t)*entry
> index
)
3174 *entry
= (void *)index
;
3178 block_priority
= pointer_map_create ();
3180 /* Perform shortest path discovery loop->header ... loop->latch.
3182 The "distance" is given by the smallest loop bound of basic block
3183 present in the path and we look for path with largest smallest bound
3186 To avoid the need for fibonacci heap on double ints we simply compress
3187 double ints into indexes to BOUNDS array and then represent the queue
3188 as arrays of queues for every index.
3189 Index of BOUNDS.length() means that the execution of given BB has
3190 no bounds determined.
3192 VISITED is a pointer map translating basic block into smallest index
3193 it was inserted into the priority queue with. */
3196 /* Start walk in loop header with index set to infinite bound. */
3197 queue_index
= bounds
.length ();
3198 queues
.safe_grow_cleared (queue_index
+ 1);
3199 queue
.safe_push (loop
->header
);
3200 queues
[queue_index
] = queue
;
3201 *pointer_map_insert (block_priority
, loop
->header
) = (void *)queue_index
;
3203 for (; queue_index
>= 0; queue_index
--)
3205 if (latch_index
< queue_index
)
3207 while (queues
[queue_index
].length ())
3210 ptrdiff_t bound_index
= queue_index
;
3215 queue
= queues
[queue_index
];
3218 /* OK, we later inserted the BB with lower priority, skip it. */
3219 if ((ptrdiff_t)*pointer_map_contains (block_priority
, bb
) > queue_index
)
3222 /* See if we can improve the bound. */
3223 entry
= pointer_map_contains (bb_bounds
, bb
);
3224 if (entry
&& (ptrdiff_t)*entry
< bound_index
)
3225 bound_index
= (ptrdiff_t)*entry
;
3227 /* Insert succesors into the queue, watch for latch edge
3228 and record greatest index we saw. */
3229 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3231 bool insert
= false;
3234 if (loop_exit_edge_p (loop
, e
))
3237 if (e
== loop_latch_edge (loop
)
3238 && latch_index
< bound_index
)
3239 latch_index
= bound_index
;
3240 else if (!(entry
= pointer_map_contains (block_priority
, e
->dest
)))
3243 *pointer_map_insert (block_priority
, e
->dest
) = (void *)bound_index
;
3245 else if ((ptrdiff_t)*entry
< bound_index
)
3248 *entry
= (void *)bound_index
;
3252 queues
[bound_index
].safe_push (e
->dest
);
3256 queues
[queue_index
].release ();
3259 gcc_assert (latch_index
>= 0);
3260 if ((unsigned)latch_index
< bounds
.length ())
3262 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3264 fprintf (dump_file
, "Found better loop bound ");
3265 print_decu (bounds
[latch_index
], dump_file
);
3266 fprintf (dump_file
, "\n");
3268 record_niter_bound (loop
, bounds
[latch_index
], false, true);
3273 pointer_map_destroy (bb_bounds
);
3274 pointer_map_destroy (block_priority
);
3277 /* See if every path cross the loop goes through a statement that is known
3278 to not execute at the last iteration. In that case we can decrese iteration
3282 maybe_lower_iteration_bound (struct loop
*loop
)
3284 pointer_set_t
*not_executed_last_iteration
= NULL
;
3285 struct nb_iter_bound
*elt
;
3286 bool found_exit
= false;
3287 vec
<basic_block
> queue
= vNULL
;
3290 /* Collect all statements with interesting (i.e. lower than
3291 nb_iterations_upper_bound) bound on them.
3293 TODO: Due to the way record_estimate choose estimates to store, the bounds
3294 will be always nb_iterations_upper_bound-1. We can change this to record
3295 also statements not dominating the loop latch and update the walk bellow
3296 to the shortest path algorthm. */
3297 for (elt
= loop
->bounds
; elt
; elt
= elt
->next
)
3300 && wi::ltu_p (elt
->bound
, loop
->nb_iterations_upper_bound
))
3302 if (!not_executed_last_iteration
)
3303 not_executed_last_iteration
= pointer_set_create ();
3304 pointer_set_insert (not_executed_last_iteration
, elt
->stmt
);
3307 if (!not_executed_last_iteration
)
3310 /* Start DFS walk in the loop header and see if we can reach the
3311 loop latch or any of the exits (including statements with side
3312 effects that may terminate the loop otherwise) without visiting
3313 any of the statements known to have undefined effect on the last
3315 queue
.safe_push (loop
->header
);
3316 visited
= BITMAP_ALLOC (NULL
);
3317 bitmap_set_bit (visited
, loop
->header
->index
);
3322 basic_block bb
= queue
.pop ();
3323 gimple_stmt_iterator gsi
;
3324 bool stmt_found
= false;
3326 /* Loop for possible exits and statements bounding the execution. */
3327 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3329 gimple stmt
= gsi_stmt (gsi
);
3330 if (pointer_set_contains (not_executed_last_iteration
, stmt
))
3335 if (gimple_has_side_effects (stmt
))
3344 /* If no bounding statement is found, continue the walk. */
3350 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3352 if (loop_exit_edge_p (loop
, e
)
3353 || e
== loop_latch_edge (loop
))
3358 if (bitmap_set_bit (visited
, e
->dest
->index
))
3359 queue
.safe_push (e
->dest
);
3363 while (queue
.length () && !found_exit
);
3365 /* If every path through the loop reach bounding statement before exit,
3366 then we know the last iteration of the loop will have undefined effect
3367 and we can decrease number of iterations. */
3371 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3372 fprintf (dump_file
, "Reducing loop iteration estimate by 1; "
3373 "undefined statement must be executed at the last iteration.\n");
3374 record_niter_bound (loop
, loop
->nb_iterations_upper_bound
- 1,
3377 BITMAP_FREE (visited
);
3379 pointer_set_destroy (not_executed_last_iteration
);
3382 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
3383 is true also use estimates derived from undefined behavior. */
3386 estimate_numbers_of_iterations_loop (struct loop
*loop
)
3391 struct tree_niter_desc niter_desc
;
3396 /* Give up if we already have tried to compute an estimation. */
3397 if (loop
->estimate_state
!= EST_NOT_COMPUTED
)
3400 loop
->estimate_state
= EST_AVAILABLE
;
3401 /* Force estimate compuation but leave any existing upper bound in place. */
3402 loop
->any_estimate
= false;
3404 /* Ensure that loop->nb_iterations is computed if possible. If it turns out
3405 to be constant, we avoid undefined behavior implied bounds and instead
3406 diagnose those loops with -Waggressive-loop-optimizations. */
3407 number_of_latch_executions (loop
);
3409 exits
= get_loop_exit_edges (loop
);
3410 likely_exit
= single_likely_exit (loop
);
3411 FOR_EACH_VEC_ELT (exits
, i
, ex
)
3413 if (!number_of_iterations_exit (loop
, ex
, &niter_desc
, false, false))
3416 niter
= niter_desc
.niter
;
3417 type
= TREE_TYPE (niter
);
3418 if (TREE_CODE (niter_desc
.may_be_zero
) != INTEGER_CST
)
3419 niter
= build3 (COND_EXPR
, type
, niter_desc
.may_be_zero
,
3420 build_int_cst (type
, 0),
3422 record_estimate (loop
, niter
, niter_desc
.max
,
3423 last_stmt (ex
->src
),
3424 true, ex
== likely_exit
, true);
3428 if (flag_aggressive_loop_optimizations
)
3429 infer_loop_bounds_from_undefined (loop
);
3431 discover_iteration_bound_by_body_walk (loop
);
3433 maybe_lower_iteration_bound (loop
);
3435 /* If we have a measured profile, use it to estimate the number of
3437 if (loop
->header
->count
!= 0)
3439 gcov_type nit
= expected_loop_iterations_unbounded (loop
) + 1;
3440 bound
= gcov_type_to_wide_int (nit
);
3441 record_niter_bound (loop
, bound
, true, false);
3444 /* If we know the exact number of iterations of this loop, try to
3445 not break code with undefined behavior by not recording smaller
3446 maximum number of iterations. */
3447 if (loop
->nb_iterations
3448 && TREE_CODE (loop
->nb_iterations
) == INTEGER_CST
)
3450 loop
->any_upper_bound
= true;
3451 loop
->nb_iterations_upper_bound
= wi::to_widest (loop
->nb_iterations
);
3455 /* Sets NIT to the estimated number of executions of the latch of the
3456 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
3457 large as the number of iterations. If we have no reliable estimate,
3458 the function returns false, otherwise returns true. */
3461 estimated_loop_iterations (struct loop
*loop
, widest_int
*nit
)
3463 /* When SCEV information is available, try to update loop iterations
3464 estimate. Otherwise just return whatever we recorded earlier. */
3465 if (scev_initialized_p ())
3466 estimate_numbers_of_iterations_loop (loop
);
3468 return (get_estimated_loop_iterations (loop
, nit
));
3471 /* Similar to estimated_loop_iterations, but returns the estimate only
3472 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3473 on the number of iterations of LOOP could not be derived, returns -1. */
3476 estimated_loop_iterations_int (struct loop
*loop
)
3479 HOST_WIDE_INT hwi_nit
;
3481 if (!estimated_loop_iterations (loop
, &nit
))
3484 if (!wi::fits_shwi_p (nit
))
3486 hwi_nit
= nit
.to_shwi ();
3488 return hwi_nit
< 0 ? -1 : hwi_nit
;
3492 /* Sets NIT to an upper bound for the maximum number of executions of the
3493 latch of the LOOP. If we have no reliable estimate, the function returns
3494 false, otherwise returns true. */
3497 max_loop_iterations (struct loop
*loop
, widest_int
*nit
)
3499 /* When SCEV information is available, try to update loop iterations
3500 estimate. Otherwise just return whatever we recorded earlier. */
3501 if (scev_initialized_p ())
3502 estimate_numbers_of_iterations_loop (loop
);
3504 return get_max_loop_iterations (loop
, nit
);
3507 /* Similar to max_loop_iterations, but returns the estimate only
3508 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3509 on the number of iterations of LOOP could not be derived, returns -1. */
3512 max_loop_iterations_int (struct loop
*loop
)
3515 HOST_WIDE_INT hwi_nit
;
3517 if (!max_loop_iterations (loop
, &nit
))
3520 if (!wi::fits_shwi_p (nit
))
3522 hwi_nit
= nit
.to_shwi ();
3524 return hwi_nit
< 0 ? -1 : hwi_nit
;
3527 /* Returns an estimate for the number of executions of statements
3528 in the LOOP. For statements before the loop exit, this exceeds
3529 the number of execution of the latch by one. */
3532 estimated_stmt_executions_int (struct loop
*loop
)
3534 HOST_WIDE_INT nit
= estimated_loop_iterations_int (loop
);
3540 snit
= (HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) nit
+ 1);
3542 /* If the computation overflows, return -1. */
3543 return snit
< 0 ? -1 : snit
;
3546 /* Sets NIT to the estimated maximum number of executions of the latch of the
3547 LOOP, plus one. If we have no reliable estimate, the function returns
3548 false, otherwise returns true. */
3551 max_stmt_executions (struct loop
*loop
, widest_int
*nit
)
3553 widest_int nit_minus_one
;
3555 if (!max_loop_iterations (loop
, nit
))
3558 nit_minus_one
= *nit
;
3562 return wi::gtu_p (*nit
, nit_minus_one
);
3565 /* Sets NIT to the estimated number of executions of the latch of the
3566 LOOP, plus one. If we have no reliable estimate, the function returns
3567 false, otherwise returns true. */
3570 estimated_stmt_executions (struct loop
*loop
, widest_int
*nit
)
3572 widest_int nit_minus_one
;
3574 if (!estimated_loop_iterations (loop
, nit
))
3577 nit_minus_one
= *nit
;
3581 return wi::gtu_p (*nit
, nit_minus_one
);
3584 /* Records estimates on numbers of iterations of loops. */
3587 estimate_numbers_of_iterations (void)
3591 /* We don't want to issue signed overflow warnings while getting
3592 loop iteration estimates. */
3593 fold_defer_overflow_warnings ();
3595 FOR_EACH_LOOP (loop
, 0)
3597 estimate_numbers_of_iterations_loop (loop
);
3600 fold_undefer_and_ignore_overflow_warnings ();
3603 /* Returns true if statement S1 dominates statement S2. */
3606 stmt_dominates_stmt_p (gimple s1
, gimple s2
)
3608 basic_block bb1
= gimple_bb (s1
), bb2
= gimple_bb (s2
);
3616 gimple_stmt_iterator bsi
;
3618 if (gimple_code (s2
) == GIMPLE_PHI
)
3621 if (gimple_code (s1
) == GIMPLE_PHI
)
3624 for (bsi
= gsi_start_bb (bb1
); gsi_stmt (bsi
) != s2
; gsi_next (&bsi
))
3625 if (gsi_stmt (bsi
) == s1
)
3631 return dominated_by_p (CDI_DOMINATORS
, bb2
, bb1
);
3634 /* Returns true when we can prove that the number of executions of
3635 STMT in the loop is at most NITER, according to the bound on
3636 the number of executions of the statement NITER_BOUND->stmt recorded in
3637 NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.
3639 ??? This code can become quite a CPU hog - we can have many bounds,
3640 and large basic block forcing stmt_dominates_stmt_p to be queried
3641 many times on a large basic blocks, so the whole thing is O(n^2)
3642 for scev_probably_wraps_p invocation (that can be done n times).
3644 It would make more sense (and give better answers) to remember BB
3645 bounds computed by discover_iteration_bound_by_body_walk. */
3648 n_of_executions_at_most (gimple stmt
,
3649 struct nb_iter_bound
*niter_bound
,
3652 widest_int bound
= niter_bound
->bound
;
3653 tree nit_type
= TREE_TYPE (niter
), e
;
3656 gcc_assert (TYPE_UNSIGNED (nit_type
));
3658 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
3659 the number of iterations is small. */
3660 if (!wi::fits_to_tree_p (bound
, nit_type
))
3663 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3664 times. This means that:
3666 -- if NITER_BOUND->is_exit is true, then everything after
3667 it at most NITER_BOUND->bound times.
3669 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
3670 is executed, then NITER_BOUND->stmt is executed as well in the same
3671 iteration then STMT is executed at most NITER_BOUND->bound + 1 times.
3673 If we can determine that NITER_BOUND->stmt is always executed
3674 after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
3675 We conclude that if both statements belong to the same
3676 basic block and STMT is before NITER_BOUND->stmt and there are no
3677 statements with side effects in between. */
3679 if (niter_bound
->is_exit
)
3681 if (stmt
== niter_bound
->stmt
3682 || !stmt_dominates_stmt_p (niter_bound
->stmt
, stmt
))
3688 if (!stmt_dominates_stmt_p (niter_bound
->stmt
, stmt
))
3690 gimple_stmt_iterator bsi
;
3691 if (gimple_bb (stmt
) != gimple_bb (niter_bound
->stmt
)
3692 || gimple_code (stmt
) == GIMPLE_PHI
3693 || gimple_code (niter_bound
->stmt
) == GIMPLE_PHI
)
3696 /* By stmt_dominates_stmt_p we already know that STMT appears
3697 before NITER_BOUND->STMT. Still need to test that the loop
3698 can not be terinated by a side effect in between. */
3699 for (bsi
= gsi_for_stmt (stmt
); gsi_stmt (bsi
) != niter_bound
->stmt
;
3701 if (gimple_has_side_effects (gsi_stmt (bsi
)))
3705 || !wi::fits_to_tree_p (bound
, nit_type
))
3711 e
= fold_binary (cmp
, boolean_type_node
,
3712 niter
, wide_int_to_tree (nit_type
, bound
));
3713 return e
&& integer_nonzerop (e
);
3716 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
3719 nowrap_type_p (tree type
)
3721 if (INTEGRAL_TYPE_P (type
)
3722 && TYPE_OVERFLOW_UNDEFINED (type
))
3725 if (POINTER_TYPE_P (type
))
3731 /* Return false only when the induction variable BASE + STEP * I is
3732 known to not overflow: i.e. when the number of iterations is small
3733 enough with respect to the step and initial condition in order to
3734 keep the evolution confined in TYPEs bounds. Return true when the
3735 iv is known to overflow or when the property is not computable.
3737 USE_OVERFLOW_SEMANTICS is true if this function should assume that
3738 the rules for overflow of the given language apply (e.g., that signed
3739 arithmetics in C does not overflow). */
3742 scev_probably_wraps_p (tree base
, tree step
,
3743 gimple at_stmt
, struct loop
*loop
,
3744 bool use_overflow_semantics
)
3746 tree delta
, step_abs
;
3747 tree unsigned_type
, valid_niter
;
3748 tree type
= TREE_TYPE (step
);
3751 struct nb_iter_bound
*bound
;
3753 /* FIXME: We really need something like
3754 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
3756 We used to test for the following situation that frequently appears
3757 during address arithmetics:
3759 D.1621_13 = (long unsigned intD.4) D.1620_12;
3760 D.1622_14 = D.1621_13 * 8;
3761 D.1623_15 = (doubleD.29 *) D.1622_14;
3763 And derived that the sequence corresponding to D_14
3764 can be proved to not wrap because it is used for computing a
3765 memory access; however, this is not really the case -- for example,
3766 if D_12 = (unsigned char) [254,+,1], then D_14 has values
3767 2032, 2040, 0, 8, ..., but the code is still legal. */
3769 if (chrec_contains_undetermined (base
)
3770 || chrec_contains_undetermined (step
))
3773 if (integer_zerop (step
))
3776 /* If we can use the fact that signed and pointer arithmetics does not
3777 wrap, we are done. */
3778 if (use_overflow_semantics
&& nowrap_type_p (TREE_TYPE (base
)))
3781 /* To be able to use estimates on number of iterations of the loop,
3782 we must have an upper bound on the absolute value of the step. */
3783 if (TREE_CODE (step
) != INTEGER_CST
)
3786 /* Don't issue signed overflow warnings. */
3787 fold_defer_overflow_warnings ();
3789 /* Otherwise, compute the number of iterations before we reach the
3790 bound of the type, and verify that the loop is exited before this
3792 unsigned_type
= unsigned_type_for (type
);
3793 base
= fold_convert (unsigned_type
, base
);
3795 if (tree_int_cst_sign_bit (step
))
3797 tree extreme
= fold_convert (unsigned_type
,
3798 lower_bound_in_type (type
, type
));
3799 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, base
, extreme
);
3800 step_abs
= fold_build1 (NEGATE_EXPR
, unsigned_type
,
3801 fold_convert (unsigned_type
, step
));
3805 tree extreme
= fold_convert (unsigned_type
,
3806 upper_bound_in_type (type
, type
));
3807 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, extreme
, base
);
3808 step_abs
= fold_convert (unsigned_type
, step
);
3811 valid_niter
= fold_build2 (FLOOR_DIV_EXPR
, unsigned_type
, delta
, step_abs
);
3813 estimate_numbers_of_iterations_loop (loop
);
3815 if (max_loop_iterations (loop
, &niter
)
3816 && wi::fits_to_tree_p (niter
, TREE_TYPE (valid_niter
))
3817 && (e
= fold_binary (GT_EXPR
, boolean_type_node
, valid_niter
,
3818 wide_int_to_tree (TREE_TYPE (valid_niter
),
3820 && integer_nonzerop (e
))
3822 fold_undefer_and_ignore_overflow_warnings ();
3826 for (bound
= loop
->bounds
; bound
; bound
= bound
->next
)
3828 if (n_of_executions_at_most (at_stmt
, bound
, valid_niter
))
3830 fold_undefer_and_ignore_overflow_warnings ();
3835 fold_undefer_and_ignore_overflow_warnings ();
3837 /* At this point we still don't have a proof that the iv does not
3838 overflow: give up. */
3842 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
3845 free_numbers_of_iterations_estimates_loop (struct loop
*loop
)
3847 struct nb_iter_bound
*bound
, *next
;
3849 loop
->nb_iterations
= NULL
;
3850 loop
->estimate_state
= EST_NOT_COMPUTED
;
3851 for (bound
= loop
->bounds
; bound
; bound
= next
)
3857 loop
->bounds
= NULL
;
3860 /* Frees the information on upper bounds on numbers of iterations of loops. */
3863 free_numbers_of_iterations_estimates (void)
3867 FOR_EACH_LOOP (loop
, 0)
3869 free_numbers_of_iterations_estimates_loop (loop
);
3873 /* Substitute value VAL for ssa name NAME inside expressions held
3877 substitute_in_loop_info (struct loop
*loop
, tree name
, tree val
)
3879 loop
->nb_iterations
= simplify_replace_tree (loop
->nb_iterations
, name
, val
);