1 /* RTL dead store elimination.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
27 #include "coretypes.h"
28 #include "hash-table.h"
32 #include "stor-layout.h"
35 #include "hard-reg-set.h"
40 #include "tree-pass.h"
41 #include "alloc-pool.h"
43 #include "insn-config.h"
50 #include "pointer-set.h"
51 #include "tree-ssa-alias.h"
52 #include "internal-fn.h"
53 #include "gimple-expr.h"
56 #include "gimple-ssa.h"
58 /* This file contains three techniques for performing Dead Store
61 * The first technique performs dse locally on any base address. It
62 is based on the cselib which is a local value numbering technique.
63 This technique is local to a basic block but deals with a fairly
66 * The second technique performs dse globally but is restricted to
67 base addresses that are either constant or are relative to the
70 * The third technique, (which is only done after register allocation)
71 processes the spill spill slots. This differs from the second
72 technique because it takes advantage of the fact that spilling is
73 completely free from the effects of aliasing.
75 Logically, dse is a backwards dataflow problem. A store can be
76 deleted if it if cannot be reached in the backward direction by any
77 use of the value being stored. However, the local technique uses a
78 forwards scan of the basic block because cselib requires that the
79 block be processed in that order.
81 The pass is logically broken into 7 steps:
85 1) The local algorithm, as well as scanning the insns for the two
88 2) Analysis to see if the global algs are necessary. In the case
89 of stores base on a constant address, there must be at least two
90 stores to that address, to make it possible to delete some of the
91 stores. In the case of stores off of the frame or spill related
92 stores, only one store to an address is necessary because those
93 stores die at the end of the function.
95 3) Set up the global dataflow equations based on processing the
96 info parsed in the first step.
98 4) Solve the dataflow equations.
100 5) Delete the insns that the global analysis has indicated are
103 6) Delete insns that store the same value as preceding store
104 where the earlier store couldn't be eliminated.
108 This step uses cselib and canon_rtx to build the largest expression
109 possible for each address. This pass is a forwards pass through
110 each basic block. From the point of view of the global technique,
111 the first pass could examine a block in either direction. The
112 forwards ordering is to accommodate cselib.
114 We make a simplifying assumption: addresses fall into four broad
117 1) base has rtx_varies_p == false, offset is constant.
118 2) base has rtx_varies_p == false, offset variable.
119 3) base has rtx_varies_p == true, offset constant.
120 4) base has rtx_varies_p == true, offset variable.
122 The local passes are able to process all 4 kinds of addresses. The
123 global pass only handles 1).
125 The global problem is formulated as follows:
127 A store, S1, to address A, where A is not relative to the stack
128 frame, can be eliminated if all paths from S1 to the end of the
129 function contain another store to A before a read to A.
131 If the address A is relative to the stack frame, a store S2 to A
132 can be eliminated if there are no paths from S2 that reach the
133 end of the function that read A before another store to A. In
134 this case S2 can be deleted if there are paths from S2 to the
135 end of the function that have no reads or writes to A. This
136 second case allows stores to the stack frame to be deleted that
137 would otherwise die when the function returns. This cannot be
138 done if stores_off_frame_dead_at_return is not true. See the doc
139 for that variable for when this variable is false.
141 The global problem is formulated as a backwards set union
142 dataflow problem where the stores are the gens and reads are the
143 kills. Set union problems are rare and require some special
144 handling given our representation of bitmaps. A straightforward
145 implementation requires a lot of bitmaps filled with 1s.
146 These are expensive and cumbersome in our bitmap formulation so
147 care has been taken to avoid large vectors filled with 1s. See
148 the comments in bb_info and in the dataflow confluence functions
151 There are two places for further enhancements to this algorithm:
153 1) The original dse which was embedded in a pass called flow also
154 did local address forwarding. For example in
159 flow would replace the right hand side of the second insn with a
160 reference to r100. Most of the information is available to add this
161 to this pass. It has not done it because it is a lot of work in
162 the case that either r100 is assigned to between the first and
163 second insn and/or the second insn is a load of part of the value
164 stored by the first insn.
166 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
167 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
168 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
169 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
171 2) The cleaning up of spill code is quite profitable. It currently
172 depends on reading tea leaves and chicken entrails left by reload.
173 This pass depends on reload creating a singleton alias set for each
174 spill slot and telling the next dse pass which of these alias sets
175 are the singletons. Rather than analyze the addresses of the
176 spills, dse's spill processing just does analysis of the loads and
177 stores that use those alias sets. There are three cases where this
180 a) Reload sometimes creates the slot for one mode of access, and
181 then inserts loads and/or stores for a smaller mode. In this
182 case, the current code just punts on the slot. The proper thing
183 to do is to back out and use one bit vector position for each
184 byte of the entity associated with the slot. This depends on
185 KNOWING that reload always generates the accesses for each of the
186 bytes in some canonical (read that easy to understand several
187 passes after reload happens) way.
189 b) Reload sometimes decides that spill slot it allocated was not
190 large enough for the mode and goes back and allocates more slots
191 with the same mode and alias set. The backout in this case is a
192 little more graceful than (a). In this case the slot is unmarked
193 as being a spill slot and if final address comes out to be based
194 off the frame pointer, the global algorithm handles this slot.
196 c) For any pass that may prespill, there is currently no
197 mechanism to tell the dse pass that the slot being used has the
198 special properties that reload uses. It may be that all that is
199 required is to have those passes make the same calls that reload
200 does, assuming that the alias sets can be manipulated in the same
203 /* There are limits to the size of constant offsets we model for the
204 global problem. There are certainly test cases, that exceed this
205 limit, however, it is unlikely that there are important programs
206 that really have constant offsets this size. */
207 #define MAX_OFFSET (64 * 1024)
209 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
210 on the default obstack because these bitmaps can grow quite large
211 (~2GB for the small (!) test case of PR54146) and we'll hold on to
212 all that memory until the end of the compiler run.
213 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
214 releasing the whole obstack. */
215 static bitmap_obstack dse_bitmap_obstack
;
217 /* Obstack for other data. As for above: Kinda nice to be able to
218 throw it all away at the end in one big sweep. */
219 static struct obstack dse_obstack
;
221 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
222 static bitmap scratch
= NULL
;
226 /* This structure holds information about a candidate store. */
230 /* False means this is a clobber. */
233 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
236 /* The id of the mem group of the base address. If rtx_varies_p is
237 true, this is -1. Otherwise, it is the index into the group
241 /* This is the cselib value. */
242 cselib_val
*cse_base
;
244 /* This canonized mem. */
247 /* Canonized MEM address for use by canon_true_dependence. */
250 /* If this is non-zero, it is the alias set of a spill location. */
251 alias_set_type alias_set
;
253 /* The offset of the first and byte before the last byte associated
254 with the operation. */
255 HOST_WIDE_INT begin
, end
;
259 /* A bitmask as wide as the number of bytes in the word that
260 contains a 1 if the byte may be needed. The store is unused if
261 all of the bits are 0. This is used if IS_LARGE is false. */
262 unsigned HOST_WIDE_INT small_bitmask
;
266 /* A bitmap with one bit per byte. Cleared bit means the position
267 is needed. Used if IS_LARGE is false. */
270 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
271 equal to END - BEGIN, the whole store is unused. */
276 /* The next store info for this insn. */
277 struct store_info
*next
;
279 /* The right hand side of the store. This is used if there is a
280 subsequent reload of the mems address somewhere later in the
284 /* If rhs is or holds a constant, this contains that constant,
288 /* Set if this store stores the same constant value as REDUNDANT_REASON
289 insn stored. These aren't eliminated early, because doing that
290 might prevent the earlier larger store to be eliminated. */
291 struct insn_info
*redundant_reason
;
294 /* Return a bitmask with the first N low bits set. */
296 static unsigned HOST_WIDE_INT
297 lowpart_bitmask (int n
)
299 unsigned HOST_WIDE_INT mask
= ~(unsigned HOST_WIDE_INT
) 0;
300 return mask
>> (HOST_BITS_PER_WIDE_INT
- n
);
303 typedef struct store_info
*store_info_t
;
304 static alloc_pool cse_store_info_pool
;
305 static alloc_pool rtx_store_info_pool
;
307 /* This structure holds information about a load. These are only
308 built for rtx bases. */
311 /* The id of the mem group of the base address. */
314 /* If this is non-zero, it is the alias set of a spill location. */
315 alias_set_type alias_set
;
317 /* The offset of the first and byte after the last byte associated
318 with the operation. If begin == end == 0, the read did not have
319 a constant offset. */
322 /* The mem being read. */
325 /* The next read_info for this insn. */
326 struct read_info
*next
;
328 typedef struct read_info
*read_info_t
;
329 static alloc_pool read_info_pool
;
332 /* One of these records is created for each insn. */
336 /* Set true if the insn contains a store but the insn itself cannot
337 be deleted. This is set if the insn is a parallel and there is
338 more than one non dead output or if the insn is in some way
342 /* This field is only used by the global algorithm. It is set true
343 if the insn contains any read of mem except for a (1). This is
344 also set if the insn is a call or has a clobber mem. If the insn
345 contains a wild read, the use_rec will be null. */
348 /* This is true only for CALL instructions which could potentially read
349 any non-frame memory location. This field is used by the global
351 bool non_frame_wild_read
;
353 /* This field is only used for the processing of const functions.
354 These functions cannot read memory, but they can read the stack
355 because that is where they may get their parms. We need to be
356 this conservative because, like the store motion pass, we don't
357 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
358 Moreover, we need to distinguish two cases:
359 1. Before reload (register elimination), the stores related to
360 outgoing arguments are stack pointer based and thus deemed
361 of non-constant base in this pass. This requires special
362 handling but also means that the frame pointer based stores
363 need not be killed upon encountering a const function call.
364 2. After reload, the stores related to outgoing arguments can be
365 either stack pointer or hard frame pointer based. This means
366 that we have no other choice than also killing all the frame
367 pointer based stores upon encountering a const function call.
368 This field is set after reload for const function calls. Having
369 this set is less severe than a wild read, it just means that all
370 the frame related stores are killed rather than all the stores. */
373 /* This field is only used for the processing of const functions.
374 It is set if the insn may contain a stack pointer based store. */
375 bool stack_pointer_based
;
377 /* This is true if any of the sets within the store contains a
378 cselib base. Such stores can only be deleted by the local
380 bool contains_cselib_groups
;
385 /* The list of mem sets or mem clobbers that are contained in this
386 insn. If the insn is deletable, it contains only one mem set.
387 But it could also contain clobbers. Insns that contain more than
388 one mem set are not deletable, but each of those mems are here in
389 order to provide info to delete other insns. */
390 store_info_t store_rec
;
392 /* The linked list of mem uses in this insn. Only the reads from
393 rtx bases are listed here. The reads to cselib bases are
394 completely processed during the first scan and so are never
396 read_info_t read_rec
;
398 /* The live fixed registers. We assume only fixed registers can
399 cause trouble by being clobbered from an expanded pattern;
400 storing only the live fixed registers (rather than all registers)
401 means less memory needs to be allocated / copied for the individual
403 regset fixed_regs_live
;
405 /* The prev insn in the basic block. */
406 struct insn_info
* prev_insn
;
408 /* The linked list of insns that are in consideration for removal in
409 the forwards pass through the basic block. This pointer may be
410 trash as it is not cleared when a wild read occurs. The only
411 time it is guaranteed to be correct is when the traversal starts
412 at active_local_stores. */
413 struct insn_info
* next_local_store
;
416 typedef struct insn_info
*insn_info_t
;
417 static alloc_pool insn_info_pool
;
419 /* The linked list of stores that are under consideration in this
421 static insn_info_t active_local_stores
;
422 static int active_local_stores_len
;
427 /* Pointer to the insn info for the last insn in the block. These
428 are linked so this is how all of the insns are reached. During
429 scanning this is the current insn being scanned. */
430 insn_info_t last_insn
;
432 /* The info for the global dataflow problem. */
435 /* This is set if the transfer function should and in the wild_read
436 bitmap before applying the kill and gen sets. That vector knocks
437 out most of the bits in the bitmap and thus speeds up the
439 bool apply_wild_read
;
441 /* The following 4 bitvectors hold information about which positions
442 of which stores are live or dead. They are indexed by
445 /* The set of store positions that exist in this block before a wild read. */
448 /* The set of load positions that exist in this block above the
449 same position of a store. */
452 /* The set of stores that reach the top of the block without being
455 Do not represent the in if it is all ones. Note that this is
456 what the bitvector should logically be initialized to for a set
457 intersection problem. However, like the kill set, this is too
458 expensive. So initially, the in set will only be created for the
459 exit block and any block that contains a wild read. */
462 /* The set of stores that reach the bottom of the block from it's
465 Do not represent the in if it is all ones. Note that this is
466 what the bitvector should logically be initialized to for a set
467 intersection problem. However, like the kill and in set, this is
468 too expensive. So what is done is that the confluence operator
469 just initializes the vector from one of the out sets of the
470 successors of the block. */
473 /* The following bitvector is indexed by the reg number. It
474 contains the set of regs that are live at the current instruction
475 being processed. While it contains info for all of the
476 registers, only the hard registers are actually examined. It is used
477 to assure that shift and/or add sequences that are inserted do not
478 accidentally clobber live hard regs. */
482 typedef struct bb_info
*bb_info_t
;
483 static alloc_pool bb_info_pool
;
485 /* Table to hold all bb_infos. */
486 static bb_info_t
*bb_table
;
488 /* There is a group_info for each rtx base that is used to reference
489 memory. There are also not many of the rtx bases because they are
490 very limited in scope. */
494 /* The actual base of the address. */
497 /* The sequential id of the base. This allows us to have a
498 canonical ordering of these that is not based on addresses. */
501 /* True if there are any positions that are to be processed
503 bool process_globally
;
505 /* True if the base of this group is either the frame_pointer or
506 hard_frame_pointer. */
509 /* A mem wrapped around the base pointer for the group in order to do
510 read dependency. It must be given BLKmode in order to encompass all
511 the possible offsets from the base. */
514 /* Canonized version of base_mem's address. */
517 /* These two sets of two bitmaps are used to keep track of how many
518 stores are actually referencing that position from this base. We
519 only do this for rtx bases as this will be used to assign
520 positions in the bitmaps for the global problem. Bit N is set in
521 store1 on the first store for offset N. Bit N is set in store2
522 for the second store to offset N. This is all we need since we
523 only care about offsets that have two or more stores for them.
525 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
526 for 0 and greater offsets.
528 There is one special case here, for stores into the stack frame,
529 we will or store1 into store2 before deciding which stores look
530 at globally. This is because stores to the stack frame that have
531 no other reads before the end of the function can also be
533 bitmap store1_n
, store1_p
, store2_n
, store2_p
;
535 /* These bitmaps keep track of offsets in this group escape this function.
536 An offset escapes if it corresponds to a named variable whose
537 addressable flag is set. */
538 bitmap escaped_n
, escaped_p
;
540 /* The positions in this bitmap have the same assignments as the in,
541 out, gen and kill bitmaps. This bitmap is all zeros except for
542 the positions that are occupied by stores for this group. */
545 /* The offset_map is used to map the offsets from this base into
546 positions in the global bitmaps. It is only created after all of
547 the all of stores have been scanned and we know which ones we
549 int *offset_map_n
, *offset_map_p
;
550 int offset_map_size_n
, offset_map_size_p
;
552 typedef struct group_info
*group_info_t
;
553 typedef const struct group_info
*const_group_info_t
;
554 static alloc_pool rtx_group_info_pool
;
556 /* Index into the rtx_group_vec. */
557 static int rtx_group_next_id
;
560 static vec
<group_info_t
> rtx_group_vec
;
563 /* This structure holds the set of changes that are being deferred
564 when removing read operation. See replace_read. */
565 struct deferred_change
568 /* The mem that is being replaced. */
571 /* The reg it is being replaced with. */
574 struct deferred_change
*next
;
577 typedef struct deferred_change
*deferred_change_t
;
578 static alloc_pool deferred_change_pool
;
580 static deferred_change_t deferred_change_list
= NULL
;
582 /* The group that holds all of the clear_alias_sets. */
583 static group_info_t clear_alias_group
;
585 /* The modes of the clear_alias_sets. */
586 static htab_t clear_alias_mode_table
;
588 /* Hash table element to look up the mode for an alias set. */
589 struct clear_alias_mode_holder
591 alias_set_type alias_set
;
592 enum machine_mode mode
;
595 /* This is true except if cfun->stdarg -- i.e. we cannot do
596 this for vararg functions because they play games with the frame. */
597 static bool stores_off_frame_dead_at_return
;
599 /* Counter for stats. */
600 static int globally_deleted
;
601 static int locally_deleted
;
602 static int spill_deleted
;
604 static bitmap all_blocks
;
606 /* Locations that are killed by calls in the global phase. */
607 static bitmap kill_on_calls
;
609 /* The number of bits used in the global bitmaps. */
610 static unsigned int current_position
;
612 /*----------------------------------------------------------------------------
616 ----------------------------------------------------------------------------*/
619 /* Find the entry associated with ALIAS_SET. */
621 static struct clear_alias_mode_holder
*
622 clear_alias_set_lookup (alias_set_type alias_set
)
624 struct clear_alias_mode_holder tmp_holder
;
627 tmp_holder
.alias_set
= alias_set
;
628 slot
= htab_find_slot (clear_alias_mode_table
, &tmp_holder
, NO_INSERT
);
631 return (struct clear_alias_mode_holder
*) *slot
;
635 /* Hashtable callbacks for maintaining the "bases" field of
636 store_group_info, given that the addresses are function invariants. */
638 struct invariant_group_base_hasher
: typed_noop_remove
<group_info
>
640 typedef group_info value_type
;
641 typedef group_info compare_type
;
642 static inline hashval_t
hash (const value_type
*);
643 static inline bool equal (const value_type
*, const compare_type
*);
647 invariant_group_base_hasher::equal (const value_type
*gi1
,
648 const compare_type
*gi2
)
650 return rtx_equal_p (gi1
->rtx_base
, gi2
->rtx_base
);
654 invariant_group_base_hasher::hash (const value_type
*gi
)
657 return hash_rtx (gi
->rtx_base
, Pmode
, &do_not_record
, NULL
, false);
660 /* Tables of group_info structures, hashed by base value. */
661 static hash_table
<invariant_group_base_hasher
> *rtx_group_table
;
664 /* Get the GROUP for BASE. Add a new group if it is not there. */
667 get_group_info (rtx base
)
669 struct group_info tmp_gi
;
675 /* Find the store_base_info structure for BASE, creating a new one
677 tmp_gi
.rtx_base
= base
;
678 slot
= rtx_group_table
->find_slot (&tmp_gi
, INSERT
);
679 gi
= (group_info_t
) *slot
;
683 if (!clear_alias_group
)
685 clear_alias_group
= gi
=
686 (group_info_t
) pool_alloc (rtx_group_info_pool
);
687 memset (gi
, 0, sizeof (struct group_info
));
688 gi
->id
= rtx_group_next_id
++;
689 gi
->store1_n
= BITMAP_ALLOC (&dse_bitmap_obstack
);
690 gi
->store1_p
= BITMAP_ALLOC (&dse_bitmap_obstack
);
691 gi
->store2_n
= BITMAP_ALLOC (&dse_bitmap_obstack
);
692 gi
->store2_p
= BITMAP_ALLOC (&dse_bitmap_obstack
);
693 gi
->escaped_p
= BITMAP_ALLOC (&dse_bitmap_obstack
);
694 gi
->escaped_n
= BITMAP_ALLOC (&dse_bitmap_obstack
);
695 gi
->group_kill
= BITMAP_ALLOC (&dse_bitmap_obstack
);
696 gi
->process_globally
= false;
697 gi
->offset_map_size_n
= 0;
698 gi
->offset_map_size_p
= 0;
699 gi
->offset_map_n
= NULL
;
700 gi
->offset_map_p
= NULL
;
701 rtx_group_vec
.safe_push (gi
);
703 return clear_alias_group
;
708 *slot
= gi
= (group_info_t
) pool_alloc (rtx_group_info_pool
);
710 gi
->id
= rtx_group_next_id
++;
711 gi
->base_mem
= gen_rtx_MEM (BLKmode
, base
);
712 gi
->canon_base_addr
= canon_rtx (base
);
713 gi
->store1_n
= BITMAP_ALLOC (&dse_bitmap_obstack
);
714 gi
->store1_p
= BITMAP_ALLOC (&dse_bitmap_obstack
);
715 gi
->store2_n
= BITMAP_ALLOC (&dse_bitmap_obstack
);
716 gi
->store2_p
= BITMAP_ALLOC (&dse_bitmap_obstack
);
717 gi
->escaped_p
= BITMAP_ALLOC (&dse_bitmap_obstack
);
718 gi
->escaped_n
= BITMAP_ALLOC (&dse_bitmap_obstack
);
719 gi
->group_kill
= BITMAP_ALLOC (&dse_bitmap_obstack
);
720 gi
->process_globally
= false;
722 (base
== frame_pointer_rtx
) || (base
== hard_frame_pointer_rtx
);
723 gi
->offset_map_size_n
= 0;
724 gi
->offset_map_size_p
= 0;
725 gi
->offset_map_n
= NULL
;
726 gi
->offset_map_p
= NULL
;
727 rtx_group_vec
.safe_push (gi
);
734 /* Initialization of data structures. */
740 globally_deleted
= 0;
743 bitmap_obstack_initialize (&dse_bitmap_obstack
);
744 gcc_obstack_init (&dse_obstack
);
746 scratch
= BITMAP_ALLOC (®_obstack
);
747 kill_on_calls
= BITMAP_ALLOC (&dse_bitmap_obstack
);
750 = create_alloc_pool ("rtx_store_info_pool",
751 sizeof (struct store_info
), 100);
753 = create_alloc_pool ("read_info_pool",
754 sizeof (struct read_info
), 100);
756 = create_alloc_pool ("insn_info_pool",
757 sizeof (struct insn_info
), 100);
759 = create_alloc_pool ("bb_info_pool",
760 sizeof (struct bb_info
), 100);
762 = create_alloc_pool ("rtx_group_info_pool",
763 sizeof (struct group_info
), 100);
765 = create_alloc_pool ("deferred_change_pool",
766 sizeof (struct deferred_change
), 10);
768 rtx_group_table
= new hash_table
<invariant_group_base_hasher
> (11);
770 bb_table
= XNEWVEC (bb_info_t
, last_basic_block_for_fn (cfun
));
771 rtx_group_next_id
= 0;
773 stores_off_frame_dead_at_return
= !cfun
->stdarg
;
775 init_alias_analysis ();
777 clear_alias_group
= NULL
;
782 /*----------------------------------------------------------------------------
785 Scan all of the insns. Any random ordering of the blocks is fine.
786 Each block is scanned in forward order to accommodate cselib which
787 is used to remove stores with non-constant bases.
788 ----------------------------------------------------------------------------*/
790 /* Delete all of the store_info recs from INSN_INFO. */
793 free_store_info (insn_info_t insn_info
)
795 store_info_t store_info
= insn_info
->store_rec
;
798 store_info_t next
= store_info
->next
;
799 if (store_info
->is_large
)
800 BITMAP_FREE (store_info
->positions_needed
.large
.bmap
);
801 if (store_info
->cse_base
)
802 pool_free (cse_store_info_pool
, store_info
);
804 pool_free (rtx_store_info_pool
, store_info
);
808 insn_info
->cannot_delete
= true;
809 insn_info
->contains_cselib_groups
= false;
810 insn_info
->store_rec
= NULL
;
816 regset fixed_regs_live
;
818 } note_add_store_info
;
820 /* Callback for emit_inc_dec_insn_before via note_stores.
821 Check if a register is clobbered which is live afterwards. */
824 note_add_store (rtx loc
, const_rtx expr ATTRIBUTE_UNUSED
, void *data
)
827 note_add_store_info
*info
= (note_add_store_info
*) data
;
833 /* If this register is referenced by the current or an earlier insn,
834 that's OK. E.g. this applies to the register that is being incremented
835 with this addition. */
836 for (insn
= info
->first
;
837 insn
!= NEXT_INSN (info
->current
);
838 insn
= NEXT_INSN (insn
))
839 if (reg_referenced_p (loc
, PATTERN (insn
)))
842 /* If we come here, we have a clobber of a register that's only OK
843 if that register is not live. If we don't have liveness information
844 available, fail now. */
845 if (!info
->fixed_regs_live
)
847 info
->failure
= true;
850 /* Now check if this is a live fixed register. */
852 n
= hard_regno_nregs
[r
][GET_MODE (loc
)];
854 if (REGNO_REG_SET_P (info
->fixed_regs_live
, r
+n
))
855 info
->failure
= true;
858 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
859 SRC + SRCOFF before insn ARG. */
862 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED
,
863 rtx op ATTRIBUTE_UNUSED
,
864 rtx dest
, rtx src
, rtx srcoff
, void *arg
)
866 insn_info_t insn_info
= (insn_info_t
) arg
;
867 rtx insn
= insn_info
->insn
, new_insn
, cur
;
868 note_add_store_info info
;
870 /* We can reuse all operands without copying, because we are about
871 to delete the insn that contained it. */
875 emit_insn (gen_add3_insn (dest
, src
, srcoff
));
876 new_insn
= get_insns ();
880 new_insn
= gen_move_insn (dest
, src
);
881 info
.first
= new_insn
;
882 info
.fixed_regs_live
= insn_info
->fixed_regs_live
;
883 info
.failure
= false;
884 for (cur
= new_insn
; cur
; cur
= NEXT_INSN (cur
))
887 note_stores (PATTERN (cur
), note_add_store
, &info
);
890 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
891 return it immediately, communicating the failure to its caller. */
895 emit_insn_before (new_insn
, insn
);
900 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
901 is there, is split into a separate insn.
902 Return true on success (or if there was nothing to do), false on failure. */
905 check_for_inc_dec_1 (insn_info_t insn_info
)
907 rtx insn
= insn_info
->insn
;
908 rtx note
= find_reg_note (insn
, REG_INC
, NULL_RTX
);
910 return for_each_inc_dec (&insn
, emit_inc_dec_insn_before
, insn_info
) == 0;
915 /* Entry point for postreload. If you work on reload_cse, or you need this
916 anywhere else, consider if you can provide register liveness information
917 and add a parameter to this function so that it can be passed down in
918 insn_info.fixed_regs_live. */
920 check_for_inc_dec (rtx insn
)
922 struct insn_info insn_info
;
925 insn_info
.insn
= insn
;
926 insn_info
.fixed_regs_live
= NULL
;
927 note
= find_reg_note (insn
, REG_INC
, NULL_RTX
);
929 return for_each_inc_dec (&insn
, emit_inc_dec_insn_before
, &insn_info
) == 0;
933 /* Delete the insn and free all of the fields inside INSN_INFO. */
936 delete_dead_store_insn (insn_info_t insn_info
)
938 read_info_t read_info
;
943 if (!check_for_inc_dec_1 (insn_info
))
945 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
947 fprintf (dump_file
, "Locally deleting insn %d ",
948 INSN_UID (insn_info
->insn
));
949 if (insn_info
->store_rec
->alias_set
)
950 fprintf (dump_file
, "alias set %d\n",
951 (int) insn_info
->store_rec
->alias_set
);
953 fprintf (dump_file
, "\n");
956 free_store_info (insn_info
);
957 read_info
= insn_info
->read_rec
;
961 read_info_t next
= read_info
->next
;
962 pool_free (read_info_pool
, read_info
);
965 insn_info
->read_rec
= NULL
;
967 delete_insn (insn_info
->insn
);
969 insn_info
->insn
= NULL
;
971 insn_info
->wild_read
= false;
974 /* Return whether DECL, a local variable, can possibly escape the current
978 local_variable_can_escape (tree decl
)
980 if (TREE_ADDRESSABLE (decl
))
983 /* If this is a partitioned variable, we need to consider all the variables
984 in the partition. This is necessary because a store into one of them can
985 be replaced with a store into another and this may not change the outcome
986 of the escape analysis. */
987 if (cfun
->gimple_df
->decls_to_pointers
!= NULL
)
990 = pointer_map_contains (cfun
->gimple_df
->decls_to_pointers
, decl
);
992 return TREE_ADDRESSABLE (*(tree
*)namep
);
998 /* Return whether EXPR can possibly escape the current function scope. */
1001 can_escape (tree expr
)
1006 base
= get_base_address (expr
);
1008 && !may_be_aliased (base
)
1009 && !(TREE_CODE (base
) == VAR_DECL
1010 && !DECL_EXTERNAL (base
)
1011 && !TREE_STATIC (base
)
1012 && local_variable_can_escape (base
)))
1017 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
1018 OFFSET and WIDTH. */
1021 set_usage_bits (group_info_t group
, HOST_WIDE_INT offset
, HOST_WIDE_INT width
,
1025 bool expr_escapes
= can_escape (expr
);
1026 if (offset
> -MAX_OFFSET
&& offset
+ width
< MAX_OFFSET
)
1027 for (i
=offset
; i
<offset
+width
; i
++)
1035 store1
= group
->store1_n
;
1036 store2
= group
->store2_n
;
1037 escaped
= group
->escaped_n
;
1042 store1
= group
->store1_p
;
1043 store2
= group
->store2_p
;
1044 escaped
= group
->escaped_p
;
1048 if (!bitmap_set_bit (store1
, ai
))
1049 bitmap_set_bit (store2
, ai
);
1054 if (group
->offset_map_size_n
< ai
)
1055 group
->offset_map_size_n
= ai
;
1059 if (group
->offset_map_size_p
< ai
)
1060 group
->offset_map_size_p
= ai
;
1064 bitmap_set_bit (escaped
, ai
);
1069 reset_active_stores (void)
1071 active_local_stores
= NULL
;
1072 active_local_stores_len
= 0;
1075 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1078 free_read_records (bb_info_t bb_info
)
1080 insn_info_t insn_info
= bb_info
->last_insn
;
1081 read_info_t
*ptr
= &insn_info
->read_rec
;
1084 read_info_t next
= (*ptr
)->next
;
1085 if ((*ptr
)->alias_set
== 0)
1087 pool_free (read_info_pool
, *ptr
);
1091 ptr
= &(*ptr
)->next
;
1095 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1098 add_wild_read (bb_info_t bb_info
)
1100 insn_info_t insn_info
= bb_info
->last_insn
;
1101 insn_info
->wild_read
= true;
1102 free_read_records (bb_info
);
1103 reset_active_stores ();
1106 /* Set the BB_INFO so that the last insn is marked as a wild read of
1107 non-frame locations. */
1110 add_non_frame_wild_read (bb_info_t bb_info
)
1112 insn_info_t insn_info
= bb_info
->last_insn
;
1113 insn_info
->non_frame_wild_read
= true;
1114 free_read_records (bb_info
);
1115 reset_active_stores ();
1118 /* Return true if X is a constant or one of the registers that behave
1119 as a constant over the life of a function. This is equivalent to
1120 !rtx_varies_p for memory addresses. */
1123 const_or_frame_p (rtx x
)
1128 if (GET_CODE (x
) == REG
)
1130 /* Note that we have to test for the actual rtx used for the frame
1131 and arg pointers and not just the register number in case we have
1132 eliminated the frame and/or arg pointer and are using it
1134 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
1135 /* The arg pointer varies if it is not a fixed register. */
1136 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
])
1137 || x
== pic_offset_table_rtx
)
1145 /* Take all reasonable action to put the address of MEM into the form
1146 that we can do analysis on.
1148 The gold standard is to get the address into the form: address +
1149 OFFSET where address is something that rtx_varies_p considers a
1150 constant. When we can get the address in this form, we can do
1151 global analysis on it. Note that for constant bases, address is
1152 not actually returned, only the group_id. The address can be
1155 If that fails, we try cselib to get a value we can at least use
1156 locally. If that fails we return false.
1158 The GROUP_ID is set to -1 for cselib bases and the index of the
1159 group for non_varying bases.
1161 FOR_READ is true if this is a mem read and false if not. */
1164 canon_address (rtx mem
,
1165 alias_set_type
*alias_set_out
,
1167 HOST_WIDE_INT
*offset
,
1170 enum machine_mode address_mode
= get_address_mode (mem
);
1171 rtx mem_address
= XEXP (mem
, 0);
1172 rtx expanded_address
, address
;
1177 cselib_lookup (mem_address
, address_mode
, 1, GET_MODE (mem
));
1179 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1181 fprintf (dump_file
, " mem: ");
1182 print_inline_rtx (dump_file
, mem_address
, 0);
1183 fprintf (dump_file
, "\n");
1186 /* First see if just canon_rtx (mem_address) is const or frame,
1187 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1189 for (expanded
= 0; expanded
< 2; expanded
++)
1193 /* Use cselib to replace all of the reg references with the full
1194 expression. This will take care of the case where we have
1196 r_x = base + offset;
1201 val = *(base + offset); */
1203 expanded_address
= cselib_expand_value_rtx (mem_address
,
1206 /* If this fails, just go with the address from first
1208 if (!expanded_address
)
1212 expanded_address
= mem_address
;
1214 /* Split the address into canonical BASE + OFFSET terms. */
1215 address
= canon_rtx (expanded_address
);
1219 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1223 fprintf (dump_file
, "\n after cselib_expand address: ");
1224 print_inline_rtx (dump_file
, expanded_address
, 0);
1225 fprintf (dump_file
, "\n");
1228 fprintf (dump_file
, "\n after canon_rtx address: ");
1229 print_inline_rtx (dump_file
, address
, 0);
1230 fprintf (dump_file
, "\n");
1233 if (GET_CODE (address
) == CONST
)
1234 address
= XEXP (address
, 0);
1236 if (GET_CODE (address
) == PLUS
1237 && CONST_INT_P (XEXP (address
, 1)))
1239 *offset
= INTVAL (XEXP (address
, 1));
1240 address
= XEXP (address
, 0);
1243 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem
))
1244 && const_or_frame_p (address
))
1246 group_info_t group
= get_group_info (address
);
1248 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1249 fprintf (dump_file
, " gid=%d offset=%d \n",
1250 group
->id
, (int)*offset
);
1252 *group_id
= group
->id
;
1257 *base
= cselib_lookup (address
, address_mode
, true, GET_MODE (mem
));
1262 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1263 fprintf (dump_file
, " no cselib val - should be a wild read.\n");
1266 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1267 fprintf (dump_file
, " varying cselib base=%u:%u offset = %d\n",
1268 (*base
)->uid
, (*base
)->hash
, (int)*offset
);
1273 /* Clear the rhs field from the active_local_stores array. */
1276 clear_rhs_from_active_local_stores (void)
1278 insn_info_t ptr
= active_local_stores
;
1282 store_info_t store_info
= ptr
->store_rec
;
1283 /* Skip the clobbers. */
1284 while (!store_info
->is_set
)
1285 store_info
= store_info
->next
;
1287 store_info
->rhs
= NULL
;
1288 store_info
->const_rhs
= NULL
;
1290 ptr
= ptr
->next_local_store
;
1295 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1298 set_position_unneeded (store_info_t s_info
, int pos
)
1300 if (__builtin_expect (s_info
->is_large
, false))
1302 if (bitmap_set_bit (s_info
->positions_needed
.large
.bmap
, pos
))
1303 s_info
->positions_needed
.large
.count
++;
1306 s_info
->positions_needed
.small_bitmask
1307 &= ~(((unsigned HOST_WIDE_INT
) 1) << pos
);
1310 /* Mark the whole store S_INFO as unneeded. */
1313 set_all_positions_unneeded (store_info_t s_info
)
1315 if (__builtin_expect (s_info
->is_large
, false))
1317 int pos
, end
= s_info
->end
- s_info
->begin
;
1318 for (pos
= 0; pos
< end
; pos
++)
1319 bitmap_set_bit (s_info
->positions_needed
.large
.bmap
, pos
);
1320 s_info
->positions_needed
.large
.count
= end
;
1323 s_info
->positions_needed
.small_bitmask
= (unsigned HOST_WIDE_INT
) 0;
1326 /* Return TRUE if any bytes from S_INFO store are needed. */
1329 any_positions_needed_p (store_info_t s_info
)
1331 if (__builtin_expect (s_info
->is_large
, false))
1332 return (s_info
->positions_needed
.large
.count
1333 < s_info
->end
- s_info
->begin
);
1335 return (s_info
->positions_needed
.small_bitmask
1336 != (unsigned HOST_WIDE_INT
) 0);
1339 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1340 store are needed. */
1343 all_positions_needed_p (store_info_t s_info
, int start
, int width
)
1345 if (__builtin_expect (s_info
->is_large
, false))
1347 int end
= start
+ width
;
1349 if (bitmap_bit_p (s_info
->positions_needed
.large
.bmap
, start
++))
1355 unsigned HOST_WIDE_INT mask
= lowpart_bitmask (width
) << start
;
1356 return (s_info
->positions_needed
.small_bitmask
& mask
) == mask
;
1361 static rtx
get_stored_val (store_info_t
, enum machine_mode
, HOST_WIDE_INT
,
1362 HOST_WIDE_INT
, basic_block
, bool);
1365 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1366 there is a candidate store, after adding it to the appropriate
1367 local store group if so. */
1370 record_store (rtx body
, bb_info_t bb_info
)
1372 rtx mem
, rhs
, const_rhs
, mem_addr
;
1373 HOST_WIDE_INT offset
= 0;
1374 HOST_WIDE_INT width
= 0;
1375 alias_set_type spill_alias_set
;
1376 insn_info_t insn_info
= bb_info
->last_insn
;
1377 store_info_t store_info
= NULL
;
1379 cselib_val
*base
= NULL
;
1380 insn_info_t ptr
, last
, redundant_reason
;
1381 bool store_is_unused
;
1383 if (GET_CODE (body
) != SET
&& GET_CODE (body
) != CLOBBER
)
1386 mem
= SET_DEST (body
);
1388 /* If this is not used, then this cannot be used to keep the insn
1389 from being deleted. On the other hand, it does provide something
1390 that can be used to prove that another store is dead. */
1392 = (find_reg_note (insn_info
->insn
, REG_UNUSED
, mem
) != NULL
);
1394 /* Check whether that value is a suitable memory location. */
1397 /* If the set or clobber is unused, then it does not effect our
1398 ability to get rid of the entire insn. */
1399 if (!store_is_unused
)
1400 insn_info
->cannot_delete
= true;
1404 /* At this point we know mem is a mem. */
1405 if (GET_MODE (mem
) == BLKmode
)
1407 if (GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
1409 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1410 fprintf (dump_file
, " adding wild read for (clobber (mem:BLK (scratch))\n");
1411 add_wild_read (bb_info
);
1412 insn_info
->cannot_delete
= true;
1415 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1416 as memset (addr, 0, 36); */
1417 else if (!MEM_SIZE_KNOWN_P (mem
)
1418 || MEM_SIZE (mem
) <= 0
1419 || MEM_SIZE (mem
) > MAX_OFFSET
1420 || GET_CODE (body
) != SET
1421 || !CONST_INT_P (SET_SRC (body
)))
1423 if (!store_is_unused
)
1425 /* If the set or clobber is unused, then it does not effect our
1426 ability to get rid of the entire insn. */
1427 insn_info
->cannot_delete
= true;
1428 clear_rhs_from_active_local_stores ();
1434 /* We can still process a volatile mem, we just cannot delete it. */
1435 if (MEM_VOLATILE_P (mem
))
1436 insn_info
->cannot_delete
= true;
1438 if (!canon_address (mem
, &spill_alias_set
, &group_id
, &offset
, &base
))
1440 clear_rhs_from_active_local_stores ();
1444 if (GET_MODE (mem
) == BLKmode
)
1445 width
= MEM_SIZE (mem
);
1447 width
= GET_MODE_SIZE (GET_MODE (mem
));
1449 if (spill_alias_set
)
1451 bitmap store1
= clear_alias_group
->store1_p
;
1452 bitmap store2
= clear_alias_group
->store2_p
;
1454 gcc_assert (GET_MODE (mem
) != BLKmode
);
1456 if (!bitmap_set_bit (store1
, spill_alias_set
))
1457 bitmap_set_bit (store2
, spill_alias_set
);
1459 if (clear_alias_group
->offset_map_size_p
< spill_alias_set
)
1460 clear_alias_group
->offset_map_size_p
= spill_alias_set
;
1462 store_info
= (store_info_t
) pool_alloc (rtx_store_info_pool
);
1464 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1465 fprintf (dump_file
, " processing spill store %d(%s)\n",
1466 (int) spill_alias_set
, GET_MODE_NAME (GET_MODE (mem
)));
1468 else if (group_id
>= 0)
1470 /* In the restrictive case where the base is a constant or the
1471 frame pointer we can do global analysis. */
1474 = rtx_group_vec
[group_id
];
1475 tree expr
= MEM_EXPR (mem
);
1477 store_info
= (store_info_t
) pool_alloc (rtx_store_info_pool
);
1478 set_usage_bits (group
, offset
, width
, expr
);
1480 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1481 fprintf (dump_file
, " processing const base store gid=%d[%d..%d)\n",
1482 group_id
, (int)offset
, (int)(offset
+width
));
1486 if (may_be_sp_based_p (XEXP (mem
, 0)))
1487 insn_info
->stack_pointer_based
= true;
1488 insn_info
->contains_cselib_groups
= true;
1490 store_info
= (store_info_t
) pool_alloc (cse_store_info_pool
);
1493 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1494 fprintf (dump_file
, " processing cselib store [%d..%d)\n",
1495 (int)offset
, (int)(offset
+width
));
1498 const_rhs
= rhs
= NULL_RTX
;
1499 if (GET_CODE (body
) == SET
1500 /* No place to keep the value after ra. */
1501 && !reload_completed
1502 && (REG_P (SET_SRC (body
))
1503 || GET_CODE (SET_SRC (body
)) == SUBREG
1504 || CONSTANT_P (SET_SRC (body
)))
1505 && !MEM_VOLATILE_P (mem
)
1506 /* Sometimes the store and reload is used for truncation and
1508 && !(FLOAT_MODE_P (GET_MODE (mem
)) && (flag_float_store
)))
1510 rhs
= SET_SRC (body
);
1511 if (CONSTANT_P (rhs
))
1513 else if (body
== PATTERN (insn_info
->insn
))
1515 rtx tem
= find_reg_note (insn_info
->insn
, REG_EQUAL
, NULL_RTX
);
1516 if (tem
&& CONSTANT_P (XEXP (tem
, 0)))
1517 const_rhs
= XEXP (tem
, 0);
1519 if (const_rhs
== NULL_RTX
&& REG_P (rhs
))
1521 rtx tem
= cselib_expand_value_rtx (rhs
, scratch
, 5);
1523 if (tem
&& CONSTANT_P (tem
))
1528 /* Check to see if this stores causes some other stores to be
1530 ptr
= active_local_stores
;
1532 redundant_reason
= NULL
;
1533 mem
= canon_rtx (mem
);
1534 /* For alias_set != 0 canon_true_dependence should be never called. */
1535 if (spill_alias_set
)
1536 mem_addr
= NULL_RTX
;
1540 mem_addr
= base
->val_rtx
;
1544 = rtx_group_vec
[group_id
];
1545 mem_addr
= group
->canon_base_addr
;
1548 mem_addr
= plus_constant (get_address_mode (mem
), mem_addr
, offset
);
1553 insn_info_t next
= ptr
->next_local_store
;
1554 store_info_t s_info
= ptr
->store_rec
;
1557 /* Skip the clobbers. We delete the active insn if this insn
1558 shadows the set. To have been put on the active list, it
1559 has exactly on set. */
1560 while (!s_info
->is_set
)
1561 s_info
= s_info
->next
;
1563 if (s_info
->alias_set
!= spill_alias_set
)
1565 else if (s_info
->alias_set
)
1567 struct clear_alias_mode_holder
*entry
1568 = clear_alias_set_lookup (s_info
->alias_set
);
1569 /* Generally, spills cannot be processed if and of the
1570 references to the slot have a different mode. But if
1571 we are in the same block and mode is exactly the same
1572 between this store and one before in the same block,
1573 we can still delete it. */
1574 if ((GET_MODE (mem
) == GET_MODE (s_info
->mem
))
1575 && (GET_MODE (mem
) == entry
->mode
))
1578 set_all_positions_unneeded (s_info
);
1580 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1581 fprintf (dump_file
, " trying spill store in insn=%d alias_set=%d\n",
1582 INSN_UID (ptr
->insn
), (int) s_info
->alias_set
);
1584 else if ((s_info
->group_id
== group_id
)
1585 && (s_info
->cse_base
== base
))
1588 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1589 fprintf (dump_file
, " trying store in insn=%d gid=%d[%d..%d)\n",
1590 INSN_UID (ptr
->insn
), s_info
->group_id
,
1591 (int)s_info
->begin
, (int)s_info
->end
);
1593 /* Even if PTR won't be eliminated as unneeded, if both
1594 PTR and this insn store the same constant value, we might
1595 eliminate this insn instead. */
1596 if (s_info
->const_rhs
1598 && offset
>= s_info
->begin
1599 && offset
+ width
<= s_info
->end
1600 && all_positions_needed_p (s_info
, offset
- s_info
->begin
,
1603 if (GET_MODE (mem
) == BLKmode
)
1605 if (GET_MODE (s_info
->mem
) == BLKmode
1606 && s_info
->const_rhs
== const_rhs
)
1607 redundant_reason
= ptr
;
1609 else if (s_info
->const_rhs
== const0_rtx
1610 && const_rhs
== const0_rtx
)
1611 redundant_reason
= ptr
;
1616 val
= get_stored_val (s_info
, GET_MODE (mem
),
1617 offset
, offset
+ width
,
1618 BLOCK_FOR_INSN (insn_info
->insn
),
1620 if (get_insns () != NULL
)
1623 if (val
&& rtx_equal_p (val
, const_rhs
))
1624 redundant_reason
= ptr
;
1628 for (i
= MAX (offset
, s_info
->begin
);
1629 i
< offset
+ width
&& i
< s_info
->end
;
1631 set_position_unneeded (s_info
, i
- s_info
->begin
);
1633 else if (s_info
->rhs
)
1634 /* Need to see if it is possible for this store to overwrite
1635 the value of store_info. If it is, set the rhs to NULL to
1636 keep it from being used to remove a load. */
1638 if (canon_true_dependence (s_info
->mem
,
1639 GET_MODE (s_info
->mem
),
1644 s_info
->const_rhs
= NULL
;
1648 /* An insn can be deleted if every position of every one of
1649 its s_infos is zero. */
1650 if (any_positions_needed_p (s_info
))
1655 insn_info_t insn_to_delete
= ptr
;
1657 active_local_stores_len
--;
1659 last
->next_local_store
= ptr
->next_local_store
;
1661 active_local_stores
= ptr
->next_local_store
;
1663 if (!insn_to_delete
->cannot_delete
)
1664 delete_dead_store_insn (insn_to_delete
);
1672 /* Finish filling in the store_info. */
1673 store_info
->next
= insn_info
->store_rec
;
1674 insn_info
->store_rec
= store_info
;
1675 store_info
->mem
= mem
;
1676 store_info
->alias_set
= spill_alias_set
;
1677 store_info
->mem_addr
= mem_addr
;
1678 store_info
->cse_base
= base
;
1679 if (width
> HOST_BITS_PER_WIDE_INT
)
1681 store_info
->is_large
= true;
1682 store_info
->positions_needed
.large
.count
= 0;
1683 store_info
->positions_needed
.large
.bmap
= BITMAP_ALLOC (&dse_bitmap_obstack
);
1687 store_info
->is_large
= false;
1688 store_info
->positions_needed
.small_bitmask
= lowpart_bitmask (width
);
1690 store_info
->group_id
= group_id
;
1691 store_info
->begin
= offset
;
1692 store_info
->end
= offset
+ width
;
1693 store_info
->is_set
= GET_CODE (body
) == SET
;
1694 store_info
->rhs
= rhs
;
1695 store_info
->const_rhs
= const_rhs
;
1696 store_info
->redundant_reason
= redundant_reason
;
1698 /* If this is a clobber, we return 0. We will only be able to
1699 delete this insn if there is only one store USED store, but we
1700 can use the clobber to delete other stores earlier. */
1701 return store_info
->is_set
? 1 : 0;
1706 dump_insn_info (const char * start
, insn_info_t insn_info
)
1708 fprintf (dump_file
, "%s insn=%d %s\n", start
,
1709 INSN_UID (insn_info
->insn
),
1710 insn_info
->store_rec
? "has store" : "naked");
1714 /* If the modes are different and the value's source and target do not
1715 line up, we need to extract the value from lower part of the rhs of
1716 the store, shift it, and then put it into a form that can be shoved
1717 into the read_insn. This function generates a right SHIFT of a
1718 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1719 shift sequence is returned or NULL if we failed to find a
1723 find_shift_sequence (int access_size
,
1724 store_info_t store_info
,
1725 enum machine_mode read_mode
,
1726 int shift
, bool speed
, bool require_cst
)
1728 enum machine_mode store_mode
= GET_MODE (store_info
->mem
);
1729 enum machine_mode new_mode
;
1730 rtx read_reg
= NULL
;
1732 /* Some machines like the x86 have shift insns for each size of
1733 operand. Other machines like the ppc or the ia-64 may only have
1734 shift insns that shift values within 32 or 64 bit registers.
1735 This loop tries to find the smallest shift insn that will right
1736 justify the value we want to read but is available in one insn on
1739 for (new_mode
= smallest_mode_for_size (access_size
* BITS_PER_UNIT
,
1741 GET_MODE_BITSIZE (new_mode
) <= BITS_PER_WORD
;
1742 new_mode
= GET_MODE_WIDER_MODE (new_mode
))
1744 rtx target
, new_reg
, shift_seq
, insn
, new_lhs
;
1747 /* If a constant was stored into memory, try to simplify it here,
1748 otherwise the cost of the shift might preclude this optimization
1749 e.g. at -Os, even when no actual shift will be needed. */
1750 if (store_info
->const_rhs
)
1752 unsigned int byte
= subreg_lowpart_offset (new_mode
, store_mode
);
1753 rtx ret
= simplify_subreg (new_mode
, store_info
->const_rhs
,
1755 if (ret
&& CONSTANT_P (ret
))
1757 ret
= simplify_const_binary_operation (LSHIFTRT
, new_mode
,
1758 ret
, GEN_INT (shift
));
1759 if (ret
&& CONSTANT_P (ret
))
1761 byte
= subreg_lowpart_offset (read_mode
, new_mode
);
1762 ret
= simplify_subreg (read_mode
, ret
, new_mode
, byte
);
1763 if (ret
&& CONSTANT_P (ret
)
1764 && set_src_cost (ret
, speed
) <= COSTS_N_INSNS (1))
1773 /* Try a wider mode if truncating the store mode to NEW_MODE
1774 requires a real instruction. */
1775 if (GET_MODE_BITSIZE (new_mode
) < GET_MODE_BITSIZE (store_mode
)
1776 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode
, store_mode
))
1779 /* Also try a wider mode if the necessary punning is either not
1780 desirable or not possible. */
1781 if (!CONSTANT_P (store_info
->rhs
)
1782 && !MODES_TIEABLE_P (new_mode
, store_mode
))
1785 new_reg
= gen_reg_rtx (new_mode
);
1789 /* In theory we could also check for an ashr. Ian Taylor knows
1790 of one dsp where the cost of these two was not the same. But
1791 this really is a rare case anyway. */
1792 target
= expand_binop (new_mode
, lshr_optab
, new_reg
,
1793 GEN_INT (shift
), new_reg
, 1, OPTAB_DIRECT
);
1795 shift_seq
= get_insns ();
1798 if (target
!= new_reg
|| shift_seq
== NULL
)
1802 for (insn
= shift_seq
; insn
!= NULL_RTX
; insn
= NEXT_INSN (insn
))
1804 cost
+= insn_rtx_cost (PATTERN (insn
), speed
);
1806 /* The computation up to here is essentially independent
1807 of the arguments and could be precomputed. It may
1808 not be worth doing so. We could precompute if
1809 worthwhile or at least cache the results. The result
1810 technically depends on both SHIFT and ACCESS_SIZE,
1811 but in practice the answer will depend only on ACCESS_SIZE. */
1813 if (cost
> COSTS_N_INSNS (1))
1816 new_lhs
= extract_low_bits (new_mode
, store_mode
,
1817 copy_rtx (store_info
->rhs
));
1818 if (new_lhs
== NULL_RTX
)
1821 /* We found an acceptable shift. Generate a move to
1822 take the value from the store and put it into the
1823 shift pseudo, then shift it, then generate another
1824 move to put in into the target of the read. */
1825 emit_move_insn (new_reg
, new_lhs
);
1826 emit_insn (shift_seq
);
1827 read_reg
= extract_low_bits (read_mode
, new_mode
, new_reg
);
1835 /* Call back for note_stores to find the hard regs set or clobbered by
1836 insn. Data is a bitmap of the hardregs set so far. */
1839 look_for_hardregs (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
1841 bitmap regs_set
= (bitmap
) data
;
1844 && HARD_REGISTER_P (x
))
1846 unsigned int regno
= REGNO (x
);
1847 bitmap_set_range (regs_set
, regno
,
1848 hard_regno_nregs
[regno
][GET_MODE (x
)]);
1852 /* Helper function for replace_read and record_store.
1853 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1854 to one before READ_END bytes read in READ_MODE. Return NULL
1855 if not successful. If REQUIRE_CST is true, return always constant. */
1858 get_stored_val (store_info_t store_info
, enum machine_mode read_mode
,
1859 HOST_WIDE_INT read_begin
, HOST_WIDE_INT read_end
,
1860 basic_block bb
, bool require_cst
)
1862 enum machine_mode store_mode
= GET_MODE (store_info
->mem
);
1864 int access_size
; /* In bytes. */
1867 /* To get here the read is within the boundaries of the write so
1868 shift will never be negative. Start out with the shift being in
1870 if (store_mode
== BLKmode
)
1872 else if (BYTES_BIG_ENDIAN
)
1873 shift
= store_info
->end
- read_end
;
1875 shift
= read_begin
- store_info
->begin
;
1877 access_size
= shift
+ GET_MODE_SIZE (read_mode
);
1879 /* From now on it is bits. */
1880 shift
*= BITS_PER_UNIT
;
1883 read_reg
= find_shift_sequence (access_size
, store_info
, read_mode
, shift
,
1884 optimize_bb_for_speed_p (bb
),
1886 else if (store_mode
== BLKmode
)
1888 /* The store is a memset (addr, const_val, const_size). */
1889 gcc_assert (CONST_INT_P (store_info
->rhs
));
1890 store_mode
= int_mode_for_mode (read_mode
);
1891 if (store_mode
== BLKmode
)
1892 read_reg
= NULL_RTX
;
1893 else if (store_info
->rhs
== const0_rtx
)
1894 read_reg
= extract_low_bits (read_mode
, store_mode
, const0_rtx
);
1895 else if (GET_MODE_BITSIZE (store_mode
) > HOST_BITS_PER_WIDE_INT
1896 || BITS_PER_UNIT
>= HOST_BITS_PER_WIDE_INT
)
1897 read_reg
= NULL_RTX
;
1900 unsigned HOST_WIDE_INT c
1901 = INTVAL (store_info
->rhs
)
1902 & (((HOST_WIDE_INT
) 1 << BITS_PER_UNIT
) - 1);
1903 int shift
= BITS_PER_UNIT
;
1904 while (shift
< HOST_BITS_PER_WIDE_INT
)
1909 read_reg
= gen_int_mode (c
, store_mode
);
1910 read_reg
= extract_low_bits (read_mode
, store_mode
, read_reg
);
1913 else if (store_info
->const_rhs
1915 || GET_MODE_CLASS (read_mode
) != GET_MODE_CLASS (store_mode
)))
1916 read_reg
= extract_low_bits (read_mode
, store_mode
,
1917 copy_rtx (store_info
->const_rhs
));
1919 read_reg
= extract_low_bits (read_mode
, store_mode
,
1920 copy_rtx (store_info
->rhs
));
1921 if (require_cst
&& read_reg
&& !CONSTANT_P (read_reg
))
1922 read_reg
= NULL_RTX
;
1926 /* Take a sequence of:
1949 Depending on the alignment and the mode of the store and
1953 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1954 and READ_INSN are for the read. Return true if the replacement
1958 replace_read (store_info_t store_info
, insn_info_t store_insn
,
1959 read_info_t read_info
, insn_info_t read_insn
, rtx
*loc
,
1962 enum machine_mode store_mode
= GET_MODE (store_info
->mem
);
1963 enum machine_mode read_mode
= GET_MODE (read_info
->mem
);
1964 rtx insns
, this_insn
, read_reg
;
1970 /* Create a sequence of instructions to set up the read register.
1971 This sequence goes immediately before the store and its result
1972 is read by the load.
1974 We need to keep this in perspective. We are replacing a read
1975 with a sequence of insns, but the read will almost certainly be
1976 in cache, so it is not going to be an expensive one. Thus, we
1977 are not willing to do a multi insn shift or worse a subroutine
1978 call to get rid of the read. */
1979 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1980 fprintf (dump_file
, "trying to replace %smode load in insn %d"
1981 " from %smode store in insn %d\n",
1982 GET_MODE_NAME (read_mode
), INSN_UID (read_insn
->insn
),
1983 GET_MODE_NAME (store_mode
), INSN_UID (store_insn
->insn
));
1985 bb
= BLOCK_FOR_INSN (read_insn
->insn
);
1986 read_reg
= get_stored_val (store_info
,
1987 read_mode
, read_info
->begin
, read_info
->end
,
1989 if (read_reg
== NULL_RTX
)
1992 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1993 fprintf (dump_file
, " -- could not extract bits of stored value\n");
1996 /* Force the value into a new register so that it won't be clobbered
1997 between the store and the load. */
1998 read_reg
= copy_to_mode_reg (read_mode
, read_reg
);
1999 insns
= get_insns ();
2002 if (insns
!= NULL_RTX
)
2004 /* Now we have to scan the set of new instructions to see if the
2005 sequence contains and sets of hardregs that happened to be
2006 live at this point. For instance, this can happen if one of
2007 the insns sets the CC and the CC happened to be live at that
2008 point. This does occasionally happen, see PR 37922. */
2009 bitmap regs_set
= BITMAP_ALLOC (®_obstack
);
2011 for (this_insn
= insns
; this_insn
!= NULL_RTX
; this_insn
= NEXT_INSN (this_insn
))
2012 note_stores (PATTERN (this_insn
), look_for_hardregs
, regs_set
);
2014 bitmap_and_into (regs_set
, regs_live
);
2015 if (!bitmap_empty_p (regs_set
))
2017 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2020 "abandoning replacement because sequence clobbers live hardregs:");
2021 df_print_regset (dump_file
, regs_set
);
2024 BITMAP_FREE (regs_set
);
2027 BITMAP_FREE (regs_set
);
2030 if (validate_change (read_insn
->insn
, loc
, read_reg
, 0))
2032 deferred_change_t deferred_change
=
2033 (deferred_change_t
) pool_alloc (deferred_change_pool
);
2035 /* Insert this right before the store insn where it will be safe
2036 from later insns that might change it before the read. */
2037 emit_insn_before (insns
, store_insn
->insn
);
2039 /* And now for the kludge part: cselib croaks if you just
2040 return at this point. There are two reasons for this:
2042 1) Cselib has an idea of how many pseudos there are and
2043 that does not include the new ones we just added.
2045 2) Cselib does not know about the move insn we added
2046 above the store_info, and there is no way to tell it
2047 about it, because it has "moved on".
2049 Problem (1) is fixable with a certain amount of engineering.
2050 Problem (2) is requires starting the bb from scratch. This
2053 So we are just going to have to lie. The move/extraction
2054 insns are not really an issue, cselib did not see them. But
2055 the use of the new pseudo read_insn is a real problem because
2056 cselib has not scanned this insn. The way that we solve this
2057 problem is that we are just going to put the mem back for now
2058 and when we are finished with the block, we undo this. We
2059 keep a table of mems to get rid of. At the end of the basic
2060 block we can put them back. */
2062 *loc
= read_info
->mem
;
2063 deferred_change
->next
= deferred_change_list
;
2064 deferred_change_list
= deferred_change
;
2065 deferred_change
->loc
= loc
;
2066 deferred_change
->reg
= read_reg
;
2068 /* Get rid of the read_info, from the point of view of the
2069 rest of dse, play like this read never happened. */
2070 read_insn
->read_rec
= read_info
->next
;
2071 pool_free (read_info_pool
, read_info
);
2072 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2074 fprintf (dump_file
, " -- replaced the loaded MEM with ");
2075 print_simple_rtl (dump_file
, read_reg
);
2076 fprintf (dump_file
, "\n");
2082 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2084 fprintf (dump_file
, " -- replacing the loaded MEM with ");
2085 print_simple_rtl (dump_file
, read_reg
);
2086 fprintf (dump_file
, " led to an invalid instruction\n");
2092 /* A for_each_rtx callback in which DATA is the bb_info. Check to see
2093 if LOC is a mem and if it is look at the address and kill any
2094 appropriate stores that may be active. */
2097 check_mem_read_rtx (rtx
*loc
, void *data
)
2099 rtx mem
= *loc
, mem_addr
;
2101 insn_info_t insn_info
;
2102 HOST_WIDE_INT offset
= 0;
2103 HOST_WIDE_INT width
= 0;
2104 alias_set_type spill_alias_set
= 0;
2105 cselib_val
*base
= NULL
;
2107 read_info_t read_info
;
2109 if (!mem
|| !MEM_P (mem
))
2112 bb_info
= (bb_info_t
) data
;
2113 insn_info
= bb_info
->last_insn
;
2115 if ((MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2116 || (MEM_VOLATILE_P (mem
)))
2118 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2119 fprintf (dump_file
, " adding wild read, volatile or barrier.\n");
2120 add_wild_read (bb_info
);
2121 insn_info
->cannot_delete
= true;
2125 /* If it is reading readonly mem, then there can be no conflict with
2127 if (MEM_READONLY_P (mem
))
2130 if (!canon_address (mem
, &spill_alias_set
, &group_id
, &offset
, &base
))
2132 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2133 fprintf (dump_file
, " adding wild read, canon_address failure.\n");
2134 add_wild_read (bb_info
);
2138 if (GET_MODE (mem
) == BLKmode
)
2141 width
= GET_MODE_SIZE (GET_MODE (mem
));
2143 read_info
= (read_info_t
) pool_alloc (read_info_pool
);
2144 read_info
->group_id
= group_id
;
2145 read_info
->mem
= mem
;
2146 read_info
->alias_set
= spill_alias_set
;
2147 read_info
->begin
= offset
;
2148 read_info
->end
= offset
+ width
;
2149 read_info
->next
= insn_info
->read_rec
;
2150 insn_info
->read_rec
= read_info
;
2151 /* For alias_set != 0 canon_true_dependence should be never called. */
2152 if (spill_alias_set
)
2153 mem_addr
= NULL_RTX
;
2157 mem_addr
= base
->val_rtx
;
2161 = rtx_group_vec
[group_id
];
2162 mem_addr
= group
->canon_base_addr
;
2165 mem_addr
= plus_constant (get_address_mode (mem
), mem_addr
, offset
);
2168 /* We ignore the clobbers in store_info. The is mildly aggressive,
2169 but there really should not be a clobber followed by a read. */
2171 if (spill_alias_set
)
2173 insn_info_t i_ptr
= active_local_stores
;
2174 insn_info_t last
= NULL
;
2176 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2177 fprintf (dump_file
, " processing spill load %d\n",
2178 (int) spill_alias_set
);
2182 store_info_t store_info
= i_ptr
->store_rec
;
2184 /* Skip the clobbers. */
2185 while (!store_info
->is_set
)
2186 store_info
= store_info
->next
;
2188 if (store_info
->alias_set
== spill_alias_set
)
2190 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2191 dump_insn_info ("removing from active", i_ptr
);
2193 active_local_stores_len
--;
2195 last
->next_local_store
= i_ptr
->next_local_store
;
2197 active_local_stores
= i_ptr
->next_local_store
;
2201 i_ptr
= i_ptr
->next_local_store
;
2204 else if (group_id
>= 0)
2206 /* This is the restricted case where the base is a constant or
2207 the frame pointer and offset is a constant. */
2208 insn_info_t i_ptr
= active_local_stores
;
2209 insn_info_t last
= NULL
;
2211 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2214 fprintf (dump_file
, " processing const load gid=%d[BLK]\n",
2217 fprintf (dump_file
, " processing const load gid=%d[%d..%d)\n",
2218 group_id
, (int)offset
, (int)(offset
+width
));
2223 bool remove
= false;
2224 store_info_t store_info
= i_ptr
->store_rec
;
2226 /* Skip the clobbers. */
2227 while (!store_info
->is_set
)
2228 store_info
= store_info
->next
;
2230 /* There are three cases here. */
2231 if (store_info
->group_id
< 0)
2232 /* We have a cselib store followed by a read from a
2235 = canon_true_dependence (store_info
->mem
,
2236 GET_MODE (store_info
->mem
),
2237 store_info
->mem_addr
,
2240 else if (group_id
== store_info
->group_id
)
2242 /* This is a block mode load. We may get lucky and
2243 canon_true_dependence may save the day. */
2246 = canon_true_dependence (store_info
->mem
,
2247 GET_MODE (store_info
->mem
),
2248 store_info
->mem_addr
,
2251 /* If this read is just reading back something that we just
2252 stored, rewrite the read. */
2256 && offset
>= store_info
->begin
2257 && offset
+ width
<= store_info
->end
2258 && all_positions_needed_p (store_info
,
2259 offset
- store_info
->begin
,
2261 && replace_read (store_info
, i_ptr
, read_info
,
2262 insn_info
, loc
, bb_info
->regs_live
))
2265 /* The bases are the same, just see if the offsets
2267 if ((offset
< store_info
->end
)
2268 && (offset
+ width
> store_info
->begin
))
2274 The else case that is missing here is that the
2275 bases are constant but different. There is nothing
2276 to do here because there is no overlap. */
2280 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2281 dump_insn_info ("removing from active", i_ptr
);
2283 active_local_stores_len
--;
2285 last
->next_local_store
= i_ptr
->next_local_store
;
2287 active_local_stores
= i_ptr
->next_local_store
;
2291 i_ptr
= i_ptr
->next_local_store
;
2296 insn_info_t i_ptr
= active_local_stores
;
2297 insn_info_t last
= NULL
;
2298 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2300 fprintf (dump_file
, " processing cselib load mem:");
2301 print_inline_rtx (dump_file
, mem
, 0);
2302 fprintf (dump_file
, "\n");
2307 bool remove
= false;
2308 store_info_t store_info
= i_ptr
->store_rec
;
2310 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2311 fprintf (dump_file
, " processing cselib load against insn %d\n",
2312 INSN_UID (i_ptr
->insn
));
2314 /* Skip the clobbers. */
2315 while (!store_info
->is_set
)
2316 store_info
= store_info
->next
;
2318 /* If this read is just reading back something that we just
2319 stored, rewrite the read. */
2321 && store_info
->group_id
== -1
2322 && store_info
->cse_base
== base
2324 && offset
>= store_info
->begin
2325 && offset
+ width
<= store_info
->end
2326 && all_positions_needed_p (store_info
,
2327 offset
- store_info
->begin
, width
)
2328 && replace_read (store_info
, i_ptr
, read_info
, insn_info
, loc
,
2329 bb_info
->regs_live
))
2332 if (!store_info
->alias_set
)
2333 remove
= canon_true_dependence (store_info
->mem
,
2334 GET_MODE (store_info
->mem
),
2335 store_info
->mem_addr
,
2340 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2341 dump_insn_info ("removing from active", i_ptr
);
2343 active_local_stores_len
--;
2345 last
->next_local_store
= i_ptr
->next_local_store
;
2347 active_local_stores
= i_ptr
->next_local_store
;
2351 i_ptr
= i_ptr
->next_local_store
;
2357 /* A for_each_rtx callback in which DATA points the INSN_INFO for
2358 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2359 true for any part of *LOC. */
2362 check_mem_read_use (rtx
*loc
, void *data
)
2364 for_each_rtx (loc
, check_mem_read_rtx
, data
);
2368 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2369 So far it only handles arguments passed in registers. */
2372 get_call_args (rtx call_insn
, tree fn
, rtx
*args
, int nargs
)
2374 CUMULATIVE_ARGS args_so_far_v
;
2375 cumulative_args_t args_so_far
;
2379 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
2380 args_so_far
= pack_cumulative_args (&args_so_far_v
);
2382 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
2384 arg
!= void_list_node
&& idx
< nargs
;
2385 arg
= TREE_CHAIN (arg
), idx
++)
2387 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
2389 reg
= targetm
.calls
.function_arg (args_so_far
, mode
, NULL_TREE
, true);
2390 if (!reg
|| !REG_P (reg
) || GET_MODE (reg
) != mode
2391 || GET_MODE_CLASS (mode
) != MODE_INT
)
2394 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
);
2396 link
= XEXP (link
, 1))
2397 if (GET_CODE (XEXP (link
, 0)) == USE
)
2399 args
[idx
] = XEXP (XEXP (link
, 0), 0);
2400 if (REG_P (args
[idx
])
2401 && REGNO (args
[idx
]) == REGNO (reg
)
2402 && (GET_MODE (args
[idx
]) == mode
2403 || (GET_MODE_CLASS (GET_MODE (args
[idx
])) == MODE_INT
2404 && (GET_MODE_SIZE (GET_MODE (args
[idx
]))
2406 && (GET_MODE_SIZE (GET_MODE (args
[idx
]))
2407 > GET_MODE_SIZE (mode
)))))
2413 tmp
= cselib_expand_value_rtx (args
[idx
], scratch
, 5);
2414 if (GET_MODE (args
[idx
]) != mode
)
2416 if (!tmp
|| !CONST_INT_P (tmp
))
2418 tmp
= gen_int_mode (INTVAL (tmp
), mode
);
2423 targetm
.calls
.function_arg_advance (args_so_far
, mode
, NULL_TREE
, true);
2425 if (arg
!= void_list_node
|| idx
!= nargs
)
2430 /* Return a bitmap of the fixed registers contained in IN. */
2433 copy_fixed_regs (const_bitmap in
)
2437 ret
= ALLOC_REG_SET (NULL
);
2438 bitmap_and (ret
, in
, fixed_reg_set_regset
);
2442 /* Apply record_store to all candidate stores in INSN. Mark INSN
2443 if some part of it is not a candidate store and assigns to a
2444 non-register target. */
2447 scan_insn (bb_info_t bb_info
, rtx insn
)
2450 insn_info_t insn_info
= (insn_info_t
) pool_alloc (insn_info_pool
);
2452 memset (insn_info
, 0, sizeof (struct insn_info
));
2454 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2455 fprintf (dump_file
, "\n**scanning insn=%d\n",
2458 insn_info
->prev_insn
= bb_info
->last_insn
;
2459 insn_info
->insn
= insn
;
2460 bb_info
->last_insn
= insn_info
;
2462 if (DEBUG_INSN_P (insn
))
2464 insn_info
->cannot_delete
= true;
2468 /* Look at all of the uses in the insn. */
2469 note_uses (&PATTERN (insn
), check_mem_read_use
, bb_info
);
2474 tree memset_call
= NULL_TREE
;
2476 insn_info
->cannot_delete
= true;
2478 /* Const functions cannot do anything bad i.e. read memory,
2479 however, they can read their parameters which may have
2480 been pushed onto the stack.
2481 memset and bzero don't read memory either. */
2482 const_call
= RTL_CONST_CALL_P (insn
);
2485 rtx call
= get_call_rtx_from (insn
);
2486 if (call
&& GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
2488 rtx symbol
= XEXP (XEXP (call
, 0), 0);
2489 if (SYMBOL_REF_DECL (symbol
)
2490 && TREE_CODE (SYMBOL_REF_DECL (symbol
)) == FUNCTION_DECL
)
2492 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol
))
2494 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol
))
2495 == BUILT_IN_MEMSET
))
2496 || SYMBOL_REF_DECL (symbol
) == block_clear_fn
)
2497 memset_call
= SYMBOL_REF_DECL (symbol
);
2501 if (const_call
|| memset_call
)
2503 insn_info_t i_ptr
= active_local_stores
;
2504 insn_info_t last
= NULL
;
2506 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2507 fprintf (dump_file
, "%s call %d\n",
2508 const_call
? "const" : "memset", INSN_UID (insn
));
2510 /* See the head comment of the frame_read field. */
2511 if (reload_completed
)
2512 insn_info
->frame_read
= true;
2514 /* Loop over the active stores and remove those which are
2515 killed by the const function call. */
2518 bool remove_store
= false;
2520 /* The stack pointer based stores are always killed. */
2521 if (i_ptr
->stack_pointer_based
)
2522 remove_store
= true;
2524 /* If the frame is read, the frame related stores are killed. */
2525 else if (insn_info
->frame_read
)
2527 store_info_t store_info
= i_ptr
->store_rec
;
2529 /* Skip the clobbers. */
2530 while (!store_info
->is_set
)
2531 store_info
= store_info
->next
;
2533 if (store_info
->group_id
>= 0
2534 && rtx_group_vec
[store_info
->group_id
]->frame_related
)
2535 remove_store
= true;
2540 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2541 dump_insn_info ("removing from active", i_ptr
);
2543 active_local_stores_len
--;
2545 last
->next_local_store
= i_ptr
->next_local_store
;
2547 active_local_stores
= i_ptr
->next_local_store
;
2552 i_ptr
= i_ptr
->next_local_store
;
2558 if (get_call_args (insn
, memset_call
, args
, 3)
2559 && CONST_INT_P (args
[1])
2560 && CONST_INT_P (args
[2])
2561 && INTVAL (args
[2]) > 0)
2563 rtx mem
= gen_rtx_MEM (BLKmode
, args
[0]);
2564 set_mem_size (mem
, INTVAL (args
[2]));
2565 body
= gen_rtx_SET (VOIDmode
, mem
, args
[1]);
2566 mems_found
+= record_store (body
, bb_info
);
2567 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2568 fprintf (dump_file
, "handling memset as BLKmode store\n");
2569 if (mems_found
== 1)
2571 if (active_local_stores_len
++
2572 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES
))
2574 active_local_stores_len
= 1;
2575 active_local_stores
= NULL
;
2577 insn_info
->fixed_regs_live
2578 = copy_fixed_regs (bb_info
->regs_live
);
2579 insn_info
->next_local_store
= active_local_stores
;
2580 active_local_stores
= insn_info
;
2587 /* Every other call, including pure functions, may read any memory
2588 that is not relative to the frame. */
2589 add_non_frame_wild_read (bb_info
);
2594 /* Assuming that there are sets in these insns, we cannot delete
2596 if ((GET_CODE (PATTERN (insn
)) == CLOBBER
)
2597 || volatile_refs_p (PATTERN (insn
))
2598 || (!cfun
->can_delete_dead_exceptions
&& !insn_nothrow_p (insn
))
2599 || (RTX_FRAME_RELATED_P (insn
))
2600 || find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
))
2601 insn_info
->cannot_delete
= true;
2603 body
= PATTERN (insn
);
2604 if (GET_CODE (body
) == PARALLEL
)
2607 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
2608 mems_found
+= record_store (XVECEXP (body
, 0, i
), bb_info
);
2611 mems_found
+= record_store (body
, bb_info
);
2613 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2614 fprintf (dump_file
, "mems_found = %d, cannot_delete = %s\n",
2615 mems_found
, insn_info
->cannot_delete
? "true" : "false");
2617 /* If we found some sets of mems, add it into the active_local_stores so
2618 that it can be locally deleted if found dead or used for
2619 replace_read and redundant constant store elimination. Otherwise mark
2620 it as cannot delete. This simplifies the processing later. */
2621 if (mems_found
== 1)
2623 if (active_local_stores_len
++
2624 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES
))
2626 active_local_stores_len
= 1;
2627 active_local_stores
= NULL
;
2629 insn_info
->fixed_regs_live
= copy_fixed_regs (bb_info
->regs_live
);
2630 insn_info
->next_local_store
= active_local_stores
;
2631 active_local_stores
= insn_info
;
2634 insn_info
->cannot_delete
= true;
2638 /* Remove BASE from the set of active_local_stores. This is a
2639 callback from cselib that is used to get rid of the stores in
2640 active_local_stores. */
2643 remove_useless_values (cselib_val
*base
)
2645 insn_info_t insn_info
= active_local_stores
;
2646 insn_info_t last
= NULL
;
2650 store_info_t store_info
= insn_info
->store_rec
;
2653 /* If ANY of the store_infos match the cselib group that is
2654 being deleted, then the insn can not be deleted. */
2657 if ((store_info
->group_id
== -1)
2658 && (store_info
->cse_base
== base
))
2663 store_info
= store_info
->next
;
2668 active_local_stores_len
--;
2670 last
->next_local_store
= insn_info
->next_local_store
;
2672 active_local_stores
= insn_info
->next_local_store
;
2673 free_store_info (insn_info
);
2678 insn_info
= insn_info
->next_local_store
;
2683 /* Do all of step 1. */
2689 bitmap regs_live
= BITMAP_ALLOC (®_obstack
);
2692 all_blocks
= BITMAP_ALLOC (NULL
);
2693 bitmap_set_bit (all_blocks
, ENTRY_BLOCK
);
2694 bitmap_set_bit (all_blocks
, EXIT_BLOCK
);
2696 FOR_ALL_BB_FN (bb
, cfun
)
2699 bb_info_t bb_info
= (bb_info_t
) pool_alloc (bb_info_pool
);
2701 memset (bb_info
, 0, sizeof (struct bb_info
));
2702 bitmap_set_bit (all_blocks
, bb
->index
);
2703 bb_info
->regs_live
= regs_live
;
2705 bitmap_copy (regs_live
, DF_LR_IN (bb
));
2706 df_simulate_initialize_forwards (bb
, regs_live
);
2708 bb_table
[bb
->index
] = bb_info
;
2709 cselib_discard_hook
= remove_useless_values
;
2711 if (bb
->index
>= NUM_FIXED_BLOCKS
)
2716 = create_alloc_pool ("cse_store_info_pool",
2717 sizeof (struct store_info
), 100);
2718 active_local_stores
= NULL
;
2719 active_local_stores_len
= 0;
2720 cselib_clear_table ();
2722 /* Scan the insns. */
2723 FOR_BB_INSNS (bb
, insn
)
2726 scan_insn (bb_info
, insn
);
2727 cselib_process_insn (insn
);
2729 df_simulate_one_insn_forwards (bb
, insn
, regs_live
);
2732 /* This is something of a hack, because the global algorithm
2733 is supposed to take care of the case where stores go dead
2734 at the end of the function. However, the global
2735 algorithm must take a more conservative view of block
2736 mode reads than the local alg does. So to get the case
2737 where you have a store to the frame followed by a non
2738 overlapping block more read, we look at the active local
2739 stores at the end of the function and delete all of the
2740 frame and spill based ones. */
2741 if (stores_off_frame_dead_at_return
2742 && (EDGE_COUNT (bb
->succs
) == 0
2743 || (single_succ_p (bb
)
2744 && single_succ (bb
) == EXIT_BLOCK_PTR_FOR_FN (cfun
)
2745 && ! crtl
->calls_eh_return
)))
2747 insn_info_t i_ptr
= active_local_stores
;
2750 store_info_t store_info
= i_ptr
->store_rec
;
2752 /* Skip the clobbers. */
2753 while (!store_info
->is_set
)
2754 store_info
= store_info
->next
;
2755 if (store_info
->alias_set
&& !i_ptr
->cannot_delete
)
2756 delete_dead_store_insn (i_ptr
);
2758 if (store_info
->group_id
>= 0)
2761 = rtx_group_vec
[store_info
->group_id
];
2762 if (group
->frame_related
&& !i_ptr
->cannot_delete
)
2763 delete_dead_store_insn (i_ptr
);
2766 i_ptr
= i_ptr
->next_local_store
;
2770 /* Get rid of the loads that were discovered in
2771 replace_read. Cselib is finished with this block. */
2772 while (deferred_change_list
)
2774 deferred_change_t next
= deferred_change_list
->next
;
2776 /* There is no reason to validate this change. That was
2778 *deferred_change_list
->loc
= deferred_change_list
->reg
;
2779 pool_free (deferred_change_pool
, deferred_change_list
);
2780 deferred_change_list
= next
;
2783 /* Get rid of all of the cselib based store_infos in this
2784 block and mark the containing insns as not being
2786 ptr
= bb_info
->last_insn
;
2789 if (ptr
->contains_cselib_groups
)
2791 store_info_t s_info
= ptr
->store_rec
;
2792 while (s_info
&& !s_info
->is_set
)
2793 s_info
= s_info
->next
;
2795 && s_info
->redundant_reason
2796 && s_info
->redundant_reason
->insn
2797 && !ptr
->cannot_delete
)
2799 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2800 fprintf (dump_file
, "Locally deleting insn %d "
2801 "because insn %d stores the "
2802 "same value and couldn't be "
2804 INSN_UID (ptr
->insn
),
2805 INSN_UID (s_info
->redundant_reason
->insn
));
2806 delete_dead_store_insn (ptr
);
2808 free_store_info (ptr
);
2812 store_info_t s_info
;
2814 /* Free at least positions_needed bitmaps. */
2815 for (s_info
= ptr
->store_rec
; s_info
; s_info
= s_info
->next
)
2816 if (s_info
->is_large
)
2818 BITMAP_FREE (s_info
->positions_needed
.large
.bmap
);
2819 s_info
->is_large
= false;
2822 ptr
= ptr
->prev_insn
;
2825 free_alloc_pool (cse_store_info_pool
);
2827 bb_info
->regs_live
= NULL
;
2830 BITMAP_FREE (regs_live
);
2832 rtx_group_table
->empty ();
2836 /*----------------------------------------------------------------------------
2839 Assign each byte position in the stores that we are going to
2840 analyze globally to a position in the bitmaps. Returns true if
2841 there are any bit positions assigned.
2842 ----------------------------------------------------------------------------*/
2845 dse_step2_init (void)
2850 FOR_EACH_VEC_ELT (rtx_group_vec
, i
, group
)
2852 /* For all non stack related bases, we only consider a store to
2853 be deletable if there are two or more stores for that
2854 position. This is because it takes one store to make the
2855 other store redundant. However, for the stores that are
2856 stack related, we consider them if there is only one store
2857 for the position. We do this because the stack related
2858 stores can be deleted if their is no read between them and
2859 the end of the function.
2861 To make this work in the current framework, we take the stack
2862 related bases add all of the bits from store1 into store2.
2863 This has the effect of making the eligible even if there is
2866 if (stores_off_frame_dead_at_return
&& group
->frame_related
)
2868 bitmap_ior_into (group
->store2_n
, group
->store1_n
);
2869 bitmap_ior_into (group
->store2_p
, group
->store1_p
);
2870 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2871 fprintf (dump_file
, "group %d is frame related ", i
);
2874 group
->offset_map_size_n
++;
2875 group
->offset_map_n
= XOBNEWVEC (&dse_obstack
, int,
2876 group
->offset_map_size_n
);
2877 group
->offset_map_size_p
++;
2878 group
->offset_map_p
= XOBNEWVEC (&dse_obstack
, int,
2879 group
->offset_map_size_p
);
2880 group
->process_globally
= false;
2881 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2883 fprintf (dump_file
, "group %d(%d+%d): ", i
,
2884 (int)bitmap_count_bits (group
->store2_n
),
2885 (int)bitmap_count_bits (group
->store2_p
));
2886 bitmap_print (dump_file
, group
->store2_n
, "n ", " ");
2887 bitmap_print (dump_file
, group
->store2_p
, "p ", "\n");
2893 /* Init the offset tables for the normal case. */
2896 dse_step2_nospill (void)
2900 /* Position 0 is unused because 0 is used in the maps to mean
2902 current_position
= 1;
2903 FOR_EACH_VEC_ELT (rtx_group_vec
, i
, group
)
2908 if (group
== clear_alias_group
)
2911 memset (group
->offset_map_n
, 0, sizeof (int) * group
->offset_map_size_n
);
2912 memset (group
->offset_map_p
, 0, sizeof (int) * group
->offset_map_size_p
);
2913 bitmap_clear (group
->group_kill
);
2915 EXECUTE_IF_SET_IN_BITMAP (group
->store2_n
, 0, j
, bi
)
2917 bitmap_set_bit (group
->group_kill
, current_position
);
2918 if (bitmap_bit_p (group
->escaped_n
, j
))
2919 bitmap_set_bit (kill_on_calls
, current_position
);
2920 group
->offset_map_n
[j
] = current_position
++;
2921 group
->process_globally
= true;
2923 EXECUTE_IF_SET_IN_BITMAP (group
->store2_p
, 0, j
, bi
)
2925 bitmap_set_bit (group
->group_kill
, current_position
);
2926 if (bitmap_bit_p (group
->escaped_p
, j
))
2927 bitmap_set_bit (kill_on_calls
, current_position
);
2928 group
->offset_map_p
[j
] = current_position
++;
2929 group
->process_globally
= true;
2932 return current_position
!= 1;
2937 /*----------------------------------------------------------------------------
2940 Build the bit vectors for the transfer functions.
2941 ----------------------------------------------------------------------------*/
2944 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2948 get_bitmap_index (group_info_t group_info
, HOST_WIDE_INT offset
)
2952 HOST_WIDE_INT offset_p
= -offset
;
2953 if (offset_p
>= group_info
->offset_map_size_n
)
2955 return group_info
->offset_map_n
[offset_p
];
2959 if (offset
>= group_info
->offset_map_size_p
)
2961 return group_info
->offset_map_p
[offset
];
2966 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2970 scan_stores_nospill (store_info_t store_info
, bitmap gen
, bitmap kill
)
2975 group_info_t group_info
2976 = rtx_group_vec
[store_info
->group_id
];
2977 if (group_info
->process_globally
)
2978 for (i
= store_info
->begin
; i
< store_info
->end
; i
++)
2980 int index
= get_bitmap_index (group_info
, i
);
2983 bitmap_set_bit (gen
, index
);
2985 bitmap_clear_bit (kill
, index
);
2988 store_info
= store_info
->next
;
2993 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2997 scan_stores_spill (store_info_t store_info
, bitmap gen
, bitmap kill
)
3001 if (store_info
->alias_set
)
3003 int index
= get_bitmap_index (clear_alias_group
,
3004 store_info
->alias_set
);
3007 bitmap_set_bit (gen
, index
);
3009 bitmap_clear_bit (kill
, index
);
3012 store_info
= store_info
->next
;
3017 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3021 scan_reads_nospill (insn_info_t insn_info
, bitmap gen
, bitmap kill
)
3023 read_info_t read_info
= insn_info
->read_rec
;
3027 /* If this insn reads the frame, kill all the frame related stores. */
3028 if (insn_info
->frame_read
)
3030 FOR_EACH_VEC_ELT (rtx_group_vec
, i
, group
)
3031 if (group
->process_globally
&& group
->frame_related
)
3034 bitmap_ior_into (kill
, group
->group_kill
);
3035 bitmap_and_compl_into (gen
, group
->group_kill
);
3038 if (insn_info
->non_frame_wild_read
)
3040 /* Kill all non-frame related stores. Kill all stores of variables that
3043 bitmap_ior_into (kill
, kill_on_calls
);
3044 bitmap_and_compl_into (gen
, kill_on_calls
);
3045 FOR_EACH_VEC_ELT (rtx_group_vec
, i
, group
)
3046 if (group
->process_globally
&& !group
->frame_related
)
3049 bitmap_ior_into (kill
, group
->group_kill
);
3050 bitmap_and_compl_into (gen
, group
->group_kill
);
3055 FOR_EACH_VEC_ELT (rtx_group_vec
, i
, group
)
3057 if (group
->process_globally
)
3059 if (i
== read_info
->group_id
)
3061 if (read_info
->begin
> read_info
->end
)
3063 /* Begin > end for block mode reads. */
3065 bitmap_ior_into (kill
, group
->group_kill
);
3066 bitmap_and_compl_into (gen
, group
->group_kill
);
3070 /* The groups are the same, just process the
3073 for (j
= read_info
->begin
; j
< read_info
->end
; j
++)
3075 int index
= get_bitmap_index (group
, j
);
3079 bitmap_set_bit (kill
, index
);
3080 bitmap_clear_bit (gen
, index
);
3087 /* The groups are different, if the alias sets
3088 conflict, clear the entire group. We only need
3089 to apply this test if the read_info is a cselib
3090 read. Anything with a constant base cannot alias
3091 something else with a different constant
3093 if ((read_info
->group_id
< 0)
3094 && canon_true_dependence (group
->base_mem
,
3095 GET_MODE (group
->base_mem
),
3096 group
->canon_base_addr
,
3097 read_info
->mem
, NULL_RTX
))
3100 bitmap_ior_into (kill
, group
->group_kill
);
3101 bitmap_and_compl_into (gen
, group
->group_kill
);
3107 read_info
= read_info
->next
;
3111 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3115 scan_reads_spill (read_info_t read_info
, bitmap gen
, bitmap kill
)
3119 if (read_info
->alias_set
)
3121 int index
= get_bitmap_index (clear_alias_group
,
3122 read_info
->alias_set
);
3126 bitmap_set_bit (kill
, index
);
3127 bitmap_clear_bit (gen
, index
);
3131 read_info
= read_info
->next
;
3136 /* Return the insn in BB_INFO before the first wild read or if there
3137 are no wild reads in the block, return the last insn. */
3140 find_insn_before_first_wild_read (bb_info_t bb_info
)
3142 insn_info_t insn_info
= bb_info
->last_insn
;
3143 insn_info_t last_wild_read
= NULL
;
3147 if (insn_info
->wild_read
)
3149 last_wild_read
= insn_info
->prev_insn
;
3150 /* Block starts with wild read. */
3151 if (!last_wild_read
)
3155 insn_info
= insn_info
->prev_insn
;
3159 return last_wild_read
;
3161 return bb_info
->last_insn
;
3165 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3166 the block in order to build the gen and kill sets for the block.
3167 We start at ptr which may be the last insn in the block or may be
3168 the first insn with a wild read. In the latter case we are able to
3169 skip the rest of the block because it just does not matter:
3170 anything that happens is hidden by the wild read. */
3173 dse_step3_scan (bool for_spills
, basic_block bb
)
3175 bb_info_t bb_info
= bb_table
[bb
->index
];
3176 insn_info_t insn_info
;
3179 /* There are no wild reads in the spill case. */
3180 insn_info
= bb_info
->last_insn
;
3182 insn_info
= find_insn_before_first_wild_read (bb_info
);
3184 /* In the spill case or in the no_spill case if there is no wild
3185 read in the block, we will need a kill set. */
3186 if (insn_info
== bb_info
->last_insn
)
3189 bitmap_clear (bb_info
->kill
);
3191 bb_info
->kill
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3195 BITMAP_FREE (bb_info
->kill
);
3199 /* There may have been code deleted by the dce pass run before
3201 if (insn_info
->insn
&& INSN_P (insn_info
->insn
))
3203 /* Process the read(s) last. */
3206 scan_stores_spill (insn_info
->store_rec
, bb_info
->gen
, bb_info
->kill
);
3207 scan_reads_spill (insn_info
->read_rec
, bb_info
->gen
, bb_info
->kill
);
3211 scan_stores_nospill (insn_info
->store_rec
, bb_info
->gen
, bb_info
->kill
);
3212 scan_reads_nospill (insn_info
, bb_info
->gen
, bb_info
->kill
);
3216 insn_info
= insn_info
->prev_insn
;
3221 /* Set the gen set of the exit block, and also any block with no
3222 successors that does not have a wild read. */
3225 dse_step3_exit_block_scan (bb_info_t bb_info
)
3227 /* The gen set is all 0's for the exit block except for the
3228 frame_pointer_group. */
3230 if (stores_off_frame_dead_at_return
)
3235 FOR_EACH_VEC_ELT (rtx_group_vec
, i
, group
)
3237 if (group
->process_globally
&& group
->frame_related
)
3238 bitmap_ior_into (bb_info
->gen
, group
->group_kill
);
3244 /* Find all of the blocks that are not backwards reachable from the
3245 exit block or any block with no successors (BB). These are the
3246 infinite loops or infinite self loops. These blocks will still
3247 have their bits set in UNREACHABLE_BLOCKS. */
3250 mark_reachable_blocks (sbitmap unreachable_blocks
, basic_block bb
)
3255 if (bitmap_bit_p (unreachable_blocks
, bb
->index
))
3257 bitmap_clear_bit (unreachable_blocks
, bb
->index
);
3258 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3260 mark_reachable_blocks (unreachable_blocks
, e
->src
);
3265 /* Build the transfer functions for the function. */
3268 dse_step3 (bool for_spills
)
3271 sbitmap unreachable_blocks
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
3272 sbitmap_iterator sbi
;
3273 bitmap all_ones
= NULL
;
3276 bitmap_ones (unreachable_blocks
);
3278 FOR_ALL_BB_FN (bb
, cfun
)
3280 bb_info_t bb_info
= bb_table
[bb
->index
];
3282 bitmap_clear (bb_info
->gen
);
3284 bb_info
->gen
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3286 if (bb
->index
== ENTRY_BLOCK
)
3288 else if (bb
->index
== EXIT_BLOCK
)
3289 dse_step3_exit_block_scan (bb_info
);
3291 dse_step3_scan (for_spills
, bb
);
3292 if (EDGE_COUNT (bb
->succs
) == 0)
3293 mark_reachable_blocks (unreachable_blocks
, bb
);
3295 /* If this is the second time dataflow is run, delete the old
3298 BITMAP_FREE (bb_info
->in
);
3300 BITMAP_FREE (bb_info
->out
);
3303 /* For any block in an infinite loop, we must initialize the out set
3304 to all ones. This could be expensive, but almost never occurs in
3305 practice. However, it is common in regression tests. */
3306 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks
, 0, i
, sbi
)
3308 if (bitmap_bit_p (all_blocks
, i
))
3310 bb_info_t bb_info
= bb_table
[i
];
3316 all_ones
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3317 FOR_EACH_VEC_ELT (rtx_group_vec
, j
, group
)
3318 bitmap_ior_into (all_ones
, group
->group_kill
);
3322 bb_info
->out
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3323 bitmap_copy (bb_info
->out
, all_ones
);
3329 BITMAP_FREE (all_ones
);
3330 sbitmap_free (unreachable_blocks
);
3335 /*----------------------------------------------------------------------------
3338 Solve the bitvector equations.
3339 ----------------------------------------------------------------------------*/
3342 /* Confluence function for blocks with no successors. Create an out
3343 set from the gen set of the exit block. This block logically has
3344 the exit block as a successor. */
3349 dse_confluence_0 (basic_block bb
)
3351 bb_info_t bb_info
= bb_table
[bb
->index
];
3353 if (bb
->index
== EXIT_BLOCK
)
3358 bb_info
->out
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3359 bitmap_copy (bb_info
->out
, bb_table
[EXIT_BLOCK
]->gen
);
3363 /* Propagate the information from the in set of the dest of E to the
3364 out set of the src of E. If the various in or out sets are not
3365 there, that means they are all ones. */
3368 dse_confluence_n (edge e
)
3370 bb_info_t src_info
= bb_table
[e
->src
->index
];
3371 bb_info_t dest_info
= bb_table
[e
->dest
->index
];
3376 bitmap_and_into (src_info
->out
, dest_info
->in
);
3379 src_info
->out
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3380 bitmap_copy (src_info
->out
, dest_info
->in
);
3387 /* Propagate the info from the out to the in set of BB_INDEX's basic
3388 block. There are three cases:
3390 1) The block has no kill set. In this case the kill set is all
3391 ones. It does not matter what the out set of the block is, none of
3392 the info can reach the top. The only thing that reaches the top is
3393 the gen set and we just copy the set.
3395 2) There is a kill set but no out set and bb has successors. In
3396 this case we just return. Eventually an out set will be created and
3397 it is better to wait than to create a set of ones.
3399 3) There is both a kill and out set. We apply the obvious transfer
3404 dse_transfer_function (int bb_index
)
3406 bb_info_t bb_info
= bb_table
[bb_index
];
3414 return bitmap_ior_and_compl (bb_info
->in
, bb_info
->gen
,
3415 bb_info
->out
, bb_info
->kill
);
3418 bb_info
->in
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3419 bitmap_ior_and_compl (bb_info
->in
, bb_info
->gen
,
3420 bb_info
->out
, bb_info
->kill
);
3430 /* Case 1 above. If there is already an in set, nothing
3436 bb_info
->in
= BITMAP_ALLOC (&dse_bitmap_obstack
);
3437 bitmap_copy (bb_info
->in
, bb_info
->gen
);
3443 /* Solve the dataflow equations. */
3448 df_simple_dataflow (DF_BACKWARD
, NULL
, dse_confluence_0
,
3449 dse_confluence_n
, dse_transfer_function
,
3450 all_blocks
, df_get_postorder (DF_BACKWARD
),
3451 df_get_n_blocks (DF_BACKWARD
));
3452 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3456 fprintf (dump_file
, "\n\n*** Global dataflow info after analysis.\n");
3457 FOR_ALL_BB_FN (bb
, cfun
)
3459 bb_info_t bb_info
= bb_table
[bb
->index
];
3461 df_print_bb_index (bb
, dump_file
);
3463 bitmap_print (dump_file
, bb_info
->in
, " in: ", "\n");
3465 fprintf (dump_file
, " in: *MISSING*\n");
3467 bitmap_print (dump_file
, bb_info
->gen
, " gen: ", "\n");
3469 fprintf (dump_file
, " gen: *MISSING*\n");
3471 bitmap_print (dump_file
, bb_info
->kill
, " kill: ", "\n");
3473 fprintf (dump_file
, " kill: *MISSING*\n");
3475 bitmap_print (dump_file
, bb_info
->out
, " out: ", "\n");
3477 fprintf (dump_file
, " out: *MISSING*\n\n");
3484 /*----------------------------------------------------------------------------
3487 Delete the stores that can only be deleted using the global information.
3488 ----------------------------------------------------------------------------*/
3492 dse_step5_nospill (void)
3495 FOR_EACH_BB_FN (bb
, cfun
)
3497 bb_info_t bb_info
= bb_table
[bb
->index
];
3498 insn_info_t insn_info
= bb_info
->last_insn
;
3499 bitmap v
= bb_info
->out
;
3503 bool deleted
= false;
3504 if (dump_file
&& insn_info
->insn
)
3506 fprintf (dump_file
, "starting to process insn %d\n",
3507 INSN_UID (insn_info
->insn
));
3508 bitmap_print (dump_file
, v
, " v: ", "\n");
3511 /* There may have been code deleted by the dce pass run before
3514 && INSN_P (insn_info
->insn
)
3515 && (!insn_info
->cannot_delete
)
3516 && (!bitmap_empty_p (v
)))
3518 store_info_t store_info
= insn_info
->store_rec
;
3520 /* Try to delete the current insn. */
3523 /* Skip the clobbers. */
3524 while (!store_info
->is_set
)
3525 store_info
= store_info
->next
;
3527 if (store_info
->alias_set
)
3532 group_info_t group_info
3533 = rtx_group_vec
[store_info
->group_id
];
3535 for (i
= store_info
->begin
; i
< store_info
->end
; i
++)
3537 int index
= get_bitmap_index (group_info
, i
);
3539 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3540 fprintf (dump_file
, "i = %d, index = %d\n", (int)i
, index
);
3541 if (index
== 0 || !bitmap_bit_p (v
, index
))
3543 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3544 fprintf (dump_file
, "failing at i = %d\n", (int)i
);
3553 && check_for_inc_dec_1 (insn_info
))
3555 delete_insn (insn_info
->insn
);
3556 insn_info
->insn
= NULL
;
3561 /* We do want to process the local info if the insn was
3562 deleted. For instance, if the insn did a wild read, we
3563 no longer need to trash the info. */
3565 && INSN_P (insn_info
->insn
)
3568 scan_stores_nospill (insn_info
->store_rec
, v
, NULL
);
3569 if (insn_info
->wild_read
)
3571 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3572 fprintf (dump_file
, "wild read\n");
3575 else if (insn_info
->read_rec
3576 || insn_info
->non_frame_wild_read
)
3578 if (dump_file
&& !insn_info
->non_frame_wild_read
)
3579 fprintf (dump_file
, "regular read\n");
3580 else if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3581 fprintf (dump_file
, "non-frame wild read\n");
3582 scan_reads_nospill (insn_info
, v
, NULL
);
3586 insn_info
= insn_info
->prev_insn
;
3593 /*----------------------------------------------------------------------------
3596 Delete stores made redundant by earlier stores (which store the same
3597 value) that couldn't be eliminated.
3598 ----------------------------------------------------------------------------*/
3605 FOR_ALL_BB_FN (bb
, cfun
)
3607 bb_info_t bb_info
= bb_table
[bb
->index
];
3608 insn_info_t insn_info
= bb_info
->last_insn
;
3612 /* There may have been code deleted by the dce pass run before
3615 && INSN_P (insn_info
->insn
)
3616 && !insn_info
->cannot_delete
)
3618 store_info_t s_info
= insn_info
->store_rec
;
3620 while (s_info
&& !s_info
->is_set
)
3621 s_info
= s_info
->next
;
3623 && s_info
->redundant_reason
3624 && s_info
->redundant_reason
->insn
3625 && INSN_P (s_info
->redundant_reason
->insn
))
3627 rtx rinsn
= s_info
->redundant_reason
->insn
;
3628 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3629 fprintf (dump_file
, "Locally deleting insn %d "
3630 "because insn %d stores the "
3631 "same value and couldn't be "
3633 INSN_UID (insn_info
->insn
),
3635 delete_dead_store_insn (insn_info
);
3638 insn_info
= insn_info
->prev_insn
;
3643 /*----------------------------------------------------------------------------
3646 Destroy everything left standing.
3647 ----------------------------------------------------------------------------*/
3652 bitmap_obstack_release (&dse_bitmap_obstack
);
3653 obstack_free (&dse_obstack
, NULL
);
3655 end_alias_analysis ();
3657 delete rtx_group_table
;
3658 rtx_group_table
= NULL
;
3659 rtx_group_vec
.release ();
3660 BITMAP_FREE (all_blocks
);
3661 BITMAP_FREE (scratch
);
3663 free_alloc_pool (rtx_store_info_pool
);
3664 free_alloc_pool (read_info_pool
);
3665 free_alloc_pool (insn_info_pool
);
3666 free_alloc_pool (bb_info_pool
);
3667 free_alloc_pool (rtx_group_info_pool
);
3668 free_alloc_pool (deferred_change_pool
);
3672 /* -------------------------------------------------------------------------
3674 ------------------------------------------------------------------------- */
3676 /* Callback for running pass_rtl_dse. */
3679 rest_of_handle_dse (void)
3681 df_set_flags (DF_DEFER_INSN_RESCAN
);
3683 /* Need the notes since we must track live hardregs in the forwards
3685 df_note_add_problem ();
3691 if (dse_step2_nospill ())
3693 df_set_flags (DF_LR_RUN_DCE
);
3695 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3696 fprintf (dump_file
, "doing global processing\n");
3699 dse_step5_nospill ();
3706 fprintf (dump_file
, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3707 locally_deleted
, globally_deleted
, spill_deleted
);
3713 const pass_data pass_data_rtl_dse1
=
3715 RTL_PASS
, /* type */
3717 OPTGROUP_NONE
, /* optinfo_flags */
3718 TV_DSE1
, /* tv_id */
3719 0, /* properties_required */
3720 0, /* properties_provided */
3721 0, /* properties_destroyed */
3722 0, /* todo_flags_start */
3723 TODO_df_finish
, /* todo_flags_finish */
3726 class pass_rtl_dse1
: public rtl_opt_pass
3729 pass_rtl_dse1 (gcc::context
*ctxt
)
3730 : rtl_opt_pass (pass_data_rtl_dse1
, ctxt
)
3733 /* opt_pass methods: */
3734 virtual bool gate (function
*)
3736 return optimize
> 0 && flag_dse
&& dbg_cnt (dse1
);
3739 virtual unsigned int execute (function
*) { return rest_of_handle_dse (); }
3741 }; // class pass_rtl_dse1
3746 make_pass_rtl_dse1 (gcc::context
*ctxt
)
3748 return new pass_rtl_dse1 (ctxt
);
3753 const pass_data pass_data_rtl_dse2
=
3755 RTL_PASS
, /* type */
3757 OPTGROUP_NONE
, /* optinfo_flags */
3758 TV_DSE2
, /* tv_id */
3759 0, /* properties_required */
3760 0, /* properties_provided */
3761 0, /* properties_destroyed */
3762 0, /* todo_flags_start */
3763 TODO_df_finish
, /* todo_flags_finish */
3766 class pass_rtl_dse2
: public rtl_opt_pass
3769 pass_rtl_dse2 (gcc::context
*ctxt
)
3770 : rtl_opt_pass (pass_data_rtl_dse2
, ctxt
)
3773 /* opt_pass methods: */
3774 virtual bool gate (function
*)
3776 return optimize
> 0 && flag_dse
&& dbg_cnt (dse2
);
3779 virtual unsigned int execute (function
*) { return rest_of_handle_dse (); }
3781 }; // class pass_rtl_dse2
3786 make_pass_rtl_dse2 (gcc::context
*ctxt
)
3788 return new pass_rtl_dse2 (ctxt
);