* target.h (struct gcc_target): Add new field to struct cxx: import_export_class.
[official-gcc.git] / gcc / alias.c
blobce358c41d359f23b6ba3728b3e0b85eb7dae8d04
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "alias.h"
32 #include "emit-rtl.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "flags.h"
37 #include "output.h"
38 #include "toplev.h"
39 #include "cselib.h"
40 #include "splay-tree.h"
41 #include "ggc.h"
42 #include "langhooks.h"
43 #include "timevar.h"
44 #include "target.h"
45 #include "cgraph.h"
46 #include "varray.h"
48 /* The alias sets assigned to MEMs assist the back-end in determining
49 which MEMs can alias which other MEMs. In general, two MEMs in
50 different alias sets cannot alias each other, with one important
51 exception. Consider something like:
53 struct S { int i; double d; };
55 a store to an `S' can alias something of either type `int' or type
56 `double'. (However, a store to an `int' cannot alias a `double'
57 and vice versa.) We indicate this via a tree structure that looks
58 like:
59 struct S
60 / \
61 / \
62 |/_ _\|
63 int double
65 (The arrows are directed and point downwards.)
66 In this situation we say the alias set for `struct S' is the
67 `superset' and that those for `int' and `double' are `subsets'.
69 To see whether two alias sets can point to the same memory, we must
70 see if either alias set is a subset of the other. We need not trace
71 past immediate descendants, however, since we propagate all
72 grandchildren up one level.
74 Alias set zero is implicitly a superset of all other alias sets.
75 However, this is no actual entry for alias set zero. It is an
76 error to attempt to explicitly construct a subset of zero. */
78 struct alias_set_entry GTY(())
80 /* The alias set number, as stored in MEM_ALIAS_SET. */
81 HOST_WIDE_INT alias_set;
83 /* The children of the alias set. These are not just the immediate
84 children, but, in fact, all descendants. So, if we have:
86 struct T { struct S s; float f; }
88 continuing our example above, the children here will be all of
89 `int', `double', `float', and `struct S'. */
90 splay_tree GTY((param1_is (int), param2_is (int))) children;
92 /* Nonzero if would have a child of zero: this effectively makes this
93 alias set the same as alias set zero. */
94 int has_zero_child;
96 typedef struct alias_set_entry *alias_set_entry;
98 static int rtx_equal_for_memref_p (rtx, rtx);
99 static rtx find_symbolic_term (rtx);
100 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
101 static void record_set (rtx, rtx, void *);
102 static int base_alias_check (rtx, rtx, enum machine_mode,
103 enum machine_mode);
104 static rtx find_base_value (rtx);
105 static int mems_in_disjoint_alias_sets_p (rtx, rtx);
106 static int insert_subset_children (splay_tree_node, void*);
107 static tree find_base_decl (tree);
108 static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
109 static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
110 int (*) (rtx, int));
111 static int aliases_everything_p (rtx);
112 static bool nonoverlapping_component_refs_p (tree, tree);
113 static tree decl_for_component_ref (tree);
114 static rtx adjust_offset_for_component_ref (tree, rtx);
115 static int nonoverlapping_memrefs_p (rtx, rtx);
116 static int write_dependence_p (rtx, rtx, int, int);
118 static int nonlocal_mentioned_p_1 (rtx *, void *);
119 static int nonlocal_mentioned_p (rtx);
120 static int nonlocal_referenced_p_1 (rtx *, void *);
121 static int nonlocal_referenced_p (rtx);
122 static int nonlocal_set_p_1 (rtx *, void *);
123 static int nonlocal_set_p (rtx);
124 static void memory_modified_1 (rtx, rtx, void *);
126 /* Set up all info needed to perform alias analysis on memory references. */
128 /* Returns the size in bytes of the mode of X. */
129 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
131 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
132 different alias sets. We ignore alias sets in functions making use
133 of variable arguments because the va_arg macros on some systems are
134 not legal ANSI C. */
135 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
136 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
138 /* Cap the number of passes we make over the insns propagating alias
139 information through set chains. 10 is a completely arbitrary choice. */
140 #define MAX_ALIAS_LOOP_PASSES 10
142 /* reg_base_value[N] gives an address to which register N is related.
143 If all sets after the first add or subtract to the current value
144 or otherwise modify it so it does not point to a different top level
145 object, reg_base_value[N] is equal to the address part of the source
146 of the first set.
148 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
149 expressions represent certain special values: function arguments and
150 the stack, frame, and argument pointers.
152 The contents of an ADDRESS is not normally used, the mode of the
153 ADDRESS determines whether the ADDRESS is a function argument or some
154 other special value. Pointer equality, not rtx_equal_p, determines whether
155 two ADDRESS expressions refer to the same base address.
157 The only use of the contents of an ADDRESS is for determining if the
158 current function performs nonlocal memory memory references for the
159 purposes of marking the function as a constant function. */
161 static GTY(()) varray_type reg_base_value;
162 static rtx *new_reg_base_value;
164 /* We preserve the copy of old array around to avoid amount of garbage
165 produced. About 8% of garbage produced were attributed to this
166 array. */
167 static GTY((deletable)) varray_type old_reg_base_value;
169 /* Static hunks of RTL used by the aliasing code; these are initialized
170 once per function to avoid unnecessary RTL allocations. */
171 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
173 #define REG_BASE_VALUE(X) \
174 (reg_base_value && REGNO (X) < VARRAY_SIZE (reg_base_value) \
175 ? VARRAY_RTX (reg_base_value, REGNO (X)) : 0)
177 /* Vector of known invariant relationships between registers. Set in
178 loop unrolling. Indexed by register number, if nonzero the value
179 is an expression describing this register in terms of another.
181 The length of this array is REG_BASE_VALUE_SIZE.
183 Because this array contains only pseudo registers it has no effect
184 after reload. */
185 static GTY((length("alias_invariant_size"))) rtx *alias_invariant;
186 static GTY(()) unsigned int alias_invariant_size;
188 /* Vector indexed by N giving the initial (unchanging) value known for
189 pseudo-register N. This array is initialized in init_alias_analysis,
190 and does not change until end_alias_analysis is called. */
191 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
193 /* Indicates number of valid entries in reg_known_value. */
194 static GTY(()) unsigned int reg_known_value_size;
196 /* Vector recording for each reg_known_value whether it is due to a
197 REG_EQUIV note. Future passes (viz., reload) may replace the
198 pseudo with the equivalent expression and so we account for the
199 dependences that would be introduced if that happens.
201 The REG_EQUIV notes created in assign_parms may mention the arg
202 pointer, and there are explicit insns in the RTL that modify the
203 arg pointer. Thus we must ensure that such insns don't get
204 scheduled across each other because that would invalidate the
205 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
206 wrong, but solving the problem in the scheduler will likely give
207 better code, so we do it here. */
208 static bool *reg_known_equiv_p;
210 /* True when scanning insns from the start of the rtl to the
211 NOTE_INSN_FUNCTION_BEG note. */
212 static bool copying_arguments;
214 /* The splay-tree used to store the various alias set entries. */
215 static GTY ((param_is (struct alias_set_entry))) varray_type alias_sets;
217 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
218 such an entry, or NULL otherwise. */
220 static inline alias_set_entry
221 get_alias_set_entry (HOST_WIDE_INT alias_set)
223 return (alias_set_entry)VARRAY_GENERIC_PTR (alias_sets, alias_set);
226 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
227 the two MEMs cannot alias each other. */
229 static inline int
230 mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
232 #ifdef ENABLE_CHECKING
233 /* Perform a basic sanity check. Namely, that there are no alias sets
234 if we're not using strict aliasing. This helps to catch bugs
235 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
236 where a MEM is allocated in some way other than by the use of
237 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
238 use alias sets to indicate that spilled registers cannot alias each
239 other, we might need to remove this check. */
240 if (! flag_strict_aliasing
241 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
242 abort ();
243 #endif
245 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
248 /* Insert the NODE into the splay tree given by DATA. Used by
249 record_alias_subset via splay_tree_foreach. */
251 static int
252 insert_subset_children (splay_tree_node node, void *data)
254 splay_tree_insert ((splay_tree) data, node->key, node->value);
256 return 0;
259 /* Return 1 if the two specified alias sets may conflict. */
262 alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
264 alias_set_entry ase;
266 /* If have no alias set information for one of the operands, we have
267 to assume it can alias anything. */
268 if (set1 == 0 || set2 == 0
269 /* If the two alias sets are the same, they may alias. */
270 || set1 == set2)
271 return 1;
273 /* See if the first alias set is a subset of the second. */
274 ase = get_alias_set_entry (set1);
275 if (ase != 0
276 && (ase->has_zero_child
277 || splay_tree_lookup (ase->children,
278 (splay_tree_key) set2)))
279 return 1;
281 /* Now do the same, but with the alias sets reversed. */
282 ase = get_alias_set_entry (set2);
283 if (ase != 0
284 && (ase->has_zero_child
285 || splay_tree_lookup (ase->children,
286 (splay_tree_key) set1)))
287 return 1;
289 /* The two alias sets are distinct and neither one is the
290 child of the other. Therefore, they cannot alias. */
291 return 0;
294 /* Return 1 if the two specified alias sets might conflict, or if any subtype
295 of these alias sets might conflict. */
298 alias_sets_might_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
300 if (set1 == 0 || set2 == 0 || set1 == set2)
301 return 1;
303 return 0;
307 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
308 has any readonly fields. If any of the fields have types that
309 contain readonly fields, return true as well. */
312 readonly_fields_p (tree type)
314 tree field;
316 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
317 && TREE_CODE (type) != QUAL_UNION_TYPE)
318 return 0;
320 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
321 if (TREE_CODE (field) == FIELD_DECL
322 && (TREE_READONLY (field)
323 || readonly_fields_p (TREE_TYPE (field))))
324 return 1;
326 return 0;
329 /* Return 1 if any MEM object of type T1 will always conflict (using the
330 dependency routines in this file) with any MEM object of type T2.
331 This is used when allocating temporary storage. If T1 and/or T2 are
332 NULL_TREE, it means we know nothing about the storage. */
335 objects_must_conflict_p (tree t1, tree t2)
337 HOST_WIDE_INT set1, set2;
339 /* If neither has a type specified, we don't know if they'll conflict
340 because we may be using them to store objects of various types, for
341 example the argument and local variables areas of inlined functions. */
342 if (t1 == 0 && t2 == 0)
343 return 0;
345 /* If one or the other has readonly fields or is readonly,
346 then they may not conflict. */
347 if ((t1 != 0 && readonly_fields_p (t1))
348 || (t2 != 0 && readonly_fields_p (t2))
349 || (t1 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t1))
350 || (t2 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t2)))
351 return 0;
353 /* If they are the same type, they must conflict. */
354 if (t1 == t2
355 /* Likewise if both are volatile. */
356 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
357 return 1;
359 set1 = t1 ? get_alias_set (t1) : 0;
360 set2 = t2 ? get_alias_set (t2) : 0;
362 /* Otherwise they conflict if they have no alias set or the same. We
363 can't simply use alias_sets_conflict_p here, because we must make
364 sure that every subtype of t1 will conflict with every subtype of
365 t2 for which a pair of subobjects of these respective subtypes
366 overlaps on the stack. */
367 return set1 == 0 || set2 == 0 || set1 == set2;
370 /* T is an expression with pointer type. Find the DECL on which this
371 expression is based. (For example, in `a[i]' this would be `a'.)
372 If there is no such DECL, or a unique decl cannot be determined,
373 NULL_TREE is returned. */
375 static tree
376 find_base_decl (tree t)
378 tree d0, d1, d2;
380 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
381 return 0;
383 /* If this is a declaration, return it. */
384 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
385 return t;
387 /* Handle general expressions. It would be nice to deal with
388 COMPONENT_REFs here. If we could tell that `a' and `b' were the
389 same, then `a->f' and `b->f' are also the same. */
390 switch (TREE_CODE_CLASS (TREE_CODE (t)))
392 case '1':
393 return find_base_decl (TREE_OPERAND (t, 0));
395 case '2':
396 /* Return 0 if found in neither or both are the same. */
397 d0 = find_base_decl (TREE_OPERAND (t, 0));
398 d1 = find_base_decl (TREE_OPERAND (t, 1));
399 if (d0 == d1)
400 return d0;
401 else if (d0 == 0)
402 return d1;
403 else if (d1 == 0)
404 return d0;
405 else
406 return 0;
408 case '3':
409 d0 = find_base_decl (TREE_OPERAND (t, 0));
410 d1 = find_base_decl (TREE_OPERAND (t, 1));
411 d2 = find_base_decl (TREE_OPERAND (t, 2));
413 /* Set any nonzero values from the last, then from the first. */
414 if (d1 == 0) d1 = d2;
415 if (d0 == 0) d0 = d1;
416 if (d1 == 0) d1 = d0;
417 if (d2 == 0) d2 = d1;
419 /* At this point all are nonzero or all are zero. If all three are the
420 same, return it. Otherwise, return zero. */
421 return (d0 == d1 && d1 == d2) ? d0 : 0;
423 default:
424 return 0;
428 /* Return 1 if all the nested component references handled by
429 get_inner_reference in T are such that we can address the object in T. */
432 can_address_p (tree t)
434 /* If we're at the end, it is vacuously addressable. */
435 if (! handled_component_p (t))
436 return 1;
438 /* Bitfields are never addressable. */
439 else if (TREE_CODE (t) == BIT_FIELD_REF)
440 return 0;
442 /* Fields are addressable unless they are marked as nonaddressable or
443 the containing type has alias set 0. */
444 else if (TREE_CODE (t) == COMPONENT_REF
445 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
446 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
447 && can_address_p (TREE_OPERAND (t, 0)))
448 return 1;
450 /* Likewise for arrays. */
451 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
452 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
453 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
454 && can_address_p (TREE_OPERAND (t, 0)))
455 return 1;
457 return 0;
460 /* Return the alias set for T, which may be either a type or an
461 expression. Call language-specific routine for help, if needed. */
463 HOST_WIDE_INT
464 get_alias_set (tree t)
466 HOST_WIDE_INT set;
468 /* If we're not doing any alias analysis, just assume everything
469 aliases everything else. Also return 0 if this or its type is
470 an error. */
471 if (! flag_strict_aliasing || t == error_mark_node
472 || (! TYPE_P (t)
473 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
474 return 0;
476 /* We can be passed either an expression or a type. This and the
477 language-specific routine may make mutually-recursive calls to each other
478 to figure out what to do. At each juncture, we see if this is a tree
479 that the language may need to handle specially. First handle things that
480 aren't types. */
481 if (! TYPE_P (t))
483 tree inner = t;
485 /* Remove any nops, then give the language a chance to do
486 something with this tree before we look at it. */
487 STRIP_NOPS (t);
488 set = lang_hooks.get_alias_set (t);
489 if (set != -1)
490 return set;
492 /* First see if the actual object referenced is an INDIRECT_REF from a
493 restrict-qualified pointer or a "void *". */
494 while (handled_component_p (inner))
496 inner = TREE_OPERAND (inner, 0);
497 STRIP_NOPS (inner);
500 /* Check for accesses through restrict-qualified pointers. */
501 if (TREE_CODE (inner) == INDIRECT_REF)
503 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
505 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
507 /* If we haven't computed the actual alias set, do it now. */
508 if (DECL_POINTER_ALIAS_SET (decl) == -2)
510 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
512 /* No two restricted pointers can point at the same thing.
513 However, a restricted pointer can point at the same thing
514 as an unrestricted pointer, if that unrestricted pointer
515 is based on the restricted pointer. So, we make the
516 alias set for the restricted pointer a subset of the
517 alias set for the type pointed to by the type of the
518 decl. */
519 HOST_WIDE_INT pointed_to_alias_set
520 = get_alias_set (pointed_to_type);
522 if (pointed_to_alias_set == 0)
523 /* It's not legal to make a subset of alias set zero. */
524 DECL_POINTER_ALIAS_SET (decl) = 0;
525 else if (AGGREGATE_TYPE_P (pointed_to_type))
526 /* For an aggregate, we must treat the restricted
527 pointer the same as an ordinary pointer. If we
528 were to make the type pointed to by the
529 restricted pointer a subset of the pointed-to
530 type, then we would believe that other subsets
531 of the pointed-to type (such as fields of that
532 type) do not conflict with the type pointed to
533 by the restricted pointer. */
534 DECL_POINTER_ALIAS_SET (decl)
535 = pointed_to_alias_set;
536 else
538 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
539 record_alias_subset (pointed_to_alias_set,
540 DECL_POINTER_ALIAS_SET (decl));
544 /* We use the alias set indicated in the declaration. */
545 return DECL_POINTER_ALIAS_SET (decl);
548 /* If we have an INDIRECT_REF via a void pointer, we don't
549 know anything about what that might alias. Likewise if the
550 pointer is marked that way. */
551 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
552 || (TYPE_REF_CAN_ALIAS_ALL
553 (TREE_TYPE (TREE_OPERAND (inner, 0)))))
554 return 0;
557 /* Otherwise, pick up the outermost object that we could have a pointer
558 to, processing conversions as above. */
559 while (handled_component_p (t) && ! can_address_p (t))
561 t = TREE_OPERAND (t, 0);
562 STRIP_NOPS (t);
565 /* If we've already determined the alias set for a decl, just return
566 it. This is necessary for C++ anonymous unions, whose component
567 variables don't look like union members (boo!). */
568 if (TREE_CODE (t) == VAR_DECL
569 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
570 return MEM_ALIAS_SET (DECL_RTL (t));
572 /* Now all we care about is the type. */
573 t = TREE_TYPE (t);
576 /* Variant qualifiers don't affect the alias set, so get the main
577 variant. If this is a type with a known alias set, return it. */
578 t = TYPE_MAIN_VARIANT (t);
579 if (TYPE_ALIAS_SET_KNOWN_P (t))
580 return TYPE_ALIAS_SET (t);
582 /* See if the language has special handling for this type. */
583 set = lang_hooks.get_alias_set (t);
584 if (set != -1)
585 return set;
587 /* There are no objects of FUNCTION_TYPE, so there's no point in
588 using up an alias set for them. (There are, of course, pointers
589 and references to functions, but that's different.) */
590 else if (TREE_CODE (t) == FUNCTION_TYPE)
591 set = 0;
593 /* Unless the language specifies otherwise, let vector types alias
594 their components. This avoids some nasty type punning issues in
595 normal usage. And indeed lets vectors be treated more like an
596 array slice. */
597 else if (TREE_CODE (t) == VECTOR_TYPE)
598 set = get_alias_set (TREE_TYPE (t));
600 else
601 /* Otherwise make a new alias set for this type. */
602 set = new_alias_set ();
604 TYPE_ALIAS_SET (t) = set;
606 /* If this is an aggregate type, we must record any component aliasing
607 information. */
608 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
609 record_component_aliases (t);
611 return set;
614 /* Return a brand-new alias set. */
616 static GTY(()) HOST_WIDE_INT last_alias_set;
618 HOST_WIDE_INT
619 new_alias_set (void)
621 if (flag_strict_aliasing)
623 if (!alias_sets)
624 VARRAY_GENERIC_PTR_INIT (alias_sets, 10, "alias sets");
625 else
626 VARRAY_GROW (alias_sets, last_alias_set + 2);
627 return ++last_alias_set;
629 else
630 return 0;
633 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
634 not everything that aliases SUPERSET also aliases SUBSET. For example,
635 in C, a store to an `int' can alias a load of a structure containing an
636 `int', and vice versa. But it can't alias a load of a 'double' member
637 of the same structure. Here, the structure would be the SUPERSET and
638 `int' the SUBSET. This relationship is also described in the comment at
639 the beginning of this file.
641 This function should be called only once per SUPERSET/SUBSET pair.
643 It is illegal for SUPERSET to be zero; everything is implicitly a
644 subset of alias set zero. */
646 void
647 record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
649 alias_set_entry superset_entry;
650 alias_set_entry subset_entry;
652 /* It is possible in complex type situations for both sets to be the same,
653 in which case we can ignore this operation. */
654 if (superset == subset)
655 return;
657 if (superset == 0)
658 abort ();
660 superset_entry = get_alias_set_entry (superset);
661 if (superset_entry == 0)
663 /* Create an entry for the SUPERSET, so that we have a place to
664 attach the SUBSET. */
665 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
666 superset_entry->alias_set = superset;
667 superset_entry->children
668 = splay_tree_new_ggc (splay_tree_compare_ints);
669 superset_entry->has_zero_child = 0;
670 VARRAY_GENERIC_PTR (alias_sets, superset) = superset_entry;
673 if (subset == 0)
674 superset_entry->has_zero_child = 1;
675 else
677 subset_entry = get_alias_set_entry (subset);
678 /* If there is an entry for the subset, enter all of its children
679 (if they are not already present) as children of the SUPERSET. */
680 if (subset_entry)
682 if (subset_entry->has_zero_child)
683 superset_entry->has_zero_child = 1;
685 splay_tree_foreach (subset_entry->children, insert_subset_children,
686 superset_entry->children);
689 /* Enter the SUBSET itself as a child of the SUPERSET. */
690 splay_tree_insert (superset_entry->children,
691 (splay_tree_key) subset, 0);
695 /* Record that component types of TYPE, if any, are part of that type for
696 aliasing purposes. For record types, we only record component types
697 for fields that are marked addressable. For array types, we always
698 record the component types, so the front end should not call this
699 function if the individual component aren't addressable. */
701 void
702 record_component_aliases (tree type)
704 HOST_WIDE_INT superset = get_alias_set (type);
705 tree field;
707 if (superset == 0)
708 return;
710 switch (TREE_CODE (type))
712 case ARRAY_TYPE:
713 if (! TYPE_NONALIASED_COMPONENT (type))
714 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
715 break;
717 case RECORD_TYPE:
718 case UNION_TYPE:
719 case QUAL_UNION_TYPE:
720 /* Recursively record aliases for the base classes, if there are any. */
721 if (TYPE_BINFO (type) != NULL && TYPE_BINFO_BASETYPES (type) != NULL)
723 int i;
724 for (i = 0; i < TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)); i++)
726 tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), i);
727 record_alias_subset (superset,
728 get_alias_set (BINFO_TYPE (binfo)));
731 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
732 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
733 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
734 break;
736 case COMPLEX_TYPE:
737 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
738 break;
740 default:
741 break;
745 /* Allocate an alias set for use in storing and reading from the varargs
746 spill area. */
748 static GTY(()) HOST_WIDE_INT varargs_set = -1;
750 HOST_WIDE_INT
751 get_varargs_alias_set (void)
753 #if 1
754 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
755 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
756 consistently use the varargs alias set for loads from the varargs
757 area. So don't use it anywhere. */
758 return 0;
759 #else
760 if (varargs_set == -1)
761 varargs_set = new_alias_set ();
763 return varargs_set;
764 #endif
767 /* Likewise, but used for the fixed portions of the frame, e.g., register
768 save areas. */
770 static GTY(()) HOST_WIDE_INT frame_set = -1;
772 HOST_WIDE_INT
773 get_frame_alias_set (void)
775 if (frame_set == -1)
776 frame_set = new_alias_set ();
778 return frame_set;
781 /* Inside SRC, the source of a SET, find a base address. */
783 static rtx
784 find_base_value (rtx src)
786 unsigned int regno;
788 switch (GET_CODE (src))
790 case SYMBOL_REF:
791 case LABEL_REF:
792 return src;
794 case REG:
795 regno = REGNO (src);
796 /* At the start of a function, argument registers have known base
797 values which may be lost later. Returning an ADDRESS
798 expression here allows optimization based on argument values
799 even when the argument registers are used for other purposes. */
800 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
801 return new_reg_base_value[regno];
803 /* If a pseudo has a known base value, return it. Do not do this
804 for non-fixed hard regs since it can result in a circular
805 dependency chain for registers which have values at function entry.
807 The test above is not sufficient because the scheduler may move
808 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
809 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
810 && regno < VARRAY_SIZE (reg_base_value))
812 /* If we're inside init_alias_analysis, use new_reg_base_value
813 to reduce the number of relaxation iterations. */
814 if (new_reg_base_value && new_reg_base_value[regno]
815 && REG_N_SETS (regno) == 1)
816 return new_reg_base_value[regno];
818 if (VARRAY_RTX (reg_base_value, regno))
819 return VARRAY_RTX (reg_base_value, regno);
822 return 0;
824 case MEM:
825 /* Check for an argument passed in memory. Only record in the
826 copying-arguments block; it is too hard to track changes
827 otherwise. */
828 if (copying_arguments
829 && (XEXP (src, 0) == arg_pointer_rtx
830 || (GET_CODE (XEXP (src, 0)) == PLUS
831 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
832 return gen_rtx_ADDRESS (VOIDmode, src);
833 return 0;
835 case CONST:
836 src = XEXP (src, 0);
837 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
838 break;
840 /* ... fall through ... */
842 case PLUS:
843 case MINUS:
845 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
847 /* If either operand is a REG that is a known pointer, then it
848 is the base. */
849 if (REG_P (src_0) && REG_POINTER (src_0))
850 return find_base_value (src_0);
851 if (REG_P (src_1) && REG_POINTER (src_1))
852 return find_base_value (src_1);
854 /* If either operand is a REG, then see if we already have
855 a known value for it. */
856 if (REG_P (src_0))
858 temp = find_base_value (src_0);
859 if (temp != 0)
860 src_0 = temp;
863 if (REG_P (src_1))
865 temp = find_base_value (src_1);
866 if (temp!= 0)
867 src_1 = temp;
870 /* If either base is named object or a special address
871 (like an argument or stack reference), then use it for the
872 base term. */
873 if (src_0 != 0
874 && (GET_CODE (src_0) == SYMBOL_REF
875 || GET_CODE (src_0) == LABEL_REF
876 || (GET_CODE (src_0) == ADDRESS
877 && GET_MODE (src_0) != VOIDmode)))
878 return src_0;
880 if (src_1 != 0
881 && (GET_CODE (src_1) == SYMBOL_REF
882 || GET_CODE (src_1) == LABEL_REF
883 || (GET_CODE (src_1) == ADDRESS
884 && GET_MODE (src_1) != VOIDmode)))
885 return src_1;
887 /* Guess which operand is the base address:
888 If either operand is a symbol, then it is the base. If
889 either operand is a CONST_INT, then the other is the base. */
890 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
891 return find_base_value (src_0);
892 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
893 return find_base_value (src_1);
895 return 0;
898 case LO_SUM:
899 /* The standard form is (lo_sum reg sym) so look only at the
900 second operand. */
901 return find_base_value (XEXP (src, 1));
903 case AND:
904 /* If the second operand is constant set the base
905 address to the first operand. */
906 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
907 return find_base_value (XEXP (src, 0));
908 return 0;
910 case TRUNCATE:
911 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
912 break;
913 /* Fall through. */
914 case HIGH:
915 case PRE_INC:
916 case PRE_DEC:
917 case POST_INC:
918 case POST_DEC:
919 case PRE_MODIFY:
920 case POST_MODIFY:
921 return find_base_value (XEXP (src, 0));
923 case ZERO_EXTEND:
924 case SIGN_EXTEND: /* used for NT/Alpha pointers */
926 rtx temp = find_base_value (XEXP (src, 0));
928 if (temp != 0 && CONSTANT_P (temp))
929 temp = convert_memory_address (Pmode, temp);
931 return temp;
934 default:
935 break;
938 return 0;
941 /* Called from init_alias_analysis indirectly through note_stores. */
943 /* While scanning insns to find base values, reg_seen[N] is nonzero if
944 register N has been set in this function. */
945 static char *reg_seen;
947 /* Addresses which are known not to alias anything else are identified
948 by a unique integer. */
949 static int unique_id;
951 static void
952 record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
954 unsigned regno;
955 rtx src;
956 int n;
958 if (!REG_P (dest))
959 return;
961 regno = REGNO (dest);
963 if (regno >= VARRAY_SIZE (reg_base_value))
964 abort ();
966 /* If this spans multiple hard registers, then we must indicate that every
967 register has an unusable value. */
968 if (regno < FIRST_PSEUDO_REGISTER)
969 n = hard_regno_nregs[regno][GET_MODE (dest)];
970 else
971 n = 1;
972 if (n != 1)
974 while (--n >= 0)
976 reg_seen[regno + n] = 1;
977 new_reg_base_value[regno + n] = 0;
979 return;
982 if (set)
984 /* A CLOBBER wipes out any old value but does not prevent a previously
985 unset register from acquiring a base address (i.e. reg_seen is not
986 set). */
987 if (GET_CODE (set) == CLOBBER)
989 new_reg_base_value[regno] = 0;
990 return;
992 src = SET_SRC (set);
994 else
996 if (reg_seen[regno])
998 new_reg_base_value[regno] = 0;
999 return;
1001 reg_seen[regno] = 1;
1002 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1003 GEN_INT (unique_id++));
1004 return;
1007 /* If this is not the first set of REGNO, see whether the new value
1008 is related to the old one. There are two cases of interest:
1010 (1) The register might be assigned an entirely new value
1011 that has the same base term as the original set.
1013 (2) The set might be a simple self-modification that
1014 cannot change REGNO's base value.
1016 If neither case holds, reject the original base value as invalid.
1017 Note that the following situation is not detected:
1019 extern int x, y; int *p = &x; p += (&y-&x);
1021 ANSI C does not allow computing the difference of addresses
1022 of distinct top level objects. */
1023 if (new_reg_base_value[regno] != 0
1024 && find_base_value (src) != new_reg_base_value[regno])
1025 switch (GET_CODE (src))
1027 case LO_SUM:
1028 case MINUS:
1029 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1030 new_reg_base_value[regno] = 0;
1031 break;
1032 case PLUS:
1033 /* If the value we add in the PLUS is also a valid base value,
1034 this might be the actual base value, and the original value
1035 an index. */
1037 rtx other = NULL_RTX;
1039 if (XEXP (src, 0) == dest)
1040 other = XEXP (src, 1);
1041 else if (XEXP (src, 1) == dest)
1042 other = XEXP (src, 0);
1044 if (! other || find_base_value (other))
1045 new_reg_base_value[regno] = 0;
1046 break;
1048 case AND:
1049 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1050 new_reg_base_value[regno] = 0;
1051 break;
1052 default:
1053 new_reg_base_value[regno] = 0;
1054 break;
1056 /* If this is the first set of a register, record the value. */
1057 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1058 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1059 new_reg_base_value[regno] = find_base_value (src);
1061 reg_seen[regno] = 1;
1064 /* Called from loop optimization when a new pseudo-register is
1065 created. It indicates that REGNO is being set to VAL. f INVARIANT
1066 is true then this value also describes an invariant relationship
1067 which can be used to deduce that two registers with unknown values
1068 are different. */
1070 void
1071 record_base_value (unsigned int regno, rtx val, int invariant)
1073 if (invariant && alias_invariant && regno < alias_invariant_size)
1074 alias_invariant[regno] = val;
1076 if (regno >= VARRAY_SIZE (reg_base_value))
1077 VARRAY_GROW (reg_base_value, max_reg_num ());
1079 if (REG_P (val))
1081 VARRAY_RTX (reg_base_value, regno)
1082 = REG_BASE_VALUE (val);
1083 return;
1085 VARRAY_RTX (reg_base_value, regno)
1086 = find_base_value (val);
1089 /* Clear alias info for a register. This is used if an RTL transformation
1090 changes the value of a register. This is used in flow by AUTO_INC_DEC
1091 optimizations. We don't need to clear reg_base_value, since flow only
1092 changes the offset. */
1094 void
1095 clear_reg_alias_info (rtx reg)
1097 unsigned int regno = REGNO (reg);
1099 if (regno >= FIRST_PSEUDO_REGISTER)
1101 regno -= FIRST_PSEUDO_REGISTER;
1102 if (regno < reg_known_value_size)
1104 reg_known_value[regno] = reg;
1105 reg_known_equiv_p[regno] = false;
1110 /* If a value is known for REGNO, return it. */
1112 rtx
1113 get_reg_known_value (unsigned int regno)
1115 if (regno >= FIRST_PSEUDO_REGISTER)
1117 regno -= FIRST_PSEUDO_REGISTER;
1118 if (regno < reg_known_value_size)
1119 return reg_known_value[regno];
1121 return NULL;
1124 /* Set it. */
1126 static void
1127 set_reg_known_value (unsigned int regno, rtx val)
1129 if (regno >= FIRST_PSEUDO_REGISTER)
1131 regno -= FIRST_PSEUDO_REGISTER;
1132 if (regno < reg_known_value_size)
1133 reg_known_value[regno] = val;
1137 /* Similarly for reg_known_equiv_p. */
1139 bool
1140 get_reg_known_equiv_p (unsigned int regno)
1142 if (regno >= FIRST_PSEUDO_REGISTER)
1144 regno -= FIRST_PSEUDO_REGISTER;
1145 if (regno < reg_known_value_size)
1146 return reg_known_equiv_p[regno];
1148 return false;
1151 static void
1152 set_reg_known_equiv_p (unsigned int regno, bool val)
1154 if (regno >= FIRST_PSEUDO_REGISTER)
1156 regno -= FIRST_PSEUDO_REGISTER;
1157 if (regno < reg_known_value_size)
1158 reg_known_equiv_p[regno] = val;
1163 /* Returns a canonical version of X, from the point of view alias
1164 analysis. (For example, if X is a MEM whose address is a register,
1165 and the register has a known value (say a SYMBOL_REF), then a MEM
1166 whose address is the SYMBOL_REF is returned.) */
1169 canon_rtx (rtx x)
1171 /* Recursively look for equivalences. */
1172 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1174 rtx t = get_reg_known_value (REGNO (x));
1175 if (t == x)
1176 return x;
1177 if (t)
1178 return canon_rtx (t);
1181 if (GET_CODE (x) == PLUS)
1183 rtx x0 = canon_rtx (XEXP (x, 0));
1184 rtx x1 = canon_rtx (XEXP (x, 1));
1186 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1188 if (GET_CODE (x0) == CONST_INT)
1189 return plus_constant (x1, INTVAL (x0));
1190 else if (GET_CODE (x1) == CONST_INT)
1191 return plus_constant (x0, INTVAL (x1));
1192 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1196 /* This gives us much better alias analysis when called from
1197 the loop optimizer. Note we want to leave the original
1198 MEM alone, but need to return the canonicalized MEM with
1199 all the flags with their original values. */
1200 else if (GET_CODE (x) == MEM)
1201 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1203 return x;
1206 /* Return 1 if X and Y are identical-looking rtx's.
1207 Expect that X and Y has been already canonicalized.
1209 We use the data in reg_known_value above to see if two registers with
1210 different numbers are, in fact, equivalent. */
1212 static int
1213 rtx_equal_for_memref_p (rtx x, rtx y)
1215 int i;
1216 int j;
1217 enum rtx_code code;
1218 const char *fmt;
1220 if (x == 0 && y == 0)
1221 return 1;
1222 if (x == 0 || y == 0)
1223 return 0;
1225 if (x == y)
1226 return 1;
1228 code = GET_CODE (x);
1229 /* Rtx's of different codes cannot be equal. */
1230 if (code != GET_CODE (y))
1231 return 0;
1233 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1234 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1236 if (GET_MODE (x) != GET_MODE (y))
1237 return 0;
1239 /* Some RTL can be compared without a recursive examination. */
1240 switch (code)
1242 case REG:
1243 return REGNO (x) == REGNO (y);
1245 case LABEL_REF:
1246 return XEXP (x, 0) == XEXP (y, 0);
1248 case SYMBOL_REF:
1249 return XSTR (x, 0) == XSTR (y, 0);
1251 case VALUE:
1252 case CONST_INT:
1253 case CONST_DOUBLE:
1254 /* There's no need to compare the contents of CONST_DOUBLEs or
1255 CONST_INTs because pointer equality is a good enough
1256 comparison for these nodes. */
1257 return 0;
1259 case ADDRESSOF:
1260 return (XINT (x, 1) == XINT (y, 1)
1261 && rtx_equal_for_memref_p (XEXP (x, 0),
1262 XEXP (y, 0)));
1264 default:
1265 break;
1268 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1269 if (code == PLUS)
1270 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1271 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1272 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1273 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1274 /* For commutative operations, the RTX match if the operand match in any
1275 order. Also handle the simple binary and unary cases without a loop. */
1276 if (COMMUTATIVE_P (x))
1278 rtx xop0 = canon_rtx (XEXP (x, 0));
1279 rtx yop0 = canon_rtx (XEXP (y, 0));
1280 rtx yop1 = canon_rtx (XEXP (y, 1));
1282 return ((rtx_equal_for_memref_p (xop0, yop0)
1283 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1284 || (rtx_equal_for_memref_p (xop0, yop1)
1285 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1287 else if (NON_COMMUTATIVE_P (x))
1289 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1290 canon_rtx (XEXP (y, 0)))
1291 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1292 canon_rtx (XEXP (y, 1))));
1294 else if (UNARY_P (x))
1295 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1296 canon_rtx (XEXP (y, 0)));
1298 /* Compare the elements. If any pair of corresponding elements
1299 fail to match, return 0 for the whole things.
1301 Limit cases to types which actually appear in addresses. */
1303 fmt = GET_RTX_FORMAT (code);
1304 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1306 switch (fmt[i])
1308 case 'i':
1309 if (XINT (x, i) != XINT (y, i))
1310 return 0;
1311 break;
1313 case 'E':
1314 /* Two vectors must have the same length. */
1315 if (XVECLEN (x, i) != XVECLEN (y, i))
1316 return 0;
1318 /* And the corresponding elements must match. */
1319 for (j = 0; j < XVECLEN (x, i); j++)
1320 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1321 canon_rtx (XVECEXP (y, i, j))) == 0)
1322 return 0;
1323 break;
1325 case 'e':
1326 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1327 canon_rtx (XEXP (y, i))) == 0)
1328 return 0;
1329 break;
1331 /* This can happen for asm operands. */
1332 case 's':
1333 if (strcmp (XSTR (x, i), XSTR (y, i)))
1334 return 0;
1335 break;
1337 /* This can happen for an asm which clobbers memory. */
1338 case '0':
1339 break;
1341 /* It is believed that rtx's at this level will never
1342 contain anything but integers and other rtx's,
1343 except for within LABEL_REFs and SYMBOL_REFs. */
1344 default:
1345 abort ();
1348 return 1;
1351 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1352 X and return it, or return 0 if none found. */
1354 static rtx
1355 find_symbolic_term (rtx x)
1357 int i;
1358 enum rtx_code code;
1359 const char *fmt;
1361 code = GET_CODE (x);
1362 if (code == SYMBOL_REF || code == LABEL_REF)
1363 return x;
1364 if (OBJECT_P (x))
1365 return 0;
1367 fmt = GET_RTX_FORMAT (code);
1368 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1370 rtx t;
1372 if (fmt[i] == 'e')
1374 t = find_symbolic_term (XEXP (x, i));
1375 if (t != 0)
1376 return t;
1378 else if (fmt[i] == 'E')
1379 break;
1381 return 0;
1385 find_base_term (rtx x)
1387 cselib_val *val;
1388 struct elt_loc_list *l;
1390 #if defined (FIND_BASE_TERM)
1391 /* Try machine-dependent ways to find the base term. */
1392 x = FIND_BASE_TERM (x);
1393 #endif
1395 switch (GET_CODE (x))
1397 case REG:
1398 return REG_BASE_VALUE (x);
1400 case TRUNCATE:
1401 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1402 return 0;
1403 /* Fall through. */
1404 case HIGH:
1405 case PRE_INC:
1406 case PRE_DEC:
1407 case POST_INC:
1408 case POST_DEC:
1409 case PRE_MODIFY:
1410 case POST_MODIFY:
1411 return find_base_term (XEXP (x, 0));
1413 case ZERO_EXTEND:
1414 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1416 rtx temp = find_base_term (XEXP (x, 0));
1418 if (temp != 0 && CONSTANT_P (temp))
1419 temp = convert_memory_address (Pmode, temp);
1421 return temp;
1424 case VALUE:
1425 val = CSELIB_VAL_PTR (x);
1426 if (!val)
1427 return 0;
1428 for (l = val->locs; l; l = l->next)
1429 if ((x = find_base_term (l->loc)) != 0)
1430 return x;
1431 return 0;
1433 case CONST:
1434 x = XEXP (x, 0);
1435 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1436 return 0;
1437 /* Fall through. */
1438 case LO_SUM:
1439 case PLUS:
1440 case MINUS:
1442 rtx tmp1 = XEXP (x, 0);
1443 rtx tmp2 = XEXP (x, 1);
1445 /* This is a little bit tricky since we have to determine which of
1446 the two operands represents the real base address. Otherwise this
1447 routine may return the index register instead of the base register.
1449 That may cause us to believe no aliasing was possible, when in
1450 fact aliasing is possible.
1452 We use a few simple tests to guess the base register. Additional
1453 tests can certainly be added. For example, if one of the operands
1454 is a shift or multiply, then it must be the index register and the
1455 other operand is the base register. */
1457 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1458 return find_base_term (tmp2);
1460 /* If either operand is known to be a pointer, then use it
1461 to determine the base term. */
1462 if (REG_P (tmp1) && REG_POINTER (tmp1))
1463 return find_base_term (tmp1);
1465 if (REG_P (tmp2) && REG_POINTER (tmp2))
1466 return find_base_term (tmp2);
1468 /* Neither operand was known to be a pointer. Go ahead and find the
1469 base term for both operands. */
1470 tmp1 = find_base_term (tmp1);
1471 tmp2 = find_base_term (tmp2);
1473 /* If either base term is named object or a special address
1474 (like an argument or stack reference), then use it for the
1475 base term. */
1476 if (tmp1 != 0
1477 && (GET_CODE (tmp1) == SYMBOL_REF
1478 || GET_CODE (tmp1) == LABEL_REF
1479 || (GET_CODE (tmp1) == ADDRESS
1480 && GET_MODE (tmp1) != VOIDmode)))
1481 return tmp1;
1483 if (tmp2 != 0
1484 && (GET_CODE (tmp2) == SYMBOL_REF
1485 || GET_CODE (tmp2) == LABEL_REF
1486 || (GET_CODE (tmp2) == ADDRESS
1487 && GET_MODE (tmp2) != VOIDmode)))
1488 return tmp2;
1490 /* We could not determine which of the two operands was the
1491 base register and which was the index. So we can determine
1492 nothing from the base alias check. */
1493 return 0;
1496 case AND:
1497 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1498 return find_base_term (XEXP (x, 0));
1499 return 0;
1501 case SYMBOL_REF:
1502 case LABEL_REF:
1503 return x;
1505 case ADDRESSOF:
1506 return REG_BASE_VALUE (frame_pointer_rtx);
1508 default:
1509 return 0;
1513 /* Return 0 if the addresses X and Y are known to point to different
1514 objects, 1 if they might be pointers to the same object. */
1516 static int
1517 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1518 enum machine_mode y_mode)
1520 rtx x_base = find_base_term (x);
1521 rtx y_base = find_base_term (y);
1523 /* If the address itself has no known base see if a known equivalent
1524 value has one. If either address still has no known base, nothing
1525 is known about aliasing. */
1526 if (x_base == 0)
1528 rtx x_c;
1530 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1531 return 1;
1533 x_base = find_base_term (x_c);
1534 if (x_base == 0)
1535 return 1;
1538 if (y_base == 0)
1540 rtx y_c;
1541 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1542 return 1;
1544 y_base = find_base_term (y_c);
1545 if (y_base == 0)
1546 return 1;
1549 /* If the base addresses are equal nothing is known about aliasing. */
1550 if (rtx_equal_p (x_base, y_base))
1551 return 1;
1553 /* The base addresses of the read and write are different expressions.
1554 If they are both symbols and they are not accessed via AND, there is
1555 no conflict. We can bring knowledge of object alignment into play
1556 here. For example, on alpha, "char a, b;" can alias one another,
1557 though "char a; long b;" cannot. */
1558 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1560 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1561 return 1;
1562 if (GET_CODE (x) == AND
1563 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1564 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1565 return 1;
1566 if (GET_CODE (y) == AND
1567 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1568 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1569 return 1;
1570 /* Differing symbols never alias. */
1571 return 0;
1574 /* If one address is a stack reference there can be no alias:
1575 stack references using different base registers do not alias,
1576 a stack reference can not alias a parameter, and a stack reference
1577 can not alias a global. */
1578 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1579 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1580 return 0;
1582 if (! flag_argument_noalias)
1583 return 1;
1585 if (flag_argument_noalias > 1)
1586 return 0;
1588 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1589 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1592 /* Convert the address X into something we can use. This is done by returning
1593 it unchanged unless it is a value; in the latter case we call cselib to get
1594 a more useful rtx. */
1597 get_addr (rtx x)
1599 cselib_val *v;
1600 struct elt_loc_list *l;
1602 if (GET_CODE (x) != VALUE)
1603 return x;
1604 v = CSELIB_VAL_PTR (x);
1605 if (v)
1607 for (l = v->locs; l; l = l->next)
1608 if (CONSTANT_P (l->loc))
1609 return l->loc;
1610 for (l = v->locs; l; l = l->next)
1611 if (!REG_P (l->loc) && GET_CODE (l->loc) != MEM)
1612 return l->loc;
1613 if (v->locs)
1614 return v->locs->loc;
1616 return x;
1619 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1620 where SIZE is the size in bytes of the memory reference. If ADDR
1621 is not modified by the memory reference then ADDR is returned. */
1624 addr_side_effect_eval (rtx addr, int size, int n_refs)
1626 int offset = 0;
1628 switch (GET_CODE (addr))
1630 case PRE_INC:
1631 offset = (n_refs + 1) * size;
1632 break;
1633 case PRE_DEC:
1634 offset = -(n_refs + 1) * size;
1635 break;
1636 case POST_INC:
1637 offset = n_refs * size;
1638 break;
1639 case POST_DEC:
1640 offset = -n_refs * size;
1641 break;
1643 default:
1644 return addr;
1647 if (offset)
1648 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1649 GEN_INT (offset));
1650 else
1651 addr = XEXP (addr, 0);
1652 addr = canon_rtx (addr);
1654 return addr;
1657 /* Return nonzero if X and Y (memory addresses) could reference the
1658 same location in memory. C is an offset accumulator. When
1659 C is nonzero, we are testing aliases between X and Y + C.
1660 XSIZE is the size in bytes of the X reference,
1661 similarly YSIZE is the size in bytes for Y.
1662 Expect that canon_rtx has been already called for X and Y.
1664 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1665 referenced (the reference was BLKmode), so make the most pessimistic
1666 assumptions.
1668 If XSIZE or YSIZE is negative, we may access memory outside the object
1669 being referenced as a side effect. This can happen when using AND to
1670 align memory references, as is done on the Alpha.
1672 Nice to notice that varying addresses cannot conflict with fp if no
1673 local variables had their addresses taken, but that's too hard now. */
1675 static int
1676 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1678 if (GET_CODE (x) == VALUE)
1679 x = get_addr (x);
1680 if (GET_CODE (y) == VALUE)
1681 y = get_addr (y);
1682 if (GET_CODE (x) == HIGH)
1683 x = XEXP (x, 0);
1684 else if (GET_CODE (x) == LO_SUM)
1685 x = XEXP (x, 1);
1686 else
1687 x = addr_side_effect_eval (x, xsize, 0);
1688 if (GET_CODE (y) == HIGH)
1689 y = XEXP (y, 0);
1690 else if (GET_CODE (y) == LO_SUM)
1691 y = XEXP (y, 1);
1692 else
1693 y = addr_side_effect_eval (y, ysize, 0);
1695 if (rtx_equal_for_memref_p (x, y))
1697 if (xsize <= 0 || ysize <= 0)
1698 return 1;
1699 if (c >= 0 && xsize > c)
1700 return 1;
1701 if (c < 0 && ysize+c > 0)
1702 return 1;
1703 return 0;
1706 /* This code used to check for conflicts involving stack references and
1707 globals but the base address alias code now handles these cases. */
1709 if (GET_CODE (x) == PLUS)
1711 /* The fact that X is canonicalized means that this
1712 PLUS rtx is canonicalized. */
1713 rtx x0 = XEXP (x, 0);
1714 rtx x1 = XEXP (x, 1);
1716 if (GET_CODE (y) == PLUS)
1718 /* The fact that Y is canonicalized means that this
1719 PLUS rtx is canonicalized. */
1720 rtx y0 = XEXP (y, 0);
1721 rtx y1 = XEXP (y, 1);
1723 if (rtx_equal_for_memref_p (x1, y1))
1724 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1725 if (rtx_equal_for_memref_p (x0, y0))
1726 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1727 if (GET_CODE (x1) == CONST_INT)
1729 if (GET_CODE (y1) == CONST_INT)
1730 return memrefs_conflict_p (xsize, x0, ysize, y0,
1731 c - INTVAL (x1) + INTVAL (y1));
1732 else
1733 return memrefs_conflict_p (xsize, x0, ysize, y,
1734 c - INTVAL (x1));
1736 else if (GET_CODE (y1) == CONST_INT)
1737 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1739 return 1;
1741 else if (GET_CODE (x1) == CONST_INT)
1742 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1744 else if (GET_CODE (y) == PLUS)
1746 /* The fact that Y is canonicalized means that this
1747 PLUS rtx is canonicalized. */
1748 rtx y0 = XEXP (y, 0);
1749 rtx y1 = XEXP (y, 1);
1751 if (GET_CODE (y1) == CONST_INT)
1752 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1753 else
1754 return 1;
1757 if (GET_CODE (x) == GET_CODE (y))
1758 switch (GET_CODE (x))
1760 case MULT:
1762 /* Handle cases where we expect the second operands to be the
1763 same, and check only whether the first operand would conflict
1764 or not. */
1765 rtx x0, y0;
1766 rtx x1 = canon_rtx (XEXP (x, 1));
1767 rtx y1 = canon_rtx (XEXP (y, 1));
1768 if (! rtx_equal_for_memref_p (x1, y1))
1769 return 1;
1770 x0 = canon_rtx (XEXP (x, 0));
1771 y0 = canon_rtx (XEXP (y, 0));
1772 if (rtx_equal_for_memref_p (x0, y0))
1773 return (xsize == 0 || ysize == 0
1774 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1776 /* Can't properly adjust our sizes. */
1777 if (GET_CODE (x1) != CONST_INT)
1778 return 1;
1779 xsize /= INTVAL (x1);
1780 ysize /= INTVAL (x1);
1781 c /= INTVAL (x1);
1782 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1785 case REG:
1786 /* Are these registers known not to be equal? */
1787 if (alias_invariant)
1789 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1790 rtx i_x, i_y; /* invariant relationships of X and Y */
1792 i_x = r_x >= alias_invariant_size ? 0 : alias_invariant[r_x];
1793 i_y = r_y >= alias_invariant_size ? 0 : alias_invariant[r_y];
1795 if (i_x == 0 && i_y == 0)
1796 break;
1798 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1799 ysize, i_y ? i_y : y, c))
1800 return 0;
1802 break;
1804 default:
1805 break;
1808 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1809 as an access with indeterminate size. Assume that references
1810 besides AND are aligned, so if the size of the other reference is
1811 at least as large as the alignment, assume no other overlap. */
1812 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1814 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1815 xsize = -1;
1816 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1818 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1820 /* ??? If we are indexing far enough into the array/structure, we
1821 may yet be able to determine that we can not overlap. But we
1822 also need to that we are far enough from the end not to overlap
1823 a following reference, so we do nothing with that for now. */
1824 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1825 ysize = -1;
1826 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1829 if (GET_CODE (x) == ADDRESSOF)
1831 if (y == frame_pointer_rtx
1832 || GET_CODE (y) == ADDRESSOF)
1833 return xsize <= 0 || ysize <= 0;
1835 if (GET_CODE (y) == ADDRESSOF)
1837 if (x == frame_pointer_rtx)
1838 return xsize <= 0 || ysize <= 0;
1841 if (CONSTANT_P (x))
1843 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1845 c += (INTVAL (y) - INTVAL (x));
1846 return (xsize <= 0 || ysize <= 0
1847 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1850 if (GET_CODE (x) == CONST)
1852 if (GET_CODE (y) == CONST)
1853 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1854 ysize, canon_rtx (XEXP (y, 0)), c);
1855 else
1856 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1857 ysize, y, c);
1859 if (GET_CODE (y) == CONST)
1860 return memrefs_conflict_p (xsize, x, ysize,
1861 canon_rtx (XEXP (y, 0)), c);
1863 if (CONSTANT_P (y))
1864 return (xsize <= 0 || ysize <= 0
1865 || (rtx_equal_for_memref_p (x, y)
1866 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1868 return 1;
1870 return 1;
1873 /* Functions to compute memory dependencies.
1875 Since we process the insns in execution order, we can build tables
1876 to keep track of what registers are fixed (and not aliased), what registers
1877 are varying in known ways, and what registers are varying in unknown
1878 ways.
1880 If both memory references are volatile, then there must always be a
1881 dependence between the two references, since their order can not be
1882 changed. A volatile and non-volatile reference can be interchanged
1883 though.
1885 A MEM_IN_STRUCT reference at a non-AND varying address can never
1886 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1887 also must allow AND addresses, because they may generate accesses
1888 outside the object being referenced. This is used to generate
1889 aligned addresses from unaligned addresses, for instance, the alpha
1890 storeqi_unaligned pattern. */
1892 /* Read dependence: X is read after read in MEM takes place. There can
1893 only be a dependence here if both reads are volatile. */
1896 read_dependence (rtx mem, rtx x)
1898 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1901 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1902 MEM2 is a reference to a structure at a varying address, or returns
1903 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1904 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1905 to decide whether or not an address may vary; it should return
1906 nonzero whenever variation is possible.
1907 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1909 static rtx
1910 fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1911 rtx mem2_addr,
1912 int (*varies_p) (rtx, int))
1914 if (! flag_strict_aliasing)
1915 return NULL_RTX;
1917 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1918 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1919 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1920 varying address. */
1921 return mem1;
1923 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1924 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1925 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1926 varying address. */
1927 return mem2;
1929 return NULL_RTX;
1932 /* Returns nonzero if something about the mode or address format MEM1
1933 indicates that it might well alias *anything*. */
1935 static int
1936 aliases_everything_p (rtx mem)
1938 if (GET_CODE (XEXP (mem, 0)) == AND)
1939 /* If the address is an AND, its very hard to know at what it is
1940 actually pointing. */
1941 return 1;
1943 return 0;
1946 /* Return true if we can determine that the fields referenced cannot
1947 overlap for any pair of objects. */
1949 static bool
1950 nonoverlapping_component_refs_p (tree x, tree y)
1952 tree fieldx, fieldy, typex, typey, orig_y;
1956 /* The comparison has to be done at a common type, since we don't
1957 know how the inheritance hierarchy works. */
1958 orig_y = y;
1961 fieldx = TREE_OPERAND (x, 1);
1962 typex = DECL_FIELD_CONTEXT (fieldx);
1964 y = orig_y;
1967 fieldy = TREE_OPERAND (y, 1);
1968 typey = DECL_FIELD_CONTEXT (fieldy);
1970 if (typex == typey)
1971 goto found;
1973 y = TREE_OPERAND (y, 0);
1975 while (y && TREE_CODE (y) == COMPONENT_REF);
1977 x = TREE_OPERAND (x, 0);
1979 while (x && TREE_CODE (x) == COMPONENT_REF);
1981 /* Never found a common type. */
1982 return false;
1984 found:
1985 /* If we're left with accessing different fields of a structure,
1986 then no overlap. */
1987 if (TREE_CODE (typex) == RECORD_TYPE
1988 && fieldx != fieldy)
1989 return true;
1991 /* The comparison on the current field failed. If we're accessing
1992 a very nested structure, look at the next outer level. */
1993 x = TREE_OPERAND (x, 0);
1994 y = TREE_OPERAND (y, 0);
1996 while (x && y
1997 && TREE_CODE (x) == COMPONENT_REF
1998 && TREE_CODE (y) == COMPONENT_REF);
2000 return false;
2003 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2005 static tree
2006 decl_for_component_ref (tree x)
2010 x = TREE_OPERAND (x, 0);
2012 while (x && TREE_CODE (x) == COMPONENT_REF);
2014 return x && DECL_P (x) ? x : NULL_TREE;
2017 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
2018 offset of the field reference. */
2020 static rtx
2021 adjust_offset_for_component_ref (tree x, rtx offset)
2023 HOST_WIDE_INT ioffset;
2025 if (! offset)
2026 return NULL_RTX;
2028 ioffset = INTVAL (offset);
2031 tree offset = component_ref_field_offset (x);
2032 tree field = TREE_OPERAND (x, 1);
2034 if (! host_integerp (offset, 1))
2035 return NULL_RTX;
2036 ioffset += (tree_low_cst (offset, 1)
2037 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2038 / BITS_PER_UNIT));
2040 x = TREE_OPERAND (x, 0);
2042 while (x && TREE_CODE (x) == COMPONENT_REF);
2044 return GEN_INT (ioffset);
2047 /* Return nonzero if we can determine the exprs corresponding to memrefs
2048 X and Y and they do not overlap. */
2050 static int
2051 nonoverlapping_memrefs_p (rtx x, rtx y)
2053 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2054 rtx rtlx, rtly;
2055 rtx basex, basey;
2056 rtx moffsetx, moffsety;
2057 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2059 /* Unless both have exprs, we can't tell anything. */
2060 if (exprx == 0 || expry == 0)
2061 return 0;
2063 /* If both are field references, we may be able to determine something. */
2064 if (TREE_CODE (exprx) == COMPONENT_REF
2065 && TREE_CODE (expry) == COMPONENT_REF
2066 && nonoverlapping_component_refs_p (exprx, expry))
2067 return 1;
2069 /* If the field reference test failed, look at the DECLs involved. */
2070 moffsetx = MEM_OFFSET (x);
2071 if (TREE_CODE (exprx) == COMPONENT_REF)
2073 tree t = decl_for_component_ref (exprx);
2074 if (! t)
2075 return 0;
2076 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2077 exprx = t;
2079 else if (TREE_CODE (exprx) == INDIRECT_REF)
2081 exprx = TREE_OPERAND (exprx, 0);
2082 if (flag_argument_noalias < 2
2083 || TREE_CODE (exprx) != PARM_DECL)
2084 return 0;
2087 moffsety = MEM_OFFSET (y);
2088 if (TREE_CODE (expry) == COMPONENT_REF)
2090 tree t = decl_for_component_ref (expry);
2091 if (! t)
2092 return 0;
2093 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2094 expry = t;
2096 else if (TREE_CODE (expry) == INDIRECT_REF)
2098 expry = TREE_OPERAND (expry, 0);
2099 if (flag_argument_noalias < 2
2100 || TREE_CODE (expry) != PARM_DECL)
2101 return 0;
2104 if (! DECL_P (exprx) || ! DECL_P (expry))
2105 return 0;
2107 rtlx = DECL_RTL (exprx);
2108 rtly = DECL_RTL (expry);
2110 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2111 can't overlap unless they are the same because we never reuse that part
2112 of the stack frame used for locals for spilled pseudos. */
2113 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
2114 && ! rtx_equal_p (rtlx, rtly))
2115 return 1;
2117 /* Get the base and offsets of both decls. If either is a register, we
2118 know both are and are the same, so use that as the base. The only
2119 we can avoid overlap is if we can deduce that they are nonoverlapping
2120 pieces of that decl, which is very rare. */
2121 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
2122 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2123 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2125 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
2126 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2127 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2129 /* If the bases are different, we know they do not overlap if both
2130 are constants or if one is a constant and the other a pointer into the
2131 stack frame. Otherwise a different base means we can't tell if they
2132 overlap or not. */
2133 if (! rtx_equal_p (basex, basey))
2134 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2135 || (CONSTANT_P (basex) && REG_P (basey)
2136 && REGNO_PTR_FRAME_P (REGNO (basey)))
2137 || (CONSTANT_P (basey) && REG_P (basex)
2138 && REGNO_PTR_FRAME_P (REGNO (basex))));
2140 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2141 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2142 : -1);
2143 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2144 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2145 -1);
2147 /* If we have an offset for either memref, it can update the values computed
2148 above. */
2149 if (moffsetx)
2150 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2151 if (moffsety)
2152 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2154 /* If a memref has both a size and an offset, we can use the smaller size.
2155 We can't do this if the offset isn't known because we must view this
2156 memref as being anywhere inside the DECL's MEM. */
2157 if (MEM_SIZE (x) && moffsetx)
2158 sizex = INTVAL (MEM_SIZE (x));
2159 if (MEM_SIZE (y) && moffsety)
2160 sizey = INTVAL (MEM_SIZE (y));
2162 /* Put the values of the memref with the lower offset in X's values. */
2163 if (offsetx > offsety)
2165 tem = offsetx, offsetx = offsety, offsety = tem;
2166 tem = sizex, sizex = sizey, sizey = tem;
2169 /* If we don't know the size of the lower-offset value, we can't tell
2170 if they conflict. Otherwise, we do the test. */
2171 return sizex >= 0 && offsety >= offsetx + sizex;
2174 /* True dependence: X is read after store in MEM takes place. */
2177 true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2178 int (*varies) (rtx, int))
2180 rtx x_addr, mem_addr;
2181 rtx base;
2183 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2184 return 1;
2186 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2187 This is used in epilogue deallocation functions. */
2188 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2189 return 1;
2190 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2191 return 1;
2193 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2194 return 0;
2196 /* Unchanging memory can't conflict with non-unchanging memory.
2197 A non-unchanging read can conflict with a non-unchanging write.
2198 An unchanging read can conflict with an unchanging write since
2199 there may be a single store to this address to initialize it.
2200 Note that an unchanging store can conflict with a non-unchanging read
2201 since we have to make conservative assumptions when we have a
2202 record with readonly fields and we are copying the whole thing.
2203 Just fall through to the code below to resolve potential conflicts.
2204 This won't handle all cases optimally, but the possible performance
2205 loss should be negligible. */
2206 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2207 return 0;
2209 if (nonoverlapping_memrefs_p (mem, x))
2210 return 0;
2212 if (mem_mode == VOIDmode)
2213 mem_mode = GET_MODE (mem);
2215 x_addr = get_addr (XEXP (x, 0));
2216 mem_addr = get_addr (XEXP (mem, 0));
2218 base = find_base_term (x_addr);
2219 if (base && (GET_CODE (base) == LABEL_REF
2220 || (GET_CODE (base) == SYMBOL_REF
2221 && CONSTANT_POOL_ADDRESS_P (base))))
2222 return 0;
2224 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2225 return 0;
2227 x_addr = canon_rtx (x_addr);
2228 mem_addr = canon_rtx (mem_addr);
2230 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2231 SIZE_FOR_MODE (x), x_addr, 0))
2232 return 0;
2234 if (aliases_everything_p (x))
2235 return 1;
2237 /* We cannot use aliases_everything_p to test MEM, since we must look
2238 at MEM_MODE, rather than GET_MODE (MEM). */
2239 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2240 return 1;
2242 /* In true_dependence we also allow BLKmode to alias anything. Why
2243 don't we do this in anti_dependence and output_dependence? */
2244 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2245 return 1;
2247 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2248 varies);
2251 /* Canonical true dependence: X is read after store in MEM takes place.
2252 Variant of true_dependence which assumes MEM has already been
2253 canonicalized (hence we no longer do that here).
2254 The mem_addr argument has been added, since true_dependence computed
2255 this value prior to canonicalizing. */
2258 canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2259 rtx x, int (*varies) (rtx, int))
2261 rtx x_addr;
2263 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2264 return 1;
2266 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2267 This is used in epilogue deallocation functions. */
2268 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2269 return 1;
2270 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2271 return 1;
2273 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2274 return 0;
2276 /* If X is an unchanging read, then it can't possibly conflict with any
2277 non-unchanging store. It may conflict with an unchanging write though,
2278 because there may be a single store to this address to initialize it.
2279 Just fall through to the code below to resolve the case where we have
2280 both an unchanging read and an unchanging write. This won't handle all
2281 cases optimally, but the possible performance loss should be
2282 negligible. */
2283 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2284 return 0;
2286 if (nonoverlapping_memrefs_p (x, mem))
2287 return 0;
2289 x_addr = get_addr (XEXP (x, 0));
2291 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2292 return 0;
2294 x_addr = canon_rtx (x_addr);
2295 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2296 SIZE_FOR_MODE (x), x_addr, 0))
2297 return 0;
2299 if (aliases_everything_p (x))
2300 return 1;
2302 /* We cannot use aliases_everything_p to test MEM, since we must look
2303 at MEM_MODE, rather than GET_MODE (MEM). */
2304 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2305 return 1;
2307 /* In true_dependence we also allow BLKmode to alias anything. Why
2308 don't we do this in anti_dependence and output_dependence? */
2309 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2310 return 1;
2312 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2313 varies);
2316 /* Returns nonzero if a write to X might alias a previous read from
2317 (or, if WRITEP is nonzero, a write to) MEM. If CONSTP is nonzero,
2318 honor the RTX_UNCHANGING_P flags on X and MEM. */
2320 static int
2321 write_dependence_p (rtx mem, rtx x, int writep, int constp)
2323 rtx x_addr, mem_addr;
2324 rtx fixed_scalar;
2325 rtx base;
2327 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2328 return 1;
2330 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2331 This is used in epilogue deallocation functions. */
2332 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2333 return 1;
2334 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2335 return 1;
2337 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2338 return 0;
2340 if (constp)
2342 /* Unchanging memory can't conflict with non-unchanging memory. */
2343 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2344 return 0;
2346 /* If MEM is an unchanging read, then it can't possibly conflict with
2347 the store to X, because there is at most one store to MEM, and it
2348 must have occurred somewhere before MEM. */
2349 if (! writep && RTX_UNCHANGING_P (mem))
2350 return 0;
2353 if (nonoverlapping_memrefs_p (x, mem))
2354 return 0;
2356 x_addr = get_addr (XEXP (x, 0));
2357 mem_addr = get_addr (XEXP (mem, 0));
2359 if (! writep)
2361 base = find_base_term (mem_addr);
2362 if (base && (GET_CODE (base) == LABEL_REF
2363 || (GET_CODE (base) == SYMBOL_REF
2364 && CONSTANT_POOL_ADDRESS_P (base))))
2365 return 0;
2368 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2369 GET_MODE (mem)))
2370 return 0;
2372 x_addr = canon_rtx (x_addr);
2373 mem_addr = canon_rtx (mem_addr);
2375 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2376 SIZE_FOR_MODE (x), x_addr, 0))
2377 return 0;
2379 fixed_scalar
2380 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2381 rtx_addr_varies_p);
2383 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2384 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2387 /* Anti dependence: X is written after read in MEM takes place. */
2390 anti_dependence (rtx mem, rtx x)
2392 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/1);
2395 /* Output dependence: X is written after store in MEM takes place. */
2398 output_dependence (rtx mem, rtx x)
2400 return write_dependence_p (mem, x, /*writep=*/1, /*constp*/1);
2403 /* Unchanging anti dependence: Like anti_dependence but ignores
2404 the UNCHANGING_RTX_P property on const variable references. */
2407 unchanging_anti_dependence (rtx mem, rtx x)
2409 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/0);
2412 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2413 something which is not local to the function and is not constant. */
2415 static int
2416 nonlocal_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2418 rtx x = *loc;
2419 rtx base;
2420 int regno;
2422 if (! x)
2423 return 0;
2425 switch (GET_CODE (x))
2427 case SUBREG:
2428 if (REG_P (SUBREG_REG (x)))
2430 /* Global registers are not local. */
2431 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
2432 && global_regs[subreg_regno (x)])
2433 return 1;
2434 return 0;
2436 break;
2438 case REG:
2439 regno = REGNO (x);
2440 /* Global registers are not local. */
2441 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2442 return 1;
2443 return 0;
2445 case SCRATCH:
2446 case PC:
2447 case CC0:
2448 case CONST_INT:
2449 case CONST_DOUBLE:
2450 case CONST_VECTOR:
2451 case CONST:
2452 case LABEL_REF:
2453 return 0;
2455 case SYMBOL_REF:
2456 /* Constants in the function's constants pool are constant. */
2457 if (CONSTANT_POOL_ADDRESS_P (x))
2458 return 0;
2459 return 1;
2461 case CALL:
2462 /* Non-constant calls and recursion are not local. */
2463 return 1;
2465 case MEM:
2466 /* Be overly conservative and consider any volatile memory
2467 reference as not local. */
2468 if (MEM_VOLATILE_P (x))
2469 return 1;
2470 base = find_base_term (XEXP (x, 0));
2471 if (base)
2473 /* A Pmode ADDRESS could be a reference via the structure value
2474 address or static chain. Such memory references are nonlocal.
2476 Thus, we have to examine the contents of the ADDRESS to find
2477 out if this is a local reference or not. */
2478 if (GET_CODE (base) == ADDRESS
2479 && GET_MODE (base) == Pmode
2480 && (XEXP (base, 0) == stack_pointer_rtx
2481 || XEXP (base, 0) == arg_pointer_rtx
2482 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2483 || XEXP (base, 0) == hard_frame_pointer_rtx
2484 #endif
2485 || XEXP (base, 0) == frame_pointer_rtx))
2486 return 0;
2487 /* Constants in the function's constant pool are constant. */
2488 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2489 return 0;
2491 return 1;
2493 case UNSPEC_VOLATILE:
2494 case ASM_INPUT:
2495 return 1;
2497 case ASM_OPERANDS:
2498 if (MEM_VOLATILE_P (x))
2499 return 1;
2501 /* Fall through. */
2503 default:
2504 break;
2507 return 0;
2510 /* Returns nonzero if X might mention something which is not
2511 local to the function and is not constant. */
2513 static int
2514 nonlocal_mentioned_p (rtx x)
2516 if (INSN_P (x))
2518 if (GET_CODE (x) == CALL_INSN)
2520 if (! CONST_OR_PURE_CALL_P (x))
2521 return 1;
2522 x = CALL_INSN_FUNCTION_USAGE (x);
2523 if (x == 0)
2524 return 0;
2526 else
2527 x = PATTERN (x);
2530 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2533 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2534 something which is not local to the function and is not constant. */
2536 static int
2537 nonlocal_referenced_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2539 rtx x = *loc;
2541 if (! x)
2542 return 0;
2544 switch (GET_CODE (x))
2546 case MEM:
2547 case REG:
2548 case SYMBOL_REF:
2549 case SUBREG:
2550 return nonlocal_mentioned_p (x);
2552 case CALL:
2553 /* Non-constant calls and recursion are not local. */
2554 return 1;
2556 case SET:
2557 if (nonlocal_mentioned_p (SET_SRC (x)))
2558 return 1;
2560 if (GET_CODE (SET_DEST (x)) == MEM)
2561 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2563 /* If the destination is anything other than a CC0, PC,
2564 MEM, REG, or a SUBREG of a REG that occupies all of
2565 the REG, then X references nonlocal memory if it is
2566 mentioned in the destination. */
2567 if (GET_CODE (SET_DEST (x)) != CC0
2568 && GET_CODE (SET_DEST (x)) != PC
2569 && !REG_P (SET_DEST (x))
2570 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2571 && REG_P (SUBREG_REG (SET_DEST (x)))
2572 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2573 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2574 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2575 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2576 return nonlocal_mentioned_p (SET_DEST (x));
2577 return 0;
2579 case CLOBBER:
2580 if (GET_CODE (XEXP (x, 0)) == MEM)
2581 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2582 return 0;
2584 case USE:
2585 return nonlocal_mentioned_p (XEXP (x, 0));
2587 case ASM_INPUT:
2588 case UNSPEC_VOLATILE:
2589 return 1;
2591 case ASM_OPERANDS:
2592 if (MEM_VOLATILE_P (x))
2593 return 1;
2595 /* Fall through. */
2597 default:
2598 break;
2601 return 0;
2604 /* Returns nonzero if X might reference something which is not
2605 local to the function and is not constant. */
2607 static int
2608 nonlocal_referenced_p (rtx x)
2610 if (INSN_P (x))
2612 if (GET_CODE (x) == CALL_INSN)
2614 if (! CONST_OR_PURE_CALL_P (x))
2615 return 1;
2616 x = CALL_INSN_FUNCTION_USAGE (x);
2617 if (x == 0)
2618 return 0;
2620 else
2621 x = PATTERN (x);
2624 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2627 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2628 something which is not local to the function and is not constant. */
2630 static int
2631 nonlocal_set_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2633 rtx x = *loc;
2635 if (! x)
2636 return 0;
2638 switch (GET_CODE (x))
2640 case CALL:
2641 /* Non-constant calls and recursion are not local. */
2642 return 1;
2644 case PRE_INC:
2645 case PRE_DEC:
2646 case POST_INC:
2647 case POST_DEC:
2648 case PRE_MODIFY:
2649 case POST_MODIFY:
2650 return nonlocal_mentioned_p (XEXP (x, 0));
2652 case SET:
2653 if (nonlocal_mentioned_p (SET_DEST (x)))
2654 return 1;
2655 return nonlocal_set_p (SET_SRC (x));
2657 case CLOBBER:
2658 return nonlocal_mentioned_p (XEXP (x, 0));
2660 case USE:
2661 return 0;
2663 case ASM_INPUT:
2664 case UNSPEC_VOLATILE:
2665 return 1;
2667 case ASM_OPERANDS:
2668 if (MEM_VOLATILE_P (x))
2669 return 1;
2671 /* Fall through. */
2673 default:
2674 break;
2677 return 0;
2680 /* Returns nonzero if X might set something which is not
2681 local to the function and is not constant. */
2683 static int
2684 nonlocal_set_p (rtx x)
2686 if (INSN_P (x))
2688 if (GET_CODE (x) == CALL_INSN)
2690 if (! CONST_OR_PURE_CALL_P (x))
2691 return 1;
2692 x = CALL_INSN_FUNCTION_USAGE (x);
2693 if (x == 0)
2694 return 0;
2696 else
2697 x = PATTERN (x);
2700 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2703 /* Mark the function if it is pure or constant. */
2705 void
2706 mark_constant_function (void)
2708 rtx insn;
2709 int nonlocal_memory_referenced;
2711 if (TREE_READONLY (current_function_decl)
2712 || DECL_IS_PURE (current_function_decl)
2713 || TREE_THIS_VOLATILE (current_function_decl)
2714 || current_function_has_nonlocal_goto
2715 || !targetm.binds_local_p (current_function_decl))
2716 return;
2718 /* A loop might not return which counts as a side effect. */
2719 if (mark_dfs_back_edges ())
2720 return;
2722 nonlocal_memory_referenced = 0;
2724 init_alias_analysis ();
2726 /* Determine if this is a constant or pure function. */
2728 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2730 if (! INSN_P (insn))
2731 continue;
2733 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2734 || volatile_refs_p (PATTERN (insn)))
2735 break;
2737 if (! nonlocal_memory_referenced)
2738 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2741 end_alias_analysis ();
2743 /* Mark the function. */
2745 if (insn)
2747 else if (nonlocal_memory_referenced)
2749 cgraph_rtl_info (current_function_decl)->pure_function = 1;
2750 DECL_IS_PURE (current_function_decl) = 1;
2752 else
2754 cgraph_rtl_info (current_function_decl)->const_function = 1;
2755 TREE_READONLY (current_function_decl) = 1;
2760 void
2761 init_alias_once (void)
2763 int i;
2765 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2766 /* Check whether this register can hold an incoming pointer
2767 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2768 numbers, so translate if necessary due to register windows. */
2769 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2770 && HARD_REGNO_MODE_OK (i, Pmode))
2771 static_reg_base_value[i]
2772 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2774 static_reg_base_value[STACK_POINTER_REGNUM]
2775 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2776 static_reg_base_value[ARG_POINTER_REGNUM]
2777 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2778 static_reg_base_value[FRAME_POINTER_REGNUM]
2779 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2780 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2781 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2782 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2783 #endif
2786 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2787 to be memory reference. */
2788 static bool memory_modified;
2789 static void
2790 memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
2792 if (GET_CODE (x) == MEM)
2794 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2795 memory_modified = true;
2800 /* Return true when INSN possibly modify memory contents of MEM
2801 (ie address can be modified). */
2802 bool
2803 memory_modified_in_insn_p (rtx mem, rtx insn)
2805 if (!INSN_P (insn))
2806 return false;
2807 memory_modified = false;
2808 note_stores (PATTERN (insn), memory_modified_1, mem);
2809 return memory_modified;
2812 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2813 array. */
2815 void
2816 init_alias_analysis (void)
2818 unsigned int maxreg = max_reg_num ();
2819 int changed, pass;
2820 int i;
2821 unsigned int ui;
2822 rtx insn;
2824 timevar_push (TV_ALIAS_ANALYSIS);
2826 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2827 reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx));
2828 reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool));
2830 /* Overallocate reg_base_value to allow some growth during loop
2831 optimization. Loop unrolling can create a large number of
2832 registers. */
2833 if (old_reg_base_value)
2835 reg_base_value = old_reg_base_value;
2836 /* If varray gets large zeroing cost may get important. */
2837 if (VARRAY_SIZE (reg_base_value) > 256
2838 && VARRAY_SIZE (reg_base_value) > 4 * maxreg)
2839 VARRAY_GROW (reg_base_value, maxreg);
2840 VARRAY_CLEAR (reg_base_value);
2841 if (VARRAY_SIZE (reg_base_value) < maxreg)
2842 VARRAY_GROW (reg_base_value, maxreg);
2844 else
2846 VARRAY_RTX_INIT (reg_base_value, maxreg, "reg_base_value");
2849 new_reg_base_value = xmalloc (maxreg * sizeof (rtx));
2850 reg_seen = xmalloc (maxreg);
2851 if (! reload_completed && flag_old_unroll_loops)
2853 alias_invariant = ggc_calloc (maxreg, sizeof (rtx));
2854 alias_invariant_size = maxreg;
2857 /* The basic idea is that each pass through this loop will use the
2858 "constant" information from the previous pass to propagate alias
2859 information through another level of assignments.
2861 This could get expensive if the assignment chains are long. Maybe
2862 we should throttle the number of iterations, possibly based on
2863 the optimization level or flag_expensive_optimizations.
2865 We could propagate more information in the first pass by making use
2866 of REG_N_SETS to determine immediately that the alias information
2867 for a pseudo is "constant".
2869 A program with an uninitialized variable can cause an infinite loop
2870 here. Instead of doing a full dataflow analysis to detect such problems
2871 we just cap the number of iterations for the loop.
2873 The state of the arrays for the set chain in question does not matter
2874 since the program has undefined behavior. */
2876 pass = 0;
2879 /* Assume nothing will change this iteration of the loop. */
2880 changed = 0;
2882 /* We want to assign the same IDs each iteration of this loop, so
2883 start counting from zero each iteration of the loop. */
2884 unique_id = 0;
2886 /* We're at the start of the function each iteration through the
2887 loop, so we're copying arguments. */
2888 copying_arguments = true;
2890 /* Wipe the potential alias information clean for this pass. */
2891 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2893 /* Wipe the reg_seen array clean. */
2894 memset (reg_seen, 0, maxreg);
2896 /* Mark all hard registers which may contain an address.
2897 The stack, frame and argument pointers may contain an address.
2898 An argument register which can hold a Pmode value may contain
2899 an address even if it is not in BASE_REGS.
2901 The address expression is VOIDmode for an argument and
2902 Pmode for other registers. */
2904 memcpy (new_reg_base_value, static_reg_base_value,
2905 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2907 /* Walk the insns adding values to the new_reg_base_value array. */
2908 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2910 if (INSN_P (insn))
2912 rtx note, set;
2914 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2915 /* The prologue/epilogue insns are not threaded onto the
2916 insn chain until after reload has completed. Thus,
2917 there is no sense wasting time checking if INSN is in
2918 the prologue/epilogue until after reload has completed. */
2919 if (reload_completed
2920 && prologue_epilogue_contains (insn))
2921 continue;
2922 #endif
2924 /* If this insn has a noalias note, process it, Otherwise,
2925 scan for sets. A simple set will have no side effects
2926 which could change the base value of any other register. */
2928 if (GET_CODE (PATTERN (insn)) == SET
2929 && REG_NOTES (insn) != 0
2930 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2931 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2932 else
2933 note_stores (PATTERN (insn), record_set, NULL);
2935 set = single_set (insn);
2937 if (set != 0
2938 && REG_P (SET_DEST (set))
2939 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2941 unsigned int regno = REGNO (SET_DEST (set));
2942 rtx src = SET_SRC (set);
2943 rtx t;
2945 if (REG_NOTES (insn) != 0
2946 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2947 && REG_N_SETS (regno) == 1)
2948 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2949 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2950 && ! rtx_varies_p (XEXP (note, 0), 1)
2951 && ! reg_overlap_mentioned_p (SET_DEST (set),
2952 XEXP (note, 0)))
2954 set_reg_known_value (regno, XEXP (note, 0));
2955 set_reg_known_equiv_p (regno,
2956 REG_NOTE_KIND (note) == REG_EQUIV);
2958 else if (REG_N_SETS (regno) == 1
2959 && GET_CODE (src) == PLUS
2960 && REG_P (XEXP (src, 0))
2961 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2962 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2964 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2965 set_reg_known_value (regno, t);
2966 set_reg_known_equiv_p (regno, 0);
2968 else if (REG_N_SETS (regno) == 1
2969 && ! rtx_varies_p (src, 1))
2971 set_reg_known_value (regno, src);
2972 set_reg_known_equiv_p (regno, 0);
2976 else if (GET_CODE (insn) == NOTE
2977 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2978 copying_arguments = false;
2981 /* Now propagate values from new_reg_base_value to reg_base_value. */
2982 if (maxreg != (unsigned int) max_reg_num())
2983 abort ();
2984 for (ui = 0; ui < maxreg; ui++)
2986 if (new_reg_base_value[ui]
2987 && new_reg_base_value[ui] != VARRAY_RTX (reg_base_value, ui)
2988 && ! rtx_equal_p (new_reg_base_value[ui],
2989 VARRAY_RTX (reg_base_value, ui)))
2991 VARRAY_RTX (reg_base_value, ui) = new_reg_base_value[ui];
2992 changed = 1;
2996 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2998 /* Fill in the remaining entries. */
2999 for (i = 0; i < (int)reg_known_value_size; i++)
3000 if (reg_known_value[i] == 0)
3001 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
3003 /* Simplify the reg_base_value array so that no register refers to
3004 another register, except to special registers indirectly through
3005 ADDRESS expressions.
3007 In theory this loop can take as long as O(registers^2), but unless
3008 there are very long dependency chains it will run in close to linear
3009 time.
3011 This loop may not be needed any longer now that the main loop does
3012 a better job at propagating alias information. */
3013 pass = 0;
3016 changed = 0;
3017 pass++;
3018 for (ui = 0; ui < maxreg; ui++)
3020 rtx base = VARRAY_RTX (reg_base_value, ui);
3021 if (base && REG_P (base))
3023 unsigned int base_regno = REGNO (base);
3024 if (base_regno == ui) /* register set from itself */
3025 VARRAY_RTX (reg_base_value, ui) = 0;
3026 else
3027 VARRAY_RTX (reg_base_value, ui)
3028 = VARRAY_RTX (reg_base_value, base_regno);
3029 changed = 1;
3033 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
3035 /* Clean up. */
3036 free (new_reg_base_value);
3037 new_reg_base_value = 0;
3038 free (reg_seen);
3039 reg_seen = 0;
3040 timevar_pop (TV_ALIAS_ANALYSIS);
3043 void
3044 end_alias_analysis (void)
3046 old_reg_base_value = reg_base_value;
3047 ggc_free (reg_known_value);
3048 reg_known_value = 0;
3049 reg_known_value_size = 0;
3050 free (reg_known_equiv_p);
3051 reg_known_equiv_p = 0;
3052 if (alias_invariant)
3054 ggc_free (alias_invariant);
3055 alias_invariant = 0;
3056 alias_invariant_size = 0;
3060 #include "gt-alias.h"