Daily bump.
[official-gcc.git] / gcc / alias.c
blob9956306ae29479cec7c9aa04c054f6f661fcf578
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2014 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "varasm.h"
28 #include "expr.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "alias.h"
32 #include "emit-rtl.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "flags.h"
36 #include "diagnostic-core.h"
37 #include "cselib.h"
38 #include "splay-tree.h"
39 #include "langhooks.h"
40 #include "timevar.h"
41 #include "dumpfile.h"
42 #include "target.h"
43 #include "df.h"
44 #include "tree-ssa-alias.h"
45 #include "pointer-set.h"
46 #include "internal-fn.h"
47 #include "gimple-expr.h"
48 #include "is-a.h"
49 #include "gimple.h"
50 #include "gimple-ssa.h"
52 /* The aliasing API provided here solves related but different problems:
54 Say there exists (in c)
56 struct X {
57 struct Y y1;
58 struct Z z2;
59 } x1, *px1, *px2;
61 struct Y y2, *py;
62 struct Z z2, *pz;
65 py = &x1.y1;
66 px2 = &x1;
68 Consider the four questions:
70 Can a store to x1 interfere with px2->y1?
71 Can a store to x1 interfere with px2->z2?
72 Can a store to x1 change the value pointed to by with py?
73 Can a store to x1 change the value pointed to by with pz?
75 The answer to these questions can be yes, yes, yes, and maybe.
77 The first two questions can be answered with a simple examination
78 of the type system. If structure X contains a field of type Y then
79 a store through a pointer to an X can overwrite any field that is
80 contained (recursively) in an X (unless we know that px1 != px2).
82 The last two questions can be solved in the same way as the first
83 two questions but this is too conservative. The observation is
84 that in some cases we can know which (if any) fields are addressed
85 and if those addresses are used in bad ways. This analysis may be
86 language specific. In C, arbitrary operations may be applied to
87 pointers. However, there is some indication that this may be too
88 conservative for some C++ types.
90 The pass ipa-type-escape does this analysis for the types whose
91 instances do not escape across the compilation boundary.
93 Historically in GCC, these two problems were combined and a single
94 data structure that was used to represent the solution to these
95 problems. We now have two similar but different data structures,
96 The data structure to solve the last two questions is similar to
97 the first, but does not contain the fields whose address are never
98 taken. For types that do escape the compilation unit, the data
99 structures will have identical information.
102 /* The alias sets assigned to MEMs assist the back-end in determining
103 which MEMs can alias which other MEMs. In general, two MEMs in
104 different alias sets cannot alias each other, with one important
105 exception. Consider something like:
107 struct S { int i; double d; };
109 a store to an `S' can alias something of either type `int' or type
110 `double'. (However, a store to an `int' cannot alias a `double'
111 and vice versa.) We indicate this via a tree structure that looks
112 like:
113 struct S
116 |/_ _\|
117 int double
119 (The arrows are directed and point downwards.)
120 In this situation we say the alias set for `struct S' is the
121 `superset' and that those for `int' and `double' are `subsets'.
123 To see whether two alias sets can point to the same memory, we must
124 see if either alias set is a subset of the other. We need not trace
125 past immediate descendants, however, since we propagate all
126 grandchildren up one level.
128 Alias set zero is implicitly a superset of all other alias sets.
129 However, this is no actual entry for alias set zero. It is an
130 error to attempt to explicitly construct a subset of zero. */
132 struct GTY(()) alias_set_entry_d {
133 /* The alias set number, as stored in MEM_ALIAS_SET. */
134 alias_set_type alias_set;
136 /* Nonzero if would have a child of zero: this effectively makes this
137 alias set the same as alias set zero. */
138 int has_zero_child;
140 /* The children of the alias set. These are not just the immediate
141 children, but, in fact, all descendants. So, if we have:
143 struct T { struct S s; float f; }
145 continuing our example above, the children here will be all of
146 `int', `double', `float', and `struct S'. */
147 splay_tree GTY((param1_is (int), param2_is (int))) children;
149 typedef struct alias_set_entry_d *alias_set_entry;
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
153 static void record_set (rtx, const_rtx, void *);
154 static int base_alias_check (rtx, rtx, rtx, rtx, enum machine_mode,
155 enum machine_mode);
156 static rtx find_base_value (rtx);
157 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
158 static int insert_subset_children (splay_tree_node, void*);
159 static alias_set_entry get_alias_set_entry (alias_set_type);
160 static bool nonoverlapping_component_refs_p (const_rtx, const_rtx);
161 static tree decl_for_component_ref (tree);
162 static int write_dependence_p (const_rtx,
163 const_rtx, enum machine_mode, rtx,
164 bool, bool, bool);
166 static void memory_modified_1 (rtx, const_rtx, void *);
168 /* Set up all info needed to perform alias analysis on memory references. */
170 /* Returns the size in bytes of the mode of X. */
171 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
173 /* Cap the number of passes we make over the insns propagating alias
174 information through set chains.
175 ??? 10 is a completely arbitrary choice. This should be based on the
176 maximum loop depth in the CFG, but we do not have this information
177 available (even if current_loops _is_ available). */
178 #define MAX_ALIAS_LOOP_PASSES 10
180 /* reg_base_value[N] gives an address to which register N is related.
181 If all sets after the first add or subtract to the current value
182 or otherwise modify it so it does not point to a different top level
183 object, reg_base_value[N] is equal to the address part of the source
184 of the first set.
186 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
187 expressions represent three types of base:
189 1. incoming arguments. There is just one ADDRESS to represent all
190 arguments, since we do not know at this level whether accesses
191 based on different arguments can alias. The ADDRESS has id 0.
193 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
194 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
195 Each of these rtxes has a separate ADDRESS associated with it,
196 each with a negative id.
198 GCC is (and is required to be) precise in which register it
199 chooses to access a particular region of stack. We can therefore
200 assume that accesses based on one of these rtxes do not alias
201 accesses based on another of these rtxes.
203 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
204 Each such piece of memory has a separate ADDRESS associated
205 with it, each with an id greater than 0.
207 Accesses based on one ADDRESS do not alias accesses based on other
208 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
209 alias globals either; the ADDRESSes have Pmode to indicate this.
210 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
211 indicate this. */
213 static GTY(()) vec<rtx, va_gc> *reg_base_value;
214 static rtx *new_reg_base_value;
216 /* The single VOIDmode ADDRESS that represents all argument bases.
217 It has id 0. */
218 static GTY(()) rtx arg_base_value;
220 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
221 static int unique_id;
223 /* We preserve the copy of old array around to avoid amount of garbage
224 produced. About 8% of garbage produced were attributed to this
225 array. */
226 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
228 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
229 registers. */
230 #define UNIQUE_BASE_VALUE_SP -1
231 #define UNIQUE_BASE_VALUE_ARGP -2
232 #define UNIQUE_BASE_VALUE_FP -3
233 #define UNIQUE_BASE_VALUE_HFP -4
235 #define static_reg_base_value \
236 (this_target_rtl->x_static_reg_base_value)
238 #define REG_BASE_VALUE(X) \
239 (REGNO (X) < vec_safe_length (reg_base_value) \
240 ? (*reg_base_value)[REGNO (X)] : 0)
242 /* Vector indexed by N giving the initial (unchanging) value known for
243 pseudo-register N. This vector is initialized in init_alias_analysis,
244 and does not change until end_alias_analysis is called. */
245 static GTY(()) vec<rtx, va_gc> *reg_known_value;
247 /* Vector recording for each reg_known_value whether it is due to a
248 REG_EQUIV note. Future passes (viz., reload) may replace the
249 pseudo with the equivalent expression and so we account for the
250 dependences that would be introduced if that happens.
252 The REG_EQUIV notes created in assign_parms may mention the arg
253 pointer, and there are explicit insns in the RTL that modify the
254 arg pointer. Thus we must ensure that such insns don't get
255 scheduled across each other because that would invalidate the
256 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
257 wrong, but solving the problem in the scheduler will likely give
258 better code, so we do it here. */
259 static sbitmap reg_known_equiv_p;
261 /* True when scanning insns from the start of the rtl to the
262 NOTE_INSN_FUNCTION_BEG note. */
263 static bool copying_arguments;
266 /* The splay-tree used to store the various alias set entries. */
267 static GTY (()) vec<alias_set_entry, va_gc> *alias_sets;
269 /* Build a decomposed reference object for querying the alias-oracle
270 from the MEM rtx and store it in *REF.
271 Returns false if MEM is not suitable for the alias-oracle. */
273 static bool
274 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
276 tree expr = MEM_EXPR (mem);
277 tree base;
279 if (!expr)
280 return false;
282 ao_ref_init (ref, expr);
284 /* Get the base of the reference and see if we have to reject or
285 adjust it. */
286 base = ao_ref_base (ref);
287 if (base == NULL_TREE)
288 return false;
290 /* The tree oracle doesn't like bases that are neither decls
291 nor indirect references of SSA names. */
292 if (!(DECL_P (base)
293 || (TREE_CODE (base) == MEM_REF
294 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
295 || (TREE_CODE (base) == TARGET_MEM_REF
296 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
297 return false;
299 /* If this is a reference based on a partitioned decl replace the
300 base with a MEM_REF of the pointer representative we
301 created during stack slot partitioning. */
302 if (TREE_CODE (base) == VAR_DECL
303 && ! is_global_var (base)
304 && cfun->gimple_df->decls_to_pointers != NULL)
306 void *namep;
307 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
308 if (namep)
309 ref->base = build_simple_mem_ref (*(tree *)namep);
312 ref->ref_alias_set = MEM_ALIAS_SET (mem);
314 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
315 is conservative, so trust it. */
316 if (!MEM_OFFSET_KNOWN_P (mem)
317 || !MEM_SIZE_KNOWN_P (mem))
318 return true;
320 /* If the base decl is a parameter we can have negative MEM_OFFSET in
321 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
322 here. */
323 if (MEM_OFFSET (mem) < 0
324 && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
325 return true;
327 /* Otherwise continue and refine size and offset we got from analyzing
328 MEM_EXPR by using MEM_SIZE and MEM_OFFSET. */
330 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
331 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
333 /* The MEM may extend into adjacent fields, so adjust max_size if
334 necessary. */
335 if (ref->max_size != -1
336 && ref->size > ref->max_size)
337 ref->max_size = ref->size;
339 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
340 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
341 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
342 && (ref->offset < 0
343 || (DECL_P (ref->base)
344 && (!tree_fits_uhwi_p (DECL_SIZE (ref->base))
345 || (tree_to_uhwi (DECL_SIZE (ref->base))
346 < (unsigned HOST_WIDE_INT) (ref->offset + ref->size))))))
347 return false;
349 return true;
352 /* Query the alias-oracle on whether the two memory rtx X and MEM may
353 alias. If TBAA_P is set also apply TBAA. Returns true if the
354 two rtxen may alias, false otherwise. */
356 static bool
357 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
359 ao_ref ref1, ref2;
361 if (!ao_ref_from_mem (&ref1, x)
362 || !ao_ref_from_mem (&ref2, mem))
363 return true;
365 return refs_may_alias_p_1 (&ref1, &ref2,
366 tbaa_p
367 && MEM_ALIAS_SET (x) != 0
368 && MEM_ALIAS_SET (mem) != 0);
371 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
372 such an entry, or NULL otherwise. */
374 static inline alias_set_entry
375 get_alias_set_entry (alias_set_type alias_set)
377 return (*alias_sets)[alias_set];
380 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
381 the two MEMs cannot alias each other. */
383 static inline int
384 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
386 return (flag_strict_aliasing
387 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
388 MEM_ALIAS_SET (mem2)));
391 /* Insert the NODE into the splay tree given by DATA. Used by
392 record_alias_subset via splay_tree_foreach. */
394 static int
395 insert_subset_children (splay_tree_node node, void *data)
397 splay_tree_insert ((splay_tree) data, node->key, node->value);
399 return 0;
402 /* Return true if the first alias set is a subset of the second. */
404 bool
405 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
407 alias_set_entry ase;
409 /* Everything is a subset of the "aliases everything" set. */
410 if (set2 == 0)
411 return true;
413 /* Otherwise, check if set1 is a subset of set2. */
414 ase = get_alias_set_entry (set2);
415 if (ase != 0
416 && (ase->has_zero_child
417 || splay_tree_lookup (ase->children,
418 (splay_tree_key) set1)))
419 return true;
420 return false;
423 /* Return 1 if the two specified alias sets may conflict. */
426 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
428 alias_set_entry ase;
430 /* The easy case. */
431 if (alias_sets_must_conflict_p (set1, set2))
432 return 1;
434 /* See if the first alias set is a subset of the second. */
435 ase = get_alias_set_entry (set1);
436 if (ase != 0
437 && (ase->has_zero_child
438 || splay_tree_lookup (ase->children,
439 (splay_tree_key) set2)))
440 return 1;
442 /* Now do the same, but with the alias sets reversed. */
443 ase = get_alias_set_entry (set2);
444 if (ase != 0
445 && (ase->has_zero_child
446 || splay_tree_lookup (ase->children,
447 (splay_tree_key) set1)))
448 return 1;
450 /* The two alias sets are distinct and neither one is the
451 child of the other. Therefore, they cannot conflict. */
452 return 0;
455 /* Return 1 if the two specified alias sets will always conflict. */
458 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
460 if (set1 == 0 || set2 == 0 || set1 == set2)
461 return 1;
463 return 0;
466 /* Return 1 if any MEM object of type T1 will always conflict (using the
467 dependency routines in this file) with any MEM object of type T2.
468 This is used when allocating temporary storage. If T1 and/or T2 are
469 NULL_TREE, it means we know nothing about the storage. */
472 objects_must_conflict_p (tree t1, tree t2)
474 alias_set_type set1, set2;
476 /* If neither has a type specified, we don't know if they'll conflict
477 because we may be using them to store objects of various types, for
478 example the argument and local variables areas of inlined functions. */
479 if (t1 == 0 && t2 == 0)
480 return 0;
482 /* If they are the same type, they must conflict. */
483 if (t1 == t2
484 /* Likewise if both are volatile. */
485 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
486 return 1;
488 set1 = t1 ? get_alias_set (t1) : 0;
489 set2 = t2 ? get_alias_set (t2) : 0;
491 /* We can't use alias_sets_conflict_p because we must make sure
492 that every subtype of t1 will conflict with every subtype of
493 t2 for which a pair of subobjects of these respective subtypes
494 overlaps on the stack. */
495 return alias_sets_must_conflict_p (set1, set2);
498 /* Return the outermost parent of component present in the chain of
499 component references handled by get_inner_reference in T with the
500 following property:
501 - the component is non-addressable, or
502 - the parent has alias set zero,
503 or NULL_TREE if no such parent exists. In the former cases, the alias
504 set of this parent is the alias set that must be used for T itself. */
506 tree
507 component_uses_parent_alias_set_from (const_tree t)
509 const_tree found = NULL_TREE;
511 while (handled_component_p (t))
513 switch (TREE_CODE (t))
515 case COMPONENT_REF:
516 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
517 found = t;
518 break;
520 case ARRAY_REF:
521 case ARRAY_RANGE_REF:
522 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
523 found = t;
524 break;
526 case REALPART_EXPR:
527 case IMAGPART_EXPR:
528 break;
530 case BIT_FIELD_REF:
531 case VIEW_CONVERT_EXPR:
532 /* Bitfields and casts are never addressable. */
533 found = t;
534 break;
536 default:
537 gcc_unreachable ();
540 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
541 found = t;
543 t = TREE_OPERAND (t, 0);
546 if (found)
547 return TREE_OPERAND (found, 0);
549 return NULL_TREE;
553 /* Return whether the pointer-type T effective for aliasing may
554 access everything and thus the reference has to be assigned
555 alias-set zero. */
557 static bool
558 ref_all_alias_ptr_type_p (const_tree t)
560 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
561 || TYPE_REF_CAN_ALIAS_ALL (t));
564 /* Return the alias set for the memory pointed to by T, which may be
565 either a type or an expression. Return -1 if there is nothing
566 special about dereferencing T. */
568 static alias_set_type
569 get_deref_alias_set_1 (tree t)
571 /* All we care about is the type. */
572 if (! TYPE_P (t))
573 t = TREE_TYPE (t);
575 /* If we have an INDIRECT_REF via a void pointer, we don't
576 know anything about what that might alias. Likewise if the
577 pointer is marked that way. */
578 if (ref_all_alias_ptr_type_p (t))
579 return 0;
581 return -1;
584 /* Return the alias set for the memory pointed to by T, which may be
585 either a type or an expression. */
587 alias_set_type
588 get_deref_alias_set (tree t)
590 /* If we're not doing any alias analysis, just assume everything
591 aliases everything else. */
592 if (!flag_strict_aliasing)
593 return 0;
595 alias_set_type set = get_deref_alias_set_1 (t);
597 /* Fall back to the alias-set of the pointed-to type. */
598 if (set == -1)
600 if (! TYPE_P (t))
601 t = TREE_TYPE (t);
602 set = get_alias_set (TREE_TYPE (t));
605 return set;
608 /* Return the pointer-type relevant for TBAA purposes from the
609 memory reference tree *T or NULL_TREE in which case *T is
610 adjusted to point to the outermost component reference that
611 can be used for assigning an alias set. */
613 static tree
614 reference_alias_ptr_type_1 (tree *t)
616 tree inner;
618 /* Get the base object of the reference. */
619 inner = *t;
620 while (handled_component_p (inner))
622 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
623 the type of any component references that wrap it to
624 determine the alias-set. */
625 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
626 *t = TREE_OPERAND (inner, 0);
627 inner = TREE_OPERAND (inner, 0);
630 /* Handle pointer dereferences here, they can override the
631 alias-set. */
632 if (INDIRECT_REF_P (inner)
633 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
634 return TREE_TYPE (TREE_OPERAND (inner, 0));
635 else if (TREE_CODE (inner) == TARGET_MEM_REF)
636 return TREE_TYPE (TMR_OFFSET (inner));
637 else if (TREE_CODE (inner) == MEM_REF
638 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
639 return TREE_TYPE (TREE_OPERAND (inner, 1));
641 /* If the innermost reference is a MEM_REF that has a
642 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
643 using the memory access type for determining the alias-set. */
644 if (TREE_CODE (inner) == MEM_REF
645 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
646 != TYPE_MAIN_VARIANT
647 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
648 return TREE_TYPE (TREE_OPERAND (inner, 1));
650 /* Otherwise, pick up the outermost object that we could have
651 a pointer to. */
652 tree tem = component_uses_parent_alias_set_from (*t);
653 if (tem)
654 *t = tem;
656 return NULL_TREE;
659 /* Return the pointer-type relevant for TBAA purposes from the
660 gimple memory reference tree T. This is the type to be used for
661 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
662 and guarantees that get_alias_set will return the same alias
663 set for T and the replacement. */
665 tree
666 reference_alias_ptr_type (tree t)
668 tree ptype = reference_alias_ptr_type_1 (&t);
669 /* If there is a given pointer type for aliasing purposes, return it. */
670 if (ptype != NULL_TREE)
671 return ptype;
673 /* Otherwise build one from the outermost component reference we
674 may use. */
675 if (TREE_CODE (t) == MEM_REF
676 || TREE_CODE (t) == TARGET_MEM_REF)
677 return TREE_TYPE (TREE_OPERAND (t, 1));
678 else
679 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
682 /* Return whether the pointer-types T1 and T2 used to determine
683 two alias sets of two references will yield the same answer
684 from get_deref_alias_set. */
686 bool
687 alias_ptr_types_compatible_p (tree t1, tree t2)
689 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
690 return true;
692 if (ref_all_alias_ptr_type_p (t1)
693 || ref_all_alias_ptr_type_p (t2))
694 return false;
696 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
697 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
700 /* Return the alias set for T, which may be either a type or an
701 expression. Call language-specific routine for help, if needed. */
703 alias_set_type
704 get_alias_set (tree t)
706 alias_set_type set;
708 /* If we're not doing any alias analysis, just assume everything
709 aliases everything else. Also return 0 if this or its type is
710 an error. */
711 if (! flag_strict_aliasing || t == error_mark_node
712 || (! TYPE_P (t)
713 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
714 return 0;
716 /* We can be passed either an expression or a type. This and the
717 language-specific routine may make mutually-recursive calls to each other
718 to figure out what to do. At each juncture, we see if this is a tree
719 that the language may need to handle specially. First handle things that
720 aren't types. */
721 if (! TYPE_P (t))
723 /* Give the language a chance to do something with this tree
724 before we look at it. */
725 STRIP_NOPS (t);
726 set = lang_hooks.get_alias_set (t);
727 if (set != -1)
728 return set;
730 /* Get the alias pointer-type to use or the outermost object
731 that we could have a pointer to. */
732 tree ptype = reference_alias_ptr_type_1 (&t);
733 if (ptype != NULL)
734 return get_deref_alias_set (ptype);
736 /* If we've already determined the alias set for a decl, just return
737 it. This is necessary for C++ anonymous unions, whose component
738 variables don't look like union members (boo!). */
739 if (TREE_CODE (t) == VAR_DECL
740 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
741 return MEM_ALIAS_SET (DECL_RTL (t));
743 /* Now all we care about is the type. */
744 t = TREE_TYPE (t);
747 /* Variant qualifiers don't affect the alias set, so get the main
748 variant. */
749 t = TYPE_MAIN_VARIANT (t);
751 /* Always use the canonical type as well. If this is a type that
752 requires structural comparisons to identify compatible types
753 use alias set zero. */
754 if (TYPE_STRUCTURAL_EQUALITY_P (t))
756 /* Allow the language to specify another alias set for this
757 type. */
758 set = lang_hooks.get_alias_set (t);
759 if (set != -1)
760 return set;
761 return 0;
764 t = TYPE_CANONICAL (t);
766 /* The canonical type should not require structural equality checks. */
767 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
769 /* If this is a type with a known alias set, return it. */
770 if (TYPE_ALIAS_SET_KNOWN_P (t))
771 return TYPE_ALIAS_SET (t);
773 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
774 if (!COMPLETE_TYPE_P (t))
776 /* For arrays with unknown size the conservative answer is the
777 alias set of the element type. */
778 if (TREE_CODE (t) == ARRAY_TYPE)
779 return get_alias_set (TREE_TYPE (t));
781 /* But return zero as a conservative answer for incomplete types. */
782 return 0;
785 /* See if the language has special handling for this type. */
786 set = lang_hooks.get_alias_set (t);
787 if (set != -1)
788 return set;
790 /* There are no objects of FUNCTION_TYPE, so there's no point in
791 using up an alias set for them. (There are, of course, pointers
792 and references to functions, but that's different.) */
793 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
794 set = 0;
796 /* Unless the language specifies otherwise, let vector types alias
797 their components. This avoids some nasty type punning issues in
798 normal usage. And indeed lets vectors be treated more like an
799 array slice. */
800 else if (TREE_CODE (t) == VECTOR_TYPE)
801 set = get_alias_set (TREE_TYPE (t));
803 /* Unless the language specifies otherwise, treat array types the
804 same as their components. This avoids the asymmetry we get
805 through recording the components. Consider accessing a
806 character(kind=1) through a reference to a character(kind=1)[1:1].
807 Or consider if we want to assign integer(kind=4)[0:D.1387] and
808 integer(kind=4)[4] the same alias set or not.
809 Just be pragmatic here and make sure the array and its element
810 type get the same alias set assigned. */
811 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
812 set = get_alias_set (TREE_TYPE (t));
814 /* From the former common C and C++ langhook implementation:
816 Unfortunately, there is no canonical form of a pointer type.
817 In particular, if we have `typedef int I', then `int *', and
818 `I *' are different types. So, we have to pick a canonical
819 representative. We do this below.
821 Technically, this approach is actually more conservative that
822 it needs to be. In particular, `const int *' and `int *'
823 should be in different alias sets, according to the C and C++
824 standard, since their types are not the same, and so,
825 technically, an `int **' and `const int **' cannot point at
826 the same thing.
828 But, the standard is wrong. In particular, this code is
829 legal C++:
831 int *ip;
832 int **ipp = &ip;
833 const int* const* cipp = ipp;
834 And, it doesn't make sense for that to be legal unless you
835 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
836 the pointed-to types. This issue has been reported to the
837 C++ committee.
839 In addition to the above canonicalization issue, with LTO
840 we should also canonicalize `T (*)[]' to `T *' avoiding
841 alias issues with pointer-to element types and pointer-to
842 array types.
844 Likewise we need to deal with the situation of incomplete
845 pointed-to types and make `*(struct X **)&a' and
846 `*(struct X {} **)&a' alias. Otherwise we will have to
847 guarantee that all pointer-to incomplete type variants
848 will be replaced by pointer-to complete type variants if
849 they are available.
851 With LTO the convenient situation of using `void *' to
852 access and store any pointer type will also become
853 more apparent (and `void *' is just another pointer-to
854 incomplete type). Assigning alias-set zero to `void *'
855 and all pointer-to incomplete types is a not appealing
856 solution. Assigning an effective alias-set zero only
857 affecting pointers might be - by recording proper subset
858 relationships of all pointer alias-sets.
860 Pointer-to function types are another grey area which
861 needs caution. Globbing them all into one alias-set
862 or the above effective zero set would work.
864 For now just assign the same alias-set to all pointers.
865 That's simple and avoids all the above problems. */
866 else if (POINTER_TYPE_P (t)
867 && t != ptr_type_node)
868 set = get_alias_set (ptr_type_node);
870 /* Otherwise make a new alias set for this type. */
871 else
873 /* Each canonical type gets its own alias set, so canonical types
874 shouldn't form a tree. It doesn't really matter for types
875 we handle specially above, so only check it where it possibly
876 would result in a bogus alias set. */
877 gcc_checking_assert (TYPE_CANONICAL (t) == t);
879 set = new_alias_set ();
882 TYPE_ALIAS_SET (t) = set;
884 /* If this is an aggregate type or a complex type, we must record any
885 component aliasing information. */
886 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
887 record_component_aliases (t);
889 return set;
892 /* Return a brand-new alias set. */
894 alias_set_type
895 new_alias_set (void)
897 if (flag_strict_aliasing)
899 if (alias_sets == 0)
900 vec_safe_push (alias_sets, (alias_set_entry) 0);
901 vec_safe_push (alias_sets, (alias_set_entry) 0);
902 return alias_sets->length () - 1;
904 else
905 return 0;
908 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
909 not everything that aliases SUPERSET also aliases SUBSET. For example,
910 in C, a store to an `int' can alias a load of a structure containing an
911 `int', and vice versa. But it can't alias a load of a 'double' member
912 of the same structure. Here, the structure would be the SUPERSET and
913 `int' the SUBSET. This relationship is also described in the comment at
914 the beginning of this file.
916 This function should be called only once per SUPERSET/SUBSET pair.
918 It is illegal for SUPERSET to be zero; everything is implicitly a
919 subset of alias set zero. */
921 void
922 record_alias_subset (alias_set_type superset, alias_set_type subset)
924 alias_set_entry superset_entry;
925 alias_set_entry subset_entry;
927 /* It is possible in complex type situations for both sets to be the same,
928 in which case we can ignore this operation. */
929 if (superset == subset)
930 return;
932 gcc_assert (superset);
934 superset_entry = get_alias_set_entry (superset);
935 if (superset_entry == 0)
937 /* Create an entry for the SUPERSET, so that we have a place to
938 attach the SUBSET. */
939 superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
940 superset_entry->alias_set = superset;
941 superset_entry->children
942 = splay_tree_new_ggc (splay_tree_compare_ints,
943 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
944 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
945 superset_entry->has_zero_child = 0;
946 (*alias_sets)[superset] = superset_entry;
949 if (subset == 0)
950 superset_entry->has_zero_child = 1;
951 else
953 subset_entry = get_alias_set_entry (subset);
954 /* If there is an entry for the subset, enter all of its children
955 (if they are not already present) as children of the SUPERSET. */
956 if (subset_entry)
958 if (subset_entry->has_zero_child)
959 superset_entry->has_zero_child = 1;
961 splay_tree_foreach (subset_entry->children, insert_subset_children,
962 superset_entry->children);
965 /* Enter the SUBSET itself as a child of the SUPERSET. */
966 splay_tree_insert (superset_entry->children,
967 (splay_tree_key) subset, 0);
971 /* Record that component types of TYPE, if any, are part of that type for
972 aliasing purposes. For record types, we only record component types
973 for fields that are not marked non-addressable. For array types, we
974 only record the component type if it is not marked non-aliased. */
976 void
977 record_component_aliases (tree type)
979 alias_set_type superset = get_alias_set (type);
980 tree field;
982 if (superset == 0)
983 return;
985 switch (TREE_CODE (type))
987 case RECORD_TYPE:
988 case UNION_TYPE:
989 case QUAL_UNION_TYPE:
990 /* Recursively record aliases for the base classes, if there are any. */
991 if (TYPE_BINFO (type))
993 int i;
994 tree binfo, base_binfo;
996 for (binfo = TYPE_BINFO (type), i = 0;
997 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
998 record_alias_subset (superset,
999 get_alias_set (BINFO_TYPE (base_binfo)));
1001 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1002 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1003 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
1004 break;
1006 case COMPLEX_TYPE:
1007 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1008 break;
1010 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1011 element type. */
1013 default:
1014 break;
1018 /* Allocate an alias set for use in storing and reading from the varargs
1019 spill area. */
1021 static GTY(()) alias_set_type varargs_set = -1;
1023 alias_set_type
1024 get_varargs_alias_set (void)
1026 #if 1
1027 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1028 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1029 consistently use the varargs alias set for loads from the varargs
1030 area. So don't use it anywhere. */
1031 return 0;
1032 #else
1033 if (varargs_set == -1)
1034 varargs_set = new_alias_set ();
1036 return varargs_set;
1037 #endif
1040 /* Likewise, but used for the fixed portions of the frame, e.g., register
1041 save areas. */
1043 static GTY(()) alias_set_type frame_set = -1;
1045 alias_set_type
1046 get_frame_alias_set (void)
1048 if (frame_set == -1)
1049 frame_set = new_alias_set ();
1051 return frame_set;
1054 /* Create a new, unique base with id ID. */
1056 static rtx
1057 unique_base_value (HOST_WIDE_INT id)
1059 return gen_rtx_ADDRESS (Pmode, id);
1062 /* Return true if accesses based on any other base value cannot alias
1063 those based on X. */
1065 static bool
1066 unique_base_value_p (rtx x)
1068 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1071 /* Return true if X is known to be a base value. */
1073 static bool
1074 known_base_value_p (rtx x)
1076 switch (GET_CODE (x))
1078 case LABEL_REF:
1079 case SYMBOL_REF:
1080 return true;
1082 case ADDRESS:
1083 /* Arguments may or may not be bases; we don't know for sure. */
1084 return GET_MODE (x) != VOIDmode;
1086 default:
1087 return false;
1091 /* Inside SRC, the source of a SET, find a base address. */
1093 static rtx
1094 find_base_value (rtx src)
1096 unsigned int regno;
1098 #if defined (FIND_BASE_TERM)
1099 /* Try machine-dependent ways to find the base term. */
1100 src = FIND_BASE_TERM (src);
1101 #endif
1103 switch (GET_CODE (src))
1105 case SYMBOL_REF:
1106 case LABEL_REF:
1107 return src;
1109 case REG:
1110 regno = REGNO (src);
1111 /* At the start of a function, argument registers have known base
1112 values which may be lost later. Returning an ADDRESS
1113 expression here allows optimization based on argument values
1114 even when the argument registers are used for other purposes. */
1115 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1116 return new_reg_base_value[regno];
1118 /* If a pseudo has a known base value, return it. Do not do this
1119 for non-fixed hard regs since it can result in a circular
1120 dependency chain for registers which have values at function entry.
1122 The test above is not sufficient because the scheduler may move
1123 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1124 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1125 && regno < vec_safe_length (reg_base_value))
1127 /* If we're inside init_alias_analysis, use new_reg_base_value
1128 to reduce the number of relaxation iterations. */
1129 if (new_reg_base_value && new_reg_base_value[regno]
1130 && DF_REG_DEF_COUNT (regno) == 1)
1131 return new_reg_base_value[regno];
1133 if ((*reg_base_value)[regno])
1134 return (*reg_base_value)[regno];
1137 return 0;
1139 case MEM:
1140 /* Check for an argument passed in memory. Only record in the
1141 copying-arguments block; it is too hard to track changes
1142 otherwise. */
1143 if (copying_arguments
1144 && (XEXP (src, 0) == arg_pointer_rtx
1145 || (GET_CODE (XEXP (src, 0)) == PLUS
1146 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1147 return arg_base_value;
1148 return 0;
1150 case CONST:
1151 src = XEXP (src, 0);
1152 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1153 break;
1155 /* ... fall through ... */
1157 case PLUS:
1158 case MINUS:
1160 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1162 /* If either operand is a REG that is a known pointer, then it
1163 is the base. */
1164 if (REG_P (src_0) && REG_POINTER (src_0))
1165 return find_base_value (src_0);
1166 if (REG_P (src_1) && REG_POINTER (src_1))
1167 return find_base_value (src_1);
1169 /* If either operand is a REG, then see if we already have
1170 a known value for it. */
1171 if (REG_P (src_0))
1173 temp = find_base_value (src_0);
1174 if (temp != 0)
1175 src_0 = temp;
1178 if (REG_P (src_1))
1180 temp = find_base_value (src_1);
1181 if (temp!= 0)
1182 src_1 = temp;
1185 /* If either base is named object or a special address
1186 (like an argument or stack reference), then use it for the
1187 base term. */
1188 if (src_0 != 0 && known_base_value_p (src_0))
1189 return src_0;
1191 if (src_1 != 0 && known_base_value_p (src_1))
1192 return src_1;
1194 /* Guess which operand is the base address:
1195 If either operand is a symbol, then it is the base. If
1196 either operand is a CONST_INT, then the other is the base. */
1197 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1198 return find_base_value (src_0);
1199 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1200 return find_base_value (src_1);
1202 return 0;
1205 case LO_SUM:
1206 /* The standard form is (lo_sum reg sym) so look only at the
1207 second operand. */
1208 return find_base_value (XEXP (src, 1));
1210 case AND:
1211 /* If the second operand is constant set the base
1212 address to the first operand. */
1213 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1214 return find_base_value (XEXP (src, 0));
1215 return 0;
1217 case TRUNCATE:
1218 /* As we do not know which address space the pointer is referring to, we can
1219 handle this only if the target does not support different pointer or
1220 address modes depending on the address space. */
1221 if (!target_default_pointer_address_modes_p ())
1222 break;
1223 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1224 break;
1225 /* Fall through. */
1226 case HIGH:
1227 case PRE_INC:
1228 case PRE_DEC:
1229 case POST_INC:
1230 case POST_DEC:
1231 case PRE_MODIFY:
1232 case POST_MODIFY:
1233 return find_base_value (XEXP (src, 0));
1235 case ZERO_EXTEND:
1236 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1237 /* As we do not know which address space the pointer is referring to, we can
1238 handle this only if the target does not support different pointer or
1239 address modes depending on the address space. */
1240 if (!target_default_pointer_address_modes_p ())
1241 break;
1244 rtx temp = find_base_value (XEXP (src, 0));
1246 if (temp != 0 && CONSTANT_P (temp))
1247 temp = convert_memory_address (Pmode, temp);
1249 return temp;
1252 default:
1253 break;
1256 return 0;
1259 /* Called from init_alias_analysis indirectly through note_stores,
1260 or directly if DEST is a register with a REG_NOALIAS note attached.
1261 SET is null in the latter case. */
1263 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1264 register N has been set in this function. */
1265 static sbitmap reg_seen;
1267 static void
1268 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1270 unsigned regno;
1271 rtx src;
1272 int n;
1274 if (!REG_P (dest))
1275 return;
1277 regno = REGNO (dest);
1279 gcc_checking_assert (regno < reg_base_value->length ());
1281 /* If this spans multiple hard registers, then we must indicate that every
1282 register has an unusable value. */
1283 if (regno < FIRST_PSEUDO_REGISTER)
1284 n = hard_regno_nregs[regno][GET_MODE (dest)];
1285 else
1286 n = 1;
1287 if (n != 1)
1289 while (--n >= 0)
1291 bitmap_set_bit (reg_seen, regno + n);
1292 new_reg_base_value[regno + n] = 0;
1294 return;
1297 if (set)
1299 /* A CLOBBER wipes out any old value but does not prevent a previously
1300 unset register from acquiring a base address (i.e. reg_seen is not
1301 set). */
1302 if (GET_CODE (set) == CLOBBER)
1304 new_reg_base_value[regno] = 0;
1305 return;
1307 src = SET_SRC (set);
1309 else
1311 /* There's a REG_NOALIAS note against DEST. */
1312 if (bitmap_bit_p (reg_seen, regno))
1314 new_reg_base_value[regno] = 0;
1315 return;
1317 bitmap_set_bit (reg_seen, regno);
1318 new_reg_base_value[regno] = unique_base_value (unique_id++);
1319 return;
1322 /* If this is not the first set of REGNO, see whether the new value
1323 is related to the old one. There are two cases of interest:
1325 (1) The register might be assigned an entirely new value
1326 that has the same base term as the original set.
1328 (2) The set might be a simple self-modification that
1329 cannot change REGNO's base value.
1331 If neither case holds, reject the original base value as invalid.
1332 Note that the following situation is not detected:
1334 extern int x, y; int *p = &x; p += (&y-&x);
1336 ANSI C does not allow computing the difference of addresses
1337 of distinct top level objects. */
1338 if (new_reg_base_value[regno] != 0
1339 && find_base_value (src) != new_reg_base_value[regno])
1340 switch (GET_CODE (src))
1342 case LO_SUM:
1343 case MINUS:
1344 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1345 new_reg_base_value[regno] = 0;
1346 break;
1347 case PLUS:
1348 /* If the value we add in the PLUS is also a valid base value,
1349 this might be the actual base value, and the original value
1350 an index. */
1352 rtx other = NULL_RTX;
1354 if (XEXP (src, 0) == dest)
1355 other = XEXP (src, 1);
1356 else if (XEXP (src, 1) == dest)
1357 other = XEXP (src, 0);
1359 if (! other || find_base_value (other))
1360 new_reg_base_value[regno] = 0;
1361 break;
1363 case AND:
1364 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1365 new_reg_base_value[regno] = 0;
1366 break;
1367 default:
1368 new_reg_base_value[regno] = 0;
1369 break;
1371 /* If this is the first set of a register, record the value. */
1372 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1373 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1374 new_reg_base_value[regno] = find_base_value (src);
1376 bitmap_set_bit (reg_seen, regno);
1379 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1380 using hard registers with non-null REG_BASE_VALUE for renaming. */
1382 get_reg_base_value (unsigned int regno)
1384 return (*reg_base_value)[regno];
1387 /* If a value is known for REGNO, return it. */
1390 get_reg_known_value (unsigned int regno)
1392 if (regno >= FIRST_PSEUDO_REGISTER)
1394 regno -= FIRST_PSEUDO_REGISTER;
1395 if (regno < vec_safe_length (reg_known_value))
1396 return (*reg_known_value)[regno];
1398 return NULL;
1401 /* Set it. */
1403 static void
1404 set_reg_known_value (unsigned int regno, rtx val)
1406 if (regno >= FIRST_PSEUDO_REGISTER)
1408 regno -= FIRST_PSEUDO_REGISTER;
1409 if (regno < vec_safe_length (reg_known_value))
1410 (*reg_known_value)[regno] = val;
1414 /* Similarly for reg_known_equiv_p. */
1416 bool
1417 get_reg_known_equiv_p (unsigned int regno)
1419 if (regno >= FIRST_PSEUDO_REGISTER)
1421 regno -= FIRST_PSEUDO_REGISTER;
1422 if (regno < vec_safe_length (reg_known_value))
1423 return bitmap_bit_p (reg_known_equiv_p, regno);
1425 return false;
1428 static void
1429 set_reg_known_equiv_p (unsigned int regno, bool val)
1431 if (regno >= FIRST_PSEUDO_REGISTER)
1433 regno -= FIRST_PSEUDO_REGISTER;
1434 if (regno < vec_safe_length (reg_known_value))
1436 if (val)
1437 bitmap_set_bit (reg_known_equiv_p, regno);
1438 else
1439 bitmap_clear_bit (reg_known_equiv_p, regno);
1445 /* Returns a canonical version of X, from the point of view alias
1446 analysis. (For example, if X is a MEM whose address is a register,
1447 and the register has a known value (say a SYMBOL_REF), then a MEM
1448 whose address is the SYMBOL_REF is returned.) */
1451 canon_rtx (rtx x)
1453 /* Recursively look for equivalences. */
1454 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1456 rtx t = get_reg_known_value (REGNO (x));
1457 if (t == x)
1458 return x;
1459 if (t)
1460 return canon_rtx (t);
1463 if (GET_CODE (x) == PLUS)
1465 rtx x0 = canon_rtx (XEXP (x, 0));
1466 rtx x1 = canon_rtx (XEXP (x, 1));
1468 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1470 if (CONST_INT_P (x0))
1471 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
1472 else if (CONST_INT_P (x1))
1473 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
1474 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1478 /* This gives us much better alias analysis when called from
1479 the loop optimizer. Note we want to leave the original
1480 MEM alone, but need to return the canonicalized MEM with
1481 all the flags with their original values. */
1482 else if (MEM_P (x))
1483 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1485 return x;
1488 /* Return 1 if X and Y are identical-looking rtx's.
1489 Expect that X and Y has been already canonicalized.
1491 We use the data in reg_known_value above to see if two registers with
1492 different numbers are, in fact, equivalent. */
1494 static int
1495 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1497 int i;
1498 int j;
1499 enum rtx_code code;
1500 const char *fmt;
1502 if (x == 0 && y == 0)
1503 return 1;
1504 if (x == 0 || y == 0)
1505 return 0;
1507 if (x == y)
1508 return 1;
1510 code = GET_CODE (x);
1511 /* Rtx's of different codes cannot be equal. */
1512 if (code != GET_CODE (y))
1513 return 0;
1515 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1516 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1518 if (GET_MODE (x) != GET_MODE (y))
1519 return 0;
1521 /* Some RTL can be compared without a recursive examination. */
1522 switch (code)
1524 case REG:
1525 return REGNO (x) == REGNO (y);
1527 case LABEL_REF:
1528 return XEXP (x, 0) == XEXP (y, 0);
1530 case SYMBOL_REF:
1531 return XSTR (x, 0) == XSTR (y, 0);
1533 case ENTRY_VALUE:
1534 /* This is magic, don't go through canonicalization et al. */
1535 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1537 case VALUE:
1538 CASE_CONST_UNIQUE:
1539 /* There's no need to compare the contents of CONST_DOUBLEs or
1540 CONST_INTs because pointer equality is a good enough
1541 comparison for these nodes. */
1542 return 0;
1544 default:
1545 break;
1548 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1549 if (code == PLUS)
1550 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1551 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1552 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1553 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1554 /* For commutative operations, the RTX match if the operand match in any
1555 order. Also handle the simple binary and unary cases without a loop. */
1556 if (COMMUTATIVE_P (x))
1558 rtx xop0 = canon_rtx (XEXP (x, 0));
1559 rtx yop0 = canon_rtx (XEXP (y, 0));
1560 rtx yop1 = canon_rtx (XEXP (y, 1));
1562 return ((rtx_equal_for_memref_p (xop0, yop0)
1563 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1564 || (rtx_equal_for_memref_p (xop0, yop1)
1565 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1567 else if (NON_COMMUTATIVE_P (x))
1569 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1570 canon_rtx (XEXP (y, 0)))
1571 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1572 canon_rtx (XEXP (y, 1))));
1574 else if (UNARY_P (x))
1575 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1576 canon_rtx (XEXP (y, 0)));
1578 /* Compare the elements. If any pair of corresponding elements
1579 fail to match, return 0 for the whole things.
1581 Limit cases to types which actually appear in addresses. */
1583 fmt = GET_RTX_FORMAT (code);
1584 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1586 switch (fmt[i])
1588 case 'i':
1589 if (XINT (x, i) != XINT (y, i))
1590 return 0;
1591 break;
1593 case 'E':
1594 /* Two vectors must have the same length. */
1595 if (XVECLEN (x, i) != XVECLEN (y, i))
1596 return 0;
1598 /* And the corresponding elements must match. */
1599 for (j = 0; j < XVECLEN (x, i); j++)
1600 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1601 canon_rtx (XVECEXP (y, i, j))) == 0)
1602 return 0;
1603 break;
1605 case 'e':
1606 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1607 canon_rtx (XEXP (y, i))) == 0)
1608 return 0;
1609 break;
1611 /* This can happen for asm operands. */
1612 case 's':
1613 if (strcmp (XSTR (x, i), XSTR (y, i)))
1614 return 0;
1615 break;
1617 /* This can happen for an asm which clobbers memory. */
1618 case '0':
1619 break;
1621 /* It is believed that rtx's at this level will never
1622 contain anything but integers and other rtx's,
1623 except for within LABEL_REFs and SYMBOL_REFs. */
1624 default:
1625 gcc_unreachable ();
1628 return 1;
1631 static rtx
1632 find_base_term (rtx x)
1634 cselib_val *val;
1635 struct elt_loc_list *l, *f;
1636 rtx ret;
1638 #if defined (FIND_BASE_TERM)
1639 /* Try machine-dependent ways to find the base term. */
1640 x = FIND_BASE_TERM (x);
1641 #endif
1643 switch (GET_CODE (x))
1645 case REG:
1646 return REG_BASE_VALUE (x);
1648 case TRUNCATE:
1649 /* As we do not know which address space the pointer is referring to, we can
1650 handle this only if the target does not support different pointer or
1651 address modes depending on the address space. */
1652 if (!target_default_pointer_address_modes_p ())
1653 return 0;
1654 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1655 return 0;
1656 /* Fall through. */
1657 case HIGH:
1658 case PRE_INC:
1659 case PRE_DEC:
1660 case POST_INC:
1661 case POST_DEC:
1662 case PRE_MODIFY:
1663 case POST_MODIFY:
1664 return find_base_term (XEXP (x, 0));
1666 case ZERO_EXTEND:
1667 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1668 /* As we do not know which address space the pointer is referring to, we can
1669 handle this only if the target does not support different pointer or
1670 address modes depending on the address space. */
1671 if (!target_default_pointer_address_modes_p ())
1672 return 0;
1675 rtx temp = find_base_term (XEXP (x, 0));
1677 if (temp != 0 && CONSTANT_P (temp))
1678 temp = convert_memory_address (Pmode, temp);
1680 return temp;
1683 case VALUE:
1684 val = CSELIB_VAL_PTR (x);
1685 ret = NULL_RTX;
1687 if (!val)
1688 return ret;
1690 if (cselib_sp_based_value_p (val))
1691 return static_reg_base_value[STACK_POINTER_REGNUM];
1693 f = val->locs;
1694 /* Temporarily reset val->locs to avoid infinite recursion. */
1695 val->locs = NULL;
1697 for (l = f; l; l = l->next)
1698 if (GET_CODE (l->loc) == VALUE
1699 && CSELIB_VAL_PTR (l->loc)->locs
1700 && !CSELIB_VAL_PTR (l->loc)->locs->next
1701 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1702 continue;
1703 else if ((ret = find_base_term (l->loc)) != 0)
1704 break;
1706 val->locs = f;
1707 return ret;
1709 case LO_SUM:
1710 /* The standard form is (lo_sum reg sym) so look only at the
1711 second operand. */
1712 return find_base_term (XEXP (x, 1));
1714 case CONST:
1715 x = XEXP (x, 0);
1716 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1717 return 0;
1718 /* Fall through. */
1719 case PLUS:
1720 case MINUS:
1722 rtx tmp1 = XEXP (x, 0);
1723 rtx tmp2 = XEXP (x, 1);
1725 /* This is a little bit tricky since we have to determine which of
1726 the two operands represents the real base address. Otherwise this
1727 routine may return the index register instead of the base register.
1729 That may cause us to believe no aliasing was possible, when in
1730 fact aliasing is possible.
1732 We use a few simple tests to guess the base register. Additional
1733 tests can certainly be added. For example, if one of the operands
1734 is a shift or multiply, then it must be the index register and the
1735 other operand is the base register. */
1737 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1738 return find_base_term (tmp2);
1740 /* If either operand is known to be a pointer, then prefer it
1741 to determine the base term. */
1742 if (REG_P (tmp1) && REG_POINTER (tmp1))
1744 else if (REG_P (tmp2) && REG_POINTER (tmp2))
1746 rtx tem = tmp1;
1747 tmp1 = tmp2;
1748 tmp2 = tem;
1751 /* Go ahead and find the base term for both operands. If either base
1752 term is from a pointer or is a named object or a special address
1753 (like an argument or stack reference), then use it for the
1754 base term. */
1755 rtx base = find_base_term (tmp1);
1756 if (base != NULL_RTX
1757 && ((REG_P (tmp1) && REG_POINTER (tmp1))
1758 || known_base_value_p (base)))
1759 return base;
1760 base = find_base_term (tmp2);
1761 if (base != NULL_RTX
1762 && ((REG_P (tmp2) && REG_POINTER (tmp2))
1763 || known_base_value_p (base)))
1764 return base;
1766 /* We could not determine which of the two operands was the
1767 base register and which was the index. So we can determine
1768 nothing from the base alias check. */
1769 return 0;
1772 case AND:
1773 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1774 return find_base_term (XEXP (x, 0));
1775 return 0;
1777 case SYMBOL_REF:
1778 case LABEL_REF:
1779 return x;
1781 default:
1782 return 0;
1786 /* Return true if accesses to address X may alias accesses based
1787 on the stack pointer. */
1789 bool
1790 may_be_sp_based_p (rtx x)
1792 rtx base = find_base_term (x);
1793 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
1796 /* Return 0 if the addresses X and Y are known to point to different
1797 objects, 1 if they might be pointers to the same object. */
1799 static int
1800 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
1801 enum machine_mode x_mode, enum machine_mode y_mode)
1803 /* If the address itself has no known base see if a known equivalent
1804 value has one. If either address still has no known base, nothing
1805 is known about aliasing. */
1806 if (x_base == 0)
1808 rtx x_c;
1810 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1811 return 1;
1813 x_base = find_base_term (x_c);
1814 if (x_base == 0)
1815 return 1;
1818 if (y_base == 0)
1820 rtx y_c;
1821 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1822 return 1;
1824 y_base = find_base_term (y_c);
1825 if (y_base == 0)
1826 return 1;
1829 /* If the base addresses are equal nothing is known about aliasing. */
1830 if (rtx_equal_p (x_base, y_base))
1831 return 1;
1833 /* The base addresses are different expressions. If they are not accessed
1834 via AND, there is no conflict. We can bring knowledge of object
1835 alignment into play here. For example, on alpha, "char a, b;" can
1836 alias one another, though "char a; long b;" cannot. AND addesses may
1837 implicitly alias surrounding objects; i.e. unaligned access in DImode
1838 via AND address can alias all surrounding object types except those
1839 with aligment 8 or higher. */
1840 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1841 return 1;
1842 if (GET_CODE (x) == AND
1843 && (!CONST_INT_P (XEXP (x, 1))
1844 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1845 return 1;
1846 if (GET_CODE (y) == AND
1847 && (!CONST_INT_P (XEXP (y, 1))
1848 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1849 return 1;
1851 /* Differing symbols not accessed via AND never alias. */
1852 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1853 return 0;
1855 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
1856 return 0;
1858 return 1;
1861 /* Callback for for_each_rtx, that returns 1 upon encountering a VALUE
1862 whose UID is greater than the int uid that D points to. */
1864 static int
1865 refs_newer_value_cb (rtx *x, void *d)
1867 if (GET_CODE (*x) == VALUE && CSELIB_VAL_PTR (*x)->uid > *(int *)d)
1868 return 1;
1870 return 0;
1873 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
1874 that of V. */
1876 static bool
1877 refs_newer_value_p (rtx expr, rtx v)
1879 int minuid = CSELIB_VAL_PTR (v)->uid;
1881 return for_each_rtx (&expr, refs_newer_value_cb, &minuid);
1884 /* Convert the address X into something we can use. This is done by returning
1885 it unchanged unless it is a value; in the latter case we call cselib to get
1886 a more useful rtx. */
1889 get_addr (rtx x)
1891 cselib_val *v;
1892 struct elt_loc_list *l;
1894 if (GET_CODE (x) != VALUE)
1895 return x;
1896 v = CSELIB_VAL_PTR (x);
1897 if (v)
1899 bool have_equivs = cselib_have_permanent_equivalences ();
1900 if (have_equivs)
1901 v = canonical_cselib_val (v);
1902 for (l = v->locs; l; l = l->next)
1903 if (CONSTANT_P (l->loc))
1904 return l->loc;
1905 for (l = v->locs; l; l = l->next)
1906 if (!REG_P (l->loc) && !MEM_P (l->loc)
1907 /* Avoid infinite recursion when potentially dealing with
1908 var-tracking artificial equivalences, by skipping the
1909 equivalences themselves, and not choosing expressions
1910 that refer to newer VALUEs. */
1911 && (!have_equivs
1912 || (GET_CODE (l->loc) != VALUE
1913 && !refs_newer_value_p (l->loc, x))))
1914 return l->loc;
1915 if (have_equivs)
1917 for (l = v->locs; l; l = l->next)
1918 if (REG_P (l->loc)
1919 || (GET_CODE (l->loc) != VALUE
1920 && !refs_newer_value_p (l->loc, x)))
1921 return l->loc;
1922 /* Return the canonical value. */
1923 return v->val_rtx;
1925 if (v->locs)
1926 return v->locs->loc;
1928 return x;
1931 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1932 where SIZE is the size in bytes of the memory reference. If ADDR
1933 is not modified by the memory reference then ADDR is returned. */
1935 static rtx
1936 addr_side_effect_eval (rtx addr, int size, int n_refs)
1938 int offset = 0;
1940 switch (GET_CODE (addr))
1942 case PRE_INC:
1943 offset = (n_refs + 1) * size;
1944 break;
1945 case PRE_DEC:
1946 offset = -(n_refs + 1) * size;
1947 break;
1948 case POST_INC:
1949 offset = n_refs * size;
1950 break;
1951 case POST_DEC:
1952 offset = -n_refs * size;
1953 break;
1955 default:
1956 return addr;
1959 if (offset)
1960 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1961 gen_int_mode (offset, GET_MODE (addr)));
1962 else
1963 addr = XEXP (addr, 0);
1964 addr = canon_rtx (addr);
1966 return addr;
1969 /* Return TRUE if an object X sized at XSIZE bytes and another object
1970 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
1971 any of the sizes is zero, assume an overlap, otherwise use the
1972 absolute value of the sizes as the actual sizes. */
1974 static inline bool
1975 offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
1977 return (xsize == 0 || ysize == 0
1978 || (c >= 0
1979 ? (abs (xsize) > c)
1980 : (abs (ysize) > -c)));
1983 /* Return one if X and Y (memory addresses) reference the
1984 same location in memory or if the references overlap.
1985 Return zero if they do not overlap, else return
1986 minus one in which case they still might reference the same location.
1988 C is an offset accumulator. When
1989 C is nonzero, we are testing aliases between X and Y + C.
1990 XSIZE is the size in bytes of the X reference,
1991 similarly YSIZE is the size in bytes for Y.
1992 Expect that canon_rtx has been already called for X and Y.
1994 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1995 referenced (the reference was BLKmode), so make the most pessimistic
1996 assumptions.
1998 If XSIZE or YSIZE is negative, we may access memory outside the object
1999 being referenced as a side effect. This can happen when using AND to
2000 align memory references, as is done on the Alpha.
2002 Nice to notice that varying addresses cannot conflict with fp if no
2003 local variables had their addresses taken, but that's too hard now.
2005 ??? Contrary to the tree alias oracle this does not return
2006 one for X + non-constant and Y + non-constant when X and Y are equal.
2007 If that is fixed the TBAA hack for union type-punning can be removed. */
2009 static int
2010 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
2012 if (GET_CODE (x) == VALUE)
2014 if (REG_P (y))
2016 struct elt_loc_list *l = NULL;
2017 if (CSELIB_VAL_PTR (x))
2018 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2019 l; l = l->next)
2020 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2021 break;
2022 if (l)
2023 x = y;
2024 else
2025 x = get_addr (x);
2027 /* Don't call get_addr if y is the same VALUE. */
2028 else if (x != y)
2029 x = get_addr (x);
2031 if (GET_CODE (y) == VALUE)
2033 if (REG_P (x))
2035 struct elt_loc_list *l = NULL;
2036 if (CSELIB_VAL_PTR (y))
2037 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2038 l; l = l->next)
2039 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2040 break;
2041 if (l)
2042 y = x;
2043 else
2044 y = get_addr (y);
2046 /* Don't call get_addr if x is the same VALUE. */
2047 else if (y != x)
2048 y = get_addr (y);
2050 if (GET_CODE (x) == HIGH)
2051 x = XEXP (x, 0);
2052 else if (GET_CODE (x) == LO_SUM)
2053 x = XEXP (x, 1);
2054 else
2055 x = addr_side_effect_eval (x, abs (xsize), 0);
2056 if (GET_CODE (y) == HIGH)
2057 y = XEXP (y, 0);
2058 else if (GET_CODE (y) == LO_SUM)
2059 y = XEXP (y, 1);
2060 else
2061 y = addr_side_effect_eval (y, abs (ysize), 0);
2063 if (rtx_equal_for_memref_p (x, y))
2065 return offset_overlap_p (c, xsize, ysize);
2068 /* This code used to check for conflicts involving stack references and
2069 globals but the base address alias code now handles these cases. */
2071 if (GET_CODE (x) == PLUS)
2073 /* The fact that X is canonicalized means that this
2074 PLUS rtx is canonicalized. */
2075 rtx x0 = XEXP (x, 0);
2076 rtx x1 = XEXP (x, 1);
2078 if (GET_CODE (y) == PLUS)
2080 /* The fact that Y is canonicalized means that this
2081 PLUS rtx is canonicalized. */
2082 rtx y0 = XEXP (y, 0);
2083 rtx y1 = XEXP (y, 1);
2085 if (rtx_equal_for_memref_p (x1, y1))
2086 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2087 if (rtx_equal_for_memref_p (x0, y0))
2088 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2089 if (CONST_INT_P (x1))
2091 if (CONST_INT_P (y1))
2092 return memrefs_conflict_p (xsize, x0, ysize, y0,
2093 c - INTVAL (x1) + INTVAL (y1));
2094 else
2095 return memrefs_conflict_p (xsize, x0, ysize, y,
2096 c - INTVAL (x1));
2098 else if (CONST_INT_P (y1))
2099 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2101 return -1;
2103 else if (CONST_INT_P (x1))
2104 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2106 else if (GET_CODE (y) == PLUS)
2108 /* The fact that Y is canonicalized means that this
2109 PLUS rtx is canonicalized. */
2110 rtx y0 = XEXP (y, 0);
2111 rtx y1 = XEXP (y, 1);
2113 if (CONST_INT_P (y1))
2114 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2115 else
2116 return -1;
2119 if (GET_CODE (x) == GET_CODE (y))
2120 switch (GET_CODE (x))
2122 case MULT:
2124 /* Handle cases where we expect the second operands to be the
2125 same, and check only whether the first operand would conflict
2126 or not. */
2127 rtx x0, y0;
2128 rtx x1 = canon_rtx (XEXP (x, 1));
2129 rtx y1 = canon_rtx (XEXP (y, 1));
2130 if (! rtx_equal_for_memref_p (x1, y1))
2131 return -1;
2132 x0 = canon_rtx (XEXP (x, 0));
2133 y0 = canon_rtx (XEXP (y, 0));
2134 if (rtx_equal_for_memref_p (x0, y0))
2135 return offset_overlap_p (c, xsize, ysize);
2137 /* Can't properly adjust our sizes. */
2138 if (!CONST_INT_P (x1))
2139 return -1;
2140 xsize /= INTVAL (x1);
2141 ysize /= INTVAL (x1);
2142 c /= INTVAL (x1);
2143 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2146 default:
2147 break;
2150 /* Deal with alignment ANDs by adjusting offset and size so as to
2151 cover the maximum range, without taking any previously known
2152 alignment into account. Make a size negative after such an
2153 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2154 assume a potential overlap, because they may end up in contiguous
2155 memory locations and the stricter-alignment access may span over
2156 part of both. */
2157 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2159 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2160 unsigned HOST_WIDE_INT uc = sc;
2161 if (sc < 0 && -uc == (uc & -uc))
2163 if (xsize > 0)
2164 xsize = -xsize;
2165 if (xsize)
2166 xsize += sc + 1;
2167 c -= sc + 1;
2168 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2169 ysize, y, c);
2172 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2174 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2175 unsigned HOST_WIDE_INT uc = sc;
2176 if (sc < 0 && -uc == (uc & -uc))
2178 if (ysize > 0)
2179 ysize = -ysize;
2180 if (ysize)
2181 ysize += sc + 1;
2182 c += sc + 1;
2183 return memrefs_conflict_p (xsize, x,
2184 ysize, canon_rtx (XEXP (y, 0)), c);
2188 if (CONSTANT_P (x))
2190 if (CONST_INT_P (x) && CONST_INT_P (y))
2192 c += (INTVAL (y) - INTVAL (x));
2193 return offset_overlap_p (c, xsize, ysize);
2196 if (GET_CODE (x) == CONST)
2198 if (GET_CODE (y) == CONST)
2199 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2200 ysize, canon_rtx (XEXP (y, 0)), c);
2201 else
2202 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2203 ysize, y, c);
2205 if (GET_CODE (y) == CONST)
2206 return memrefs_conflict_p (xsize, x, ysize,
2207 canon_rtx (XEXP (y, 0)), c);
2209 /* Assume a potential overlap for symbolic addresses that went
2210 through alignment adjustments (i.e., that have negative
2211 sizes), because we can't know how far they are from each
2212 other. */
2213 if (CONSTANT_P (y))
2214 return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
2216 return -1;
2219 return -1;
2222 /* Functions to compute memory dependencies.
2224 Since we process the insns in execution order, we can build tables
2225 to keep track of what registers are fixed (and not aliased), what registers
2226 are varying in known ways, and what registers are varying in unknown
2227 ways.
2229 If both memory references are volatile, then there must always be a
2230 dependence between the two references, since their order can not be
2231 changed. A volatile and non-volatile reference can be interchanged
2232 though.
2234 We also must allow AND addresses, because they may generate accesses
2235 outside the object being referenced. This is used to generate aligned
2236 addresses from unaligned addresses, for instance, the alpha
2237 storeqi_unaligned pattern. */
2239 /* Read dependence: X is read after read in MEM takes place. There can
2240 only be a dependence here if both reads are volatile, or if either is
2241 an explicit barrier. */
2244 read_dependence (const_rtx mem, const_rtx x)
2246 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2247 return true;
2248 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2249 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2250 return true;
2251 return false;
2254 /* Return true if we can determine that the fields referenced cannot
2255 overlap for any pair of objects. */
2257 static bool
2258 nonoverlapping_component_refs_p (const_rtx rtlx, const_rtx rtly)
2260 const_tree x = MEM_EXPR (rtlx), y = MEM_EXPR (rtly);
2261 const_tree fieldx, fieldy, typex, typey, orig_y;
2263 if (!flag_strict_aliasing
2264 || !x || !y
2265 || TREE_CODE (x) != COMPONENT_REF
2266 || TREE_CODE (y) != COMPONENT_REF)
2267 return false;
2271 /* The comparison has to be done at a common type, since we don't
2272 know how the inheritance hierarchy works. */
2273 orig_y = y;
2276 fieldx = TREE_OPERAND (x, 1);
2277 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2279 y = orig_y;
2282 fieldy = TREE_OPERAND (y, 1);
2283 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2285 if (typex == typey)
2286 goto found;
2288 y = TREE_OPERAND (y, 0);
2290 while (y && TREE_CODE (y) == COMPONENT_REF);
2292 x = TREE_OPERAND (x, 0);
2294 while (x && TREE_CODE (x) == COMPONENT_REF);
2295 /* Never found a common type. */
2296 return false;
2298 found:
2299 /* If we're left with accessing different fields of a structure, then no
2300 possible overlap, unless they are both bitfields. */
2301 if (TREE_CODE (typex) == RECORD_TYPE && fieldx != fieldy)
2302 return !(DECL_BIT_FIELD (fieldx) && DECL_BIT_FIELD (fieldy));
2304 /* The comparison on the current field failed. If we're accessing
2305 a very nested structure, look at the next outer level. */
2306 x = TREE_OPERAND (x, 0);
2307 y = TREE_OPERAND (y, 0);
2309 while (x && y
2310 && TREE_CODE (x) == COMPONENT_REF
2311 && TREE_CODE (y) == COMPONENT_REF);
2313 return false;
2316 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2318 static tree
2319 decl_for_component_ref (tree x)
2323 x = TREE_OPERAND (x, 0);
2325 while (x && TREE_CODE (x) == COMPONENT_REF);
2327 return x && DECL_P (x) ? x : NULL_TREE;
2330 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2331 for the offset of the field reference. *KNOWN_P says whether the
2332 offset is known. */
2334 static void
2335 adjust_offset_for_component_ref (tree x, bool *known_p,
2336 HOST_WIDE_INT *offset)
2338 if (!*known_p)
2339 return;
2342 tree xoffset = component_ref_field_offset (x);
2343 tree field = TREE_OPERAND (x, 1);
2345 if (! tree_fits_uhwi_p (xoffset))
2347 *known_p = false;
2348 return;
2350 *offset += (tree_to_uhwi (xoffset)
2351 + (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2352 / BITS_PER_UNIT));
2354 x = TREE_OPERAND (x, 0);
2356 while (x && TREE_CODE (x) == COMPONENT_REF);
2359 /* Return nonzero if we can determine the exprs corresponding to memrefs
2360 X and Y and they do not overlap.
2361 If LOOP_VARIANT is set, skip offset-based disambiguation */
2364 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2366 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2367 rtx rtlx, rtly;
2368 rtx basex, basey;
2369 bool moffsetx_known_p, moffsety_known_p;
2370 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2371 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2373 /* Unless both have exprs, we can't tell anything. */
2374 if (exprx == 0 || expry == 0)
2375 return 0;
2377 /* For spill-slot accesses make sure we have valid offsets. */
2378 if ((exprx == get_spill_slot_decl (false)
2379 && ! MEM_OFFSET_KNOWN_P (x))
2380 || (expry == get_spill_slot_decl (false)
2381 && ! MEM_OFFSET_KNOWN_P (y)))
2382 return 0;
2384 /* If the field reference test failed, look at the DECLs involved. */
2385 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2386 if (moffsetx_known_p)
2387 moffsetx = MEM_OFFSET (x);
2388 if (TREE_CODE (exprx) == COMPONENT_REF)
2390 tree t = decl_for_component_ref (exprx);
2391 if (! t)
2392 return 0;
2393 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2394 exprx = t;
2397 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2398 if (moffsety_known_p)
2399 moffsety = MEM_OFFSET (y);
2400 if (TREE_CODE (expry) == COMPONENT_REF)
2402 tree t = decl_for_component_ref (expry);
2403 if (! t)
2404 return 0;
2405 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2406 expry = t;
2409 if (! DECL_P (exprx) || ! DECL_P (expry))
2410 return 0;
2412 /* With invalid code we can end up storing into the constant pool.
2413 Bail out to avoid ICEing when creating RTL for this.
2414 See gfortran.dg/lto/20091028-2_0.f90. */
2415 if (TREE_CODE (exprx) == CONST_DECL
2416 || TREE_CODE (expry) == CONST_DECL)
2417 return 1;
2419 rtlx = DECL_RTL (exprx);
2420 rtly = DECL_RTL (expry);
2422 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2423 can't overlap unless they are the same because we never reuse that part
2424 of the stack frame used for locals for spilled pseudos. */
2425 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2426 && ! rtx_equal_p (rtlx, rtly))
2427 return 1;
2429 /* If we have MEMs referring to different address spaces (which can
2430 potentially overlap), we cannot easily tell from the addresses
2431 whether the references overlap. */
2432 if (MEM_P (rtlx) && MEM_P (rtly)
2433 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2434 return 0;
2436 /* Get the base and offsets of both decls. If either is a register, we
2437 know both are and are the same, so use that as the base. The only
2438 we can avoid overlap is if we can deduce that they are nonoverlapping
2439 pieces of that decl, which is very rare. */
2440 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2441 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2442 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2444 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2445 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2446 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2448 /* If the bases are different, we know they do not overlap if both
2449 are constants or if one is a constant and the other a pointer into the
2450 stack frame. Otherwise a different base means we can't tell if they
2451 overlap or not. */
2452 if (! rtx_equal_p (basex, basey))
2453 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2454 || (CONSTANT_P (basex) && REG_P (basey)
2455 && REGNO_PTR_FRAME_P (REGNO (basey)))
2456 || (CONSTANT_P (basey) && REG_P (basex)
2457 && REGNO_PTR_FRAME_P (REGNO (basex))));
2459 /* Offset based disambiguation not appropriate for loop invariant */
2460 if (loop_invariant)
2461 return 0;
2463 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2464 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2465 : -1);
2466 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2467 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2468 : -1);
2470 /* If we have an offset for either memref, it can update the values computed
2471 above. */
2472 if (moffsetx_known_p)
2473 offsetx += moffsetx, sizex -= moffsetx;
2474 if (moffsety_known_p)
2475 offsety += moffsety, sizey -= moffsety;
2477 /* If a memref has both a size and an offset, we can use the smaller size.
2478 We can't do this if the offset isn't known because we must view this
2479 memref as being anywhere inside the DECL's MEM. */
2480 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2481 sizex = MEM_SIZE (x);
2482 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2483 sizey = MEM_SIZE (y);
2485 /* Put the values of the memref with the lower offset in X's values. */
2486 if (offsetx > offsety)
2488 tem = offsetx, offsetx = offsety, offsety = tem;
2489 tem = sizex, sizex = sizey, sizey = tem;
2492 /* If we don't know the size of the lower-offset value, we can't tell
2493 if they conflict. Otherwise, we do the test. */
2494 return sizex >= 0 && offsety >= offsetx + sizex;
2497 /* Helper for true_dependence and canon_true_dependence.
2498 Checks for true dependence: X is read after store in MEM takes place.
2500 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2501 NULL_RTX, and the canonical addresses of MEM and X are both computed
2502 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2504 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2506 Returns 1 if there is a true dependence, 0 otherwise. */
2508 static int
2509 true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2510 const_rtx x, rtx x_addr, bool mem_canonicalized)
2512 rtx true_mem_addr;
2513 rtx base;
2514 int ret;
2516 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2517 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2519 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2520 return 1;
2522 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2523 This is used in epilogue deallocation functions, and in cselib. */
2524 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2525 return 1;
2526 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2527 return 1;
2528 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2529 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2530 return 1;
2532 if (! x_addr)
2533 x_addr = XEXP (x, 0);
2534 x_addr = get_addr (x_addr);
2536 if (! mem_addr)
2538 mem_addr = XEXP (mem, 0);
2539 if (mem_mode == VOIDmode)
2540 mem_mode = GET_MODE (mem);
2542 true_mem_addr = get_addr (mem_addr);
2544 /* Read-only memory is by definition never modified, and therefore can't
2545 conflict with anything. However, don't assume anything when AND
2546 addresses are involved and leave to the code below to determine
2547 dependence. We don't expect to find read-only set on MEM, but
2548 stupid user tricks can produce them, so don't die. */
2549 if (MEM_READONLY_P (x)
2550 && GET_CODE (x_addr) != AND
2551 && GET_CODE (true_mem_addr) != AND)
2552 return 0;
2554 /* If we have MEMs referring to different address spaces (which can
2555 potentially overlap), we cannot easily tell from the addresses
2556 whether the references overlap. */
2557 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2558 return 1;
2560 base = find_base_term (x_addr);
2561 if (base && (GET_CODE (base) == LABEL_REF
2562 || (GET_CODE (base) == SYMBOL_REF
2563 && CONSTANT_POOL_ADDRESS_P (base))))
2564 return 0;
2566 rtx mem_base = find_base_term (true_mem_addr);
2567 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
2568 GET_MODE (x), mem_mode))
2569 return 0;
2571 x_addr = canon_rtx (x_addr);
2572 if (!mem_canonicalized)
2573 mem_addr = canon_rtx (true_mem_addr);
2575 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2576 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2577 return ret;
2579 if (mems_in_disjoint_alias_sets_p (x, mem))
2580 return 0;
2582 if (nonoverlapping_memrefs_p (mem, x, false))
2583 return 0;
2585 if (nonoverlapping_component_refs_p (mem, x))
2586 return 0;
2588 return rtx_refs_may_alias_p (x, mem, true);
2591 /* True dependence: X is read after store in MEM takes place. */
2594 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x)
2596 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2597 x, NULL_RTX, /*mem_canonicalized=*/false);
2600 /* Canonical true dependence: X is read after store in MEM takes place.
2601 Variant of true_dependence which assumes MEM has already been
2602 canonicalized (hence we no longer do that here).
2603 The mem_addr argument has been added, since true_dependence_1 computed
2604 this value prior to canonicalizing. */
2607 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2608 const_rtx x, rtx x_addr)
2610 return true_dependence_1 (mem, mem_mode, mem_addr,
2611 x, x_addr, /*mem_canonicalized=*/true);
2614 /* Returns nonzero if a write to X might alias a previous read from
2615 (or, if WRITEP is true, a write to) MEM.
2616 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2617 and X_MODE the mode for that access.
2618 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2620 static int
2621 write_dependence_p (const_rtx mem,
2622 const_rtx x, enum machine_mode x_mode, rtx x_addr,
2623 bool mem_canonicalized, bool x_canonicalized, bool writep)
2625 rtx mem_addr;
2626 rtx true_mem_addr, true_x_addr;
2627 rtx base;
2628 int ret;
2630 gcc_checking_assert (x_canonicalized
2631 ? (x_addr != NULL_RTX && x_mode != VOIDmode)
2632 : (x_addr == NULL_RTX && x_mode == VOIDmode));
2634 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2635 return 1;
2637 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2638 This is used in epilogue deallocation functions. */
2639 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2640 return 1;
2641 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2642 return 1;
2643 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2644 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2645 return 1;
2647 if (!x_addr)
2648 x_addr = XEXP (x, 0);
2649 true_x_addr = get_addr (x_addr);
2651 mem_addr = XEXP (mem, 0);
2652 true_mem_addr = get_addr (mem_addr);
2654 /* A read from read-only memory can't conflict with read-write memory.
2655 Don't assume anything when AND addresses are involved and leave to
2656 the code below to determine dependence. */
2657 if (!writep
2658 && MEM_READONLY_P (mem)
2659 && GET_CODE (true_x_addr) != AND
2660 && GET_CODE (true_mem_addr) != AND)
2661 return 0;
2663 /* If we have MEMs referring to different address spaces (which can
2664 potentially overlap), we cannot easily tell from the addresses
2665 whether the references overlap. */
2666 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2667 return 1;
2669 base = find_base_term (true_mem_addr);
2670 if (! writep
2671 && base
2672 && (GET_CODE (base) == LABEL_REF
2673 || (GET_CODE (base) == SYMBOL_REF
2674 && CONSTANT_POOL_ADDRESS_P (base))))
2675 return 0;
2677 rtx x_base = find_base_term (true_x_addr);
2678 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
2679 GET_MODE (x), GET_MODE (mem)))
2680 return 0;
2682 if (!x_canonicalized)
2684 x_addr = canon_rtx (true_x_addr);
2685 x_mode = GET_MODE (x);
2687 if (!mem_canonicalized)
2688 mem_addr = canon_rtx (true_mem_addr);
2690 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2691 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
2692 return ret;
2694 if (nonoverlapping_memrefs_p (x, mem, false))
2695 return 0;
2697 return rtx_refs_may_alias_p (x, mem, false);
2700 /* Anti dependence: X is written after read in MEM takes place. */
2703 anti_dependence (const_rtx mem, const_rtx x)
2705 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
2706 /*mem_canonicalized=*/false,
2707 /*x_canonicalized*/false, /*writep=*/false);
2710 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
2711 Also, consider X in X_MODE (which might be from an enclosing
2712 STRICT_LOW_PART / ZERO_EXTRACT).
2713 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2716 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
2717 const_rtx x, enum machine_mode x_mode, rtx x_addr)
2719 return write_dependence_p (mem, x, x_mode, x_addr,
2720 mem_canonicalized, /*x_canonicalized=*/true,
2721 /*writep=*/false);
2724 /* Output dependence: X is written after store in MEM takes place. */
2727 output_dependence (const_rtx mem, const_rtx x)
2729 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
2730 /*mem_canonicalized=*/false,
2731 /*x_canonicalized*/false, /*writep=*/true);
2736 /* Check whether X may be aliased with MEM. Don't do offset-based
2737 memory disambiguation & TBAA. */
2739 may_alias_p (const_rtx mem, const_rtx x)
2741 rtx x_addr, mem_addr;
2743 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2744 return 1;
2746 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2747 This is used in epilogue deallocation functions. */
2748 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2749 return 1;
2750 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2751 return 1;
2752 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2753 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2754 return 1;
2756 x_addr = XEXP (x, 0);
2757 x_addr = get_addr (x_addr);
2759 mem_addr = XEXP (mem, 0);
2760 mem_addr = get_addr (mem_addr);
2762 /* Read-only memory is by definition never modified, and therefore can't
2763 conflict with anything. However, don't assume anything when AND
2764 addresses are involved and leave to the code below to determine
2765 dependence. We don't expect to find read-only set on MEM, but
2766 stupid user tricks can produce them, so don't die. */
2767 if (MEM_READONLY_P (x)
2768 && GET_CODE (x_addr) != AND
2769 && GET_CODE (mem_addr) != AND)
2770 return 0;
2772 /* If we have MEMs referring to different address spaces (which can
2773 potentially overlap), we cannot easily tell from the addresses
2774 whether the references overlap. */
2775 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2776 return 1;
2778 rtx x_base = find_base_term (x_addr);
2779 rtx mem_base = find_base_term (mem_addr);
2780 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
2781 GET_MODE (x), GET_MODE (mem_addr)))
2782 return 0;
2784 if (nonoverlapping_memrefs_p (mem, x, true))
2785 return 0;
2787 /* TBAA not valid for loop_invarint */
2788 return rtx_refs_may_alias_p (x, mem, false);
2791 void
2792 init_alias_target (void)
2794 int i;
2796 if (!arg_base_value)
2797 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
2799 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2801 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2802 /* Check whether this register can hold an incoming pointer
2803 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2804 numbers, so translate if necessary due to register windows. */
2805 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2806 && HARD_REGNO_MODE_OK (i, Pmode))
2807 static_reg_base_value[i] = arg_base_value;
2809 static_reg_base_value[STACK_POINTER_REGNUM]
2810 = unique_base_value (UNIQUE_BASE_VALUE_SP);
2811 static_reg_base_value[ARG_POINTER_REGNUM]
2812 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
2813 static_reg_base_value[FRAME_POINTER_REGNUM]
2814 = unique_base_value (UNIQUE_BASE_VALUE_FP);
2815 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2816 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2817 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
2818 #endif
2821 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2822 to be memory reference. */
2823 static bool memory_modified;
2824 static void
2825 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2827 if (MEM_P (x))
2829 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2830 memory_modified = true;
2835 /* Return true when INSN possibly modify memory contents of MEM
2836 (i.e. address can be modified). */
2837 bool
2838 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2840 if (!INSN_P (insn))
2841 return false;
2842 memory_modified = false;
2843 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2844 return memory_modified;
2847 /* Return TRUE if the destination of a set is rtx identical to
2848 ITEM. */
2849 static inline bool
2850 set_dest_equal_p (const_rtx set, const_rtx item)
2852 rtx dest = SET_DEST (set);
2853 return rtx_equal_p (dest, item);
2856 /* Like memory_modified_in_insn_p, but return TRUE if INSN will
2857 *DEFINITELY* modify the memory contents of MEM. */
2858 bool
2859 memory_must_be_modified_in_insn_p (const_rtx mem, const_rtx insn)
2861 if (!INSN_P (insn))
2862 return false;
2863 insn = PATTERN (insn);
2864 if (GET_CODE (insn) == SET)
2865 return set_dest_equal_p (insn, mem);
2866 else if (GET_CODE (insn) == PARALLEL)
2868 int i;
2869 for (i = 0; i < XVECLEN (insn, 0); i++)
2871 rtx sub = XVECEXP (insn, 0, i);
2872 if (GET_CODE (sub) == SET
2873 && set_dest_equal_p (sub, mem))
2874 return true;
2877 return false;
2880 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2881 array. */
2883 void
2884 init_alias_analysis (void)
2886 unsigned int maxreg = max_reg_num ();
2887 int changed, pass;
2888 int i;
2889 unsigned int ui;
2890 rtx insn, val;
2891 int rpo_cnt;
2892 int *rpo;
2894 timevar_push (TV_ALIAS_ANALYSIS);
2896 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
2897 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
2898 bitmap_clear (reg_known_equiv_p);
2900 /* If we have memory allocated from the previous run, use it. */
2901 if (old_reg_base_value)
2902 reg_base_value = old_reg_base_value;
2904 if (reg_base_value)
2905 reg_base_value->truncate (0);
2907 vec_safe_grow_cleared (reg_base_value, maxreg);
2909 new_reg_base_value = XNEWVEC (rtx, maxreg);
2910 reg_seen = sbitmap_alloc (maxreg);
2912 /* The basic idea is that each pass through this loop will use the
2913 "constant" information from the previous pass to propagate alias
2914 information through another level of assignments.
2916 The propagation is done on the CFG in reverse post-order, to propagate
2917 things forward as far as possible in each iteration.
2919 This could get expensive if the assignment chains are long. Maybe
2920 we should throttle the number of iterations, possibly based on
2921 the optimization level or flag_expensive_optimizations.
2923 We could propagate more information in the first pass by making use
2924 of DF_REG_DEF_COUNT to determine immediately that the alias information
2925 for a pseudo is "constant".
2927 A program with an uninitialized variable can cause an infinite loop
2928 here. Instead of doing a full dataflow analysis to detect such problems
2929 we just cap the number of iterations for the loop.
2931 The state of the arrays for the set chain in question does not matter
2932 since the program has undefined behavior. */
2934 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2935 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
2937 pass = 0;
2940 /* Assume nothing will change this iteration of the loop. */
2941 changed = 0;
2943 /* We want to assign the same IDs each iteration of this loop, so
2944 start counting from one each iteration of the loop. */
2945 unique_id = 1;
2947 /* We're at the start of the function each iteration through the
2948 loop, so we're copying arguments. */
2949 copying_arguments = true;
2951 /* Wipe the potential alias information clean for this pass. */
2952 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2954 /* Wipe the reg_seen array clean. */
2955 bitmap_clear (reg_seen);
2957 /* Initialize the alias information for this pass. */
2958 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2959 if (static_reg_base_value[i])
2961 new_reg_base_value[i] = static_reg_base_value[i];
2962 bitmap_set_bit (reg_seen, i);
2965 /* Walk the insns adding values to the new_reg_base_value array. */
2966 for (i = 0; i < rpo_cnt; i++)
2968 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
2969 FOR_BB_INSNS (bb, insn)
2971 if (NONDEBUG_INSN_P (insn))
2973 rtx note, set;
2975 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2976 /* The prologue/epilogue insns are not threaded onto the
2977 insn chain until after reload has completed. Thus,
2978 there is no sense wasting time checking if INSN is in
2979 the prologue/epilogue until after reload has completed. */
2980 if (reload_completed
2981 && prologue_epilogue_contains (insn))
2982 continue;
2983 #endif
2985 /* If this insn has a noalias note, process it, Otherwise,
2986 scan for sets. A simple set will have no side effects
2987 which could change the base value of any other register. */
2989 if (GET_CODE (PATTERN (insn)) == SET
2990 && REG_NOTES (insn) != 0
2991 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2992 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2993 else
2994 note_stores (PATTERN (insn), record_set, NULL);
2996 set = single_set (insn);
2998 if (set != 0
2999 && REG_P (SET_DEST (set))
3000 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3002 unsigned int regno = REGNO (SET_DEST (set));
3003 rtx src = SET_SRC (set);
3004 rtx t;
3006 note = find_reg_equal_equiv_note (insn);
3007 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3008 && DF_REG_DEF_COUNT (regno) != 1)
3009 note = NULL_RTX;
3011 if (note != NULL_RTX
3012 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3013 && ! rtx_varies_p (XEXP (note, 0), 1)
3014 && ! reg_overlap_mentioned_p (SET_DEST (set),
3015 XEXP (note, 0)))
3017 set_reg_known_value (regno, XEXP (note, 0));
3018 set_reg_known_equiv_p (regno,
3019 REG_NOTE_KIND (note) == REG_EQUIV);
3021 else if (DF_REG_DEF_COUNT (regno) == 1
3022 && GET_CODE (src) == PLUS
3023 && REG_P (XEXP (src, 0))
3024 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3025 && CONST_INT_P (XEXP (src, 1)))
3027 t = plus_constant (GET_MODE (src), t,
3028 INTVAL (XEXP (src, 1)));
3029 set_reg_known_value (regno, t);
3030 set_reg_known_equiv_p (regno, false);
3032 else if (DF_REG_DEF_COUNT (regno) == 1
3033 && ! rtx_varies_p (src, 1))
3035 set_reg_known_value (regno, src);
3036 set_reg_known_equiv_p (regno, false);
3040 else if (NOTE_P (insn)
3041 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3042 copying_arguments = false;
3046 /* Now propagate values from new_reg_base_value to reg_base_value. */
3047 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3049 for (ui = 0; ui < maxreg; ui++)
3051 if (new_reg_base_value[ui]
3052 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3053 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3055 (*reg_base_value)[ui] = new_reg_base_value[ui];
3056 changed = 1;
3060 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3061 XDELETEVEC (rpo);
3063 /* Fill in the remaining entries. */
3064 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3066 int regno = i + FIRST_PSEUDO_REGISTER;
3067 if (! val)
3068 set_reg_known_value (regno, regno_reg_rtx[regno]);
3071 /* Clean up. */
3072 free (new_reg_base_value);
3073 new_reg_base_value = 0;
3074 sbitmap_free (reg_seen);
3075 reg_seen = 0;
3076 timevar_pop (TV_ALIAS_ANALYSIS);
3079 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3080 Special API for var-tracking pass purposes. */
3082 void
3083 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3085 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3088 void
3089 end_alias_analysis (void)
3091 old_reg_base_value = reg_base_value;
3092 vec_free (reg_known_value);
3093 sbitmap_free (reg_known_equiv_p);
3096 #include "gt-alias.h"