Daily bump.
[official-gcc.git] / gcc / ada / sem_ch8.adb
bloba727679270d41644fcebc3008c82245fca5cede5
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 8 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Tss; use Exp_Tss;
32 with Exp_Util; use Exp_Util;
33 with Fname; use Fname;
34 with Freeze; use Freeze;
35 with Impunit; use Impunit;
36 with Lib; use Lib;
37 with Lib.Load; use Lib.Load;
38 with Lib.Xref; use Lib.Xref;
39 with Namet; use Namet;
40 with Namet.Sp; use Namet.Sp;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Output; use Output;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Rtsfind; use Rtsfind;
48 with Sem; use Sem;
49 with Sem_Aux; use Sem_Aux;
50 with Sem_Cat; use Sem_Cat;
51 with Sem_Ch3; use Sem_Ch3;
52 with Sem_Ch4; use Sem_Ch4;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch12; use Sem_Ch12;
55 with Sem_Ch13; use Sem_Ch13;
56 with Sem_Dim; use Sem_Dim;
57 with Sem_Disp; use Sem_Disp;
58 with Sem_Dist; use Sem_Dist;
59 with Sem_Eval; use Sem_Eval;
60 with Sem_Res; use Sem_Res;
61 with Sem_Util; use Sem_Util;
62 with Sem_Type; use Sem_Type;
63 with Stand; use Stand;
64 with Sinfo; use Sinfo;
65 with Sinfo.CN; use Sinfo.CN;
66 with Snames; use Snames;
67 with Style; use Style;
68 with Table;
69 with Targparm; use Targparm;
70 with Tbuild; use Tbuild;
71 with Uintp; use Uintp;
73 package body Sem_Ch8 is
75 ------------------------------------
76 -- Visibility and Name Resolution --
77 ------------------------------------
79 -- This package handles name resolution and the collection of possible
80 -- interpretations for overloaded names, prior to overload resolution.
82 -- Name resolution is the process that establishes a mapping between source
83 -- identifiers and the entities they denote at each point in the program.
84 -- Each entity is represented by a defining occurrence. Each identifier
85 -- that denotes an entity points to the corresponding defining occurrence.
86 -- This is the entity of the applied occurrence. Each occurrence holds
87 -- an index into the names table, where source identifiers are stored.
89 -- Each entry in the names table for an identifier or designator uses the
90 -- Info pointer to hold a link to the currently visible entity that has
91 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
92 -- in package Sem_Util). The visibility is initialized at the beginning of
93 -- semantic processing to make entities in package Standard immediately
94 -- visible. The visibility table is used in a more subtle way when
95 -- compiling subunits (see below).
97 -- Entities that have the same name (i.e. homonyms) are chained. In the
98 -- case of overloaded entities, this chain holds all the possible meanings
99 -- of a given identifier. The process of overload resolution uses type
100 -- information to select from this chain the unique meaning of a given
101 -- identifier.
103 -- Entities are also chained in their scope, through the Next_Entity link.
104 -- As a consequence, the name space is organized as a sparse matrix, where
105 -- each row corresponds to a scope, and each column to a source identifier.
106 -- Open scopes, that is to say scopes currently being compiled, have their
107 -- corresponding rows of entities in order, innermost scope first.
109 -- The scopes of packages that are mentioned in context clauses appear in
110 -- no particular order, interspersed among open scopes. This is because
111 -- in the course of analyzing the context of a compilation, a package
112 -- declaration is first an open scope, and subsequently an element of the
113 -- context. If subunits or child units are present, a parent unit may
114 -- appear under various guises at various times in the compilation.
116 -- When the compilation of the innermost scope is complete, the entities
117 -- defined therein are no longer visible. If the scope is not a package
118 -- declaration, these entities are never visible subsequently, and can be
119 -- removed from visibility chains. If the scope is a package declaration,
120 -- its visible declarations may still be accessible. Therefore the entities
121 -- defined in such a scope are left on the visibility chains, and only
122 -- their visibility (immediately visibility or potential use-visibility)
123 -- is affected.
125 -- The ordering of homonyms on their chain does not necessarily follow
126 -- the order of their corresponding scopes on the scope stack. For
127 -- example, if package P and the enclosing scope both contain entities
128 -- named E, then when compiling the package body the chain for E will
129 -- hold the global entity first, and the local one (corresponding to
130 -- the current inner scope) next. As a result, name resolution routines
131 -- do not assume any relative ordering of the homonym chains, either
132 -- for scope nesting or to order of appearance of context clauses.
134 -- When compiling a child unit, entities in the parent scope are always
135 -- immediately visible. When compiling the body of a child unit, private
136 -- entities in the parent must also be made immediately visible. There
137 -- are separate routines to make the visible and private declarations
138 -- visible at various times (see package Sem_Ch7).
140 -- +--------+ +-----+
141 -- | In use |-------->| EU1 |-------------------------->
142 -- +--------+ +-----+
143 -- | |
144 -- +--------+ +-----+ +-----+
145 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
146 -- +--------+ +-----+ +-----+
147 -- | |
148 -- +---------+ | +-----+
149 -- | with'ed |------------------------------>| EW2 |--->
150 -- +---------+ | +-----+
151 -- | |
152 -- +--------+ +-----+ +-----+
153 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
154 -- +--------+ +-----+ +-----+
155 -- | |
156 -- +--------+ +-----+ +-----+
157 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
158 -- +--------+ +-----+ +-----+
159 -- ^ | |
160 -- | | |
161 -- | +---------+ | |
162 -- | | with'ed |----------------------------------------->
163 -- | +---------+ | |
164 -- | | |
165 -- Scope stack | |
166 -- (innermost first) | |
167 -- +----------------------------+
168 -- Names table => | Id1 | | | | Id2 |
169 -- +----------------------------+
171 -- Name resolution must deal with several syntactic forms: simple names,
172 -- qualified names, indexed names, and various forms of calls.
174 -- Each identifier points to an entry in the names table. The resolution
175 -- of a simple name consists in traversing the homonym chain, starting
176 -- from the names table. If an entry is immediately visible, it is the one
177 -- designated by the identifier. If only potentially use-visible entities
178 -- are on the chain, we must verify that they do not hide each other. If
179 -- the entity we find is overloadable, we collect all other overloadable
180 -- entities on the chain as long as they are not hidden.
182 -- To resolve expanded names, we must find the entity at the intersection
183 -- of the entity chain for the scope (the prefix) and the homonym chain
184 -- for the selector. In general, homonym chains will be much shorter than
185 -- entity chains, so it is preferable to start from the names table as
186 -- well. If the entity found is overloadable, we must collect all other
187 -- interpretations that are defined in the scope denoted by the prefix.
189 -- For records, protected types, and tasks, their local entities are
190 -- removed from visibility chains on exit from the corresponding scope.
191 -- From the outside, these entities are always accessed by selected
192 -- notation, and the entity chain for the record type, protected type,
193 -- etc. is traversed sequentially in order to find the designated entity.
195 -- The discriminants of a type and the operations of a protected type or
196 -- task are unchained on exit from the first view of the type, (such as
197 -- a private or incomplete type declaration, or a protected type speci-
198 -- fication) and re-chained when compiling the second view.
200 -- In the case of operators, we do not make operators on derived types
201 -- explicit. As a result, the notation P."+" may denote either a user-
202 -- defined function with name "+", or else an implicit declaration of the
203 -- operator "+" in package P. The resolution of expanded names always
204 -- tries to resolve an operator name as such an implicitly defined entity,
205 -- in addition to looking for explicit declarations.
207 -- All forms of names that denote entities (simple names, expanded names,
208 -- character literals in some cases) have a Entity attribute, which
209 -- identifies the entity denoted by the name.
211 ---------------------
212 -- The Scope Stack --
213 ---------------------
215 -- The Scope stack keeps track of the scopes currently been compiled.
216 -- Every entity that contains declarations (including records) is placed
217 -- on the scope stack while it is being processed, and removed at the end.
218 -- Whenever a non-package scope is exited, the entities defined therein
219 -- are removed from the visibility table, so that entities in outer scopes
220 -- become visible (see previous description). On entry to Sem, the scope
221 -- stack only contains the package Standard. As usual, subunits complicate
222 -- this picture ever so slightly.
224 -- The Rtsfind mechanism can force a call to Semantics while another
225 -- compilation is in progress. The unit retrieved by Rtsfind must be
226 -- compiled in its own context, and has no access to the visibility of
227 -- the unit currently being compiled. The procedures Save_Scope_Stack and
228 -- Restore_Scope_Stack make entities in current open scopes invisible
229 -- before compiling the retrieved unit, and restore the compilation
230 -- environment afterwards.
232 ------------------------
233 -- Compiling subunits --
234 ------------------------
236 -- Subunits must be compiled in the environment of the corresponding stub,
237 -- that is to say with the same visibility into the parent (and its
238 -- context) that is available at the point of the stub declaration, but
239 -- with the additional visibility provided by the context clause of the
240 -- subunit itself. As a result, compilation of a subunit forces compilation
241 -- of the parent (see description in lib-). At the point of the stub
242 -- declaration, Analyze is called recursively to compile the proper body of
243 -- the subunit, but without reinitializing the names table, nor the scope
244 -- stack (i.e. standard is not pushed on the stack). In this fashion the
245 -- context of the subunit is added to the context of the parent, and the
246 -- subunit is compiled in the correct environment. Note that in the course
247 -- of processing the context of a subunit, Standard will appear twice on
248 -- the scope stack: once for the parent of the subunit, and once for the
249 -- unit in the context clause being compiled. However, the two sets of
250 -- entities are not linked by homonym chains, so that the compilation of
251 -- any context unit happens in a fresh visibility environment.
253 -------------------------------
254 -- Processing of USE Clauses --
255 -------------------------------
257 -- Every defining occurrence has a flag indicating if it is potentially use
258 -- visible. Resolution of simple names examines this flag. The processing
259 -- of use clauses consists in setting this flag on all visible entities
260 -- defined in the corresponding package. On exit from the scope of the use
261 -- clause, the corresponding flag must be reset. However, a package may
262 -- appear in several nested use clauses (pathological but legal, alas)
263 -- which forces us to use a slightly more involved scheme:
265 -- a) The defining occurrence for a package holds a flag -In_Use- to
266 -- indicate that it is currently in the scope of a use clause. If a
267 -- redundant use clause is encountered, then the corresponding occurrence
268 -- of the package name is flagged -Redundant_Use-.
270 -- b) On exit from a scope, the use clauses in its declarative part are
271 -- scanned. The visibility flag is reset in all entities declared in
272 -- package named in a use clause, as long as the package is not flagged
273 -- as being in a redundant use clause (in which case the outer use
274 -- clause is still in effect, and the direct visibility of its entities
275 -- must be retained).
277 -- Note that entities are not removed from their homonym chains on exit
278 -- from the package specification. A subsequent use clause does not need
279 -- to rechain the visible entities, but only to establish their direct
280 -- visibility.
282 -----------------------------------
283 -- Handling private declarations --
284 -----------------------------------
286 -- The principle that each entity has a single defining occurrence clashes
287 -- with the presence of two separate definitions for private types: the
288 -- first is the private type declaration, and second is the full type
289 -- declaration. It is important that all references to the type point to
290 -- the same defining occurrence, namely the first one. To enforce the two
291 -- separate views of the entity, the corresponding information is swapped
292 -- between the two declarations. Outside of the package, the defining
293 -- occurrence only contains the private declaration information, while in
294 -- the private part and the body of the package the defining occurrence
295 -- contains the full declaration. To simplify the swap, the defining
296 -- occurrence that currently holds the private declaration points to the
297 -- full declaration. During semantic processing the defining occurrence
298 -- also points to a list of private dependents, that is to say access types
299 -- or composite types whose designated types or component types are
300 -- subtypes or derived types of the private type in question. After the
301 -- full declaration has been seen, the private dependents are updated to
302 -- indicate that they have full definitions.
304 ------------------------------------
305 -- Handling of Undefined Messages --
306 ------------------------------------
308 -- In normal mode, only the first use of an undefined identifier generates
309 -- a message. The table Urefs is used to record error messages that have
310 -- been issued so that second and subsequent ones do not generate further
311 -- messages. However, the second reference causes text to be added to the
312 -- original undefined message noting "(more references follow)". The
313 -- full error list option (-gnatf) forces messages to be generated for
314 -- every reference and disconnects the use of this table.
316 type Uref_Entry is record
317 Node : Node_Id;
318 -- Node for identifier for which original message was posted. The
319 -- Chars field of this identifier is used to detect later references
320 -- to the same identifier.
322 Err : Error_Msg_Id;
323 -- Records error message Id of original undefined message. Reset to
324 -- No_Error_Msg after the second occurrence, where it is used to add
325 -- text to the original message as described above.
327 Nvis : Boolean;
328 -- Set if the message is not visible rather than undefined
330 Loc : Source_Ptr;
331 -- Records location of error message. Used to make sure that we do
332 -- not consider a, b : undefined as two separate instances, which
333 -- would otherwise happen, since the parser converts this sequence
334 -- to a : undefined; b : undefined.
336 end record;
338 package Urefs is new Table.Table (
339 Table_Component_Type => Uref_Entry,
340 Table_Index_Type => Nat,
341 Table_Low_Bound => 1,
342 Table_Initial => 10,
343 Table_Increment => 100,
344 Table_Name => "Urefs");
346 Candidate_Renaming : Entity_Id;
347 -- Holds a candidate interpretation that appears in a subprogram renaming
348 -- declaration and does not match the given specification, but matches at
349 -- least on the first formal. Allows better error message when given
350 -- specification omits defaulted parameters, a common error.
352 -----------------------
353 -- Local Subprograms --
354 -----------------------
356 procedure Analyze_Generic_Renaming
357 (N : Node_Id;
358 K : Entity_Kind);
359 -- Common processing for all three kinds of generic renaming declarations.
360 -- Enter new name and indicate that it renames the generic unit.
362 procedure Analyze_Renamed_Character
363 (N : Node_Id;
364 New_S : Entity_Id;
365 Is_Body : Boolean);
366 -- Renamed entity is given by a character literal, which must belong
367 -- to the return type of the new entity. Is_Body indicates whether the
368 -- declaration is a renaming_as_body. If the original declaration has
369 -- already been frozen (because of an intervening body, e.g.) the body of
370 -- the function must be built now. The same applies to the following
371 -- various renaming procedures.
373 procedure Analyze_Renamed_Dereference
374 (N : Node_Id;
375 New_S : Entity_Id;
376 Is_Body : Boolean);
377 -- Renamed entity is given by an explicit dereference. Prefix must be a
378 -- conformant access_to_subprogram type.
380 procedure Analyze_Renamed_Entry
381 (N : Node_Id;
382 New_S : Entity_Id;
383 Is_Body : Boolean);
384 -- If the renamed entity in a subprogram renaming is an entry or protected
385 -- subprogram, build a body for the new entity whose only statement is a
386 -- call to the renamed entity.
388 procedure Analyze_Renamed_Family_Member
389 (N : Node_Id;
390 New_S : Entity_Id;
391 Is_Body : Boolean);
392 -- Used when the renamed entity is an indexed component. The prefix must
393 -- denote an entry family.
395 procedure Analyze_Renamed_Primitive_Operation
396 (N : Node_Id;
397 New_S : Entity_Id;
398 Is_Body : Boolean);
399 -- If the renamed entity in a subprogram renaming is a primitive operation
400 -- or a class-wide operation in prefix form, save the target object,
401 -- which must be added to the list of actuals in any subsequent call.
402 -- The renaming operation is intrinsic because the compiler must in
403 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
405 function Applicable_Use (Pack_Name : Node_Id) return Boolean;
406 -- Common code to Use_One_Package and Set_Use, to determine whether use
407 -- clause must be processed. Pack_Name is an entity name that references
408 -- the package in question.
410 procedure Attribute_Renaming (N : Node_Id);
411 -- Analyze renaming of attribute as subprogram. The renaming declaration N
412 -- is rewritten as a subprogram body that returns the attribute reference
413 -- applied to the formals of the function.
415 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id);
416 -- Set Entity, with style check if need be. For a discriminant reference,
417 -- replace by the corresponding discriminal, i.e. the parameter of the
418 -- initialization procedure that corresponds to the discriminant.
420 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id);
421 -- A renaming_as_body may occur after the entity of the original decla-
422 -- ration has been frozen. In that case, the body of the new entity must
423 -- be built now, because the usual mechanism of building the renamed
424 -- body at the point of freezing will not work. Subp is the subprogram
425 -- for which N provides the Renaming_As_Body.
427 procedure Check_In_Previous_With_Clause
428 (N : Node_Id;
429 Nam : Node_Id);
430 -- N is a use_package clause and Nam the package name, or N is a use_type
431 -- clause and Nam is the prefix of the type name. In either case, verify
432 -- that the package is visible at that point in the context: either it
433 -- appears in a previous with_clause, or because it is a fully qualified
434 -- name and the root ancestor appears in a previous with_clause.
436 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id);
437 -- Verify that the entity in a renaming declaration that is a library unit
438 -- is itself a library unit and not a nested unit or subunit. Also check
439 -- that if the renaming is a child unit of a generic parent, then the
440 -- renamed unit must also be a child unit of that parent. Finally, verify
441 -- that a renamed generic unit is not an implicit child declared within
442 -- an instance of the parent.
444 procedure Chain_Use_Clause (N : Node_Id);
445 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
446 -- the proper scope table entry. This is usually the current scope, but it
447 -- will be an inner scope when installing the use clauses of the private
448 -- declarations of a parent unit prior to compiling the private part of a
449 -- child unit. This chain is traversed when installing/removing use clauses
450 -- when compiling a subunit or instantiating a generic body on the fly,
451 -- when it is necessary to save and restore full environments.
453 function Enclosing_Instance return Entity_Id;
454 -- In an instance nested within another one, several semantic checks are
455 -- unnecessary because the legality of the nested instance has been checked
456 -- in the enclosing generic unit. This applies in particular to legality
457 -- checks on actuals for formal subprograms of the inner instance, which
458 -- are checked as subprogram renamings, and may be complicated by confusion
459 -- in private/full views. This function returns the instance enclosing the
460 -- current one if there is such, else it returns Empty.
462 -- If the renaming determines the entity for the default of a formal
463 -- subprogram nested within another instance, choose the innermost
464 -- candidate. This is because if the formal has a box, and we are within
465 -- an enclosing instance where some candidate interpretations are local
466 -- to this enclosing instance, we know that the default was properly
467 -- resolved when analyzing the generic, so we prefer the local
468 -- candidates to those that are external. This is not always the case
469 -- but is a reasonable heuristic on the use of nested generics. The
470 -- proper solution requires a full renaming model.
472 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean;
473 -- Find a type derived from Character or Wide_Character in the prefix of N.
474 -- Used to resolved qualified names whose selector is a character literal.
476 function Has_Private_With (E : Entity_Id) return Boolean;
477 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
478 -- private with on E.
480 procedure Find_Expanded_Name (N : Node_Id);
481 -- The input is a selected component known to be an expanded name. Verify
482 -- legality of selector given the scope denoted by prefix, and change node
483 -- N into a expanded name with a properly set Entity field.
485 function Find_Renamed_Entity
486 (N : Node_Id;
487 Nam : Node_Id;
488 New_S : Entity_Id;
489 Is_Actual : Boolean := False) return Entity_Id;
490 -- Find the renamed entity that corresponds to the given parameter profile
491 -- in a subprogram renaming declaration. The renamed entity may be an
492 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
493 -- indicates that the renaming is the one generated for an actual subpro-
494 -- gram in an instance, for which special visibility checks apply.
496 function Has_Implicit_Operator (N : Node_Id) return Boolean;
497 -- N is an expanded name whose selector is an operator name (e.g. P."+").
498 -- declarative part contains an implicit declaration of an operator if it
499 -- has a declaration of a type to which one of the predefined operators
500 -- apply. The existence of this routine is an implementation artifact. A
501 -- more straightforward but more space-consuming choice would be to make
502 -- all inherited operators explicit in the symbol table.
504 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id);
505 -- A subprogram defined by a renaming declaration inherits the parameter
506 -- profile of the renamed entity. The subtypes given in the subprogram
507 -- specification are discarded and replaced with those of the renamed
508 -- subprogram, which are then used to recheck the default values.
510 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean;
511 -- Prefix is appropriate for record if it is of a record type, or an access
512 -- to such.
514 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean;
515 -- True if it is of a task type, a protected type, or else an access to one
516 -- of these types.
518 procedure Note_Redundant_Use (Clause : Node_Id);
519 -- Mark the name in a use clause as redundant if the corresponding entity
520 -- is already use-visible. Emit a warning if the use clause comes from
521 -- source and the proper warnings are enabled.
523 procedure Premature_Usage (N : Node_Id);
524 -- Diagnose usage of an entity before it is visible
526 procedure Use_One_Package (P : Entity_Id; N : Node_Id);
527 -- Make visible entities declared in package P potentially use-visible
528 -- in the current context. Also used in the analysis of subunits, when
529 -- re-installing use clauses of parent units. N is the use_clause that
530 -- names P (and possibly other packages).
532 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False);
533 -- Id is the subtype mark from a use type clause. This procedure makes
534 -- the primitive operators of the type potentially use-visible. The
535 -- boolean flag Installed indicates that the clause is being reinstalled
536 -- after previous analysis, and primitive operations are already chained
537 -- on the Used_Operations list of the clause.
539 procedure Write_Info;
540 -- Write debugging information on entities declared in current scope
542 --------------------------------
543 -- Analyze_Exception_Renaming --
544 --------------------------------
546 -- The language only allows a single identifier, but the tree holds an
547 -- identifier list. The parser has already issued an error message if
548 -- there is more than one element in the list.
550 procedure Analyze_Exception_Renaming (N : Node_Id) is
551 Id : constant Node_Id := Defining_Identifier (N);
552 Nam : constant Node_Id := Name (N);
554 begin
555 Check_SPARK_Restriction ("exception renaming is not allowed", N);
557 Enter_Name (Id);
558 Analyze (Nam);
560 Set_Ekind (Id, E_Exception);
561 Set_Exception_Code (Id, Uint_0);
562 Set_Etype (Id, Standard_Exception_Type);
563 Set_Is_Pure (Id, Is_Pure (Current_Scope));
565 if not Is_Entity_Name (Nam) or else
566 Ekind (Entity (Nam)) /= E_Exception
567 then
568 Error_Msg_N ("invalid exception name in renaming", Nam);
569 else
570 if Present (Renamed_Object (Entity (Nam))) then
571 Set_Renamed_Object (Id, Renamed_Object (Entity (Nam)));
572 else
573 Set_Renamed_Object (Id, Entity (Nam));
574 end if;
575 end if;
577 -- Implementation-defined aspect specifications can appear in a renaming
578 -- declaration, but not language-defined ones. The call to procedure
579 -- Analyze_Aspect_Specifications will take care of this error check.
581 if Has_Aspects (N) then
582 Analyze_Aspect_Specifications (N, Id);
583 end if;
584 end Analyze_Exception_Renaming;
586 ---------------------------
587 -- Analyze_Expanded_Name --
588 ---------------------------
590 procedure Analyze_Expanded_Name (N : Node_Id) is
591 begin
592 -- If the entity pointer is already set, this is an internal node, or a
593 -- node that is analyzed more than once, after a tree modification. In
594 -- such a case there is no resolution to perform, just set the type. For
595 -- completeness, analyze prefix as well.
597 if Present (Entity (N)) then
598 if Is_Type (Entity (N)) then
599 Set_Etype (N, Entity (N));
600 else
601 Set_Etype (N, Etype (Entity (N)));
602 end if;
604 Analyze (Prefix (N));
605 return;
606 else
607 Find_Expanded_Name (N);
608 end if;
610 Analyze_Dimension (N);
611 end Analyze_Expanded_Name;
613 ---------------------------------------
614 -- Analyze_Generic_Function_Renaming --
615 ---------------------------------------
617 procedure Analyze_Generic_Function_Renaming (N : Node_Id) is
618 begin
619 Analyze_Generic_Renaming (N, E_Generic_Function);
620 end Analyze_Generic_Function_Renaming;
622 --------------------------------------
623 -- Analyze_Generic_Package_Renaming --
624 --------------------------------------
626 procedure Analyze_Generic_Package_Renaming (N : Node_Id) is
627 begin
628 -- Apply the Text_IO Kludge here, since we may be renaming one of the
629 -- subpackages of Text_IO, then join common routine.
631 Text_IO_Kludge (Name (N));
633 Analyze_Generic_Renaming (N, E_Generic_Package);
634 end Analyze_Generic_Package_Renaming;
636 ----------------------------------------
637 -- Analyze_Generic_Procedure_Renaming --
638 ----------------------------------------
640 procedure Analyze_Generic_Procedure_Renaming (N : Node_Id) is
641 begin
642 Analyze_Generic_Renaming (N, E_Generic_Procedure);
643 end Analyze_Generic_Procedure_Renaming;
645 ------------------------------
646 -- Analyze_Generic_Renaming --
647 ------------------------------
649 procedure Analyze_Generic_Renaming
650 (N : Node_Id;
651 K : Entity_Kind)
653 New_P : constant Entity_Id := Defining_Entity (N);
654 Old_P : Entity_Id;
655 Inst : Boolean := False; -- prevent junk warning
657 begin
658 if Name (N) = Error then
659 return;
660 end if;
662 Check_SPARK_Restriction ("generic renaming is not allowed", N);
664 Generate_Definition (New_P);
666 if Current_Scope /= Standard_Standard then
667 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
668 end if;
670 if Nkind (Name (N)) = N_Selected_Component then
671 Check_Generic_Child_Unit (Name (N), Inst);
672 else
673 Analyze (Name (N));
674 end if;
676 if not Is_Entity_Name (Name (N)) then
677 Error_Msg_N ("expect entity name in renaming declaration", Name (N));
678 Old_P := Any_Id;
679 else
680 Old_P := Entity (Name (N));
681 end if;
683 Enter_Name (New_P);
684 Set_Ekind (New_P, K);
686 if Etype (Old_P) = Any_Type then
687 null;
689 elsif Ekind (Old_P) /= K then
690 Error_Msg_N ("invalid generic unit name", Name (N));
692 else
693 if Present (Renamed_Object (Old_P)) then
694 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
695 else
696 Set_Renamed_Object (New_P, Old_P);
697 end if;
699 Set_Is_Pure (New_P, Is_Pure (Old_P));
700 Set_Is_Preelaborated (New_P, Is_Preelaborated (Old_P));
702 Set_Etype (New_P, Etype (Old_P));
703 Set_Has_Completion (New_P);
705 if In_Open_Scopes (Old_P) then
706 Error_Msg_N ("within its scope, generic denotes its instance", N);
707 end if;
709 Check_Library_Unit_Renaming (N, Old_P);
710 end if;
712 -- Implementation-defined aspect specifications can appear in a renaming
713 -- declaration, but not language-defined ones. The call to procedure
714 -- Analyze_Aspect_Specifications will take care of this error check.
716 if Has_Aspects (N) then
717 Analyze_Aspect_Specifications (N, New_P);
718 end if;
719 end Analyze_Generic_Renaming;
721 -----------------------------
722 -- Analyze_Object_Renaming --
723 -----------------------------
725 procedure Analyze_Object_Renaming (N : Node_Id) is
726 Loc : constant Source_Ptr := Sloc (N);
727 Id : constant Entity_Id := Defining_Identifier (N);
728 Dec : Node_Id;
729 Nam : constant Node_Id := Name (N);
730 T : Entity_Id;
731 T2 : Entity_Id;
733 procedure Check_Constrained_Object;
734 -- If the nominal type is unconstrained but the renamed object is
735 -- constrained, as can happen with renaming an explicit dereference or
736 -- a function return, build a constrained subtype from the object. If
737 -- the renaming is for a formal in an accept statement, the analysis
738 -- has already established its actual subtype. This is only relevant
739 -- if the renamed object is an explicit dereference.
741 function In_Generic_Scope (E : Entity_Id) return Boolean;
742 -- Determine whether entity E is inside a generic cope
744 ------------------------------
745 -- Check_Constrained_Object --
746 ------------------------------
748 procedure Check_Constrained_Object is
749 Typ : constant Entity_Id := Etype (Nam);
750 Subt : Entity_Id;
752 begin
753 if Nkind_In (Nam, N_Function_Call, N_Explicit_Dereference)
754 and then Is_Composite_Type (Etype (Nam))
755 and then not Is_Constrained (Etype (Nam))
756 and then not Has_Unknown_Discriminants (Etype (Nam))
757 and then Expander_Active
758 then
759 -- If Actual_Subtype is already set, nothing to do
761 if Ekind_In (Id, E_Variable, E_Constant)
762 and then Present (Actual_Subtype (Id))
763 then
764 null;
766 -- A renaming of an unchecked union has no actual subtype
768 elsif Is_Unchecked_Union (Typ) then
769 null;
771 -- If a record is limited its size is invariant. This is the case
772 -- in particular with record types with an access discirminant
773 -- that are used in iterators. This is an optimization, but it
774 -- also prevents typing anomalies when the prefix is further
775 -- expanded. Limited types with discriminants are included.
777 elsif Is_Limited_Record (Typ)
778 or else
779 (Ekind (Typ) = E_Limited_Private_Type
780 and then Has_Discriminants (Typ)
781 and then Is_Access_Type (Etype (First_Discriminant (Typ))))
782 then
783 null;
785 else
786 Subt := Make_Temporary (Loc, 'T');
787 Remove_Side_Effects (Nam);
788 Insert_Action (N,
789 Make_Subtype_Declaration (Loc,
790 Defining_Identifier => Subt,
791 Subtype_Indication =>
792 Make_Subtype_From_Expr (Nam, Typ)));
793 Rewrite (Subtype_Mark (N), New_Occurrence_Of (Subt, Loc));
794 Set_Etype (Nam, Subt);
796 -- Freeze subtype at once, to prevent order of elaboration
797 -- issues in the backend. The renamed object exists, so its
798 -- type is already frozen in any case.
800 Freeze_Before (N, Subt);
801 end if;
802 end if;
803 end Check_Constrained_Object;
805 ----------------------
806 -- In_Generic_Scope --
807 ----------------------
809 function In_Generic_Scope (E : Entity_Id) return Boolean is
810 S : Entity_Id;
812 begin
813 S := Scope (E);
814 while Present (S) and then S /= Standard_Standard loop
815 if Is_Generic_Unit (S) then
816 return True;
817 end if;
819 S := Scope (S);
820 end loop;
822 return False;
823 end In_Generic_Scope;
825 -- Start of processing for Analyze_Object_Renaming
827 begin
828 if Nam = Error then
829 return;
830 end if;
832 Check_SPARK_Restriction ("object renaming is not allowed", N);
834 Set_Is_Pure (Id, Is_Pure (Current_Scope));
835 Enter_Name (Id);
837 -- The renaming of a component that depends on a discriminant requires
838 -- an actual subtype, because in subsequent use of the object Gigi will
839 -- be unable to locate the actual bounds. This explicit step is required
840 -- when the renaming is generated in removing side effects of an
841 -- already-analyzed expression.
843 if Nkind (Nam) = N_Selected_Component and then Analyzed (Nam) then
844 T := Etype (Nam);
845 Dec := Build_Actual_Subtype_Of_Component (Etype (Nam), Nam);
847 if Present (Dec) then
848 Insert_Action (N, Dec);
849 T := Defining_Identifier (Dec);
850 Set_Etype (Nam, T);
851 end if;
853 -- Complete analysis of the subtype mark in any case, for ASIS use
855 if Present (Subtype_Mark (N)) then
856 Find_Type (Subtype_Mark (N));
857 end if;
859 elsif Present (Subtype_Mark (N)) then
860 Find_Type (Subtype_Mark (N));
861 T := Entity (Subtype_Mark (N));
862 Analyze (Nam);
864 -- Reject renamings of conversions unless the type is tagged, or
865 -- the conversion is implicit (which can occur for cases of anonymous
866 -- access types in Ada 2012).
868 if Nkind (Nam) = N_Type_Conversion
869 and then Comes_From_Source (Nam)
870 and then not Is_Tagged_Type (T)
871 then
872 Error_Msg_N
873 ("renaming of conversion only allowed for tagged types", Nam);
874 end if;
876 Resolve (Nam, T);
878 -- If the renamed object is a function call of a limited type,
879 -- the expansion of the renaming is complicated by the presence
880 -- of various temporaries and subtypes that capture constraints
881 -- of the renamed object. Rewrite node as an object declaration,
882 -- whose expansion is simpler. Given that the object is limited
883 -- there is no copy involved and no performance hit.
885 if Nkind (Nam) = N_Function_Call
886 and then Is_Limited_View (Etype (Nam))
887 and then not Is_Constrained (Etype (Nam))
888 and then Comes_From_Source (N)
889 then
890 Set_Etype (Id, T);
891 Set_Ekind (Id, E_Constant);
892 Rewrite (N,
893 Make_Object_Declaration (Loc,
894 Defining_Identifier => Id,
895 Constant_Present => True,
896 Object_Definition => New_Occurrence_Of (Etype (Nam), Loc),
897 Expression => Relocate_Node (Nam)));
898 return;
899 end if;
901 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
902 -- when renaming declaration has a named access type. The Ada 2012
903 -- coverage rules allow an anonymous access type in the context of
904 -- an expected named general access type, but the renaming rules
905 -- require the types to be the same. (An exception is when the type
906 -- of the renaming is also an anonymous access type, which can only
907 -- happen due to a renaming created by the expander.)
909 if Nkind (Nam) = N_Type_Conversion
910 and then not Comes_From_Source (Nam)
911 and then Ekind (Etype (Expression (Nam))) = E_Anonymous_Access_Type
912 and then Ekind (T) /= E_Anonymous_Access_Type
913 then
914 Wrong_Type (Expression (Nam), T); -- Should we give better error???
915 end if;
917 -- Check that a class-wide object is not being renamed as an object
918 -- of a specific type. The test for access types is needed to exclude
919 -- cases where the renamed object is a dynamically tagged access
920 -- result, such as occurs in certain expansions.
922 if Is_Tagged_Type (T) then
923 Check_Dynamically_Tagged_Expression
924 (Expr => Nam,
925 Typ => T,
926 Related_Nod => N);
927 end if;
929 -- Ada 2005 (AI-230/AI-254): Access renaming
931 else pragma Assert (Present (Access_Definition (N)));
932 T := Access_Definition
933 (Related_Nod => N,
934 N => Access_Definition (N));
936 Analyze (Nam);
938 -- Ada 2005 AI05-105: if the declaration has an anonymous access
939 -- type, the renamed object must also have an anonymous type, and
940 -- this is a name resolution rule. This was implicit in the last part
941 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
942 -- recent AI.
944 if not Is_Overloaded (Nam) then
945 if Ekind (Etype (Nam)) /= Ekind (T) then
946 Error_Msg_N
947 ("expect anonymous access type in object renaming", N);
948 end if;
950 else
951 declare
952 I : Interp_Index;
953 It : Interp;
954 Typ : Entity_Id := Empty;
955 Seen : Boolean := False;
957 begin
958 Get_First_Interp (Nam, I, It);
959 while Present (It.Typ) loop
961 -- Renaming is ambiguous if more than one candidate
962 -- interpretation is type-conformant with the context.
964 if Ekind (It.Typ) = Ekind (T) then
965 if Ekind (T) = E_Anonymous_Access_Subprogram_Type
966 and then
967 Type_Conformant
968 (Designated_Type (T), Designated_Type (It.Typ))
969 then
970 if not Seen then
971 Seen := True;
972 else
973 Error_Msg_N
974 ("ambiguous expression in renaming", Nam);
975 end if;
977 elsif Ekind (T) = E_Anonymous_Access_Type
978 and then
979 Covers (Designated_Type (T), Designated_Type (It.Typ))
980 then
981 if not Seen then
982 Seen := True;
983 else
984 Error_Msg_N
985 ("ambiguous expression in renaming", Nam);
986 end if;
987 end if;
989 if Covers (T, It.Typ) then
990 Typ := It.Typ;
991 Set_Etype (Nam, Typ);
992 Set_Is_Overloaded (Nam, False);
993 end if;
994 end if;
996 Get_Next_Interp (I, It);
997 end loop;
998 end;
999 end if;
1001 Resolve (Nam, T);
1003 -- Ada 2005 (AI-231): "In the case where the type is defined by an
1004 -- access_definition, the renamed entity shall be of an access-to-
1005 -- constant type if and only if the access_definition defines an
1006 -- access-to-constant type" ARM 8.5.1(4)
1008 if Constant_Present (Access_Definition (N))
1009 and then not Is_Access_Constant (Etype (Nam))
1010 then
1011 Error_Msg_N ("(Ada 2005): the renamed object is not "
1012 & "access-to-constant (RM 8.5.1(6))", N);
1014 elsif not Constant_Present (Access_Definition (N))
1015 and then Is_Access_Constant (Etype (Nam))
1016 then
1017 Error_Msg_N ("(Ada 2005): the renamed object is not "
1018 & "access-to-variable (RM 8.5.1(6))", N);
1019 end if;
1021 if Is_Access_Subprogram_Type (Etype (Nam)) then
1022 Check_Subtype_Conformant
1023 (Designated_Type (T), Designated_Type (Etype (Nam)));
1025 elsif not Subtypes_Statically_Match
1026 (Designated_Type (T),
1027 Available_View (Designated_Type (Etype (Nam))))
1028 then
1029 Error_Msg_N
1030 ("subtype of renamed object does not statically match", N);
1031 end if;
1032 end if;
1034 -- Special processing for renaming function return object. Some errors
1035 -- and warnings are produced only for calls that come from source.
1037 if Nkind (Nam) = N_Function_Call then
1038 case Ada_Version is
1040 -- Usage is illegal in Ada 83
1042 when Ada_83 =>
1043 if Comes_From_Source (Nam) then
1044 Error_Msg_N
1045 ("(Ada 83) cannot rename function return object", Nam);
1046 end if;
1048 -- In Ada 95, warn for odd case of renaming parameterless function
1049 -- call if this is not a limited type (where this is useful).
1051 when others =>
1052 if Warn_On_Object_Renames_Function
1053 and then No (Parameter_Associations (Nam))
1054 and then not Is_Limited_Type (Etype (Nam))
1055 and then Comes_From_Source (Nam)
1056 then
1057 Error_Msg_N
1058 ("renaming function result object is suspicious?R?", Nam);
1059 Error_Msg_NE
1060 ("\function & will be called only once?R?", Nam,
1061 Entity (Name (Nam)));
1062 Error_Msg_N -- CODEFIX
1063 ("\suggest using an initialized constant "
1064 & "object instead?R?", Nam);
1065 end if;
1067 end case;
1068 end if;
1070 Check_Constrained_Object;
1072 -- An object renaming requires an exact match of the type. Class-wide
1073 -- matching is not allowed.
1075 if Is_Class_Wide_Type (T)
1076 and then Base_Type (Etype (Nam)) /= Base_Type (T)
1077 then
1078 Wrong_Type (Nam, T);
1079 end if;
1081 T2 := Etype (Nam);
1083 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1085 if Nkind (Nam) = N_Explicit_Dereference
1086 and then Ekind (Etype (T2)) = E_Incomplete_Type
1087 then
1088 Error_Msg_NE ("invalid use of incomplete type&", Id, T2);
1089 return;
1091 elsif Ekind (Etype (T)) = E_Incomplete_Type then
1092 Error_Msg_NE ("invalid use of incomplete type&", Id, T);
1093 return;
1094 end if;
1096 -- Ada 2005 (AI-327)
1098 if Ada_Version >= Ada_2005
1099 and then Nkind (Nam) = N_Attribute_Reference
1100 and then Attribute_Name (Nam) = Name_Priority
1101 then
1102 null;
1104 elsif Ada_Version >= Ada_2005 and then Nkind (Nam) in N_Has_Entity then
1105 declare
1106 Nam_Decl : Node_Id;
1107 Nam_Ent : Entity_Id;
1109 begin
1110 if Nkind (Nam) = N_Attribute_Reference then
1111 Nam_Ent := Entity (Prefix (Nam));
1112 else
1113 Nam_Ent := Entity (Nam);
1114 end if;
1116 Nam_Decl := Parent (Nam_Ent);
1118 if Has_Null_Exclusion (N)
1119 and then not Has_Null_Exclusion (Nam_Decl)
1120 then
1121 -- Ada 2005 (AI-423): If the object name denotes a generic
1122 -- formal object of a generic unit G, and the object renaming
1123 -- declaration occurs within the body of G or within the body
1124 -- of a generic unit declared within the declarative region
1125 -- of G, then the declaration of the formal object of G must
1126 -- have a null exclusion or a null-excluding subtype.
1128 if Is_Formal_Object (Nam_Ent)
1129 and then In_Generic_Scope (Id)
1130 then
1131 if not Can_Never_Be_Null (Etype (Nam_Ent)) then
1132 Error_Msg_N
1133 ("renamed formal does not exclude `NULL` "
1134 & "(RM 8.5.1(4.6/2))", N);
1136 elsif In_Package_Body (Scope (Id)) then
1137 Error_Msg_N
1138 ("formal object does not have a null exclusion"
1139 & "(RM 8.5.1(4.6/2))", N);
1140 end if;
1142 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1143 -- shall exclude null.
1145 elsif not Can_Never_Be_Null (Etype (Nam_Ent)) then
1146 Error_Msg_N
1147 ("renamed object does not exclude `NULL` "
1148 & "(RM 8.5.1(4.6/2))", N);
1150 -- An instance is illegal if it contains a renaming that
1151 -- excludes null, and the actual does not. The renaming
1152 -- declaration has already indicated that the declaration
1153 -- of the renamed actual in the instance will raise
1154 -- constraint_error.
1156 elsif Nkind (Nam_Decl) = N_Object_Declaration
1157 and then In_Instance
1158 and then
1159 Present (Corresponding_Generic_Association (Nam_Decl))
1160 and then Nkind (Expression (Nam_Decl)) =
1161 N_Raise_Constraint_Error
1162 then
1163 Error_Msg_N
1164 ("renamed actual does not exclude `NULL` "
1165 & "(RM 8.5.1(4.6/2))", N);
1167 -- Finally, if there is a null exclusion, the subtype mark
1168 -- must not be null-excluding.
1170 elsif No (Access_Definition (N))
1171 and then Can_Never_Be_Null (T)
1172 then
1173 Error_Msg_NE
1174 ("`NOT NULL` not allowed (& already excludes null)",
1175 N, T);
1177 end if;
1179 elsif Can_Never_Be_Null (T)
1180 and then not Can_Never_Be_Null (Etype (Nam_Ent))
1181 then
1182 Error_Msg_N
1183 ("renamed object does not exclude `NULL` "
1184 & "(RM 8.5.1(4.6/2))", N);
1186 elsif Has_Null_Exclusion (N)
1187 and then No (Access_Definition (N))
1188 and then Can_Never_Be_Null (T)
1189 then
1190 Error_Msg_NE
1191 ("`NOT NULL` not allowed (& already excludes null)", N, T);
1192 end if;
1193 end;
1194 end if;
1196 -- Set the Ekind of the entity, unless it has been set already, as is
1197 -- the case for the iteration object over a container with no variable
1198 -- indexing. In that case it's been marked as a constant, and we do not
1199 -- want to change it to a variable.
1201 if Ekind (Id) /= E_Constant then
1202 Set_Ekind (Id, E_Variable);
1203 end if;
1205 -- Initialize the object size and alignment. Note that we used to call
1206 -- Init_Size_Align here, but that's wrong for objects which have only
1207 -- an Esize, not an RM_Size field.
1209 Init_Object_Size_Align (Id);
1211 if T = Any_Type or else Etype (Nam) = Any_Type then
1212 return;
1214 -- Verify that the renamed entity is an object or a function call. It
1215 -- may have been rewritten in several ways.
1217 elsif Is_Object_Reference (Nam) then
1218 if Comes_From_Source (N) then
1219 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
1220 Error_Msg_N
1221 ("illegal renaming of discriminant-dependent component", Nam);
1222 end if;
1224 -- If the renaming comes from source and the renamed object is a
1225 -- dereference, then mark the prefix as needing debug information,
1226 -- since it might have been rewritten hence internally generated
1227 -- and Debug_Renaming_Declaration will link the renaming to it.
1229 if Nkind (Nam) = N_Explicit_Dereference
1230 and then Is_Entity_Name (Prefix (Nam))
1231 then
1232 Set_Debug_Info_Needed (Entity (Prefix (Nam)));
1233 end if;
1234 end if;
1236 -- A static function call may have been folded into a literal
1238 elsif Nkind (Original_Node (Nam)) = N_Function_Call
1240 -- When expansion is disabled, attribute reference is not
1241 -- rewritten as function call. Otherwise it may be rewritten
1242 -- as a conversion, so check original node.
1244 or else (Nkind (Original_Node (Nam)) = N_Attribute_Reference
1245 and then Is_Function_Attribute_Name
1246 (Attribute_Name (Original_Node (Nam))))
1248 -- Weird but legal, equivalent to renaming a function call.
1249 -- Illegal if the literal is the result of constant-folding an
1250 -- attribute reference that is not a function.
1252 or else (Is_Entity_Name (Nam)
1253 and then Ekind (Entity (Nam)) = E_Enumeration_Literal
1254 and then
1255 Nkind (Original_Node (Nam)) /= N_Attribute_Reference)
1257 or else (Nkind (Nam) = N_Type_Conversion
1258 and then Is_Tagged_Type (Entity (Subtype_Mark (Nam))))
1259 then
1260 null;
1262 elsif Nkind (Nam) = N_Type_Conversion then
1263 Error_Msg_N
1264 ("renaming of conversion only allowed for tagged types", Nam);
1266 -- Ada 2005 (AI-327)
1268 elsif Ada_Version >= Ada_2005
1269 and then Nkind (Nam) = N_Attribute_Reference
1270 and then Attribute_Name (Nam) = Name_Priority
1271 then
1272 null;
1274 -- Allow internally generated x'Reference expression
1276 elsif Nkind (Nam) = N_Reference then
1277 null;
1279 else
1280 Error_Msg_N ("expect object name in renaming", Nam);
1281 end if;
1283 Set_Etype (Id, T2);
1285 if not Is_Variable (Nam) then
1286 Set_Ekind (Id, E_Constant);
1287 Set_Never_Set_In_Source (Id, True);
1288 Set_Is_True_Constant (Id, True);
1289 end if;
1291 Set_Renamed_Object (Id, Nam);
1293 -- Implementation-defined aspect specifications can appear in a renaming
1294 -- declaration, but not language-defined ones. The call to procedure
1295 -- Analyze_Aspect_Specifications will take care of this error check.
1297 if Has_Aspects (N) then
1298 Analyze_Aspect_Specifications (N, Id);
1299 end if;
1301 -- Deal with dimensions
1303 Analyze_Dimension (N);
1304 end Analyze_Object_Renaming;
1306 ------------------------------
1307 -- Analyze_Package_Renaming --
1308 ------------------------------
1310 procedure Analyze_Package_Renaming (N : Node_Id) is
1311 New_P : constant Entity_Id := Defining_Entity (N);
1312 Old_P : Entity_Id;
1313 Spec : Node_Id;
1315 begin
1316 if Name (N) = Error then
1317 return;
1318 end if;
1320 -- Apply Text_IO kludge here since we may be renaming a child of Text_IO
1322 Text_IO_Kludge (Name (N));
1324 if Current_Scope /= Standard_Standard then
1325 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
1326 end if;
1328 Enter_Name (New_P);
1329 Analyze (Name (N));
1331 if Is_Entity_Name (Name (N)) then
1332 Old_P := Entity (Name (N));
1333 else
1334 Old_P := Any_Id;
1335 end if;
1337 if Etype (Old_P) = Any_Type then
1338 Error_Msg_N ("expect package name in renaming", Name (N));
1340 elsif Ekind (Old_P) /= E_Package
1341 and then not (Ekind (Old_P) = E_Generic_Package
1342 and then In_Open_Scopes (Old_P))
1343 then
1344 if Ekind (Old_P) = E_Generic_Package then
1345 Error_Msg_N
1346 ("generic package cannot be renamed as a package", Name (N));
1347 else
1348 Error_Msg_Sloc := Sloc (Old_P);
1349 Error_Msg_NE
1350 ("expect package name in renaming, found& declared#",
1351 Name (N), Old_P);
1352 end if;
1354 -- Set basic attributes to minimize cascaded errors
1356 Set_Ekind (New_P, E_Package);
1357 Set_Etype (New_P, Standard_Void_Type);
1359 -- Here for OK package renaming
1361 else
1362 -- Entities in the old package are accessible through the renaming
1363 -- entity. The simplest implementation is to have both packages share
1364 -- the entity list.
1366 Set_Ekind (New_P, E_Package);
1367 Set_Etype (New_P, Standard_Void_Type);
1369 if Present (Renamed_Object (Old_P)) then
1370 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
1371 else
1372 Set_Renamed_Object (New_P, Old_P);
1373 end if;
1375 Set_Has_Completion (New_P);
1377 Set_First_Entity (New_P, First_Entity (Old_P));
1378 Set_Last_Entity (New_P, Last_Entity (Old_P));
1379 Set_First_Private_Entity (New_P, First_Private_Entity (Old_P));
1380 Check_Library_Unit_Renaming (N, Old_P);
1381 Generate_Reference (Old_P, Name (N));
1383 -- If the renaming is in the visible part of a package, then we set
1384 -- Renamed_In_Spec for the renamed package, to prevent giving
1385 -- warnings about no entities referenced. Such a warning would be
1386 -- overenthusiastic, since clients can see entities in the renamed
1387 -- package via the visible package renaming.
1389 declare
1390 Ent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
1391 begin
1392 if Ekind (Ent) = E_Package
1393 and then not In_Private_Part (Ent)
1394 and then In_Extended_Main_Source_Unit (N)
1395 and then Ekind (Old_P) = E_Package
1396 then
1397 Set_Renamed_In_Spec (Old_P);
1398 end if;
1399 end;
1401 -- If this is the renaming declaration of a package instantiation
1402 -- within itself, it is the declaration that ends the list of actuals
1403 -- for the instantiation. At this point, the subtypes that rename
1404 -- the actuals are flagged as generic, to avoid spurious ambiguities
1405 -- if the actuals for two distinct formals happen to coincide. If
1406 -- the actual is a private type, the subtype has a private completion
1407 -- that is flagged in the same fashion.
1409 -- Resolution is identical to what is was in the original generic.
1410 -- On exit from the generic instance, these are turned into regular
1411 -- subtypes again, so they are compatible with types in their class.
1413 if not Is_Generic_Instance (Old_P) then
1414 return;
1415 else
1416 Spec := Specification (Unit_Declaration_Node (Old_P));
1417 end if;
1419 if Nkind (Spec) = N_Package_Specification
1420 and then Present (Generic_Parent (Spec))
1421 and then Old_P = Current_Scope
1422 and then Chars (New_P) = Chars (Generic_Parent (Spec))
1423 then
1424 declare
1425 E : Entity_Id;
1427 begin
1428 E := First_Entity (Old_P);
1429 while Present (E) and then E /= New_P loop
1430 if Is_Type (E)
1431 and then Nkind (Parent (E)) = N_Subtype_Declaration
1432 then
1433 Set_Is_Generic_Actual_Type (E);
1435 if Is_Private_Type (E)
1436 and then Present (Full_View (E))
1437 then
1438 Set_Is_Generic_Actual_Type (Full_View (E));
1439 end if;
1440 end if;
1442 Next_Entity (E);
1443 end loop;
1444 end;
1445 end if;
1446 end if;
1448 -- Implementation-defined aspect specifications can appear in a renaming
1449 -- declaration, but not language-defined ones. The call to procedure
1450 -- Analyze_Aspect_Specifications will take care of this error check.
1452 if Has_Aspects (N) then
1453 Analyze_Aspect_Specifications (N, New_P);
1454 end if;
1455 end Analyze_Package_Renaming;
1457 -------------------------------
1458 -- Analyze_Renamed_Character --
1459 -------------------------------
1461 procedure Analyze_Renamed_Character
1462 (N : Node_Id;
1463 New_S : Entity_Id;
1464 Is_Body : Boolean)
1466 C : constant Node_Id := Name (N);
1468 begin
1469 if Ekind (New_S) = E_Function then
1470 Resolve (C, Etype (New_S));
1472 if Is_Body then
1473 Check_Frozen_Renaming (N, New_S);
1474 end if;
1476 else
1477 Error_Msg_N ("character literal can only be renamed as function", N);
1478 end if;
1479 end Analyze_Renamed_Character;
1481 ---------------------------------
1482 -- Analyze_Renamed_Dereference --
1483 ---------------------------------
1485 procedure Analyze_Renamed_Dereference
1486 (N : Node_Id;
1487 New_S : Entity_Id;
1488 Is_Body : Boolean)
1490 Nam : constant Node_Id := Name (N);
1491 P : constant Node_Id := Prefix (Nam);
1492 Typ : Entity_Id;
1493 Ind : Interp_Index;
1494 It : Interp;
1496 begin
1497 if not Is_Overloaded (P) then
1498 if Ekind (Etype (Nam)) /= E_Subprogram_Type
1499 or else not Type_Conformant (Etype (Nam), New_S)
1500 then
1501 Error_Msg_N ("designated type does not match specification", P);
1502 else
1503 Resolve (P);
1504 end if;
1506 return;
1508 else
1509 Typ := Any_Type;
1510 Get_First_Interp (Nam, Ind, It);
1512 while Present (It.Nam) loop
1514 if Ekind (It.Nam) = E_Subprogram_Type
1515 and then Type_Conformant (It.Nam, New_S)
1516 then
1517 if Typ /= Any_Id then
1518 Error_Msg_N ("ambiguous renaming", P);
1519 return;
1520 else
1521 Typ := It.Nam;
1522 end if;
1523 end if;
1525 Get_Next_Interp (Ind, It);
1526 end loop;
1528 if Typ = Any_Type then
1529 Error_Msg_N ("designated type does not match specification", P);
1530 else
1531 Resolve (N, Typ);
1533 if Is_Body then
1534 Check_Frozen_Renaming (N, New_S);
1535 end if;
1536 end if;
1537 end if;
1538 end Analyze_Renamed_Dereference;
1540 ---------------------------
1541 -- Analyze_Renamed_Entry --
1542 ---------------------------
1544 procedure Analyze_Renamed_Entry
1545 (N : Node_Id;
1546 New_S : Entity_Id;
1547 Is_Body : Boolean)
1549 Nam : constant Node_Id := Name (N);
1550 Sel : constant Node_Id := Selector_Name (Nam);
1551 Is_Actual : constant Boolean := Present (Corresponding_Formal_Spec (N));
1552 Old_S : Entity_Id;
1554 begin
1555 if Entity (Sel) = Any_Id then
1557 -- Selector is undefined on prefix. Error emitted already
1559 Set_Has_Completion (New_S);
1560 return;
1561 end if;
1563 -- Otherwise find renamed entity and build body of New_S as a call to it
1565 Old_S := Find_Renamed_Entity (N, Selector_Name (Nam), New_S);
1567 if Old_S = Any_Id then
1568 Error_Msg_N (" no subprogram or entry matches specification", N);
1569 else
1570 if Is_Body then
1571 Check_Subtype_Conformant (New_S, Old_S, N);
1572 Generate_Reference (New_S, Defining_Entity (N), 'b');
1573 Style.Check_Identifier (Defining_Entity (N), New_S);
1575 else
1576 -- Only mode conformance required for a renaming_as_declaration
1578 Check_Mode_Conformant (New_S, Old_S, N);
1579 end if;
1581 Inherit_Renamed_Profile (New_S, Old_S);
1583 -- The prefix can be an arbitrary expression that yields a task or
1584 -- protected object, so it must be resolved.
1586 Resolve (Prefix (Nam), Scope (Old_S));
1587 end if;
1589 Set_Convention (New_S, Convention (Old_S));
1590 Set_Has_Completion (New_S, Inside_A_Generic);
1592 -- AI05-0225: If the renamed entity is a procedure or entry of a
1593 -- protected object, the target object must be a variable.
1595 if Ekind (Scope (Old_S)) in Protected_Kind
1596 and then Ekind (New_S) = E_Procedure
1597 and then not Is_Variable (Prefix (Nam))
1598 then
1599 if Is_Actual then
1600 Error_Msg_N
1601 ("target object of protected operation used as actual for "
1602 & "formal procedure must be a variable", Nam);
1603 else
1604 Error_Msg_N
1605 ("target object of protected operation renamed as procedure, "
1606 & "must be a variable", Nam);
1607 end if;
1608 end if;
1610 if Is_Body then
1611 Check_Frozen_Renaming (N, New_S);
1612 end if;
1613 end Analyze_Renamed_Entry;
1615 -----------------------------------
1616 -- Analyze_Renamed_Family_Member --
1617 -----------------------------------
1619 procedure Analyze_Renamed_Family_Member
1620 (N : Node_Id;
1621 New_S : Entity_Id;
1622 Is_Body : Boolean)
1624 Nam : constant Node_Id := Name (N);
1625 P : constant Node_Id := Prefix (Nam);
1626 Old_S : Entity_Id;
1628 begin
1629 if (Is_Entity_Name (P) and then Ekind (Entity (P)) = E_Entry_Family)
1630 or else (Nkind (P) = N_Selected_Component
1631 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1632 then
1633 if Is_Entity_Name (P) then
1634 Old_S := Entity (P);
1635 else
1636 Old_S := Entity (Selector_Name (P));
1637 end if;
1639 if not Entity_Matches_Spec (Old_S, New_S) then
1640 Error_Msg_N ("entry family does not match specification", N);
1642 elsif Is_Body then
1643 Check_Subtype_Conformant (New_S, Old_S, N);
1644 Generate_Reference (New_S, Defining_Entity (N), 'b');
1645 Style.Check_Identifier (Defining_Entity (N), New_S);
1646 end if;
1648 else
1649 Error_Msg_N ("no entry family matches specification", N);
1650 end if;
1652 Set_Has_Completion (New_S, Inside_A_Generic);
1654 if Is_Body then
1655 Check_Frozen_Renaming (N, New_S);
1656 end if;
1657 end Analyze_Renamed_Family_Member;
1659 -----------------------------------------
1660 -- Analyze_Renamed_Primitive_Operation --
1661 -----------------------------------------
1663 procedure Analyze_Renamed_Primitive_Operation
1664 (N : Node_Id;
1665 New_S : Entity_Id;
1666 Is_Body : Boolean)
1668 Old_S : Entity_Id;
1670 function Conforms
1671 (Subp : Entity_Id;
1672 Ctyp : Conformance_Type) return Boolean;
1673 -- Verify that the signatures of the renamed entity and the new entity
1674 -- match. The first formal of the renamed entity is skipped because it
1675 -- is the target object in any subsequent call.
1677 --------------
1678 -- Conforms --
1679 --------------
1681 function Conforms
1682 (Subp : Entity_Id;
1683 Ctyp : Conformance_Type) return Boolean
1685 Old_F : Entity_Id;
1686 New_F : Entity_Id;
1688 begin
1689 if Ekind (Subp) /= Ekind (New_S) then
1690 return False;
1691 end if;
1693 Old_F := Next_Formal (First_Formal (Subp));
1694 New_F := First_Formal (New_S);
1695 while Present (Old_F) and then Present (New_F) loop
1696 if not Conforming_Types (Etype (Old_F), Etype (New_F), Ctyp) then
1697 return False;
1698 end if;
1700 if Ctyp >= Mode_Conformant
1701 and then Ekind (Old_F) /= Ekind (New_F)
1702 then
1703 return False;
1704 end if;
1706 Next_Formal (New_F);
1707 Next_Formal (Old_F);
1708 end loop;
1710 return True;
1711 end Conforms;
1713 -- Start of processing for Analyze_Renamed_Primitive_Operation
1715 begin
1716 if not Is_Overloaded (Selector_Name (Name (N))) then
1717 Old_S := Entity (Selector_Name (Name (N)));
1719 if not Conforms (Old_S, Type_Conformant) then
1720 Old_S := Any_Id;
1721 end if;
1723 else
1724 -- Find the operation that matches the given signature
1726 declare
1727 It : Interp;
1728 Ind : Interp_Index;
1730 begin
1731 Old_S := Any_Id;
1732 Get_First_Interp (Selector_Name (Name (N)), Ind, It);
1734 while Present (It.Nam) loop
1735 if Conforms (It.Nam, Type_Conformant) then
1736 Old_S := It.Nam;
1737 end if;
1739 Get_Next_Interp (Ind, It);
1740 end loop;
1741 end;
1742 end if;
1744 if Old_S = Any_Id then
1745 Error_Msg_N (" no subprogram or entry matches specification", N);
1747 else
1748 if Is_Body then
1749 if not Conforms (Old_S, Subtype_Conformant) then
1750 Error_Msg_N ("subtype conformance error in renaming", N);
1751 end if;
1753 Generate_Reference (New_S, Defining_Entity (N), 'b');
1754 Style.Check_Identifier (Defining_Entity (N), New_S);
1756 else
1757 -- Only mode conformance required for a renaming_as_declaration
1759 if not Conforms (Old_S, Mode_Conformant) then
1760 Error_Msg_N ("mode conformance error in renaming", N);
1761 end if;
1763 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1764 -- view of a subprogram is intrinsic, because the compiler has
1765 -- to generate a wrapper for any call to it. If the name in a
1766 -- subprogram renaming is a prefixed view, the entity is thus
1767 -- intrinsic, and 'Access cannot be applied to it.
1769 Set_Convention (New_S, Convention_Intrinsic);
1770 end if;
1772 -- Inherit_Renamed_Profile (New_S, Old_S);
1774 -- The prefix can be an arbitrary expression that yields an
1775 -- object, so it must be resolved.
1777 Resolve (Prefix (Name (N)));
1778 end if;
1779 end Analyze_Renamed_Primitive_Operation;
1781 ---------------------------------
1782 -- Analyze_Subprogram_Renaming --
1783 ---------------------------------
1785 procedure Analyze_Subprogram_Renaming (N : Node_Id) is
1786 Formal_Spec : constant Node_Id := Corresponding_Formal_Spec (N);
1787 Is_Actual : constant Boolean := Present (Formal_Spec);
1788 Inst_Node : Node_Id := Empty;
1789 Nam : constant Node_Id := Name (N);
1790 New_S : Entity_Id;
1791 Old_S : Entity_Id := Empty;
1792 Rename_Spec : Entity_Id;
1793 Save_AV : constant Ada_Version_Type := Ada_Version;
1794 Save_AVP : constant Node_Id := Ada_Version_Pragma;
1795 Save_AV_Exp : constant Ada_Version_Type := Ada_Version_Explicit;
1796 Spec : constant Node_Id := Specification (N);
1798 procedure Check_Null_Exclusion
1799 (Ren : Entity_Id;
1800 Sub : Entity_Id);
1801 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1802 -- following AI rules:
1804 -- If Ren is a renaming of a formal subprogram and one of its
1805 -- parameters has a null exclusion, then the corresponding formal
1806 -- in Sub must also have one. Otherwise the subtype of the Sub's
1807 -- formal parameter must exclude null.
1809 -- If Ren is a renaming of a formal function and its return
1810 -- profile has a null exclusion, then Sub's return profile must
1811 -- have one. Otherwise the subtype of Sub's return profile must
1812 -- exclude null.
1814 procedure Freeze_Actual_Profile;
1815 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1816 -- types: a callable entity freezes its profile, unless it has an
1817 -- incomplete untagged formal (RM 13.14(10.2/3)).
1819 function Original_Subprogram (Subp : Entity_Id) return Entity_Id;
1820 -- Find renamed entity when the declaration is a renaming_as_body and
1821 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1822 -- rule that a renaming_as_body is illegal if the declaration occurs
1823 -- before the subprogram it completes is frozen, and renaming indirectly
1824 -- renames the subprogram itself.(Defect Report 8652/0027).
1826 function Check_Class_Wide_Actual return Entity_Id;
1827 -- AI05-0071: In an instance, if the actual for a formal type FT with
1828 -- unknown discriminants is a class-wide type CT, and the generic has
1829 -- a formal subprogram with a box for a primitive operation of FT,
1830 -- then the corresponding actual subprogram denoted by the default is a
1831 -- class-wide operation whose body is a dispatching call. We replace the
1832 -- generated renaming declaration:
1834 -- procedure P (X : CT) renames P;
1836 -- by a different renaming and a class-wide operation:
1838 -- procedure Pr (X : T) renames P; -- renames primitive operation
1839 -- procedure P (X : CT); -- class-wide operation
1840 -- ...
1841 -- procedure P (X : CT) is begin Pr (X); end; -- dispatching call
1843 -- This rule only applies if there is no explicit visible class-wide
1844 -- operation at the point of the instantiation.
1846 function Has_Class_Wide_Actual return Boolean;
1847 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1848 -- defaulted formal subprogram when the actual for the controlling
1849 -- formal type is class-wide.
1851 -----------------------------
1852 -- Check_Class_Wide_Actual --
1853 -----------------------------
1855 function Check_Class_Wide_Actual return Entity_Id is
1856 Loc : constant Source_Ptr := Sloc (N);
1858 F : Entity_Id;
1859 Formal_Type : Entity_Id;
1860 Actual_Type : Entity_Id;
1861 New_Body : Node_Id;
1862 New_Decl : Node_Id;
1863 Result : Entity_Id;
1865 function Make_Call (Prim_Op : Entity_Id) return Node_Id;
1866 -- Build dispatching call for body of class-wide operation
1868 function Make_Spec return Node_Id;
1869 -- Create subprogram specification for declaration and body of
1870 -- class-wide operation, using signature of renaming declaration.
1872 ---------------
1873 -- Make_Call --
1874 ---------------
1876 function Make_Call (Prim_Op : Entity_Id) return Node_Id is
1877 Actuals : List_Id;
1878 F : Node_Id;
1880 begin
1881 Actuals := New_List;
1882 F := First (Parameter_Specifications (Specification (New_Decl)));
1883 while Present (F) loop
1884 Append_To (Actuals,
1885 Make_Identifier (Loc, Chars (Defining_Identifier (F))));
1886 Next (F);
1887 end loop;
1889 if Ekind_In (Prim_Op, E_Function, E_Operator) then
1890 return Make_Simple_Return_Statement (Loc,
1891 Expression =>
1892 Make_Function_Call (Loc,
1893 Name => New_Occurrence_Of (Prim_Op, Loc),
1894 Parameter_Associations => Actuals));
1895 else
1896 return
1897 Make_Procedure_Call_Statement (Loc,
1898 Name => New_Occurrence_Of (Prim_Op, Loc),
1899 Parameter_Associations => Actuals);
1900 end if;
1901 end Make_Call;
1903 ---------------
1904 -- Make_Spec --
1905 ---------------
1907 function Make_Spec return Node_Id is
1908 Param_Specs : constant List_Id := Copy_Parameter_List (New_S);
1910 begin
1911 if Ekind (New_S) = E_Procedure then
1912 return
1913 Make_Procedure_Specification (Loc,
1914 Defining_Unit_Name =>
1915 Make_Defining_Identifier (Loc,
1916 Chars (Defining_Unit_Name (Spec))),
1917 Parameter_Specifications => Param_Specs);
1918 else
1919 return
1920 Make_Function_Specification (Loc,
1921 Defining_Unit_Name =>
1922 Make_Defining_Identifier (Loc,
1923 Chars (Defining_Unit_Name (Spec))),
1924 Parameter_Specifications => Param_Specs,
1925 Result_Definition =>
1926 New_Copy_Tree (Result_Definition (Spec)));
1927 end if;
1928 end Make_Spec;
1930 -- Start of processing for Check_Class_Wide_Actual
1932 begin
1933 Result := Any_Id;
1934 Formal_Type := Empty;
1935 Actual_Type := Empty;
1937 F := First_Formal (Formal_Spec);
1938 while Present (F) loop
1939 if Has_Unknown_Discriminants (Etype (F))
1940 and then not Is_Class_Wide_Type (Etype (F))
1941 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (F)))
1942 then
1943 Formal_Type := Etype (F);
1944 Actual_Type := Etype (Get_Instance_Of (Formal_Type));
1945 exit;
1946 end if;
1948 Next_Formal (F);
1949 end loop;
1951 if Present (Formal_Type) then
1953 -- Create declaration and body for class-wide operation
1955 New_Decl :=
1956 Make_Subprogram_Declaration (Loc, Specification => Make_Spec);
1958 New_Body :=
1959 Make_Subprogram_Body (Loc,
1960 Specification => Make_Spec,
1961 Declarations => No_List,
1962 Handled_Statement_Sequence =>
1963 Make_Handled_Sequence_Of_Statements (Loc, New_List));
1965 -- Modify Spec and create internal name for renaming of primitive
1966 -- operation.
1968 Set_Defining_Unit_Name (Spec, Make_Temporary (Loc, 'R'));
1969 F := First (Parameter_Specifications (Spec));
1970 while Present (F) loop
1971 if Nkind (Parameter_Type (F)) = N_Identifier
1972 and then Is_Class_Wide_Type (Entity (Parameter_Type (F)))
1973 then
1974 Set_Parameter_Type (F, New_Occurrence_Of (Actual_Type, Loc));
1975 end if;
1976 Next (F);
1977 end loop;
1979 New_S := Analyze_Subprogram_Specification (Spec);
1980 Result := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
1981 end if;
1983 if Result /= Any_Id then
1984 Insert_Before (N, New_Decl);
1985 Analyze (New_Decl);
1987 -- Add dispatching call to body of class-wide operation
1989 Append (Make_Call (Result),
1990 Statements (Handled_Statement_Sequence (New_Body)));
1992 -- The generated body does not freeze. It is analyzed when the
1993 -- generated operation is frozen. This body is only needed if
1994 -- expansion is enabled.
1996 if Expander_Active then
1997 Append_Freeze_Action (Defining_Entity (New_Decl), New_Body);
1998 end if;
2000 Result := Defining_Entity (New_Decl);
2001 end if;
2003 -- Return the class-wide operation if one was created
2005 return Result;
2006 end Check_Class_Wide_Actual;
2008 --------------------------
2009 -- Check_Null_Exclusion --
2010 --------------------------
2012 procedure Check_Null_Exclusion
2013 (Ren : Entity_Id;
2014 Sub : Entity_Id)
2016 Ren_Formal : Entity_Id;
2017 Sub_Formal : Entity_Id;
2019 begin
2020 -- Parameter check
2022 Ren_Formal := First_Formal (Ren);
2023 Sub_Formal := First_Formal (Sub);
2024 while Present (Ren_Formal) and then Present (Sub_Formal) loop
2025 if Has_Null_Exclusion (Parent (Ren_Formal))
2026 and then
2027 not (Has_Null_Exclusion (Parent (Sub_Formal))
2028 or else Can_Never_Be_Null (Etype (Sub_Formal)))
2029 then
2030 Error_Msg_NE
2031 ("`NOT NULL` required for parameter &",
2032 Parent (Sub_Formal), Sub_Formal);
2033 end if;
2035 Next_Formal (Ren_Formal);
2036 Next_Formal (Sub_Formal);
2037 end loop;
2039 -- Return profile check
2041 if Nkind (Parent (Ren)) = N_Function_Specification
2042 and then Nkind (Parent (Sub)) = N_Function_Specification
2043 and then Has_Null_Exclusion (Parent (Ren))
2044 and then not (Has_Null_Exclusion (Parent (Sub))
2045 or else Can_Never_Be_Null (Etype (Sub)))
2046 then
2047 Error_Msg_N
2048 ("return must specify `NOT NULL`",
2049 Result_Definition (Parent (Sub)));
2050 end if;
2051 end Check_Null_Exclusion;
2053 ---------------------------
2054 -- Freeze_Actual_Profile --
2055 ---------------------------
2057 procedure Freeze_Actual_Profile is
2058 F : Entity_Id;
2059 Has_Untagged_Inc : Boolean;
2060 Instantiation_Node : constant Node_Id := Parent (N);
2062 begin
2063 if Ada_Version >= Ada_2012 then
2064 F := First_Formal (Formal_Spec);
2065 Has_Untagged_Inc := False;
2066 while Present (F) loop
2067 if Ekind (Etype (F)) = E_Incomplete_Type
2068 and then not Is_Tagged_Type (Etype (F))
2069 then
2070 Has_Untagged_Inc := True;
2071 exit;
2072 end if;
2074 F := Next_Formal (F);
2075 end loop;
2077 if Ekind (Formal_Spec) = E_Function
2078 and then Ekind (Etype (Formal_Spec)) = E_Incomplete_Type
2079 and then not Is_Tagged_Type (Etype (F))
2080 then
2081 Has_Untagged_Inc := True;
2082 end if;
2084 if not Has_Untagged_Inc then
2085 F := First_Formal (Old_S);
2086 while Present (F) loop
2087 Freeze_Before (Instantiation_Node, Etype (F));
2089 if Is_Incomplete_Or_Private_Type (Etype (F))
2090 and then No (Underlying_Type (Etype (F)))
2091 then
2093 -- Exclude generic types, or types derived from them.
2094 -- They will be frozen in the enclosing instance.
2096 if Is_Generic_Type (Etype (F))
2097 or else Is_Generic_Type (Root_Type (Etype (F)))
2098 then
2099 null;
2100 else
2101 Error_Msg_NE
2102 ("type& must be frozen before this point",
2103 Instantiation_Node, Etype (F));
2104 end if;
2105 end if;
2107 F := Next_Formal (F);
2108 end loop;
2109 end if;
2110 end if;
2111 end Freeze_Actual_Profile;
2113 ---------------------------
2114 -- Has_Class_Wide_Actual --
2115 ---------------------------
2117 function Has_Class_Wide_Actual return Boolean is
2118 F_Nam : Entity_Id;
2119 F_Spec : Entity_Id;
2121 begin
2122 if Is_Actual
2123 and then Nkind (Nam) in N_Has_Entity
2124 and then Present (Entity (Nam))
2125 and then Is_Dispatching_Operation (Entity (Nam))
2126 then
2127 F_Nam := First_Entity (Entity (Nam));
2128 F_Spec := First_Formal (Formal_Spec);
2129 while Present (F_Nam) and then Present (F_Spec) loop
2130 if Is_Controlling_Formal (F_Nam)
2131 and then Has_Unknown_Discriminants (Etype (F_Spec))
2132 and then not Is_Class_Wide_Type (Etype (F_Spec))
2133 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (F_Spec)))
2134 then
2135 return True;
2136 end if;
2138 Next_Entity (F_Nam);
2139 Next_Formal (F_Spec);
2140 end loop;
2141 end if;
2143 return False;
2144 end Has_Class_Wide_Actual;
2146 -------------------------
2147 -- Original_Subprogram --
2148 -------------------------
2150 function Original_Subprogram (Subp : Entity_Id) return Entity_Id is
2151 Orig_Decl : Node_Id;
2152 Orig_Subp : Entity_Id;
2154 begin
2155 -- First case: renamed entity is itself a renaming
2157 if Present (Alias (Subp)) then
2158 return Alias (Subp);
2160 elsif Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
2161 and then Present (Corresponding_Body (Unit_Declaration_Node (Subp)))
2162 then
2163 -- Check if renamed entity is a renaming_as_body
2165 Orig_Decl :=
2166 Unit_Declaration_Node
2167 (Corresponding_Body (Unit_Declaration_Node (Subp)));
2169 if Nkind (Orig_Decl) = N_Subprogram_Renaming_Declaration then
2170 Orig_Subp := Entity (Name (Orig_Decl));
2172 if Orig_Subp = Rename_Spec then
2174 -- Circularity detected
2176 return Orig_Subp;
2178 else
2179 return (Original_Subprogram (Orig_Subp));
2180 end if;
2181 else
2182 return Subp;
2183 end if;
2184 else
2185 return Subp;
2186 end if;
2187 end Original_Subprogram;
2189 CW_Actual : constant Boolean := Has_Class_Wide_Actual;
2190 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2191 -- defaulted formal subprogram when the actual for a related formal
2192 -- type is class-wide.
2194 -- Start of processing for Analyze_Subprogram_Renaming
2196 begin
2197 -- We must test for the attribute renaming case before the Analyze
2198 -- call because otherwise Sem_Attr will complain that the attribute
2199 -- is missing an argument when it is analyzed.
2201 if Nkind (Nam) = N_Attribute_Reference then
2203 -- In the case of an abstract formal subprogram association, rewrite
2204 -- an actual given by a stream attribute as the name of the
2205 -- corresponding stream primitive of the type.
2207 -- In a generic context the stream operations are not generated, and
2208 -- this must be treated as a normal attribute reference, to be
2209 -- expanded in subsequent instantiations.
2211 if Is_Actual
2212 and then Is_Abstract_Subprogram (Formal_Spec)
2213 and then Expander_Active
2214 then
2215 declare
2216 Stream_Prim : Entity_Id;
2217 Prefix_Type : constant Entity_Id := Entity (Prefix (Nam));
2219 begin
2220 -- The class-wide forms of the stream attributes are not
2221 -- primitive dispatching operations (even though they
2222 -- internally dispatch to a stream attribute).
2224 if Is_Class_Wide_Type (Prefix_Type) then
2225 Error_Msg_N
2226 ("attribute must be a primitive dispatching operation",
2227 Nam);
2228 return;
2229 end if;
2231 -- Retrieve the primitive subprogram associated with the
2232 -- attribute. This can only be a stream attribute, since those
2233 -- are the only ones that are dispatching (and the actual for
2234 -- an abstract formal subprogram must be dispatching
2235 -- operation).
2237 begin
2238 case Attribute_Name (Nam) is
2239 when Name_Input =>
2240 Stream_Prim :=
2241 Find_Prim_Op (Prefix_Type, TSS_Stream_Input);
2242 when Name_Output =>
2243 Stream_Prim :=
2244 Find_Prim_Op (Prefix_Type, TSS_Stream_Output);
2245 when Name_Read =>
2246 Stream_Prim :=
2247 Find_Prim_Op (Prefix_Type, TSS_Stream_Read);
2248 when Name_Write =>
2249 Stream_Prim :=
2250 Find_Prim_Op (Prefix_Type, TSS_Stream_Write);
2251 when others =>
2252 Error_Msg_N
2253 ("attribute must be a primitive"
2254 & " dispatching operation", Nam);
2255 return;
2256 end case;
2258 exception
2260 -- If no operation was found, and the type is limited,
2261 -- the user should have defined one.
2263 when Program_Error =>
2264 if Is_Limited_Type (Prefix_Type) then
2265 Error_Msg_NE
2266 ("stream operation not defined for type&",
2267 N, Prefix_Type);
2268 return;
2270 -- Otherwise, compiler should have generated default
2272 else
2273 raise;
2274 end if;
2275 end;
2277 -- Rewrite the attribute into the name of its corresponding
2278 -- primitive dispatching subprogram. We can then proceed with
2279 -- the usual processing for subprogram renamings.
2281 declare
2282 Prim_Name : constant Node_Id :=
2283 Make_Identifier (Sloc (Nam),
2284 Chars => Chars (Stream_Prim));
2285 begin
2286 Set_Entity (Prim_Name, Stream_Prim);
2287 Rewrite (Nam, Prim_Name);
2288 Analyze (Nam);
2289 end;
2290 end;
2292 -- Normal processing for a renaming of an attribute
2294 else
2295 Attribute_Renaming (N);
2296 return;
2297 end if;
2298 end if;
2300 -- Check whether this declaration corresponds to the instantiation
2301 -- of a formal subprogram.
2303 -- If this is an instantiation, the corresponding actual is frozen and
2304 -- error messages can be made more precise. If this is a default
2305 -- subprogram, the entity is already established in the generic, and is
2306 -- not retrieved by visibility. If it is a default with a box, the
2307 -- candidate interpretations, if any, have been collected when building
2308 -- the renaming declaration. If overloaded, the proper interpretation is
2309 -- determined in Find_Renamed_Entity. If the entity is an operator,
2310 -- Find_Renamed_Entity applies additional visibility checks.
2312 if Is_Actual then
2313 Inst_Node := Unit_Declaration_Node (Formal_Spec);
2315 -- Check whether the renaming is for a defaulted actual subprogram
2316 -- with a class-wide actual.
2318 if CW_Actual then
2319 New_S := Analyze_Subprogram_Specification (Spec);
2320 Old_S := Check_Class_Wide_Actual;
2322 elsif Is_Entity_Name (Nam)
2323 and then Present (Entity (Nam))
2324 and then not Comes_From_Source (Nam)
2325 and then not Is_Overloaded (Nam)
2326 then
2327 Old_S := Entity (Nam);
2328 New_S := Analyze_Subprogram_Specification (Spec);
2330 -- Operator case
2332 if Ekind (Entity (Nam)) = E_Operator then
2334 -- Box present
2336 if Box_Present (Inst_Node) then
2337 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2339 -- If there is an immediately visible homonym of the operator
2340 -- and the declaration has a default, this is worth a warning
2341 -- because the user probably did not intend to get the pre-
2342 -- defined operator, visible in the generic declaration. To
2343 -- find if there is an intended candidate, analyze the renaming
2344 -- again in the current context.
2346 elsif Scope (Old_S) = Standard_Standard
2347 and then Present (Default_Name (Inst_Node))
2348 then
2349 declare
2350 Decl : constant Node_Id := New_Copy_Tree (N);
2351 Hidden : Entity_Id;
2353 begin
2354 Set_Entity (Name (Decl), Empty);
2355 Analyze (Name (Decl));
2356 Hidden :=
2357 Find_Renamed_Entity (Decl, Name (Decl), New_S, True);
2359 if Present (Hidden)
2360 and then In_Open_Scopes (Scope (Hidden))
2361 and then Is_Immediately_Visible (Hidden)
2362 and then Comes_From_Source (Hidden)
2363 and then Hidden /= Old_S
2364 then
2365 Error_Msg_Sloc := Sloc (Hidden);
2366 Error_Msg_N ("default subprogram is resolved " &
2367 "in the generic declaration " &
2368 "(RM 12.6(17))??", N);
2369 Error_Msg_NE ("\and will not use & #??", N, Hidden);
2370 end if;
2371 end;
2372 end if;
2373 end if;
2375 else
2376 Analyze (Nam);
2377 New_S := Analyze_Subprogram_Specification (Spec);
2378 end if;
2380 else
2381 -- Renamed entity must be analyzed first, to avoid being hidden by
2382 -- new name (which might be the same in a generic instance).
2384 Analyze (Nam);
2386 -- The renaming defines a new overloaded entity, which is analyzed
2387 -- like a subprogram declaration.
2389 New_S := Analyze_Subprogram_Specification (Spec);
2390 end if;
2392 if Current_Scope /= Standard_Standard then
2393 Set_Is_Pure (New_S, Is_Pure (Current_Scope));
2394 end if;
2396 -- Set SPARK mode from current context
2398 Set_SPARK_Pragma (New_S, SPARK_Mode_Pragma);
2399 Set_SPARK_Pragma_Inherited (New_S, True);
2401 Rename_Spec := Find_Corresponding_Spec (N);
2403 -- Case of Renaming_As_Body
2405 if Present (Rename_Spec) then
2407 -- Renaming declaration is the completion of the declaration of
2408 -- Rename_Spec. We build an actual body for it at the freezing point.
2410 Set_Corresponding_Spec (N, Rename_Spec);
2412 -- Deal with special case of stream functions of abstract types
2413 -- and interfaces.
2415 if Nkind (Unit_Declaration_Node (Rename_Spec)) =
2416 N_Abstract_Subprogram_Declaration
2417 then
2418 -- Input stream functions are abstract if the object type is
2419 -- abstract. Similarly, all default stream functions for an
2420 -- interface type are abstract. However, these subprograms may
2421 -- receive explicit declarations in representation clauses, making
2422 -- the attribute subprograms usable as defaults in subsequent
2423 -- type extensions.
2424 -- In this case we rewrite the declaration to make the subprogram
2425 -- non-abstract. We remove the previous declaration, and insert
2426 -- the new one at the point of the renaming, to prevent premature
2427 -- access to unfrozen types. The new declaration reuses the
2428 -- specification of the previous one, and must not be analyzed.
2430 pragma Assert
2431 (Is_Primitive (Entity (Nam))
2432 and then
2433 Is_Abstract_Type (Find_Dispatching_Type (Entity (Nam))));
2434 declare
2435 Old_Decl : constant Node_Id :=
2436 Unit_Declaration_Node (Rename_Spec);
2437 New_Decl : constant Node_Id :=
2438 Make_Subprogram_Declaration (Sloc (N),
2439 Specification =>
2440 Relocate_Node (Specification (Old_Decl)));
2441 begin
2442 Remove (Old_Decl);
2443 Insert_After (N, New_Decl);
2444 Set_Is_Abstract_Subprogram (Rename_Spec, False);
2445 Set_Analyzed (New_Decl);
2446 end;
2447 end if;
2449 Set_Corresponding_Body (Unit_Declaration_Node (Rename_Spec), New_S);
2451 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2452 Error_Msg_N ("(Ada 83) renaming cannot serve as a body", N);
2453 end if;
2455 Set_Convention (New_S, Convention (Rename_Spec));
2456 Check_Fully_Conformant (New_S, Rename_Spec);
2457 Set_Public_Status (New_S);
2459 -- The specification does not introduce new formals, but only
2460 -- repeats the formals of the original subprogram declaration.
2461 -- For cross-reference purposes, and for refactoring tools, we
2462 -- treat the formals of the renaming declaration as body formals.
2464 Reference_Body_Formals (Rename_Spec, New_S);
2466 -- Indicate that the entity in the declaration functions like the
2467 -- corresponding body, and is not a new entity. The body will be
2468 -- constructed later at the freeze point, so indicate that the
2469 -- completion has not been seen yet.
2471 Set_Contract (New_S, Empty);
2472 Set_Ekind (New_S, E_Subprogram_Body);
2473 New_S := Rename_Spec;
2474 Set_Has_Completion (Rename_Spec, False);
2476 -- Ada 2005: check overriding indicator
2478 if Present (Overridden_Operation (Rename_Spec)) then
2479 if Must_Not_Override (Specification (N)) then
2480 Error_Msg_NE
2481 ("subprogram& overrides inherited operation",
2482 N, Rename_Spec);
2483 elsif
2484 Style_Check and then not Must_Override (Specification (N))
2485 then
2486 Style.Missing_Overriding (N, Rename_Spec);
2487 end if;
2489 elsif Must_Override (Specification (N)) then
2490 Error_Msg_NE ("subprogram& is not overriding", N, Rename_Spec);
2491 end if;
2493 -- Normal subprogram renaming (not renaming as body)
2495 else
2496 Generate_Definition (New_S);
2497 New_Overloaded_Entity (New_S);
2499 if Is_Entity_Name (Nam)
2500 and then Is_Intrinsic_Subprogram (Entity (Nam))
2501 then
2502 null;
2503 else
2504 Check_Delayed_Subprogram (New_S);
2505 end if;
2506 end if;
2508 -- There is no need for elaboration checks on the new entity, which may
2509 -- be called before the next freezing point where the body will appear.
2510 -- Elaboration checks refer to the real entity, not the one created by
2511 -- the renaming declaration.
2513 Set_Kill_Elaboration_Checks (New_S, True);
2515 if Etype (Nam) = Any_Type then
2516 Set_Has_Completion (New_S);
2517 return;
2519 elsif Nkind (Nam) = N_Selected_Component then
2521 -- A prefix of the form A.B can designate an entry of task A, a
2522 -- protected operation of protected object A, or finally a primitive
2523 -- operation of object A. In the later case, A is an object of some
2524 -- tagged type, or an access type that denotes one such. To further
2525 -- distinguish these cases, note that the scope of a task entry or
2526 -- protected operation is type of the prefix.
2528 -- The prefix could be an overloaded function call that returns both
2529 -- kinds of operations. This overloading pathology is left to the
2530 -- dedicated reader ???
2532 declare
2533 T : constant Entity_Id := Etype (Prefix (Nam));
2535 begin
2536 if Present (T)
2537 and then
2538 (Is_Tagged_Type (T)
2539 or else
2540 (Is_Access_Type (T)
2541 and then Is_Tagged_Type (Designated_Type (T))))
2542 and then Scope (Entity (Selector_Name (Nam))) /= T
2543 then
2544 Analyze_Renamed_Primitive_Operation
2545 (N, New_S, Present (Rename_Spec));
2546 return;
2548 else
2549 -- Renamed entity is an entry or protected operation. For those
2550 -- cases an explicit body is built (at the point of freezing of
2551 -- this entity) that contains a call to the renamed entity.
2553 -- This is not allowed for renaming as body if the renamed
2554 -- spec is already frozen (see RM 8.5.4(5) for details).
2556 if Present (Rename_Spec) and then Is_Frozen (Rename_Spec) then
2557 Error_Msg_N
2558 ("renaming-as-body cannot rename entry as subprogram", N);
2559 Error_Msg_NE
2560 ("\since & is already frozen (RM 8.5.4(5))",
2561 N, Rename_Spec);
2562 else
2563 Analyze_Renamed_Entry (N, New_S, Present (Rename_Spec));
2564 end if;
2566 return;
2567 end if;
2568 end;
2570 elsif Nkind (Nam) = N_Explicit_Dereference then
2572 -- Renamed entity is designated by access_to_subprogram expression.
2573 -- Must build body to encapsulate call, as in the entry case.
2575 Analyze_Renamed_Dereference (N, New_S, Present (Rename_Spec));
2576 return;
2578 elsif Nkind (Nam) = N_Indexed_Component then
2579 Analyze_Renamed_Family_Member (N, New_S, Present (Rename_Spec));
2580 return;
2582 elsif Nkind (Nam) = N_Character_Literal then
2583 Analyze_Renamed_Character (N, New_S, Present (Rename_Spec));
2584 return;
2586 elsif not Is_Entity_Name (Nam)
2587 or else not Is_Overloadable (Entity (Nam))
2588 then
2589 -- Do not mention the renaming if it comes from an instance
2591 if not Is_Actual then
2592 Error_Msg_N ("expect valid subprogram name in renaming", N);
2593 else
2594 Error_Msg_NE ("no visible subprogram for formal&", N, Nam);
2595 end if;
2597 return;
2598 end if;
2600 -- Find the renamed entity that matches the given specification. Disable
2601 -- Ada_83 because there is no requirement of full conformance between
2602 -- renamed entity and new entity, even though the same circuit is used.
2604 -- This is a bit of a kludge, which introduces a really irregular use of
2605 -- Ada_Version[_Explicit]. Would be nice to find cleaner way to do this
2606 -- ???
2608 Ada_Version := Ada_Version_Type'Max (Ada_Version, Ada_95);
2609 Ada_Version_Pragma := Empty;
2610 Ada_Version_Explicit := Ada_Version;
2612 if No (Old_S) then
2613 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2615 -- The visible operation may be an inherited abstract operation that
2616 -- was overridden in the private part, in which case a call will
2617 -- dispatch to the overriding operation. Use the overriding one in
2618 -- the renaming declaration, to prevent spurious errors below.
2620 if Is_Overloadable (Old_S)
2621 and then Is_Abstract_Subprogram (Old_S)
2622 and then No (DTC_Entity (Old_S))
2623 and then Present (Alias (Old_S))
2624 and then not Is_Abstract_Subprogram (Alias (Old_S))
2625 and then Present (Overridden_Operation (Alias (Old_S)))
2626 then
2627 Old_S := Alias (Old_S);
2628 end if;
2630 -- When the renamed subprogram is overloaded and used as an actual
2631 -- of a generic, its entity is set to the first available homonym.
2632 -- We must first disambiguate the name, then set the proper entity.
2634 if Is_Actual and then Is_Overloaded (Nam) then
2635 Set_Entity (Nam, Old_S);
2636 end if;
2637 end if;
2639 -- Most common case: subprogram renames subprogram. No body is generated
2640 -- in this case, so we must indicate the declaration is complete as is.
2641 -- and inherit various attributes of the renamed subprogram.
2643 if No (Rename_Spec) then
2644 Set_Has_Completion (New_S);
2645 Set_Is_Imported (New_S, Is_Imported (Entity (Nam)));
2646 Set_Is_Pure (New_S, Is_Pure (Entity (Nam)));
2647 Set_Is_Preelaborated (New_S, Is_Preelaborated (Entity (Nam)));
2649 -- Ada 2005 (AI-423): Check the consistency of null exclusions
2650 -- between a subprogram and its correct renaming.
2652 -- Note: the Any_Id check is a guard that prevents compiler crashes
2653 -- when performing a null exclusion check between a renaming and a
2654 -- renamed subprogram that has been found to be illegal.
2656 if Ada_Version >= Ada_2005 and then Entity (Nam) /= Any_Id then
2657 Check_Null_Exclusion
2658 (Ren => New_S,
2659 Sub => Entity (Nam));
2660 end if;
2662 -- Enforce the Ada 2005 rule that the renamed entity cannot require
2663 -- overriding. The flag Requires_Overriding is set very selectively
2664 -- and misses some other illegal cases. The additional conditions
2665 -- checked below are sufficient but not necessary ???
2667 -- The rule does not apply to the renaming generated for an actual
2668 -- subprogram in an instance.
2670 if Is_Actual then
2671 null;
2673 -- Guard against previous errors, and omit renamings of predefined
2674 -- operators.
2676 elsif not Ekind_In (Old_S, E_Function, E_Procedure) then
2677 null;
2679 elsif Requires_Overriding (Old_S)
2680 or else
2681 (Is_Abstract_Subprogram (Old_S)
2682 and then Present (Find_Dispatching_Type (Old_S))
2683 and then
2684 not Is_Abstract_Type (Find_Dispatching_Type (Old_S)))
2685 then
2686 Error_Msg_N
2687 ("renamed entity cannot be "
2688 & "subprogram that requires overriding (RM 8.5.4 (5.1))", N);
2689 end if;
2690 end if;
2692 if Old_S /= Any_Id then
2693 if Is_Actual and then From_Default (N) then
2695 -- This is an implicit reference to the default actual
2697 Generate_Reference (Old_S, Nam, Typ => 'i', Force => True);
2699 else
2700 Generate_Reference (Old_S, Nam);
2701 end if;
2703 Check_Internal_Protected_Use (N, Old_S);
2705 -- For a renaming-as-body, require subtype conformance, but if the
2706 -- declaration being completed has not been frozen, then inherit the
2707 -- convention of the renamed subprogram prior to checking conformance
2708 -- (unless the renaming has an explicit convention established; the
2709 -- rule stated in the RM doesn't seem to address this ???).
2711 if Present (Rename_Spec) then
2712 Generate_Reference (Rename_Spec, Defining_Entity (Spec), 'b');
2713 Style.Check_Identifier (Defining_Entity (Spec), Rename_Spec);
2715 if not Is_Frozen (Rename_Spec) then
2716 if not Has_Convention_Pragma (Rename_Spec) then
2717 Set_Convention (New_S, Convention (Old_S));
2718 end if;
2720 if Ekind (Old_S) /= E_Operator then
2721 Check_Mode_Conformant (New_S, Old_S, Spec);
2722 end if;
2724 if Original_Subprogram (Old_S) = Rename_Spec then
2725 Error_Msg_N ("unfrozen subprogram cannot rename itself ", N);
2726 end if;
2727 else
2728 Check_Subtype_Conformant (New_S, Old_S, Spec);
2729 end if;
2731 Check_Frozen_Renaming (N, Rename_Spec);
2733 -- Check explicitly that renamed entity is not intrinsic, because
2734 -- in a generic the renamed body is not built. In this case,
2735 -- the renaming_as_body is a completion.
2737 if Inside_A_Generic then
2738 if Is_Frozen (Rename_Spec)
2739 and then Is_Intrinsic_Subprogram (Old_S)
2740 then
2741 Error_Msg_N
2742 ("subprogram in renaming_as_body cannot be intrinsic",
2743 Name (N));
2744 end if;
2746 Set_Has_Completion (Rename_Spec);
2747 end if;
2749 elsif Ekind (Old_S) /= E_Operator then
2751 -- If this a defaulted subprogram for a class-wide actual there is
2752 -- no check for mode conformance, given that the signatures don't
2753 -- match (the source mentions T but the actual mentions T'Class).
2755 if CW_Actual then
2756 null;
2757 elsif not Is_Actual or else No (Enclosing_Instance) then
2758 Check_Mode_Conformant (New_S, Old_S);
2759 end if;
2761 if Is_Actual and then Error_Posted (New_S) then
2762 Error_Msg_NE ("invalid actual subprogram: & #!", N, Old_S);
2763 end if;
2764 end if;
2766 if No (Rename_Spec) then
2768 -- The parameter profile of the new entity is that of the renamed
2769 -- entity: the subtypes given in the specification are irrelevant.
2771 Inherit_Renamed_Profile (New_S, Old_S);
2773 -- A call to the subprogram is transformed into a call to the
2774 -- renamed entity. This is transitive if the renamed entity is
2775 -- itself a renaming.
2777 if Present (Alias (Old_S)) then
2778 Set_Alias (New_S, Alias (Old_S));
2779 else
2780 Set_Alias (New_S, Old_S);
2781 end if;
2783 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
2784 -- renaming as body, since the entity in this case is not an
2785 -- intrinsic (it calls an intrinsic, but we have a real body for
2786 -- this call, and it is in this body that the required intrinsic
2787 -- processing will take place).
2789 -- Also, if this is a renaming of inequality, the renamed operator
2790 -- is intrinsic, but what matters is the corresponding equality
2791 -- operator, which may be user-defined.
2793 Set_Is_Intrinsic_Subprogram
2794 (New_S,
2795 Is_Intrinsic_Subprogram (Old_S)
2796 and then
2797 (Chars (Old_S) /= Name_Op_Ne
2798 or else Ekind (Old_S) = E_Operator
2799 or else Is_Intrinsic_Subprogram
2800 (Corresponding_Equality (Old_S))));
2802 if Ekind (Alias (New_S)) = E_Operator then
2803 Set_Has_Delayed_Freeze (New_S, False);
2804 end if;
2806 -- If the renaming corresponds to an association for an abstract
2807 -- formal subprogram, then various attributes must be set to
2808 -- indicate that the renaming is an abstract dispatching operation
2809 -- with a controlling type.
2811 if Is_Actual and then Is_Abstract_Subprogram (Formal_Spec) then
2813 -- Mark the renaming as abstract here, so Find_Dispatching_Type
2814 -- see it as corresponding to a generic association for a
2815 -- formal abstract subprogram
2817 Set_Is_Abstract_Subprogram (New_S);
2819 declare
2820 New_S_Ctrl_Type : constant Entity_Id :=
2821 Find_Dispatching_Type (New_S);
2822 Old_S_Ctrl_Type : constant Entity_Id :=
2823 Find_Dispatching_Type (Old_S);
2825 begin
2826 if Old_S_Ctrl_Type /= New_S_Ctrl_Type then
2827 Error_Msg_NE
2828 ("actual must be dispatching subprogram for type&",
2829 Nam, New_S_Ctrl_Type);
2831 else
2832 Set_Is_Dispatching_Operation (New_S);
2833 Check_Controlling_Formals (New_S_Ctrl_Type, New_S);
2835 -- If the actual in the formal subprogram is itself a
2836 -- formal abstract subprogram association, there's no
2837 -- dispatch table component or position to inherit.
2839 if Present (DTC_Entity (Old_S)) then
2840 Set_DTC_Entity (New_S, DTC_Entity (Old_S));
2841 Set_DT_Position (New_S, DT_Position (Old_S));
2842 end if;
2843 end if;
2844 end;
2845 end if;
2846 end if;
2848 if Is_Actual then
2849 null;
2851 -- The following is illegal, because F hides whatever other F may
2852 -- be around:
2853 -- function F (...) renames F;
2855 elsif Old_S = New_S
2856 or else (Nkind (Nam) /= N_Expanded_Name
2857 and then Chars (Old_S) = Chars (New_S))
2858 then
2859 Error_Msg_N ("subprogram cannot rename itself", N);
2861 -- This is illegal even if we use a selector:
2862 -- function F (...) renames Pkg.F;
2863 -- because F is still hidden.
2865 elsif Nkind (Nam) = N_Expanded_Name
2866 and then Entity (Prefix (Nam)) = Current_Scope
2867 and then Chars (Selector_Name (Nam)) = Chars (New_S)
2868 then
2869 -- This is an error, but we overlook the error and accept the
2870 -- renaming if the special Overriding_Renamings mode is in effect.
2872 if not Overriding_Renamings then
2873 Error_Msg_NE
2874 ("implicit operation& is not visible (RM 8.3 (15))",
2875 Nam, Old_S);
2876 end if;
2877 end if;
2879 Set_Convention (New_S, Convention (Old_S));
2881 if Is_Abstract_Subprogram (Old_S) then
2882 if Present (Rename_Spec) then
2883 Error_Msg_N
2884 ("a renaming-as-body cannot rename an abstract subprogram",
2886 Set_Has_Completion (Rename_Spec);
2887 else
2888 Set_Is_Abstract_Subprogram (New_S);
2889 end if;
2890 end if;
2892 Check_Library_Unit_Renaming (N, Old_S);
2894 -- Pathological case: procedure renames entry in the scope of its
2895 -- task. Entry is given by simple name, but body must be built for
2896 -- procedure. Of course if called it will deadlock.
2898 if Ekind (Old_S) = E_Entry then
2899 Set_Has_Completion (New_S, False);
2900 Set_Alias (New_S, Empty);
2901 end if;
2903 if Is_Actual then
2904 Freeze_Before (N, Old_S);
2905 Freeze_Actual_Profile;
2906 Set_Has_Delayed_Freeze (New_S, False);
2907 Freeze_Before (N, New_S);
2909 -- An abstract subprogram is only allowed as an actual in the case
2910 -- where the formal subprogram is also abstract.
2912 if (Ekind (Old_S) = E_Procedure or else Ekind (Old_S) = E_Function)
2913 and then Is_Abstract_Subprogram (Old_S)
2914 and then not Is_Abstract_Subprogram (Formal_Spec)
2915 then
2916 Error_Msg_N
2917 ("abstract subprogram not allowed as generic actual", Nam);
2918 end if;
2919 end if;
2921 else
2922 -- A common error is to assume that implicit operators for types are
2923 -- defined in Standard, or in the scope of a subtype. In those cases
2924 -- where the renamed entity is given with an expanded name, it is
2925 -- worth mentioning that operators for the type are not declared in
2926 -- the scope given by the prefix.
2928 if Nkind (Nam) = N_Expanded_Name
2929 and then Nkind (Selector_Name (Nam)) = N_Operator_Symbol
2930 and then Scope (Entity (Nam)) = Standard_Standard
2931 then
2932 declare
2933 T : constant Entity_Id :=
2934 Base_Type (Etype (First_Formal (New_S)));
2935 begin
2936 Error_Msg_Node_2 := Prefix (Nam);
2937 Error_Msg_NE
2938 ("operator for type& is not declared in&", Prefix (Nam), T);
2939 end;
2941 else
2942 Error_Msg_NE
2943 ("no visible subprogram matches the specification for&",
2944 Spec, New_S);
2945 end if;
2947 if Present (Candidate_Renaming) then
2948 declare
2949 F1 : Entity_Id;
2950 F2 : Entity_Id;
2951 T1 : Entity_Id;
2953 begin
2954 F1 := First_Formal (Candidate_Renaming);
2955 F2 := First_Formal (New_S);
2956 T1 := First_Subtype (Etype (F1));
2957 while Present (F1) and then Present (F2) loop
2958 Next_Formal (F1);
2959 Next_Formal (F2);
2960 end loop;
2962 if Present (F1) and then Present (Default_Value (F1)) then
2963 if Present (Next_Formal (F1)) then
2964 Error_Msg_NE
2965 ("\missing specification for &" &
2966 " and other formals with defaults", Spec, F1);
2967 else
2968 Error_Msg_NE
2969 ("\missing specification for &", Spec, F1);
2970 end if;
2971 end if;
2973 if Nkind (Nam) = N_Operator_Symbol
2974 and then From_Default (N)
2975 then
2976 Error_Msg_Node_2 := T1;
2977 Error_Msg_NE
2978 ("default & on & is not directly visible",
2979 Nam, Nam);
2980 end if;
2981 end;
2982 end if;
2983 end if;
2985 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
2986 -- controlling access parameters are known non-null for the renamed
2987 -- subprogram. Test also applies to a subprogram instantiation that
2988 -- is dispatching. Test is skipped if some previous error was detected
2989 -- that set Old_S to Any_Id.
2991 if Ada_Version >= Ada_2005
2992 and then Old_S /= Any_Id
2993 and then not Is_Dispatching_Operation (Old_S)
2994 and then Is_Dispatching_Operation (New_S)
2995 then
2996 declare
2997 Old_F : Entity_Id;
2998 New_F : Entity_Id;
3000 begin
3001 Old_F := First_Formal (Old_S);
3002 New_F := First_Formal (New_S);
3003 while Present (Old_F) loop
3004 if Ekind (Etype (Old_F)) = E_Anonymous_Access_Type
3005 and then Is_Controlling_Formal (New_F)
3006 and then not Can_Never_Be_Null (Old_F)
3007 then
3008 Error_Msg_N ("access parameter is controlling,", New_F);
3009 Error_Msg_NE
3010 ("\corresponding parameter of& "
3011 & "must be explicitly null excluding", New_F, Old_S);
3012 end if;
3014 Next_Formal (Old_F);
3015 Next_Formal (New_F);
3016 end loop;
3017 end;
3018 end if;
3020 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3021 -- is to warn if an operator is being renamed as a different operator.
3022 -- If the operator is predefined, examine the kind of the entity, not
3023 -- the abbreviated declaration in Standard.
3025 if Comes_From_Source (N)
3026 and then Present (Old_S)
3027 and then (Nkind (Old_S) = N_Defining_Operator_Symbol
3028 or else Ekind (Old_S) = E_Operator)
3029 and then Nkind (New_S) = N_Defining_Operator_Symbol
3030 and then Chars (Old_S) /= Chars (New_S)
3031 then
3032 Error_Msg_NE
3033 ("& is being renamed as a different operator??", N, Old_S);
3034 end if;
3036 -- Check for renaming of obsolescent subprogram
3038 Check_Obsolescent_2005_Entity (Entity (Nam), Nam);
3040 -- Another warning or some utility: if the new subprogram as the same
3041 -- name as the old one, the old one is not hidden by an outer homograph,
3042 -- the new one is not a public symbol, and the old one is otherwise
3043 -- directly visible, the renaming is superfluous.
3045 if Chars (Old_S) = Chars (New_S)
3046 and then Comes_From_Source (N)
3047 and then Scope (Old_S) /= Standard_Standard
3048 and then Warn_On_Redundant_Constructs
3049 and then (Is_Immediately_Visible (Old_S)
3050 or else Is_Potentially_Use_Visible (Old_S))
3051 and then Is_Overloadable (Current_Scope)
3052 and then Chars (Current_Scope) /= Chars (Old_S)
3053 then
3054 Error_Msg_N
3055 ("redundant renaming, entity is directly visible?r?", Name (N));
3056 end if;
3058 -- Implementation-defined aspect specifications can appear in a renaming
3059 -- declaration, but not language-defined ones. The call to procedure
3060 -- Analyze_Aspect_Specifications will take care of this error check.
3062 if Has_Aspects (N) then
3063 Analyze_Aspect_Specifications (N, New_S);
3064 end if;
3066 Ada_Version := Save_AV;
3067 Ada_Version_Pragma := Save_AVP;
3068 Ada_Version_Explicit := Save_AV_Exp;
3069 end Analyze_Subprogram_Renaming;
3071 -------------------------
3072 -- Analyze_Use_Package --
3073 -------------------------
3075 -- Resolve the package names in the use clause, and make all the visible
3076 -- entities defined in the package potentially use-visible. If the package
3077 -- is already in use from a previous use clause, its visible entities are
3078 -- already use-visible. In that case, mark the occurrence as a redundant
3079 -- use. If the package is an open scope, i.e. if the use clause occurs
3080 -- within the package itself, ignore it.
3082 procedure Analyze_Use_Package (N : Node_Id) is
3083 Pack_Name : Node_Id;
3084 Pack : Entity_Id;
3086 -- Start of processing for Analyze_Use_Package
3088 begin
3089 Check_SPARK_Restriction ("use clause is not allowed", N);
3091 Set_Hidden_By_Use_Clause (N, No_Elist);
3093 -- Use clause not allowed in a spec of a predefined package declaration
3094 -- except that packages whose file name starts a-n are OK (these are
3095 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3097 if Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
3098 and then Name_Buffer (1 .. 3) /= "a-n"
3099 and then
3100 Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
3101 then
3102 Error_Msg_N ("use clause not allowed in predefined spec", N);
3103 end if;
3105 -- Chain clause to list of use clauses in current scope
3107 if Nkind (Parent (N)) /= N_Compilation_Unit then
3108 Chain_Use_Clause (N);
3109 end if;
3111 -- Loop through package names to identify referenced packages
3113 Pack_Name := First (Names (N));
3114 while Present (Pack_Name) loop
3115 Analyze (Pack_Name);
3117 if Nkind (Parent (N)) = N_Compilation_Unit
3118 and then Nkind (Pack_Name) = N_Expanded_Name
3119 then
3120 declare
3121 Pref : Node_Id;
3123 begin
3124 Pref := Prefix (Pack_Name);
3125 while Nkind (Pref) = N_Expanded_Name loop
3126 Pref := Prefix (Pref);
3127 end loop;
3129 if Entity (Pref) = Standard_Standard then
3130 Error_Msg_N
3131 ("predefined package Standard cannot appear"
3132 & " in a context clause", Pref);
3133 end if;
3134 end;
3135 end if;
3137 Next (Pack_Name);
3138 end loop;
3140 -- Loop through package names to mark all entities as potentially
3141 -- use visible.
3143 Pack_Name := First (Names (N));
3144 while Present (Pack_Name) loop
3145 if Is_Entity_Name (Pack_Name) then
3146 Pack := Entity (Pack_Name);
3148 if Ekind (Pack) /= E_Package and then Etype (Pack) /= Any_Type then
3149 if Ekind (Pack) = E_Generic_Package then
3150 Error_Msg_N -- CODEFIX
3151 ("a generic package is not allowed in a use clause",
3152 Pack_Name);
3153 else
3154 Error_Msg_N ("& is not a usable package", Pack_Name);
3155 end if;
3157 else
3158 if Nkind (Parent (N)) = N_Compilation_Unit then
3159 Check_In_Previous_With_Clause (N, Pack_Name);
3160 end if;
3162 if Applicable_Use (Pack_Name) then
3163 Use_One_Package (Pack, N);
3164 end if;
3165 end if;
3167 -- Report error because name denotes something other than a package
3169 else
3170 Error_Msg_N ("& is not a package", Pack_Name);
3171 end if;
3173 Next (Pack_Name);
3174 end loop;
3175 end Analyze_Use_Package;
3177 ----------------------
3178 -- Analyze_Use_Type --
3179 ----------------------
3181 procedure Analyze_Use_Type (N : Node_Id) is
3182 E : Entity_Id;
3183 Id : Node_Id;
3185 begin
3186 Set_Hidden_By_Use_Clause (N, No_Elist);
3188 -- Chain clause to list of use clauses in current scope
3190 if Nkind (Parent (N)) /= N_Compilation_Unit then
3191 Chain_Use_Clause (N);
3192 end if;
3194 -- If the Used_Operations list is already initialized, the clause has
3195 -- been analyzed previously, and it is begin reinstalled, for example
3196 -- when the clause appears in a package spec and we are compiling the
3197 -- corresponding package body. In that case, make the entities on the
3198 -- existing list use_visible, and mark the corresponding types In_Use.
3200 if Present (Used_Operations (N)) then
3201 declare
3202 Mark : Node_Id;
3203 Elmt : Elmt_Id;
3205 begin
3206 Mark := First (Subtype_Marks (N));
3207 while Present (Mark) loop
3208 Use_One_Type (Mark, Installed => True);
3209 Next (Mark);
3210 end loop;
3212 Elmt := First_Elmt (Used_Operations (N));
3213 while Present (Elmt) loop
3214 Set_Is_Potentially_Use_Visible (Node (Elmt));
3215 Next_Elmt (Elmt);
3216 end loop;
3217 end;
3219 return;
3220 end if;
3222 -- Otherwise, create new list and attach to it the operations that
3223 -- are made use-visible by the clause.
3225 Set_Used_Operations (N, New_Elmt_List);
3226 Id := First (Subtype_Marks (N));
3227 while Present (Id) loop
3228 Find_Type (Id);
3229 E := Entity (Id);
3231 if E /= Any_Type then
3232 Use_One_Type (Id);
3234 if Nkind (Parent (N)) = N_Compilation_Unit then
3235 if Nkind (Id) = N_Identifier then
3236 Error_Msg_N ("type is not directly visible", Id);
3238 elsif Is_Child_Unit (Scope (E))
3239 and then Scope (E) /= System_Aux_Id
3240 then
3241 Check_In_Previous_With_Clause (N, Prefix (Id));
3242 end if;
3243 end if;
3245 else
3246 -- If the use_type_clause appears in a compilation unit context,
3247 -- check whether it comes from a unit that may appear in a
3248 -- limited_with_clause, for a better error message.
3250 if Nkind (Parent (N)) = N_Compilation_Unit
3251 and then Nkind (Id) /= N_Identifier
3252 then
3253 declare
3254 Item : Node_Id;
3255 Pref : Node_Id;
3257 function Mentioned (Nam : Node_Id) return Boolean;
3258 -- Check whether the prefix of expanded name for the type
3259 -- appears in the prefix of some limited_with_clause.
3261 ---------------
3262 -- Mentioned --
3263 ---------------
3265 function Mentioned (Nam : Node_Id) return Boolean is
3266 begin
3267 return Nkind (Name (Item)) = N_Selected_Component
3268 and then Chars (Prefix (Name (Item))) = Chars (Nam);
3269 end Mentioned;
3271 begin
3272 Pref := Prefix (Id);
3273 Item := First (Context_Items (Parent (N)));
3274 while Present (Item) and then Item /= N loop
3275 if Nkind (Item) = N_With_Clause
3276 and then Limited_Present (Item)
3277 and then Mentioned (Pref)
3278 then
3279 Change_Error_Text
3280 (Get_Msg_Id, "premature usage of incomplete type");
3281 end if;
3283 Next (Item);
3284 end loop;
3285 end;
3286 end if;
3287 end if;
3289 Next (Id);
3290 end loop;
3291 end Analyze_Use_Type;
3293 --------------------
3294 -- Applicable_Use --
3295 --------------------
3297 function Applicable_Use (Pack_Name : Node_Id) return Boolean is
3298 Pack : constant Entity_Id := Entity (Pack_Name);
3300 begin
3301 if In_Open_Scopes (Pack) then
3302 if Warn_On_Redundant_Constructs and then Pack = Current_Scope then
3303 Error_Msg_NE -- CODEFIX
3304 ("& is already use-visible within itself?r?", Pack_Name, Pack);
3305 end if;
3307 return False;
3309 elsif In_Use (Pack) then
3310 Note_Redundant_Use (Pack_Name);
3311 return False;
3313 elsif Present (Renamed_Object (Pack))
3314 and then In_Use (Renamed_Object (Pack))
3315 then
3316 Note_Redundant_Use (Pack_Name);
3317 return False;
3319 else
3320 return True;
3321 end if;
3322 end Applicable_Use;
3324 ------------------------
3325 -- Attribute_Renaming --
3326 ------------------------
3328 procedure Attribute_Renaming (N : Node_Id) is
3329 Loc : constant Source_Ptr := Sloc (N);
3330 Nam : constant Node_Id := Name (N);
3331 Spec : constant Node_Id := Specification (N);
3332 New_S : constant Entity_Id := Defining_Unit_Name (Spec);
3333 Aname : constant Name_Id := Attribute_Name (Nam);
3335 Form_Num : Nat := 0;
3336 Expr_List : List_Id := No_List;
3338 Attr_Node : Node_Id;
3339 Body_Node : Node_Id;
3340 Param_Spec : Node_Id;
3342 begin
3343 Generate_Definition (New_S);
3345 -- This procedure is called in the context of subprogram renaming, and
3346 -- thus the attribute must be one that is a subprogram. All of those
3347 -- have at least one formal parameter, with the exceptions of AST_Entry
3348 -- (which is a real oddity, it is odd that this can be renamed at all)
3349 -- and the GNAT attribute 'Img, which GNAT treats as renameable.
3351 if not Is_Non_Empty_List (Parameter_Specifications (Spec)) then
3352 if Aname /= Name_AST_Entry and then Aname /= Name_Img then
3353 Error_Msg_N
3354 ("subprogram renaming an attribute must have formals", N);
3355 return;
3356 end if;
3358 else
3359 Param_Spec := First (Parameter_Specifications (Spec));
3360 while Present (Param_Spec) loop
3361 Form_Num := Form_Num + 1;
3363 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
3364 Find_Type (Parameter_Type (Param_Spec));
3366 -- The profile of the new entity denotes the base type (s) of
3367 -- the types given in the specification. For access parameters
3368 -- there are no subtypes involved.
3370 Rewrite (Parameter_Type (Param_Spec),
3371 New_Occurrence_Of
3372 (Base_Type (Entity (Parameter_Type (Param_Spec))), Loc));
3373 end if;
3375 if No (Expr_List) then
3376 Expr_List := New_List;
3377 end if;
3379 Append_To (Expr_List,
3380 Make_Identifier (Loc,
3381 Chars => Chars (Defining_Identifier (Param_Spec))));
3383 -- The expressions in the attribute reference are not freeze
3384 -- points. Neither is the attribute as a whole, see below.
3386 Set_Must_Not_Freeze (Last (Expr_List));
3387 Next (Param_Spec);
3388 end loop;
3389 end if;
3391 -- Immediate error if too many formals. Other mismatches in number or
3392 -- types of parameters are detected when we analyze the body of the
3393 -- subprogram that we construct.
3395 if Form_Num > 2 then
3396 Error_Msg_N ("too many formals for attribute", N);
3398 -- Error if the attribute reference has expressions that look like
3399 -- formal parameters.
3401 elsif Present (Expressions (Nam)) then
3402 Error_Msg_N ("illegal expressions in attribute reference", Nam);
3404 elsif
3405 Nam_In (Aname, Name_Compose, Name_Exponent, Name_Leading_Part,
3406 Name_Pos, Name_Round, Name_Scaling,
3407 Name_Val)
3408 then
3409 if Nkind (N) = N_Subprogram_Renaming_Declaration
3410 and then Present (Corresponding_Formal_Spec (N))
3411 then
3412 Error_Msg_N
3413 ("generic actual cannot be attribute involving universal type",
3414 Nam);
3415 else
3416 Error_Msg_N
3417 ("attribute involving a universal type cannot be renamed",
3418 Nam);
3419 end if;
3420 end if;
3422 -- AST_Entry is an odd case. It doesn't really make much sense to allow
3423 -- it to be renamed, but that's the DEC rule, so we have to do it right.
3424 -- The point is that the AST_Entry call should be made now, and what the
3425 -- function will return is the returned value.
3427 -- Note that there is no Expr_List in this case anyway
3429 if Aname = Name_AST_Entry then
3430 declare
3431 Ent : constant Entity_Id := Make_Temporary (Loc, 'R', Nam);
3432 Decl : Node_Id;
3434 begin
3435 Decl :=
3436 Make_Object_Declaration (Loc,
3437 Defining_Identifier => Ent,
3438 Object_Definition =>
3439 New_Occurrence_Of (RTE (RE_AST_Handler), Loc),
3440 Expression => Nam,
3441 Constant_Present => True);
3443 Set_Assignment_OK (Decl, True);
3444 Insert_Action (N, Decl);
3445 Attr_Node := Make_Identifier (Loc, Chars (Ent));
3446 end;
3448 -- For all other attributes, we rewrite the attribute node to have
3449 -- a list of expressions corresponding to the subprogram formals.
3450 -- A renaming declaration is not a freeze point, and the analysis of
3451 -- the attribute reference should not freeze the type of the prefix.
3452 -- We use the original node in the renaming so that its source location
3453 -- is preserved, and checks on stream attributes are properly applied.
3455 else
3456 Attr_Node := Relocate_Node (Nam);
3457 Set_Expressions (Attr_Node, Expr_List);
3459 Set_Must_Not_Freeze (Attr_Node);
3460 Set_Must_Not_Freeze (Prefix (Nam));
3461 end if;
3463 -- Case of renaming a function
3465 if Nkind (Spec) = N_Function_Specification then
3466 if Is_Procedure_Attribute_Name (Aname) then
3467 Error_Msg_N ("attribute can only be renamed as procedure", Nam);
3468 return;
3469 end if;
3471 Find_Type (Result_Definition (Spec));
3472 Rewrite (Result_Definition (Spec),
3473 New_Occurrence_Of
3474 (Base_Type (Entity (Result_Definition (Spec))), Loc));
3476 Body_Node :=
3477 Make_Subprogram_Body (Loc,
3478 Specification => Spec,
3479 Declarations => New_List,
3480 Handled_Statement_Sequence =>
3481 Make_Handled_Sequence_Of_Statements (Loc,
3482 Statements => New_List (
3483 Make_Simple_Return_Statement (Loc,
3484 Expression => Attr_Node))));
3486 -- Case of renaming a procedure
3488 else
3489 if not Is_Procedure_Attribute_Name (Aname) then
3490 Error_Msg_N ("attribute can only be renamed as function", Nam);
3491 return;
3492 end if;
3494 Body_Node :=
3495 Make_Subprogram_Body (Loc,
3496 Specification => Spec,
3497 Declarations => New_List,
3498 Handled_Statement_Sequence =>
3499 Make_Handled_Sequence_Of_Statements (Loc,
3500 Statements => New_List (Attr_Node)));
3501 end if;
3503 -- In case of tagged types we add the body of the generated function to
3504 -- the freezing actions of the type (because in the general case such
3505 -- type is still not frozen). We exclude from this processing generic
3506 -- formal subprograms found in instantiations and AST_Entry renamings.
3508 -- We must exclude VM targets and restricted run-time libraries because
3509 -- entity AST_Handler is defined in package System.Aux_Dec which is not
3510 -- available in those platforms. Note that we cannot use the function
3511 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
3512 -- the ZFP run-time library is not defined as a profile, and we do not
3513 -- want to deal with AST_Handler in ZFP mode.
3515 if VM_Target = No_VM
3516 and then not Configurable_Run_Time_Mode
3517 and then not Present (Corresponding_Formal_Spec (N))
3518 and then Etype (Nam) /= RTE (RE_AST_Handler)
3519 then
3520 declare
3521 P : constant Node_Id := Prefix (Nam);
3523 begin
3524 -- The prefix of 'Img is an object that is evaluated for each call
3525 -- of the function that renames it.
3527 if Aname = Name_Img then
3528 Preanalyze_And_Resolve (P);
3530 -- For all other attribute renamings, the prefix is a subtype
3532 else
3533 Find_Type (P);
3534 end if;
3536 -- If the target type is not yet frozen, add the body to the
3537 -- actions to be elaborated at freeze time.
3539 if Is_Tagged_Type (Etype (P))
3540 and then In_Open_Scopes (Scope (Etype (P)))
3541 then
3542 Ensure_Freeze_Node (Etype (P));
3543 Append_Freeze_Action (Etype (P), Body_Node);
3544 else
3545 Rewrite (N, Body_Node);
3546 Analyze (N);
3547 Set_Etype (New_S, Base_Type (Etype (New_S)));
3548 end if;
3549 end;
3551 -- Generic formal subprograms or AST_Handler renaming
3553 else
3554 Rewrite (N, Body_Node);
3555 Analyze (N);
3556 Set_Etype (New_S, Base_Type (Etype (New_S)));
3557 end if;
3559 if Is_Compilation_Unit (New_S) then
3560 Error_Msg_N
3561 ("a library unit can only rename another library unit", N);
3562 end if;
3564 -- We suppress elaboration warnings for the resulting entity, since
3565 -- clearly they are not needed, and more particularly, in the case
3566 -- of a generic formal subprogram, the resulting entity can appear
3567 -- after the instantiation itself, and thus look like a bogus case
3568 -- of access before elaboration.
3570 Set_Suppress_Elaboration_Warnings (New_S);
3572 end Attribute_Renaming;
3574 ----------------------
3575 -- Chain_Use_Clause --
3576 ----------------------
3578 procedure Chain_Use_Clause (N : Node_Id) is
3579 Pack : Entity_Id;
3580 Level : Int := Scope_Stack.Last;
3582 begin
3583 if not Is_Compilation_Unit (Current_Scope)
3584 or else not Is_Child_Unit (Current_Scope)
3585 then
3586 null; -- Common case
3588 elsif Defining_Entity (Parent (N)) = Current_Scope then
3589 null; -- Common case for compilation unit
3591 else
3592 -- If declaration appears in some other scope, it must be in some
3593 -- parent unit when compiling a child.
3595 Pack := Defining_Entity (Parent (N));
3596 if not In_Open_Scopes (Pack) then
3597 null; -- default as well
3599 else
3600 -- Find entry for parent unit in scope stack
3602 while Scope_Stack.Table (Level).Entity /= Pack loop
3603 Level := Level - 1;
3604 end loop;
3605 end if;
3606 end if;
3608 Set_Next_Use_Clause (N,
3609 Scope_Stack.Table (Level).First_Use_Clause);
3610 Scope_Stack.Table (Level).First_Use_Clause := N;
3611 end Chain_Use_Clause;
3613 ---------------------------
3614 -- Check_Frozen_Renaming --
3615 ---------------------------
3617 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id) is
3618 B_Node : Node_Id;
3619 Old_S : Entity_Id;
3621 begin
3622 if Is_Frozen (Subp) and then not Has_Completion (Subp) then
3623 B_Node :=
3624 Build_Renamed_Body
3625 (Parent (Declaration_Node (Subp)), Defining_Entity (N));
3627 if Is_Entity_Name (Name (N)) then
3628 Old_S := Entity (Name (N));
3630 if not Is_Frozen (Old_S)
3631 and then Operating_Mode /= Check_Semantics
3632 then
3633 Append_Freeze_Action (Old_S, B_Node);
3634 else
3635 Insert_After (N, B_Node);
3636 Analyze (B_Node);
3637 end if;
3639 if Is_Intrinsic_Subprogram (Old_S) and then not In_Instance then
3640 Error_Msg_N
3641 ("subprogram used in renaming_as_body cannot be intrinsic",
3642 Name (N));
3643 end if;
3645 else
3646 Insert_After (N, B_Node);
3647 Analyze (B_Node);
3648 end if;
3649 end if;
3650 end Check_Frozen_Renaming;
3652 -------------------------------
3653 -- Set_Entity_Or_Discriminal --
3654 -------------------------------
3656 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id) is
3657 P : Node_Id;
3659 begin
3660 -- If the entity is not a discriminant, or else expansion is disabled,
3661 -- simply set the entity.
3663 if not In_Spec_Expression
3664 or else Ekind (E) /= E_Discriminant
3665 or else Inside_A_Generic
3666 then
3667 Set_Entity_With_Checks (N, E);
3669 -- The replacement of a discriminant by the corresponding discriminal
3670 -- is not done for a task discriminant that appears in a default
3671 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
3672 -- for details on their handling.
3674 elsif Is_Concurrent_Type (Scope (E)) then
3675 P := Parent (N);
3676 while Present (P)
3677 and then not Nkind_In (P, N_Parameter_Specification,
3678 N_Component_Declaration)
3679 loop
3680 P := Parent (P);
3681 end loop;
3683 if Present (P)
3684 and then Nkind (P) = N_Parameter_Specification
3685 then
3686 null;
3688 else
3689 Set_Entity (N, Discriminal (E));
3690 end if;
3692 -- Otherwise, this is a discriminant in a context in which
3693 -- it is a reference to the corresponding parameter of the
3694 -- init proc for the enclosing type.
3696 else
3697 Set_Entity (N, Discriminal (E));
3698 end if;
3699 end Set_Entity_Or_Discriminal;
3701 -----------------------------------
3702 -- Check_In_Previous_With_Clause --
3703 -----------------------------------
3705 procedure Check_In_Previous_With_Clause
3706 (N : Node_Id;
3707 Nam : Entity_Id)
3709 Pack : constant Entity_Id := Entity (Original_Node (Nam));
3710 Item : Node_Id;
3711 Par : Node_Id;
3713 begin
3714 Item := First (Context_Items (Parent (N)));
3715 while Present (Item) and then Item /= N loop
3716 if Nkind (Item) = N_With_Clause
3718 -- Protect the frontend against previous critical errors
3720 and then Nkind (Name (Item)) /= N_Selected_Component
3721 and then Entity (Name (Item)) = Pack
3722 then
3723 Par := Nam;
3725 -- Find root library unit in with_clause
3727 while Nkind (Par) = N_Expanded_Name loop
3728 Par := Prefix (Par);
3729 end loop;
3731 if Is_Child_Unit (Entity (Original_Node (Par))) then
3732 Error_Msg_NE ("& is not directly visible", Par, Entity (Par));
3733 else
3734 return;
3735 end if;
3736 end if;
3738 Next (Item);
3739 end loop;
3741 -- On exit, package is not mentioned in a previous with_clause.
3742 -- Check if its prefix is.
3744 if Nkind (Nam) = N_Expanded_Name then
3745 Check_In_Previous_With_Clause (N, Prefix (Nam));
3747 elsif Pack /= Any_Id then
3748 Error_Msg_NE ("& is not visible", Nam, Pack);
3749 end if;
3750 end Check_In_Previous_With_Clause;
3752 ---------------------------------
3753 -- Check_Library_Unit_Renaming --
3754 ---------------------------------
3756 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id) is
3757 New_E : Entity_Id;
3759 begin
3760 if Nkind (Parent (N)) /= N_Compilation_Unit then
3761 return;
3763 -- Check for library unit. Note that we used to check for the scope
3764 -- being Standard here, but that was wrong for Standard itself.
3766 elsif not Is_Compilation_Unit (Old_E)
3767 and then not Is_Child_Unit (Old_E)
3768 then
3769 Error_Msg_N ("renamed unit must be a library unit", Name (N));
3771 -- Entities defined in Standard (operators and boolean literals) cannot
3772 -- be renamed as library units.
3774 elsif Scope (Old_E) = Standard_Standard
3775 and then Sloc (Old_E) = Standard_Location
3776 then
3777 Error_Msg_N ("renamed unit must be a library unit", Name (N));
3779 elsif Present (Parent_Spec (N))
3780 and then Nkind (Unit (Parent_Spec (N))) = N_Generic_Package_Declaration
3781 and then not Is_Child_Unit (Old_E)
3782 then
3783 Error_Msg_N
3784 ("renamed unit must be a child unit of generic parent", Name (N));
3786 elsif Nkind (N) in N_Generic_Renaming_Declaration
3787 and then Nkind (Name (N)) = N_Expanded_Name
3788 and then Is_Generic_Instance (Entity (Prefix (Name (N))))
3789 and then Is_Generic_Unit (Old_E)
3790 then
3791 Error_Msg_N
3792 ("renamed generic unit must be a library unit", Name (N));
3794 elsif Is_Package_Or_Generic_Package (Old_E) then
3796 -- Inherit categorization flags
3798 New_E := Defining_Entity (N);
3799 Set_Is_Pure (New_E, Is_Pure (Old_E));
3800 Set_Is_Preelaborated (New_E, Is_Preelaborated (Old_E));
3801 Set_Is_Remote_Call_Interface (New_E,
3802 Is_Remote_Call_Interface (Old_E));
3803 Set_Is_Remote_Types (New_E, Is_Remote_Types (Old_E));
3804 Set_Is_Shared_Passive (New_E, Is_Shared_Passive (Old_E));
3805 end if;
3806 end Check_Library_Unit_Renaming;
3808 ------------------------
3809 -- Enclosing_Instance --
3810 ------------------------
3812 function Enclosing_Instance return Entity_Id is
3813 S : Entity_Id;
3815 begin
3816 if not Is_Generic_Instance (Current_Scope) then
3817 return Empty;
3818 end if;
3820 S := Scope (Current_Scope);
3821 while S /= Standard_Standard loop
3822 if Is_Generic_Instance (S) then
3823 return S;
3824 end if;
3826 S := Scope (S);
3827 end loop;
3829 return Empty;
3830 end Enclosing_Instance;
3832 ---------------
3833 -- End_Scope --
3834 ---------------
3836 procedure End_Scope is
3837 Id : Entity_Id;
3838 Prev : Entity_Id;
3839 Outer : Entity_Id;
3841 begin
3842 Id := First_Entity (Current_Scope);
3843 while Present (Id) loop
3844 -- An entity in the current scope is not necessarily the first one
3845 -- on its homonym chain. Find its predecessor if any,
3846 -- If it is an internal entity, it will not be in the visibility
3847 -- chain altogether, and there is nothing to unchain.
3849 if Id /= Current_Entity (Id) then
3850 Prev := Current_Entity (Id);
3851 while Present (Prev)
3852 and then Present (Homonym (Prev))
3853 and then Homonym (Prev) /= Id
3854 loop
3855 Prev := Homonym (Prev);
3856 end loop;
3858 -- Skip to end of loop if Id is not in the visibility chain
3860 if No (Prev) or else Homonym (Prev) /= Id then
3861 goto Next_Ent;
3862 end if;
3864 else
3865 Prev := Empty;
3866 end if;
3868 Set_Is_Immediately_Visible (Id, False);
3870 Outer := Homonym (Id);
3871 while Present (Outer) and then Scope (Outer) = Current_Scope loop
3872 Outer := Homonym (Outer);
3873 end loop;
3875 -- Reset homonym link of other entities, but do not modify link
3876 -- between entities in current scope, so that the back-end can have
3877 -- a proper count of local overloadings.
3879 if No (Prev) then
3880 Set_Name_Entity_Id (Chars (Id), Outer);
3882 elsif Scope (Prev) /= Scope (Id) then
3883 Set_Homonym (Prev, Outer);
3884 end if;
3886 <<Next_Ent>>
3887 Next_Entity (Id);
3888 end loop;
3890 -- If the scope generated freeze actions, place them before the
3891 -- current declaration and analyze them. Type declarations and
3892 -- the bodies of initialization procedures can generate such nodes.
3893 -- We follow the parent chain until we reach a list node, which is
3894 -- the enclosing list of declarations. If the list appears within
3895 -- a protected definition, move freeze nodes outside the protected
3896 -- type altogether.
3898 if Present
3899 (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions)
3900 then
3901 declare
3902 Decl : Node_Id;
3903 L : constant List_Id := Scope_Stack.Table
3904 (Scope_Stack.Last).Pending_Freeze_Actions;
3906 begin
3907 if Is_Itype (Current_Scope) then
3908 Decl := Associated_Node_For_Itype (Current_Scope);
3909 else
3910 Decl := Parent (Current_Scope);
3911 end if;
3913 Pop_Scope;
3915 while not (Is_List_Member (Decl))
3916 or else Nkind_In (Parent (Decl), N_Protected_Definition,
3917 N_Task_Definition)
3918 loop
3919 Decl := Parent (Decl);
3920 end loop;
3922 Insert_List_Before_And_Analyze (Decl, L);
3923 end;
3925 else
3926 Pop_Scope;
3927 end if;
3929 end End_Scope;
3931 ---------------------
3932 -- End_Use_Clauses --
3933 ---------------------
3935 procedure End_Use_Clauses (Clause : Node_Id) is
3936 U : Node_Id;
3938 begin
3939 -- Remove Use_Type clauses first, because they affect the
3940 -- visibility of operators in subsequent used packages.
3942 U := Clause;
3943 while Present (U) loop
3944 if Nkind (U) = N_Use_Type_Clause then
3945 End_Use_Type (U);
3946 end if;
3948 Next_Use_Clause (U);
3949 end loop;
3951 U := Clause;
3952 while Present (U) loop
3953 if Nkind (U) = N_Use_Package_Clause then
3954 End_Use_Package (U);
3955 end if;
3957 Next_Use_Clause (U);
3958 end loop;
3959 end End_Use_Clauses;
3961 ---------------------
3962 -- End_Use_Package --
3963 ---------------------
3965 procedure End_Use_Package (N : Node_Id) is
3966 Pack_Name : Node_Id;
3967 Pack : Entity_Id;
3968 Id : Entity_Id;
3969 Elmt : Elmt_Id;
3971 function Is_Primitive_Operator_In_Use
3972 (Op : Entity_Id;
3973 F : Entity_Id) return Boolean;
3974 -- Check whether Op is a primitive operator of a use-visible type
3976 ----------------------------------
3977 -- Is_Primitive_Operator_In_Use --
3978 ----------------------------------
3980 function Is_Primitive_Operator_In_Use
3981 (Op : Entity_Id;
3982 F : Entity_Id) return Boolean
3984 T : constant Entity_Id := Base_Type (Etype (F));
3985 begin
3986 return In_Use (T) and then Scope (T) = Scope (Op);
3987 end Is_Primitive_Operator_In_Use;
3989 -- Start of processing for End_Use_Package
3991 begin
3992 Pack_Name := First (Names (N));
3993 while Present (Pack_Name) loop
3995 -- Test that Pack_Name actually denotes a package before processing
3997 if Is_Entity_Name (Pack_Name)
3998 and then Ekind (Entity (Pack_Name)) = E_Package
3999 then
4000 Pack := Entity (Pack_Name);
4002 if In_Open_Scopes (Pack) then
4003 null;
4005 elsif not Redundant_Use (Pack_Name) then
4006 Set_In_Use (Pack, False);
4007 Set_Current_Use_Clause (Pack, Empty);
4009 Id := First_Entity (Pack);
4010 while Present (Id) loop
4012 -- Preserve use-visibility of operators that are primitive
4013 -- operators of a type that is use-visible through an active
4014 -- use_type clause.
4016 if Nkind (Id) = N_Defining_Operator_Symbol
4017 and then
4018 (Is_Primitive_Operator_In_Use (Id, First_Formal (Id))
4019 or else
4020 (Present (Next_Formal (First_Formal (Id)))
4021 and then
4022 Is_Primitive_Operator_In_Use
4023 (Id, Next_Formal (First_Formal (Id)))))
4024 then
4025 null;
4026 else
4027 Set_Is_Potentially_Use_Visible (Id, False);
4028 end if;
4030 if Is_Private_Type (Id)
4031 and then Present (Full_View (Id))
4032 then
4033 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4034 end if;
4036 Next_Entity (Id);
4037 end loop;
4039 if Present (Renamed_Object (Pack)) then
4040 Set_In_Use (Renamed_Object (Pack), False);
4041 Set_Current_Use_Clause (Renamed_Object (Pack), Empty);
4042 end if;
4044 if Chars (Pack) = Name_System
4045 and then Scope (Pack) = Standard_Standard
4046 and then Present_System_Aux
4047 then
4048 Id := First_Entity (System_Aux_Id);
4049 while Present (Id) loop
4050 Set_Is_Potentially_Use_Visible (Id, False);
4052 if Is_Private_Type (Id)
4053 and then Present (Full_View (Id))
4054 then
4055 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4056 end if;
4058 Next_Entity (Id);
4059 end loop;
4061 Set_In_Use (System_Aux_Id, False);
4062 end if;
4064 else
4065 Set_Redundant_Use (Pack_Name, False);
4066 end if;
4067 end if;
4069 Next (Pack_Name);
4070 end loop;
4072 if Present (Hidden_By_Use_Clause (N)) then
4073 Elmt := First_Elmt (Hidden_By_Use_Clause (N));
4074 while Present (Elmt) loop
4075 declare
4076 E : constant Entity_Id := Node (Elmt);
4078 begin
4079 -- Reset either Use_Visibility or Direct_Visibility, depending
4080 -- on how the entity was hidden by the use clause.
4082 if In_Use (Scope (E))
4083 and then Used_As_Generic_Actual (Scope (E))
4084 then
4085 Set_Is_Potentially_Use_Visible (Node (Elmt));
4086 else
4087 Set_Is_Immediately_Visible (Node (Elmt));
4088 end if;
4090 Next_Elmt (Elmt);
4091 end;
4092 end loop;
4094 Set_Hidden_By_Use_Clause (N, No_Elist);
4095 end if;
4096 end End_Use_Package;
4098 ------------------
4099 -- End_Use_Type --
4100 ------------------
4102 procedure End_Use_Type (N : Node_Id) is
4103 Elmt : Elmt_Id;
4104 Id : Entity_Id;
4105 T : Entity_Id;
4107 -- Start of processing for End_Use_Type
4109 begin
4110 Id := First (Subtype_Marks (N));
4111 while Present (Id) loop
4113 -- A call to Rtsfind may occur while analyzing a use_type clause,
4114 -- in which case the type marks are not resolved yet, and there is
4115 -- nothing to remove.
4117 if not Is_Entity_Name (Id) or else No (Entity (Id)) then
4118 goto Continue;
4119 end if;
4121 T := Entity (Id);
4123 if T = Any_Type or else From_Limited_With (T) then
4124 null;
4126 -- Note that the use_type clause may mention a subtype of the type
4127 -- whose primitive operations have been made visible. Here as
4128 -- elsewhere, it is the base type that matters for visibility.
4130 elsif In_Open_Scopes (Scope (Base_Type (T))) then
4131 null;
4133 elsif not Redundant_Use (Id) then
4134 Set_In_Use (T, False);
4135 Set_In_Use (Base_Type (T), False);
4136 Set_Current_Use_Clause (T, Empty);
4137 Set_Current_Use_Clause (Base_Type (T), Empty);
4138 end if;
4140 <<Continue>>
4141 Next (Id);
4142 end loop;
4144 if Is_Empty_Elmt_List (Used_Operations (N)) then
4145 return;
4147 else
4148 Elmt := First_Elmt (Used_Operations (N));
4149 while Present (Elmt) loop
4150 Set_Is_Potentially_Use_Visible (Node (Elmt), False);
4151 Next_Elmt (Elmt);
4152 end loop;
4153 end if;
4154 end End_Use_Type;
4156 ----------------------
4157 -- Find_Direct_Name --
4158 ----------------------
4160 procedure Find_Direct_Name (N : Node_Id) is
4161 E : Entity_Id;
4162 E2 : Entity_Id;
4163 Msg : Boolean;
4165 Inst : Entity_Id := Empty;
4166 -- Enclosing instance, if any
4168 Homonyms : Entity_Id;
4169 -- Saves start of homonym chain
4171 Nvis_Entity : Boolean;
4172 -- Set True to indicate that there is at least one entity on the homonym
4173 -- chain which, while not visible, is visible enough from the user point
4174 -- of view to warrant an error message of "not visible" rather than
4175 -- undefined.
4177 Nvis_Is_Private_Subprg : Boolean := False;
4178 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4179 -- effect concerning library subprograms has been detected. Used to
4180 -- generate the precise error message.
4182 function From_Actual_Package (E : Entity_Id) return Boolean;
4183 -- Returns true if the entity is an actual for a package that is itself
4184 -- an actual for a formal package of the current instance. Such an
4185 -- entity requires special handling because it may be use-visible but
4186 -- hides directly visible entities defined outside the instance, because
4187 -- the corresponding formal did so in the generic.
4189 function Is_Actual_Parameter return Boolean;
4190 -- This function checks if the node N is an identifier that is an actual
4191 -- parameter of a procedure call. If so it returns True, otherwise it
4192 -- return False. The reason for this check is that at this stage we do
4193 -- not know what procedure is being called if the procedure might be
4194 -- overloaded, so it is premature to go setting referenced flags or
4195 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4196 -- for that processing
4198 function Known_But_Invisible (E : Entity_Id) return Boolean;
4199 -- This function determines whether the entity E (which is not
4200 -- visible) can reasonably be considered to be known to the writer
4201 -- of the reference. This is a heuristic test, used only for the
4202 -- purposes of figuring out whether we prefer to complain that an
4203 -- entity is undefined or invisible (and identify the declaration
4204 -- of the invisible entity in the latter case). The point here is
4205 -- that we don't want to complain that something is invisible and
4206 -- then point to something entirely mysterious to the writer.
4208 procedure Nvis_Messages;
4209 -- Called if there are no visible entries for N, but there is at least
4210 -- one non-directly visible, or hidden declaration. This procedure
4211 -- outputs an appropriate set of error messages.
4213 procedure Undefined (Nvis : Boolean);
4214 -- This function is called if the current node has no corresponding
4215 -- visible entity or entities. The value set in Msg indicates whether
4216 -- an error message was generated (multiple error messages for the
4217 -- same variable are generally suppressed, see body for details).
4218 -- Msg is True if an error message was generated, False if not. This
4219 -- value is used by the caller to determine whether or not to output
4220 -- additional messages where appropriate. The parameter is set False
4221 -- to get the message "X is undefined", and True to get the message
4222 -- "X is not visible".
4224 -------------------------
4225 -- From_Actual_Package --
4226 -------------------------
4228 function From_Actual_Package (E : Entity_Id) return Boolean is
4229 Scop : constant Entity_Id := Scope (E);
4230 -- Declared scope of candidate entity
4232 Act : Entity_Id;
4234 function Declared_In_Actual (Pack : Entity_Id) return Boolean;
4235 -- Recursive function that does the work and examines actuals of
4236 -- actual packages of current instance.
4238 ------------------------
4239 -- Declared_In_Actual --
4240 ------------------------
4242 function Declared_In_Actual (Pack : Entity_Id) return Boolean is
4243 Act : Entity_Id;
4245 begin
4246 if No (Associated_Formal_Package (Pack)) then
4247 return False;
4249 else
4250 Act := First_Entity (Pack);
4251 while Present (Act) loop
4252 if Renamed_Object (Pack) = Scop then
4253 return True;
4255 -- Check for end of list of actuals.
4257 elsif Ekind (Act) = E_Package
4258 and then Renamed_Object (Act) = Pack
4259 then
4260 return False;
4262 elsif Ekind (Act) = E_Package
4263 and then Declared_In_Actual (Act)
4264 then
4265 return True;
4266 end if;
4268 Next_Entity (Act);
4269 end loop;
4271 return False;
4272 end if;
4273 end Declared_In_Actual;
4275 -- Start of processing for From_Actual_Package
4277 begin
4278 if not In_Instance then
4279 return False;
4281 else
4282 Inst := Current_Scope;
4283 while Present (Inst)
4284 and then Ekind (Inst) /= E_Package
4285 and then not Is_Generic_Instance (Inst)
4286 loop
4287 Inst := Scope (Inst);
4288 end loop;
4290 if No (Inst) then
4291 return False;
4292 end if;
4294 Act := First_Entity (Inst);
4295 while Present (Act) loop
4296 if Ekind (Act) = E_Package
4297 and then Declared_In_Actual (Act)
4298 then
4299 return True;
4300 end if;
4302 Next_Entity (Act);
4303 end loop;
4305 return False;
4306 end if;
4307 end From_Actual_Package;
4309 -------------------------
4310 -- Is_Actual_Parameter --
4311 -------------------------
4313 function Is_Actual_Parameter return Boolean is
4314 begin
4315 return
4316 Nkind (N) = N_Identifier
4317 and then
4318 (Nkind (Parent (N)) = N_Procedure_Call_Statement
4319 or else
4320 (Nkind (Parent (N)) = N_Parameter_Association
4321 and then N = Explicit_Actual_Parameter (Parent (N))
4322 and then Nkind (Parent (Parent (N))) =
4323 N_Procedure_Call_Statement));
4324 end Is_Actual_Parameter;
4326 -------------------------
4327 -- Known_But_Invisible --
4328 -------------------------
4330 function Known_But_Invisible (E : Entity_Id) return Boolean is
4331 Fname : File_Name_Type;
4333 begin
4334 -- Entities in Standard are always considered to be known
4336 if Sloc (E) <= Standard_Location then
4337 return True;
4339 -- An entity that does not come from source is always considered
4340 -- to be unknown, since it is an artifact of code expansion.
4342 elsif not Comes_From_Source (E) then
4343 return False;
4345 -- In gnat internal mode, we consider all entities known
4347 elsif GNAT_Mode then
4348 return True;
4349 end if;
4351 -- Here we have an entity that is not from package Standard, and
4352 -- which comes from Source. See if it comes from an internal file.
4354 Fname := Unit_File_Name (Get_Source_Unit (E));
4356 -- Case of from internal file
4358 if Is_Internal_File_Name (Fname) then
4360 -- Private part entities in internal files are never considered
4361 -- to be known to the writer of normal application code.
4363 if Is_Hidden (E) then
4364 return False;
4365 end if;
4367 -- Entities from System packages other than System and
4368 -- System.Storage_Elements are not considered to be known.
4369 -- System.Auxxxx files are also considered known to the user.
4371 -- Should refine this at some point to generally distinguish
4372 -- between known and unknown internal files ???
4374 Get_Name_String (Fname);
4376 return
4377 Name_Len < 2
4378 or else
4379 Name_Buffer (1 .. 2) /= "s-"
4380 or else
4381 Name_Buffer (3 .. 8) = "stoele"
4382 or else
4383 Name_Buffer (3 .. 5) = "aux";
4385 -- If not an internal file, then entity is definitely known,
4386 -- even if it is in a private part (the message generated will
4387 -- note that it is in a private part)
4389 else
4390 return True;
4391 end if;
4392 end Known_But_Invisible;
4394 -------------------
4395 -- Nvis_Messages --
4396 -------------------
4398 procedure Nvis_Messages is
4399 Comp_Unit : Node_Id;
4400 Ent : Entity_Id;
4401 Found : Boolean := False;
4402 Hidden : Boolean := False;
4403 Item : Node_Id;
4405 begin
4406 -- Ada 2005 (AI-262): Generate a precise error concerning the
4407 -- Beaujolais effect that was previously detected
4409 if Nvis_Is_Private_Subprg then
4411 pragma Assert (Nkind (E2) = N_Defining_Identifier
4412 and then Ekind (E2) = E_Function
4413 and then Scope (E2) = Standard_Standard
4414 and then Has_Private_With (E2));
4416 -- Find the sloc corresponding to the private with'ed unit
4418 Comp_Unit := Cunit (Current_Sem_Unit);
4419 Error_Msg_Sloc := No_Location;
4421 Item := First (Context_Items (Comp_Unit));
4422 while Present (Item) loop
4423 if Nkind (Item) = N_With_Clause
4424 and then Private_Present (Item)
4425 and then Entity (Name (Item)) = E2
4426 then
4427 Error_Msg_Sloc := Sloc (Item);
4428 exit;
4429 end if;
4431 Next (Item);
4432 end loop;
4434 pragma Assert (Error_Msg_Sloc /= No_Location);
4436 Error_Msg_N ("(Ada 2005): hidden by private with clause #", N);
4437 return;
4438 end if;
4440 Undefined (Nvis => True);
4442 if Msg then
4444 -- First loop does hidden declarations
4446 Ent := Homonyms;
4447 while Present (Ent) loop
4448 if Is_Potentially_Use_Visible (Ent) then
4449 if not Hidden then
4450 Error_Msg_N -- CODEFIX
4451 ("multiple use clauses cause hiding!", N);
4452 Hidden := True;
4453 end if;
4455 Error_Msg_Sloc := Sloc (Ent);
4456 Error_Msg_N -- CODEFIX
4457 ("hidden declaration#!", N);
4458 end if;
4460 Ent := Homonym (Ent);
4461 end loop;
4463 -- If we found hidden declarations, then that's enough, don't
4464 -- bother looking for non-visible declarations as well.
4466 if Hidden then
4467 return;
4468 end if;
4470 -- Second loop does non-directly visible declarations
4472 Ent := Homonyms;
4473 while Present (Ent) loop
4474 if not Is_Potentially_Use_Visible (Ent) then
4476 -- Do not bother the user with unknown entities
4478 if not Known_But_Invisible (Ent) then
4479 goto Continue;
4480 end if;
4482 Error_Msg_Sloc := Sloc (Ent);
4484 -- Output message noting that there is a non-visible
4485 -- declaration, distinguishing the private part case.
4487 if Is_Hidden (Ent) then
4488 Error_Msg_N ("non-visible (private) declaration#!", N);
4490 -- If the entity is declared in a generic package, it
4491 -- cannot be visible, so there is no point in adding it
4492 -- to the list of candidates if another homograph from a
4493 -- non-generic package has been seen.
4495 elsif Ekind (Scope (Ent)) = E_Generic_Package
4496 and then Found
4497 then
4498 null;
4500 else
4501 Error_Msg_N -- CODEFIX
4502 ("non-visible declaration#!", N);
4504 if Ekind (Scope (Ent)) /= E_Generic_Package then
4505 Found := True;
4506 end if;
4508 if Is_Compilation_Unit (Ent)
4509 and then
4510 Nkind (Parent (Parent (N))) = N_Use_Package_Clause
4511 then
4512 Error_Msg_Qual_Level := 99;
4513 Error_Msg_NE -- CODEFIX
4514 ("\\missing `WITH &;`", N, Ent);
4515 Error_Msg_Qual_Level := 0;
4516 end if;
4518 if Ekind (Ent) = E_Discriminant
4519 and then Present (Corresponding_Discriminant (Ent))
4520 and then Scope (Corresponding_Discriminant (Ent)) =
4521 Etype (Scope (Ent))
4522 then
4523 Error_Msg_N
4524 ("inherited discriminant not allowed here" &
4525 " (RM 3.8 (12), 3.8.1 (6))!", N);
4526 end if;
4527 end if;
4529 -- Set entity and its containing package as referenced. We
4530 -- can't be sure of this, but this seems a better choice
4531 -- to avoid unused entity messages.
4533 if Comes_From_Source (Ent) then
4534 Set_Referenced (Ent);
4535 Set_Referenced (Cunit_Entity (Get_Source_Unit (Ent)));
4536 end if;
4537 end if;
4539 <<Continue>>
4540 Ent := Homonym (Ent);
4541 end loop;
4542 end if;
4543 end Nvis_Messages;
4545 ---------------
4546 -- Undefined --
4547 ---------------
4549 procedure Undefined (Nvis : Boolean) is
4550 Emsg : Error_Msg_Id;
4552 begin
4553 -- We should never find an undefined internal name. If we do, then
4554 -- see if we have previous errors. If so, ignore on the grounds that
4555 -- it is probably a cascaded message (e.g. a block label from a badly
4556 -- formed block). If no previous errors, then we have a real internal
4557 -- error of some kind so raise an exception.
4559 if Is_Internal_Name (Chars (N)) then
4560 if Total_Errors_Detected /= 0 then
4561 return;
4562 else
4563 raise Program_Error;
4564 end if;
4565 end if;
4567 -- A very specialized error check, if the undefined variable is
4568 -- a case tag, and the case type is an enumeration type, check
4569 -- for a possible misspelling, and if so, modify the identifier
4571 -- Named aggregate should also be handled similarly ???
4573 if Nkind (N) = N_Identifier
4574 and then Nkind (Parent (N)) = N_Case_Statement_Alternative
4575 then
4576 declare
4577 Case_Stm : constant Node_Id := Parent (Parent (N));
4578 Case_Typ : constant Entity_Id := Etype (Expression (Case_Stm));
4580 Lit : Node_Id;
4582 begin
4583 if Is_Enumeration_Type (Case_Typ)
4584 and then not Is_Standard_Character_Type (Case_Typ)
4585 then
4586 Lit := First_Literal (Case_Typ);
4587 Get_Name_String (Chars (Lit));
4589 if Chars (Lit) /= Chars (N)
4590 and then Is_Bad_Spelling_Of (Chars (N), Chars (Lit))
4591 then
4592 Error_Msg_Node_2 := Lit;
4593 Error_Msg_N -- CODEFIX
4594 ("& is undefined, assume misspelling of &", N);
4595 Rewrite (N, New_Occurrence_Of (Lit, Sloc (N)));
4596 return;
4597 end if;
4599 Lit := Next_Literal (Lit);
4600 end if;
4601 end;
4602 end if;
4604 -- Normal processing
4606 Set_Entity (N, Any_Id);
4607 Set_Etype (N, Any_Type);
4609 -- We use the table Urefs to keep track of entities for which we
4610 -- have issued errors for undefined references. Multiple errors
4611 -- for a single name are normally suppressed, however we modify
4612 -- the error message to alert the programmer to this effect.
4614 for J in Urefs.First .. Urefs.Last loop
4615 if Chars (N) = Chars (Urefs.Table (J).Node) then
4616 if Urefs.Table (J).Err /= No_Error_Msg
4617 and then Sloc (N) /= Urefs.Table (J).Loc
4618 then
4619 Error_Msg_Node_1 := Urefs.Table (J).Node;
4621 if Urefs.Table (J).Nvis then
4622 Change_Error_Text (Urefs.Table (J).Err,
4623 "& is not visible (more references follow)");
4624 else
4625 Change_Error_Text (Urefs.Table (J).Err,
4626 "& is undefined (more references follow)");
4627 end if;
4629 Urefs.Table (J).Err := No_Error_Msg;
4630 end if;
4632 -- Although we will set Msg False, and thus suppress the
4633 -- message, we also set Error_Posted True, to avoid any
4634 -- cascaded messages resulting from the undefined reference.
4636 Msg := False;
4637 Set_Error_Posted (N, True);
4638 return;
4639 end if;
4640 end loop;
4642 -- If entry not found, this is first undefined occurrence
4644 if Nvis then
4645 Error_Msg_N ("& is not visible!", N);
4646 Emsg := Get_Msg_Id;
4648 else
4649 Error_Msg_N ("& is undefined!", N);
4650 Emsg := Get_Msg_Id;
4652 -- A very bizarre special check, if the undefined identifier
4653 -- is put or put_line, then add a special error message (since
4654 -- this is a very common error for beginners to make).
4656 if Nam_In (Chars (N), Name_Put, Name_Put_Line) then
4657 Error_Msg_N -- CODEFIX
4658 ("\\possible missing `WITH Ada.Text_'I'O; " &
4659 "USE Ada.Text_'I'O`!", N);
4661 -- Another special check if N is the prefix of a selected
4662 -- component which is a known unit, add message complaining
4663 -- about missing with for this unit.
4665 elsif Nkind (Parent (N)) = N_Selected_Component
4666 and then N = Prefix (Parent (N))
4667 and then Is_Known_Unit (Parent (N))
4668 then
4669 Error_Msg_Node_2 := Selector_Name (Parent (N));
4670 Error_Msg_N -- CODEFIX
4671 ("\\missing `WITH &.&;`", Prefix (Parent (N)));
4672 end if;
4674 -- Now check for possible misspellings
4676 declare
4677 E : Entity_Id;
4678 Ematch : Entity_Id := Empty;
4680 Last_Name_Id : constant Name_Id :=
4681 Name_Id (Nat (First_Name_Id) +
4682 Name_Entries_Count - 1);
4684 begin
4685 for Nam in First_Name_Id .. Last_Name_Id loop
4686 E := Get_Name_Entity_Id (Nam);
4688 if Present (E)
4689 and then (Is_Immediately_Visible (E)
4690 or else
4691 Is_Potentially_Use_Visible (E))
4692 then
4693 if Is_Bad_Spelling_Of (Chars (N), Nam) then
4694 Ematch := E;
4695 exit;
4696 end if;
4697 end if;
4698 end loop;
4700 if Present (Ematch) then
4701 Error_Msg_NE -- CODEFIX
4702 ("\possible misspelling of&", N, Ematch);
4703 end if;
4704 end;
4705 end if;
4707 -- Make entry in undefined references table unless the full errors
4708 -- switch is set, in which case by refraining from generating the
4709 -- table entry, we guarantee that we get an error message for every
4710 -- undefined reference.
4712 if not All_Errors_Mode then
4713 Urefs.Append (
4714 (Node => N,
4715 Err => Emsg,
4716 Nvis => Nvis,
4717 Loc => Sloc (N)));
4718 end if;
4720 Msg := True;
4721 end Undefined;
4723 -- Start of processing for Find_Direct_Name
4725 begin
4726 -- If the entity pointer is already set, this is an internal node, or
4727 -- a node that is analyzed more than once, after a tree modification.
4728 -- In such a case there is no resolution to perform, just set the type.
4730 if Present (Entity (N)) then
4731 if Is_Type (Entity (N)) then
4732 Set_Etype (N, Entity (N));
4734 else
4735 declare
4736 Entyp : constant Entity_Id := Etype (Entity (N));
4738 begin
4739 -- One special case here. If the Etype field is already set,
4740 -- and references the packed array type corresponding to the
4741 -- etype of the referenced entity, then leave it alone. This
4742 -- happens for trees generated from Exp_Pakd, where expressions
4743 -- can be deliberately "mis-typed" to the packed array type.
4745 if Is_Array_Type (Entyp)
4746 and then Is_Packed (Entyp)
4747 and then Present (Etype (N))
4748 and then Etype (N) = Packed_Array_Type (Entyp)
4749 then
4750 null;
4752 -- If not that special case, then just reset the Etype
4754 else
4755 Set_Etype (N, Etype (Entity (N)));
4756 end if;
4757 end;
4758 end if;
4760 return;
4761 end if;
4763 -- Here if Entity pointer was not set, we need full visibility analysis
4764 -- First we generate debugging output if the debug E flag is set.
4766 if Debug_Flag_E then
4767 Write_Str ("Looking for ");
4768 Write_Name (Chars (N));
4769 Write_Eol;
4770 end if;
4772 Homonyms := Current_Entity (N);
4773 Nvis_Entity := False;
4775 E := Homonyms;
4776 while Present (E) loop
4778 -- If entity is immediately visible or potentially use visible, then
4779 -- process the entity and we are done.
4781 if Is_Immediately_Visible (E) then
4782 goto Immediately_Visible_Entity;
4784 elsif Is_Potentially_Use_Visible (E) then
4785 goto Potentially_Use_Visible_Entity;
4787 -- Note if a known but invisible entity encountered
4789 elsif Known_But_Invisible (E) then
4790 Nvis_Entity := True;
4791 end if;
4793 -- Move to next entity in chain and continue search
4795 E := Homonym (E);
4796 end loop;
4798 -- If no entries on homonym chain that were potentially visible,
4799 -- and no entities reasonably considered as non-visible, then
4800 -- we have a plain undefined reference, with no additional
4801 -- explanation required.
4803 if not Nvis_Entity then
4804 Undefined (Nvis => False);
4806 -- Otherwise there is at least one entry on the homonym chain that
4807 -- is reasonably considered as being known and non-visible.
4809 else
4810 Nvis_Messages;
4811 end if;
4813 return;
4815 -- Processing for a potentially use visible entry found. We must search
4816 -- the rest of the homonym chain for two reasons. First, if there is a
4817 -- directly visible entry, then none of the potentially use-visible
4818 -- entities are directly visible (RM 8.4(10)). Second, we need to check
4819 -- for the case of multiple potentially use-visible entries hiding one
4820 -- another and as a result being non-directly visible (RM 8.4(11)).
4822 <<Potentially_Use_Visible_Entity>> declare
4823 Only_One_Visible : Boolean := True;
4824 All_Overloadable : Boolean := Is_Overloadable (E);
4826 begin
4827 E2 := Homonym (E);
4828 while Present (E2) loop
4829 if Is_Immediately_Visible (E2) then
4831 -- If the use-visible entity comes from the actual for a
4832 -- formal package, it hides a directly visible entity from
4833 -- outside the instance.
4835 if From_Actual_Package (E)
4836 and then Scope_Depth (E2) < Scope_Depth (Inst)
4837 then
4838 goto Found;
4839 else
4840 E := E2;
4841 goto Immediately_Visible_Entity;
4842 end if;
4844 elsif Is_Potentially_Use_Visible (E2) then
4845 Only_One_Visible := False;
4846 All_Overloadable := All_Overloadable and Is_Overloadable (E2);
4848 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
4849 -- that can occur in private_with clauses. Example:
4851 -- with A;
4852 -- private with B; package A is
4853 -- package C is function B return Integer;
4854 -- use A; end A;
4855 -- V1 : Integer := B;
4856 -- private function B return Integer;
4857 -- V2 : Integer := B;
4858 -- end C;
4860 -- V1 resolves to A.B, but V2 resolves to library unit B
4862 elsif Ekind (E2) = E_Function
4863 and then Scope (E2) = Standard_Standard
4864 and then Has_Private_With (E2)
4865 then
4866 Only_One_Visible := False;
4867 All_Overloadable := False;
4868 Nvis_Is_Private_Subprg := True;
4869 exit;
4870 end if;
4872 E2 := Homonym (E2);
4873 end loop;
4875 -- On falling through this loop, we have checked that there are no
4876 -- immediately visible entities. Only_One_Visible is set if exactly
4877 -- one potentially use visible entity exists. All_Overloadable is
4878 -- set if all the potentially use visible entities are overloadable.
4879 -- The condition for legality is that either there is one potentially
4880 -- use visible entity, or if there is more than one, then all of them
4881 -- are overloadable.
4883 if Only_One_Visible or All_Overloadable then
4884 goto Found;
4886 -- If there is more than one potentially use-visible entity and at
4887 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
4888 -- Note that E points to the first such entity on the homonym list.
4889 -- Special case: if one of the entities is declared in an actual
4890 -- package, it was visible in the generic, and takes precedence over
4891 -- other entities that are potentially use-visible. Same if it is
4892 -- declared in a local instantiation of the current instance.
4894 else
4895 if In_Instance then
4897 -- Find current instance
4899 Inst := Current_Scope;
4900 while Present (Inst) and then Inst /= Standard_Standard loop
4901 if Is_Generic_Instance (Inst) then
4902 exit;
4903 end if;
4905 Inst := Scope (Inst);
4906 end loop;
4908 E2 := E;
4909 while Present (E2) loop
4910 if From_Actual_Package (E2)
4911 or else
4912 (Is_Generic_Instance (Scope (E2))
4913 and then Scope_Depth (Scope (E2)) > Scope_Depth (Inst))
4914 then
4915 E := E2;
4916 goto Found;
4917 end if;
4919 E2 := Homonym (E2);
4920 end loop;
4922 Nvis_Messages;
4923 return;
4925 elsif
4926 Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
4927 then
4928 -- A use-clause in the body of a system file creates conflict
4929 -- with some entity in a user scope, while rtsfind is active.
4930 -- Keep only the entity coming from another predefined unit.
4932 E2 := E;
4933 while Present (E2) loop
4934 if Is_Predefined_File_Name
4935 (Unit_File_Name (Get_Source_Unit (Sloc (E2))))
4936 then
4937 E := E2;
4938 goto Found;
4939 end if;
4941 E2 := Homonym (E2);
4942 end loop;
4944 -- Entity must exist because predefined unit is correct
4946 raise Program_Error;
4948 else
4949 Nvis_Messages;
4950 return;
4951 end if;
4952 end if;
4953 end;
4955 -- Come here with E set to the first immediately visible entity on
4956 -- the homonym chain. This is the one we want unless there is another
4957 -- immediately visible entity further on in the chain for an inner
4958 -- scope (RM 8.3(8)).
4960 <<Immediately_Visible_Entity>> declare
4961 Level : Int;
4962 Scop : Entity_Id;
4964 begin
4965 -- Find scope level of initial entity. When compiling through
4966 -- Rtsfind, the previous context is not completely invisible, and
4967 -- an outer entity may appear on the chain, whose scope is below
4968 -- the entry for Standard that delimits the current scope stack.
4969 -- Indicate that the level for this spurious entry is outside of
4970 -- the current scope stack.
4972 Level := Scope_Stack.Last;
4973 loop
4974 Scop := Scope_Stack.Table (Level).Entity;
4975 exit when Scop = Scope (E);
4976 Level := Level - 1;
4977 exit when Scop = Standard_Standard;
4978 end loop;
4980 -- Now search remainder of homonym chain for more inner entry
4981 -- If the entity is Standard itself, it has no scope, and we
4982 -- compare it with the stack entry directly.
4984 E2 := Homonym (E);
4985 while Present (E2) loop
4986 if Is_Immediately_Visible (E2) then
4988 -- If a generic package contains a local declaration that
4989 -- has the same name as the generic, there may be a visibility
4990 -- conflict in an instance, where the local declaration must
4991 -- also hide the name of the corresponding package renaming.
4992 -- We check explicitly for a package declared by a renaming,
4993 -- whose renamed entity is an instance that is on the scope
4994 -- stack, and that contains a homonym in the same scope. Once
4995 -- we have found it, we know that the package renaming is not
4996 -- immediately visible, and that the identifier denotes the
4997 -- other entity (and its homonyms if overloaded).
4999 if Scope (E) = Scope (E2)
5000 and then Ekind (E) = E_Package
5001 and then Present (Renamed_Object (E))
5002 and then Is_Generic_Instance (Renamed_Object (E))
5003 and then In_Open_Scopes (Renamed_Object (E))
5004 and then Comes_From_Source (N)
5005 then
5006 Set_Is_Immediately_Visible (E, False);
5007 E := E2;
5009 else
5010 for J in Level + 1 .. Scope_Stack.Last loop
5011 if Scope_Stack.Table (J).Entity = Scope (E2)
5012 or else Scope_Stack.Table (J).Entity = E2
5013 then
5014 Level := J;
5015 E := E2;
5016 exit;
5017 end if;
5018 end loop;
5019 end if;
5020 end if;
5022 E2 := Homonym (E2);
5023 end loop;
5025 -- At the end of that loop, E is the innermost immediately
5026 -- visible entity, so we are all set.
5027 end;
5029 -- Come here with entity found, and stored in E
5031 <<Found>> begin
5033 -- Check violation of No_Wide_Characters restriction
5035 Check_Wide_Character_Restriction (E, N);
5037 -- When distribution features are available (Get_PCS_Name /=
5038 -- Name_No_DSA), a remote access-to-subprogram type is converted
5039 -- into a record type holding whatever information is needed to
5040 -- perform a remote call on an RCI subprogram. In that case we
5041 -- rewrite any occurrence of the RAS type into the equivalent record
5042 -- type here. 'Access attribute references and RAS dereferences are
5043 -- then implemented using specific TSSs. However when distribution is
5044 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5045 -- generation of these TSSs, and we must keep the RAS type in its
5046 -- original access-to-subprogram form (since all calls through a
5047 -- value of such type will be local anyway in the absence of a PCS).
5049 if Comes_From_Source (N)
5050 and then Is_Remote_Access_To_Subprogram_Type (E)
5051 and then Ekind (E) = E_Access_Subprogram_Type
5052 and then Expander_Active
5053 and then Get_PCS_Name /= Name_No_DSA
5054 then
5055 Rewrite (N,
5056 New_Occurrence_Of (Equivalent_Type (E), Sloc (N)));
5057 return;
5058 end if;
5060 -- Set the entity. Note that the reason we call Set_Entity for the
5061 -- overloadable case, as opposed to Set_Entity_With_Checks is
5062 -- that in the overloaded case, the initial call can set the wrong
5063 -- homonym. The call that sets the right homonym is in Sem_Res and
5064 -- that call does use Set_Entity_With_Checks, so we don't miss
5065 -- a style check.
5067 if Is_Overloadable (E) then
5068 Set_Entity (N, E);
5069 else
5070 Set_Entity_With_Checks (N, E);
5071 end if;
5073 if Is_Type (E) then
5074 Set_Etype (N, E);
5075 else
5076 Set_Etype (N, Get_Full_View (Etype (E)));
5077 end if;
5079 if Debug_Flag_E then
5080 Write_Str (" found ");
5081 Write_Entity_Info (E, " ");
5082 end if;
5084 -- If the Ekind of the entity is Void, it means that all homonyms
5085 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5086 -- test is skipped if the current scope is a record and the name is
5087 -- a pragma argument expression (case of Atomic and Volatile pragmas
5088 -- and possibly other similar pragmas added later, which are allowed
5089 -- to reference components in the current record).
5091 if Ekind (E) = E_Void
5092 and then
5093 (not Is_Record_Type (Current_Scope)
5094 or else Nkind (Parent (N)) /= N_Pragma_Argument_Association)
5095 then
5096 Premature_Usage (N);
5098 -- If the entity is overloadable, collect all interpretations of the
5099 -- name for subsequent overload resolution. We optimize a bit here to
5100 -- do this only if we have an overloadable entity that is not on its
5101 -- own on the homonym chain.
5103 elsif Is_Overloadable (E)
5104 and then (Present (Homonym (E)) or else Current_Entity (N) /= E)
5105 then
5106 Collect_Interps (N);
5108 -- If no homonyms were visible, the entity is unambiguous
5110 if not Is_Overloaded (N) then
5111 if not Is_Actual_Parameter then
5112 Generate_Reference (E, N);
5113 end if;
5114 end if;
5116 -- Case of non-overloadable entity, set the entity providing that
5117 -- we do not have the case of a discriminant reference within a
5118 -- default expression. Such references are replaced with the
5119 -- corresponding discriminal, which is the formal corresponding to
5120 -- to the discriminant in the initialization procedure.
5122 else
5123 -- Entity is unambiguous, indicate that it is referenced here
5125 -- For a renaming of an object, always generate simple reference,
5126 -- we don't try to keep track of assignments in this case, except
5127 -- in SPARK mode where renamings are traversed for generating
5128 -- local effects of subprograms.
5130 if Is_Object (E)
5131 and then Present (Renamed_Object (E))
5132 and then not GNATprove_Mode
5133 then
5134 Generate_Reference (E, N);
5136 -- If the renamed entity is a private protected component,
5137 -- reference the original component as well. This needs to be
5138 -- done because the private renamings are installed before any
5139 -- analysis has occurred. Reference to a private component will
5140 -- resolve to the renaming and the original component will be
5141 -- left unreferenced, hence the following.
5143 if Is_Prival (E) then
5144 Generate_Reference (Prival_Link (E), N);
5145 end if;
5147 -- One odd case is that we do not want to set the Referenced flag
5148 -- if the entity is a label, and the identifier is the label in
5149 -- the source, since this is not a reference from the point of
5150 -- view of the user.
5152 elsif Nkind (Parent (N)) = N_Label then
5153 declare
5154 R : constant Boolean := Referenced (E);
5156 begin
5157 -- Generate reference unless this is an actual parameter
5158 -- (see comment below)
5160 if Is_Actual_Parameter then
5161 Generate_Reference (E, N);
5162 Set_Referenced (E, R);
5163 end if;
5164 end;
5166 -- Normal case, not a label: generate reference
5168 else
5169 if not Is_Actual_Parameter then
5171 -- Package or generic package is always a simple reference
5173 if Ekind_In (E, E_Package, E_Generic_Package) then
5174 Generate_Reference (E, N, 'r');
5176 -- Else see if we have a left hand side
5178 else
5179 case Is_LHS (N) is
5180 when Yes =>
5181 Generate_Reference (E, N, 'm');
5183 when No =>
5184 Generate_Reference (E, N, 'r');
5186 -- If we don't know now, generate reference later
5188 when Unknown =>
5189 Deferred_References.Append ((E, N));
5190 end case;
5191 end if;
5192 end if;
5194 Check_Nested_Access (E);
5195 end if;
5197 Set_Entity_Or_Discriminal (N, E);
5199 -- The name may designate a generalized reference, in which case
5200 -- the dereference interpretation will be included.
5202 if Ada_Version >= Ada_2012
5203 and then
5204 (Nkind (Parent (N)) in N_Subexpr
5205 or else Nkind_In (Parent (N), N_Object_Declaration,
5206 N_Assignment_Statement))
5207 then
5208 Check_Implicit_Dereference (N, Etype (E));
5209 end if;
5210 end if;
5211 end;
5212 end Find_Direct_Name;
5214 ------------------------
5215 -- Find_Expanded_Name --
5216 ------------------------
5218 -- This routine searches the homonym chain of the entity until it finds
5219 -- an entity declared in the scope denoted by the prefix. If the entity
5220 -- is private, it may nevertheless be immediately visible, if we are in
5221 -- the scope of its declaration.
5223 procedure Find_Expanded_Name (N : Node_Id) is
5224 function In_Pragmas_Depends_Or_Global (N : Node_Id) return Boolean;
5225 -- Determine whether an arbitrary node N appears in pragmas [Refined_]
5226 -- Depends or [Refined_]Global.
5228 ----------------------------------
5229 -- In_Pragmas_Depends_Or_Global --
5230 ----------------------------------
5232 function In_Pragmas_Depends_Or_Global (N : Node_Id) return Boolean is
5233 Par : Node_Id;
5235 begin
5236 -- Climb the parent chain looking for a pragma
5238 Par := N;
5239 while Present (Par) loop
5240 if Nkind (Par) = N_Pragma
5241 and then Nam_In (Pragma_Name (Par), Name_Depends,
5242 Name_Global,
5243 Name_Refined_Depends,
5244 Name_Refined_Global)
5245 then
5246 return True;
5248 -- Prevent the search from going too far
5250 elsif Is_Body_Or_Package_Declaration (Par) then
5251 return False;
5252 end if;
5254 Par := Parent (Par);
5255 end loop;
5257 return False;
5258 end In_Pragmas_Depends_Or_Global;
5260 -- Local variables
5262 Selector : constant Node_Id := Selector_Name (N);
5263 Candidate : Entity_Id := Empty;
5264 P_Name : Entity_Id;
5265 Id : Entity_Id;
5267 -- Start of processing for Find_Expanded_Name
5269 begin
5270 P_Name := Entity (Prefix (N));
5272 -- If the prefix is a renamed package, look for the entity in the
5273 -- original package.
5275 if Ekind (P_Name) = E_Package
5276 and then Present (Renamed_Object (P_Name))
5277 then
5278 P_Name := Renamed_Object (P_Name);
5280 -- Rewrite node with entity field pointing to renamed object
5282 Rewrite (Prefix (N), New_Copy (Prefix (N)));
5283 Set_Entity (Prefix (N), P_Name);
5285 -- If the prefix is an object of a concurrent type, look for
5286 -- the entity in the associated task or protected type.
5288 elsif Is_Concurrent_Type (Etype (P_Name)) then
5289 P_Name := Etype (P_Name);
5290 end if;
5292 Id := Current_Entity (Selector);
5294 declare
5295 Is_New_Candidate : Boolean;
5297 begin
5298 while Present (Id) loop
5299 if Scope (Id) = P_Name then
5300 Candidate := Id;
5301 Is_New_Candidate := True;
5303 -- Handle abstract views of states and variables. These are
5304 -- acceptable only when the reference to the view appears in
5305 -- pragmas [Refined_]Depends and [Refined_]Global.
5307 if Ekind (Id) = E_Abstract_State
5308 and then From_Limited_With (Id)
5309 and then Present (Non_Limited_View (Id))
5310 then
5311 if In_Pragmas_Depends_Or_Global (N) then
5312 Candidate := Non_Limited_View (Id);
5313 Is_New_Candidate := True;
5315 -- Hide candidate because it is not used in a proper context
5317 else
5318 Candidate := Empty;
5319 Is_New_Candidate := False;
5320 end if;
5321 end if;
5323 -- Ada 2005 (AI-217): Handle shadow entities associated with types
5324 -- declared in limited-withed nested packages. We don't need to
5325 -- handle E_Incomplete_Subtype entities because the entities in
5326 -- the limited view are always E_Incomplete_Type entities (see
5327 -- Build_Limited_Views). Regarding the expression used to evaluate
5328 -- the scope, it is important to note that the limited view also
5329 -- has shadow entities associated nested packages. For this reason
5330 -- the correct scope of the entity is the scope of the real entity
5331 -- The non-limited view may itself be incomplete, in which case
5332 -- get the full view if available.
5334 elsif Ekind (Id) = E_Incomplete_Type
5335 and then From_Limited_With (Id)
5336 and then Present (Non_Limited_View (Id))
5337 and then Scope (Non_Limited_View (Id)) = P_Name
5338 then
5339 Candidate := Get_Full_View (Non_Limited_View (Id));
5340 Is_New_Candidate := True;
5342 else
5343 Is_New_Candidate := False;
5344 end if;
5346 if Is_New_Candidate then
5347 if Is_Child_Unit (Id) or else P_Name = Standard_Standard then
5348 exit when Is_Visible_Lib_Unit (Id);
5349 else
5350 exit when not Is_Hidden (Id);
5351 end if;
5353 exit when Is_Immediately_Visible (Id);
5354 end if;
5356 Id := Homonym (Id);
5357 end loop;
5358 end;
5360 if No (Id)
5361 and then Ekind_In (P_Name, E_Procedure, E_Function)
5362 and then Is_Generic_Instance (P_Name)
5363 then
5364 -- Expanded name denotes entity in (instance of) generic subprogram.
5365 -- The entity may be in the subprogram instance, or may denote one of
5366 -- the formals, which is declared in the enclosing wrapper package.
5368 P_Name := Scope (P_Name);
5370 Id := Current_Entity (Selector);
5371 while Present (Id) loop
5372 exit when Scope (Id) = P_Name;
5373 Id := Homonym (Id);
5374 end loop;
5375 end if;
5377 if No (Id) or else Chars (Id) /= Chars (Selector) then
5378 Set_Etype (N, Any_Type);
5380 -- If we are looking for an entity defined in System, try to find it
5381 -- in the child package that may have been provided as an extension
5382 -- to System. The Extend_System pragma will have supplied the name of
5383 -- the extension, which may have to be loaded.
5385 if Chars (P_Name) = Name_System
5386 and then Scope (P_Name) = Standard_Standard
5387 and then Present (System_Extend_Unit)
5388 and then Present_System_Aux (N)
5389 then
5390 Set_Entity (Prefix (N), System_Aux_Id);
5391 Find_Expanded_Name (N);
5392 return;
5394 elsif Nkind (Selector) = N_Operator_Symbol
5395 and then Has_Implicit_Operator (N)
5396 then
5397 -- There is an implicit instance of the predefined operator in
5398 -- the given scope. The operator entity is defined in Standard.
5399 -- Has_Implicit_Operator makes the node into an Expanded_Name.
5401 return;
5403 elsif Nkind (Selector) = N_Character_Literal
5404 and then Has_Implicit_Character_Literal (N)
5405 then
5406 -- If there is no literal defined in the scope denoted by the
5407 -- prefix, the literal may belong to (a type derived from)
5408 -- Standard_Character, for which we have no explicit literals.
5410 return;
5412 else
5413 -- If the prefix is a single concurrent object, use its name in
5414 -- the error message, rather than that of the anonymous type.
5416 if Is_Concurrent_Type (P_Name)
5417 and then Is_Internal_Name (Chars (P_Name))
5418 then
5419 Error_Msg_Node_2 := Entity (Prefix (N));
5420 else
5421 Error_Msg_Node_2 := P_Name;
5422 end if;
5424 if P_Name = System_Aux_Id then
5425 P_Name := Scope (P_Name);
5426 Set_Entity (Prefix (N), P_Name);
5427 end if;
5429 if Present (Candidate) then
5431 -- If we know that the unit is a child unit we can give a more
5432 -- accurate error message.
5434 if Is_Child_Unit (Candidate) then
5436 -- If the candidate is a private child unit and we are in
5437 -- the visible part of a public unit, specialize the error
5438 -- message. There might be a private with_clause for it,
5439 -- but it is not currently active.
5441 if Is_Private_Descendant (Candidate)
5442 and then Ekind (Current_Scope) = E_Package
5443 and then not In_Private_Part (Current_Scope)
5444 and then not Is_Private_Descendant (Current_Scope)
5445 then
5446 Error_Msg_N ("private child unit& is not visible here",
5447 Selector);
5449 -- Normal case where we have a missing with for a child unit
5451 else
5452 Error_Msg_Qual_Level := 99;
5453 Error_Msg_NE -- CODEFIX
5454 ("missing `WITH &;`", Selector, Candidate);
5455 Error_Msg_Qual_Level := 0;
5456 end if;
5458 -- Here we don't know that this is a child unit
5460 else
5461 Error_Msg_NE ("& is not a visible entity of&", N, Selector);
5462 end if;
5464 else
5465 -- Within the instantiation of a child unit, the prefix may
5466 -- denote the parent instance, but the selector has the name
5467 -- of the original child. That is to say, when A.B appears
5468 -- within an instantiation of generic child unit B, the scope
5469 -- stack includes an instance of A (P_Name) and an instance
5470 -- of B under some other name. We scan the scope to find this
5471 -- child instance, which is the desired entity.
5472 -- Note that the parent may itself be a child instance, if
5473 -- the reference is of the form A.B.C, in which case A.B has
5474 -- already been rewritten with the proper entity.
5476 if In_Open_Scopes (P_Name)
5477 and then Is_Generic_Instance (P_Name)
5478 then
5479 declare
5480 Gen_Par : constant Entity_Id :=
5481 Generic_Parent (Specification
5482 (Unit_Declaration_Node (P_Name)));
5483 S : Entity_Id := Current_Scope;
5484 P : Entity_Id;
5486 begin
5487 for J in reverse 0 .. Scope_Stack.Last loop
5488 S := Scope_Stack.Table (J).Entity;
5490 exit when S = Standard_Standard;
5492 if Ekind_In (S, E_Function,
5493 E_Package,
5494 E_Procedure)
5495 then
5496 P := Generic_Parent (Specification
5497 (Unit_Declaration_Node (S)));
5499 -- Check that P is a generic child of the generic
5500 -- parent of the prefix.
5502 if Present (P)
5503 and then Chars (P) = Chars (Selector)
5504 and then Scope (P) = Gen_Par
5505 then
5506 Id := S;
5507 goto Found;
5508 end if;
5509 end if;
5511 end loop;
5512 end;
5513 end if;
5515 -- If this is a selection from Ada, System or Interfaces, then
5516 -- we assume a missing with for the corresponding package.
5518 if Is_Known_Unit (N) then
5519 if not Error_Posted (N) then
5520 Error_Msg_Node_2 := Selector;
5521 Error_Msg_N -- CODEFIX
5522 ("missing `WITH &.&;`", Prefix (N));
5523 end if;
5525 -- If this is a selection from a dummy package, then suppress
5526 -- the error message, of course the entity is missing if the
5527 -- package is missing.
5529 elsif Sloc (Error_Msg_Node_2) = No_Location then
5530 null;
5532 -- Here we have the case of an undefined component
5534 else
5536 -- The prefix may hide a homonym in the context that
5537 -- declares the desired entity. This error can use a
5538 -- specialized message.
5540 if In_Open_Scopes (P_Name) then
5541 declare
5542 H : constant Entity_Id := Homonym (P_Name);
5544 begin
5545 if Present (H)
5546 and then Is_Compilation_Unit (H)
5547 and then
5548 (Is_Immediately_Visible (H)
5549 or else Is_Visible_Lib_Unit (H))
5550 then
5551 Id := First_Entity (H);
5552 while Present (Id) loop
5553 if Chars (Id) = Chars (Selector) then
5554 Error_Msg_Qual_Level := 99;
5555 Error_Msg_Name_1 := Chars (Selector);
5556 Error_Msg_NE
5557 ("% not declared in&", N, P_Name);
5558 Error_Msg_NE
5559 ("\use fully qualified name starting with "
5560 & "Standard to make& visible", N, H);
5561 Error_Msg_Qual_Level := 0;
5562 goto Done;
5563 end if;
5565 Next_Entity (Id);
5566 end loop;
5567 end if;
5569 -- If not found, standard error message
5571 Error_Msg_NE ("& not declared in&", N, Selector);
5573 <<Done>> null;
5574 end;
5576 else
5577 Error_Msg_NE ("& not declared in&", N, Selector);
5578 end if;
5580 -- Check for misspelling of some entity in prefix
5582 Id := First_Entity (P_Name);
5583 while Present (Id) loop
5584 if Is_Bad_Spelling_Of (Chars (Id), Chars (Selector))
5585 and then not Is_Internal_Name (Chars (Id))
5586 then
5587 Error_Msg_NE -- CODEFIX
5588 ("possible misspelling of&", Selector, Id);
5589 exit;
5590 end if;
5592 Next_Entity (Id);
5593 end loop;
5595 -- Specialize the message if this may be an instantiation
5596 -- of a child unit that was not mentioned in the context.
5598 if Nkind (Parent (N)) = N_Package_Instantiation
5599 and then Is_Generic_Instance (Entity (Prefix (N)))
5600 and then Is_Compilation_Unit
5601 (Generic_Parent (Parent (Entity (Prefix (N)))))
5602 then
5603 Error_Msg_Node_2 := Selector;
5604 Error_Msg_N -- CODEFIX
5605 ("\missing `WITH &.&;`", Prefix (N));
5606 end if;
5607 end if;
5608 end if;
5610 Id := Any_Id;
5611 end if;
5612 end if;
5614 <<Found>>
5615 if Comes_From_Source (N)
5616 and then Is_Remote_Access_To_Subprogram_Type (Id)
5617 and then Ekind (Id) = E_Access_Subprogram_Type
5618 and then Present (Equivalent_Type (Id))
5619 then
5620 -- If we are not actually generating distribution code (i.e. the
5621 -- current PCS is the dummy non-distributed version), then the
5622 -- Equivalent_Type will be missing, and Id should be treated as
5623 -- a regular access-to-subprogram type.
5625 Id := Equivalent_Type (Id);
5626 Set_Chars (Selector, Chars (Id));
5627 end if;
5629 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
5631 if Ekind (P_Name) = E_Package and then From_Limited_With (P_Name) then
5632 if From_Limited_With (Id)
5633 or else Is_Type (Id)
5634 or else Ekind (Id) = E_Package
5635 then
5636 null;
5637 else
5638 Error_Msg_N
5639 ("limited withed package can only be used to access "
5640 & "incomplete types", N);
5641 end if;
5642 end if;
5644 if Is_Task_Type (P_Name)
5645 and then ((Ekind (Id) = E_Entry
5646 and then Nkind (Parent (N)) /= N_Attribute_Reference)
5647 or else
5648 (Ekind (Id) = E_Entry_Family
5649 and then
5650 Nkind (Parent (Parent (N))) /= N_Attribute_Reference))
5651 then
5652 -- If both the task type and the entry are in scope, this may still
5653 -- be the expanded name of an entry formal.
5655 if In_Open_Scopes (Id)
5656 and then Nkind (Parent (N)) = N_Selected_Component
5657 then
5658 null;
5660 else
5661 -- It is an entry call after all, either to the current task
5662 -- (which will deadlock) or to an enclosing task.
5664 Analyze_Selected_Component (N);
5665 return;
5666 end if;
5667 end if;
5669 Change_Selected_Component_To_Expanded_Name (N);
5671 -- Set appropriate type
5673 if Is_Type (Id) then
5674 Set_Etype (N, Id);
5675 else
5676 Set_Etype (N, Get_Full_View (Etype (Id)));
5677 end if;
5679 -- Do style check and generate reference, but skip both steps if this
5680 -- entity has homonyms, since we may not have the right homonym set yet.
5681 -- The proper homonym will be set during the resolve phase.
5683 if Has_Homonym (Id) then
5684 Set_Entity (N, Id);
5686 else
5687 Set_Entity_Or_Discriminal (N, Id);
5689 case Is_LHS (N) is
5690 when Yes =>
5691 Generate_Reference (Id, N, 'm');
5692 when No =>
5693 Generate_Reference (Id, N, 'r');
5694 when Unknown =>
5695 Deferred_References.Append ((Id, N));
5696 end case;
5697 end if;
5699 -- Check for violation of No_Wide_Characters
5701 Check_Wide_Character_Restriction (Id, N);
5703 -- If the Ekind of the entity is Void, it means that all homonyms are
5704 -- hidden from all visibility (RM 8.3(5,14-20)).
5706 if Ekind (Id) = E_Void then
5707 Premature_Usage (N);
5709 elsif Is_Overloadable (Id) and then Present (Homonym (Id)) then
5710 declare
5711 H : Entity_Id := Homonym (Id);
5713 begin
5714 while Present (H) loop
5715 if Scope (H) = Scope (Id)
5716 and then (not Is_Hidden (H)
5717 or else Is_Immediately_Visible (H))
5718 then
5719 Collect_Interps (N);
5720 exit;
5721 end if;
5723 H := Homonym (H);
5724 end loop;
5726 -- If an extension of System is present, collect possible explicit
5727 -- overloadings declared in the extension.
5729 if Chars (P_Name) = Name_System
5730 and then Scope (P_Name) = Standard_Standard
5731 and then Present (System_Extend_Unit)
5732 and then Present_System_Aux (N)
5733 then
5734 H := Current_Entity (Id);
5736 while Present (H) loop
5737 if Scope (H) = System_Aux_Id then
5738 Add_One_Interp (N, H, Etype (H));
5739 end if;
5741 H := Homonym (H);
5742 end loop;
5743 end if;
5744 end;
5745 end if;
5747 if Nkind (Selector_Name (N)) = N_Operator_Symbol
5748 and then Scope (Id) /= Standard_Standard
5749 then
5750 -- In addition to user-defined operators in the given scope, there
5751 -- may be an implicit instance of the predefined operator. The
5752 -- operator (defined in Standard) is found in Has_Implicit_Operator,
5753 -- and added to the interpretations. Procedure Add_One_Interp will
5754 -- determine which hides which.
5756 if Has_Implicit_Operator (N) then
5757 null;
5758 end if;
5759 end if;
5761 -- If there is a single interpretation for N we can generate a
5762 -- reference to the unique entity found.
5764 if Is_Overloadable (Id) and then not Is_Overloaded (N) then
5765 Generate_Reference (Id, N);
5766 end if;
5767 end Find_Expanded_Name;
5769 -------------------------
5770 -- Find_Renamed_Entity --
5771 -------------------------
5773 function Find_Renamed_Entity
5774 (N : Node_Id;
5775 Nam : Node_Id;
5776 New_S : Entity_Id;
5777 Is_Actual : Boolean := False) return Entity_Id
5779 Ind : Interp_Index;
5780 I1 : Interp_Index := 0; -- Suppress junk warnings
5781 It : Interp;
5782 It1 : Interp;
5783 Old_S : Entity_Id;
5784 Inst : Entity_Id;
5786 function Is_Visible_Operation (Op : Entity_Id) return Boolean;
5787 -- If the renamed entity is an implicit operator, check whether it is
5788 -- visible because its operand type is properly visible. This check
5789 -- applies to explicit renamed entities that appear in the source in a
5790 -- renaming declaration or a formal subprogram instance, but not to
5791 -- default generic actuals with a name.
5793 function Report_Overload return Entity_Id;
5794 -- List possible interpretations, and specialize message in the
5795 -- case of a generic actual.
5797 function Within (Inner, Outer : Entity_Id) return Boolean;
5798 -- Determine whether a candidate subprogram is defined within the
5799 -- enclosing instance. If yes, it has precedence over outer candidates.
5801 --------------------------
5802 -- Is_Visible_Operation --
5803 --------------------------
5805 function Is_Visible_Operation (Op : Entity_Id) return Boolean is
5806 Scop : Entity_Id;
5807 Typ : Entity_Id;
5808 Btyp : Entity_Id;
5810 begin
5811 if Ekind (Op) /= E_Operator
5812 or else Scope (Op) /= Standard_Standard
5813 or else (In_Instance
5814 and then (not Is_Actual
5815 or else Present (Enclosing_Instance)))
5816 then
5817 return True;
5819 else
5820 -- For a fixed point type operator, check the resulting type,
5821 -- because it may be a mixed mode integer * fixed operation.
5823 if Present (Next_Formal (First_Formal (New_S)))
5824 and then Is_Fixed_Point_Type (Etype (New_S))
5825 then
5826 Typ := Etype (New_S);
5827 else
5828 Typ := Etype (First_Formal (New_S));
5829 end if;
5831 Btyp := Base_Type (Typ);
5833 if Nkind (Nam) /= N_Expanded_Name then
5834 return (In_Open_Scopes (Scope (Btyp))
5835 or else Is_Potentially_Use_Visible (Btyp)
5836 or else In_Use (Btyp)
5837 or else In_Use (Scope (Btyp)));
5839 else
5840 Scop := Entity (Prefix (Nam));
5842 if Ekind (Scop) = E_Package
5843 and then Present (Renamed_Object (Scop))
5844 then
5845 Scop := Renamed_Object (Scop);
5846 end if;
5848 -- Operator is visible if prefix of expanded name denotes
5849 -- scope of type, or else type is defined in System_Aux
5850 -- and the prefix denotes System.
5852 return Scope (Btyp) = Scop
5853 or else (Scope (Btyp) = System_Aux_Id
5854 and then Scope (Scope (Btyp)) = Scop);
5855 end if;
5856 end if;
5857 end Is_Visible_Operation;
5859 ------------
5860 -- Within --
5861 ------------
5863 function Within (Inner, Outer : Entity_Id) return Boolean is
5864 Sc : Entity_Id;
5866 begin
5867 Sc := Scope (Inner);
5868 while Sc /= Standard_Standard loop
5869 if Sc = Outer then
5870 return True;
5871 else
5872 Sc := Scope (Sc);
5873 end if;
5874 end loop;
5876 return False;
5877 end Within;
5879 ---------------------
5880 -- Report_Overload --
5881 ---------------------
5883 function Report_Overload return Entity_Id is
5884 begin
5885 if Is_Actual then
5886 Error_Msg_NE -- CODEFIX
5887 ("ambiguous actual subprogram&, " &
5888 "possible interpretations:", N, Nam);
5889 else
5890 Error_Msg_N -- CODEFIX
5891 ("ambiguous subprogram, " &
5892 "possible interpretations:", N);
5893 end if;
5895 List_Interps (Nam, N);
5896 return Old_S;
5897 end Report_Overload;
5899 -- Start of processing for Find_Renamed_Entity
5901 begin
5902 Old_S := Any_Id;
5903 Candidate_Renaming := Empty;
5905 if not Is_Overloaded (Nam) then
5906 if Is_Actual and then Present (Enclosing_Instance) then
5907 Old_S := Entity (Nam);
5909 elsif Entity_Matches_Spec (Entity (Nam), New_S) then
5910 Candidate_Renaming := New_S;
5912 if Is_Visible_Operation (Entity (Nam)) then
5913 Old_S := Entity (Nam);
5914 end if;
5916 elsif
5917 Present (First_Formal (Entity (Nam)))
5918 and then Present (First_Formal (New_S))
5919 and then (Base_Type (Etype (First_Formal (Entity (Nam)))) =
5920 Base_Type (Etype (First_Formal (New_S))))
5921 then
5922 Candidate_Renaming := Entity (Nam);
5923 end if;
5925 else
5926 Get_First_Interp (Nam, Ind, It);
5927 while Present (It.Nam) loop
5928 if Entity_Matches_Spec (It.Nam, New_S)
5929 and then Is_Visible_Operation (It.Nam)
5930 then
5931 if Old_S /= Any_Id then
5933 -- Note: The call to Disambiguate only happens if a
5934 -- previous interpretation was found, in which case I1
5935 -- has received a value.
5937 It1 := Disambiguate (Nam, I1, Ind, Etype (Old_S));
5939 if It1 = No_Interp then
5940 Inst := Enclosing_Instance;
5942 if Present (Inst) then
5943 if Within (It.Nam, Inst) then
5944 if Within (Old_S, Inst) then
5946 -- Choose the innermost subprogram, which would
5947 -- have hidden the outer one in the generic.
5949 if Scope_Depth (It.Nam) <
5950 Scope_Depth (Old_S)
5951 then
5952 return Old_S;
5953 else
5954 return It.Nam;
5955 end if;
5956 end if;
5958 elsif Within (Old_S, Inst) then
5959 return (Old_S);
5961 else
5962 return Report_Overload;
5963 end if;
5965 -- If not within an instance, ambiguity is real
5967 else
5968 return Report_Overload;
5969 end if;
5971 else
5972 Old_S := It1.Nam;
5973 exit;
5974 end if;
5976 else
5977 I1 := Ind;
5978 Old_S := It.Nam;
5979 end if;
5981 elsif
5982 Present (First_Formal (It.Nam))
5983 and then Present (First_Formal (New_S))
5984 and then (Base_Type (Etype (First_Formal (It.Nam))) =
5985 Base_Type (Etype (First_Formal (New_S))))
5986 then
5987 Candidate_Renaming := It.Nam;
5988 end if;
5990 Get_Next_Interp (Ind, It);
5991 end loop;
5993 Set_Entity (Nam, Old_S);
5995 if Old_S /= Any_Id then
5996 Set_Is_Overloaded (Nam, False);
5997 end if;
5998 end if;
6000 return Old_S;
6001 end Find_Renamed_Entity;
6003 -----------------------------
6004 -- Find_Selected_Component --
6005 -----------------------------
6007 procedure Find_Selected_Component (N : Node_Id) is
6008 P : constant Node_Id := Prefix (N);
6010 P_Name : Entity_Id;
6011 -- Entity denoted by prefix
6013 P_Type : Entity_Id;
6014 -- and its type
6016 Nam : Node_Id;
6018 function Is_Reference_In_Subunit return Boolean;
6019 -- In a subunit, the scope depth is not a proper measure of hiding,
6020 -- because the context of the proper body may itself hide entities in
6021 -- parent units. This rare case requires inspecting the tree directly
6022 -- because the proper body is inserted in the main unit and its context
6023 -- is simply added to that of the parent.
6025 -----------------------------
6026 -- Is_Reference_In_Subunit --
6027 -----------------------------
6029 function Is_Reference_In_Subunit return Boolean is
6030 Clause : Node_Id;
6031 Comp_Unit : Node_Id;
6033 begin
6034 Comp_Unit := N;
6035 while Present (Comp_Unit)
6036 and then Nkind (Comp_Unit) /= N_Compilation_Unit
6037 loop
6038 Comp_Unit := Parent (Comp_Unit);
6039 end loop;
6041 if No (Comp_Unit) or else Nkind (Unit (Comp_Unit)) /= N_Subunit then
6042 return False;
6043 end if;
6045 -- Now check whether the package is in the context of the subunit
6047 Clause := First (Context_Items (Comp_Unit));
6048 while Present (Clause) loop
6049 if Nkind (Clause) = N_With_Clause
6050 and then Entity (Name (Clause)) = P_Name
6051 then
6052 return True;
6053 end if;
6055 Clause := Next (Clause);
6056 end loop;
6058 return False;
6059 end Is_Reference_In_Subunit;
6061 -- Start of processing for Find_Selected_Component
6063 begin
6064 Analyze (P);
6066 if Nkind (P) = N_Error then
6067 return;
6068 end if;
6070 -- Selector name cannot be a character literal or an operator symbol in
6071 -- SPARK, except for the operator symbol in a renaming.
6073 if Restriction_Check_Required (SPARK_05) then
6074 if Nkind (Selector_Name (N)) = N_Character_Literal then
6075 Check_SPARK_Restriction
6076 ("character literal cannot be prefixed", N);
6077 elsif Nkind (Selector_Name (N)) = N_Operator_Symbol
6078 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
6079 then
6080 Check_SPARK_Restriction ("operator symbol cannot be prefixed", N);
6081 end if;
6082 end if;
6084 -- If the selector already has an entity, the node has been constructed
6085 -- in the course of expansion, and is known to be valid. Do not verify
6086 -- that it is defined for the type (it may be a private component used
6087 -- in the expansion of record equality).
6089 if Present (Entity (Selector_Name (N))) then
6090 if No (Etype (N)) or else Etype (N) = Any_Type then
6091 declare
6092 Sel_Name : constant Node_Id := Selector_Name (N);
6093 Selector : constant Entity_Id := Entity (Sel_Name);
6094 C_Etype : Node_Id;
6096 begin
6097 Set_Etype (Sel_Name, Etype (Selector));
6099 if not Is_Entity_Name (P) then
6100 Resolve (P);
6101 end if;
6103 -- Build an actual subtype except for the first parameter
6104 -- of an init proc, where this actual subtype is by
6105 -- definition incorrect, since the object is uninitialized
6106 -- (and does not even have defined discriminants etc.)
6108 if Is_Entity_Name (P)
6109 and then Ekind (Entity (P)) = E_Function
6110 then
6111 Nam := New_Copy (P);
6113 if Is_Overloaded (P) then
6114 Save_Interps (P, Nam);
6115 end if;
6117 Rewrite (P, Make_Function_Call (Sloc (P), Name => Nam));
6118 Analyze_Call (P);
6119 Analyze_Selected_Component (N);
6120 return;
6122 elsif Ekind (Selector) = E_Component
6123 and then (not Is_Entity_Name (P)
6124 or else Chars (Entity (P)) /= Name_uInit)
6125 then
6126 -- Do not build the subtype when referencing components of
6127 -- dispatch table wrappers. Required to avoid generating
6128 -- elaboration code with HI runtimes. JVM and .NET use a
6129 -- modified version of Ada.Tags which does not contain RE_
6130 -- Dispatch_Table_Wrapper and RE_No_Dispatch_Table_Wrapper.
6131 -- Avoid raising RE_Not_Available exception in those cases.
6133 if VM_Target = No_VM
6134 and then RTU_Loaded (Ada_Tags)
6135 and then
6136 ((RTE_Available (RE_Dispatch_Table_Wrapper)
6137 and then Scope (Selector) =
6138 RTE (RE_Dispatch_Table_Wrapper))
6139 or else
6140 (RTE_Available (RE_No_Dispatch_Table_Wrapper)
6141 and then Scope (Selector) =
6142 RTE (RE_No_Dispatch_Table_Wrapper)))
6143 then
6144 C_Etype := Empty;
6145 else
6146 C_Etype :=
6147 Build_Actual_Subtype_Of_Component
6148 (Etype (Selector), N);
6149 end if;
6151 else
6152 C_Etype := Empty;
6153 end if;
6155 if No (C_Etype) then
6156 C_Etype := Etype (Selector);
6157 else
6158 Insert_Action (N, C_Etype);
6159 C_Etype := Defining_Identifier (C_Etype);
6160 end if;
6162 Set_Etype (N, C_Etype);
6163 end;
6165 -- If this is the name of an entry or protected operation, and
6166 -- the prefix is an access type, insert an explicit dereference,
6167 -- so that entry calls are treated uniformly.
6169 if Is_Access_Type (Etype (P))
6170 and then Is_Concurrent_Type (Designated_Type (Etype (P)))
6171 then
6172 declare
6173 New_P : constant Node_Id :=
6174 Make_Explicit_Dereference (Sloc (P),
6175 Prefix => Relocate_Node (P));
6176 begin
6177 Rewrite (P, New_P);
6178 Set_Etype (P, Designated_Type (Etype (Prefix (P))));
6179 end;
6180 end if;
6182 -- If the selected component appears within a default expression
6183 -- and it has an actual subtype, the pre-analysis has not yet
6184 -- completed its analysis, because Insert_Actions is disabled in
6185 -- that context. Within the init proc of the enclosing type we
6186 -- must complete this analysis, if an actual subtype was created.
6188 elsif Inside_Init_Proc then
6189 declare
6190 Typ : constant Entity_Id := Etype (N);
6191 Decl : constant Node_Id := Declaration_Node (Typ);
6192 begin
6193 if Nkind (Decl) = N_Subtype_Declaration
6194 and then not Analyzed (Decl)
6195 and then Is_List_Member (Decl)
6196 and then No (Parent (Decl))
6197 then
6198 Remove (Decl);
6199 Insert_Action (N, Decl);
6200 end if;
6201 end;
6202 end if;
6204 return;
6206 elsif Is_Entity_Name (P) then
6207 P_Name := Entity (P);
6209 -- The prefix may denote an enclosing type which is the completion
6210 -- of an incomplete type declaration.
6212 if Is_Type (P_Name) then
6213 Set_Entity (P, Get_Full_View (P_Name));
6214 Set_Etype (P, Entity (P));
6215 P_Name := Entity (P);
6216 end if;
6218 P_Type := Base_Type (Etype (P));
6220 if Debug_Flag_E then
6221 Write_Str ("Found prefix type to be ");
6222 Write_Entity_Info (P_Type, " "); Write_Eol;
6223 end if;
6225 -- First check for components of a record object (not the
6226 -- result of a call, which is handled below).
6228 if Is_Appropriate_For_Record (P_Type)
6229 and then not Is_Overloadable (P_Name)
6230 and then not Is_Type (P_Name)
6231 then
6232 -- Selected component of record. Type checking will validate
6233 -- name of selector.
6235 -- ??? Could we rewrite an implicit dereference into an explicit
6236 -- one here?
6238 Analyze_Selected_Component (N);
6240 -- Reference to type name in predicate/invariant expression
6242 elsif Is_Appropriate_For_Entry_Prefix (P_Type)
6243 and then not In_Open_Scopes (P_Name)
6244 and then (not Is_Concurrent_Type (Etype (P_Name))
6245 or else not In_Open_Scopes (Etype (P_Name)))
6246 then
6247 -- Call to protected operation or entry. Type checking is
6248 -- needed on the prefix.
6250 Analyze_Selected_Component (N);
6252 elsif (In_Open_Scopes (P_Name)
6253 and then Ekind (P_Name) /= E_Void
6254 and then not Is_Overloadable (P_Name))
6255 or else (Is_Concurrent_Type (Etype (P_Name))
6256 and then In_Open_Scopes (Etype (P_Name)))
6257 then
6258 -- Prefix denotes an enclosing loop, block, or task, i.e. an
6259 -- enclosing construct that is not a subprogram or accept.
6261 Find_Expanded_Name (N);
6263 elsif Ekind (P_Name) = E_Package then
6264 Find_Expanded_Name (N);
6266 elsif Is_Overloadable (P_Name) then
6268 -- The subprogram may be a renaming (of an enclosing scope) as
6269 -- in the case of the name of the generic within an instantiation.
6271 if Ekind_In (P_Name, E_Procedure, E_Function)
6272 and then Present (Alias (P_Name))
6273 and then Is_Generic_Instance (Alias (P_Name))
6274 then
6275 P_Name := Alias (P_Name);
6276 end if;
6278 if Is_Overloaded (P) then
6280 -- The prefix must resolve to a unique enclosing construct
6282 declare
6283 Found : Boolean := False;
6284 Ind : Interp_Index;
6285 It : Interp;
6287 begin
6288 Get_First_Interp (P, Ind, It);
6289 while Present (It.Nam) loop
6290 if In_Open_Scopes (It.Nam) then
6291 if Found then
6292 Error_Msg_N (
6293 "prefix must be unique enclosing scope", N);
6294 Set_Entity (N, Any_Id);
6295 Set_Etype (N, Any_Type);
6296 return;
6298 else
6299 Found := True;
6300 P_Name := It.Nam;
6301 end if;
6302 end if;
6304 Get_Next_Interp (Ind, It);
6305 end loop;
6306 end;
6307 end if;
6309 if In_Open_Scopes (P_Name) then
6310 Set_Entity (P, P_Name);
6311 Set_Is_Overloaded (P, False);
6312 Find_Expanded_Name (N);
6314 else
6315 -- If no interpretation as an expanded name is possible, it
6316 -- must be a selected component of a record returned by a
6317 -- function call. Reformat prefix as a function call, the rest
6318 -- is done by type resolution.
6320 -- Error if the prefix is procedure or entry, as is P.X
6322 if Ekind (P_Name) /= E_Function
6323 and then
6324 (not Is_Overloaded (P)
6325 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
6326 then
6327 -- Prefix may mention a package that is hidden by a local
6328 -- declaration: let the user know. Scan the full homonym
6329 -- chain, the candidate package may be anywhere on it.
6331 if Present (Homonym (Current_Entity (P_Name))) then
6332 P_Name := Current_Entity (P_Name);
6334 while Present (P_Name) loop
6335 exit when Ekind (P_Name) = E_Package;
6336 P_Name := Homonym (P_Name);
6337 end loop;
6339 if Present (P_Name) then
6340 if not Is_Reference_In_Subunit then
6341 Error_Msg_Sloc := Sloc (Entity (Prefix (N)));
6342 Error_Msg_NE
6343 ("package& is hidden by declaration#", N, P_Name);
6344 end if;
6346 Set_Entity (Prefix (N), P_Name);
6347 Find_Expanded_Name (N);
6348 return;
6350 else
6351 P_Name := Entity (Prefix (N));
6352 end if;
6353 end if;
6355 Error_Msg_NE
6356 ("invalid prefix in selected component&", N, P_Name);
6357 Change_Selected_Component_To_Expanded_Name (N);
6358 Set_Entity (N, Any_Id);
6359 Set_Etype (N, Any_Type);
6361 -- Here we have a function call, so do the reformatting
6363 else
6364 Nam := New_Copy (P);
6365 Save_Interps (P, Nam);
6367 -- We use Replace here because this is one of those cases
6368 -- where the parser has missclassified the node, and we
6369 -- fix things up and then do the semantic analysis on the
6370 -- fixed up node. Normally we do this using one of the
6371 -- Sinfo.CN routines, but this is too tricky for that.
6373 -- Note that using Rewrite would be wrong, because we
6374 -- would have a tree where the original node is unanalyzed,
6375 -- and this violates the required interface for ASIS.
6377 Replace (P,
6378 Make_Function_Call (Sloc (P), Name => Nam));
6380 -- Now analyze the reformatted node
6382 Analyze_Call (P);
6383 Analyze_Selected_Component (N);
6384 end if;
6385 end if;
6387 -- Remaining cases generate various error messages
6389 else
6390 -- Format node as expanded name, to avoid cascaded errors
6392 Change_Selected_Component_To_Expanded_Name (N);
6393 Set_Entity (N, Any_Id);
6394 Set_Etype (N, Any_Type);
6396 -- Issue error message, but avoid this if error issued already.
6397 -- Use identifier of prefix if one is available.
6399 if P_Name = Any_Id then
6400 null;
6402 elsif Ekind (P_Name) = E_Void then
6403 Premature_Usage (P);
6405 elsif Nkind (P) /= N_Attribute_Reference then
6406 Error_Msg_N (
6407 "invalid prefix in selected component&", P);
6409 if Is_Access_Type (P_Type)
6410 and then Ekind (Designated_Type (P_Type)) = E_Incomplete_Type
6411 then
6412 Error_Msg_N
6413 ("\dereference must not be of an incomplete type " &
6414 "(RM 3.10.1)", P);
6415 end if;
6417 else
6418 Error_Msg_N (
6419 "invalid prefix in selected component", P);
6420 end if;
6421 end if;
6423 -- Selector name is restricted in SPARK
6425 if Nkind (N) = N_Expanded_Name
6426 and then Restriction_Check_Required (SPARK_05)
6427 then
6428 if Is_Subprogram (P_Name) then
6429 Check_SPARK_Restriction
6430 ("prefix of expanded name cannot be a subprogram", P);
6431 elsif Ekind (P_Name) = E_Loop then
6432 Check_SPARK_Restriction
6433 ("prefix of expanded name cannot be a loop statement", P);
6434 end if;
6435 end if;
6437 else
6438 -- If prefix is not the name of an entity, it must be an expression,
6439 -- whose type is appropriate for a record. This is determined by
6440 -- type resolution.
6442 Analyze_Selected_Component (N);
6443 end if;
6445 Analyze_Dimension (N);
6446 end Find_Selected_Component;
6448 ---------------
6449 -- Find_Type --
6450 ---------------
6452 procedure Find_Type (N : Node_Id) is
6453 C : Entity_Id;
6454 Typ : Entity_Id;
6455 T : Entity_Id;
6456 T_Name : Entity_Id;
6458 begin
6459 if N = Error then
6460 return;
6462 elsif Nkind (N) = N_Attribute_Reference then
6464 -- Class attribute. This is not valid in Ada 83 mode, but we do not
6465 -- need to enforce that at this point, since the declaration of the
6466 -- tagged type in the prefix would have been flagged already.
6468 if Attribute_Name (N) = Name_Class then
6469 Check_Restriction (No_Dispatch, N);
6470 Find_Type (Prefix (N));
6472 -- Propagate error from bad prefix
6474 if Etype (Prefix (N)) = Any_Type then
6475 Set_Entity (N, Any_Type);
6476 Set_Etype (N, Any_Type);
6477 return;
6478 end if;
6480 T := Base_Type (Entity (Prefix (N)));
6482 -- Case where type is not known to be tagged. Its appearance in
6483 -- the prefix of the 'Class attribute indicates that the full view
6484 -- will be tagged.
6486 if not Is_Tagged_Type (T) then
6487 if Ekind (T) = E_Incomplete_Type then
6489 -- It is legal to denote the class type of an incomplete
6490 -- type. The full type will have to be tagged, of course.
6491 -- In Ada 2005 this usage is declared obsolescent, so we
6492 -- warn accordingly. This usage is only legal if the type
6493 -- is completed in the current scope, and not for a limited
6494 -- view of a type.
6496 if Ada_Version >= Ada_2005 then
6498 -- Test whether the Available_View of a limited type view
6499 -- is tagged, since the limited view may not be marked as
6500 -- tagged if the type itself has an untagged incomplete
6501 -- type view in its package.
6503 if From_Limited_With (T)
6504 and then not Is_Tagged_Type (Available_View (T))
6505 then
6506 Error_Msg_N
6507 ("prefix of Class attribute must be tagged", N);
6508 Set_Etype (N, Any_Type);
6509 Set_Entity (N, Any_Type);
6510 return;
6512 -- ??? This test is temporarily disabled (always
6513 -- False) because it causes an unwanted warning on
6514 -- GNAT sources (built with -gnatg, which includes
6515 -- Warn_On_Obsolescent_ Feature). Once this issue
6516 -- is cleared in the sources, it can be enabled.
6518 elsif Warn_On_Obsolescent_Feature and then False then
6519 Error_Msg_N
6520 ("applying 'Class to an untagged incomplete type"
6521 & " is an obsolescent feature (RM J.11)?r?", N);
6522 end if;
6523 end if;
6525 Set_Is_Tagged_Type (T);
6526 Set_Direct_Primitive_Operations (T, New_Elmt_List);
6527 Make_Class_Wide_Type (T);
6528 Set_Entity (N, Class_Wide_Type (T));
6529 Set_Etype (N, Class_Wide_Type (T));
6531 elsif Ekind (T) = E_Private_Type
6532 and then not Is_Generic_Type (T)
6533 and then In_Private_Part (Scope (T))
6534 then
6535 -- The Class attribute can be applied to an untagged private
6536 -- type fulfilled by a tagged type prior to the full type
6537 -- declaration (but only within the parent package's private
6538 -- part). Create the class-wide type now and check that the
6539 -- full type is tagged later during its analysis. Note that
6540 -- we do not mark the private type as tagged, unlike the
6541 -- case of incomplete types, because the type must still
6542 -- appear untagged to outside units.
6544 if No (Class_Wide_Type (T)) then
6545 Make_Class_Wide_Type (T);
6546 end if;
6548 Set_Entity (N, Class_Wide_Type (T));
6549 Set_Etype (N, Class_Wide_Type (T));
6551 else
6552 -- Should we introduce a type Any_Tagged and use Wrong_Type
6553 -- here, it would be a bit more consistent???
6555 Error_Msg_NE
6556 ("tagged type required, found}",
6557 Prefix (N), First_Subtype (T));
6558 Set_Entity (N, Any_Type);
6559 return;
6560 end if;
6562 -- Case of tagged type
6564 else
6565 if Is_Concurrent_Type (T) then
6566 if No (Corresponding_Record_Type (Entity (Prefix (N)))) then
6568 -- Previous error. Use current type, which at least
6569 -- provides some operations.
6571 C := Entity (Prefix (N));
6573 else
6574 C := Class_Wide_Type
6575 (Corresponding_Record_Type (Entity (Prefix (N))));
6576 end if;
6578 else
6579 C := Class_Wide_Type (Entity (Prefix (N)));
6580 end if;
6582 Set_Entity_With_Checks (N, C);
6583 Generate_Reference (C, N);
6584 Set_Etype (N, C);
6585 end if;
6587 -- Base attribute, not allowed in Ada 83
6589 elsif Attribute_Name (N) = Name_Base then
6590 Error_Msg_Name_1 := Name_Base;
6591 Check_SPARK_Restriction
6592 ("attribute% is only allowed as prefix of another attribute", N);
6594 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
6595 Error_Msg_N
6596 ("(Ada 83) Base attribute not allowed in subtype mark", N);
6598 else
6599 Find_Type (Prefix (N));
6600 Typ := Entity (Prefix (N));
6602 if Ada_Version >= Ada_95
6603 and then not Is_Scalar_Type (Typ)
6604 and then not Is_Generic_Type (Typ)
6605 then
6606 Error_Msg_N
6607 ("prefix of Base attribute must be scalar type",
6608 Prefix (N));
6610 elsif Warn_On_Redundant_Constructs
6611 and then Base_Type (Typ) = Typ
6612 then
6613 Error_Msg_NE -- CODEFIX
6614 ("redundant attribute, & is its own base type?r?", N, Typ);
6615 end if;
6617 T := Base_Type (Typ);
6619 -- Rewrite attribute reference with type itself (see similar
6620 -- processing in Analyze_Attribute, case Base). Preserve prefix
6621 -- if present, for other legality checks.
6623 if Nkind (Prefix (N)) = N_Expanded_Name then
6624 Rewrite (N,
6625 Make_Expanded_Name (Sloc (N),
6626 Chars => Chars (T),
6627 Prefix => New_Copy (Prefix (Prefix (N))),
6628 Selector_Name => New_Occurrence_Of (T, Sloc (N))));
6630 else
6631 Rewrite (N, New_Occurrence_Of (T, Sloc (N)));
6632 end if;
6634 Set_Entity (N, T);
6635 Set_Etype (N, T);
6636 end if;
6638 elsif Attribute_Name (N) = Name_Stub_Type then
6640 -- This is handled in Analyze_Attribute
6642 Analyze (N);
6644 -- All other attributes are invalid in a subtype mark
6646 else
6647 Error_Msg_N ("invalid attribute in subtype mark", N);
6648 end if;
6650 else
6651 Analyze (N);
6653 if Is_Entity_Name (N) then
6654 T_Name := Entity (N);
6655 else
6656 Error_Msg_N ("subtype mark required in this context", N);
6657 Set_Etype (N, Any_Type);
6658 return;
6659 end if;
6661 if T_Name = Any_Id or else Etype (N) = Any_Type then
6663 -- Undefined id. Make it into a valid type
6665 Set_Entity (N, Any_Type);
6667 elsif not Is_Type (T_Name)
6668 and then T_Name /= Standard_Void_Type
6669 then
6670 Error_Msg_Sloc := Sloc (T_Name);
6671 Error_Msg_N ("subtype mark required in this context", N);
6672 Error_Msg_NE ("\\found & declared#", N, T_Name);
6673 Set_Entity (N, Any_Type);
6675 else
6676 -- If the type is an incomplete type created to handle
6677 -- anonymous access components of a record type, then the
6678 -- incomplete type is the visible entity and subsequent
6679 -- references will point to it. Mark the original full
6680 -- type as referenced, to prevent spurious warnings.
6682 if Is_Incomplete_Type (T_Name)
6683 and then Present (Full_View (T_Name))
6684 and then not Comes_From_Source (T_Name)
6685 then
6686 Set_Referenced (Full_View (T_Name));
6687 end if;
6689 T_Name := Get_Full_View (T_Name);
6691 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
6692 -- limited-with clauses
6694 if From_Limited_With (T_Name)
6695 and then Ekind (T_Name) in Incomplete_Kind
6696 and then Present (Non_Limited_View (T_Name))
6697 and then Is_Interface (Non_Limited_View (T_Name))
6698 then
6699 T_Name := Non_Limited_View (T_Name);
6700 end if;
6702 if In_Open_Scopes (T_Name) then
6703 if Ekind (Base_Type (T_Name)) = E_Task_Type then
6705 -- In Ada 2005, a task name can be used in an access
6706 -- definition within its own body. It cannot be used
6707 -- in the discriminant part of the task declaration,
6708 -- nor anywhere else in the declaration because entries
6709 -- cannot have access parameters.
6711 if Ada_Version >= Ada_2005
6712 and then Nkind (Parent (N)) = N_Access_Definition
6713 then
6714 Set_Entity (N, T_Name);
6715 Set_Etype (N, T_Name);
6717 if Has_Completion (T_Name) then
6718 return;
6720 else
6721 Error_Msg_N
6722 ("task type cannot be used as type mark " &
6723 "within its own declaration", N);
6724 end if;
6726 else
6727 Error_Msg_N
6728 ("task type cannot be used as type mark " &
6729 "within its own spec or body", N);
6730 end if;
6732 elsif Ekind (Base_Type (T_Name)) = E_Protected_Type then
6734 -- In Ada 2005, a protected name can be used in an access
6735 -- definition within its own body.
6737 if Ada_Version >= Ada_2005
6738 and then Nkind (Parent (N)) = N_Access_Definition
6739 then
6740 Set_Entity (N, T_Name);
6741 Set_Etype (N, T_Name);
6742 return;
6744 else
6745 Error_Msg_N
6746 ("protected type cannot be used as type mark " &
6747 "within its own spec or body", N);
6748 end if;
6750 else
6751 Error_Msg_N ("type declaration cannot refer to itself", N);
6752 end if;
6754 Set_Etype (N, Any_Type);
6755 Set_Entity (N, Any_Type);
6756 Set_Error_Posted (T_Name);
6757 return;
6758 end if;
6760 Set_Entity (N, T_Name);
6761 Set_Etype (N, T_Name);
6762 end if;
6763 end if;
6765 if Present (Etype (N)) and then Comes_From_Source (N) then
6766 if Is_Fixed_Point_Type (Etype (N)) then
6767 Check_Restriction (No_Fixed_Point, N);
6768 elsif Is_Floating_Point_Type (Etype (N)) then
6769 Check_Restriction (No_Floating_Point, N);
6770 end if;
6771 end if;
6772 end Find_Type;
6774 ------------------------------------
6775 -- Has_Implicit_Character_Literal --
6776 ------------------------------------
6778 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean is
6779 Id : Entity_Id;
6780 Found : Boolean := False;
6781 P : constant Entity_Id := Entity (Prefix (N));
6782 Priv_Id : Entity_Id := Empty;
6784 begin
6785 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
6786 Priv_Id := First_Private_Entity (P);
6787 end if;
6789 if P = Standard_Standard then
6790 Change_Selected_Component_To_Expanded_Name (N);
6791 Rewrite (N, Selector_Name (N));
6792 Analyze (N);
6793 Set_Etype (Original_Node (N), Standard_Character);
6794 return True;
6795 end if;
6797 Id := First_Entity (P);
6798 while Present (Id) and then Id /= Priv_Id loop
6799 if Is_Standard_Character_Type (Id) and then Is_Base_Type (Id) then
6801 -- We replace the node with the literal itself, resolve as a
6802 -- character, and set the type correctly.
6804 if not Found then
6805 Change_Selected_Component_To_Expanded_Name (N);
6806 Rewrite (N, Selector_Name (N));
6807 Analyze (N);
6808 Set_Etype (N, Id);
6809 Set_Etype (Original_Node (N), Id);
6810 Found := True;
6812 else
6813 -- More than one type derived from Character in given scope.
6814 -- Collect all possible interpretations.
6816 Add_One_Interp (N, Id, Id);
6817 end if;
6818 end if;
6820 Next_Entity (Id);
6821 end loop;
6823 return Found;
6824 end Has_Implicit_Character_Literal;
6826 ----------------------
6827 -- Has_Private_With --
6828 ----------------------
6830 function Has_Private_With (E : Entity_Id) return Boolean is
6831 Comp_Unit : constant Node_Id := Cunit (Current_Sem_Unit);
6832 Item : Node_Id;
6834 begin
6835 Item := First (Context_Items (Comp_Unit));
6836 while Present (Item) loop
6837 if Nkind (Item) = N_With_Clause
6838 and then Private_Present (Item)
6839 and then Entity (Name (Item)) = E
6840 then
6841 return True;
6842 end if;
6844 Next (Item);
6845 end loop;
6847 return False;
6848 end Has_Private_With;
6850 ---------------------------
6851 -- Has_Implicit_Operator --
6852 ---------------------------
6854 function Has_Implicit_Operator (N : Node_Id) return Boolean is
6855 Op_Id : constant Name_Id := Chars (Selector_Name (N));
6856 P : constant Entity_Id := Entity (Prefix (N));
6857 Id : Entity_Id;
6858 Priv_Id : Entity_Id := Empty;
6860 procedure Add_Implicit_Operator
6861 (T : Entity_Id;
6862 Op_Type : Entity_Id := Empty);
6863 -- Add implicit interpretation to node N, using the type for which a
6864 -- predefined operator exists. If the operator yields a boolean type,
6865 -- the Operand_Type is implicitly referenced by the operator, and a
6866 -- reference to it must be generated.
6868 ---------------------------
6869 -- Add_Implicit_Operator --
6870 ---------------------------
6872 procedure Add_Implicit_Operator
6873 (T : Entity_Id;
6874 Op_Type : Entity_Id := Empty)
6876 Predef_Op : Entity_Id;
6878 begin
6879 Predef_Op := Current_Entity (Selector_Name (N));
6880 while Present (Predef_Op)
6881 and then Scope (Predef_Op) /= Standard_Standard
6882 loop
6883 Predef_Op := Homonym (Predef_Op);
6884 end loop;
6886 if Nkind (N) = N_Selected_Component then
6887 Change_Selected_Component_To_Expanded_Name (N);
6888 end if;
6890 -- If the context is an unanalyzed function call, determine whether
6891 -- a binary or unary interpretation is required.
6893 if Nkind (Parent (N)) = N_Indexed_Component then
6894 declare
6895 Is_Binary_Call : constant Boolean :=
6896 Present
6897 (Next (First (Expressions (Parent (N)))));
6898 Is_Binary_Op : constant Boolean :=
6899 First_Entity
6900 (Predef_Op) /= Last_Entity (Predef_Op);
6901 Predef_Op2 : constant Entity_Id := Homonym (Predef_Op);
6903 begin
6904 if Is_Binary_Call then
6905 if Is_Binary_Op then
6906 Add_One_Interp (N, Predef_Op, T);
6907 else
6908 Add_One_Interp (N, Predef_Op2, T);
6909 end if;
6911 else
6912 if not Is_Binary_Op then
6913 Add_One_Interp (N, Predef_Op, T);
6914 else
6915 Add_One_Interp (N, Predef_Op2, T);
6916 end if;
6917 end if;
6918 end;
6920 else
6921 Add_One_Interp (N, Predef_Op, T);
6923 -- For operators with unary and binary interpretations, if
6924 -- context is not a call, add both
6926 if Present (Homonym (Predef_Op)) then
6927 Add_One_Interp (N, Homonym (Predef_Op), T);
6928 end if;
6929 end if;
6931 -- The node is a reference to a predefined operator, and
6932 -- an implicit reference to the type of its operands.
6934 if Present (Op_Type) then
6935 Generate_Operator_Reference (N, Op_Type);
6936 else
6937 Generate_Operator_Reference (N, T);
6938 end if;
6939 end Add_Implicit_Operator;
6941 -- Start of processing for Has_Implicit_Operator
6943 begin
6944 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
6945 Priv_Id := First_Private_Entity (P);
6946 end if;
6948 Id := First_Entity (P);
6950 case Op_Id is
6952 -- Boolean operators: an implicit declaration exists if the scope
6953 -- contains a declaration for a derived Boolean type, or for an
6954 -- array of Boolean type.
6956 when Name_Op_And | Name_Op_Not | Name_Op_Or | Name_Op_Xor =>
6957 while Id /= Priv_Id loop
6958 if Valid_Boolean_Arg (Id) and then Is_Base_Type (Id) then
6959 Add_Implicit_Operator (Id);
6960 return True;
6961 end if;
6963 Next_Entity (Id);
6964 end loop;
6966 -- Equality: look for any non-limited type (result is Boolean)
6968 when Name_Op_Eq | Name_Op_Ne =>
6969 while Id /= Priv_Id loop
6970 if Is_Type (Id)
6971 and then not Is_Limited_Type (Id)
6972 and then Is_Base_Type (Id)
6973 then
6974 Add_Implicit_Operator (Standard_Boolean, Id);
6975 return True;
6976 end if;
6978 Next_Entity (Id);
6979 end loop;
6981 -- Comparison operators: scalar type, or array of scalar
6983 when Name_Op_Lt | Name_Op_Le | Name_Op_Gt | Name_Op_Ge =>
6984 while Id /= Priv_Id loop
6985 if (Is_Scalar_Type (Id)
6986 or else (Is_Array_Type (Id)
6987 and then Is_Scalar_Type (Component_Type (Id))))
6988 and then Is_Base_Type (Id)
6989 then
6990 Add_Implicit_Operator (Standard_Boolean, Id);
6991 return True;
6992 end if;
6994 Next_Entity (Id);
6995 end loop;
6997 -- Arithmetic operators: any numeric type
6999 when Name_Op_Abs |
7000 Name_Op_Add |
7001 Name_Op_Mod |
7002 Name_Op_Rem |
7003 Name_Op_Subtract |
7004 Name_Op_Multiply |
7005 Name_Op_Divide |
7006 Name_Op_Expon =>
7007 while Id /= Priv_Id loop
7008 if Is_Numeric_Type (Id) and then Is_Base_Type (Id) then
7009 Add_Implicit_Operator (Id);
7010 return True;
7011 end if;
7013 Next_Entity (Id);
7014 end loop;
7016 -- Concatenation: any one-dimensional array type
7018 when Name_Op_Concat =>
7019 while Id /= Priv_Id loop
7020 if Is_Array_Type (Id)
7021 and then Number_Dimensions (Id) = 1
7022 and then Is_Base_Type (Id)
7023 then
7024 Add_Implicit_Operator (Id);
7025 return True;
7026 end if;
7028 Next_Entity (Id);
7029 end loop;
7031 -- What is the others condition here? Should we be using a
7032 -- subtype of Name_Id that would restrict to operators ???
7034 when others => null;
7035 end case;
7037 -- If we fall through, then we do not have an implicit operator
7039 return False;
7041 end Has_Implicit_Operator;
7043 -----------------------------------
7044 -- Has_Loop_In_Inner_Open_Scopes --
7045 -----------------------------------
7047 function Has_Loop_In_Inner_Open_Scopes (S : Entity_Id) return Boolean is
7048 begin
7049 -- Several scope stacks are maintained by Scope_Stack. The base of the
7050 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7051 -- flag in the scope stack entry. Note that the scope stacks used to
7052 -- simply be delimited implicitly by the presence of Standard_Standard
7053 -- at their base, but there now are cases where this is not sufficient
7054 -- because Standard_Standard actually may appear in the middle of the
7055 -- active set of scopes.
7057 for J in reverse 0 .. Scope_Stack.Last loop
7059 -- S was reached without seing a loop scope first
7061 if Scope_Stack.Table (J).Entity = S then
7062 return False;
7064 -- S was not yet reached, so it contains at least one inner loop
7066 elsif Ekind (Scope_Stack.Table (J).Entity) = E_Loop then
7067 return True;
7068 end if;
7070 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7071 -- cases where Standard_Standard appears in the middle of the active
7072 -- set of scopes. This affects the declaration and overriding of
7073 -- private inherited operations in instantiations of generic child
7074 -- units.
7076 pragma Assert (not Scope_Stack.Table (J).Is_Active_Stack_Base);
7077 end loop;
7079 raise Program_Error; -- unreachable
7080 end Has_Loop_In_Inner_Open_Scopes;
7082 --------------------
7083 -- In_Open_Scopes --
7084 --------------------
7086 function In_Open_Scopes (S : Entity_Id) return Boolean is
7087 begin
7088 -- Several scope stacks are maintained by Scope_Stack. The base of the
7089 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7090 -- flag in the scope stack entry. Note that the scope stacks used to
7091 -- simply be delimited implicitly by the presence of Standard_Standard
7092 -- at their base, but there now are cases where this is not sufficient
7093 -- because Standard_Standard actually may appear in the middle of the
7094 -- active set of scopes.
7096 for J in reverse 0 .. Scope_Stack.Last loop
7097 if Scope_Stack.Table (J).Entity = S then
7098 return True;
7099 end if;
7101 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7102 -- cases where Standard_Standard appears in the middle of the active
7103 -- set of scopes. This affects the declaration and overriding of
7104 -- private inherited operations in instantiations of generic child
7105 -- units.
7107 exit when Scope_Stack.Table (J).Is_Active_Stack_Base;
7108 end loop;
7110 return False;
7111 end In_Open_Scopes;
7113 -----------------------------
7114 -- Inherit_Renamed_Profile --
7115 -----------------------------
7117 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id) is
7118 New_F : Entity_Id;
7119 Old_F : Entity_Id;
7120 Old_T : Entity_Id;
7121 New_T : Entity_Id;
7123 begin
7124 if Ekind (Old_S) = E_Operator then
7125 New_F := First_Formal (New_S);
7127 while Present (New_F) loop
7128 Set_Etype (New_F, Base_Type (Etype (New_F)));
7129 Next_Formal (New_F);
7130 end loop;
7132 Set_Etype (New_S, Base_Type (Etype (New_S)));
7134 else
7135 New_F := First_Formal (New_S);
7136 Old_F := First_Formal (Old_S);
7138 while Present (New_F) loop
7139 New_T := Etype (New_F);
7140 Old_T := Etype (Old_F);
7142 -- If the new type is a renaming of the old one, as is the
7143 -- case for actuals in instances, retain its name, to simplify
7144 -- later disambiguation.
7146 if Nkind (Parent (New_T)) = N_Subtype_Declaration
7147 and then Is_Entity_Name (Subtype_Indication (Parent (New_T)))
7148 and then Entity (Subtype_Indication (Parent (New_T))) = Old_T
7149 then
7150 null;
7151 else
7152 Set_Etype (New_F, Old_T);
7153 end if;
7155 Next_Formal (New_F);
7156 Next_Formal (Old_F);
7157 end loop;
7159 if Ekind_In (Old_S, E_Function, E_Enumeration_Literal) then
7160 Set_Etype (New_S, Etype (Old_S));
7161 end if;
7162 end if;
7163 end Inherit_Renamed_Profile;
7165 ----------------
7166 -- Initialize --
7167 ----------------
7169 procedure Initialize is
7170 begin
7171 Urefs.Init;
7172 end Initialize;
7174 -------------------------
7175 -- Install_Use_Clauses --
7176 -------------------------
7178 procedure Install_Use_Clauses
7179 (Clause : Node_Id;
7180 Force_Installation : Boolean := False)
7182 U : Node_Id;
7183 P : Node_Id;
7184 Id : Entity_Id;
7186 begin
7187 U := Clause;
7188 while Present (U) loop
7190 -- Case of USE package
7192 if Nkind (U) = N_Use_Package_Clause then
7193 P := First (Names (U));
7194 while Present (P) loop
7195 Id := Entity (P);
7197 if Ekind (Id) = E_Package then
7198 if In_Use (Id) then
7199 Note_Redundant_Use (P);
7201 elsif Present (Renamed_Object (Id))
7202 and then In_Use (Renamed_Object (Id))
7203 then
7204 Note_Redundant_Use (P);
7206 elsif Force_Installation or else Applicable_Use (P) then
7207 Use_One_Package (Id, U);
7209 end if;
7210 end if;
7212 Next (P);
7213 end loop;
7215 -- Case of USE TYPE
7217 else
7218 P := First (Subtype_Marks (U));
7219 while Present (P) loop
7220 if not Is_Entity_Name (P)
7221 or else No (Entity (P))
7222 then
7223 null;
7225 elsif Entity (P) /= Any_Type then
7226 Use_One_Type (P);
7227 end if;
7229 Next (P);
7230 end loop;
7231 end if;
7233 Next_Use_Clause (U);
7234 end loop;
7235 end Install_Use_Clauses;
7237 -------------------------------------
7238 -- Is_Appropriate_For_Entry_Prefix --
7239 -------------------------------------
7241 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean is
7242 P_Type : Entity_Id := T;
7244 begin
7245 if Is_Access_Type (P_Type) then
7246 P_Type := Designated_Type (P_Type);
7247 end if;
7249 return Is_Task_Type (P_Type) or else Is_Protected_Type (P_Type);
7250 end Is_Appropriate_For_Entry_Prefix;
7252 -------------------------------
7253 -- Is_Appropriate_For_Record --
7254 -------------------------------
7256 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean is
7258 function Has_Components (T1 : Entity_Id) return Boolean;
7259 -- Determine if given type has components (i.e. is either a record
7260 -- type or a type that has discriminants).
7262 --------------------
7263 -- Has_Components --
7264 --------------------
7266 function Has_Components (T1 : Entity_Id) return Boolean is
7267 begin
7268 return Is_Record_Type (T1)
7269 or else (Is_Private_Type (T1) and then Has_Discriminants (T1))
7270 or else (Is_Task_Type (T1) and then Has_Discriminants (T1))
7271 or else (Is_Incomplete_Type (T1)
7272 and then From_Limited_With (T1)
7273 and then Present (Non_Limited_View (T1))
7274 and then Is_Record_Type
7275 (Get_Full_View (Non_Limited_View (T1))));
7276 end Has_Components;
7278 -- Start of processing for Is_Appropriate_For_Record
7280 begin
7281 return
7282 Present (T)
7283 and then (Has_Components (T)
7284 or else (Is_Access_Type (T)
7285 and then Has_Components (Designated_Type (T))));
7286 end Is_Appropriate_For_Record;
7288 ------------------------
7289 -- Note_Redundant_Use --
7290 ------------------------
7292 procedure Note_Redundant_Use (Clause : Node_Id) is
7293 Pack_Name : constant Entity_Id := Entity (Clause);
7294 Cur_Use : constant Node_Id := Current_Use_Clause (Pack_Name);
7295 Decl : constant Node_Id := Parent (Clause);
7297 Prev_Use : Node_Id := Empty;
7298 Redundant : Node_Id := Empty;
7299 -- The Use_Clause which is actually redundant. In the simplest case it
7300 -- is Pack itself, but when we compile a body we install its context
7301 -- before that of its spec, in which case it is the use_clause in the
7302 -- spec that will appear to be redundant, and we want the warning to be
7303 -- placed on the body. Similar complications appear when the redundancy
7304 -- is between a child unit and one of its ancestors.
7306 begin
7307 Set_Redundant_Use (Clause, True);
7309 if not Comes_From_Source (Clause)
7310 or else In_Instance
7311 or else not Warn_On_Redundant_Constructs
7312 then
7313 return;
7314 end if;
7316 if not Is_Compilation_Unit (Current_Scope) then
7318 -- If the use_clause is in an inner scope, it is made redundant by
7319 -- some clause in the current context, with one exception: If we're
7320 -- compiling a nested package body, and the use_clause comes from the
7321 -- corresponding spec, the clause is not necessarily fully redundant,
7322 -- so we should not warn. If a warning was warranted, it would have
7323 -- been given when the spec was processed.
7325 if Nkind (Parent (Decl)) = N_Package_Specification then
7326 declare
7327 Package_Spec_Entity : constant Entity_Id :=
7328 Defining_Unit_Name (Parent (Decl));
7329 begin
7330 if In_Package_Body (Package_Spec_Entity) then
7331 return;
7332 end if;
7333 end;
7334 end if;
7336 Redundant := Clause;
7337 Prev_Use := Cur_Use;
7339 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
7340 declare
7341 Cur_Unit : constant Unit_Number_Type := Get_Source_Unit (Cur_Use);
7342 New_Unit : constant Unit_Number_Type := Get_Source_Unit (Clause);
7343 Scop : Entity_Id;
7345 begin
7346 if Cur_Unit = New_Unit then
7348 -- Redundant clause in same body
7350 Redundant := Clause;
7351 Prev_Use := Cur_Use;
7353 elsif Cur_Unit = Current_Sem_Unit then
7355 -- If the new clause is not in the current unit it has been
7356 -- analyzed first, and it makes the other one redundant.
7357 -- However, if the new clause appears in a subunit, Cur_Unit
7358 -- is still the parent, and in that case the redundant one
7359 -- is the one appearing in the subunit.
7361 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
7362 Redundant := Clause;
7363 Prev_Use := Cur_Use;
7365 -- Most common case: redundant clause in body,
7366 -- original clause in spec. Current scope is spec entity.
7368 elsif
7369 Current_Scope =
7370 Defining_Entity (
7371 Unit (Library_Unit (Cunit (Current_Sem_Unit))))
7372 then
7373 Redundant := Cur_Use;
7374 Prev_Use := Clause;
7376 else
7377 -- The new clause may appear in an unrelated unit, when
7378 -- the parents of a generic are being installed prior to
7379 -- instantiation. In this case there must be no warning.
7380 -- We detect this case by checking whether the current top
7381 -- of the stack is related to the current compilation.
7383 Scop := Current_Scope;
7384 while Present (Scop) and then Scop /= Standard_Standard loop
7385 if Is_Compilation_Unit (Scop)
7386 and then not Is_Child_Unit (Scop)
7387 then
7388 return;
7390 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
7391 exit;
7392 end if;
7394 Scop := Scope (Scop);
7395 end loop;
7397 Redundant := Cur_Use;
7398 Prev_Use := Clause;
7399 end if;
7401 elsif New_Unit = Current_Sem_Unit then
7402 Redundant := Clause;
7403 Prev_Use := Cur_Use;
7405 else
7406 -- Neither is the current unit, so they appear in parent or
7407 -- sibling units. Warning will be emitted elsewhere.
7409 return;
7410 end if;
7411 end;
7413 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
7414 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
7415 then
7416 -- Use_clause is in child unit of current unit, and the child unit
7417 -- appears in the context of the body of the parent, so it has been
7418 -- installed first, even though it is the redundant one. Depending on
7419 -- their placement in the context, the visible or the private parts
7420 -- of the two units, either might appear as redundant, but the
7421 -- message has to be on the current unit.
7423 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
7424 Redundant := Cur_Use;
7425 Prev_Use := Clause;
7426 else
7427 Redundant := Clause;
7428 Prev_Use := Cur_Use;
7429 end if;
7431 -- If the new use clause appears in the private part of a parent unit
7432 -- it may appear to be redundant w.r.t. a use clause in a child unit,
7433 -- but the previous use clause was needed in the visible part of the
7434 -- child, and no warning should be emitted.
7436 if Nkind (Parent (Decl)) = N_Package_Specification
7437 and then
7438 List_Containing (Decl) = Private_Declarations (Parent (Decl))
7439 then
7440 declare
7441 Par : constant Entity_Id := Defining_Entity (Parent (Decl));
7442 Spec : constant Node_Id :=
7443 Specification (Unit (Cunit (Current_Sem_Unit)));
7445 begin
7446 if Is_Compilation_Unit (Par)
7447 and then Par /= Cunit_Entity (Current_Sem_Unit)
7448 and then Parent (Cur_Use) = Spec
7449 and then
7450 List_Containing (Cur_Use) = Visible_Declarations (Spec)
7451 then
7452 return;
7453 end if;
7454 end;
7455 end if;
7457 -- Finally, if the current use clause is in the context then
7458 -- the clause is redundant when it is nested within the unit.
7460 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
7461 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
7462 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
7463 then
7464 Redundant := Clause;
7465 Prev_Use := Cur_Use;
7467 else
7468 null;
7469 end if;
7471 if Present (Redundant) then
7472 Error_Msg_Sloc := Sloc (Prev_Use);
7473 Error_Msg_NE -- CODEFIX
7474 ("& is already use-visible through previous use clause #??",
7475 Redundant, Pack_Name);
7476 end if;
7477 end Note_Redundant_Use;
7479 ---------------
7480 -- Pop_Scope --
7481 ---------------
7483 procedure Pop_Scope is
7484 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
7485 S : constant Entity_Id := SST.Entity;
7487 begin
7488 if Debug_Flag_E then
7489 Write_Info;
7490 end if;
7492 -- Set Default_Storage_Pool field of the library unit if necessary
7494 if Ekind_In (S, E_Package, E_Generic_Package)
7495 and then
7496 Nkind (Parent (Unit_Declaration_Node (S))) = N_Compilation_Unit
7497 then
7498 declare
7499 Aux : constant Node_Id :=
7500 Aux_Decls_Node (Parent (Unit_Declaration_Node (S)));
7501 begin
7502 if No (Default_Storage_Pool (Aux)) then
7503 Set_Default_Storage_Pool (Aux, Default_Pool);
7504 end if;
7505 end;
7506 end if;
7508 Scope_Suppress := SST.Save_Scope_Suppress;
7509 Local_Suppress_Stack_Top := SST.Save_Local_Suppress_Stack_Top;
7510 Check_Policy_List := SST.Save_Check_Policy_List;
7511 Default_Pool := SST.Save_Default_Storage_Pool;
7512 SPARK_Mode := SST.Save_SPARK_Mode;
7513 SPARK_Mode_Pragma := SST.Save_SPARK_Mode_Pragma;
7515 if Debug_Flag_W then
7516 Write_Str ("<-- exiting scope: ");
7517 Write_Name (Chars (Current_Scope));
7518 Write_Str (", Depth=");
7519 Write_Int (Int (Scope_Stack.Last));
7520 Write_Eol;
7521 end if;
7523 End_Use_Clauses (SST.First_Use_Clause);
7525 -- If the actions to be wrapped are still there they will get lost
7526 -- causing incomplete code to be generated. It is better to abort in
7527 -- this case (and we do the abort even with assertions off since the
7528 -- penalty is incorrect code generation).
7530 if SST.Actions_To_Be_Wrapped_Before /= No_List
7531 or else
7532 SST.Actions_To_Be_Wrapped_After /= No_List
7533 then
7534 raise Program_Error;
7535 end if;
7537 -- Free last subprogram name if allocated, and pop scope
7539 Free (SST.Last_Subprogram_Name);
7540 Scope_Stack.Decrement_Last;
7541 end Pop_Scope;
7543 ---------------
7544 -- Push_Scope --
7545 ---------------
7547 procedure Push_Scope (S : Entity_Id) is
7548 E : constant Entity_Id := Scope (S);
7550 begin
7551 if Ekind (S) = E_Void then
7552 null;
7554 -- Set scope depth if not a non-concurrent type, and we have not yet set
7555 -- the scope depth. This means that we have the first occurrence of the
7556 -- scope, and this is where the depth is set.
7558 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
7559 and then not Scope_Depth_Set (S)
7560 then
7561 if S = Standard_Standard then
7562 Set_Scope_Depth_Value (S, Uint_0);
7564 elsif Is_Child_Unit (S) then
7565 Set_Scope_Depth_Value (S, Uint_1);
7567 elsif not Is_Record_Type (Current_Scope) then
7568 if Ekind (S) = E_Loop then
7569 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
7570 else
7571 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
7572 end if;
7573 end if;
7574 end if;
7576 Scope_Stack.Increment_Last;
7578 declare
7579 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
7581 begin
7582 SST.Entity := S;
7583 SST.Save_Scope_Suppress := Scope_Suppress;
7584 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
7585 SST.Save_Check_Policy_List := Check_Policy_List;
7586 SST.Save_Default_Storage_Pool := Default_Pool;
7587 SST.Save_SPARK_Mode := SPARK_Mode;
7588 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
7590 if Scope_Stack.Last > Scope_Stack.First then
7591 SST.Component_Alignment_Default := Scope_Stack.Table
7592 (Scope_Stack.Last - 1).
7593 Component_Alignment_Default;
7594 end if;
7596 SST.Last_Subprogram_Name := null;
7597 SST.Is_Transient := False;
7598 SST.Node_To_Be_Wrapped := Empty;
7599 SST.Pending_Freeze_Actions := No_List;
7600 SST.Actions_To_Be_Wrapped_Before := No_List;
7601 SST.Actions_To_Be_Wrapped_After := No_List;
7602 SST.First_Use_Clause := Empty;
7603 SST.Is_Active_Stack_Base := False;
7604 SST.Previous_Visibility := False;
7605 end;
7607 if Debug_Flag_W then
7608 Write_Str ("--> new scope: ");
7609 Write_Name (Chars (Current_Scope));
7610 Write_Str (", Id=");
7611 Write_Int (Int (Current_Scope));
7612 Write_Str (", Depth=");
7613 Write_Int (Int (Scope_Stack.Last));
7614 Write_Eol;
7615 end if;
7617 -- Deal with copying flags from the previous scope to this one. This is
7618 -- not necessary if either scope is standard, or if the new scope is a
7619 -- child unit.
7621 if S /= Standard_Standard
7622 and then Scope (S) /= Standard_Standard
7623 and then not Is_Child_Unit (S)
7624 then
7625 if Nkind (E) not in N_Entity then
7626 return;
7627 end if;
7629 -- Copy categorization flags from Scope (S) to S, this is not done
7630 -- when Scope (S) is Standard_Standard since propagation is from
7631 -- library unit entity inwards. Copy other relevant attributes as
7632 -- well (Discard_Names in particular).
7634 -- We only propagate inwards for library level entities,
7635 -- inner level subprograms do not inherit the categorization.
7637 if Is_Library_Level_Entity (S) then
7638 Set_Is_Preelaborated (S, Is_Preelaborated (E));
7639 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
7640 Set_Discard_Names (S, Discard_Names (E));
7641 Set_Suppress_Value_Tracking_On_Call
7642 (S, Suppress_Value_Tracking_On_Call (E));
7643 Set_Categorization_From_Scope (E => S, Scop => E);
7644 end if;
7645 end if;
7647 if Is_Child_Unit (S)
7648 and then Present (E)
7649 and then Ekind_In (E, E_Package, E_Generic_Package)
7650 and then
7651 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
7652 then
7653 declare
7654 Aux : constant Node_Id :=
7655 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
7656 begin
7657 if Present (Default_Storage_Pool (Aux)) then
7658 Default_Pool := Default_Storage_Pool (Aux);
7659 end if;
7660 end;
7661 end if;
7662 end Push_Scope;
7664 ---------------------
7665 -- Premature_Usage --
7666 ---------------------
7668 procedure Premature_Usage (N : Node_Id) is
7669 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
7670 E : Entity_Id := Entity (N);
7672 begin
7673 -- Within an instance, the analysis of the actual for a formal object
7674 -- does not see the name of the object itself. This is significant only
7675 -- if the object is an aggregate, where its analysis does not do any
7676 -- name resolution on component associations. (see 4717-008). In such a
7677 -- case, look for the visible homonym on the chain.
7679 if In_Instance and then Present (Homonym (E)) then
7680 E := Homonym (E);
7681 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
7682 E := Homonym (E);
7683 end loop;
7685 if Present (E) then
7686 Set_Entity (N, E);
7687 Set_Etype (N, Etype (E));
7688 return;
7689 end if;
7690 end if;
7692 if Kind = N_Component_Declaration then
7693 Error_Msg_N
7694 ("component&! cannot be used before end of record declaration", N);
7696 elsif Kind = N_Parameter_Specification then
7697 Error_Msg_N
7698 ("formal parameter&! cannot be used before end of specification",
7701 elsif Kind = N_Discriminant_Specification then
7702 Error_Msg_N
7703 ("discriminant&! cannot be used before end of discriminant part",
7706 elsif Kind = N_Procedure_Specification
7707 or else Kind = N_Function_Specification
7708 then
7709 Error_Msg_N
7710 ("subprogram&! cannot be used before end of its declaration",
7713 elsif Kind = N_Full_Type_Declaration then
7714 Error_Msg_N
7715 ("type& cannot be used before end of its declaration!", N);
7717 else
7718 Error_Msg_N
7719 ("object& cannot be used before end of its declaration!", N);
7720 end if;
7721 end Premature_Usage;
7723 ------------------------
7724 -- Present_System_Aux --
7725 ------------------------
7727 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
7728 Loc : Source_Ptr;
7729 Aux_Name : Unit_Name_Type;
7730 Unum : Unit_Number_Type;
7731 Withn : Node_Id;
7732 With_Sys : Node_Id;
7733 The_Unit : Node_Id;
7735 function Find_System (C_Unit : Node_Id) return Entity_Id;
7736 -- Scan context clause of compilation unit to find with_clause
7737 -- for System.
7739 -----------------
7740 -- Find_System --
7741 -----------------
7743 function Find_System (C_Unit : Node_Id) return Entity_Id is
7744 With_Clause : Node_Id;
7746 begin
7747 With_Clause := First (Context_Items (C_Unit));
7748 while Present (With_Clause) loop
7749 if (Nkind (With_Clause) = N_With_Clause
7750 and then Chars (Name (With_Clause)) = Name_System)
7751 and then Comes_From_Source (With_Clause)
7752 then
7753 return With_Clause;
7754 end if;
7756 Next (With_Clause);
7757 end loop;
7759 return Empty;
7760 end Find_System;
7762 -- Start of processing for Present_System_Aux
7764 begin
7765 -- The child unit may have been loaded and analyzed already
7767 if Present (System_Aux_Id) then
7768 return True;
7770 -- If no previous pragma for System.Aux, nothing to load
7772 elsif No (System_Extend_Unit) then
7773 return False;
7775 -- Use the unit name given in the pragma to retrieve the unit.
7776 -- Verify that System itself appears in the context clause of the
7777 -- current compilation. If System is not present, an error will
7778 -- have been reported already.
7780 else
7781 With_Sys := Find_System (Cunit (Current_Sem_Unit));
7783 The_Unit := Unit (Cunit (Current_Sem_Unit));
7785 if No (With_Sys)
7786 and then
7787 (Nkind (The_Unit) = N_Package_Body
7788 or else (Nkind (The_Unit) = N_Subprogram_Body
7789 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
7790 then
7791 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
7792 end if;
7794 if No (With_Sys) and then Present (N) then
7796 -- If we are compiling a subunit, we need to examine its
7797 -- context as well (Current_Sem_Unit is the parent unit);
7799 The_Unit := Parent (N);
7800 while Nkind (The_Unit) /= N_Compilation_Unit loop
7801 The_Unit := Parent (The_Unit);
7802 end loop;
7804 if Nkind (Unit (The_Unit)) = N_Subunit then
7805 With_Sys := Find_System (The_Unit);
7806 end if;
7807 end if;
7809 if No (With_Sys) then
7810 return False;
7811 end if;
7813 Loc := Sloc (With_Sys);
7814 Get_Name_String (Chars (Expression (System_Extend_Unit)));
7815 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
7816 Name_Buffer (1 .. 7) := "system.";
7817 Name_Buffer (Name_Len + 8) := '%';
7818 Name_Buffer (Name_Len + 9) := 's';
7819 Name_Len := Name_Len + 9;
7820 Aux_Name := Name_Find;
7822 Unum :=
7823 Load_Unit
7824 (Load_Name => Aux_Name,
7825 Required => False,
7826 Subunit => False,
7827 Error_Node => With_Sys);
7829 if Unum /= No_Unit then
7830 Semantics (Cunit (Unum));
7831 System_Aux_Id :=
7832 Defining_Entity (Specification (Unit (Cunit (Unum))));
7834 Withn :=
7835 Make_With_Clause (Loc,
7836 Name =>
7837 Make_Expanded_Name (Loc,
7838 Chars => Chars (System_Aux_Id),
7839 Prefix => New_Occurrence_Of (Scope (System_Aux_Id), Loc),
7840 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
7842 Set_Entity (Name (Withn), System_Aux_Id);
7844 Set_Library_Unit (Withn, Cunit (Unum));
7845 Set_Corresponding_Spec (Withn, System_Aux_Id);
7846 Set_First_Name (Withn, True);
7847 Set_Implicit_With (Withn, True);
7849 Insert_After (With_Sys, Withn);
7850 Mark_Rewrite_Insertion (Withn);
7851 Set_Context_Installed (Withn);
7853 return True;
7855 -- Here if unit load failed
7857 else
7858 Error_Msg_Name_1 := Name_System;
7859 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
7860 Error_Msg_N
7861 ("extension package `%.%` does not exist",
7862 Opt.System_Extend_Unit);
7863 return False;
7864 end if;
7865 end if;
7866 end Present_System_Aux;
7868 -------------------------
7869 -- Restore_Scope_Stack --
7870 -------------------------
7872 procedure Restore_Scope_Stack
7873 (List : Elist_Id;
7874 Handle_Use : Boolean := True)
7876 SS_Last : constant Int := Scope_Stack.Last;
7877 Elmt : Elmt_Id;
7879 begin
7880 -- Restore visibility of previous scope stack, if any, using the list
7881 -- we saved (we use Remove, since this list will not be used again).
7883 loop
7884 Elmt := Last_Elmt (List);
7885 exit when Elmt = No_Elmt;
7886 Set_Is_Immediately_Visible (Node (Elmt));
7887 Remove_Last_Elmt (List);
7888 end loop;
7890 -- Restore use clauses
7892 if SS_Last >= Scope_Stack.First
7893 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
7894 and then Handle_Use
7895 then
7896 Install_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
7897 end if;
7898 end Restore_Scope_Stack;
7900 ----------------------
7901 -- Save_Scope_Stack --
7902 ----------------------
7904 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
7905 -- consuming any memory. That is, Save_Scope_Stack took care of removing
7906 -- from immediate visibility entities and Restore_Scope_Stack took care
7907 -- of restoring their visibility analyzing the context of each entity. The
7908 -- problem of such approach is that it was fragile and caused unexpected
7909 -- visibility problems, and indeed one test was found where there was a
7910 -- real problem.
7912 -- Furthermore, the following experiment was carried out:
7914 -- - Save_Scope_Stack was modified to store in an Elist1 all those
7915 -- entities whose attribute Is_Immediately_Visible is modified
7916 -- from True to False.
7918 -- - Restore_Scope_Stack was modified to store in another Elist2
7919 -- all the entities whose attribute Is_Immediately_Visible is
7920 -- modified from False to True.
7922 -- - Extra code was added to verify that all the elements of Elist1
7923 -- are found in Elist2
7925 -- This test shows that there may be more occurrences of this problem which
7926 -- have not yet been detected. As a result, we replaced that approach by
7927 -- the current one in which Save_Scope_Stack returns the list of entities
7928 -- whose visibility is changed, and that list is passed to Restore_Scope_
7929 -- Stack to undo that change. This approach is simpler and safer, although
7930 -- it consumes more memory.
7932 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
7933 Result : constant Elist_Id := New_Elmt_List;
7934 E : Entity_Id;
7935 S : Entity_Id;
7936 SS_Last : constant Int := Scope_Stack.Last;
7938 procedure Remove_From_Visibility (E : Entity_Id);
7939 -- If E is immediately visible then append it to the result and remove
7940 -- it temporarily from visibility.
7942 ----------------------------
7943 -- Remove_From_Visibility --
7944 ----------------------------
7946 procedure Remove_From_Visibility (E : Entity_Id) is
7947 begin
7948 if Is_Immediately_Visible (E) then
7949 Append_Elmt (E, Result);
7950 Set_Is_Immediately_Visible (E, False);
7951 end if;
7952 end Remove_From_Visibility;
7954 -- Start of processing for Save_Scope_Stack
7956 begin
7957 if SS_Last >= Scope_Stack.First
7958 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
7959 then
7960 if Handle_Use then
7961 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
7962 end if;
7964 -- If the call is from within a compilation unit, as when called from
7965 -- Rtsfind, make current entries in scope stack invisible while we
7966 -- analyze the new unit.
7968 for J in reverse 0 .. SS_Last loop
7969 exit when Scope_Stack.Table (J).Entity = Standard_Standard
7970 or else No (Scope_Stack.Table (J).Entity);
7972 S := Scope_Stack.Table (J).Entity;
7974 Remove_From_Visibility (S);
7976 E := First_Entity (S);
7977 while Present (E) loop
7978 Remove_From_Visibility (E);
7979 Next_Entity (E);
7980 end loop;
7981 end loop;
7983 end if;
7985 return Result;
7986 end Save_Scope_Stack;
7988 -------------
7989 -- Set_Use --
7990 -------------
7992 procedure Set_Use (L : List_Id) is
7993 Decl : Node_Id;
7994 Pack_Name : Node_Id;
7995 Pack : Entity_Id;
7996 Id : Entity_Id;
7998 begin
7999 if Present (L) then
8000 Decl := First (L);
8001 while Present (Decl) loop
8002 if Nkind (Decl) = N_Use_Package_Clause then
8003 Chain_Use_Clause (Decl);
8005 Pack_Name := First (Names (Decl));
8006 while Present (Pack_Name) loop
8007 Pack := Entity (Pack_Name);
8009 if Ekind (Pack) = E_Package
8010 and then Applicable_Use (Pack_Name)
8011 then
8012 Use_One_Package (Pack, Decl);
8013 end if;
8015 Next (Pack_Name);
8016 end loop;
8018 elsif Nkind (Decl) = N_Use_Type_Clause then
8019 Chain_Use_Clause (Decl);
8021 Id := First (Subtype_Marks (Decl));
8022 while Present (Id) loop
8023 if Entity (Id) /= Any_Type then
8024 Use_One_Type (Id);
8025 end if;
8027 Next (Id);
8028 end loop;
8029 end if;
8031 Next (Decl);
8032 end loop;
8033 end if;
8034 end Set_Use;
8036 ---------------------
8037 -- Use_One_Package --
8038 ---------------------
8040 procedure Use_One_Package (P : Entity_Id; N : Node_Id) is
8041 Id : Entity_Id;
8042 Prev : Entity_Id;
8043 Current_Instance : Entity_Id := Empty;
8044 Real_P : Entity_Id;
8045 Private_With_OK : Boolean := False;
8047 begin
8048 if Ekind (P) /= E_Package then
8049 return;
8050 end if;
8052 Set_In_Use (P);
8053 Set_Current_Use_Clause (P, N);
8055 -- Ada 2005 (AI-50217): Check restriction
8057 if From_Limited_With (P) then
8058 Error_Msg_N ("limited withed package cannot appear in use clause", N);
8059 end if;
8061 -- Find enclosing instance, if any
8063 if In_Instance then
8064 Current_Instance := Current_Scope;
8065 while not Is_Generic_Instance (Current_Instance) loop
8066 Current_Instance := Scope (Current_Instance);
8067 end loop;
8069 if No (Hidden_By_Use_Clause (N)) then
8070 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
8071 end if;
8072 end if;
8074 -- If unit is a package renaming, indicate that the renamed
8075 -- package is also in use (the flags on both entities must
8076 -- remain consistent, and a subsequent use of either of them
8077 -- should be recognized as redundant).
8079 if Present (Renamed_Object (P)) then
8080 Set_In_Use (Renamed_Object (P));
8081 Set_Current_Use_Clause (Renamed_Object (P), N);
8082 Real_P := Renamed_Object (P);
8083 else
8084 Real_P := P;
8085 end if;
8087 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
8088 -- found in the private part of a package specification
8090 if In_Private_Part (Current_Scope)
8091 and then Has_Private_With (P)
8092 and then Is_Child_Unit (Current_Scope)
8093 and then Is_Child_Unit (P)
8094 and then Is_Ancestor_Package (Scope (Current_Scope), P)
8095 then
8096 Private_With_OK := True;
8097 end if;
8099 -- Loop through entities in one package making them potentially
8100 -- use-visible.
8102 Id := First_Entity (P);
8103 while Present (Id)
8104 and then (Id /= First_Private_Entity (P)
8105 or else Private_With_OK) -- Ada 2005 (AI-262)
8106 loop
8107 Prev := Current_Entity (Id);
8108 while Present (Prev) loop
8109 if Is_Immediately_Visible (Prev)
8110 and then (not Is_Overloadable (Prev)
8111 or else not Is_Overloadable (Id)
8112 or else (Type_Conformant (Id, Prev)))
8113 then
8114 if No (Current_Instance) then
8116 -- Potentially use-visible entity remains hidden
8118 goto Next_Usable_Entity;
8120 -- A use clause within an instance hides outer global entities,
8121 -- which are not used to resolve local entities in the
8122 -- instance. Note that the predefined entities in Standard
8123 -- could not have been hidden in the generic by a use clause,
8124 -- and therefore remain visible. Other compilation units whose
8125 -- entities appear in Standard must be hidden in an instance.
8127 -- To determine whether an entity is external to the instance
8128 -- we compare the scope depth of its scope with that of the
8129 -- current instance. However, a generic actual of a subprogram
8130 -- instance is declared in the wrapper package but will not be
8131 -- hidden by a use-visible entity. similarly, an entity that is
8132 -- declared in an enclosing instance will not be hidden by an
8133 -- an entity declared in a generic actual, which can only have
8134 -- been use-visible in the generic and will not have hidden the
8135 -- entity in the generic parent.
8137 -- If Id is called Standard, the predefined package with the
8138 -- same name is in the homonym chain. It has to be ignored
8139 -- because it has no defined scope (being the only entity in
8140 -- the system with this mandated behavior).
8142 elsif not Is_Hidden (Id)
8143 and then Present (Scope (Prev))
8144 and then not Is_Wrapper_Package (Scope (Prev))
8145 and then Scope_Depth (Scope (Prev)) <
8146 Scope_Depth (Current_Instance)
8147 and then (Scope (Prev) /= Standard_Standard
8148 or else Sloc (Prev) > Standard_Location)
8149 then
8150 if In_Open_Scopes (Scope (Prev))
8151 and then Is_Generic_Instance (Scope (Prev))
8152 and then Present (Associated_Formal_Package (P))
8153 then
8154 null;
8156 else
8157 Set_Is_Potentially_Use_Visible (Id);
8158 Set_Is_Immediately_Visible (Prev, False);
8159 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8160 end if;
8161 end if;
8163 -- A user-defined operator is not use-visible if the predefined
8164 -- operator for the type is immediately visible, which is the case
8165 -- if the type of the operand is in an open scope. This does not
8166 -- apply to user-defined operators that have operands of different
8167 -- types, because the predefined mixed mode operations (multiply
8168 -- and divide) apply to universal types and do not hide anything.
8170 elsif Ekind (Prev) = E_Operator
8171 and then Operator_Matches_Spec (Prev, Id)
8172 and then In_Open_Scopes
8173 (Scope (Base_Type (Etype (First_Formal (Id)))))
8174 and then (No (Next_Formal (First_Formal (Id)))
8175 or else Etype (First_Formal (Id)) =
8176 Etype (Next_Formal (First_Formal (Id)))
8177 or else Chars (Prev) = Name_Op_Expon)
8178 then
8179 goto Next_Usable_Entity;
8181 -- In an instance, two homonyms may become use_visible through the
8182 -- actuals of distinct formal packages. In the generic, only the
8183 -- current one would have been visible, so make the other one
8184 -- not use_visible.
8186 elsif Present (Current_Instance)
8187 and then Is_Potentially_Use_Visible (Prev)
8188 and then not Is_Overloadable (Prev)
8189 and then Scope (Id) /= Scope (Prev)
8190 and then Used_As_Generic_Actual (Scope (Prev))
8191 and then Used_As_Generic_Actual (Scope (Id))
8192 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
8193 Current_Use_Clause (Scope (Id)))
8194 then
8195 Set_Is_Potentially_Use_Visible (Prev, False);
8196 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8197 end if;
8199 Prev := Homonym (Prev);
8200 end loop;
8202 -- On exit, we know entity is not hidden, unless it is private
8204 if not Is_Hidden (Id)
8205 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
8206 then
8207 Set_Is_Potentially_Use_Visible (Id);
8209 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
8210 Set_Is_Potentially_Use_Visible (Full_View (Id));
8211 end if;
8212 end if;
8214 <<Next_Usable_Entity>>
8215 Next_Entity (Id);
8216 end loop;
8218 -- Child units are also made use-visible by a use clause, but they may
8219 -- appear after all visible declarations in the parent entity list.
8221 while Present (Id) loop
8222 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
8223 Set_Is_Potentially_Use_Visible (Id);
8224 end if;
8226 Next_Entity (Id);
8227 end loop;
8229 if Chars (Real_P) = Name_System
8230 and then Scope (Real_P) = Standard_Standard
8231 and then Present_System_Aux (N)
8232 then
8233 Use_One_Package (System_Aux_Id, N);
8234 end if;
8236 end Use_One_Package;
8238 ------------------
8239 -- Use_One_Type --
8240 ------------------
8242 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False) is
8243 Elmt : Elmt_Id;
8244 Is_Known_Used : Boolean;
8245 Op_List : Elist_Id;
8246 T : Entity_Id;
8248 function Spec_Reloaded_For_Body return Boolean;
8249 -- Determine whether the compilation unit is a package body and the use
8250 -- type clause is in the spec of the same package. Even though the spec
8251 -- was analyzed first, its context is reloaded when analysing the body.
8253 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
8254 -- AI05-150: if the use_type_clause carries the "all" qualifier,
8255 -- class-wide operations of ancestor types are use-visible if the
8256 -- ancestor type is visible.
8258 ----------------------------
8259 -- Spec_Reloaded_For_Body --
8260 ----------------------------
8262 function Spec_Reloaded_For_Body return Boolean is
8263 begin
8264 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
8265 declare
8266 Spec : constant Node_Id :=
8267 Parent (List_Containing (Parent (Id)));
8269 begin
8270 -- Check whether type is declared in a package specification,
8271 -- and current unit is the corresponding package body. The
8272 -- use clauses themselves may be within a nested package.
8274 return
8275 Nkind (Spec) = N_Package_Specification
8276 and then
8277 In_Same_Source_Unit (Corresponding_Body (Parent (Spec)),
8278 Cunit_Entity (Current_Sem_Unit));
8279 end;
8280 end if;
8282 return False;
8283 end Spec_Reloaded_For_Body;
8285 -------------------------------
8286 -- Use_Class_Wide_Operations --
8287 -------------------------------
8289 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
8290 Scop : Entity_Id;
8291 Ent : Entity_Id;
8293 function Is_Class_Wide_Operation_Of
8294 (Op : Entity_Id;
8295 T : Entity_Id) return Boolean;
8296 -- Determine whether a subprogram has a class-wide parameter or
8297 -- result that is T'Class.
8299 ---------------------------------
8300 -- Is_Class_Wide_Operation_Of --
8301 ---------------------------------
8303 function Is_Class_Wide_Operation_Of
8304 (Op : Entity_Id;
8305 T : Entity_Id) return Boolean
8307 Formal : Entity_Id;
8309 begin
8310 Formal := First_Formal (Op);
8311 while Present (Formal) loop
8312 if Etype (Formal) = Class_Wide_Type (T) then
8313 return True;
8314 end if;
8315 Next_Formal (Formal);
8316 end loop;
8318 if Etype (Op) = Class_Wide_Type (T) then
8319 return True;
8320 end if;
8322 return False;
8323 end Is_Class_Wide_Operation_Of;
8325 -- Start of processing for Use_Class_Wide_Operations
8327 begin
8328 Scop := Scope (Typ);
8329 if not Is_Hidden (Scop) then
8330 Ent := First_Entity (Scop);
8331 while Present (Ent) loop
8332 if Is_Overloadable (Ent)
8333 and then Is_Class_Wide_Operation_Of (Ent, Typ)
8334 and then not Is_Potentially_Use_Visible (Ent)
8335 then
8336 Set_Is_Potentially_Use_Visible (Ent);
8337 Append_Elmt (Ent, Used_Operations (Parent (Id)));
8338 end if;
8340 Next_Entity (Ent);
8341 end loop;
8342 end if;
8344 if Is_Derived_Type (Typ) then
8345 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
8346 end if;
8347 end Use_Class_Wide_Operations;
8349 -- Start of processing for Use_One_Type
8351 begin
8352 -- It is the type determined by the subtype mark (8.4(8)) whose
8353 -- operations become potentially use-visible.
8355 T := Base_Type (Entity (Id));
8357 -- Either the type itself is used, the package where it is declared
8358 -- is in use or the entity is declared in the current package, thus
8359 -- use-visible.
8361 Is_Known_Used :=
8362 In_Use (T)
8363 or else In_Use (Scope (T))
8364 or else Scope (T) = Current_Scope;
8366 Set_Redundant_Use (Id,
8367 Is_Known_Used or else Is_Potentially_Use_Visible (T));
8369 if Ekind (T) = E_Incomplete_Type then
8370 Error_Msg_N ("premature usage of incomplete type", Id);
8372 elsif In_Open_Scopes (Scope (T)) then
8373 null;
8375 -- A limited view cannot appear in a use_type clause. However, an access
8376 -- type whose designated type is limited has the flag but is not itself
8377 -- a limited view unless we only have a limited view of its enclosing
8378 -- package.
8380 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
8381 Error_Msg_N
8382 ("incomplete type from limited view "
8383 & "cannot appear in use clause", Id);
8385 -- If the subtype mark designates a subtype in a different package,
8386 -- we have to check that the parent type is visible, otherwise the
8387 -- use type clause is a noop. Not clear how to do that???
8389 elsif not Redundant_Use (Id) then
8390 Set_In_Use (T);
8392 -- If T is tagged, primitive operators on class-wide operands
8393 -- are also available.
8395 if Is_Tagged_Type (T) then
8396 Set_In_Use (Class_Wide_Type (T));
8397 end if;
8399 Set_Current_Use_Clause (T, Parent (Id));
8401 -- Iterate over primitive operations of the type. If an operation is
8402 -- already use_visible, it is the result of a previous use_clause,
8403 -- and already appears on the corresponding entity chain. If the
8404 -- clause is being reinstalled, operations are already use-visible.
8406 if Installed then
8407 null;
8409 else
8410 Op_List := Collect_Primitive_Operations (T);
8411 Elmt := First_Elmt (Op_List);
8412 while Present (Elmt) loop
8413 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
8414 or else Chars (Node (Elmt)) in Any_Operator_Name)
8415 and then not Is_Hidden (Node (Elmt))
8416 and then not Is_Potentially_Use_Visible (Node (Elmt))
8417 then
8418 Set_Is_Potentially_Use_Visible (Node (Elmt));
8419 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
8421 elsif Ada_Version >= Ada_2012
8422 and then All_Present (Parent (Id))
8423 and then not Is_Hidden (Node (Elmt))
8424 and then not Is_Potentially_Use_Visible (Node (Elmt))
8425 then
8426 Set_Is_Potentially_Use_Visible (Node (Elmt));
8427 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
8428 end if;
8430 Next_Elmt (Elmt);
8431 end loop;
8432 end if;
8434 if Ada_Version >= Ada_2012
8435 and then All_Present (Parent (Id))
8436 and then Is_Tagged_Type (T)
8437 then
8438 Use_Class_Wide_Operations (T);
8439 end if;
8440 end if;
8442 -- If warning on redundant constructs, check for unnecessary WITH
8444 if Warn_On_Redundant_Constructs
8445 and then Is_Known_Used
8447 -- with P; with P; use P;
8448 -- package P is package X is package body X is
8449 -- type T ... use P.T;
8451 -- The compilation unit is the body of X. GNAT first compiles the
8452 -- spec of X, then proceeds to the body. At that point P is marked
8453 -- as use visible. The analysis then reinstalls the spec along with
8454 -- its context. The use clause P.T is now recognized as redundant,
8455 -- but in the wrong context. Do not emit a warning in such cases.
8456 -- Do not emit a warning either if we are in an instance, there is
8457 -- no redundancy between an outer use_clause and one that appears
8458 -- within the generic.
8460 and then not Spec_Reloaded_For_Body
8461 and then not In_Instance
8462 then
8463 -- The type already has a use clause
8465 if In_Use (T) then
8467 -- Case where we know the current use clause for the type
8469 if Present (Current_Use_Clause (T)) then
8470 Use_Clause_Known : declare
8471 Clause1 : constant Node_Id := Parent (Id);
8472 Clause2 : constant Node_Id := Current_Use_Clause (T);
8473 Ent1 : Entity_Id;
8474 Ent2 : Entity_Id;
8475 Err_No : Node_Id;
8476 Unit1 : Node_Id;
8477 Unit2 : Node_Id;
8479 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
8480 -- Return the appropriate entity for determining which unit
8481 -- has a deeper scope: the defining entity for U, unless U
8482 -- is a package instance, in which case we retrieve the
8483 -- entity of the instance spec.
8485 --------------------
8486 -- Entity_Of_Unit --
8487 --------------------
8489 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
8490 begin
8491 if Nkind (U) = N_Package_Instantiation
8492 and then Analyzed (U)
8493 then
8494 return Defining_Entity (Instance_Spec (U));
8495 else
8496 return Defining_Entity (U);
8497 end if;
8498 end Entity_Of_Unit;
8500 -- Start of processing for Use_Clause_Known
8502 begin
8503 -- If both current use type clause and the use type clause
8504 -- for the type are at the compilation unit level, one of
8505 -- the units must be an ancestor of the other, and the
8506 -- warning belongs on the descendant.
8508 if Nkind (Parent (Clause1)) = N_Compilation_Unit
8509 and then
8510 Nkind (Parent (Clause2)) = N_Compilation_Unit
8511 then
8512 -- If the unit is a subprogram body that acts as spec,
8513 -- the context clause is shared with the constructed
8514 -- subprogram spec. Clearly there is no redundancy.
8516 if Clause1 = Clause2 then
8517 return;
8518 end if;
8520 Unit1 := Unit (Parent (Clause1));
8521 Unit2 := Unit (Parent (Clause2));
8523 -- If both clauses are on same unit, or one is the body
8524 -- of the other, or one of them is in a subunit, report
8525 -- redundancy on the later one.
8527 if Unit1 = Unit2 then
8528 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8529 Error_Msg_NE -- CODEFIX
8530 ("& is already use-visible through previous "
8531 & "use_type_clause #??", Clause1, T);
8532 return;
8534 elsif Nkind (Unit1) = N_Subunit then
8535 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8536 Error_Msg_NE -- CODEFIX
8537 ("& is already use-visible through previous "
8538 & "use_type_clause #??", Clause1, T);
8539 return;
8541 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
8542 and then Nkind (Unit1) /= Nkind (Unit2)
8543 and then Nkind (Unit1) /= N_Subunit
8544 then
8545 Error_Msg_Sloc := Sloc (Clause1);
8546 Error_Msg_NE -- CODEFIX
8547 ("& is already use-visible through previous "
8548 & "use_type_clause #??", Current_Use_Clause (T), T);
8549 return;
8550 end if;
8552 -- There is a redundant use type clause in a child unit.
8553 -- Determine which of the units is more deeply nested.
8554 -- If a unit is a package instance, retrieve the entity
8555 -- and its scope from the instance spec.
8557 Ent1 := Entity_Of_Unit (Unit1);
8558 Ent2 := Entity_Of_Unit (Unit2);
8560 if Scope (Ent2) = Standard_Standard then
8561 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8562 Err_No := Clause1;
8564 elsif Scope (Ent1) = Standard_Standard then
8565 Error_Msg_Sloc := Sloc (Id);
8566 Err_No := Clause2;
8568 -- If both units are child units, we determine which one
8569 -- is the descendant by the scope distance to the
8570 -- ultimate parent unit.
8572 else
8573 declare
8574 S1, S2 : Entity_Id;
8576 begin
8577 S1 := Scope (Ent1);
8578 S2 := Scope (Ent2);
8579 while Present (S1)
8580 and then Present (S2)
8581 and then S1 /= Standard_Standard
8582 and then S2 /= Standard_Standard
8583 loop
8584 S1 := Scope (S1);
8585 S2 := Scope (S2);
8586 end loop;
8588 if S1 = Standard_Standard then
8589 Error_Msg_Sloc := Sloc (Id);
8590 Err_No := Clause2;
8591 else
8592 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8593 Err_No := Clause1;
8594 end if;
8595 end;
8596 end if;
8598 Error_Msg_NE -- CODEFIX
8599 ("& is already use-visible through previous "
8600 & "use_type_clause #??", Err_No, Id);
8602 -- Case where current use type clause and the use type
8603 -- clause for the type are not both at the compilation unit
8604 -- level. In this case we don't have location information.
8606 else
8607 Error_Msg_NE -- CODEFIX
8608 ("& is already use-visible through previous "
8609 & "use type clause??", Id, T);
8610 end if;
8611 end Use_Clause_Known;
8613 -- Here if Current_Use_Clause is not set for T, another case
8614 -- where we do not have the location information available.
8616 else
8617 Error_Msg_NE -- CODEFIX
8618 ("& is already use-visible through previous "
8619 & "use type clause??", Id, T);
8620 end if;
8622 -- The package where T is declared is already used
8624 elsif In_Use (Scope (T)) then
8625 Error_Msg_Sloc := Sloc (Current_Use_Clause (Scope (T)));
8626 Error_Msg_NE -- CODEFIX
8627 ("& is already use-visible through package use clause #??",
8628 Id, T);
8630 -- The current scope is the package where T is declared
8632 else
8633 Error_Msg_Node_2 := Scope (T);
8634 Error_Msg_NE -- CODEFIX
8635 ("& is already use-visible inside package &??", Id, T);
8636 end if;
8637 end if;
8638 end Use_One_Type;
8640 ----------------
8641 -- Write_Info --
8642 ----------------
8644 procedure Write_Info is
8645 Id : Entity_Id := First_Entity (Current_Scope);
8647 begin
8648 -- No point in dumping standard entities
8650 if Current_Scope = Standard_Standard then
8651 return;
8652 end if;
8654 Write_Str ("========================================================");
8655 Write_Eol;
8656 Write_Str (" Defined Entities in ");
8657 Write_Name (Chars (Current_Scope));
8658 Write_Eol;
8659 Write_Str ("========================================================");
8660 Write_Eol;
8662 if No (Id) then
8663 Write_Str ("-- none --");
8664 Write_Eol;
8666 else
8667 while Present (Id) loop
8668 Write_Entity_Info (Id, " ");
8669 Next_Entity (Id);
8670 end loop;
8671 end if;
8673 if Scope (Current_Scope) = Standard_Standard then
8675 -- Print information on the current unit itself
8677 Write_Entity_Info (Current_Scope, " ");
8678 end if;
8680 Write_Eol;
8681 end Write_Info;
8683 --------
8684 -- ws --
8685 --------
8687 procedure ws is
8688 S : Entity_Id;
8689 begin
8690 for J in reverse 1 .. Scope_Stack.Last loop
8691 S := Scope_Stack.Table (J).Entity;
8692 Write_Int (Int (S));
8693 Write_Str (" === ");
8694 Write_Name (Chars (S));
8695 Write_Eol;
8696 end loop;
8697 end ws;
8699 --------
8700 -- we --
8701 --------
8703 procedure we (S : Entity_Id) is
8704 E : Entity_Id;
8705 begin
8706 E := First_Entity (S);
8707 while Present (E) loop
8708 Write_Int (Int (E));
8709 Write_Str (" === ");
8710 Write_Name (Chars (E));
8711 Write_Eol;
8712 Next_Entity (E);
8713 end loop;
8714 end we;
8715 end Sem_Ch8;