Daily bump.
[official-gcc.git] / gcc / ada / sem_ch3.adb
blobb6d22cb50cc57fad571a63125d623d134b0e24cb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Pakd; use Exp_Pakd;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Fname; use Fname;
42 with Freeze; use Freeze;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
83 package body Sem_Ch3 is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
94 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
95 -- Analyze all delayed aspects chained on the contract of object Obj_Id as
96 -- if they appeared at the end of the declarative region. The aspects to be
97 -- considered are:
98 -- Async_Readers
99 -- Async_Writers
100 -- Effective_Reads
101 -- Effective_Writes
102 -- Part_Of
104 procedure Build_Derived_Type
105 (N : Node_Id;
106 Parent_Type : Entity_Id;
107 Derived_Type : Entity_Id;
108 Is_Completion : Boolean;
109 Derive_Subps : Boolean := True);
110 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
111 -- the N_Full_Type_Declaration node containing the derived type definition.
112 -- Parent_Type is the entity for the parent type in the derived type
113 -- definition and Derived_Type the actual derived type. Is_Completion must
114 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
115 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
116 -- completion of a private type declaration. If Is_Completion is set to
117 -- True, N is the completion of a private type declaration and Derived_Type
118 -- is different from the defining identifier inside N (i.e. Derived_Type /=
119 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
120 -- subprograms should be derived. The only case where this parameter is
121 -- False is when Build_Derived_Type is recursively called to process an
122 -- implicit derived full type for a type derived from a private type (in
123 -- that case the subprograms must only be derived for the private view of
124 -- the type).
126 -- ??? These flags need a bit of re-examination and re-documentation:
127 -- ??? are they both necessary (both seem related to the recursion)?
129 procedure Build_Derived_Access_Type
130 (N : Node_Id;
131 Parent_Type : Entity_Id;
132 Derived_Type : Entity_Id);
133 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
134 -- create an implicit base if the parent type is constrained or if the
135 -- subtype indication has a constraint.
137 procedure Build_Derived_Array_Type
138 (N : Node_Id;
139 Parent_Type : Entity_Id;
140 Derived_Type : Entity_Id);
141 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
142 -- create an implicit base if the parent type is constrained or if the
143 -- subtype indication has a constraint.
145 procedure Build_Derived_Concurrent_Type
146 (N : Node_Id;
147 Parent_Type : Entity_Id;
148 Derived_Type : Entity_Id);
149 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
150 -- protected type, inherit entries and protected subprograms, check
151 -- legality of discriminant constraints if any.
153 procedure Build_Derived_Enumeration_Type
154 (N : Node_Id;
155 Parent_Type : Entity_Id;
156 Derived_Type : Entity_Id);
157 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
158 -- type, we must create a new list of literals. Types derived from
159 -- Character and [Wide_]Wide_Character are special-cased.
161 procedure Build_Derived_Numeric_Type
162 (N : Node_Id;
163 Parent_Type : Entity_Id;
164 Derived_Type : Entity_Id);
165 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
166 -- an anonymous base type, and propagate constraint to subtype if needed.
168 procedure Build_Derived_Private_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Is_Completion : Boolean;
173 Derive_Subps : Boolean := True);
174 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
175 -- because the parent may or may not have a completion, and the derivation
176 -- may itself be a completion.
178 procedure Build_Derived_Record_Type
179 (N : Node_Id;
180 Parent_Type : Entity_Id;
181 Derived_Type : Entity_Id;
182 Derive_Subps : Boolean := True);
183 -- Subsidiary procedure used for tagged and untagged record types
184 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
185 -- All parameters are as in Build_Derived_Type except that N, in
186 -- addition to being an N_Full_Type_Declaration node, can also be an
187 -- N_Private_Extension_Declaration node. See the definition of this routine
188 -- for much more info. Derive_Subps indicates whether subprograms should be
189 -- derived from the parent type. The only case where Derive_Subps is False
190 -- is for an implicit derived full type for a type derived from a private
191 -- type (see Build_Derived_Type).
193 procedure Build_Discriminal (Discrim : Entity_Id);
194 -- Create the discriminal corresponding to discriminant Discrim, that is
195 -- the parameter corresponding to Discrim to be used in initialization
196 -- procedures for the type where Discrim is a discriminant. Discriminals
197 -- are not used during semantic analysis, and are not fully defined
198 -- entities until expansion. Thus they are not given a scope until
199 -- initialization procedures are built.
201 function Build_Discriminant_Constraints
202 (T : Entity_Id;
203 Def : Node_Id;
204 Derived_Def : Boolean := False) return Elist_Id;
205 -- Validate discriminant constraints and return the list of the constraints
206 -- in order of discriminant declarations, where T is the discriminated
207 -- unconstrained type. Def is the N_Subtype_Indication node where the
208 -- discriminants constraints for T are specified. Derived_Def is True
209 -- when building the discriminant constraints in a derived type definition
210 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
211 -- type and Def is the constraint "(xxx)" on T and this routine sets the
212 -- Corresponding_Discriminant field of the discriminants in the derived
213 -- type D to point to the corresponding discriminants in the parent type T.
215 procedure Build_Discriminated_Subtype
216 (T : Entity_Id;
217 Def_Id : Entity_Id;
218 Elist : Elist_Id;
219 Related_Nod : Node_Id;
220 For_Access : Boolean := False);
221 -- Subsidiary procedure to Constrain_Discriminated_Type and to
222 -- Process_Incomplete_Dependents. Given
224 -- T (a possibly discriminated base type)
225 -- Def_Id (a very partially built subtype for T),
227 -- the call completes Def_Id to be the appropriate E_*_Subtype.
229 -- The Elist is the list of discriminant constraints if any (it is set
230 -- to No_Elist if T is not a discriminated type, and to an empty list if
231 -- T has discriminants but there are no discriminant constraints). The
232 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
233 -- The For_Access says whether or not this subtype is really constraining
234 -- an access type. That is its sole purpose is the designated type of an
235 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
236 -- is built to avoid freezing T when the access subtype is frozen.
238 function Build_Scalar_Bound
239 (Bound : Node_Id;
240 Par_T : Entity_Id;
241 Der_T : Entity_Id) return Node_Id;
242 -- The bounds of a derived scalar type are conversions of the bounds of
243 -- the parent type. Optimize the representation if the bounds are literals.
244 -- Needs a more complete spec--what are the parameters exactly, and what
245 -- exactly is the returned value, and how is Bound affected???
247 procedure Build_Underlying_Full_View
248 (N : Node_Id;
249 Typ : Entity_Id;
250 Par : Entity_Id);
251 -- If the completion of a private type is itself derived from a private
252 -- type, or if the full view of a private subtype is itself private, the
253 -- back-end has no way to compute the actual size of this type. We build
254 -- an internal subtype declaration of the proper parent type to convey
255 -- this information. This extra mechanism is needed because a full
256 -- view cannot itself have a full view (it would get clobbered during
257 -- view exchanges).
259 procedure Check_Access_Discriminant_Requires_Limited
260 (D : Node_Id;
261 Loc : Node_Id);
262 -- Check the restriction that the type to which an access discriminant
263 -- belongs must be a concurrent type or a descendant of a type with
264 -- the reserved word 'limited' in its declaration.
266 procedure Check_Anonymous_Access_Components
267 (Typ_Decl : Node_Id;
268 Typ : Entity_Id;
269 Prev : Entity_Id;
270 Comp_List : Node_Id);
271 -- Ada 2005 AI-382: an access component in a record definition can refer to
272 -- the enclosing record, in which case it denotes the type itself, and not
273 -- the current instance of the type. We create an anonymous access type for
274 -- the component, and flag it as an access to a component, so accessibility
275 -- checks are properly performed on it. The declaration of the access type
276 -- is placed ahead of that of the record to prevent order-of-elaboration
277 -- circularity issues in Gigi. We create an incomplete type for the record
278 -- declaration, which is the designated type of the anonymous access.
280 procedure Check_Delta_Expression (E : Node_Id);
281 -- Check that the expression represented by E is suitable for use as a
282 -- delta expression, i.e. it is of real type and is static.
284 procedure Check_Digits_Expression (E : Node_Id);
285 -- Check that the expression represented by E is suitable for use as a
286 -- digits expression, i.e. it is of integer type, positive and static.
288 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
289 -- Validate the initialization of an object declaration. T is the required
290 -- type, and Exp is the initialization expression.
292 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
293 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
295 procedure Check_Or_Process_Discriminants
296 (N : Node_Id;
297 T : Entity_Id;
298 Prev : Entity_Id := Empty);
299 -- If N is the full declaration of the completion T of an incomplete or
300 -- private type, check its discriminants (which are already known to be
301 -- conformant with those of the partial view, see Find_Type_Name),
302 -- otherwise process them. Prev is the entity of the partial declaration,
303 -- if any.
305 procedure Check_Real_Bound (Bound : Node_Id);
306 -- Check given bound for being of real type and static. If not, post an
307 -- appropriate message, and rewrite the bound with the real literal zero.
309 procedure Constant_Redeclaration
310 (Id : Entity_Id;
311 N : Node_Id;
312 T : out Entity_Id);
313 -- Various checks on legality of full declaration of deferred constant.
314 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
315 -- node. The caller has not yet set any attributes of this entity.
317 function Contain_Interface
318 (Iface : Entity_Id;
319 Ifaces : Elist_Id) return Boolean;
320 -- Ada 2005: Determine whether Iface is present in the list Ifaces
322 procedure Convert_Scalar_Bounds
323 (N : Node_Id;
324 Parent_Type : Entity_Id;
325 Derived_Type : Entity_Id;
326 Loc : Source_Ptr);
327 -- For derived scalar types, convert the bounds in the type definition to
328 -- the derived type, and complete their analysis. Given a constraint of the
329 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
330 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
331 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
332 -- subtype are conversions of those bounds to the derived_type, so that
333 -- their typing is consistent.
335 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
336 -- Copies attributes from array base type T2 to array base type T1. Copies
337 -- only attributes that apply to base types, but not subtypes.
339 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
340 -- Copies attributes from array subtype T2 to array subtype T1. Copies
341 -- attributes that apply to both subtypes and base types.
343 procedure Create_Constrained_Components
344 (Subt : Entity_Id;
345 Decl_Node : Node_Id;
346 Typ : Entity_Id;
347 Constraints : Elist_Id);
348 -- Build the list of entities for a constrained discriminated record
349 -- subtype. If a component depends on a discriminant, replace its subtype
350 -- using the discriminant values in the discriminant constraint. Subt
351 -- is the defining identifier for the subtype whose list of constrained
352 -- entities we will create. Decl_Node is the type declaration node where
353 -- we will attach all the itypes created. Typ is the base discriminated
354 -- type for the subtype Subt. Constraints is the list of discriminant
355 -- constraints for Typ.
357 function Constrain_Component_Type
358 (Comp : Entity_Id;
359 Constrained_Typ : Entity_Id;
360 Related_Node : Node_Id;
361 Typ : Entity_Id;
362 Constraints : Elist_Id) return Entity_Id;
363 -- Given a discriminated base type Typ, a list of discriminant constraint
364 -- Constraints for Typ and a component of Typ, with type Compon_Type,
365 -- create and return the type corresponding to Compon_type where all
366 -- discriminant references are replaced with the corresponding constraint.
367 -- If no discriminant references occur in Compon_Typ then return it as is.
368 -- Constrained_Typ is the final constrained subtype to which the
369 -- constrained Compon_Type belongs. Related_Node is the node where we will
370 -- attach all the itypes created.
372 -- Above description is confused, what is Compon_Type???
374 procedure Constrain_Access
375 (Def_Id : in out Entity_Id;
376 S : Node_Id;
377 Related_Nod : Node_Id);
378 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
379 -- an anonymous type created for a subtype indication. In that case it is
380 -- created in the procedure and attached to Related_Nod.
382 procedure Constrain_Array
383 (Def_Id : in out Entity_Id;
384 SI : Node_Id;
385 Related_Nod : Node_Id;
386 Related_Id : Entity_Id;
387 Suffix : Character);
388 -- Apply a list of index constraints to an unconstrained array type. The
389 -- first parameter is the entity for the resulting subtype. A value of
390 -- Empty for Def_Id indicates that an implicit type must be created, but
391 -- creation is delayed (and must be done by this procedure) because other
392 -- subsidiary implicit types must be created first (which is why Def_Id
393 -- is an in/out parameter). The second parameter is a subtype indication
394 -- node for the constrained array to be created (e.g. something of the
395 -- form string (1 .. 10)). Related_Nod gives the place where this type
396 -- has to be inserted in the tree. The Related_Id and Suffix parameters
397 -- are used to build the associated Implicit type name.
399 procedure Constrain_Concurrent
400 (Def_Id : in out Entity_Id;
401 SI : Node_Id;
402 Related_Nod : Node_Id;
403 Related_Id : Entity_Id;
404 Suffix : Character);
405 -- Apply list of discriminant constraints to an unconstrained concurrent
406 -- type.
408 -- SI is the N_Subtype_Indication node containing the constraint and
409 -- the unconstrained type to constrain.
411 -- Def_Id is the entity for the resulting constrained subtype. A value
412 -- of Empty for Def_Id indicates that an implicit type must be created,
413 -- but creation is delayed (and must be done by this procedure) because
414 -- other subsidiary implicit types must be created first (which is why
415 -- Def_Id is an in/out parameter).
417 -- Related_Nod gives the place where this type has to be inserted
418 -- in the tree
420 -- The last two arguments are used to create its external name if needed.
422 function Constrain_Corresponding_Record
423 (Prot_Subt : Entity_Id;
424 Corr_Rec : Entity_Id;
425 Related_Nod : Node_Id;
426 Related_Id : Entity_Id) return Entity_Id;
427 -- When constraining a protected type or task type with discriminants,
428 -- constrain the corresponding record with the same discriminant values.
430 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
431 -- Constrain a decimal fixed point type with a digits constraint and/or a
432 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
434 procedure Constrain_Discriminated_Type
435 (Def_Id : Entity_Id;
436 S : Node_Id;
437 Related_Nod : Node_Id;
438 For_Access : Boolean := False);
439 -- Process discriminant constraints of composite type. Verify that values
440 -- have been provided for all discriminants, that the original type is
441 -- unconstrained, and that the types of the supplied expressions match
442 -- the discriminant types. The first three parameters are like in routine
443 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
444 -- of For_Access.
446 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
447 -- Constrain an enumeration type with a range constraint. This is identical
448 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
450 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
451 -- Constrain a floating point type with either a digits constraint
452 -- and/or a range constraint, building a E_Floating_Point_Subtype.
454 procedure Constrain_Index
455 (Index : Node_Id;
456 S : Node_Id;
457 Related_Nod : Node_Id;
458 Related_Id : Entity_Id;
459 Suffix : Character;
460 Suffix_Index : Nat);
461 -- Process an index constraint S in a constrained array declaration. The
462 -- constraint can be a subtype name, or a range with or without an explicit
463 -- subtype mark. The index is the corresponding index of the unconstrained
464 -- array. The Related_Id and Suffix parameters are used to build the
465 -- associated Implicit type name.
467 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
468 -- Build subtype of a signed or modular integer type
470 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
471 -- Constrain an ordinary fixed point type with a range constraint, and
472 -- build an E_Ordinary_Fixed_Point_Subtype entity.
474 procedure Copy_And_Swap (Priv, Full : Entity_Id);
475 -- Copy the Priv entity into the entity of its full declaration then swap
476 -- the two entities in such a manner that the former private type is now
477 -- seen as a full type.
479 procedure Decimal_Fixed_Point_Type_Declaration
480 (T : Entity_Id;
481 Def : Node_Id);
482 -- Create a new decimal fixed point type, and apply the constraint to
483 -- obtain a subtype of this new type.
485 procedure Complete_Private_Subtype
486 (Priv : Entity_Id;
487 Full : Entity_Id;
488 Full_Base : Entity_Id;
489 Related_Nod : Node_Id);
490 -- Complete the implicit full view of a private subtype by setting the
491 -- appropriate semantic fields. If the full view of the parent is a record
492 -- type, build constrained components of subtype.
494 procedure Derive_Progenitor_Subprograms
495 (Parent_Type : Entity_Id;
496 Tagged_Type : Entity_Id);
497 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
498 -- operations of progenitors of Tagged_Type, and replace the subsidiary
499 -- subtypes with Tagged_Type, to build the specs of the inherited interface
500 -- primitives. The derived primitives are aliased to those of the
501 -- interface. This routine takes care also of transferring to the full view
502 -- subprograms associated with the partial view of Tagged_Type that cover
503 -- interface primitives.
505 procedure Derived_Standard_Character
506 (N : Node_Id;
507 Parent_Type : Entity_Id;
508 Derived_Type : Entity_Id);
509 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
510 -- derivations from types Standard.Character and Standard.Wide_Character.
512 procedure Derived_Type_Declaration
513 (T : Entity_Id;
514 N : Node_Id;
515 Is_Completion : Boolean);
516 -- Process a derived type declaration. Build_Derived_Type is invoked
517 -- to process the actual derived type definition. Parameters N and
518 -- Is_Completion have the same meaning as in Build_Derived_Type.
519 -- T is the N_Defining_Identifier for the entity defined in the
520 -- N_Full_Type_Declaration node N, that is T is the derived type.
522 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
523 -- Insert each literal in symbol table, as an overloadable identifier. Each
524 -- enumeration type is mapped into a sequence of integers, and each literal
525 -- is defined as a constant with integer value. If any of the literals are
526 -- character literals, the type is a character type, which means that
527 -- strings are legal aggregates for arrays of components of the type.
529 function Expand_To_Stored_Constraint
530 (Typ : Entity_Id;
531 Constraint : Elist_Id) return Elist_Id;
532 -- Given a constraint (i.e. a list of expressions) on the discriminants of
533 -- Typ, expand it into a constraint on the stored discriminants and return
534 -- the new list of expressions constraining the stored discriminants.
536 function Find_Type_Of_Object
537 (Obj_Def : Node_Id;
538 Related_Nod : Node_Id) return Entity_Id;
539 -- Get type entity for object referenced by Obj_Def, attaching the
540 -- implicit types generated to Related_Nod
542 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
543 -- Create a new float and apply the constraint to obtain subtype of it
545 function Has_Range_Constraint (N : Node_Id) return Boolean;
546 -- Given an N_Subtype_Indication node N, return True if a range constraint
547 -- is present, either directly, or as part of a digits or delta constraint.
548 -- In addition, a digits constraint in the decimal case returns True, since
549 -- it establishes a default range if no explicit range is present.
551 function Inherit_Components
552 (N : Node_Id;
553 Parent_Base : Entity_Id;
554 Derived_Base : Entity_Id;
555 Is_Tagged : Boolean;
556 Inherit_Discr : Boolean;
557 Discs : Elist_Id) return Elist_Id;
558 -- Called from Build_Derived_Record_Type to inherit the components of
559 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
560 -- For more information on derived types and component inheritance please
561 -- consult the comment above the body of Build_Derived_Record_Type.
563 -- N is the original derived type declaration
565 -- Is_Tagged is set if we are dealing with tagged types
567 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
568 -- Parent_Base, otherwise no discriminants are inherited.
570 -- Discs gives the list of constraints that apply to Parent_Base in the
571 -- derived type declaration. If Discs is set to No_Elist, then we have
572 -- the following situation:
574 -- type Parent (D1..Dn : ..) is [tagged] record ...;
575 -- type Derived is new Parent [with ...];
577 -- which gets treated as
579 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
581 -- For untagged types the returned value is an association list. The list
582 -- starts from the association (Parent_Base => Derived_Base), and then it
583 -- contains a sequence of the associations of the form
585 -- (Old_Component => New_Component),
587 -- where Old_Component is the Entity_Id of a component in Parent_Base and
588 -- New_Component is the Entity_Id of the corresponding component in
589 -- Derived_Base. For untagged records, this association list is needed when
590 -- copying the record declaration for the derived base. In the tagged case
591 -- the value returned is irrelevant.
593 function Is_Valid_Constraint_Kind
594 (T_Kind : Type_Kind;
595 Constraint_Kind : Node_Kind) return Boolean;
596 -- Returns True if it is legal to apply the given kind of constraint to the
597 -- given kind of type (index constraint to an array type, for example).
599 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
600 -- Create new modular type. Verify that modulus is in bounds
602 procedure New_Concatenation_Op (Typ : Entity_Id);
603 -- Create an abbreviated declaration for an operator in order to
604 -- materialize concatenation on array types.
606 procedure Ordinary_Fixed_Point_Type_Declaration
607 (T : Entity_Id;
608 Def : Node_Id);
609 -- Create a new ordinary fixed point type, and apply the constraint to
610 -- obtain subtype of it.
612 procedure Prepare_Private_Subtype_Completion
613 (Id : Entity_Id;
614 Related_Nod : Node_Id);
615 -- Id is a subtype of some private type. Creates the full declaration
616 -- associated with Id whenever possible, i.e. when the full declaration
617 -- of the base type is already known. Records each subtype into
618 -- Private_Dependents of the base type.
620 procedure Process_Incomplete_Dependents
621 (N : Node_Id;
622 Full_T : Entity_Id;
623 Inc_T : Entity_Id);
624 -- Process all entities that depend on an incomplete type. There include
625 -- subtypes, subprogram types that mention the incomplete type in their
626 -- profiles, and subprogram with access parameters that designate the
627 -- incomplete type.
629 -- Inc_T is the defining identifier of an incomplete type declaration, its
630 -- Ekind is E_Incomplete_Type.
632 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
634 -- Full_T is N's defining identifier.
636 -- Subtypes of incomplete types with discriminants are completed when the
637 -- parent type is. This is simpler than private subtypes, because they can
638 -- only appear in the same scope, and there is no need to exchange views.
639 -- Similarly, access_to_subprogram types may have a parameter or a return
640 -- type that is an incomplete type, and that must be replaced with the
641 -- full type.
643 -- If the full type is tagged, subprogram with access parameters that
644 -- designated the incomplete may be primitive operations of the full type,
645 -- and have to be processed accordingly.
647 procedure Process_Real_Range_Specification (Def : Node_Id);
648 -- Given the type definition for a real type, this procedure processes and
649 -- checks the real range specification of this type definition if one is
650 -- present. If errors are found, error messages are posted, and the
651 -- Real_Range_Specification of Def is reset to Empty.
653 procedure Record_Type_Declaration
654 (T : Entity_Id;
655 N : Node_Id;
656 Prev : Entity_Id);
657 -- Process a record type declaration (for both untagged and tagged
658 -- records). Parameters T and N are exactly like in procedure
659 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
660 -- for this routine. If this is the completion of an incomplete type
661 -- declaration, Prev is the entity of the incomplete declaration, used for
662 -- cross-referencing. Otherwise Prev = T.
664 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
665 -- This routine is used to process the actual record type definition (both
666 -- for untagged and tagged records). Def is a record type definition node.
667 -- This procedure analyzes the components in this record type definition.
668 -- Prev_T is the entity for the enclosing record type. It is provided so
669 -- that its Has_Task flag can be set if any of the component have Has_Task
670 -- set. If the declaration is the completion of an incomplete type
671 -- declaration, Prev_T is the original incomplete type, whose full view is
672 -- the record type.
674 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
675 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
676 -- build a copy of the declaration tree of the parent, and we create
677 -- independently the list of components for the derived type. Semantic
678 -- information uses the component entities, but record representation
679 -- clauses are validated on the declaration tree. This procedure replaces
680 -- discriminants and components in the declaration with those that have
681 -- been created by Inherit_Components.
683 procedure Set_Fixed_Range
684 (E : Entity_Id;
685 Loc : Source_Ptr;
686 Lo : Ureal;
687 Hi : Ureal);
688 -- Build a range node with the given bounds and set it as the Scalar_Range
689 -- of the given fixed-point type entity. Loc is the source location used
690 -- for the constructed range. See body for further details.
692 procedure Set_Scalar_Range_For_Subtype
693 (Def_Id : Entity_Id;
694 R : Node_Id;
695 Subt : Entity_Id);
696 -- This routine is used to set the scalar range field for a subtype given
697 -- Def_Id, the entity for the subtype, and R, the range expression for the
698 -- scalar range. Subt provides the parent subtype to be used to analyze,
699 -- resolve, and check the given range.
701 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
702 -- Create a new signed integer entity, and apply the constraint to obtain
703 -- the required first named subtype of this type.
705 procedure Set_Stored_Constraint_From_Discriminant_Constraint
706 (E : Entity_Id);
707 -- E is some record type. This routine computes E's Stored_Constraint
708 -- from its Discriminant_Constraint.
710 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
711 -- Check that an entity in a list of progenitors is an interface,
712 -- emit error otherwise.
714 -----------------------
715 -- Access_Definition --
716 -----------------------
718 function Access_Definition
719 (Related_Nod : Node_Id;
720 N : Node_Id) return Entity_Id
722 Anon_Type : Entity_Id;
723 Anon_Scope : Entity_Id;
724 Desig_Type : Entity_Id;
725 Enclosing_Prot_Type : Entity_Id := Empty;
727 begin
728 Check_SPARK_Restriction ("access type is not allowed", N);
730 if Is_Entry (Current_Scope)
731 and then Is_Task_Type (Etype (Scope (Current_Scope)))
732 then
733 Error_Msg_N ("task entries cannot have access parameters", N);
734 return Empty;
735 end if;
737 -- Ada 2005: For an object declaration the corresponding anonymous
738 -- type is declared in the current scope.
740 -- If the access definition is the return type of another access to
741 -- function, scope is the current one, because it is the one of the
742 -- current type declaration, except for the pathological case below.
744 if Nkind_In (Related_Nod, N_Object_Declaration,
745 N_Access_Function_Definition)
746 then
747 Anon_Scope := Current_Scope;
749 -- A pathological case: function returning access functions that
750 -- return access functions, etc. Each anonymous access type created
751 -- is in the enclosing scope of the outermost function.
753 declare
754 Par : Node_Id;
756 begin
757 Par := Related_Nod;
758 while Nkind_In (Par, N_Access_Function_Definition,
759 N_Access_Definition)
760 loop
761 Par := Parent (Par);
762 end loop;
764 if Nkind (Par) = N_Function_Specification then
765 Anon_Scope := Scope (Defining_Entity (Par));
766 end if;
767 end;
769 -- For the anonymous function result case, retrieve the scope of the
770 -- function specification's associated entity rather than using the
771 -- current scope. The current scope will be the function itself if the
772 -- formal part is currently being analyzed, but will be the parent scope
773 -- in the case of a parameterless function, and we always want to use
774 -- the function's parent scope. Finally, if the function is a child
775 -- unit, we must traverse the tree to retrieve the proper entity.
777 elsif Nkind (Related_Nod) = N_Function_Specification
778 and then Nkind (Parent (N)) /= N_Parameter_Specification
779 then
780 -- If the current scope is a protected type, the anonymous access
781 -- is associated with one of the protected operations, and must
782 -- be available in the scope that encloses the protected declaration.
783 -- Otherwise the type is in the scope enclosing the subprogram.
785 -- If the function has formals, The return type of a subprogram
786 -- declaration is analyzed in the scope of the subprogram (see
787 -- Process_Formals) and thus the protected type, if present, is
788 -- the scope of the current function scope.
790 if Ekind (Current_Scope) = E_Protected_Type then
791 Enclosing_Prot_Type := Current_Scope;
793 elsif Ekind (Current_Scope) = E_Function
794 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
795 then
796 Enclosing_Prot_Type := Scope (Current_Scope);
797 end if;
799 if Present (Enclosing_Prot_Type) then
800 Anon_Scope := Scope (Enclosing_Prot_Type);
802 else
803 Anon_Scope := Scope (Defining_Entity (Related_Nod));
804 end if;
806 -- For an access type definition, if the current scope is a child
807 -- unit it is the scope of the type.
809 elsif Is_Compilation_Unit (Current_Scope) then
810 Anon_Scope := Current_Scope;
812 -- For access formals, access components, and access discriminants, the
813 -- scope is that of the enclosing declaration,
815 else
816 Anon_Scope := Scope (Current_Scope);
817 end if;
819 Anon_Type :=
820 Create_Itype
821 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
823 if All_Present (N)
824 and then Ada_Version >= Ada_2005
825 then
826 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
827 end if;
829 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
830 -- the corresponding semantic routine
832 if Present (Access_To_Subprogram_Definition (N)) then
834 -- Compiler runtime units are compiled in Ada 2005 mode when building
835 -- the runtime library but must also be compilable in Ada 95 mode
836 -- (when bootstrapping the compiler).
838 Check_Compiler_Unit (N);
840 Access_Subprogram_Declaration
841 (T_Name => Anon_Type,
842 T_Def => Access_To_Subprogram_Definition (N));
844 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
845 Set_Ekind
846 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
847 else
848 Set_Ekind
849 (Anon_Type, E_Anonymous_Access_Subprogram_Type);
850 end if;
852 Set_Can_Use_Internal_Rep
853 (Anon_Type, not Always_Compatible_Rep_On_Target);
855 -- If the anonymous access is associated with a protected operation,
856 -- create a reference to it after the enclosing protected definition
857 -- because the itype will be used in the subsequent bodies.
859 if Ekind (Current_Scope) = E_Protected_Type then
860 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
861 end if;
863 return Anon_Type;
864 end if;
866 Find_Type (Subtype_Mark (N));
867 Desig_Type := Entity (Subtype_Mark (N));
869 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
870 Set_Etype (Anon_Type, Anon_Type);
872 -- Make sure the anonymous access type has size and alignment fields
873 -- set, as required by gigi. This is necessary in the case of the
874 -- Task_Body_Procedure.
876 if not Has_Private_Component (Desig_Type) then
877 Layout_Type (Anon_Type);
878 end if;
880 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
881 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
882 -- the null value is allowed. In Ada 95 the null value is never allowed.
884 if Ada_Version >= Ada_2005 then
885 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
886 else
887 Set_Can_Never_Be_Null (Anon_Type, True);
888 end if;
890 -- The anonymous access type is as public as the discriminated type or
891 -- subprogram that defines it. It is imported (for back-end purposes)
892 -- if the designated type is.
894 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
896 -- Ada 2005 (AI-231): Propagate the access-constant attribute
898 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
900 -- The context is either a subprogram declaration, object declaration,
901 -- or an access discriminant, in a private or a full type declaration.
902 -- In the case of a subprogram, if the designated type is incomplete,
903 -- the operation will be a primitive operation of the full type, to be
904 -- updated subsequently. If the type is imported through a limited_with
905 -- clause, the subprogram is not a primitive operation of the type
906 -- (which is declared elsewhere in some other scope).
908 if Ekind (Desig_Type) = E_Incomplete_Type
909 and then not From_Limited_With (Desig_Type)
910 and then Is_Overloadable (Current_Scope)
911 then
912 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
913 Set_Has_Delayed_Freeze (Current_Scope);
914 end if;
916 -- Ada 2005: If the designated type is an interface that may contain
917 -- tasks, create a Master entity for the declaration. This must be done
918 -- before expansion of the full declaration, because the declaration may
919 -- include an expression that is an allocator, whose expansion needs the
920 -- proper Master for the created tasks.
922 if Nkind (Related_Nod) = N_Object_Declaration
923 and then Expander_Active
924 then
925 if Is_Interface (Desig_Type)
926 and then Is_Limited_Record (Desig_Type)
927 then
928 Build_Class_Wide_Master (Anon_Type);
930 -- Similarly, if the type is an anonymous access that designates
931 -- tasks, create a master entity for it in the current context.
933 elsif Has_Task (Desig_Type)
934 and then Comes_From_Source (Related_Nod)
935 then
936 Build_Master_Entity (Defining_Identifier (Related_Nod));
937 Build_Master_Renaming (Anon_Type);
938 end if;
939 end if;
941 -- For a private component of a protected type, it is imperative that
942 -- the back-end elaborate the type immediately after the protected
943 -- declaration, because this type will be used in the declarations
944 -- created for the component within each protected body, so we must
945 -- create an itype reference for it now.
947 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
948 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
950 -- Similarly, if the access definition is the return result of a
951 -- function, create an itype reference for it because it will be used
952 -- within the function body. For a regular function that is not a
953 -- compilation unit, insert reference after the declaration. For a
954 -- protected operation, insert it after the enclosing protected type
955 -- declaration. In either case, do not create a reference for a type
956 -- obtained through a limited_with clause, because this would introduce
957 -- semantic dependencies.
959 -- Similarly, do not create a reference if the designated type is a
960 -- generic formal, because no use of it will reach the backend.
962 elsif Nkind (Related_Nod) = N_Function_Specification
963 and then not From_Limited_With (Desig_Type)
964 and then not Is_Generic_Type (Desig_Type)
965 then
966 if Present (Enclosing_Prot_Type) then
967 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
969 elsif Is_List_Member (Parent (Related_Nod))
970 and then Nkind (Parent (N)) /= N_Parameter_Specification
971 then
972 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
973 end if;
975 -- Finally, create an itype reference for an object declaration of an
976 -- anonymous access type. This is strictly necessary only for deferred
977 -- constants, but in any case will avoid out-of-scope problems in the
978 -- back-end.
980 elsif Nkind (Related_Nod) = N_Object_Declaration then
981 Build_Itype_Reference (Anon_Type, Related_Nod);
982 end if;
984 return Anon_Type;
985 end Access_Definition;
987 -----------------------------------
988 -- Access_Subprogram_Declaration --
989 -----------------------------------
991 procedure Access_Subprogram_Declaration
992 (T_Name : Entity_Id;
993 T_Def : Node_Id)
995 procedure Check_For_Premature_Usage (Def : Node_Id);
996 -- Check that type T_Name is not used, directly or recursively, as a
997 -- parameter or a return type in Def. Def is either a subtype, an
998 -- access_definition, or an access_to_subprogram_definition.
1000 -------------------------------
1001 -- Check_For_Premature_Usage --
1002 -------------------------------
1004 procedure Check_For_Premature_Usage (Def : Node_Id) is
1005 Param : Node_Id;
1007 begin
1008 -- Check for a subtype mark
1010 if Nkind (Def) in N_Has_Etype then
1011 if Etype (Def) = T_Name then
1012 Error_Msg_N
1013 ("type& cannot be used before end of its declaration", Def);
1014 end if;
1016 -- If this is not a subtype, then this is an access_definition
1018 elsif Nkind (Def) = N_Access_Definition then
1019 if Present (Access_To_Subprogram_Definition (Def)) then
1020 Check_For_Premature_Usage
1021 (Access_To_Subprogram_Definition (Def));
1022 else
1023 Check_For_Premature_Usage (Subtype_Mark (Def));
1024 end if;
1026 -- The only cases left are N_Access_Function_Definition and
1027 -- N_Access_Procedure_Definition.
1029 else
1030 if Present (Parameter_Specifications (Def)) then
1031 Param := First (Parameter_Specifications (Def));
1032 while Present (Param) loop
1033 Check_For_Premature_Usage (Parameter_Type (Param));
1034 Param := Next (Param);
1035 end loop;
1036 end if;
1038 if Nkind (Def) = N_Access_Function_Definition then
1039 Check_For_Premature_Usage (Result_Definition (Def));
1040 end if;
1041 end if;
1042 end Check_For_Premature_Usage;
1044 -- Local variables
1046 Formals : constant List_Id := Parameter_Specifications (T_Def);
1047 Formal : Entity_Id;
1048 D_Ityp : Node_Id;
1049 Desig_Type : constant Entity_Id :=
1050 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1052 -- Start of processing for Access_Subprogram_Declaration
1054 begin
1055 Check_SPARK_Restriction ("access type is not allowed", T_Def);
1057 -- Associate the Itype node with the inner full-type declaration or
1058 -- subprogram spec or entry body. This is required to handle nested
1059 -- anonymous declarations. For example:
1061 -- procedure P
1062 -- (X : access procedure
1063 -- (Y : access procedure
1064 -- (Z : access T)))
1066 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1067 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1068 N_Private_Type_Declaration,
1069 N_Private_Extension_Declaration,
1070 N_Procedure_Specification,
1071 N_Function_Specification,
1072 N_Entry_Body)
1074 or else
1075 Nkind_In (D_Ityp, N_Object_Declaration,
1076 N_Object_Renaming_Declaration,
1077 N_Formal_Object_Declaration,
1078 N_Formal_Type_Declaration,
1079 N_Task_Type_Declaration,
1080 N_Protected_Type_Declaration))
1081 loop
1082 D_Ityp := Parent (D_Ityp);
1083 pragma Assert (D_Ityp /= Empty);
1084 end loop;
1086 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1088 if Nkind_In (D_Ityp, N_Procedure_Specification,
1089 N_Function_Specification)
1090 then
1091 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1093 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1094 N_Object_Declaration,
1095 N_Object_Renaming_Declaration,
1096 N_Formal_Type_Declaration)
1097 then
1098 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1099 end if;
1101 if Nkind (T_Def) = N_Access_Function_Definition then
1102 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1103 declare
1104 Acc : constant Node_Id := Result_Definition (T_Def);
1106 begin
1107 if Present (Access_To_Subprogram_Definition (Acc))
1108 and then
1109 Protected_Present (Access_To_Subprogram_Definition (Acc))
1110 then
1111 Set_Etype
1112 (Desig_Type,
1113 Replace_Anonymous_Access_To_Protected_Subprogram
1114 (T_Def));
1116 else
1117 Set_Etype
1118 (Desig_Type,
1119 Access_Definition (T_Def, Result_Definition (T_Def)));
1120 end if;
1121 end;
1123 else
1124 Analyze (Result_Definition (T_Def));
1126 declare
1127 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1129 begin
1130 -- If a null exclusion is imposed on the result type, then
1131 -- create a null-excluding itype (an access subtype) and use
1132 -- it as the function's Etype.
1134 if Is_Access_Type (Typ)
1135 and then Null_Exclusion_In_Return_Present (T_Def)
1136 then
1137 Set_Etype (Desig_Type,
1138 Create_Null_Excluding_Itype
1139 (T => Typ,
1140 Related_Nod => T_Def,
1141 Scope_Id => Current_Scope));
1143 else
1144 if From_Limited_With (Typ) then
1146 -- AI05-151: Incomplete types are allowed in all basic
1147 -- declarations, including access to subprograms.
1149 if Ada_Version >= Ada_2012 then
1150 null;
1152 else
1153 Error_Msg_NE
1154 ("illegal use of incomplete type&",
1155 Result_Definition (T_Def), Typ);
1156 end if;
1158 elsif Ekind (Current_Scope) = E_Package
1159 and then In_Private_Part (Current_Scope)
1160 then
1161 if Ekind (Typ) = E_Incomplete_Type then
1162 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1164 elsif Is_Class_Wide_Type (Typ)
1165 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1166 then
1167 Append_Elmt
1168 (Desig_Type, Private_Dependents (Etype (Typ)));
1169 end if;
1170 end if;
1172 Set_Etype (Desig_Type, Typ);
1173 end if;
1174 end;
1175 end if;
1177 if not (Is_Type (Etype (Desig_Type))) then
1178 Error_Msg_N
1179 ("expect type in function specification",
1180 Result_Definition (T_Def));
1181 end if;
1183 else
1184 Set_Etype (Desig_Type, Standard_Void_Type);
1185 end if;
1187 if Present (Formals) then
1188 Push_Scope (Desig_Type);
1190 -- A bit of a kludge here. These kludges will be removed when Itypes
1191 -- have proper parent pointers to their declarations???
1193 -- Kludge 1) Link defining_identifier of formals. Required by
1194 -- First_Formal to provide its functionality.
1196 declare
1197 F : Node_Id;
1199 begin
1200 F := First (Formals);
1202 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1203 -- when it is part of an unconstrained type and subtype expansion
1204 -- is disabled. To avoid back-end problems with shared profiles,
1205 -- use previous subprogram type as the designated type, and then
1206 -- remove scope added above.
1208 if ASIS_Mode
1209 and then Present (Scope (Defining_Identifier (F)))
1210 then
1211 Set_Etype (T_Name, T_Name);
1212 Init_Size_Align (T_Name);
1213 Set_Directly_Designated_Type (T_Name,
1214 Scope (Defining_Identifier (F)));
1215 End_Scope;
1216 return;
1217 end if;
1219 while Present (F) loop
1220 if No (Parent (Defining_Identifier (F))) then
1221 Set_Parent (Defining_Identifier (F), F);
1222 end if;
1224 Next (F);
1225 end loop;
1226 end;
1228 Process_Formals (Formals, Parent (T_Def));
1230 -- Kludge 2) End_Scope requires that the parent pointer be set to
1231 -- something reasonable, but Itypes don't have parent pointers. So
1232 -- we set it and then unset it ???
1234 Set_Parent (Desig_Type, T_Name);
1235 End_Scope;
1236 Set_Parent (Desig_Type, Empty);
1237 end if;
1239 -- Check for premature usage of the type being defined
1241 Check_For_Premature_Usage (T_Def);
1243 -- The return type and/or any parameter type may be incomplete. Mark the
1244 -- subprogram_type as depending on the incomplete type, so that it can
1245 -- be updated when the full type declaration is seen. This only applies
1246 -- to incomplete types declared in some enclosing scope, not to limited
1247 -- views from other packages.
1249 -- Prior to Ada 2012, access to functions can only have in_parameters.
1251 if Present (Formals) then
1252 Formal := First_Formal (Desig_Type);
1253 while Present (Formal) loop
1254 if Ekind (Formal) /= E_In_Parameter
1255 and then Nkind (T_Def) = N_Access_Function_Definition
1256 and then Ada_Version < Ada_2012
1257 then
1258 Error_Msg_N ("functions can only have IN parameters", Formal);
1259 end if;
1261 if Ekind (Etype (Formal)) = E_Incomplete_Type
1262 and then In_Open_Scopes (Scope (Etype (Formal)))
1263 then
1264 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1265 Set_Has_Delayed_Freeze (Desig_Type);
1266 end if;
1268 Next_Formal (Formal);
1269 end loop;
1270 end if;
1272 -- Check whether an indirect call without actuals may be possible. This
1273 -- is used when resolving calls whose result is then indexed.
1275 May_Need_Actuals (Desig_Type);
1277 -- If the return type is incomplete, this is legal as long as the type
1278 -- is declared in the current scope and will be completed in it (rather
1279 -- than being part of limited view).
1281 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1282 and then not Has_Delayed_Freeze (Desig_Type)
1283 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1284 then
1285 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1286 Set_Has_Delayed_Freeze (Desig_Type);
1287 end if;
1289 Check_Delayed_Subprogram (Desig_Type);
1291 if Protected_Present (T_Def) then
1292 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1293 Set_Convention (Desig_Type, Convention_Protected);
1294 else
1295 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1296 end if;
1298 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1300 Set_Etype (T_Name, T_Name);
1301 Init_Size_Align (T_Name);
1302 Set_Directly_Designated_Type (T_Name, Desig_Type);
1304 Generate_Reference_To_Formals (T_Name);
1306 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1308 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1310 Check_Restriction (No_Access_Subprograms, T_Def);
1311 end Access_Subprogram_Declaration;
1313 ----------------------------
1314 -- Access_Type_Declaration --
1315 ----------------------------
1317 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1318 P : constant Node_Id := Parent (Def);
1319 S : constant Node_Id := Subtype_Indication (Def);
1321 Full_Desig : Entity_Id;
1323 begin
1324 Check_SPARK_Restriction ("access type is not allowed", Def);
1326 -- Check for permissible use of incomplete type
1328 if Nkind (S) /= N_Subtype_Indication then
1329 Analyze (S);
1331 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1332 Set_Directly_Designated_Type (T, Entity (S));
1333 else
1334 Set_Directly_Designated_Type (T,
1335 Process_Subtype (S, P, T, 'P'));
1336 end if;
1338 else
1339 Set_Directly_Designated_Type (T,
1340 Process_Subtype (S, P, T, 'P'));
1341 end if;
1343 if All_Present (Def) or Constant_Present (Def) then
1344 Set_Ekind (T, E_General_Access_Type);
1345 else
1346 Set_Ekind (T, E_Access_Type);
1347 end if;
1349 Full_Desig := Designated_Type (T);
1351 if Base_Type (Full_Desig) = T then
1352 Error_Msg_N ("access type cannot designate itself", S);
1354 -- In Ada 2005, the type may have a limited view through some unit in
1355 -- its own context, allowing the following circularity that cannot be
1356 -- detected earlier
1358 elsif Is_Class_Wide_Type (Full_Desig)
1359 and then Etype (Full_Desig) = T
1360 then
1361 Error_Msg_N
1362 ("access type cannot designate its own classwide type", S);
1364 -- Clean up indication of tagged status to prevent cascaded errors
1366 Set_Is_Tagged_Type (T, False);
1367 end if;
1369 Set_Etype (T, T);
1371 -- If the type has appeared already in a with_type clause, it is frozen
1372 -- and the pointer size is already set. Else, initialize.
1374 if not From_Limited_With (T) then
1375 Init_Size_Align (T);
1376 end if;
1378 -- Note that Has_Task is always false, since the access type itself
1379 -- is not a task type. See Einfo for more description on this point.
1380 -- Exactly the same consideration applies to Has_Controlled_Component.
1382 Set_Has_Task (T, False);
1383 Set_Has_Controlled_Component (T, False);
1385 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1386 -- problems where an incomplete view of this entity has been previously
1387 -- established by a limited with and an overlaid version of this field
1388 -- (Stored_Constraint) was initialized for the incomplete view.
1390 -- This reset is performed in most cases except where the access type
1391 -- has been created for the purposes of allocating or deallocating a
1392 -- build-in-place object. Such access types have explicitly set pools
1393 -- and finalization masters.
1395 if No (Associated_Storage_Pool (T)) then
1396 Set_Finalization_Master (T, Empty);
1397 end if;
1399 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1400 -- attributes
1402 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1403 Set_Is_Access_Constant (T, Constant_Present (Def));
1404 end Access_Type_Declaration;
1406 ----------------------------------
1407 -- Add_Interface_Tag_Components --
1408 ----------------------------------
1410 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1411 Loc : constant Source_Ptr := Sloc (N);
1412 L : List_Id;
1413 Last_Tag : Node_Id;
1415 procedure Add_Tag (Iface : Entity_Id);
1416 -- Add tag for one of the progenitor interfaces
1418 -------------
1419 -- Add_Tag --
1420 -------------
1422 procedure Add_Tag (Iface : Entity_Id) is
1423 Decl : Node_Id;
1424 Def : Node_Id;
1425 Tag : Entity_Id;
1426 Offset : Entity_Id;
1428 begin
1429 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1431 -- This is a reasonable place to propagate predicates
1433 if Has_Predicates (Iface) then
1434 Set_Has_Predicates (Typ);
1435 end if;
1437 Def :=
1438 Make_Component_Definition (Loc,
1439 Aliased_Present => True,
1440 Subtype_Indication =>
1441 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1443 Tag := Make_Temporary (Loc, 'V');
1445 Decl :=
1446 Make_Component_Declaration (Loc,
1447 Defining_Identifier => Tag,
1448 Component_Definition => Def);
1450 Analyze_Component_Declaration (Decl);
1452 Set_Analyzed (Decl);
1453 Set_Ekind (Tag, E_Component);
1454 Set_Is_Tag (Tag);
1455 Set_Is_Aliased (Tag);
1456 Set_Related_Type (Tag, Iface);
1457 Init_Component_Location (Tag);
1459 pragma Assert (Is_Frozen (Iface));
1461 Set_DT_Entry_Count (Tag,
1462 DT_Entry_Count (First_Entity (Iface)));
1464 if No (Last_Tag) then
1465 Prepend (Decl, L);
1466 else
1467 Insert_After (Last_Tag, Decl);
1468 end if;
1470 Last_Tag := Decl;
1472 -- If the ancestor has discriminants we need to give special support
1473 -- to store the offset_to_top value of the secondary dispatch tables.
1474 -- For this purpose we add a supplementary component just after the
1475 -- field that contains the tag associated with each secondary DT.
1477 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1478 Def :=
1479 Make_Component_Definition (Loc,
1480 Subtype_Indication =>
1481 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1483 Offset := Make_Temporary (Loc, 'V');
1485 Decl :=
1486 Make_Component_Declaration (Loc,
1487 Defining_Identifier => Offset,
1488 Component_Definition => Def);
1490 Analyze_Component_Declaration (Decl);
1492 Set_Analyzed (Decl);
1493 Set_Ekind (Offset, E_Component);
1494 Set_Is_Aliased (Offset);
1495 Set_Related_Type (Offset, Iface);
1496 Init_Component_Location (Offset);
1497 Insert_After (Last_Tag, Decl);
1498 Last_Tag := Decl;
1499 end if;
1500 end Add_Tag;
1502 -- Local variables
1504 Elmt : Elmt_Id;
1505 Ext : Node_Id;
1506 Comp : Node_Id;
1508 -- Start of processing for Add_Interface_Tag_Components
1510 begin
1511 if not RTE_Available (RE_Interface_Tag) then
1512 Error_Msg
1513 ("(Ada 2005) interface types not supported by this run-time!",
1514 Sloc (N));
1515 return;
1516 end if;
1518 if Ekind (Typ) /= E_Record_Type
1519 or else (Is_Concurrent_Record_Type (Typ)
1520 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1521 or else (not Is_Concurrent_Record_Type (Typ)
1522 and then No (Interfaces (Typ))
1523 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1524 then
1525 return;
1526 end if;
1528 -- Find the current last tag
1530 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1531 Ext := Record_Extension_Part (Type_Definition (N));
1532 else
1533 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1534 Ext := Type_Definition (N);
1535 end if;
1537 Last_Tag := Empty;
1539 if not (Present (Component_List (Ext))) then
1540 Set_Null_Present (Ext, False);
1541 L := New_List;
1542 Set_Component_List (Ext,
1543 Make_Component_List (Loc,
1544 Component_Items => L,
1545 Null_Present => False));
1546 else
1547 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1548 L := Component_Items
1549 (Component_List
1550 (Record_Extension_Part
1551 (Type_Definition (N))));
1552 else
1553 L := Component_Items
1554 (Component_List
1555 (Type_Definition (N)));
1556 end if;
1558 -- Find the last tag component
1560 Comp := First (L);
1561 while Present (Comp) loop
1562 if Nkind (Comp) = N_Component_Declaration
1563 and then Is_Tag (Defining_Identifier (Comp))
1564 then
1565 Last_Tag := Comp;
1566 end if;
1568 Next (Comp);
1569 end loop;
1570 end if;
1572 -- At this point L references the list of components and Last_Tag
1573 -- references the current last tag (if any). Now we add the tag
1574 -- corresponding with all the interfaces that are not implemented
1575 -- by the parent.
1577 if Present (Interfaces (Typ)) then
1578 Elmt := First_Elmt (Interfaces (Typ));
1579 while Present (Elmt) loop
1580 Add_Tag (Node (Elmt));
1581 Next_Elmt (Elmt);
1582 end loop;
1583 end if;
1584 end Add_Interface_Tag_Components;
1586 -------------------------------------
1587 -- Add_Internal_Interface_Entities --
1588 -------------------------------------
1590 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1591 Elmt : Elmt_Id;
1592 Iface : Entity_Id;
1593 Iface_Elmt : Elmt_Id;
1594 Iface_Prim : Entity_Id;
1595 Ifaces_List : Elist_Id;
1596 New_Subp : Entity_Id := Empty;
1597 Prim : Entity_Id;
1598 Restore_Scope : Boolean := False;
1600 begin
1601 pragma Assert (Ada_Version >= Ada_2005
1602 and then Is_Record_Type (Tagged_Type)
1603 and then Is_Tagged_Type (Tagged_Type)
1604 and then Has_Interfaces (Tagged_Type)
1605 and then not Is_Interface (Tagged_Type));
1607 -- Ensure that the internal entities are added to the scope of the type
1609 if Scope (Tagged_Type) /= Current_Scope then
1610 Push_Scope (Scope (Tagged_Type));
1611 Restore_Scope := True;
1612 end if;
1614 Collect_Interfaces (Tagged_Type, Ifaces_List);
1616 Iface_Elmt := First_Elmt (Ifaces_List);
1617 while Present (Iface_Elmt) loop
1618 Iface := Node (Iface_Elmt);
1620 -- Originally we excluded here from this processing interfaces that
1621 -- are parents of Tagged_Type because their primitives are located
1622 -- in the primary dispatch table (and hence no auxiliary internal
1623 -- entities are required to handle secondary dispatch tables in such
1624 -- case). However, these auxiliary entities are also required to
1625 -- handle derivations of interfaces in formals of generics (see
1626 -- Derive_Subprograms).
1628 Elmt := First_Elmt (Primitive_Operations (Iface));
1629 while Present (Elmt) loop
1630 Iface_Prim := Node (Elmt);
1632 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1633 Prim :=
1634 Find_Primitive_Covering_Interface
1635 (Tagged_Type => Tagged_Type,
1636 Iface_Prim => Iface_Prim);
1638 if No (Prim) and then Serious_Errors_Detected > 0 then
1639 goto Continue;
1640 end if;
1642 pragma Assert (Present (Prim));
1644 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1645 -- differs from the name of the interface primitive then it is
1646 -- a private primitive inherited from a parent type. In such
1647 -- case, given that Tagged_Type covers the interface, the
1648 -- inherited private primitive becomes visible. For such
1649 -- purpose we add a new entity that renames the inherited
1650 -- private primitive.
1652 if Chars (Prim) /= Chars (Iface_Prim) then
1653 pragma Assert (Has_Suffix (Prim, 'P'));
1654 Derive_Subprogram
1655 (New_Subp => New_Subp,
1656 Parent_Subp => Iface_Prim,
1657 Derived_Type => Tagged_Type,
1658 Parent_Type => Iface);
1659 Set_Alias (New_Subp, Prim);
1660 Set_Is_Abstract_Subprogram
1661 (New_Subp, Is_Abstract_Subprogram (Prim));
1662 end if;
1664 Derive_Subprogram
1665 (New_Subp => New_Subp,
1666 Parent_Subp => Iface_Prim,
1667 Derived_Type => Tagged_Type,
1668 Parent_Type => Iface);
1670 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1671 -- associated with interface types. These entities are
1672 -- only registered in the list of primitives of its
1673 -- corresponding tagged type because they are only used
1674 -- to fill the contents of the secondary dispatch tables.
1675 -- Therefore they are removed from the homonym chains.
1677 Set_Is_Hidden (New_Subp);
1678 Set_Is_Internal (New_Subp);
1679 Set_Alias (New_Subp, Prim);
1680 Set_Is_Abstract_Subprogram
1681 (New_Subp, Is_Abstract_Subprogram (Prim));
1682 Set_Interface_Alias (New_Subp, Iface_Prim);
1684 -- If the returned type is an interface then propagate it to
1685 -- the returned type. Needed by the thunk to generate the code
1686 -- which displaces "this" to reference the corresponding
1687 -- secondary dispatch table in the returned object.
1689 if Is_Interface (Etype (Iface_Prim)) then
1690 Set_Etype (New_Subp, Etype (Iface_Prim));
1691 end if;
1693 -- Internal entities associated with interface types are
1694 -- only registered in the list of primitives of the tagged
1695 -- type. They are only used to fill the contents of the
1696 -- secondary dispatch tables. Therefore they are not needed
1697 -- in the homonym chains.
1699 Remove_Homonym (New_Subp);
1701 -- Hidden entities associated with interfaces must have set
1702 -- the Has_Delay_Freeze attribute to ensure that, in case of
1703 -- locally defined tagged types (or compiling with static
1704 -- dispatch tables generation disabled) the corresponding
1705 -- entry of the secondary dispatch table is filled when
1706 -- such an entity is frozen.
1708 Set_Has_Delayed_Freeze (New_Subp);
1709 end if;
1711 <<Continue>>
1712 Next_Elmt (Elmt);
1713 end loop;
1715 Next_Elmt (Iface_Elmt);
1716 end loop;
1718 if Restore_Scope then
1719 Pop_Scope;
1720 end if;
1721 end Add_Internal_Interface_Entities;
1723 -----------------------------------
1724 -- Analyze_Component_Declaration --
1725 -----------------------------------
1727 procedure Analyze_Component_Declaration (N : Node_Id) is
1728 Id : constant Entity_Id := Defining_Identifier (N);
1729 E : constant Node_Id := Expression (N);
1730 Typ : constant Node_Id :=
1731 Subtype_Indication (Component_Definition (N));
1732 T : Entity_Id;
1733 P : Entity_Id;
1735 function Contains_POC (Constr : Node_Id) return Boolean;
1736 -- Determines whether a constraint uses the discriminant of a record
1737 -- type thus becoming a per-object constraint (POC).
1739 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1740 -- Typ is the type of the current component, check whether this type is
1741 -- a limited type. Used to validate declaration against that of
1742 -- enclosing record.
1744 ------------------
1745 -- Contains_POC --
1746 ------------------
1748 function Contains_POC (Constr : Node_Id) return Boolean is
1749 begin
1750 -- Prevent cascaded errors
1752 if Error_Posted (Constr) then
1753 return False;
1754 end if;
1756 case Nkind (Constr) is
1757 when N_Attribute_Reference =>
1758 return
1759 Attribute_Name (Constr) = Name_Access
1760 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1762 when N_Discriminant_Association =>
1763 return Denotes_Discriminant (Expression (Constr));
1765 when N_Identifier =>
1766 return Denotes_Discriminant (Constr);
1768 when N_Index_Or_Discriminant_Constraint =>
1769 declare
1770 IDC : Node_Id;
1772 begin
1773 IDC := First (Constraints (Constr));
1774 while Present (IDC) loop
1776 -- One per-object constraint is sufficient
1778 if Contains_POC (IDC) then
1779 return True;
1780 end if;
1782 Next (IDC);
1783 end loop;
1785 return False;
1786 end;
1788 when N_Range =>
1789 return Denotes_Discriminant (Low_Bound (Constr))
1790 or else
1791 Denotes_Discriminant (High_Bound (Constr));
1793 when N_Range_Constraint =>
1794 return Denotes_Discriminant (Range_Expression (Constr));
1796 when others =>
1797 return False;
1799 end case;
1800 end Contains_POC;
1802 ----------------------
1803 -- Is_Known_Limited --
1804 ----------------------
1806 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1807 P : constant Entity_Id := Etype (Typ);
1808 R : constant Entity_Id := Root_Type (Typ);
1810 begin
1811 if Is_Limited_Record (Typ) then
1812 return True;
1814 -- If the root type is limited (and not a limited interface)
1815 -- so is the current type
1817 elsif Is_Limited_Record (R)
1818 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1819 then
1820 return True;
1822 -- Else the type may have a limited interface progenitor, but a
1823 -- limited record parent.
1825 elsif R /= P and then Is_Limited_Record (P) then
1826 return True;
1828 else
1829 return False;
1830 end if;
1831 end Is_Known_Limited;
1833 -- Start of processing for Analyze_Component_Declaration
1835 begin
1836 Generate_Definition (Id);
1837 Enter_Name (Id);
1839 if Present (Typ) then
1840 T := Find_Type_Of_Object
1841 (Subtype_Indication (Component_Definition (N)), N);
1843 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1844 Check_SPARK_Restriction ("subtype mark required", Typ);
1845 end if;
1847 -- Ada 2005 (AI-230): Access Definition case
1849 else
1850 pragma Assert (Present
1851 (Access_Definition (Component_Definition (N))));
1853 T := Access_Definition
1854 (Related_Nod => N,
1855 N => Access_Definition (Component_Definition (N)));
1856 Set_Is_Local_Anonymous_Access (T);
1858 -- Ada 2005 (AI-254)
1860 if Present (Access_To_Subprogram_Definition
1861 (Access_Definition (Component_Definition (N))))
1862 and then Protected_Present (Access_To_Subprogram_Definition
1863 (Access_Definition
1864 (Component_Definition (N))))
1865 then
1866 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1867 end if;
1868 end if;
1870 -- If the subtype is a constrained subtype of the enclosing record,
1871 -- (which must have a partial view) the back-end does not properly
1872 -- handle the recursion. Rewrite the component declaration with an
1873 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1874 -- the tree directly because side effects have already been removed from
1875 -- discriminant constraints.
1877 if Ekind (T) = E_Access_Subtype
1878 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1879 and then Comes_From_Source (T)
1880 and then Nkind (Parent (T)) = N_Subtype_Declaration
1881 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1882 then
1883 Rewrite
1884 (Subtype_Indication (Component_Definition (N)),
1885 New_Copy_Tree (Subtype_Indication (Parent (T))));
1886 T := Find_Type_Of_Object
1887 (Subtype_Indication (Component_Definition (N)), N);
1888 end if;
1890 -- If the component declaration includes a default expression, then we
1891 -- check that the component is not of a limited type (RM 3.7(5)),
1892 -- and do the special preanalysis of the expression (see section on
1893 -- "Handling of Default and Per-Object Expressions" in the spec of
1894 -- package Sem).
1896 if Present (E) then
1897 Check_SPARK_Restriction ("default expression is not allowed", E);
1898 Preanalyze_Spec_Expression (E, T);
1899 Check_Initialization (T, E);
1901 if Ada_Version >= Ada_2005
1902 and then Ekind (T) = E_Anonymous_Access_Type
1903 and then Etype (E) /= Any_Type
1904 then
1905 -- Check RM 3.9.2(9): "if the expected type for an expression is
1906 -- an anonymous access-to-specific tagged type, then the object
1907 -- designated by the expression shall not be dynamically tagged
1908 -- unless it is a controlling operand in a call on a dispatching
1909 -- operation"
1911 if Is_Tagged_Type (Directly_Designated_Type (T))
1912 and then
1913 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1914 and then
1915 Ekind (Directly_Designated_Type (Etype (E))) =
1916 E_Class_Wide_Type
1917 then
1918 Error_Msg_N
1919 ("access to specific tagged type required (RM 3.9.2(9))", E);
1920 end if;
1922 -- (Ada 2005: AI-230): Accessibility check for anonymous
1923 -- components
1925 if Type_Access_Level (Etype (E)) >
1926 Deepest_Type_Access_Level (T)
1927 then
1928 Error_Msg_N
1929 ("expression has deeper access level than component " &
1930 "(RM 3.10.2 (12.2))", E);
1931 end if;
1933 -- The initialization expression is a reference to an access
1934 -- discriminant. The type of the discriminant is always deeper
1935 -- than any access type.
1937 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1938 and then Is_Entity_Name (E)
1939 and then Ekind (Entity (E)) = E_In_Parameter
1940 and then Present (Discriminal_Link (Entity (E)))
1941 then
1942 Error_Msg_N
1943 ("discriminant has deeper accessibility level than target",
1945 end if;
1946 end if;
1947 end if;
1949 -- The parent type may be a private view with unknown discriminants,
1950 -- and thus unconstrained. Regular components must be constrained.
1952 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1953 if Is_Class_Wide_Type (T) then
1954 Error_Msg_N
1955 ("class-wide subtype with unknown discriminants" &
1956 " in component declaration",
1957 Subtype_Indication (Component_Definition (N)));
1958 else
1959 Error_Msg_N
1960 ("unconstrained subtype in component declaration",
1961 Subtype_Indication (Component_Definition (N)));
1962 end if;
1964 -- Components cannot be abstract, except for the special case of
1965 -- the _Parent field (case of extending an abstract tagged type)
1967 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
1968 Error_Msg_N ("type of a component cannot be abstract", N);
1969 end if;
1971 Set_Etype (Id, T);
1972 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
1974 -- The component declaration may have a per-object constraint, set
1975 -- the appropriate flag in the defining identifier of the subtype.
1977 if Present (Subtype_Indication (Component_Definition (N))) then
1978 declare
1979 Sindic : constant Node_Id :=
1980 Subtype_Indication (Component_Definition (N));
1981 begin
1982 if Nkind (Sindic) = N_Subtype_Indication
1983 and then Present (Constraint (Sindic))
1984 and then Contains_POC (Constraint (Sindic))
1985 then
1986 Set_Has_Per_Object_Constraint (Id);
1987 end if;
1988 end;
1989 end if;
1991 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1992 -- out some static checks.
1994 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
1995 Null_Exclusion_Static_Checks (N);
1996 end if;
1998 -- If this component is private (or depends on a private type), flag the
1999 -- record type to indicate that some operations are not available.
2001 P := Private_Component (T);
2003 if Present (P) then
2005 -- Check for circular definitions
2007 if P = Any_Type then
2008 Set_Etype (Id, Any_Type);
2010 -- There is a gap in the visibility of operations only if the
2011 -- component type is not defined in the scope of the record type.
2013 elsif Scope (P) = Scope (Current_Scope) then
2014 null;
2016 elsif Is_Limited_Type (P) then
2017 Set_Is_Limited_Composite (Current_Scope);
2019 else
2020 Set_Is_Private_Composite (Current_Scope);
2021 end if;
2022 end if;
2024 if P /= Any_Type
2025 and then Is_Limited_Type (T)
2026 and then Chars (Id) /= Name_uParent
2027 and then Is_Tagged_Type (Current_Scope)
2028 then
2029 if Is_Derived_Type (Current_Scope)
2030 and then not Is_Known_Limited (Current_Scope)
2031 then
2032 Error_Msg_N
2033 ("extension of nonlimited type cannot have limited components",
2036 if Is_Interface (Root_Type (Current_Scope)) then
2037 Error_Msg_N
2038 ("\limitedness is not inherited from limited interface", N);
2039 Error_Msg_N ("\add LIMITED to type indication", N);
2040 end if;
2042 Explain_Limited_Type (T, N);
2043 Set_Etype (Id, Any_Type);
2044 Set_Is_Limited_Composite (Current_Scope, False);
2046 elsif not Is_Derived_Type (Current_Scope)
2047 and then not Is_Limited_Record (Current_Scope)
2048 and then not Is_Concurrent_Type (Current_Scope)
2049 then
2050 Error_Msg_N
2051 ("nonlimited tagged type cannot have limited components", N);
2052 Explain_Limited_Type (T, N);
2053 Set_Etype (Id, Any_Type);
2054 Set_Is_Limited_Composite (Current_Scope, False);
2055 end if;
2056 end if;
2058 Set_Original_Record_Component (Id, Id);
2060 if Has_Aspects (N) then
2061 Analyze_Aspect_Specifications (N, Id);
2062 end if;
2064 Analyze_Dimension (N);
2065 end Analyze_Component_Declaration;
2067 --------------------------
2068 -- Analyze_Declarations --
2069 --------------------------
2071 procedure Analyze_Declarations (L : List_Id) is
2072 Decl : Node_Id;
2074 procedure Adjust_Decl;
2075 -- Adjust Decl not to include implicit label declarations, since these
2076 -- have strange Sloc values that result in elaboration check problems.
2077 -- (They have the sloc of the label as found in the source, and that
2078 -- is ahead of the current declarative part).
2080 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2081 -- Determine whether Body_Decl denotes the body of a late controlled
2082 -- primitive (either Initialize, Adjust or Finalize). If this is the
2083 -- case, add a proper spec if the body lacks one. The spec is inserted
2084 -- before Body_Decl and immedately analyzed.
2086 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2087 -- Spec_Id is the entity of a package that may define abstract states.
2088 -- If the states have visible refinement, remove the visibility of each
2089 -- constituent at the end of the package body declarations.
2091 -----------------
2092 -- Adjust_Decl --
2093 -----------------
2095 procedure Adjust_Decl is
2096 begin
2097 while Present (Prev (Decl))
2098 and then Nkind (Decl) = N_Implicit_Label_Declaration
2099 loop
2100 Prev (Decl);
2101 end loop;
2102 end Adjust_Decl;
2104 --------------------------------------
2105 -- Handle_Late_Controlled_Primitive --
2106 --------------------------------------
2108 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2109 Body_Spec : constant Node_Id := Specification (Body_Decl);
2110 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2111 Loc : constant Source_Ptr := Sloc (Body_Id);
2112 Params : constant List_Id :=
2113 Parameter_Specifications (Body_Spec);
2114 Spec : Node_Id;
2115 Spec_Id : Entity_Id;
2117 Dummy : Entity_Id;
2118 pragma Unreferenced (Dummy);
2119 -- A dummy variable used to capture the unused result of subprogram
2120 -- spec analysis.
2122 begin
2123 -- Consider only procedure bodies whose name matches one of the three
2124 -- controlled primitives.
2126 if Nkind (Body_Spec) /= N_Procedure_Specification
2127 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2128 Name_Finalize,
2129 Name_Initialize)
2130 then
2131 return;
2133 -- A controlled primitive must have exactly one formal
2135 elsif List_Length (Params) /= 1 then
2136 return;
2137 end if;
2139 Dummy := Analyze_Subprogram_Specification (Body_Spec);
2141 -- The type of the formal must be derived from [Limited_]Controlled
2143 if not Is_Controlled (Etype (Defining_Entity (First (Params)))) then
2144 return;
2145 end if;
2147 Spec_Id := Find_Corresponding_Spec (Body_Decl, Post_Error => False);
2149 -- The body has a matching spec, therefore it cannot be a late
2150 -- primitive.
2152 if Present (Spec_Id) then
2153 return;
2154 end if;
2156 -- At this point the body is known to be a late controlled primitive.
2157 -- Generate a matching spec and insert it before the body. Note the
2158 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2159 -- tree in this case.
2161 Spec := Copy_Separate_Tree (Body_Spec);
2163 -- Ensure that the subprogram declaration does not inherit the null
2164 -- indicator from the body as we now have a proper spec/body pair.
2166 Set_Null_Present (Spec, False);
2168 Insert_Before_And_Analyze (Body_Decl,
2169 Make_Subprogram_Declaration (Loc,
2170 Specification => Spec));
2171 end Handle_Late_Controlled_Primitive;
2173 --------------------------------
2174 -- Remove_Visible_Refinements --
2175 --------------------------------
2177 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2178 State_Elmt : Elmt_Id;
2179 begin
2180 if Present (Abstract_States (Spec_Id)) then
2181 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2182 while Present (State_Elmt) loop
2183 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2184 Next_Elmt (State_Elmt);
2185 end loop;
2186 end if;
2187 end Remove_Visible_Refinements;
2189 -- Local variables
2191 Context : Node_Id;
2192 Freeze_From : Entity_Id := Empty;
2193 Next_Decl : Node_Id;
2194 Spec_Id : Entity_Id;
2196 Body_Seen : Boolean := False;
2197 -- Flag set when the first body [stub] is encountered
2199 In_Package_Body : Boolean := False;
2200 -- Flag set when the current declaration list belongs to a package body
2202 -- Start of processing for Analyze_Declarations
2204 begin
2205 if Restriction_Check_Required (SPARK_05) then
2206 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2207 end if;
2209 Decl := First (L);
2210 while Present (Decl) loop
2212 -- Package spec cannot contain a package declaration in SPARK
2214 if Nkind (Decl) = N_Package_Declaration
2215 and then Nkind (Parent (L)) = N_Package_Specification
2216 then
2217 Check_SPARK_Restriction
2218 ("package specification cannot contain a package declaration",
2219 Decl);
2220 end if;
2222 -- Complete analysis of declaration
2224 Analyze (Decl);
2225 Next_Decl := Next (Decl);
2227 if No (Freeze_From) then
2228 Freeze_From := First_Entity (Current_Scope);
2229 end if;
2231 -- At the end of a declarative part, freeze remaining entities
2232 -- declared in it. The end of the visible declarations of package
2233 -- specification is not the end of a declarative part if private
2234 -- declarations are present. The end of a package declaration is a
2235 -- freezing point only if it a library package. A task definition or
2236 -- protected type definition is not a freeze point either. Finally,
2237 -- we do not freeze entities in generic scopes, because there is no
2238 -- code generated for them and freeze nodes will be generated for
2239 -- the instance.
2241 -- The end of a package instantiation is not a freeze point, but
2242 -- for now we make it one, because the generic body is inserted
2243 -- (currently) immediately after. Generic instantiations will not
2244 -- be a freeze point once delayed freezing of bodies is implemented.
2245 -- (This is needed in any case for early instantiations ???).
2247 if No (Next_Decl) then
2248 if Nkind_In (Parent (L), N_Component_List,
2249 N_Task_Definition,
2250 N_Protected_Definition)
2251 then
2252 null;
2254 elsif Nkind (Parent (L)) /= N_Package_Specification then
2255 if Nkind (Parent (L)) = N_Package_Body then
2256 Freeze_From := First_Entity (Current_Scope);
2257 end if;
2259 -- There may have been several freezing points previously,
2260 -- for example object declarations or subprogram bodies, but
2261 -- at the end of a declarative part we check freezing from
2262 -- the beginning, even though entities may already be frozen,
2263 -- in order to perform visibility checks on delayed aspects.
2265 Adjust_Decl;
2266 Freeze_All (First_Entity (Current_Scope), Decl);
2267 Freeze_From := Last_Entity (Current_Scope);
2269 elsif Scope (Current_Scope) /= Standard_Standard
2270 and then not Is_Child_Unit (Current_Scope)
2271 and then No (Generic_Parent (Parent (L)))
2272 then
2273 null;
2275 elsif L /= Visible_Declarations (Parent (L))
2276 or else No (Private_Declarations (Parent (L)))
2277 or else Is_Empty_List (Private_Declarations (Parent (L)))
2278 then
2279 Adjust_Decl;
2280 Freeze_All (First_Entity (Current_Scope), Decl);
2281 Freeze_From := Last_Entity (Current_Scope);
2282 end if;
2284 -- If next node is a body then freeze all types before the body.
2285 -- An exception occurs for some expander-generated bodies. If these
2286 -- are generated at places where in general language rules would not
2287 -- allow a freeze point, then we assume that the expander has
2288 -- explicitly checked that all required types are properly frozen,
2289 -- and we do not cause general freezing here. This special circuit
2290 -- is used when the encountered body is marked as having already
2291 -- been analyzed.
2293 -- In all other cases (bodies that come from source, and expander
2294 -- generated bodies that have not been analyzed yet), freeze all
2295 -- types now. Note that in the latter case, the expander must take
2296 -- care to attach the bodies at a proper place in the tree so as to
2297 -- not cause unwanted freezing at that point.
2299 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2301 -- When a controlled type is frozen, the expander generates stream
2302 -- and controlled type support routines. If the freeze is caused
2303 -- by the stand alone body of Initialize, Adjust and Finalize, the
2304 -- expander will end up using the wrong version of these routines
2305 -- as the body has not been processed yet. To remedy this, detect
2306 -- a late controlled primitive and create a proper spec for it.
2307 -- This ensures that the primitive will override its inherited
2308 -- counterpart before the freeze takes place.
2310 -- If the declaration we just processed is a body, do not attempt
2311 -- to examine Next_Decl as the late primitive idiom can only apply
2312 -- to the first encountered body.
2314 -- The spec of the late primitive is not generated in ASIS mode to
2315 -- ensure a consistent list of primitives that indicates the true
2316 -- semantic structure of the program (which is not relevant when
2317 -- generating executable code.
2319 -- ??? a cleaner approach may be possible and/or this solution
2320 -- could be extended to general-purpose late primitives, TBD.
2322 if not ASIS_Mode
2323 and then not Body_Seen
2324 and then not Is_Body (Decl)
2325 then
2326 Body_Seen := True;
2328 if Nkind (Next_Decl) = N_Subprogram_Body then
2329 Handle_Late_Controlled_Primitive (Next_Decl);
2330 end if;
2331 end if;
2333 Adjust_Decl;
2334 Freeze_All (Freeze_From, Decl);
2335 Freeze_From := Last_Entity (Current_Scope);
2336 end if;
2338 Decl := Next_Decl;
2339 end loop;
2341 -- Analyze the contracts of packages and their bodies
2343 if Present (L) then
2344 Context := Parent (L);
2346 if Nkind (Context) = N_Package_Specification then
2348 -- When a package has private declarations, its contract must be
2349 -- analyzed at the end of the said declarations. This way both the
2350 -- analysis and freeze actions are properly synchronized in case
2351 -- of private type use within the contract.
2353 if L = Private_Declarations (Context) then
2354 Analyze_Package_Contract (Defining_Entity (Context));
2356 -- Otherwise the contract is analyzed at the end of the visible
2357 -- declarations.
2359 elsif L = Visible_Declarations (Context)
2360 and then No (Private_Declarations (Context))
2361 then
2362 Analyze_Package_Contract (Defining_Entity (Context));
2363 end if;
2365 elsif Nkind (Context) = N_Package_Body then
2366 In_Package_Body := True;
2367 Spec_Id := Corresponding_Spec (Context);
2369 Analyze_Package_Body_Contract (Defining_Entity (Context));
2370 end if;
2371 end if;
2373 -- Analyze the contracts of subprogram declarations, subprogram bodies
2374 -- and variables now due to the delayed visibility requirements of their
2375 -- aspects.
2377 Decl := First (L);
2378 while Present (Decl) loop
2379 if Nkind (Decl) = N_Object_Declaration then
2380 Analyze_Object_Contract (Defining_Entity (Decl));
2382 elsif Nkind (Decl) = N_Subprogram_Body then
2383 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2385 elsif Nkind_In (Decl, N_Subprogram_Declaration,
2386 N_Abstract_Subprogram_Declaration)
2387 then
2388 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2389 end if;
2391 Next (Decl);
2392 end loop;
2394 -- State refinements are visible upto the end the of the package body
2395 -- declarations. Hide the refinements from visibility to restore the
2396 -- original state conditions.
2398 if In_Package_Body then
2399 Remove_Visible_Refinements (Spec_Id);
2400 end if;
2401 end Analyze_Declarations;
2403 -----------------------------------
2404 -- Analyze_Full_Type_Declaration --
2405 -----------------------------------
2407 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2408 Def : constant Node_Id := Type_Definition (N);
2409 Def_Id : constant Entity_Id := Defining_Identifier (N);
2410 T : Entity_Id;
2411 Prev : Entity_Id;
2413 Is_Remote : constant Boolean :=
2414 (Is_Remote_Types (Current_Scope)
2415 or else Is_Remote_Call_Interface (Current_Scope))
2416 and then not (In_Private_Part (Current_Scope)
2417 or else In_Package_Body (Current_Scope));
2419 procedure Check_Ops_From_Incomplete_Type;
2420 -- If there is a tagged incomplete partial view of the type, traverse
2421 -- the primitives of the incomplete view and change the type of any
2422 -- controlling formals and result to indicate the full view. The
2423 -- primitives will be added to the full type's primitive operations
2424 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2425 -- is called from Process_Incomplete_Dependents).
2427 ------------------------------------
2428 -- Check_Ops_From_Incomplete_Type --
2429 ------------------------------------
2431 procedure Check_Ops_From_Incomplete_Type is
2432 Elmt : Elmt_Id;
2433 Formal : Entity_Id;
2434 Op : Entity_Id;
2436 begin
2437 if Prev /= T
2438 and then Ekind (Prev) = E_Incomplete_Type
2439 and then Is_Tagged_Type (Prev)
2440 and then Is_Tagged_Type (T)
2441 then
2442 Elmt := First_Elmt (Primitive_Operations (Prev));
2443 while Present (Elmt) loop
2444 Op := Node (Elmt);
2446 Formal := First_Formal (Op);
2447 while Present (Formal) loop
2448 if Etype (Formal) = Prev then
2449 Set_Etype (Formal, T);
2450 end if;
2452 Next_Formal (Formal);
2453 end loop;
2455 if Etype (Op) = Prev then
2456 Set_Etype (Op, T);
2457 end if;
2459 Next_Elmt (Elmt);
2460 end loop;
2461 end if;
2462 end Check_Ops_From_Incomplete_Type;
2464 -- Start of processing for Analyze_Full_Type_Declaration
2466 begin
2467 Prev := Find_Type_Name (N);
2469 -- The full view, if present, now points to the current type
2471 -- Ada 2005 (AI-50217): If the type was previously decorated when
2472 -- imported through a LIMITED WITH clause, it appears as incomplete
2473 -- but has no full view.
2475 if Ekind (Prev) = E_Incomplete_Type
2476 and then Present (Full_View (Prev))
2477 then
2478 T := Full_View (Prev);
2479 else
2480 T := Prev;
2481 end if;
2483 Set_Is_Pure (T, Is_Pure (Current_Scope));
2485 -- We set the flag Is_First_Subtype here. It is needed to set the
2486 -- corresponding flag for the Implicit class-wide-type created
2487 -- during tagged types processing.
2489 Set_Is_First_Subtype (T, True);
2491 -- Only composite types other than array types are allowed to have
2492 -- discriminants.
2494 case Nkind (Def) is
2496 -- For derived types, the rule will be checked once we've figured
2497 -- out the parent type.
2499 when N_Derived_Type_Definition =>
2500 null;
2502 -- For record types, discriminants are allowed, unless we are in
2503 -- SPARK.
2505 when N_Record_Definition =>
2506 if Present (Discriminant_Specifications (N)) then
2507 Check_SPARK_Restriction
2508 ("discriminant type is not allowed",
2509 Defining_Identifier
2510 (First (Discriminant_Specifications (N))));
2511 end if;
2513 when others =>
2514 if Present (Discriminant_Specifications (N)) then
2515 Error_Msg_N
2516 ("elementary or array type cannot have discriminants",
2517 Defining_Identifier
2518 (First (Discriminant_Specifications (N))));
2519 end if;
2520 end case;
2522 -- Elaborate the type definition according to kind, and generate
2523 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2524 -- already done (this happens during the reanalysis that follows a call
2525 -- to the high level optimizer).
2527 if not Analyzed (T) then
2528 Set_Analyzed (T);
2530 case Nkind (Def) is
2532 when N_Access_To_Subprogram_Definition =>
2533 Access_Subprogram_Declaration (T, Def);
2535 -- If this is a remote access to subprogram, we must create the
2536 -- equivalent fat pointer type, and related subprograms.
2538 if Is_Remote then
2539 Process_Remote_AST_Declaration (N);
2540 end if;
2542 -- Validate categorization rule against access type declaration
2543 -- usually a violation in Pure unit, Shared_Passive unit.
2545 Validate_Access_Type_Declaration (T, N);
2547 when N_Access_To_Object_Definition =>
2548 Access_Type_Declaration (T, Def);
2550 -- Validate categorization rule against access type declaration
2551 -- usually a violation in Pure unit, Shared_Passive unit.
2553 Validate_Access_Type_Declaration (T, N);
2555 -- If we are in a Remote_Call_Interface package and define a
2556 -- RACW, then calling stubs and specific stream attributes
2557 -- must be added.
2559 if Is_Remote
2560 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2561 then
2562 Add_RACW_Features (Def_Id);
2563 end if;
2565 -- Set no strict aliasing flag if config pragma seen
2567 if Opt.No_Strict_Aliasing then
2568 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2569 end if;
2571 when N_Array_Type_Definition =>
2572 Array_Type_Declaration (T, Def);
2574 when N_Derived_Type_Definition =>
2575 Derived_Type_Declaration (T, N, T /= Def_Id);
2577 when N_Enumeration_Type_Definition =>
2578 Enumeration_Type_Declaration (T, Def);
2580 when N_Floating_Point_Definition =>
2581 Floating_Point_Type_Declaration (T, Def);
2583 when N_Decimal_Fixed_Point_Definition =>
2584 Decimal_Fixed_Point_Type_Declaration (T, Def);
2586 when N_Ordinary_Fixed_Point_Definition =>
2587 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2589 when N_Signed_Integer_Type_Definition =>
2590 Signed_Integer_Type_Declaration (T, Def);
2592 when N_Modular_Type_Definition =>
2593 Modular_Type_Declaration (T, Def);
2595 when N_Record_Definition =>
2596 Record_Type_Declaration (T, N, Prev);
2598 -- If declaration has a parse error, nothing to elaborate.
2600 when N_Error =>
2601 null;
2603 when others =>
2604 raise Program_Error;
2606 end case;
2607 end if;
2609 if Etype (T) = Any_Type then
2610 return;
2611 end if;
2613 -- Controlled type is not allowed in SPARK
2615 if Is_Visibly_Controlled (T) then
2616 Check_SPARK_Restriction ("controlled type is not allowed", N);
2617 end if;
2619 -- Some common processing for all types
2621 Set_Depends_On_Private (T, Has_Private_Component (T));
2622 Check_Ops_From_Incomplete_Type;
2624 -- Both the declared entity, and its anonymous base type if one
2625 -- was created, need freeze nodes allocated.
2627 declare
2628 B : constant Entity_Id := Base_Type (T);
2630 begin
2631 -- In the case where the base type differs from the first subtype, we
2632 -- pre-allocate a freeze node, and set the proper link to the first
2633 -- subtype. Freeze_Entity will use this preallocated freeze node when
2634 -- it freezes the entity.
2636 -- This does not apply if the base type is a generic type, whose
2637 -- declaration is independent of the current derived definition.
2639 if B /= T and then not Is_Generic_Type (B) then
2640 Ensure_Freeze_Node (B);
2641 Set_First_Subtype_Link (Freeze_Node (B), T);
2642 end if;
2644 -- A type that is imported through a limited_with clause cannot
2645 -- generate any code, and thus need not be frozen. However, an access
2646 -- type with an imported designated type needs a finalization list,
2647 -- which may be referenced in some other package that has non-limited
2648 -- visibility on the designated type. Thus we must create the
2649 -- finalization list at the point the access type is frozen, to
2650 -- prevent unsatisfied references at link time.
2652 if not From_Limited_With (T) or else Is_Access_Type (T) then
2653 Set_Has_Delayed_Freeze (T);
2654 end if;
2655 end;
2657 -- Case where T is the full declaration of some private type which has
2658 -- been swapped in Defining_Identifier (N).
2660 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2661 Process_Full_View (N, T, Def_Id);
2663 -- Record the reference. The form of this is a little strange, since
2664 -- the full declaration has been swapped in. So the first parameter
2665 -- here represents the entity to which a reference is made which is
2666 -- the "real" entity, i.e. the one swapped in, and the second
2667 -- parameter provides the reference location.
2669 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2670 -- since we don't want a complaint about the full type being an
2671 -- unwanted reference to the private type
2673 declare
2674 B : constant Boolean := Has_Pragma_Unreferenced (T);
2675 begin
2676 Set_Has_Pragma_Unreferenced (T, False);
2677 Generate_Reference (T, T, 'c');
2678 Set_Has_Pragma_Unreferenced (T, B);
2679 end;
2681 Set_Completion_Referenced (Def_Id);
2683 -- For completion of incomplete type, process incomplete dependents
2684 -- and always mark the full type as referenced (it is the incomplete
2685 -- type that we get for any real reference).
2687 elsif Ekind (Prev) = E_Incomplete_Type then
2688 Process_Incomplete_Dependents (N, T, Prev);
2689 Generate_Reference (Prev, Def_Id, 'c');
2690 Set_Completion_Referenced (Def_Id);
2692 -- If not private type or incomplete type completion, this is a real
2693 -- definition of a new entity, so record it.
2695 else
2696 Generate_Definition (Def_Id);
2697 end if;
2699 if Chars (Scope (Def_Id)) = Name_System
2700 and then Chars (Def_Id) = Name_Address
2701 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2702 then
2703 Set_Is_Descendent_Of_Address (Def_Id);
2704 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2705 Set_Is_Descendent_Of_Address (Prev);
2706 end if;
2708 Set_Optimize_Alignment_Flags (Def_Id);
2709 Check_Eliminated (Def_Id);
2711 -- If the declaration is a completion and aspects are present, apply
2712 -- them to the entity for the type which is currently the partial
2713 -- view, but which is the one that will be frozen.
2715 if Has_Aspects (N) then
2716 if Prev /= Def_Id then
2717 Analyze_Aspect_Specifications (N, Prev);
2718 else
2719 Analyze_Aspect_Specifications (N, Def_Id);
2720 end if;
2721 end if;
2722 end Analyze_Full_Type_Declaration;
2724 ----------------------------------
2725 -- Analyze_Incomplete_Type_Decl --
2726 ----------------------------------
2728 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2729 F : constant Boolean := Is_Pure (Current_Scope);
2730 T : Entity_Id;
2732 begin
2733 Check_SPARK_Restriction ("incomplete type is not allowed", N);
2735 Generate_Definition (Defining_Identifier (N));
2737 -- Process an incomplete declaration. The identifier must not have been
2738 -- declared already in the scope. However, an incomplete declaration may
2739 -- appear in the private part of a package, for a private type that has
2740 -- already been declared.
2742 -- In this case, the discriminants (if any) must match
2744 T := Find_Type_Name (N);
2746 Set_Ekind (T, E_Incomplete_Type);
2747 Init_Size_Align (T);
2748 Set_Is_First_Subtype (T, True);
2749 Set_Etype (T, T);
2751 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2752 -- incomplete types.
2754 if Tagged_Present (N) then
2755 Set_Is_Tagged_Type (T);
2756 Make_Class_Wide_Type (T);
2757 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2758 end if;
2760 Push_Scope (T);
2762 Set_Stored_Constraint (T, No_Elist);
2764 if Present (Discriminant_Specifications (N)) then
2765 Process_Discriminants (N);
2766 end if;
2768 End_Scope;
2770 -- If the type has discriminants, non-trivial subtypes may be
2771 -- declared before the full view of the type. The full views of those
2772 -- subtypes will be built after the full view of the type.
2774 Set_Private_Dependents (T, New_Elmt_List);
2775 Set_Is_Pure (T, F);
2776 end Analyze_Incomplete_Type_Decl;
2778 -----------------------------------
2779 -- Analyze_Interface_Declaration --
2780 -----------------------------------
2782 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2783 CW : constant Entity_Id := Class_Wide_Type (T);
2785 begin
2786 Set_Is_Tagged_Type (T);
2788 Set_Is_Limited_Record (T, Limited_Present (Def)
2789 or else Task_Present (Def)
2790 or else Protected_Present (Def)
2791 or else Synchronized_Present (Def));
2793 -- Type is abstract if full declaration carries keyword, or if previous
2794 -- partial view did.
2796 Set_Is_Abstract_Type (T);
2797 Set_Is_Interface (T);
2799 -- Type is a limited interface if it includes the keyword limited, task,
2800 -- protected, or synchronized.
2802 Set_Is_Limited_Interface
2803 (T, Limited_Present (Def)
2804 or else Protected_Present (Def)
2805 or else Synchronized_Present (Def)
2806 or else Task_Present (Def));
2808 Set_Interfaces (T, New_Elmt_List);
2809 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2811 -- Complete the decoration of the class-wide entity if it was already
2812 -- built (i.e. during the creation of the limited view)
2814 if Present (CW) then
2815 Set_Is_Interface (CW);
2816 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2817 end if;
2819 -- Check runtime support for synchronized interfaces
2821 if VM_Target = No_VM
2822 and then (Is_Task_Interface (T)
2823 or else Is_Protected_Interface (T)
2824 or else Is_Synchronized_Interface (T))
2825 and then not RTE_Available (RE_Select_Specific_Data)
2826 then
2827 Error_Msg_CRT ("synchronized interfaces", T);
2828 end if;
2829 end Analyze_Interface_Declaration;
2831 -----------------------------
2832 -- Analyze_Itype_Reference --
2833 -----------------------------
2835 -- Nothing to do. This node is placed in the tree only for the benefit of
2836 -- back end processing, and has no effect on the semantic processing.
2838 procedure Analyze_Itype_Reference (N : Node_Id) is
2839 begin
2840 pragma Assert (Is_Itype (Itype (N)));
2841 null;
2842 end Analyze_Itype_Reference;
2844 --------------------------------
2845 -- Analyze_Number_Declaration --
2846 --------------------------------
2848 procedure Analyze_Number_Declaration (N : Node_Id) is
2849 Id : constant Entity_Id := Defining_Identifier (N);
2850 E : constant Node_Id := Expression (N);
2851 T : Entity_Id;
2852 Index : Interp_Index;
2853 It : Interp;
2855 begin
2856 Generate_Definition (Id);
2857 Enter_Name (Id);
2859 -- This is an optimization of a common case of an integer literal
2861 if Nkind (E) = N_Integer_Literal then
2862 Set_Is_Static_Expression (E, True);
2863 Set_Etype (E, Universal_Integer);
2865 Set_Etype (Id, Universal_Integer);
2866 Set_Ekind (Id, E_Named_Integer);
2867 Set_Is_Frozen (Id, True);
2868 return;
2869 end if;
2871 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2873 -- Process expression, replacing error by integer zero, to avoid
2874 -- cascaded errors or aborts further along in the processing
2876 -- Replace Error by integer zero, which seems least likely to cause
2877 -- cascaded errors.
2879 if E = Error then
2880 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2881 Set_Error_Posted (E);
2882 end if;
2884 Analyze (E);
2886 -- Verify that the expression is static and numeric. If
2887 -- the expression is overloaded, we apply the preference
2888 -- rule that favors root numeric types.
2890 if not Is_Overloaded (E) then
2891 T := Etype (E);
2893 else
2894 T := Any_Type;
2896 Get_First_Interp (E, Index, It);
2897 while Present (It.Typ) loop
2898 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
2899 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
2900 then
2901 if T = Any_Type then
2902 T := It.Typ;
2904 elsif It.Typ = Universal_Real
2905 or else It.Typ = Universal_Integer
2906 then
2907 -- Choose universal interpretation over any other
2909 T := It.Typ;
2910 exit;
2911 end if;
2912 end if;
2914 Get_Next_Interp (Index, It);
2915 end loop;
2916 end if;
2918 if Is_Integer_Type (T) then
2919 Resolve (E, T);
2920 Set_Etype (Id, Universal_Integer);
2921 Set_Ekind (Id, E_Named_Integer);
2923 elsif Is_Real_Type (T) then
2925 -- Because the real value is converted to universal_real, this is a
2926 -- legal context for a universal fixed expression.
2928 if T = Universal_Fixed then
2929 declare
2930 Loc : constant Source_Ptr := Sloc (N);
2931 Conv : constant Node_Id := Make_Type_Conversion (Loc,
2932 Subtype_Mark =>
2933 New_Occurrence_Of (Universal_Real, Loc),
2934 Expression => Relocate_Node (E));
2936 begin
2937 Rewrite (E, Conv);
2938 Analyze (E);
2939 end;
2941 elsif T = Any_Fixed then
2942 Error_Msg_N ("illegal context for mixed mode operation", E);
2944 -- Expression is of the form : universal_fixed * integer. Try to
2945 -- resolve as universal_real.
2947 T := Universal_Real;
2948 Set_Etype (E, T);
2949 end if;
2951 Resolve (E, T);
2952 Set_Etype (Id, Universal_Real);
2953 Set_Ekind (Id, E_Named_Real);
2955 else
2956 Wrong_Type (E, Any_Numeric);
2957 Resolve (E, T);
2959 Set_Etype (Id, T);
2960 Set_Ekind (Id, E_Constant);
2961 Set_Never_Set_In_Source (Id, True);
2962 Set_Is_True_Constant (Id, True);
2963 return;
2964 end if;
2966 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
2967 Set_Etype (E, Etype (Id));
2968 end if;
2970 if not Is_OK_Static_Expression (E) then
2971 Flag_Non_Static_Expr
2972 ("non-static expression used in number declaration!", E);
2973 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
2974 Set_Etype (E, Any_Type);
2975 end if;
2976 end Analyze_Number_Declaration;
2978 -----------------------------
2979 -- Analyze_Object_Contract --
2980 -----------------------------
2982 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
2983 AR_Val : Boolean := False;
2984 AW_Val : Boolean := False;
2985 ER_Val : Boolean := False;
2986 EW_Val : Boolean := False;
2987 Prag : Node_Id;
2988 Seen : Boolean := False;
2990 begin
2991 if Ekind (Obj_Id) = E_Constant then
2993 -- A constant cannot be volatile. This check is only relevant when
2994 -- SPARK_Mode is on as it is not standard Ada legality rule. Do not
2995 -- flag internally-generated constants that map generic formals to
2996 -- actuals in instantiations (SPARK RM 7.1.3(6)).
2998 if SPARK_Mode = On
2999 and then Is_SPARK_Volatile_Object (Obj_Id)
3000 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3001 then
3002 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3003 end if;
3005 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3007 -- The following checks are only relevant when SPARK_Mode is on as
3008 -- they are not standard Ada legality rules.
3010 if SPARK_Mode = On then
3012 -- A non-volatile object cannot have volatile components
3013 -- (SPARK RM 7.1.3(7)).
3015 if not Is_SPARK_Volatile_Object (Obj_Id)
3016 and then Has_Volatile_Component (Etype (Obj_Id))
3017 then
3018 Error_Msg_N
3019 ("non-volatile variable & cannot have volatile components",
3020 Obj_Id);
3022 -- The declaration of a volatile object must appear at the library
3023 -- level.
3025 elsif Is_SPARK_Volatile_Object (Obj_Id)
3026 and then not Is_Library_Level_Entity (Obj_Id)
3027 then
3028 Error_Msg_N
3029 ("volatile variable & must be declared at library level "
3030 & "(SPARK RM 7.1.3(5))", Obj_Id);
3031 end if;
3032 end if;
3034 -- Analyze all external properties
3036 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3038 if Present (Prag) then
3039 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3040 Seen := True;
3041 end if;
3043 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3045 if Present (Prag) then
3046 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3047 Seen := True;
3048 end if;
3050 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3052 if Present (Prag) then
3053 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3054 Seen := True;
3055 end if;
3057 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3059 if Present (Prag) then
3060 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3061 Seen := True;
3062 end if;
3064 -- Verify the mutual interaction of the various external properties
3066 if Seen then
3067 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3068 end if;
3070 -- Check whether the lack of indicator Part_Of agrees with the
3071 -- placement of the variable with respect to the state space.
3073 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3075 if No (Prag) then
3076 Check_Missing_Part_Of (Obj_Id);
3077 end if;
3078 end if;
3079 end Analyze_Object_Contract;
3081 --------------------------------
3082 -- Analyze_Object_Declaration --
3083 --------------------------------
3085 procedure Analyze_Object_Declaration (N : Node_Id) is
3086 Loc : constant Source_Ptr := Sloc (N);
3087 Id : constant Entity_Id := Defining_Identifier (N);
3088 T : Entity_Id;
3089 Act_T : Entity_Id;
3091 E : Node_Id := Expression (N);
3092 -- E is set to Expression (N) throughout this routine. When
3093 -- Expression (N) is modified, E is changed accordingly.
3095 Prev_Entity : Entity_Id := Empty;
3097 function Count_Tasks (T : Entity_Id) return Uint;
3098 -- This function is called when a non-generic library level object of a
3099 -- task type is declared. Its function is to count the static number of
3100 -- tasks declared within the type (it is only called if Has_Tasks is set
3101 -- for T). As a side effect, if an array of tasks with non-static bounds
3102 -- or a variant record type is encountered, Check_Restrictions is called
3103 -- indicating the count is unknown.
3105 -----------------
3106 -- Count_Tasks --
3107 -----------------
3109 function Count_Tasks (T : Entity_Id) return Uint is
3110 C : Entity_Id;
3111 X : Node_Id;
3112 V : Uint;
3114 begin
3115 if Is_Task_Type (T) then
3116 return Uint_1;
3118 elsif Is_Record_Type (T) then
3119 if Has_Discriminants (T) then
3120 Check_Restriction (Max_Tasks, N);
3121 return Uint_0;
3123 else
3124 V := Uint_0;
3125 C := First_Component (T);
3126 while Present (C) loop
3127 V := V + Count_Tasks (Etype (C));
3128 Next_Component (C);
3129 end loop;
3131 return V;
3132 end if;
3134 elsif Is_Array_Type (T) then
3135 X := First_Index (T);
3136 V := Count_Tasks (Component_Type (T));
3137 while Present (X) loop
3138 C := Etype (X);
3140 if not Is_Static_Subtype (C) then
3141 Check_Restriction (Max_Tasks, N);
3142 return Uint_0;
3143 else
3144 V := V * (UI_Max (Uint_0,
3145 Expr_Value (Type_High_Bound (C)) -
3146 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3147 end if;
3149 Next_Index (X);
3150 end loop;
3152 return V;
3154 else
3155 return Uint_0;
3156 end if;
3157 end Count_Tasks;
3159 -- Start of processing for Analyze_Object_Declaration
3161 begin
3162 -- There are three kinds of implicit types generated by an
3163 -- object declaration:
3165 -- 1. Those generated by the original Object Definition
3167 -- 2. Those generated by the Expression
3169 -- 3. Those used to constrain the Object Definition with the
3170 -- expression constraints when the definition is unconstrained.
3172 -- They must be generated in this order to avoid order of elaboration
3173 -- issues. Thus the first step (after entering the name) is to analyze
3174 -- the object definition.
3176 if Constant_Present (N) then
3177 Prev_Entity := Current_Entity_In_Scope (Id);
3179 if Present (Prev_Entity)
3180 and then
3182 -- If the homograph is an implicit subprogram, it is overridden
3183 -- by the current declaration.
3185 ((Is_Overloadable (Prev_Entity)
3186 and then Is_Inherited_Operation (Prev_Entity))
3188 -- The current object is a discriminal generated for an entry
3189 -- family index. Even though the index is a constant, in this
3190 -- particular context there is no true constant redeclaration.
3191 -- Enter_Name will handle the visibility.
3193 or else
3194 (Is_Discriminal (Id)
3195 and then Ekind (Discriminal_Link (Id)) =
3196 E_Entry_Index_Parameter)
3198 -- The current object is the renaming for a generic declared
3199 -- within the instance.
3201 or else
3202 (Ekind (Prev_Entity) = E_Package
3203 and then Nkind (Parent (Prev_Entity)) =
3204 N_Package_Renaming_Declaration
3205 and then not Comes_From_Source (Prev_Entity)
3206 and then Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3207 then
3208 Prev_Entity := Empty;
3209 end if;
3210 end if;
3212 if Present (Prev_Entity) then
3213 Constant_Redeclaration (Id, N, T);
3215 Generate_Reference (Prev_Entity, Id, 'c');
3216 Set_Completion_Referenced (Id);
3218 if Error_Posted (N) then
3220 -- Type mismatch or illegal redeclaration, Do not analyze
3221 -- expression to avoid cascaded errors.
3223 T := Find_Type_Of_Object (Object_Definition (N), N);
3224 Set_Etype (Id, T);
3225 Set_Ekind (Id, E_Variable);
3226 goto Leave;
3227 end if;
3229 -- In the normal case, enter identifier at the start to catch premature
3230 -- usage in the initialization expression.
3232 else
3233 Generate_Definition (Id);
3234 Enter_Name (Id);
3236 Mark_Coextensions (N, Object_Definition (N));
3238 T := Find_Type_Of_Object (Object_Definition (N), N);
3240 if Nkind (Object_Definition (N)) = N_Access_Definition
3241 and then Present
3242 (Access_To_Subprogram_Definition (Object_Definition (N)))
3243 and then Protected_Present
3244 (Access_To_Subprogram_Definition (Object_Definition (N)))
3245 then
3246 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3247 end if;
3249 if Error_Posted (Id) then
3250 Set_Etype (Id, T);
3251 Set_Ekind (Id, E_Variable);
3252 goto Leave;
3253 end if;
3254 end if;
3256 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3257 -- out some static checks
3259 if Ada_Version >= Ada_2005
3260 and then Can_Never_Be_Null (T)
3261 then
3262 -- In case of aggregates we must also take care of the correct
3263 -- initialization of nested aggregates bug this is done at the
3264 -- point of the analysis of the aggregate (see sem_aggr.adb)
3266 if Present (Expression (N))
3267 and then Nkind (Expression (N)) = N_Aggregate
3268 then
3269 null;
3271 else
3272 declare
3273 Save_Typ : constant Entity_Id := Etype (Id);
3274 begin
3275 Set_Etype (Id, T); -- Temp. decoration for static checks
3276 Null_Exclusion_Static_Checks (N);
3277 Set_Etype (Id, Save_Typ);
3278 end;
3279 end if;
3280 end if;
3282 -- Object is marked pure if it is in a pure scope
3284 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3286 -- If deferred constant, make sure context is appropriate. We detect
3287 -- a deferred constant as a constant declaration with no expression.
3288 -- A deferred constant can appear in a package body if its completion
3289 -- is by means of an interface pragma.
3291 if Constant_Present (N) and then No (E) then
3293 -- A deferred constant may appear in the declarative part of the
3294 -- following constructs:
3296 -- blocks
3297 -- entry bodies
3298 -- extended return statements
3299 -- package specs
3300 -- package bodies
3301 -- subprogram bodies
3302 -- task bodies
3304 -- When declared inside a package spec, a deferred constant must be
3305 -- completed by a full constant declaration or pragma Import. In all
3306 -- other cases, the only proper completion is pragma Import. Extended
3307 -- return statements are flagged as invalid contexts because they do
3308 -- not have a declarative part and so cannot accommodate the pragma.
3310 if Ekind (Current_Scope) = E_Return_Statement then
3311 Error_Msg_N
3312 ("invalid context for deferred constant declaration (RM 7.4)",
3314 Error_Msg_N
3315 ("\declaration requires an initialization expression",
3317 Set_Constant_Present (N, False);
3319 -- In Ada 83, deferred constant must be of private type
3321 elsif not Is_Private_Type (T) then
3322 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3323 Error_Msg_N
3324 ("(Ada 83) deferred constant must be private type", N);
3325 end if;
3326 end if;
3328 -- If not a deferred constant, then object declaration freezes its type
3330 else
3331 Check_Fully_Declared (T, N);
3332 Freeze_Before (N, T);
3333 end if;
3335 -- If the object was created by a constrained array definition, then
3336 -- set the link in both the anonymous base type and anonymous subtype
3337 -- that are built to represent the array type to point to the object.
3339 if Nkind (Object_Definition (Declaration_Node (Id))) =
3340 N_Constrained_Array_Definition
3341 then
3342 Set_Related_Array_Object (T, Id);
3343 Set_Related_Array_Object (Base_Type (T), Id);
3344 end if;
3346 -- Special checks for protected objects not at library level
3348 if Is_Protected_Type (T)
3349 and then not Is_Library_Level_Entity (Id)
3350 then
3351 Check_Restriction (No_Local_Protected_Objects, Id);
3353 -- Protected objects with interrupt handlers must be at library level
3355 -- Ada 2005: This test is not needed (and the corresponding clause
3356 -- in the RM is removed) because accessibility checks are sufficient
3357 -- to make handlers not at the library level illegal.
3359 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3360 -- applies to the '95 version of the language as well.
3362 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3363 Error_Msg_N
3364 ("interrupt object can only be declared at library level", Id);
3365 end if;
3366 end if;
3368 -- The actual subtype of the object is the nominal subtype, unless
3369 -- the nominal one is unconstrained and obtained from the expression.
3371 Act_T := T;
3373 -- These checks should be performed before the initialization expression
3374 -- is considered, so that the Object_Definition node is still the same
3375 -- as in source code.
3377 -- In SPARK, the nominal subtype shall be given by a subtype mark and
3378 -- shall not be unconstrained. (The only exception to this is the
3379 -- admission of declarations of constants of type String.)
3381 if not
3382 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3383 then
3384 Check_SPARK_Restriction
3385 ("subtype mark required", Object_Definition (N));
3387 elsif Is_Array_Type (T)
3388 and then not Is_Constrained (T)
3389 and then T /= Standard_String
3390 then
3391 Check_SPARK_Restriction
3392 ("subtype mark of constrained type expected",
3393 Object_Definition (N));
3394 end if;
3396 -- There are no aliased objects in SPARK
3398 if Aliased_Present (N) then
3399 Check_SPARK_Restriction ("aliased object is not allowed", N);
3400 end if;
3402 -- Process initialization expression if present and not in error
3404 if Present (E) and then E /= Error then
3406 -- Generate an error in case of CPP class-wide object initialization.
3407 -- Required because otherwise the expansion of the class-wide
3408 -- assignment would try to use 'size to initialize the object
3409 -- (primitive that is not available in CPP tagged types).
3411 if Is_Class_Wide_Type (Act_T)
3412 and then
3413 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3414 or else
3415 (Present (Full_View (Root_Type (Etype (Act_T))))
3416 and then
3417 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3418 then
3419 Error_Msg_N
3420 ("predefined assignment not available for 'C'P'P tagged types",
3422 end if;
3424 Mark_Coextensions (N, E);
3425 Analyze (E);
3427 -- In case of errors detected in the analysis of the expression,
3428 -- decorate it with the expected type to avoid cascaded errors
3430 if No (Etype (E)) then
3431 Set_Etype (E, T);
3432 end if;
3434 -- If an initialization expression is present, then we set the
3435 -- Is_True_Constant flag. It will be reset if this is a variable
3436 -- and it is indeed modified.
3438 Set_Is_True_Constant (Id, True);
3440 -- If we are analyzing a constant declaration, set its completion
3441 -- flag after analyzing and resolving the expression.
3443 if Constant_Present (N) then
3444 Set_Has_Completion (Id);
3445 end if;
3447 -- Set type and resolve (type may be overridden later on). Note:
3448 -- Ekind (Id) must still be E_Void at this point so that incorrect
3449 -- early usage within E is properly diagnosed.
3451 Set_Etype (Id, T);
3452 Resolve (E, T);
3454 -- No further action needed if E is a call to an inlined function
3455 -- which returns an unconstrained type and it has been expanded into
3456 -- a procedure call. In that case N has been replaced by an object
3457 -- declaration without initializing expression and it has been
3458 -- analyzed (see Expand_Inlined_Call).
3460 if Debug_Flag_Dot_K
3461 and then Expander_Active
3462 and then Nkind (E) = N_Function_Call
3463 and then Nkind (Name (E)) in N_Has_Entity
3464 and then Is_Inlined (Entity (Name (E)))
3465 and then not Is_Constrained (Etype (E))
3466 and then Analyzed (N)
3467 and then No (Expression (N))
3468 then
3469 return;
3470 end if;
3472 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3473 -- node (which was marked already-analyzed), we need to set the type
3474 -- to something other than Any_Access in order to keep gigi happy.
3476 if Etype (E) = Any_Access then
3477 Set_Etype (E, T);
3478 end if;
3480 -- If the object is an access to variable, the initialization
3481 -- expression cannot be an access to constant.
3483 if Is_Access_Type (T)
3484 and then not Is_Access_Constant (T)
3485 and then Is_Access_Type (Etype (E))
3486 and then Is_Access_Constant (Etype (E))
3487 then
3488 Error_Msg_N
3489 ("access to variable cannot be initialized "
3490 & "with an access-to-constant expression", E);
3491 end if;
3493 if not Assignment_OK (N) then
3494 Check_Initialization (T, E);
3495 end if;
3497 Check_Unset_Reference (E);
3499 -- If this is a variable, then set current value. If this is a
3500 -- declared constant of a scalar type with a static expression,
3501 -- indicate that it is always valid.
3503 if not Constant_Present (N) then
3504 if Compile_Time_Known_Value (E) then
3505 Set_Current_Value (Id, E);
3506 end if;
3508 elsif Is_Scalar_Type (T)
3509 and then Is_OK_Static_Expression (E)
3510 then
3511 Set_Is_Known_Valid (Id);
3512 end if;
3514 -- Deal with setting of null flags
3516 if Is_Access_Type (T) then
3517 if Known_Non_Null (E) then
3518 Set_Is_Known_Non_Null (Id, True);
3519 elsif Known_Null (E)
3520 and then not Can_Never_Be_Null (Id)
3521 then
3522 Set_Is_Known_Null (Id, True);
3523 end if;
3524 end if;
3526 -- Check incorrect use of dynamically tagged expressions
3528 if Is_Tagged_Type (T) then
3529 Check_Dynamically_Tagged_Expression
3530 (Expr => E,
3531 Typ => T,
3532 Related_Nod => N);
3533 end if;
3535 Apply_Scalar_Range_Check (E, T);
3536 Apply_Static_Length_Check (E, T);
3538 if Nkind (Original_Node (N)) = N_Object_Declaration
3539 and then Comes_From_Source (Original_Node (N))
3541 -- Only call test if needed
3543 and then Restriction_Check_Required (SPARK_05)
3544 and then not Is_SPARK_Initialization_Expr (Original_Node (E))
3545 then
3546 Check_SPARK_Restriction
3547 ("initialization expression is not appropriate", E);
3548 end if;
3549 end if;
3551 -- If the No_Streams restriction is set, check that the type of the
3552 -- object is not, and does not contain, any subtype derived from
3553 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3554 -- Has_Stream just for efficiency reasons. There is no point in
3555 -- spending time on a Has_Stream check if the restriction is not set.
3557 if Restriction_Check_Required (No_Streams) then
3558 if Has_Stream (T) then
3559 Check_Restriction (No_Streams, N);
3560 end if;
3561 end if;
3563 -- Deal with predicate check before we start to do major rewriting. It
3564 -- is OK to initialize and then check the initialized value, since the
3565 -- object goes out of scope if we get a predicate failure. Note that we
3566 -- do this in the analyzer and not the expander because the analyzer
3567 -- does some substantial rewriting in some cases.
3569 -- We need a predicate check if the type has predicates, and if either
3570 -- there is an initializing expression, or for default initialization
3571 -- when we have at least one case of an explicit default initial value
3572 -- and then this is not an internal declaration whose initialization
3573 -- comes later (as for an aggregate expansion).
3575 if not Suppress_Assignment_Checks (N)
3576 and then Present (Predicate_Function (T))
3577 and then not No_Initialization (N)
3578 and then
3579 (Present (E)
3580 or else
3581 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3582 then
3583 -- If the type has a static predicate and the expression is known at
3584 -- compile time, see if the expression satisfies the predicate.
3586 if Present (E) then
3587 Check_Expression_Against_Static_Predicate (E, T);
3588 end if;
3590 Insert_After (N,
3591 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3592 end if;
3594 -- Case of unconstrained type
3596 if Is_Indefinite_Subtype (T) then
3598 -- In SPARK, a declaration of unconstrained type is allowed
3599 -- only for constants of type string.
3601 if Is_String_Type (T) and then not Constant_Present (N) then
3602 Check_SPARK_Restriction
3603 ("declaration of object of unconstrained type not allowed", N);
3604 end if;
3606 -- Nothing to do in deferred constant case
3608 if Constant_Present (N) and then No (E) then
3609 null;
3611 -- Case of no initialization present
3613 elsif No (E) then
3614 if No_Initialization (N) then
3615 null;
3617 elsif Is_Class_Wide_Type (T) then
3618 Error_Msg_N
3619 ("initialization required in class-wide declaration ", N);
3621 else
3622 Error_Msg_N
3623 ("unconstrained subtype not allowed (need initialization)",
3624 Object_Definition (N));
3626 if Is_Record_Type (T) and then Has_Discriminants (T) then
3627 Error_Msg_N
3628 ("\provide initial value or explicit discriminant values",
3629 Object_Definition (N));
3631 Error_Msg_NE
3632 ("\or give default discriminant values for type&",
3633 Object_Definition (N), T);
3635 elsif Is_Array_Type (T) then
3636 Error_Msg_N
3637 ("\provide initial value or explicit array bounds",
3638 Object_Definition (N));
3639 end if;
3640 end if;
3642 -- Case of initialization present but in error. Set initial
3643 -- expression as absent (but do not make above complaints)
3645 elsif E = Error then
3646 Set_Expression (N, Empty);
3647 E := Empty;
3649 -- Case of initialization present
3651 else
3652 -- Check restrictions in Ada 83
3654 if not Constant_Present (N) then
3656 -- Unconstrained variables not allowed in Ada 83 mode
3658 if Ada_Version = Ada_83
3659 and then Comes_From_Source (Object_Definition (N))
3660 then
3661 Error_Msg_N
3662 ("(Ada 83) unconstrained variable not allowed",
3663 Object_Definition (N));
3664 end if;
3665 end if;
3667 -- Now we constrain the variable from the initializing expression
3669 -- If the expression is an aggregate, it has been expanded into
3670 -- individual assignments. Retrieve the actual type from the
3671 -- expanded construct.
3673 if Is_Array_Type (T)
3674 and then No_Initialization (N)
3675 and then Nkind (Original_Node (E)) = N_Aggregate
3676 then
3677 Act_T := Etype (E);
3679 -- In case of class-wide interface object declarations we delay
3680 -- the generation of the equivalent record type declarations until
3681 -- its expansion because there are cases in they are not required.
3683 elsif Is_Interface (T) then
3684 null;
3686 else
3687 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3688 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3689 end if;
3691 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3693 if Aliased_Present (N) then
3694 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3695 end if;
3697 Freeze_Before (N, Act_T);
3698 Freeze_Before (N, T);
3699 end if;
3701 elsif Is_Array_Type (T)
3702 and then No_Initialization (N)
3703 and then Nkind (Original_Node (E)) = N_Aggregate
3704 then
3705 if not Is_Entity_Name (Object_Definition (N)) then
3706 Act_T := Etype (E);
3707 Check_Compile_Time_Size (Act_T);
3709 if Aliased_Present (N) then
3710 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3711 end if;
3712 end if;
3714 -- When the given object definition and the aggregate are specified
3715 -- independently, and their lengths might differ do a length check.
3716 -- This cannot happen if the aggregate is of the form (others =>...)
3718 if not Is_Constrained (T) then
3719 null;
3721 elsif Nkind (E) = N_Raise_Constraint_Error then
3723 -- Aggregate is statically illegal. Place back in declaration
3725 Set_Expression (N, E);
3726 Set_No_Initialization (N, False);
3728 elsif T = Etype (E) then
3729 null;
3731 elsif Nkind (E) = N_Aggregate
3732 and then Present (Component_Associations (E))
3733 and then Present (Choices (First (Component_Associations (E))))
3734 and then Nkind (First
3735 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3736 then
3737 null;
3739 else
3740 Apply_Length_Check (E, T);
3741 end if;
3743 -- If the type is limited unconstrained with defaulted discriminants and
3744 -- there is no expression, then the object is constrained by the
3745 -- defaults, so it is worthwhile building the corresponding subtype.
3747 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3748 and then not Is_Constrained (T)
3749 and then Has_Discriminants (T)
3750 then
3751 if No (E) then
3752 Act_T := Build_Default_Subtype (T, N);
3753 else
3754 -- Ada 2005: A limited object may be initialized by means of an
3755 -- aggregate. If the type has default discriminants it has an
3756 -- unconstrained nominal type, Its actual subtype will be obtained
3757 -- from the aggregate, and not from the default discriminants.
3759 Act_T := Etype (E);
3760 end if;
3762 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3764 elsif Nkind (E) = N_Function_Call
3765 and then Constant_Present (N)
3766 and then Has_Unconstrained_Elements (Etype (E))
3767 then
3768 -- The back-end has problems with constants of a discriminated type
3769 -- with defaults, if the initial value is a function call. We
3770 -- generate an intermediate temporary that will receive a reference
3771 -- to the result of the call. The initialization expression then
3772 -- becomes a dereference of that temporary.
3774 Remove_Side_Effects (E);
3776 -- If this is a constant declaration of an unconstrained type and
3777 -- the initialization is an aggregate, we can use the subtype of the
3778 -- aggregate for the declared entity because it is immutable.
3780 elsif not Is_Constrained (T)
3781 and then Has_Discriminants (T)
3782 and then Constant_Present (N)
3783 and then not Has_Unchecked_Union (T)
3784 and then Nkind (E) = N_Aggregate
3785 then
3786 Act_T := Etype (E);
3787 end if;
3789 -- Check No_Wide_Characters restriction
3791 Check_Wide_Character_Restriction (T, Object_Definition (N));
3793 -- Indicate this is not set in source. Certainly true for constants, and
3794 -- true for variables so far (will be reset for a variable if and when
3795 -- we encounter a modification in the source).
3797 Set_Never_Set_In_Source (Id, True);
3799 -- Now establish the proper kind and type of the object
3801 if Constant_Present (N) then
3802 Set_Ekind (Id, E_Constant);
3803 Set_Is_True_Constant (Id);
3805 else
3806 Set_Ekind (Id, E_Variable);
3808 -- A variable is set as shared passive if it appears in a shared
3809 -- passive package, and is at the outer level. This is not done for
3810 -- entities generated during expansion, because those are always
3811 -- manipulated locally.
3813 if Is_Shared_Passive (Current_Scope)
3814 and then Is_Library_Level_Entity (Id)
3815 and then Comes_From_Source (Id)
3816 then
3817 Set_Is_Shared_Passive (Id);
3818 Check_Shared_Var (Id, T, N);
3819 end if;
3821 -- Set Has_Initial_Value if initializing expression present. Note
3822 -- that if there is no initializing expression, we leave the state
3823 -- of this flag unchanged (usually it will be False, but notably in
3824 -- the case of exception choice variables, it will already be true).
3826 if Present (E) then
3827 Set_Has_Initial_Value (Id, True);
3828 end if;
3830 Set_Contract (Id, Make_Contract (Sloc (Id)));
3831 end if;
3833 -- Initialize alignment and size and capture alignment setting
3835 Init_Alignment (Id);
3836 Init_Esize (Id);
3837 Set_Optimize_Alignment_Flags (Id);
3839 -- Deal with aliased case
3841 if Aliased_Present (N) then
3842 Set_Is_Aliased (Id);
3844 -- If the object is aliased and the type is unconstrained with
3845 -- defaulted discriminants and there is no expression, then the
3846 -- object is constrained by the defaults, so it is worthwhile
3847 -- building the corresponding subtype.
3849 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3850 -- unconstrained, then only establish an actual subtype if the
3851 -- nominal subtype is indefinite. In definite cases the object is
3852 -- unconstrained in Ada 2005.
3854 if No (E)
3855 and then Is_Record_Type (T)
3856 and then not Is_Constrained (T)
3857 and then Has_Discriminants (T)
3858 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
3859 then
3860 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
3861 end if;
3862 end if;
3864 -- Now we can set the type of the object
3866 Set_Etype (Id, Act_T);
3868 -- Object is marked to be treated as volatile if type is volatile and
3869 -- we clear the Current_Value setting that may have been set above.
3871 if Treat_As_Volatile (Etype (Id)) then
3872 Set_Treat_As_Volatile (Id);
3873 Set_Current_Value (Id, Empty);
3874 end if;
3876 -- Deal with controlled types
3878 if Has_Controlled_Component (Etype (Id))
3879 or else Is_Controlled (Etype (Id))
3880 then
3881 if not Is_Library_Level_Entity (Id) then
3882 Check_Restriction (No_Nested_Finalization, N);
3883 else
3884 Validate_Controlled_Object (Id);
3885 end if;
3886 end if;
3888 if Has_Task (Etype (Id)) then
3889 Check_Restriction (No_Tasking, N);
3891 -- Deal with counting max tasks
3893 -- Nothing to do if inside a generic
3895 if Inside_A_Generic then
3896 null;
3898 -- If library level entity, then count tasks
3900 elsif Is_Library_Level_Entity (Id) then
3901 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
3903 -- If not library level entity, then indicate we don't know max
3904 -- tasks and also check task hierarchy restriction and blocking
3905 -- operation (since starting a task is definitely blocking).
3907 else
3908 Check_Restriction (Max_Tasks, N);
3909 Check_Restriction (No_Task_Hierarchy, N);
3910 Check_Potentially_Blocking_Operation (N);
3911 end if;
3913 -- A rather specialized test. If we see two tasks being declared
3914 -- of the same type in the same object declaration, and the task
3915 -- has an entry with an address clause, we know that program error
3916 -- will be raised at run time since we can't have two tasks with
3917 -- entries at the same address.
3919 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
3920 declare
3921 E : Entity_Id;
3923 begin
3924 E := First_Entity (Etype (Id));
3925 while Present (E) loop
3926 if Ekind (E) = E_Entry
3927 and then Present (Get_Attribute_Definition_Clause
3928 (E, Attribute_Address))
3929 then
3930 Error_Msg_Warn := SPARK_Mode /= On;
3931 Error_Msg_N
3932 ("more than one task with same entry address<<", N);
3933 Error_Msg_N ("\Program_Error [<<", N);
3934 Insert_Action (N,
3935 Make_Raise_Program_Error (Loc,
3936 Reason => PE_Duplicated_Entry_Address));
3937 exit;
3938 end if;
3940 Next_Entity (E);
3941 end loop;
3942 end;
3943 end if;
3944 end if;
3946 -- Some simple constant-propagation: if the expression is a constant
3947 -- string initialized with a literal, share the literal. This avoids
3948 -- a run-time copy.
3950 if Present (E)
3951 and then Is_Entity_Name (E)
3952 and then Ekind (Entity (E)) = E_Constant
3953 and then Base_Type (Etype (E)) = Standard_String
3954 then
3955 declare
3956 Val : constant Node_Id := Constant_Value (Entity (E));
3957 begin
3958 if Present (Val)
3959 and then Nkind (Val) = N_String_Literal
3960 then
3961 Rewrite (E, New_Copy (Val));
3962 end if;
3963 end;
3964 end if;
3966 -- Another optimization: if the nominal subtype is unconstrained and
3967 -- the expression is a function call that returns an unconstrained
3968 -- type, rewrite the declaration as a renaming of the result of the
3969 -- call. The exceptions below are cases where the copy is expected,
3970 -- either by the back end (Aliased case) or by the semantics, as for
3971 -- initializing controlled types or copying tags for classwide types.
3973 if Present (E)
3974 and then Nkind (E) = N_Explicit_Dereference
3975 and then Nkind (Original_Node (E)) = N_Function_Call
3976 and then not Is_Library_Level_Entity (Id)
3977 and then not Is_Constrained (Underlying_Type (T))
3978 and then not Is_Aliased (Id)
3979 and then not Is_Class_Wide_Type (T)
3980 and then not Is_Controlled (T)
3981 and then not Has_Controlled_Component (Base_Type (T))
3982 and then Expander_Active
3983 then
3984 Rewrite (N,
3985 Make_Object_Renaming_Declaration (Loc,
3986 Defining_Identifier => Id,
3987 Access_Definition => Empty,
3988 Subtype_Mark => New_Occurrence_Of
3989 (Base_Type (Etype (Id)), Loc),
3990 Name => E));
3992 Set_Renamed_Object (Id, E);
3994 -- Force generation of debugging information for the constant and for
3995 -- the renamed function call.
3997 Set_Debug_Info_Needed (Id);
3998 Set_Debug_Info_Needed (Entity (Prefix (E)));
3999 end if;
4001 if Present (Prev_Entity)
4002 and then Is_Frozen (Prev_Entity)
4003 and then not Error_Posted (Id)
4004 then
4005 Error_Msg_N ("full constant declaration appears too late", N);
4006 end if;
4008 Check_Eliminated (Id);
4010 -- Deal with setting In_Private_Part flag if in private part
4012 if Ekind (Scope (Id)) = E_Package
4013 and then In_Private_Part (Scope (Id))
4014 then
4015 Set_In_Private_Part (Id);
4016 end if;
4018 -- Check for violation of No_Local_Timing_Events
4020 if Restriction_Check_Required (No_Local_Timing_Events)
4021 and then not Is_Library_Level_Entity (Id)
4022 and then Is_RTE (Etype (Id), RE_Timing_Event)
4023 then
4024 Check_Restriction (No_Local_Timing_Events, N);
4025 end if;
4027 <<Leave>>
4028 -- Initialize the refined state of a variable here because this is a
4029 -- common destination for legal and illegal object declarations.
4031 if Ekind (Id) = E_Variable then
4032 Set_Encapsulating_State (Id, Empty);
4033 end if;
4035 if Has_Aspects (N) then
4036 Analyze_Aspect_Specifications (N, Id);
4037 end if;
4039 Analyze_Dimension (N);
4041 -- Verify whether the object declaration introduces an illegal hidden
4042 -- state within a package subject to a null abstract state.
4044 if Ekind (Id) = E_Variable then
4045 Check_No_Hidden_State (Id);
4046 end if;
4047 end Analyze_Object_Declaration;
4049 ---------------------------
4050 -- Analyze_Others_Choice --
4051 ---------------------------
4053 -- Nothing to do for the others choice node itself, the semantic analysis
4054 -- of the others choice will occur as part of the processing of the parent
4056 procedure Analyze_Others_Choice (N : Node_Id) is
4057 pragma Warnings (Off, N);
4058 begin
4059 null;
4060 end Analyze_Others_Choice;
4062 -------------------------------------------
4063 -- Analyze_Private_Extension_Declaration --
4064 -------------------------------------------
4066 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4067 T : constant Entity_Id := Defining_Identifier (N);
4068 Indic : constant Node_Id := Subtype_Indication (N);
4069 Parent_Type : Entity_Id;
4070 Parent_Base : Entity_Id;
4072 begin
4073 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4075 if Is_Non_Empty_List (Interface_List (N)) then
4076 declare
4077 Intf : Node_Id;
4078 T : Entity_Id;
4080 begin
4081 Intf := First (Interface_List (N));
4082 while Present (Intf) loop
4083 T := Find_Type_Of_Subtype_Indic (Intf);
4085 Diagnose_Interface (Intf, T);
4086 Next (Intf);
4087 end loop;
4088 end;
4089 end if;
4091 Generate_Definition (T);
4093 -- For other than Ada 2012, just enter the name in the current scope
4095 if Ada_Version < Ada_2012 then
4096 Enter_Name (T);
4098 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4099 -- case of private type that completes an incomplete type.
4101 else
4102 declare
4103 Prev : Entity_Id;
4105 begin
4106 Prev := Find_Type_Name (N);
4108 pragma Assert (Prev = T
4109 or else (Ekind (Prev) = E_Incomplete_Type
4110 and then Present (Full_View (Prev))
4111 and then Full_View (Prev) = T));
4112 end;
4113 end if;
4115 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4116 Parent_Base := Base_Type (Parent_Type);
4118 if Parent_Type = Any_Type
4119 or else Etype (Parent_Type) = Any_Type
4120 then
4121 Set_Ekind (T, Ekind (Parent_Type));
4122 Set_Etype (T, Any_Type);
4123 goto Leave;
4125 elsif not Is_Tagged_Type (Parent_Type) then
4126 Error_Msg_N
4127 ("parent of type extension must be a tagged type ", Indic);
4128 goto Leave;
4130 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4131 Error_Msg_N ("premature derivation of incomplete type", Indic);
4132 goto Leave;
4134 elsif Is_Concurrent_Type (Parent_Type) then
4135 Error_Msg_N
4136 ("parent type of a private extension cannot be "
4137 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4139 Set_Etype (T, Any_Type);
4140 Set_Ekind (T, E_Limited_Private_Type);
4141 Set_Private_Dependents (T, New_Elmt_List);
4142 Set_Error_Posted (T);
4143 goto Leave;
4144 end if;
4146 -- Perhaps the parent type should be changed to the class-wide type's
4147 -- specific type in this case to prevent cascading errors ???
4149 if Is_Class_Wide_Type (Parent_Type) then
4150 Error_Msg_N
4151 ("parent of type extension must not be a class-wide type", Indic);
4152 goto Leave;
4153 end if;
4155 if (not Is_Package_Or_Generic_Package (Current_Scope)
4156 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4157 or else In_Private_Part (Current_Scope)
4159 then
4160 Error_Msg_N ("invalid context for private extension", N);
4161 end if;
4163 -- Set common attributes
4165 Set_Is_Pure (T, Is_Pure (Current_Scope));
4166 Set_Scope (T, Current_Scope);
4167 Set_Ekind (T, E_Record_Type_With_Private);
4168 Init_Size_Align (T);
4170 Set_Etype (T, Parent_Base);
4171 Set_Has_Task (T, Has_Task (Parent_Base));
4173 Set_Convention (T, Convention (Parent_Type));
4174 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4175 Set_Is_First_Subtype (T);
4176 Make_Class_Wide_Type (T);
4178 if Unknown_Discriminants_Present (N) then
4179 Set_Discriminant_Constraint (T, No_Elist);
4180 end if;
4182 Build_Derived_Record_Type (N, Parent_Type, T);
4184 -- Propagate inherited invariant information. The new type has
4185 -- invariants, if the parent type has inheritable invariants,
4186 -- and these invariants can in turn be inherited.
4188 if Has_Inheritable_Invariants (Parent_Type) then
4189 Set_Has_Inheritable_Invariants (T);
4190 Set_Has_Invariants (T);
4191 end if;
4193 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4194 -- synchronized formal derived type.
4196 if Ada_Version >= Ada_2005
4197 and then Synchronized_Present (N)
4198 then
4199 Set_Is_Limited_Record (T);
4201 -- Formal derived type case
4203 if Is_Generic_Type (T) then
4205 -- The parent must be a tagged limited type or a synchronized
4206 -- interface.
4208 if (not Is_Tagged_Type (Parent_Type)
4209 or else not Is_Limited_Type (Parent_Type))
4210 and then
4211 (not Is_Interface (Parent_Type)
4212 or else not Is_Synchronized_Interface (Parent_Type))
4213 then
4214 Error_Msg_NE ("parent type of & must be tagged limited " &
4215 "or synchronized", N, T);
4216 end if;
4218 -- The progenitors (if any) must be limited or synchronized
4219 -- interfaces.
4221 if Present (Interfaces (T)) then
4222 declare
4223 Iface : Entity_Id;
4224 Iface_Elmt : Elmt_Id;
4226 begin
4227 Iface_Elmt := First_Elmt (Interfaces (T));
4228 while Present (Iface_Elmt) loop
4229 Iface := Node (Iface_Elmt);
4231 if not Is_Limited_Interface (Iface)
4232 and then not Is_Synchronized_Interface (Iface)
4233 then
4234 Error_Msg_NE ("progenitor & must be limited " &
4235 "or synchronized", N, Iface);
4236 end if;
4238 Next_Elmt (Iface_Elmt);
4239 end loop;
4240 end;
4241 end if;
4243 -- Regular derived extension, the parent must be a limited or
4244 -- synchronized interface.
4246 else
4247 if not Is_Interface (Parent_Type)
4248 or else (not Is_Limited_Interface (Parent_Type)
4249 and then
4250 not Is_Synchronized_Interface (Parent_Type))
4251 then
4252 Error_Msg_NE
4253 ("parent type of & must be limited interface", N, T);
4254 end if;
4255 end if;
4257 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4258 -- extension with a synchronized parent must be explicitly declared
4259 -- synchronized, because the full view will be a synchronized type.
4260 -- This must be checked before the check for limited types below,
4261 -- to ensure that types declared limited are not allowed to extend
4262 -- synchronized interfaces.
4264 elsif Is_Interface (Parent_Type)
4265 and then Is_Synchronized_Interface (Parent_Type)
4266 and then not Synchronized_Present (N)
4267 then
4268 Error_Msg_NE
4269 ("private extension of& must be explicitly synchronized",
4270 N, Parent_Type);
4272 elsif Limited_Present (N) then
4273 Set_Is_Limited_Record (T);
4275 if not Is_Limited_Type (Parent_Type)
4276 and then
4277 (not Is_Interface (Parent_Type)
4278 or else not Is_Limited_Interface (Parent_Type))
4279 then
4280 Error_Msg_NE ("parent type& of limited extension must be limited",
4281 N, Parent_Type);
4282 end if;
4283 end if;
4285 <<Leave>>
4286 if Has_Aspects (N) then
4287 Analyze_Aspect_Specifications (N, T);
4288 end if;
4289 end Analyze_Private_Extension_Declaration;
4291 ---------------------------------
4292 -- Analyze_Subtype_Declaration --
4293 ---------------------------------
4295 procedure Analyze_Subtype_Declaration
4296 (N : Node_Id;
4297 Skip : Boolean := False)
4299 Id : constant Entity_Id := Defining_Identifier (N);
4300 T : Entity_Id;
4301 R_Checks : Check_Result;
4303 begin
4304 Generate_Definition (Id);
4305 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4306 Init_Size_Align (Id);
4308 -- The following guard condition on Enter_Name is to handle cases where
4309 -- the defining identifier has already been entered into the scope but
4310 -- the declaration as a whole needs to be analyzed.
4312 -- This case in particular happens for derived enumeration types. The
4313 -- derived enumeration type is processed as an inserted enumeration type
4314 -- declaration followed by a rewritten subtype declaration. The defining
4315 -- identifier, however, is entered into the name scope very early in the
4316 -- processing of the original type declaration and therefore needs to be
4317 -- avoided here, when the created subtype declaration is analyzed. (See
4318 -- Build_Derived_Types)
4320 -- This also happens when the full view of a private type is derived
4321 -- type with constraints. In this case the entity has been introduced
4322 -- in the private declaration.
4324 -- Finally this happens in some complex cases when validity checks are
4325 -- enabled, where the same subtype declaration may be analyzed twice.
4326 -- This can happen if the subtype is created by the pre-analysis of
4327 -- an attribute tht gives the range of a loop statement, and the loop
4328 -- itself appears within an if_statement that will be rewritten during
4329 -- expansion.
4331 if Skip
4332 or else (Present (Etype (Id))
4333 and then (Is_Private_Type (Etype (Id))
4334 or else Is_Task_Type (Etype (Id))
4335 or else Is_Rewrite_Substitution (N)))
4336 then
4337 null;
4339 elsif Current_Entity (Id) = Id then
4340 null;
4342 else
4343 Enter_Name (Id);
4344 end if;
4346 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4348 -- Class-wide equivalent types of records with unknown discriminants
4349 -- involve the generation of an itype which serves as the private view
4350 -- of a constrained record subtype. In such cases the base type of the
4351 -- current subtype we are processing is the private itype. Use the full
4352 -- of the private itype when decorating various attributes.
4354 if Is_Itype (T)
4355 and then Is_Private_Type (T)
4356 and then Present (Full_View (T))
4357 then
4358 T := Full_View (T);
4359 end if;
4361 -- Inherit common attributes
4363 Set_Is_Volatile (Id, Is_Volatile (T));
4364 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4365 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4366 Set_Convention (Id, Convention (T));
4368 -- If ancestor has predicates then so does the subtype, and in addition
4369 -- we must delay the freeze to properly arrange predicate inheritance.
4371 -- The Ancestor_Type test is a big kludge, there seem to be cases in
4372 -- which T = ID, so the above tests and assignments do nothing???
4374 if Has_Predicates (T)
4375 or else (Present (Ancestor_Subtype (T))
4376 and then Has_Predicates (Ancestor_Subtype (T)))
4377 then
4378 Set_Has_Predicates (Id);
4379 Set_Has_Delayed_Freeze (Id);
4380 end if;
4382 -- Subtype of Boolean cannot have a constraint in SPARK
4384 if Is_Boolean_Type (T)
4385 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4386 then
4387 Check_SPARK_Restriction
4388 ("subtype of Boolean cannot have constraint", N);
4389 end if;
4391 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4392 declare
4393 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4394 One_Cstr : Node_Id;
4395 Low : Node_Id;
4396 High : Node_Id;
4398 begin
4399 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4400 One_Cstr := First (Constraints (Cstr));
4401 while Present (One_Cstr) loop
4403 -- Index or discriminant constraint in SPARK must be a
4404 -- subtype mark.
4406 if not
4407 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4408 then
4409 Check_SPARK_Restriction
4410 ("subtype mark required", One_Cstr);
4412 -- String subtype must have a lower bound of 1 in SPARK.
4413 -- Note that we do not need to test for the non-static case
4414 -- here, since that was already taken care of in
4415 -- Process_Range_Expr_In_Decl.
4417 elsif Base_Type (T) = Standard_String then
4418 Get_Index_Bounds (One_Cstr, Low, High);
4420 if Is_OK_Static_Expression (Low)
4421 and then Expr_Value (Low) /= 1
4422 then
4423 Check_SPARK_Restriction
4424 ("String subtype must have lower bound of 1", N);
4425 end if;
4426 end if;
4428 Next (One_Cstr);
4429 end loop;
4430 end if;
4431 end;
4432 end if;
4434 -- In the case where there is no constraint given in the subtype
4435 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4436 -- semantic attributes must be established here.
4438 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4439 Set_Etype (Id, Base_Type (T));
4441 -- Subtype of unconstrained array without constraint is not allowed
4442 -- in SPARK.
4444 if Is_Array_Type (T)
4445 and then not Is_Constrained (T)
4446 then
4447 Check_SPARK_Restriction
4448 ("subtype of unconstrained array must have constraint", N);
4449 end if;
4451 case Ekind (T) is
4452 when Array_Kind =>
4453 Set_Ekind (Id, E_Array_Subtype);
4454 Copy_Array_Subtype_Attributes (Id, T);
4456 when Decimal_Fixed_Point_Kind =>
4457 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4458 Set_Digits_Value (Id, Digits_Value (T));
4459 Set_Delta_Value (Id, Delta_Value (T));
4460 Set_Scale_Value (Id, Scale_Value (T));
4461 Set_Small_Value (Id, Small_Value (T));
4462 Set_Scalar_Range (Id, Scalar_Range (T));
4463 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4464 Set_Is_Constrained (Id, Is_Constrained (T));
4465 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4466 Set_RM_Size (Id, RM_Size (T));
4468 when Enumeration_Kind =>
4469 Set_Ekind (Id, E_Enumeration_Subtype);
4470 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4471 Set_Scalar_Range (Id, Scalar_Range (T));
4472 Set_Is_Character_Type (Id, Is_Character_Type (T));
4473 Set_Is_Constrained (Id, Is_Constrained (T));
4474 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4475 Set_RM_Size (Id, RM_Size (T));
4477 when Ordinary_Fixed_Point_Kind =>
4478 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4479 Set_Scalar_Range (Id, Scalar_Range (T));
4480 Set_Small_Value (Id, Small_Value (T));
4481 Set_Delta_Value (Id, Delta_Value (T));
4482 Set_Is_Constrained (Id, Is_Constrained (T));
4483 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4484 Set_RM_Size (Id, RM_Size (T));
4486 when Float_Kind =>
4487 Set_Ekind (Id, E_Floating_Point_Subtype);
4488 Set_Scalar_Range (Id, Scalar_Range (T));
4489 Set_Digits_Value (Id, Digits_Value (T));
4490 Set_Is_Constrained (Id, Is_Constrained (T));
4492 when Signed_Integer_Kind =>
4493 Set_Ekind (Id, E_Signed_Integer_Subtype);
4494 Set_Scalar_Range (Id, Scalar_Range (T));
4495 Set_Is_Constrained (Id, Is_Constrained (T));
4496 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4497 Set_RM_Size (Id, RM_Size (T));
4499 when Modular_Integer_Kind =>
4500 Set_Ekind (Id, E_Modular_Integer_Subtype);
4501 Set_Scalar_Range (Id, Scalar_Range (T));
4502 Set_Is_Constrained (Id, Is_Constrained (T));
4503 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4504 Set_RM_Size (Id, RM_Size (T));
4506 when Class_Wide_Kind =>
4507 Set_Ekind (Id, E_Class_Wide_Subtype);
4508 Set_First_Entity (Id, First_Entity (T));
4509 Set_Last_Entity (Id, Last_Entity (T));
4510 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4511 Set_Cloned_Subtype (Id, T);
4512 Set_Is_Tagged_Type (Id, True);
4513 Set_Has_Unknown_Discriminants
4514 (Id, True);
4516 if Ekind (T) = E_Class_Wide_Subtype then
4517 Set_Equivalent_Type (Id, Equivalent_Type (T));
4518 end if;
4520 when E_Record_Type | E_Record_Subtype =>
4521 Set_Ekind (Id, E_Record_Subtype);
4523 if Ekind (T) = E_Record_Subtype
4524 and then Present (Cloned_Subtype (T))
4525 then
4526 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4527 else
4528 Set_Cloned_Subtype (Id, T);
4529 end if;
4531 Set_First_Entity (Id, First_Entity (T));
4532 Set_Last_Entity (Id, Last_Entity (T));
4533 Set_Has_Discriminants (Id, Has_Discriminants (T));
4534 Set_Is_Constrained (Id, Is_Constrained (T));
4535 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4536 Set_Has_Implicit_Dereference
4537 (Id, Has_Implicit_Dereference (T));
4538 Set_Has_Unknown_Discriminants
4539 (Id, Has_Unknown_Discriminants (T));
4541 if Has_Discriminants (T) then
4542 Set_Discriminant_Constraint
4543 (Id, Discriminant_Constraint (T));
4544 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4546 elsif Has_Unknown_Discriminants (Id) then
4547 Set_Discriminant_Constraint (Id, No_Elist);
4548 end if;
4550 if Is_Tagged_Type (T) then
4551 Set_Is_Tagged_Type (Id);
4552 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4553 Set_Direct_Primitive_Operations
4554 (Id, Direct_Primitive_Operations (T));
4555 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4557 if Is_Interface (T) then
4558 Set_Is_Interface (Id);
4559 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4560 end if;
4561 end if;
4563 when Private_Kind =>
4564 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4565 Set_Has_Discriminants (Id, Has_Discriminants (T));
4566 Set_Is_Constrained (Id, Is_Constrained (T));
4567 Set_First_Entity (Id, First_Entity (T));
4568 Set_Last_Entity (Id, Last_Entity (T));
4569 Set_Private_Dependents (Id, New_Elmt_List);
4570 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4571 Set_Has_Implicit_Dereference
4572 (Id, Has_Implicit_Dereference (T));
4573 Set_Has_Unknown_Discriminants
4574 (Id, Has_Unknown_Discriminants (T));
4575 Set_Known_To_Have_Preelab_Init
4576 (Id, Known_To_Have_Preelab_Init (T));
4578 if Is_Tagged_Type (T) then
4579 Set_Is_Tagged_Type (Id);
4580 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4581 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4582 Set_Direct_Primitive_Operations (Id,
4583 Direct_Primitive_Operations (T));
4584 end if;
4586 -- In general the attributes of the subtype of a private type
4587 -- are the attributes of the partial view of parent. However,
4588 -- the full view may be a discriminated type, and the subtype
4589 -- must share the discriminant constraint to generate correct
4590 -- calls to initialization procedures.
4592 if Has_Discriminants (T) then
4593 Set_Discriminant_Constraint
4594 (Id, Discriminant_Constraint (T));
4595 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4597 elsif Present (Full_View (T))
4598 and then Has_Discriminants (Full_View (T))
4599 then
4600 Set_Discriminant_Constraint
4601 (Id, Discriminant_Constraint (Full_View (T)));
4602 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4604 -- This would seem semantically correct, but apparently
4605 -- generates spurious errors about missing components ???
4607 -- Set_Has_Discriminants (Id);
4608 end if;
4610 Prepare_Private_Subtype_Completion (Id, N);
4612 -- If this is the subtype of a constrained private type with
4613 -- discriminants that has got a full view and we also have
4614 -- built a completion just above, show that the completion
4615 -- is a clone of the full view to the back-end.
4617 if Has_Discriminants (T)
4618 and then not Has_Unknown_Discriminants (T)
4619 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4620 and then Present (Full_View (T))
4621 and then Present (Full_View (Id))
4622 then
4623 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4624 end if;
4626 when Access_Kind =>
4627 Set_Ekind (Id, E_Access_Subtype);
4628 Set_Is_Constrained (Id, Is_Constrained (T));
4629 Set_Is_Access_Constant
4630 (Id, Is_Access_Constant (T));
4631 Set_Directly_Designated_Type
4632 (Id, Designated_Type (T));
4633 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4635 -- A Pure library_item must not contain the declaration of a
4636 -- named access type, except within a subprogram, generic
4637 -- subprogram, task unit, or protected unit, or if it has
4638 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4640 if Comes_From_Source (Id)
4641 and then In_Pure_Unit
4642 and then not In_Subprogram_Task_Protected_Unit
4643 and then not No_Pool_Assigned (Id)
4644 then
4645 Error_Msg_N
4646 ("named access types not allowed in pure unit", N);
4647 end if;
4649 when Concurrent_Kind =>
4650 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4651 Set_Corresponding_Record_Type (Id,
4652 Corresponding_Record_Type (T));
4653 Set_First_Entity (Id, First_Entity (T));
4654 Set_First_Private_Entity (Id, First_Private_Entity (T));
4655 Set_Has_Discriminants (Id, Has_Discriminants (T));
4656 Set_Is_Constrained (Id, Is_Constrained (T));
4657 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4658 Set_Last_Entity (Id, Last_Entity (T));
4660 if Has_Discriminants (T) then
4661 Set_Discriminant_Constraint (Id,
4662 Discriminant_Constraint (T));
4663 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4664 end if;
4666 when E_Incomplete_Type =>
4667 if Ada_Version >= Ada_2005 then
4669 -- In Ada 2005 an incomplete type can be explicitly tagged:
4670 -- propagate indication.
4672 Set_Ekind (Id, E_Incomplete_Subtype);
4673 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4674 Set_Private_Dependents (Id, New_Elmt_List);
4676 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4677 -- incomplete type visible through a limited with clause.
4679 if From_Limited_With (T)
4680 and then Present (Non_Limited_View (T))
4681 then
4682 Set_From_Limited_With (Id);
4683 Set_Non_Limited_View (Id, Non_Limited_View (T));
4685 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4686 -- to the private dependents of the original incomplete
4687 -- type for future transformation.
4689 else
4690 Append_Elmt (Id, Private_Dependents (T));
4691 end if;
4693 -- If the subtype name denotes an incomplete type an error
4694 -- was already reported by Process_Subtype.
4696 else
4697 Set_Etype (Id, Any_Type);
4698 end if;
4700 when others =>
4701 raise Program_Error;
4702 end case;
4703 end if;
4705 if Etype (Id) = Any_Type then
4706 goto Leave;
4707 end if;
4709 -- Some common processing on all types
4711 Set_Size_Info (Id, T);
4712 Set_First_Rep_Item (Id, First_Rep_Item (T));
4714 -- If the parent type is a generic actual, so is the subtype. This may
4715 -- happen in a nested instance. Why Comes_From_Source test???
4717 if not Comes_From_Source (N) then
4718 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
4719 end if;
4721 T := Etype (Id);
4723 Set_Is_Immediately_Visible (Id, True);
4724 Set_Depends_On_Private (Id, Has_Private_Component (T));
4725 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4727 if Is_Interface (T) then
4728 Set_Is_Interface (Id);
4729 end if;
4731 if Present (Generic_Parent_Type (N))
4732 and then
4733 (Nkind
4734 (Parent (Generic_Parent_Type (N))) /= N_Formal_Type_Declaration
4735 or else Nkind
4736 (Formal_Type_Definition (Parent (Generic_Parent_Type (N))))
4737 /= N_Formal_Private_Type_Definition)
4738 then
4739 if Is_Tagged_Type (Id) then
4741 -- If this is a generic actual subtype for a synchronized type,
4742 -- the primitive operations are those of the corresponding record
4743 -- for which there is a separate subtype declaration.
4745 if Is_Concurrent_Type (Id) then
4746 null;
4747 elsif Is_Class_Wide_Type (Id) then
4748 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4749 else
4750 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4751 end if;
4753 elsif Scope (Etype (Id)) /= Standard_Standard then
4754 Derive_Subprograms (Generic_Parent_Type (N), Id);
4755 end if;
4756 end if;
4758 if Is_Private_Type (T)
4759 and then Present (Full_View (T))
4760 then
4761 Conditional_Delay (Id, Full_View (T));
4763 -- The subtypes of components or subcomponents of protected types
4764 -- do not need freeze nodes, which would otherwise appear in the
4765 -- wrong scope (before the freeze node for the protected type). The
4766 -- proper subtypes are those of the subcomponents of the corresponding
4767 -- record.
4769 elsif Ekind (Scope (Id)) /= E_Protected_Type
4770 and then Present (Scope (Scope (Id))) -- error defense
4771 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4772 then
4773 Conditional_Delay (Id, T);
4774 end if;
4776 -- Check that Constraint_Error is raised for a scalar subtype indication
4777 -- when the lower or upper bound of a non-null range lies outside the
4778 -- range of the type mark.
4780 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4781 if Is_Scalar_Type (Etype (Id))
4782 and then Scalar_Range (Id) /=
4783 Scalar_Range (Etype (Subtype_Mark
4784 (Subtype_Indication (N))))
4785 then
4786 Apply_Range_Check
4787 (Scalar_Range (Id),
4788 Etype (Subtype_Mark (Subtype_Indication (N))));
4790 -- In the array case, check compatibility for each index
4792 elsif Is_Array_Type (Etype (Id))
4793 and then Present (First_Index (Id))
4794 then
4795 -- This really should be a subprogram that finds the indications
4796 -- to check???
4798 declare
4799 Subt_Index : Node_Id := First_Index (Id);
4800 Target_Index : Node_Id :=
4801 First_Index (Etype
4802 (Subtype_Mark (Subtype_Indication (N))));
4803 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
4805 begin
4806 while Present (Subt_Index) loop
4807 if ((Nkind (Subt_Index) = N_Identifier
4808 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
4809 or else Nkind (Subt_Index) = N_Subtype_Indication)
4810 and then
4811 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
4812 then
4813 declare
4814 Target_Typ : constant Entity_Id :=
4815 Etype (Target_Index);
4816 begin
4817 R_Checks :=
4818 Get_Range_Checks
4819 (Scalar_Range (Etype (Subt_Index)),
4820 Target_Typ,
4821 Etype (Subt_Index),
4822 Defining_Identifier (N));
4824 -- Reset Has_Dynamic_Range_Check on the subtype to
4825 -- prevent elision of the index check due to a dynamic
4826 -- check generated for a preceding index (needed since
4827 -- Insert_Range_Checks tries to avoid generating
4828 -- redundant checks on a given declaration).
4830 Set_Has_Dynamic_Range_Check (N, False);
4832 Insert_Range_Checks
4833 (R_Checks,
4835 Target_Typ,
4836 Sloc (Defining_Identifier (N)));
4838 -- Record whether this index involved a dynamic check
4840 Has_Dyn_Chk :=
4841 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
4842 end;
4843 end if;
4845 Next_Index (Subt_Index);
4846 Next_Index (Target_Index);
4847 end loop;
4849 -- Finally, mark whether the subtype involves dynamic checks
4851 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
4852 end;
4853 end if;
4854 end if;
4856 -- Make sure that generic actual types are properly frozen. The subtype
4857 -- is marked as a generic actual type when the enclosing instance is
4858 -- analyzed, so here we identify the subtype from the tree structure.
4860 if Expander_Active
4861 and then Is_Generic_Actual_Type (Id)
4862 and then In_Instance
4863 and then not Comes_From_Source (N)
4864 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
4865 and then Is_Frozen (T)
4866 then
4867 Freeze_Before (N, Id);
4868 end if;
4870 Set_Optimize_Alignment_Flags (Id);
4871 Check_Eliminated (Id);
4873 <<Leave>>
4874 if Has_Aspects (N) then
4875 Analyze_Aspect_Specifications (N, Id);
4876 end if;
4878 Analyze_Dimension (N);
4879 end Analyze_Subtype_Declaration;
4881 --------------------------------
4882 -- Analyze_Subtype_Indication --
4883 --------------------------------
4885 procedure Analyze_Subtype_Indication (N : Node_Id) is
4886 T : constant Entity_Id := Subtype_Mark (N);
4887 R : constant Node_Id := Range_Expression (Constraint (N));
4889 begin
4890 Analyze (T);
4892 if R /= Error then
4893 Analyze (R);
4894 Set_Etype (N, Etype (R));
4895 Resolve (R, Entity (T));
4896 else
4897 Set_Error_Posted (R);
4898 Set_Error_Posted (T);
4899 end if;
4900 end Analyze_Subtype_Indication;
4902 --------------------------
4903 -- Analyze_Variant_Part --
4904 --------------------------
4906 procedure Analyze_Variant_Part (N : Node_Id) is
4907 Discr_Name : Node_Id;
4908 Discr_Type : Entity_Id;
4910 procedure Process_Variant (A : Node_Id);
4911 -- Analyze declarations for a single variant
4913 package Analyze_Variant_Choices is
4914 new Generic_Analyze_Choices (Process_Variant);
4915 use Analyze_Variant_Choices;
4917 ---------------------
4918 -- Process_Variant --
4919 ---------------------
4921 procedure Process_Variant (A : Node_Id) is
4922 CL : constant Node_Id := Component_List (A);
4923 begin
4924 if not Null_Present (CL) then
4925 Analyze_Declarations (Component_Items (CL));
4927 if Present (Variant_Part (CL)) then
4928 Analyze (Variant_Part (CL));
4929 end if;
4930 end if;
4931 end Process_Variant;
4933 -- Start of processing for Analyze_Variant_Part
4935 begin
4936 Discr_Name := Name (N);
4937 Analyze (Discr_Name);
4939 -- If Discr_Name bad, get out (prevent cascaded errors)
4941 if Etype (Discr_Name) = Any_Type then
4942 return;
4943 end if;
4945 -- Check invalid discriminant in variant part
4947 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
4948 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
4949 end if;
4951 Discr_Type := Etype (Entity (Discr_Name));
4953 if not Is_Discrete_Type (Discr_Type) then
4954 Error_Msg_N
4955 ("discriminant in a variant part must be of a discrete type",
4956 Name (N));
4957 return;
4958 end if;
4960 -- Now analyze the choices, which also analyzes the declarations that
4961 -- are associated with each choice.
4963 Analyze_Choices (Variants (N), Discr_Type);
4965 -- Note: we used to instantiate and call Check_Choices here to check
4966 -- that the choices covered the discriminant, but it's too early to do
4967 -- that because of statically predicated subtypes, whose analysis may
4968 -- be deferred to their freeze point which may be as late as the freeze
4969 -- point of the containing record. So this call is now to be found in
4970 -- Freeze_Record_Declaration.
4972 end Analyze_Variant_Part;
4974 ----------------------------
4975 -- Array_Type_Declaration --
4976 ----------------------------
4978 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
4979 Component_Def : constant Node_Id := Component_Definition (Def);
4980 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
4981 Element_Type : Entity_Id;
4982 Implicit_Base : Entity_Id;
4983 Index : Node_Id;
4984 Related_Id : Entity_Id := Empty;
4985 Nb_Index : Nat;
4986 P : constant Node_Id := Parent (Def);
4987 Priv : Entity_Id;
4989 begin
4990 if Nkind (Def) = N_Constrained_Array_Definition then
4991 Index := First (Discrete_Subtype_Definitions (Def));
4992 else
4993 Index := First (Subtype_Marks (Def));
4994 end if;
4996 -- Find proper names for the implicit types which may be public. In case
4997 -- of anonymous arrays we use the name of the first object of that type
4998 -- as prefix.
5000 if No (T) then
5001 Related_Id := Defining_Identifier (P);
5002 else
5003 Related_Id := T;
5004 end if;
5006 Nb_Index := 1;
5007 while Present (Index) loop
5008 Analyze (Index);
5010 -- Test for odd case of trying to index a type by the type itself
5012 if Is_Entity_Name (Index) and then Entity (Index) = T then
5013 Error_Msg_N ("type& cannot be indexed by itself", Index);
5014 Set_Entity (Index, Standard_Boolean);
5015 Set_Etype (Index, Standard_Boolean);
5016 end if;
5018 -- Check SPARK restriction requiring a subtype mark
5020 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5021 Check_SPARK_Restriction ("subtype mark required", Index);
5022 end if;
5024 -- Add a subtype declaration for each index of private array type
5025 -- declaration whose etype is also private. For example:
5027 -- package Pkg is
5028 -- type Index is private;
5029 -- private
5030 -- type Table is array (Index) of ...
5031 -- end;
5033 -- This is currently required by the expander for the internally
5034 -- generated equality subprogram of records with variant parts in
5035 -- which the etype of some component is such private type.
5037 if Ekind (Current_Scope) = E_Package
5038 and then In_Private_Part (Current_Scope)
5039 and then Has_Private_Declaration (Etype (Index))
5040 then
5041 declare
5042 Loc : constant Source_Ptr := Sloc (Def);
5043 New_E : Entity_Id;
5044 Decl : Entity_Id;
5046 begin
5047 New_E := Make_Temporary (Loc, 'T');
5048 Set_Is_Internal (New_E);
5050 Decl :=
5051 Make_Subtype_Declaration (Loc,
5052 Defining_Identifier => New_E,
5053 Subtype_Indication =>
5054 New_Occurrence_Of (Etype (Index), Loc));
5056 Insert_Before (Parent (Def), Decl);
5057 Analyze (Decl);
5058 Set_Etype (Index, New_E);
5060 -- If the index is a range the Entity attribute is not
5061 -- available. Example:
5063 -- package Pkg is
5064 -- type T is private;
5065 -- private
5066 -- type T is new Natural;
5067 -- Table : array (T(1) .. T(10)) of Boolean;
5068 -- end Pkg;
5070 if Nkind (Index) /= N_Range then
5071 Set_Entity (Index, New_E);
5072 end if;
5073 end;
5074 end if;
5076 Make_Index (Index, P, Related_Id, Nb_Index);
5078 -- Check error of subtype with predicate for index type
5080 Bad_Predicated_Subtype_Use
5081 ("subtype& has predicate, not allowed as index subtype",
5082 Index, Etype (Index));
5084 -- Move to next index
5086 Next_Index (Index);
5087 Nb_Index := Nb_Index + 1;
5088 end loop;
5090 -- Process subtype indication if one is present
5092 if Present (Component_Typ) then
5093 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5095 Set_Etype (Component_Typ, Element_Type);
5097 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5098 Check_SPARK_Restriction ("subtype mark required", Component_Typ);
5099 end if;
5101 -- Ada 2005 (AI-230): Access Definition case
5103 else pragma Assert (Present (Access_Definition (Component_Def)));
5105 -- Indicate that the anonymous access type is created by the
5106 -- array type declaration.
5108 Element_Type := Access_Definition
5109 (Related_Nod => P,
5110 N => Access_Definition (Component_Def));
5111 Set_Is_Local_Anonymous_Access (Element_Type);
5113 -- Propagate the parent. This field is needed if we have to generate
5114 -- the master_id associated with an anonymous access to task type
5115 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5117 Set_Parent (Element_Type, Parent (T));
5119 -- Ada 2005 (AI-230): In case of components that are anonymous access
5120 -- types the level of accessibility depends on the enclosing type
5121 -- declaration
5123 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5125 -- Ada 2005 (AI-254)
5127 declare
5128 CD : constant Node_Id :=
5129 Access_To_Subprogram_Definition
5130 (Access_Definition (Component_Def));
5131 begin
5132 if Present (CD) and then Protected_Present (CD) then
5133 Element_Type :=
5134 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5135 end if;
5136 end;
5137 end if;
5139 -- Constrained array case
5141 if No (T) then
5142 T := Create_Itype (E_Void, P, Related_Id, 'T');
5143 end if;
5145 if Nkind (Def) = N_Constrained_Array_Definition then
5147 -- Establish Implicit_Base as unconstrained base type
5149 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5151 Set_Etype (Implicit_Base, Implicit_Base);
5152 Set_Scope (Implicit_Base, Current_Scope);
5153 Set_Has_Delayed_Freeze (Implicit_Base);
5155 -- The constrained array type is a subtype of the unconstrained one
5157 Set_Ekind (T, E_Array_Subtype);
5158 Init_Size_Align (T);
5159 Set_Etype (T, Implicit_Base);
5160 Set_Scope (T, Current_Scope);
5161 Set_Is_Constrained (T, True);
5162 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
5163 Set_Has_Delayed_Freeze (T);
5165 -- Complete setup of implicit base type
5167 Set_First_Index (Implicit_Base, First_Index (T));
5168 Set_Component_Type (Implicit_Base, Element_Type);
5169 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5170 Set_Component_Size (Implicit_Base, Uint_0);
5171 Set_Packed_Array_Type (Implicit_Base, Empty);
5172 Set_Has_Controlled_Component
5173 (Implicit_Base, Has_Controlled_Component
5174 (Element_Type)
5175 or else Is_Controlled
5176 (Element_Type));
5177 Set_Finalize_Storage_Only
5178 (Implicit_Base, Finalize_Storage_Only
5179 (Element_Type));
5181 -- Unconstrained array case
5183 else
5184 Set_Ekind (T, E_Array_Type);
5185 Init_Size_Align (T);
5186 Set_Etype (T, T);
5187 Set_Scope (T, Current_Scope);
5188 Set_Component_Size (T, Uint_0);
5189 Set_Is_Constrained (T, False);
5190 Set_First_Index (T, First (Subtype_Marks (Def)));
5191 Set_Has_Delayed_Freeze (T, True);
5192 Set_Has_Task (T, Has_Task (Element_Type));
5193 Set_Has_Controlled_Component (T, Has_Controlled_Component
5194 (Element_Type)
5195 or else
5196 Is_Controlled (Element_Type));
5197 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5198 (Element_Type));
5199 end if;
5201 -- Common attributes for both cases
5203 Set_Component_Type (Base_Type (T), Element_Type);
5204 Set_Packed_Array_Type (T, Empty);
5206 if Aliased_Present (Component_Definition (Def)) then
5207 Check_SPARK_Restriction
5208 ("aliased is not allowed", Component_Definition (Def));
5209 Set_Has_Aliased_Components (Etype (T));
5210 end if;
5212 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5213 -- array type to ensure that objects of this type are initialized.
5215 if Ada_Version >= Ada_2005
5216 and then Can_Never_Be_Null (Element_Type)
5217 then
5218 Set_Can_Never_Be_Null (T);
5220 if Null_Exclusion_Present (Component_Definition (Def))
5222 -- No need to check itypes because in their case this check was
5223 -- done at their point of creation
5225 and then not Is_Itype (Element_Type)
5226 then
5227 Error_Msg_N
5228 ("`NOT NULL` not allowed (null already excluded)",
5229 Subtype_Indication (Component_Definition (Def)));
5230 end if;
5231 end if;
5233 Priv := Private_Component (Element_Type);
5235 if Present (Priv) then
5237 -- Check for circular definitions
5239 if Priv = Any_Type then
5240 Set_Component_Type (Etype (T), Any_Type);
5242 -- There is a gap in the visibility of operations on the composite
5243 -- type only if the component type is defined in a different scope.
5245 elsif Scope (Priv) = Current_Scope then
5246 null;
5248 elsif Is_Limited_Type (Priv) then
5249 Set_Is_Limited_Composite (Etype (T));
5250 Set_Is_Limited_Composite (T);
5251 else
5252 Set_Is_Private_Composite (Etype (T));
5253 Set_Is_Private_Composite (T);
5254 end if;
5255 end if;
5257 -- A syntax error in the declaration itself may lead to an empty index
5258 -- list, in which case do a minimal patch.
5260 if No (First_Index (T)) then
5261 Error_Msg_N ("missing index definition in array type declaration", T);
5263 declare
5264 Indexes : constant List_Id :=
5265 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5266 begin
5267 Set_Discrete_Subtype_Definitions (Def, Indexes);
5268 Set_First_Index (T, First (Indexes));
5269 return;
5270 end;
5271 end if;
5273 -- Create a concatenation operator for the new type. Internal array
5274 -- types created for packed entities do not need such, they are
5275 -- compatible with the user-defined type.
5277 if Number_Dimensions (T) = 1
5278 and then not Is_Packed_Array_Type (T)
5279 then
5280 New_Concatenation_Op (T);
5281 end if;
5283 -- In the case of an unconstrained array the parser has already verified
5284 -- that all the indexes are unconstrained but we still need to make sure
5285 -- that the element type is constrained.
5287 if Is_Indefinite_Subtype (Element_Type) then
5288 Error_Msg_N
5289 ("unconstrained element type in array declaration",
5290 Subtype_Indication (Component_Def));
5292 elsif Is_Abstract_Type (Element_Type) then
5293 Error_Msg_N
5294 ("the type of a component cannot be abstract",
5295 Subtype_Indication (Component_Def));
5296 end if;
5298 -- There may be an invariant declared for the component type, but
5299 -- the construction of the component invariant checking procedure
5300 -- takes place during expansion.
5301 end Array_Type_Declaration;
5303 ------------------------------------------------------
5304 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5305 ------------------------------------------------------
5307 function Replace_Anonymous_Access_To_Protected_Subprogram
5308 (N : Node_Id) return Entity_Id
5310 Loc : constant Source_Ptr := Sloc (N);
5312 Curr_Scope : constant Scope_Stack_Entry :=
5313 Scope_Stack.Table (Scope_Stack.Last);
5315 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5317 Acc : Node_Id;
5318 -- Access definition in declaration
5320 Comp : Node_Id;
5321 -- Object definition or formal definition with an access definition
5323 Decl : Node_Id;
5324 -- Declaration of anonymous access to subprogram type
5326 Spec : Node_Id;
5327 -- Original specification in access to subprogram
5329 P : Node_Id;
5331 begin
5332 Set_Is_Internal (Anon);
5334 case Nkind (N) is
5335 when N_Component_Declaration |
5336 N_Unconstrained_Array_Definition |
5337 N_Constrained_Array_Definition =>
5338 Comp := Component_Definition (N);
5339 Acc := Access_Definition (Comp);
5341 when N_Discriminant_Specification =>
5342 Comp := Discriminant_Type (N);
5343 Acc := Comp;
5345 when N_Parameter_Specification =>
5346 Comp := Parameter_Type (N);
5347 Acc := Comp;
5349 when N_Access_Function_Definition =>
5350 Comp := Result_Definition (N);
5351 Acc := Comp;
5353 when N_Object_Declaration =>
5354 Comp := Object_Definition (N);
5355 Acc := Comp;
5357 when N_Function_Specification =>
5358 Comp := Result_Definition (N);
5359 Acc := Comp;
5361 when others =>
5362 raise Program_Error;
5363 end case;
5365 Spec := Access_To_Subprogram_Definition (Acc);
5367 Decl :=
5368 Make_Full_Type_Declaration (Loc,
5369 Defining_Identifier => Anon,
5370 Type_Definition => Copy_Separate_Tree (Spec));
5372 Mark_Rewrite_Insertion (Decl);
5374 -- In ASIS mode, analyze the profile on the original node, because
5375 -- the separate copy does not provide enough links to recover the
5376 -- original tree. Analysis is limited to type annotations, within
5377 -- a temporary scope that serves as an anonymous subprogram to collect
5378 -- otherwise useless temporaries and itypes.
5380 if ASIS_Mode then
5381 declare
5382 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5384 begin
5385 if Nkind (Spec) = N_Access_Function_Definition then
5386 Set_Ekind (Typ, E_Function);
5387 else
5388 Set_Ekind (Typ, E_Procedure);
5389 end if;
5391 Set_Parent (Typ, N);
5392 Set_Scope (Typ, Current_Scope);
5393 Push_Scope (Typ);
5395 Process_Formals (Parameter_Specifications (Spec), Spec);
5397 if Nkind (Spec) = N_Access_Function_Definition then
5398 declare
5399 Def : constant Node_Id := Result_Definition (Spec);
5401 begin
5402 -- The result might itself be an anonymous access type, so
5403 -- have to recurse.
5405 if Nkind (Def) = N_Access_Definition then
5406 if Present (Access_To_Subprogram_Definition (Def)) then
5407 Set_Etype
5408 (Def,
5409 Replace_Anonymous_Access_To_Protected_Subprogram
5410 (Spec));
5411 else
5412 Find_Type (Subtype_Mark (Def));
5413 end if;
5415 else
5416 Find_Type (Def);
5417 end if;
5418 end;
5419 end if;
5421 End_Scope;
5422 end;
5423 end if;
5425 -- Insert the new declaration in the nearest enclosing scope. If the
5426 -- node is a body and N is its return type, the declaration belongs in
5427 -- the enclosing scope.
5429 P := Parent (N);
5431 if Nkind (P) = N_Subprogram_Body
5432 and then Nkind (N) = N_Function_Specification
5433 then
5434 P := Parent (P);
5435 end if;
5437 while Present (P) and then not Has_Declarations (P) loop
5438 P := Parent (P);
5439 end loop;
5441 pragma Assert (Present (P));
5443 if Nkind (P) = N_Package_Specification then
5444 Prepend (Decl, Visible_Declarations (P));
5445 else
5446 Prepend (Decl, Declarations (P));
5447 end if;
5449 -- Replace the anonymous type with an occurrence of the new declaration.
5450 -- In all cases the rewritten node does not have the null-exclusion
5451 -- attribute because (if present) it was already inherited by the
5452 -- anonymous entity (Anon). Thus, in case of components we do not
5453 -- inherit this attribute.
5455 if Nkind (N) = N_Parameter_Specification then
5456 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5457 Set_Etype (Defining_Identifier (N), Anon);
5458 Set_Null_Exclusion_Present (N, False);
5460 elsif Nkind (N) = N_Object_Declaration then
5461 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5462 Set_Etype (Defining_Identifier (N), Anon);
5464 elsif Nkind (N) = N_Access_Function_Definition then
5465 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5467 elsif Nkind (N) = N_Function_Specification then
5468 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5469 Set_Etype (Defining_Unit_Name (N), Anon);
5471 else
5472 Rewrite (Comp,
5473 Make_Component_Definition (Loc,
5474 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5475 end if;
5477 Mark_Rewrite_Insertion (Comp);
5479 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5480 Analyze (Decl);
5482 else
5483 -- Temporarily remove the current scope (record or subprogram) from
5484 -- the stack to add the new declarations to the enclosing scope.
5486 Scope_Stack.Decrement_Last;
5487 Analyze (Decl);
5488 Set_Is_Itype (Anon);
5489 Scope_Stack.Append (Curr_Scope);
5490 end if;
5492 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5493 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5494 return Anon;
5495 end Replace_Anonymous_Access_To_Protected_Subprogram;
5497 -------------------------------
5498 -- Build_Derived_Access_Type --
5499 -------------------------------
5501 procedure Build_Derived_Access_Type
5502 (N : Node_Id;
5503 Parent_Type : Entity_Id;
5504 Derived_Type : Entity_Id)
5506 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5508 Desig_Type : Entity_Id;
5509 Discr : Entity_Id;
5510 Discr_Con_Elist : Elist_Id;
5511 Discr_Con_El : Elmt_Id;
5512 Subt : Entity_Id;
5514 begin
5515 -- Set the designated type so it is available in case this is an access
5516 -- to a self-referential type, e.g. a standard list type with a next
5517 -- pointer. Will be reset after subtype is built.
5519 Set_Directly_Designated_Type
5520 (Derived_Type, Designated_Type (Parent_Type));
5522 Subt := Process_Subtype (S, N);
5524 if Nkind (S) /= N_Subtype_Indication
5525 and then Subt /= Base_Type (Subt)
5526 then
5527 Set_Ekind (Derived_Type, E_Access_Subtype);
5528 end if;
5530 if Ekind (Derived_Type) = E_Access_Subtype then
5531 declare
5532 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5533 Ibase : constant Entity_Id :=
5534 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5535 Svg_Chars : constant Name_Id := Chars (Ibase);
5536 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5538 begin
5539 Copy_Node (Pbase, Ibase);
5541 Set_Chars (Ibase, Svg_Chars);
5542 Set_Next_Entity (Ibase, Svg_Next_E);
5543 Set_Sloc (Ibase, Sloc (Derived_Type));
5544 Set_Scope (Ibase, Scope (Derived_Type));
5545 Set_Freeze_Node (Ibase, Empty);
5546 Set_Is_Frozen (Ibase, False);
5547 Set_Comes_From_Source (Ibase, False);
5548 Set_Is_First_Subtype (Ibase, False);
5550 Set_Etype (Ibase, Pbase);
5551 Set_Etype (Derived_Type, Ibase);
5552 end;
5553 end if;
5555 Set_Directly_Designated_Type
5556 (Derived_Type, Designated_Type (Subt));
5558 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5559 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5560 Set_Size_Info (Derived_Type, Parent_Type);
5561 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5562 Set_Depends_On_Private (Derived_Type,
5563 Has_Private_Component (Derived_Type));
5564 Conditional_Delay (Derived_Type, Subt);
5566 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5567 -- that it is not redundant.
5569 if Null_Exclusion_Present (Type_Definition (N)) then
5570 Set_Can_Never_Be_Null (Derived_Type);
5572 if Can_Never_Be_Null (Parent_Type)
5573 and then False
5574 then
5575 Error_Msg_NE
5576 ("`NOT NULL` not allowed (& already excludes null)",
5577 N, Parent_Type);
5578 end if;
5580 elsif Can_Never_Be_Null (Parent_Type) then
5581 Set_Can_Never_Be_Null (Derived_Type);
5582 end if;
5584 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5585 -- the root type for this information.
5587 -- Apply range checks to discriminants for derived record case
5588 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5590 Desig_Type := Designated_Type (Derived_Type);
5591 if Is_Composite_Type (Desig_Type)
5592 and then (not Is_Array_Type (Desig_Type))
5593 and then Has_Discriminants (Desig_Type)
5594 and then Base_Type (Desig_Type) /= Desig_Type
5595 then
5596 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5597 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5599 Discr := First_Discriminant (Base_Type (Desig_Type));
5600 while Present (Discr_Con_El) loop
5601 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5602 Next_Elmt (Discr_Con_El);
5603 Next_Discriminant (Discr);
5604 end loop;
5605 end if;
5606 end Build_Derived_Access_Type;
5608 ------------------------------
5609 -- Build_Derived_Array_Type --
5610 ------------------------------
5612 procedure Build_Derived_Array_Type
5613 (N : Node_Id;
5614 Parent_Type : Entity_Id;
5615 Derived_Type : Entity_Id)
5617 Loc : constant Source_Ptr := Sloc (N);
5618 Tdef : constant Node_Id := Type_Definition (N);
5619 Indic : constant Node_Id := Subtype_Indication (Tdef);
5620 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5621 Implicit_Base : Entity_Id;
5622 New_Indic : Node_Id;
5624 procedure Make_Implicit_Base;
5625 -- If the parent subtype is constrained, the derived type is a subtype
5626 -- of an implicit base type derived from the parent base.
5628 ------------------------
5629 -- Make_Implicit_Base --
5630 ------------------------
5632 procedure Make_Implicit_Base is
5633 begin
5634 Implicit_Base :=
5635 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5637 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5638 Set_Etype (Implicit_Base, Parent_Base);
5640 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5641 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5643 Set_Has_Delayed_Freeze (Implicit_Base, True);
5644 end Make_Implicit_Base;
5646 -- Start of processing for Build_Derived_Array_Type
5648 begin
5649 if not Is_Constrained (Parent_Type) then
5650 if Nkind (Indic) /= N_Subtype_Indication then
5651 Set_Ekind (Derived_Type, E_Array_Type);
5653 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5654 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5656 Set_Has_Delayed_Freeze (Derived_Type, True);
5658 else
5659 Make_Implicit_Base;
5660 Set_Etype (Derived_Type, Implicit_Base);
5662 New_Indic :=
5663 Make_Subtype_Declaration (Loc,
5664 Defining_Identifier => Derived_Type,
5665 Subtype_Indication =>
5666 Make_Subtype_Indication (Loc,
5667 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5668 Constraint => Constraint (Indic)));
5670 Rewrite (N, New_Indic);
5671 Analyze (N);
5672 end if;
5674 else
5675 if Nkind (Indic) /= N_Subtype_Indication then
5676 Make_Implicit_Base;
5678 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5679 Set_Etype (Derived_Type, Implicit_Base);
5680 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5682 else
5683 Error_Msg_N ("illegal constraint on constrained type", Indic);
5684 end if;
5685 end if;
5687 -- If parent type is not a derived type itself, and is declared in
5688 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5689 -- the new type's concatenation operator since Derive_Subprograms
5690 -- will not inherit the parent's operator. If the parent type is
5691 -- unconstrained, the operator is of the unconstrained base type.
5693 if Number_Dimensions (Parent_Type) = 1
5694 and then not Is_Limited_Type (Parent_Type)
5695 and then not Is_Derived_Type (Parent_Type)
5696 and then not Is_Package_Or_Generic_Package
5697 (Scope (Base_Type (Parent_Type)))
5698 then
5699 if not Is_Constrained (Parent_Type)
5700 and then Is_Constrained (Derived_Type)
5701 then
5702 New_Concatenation_Op (Implicit_Base);
5703 else
5704 New_Concatenation_Op (Derived_Type);
5705 end if;
5706 end if;
5707 end Build_Derived_Array_Type;
5709 -----------------------------------
5710 -- Build_Derived_Concurrent_Type --
5711 -----------------------------------
5713 procedure Build_Derived_Concurrent_Type
5714 (N : Node_Id;
5715 Parent_Type : Entity_Id;
5716 Derived_Type : Entity_Id)
5718 Loc : constant Source_Ptr := Sloc (N);
5720 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5721 Corr_Decl : Node_Id;
5722 Corr_Decl_Needed : Boolean;
5723 -- If the derived type has fewer discriminants than its parent, the
5724 -- corresponding record is also a derived type, in order to account for
5725 -- the bound discriminants. We create a full type declaration for it in
5726 -- this case.
5728 Constraint_Present : constant Boolean :=
5729 Nkind (Subtype_Indication (Type_Definition (N))) =
5730 N_Subtype_Indication;
5732 D_Constraint : Node_Id;
5733 New_Constraint : Elist_Id;
5734 Old_Disc : Entity_Id;
5735 New_Disc : Entity_Id;
5736 New_N : Node_Id;
5738 begin
5739 Set_Stored_Constraint (Derived_Type, No_Elist);
5740 Corr_Decl_Needed := False;
5741 Old_Disc := Empty;
5743 if Present (Discriminant_Specifications (N))
5744 and then Constraint_Present
5745 then
5746 Old_Disc := First_Discriminant (Parent_Type);
5747 New_Disc := First (Discriminant_Specifications (N));
5748 while Present (New_Disc) and then Present (Old_Disc) loop
5749 Next_Discriminant (Old_Disc);
5750 Next (New_Disc);
5751 end loop;
5752 end if;
5754 if Present (Old_Disc) and then Expander_Active then
5756 -- The new type has fewer discriminants, so we need to create a new
5757 -- corresponding record, which is derived from the corresponding
5758 -- record of the parent, and has a stored constraint that captures
5759 -- the values of the discriminant constraints. The corresponding
5760 -- record is needed only if expander is active and code generation is
5761 -- enabled.
5763 -- The type declaration for the derived corresponding record has the
5764 -- same discriminant part and constraints as the current declaration.
5765 -- Copy the unanalyzed tree to build declaration.
5767 Corr_Decl_Needed := True;
5768 New_N := Copy_Separate_Tree (N);
5770 Corr_Decl :=
5771 Make_Full_Type_Declaration (Loc,
5772 Defining_Identifier => Corr_Record,
5773 Discriminant_Specifications =>
5774 Discriminant_Specifications (New_N),
5775 Type_Definition =>
5776 Make_Derived_Type_Definition (Loc,
5777 Subtype_Indication =>
5778 Make_Subtype_Indication (Loc,
5779 Subtype_Mark =>
5780 New_Occurrence_Of
5781 (Corresponding_Record_Type (Parent_Type), Loc),
5782 Constraint =>
5783 Constraint
5784 (Subtype_Indication (Type_Definition (New_N))))));
5785 end if;
5787 -- Copy Storage_Size and Relative_Deadline variables if task case
5789 if Is_Task_Type (Parent_Type) then
5790 Set_Storage_Size_Variable (Derived_Type,
5791 Storage_Size_Variable (Parent_Type));
5792 Set_Relative_Deadline_Variable (Derived_Type,
5793 Relative_Deadline_Variable (Parent_Type));
5794 end if;
5796 if Present (Discriminant_Specifications (N)) then
5797 Push_Scope (Derived_Type);
5798 Check_Or_Process_Discriminants (N, Derived_Type);
5800 if Constraint_Present then
5801 New_Constraint :=
5802 Expand_To_Stored_Constraint
5803 (Parent_Type,
5804 Build_Discriminant_Constraints
5805 (Parent_Type,
5806 Subtype_Indication (Type_Definition (N)), True));
5807 end if;
5809 End_Scope;
5811 elsif Constraint_Present then
5813 -- Build constrained subtype, copying the constraint, and derive
5814 -- from it to create a derived constrained type.
5816 declare
5817 Loc : constant Source_Ptr := Sloc (N);
5818 Anon : constant Entity_Id :=
5819 Make_Defining_Identifier (Loc,
5820 Chars => New_External_Name (Chars (Derived_Type), 'T'));
5821 Decl : Node_Id;
5823 begin
5824 Decl :=
5825 Make_Subtype_Declaration (Loc,
5826 Defining_Identifier => Anon,
5827 Subtype_Indication =>
5828 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
5829 Insert_Before (N, Decl);
5830 Analyze (Decl);
5832 Rewrite (Subtype_Indication (Type_Definition (N)),
5833 New_Occurrence_Of (Anon, Loc));
5834 Set_Analyzed (Derived_Type, False);
5835 Analyze (N);
5836 return;
5837 end;
5838 end if;
5840 -- By default, operations and private data are inherited from parent.
5841 -- However, in the presence of bound discriminants, a new corresponding
5842 -- record will be created, see below.
5844 Set_Has_Discriminants
5845 (Derived_Type, Has_Discriminants (Parent_Type));
5846 Set_Corresponding_Record_Type
5847 (Derived_Type, Corresponding_Record_Type (Parent_Type));
5849 -- Is_Constrained is set according the parent subtype, but is set to
5850 -- False if the derived type is declared with new discriminants.
5852 Set_Is_Constrained
5853 (Derived_Type,
5854 (Is_Constrained (Parent_Type) or else Constraint_Present)
5855 and then not Present (Discriminant_Specifications (N)));
5857 if Constraint_Present then
5858 if not Has_Discriminants (Parent_Type) then
5859 Error_Msg_N ("untagged parent must have discriminants", N);
5861 elsif Present (Discriminant_Specifications (N)) then
5863 -- Verify that new discriminants are used to constrain old ones
5865 D_Constraint :=
5866 First
5867 (Constraints
5868 (Constraint (Subtype_Indication (Type_Definition (N)))));
5870 Old_Disc := First_Discriminant (Parent_Type);
5872 while Present (D_Constraint) loop
5873 if Nkind (D_Constraint) /= N_Discriminant_Association then
5875 -- Positional constraint. If it is a reference to a new
5876 -- discriminant, it constrains the corresponding old one.
5878 if Nkind (D_Constraint) = N_Identifier then
5879 New_Disc := First_Discriminant (Derived_Type);
5880 while Present (New_Disc) loop
5881 exit when Chars (New_Disc) = Chars (D_Constraint);
5882 Next_Discriminant (New_Disc);
5883 end loop;
5885 if Present (New_Disc) then
5886 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
5887 end if;
5888 end if;
5890 Next_Discriminant (Old_Disc);
5892 -- if this is a named constraint, search by name for the old
5893 -- discriminants constrained by the new one.
5895 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
5897 -- Find new discriminant with that name
5899 New_Disc := First_Discriminant (Derived_Type);
5900 while Present (New_Disc) loop
5901 exit when
5902 Chars (New_Disc) = Chars (Expression (D_Constraint));
5903 Next_Discriminant (New_Disc);
5904 end loop;
5906 if Present (New_Disc) then
5908 -- Verify that new discriminant renames some discriminant
5909 -- of the parent type, and associate the new discriminant
5910 -- with one or more old ones that it renames.
5912 declare
5913 Selector : Node_Id;
5915 begin
5916 Selector := First (Selector_Names (D_Constraint));
5917 while Present (Selector) loop
5918 Old_Disc := First_Discriminant (Parent_Type);
5919 while Present (Old_Disc) loop
5920 exit when Chars (Old_Disc) = Chars (Selector);
5921 Next_Discriminant (Old_Disc);
5922 end loop;
5924 if Present (Old_Disc) then
5925 Set_Corresponding_Discriminant
5926 (New_Disc, Old_Disc);
5927 end if;
5929 Next (Selector);
5930 end loop;
5931 end;
5932 end if;
5933 end if;
5935 Next (D_Constraint);
5936 end loop;
5938 New_Disc := First_Discriminant (Derived_Type);
5939 while Present (New_Disc) loop
5940 if No (Corresponding_Discriminant (New_Disc)) then
5941 Error_Msg_NE
5942 ("new discriminant& must constrain old one", N, New_Disc);
5944 elsif not
5945 Subtypes_Statically_Compatible
5946 (Etype (New_Disc),
5947 Etype (Corresponding_Discriminant (New_Disc)))
5948 then
5949 Error_Msg_NE
5950 ("& not statically compatible with parent discriminant",
5951 N, New_Disc);
5952 end if;
5954 Next_Discriminant (New_Disc);
5955 end loop;
5956 end if;
5958 elsif Present (Discriminant_Specifications (N)) then
5959 Error_Msg_N
5960 ("missing discriminant constraint in untagged derivation", N);
5961 end if;
5963 -- The entity chain of the derived type includes the new discriminants
5964 -- but shares operations with the parent.
5966 if Present (Discriminant_Specifications (N)) then
5967 Old_Disc := First_Discriminant (Parent_Type);
5968 while Present (Old_Disc) loop
5969 if No (Next_Entity (Old_Disc))
5970 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
5971 then
5972 Set_Next_Entity
5973 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
5974 exit;
5975 end if;
5977 Next_Discriminant (Old_Disc);
5978 end loop;
5980 else
5981 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
5982 if Has_Discriminants (Parent_Type) then
5983 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
5984 Set_Discriminant_Constraint (
5985 Derived_Type, Discriminant_Constraint (Parent_Type));
5986 end if;
5987 end if;
5989 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
5991 Set_Has_Completion (Derived_Type);
5993 if Corr_Decl_Needed then
5994 Set_Stored_Constraint (Derived_Type, New_Constraint);
5995 Insert_After (N, Corr_Decl);
5996 Analyze (Corr_Decl);
5997 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
5998 end if;
5999 end Build_Derived_Concurrent_Type;
6001 ------------------------------------
6002 -- Build_Derived_Enumeration_Type --
6003 ------------------------------------
6005 procedure Build_Derived_Enumeration_Type
6006 (N : Node_Id;
6007 Parent_Type : Entity_Id;
6008 Derived_Type : Entity_Id)
6010 Loc : constant Source_Ptr := Sloc (N);
6011 Def : constant Node_Id := Type_Definition (N);
6012 Indic : constant Node_Id := Subtype_Indication (Def);
6013 Implicit_Base : Entity_Id;
6014 Literal : Entity_Id;
6015 New_Lit : Entity_Id;
6016 Literals_List : List_Id;
6017 Type_Decl : Node_Id;
6018 Hi, Lo : Node_Id;
6019 Rang_Expr : Node_Id;
6021 begin
6022 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6023 -- not have explicit literals lists we need to process types derived
6024 -- from them specially. This is handled by Derived_Standard_Character.
6025 -- If the parent type is a generic type, there are no literals either,
6026 -- and we construct the same skeletal representation as for the generic
6027 -- parent type.
6029 if Is_Standard_Character_Type (Parent_Type) then
6030 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6032 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6033 declare
6034 Lo : Node_Id;
6035 Hi : Node_Id;
6037 begin
6038 if Nkind (Indic) /= N_Subtype_Indication then
6039 Lo :=
6040 Make_Attribute_Reference (Loc,
6041 Attribute_Name => Name_First,
6042 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6043 Set_Etype (Lo, Derived_Type);
6045 Hi :=
6046 Make_Attribute_Reference (Loc,
6047 Attribute_Name => Name_Last,
6048 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6049 Set_Etype (Hi, Derived_Type);
6051 Set_Scalar_Range (Derived_Type,
6052 Make_Range (Loc,
6053 Low_Bound => Lo,
6054 High_Bound => Hi));
6055 else
6057 -- Analyze subtype indication and verify compatibility
6058 -- with parent type.
6060 if Base_Type (Process_Subtype (Indic, N)) /=
6061 Base_Type (Parent_Type)
6062 then
6063 Error_Msg_N
6064 ("illegal constraint for formal discrete type", N);
6065 end if;
6066 end if;
6067 end;
6069 else
6070 -- If a constraint is present, analyze the bounds to catch
6071 -- premature usage of the derived literals.
6073 if Nkind (Indic) = N_Subtype_Indication
6074 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6075 then
6076 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6077 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6078 end if;
6080 -- Introduce an implicit base type for the derived type even if there
6081 -- is no constraint attached to it, since this seems closer to the
6082 -- Ada semantics. Build a full type declaration tree for the derived
6083 -- type using the implicit base type as the defining identifier. The
6084 -- build a subtype declaration tree which applies the constraint (if
6085 -- any) have it replace the derived type declaration.
6087 Literal := First_Literal (Parent_Type);
6088 Literals_List := New_List;
6089 while Present (Literal)
6090 and then Ekind (Literal) = E_Enumeration_Literal
6091 loop
6092 -- Literals of the derived type have the same representation as
6093 -- those of the parent type, but this representation can be
6094 -- overridden by an explicit representation clause. Indicate
6095 -- that there is no explicit representation given yet. These
6096 -- derived literals are implicit operations of the new type,
6097 -- and can be overridden by explicit ones.
6099 if Nkind (Literal) = N_Defining_Character_Literal then
6100 New_Lit :=
6101 Make_Defining_Character_Literal (Loc, Chars (Literal));
6102 else
6103 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6104 end if;
6106 Set_Ekind (New_Lit, E_Enumeration_Literal);
6107 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6108 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6109 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6110 Set_Alias (New_Lit, Literal);
6111 Set_Is_Known_Valid (New_Lit, True);
6113 Append (New_Lit, Literals_List);
6114 Next_Literal (Literal);
6115 end loop;
6117 Implicit_Base :=
6118 Make_Defining_Identifier (Sloc (Derived_Type),
6119 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6121 -- Indicate the proper nature of the derived type. This must be done
6122 -- before analysis of the literals, to recognize cases when a literal
6123 -- may be hidden by a previous explicit function definition (cf.
6124 -- c83031a).
6126 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6127 Set_Etype (Derived_Type, Implicit_Base);
6129 Type_Decl :=
6130 Make_Full_Type_Declaration (Loc,
6131 Defining_Identifier => Implicit_Base,
6132 Discriminant_Specifications => No_List,
6133 Type_Definition =>
6134 Make_Enumeration_Type_Definition (Loc, Literals_List));
6136 Mark_Rewrite_Insertion (Type_Decl);
6137 Insert_Before (N, Type_Decl);
6138 Analyze (Type_Decl);
6140 -- After the implicit base is analyzed its Etype needs to be changed
6141 -- to reflect the fact that it is derived from the parent type which
6142 -- was ignored during analysis. We also set the size at this point.
6144 Set_Etype (Implicit_Base, Parent_Type);
6146 Set_Size_Info (Implicit_Base, Parent_Type);
6147 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6148 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6150 -- Copy other flags from parent type
6152 Set_Has_Non_Standard_Rep
6153 (Implicit_Base, Has_Non_Standard_Rep
6154 (Parent_Type));
6155 Set_Has_Pragma_Ordered
6156 (Implicit_Base, Has_Pragma_Ordered
6157 (Parent_Type));
6158 Set_Has_Delayed_Freeze (Implicit_Base);
6160 -- Process the subtype indication including a validation check on the
6161 -- constraint, if any. If a constraint is given, its bounds must be
6162 -- implicitly converted to the new type.
6164 if Nkind (Indic) = N_Subtype_Indication then
6165 declare
6166 R : constant Node_Id :=
6167 Range_Expression (Constraint (Indic));
6169 begin
6170 if Nkind (R) = N_Range then
6171 Hi := Build_Scalar_Bound
6172 (High_Bound (R), Parent_Type, Implicit_Base);
6173 Lo := Build_Scalar_Bound
6174 (Low_Bound (R), Parent_Type, Implicit_Base);
6176 else
6177 -- Constraint is a Range attribute. Replace with explicit
6178 -- mention of the bounds of the prefix, which must be a
6179 -- subtype.
6181 Analyze (Prefix (R));
6182 Hi :=
6183 Convert_To (Implicit_Base,
6184 Make_Attribute_Reference (Loc,
6185 Attribute_Name => Name_Last,
6186 Prefix =>
6187 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6189 Lo :=
6190 Convert_To (Implicit_Base,
6191 Make_Attribute_Reference (Loc,
6192 Attribute_Name => Name_First,
6193 Prefix =>
6194 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6195 end if;
6196 end;
6198 else
6199 Hi :=
6200 Build_Scalar_Bound
6201 (Type_High_Bound (Parent_Type),
6202 Parent_Type, Implicit_Base);
6203 Lo :=
6204 Build_Scalar_Bound
6205 (Type_Low_Bound (Parent_Type),
6206 Parent_Type, Implicit_Base);
6207 end if;
6209 Rang_Expr :=
6210 Make_Range (Loc,
6211 Low_Bound => Lo,
6212 High_Bound => Hi);
6214 -- If we constructed a default range for the case where no range
6215 -- was given, then the expressions in the range must not freeze
6216 -- since they do not correspond to expressions in the source.
6218 if Nkind (Indic) /= N_Subtype_Indication then
6219 Set_Must_Not_Freeze (Lo);
6220 Set_Must_Not_Freeze (Hi);
6221 Set_Must_Not_Freeze (Rang_Expr);
6222 end if;
6224 Rewrite (N,
6225 Make_Subtype_Declaration (Loc,
6226 Defining_Identifier => Derived_Type,
6227 Subtype_Indication =>
6228 Make_Subtype_Indication (Loc,
6229 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6230 Constraint =>
6231 Make_Range_Constraint (Loc,
6232 Range_Expression => Rang_Expr))));
6234 Analyze (N);
6236 -- Apply a range check. Since this range expression doesn't have an
6237 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6238 -- this right???
6240 if Nkind (Indic) = N_Subtype_Indication then
6241 Apply_Range_Check (Range_Expression (Constraint (Indic)),
6242 Parent_Type,
6243 Source_Typ => Entity (Subtype_Mark (Indic)));
6244 end if;
6245 end if;
6246 end Build_Derived_Enumeration_Type;
6248 --------------------------------
6249 -- Build_Derived_Numeric_Type --
6250 --------------------------------
6252 procedure Build_Derived_Numeric_Type
6253 (N : Node_Id;
6254 Parent_Type : Entity_Id;
6255 Derived_Type : Entity_Id)
6257 Loc : constant Source_Ptr := Sloc (N);
6258 Tdef : constant Node_Id := Type_Definition (N);
6259 Indic : constant Node_Id := Subtype_Indication (Tdef);
6260 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6261 No_Constraint : constant Boolean := Nkind (Indic) /=
6262 N_Subtype_Indication;
6263 Implicit_Base : Entity_Id;
6265 Lo : Node_Id;
6266 Hi : Node_Id;
6268 begin
6269 -- Process the subtype indication including a validation check on
6270 -- the constraint if any.
6272 Discard_Node (Process_Subtype (Indic, N));
6274 -- Introduce an implicit base type for the derived type even if there
6275 -- is no constraint attached to it, since this seems closer to the Ada
6276 -- semantics.
6278 Implicit_Base :=
6279 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6281 Set_Etype (Implicit_Base, Parent_Base);
6282 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6283 Set_Size_Info (Implicit_Base, Parent_Base);
6284 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6285 Set_Parent (Implicit_Base, Parent (Derived_Type));
6286 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6288 -- Set RM Size for discrete type or decimal fixed-point type
6289 -- Ordinary fixed-point is excluded, why???
6291 if Is_Discrete_Type (Parent_Base)
6292 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6293 then
6294 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6295 end if;
6297 Set_Has_Delayed_Freeze (Implicit_Base);
6299 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6300 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6302 Set_Scalar_Range (Implicit_Base,
6303 Make_Range (Loc,
6304 Low_Bound => Lo,
6305 High_Bound => Hi));
6307 if Has_Infinities (Parent_Base) then
6308 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6309 end if;
6311 -- The Derived_Type, which is the entity of the declaration, is a
6312 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6313 -- absence of an explicit constraint.
6315 Set_Etype (Derived_Type, Implicit_Base);
6317 -- If we did not have a constraint, then the Ekind is set from the
6318 -- parent type (otherwise Process_Subtype has set the bounds)
6320 if No_Constraint then
6321 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6322 end if;
6324 -- If we did not have a range constraint, then set the range from the
6325 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6327 if No_Constraint
6328 or else not Has_Range_Constraint (Indic)
6329 then
6330 Set_Scalar_Range (Derived_Type,
6331 Make_Range (Loc,
6332 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6333 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6334 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6336 if Has_Infinities (Parent_Type) then
6337 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6338 end if;
6340 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6341 end if;
6343 Set_Is_Descendent_Of_Address (Derived_Type,
6344 Is_Descendent_Of_Address (Parent_Type));
6345 Set_Is_Descendent_Of_Address (Implicit_Base,
6346 Is_Descendent_Of_Address (Parent_Type));
6348 -- Set remaining type-specific fields, depending on numeric type
6350 if Is_Modular_Integer_Type (Parent_Type) then
6351 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6353 Set_Non_Binary_Modulus
6354 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6356 Set_Is_Known_Valid
6357 (Implicit_Base, Is_Known_Valid (Parent_Base));
6359 elsif Is_Floating_Point_Type (Parent_Type) then
6361 -- Digits of base type is always copied from the digits value of
6362 -- the parent base type, but the digits of the derived type will
6363 -- already have been set if there was a constraint present.
6365 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6366 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6368 if No_Constraint then
6369 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6370 end if;
6372 elsif Is_Fixed_Point_Type (Parent_Type) then
6374 -- Small of base type and derived type are always copied from the
6375 -- parent base type, since smalls never change. The delta of the
6376 -- base type is also copied from the parent base type. However the
6377 -- delta of the derived type will have been set already if a
6378 -- constraint was present.
6380 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6381 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6382 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6384 if No_Constraint then
6385 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6386 end if;
6388 -- The scale and machine radix in the decimal case are always
6389 -- copied from the parent base type.
6391 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6392 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6393 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6395 Set_Machine_Radix_10
6396 (Derived_Type, Machine_Radix_10 (Parent_Base));
6397 Set_Machine_Radix_10
6398 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6400 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6402 if No_Constraint then
6403 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6405 else
6406 -- the analysis of the subtype_indication sets the
6407 -- digits value of the derived type.
6409 null;
6410 end if;
6411 end if;
6412 end if;
6414 if Is_Integer_Type (Parent_Type) then
6415 Set_Has_Shift_Operator
6416 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6417 end if;
6419 -- The type of the bounds is that of the parent type, and they
6420 -- must be converted to the derived type.
6422 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6424 -- The implicit_base should be frozen when the derived type is frozen,
6425 -- but note that it is used in the conversions of the bounds. For fixed
6426 -- types we delay the determination of the bounds until the proper
6427 -- freezing point. For other numeric types this is rejected by GCC, for
6428 -- reasons that are currently unclear (???), so we choose to freeze the
6429 -- implicit base now. In the case of integers and floating point types
6430 -- this is harmless because subsequent representation clauses cannot
6431 -- affect anything, but it is still baffling that we cannot use the
6432 -- same mechanism for all derived numeric types.
6434 -- There is a further complication: actually some representation
6435 -- clauses can affect the implicit base type. For example, attribute
6436 -- definition clauses for stream-oriented attributes need to set the
6437 -- corresponding TSS entries on the base type, and this normally
6438 -- cannot be done after the base type is frozen, so the circuitry in
6439 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6440 -- and not use Set_TSS in this case.
6442 -- There are also consequences for the case of delayed representation
6443 -- aspects for some cases. For example, a Size aspect is delayed and
6444 -- should not be evaluated to the freeze point. This early freezing
6445 -- means that the size attribute evaluation happens too early???
6447 if Is_Fixed_Point_Type (Parent_Type) then
6448 Conditional_Delay (Implicit_Base, Parent_Type);
6449 else
6450 Freeze_Before (N, Implicit_Base);
6451 end if;
6452 end Build_Derived_Numeric_Type;
6454 --------------------------------
6455 -- Build_Derived_Private_Type --
6456 --------------------------------
6458 procedure Build_Derived_Private_Type
6459 (N : Node_Id;
6460 Parent_Type : Entity_Id;
6461 Derived_Type : Entity_Id;
6462 Is_Completion : Boolean;
6463 Derive_Subps : Boolean := True)
6465 Loc : constant Source_Ptr := Sloc (N);
6466 Der_Base : Entity_Id;
6467 Discr : Entity_Id;
6468 Full_Decl : Node_Id := Empty;
6469 Full_Der : Entity_Id;
6470 Full_P : Entity_Id;
6471 Last_Discr : Entity_Id;
6472 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
6473 Swapped : Boolean := False;
6475 procedure Copy_And_Build;
6476 -- Copy derived type declaration, replace parent with its full view,
6477 -- and analyze new declaration.
6479 --------------------
6480 -- Copy_And_Build --
6481 --------------------
6483 procedure Copy_And_Build is
6484 Full_N : Node_Id;
6486 begin
6487 if Ekind (Parent_Type) in Record_Kind
6488 or else
6489 (Ekind (Parent_Type) in Enumeration_Kind
6490 and then not Is_Standard_Character_Type (Parent_Type)
6491 and then not Is_Generic_Type (Root_Type (Parent_Type)))
6492 then
6493 Full_N := New_Copy_Tree (N);
6494 Insert_After (N, Full_N);
6495 Build_Derived_Type (
6496 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
6498 else
6499 Build_Derived_Type (
6500 N, Parent_Type, Full_Der, True, Derive_Subps => False);
6501 end if;
6502 end Copy_And_Build;
6504 -- Start of processing for Build_Derived_Private_Type
6506 begin
6507 if Is_Tagged_Type (Parent_Type) then
6508 Full_P := Full_View (Parent_Type);
6510 -- A type extension of a type with unknown discriminants is an
6511 -- indefinite type that the back-end cannot handle directly.
6512 -- We treat it as a private type, and build a completion that is
6513 -- derived from the full view of the parent, and hopefully has
6514 -- known discriminants.
6516 -- If the full view of the parent type has an underlying record view,
6517 -- use it to generate the underlying record view of this derived type
6518 -- (required for chains of derivations with unknown discriminants).
6520 -- Minor optimization: we avoid the generation of useless underlying
6521 -- record view entities if the private type declaration has unknown
6522 -- discriminants but its corresponding full view has no
6523 -- discriminants.
6525 if Has_Unknown_Discriminants (Parent_Type)
6526 and then Present (Full_P)
6527 and then (Has_Discriminants (Full_P)
6528 or else Present (Underlying_Record_View (Full_P)))
6529 and then not In_Open_Scopes (Par_Scope)
6530 and then Expander_Active
6531 then
6532 declare
6533 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6534 New_Ext : constant Node_Id :=
6535 Copy_Separate_Tree
6536 (Record_Extension_Part (Type_Definition (N)));
6537 Decl : Node_Id;
6539 begin
6540 Build_Derived_Record_Type
6541 (N, Parent_Type, Derived_Type, Derive_Subps);
6543 -- Build anonymous completion, as a derivation from the full
6544 -- view of the parent. This is not a completion in the usual
6545 -- sense, because the current type is not private.
6547 Decl :=
6548 Make_Full_Type_Declaration (Loc,
6549 Defining_Identifier => Full_Der,
6550 Type_Definition =>
6551 Make_Derived_Type_Definition (Loc,
6552 Subtype_Indication =>
6553 New_Copy_Tree
6554 (Subtype_Indication (Type_Definition (N))),
6555 Record_Extension_Part => New_Ext));
6557 -- If the parent type has an underlying record view, use it
6558 -- here to build the new underlying record view.
6560 if Present (Underlying_Record_View (Full_P)) then
6561 pragma Assert
6562 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6563 = N_Identifier);
6564 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6565 Underlying_Record_View (Full_P));
6566 end if;
6568 Install_Private_Declarations (Par_Scope);
6569 Install_Visible_Declarations (Par_Scope);
6570 Insert_Before (N, Decl);
6572 -- Mark entity as an underlying record view before analysis,
6573 -- to avoid generating the list of its primitive operations
6574 -- (which is not really required for this entity) and thus
6575 -- prevent spurious errors associated with missing overriding
6576 -- of abstract primitives (overridden only for Derived_Type).
6578 Set_Ekind (Full_Der, E_Record_Type);
6579 Set_Is_Underlying_Record_View (Full_Der);
6581 Analyze (Decl);
6583 pragma Assert (Has_Discriminants (Full_Der)
6584 and then not Has_Unknown_Discriminants (Full_Der));
6586 Uninstall_Declarations (Par_Scope);
6588 -- Freeze the underlying record view, to prevent generation of
6589 -- useless dispatching information, which is simply shared with
6590 -- the real derived type.
6592 Set_Is_Frozen (Full_Der);
6594 -- Set up links between real entity and underlying record view
6596 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6597 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6598 end;
6600 -- If discriminants are known, build derived record
6602 else
6603 Build_Derived_Record_Type
6604 (N, Parent_Type, Derived_Type, Derive_Subps);
6605 end if;
6607 return;
6609 elsif Has_Discriminants (Parent_Type) then
6610 if Present (Full_View (Parent_Type)) then
6611 if not Is_Completion then
6613 -- Copy declaration for subsequent analysis, to provide a
6614 -- completion for what is a private declaration. Indicate that
6615 -- the full type is internally generated.
6617 Full_Decl := New_Copy_Tree (N);
6618 Full_Der := New_Copy (Derived_Type);
6619 Set_Comes_From_Source (Full_Decl, False);
6620 Set_Comes_From_Source (Full_Der, False);
6621 Set_Parent (Full_Der, Full_Decl);
6623 Insert_After (N, Full_Decl);
6625 else
6626 -- If this is a completion, the full view being built is itself
6627 -- private. We build a subtype of the parent with the same
6628 -- constraints as this full view, to convey to the back end the
6629 -- constrained components and the size of this subtype. If the
6630 -- parent is constrained, its full view can serve as the
6631 -- underlying full view of the derived type.
6633 if No (Discriminant_Specifications (N)) then
6634 if Nkind (Subtype_Indication (Type_Definition (N))) =
6635 N_Subtype_Indication
6636 then
6637 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
6639 elsif Is_Constrained (Full_View (Parent_Type)) then
6640 Set_Underlying_Full_View
6641 (Derived_Type, Full_View (Parent_Type));
6642 end if;
6644 else
6645 -- If there are new discriminants, the parent subtype is
6646 -- constrained by them, but it is not clear how to build
6647 -- the Underlying_Full_View in this case???
6649 null;
6650 end if;
6651 end if;
6652 end if;
6654 -- Build partial view of derived type from partial view of parent
6656 Build_Derived_Record_Type
6657 (N, Parent_Type, Derived_Type, Derive_Subps);
6659 if Present (Full_View (Parent_Type)) and then not Is_Completion then
6660 if not In_Open_Scopes (Par_Scope)
6661 or else not In_Same_Source_Unit (N, Parent_Type)
6662 then
6663 -- Swap partial and full views temporarily
6665 Install_Private_Declarations (Par_Scope);
6666 Install_Visible_Declarations (Par_Scope);
6667 Swapped := True;
6668 end if;
6670 -- Build full view of derived type from full view of parent which
6671 -- is now installed. Subprograms have been derived on the partial
6672 -- view, the completion does not derive them anew.
6674 if not Is_Tagged_Type (Parent_Type) then
6676 -- If the parent is itself derived from another private type,
6677 -- installing the private declarations has not affected its
6678 -- privacy status, so use its own full view explicitly.
6680 if Is_Private_Type (Parent_Type) then
6681 Build_Derived_Record_Type
6682 (Full_Decl, Full_View (Parent_Type), Full_Der, False);
6683 else
6684 Build_Derived_Record_Type
6685 (Full_Decl, Parent_Type, Full_Der, False);
6686 end if;
6688 else
6689 -- If full view of parent is tagged, the completion inherits
6690 -- the proper primitive operations.
6692 Set_Defining_Identifier (Full_Decl, Full_Der);
6693 Build_Derived_Record_Type
6694 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
6695 end if;
6697 -- The full declaration has been introduced into the tree and
6698 -- processed in the step above. It should not be analyzed again
6699 -- (when encountered later in the current list of declarations)
6700 -- to prevent spurious name conflicts. The full entity remains
6701 -- invisible.
6703 Set_Analyzed (Full_Decl);
6705 if Swapped then
6706 Uninstall_Declarations (Par_Scope);
6708 if In_Open_Scopes (Par_Scope) then
6709 Install_Visible_Declarations (Par_Scope);
6710 end if;
6711 end if;
6713 Der_Base := Base_Type (Derived_Type);
6714 Set_Full_View (Derived_Type, Full_Der);
6715 Set_Full_View (Der_Base, Base_Type (Full_Der));
6717 -- Copy the discriminant list from full view to the partial views
6718 -- (base type and its subtype). Gigi requires that the partial and
6719 -- full views have the same discriminants.
6721 -- Note that since the partial view is pointing to discriminants
6722 -- in the full view, their scope will be that of the full view.
6723 -- This might cause some front end problems and need adjustment???
6725 Discr := First_Discriminant (Base_Type (Full_Der));
6726 Set_First_Entity (Der_Base, Discr);
6728 loop
6729 Last_Discr := Discr;
6730 Next_Discriminant (Discr);
6731 exit when No (Discr);
6732 end loop;
6734 Set_Last_Entity (Der_Base, Last_Discr);
6736 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
6737 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
6738 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
6740 else
6741 -- If this is a completion, the derived type stays private and
6742 -- there is no need to create a further full view, except in the
6743 -- unusual case when the derivation is nested within a child unit,
6744 -- see below.
6746 null;
6747 end if;
6749 elsif Present (Full_View (Parent_Type))
6750 and then Has_Discriminants (Full_View (Parent_Type))
6751 then
6752 if Has_Unknown_Discriminants (Parent_Type)
6753 and then Nkind (Subtype_Indication (Type_Definition (N))) =
6754 N_Subtype_Indication
6755 then
6756 Error_Msg_N
6757 ("cannot constrain type with unknown discriminants",
6758 Subtype_Indication (Type_Definition (N)));
6759 return;
6760 end if;
6762 -- If full view of parent is a record type, build full view as a
6763 -- derivation from the parent's full view. Partial view remains
6764 -- private. For code generation and linking, the full view must have
6765 -- the same public status as the partial one. This full view is only
6766 -- needed if the parent type is in an enclosing scope, so that the
6767 -- full view may actually become visible, e.g. in a child unit. This
6768 -- is both more efficient, and avoids order of freezing problems with
6769 -- the added entities.
6771 if not Is_Private_Type (Full_View (Parent_Type))
6772 and then (In_Open_Scopes (Scope (Parent_Type)))
6773 then
6774 Full_Der :=
6775 Make_Defining_Identifier (Sloc (Derived_Type),
6776 Chars => Chars (Derived_Type));
6778 Set_Is_Itype (Full_Der);
6779 Set_Has_Private_Declaration (Full_Der);
6780 Set_Has_Private_Declaration (Derived_Type);
6781 Set_Associated_Node_For_Itype (Full_Der, N);
6782 Set_Parent (Full_Der, Parent (Derived_Type));
6783 Set_Full_View (Derived_Type, Full_Der);
6784 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6785 Full_P := Full_View (Parent_Type);
6786 Exchange_Declarations (Parent_Type);
6787 Copy_And_Build;
6788 Exchange_Declarations (Full_P);
6790 else
6791 Build_Derived_Record_Type
6792 (N, Full_View (Parent_Type), Derived_Type,
6793 Derive_Subps => False);
6795 -- Except in the context of the full view of the parent, there
6796 -- are no non-extension aggregates for the derived type.
6798 Set_Has_Private_Ancestor (Derived_Type);
6799 end if;
6801 -- In any case, the primitive operations are inherited from the
6802 -- parent type, not from the internal full view.
6804 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
6806 if Derive_Subps then
6807 Derive_Subprograms (Parent_Type, Derived_Type);
6808 end if;
6810 else
6811 -- Untagged type, No discriminants on either view
6813 if Nkind (Subtype_Indication (Type_Definition (N))) =
6814 N_Subtype_Indication
6815 then
6816 Error_Msg_N
6817 ("illegal constraint on type without discriminants", N);
6818 end if;
6820 if Present (Discriminant_Specifications (N))
6821 and then Present (Full_View (Parent_Type))
6822 and then not Is_Tagged_Type (Full_View (Parent_Type))
6823 then
6824 Error_Msg_N ("cannot add discriminants to untagged type", N);
6825 end if;
6827 Set_Stored_Constraint (Derived_Type, No_Elist);
6828 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6829 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6830 Set_Has_Controlled_Component
6831 (Derived_Type, Has_Controlled_Component
6832 (Parent_Type));
6834 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6836 if not Is_Controlled (Parent_Type) then
6837 Set_Finalize_Storage_Only
6838 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
6839 end if;
6841 -- Construct the implicit full view by deriving from full view of the
6842 -- parent type. In order to get proper visibility, we install the
6843 -- parent scope and its declarations.
6845 -- ??? If the parent is untagged private and its completion is
6846 -- tagged, this mechanism will not work because we cannot derive from
6847 -- the tagged full view unless we have an extension.
6849 if Present (Full_View (Parent_Type))
6850 and then not Is_Tagged_Type (Full_View (Parent_Type))
6851 and then not Is_Completion
6852 then
6853 Full_Der :=
6854 Make_Defining_Identifier
6855 (Sloc (Derived_Type), Chars (Derived_Type));
6856 Set_Is_Itype (Full_Der);
6857 Set_Has_Private_Declaration (Full_Der);
6858 Set_Has_Private_Declaration (Derived_Type);
6859 Set_Associated_Node_For_Itype (Full_Der, N);
6860 Set_Parent (Full_Der, Parent (Derived_Type));
6861 Set_Full_View (Derived_Type, Full_Der);
6863 if not In_Open_Scopes (Par_Scope) then
6864 Install_Private_Declarations (Par_Scope);
6865 Install_Visible_Declarations (Par_Scope);
6866 Copy_And_Build;
6867 Uninstall_Declarations (Par_Scope);
6869 -- If parent scope is open and in another unit, and parent has a
6870 -- completion, then the derivation is taking place in the visible
6871 -- part of a child unit. In that case retrieve the full view of
6872 -- the parent momentarily.
6874 elsif not In_Same_Source_Unit (N, Parent_Type) then
6875 Full_P := Full_View (Parent_Type);
6876 Exchange_Declarations (Parent_Type);
6877 Copy_And_Build;
6878 Exchange_Declarations (Full_P);
6880 -- Otherwise it is a local derivation
6882 else
6883 Copy_And_Build;
6884 end if;
6886 Set_Scope (Full_Der, Current_Scope);
6887 Set_Is_First_Subtype (Full_Der,
6888 Is_First_Subtype (Derived_Type));
6889 Set_Has_Size_Clause (Full_Der, False);
6890 Set_Has_Alignment_Clause (Full_Der, False);
6891 Set_Next_Entity (Full_Der, Empty);
6892 Set_Has_Delayed_Freeze (Full_Der);
6893 Set_Is_Frozen (Full_Der, False);
6894 Set_Freeze_Node (Full_Der, Empty);
6895 Set_Depends_On_Private (Full_Der,
6896 Has_Private_Component (Full_Der));
6897 Set_Public_Status (Full_Der);
6898 end if;
6899 end if;
6901 Set_Has_Unknown_Discriminants (Derived_Type,
6902 Has_Unknown_Discriminants (Parent_Type));
6904 if Is_Private_Type (Derived_Type) then
6905 Set_Private_Dependents (Derived_Type, New_Elmt_List);
6906 end if;
6908 if Is_Private_Type (Parent_Type)
6909 and then Base_Type (Parent_Type) = Parent_Type
6910 and then In_Open_Scopes (Scope (Parent_Type))
6911 then
6912 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
6914 -- Check for unusual case where a type completed by a private
6915 -- derivation occurs within a package nested in a child unit, and
6916 -- the parent is declared in an ancestor.
6918 if Is_Child_Unit (Scope (Current_Scope))
6919 and then Is_Completion
6920 and then In_Private_Part (Current_Scope)
6921 and then Scope (Parent_Type) /= Current_Scope
6923 -- Note that if the parent has a completion in the private part,
6924 -- (which is itself a derivation from some other private type)
6925 -- it is that completion that is visible, there is no full view
6926 -- available, and no special processing is needed.
6928 and then Present (Full_View (Parent_Type))
6929 then
6930 -- In this case, the full view of the parent type will become
6931 -- visible in the body of the enclosing child, and only then will
6932 -- the current type be possibly non-private. We build an
6933 -- underlying full view that will be installed when the enclosing
6934 -- child body is compiled.
6936 Full_Der :=
6937 Make_Defining_Identifier
6938 (Sloc (Derived_Type), Chars (Derived_Type));
6939 Set_Is_Itype (Full_Der);
6940 Build_Itype_Reference (Full_Der, N);
6942 -- The full view will be used to swap entities on entry/exit to
6943 -- the body, and must appear in the entity list for the package.
6945 Append_Entity (Full_Der, Scope (Derived_Type));
6946 Set_Has_Private_Declaration (Full_Der);
6947 Set_Has_Private_Declaration (Derived_Type);
6948 Set_Associated_Node_For_Itype (Full_Der, N);
6949 Set_Parent (Full_Der, Parent (Derived_Type));
6950 Full_P := Full_View (Parent_Type);
6951 Exchange_Declarations (Parent_Type);
6952 Copy_And_Build;
6953 Exchange_Declarations (Full_P);
6954 Set_Underlying_Full_View (Derived_Type, Full_Der);
6955 end if;
6956 end if;
6957 end Build_Derived_Private_Type;
6959 -------------------------------
6960 -- Build_Derived_Record_Type --
6961 -------------------------------
6963 -- 1. INTRODUCTION
6965 -- Ideally we would like to use the same model of type derivation for
6966 -- tagged and untagged record types. Unfortunately this is not quite
6967 -- possible because the semantics of representation clauses is different
6968 -- for tagged and untagged records under inheritance. Consider the
6969 -- following:
6971 -- type R (...) is [tagged] record ... end record;
6972 -- type T (...) is new R (...) [with ...];
6974 -- The representation clauses for T can specify a completely different
6975 -- record layout from R's. Hence the same component can be placed in two
6976 -- very different positions in objects of type T and R. If R and T are
6977 -- tagged types, representation clauses for T can only specify the layout
6978 -- of non inherited components, thus components that are common in R and T
6979 -- have the same position in objects of type R and T.
6981 -- This has two implications. The first is that the entire tree for R's
6982 -- declaration needs to be copied for T in the untagged case, so that T
6983 -- can be viewed as a record type of its own with its own representation
6984 -- clauses. The second implication is the way we handle discriminants.
6985 -- Specifically, in the untagged case we need a way to communicate to Gigi
6986 -- what are the real discriminants in the record, while for the semantics
6987 -- we need to consider those introduced by the user to rename the
6988 -- discriminants in the parent type. This is handled by introducing the
6989 -- notion of stored discriminants. See below for more.
6991 -- Fortunately the way regular components are inherited can be handled in
6992 -- the same way in tagged and untagged types.
6994 -- To complicate things a bit more the private view of a private extension
6995 -- cannot be handled in the same way as the full view (for one thing the
6996 -- semantic rules are somewhat different). We will explain what differs
6997 -- below.
6999 -- 2. DISCRIMINANTS UNDER INHERITANCE
7001 -- The semantic rules governing the discriminants of derived types are
7002 -- quite subtle.
7004 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7005 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7007 -- If parent type has discriminants, then the discriminants that are
7008 -- declared in the derived type are [3.4 (11)]:
7010 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7011 -- there is one;
7013 -- o Otherwise, each discriminant of the parent type (implicitly declared
7014 -- in the same order with the same specifications). In this case, the
7015 -- discriminants are said to be "inherited", or if unknown in the parent
7016 -- are also unknown in the derived type.
7018 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7020 -- o The parent subtype shall be constrained;
7022 -- o If the parent type is not a tagged type, then each discriminant of
7023 -- the derived type shall be used in the constraint defining a parent
7024 -- subtype. [Implementation note: This ensures that the new discriminant
7025 -- can share storage with an existing discriminant.]
7027 -- For the derived type each discriminant of the parent type is either
7028 -- inherited, constrained to equal some new discriminant of the derived
7029 -- type, or constrained to the value of an expression.
7031 -- When inherited or constrained to equal some new discriminant, the
7032 -- parent discriminant and the discriminant of the derived type are said
7033 -- to "correspond".
7035 -- If a discriminant of the parent type is constrained to a specific value
7036 -- in the derived type definition, then the discriminant is said to be
7037 -- "specified" by that derived type definition.
7039 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7041 -- We have spoken about stored discriminants in point 1 (introduction)
7042 -- above. There are two sort of stored discriminants: implicit and
7043 -- explicit. As long as the derived type inherits the same discriminants as
7044 -- the root record type, stored discriminants are the same as regular
7045 -- discriminants, and are said to be implicit. However, if any discriminant
7046 -- in the root type was renamed in the derived type, then the derived
7047 -- type will contain explicit stored discriminants. Explicit stored
7048 -- discriminants are discriminants in addition to the semantically visible
7049 -- discriminants defined for the derived type. Stored discriminants are
7050 -- used by Gigi to figure out what are the physical discriminants in
7051 -- objects of the derived type (see precise definition in einfo.ads).
7052 -- As an example, consider the following:
7054 -- type R (D1, D2, D3 : Int) is record ... end record;
7055 -- type T1 is new R;
7056 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7057 -- type T3 is new T2;
7058 -- type T4 (Y : Int) is new T3 (Y, 99);
7060 -- The following table summarizes the discriminants and stored
7061 -- discriminants in R and T1 through T4.
7063 -- Type Discrim Stored Discrim Comment
7064 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7065 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7066 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7067 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7068 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7070 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7071 -- find the corresponding discriminant in the parent type, while
7072 -- Original_Record_Component (abbreviated ORC below), the actual physical
7073 -- component that is renamed. Finally the field Is_Completely_Hidden
7074 -- (abbreviated ICH below) is set for all explicit stored discriminants
7075 -- (see einfo.ads for more info). For the above example this gives:
7077 -- Discrim CD ORC ICH
7078 -- ^^^^^^^ ^^ ^^^ ^^^
7079 -- D1 in R empty itself no
7080 -- D2 in R empty itself no
7081 -- D3 in R empty itself no
7083 -- D1 in T1 D1 in R itself no
7084 -- D2 in T1 D2 in R itself no
7085 -- D3 in T1 D3 in R itself no
7087 -- X1 in T2 D3 in T1 D3 in T2 no
7088 -- X2 in T2 D1 in T1 D1 in T2 no
7089 -- D1 in T2 empty itself yes
7090 -- D2 in T2 empty itself yes
7091 -- D3 in T2 empty itself yes
7093 -- X1 in T3 X1 in T2 D3 in T3 no
7094 -- X2 in T3 X2 in T2 D1 in T3 no
7095 -- D1 in T3 empty itself yes
7096 -- D2 in T3 empty itself yes
7097 -- D3 in T3 empty itself yes
7099 -- Y in T4 X1 in T3 D3 in T3 no
7100 -- D1 in T3 empty itself yes
7101 -- D2 in T3 empty itself yes
7102 -- D3 in T3 empty itself yes
7104 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7106 -- Type derivation for tagged types is fairly straightforward. If no
7107 -- discriminants are specified by the derived type, these are inherited
7108 -- from the parent. No explicit stored discriminants are ever necessary.
7109 -- The only manipulation that is done to the tree is that of adding a
7110 -- _parent field with parent type and constrained to the same constraint
7111 -- specified for the parent in the derived type definition. For instance:
7113 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7114 -- type T1 is new R with null record;
7115 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7117 -- are changed into:
7119 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7120 -- _parent : R (D1, D2, D3);
7121 -- end record;
7123 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7124 -- _parent : T1 (X2, 88, X1);
7125 -- end record;
7127 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7128 -- ORC and ICH fields are:
7130 -- Discrim CD ORC ICH
7131 -- ^^^^^^^ ^^ ^^^ ^^^
7132 -- D1 in R empty itself no
7133 -- D2 in R empty itself no
7134 -- D3 in R empty itself no
7136 -- D1 in T1 D1 in R D1 in R no
7137 -- D2 in T1 D2 in R D2 in R no
7138 -- D3 in T1 D3 in R D3 in R no
7140 -- X1 in T2 D3 in T1 D3 in R no
7141 -- X2 in T2 D1 in T1 D1 in R no
7143 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7145 -- Regardless of whether we dealing with a tagged or untagged type
7146 -- we will transform all derived type declarations of the form
7148 -- type T is new R (...) [with ...];
7149 -- or
7150 -- subtype S is R (...);
7151 -- type T is new S [with ...];
7152 -- into
7153 -- type BT is new R [with ...];
7154 -- subtype T is BT (...);
7156 -- That is, the base derived type is constrained only if it has no
7157 -- discriminants. The reason for doing this is that GNAT's semantic model
7158 -- assumes that a base type with discriminants is unconstrained.
7160 -- Note that, strictly speaking, the above transformation is not always
7161 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7163 -- procedure B34011A is
7164 -- type REC (D : integer := 0) is record
7165 -- I : Integer;
7166 -- end record;
7168 -- package P is
7169 -- type T6 is new Rec;
7170 -- function F return T6;
7171 -- end P;
7173 -- use P;
7174 -- package Q6 is
7175 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7176 -- end Q6;
7178 -- The definition of Q6.U is illegal. However transforming Q6.U into
7180 -- type BaseU is new T6;
7181 -- subtype U is BaseU (Q6.F.I)
7183 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7184 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7185 -- the transformation described above.
7187 -- There is another instance where the above transformation is incorrect.
7188 -- Consider:
7190 -- package Pack is
7191 -- type Base (D : Integer) is tagged null record;
7192 -- procedure P (X : Base);
7194 -- type Der is new Base (2) with null record;
7195 -- procedure P (X : Der);
7196 -- end Pack;
7198 -- Then the above transformation turns this into
7200 -- type Der_Base is new Base with null record;
7201 -- -- procedure P (X : Base) is implicitly inherited here
7202 -- -- as procedure P (X : Der_Base).
7204 -- subtype Der is Der_Base (2);
7205 -- procedure P (X : Der);
7206 -- -- The overriding of P (X : Der_Base) is illegal since we
7207 -- -- have a parameter conformance problem.
7209 -- To get around this problem, after having semantically processed Der_Base
7210 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7211 -- Discriminant_Constraint from Der so that when parameter conformance is
7212 -- checked when P is overridden, no semantic errors are flagged.
7214 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7216 -- Regardless of whether we are dealing with a tagged or untagged type
7217 -- we will transform all derived type declarations of the form
7219 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7220 -- type T is new R [with ...];
7221 -- into
7222 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7224 -- The reason for such transformation is that it allows us to implement a
7225 -- very clean form of component inheritance as explained below.
7227 -- Note that this transformation is not achieved by direct tree rewriting
7228 -- and manipulation, but rather by redoing the semantic actions that the
7229 -- above transformation will entail. This is done directly in routine
7230 -- Inherit_Components.
7232 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7234 -- In both tagged and untagged derived types, regular non discriminant
7235 -- components are inherited in the derived type from the parent type. In
7236 -- the absence of discriminants component, inheritance is straightforward
7237 -- as components can simply be copied from the parent.
7239 -- If the parent has discriminants, inheriting components constrained with
7240 -- these discriminants requires caution. Consider the following example:
7242 -- type R (D1, D2 : Positive) is [tagged] record
7243 -- S : String (D1 .. D2);
7244 -- end record;
7246 -- type T1 is new R [with null record];
7247 -- type T2 (X : positive) is new R (1, X) [with null record];
7249 -- As explained in 6. above, T1 is rewritten as
7250 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7251 -- which makes the treatment for T1 and T2 identical.
7253 -- What we want when inheriting S, is that references to D1 and D2 in R are
7254 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7255 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7256 -- with either discriminant references in the derived type or expressions.
7257 -- This replacement is achieved as follows: before inheriting R's
7258 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7259 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7260 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7261 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7262 -- by String (1 .. X).
7264 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7266 -- We explain here the rules governing private type extensions relevant to
7267 -- type derivation. These rules are explained on the following example:
7269 -- type D [(...)] is new A [(...)] with private; <-- partial view
7270 -- type D [(...)] is new P [(...)] with null record; <-- full view
7272 -- Type A is called the ancestor subtype of the private extension.
7273 -- Type P is the parent type of the full view of the private extension. It
7274 -- must be A or a type derived from A.
7276 -- The rules concerning the discriminants of private type extensions are
7277 -- [7.3(10-13)]:
7279 -- o If a private extension inherits known discriminants from the ancestor
7280 -- subtype, then the full view shall also inherit its discriminants from
7281 -- the ancestor subtype and the parent subtype of the full view shall be
7282 -- constrained if and only if the ancestor subtype is constrained.
7284 -- o If a partial view has unknown discriminants, then the full view may
7285 -- define a definite or an indefinite subtype, with or without
7286 -- discriminants.
7288 -- o If a partial view has neither known nor unknown discriminants, then
7289 -- the full view shall define a definite subtype.
7291 -- o If the ancestor subtype of a private extension has constrained
7292 -- discriminants, then the parent subtype of the full view shall impose a
7293 -- statically matching constraint on those discriminants.
7295 -- This means that only the following forms of private extensions are
7296 -- allowed:
7298 -- type D is new A with private; <-- partial view
7299 -- type D is new P with null record; <-- full view
7301 -- If A has no discriminants than P has no discriminants, otherwise P must
7302 -- inherit A's discriminants.
7304 -- type D is new A (...) with private; <-- partial view
7305 -- type D is new P (:::) with null record; <-- full view
7307 -- P must inherit A's discriminants and (...) and (:::) must statically
7308 -- match.
7310 -- subtype A is R (...);
7311 -- type D is new A with private; <-- partial view
7312 -- type D is new P with null record; <-- full view
7314 -- P must have inherited R's discriminants and must be derived from A or
7315 -- any of its subtypes.
7317 -- type D (..) is new A with private; <-- partial view
7318 -- type D (..) is new P [(:::)] with null record; <-- full view
7320 -- No specific constraints on P's discriminants or constraint (:::).
7321 -- Note that A can be unconstrained, but the parent subtype P must either
7322 -- be constrained or (:::) must be present.
7324 -- type D (..) is new A [(...)] with private; <-- partial view
7325 -- type D (..) is new P [(:::)] with null record; <-- full view
7327 -- P's constraints on A's discriminants must statically match those
7328 -- imposed by (...).
7330 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7332 -- The full view of a private extension is handled exactly as described
7333 -- above. The model chose for the private view of a private extension is
7334 -- the same for what concerns discriminants (i.e. they receive the same
7335 -- treatment as in the tagged case). However, the private view of the
7336 -- private extension always inherits the components of the parent base,
7337 -- without replacing any discriminant reference. Strictly speaking this is
7338 -- incorrect. However, Gigi never uses this view to generate code so this
7339 -- is a purely semantic issue. In theory, a set of transformations similar
7340 -- to those given in 5. and 6. above could be applied to private views of
7341 -- private extensions to have the same model of component inheritance as
7342 -- for non private extensions. However, this is not done because it would
7343 -- further complicate private type processing. Semantically speaking, this
7344 -- leaves us in an uncomfortable situation. As an example consider:
7346 -- package Pack is
7347 -- type R (D : integer) is tagged record
7348 -- S : String (1 .. D);
7349 -- end record;
7350 -- procedure P (X : R);
7351 -- type T is new R (1) with private;
7352 -- private
7353 -- type T is new R (1) with null record;
7354 -- end;
7356 -- This is transformed into:
7358 -- package Pack is
7359 -- type R (D : integer) is tagged record
7360 -- S : String (1 .. D);
7361 -- end record;
7362 -- procedure P (X : R);
7363 -- type T is new R (1) with private;
7364 -- private
7365 -- type BaseT is new R with null record;
7366 -- subtype T is BaseT (1);
7367 -- end;
7369 -- (strictly speaking the above is incorrect Ada)
7371 -- From the semantic standpoint the private view of private extension T
7372 -- should be flagged as constrained since one can clearly have
7374 -- Obj : T;
7376 -- in a unit withing Pack. However, when deriving subprograms for the
7377 -- private view of private extension T, T must be seen as unconstrained
7378 -- since T has discriminants (this is a constraint of the current
7379 -- subprogram derivation model). Thus, when processing the private view of
7380 -- a private extension such as T, we first mark T as unconstrained, we
7381 -- process it, we perform program derivation and just before returning from
7382 -- Build_Derived_Record_Type we mark T as constrained.
7384 -- ??? Are there are other uncomfortable cases that we will have to
7385 -- deal with.
7387 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7389 -- Types that are derived from a visible record type and have a private
7390 -- extension present other peculiarities. They behave mostly like private
7391 -- types, but if they have primitive operations defined, these will not
7392 -- have the proper signatures for further inheritance, because other
7393 -- primitive operations will use the implicit base that we define for
7394 -- private derivations below. This affect subprogram inheritance (see
7395 -- Derive_Subprograms for details). We also derive the implicit base from
7396 -- the base type of the full view, so that the implicit base is a record
7397 -- type and not another private type, This avoids infinite loops.
7399 procedure Build_Derived_Record_Type
7400 (N : Node_Id;
7401 Parent_Type : Entity_Id;
7402 Derived_Type : Entity_Id;
7403 Derive_Subps : Boolean := True)
7405 Discriminant_Specs : constant Boolean :=
7406 Present (Discriminant_Specifications (N));
7407 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7408 Loc : constant Source_Ptr := Sloc (N);
7409 Private_Extension : constant Boolean :=
7410 Nkind (N) = N_Private_Extension_Declaration;
7411 Assoc_List : Elist_Id;
7412 Constraint_Present : Boolean;
7413 Constrs : Elist_Id;
7414 Discrim : Entity_Id;
7415 Indic : Node_Id;
7416 Inherit_Discrims : Boolean := False;
7417 Last_Discrim : Entity_Id;
7418 New_Base : Entity_Id;
7419 New_Decl : Node_Id;
7420 New_Discrs : Elist_Id;
7421 New_Indic : Node_Id;
7422 Parent_Base : Entity_Id;
7423 Save_Etype : Entity_Id;
7424 Save_Discr_Constr : Elist_Id;
7425 Save_Next_Entity : Entity_Id;
7426 Type_Def : Node_Id;
7428 Discs : Elist_Id := New_Elmt_List;
7429 -- An empty Discs list means that there were no constraints in the
7430 -- subtype indication or that there was an error processing it.
7432 begin
7433 if Ekind (Parent_Type) = E_Record_Type_With_Private
7434 and then Present (Full_View (Parent_Type))
7435 and then Has_Discriminants (Parent_Type)
7436 then
7437 Parent_Base := Base_Type (Full_View (Parent_Type));
7438 else
7439 Parent_Base := Base_Type (Parent_Type);
7440 end if;
7442 -- AI05-0115 : if this is a derivation from a private type in some
7443 -- other scope that may lead to invisible components for the derived
7444 -- type, mark it accordingly.
7446 if Is_Private_Type (Parent_Type) then
7447 if Scope (Parent_Type) = Scope (Derived_Type) then
7448 null;
7450 elsif In_Open_Scopes (Scope (Parent_Type))
7451 and then In_Private_Part (Scope (Parent_Type))
7452 then
7453 null;
7455 else
7456 Set_Has_Private_Ancestor (Derived_Type);
7457 end if;
7459 else
7460 Set_Has_Private_Ancestor
7461 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7462 end if;
7464 -- Before we start the previously documented transformations, here is
7465 -- little fix for size and alignment of tagged types. Normally when we
7466 -- derive type D from type P, we copy the size and alignment of P as the
7467 -- default for D, and in the absence of explicit representation clauses
7468 -- for D, the size and alignment are indeed the same as the parent.
7470 -- But this is wrong for tagged types, since fields may be added, and
7471 -- the default size may need to be larger, and the default alignment may
7472 -- need to be larger.
7474 -- We therefore reset the size and alignment fields in the tagged case.
7475 -- Note that the size and alignment will in any case be at least as
7476 -- large as the parent type (since the derived type has a copy of the
7477 -- parent type in the _parent field)
7479 -- The type is also marked as being tagged here, which is needed when
7480 -- processing components with a self-referential anonymous access type
7481 -- in the call to Check_Anonymous_Access_Components below. Note that
7482 -- this flag is also set later on for completeness.
7484 if Is_Tagged then
7485 Set_Is_Tagged_Type (Derived_Type);
7486 Init_Size_Align (Derived_Type);
7487 end if;
7489 -- STEP 0a: figure out what kind of derived type declaration we have
7491 if Private_Extension then
7492 Type_Def := N;
7493 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7495 else
7496 Type_Def := Type_Definition (N);
7498 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7499 -- Parent_Base can be a private type or private extension. However,
7500 -- for tagged types with an extension the newly added fields are
7501 -- visible and hence the Derived_Type is always an E_Record_Type.
7502 -- (except that the parent may have its own private fields).
7503 -- For untagged types we preserve the Ekind of the Parent_Base.
7505 if Present (Record_Extension_Part (Type_Def)) then
7506 Set_Ekind (Derived_Type, E_Record_Type);
7508 -- Create internal access types for components with anonymous
7509 -- access types.
7511 if Ada_Version >= Ada_2005 then
7512 Check_Anonymous_Access_Components
7513 (N, Derived_Type, Derived_Type,
7514 Component_List (Record_Extension_Part (Type_Def)));
7515 end if;
7517 else
7518 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7519 end if;
7520 end if;
7522 -- Indic can either be an N_Identifier if the subtype indication
7523 -- contains no constraint or an N_Subtype_Indication if the subtype
7524 -- indication has a constraint.
7526 Indic := Subtype_Indication (Type_Def);
7527 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7529 -- Check that the type has visible discriminants. The type may be
7530 -- a private type with unknown discriminants whose full view has
7531 -- discriminants which are invisible.
7533 if Constraint_Present then
7534 if not Has_Discriminants (Parent_Base)
7535 or else
7536 (Has_Unknown_Discriminants (Parent_Base)
7537 and then Is_Private_Type (Parent_Base))
7538 then
7539 Error_Msg_N
7540 ("invalid constraint: type has no discriminant",
7541 Constraint (Indic));
7543 Constraint_Present := False;
7544 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7546 elsif Is_Constrained (Parent_Type) then
7547 Error_Msg_N
7548 ("invalid constraint: parent type is already constrained",
7549 Constraint (Indic));
7551 Constraint_Present := False;
7552 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7553 end if;
7554 end if;
7556 -- STEP 0b: If needed, apply transformation given in point 5. above
7558 if not Private_Extension
7559 and then Has_Discriminants (Parent_Type)
7560 and then not Discriminant_Specs
7561 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7562 then
7563 -- First, we must analyze the constraint (see comment in point 5.)
7564 -- The constraint may come from the subtype indication of the full
7565 -- declaration.
7567 if Constraint_Present then
7568 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7570 -- If there is no explicit constraint, there might be one that is
7571 -- inherited from a constrained parent type. In that case verify that
7572 -- it conforms to the constraint in the partial view. In perverse
7573 -- cases the parent subtypes of the partial and full view can have
7574 -- different constraints.
7576 elsif Present (Stored_Constraint (Parent_Type)) then
7577 New_Discrs := Stored_Constraint (Parent_Type);
7579 else
7580 New_Discrs := No_Elist;
7581 end if;
7583 if Has_Discriminants (Derived_Type)
7584 and then Has_Private_Declaration (Derived_Type)
7585 and then Present (Discriminant_Constraint (Derived_Type))
7586 and then Present (New_Discrs)
7587 then
7588 -- Verify that constraints of the full view statically match
7589 -- those given in the partial view.
7591 declare
7592 C1, C2 : Elmt_Id;
7594 begin
7595 C1 := First_Elmt (New_Discrs);
7596 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7597 while Present (C1) and then Present (C2) loop
7598 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7599 or else
7600 (Is_OK_Static_Expression (Node (C1))
7601 and then Is_OK_Static_Expression (Node (C2))
7602 and then
7603 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7604 then
7605 null;
7607 else
7608 if Constraint_Present then
7609 Error_Msg_N
7610 ("constraint not conformant to previous declaration",
7611 Node (C1));
7612 else
7613 Error_Msg_N
7614 ("constraint of full view is incompatible "
7615 & "with partial view", N);
7616 end if;
7617 end if;
7619 Next_Elmt (C1);
7620 Next_Elmt (C2);
7621 end loop;
7622 end;
7623 end if;
7625 -- Insert and analyze the declaration for the unconstrained base type
7627 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7629 New_Decl :=
7630 Make_Full_Type_Declaration (Loc,
7631 Defining_Identifier => New_Base,
7632 Type_Definition =>
7633 Make_Derived_Type_Definition (Loc,
7634 Abstract_Present => Abstract_Present (Type_Def),
7635 Limited_Present => Limited_Present (Type_Def),
7636 Subtype_Indication =>
7637 New_Occurrence_Of (Parent_Base, Loc),
7638 Record_Extension_Part =>
7639 Relocate_Node (Record_Extension_Part (Type_Def)),
7640 Interface_List => Interface_List (Type_Def)));
7642 Set_Parent (New_Decl, Parent (N));
7643 Mark_Rewrite_Insertion (New_Decl);
7644 Insert_Before (N, New_Decl);
7646 -- In the extension case, make sure ancestor is frozen appropriately
7647 -- (see also non-discriminated case below).
7649 if Present (Record_Extension_Part (Type_Def))
7650 or else Is_Interface (Parent_Base)
7651 then
7652 Freeze_Before (New_Decl, Parent_Type);
7653 end if;
7655 -- Note that this call passes False for the Derive_Subps parameter
7656 -- because subprogram derivation is deferred until after creating
7657 -- the subtype (see below).
7659 Build_Derived_Type
7660 (New_Decl, Parent_Base, New_Base,
7661 Is_Completion => True, Derive_Subps => False);
7663 -- ??? This needs re-examination to determine whether the
7664 -- above call can simply be replaced by a call to Analyze.
7666 Set_Analyzed (New_Decl);
7668 -- Insert and analyze the declaration for the constrained subtype
7670 if Constraint_Present then
7671 New_Indic :=
7672 Make_Subtype_Indication (Loc,
7673 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7674 Constraint => Relocate_Node (Constraint (Indic)));
7676 else
7677 declare
7678 Constr_List : constant List_Id := New_List;
7679 C : Elmt_Id;
7680 Expr : Node_Id;
7682 begin
7683 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7684 while Present (C) loop
7685 Expr := Node (C);
7687 -- It is safe here to call New_Copy_Tree since
7688 -- Force_Evaluation was called on each constraint in
7689 -- Build_Discriminant_Constraints.
7691 Append (New_Copy_Tree (Expr), To => Constr_List);
7693 Next_Elmt (C);
7694 end loop;
7696 New_Indic :=
7697 Make_Subtype_Indication (Loc,
7698 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7699 Constraint =>
7700 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7701 end;
7702 end if;
7704 Rewrite (N,
7705 Make_Subtype_Declaration (Loc,
7706 Defining_Identifier => Derived_Type,
7707 Subtype_Indication => New_Indic));
7709 Analyze (N);
7711 -- Derivation of subprograms must be delayed until the full subtype
7712 -- has been established, to ensure proper overriding of subprograms
7713 -- inherited by full types. If the derivations occurred as part of
7714 -- the call to Build_Derived_Type above, then the check for type
7715 -- conformance would fail because earlier primitive subprograms
7716 -- could still refer to the full type prior the change to the new
7717 -- subtype and hence would not match the new base type created here.
7718 -- Subprograms are not derived, however, when Derive_Subps is False
7719 -- (since otherwise there could be redundant derivations).
7721 if Derive_Subps then
7722 Derive_Subprograms (Parent_Type, Derived_Type);
7723 end if;
7725 -- For tagged types the Discriminant_Constraint of the new base itype
7726 -- is inherited from the first subtype so that no subtype conformance
7727 -- problem arise when the first subtype overrides primitive
7728 -- operations inherited by the implicit base type.
7730 if Is_Tagged then
7731 Set_Discriminant_Constraint
7732 (New_Base, Discriminant_Constraint (Derived_Type));
7733 end if;
7735 return;
7736 end if;
7738 -- If we get here Derived_Type will have no discriminants or it will be
7739 -- a discriminated unconstrained base type.
7741 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7743 if Is_Tagged then
7745 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7746 -- The declaration of a specific descendant of an interface type
7747 -- freezes the interface type (RM 13.14).
7749 if not Private_Extension or else Is_Interface (Parent_Base) then
7750 Freeze_Before (N, Parent_Type);
7751 end if;
7753 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7754 -- cannot be declared at a deeper level than its parent type is
7755 -- removed. The check on derivation within a generic body is also
7756 -- relaxed, but there's a restriction that a derived tagged type
7757 -- cannot be declared in a generic body if it's derived directly
7758 -- or indirectly from a formal type of that generic.
7760 if Ada_Version >= Ada_2005 then
7761 if Present (Enclosing_Generic_Body (Derived_Type)) then
7762 declare
7763 Ancestor_Type : Entity_Id;
7765 begin
7766 -- Check to see if any ancestor of the derived type is a
7767 -- formal type.
7769 Ancestor_Type := Parent_Type;
7770 while not Is_Generic_Type (Ancestor_Type)
7771 and then Etype (Ancestor_Type) /= Ancestor_Type
7772 loop
7773 Ancestor_Type := Etype (Ancestor_Type);
7774 end loop;
7776 -- If the derived type does have a formal type as an
7777 -- ancestor, then it's an error if the derived type is
7778 -- declared within the body of the generic unit that
7779 -- declares the formal type in its generic formal part. It's
7780 -- sufficient to check whether the ancestor type is declared
7781 -- inside the same generic body as the derived type (such as
7782 -- within a nested generic spec), in which case the
7783 -- derivation is legal. If the formal type is declared
7784 -- outside of that generic body, then it's guaranteed that
7785 -- the derived type is declared within the generic body of
7786 -- the generic unit declaring the formal type.
7788 if Is_Generic_Type (Ancestor_Type)
7789 and then Enclosing_Generic_Body (Ancestor_Type) /=
7790 Enclosing_Generic_Body (Derived_Type)
7791 then
7792 Error_Msg_NE
7793 ("parent type of& must not be descendant of formal type"
7794 & " of an enclosing generic body",
7795 Indic, Derived_Type);
7796 end if;
7797 end;
7798 end if;
7800 elsif Type_Access_Level (Derived_Type) /=
7801 Type_Access_Level (Parent_Type)
7802 and then not Is_Generic_Type (Derived_Type)
7803 then
7804 if Is_Controlled (Parent_Type) then
7805 Error_Msg_N
7806 ("controlled type must be declared at the library level",
7807 Indic);
7808 else
7809 Error_Msg_N
7810 ("type extension at deeper accessibility level than parent",
7811 Indic);
7812 end if;
7814 else
7815 declare
7816 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
7818 begin
7819 if Present (GB)
7820 and then GB /= Enclosing_Generic_Body (Parent_Base)
7821 then
7822 Error_Msg_NE
7823 ("parent type of& must not be outside generic body"
7824 & " (RM 3.9.1(4))",
7825 Indic, Derived_Type);
7826 end if;
7827 end;
7828 end if;
7829 end if;
7831 -- Ada 2005 (AI-251)
7833 if Ada_Version >= Ada_2005 and then Is_Tagged then
7835 -- "The declaration of a specific descendant of an interface type
7836 -- freezes the interface type" (RM 13.14).
7838 declare
7839 Iface : Node_Id;
7840 begin
7841 if Is_Non_Empty_List (Interface_List (Type_Def)) then
7842 Iface := First (Interface_List (Type_Def));
7843 while Present (Iface) loop
7844 Freeze_Before (N, Etype (Iface));
7845 Next (Iface);
7846 end loop;
7847 end if;
7848 end;
7849 end if;
7851 -- STEP 1b : preliminary cleanup of the full view of private types
7853 -- If the type is already marked as having discriminants, then it's the
7854 -- completion of a private type or private extension and we need to
7855 -- retain the discriminants from the partial view if the current
7856 -- declaration has Discriminant_Specifications so that we can verify
7857 -- conformance. However, we must remove any existing components that
7858 -- were inherited from the parent (and attached in Copy_And_Swap)
7859 -- because the full type inherits all appropriate components anyway, and
7860 -- we do not want the partial view's components interfering.
7862 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
7863 Discrim := First_Discriminant (Derived_Type);
7864 loop
7865 Last_Discrim := Discrim;
7866 Next_Discriminant (Discrim);
7867 exit when No (Discrim);
7868 end loop;
7870 Set_Last_Entity (Derived_Type, Last_Discrim);
7872 -- In all other cases wipe out the list of inherited components (even
7873 -- inherited discriminants), it will be properly rebuilt here.
7875 else
7876 Set_First_Entity (Derived_Type, Empty);
7877 Set_Last_Entity (Derived_Type, Empty);
7878 end if;
7880 -- STEP 1c: Initialize some flags for the Derived_Type
7882 -- The following flags must be initialized here so that
7883 -- Process_Discriminants can check that discriminants of tagged types do
7884 -- not have a default initial value and that access discriminants are
7885 -- only specified for limited records. For completeness, these flags are
7886 -- also initialized along with all the other flags below.
7888 -- AI-419: Limitedness is not inherited from an interface parent, so to
7889 -- be limited in that case the type must be explicitly declared as
7890 -- limited. However, task and protected interfaces are always limited.
7892 if Limited_Present (Type_Def) then
7893 Set_Is_Limited_Record (Derived_Type);
7895 elsif Is_Limited_Record (Parent_Type)
7896 or else (Present (Full_View (Parent_Type))
7897 and then Is_Limited_Record (Full_View (Parent_Type)))
7898 then
7899 if not Is_Interface (Parent_Type)
7900 or else Is_Synchronized_Interface (Parent_Type)
7901 or else Is_Protected_Interface (Parent_Type)
7902 or else Is_Task_Interface (Parent_Type)
7903 then
7904 Set_Is_Limited_Record (Derived_Type);
7905 end if;
7906 end if;
7908 -- STEP 2a: process discriminants of derived type if any
7910 Push_Scope (Derived_Type);
7912 if Discriminant_Specs then
7913 Set_Has_Unknown_Discriminants (Derived_Type, False);
7915 -- The following call initializes fields Has_Discriminants and
7916 -- Discriminant_Constraint, unless we are processing the completion
7917 -- of a private type declaration.
7919 Check_Or_Process_Discriminants (N, Derived_Type);
7921 -- For untagged types, the constraint on the Parent_Type must be
7922 -- present and is used to rename the discriminants.
7924 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
7925 Error_Msg_N ("untagged parent must have discriminants", Indic);
7927 elsif not Is_Tagged and then not Constraint_Present then
7928 Error_Msg_N
7929 ("discriminant constraint needed for derived untagged records",
7930 Indic);
7932 -- Otherwise the parent subtype must be constrained unless we have a
7933 -- private extension.
7935 elsif not Constraint_Present
7936 and then not Private_Extension
7937 and then not Is_Constrained (Parent_Type)
7938 then
7939 Error_Msg_N
7940 ("unconstrained type not allowed in this context", Indic);
7942 elsif Constraint_Present then
7943 -- The following call sets the field Corresponding_Discriminant
7944 -- for the discriminants in the Derived_Type.
7946 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
7948 -- For untagged types all new discriminants must rename
7949 -- discriminants in the parent. For private extensions new
7950 -- discriminants cannot rename old ones (implied by [7.3(13)]).
7952 Discrim := First_Discriminant (Derived_Type);
7953 while Present (Discrim) loop
7954 if not Is_Tagged
7955 and then No (Corresponding_Discriminant (Discrim))
7956 then
7957 Error_Msg_N
7958 ("new discriminants must constrain old ones", Discrim);
7960 elsif Private_Extension
7961 and then Present (Corresponding_Discriminant (Discrim))
7962 then
7963 Error_Msg_N
7964 ("only static constraints allowed for parent"
7965 & " discriminants in the partial view", Indic);
7966 exit;
7967 end if;
7969 -- If a new discriminant is used in the constraint, then its
7970 -- subtype must be statically compatible with the parent
7971 -- discriminant's subtype (3.7(15)).
7973 -- However, if the record contains an array constrained by
7974 -- the discriminant but with some different bound, the compiler
7975 -- attemps to create a smaller range for the discriminant type.
7976 -- (See exp_ch3.Adjust_Discriminants). In this case, where
7977 -- the discriminant type is a scalar type, the check must use
7978 -- the original discriminant type in the parent declaration.
7980 declare
7981 Corr_Disc : constant Entity_Id :=
7982 Corresponding_Discriminant (Discrim);
7983 Disc_Type : constant Entity_Id := Etype (Discrim);
7984 Corr_Type : Entity_Id;
7986 begin
7987 if Present (Corr_Disc) then
7988 if Is_Scalar_Type (Disc_Type) then
7989 Corr_Type :=
7990 Entity (Discriminant_Type (Parent (Corr_Disc)));
7991 else
7992 Corr_Type := Etype (Corr_Disc);
7993 end if;
7995 if not
7996 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
7997 then
7998 Error_Msg_N
7999 ("subtype must be compatible "
8000 & "with parent discriminant",
8001 Discrim);
8002 end if;
8003 end if;
8004 end;
8006 Next_Discriminant (Discrim);
8007 end loop;
8009 -- Check whether the constraints of the full view statically
8010 -- match those imposed by the parent subtype [7.3(13)].
8012 if Present (Stored_Constraint (Derived_Type)) then
8013 declare
8014 C1, C2 : Elmt_Id;
8016 begin
8017 C1 := First_Elmt (Discs);
8018 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8019 while Present (C1) and then Present (C2) loop
8020 if not
8021 Fully_Conformant_Expressions (Node (C1), Node (C2))
8022 then
8023 Error_Msg_N
8024 ("not conformant with previous declaration",
8025 Node (C1));
8026 end if;
8028 Next_Elmt (C1);
8029 Next_Elmt (C2);
8030 end loop;
8031 end;
8032 end if;
8033 end if;
8035 -- STEP 2b: No new discriminants, inherit discriminants if any
8037 else
8038 if Private_Extension then
8039 Set_Has_Unknown_Discriminants
8040 (Derived_Type,
8041 Has_Unknown_Discriminants (Parent_Type)
8042 or else Unknown_Discriminants_Present (N));
8044 -- The partial view of the parent may have unknown discriminants,
8045 -- but if the full view has discriminants and the parent type is
8046 -- in scope they must be inherited.
8048 elsif Has_Unknown_Discriminants (Parent_Type)
8049 and then
8050 (not Has_Discriminants (Parent_Type)
8051 or else not In_Open_Scopes (Scope (Parent_Type)))
8052 then
8053 Set_Has_Unknown_Discriminants (Derived_Type);
8054 end if;
8056 if not Has_Unknown_Discriminants (Derived_Type)
8057 and then not Has_Unknown_Discriminants (Parent_Base)
8058 and then Has_Discriminants (Parent_Type)
8059 then
8060 Inherit_Discrims := True;
8061 Set_Has_Discriminants
8062 (Derived_Type, True);
8063 Set_Discriminant_Constraint
8064 (Derived_Type, Discriminant_Constraint (Parent_Base));
8065 end if;
8067 -- The following test is true for private types (remember
8068 -- transformation 5. is not applied to those) and in an error
8069 -- situation.
8071 if Constraint_Present then
8072 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8073 end if;
8075 -- For now mark a new derived type as constrained only if it has no
8076 -- discriminants. At the end of Build_Derived_Record_Type we properly
8077 -- set this flag in the case of private extensions. See comments in
8078 -- point 9. just before body of Build_Derived_Record_Type.
8080 Set_Is_Constrained
8081 (Derived_Type,
8082 not (Inherit_Discrims
8083 or else Has_Unknown_Discriminants (Derived_Type)));
8084 end if;
8086 -- STEP 3: initialize fields of derived type
8088 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8089 Set_Stored_Constraint (Derived_Type, No_Elist);
8091 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8092 -- but cannot be interfaces
8094 if not Private_Extension
8095 and then Ekind (Derived_Type) /= E_Private_Type
8096 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8097 then
8098 if Interface_Present (Type_Def) then
8099 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8100 end if;
8102 Set_Interfaces (Derived_Type, No_Elist);
8103 end if;
8105 -- Fields inherited from the Parent_Type
8107 Set_Has_Specified_Layout
8108 (Derived_Type, Has_Specified_Layout (Parent_Type));
8109 Set_Is_Limited_Composite
8110 (Derived_Type, Is_Limited_Composite (Parent_Type));
8111 Set_Is_Private_Composite
8112 (Derived_Type, Is_Private_Composite (Parent_Type));
8114 -- Fields inherited from the Parent_Base
8116 Set_Has_Controlled_Component
8117 (Derived_Type, Has_Controlled_Component (Parent_Base));
8118 Set_Has_Non_Standard_Rep
8119 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8120 Set_Has_Primitive_Operations
8121 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8123 -- Fields inherited from the Parent_Base in the non-private case
8125 if Ekind (Derived_Type) = E_Record_Type then
8126 Set_Has_Complex_Representation
8127 (Derived_Type, Has_Complex_Representation (Parent_Base));
8128 end if;
8130 -- Fields inherited from the Parent_Base for record types
8132 if Is_Record_Type (Derived_Type) then
8134 declare
8135 Parent_Full : Entity_Id;
8137 begin
8138 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8139 -- Parent_Base can be a private type or private extension. Go
8140 -- to the full view here to get the E_Record_Type specific flags.
8142 if Present (Full_View (Parent_Base)) then
8143 Parent_Full := Full_View (Parent_Base);
8144 else
8145 Parent_Full := Parent_Base;
8146 end if;
8148 Set_OK_To_Reorder_Components
8149 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8150 end;
8151 end if;
8153 -- Set fields for private derived types
8155 if Is_Private_Type (Derived_Type) then
8156 Set_Depends_On_Private (Derived_Type, True);
8157 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8159 -- Inherit fields from non private record types. If this is the
8160 -- completion of a derivation from a private type, the parent itself
8161 -- is private, and the attributes come from its full view, which must
8162 -- be present.
8164 else
8165 if Is_Private_Type (Parent_Base)
8166 and then not Is_Record_Type (Parent_Base)
8167 then
8168 Set_Component_Alignment
8169 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8170 Set_C_Pass_By_Copy
8171 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8172 else
8173 Set_Component_Alignment
8174 (Derived_Type, Component_Alignment (Parent_Base));
8175 Set_C_Pass_By_Copy
8176 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8177 end if;
8178 end if;
8180 -- Set fields for tagged types
8182 if Is_Tagged then
8183 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8185 -- All tagged types defined in Ada.Finalization are controlled
8187 if Chars (Scope (Derived_Type)) = Name_Finalization
8188 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8189 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8190 then
8191 Set_Is_Controlled (Derived_Type);
8192 else
8193 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8194 end if;
8196 -- Minor optimization: there is no need to generate the class-wide
8197 -- entity associated with an underlying record view.
8199 if not Is_Underlying_Record_View (Derived_Type) then
8200 Make_Class_Wide_Type (Derived_Type);
8201 end if;
8203 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8205 if Has_Discriminants (Derived_Type)
8206 and then Constraint_Present
8207 then
8208 Set_Stored_Constraint
8209 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8210 end if;
8212 if Ada_Version >= Ada_2005 then
8213 declare
8214 Ifaces_List : Elist_Id;
8216 begin
8217 -- Checks rules 3.9.4 (13/2 and 14/2)
8219 if Comes_From_Source (Derived_Type)
8220 and then not Is_Private_Type (Derived_Type)
8221 and then Is_Interface (Parent_Type)
8222 and then not Is_Interface (Derived_Type)
8223 then
8224 if Is_Task_Interface (Parent_Type) then
8225 Error_Msg_N
8226 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8227 Derived_Type);
8229 elsif Is_Protected_Interface (Parent_Type) then
8230 Error_Msg_N
8231 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8232 Derived_Type);
8233 end if;
8234 end if;
8236 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8238 Check_Interfaces (N, Type_Def);
8240 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8241 -- not already in the parents.
8243 Collect_Interfaces
8244 (T => Derived_Type,
8245 Ifaces_List => Ifaces_List,
8246 Exclude_Parents => True);
8248 Set_Interfaces (Derived_Type, Ifaces_List);
8250 -- If the derived type is the anonymous type created for
8251 -- a declaration whose parent has a constraint, propagate
8252 -- the interface list to the source type. This must be done
8253 -- prior to the completion of the analysis of the source type
8254 -- because the components in the extension may contain current
8255 -- instances whose legality depends on some ancestor.
8257 if Is_Itype (Derived_Type) then
8258 declare
8259 Def : constant Node_Id :=
8260 Associated_Node_For_Itype (Derived_Type);
8261 begin
8262 if Present (Def)
8263 and then Nkind (Def) = N_Full_Type_Declaration
8264 then
8265 Set_Interfaces
8266 (Defining_Identifier (Def), Ifaces_List);
8267 end if;
8268 end;
8269 end if;
8270 end;
8271 end if;
8273 else
8274 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8275 Set_Has_Non_Standard_Rep
8276 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8277 end if;
8279 -- STEP 4: Inherit components from the parent base and constrain them.
8280 -- Apply the second transformation described in point 6. above.
8282 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8283 or else not Has_Discriminants (Parent_Type)
8284 or else not Is_Constrained (Parent_Type)
8285 then
8286 Constrs := Discs;
8287 else
8288 Constrs := Discriminant_Constraint (Parent_Type);
8289 end if;
8291 Assoc_List :=
8292 Inherit_Components
8293 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8295 -- STEP 5a: Copy the parent record declaration for untagged types
8297 if not Is_Tagged then
8299 -- Discriminant_Constraint (Derived_Type) has been properly
8300 -- constructed. Save it and temporarily set it to Empty because we
8301 -- do not want the call to New_Copy_Tree below to mess this list.
8303 if Has_Discriminants (Derived_Type) then
8304 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8305 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8306 else
8307 Save_Discr_Constr := No_Elist;
8308 end if;
8310 -- Save the Etype field of Derived_Type. It is correctly set now,
8311 -- but the call to New_Copy tree may remap it to point to itself,
8312 -- which is not what we want. Ditto for the Next_Entity field.
8314 Save_Etype := Etype (Derived_Type);
8315 Save_Next_Entity := Next_Entity (Derived_Type);
8317 -- Assoc_List maps all stored discriminants in the Parent_Base to
8318 -- stored discriminants in the Derived_Type. It is fundamental that
8319 -- no types or itypes with discriminants other than the stored
8320 -- discriminants appear in the entities declared inside
8321 -- Derived_Type, since the back end cannot deal with it.
8323 New_Decl :=
8324 New_Copy_Tree
8325 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8327 -- Restore the fields saved prior to the New_Copy_Tree call
8328 -- and compute the stored constraint.
8330 Set_Etype (Derived_Type, Save_Etype);
8331 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8333 if Has_Discriminants (Derived_Type) then
8334 Set_Discriminant_Constraint
8335 (Derived_Type, Save_Discr_Constr);
8336 Set_Stored_Constraint
8337 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8338 Replace_Components (Derived_Type, New_Decl);
8339 Set_Has_Implicit_Dereference
8340 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8341 end if;
8343 -- Insert the new derived type declaration
8345 Rewrite (N, New_Decl);
8347 -- STEP 5b: Complete the processing for record extensions in generics
8349 -- There is no completion for record extensions declared in the
8350 -- parameter part of a generic, so we need to complete processing for
8351 -- these generic record extensions here. The Record_Type_Definition call
8352 -- will change the Ekind of the components from E_Void to E_Component.
8354 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8355 Record_Type_Definition (Empty, Derived_Type);
8357 -- STEP 5c: Process the record extension for non private tagged types
8359 elsif not Private_Extension then
8361 -- Add the _parent field in the derived type
8363 Expand_Record_Extension (Derived_Type, Type_Def);
8365 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8366 -- implemented interfaces if we are in expansion mode
8368 if Expander_Active
8369 and then Has_Interfaces (Derived_Type)
8370 then
8371 Add_Interface_Tag_Components (N, Derived_Type);
8372 end if;
8374 -- Analyze the record extension
8376 Record_Type_Definition
8377 (Record_Extension_Part (Type_Def), Derived_Type);
8378 end if;
8380 End_Scope;
8382 -- Nothing else to do if there is an error in the derivation.
8383 -- An unusual case: the full view may be derived from a type in an
8384 -- instance, when the partial view was used illegally as an actual
8385 -- in that instance, leading to a circular definition.
8387 if Etype (Derived_Type) = Any_Type
8388 or else Etype (Parent_Type) = Derived_Type
8389 then
8390 return;
8391 end if;
8393 -- Set delayed freeze and then derive subprograms, we need to do
8394 -- this in this order so that derived subprograms inherit the
8395 -- derived freeze if necessary.
8397 Set_Has_Delayed_Freeze (Derived_Type);
8399 if Derive_Subps then
8400 Derive_Subprograms (Parent_Type, Derived_Type);
8401 end if;
8403 -- If we have a private extension which defines a constrained derived
8404 -- type mark as constrained here after we have derived subprograms. See
8405 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8407 if Private_Extension and then Inherit_Discrims then
8408 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8409 Set_Is_Constrained (Derived_Type, True);
8410 Set_Discriminant_Constraint (Derived_Type, Discs);
8412 elsif Is_Constrained (Parent_Type) then
8413 Set_Is_Constrained
8414 (Derived_Type, True);
8415 Set_Discriminant_Constraint
8416 (Derived_Type, Discriminant_Constraint (Parent_Type));
8417 end if;
8418 end if;
8420 -- Update the class-wide type, which shares the now-completed entity
8421 -- list with its specific type. In case of underlying record views,
8422 -- we do not generate the corresponding class wide entity.
8424 if Is_Tagged
8425 and then not Is_Underlying_Record_View (Derived_Type)
8426 then
8427 Set_First_Entity
8428 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8429 Set_Last_Entity
8430 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8431 end if;
8433 Check_Function_Writable_Actuals (N);
8434 end Build_Derived_Record_Type;
8436 ------------------------
8437 -- Build_Derived_Type --
8438 ------------------------
8440 procedure Build_Derived_Type
8441 (N : Node_Id;
8442 Parent_Type : Entity_Id;
8443 Derived_Type : Entity_Id;
8444 Is_Completion : Boolean;
8445 Derive_Subps : Boolean := True)
8447 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8449 begin
8450 -- Set common attributes
8452 Set_Scope (Derived_Type, Current_Scope);
8454 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8455 Set_Etype (Derived_Type, Parent_Base);
8456 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8458 Set_Size_Info (Derived_Type, Parent_Type);
8459 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8460 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8461 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8463 -- If the parent type is a private subtype, the convention on the base
8464 -- type may be set in the private part, and not propagated to the
8465 -- subtype until later, so we obtain the convention from the base type.
8467 Set_Convention (Derived_Type, Convention (Parent_Base));
8469 -- Propagate invariant information. The new type has invariants if
8470 -- they are inherited from the parent type, and these invariants can
8471 -- be further inherited, so both flags are set.
8473 -- We similarly inherit predicates
8475 if Has_Predicates (Parent_Type) then
8476 Set_Has_Predicates (Derived_Type);
8477 end if;
8479 -- The derived type inherits the representation clauses of the parent.
8480 -- However, for a private type that is completed by a derivation, there
8481 -- may be operation attributes that have been specified already (stream
8482 -- attributes and External_Tag) and those must be provided. Finally,
8483 -- if the partial view is a private extension, the representation items
8484 -- of the parent have been inherited already, and should not be chained
8485 -- twice to the derived type.
8487 if Is_Tagged_Type (Parent_Type)
8488 and then Present (First_Rep_Item (Derived_Type))
8489 then
8490 -- The existing items are either operational items or items inherited
8491 -- from a private extension declaration.
8493 declare
8494 Rep : Node_Id;
8495 -- Used to iterate over representation items of the derived type
8497 Last_Rep : Node_Id;
8498 -- Last representation item of the (non-empty) representation
8499 -- item list of the derived type.
8501 Found : Boolean := False;
8503 begin
8504 Rep := First_Rep_Item (Derived_Type);
8505 Last_Rep := Rep;
8506 while Present (Rep) loop
8507 if Rep = First_Rep_Item (Parent_Type) then
8508 Found := True;
8509 exit;
8511 else
8512 Rep := Next_Rep_Item (Rep);
8514 if Present (Rep) then
8515 Last_Rep := Rep;
8516 end if;
8517 end if;
8518 end loop;
8520 -- Here if we either encountered the parent type's first rep
8521 -- item on the derived type's rep item list (in which case
8522 -- Found is True, and we have nothing else to do), or if we
8523 -- reached the last rep item of the derived type, which is
8524 -- Last_Rep, in which case we further chain the parent type's
8525 -- rep items to those of the derived type.
8527 if not Found then
8528 Set_Next_Rep_Item (Last_Rep, First_Rep_Item (Parent_Type));
8529 end if;
8530 end;
8532 else
8533 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
8534 end if;
8536 -- If the parent type has delayed rep aspects, then mark the derived
8537 -- type as possibly inheriting a delayed rep aspect.
8539 if Has_Delayed_Rep_Aspects (Parent_Type) then
8540 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8541 end if;
8543 -- Type dependent processing
8545 case Ekind (Parent_Type) is
8546 when Numeric_Kind =>
8547 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8549 when Array_Kind =>
8550 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8552 when E_Record_Type
8553 | E_Record_Subtype
8554 | Class_Wide_Kind =>
8555 Build_Derived_Record_Type
8556 (N, Parent_Type, Derived_Type, Derive_Subps);
8557 return;
8559 when Enumeration_Kind =>
8560 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8562 when Access_Kind =>
8563 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8565 when Incomplete_Or_Private_Kind =>
8566 Build_Derived_Private_Type
8567 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8569 -- For discriminated types, the derivation includes deriving
8570 -- primitive operations. For others it is done below.
8572 if Is_Tagged_Type (Parent_Type)
8573 or else Has_Discriminants (Parent_Type)
8574 or else (Present (Full_View (Parent_Type))
8575 and then Has_Discriminants (Full_View (Parent_Type)))
8576 then
8577 return;
8578 end if;
8580 when Concurrent_Kind =>
8581 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8583 when others =>
8584 raise Program_Error;
8585 end case;
8587 -- Nothing more to do if some error occurred
8589 if Etype (Derived_Type) = Any_Type then
8590 return;
8591 end if;
8593 -- Set delayed freeze and then derive subprograms, we need to do this
8594 -- in this order so that derived subprograms inherit the derived freeze
8595 -- if necessary.
8597 Set_Has_Delayed_Freeze (Derived_Type);
8599 if Derive_Subps then
8600 Derive_Subprograms (Parent_Type, Derived_Type);
8601 end if;
8603 Set_Has_Primitive_Operations
8604 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8605 end Build_Derived_Type;
8607 -----------------------
8608 -- Build_Discriminal --
8609 -----------------------
8611 procedure Build_Discriminal (Discrim : Entity_Id) is
8612 D_Minal : Entity_Id;
8613 CR_Disc : Entity_Id;
8615 begin
8616 -- A discriminal has the same name as the discriminant
8618 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8620 Set_Ekind (D_Minal, E_In_Parameter);
8621 Set_Mechanism (D_Minal, Default_Mechanism);
8622 Set_Etype (D_Minal, Etype (Discrim));
8623 Set_Scope (D_Minal, Current_Scope);
8625 Set_Discriminal (Discrim, D_Minal);
8626 Set_Discriminal_Link (D_Minal, Discrim);
8628 -- For task types, build at once the discriminants of the corresponding
8629 -- record, which are needed if discriminants are used in entry defaults
8630 -- and in family bounds.
8632 if Is_Concurrent_Type (Current_Scope)
8633 or else Is_Limited_Type (Current_Scope)
8634 then
8635 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8637 Set_Ekind (CR_Disc, E_In_Parameter);
8638 Set_Mechanism (CR_Disc, Default_Mechanism);
8639 Set_Etype (CR_Disc, Etype (Discrim));
8640 Set_Scope (CR_Disc, Current_Scope);
8641 Set_Discriminal_Link (CR_Disc, Discrim);
8642 Set_CR_Discriminant (Discrim, CR_Disc);
8643 end if;
8644 end Build_Discriminal;
8646 ------------------------------------
8647 -- Build_Discriminant_Constraints --
8648 ------------------------------------
8650 function Build_Discriminant_Constraints
8651 (T : Entity_Id;
8652 Def : Node_Id;
8653 Derived_Def : Boolean := False) return Elist_Id
8655 C : constant Node_Id := Constraint (Def);
8656 Nb_Discr : constant Nat := Number_Discriminants (T);
8658 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8659 -- Saves the expression corresponding to a given discriminant in T
8661 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8662 -- Return the Position number within array Discr_Expr of a discriminant
8663 -- D within the discriminant list of the discriminated type T.
8665 procedure Process_Discriminant_Expression
8666 (Expr : Node_Id;
8667 D : Entity_Id);
8668 -- If this is a discriminant constraint on a partial view, do not
8669 -- generate an overflow check on the discriminant expression. The check
8670 -- will be generated when constraining the full view. Otherwise the
8671 -- backend creates duplicate symbols for the temporaries corresponding
8672 -- to the expressions to be checked, causing spurious assembler errors.
8674 ------------------
8675 -- Pos_Of_Discr --
8676 ------------------
8678 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8679 Disc : Entity_Id;
8681 begin
8682 Disc := First_Discriminant (T);
8683 for J in Discr_Expr'Range loop
8684 if Disc = D then
8685 return J;
8686 end if;
8688 Next_Discriminant (Disc);
8689 end loop;
8691 -- Note: Since this function is called on discriminants that are
8692 -- known to belong to the discriminated type, falling through the
8693 -- loop with no match signals an internal compiler error.
8695 raise Program_Error;
8696 end Pos_Of_Discr;
8698 -------------------------------------
8699 -- Process_Discriminant_Expression --
8700 -------------------------------------
8702 procedure Process_Discriminant_Expression
8703 (Expr : Node_Id;
8704 D : Entity_Id)
8706 BDT : constant Entity_Id := Base_Type (Etype (D));
8708 begin
8709 -- If this is a discriminant constraint on a partial view, do
8710 -- not generate an overflow on the discriminant expression. The
8711 -- check will be generated when constraining the full view.
8713 if Is_Private_Type (T)
8714 and then Present (Full_View (T))
8715 then
8716 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
8717 else
8718 Analyze_And_Resolve (Expr, BDT);
8719 end if;
8720 end Process_Discriminant_Expression;
8722 -- Declarations local to Build_Discriminant_Constraints
8724 Discr : Entity_Id;
8725 E : Entity_Id;
8726 Elist : constant Elist_Id := New_Elmt_List;
8728 Constr : Node_Id;
8729 Expr : Node_Id;
8730 Id : Node_Id;
8731 Position : Nat;
8732 Found : Boolean;
8734 Discrim_Present : Boolean := False;
8736 -- Start of processing for Build_Discriminant_Constraints
8738 begin
8739 -- The following loop will process positional associations only.
8740 -- For a positional association, the (single) discriminant is
8741 -- implicitly specified by position, in textual order (RM 3.7.2).
8743 Discr := First_Discriminant (T);
8744 Constr := First (Constraints (C));
8745 for D in Discr_Expr'Range loop
8746 exit when Nkind (Constr) = N_Discriminant_Association;
8748 if No (Constr) then
8749 Error_Msg_N ("too few discriminants given in constraint", C);
8750 return New_Elmt_List;
8752 elsif Nkind (Constr) = N_Range
8753 or else (Nkind (Constr) = N_Attribute_Reference
8754 and then
8755 Attribute_Name (Constr) = Name_Range)
8756 then
8757 Error_Msg_N
8758 ("a range is not a valid discriminant constraint", Constr);
8759 Discr_Expr (D) := Error;
8761 else
8762 Process_Discriminant_Expression (Constr, Discr);
8763 Discr_Expr (D) := Constr;
8764 end if;
8766 Next_Discriminant (Discr);
8767 Next (Constr);
8768 end loop;
8770 if No (Discr) and then Present (Constr) then
8771 Error_Msg_N ("too many discriminants given in constraint", Constr);
8772 return New_Elmt_List;
8773 end if;
8775 -- Named associations can be given in any order, but if both positional
8776 -- and named associations are used in the same discriminant constraint,
8777 -- then positional associations must occur first, at their normal
8778 -- position. Hence once a named association is used, the rest of the
8779 -- discriminant constraint must use only named associations.
8781 while Present (Constr) loop
8783 -- Positional association forbidden after a named association
8785 if Nkind (Constr) /= N_Discriminant_Association then
8786 Error_Msg_N ("positional association follows named one", Constr);
8787 return New_Elmt_List;
8789 -- Otherwise it is a named association
8791 else
8792 -- E records the type of the discriminants in the named
8793 -- association. All the discriminants specified in the same name
8794 -- association must have the same type.
8796 E := Empty;
8798 -- Search the list of discriminants in T to see if the simple name
8799 -- given in the constraint matches any of them.
8801 Id := First (Selector_Names (Constr));
8802 while Present (Id) loop
8803 Found := False;
8805 -- If Original_Discriminant is present, we are processing a
8806 -- generic instantiation and this is an instance node. We need
8807 -- to find the name of the corresponding discriminant in the
8808 -- actual record type T and not the name of the discriminant in
8809 -- the generic formal. Example:
8811 -- generic
8812 -- type G (D : int) is private;
8813 -- package P is
8814 -- subtype W is G (D => 1);
8815 -- end package;
8816 -- type Rec (X : int) is record ... end record;
8817 -- package Q is new P (G => Rec);
8819 -- At the point of the instantiation, formal type G is Rec
8820 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8821 -- which really looks like "subtype W is Rec (D => 1);" at
8822 -- the point of instantiation, we want to find the discriminant
8823 -- that corresponds to D in Rec, i.e. X.
8825 if Present (Original_Discriminant (Id))
8826 and then In_Instance
8827 then
8828 Discr := Find_Corresponding_Discriminant (Id, T);
8829 Found := True;
8831 else
8832 Discr := First_Discriminant (T);
8833 while Present (Discr) loop
8834 if Chars (Discr) = Chars (Id) then
8835 Found := True;
8836 exit;
8837 end if;
8839 Next_Discriminant (Discr);
8840 end loop;
8842 if not Found then
8843 Error_Msg_N ("& does not match any discriminant", Id);
8844 return New_Elmt_List;
8846 -- If the parent type is a generic formal, preserve the
8847 -- name of the discriminant for subsequent instances.
8848 -- see comment at the beginning of this if statement.
8850 elsif Is_Generic_Type (Root_Type (T)) then
8851 Set_Original_Discriminant (Id, Discr);
8852 end if;
8853 end if;
8855 Position := Pos_Of_Discr (T, Discr);
8857 if Present (Discr_Expr (Position)) then
8858 Error_Msg_N ("duplicate constraint for discriminant&", Id);
8860 else
8861 -- Each discriminant specified in the same named association
8862 -- must be associated with a separate copy of the
8863 -- corresponding expression.
8865 if Present (Next (Id)) then
8866 Expr := New_Copy_Tree (Expression (Constr));
8867 Set_Parent (Expr, Parent (Expression (Constr)));
8868 else
8869 Expr := Expression (Constr);
8870 end if;
8872 Discr_Expr (Position) := Expr;
8873 Process_Discriminant_Expression (Expr, Discr);
8874 end if;
8876 -- A discriminant association with more than one discriminant
8877 -- name is only allowed if the named discriminants are all of
8878 -- the same type (RM 3.7.1(8)).
8880 if E = Empty then
8881 E := Base_Type (Etype (Discr));
8883 elsif Base_Type (Etype (Discr)) /= E then
8884 Error_Msg_N
8885 ("all discriminants in an association " &
8886 "must have the same type", Id);
8887 end if;
8889 Next (Id);
8890 end loop;
8891 end if;
8893 Next (Constr);
8894 end loop;
8896 -- A discriminant constraint must provide exactly one value for each
8897 -- discriminant of the type (RM 3.7.1(8)).
8899 for J in Discr_Expr'Range loop
8900 if No (Discr_Expr (J)) then
8901 Error_Msg_N ("too few discriminants given in constraint", C);
8902 return New_Elmt_List;
8903 end if;
8904 end loop;
8906 -- Determine if there are discriminant expressions in the constraint
8908 for J in Discr_Expr'Range loop
8909 if Denotes_Discriminant
8910 (Discr_Expr (J), Check_Concurrent => True)
8911 then
8912 Discrim_Present := True;
8913 end if;
8914 end loop;
8916 -- Build an element list consisting of the expressions given in the
8917 -- discriminant constraint and apply the appropriate checks. The list
8918 -- is constructed after resolving any named discriminant associations
8919 -- and therefore the expressions appear in the textual order of the
8920 -- discriminants.
8922 Discr := First_Discriminant (T);
8923 for J in Discr_Expr'Range loop
8924 if Discr_Expr (J) /= Error then
8925 Append_Elmt (Discr_Expr (J), Elist);
8927 -- If any of the discriminant constraints is given by a
8928 -- discriminant and we are in a derived type declaration we
8929 -- have a discriminant renaming. Establish link between new
8930 -- and old discriminant.
8932 if Denotes_Discriminant (Discr_Expr (J)) then
8933 if Derived_Def then
8934 Set_Corresponding_Discriminant
8935 (Entity (Discr_Expr (J)), Discr);
8936 end if;
8938 -- Force the evaluation of non-discriminant expressions.
8939 -- If we have found a discriminant in the constraint 3.4(26)
8940 -- and 3.8(18) demand that no range checks are performed are
8941 -- after evaluation. If the constraint is for a component
8942 -- definition that has a per-object constraint, expressions are
8943 -- evaluated but not checked either. In all other cases perform
8944 -- a range check.
8946 else
8947 if Discrim_Present then
8948 null;
8950 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
8951 and then
8952 Has_Per_Object_Constraint
8953 (Defining_Identifier (Parent (Parent (Def))))
8954 then
8955 null;
8957 elsif Is_Access_Type (Etype (Discr)) then
8958 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
8960 else
8961 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
8962 end if;
8964 Force_Evaluation (Discr_Expr (J));
8965 end if;
8967 -- Check that the designated type of an access discriminant's
8968 -- expression is not a class-wide type unless the discriminant's
8969 -- designated type is also class-wide.
8971 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
8972 and then not Is_Class_Wide_Type
8973 (Designated_Type (Etype (Discr)))
8974 and then Etype (Discr_Expr (J)) /= Any_Type
8975 and then Is_Class_Wide_Type
8976 (Designated_Type (Etype (Discr_Expr (J))))
8977 then
8978 Wrong_Type (Discr_Expr (J), Etype (Discr));
8980 elsif Is_Access_Type (Etype (Discr))
8981 and then not Is_Access_Constant (Etype (Discr))
8982 and then Is_Access_Type (Etype (Discr_Expr (J)))
8983 and then Is_Access_Constant (Etype (Discr_Expr (J)))
8984 then
8985 Error_Msg_NE
8986 ("constraint for discriminant& must be access to variable",
8987 Def, Discr);
8988 end if;
8989 end if;
8991 Next_Discriminant (Discr);
8992 end loop;
8994 return Elist;
8995 end Build_Discriminant_Constraints;
8997 ---------------------------------
8998 -- Build_Discriminated_Subtype --
8999 ---------------------------------
9001 procedure Build_Discriminated_Subtype
9002 (T : Entity_Id;
9003 Def_Id : Entity_Id;
9004 Elist : Elist_Id;
9005 Related_Nod : Node_Id;
9006 For_Access : Boolean := False)
9008 Has_Discrs : constant Boolean := Has_Discriminants (T);
9009 Constrained : constant Boolean :=
9010 (Has_Discrs
9011 and then not Is_Empty_Elmt_List (Elist)
9012 and then not Is_Class_Wide_Type (T))
9013 or else Is_Constrained (T);
9015 begin
9016 if Ekind (T) = E_Record_Type then
9017 if For_Access then
9018 Set_Ekind (Def_Id, E_Private_Subtype);
9019 Set_Is_For_Access_Subtype (Def_Id, True);
9020 else
9021 Set_Ekind (Def_Id, E_Record_Subtype);
9022 end if;
9024 -- Inherit preelaboration flag from base, for types for which it
9025 -- may have been set: records, private types, protected types.
9027 Set_Known_To_Have_Preelab_Init
9028 (Def_Id, Known_To_Have_Preelab_Init (T));
9030 elsif Ekind (T) = E_Task_Type then
9031 Set_Ekind (Def_Id, E_Task_Subtype);
9033 elsif Ekind (T) = E_Protected_Type then
9034 Set_Ekind (Def_Id, E_Protected_Subtype);
9035 Set_Known_To_Have_Preelab_Init
9036 (Def_Id, Known_To_Have_Preelab_Init (T));
9038 elsif Is_Private_Type (T) then
9039 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9040 Set_Known_To_Have_Preelab_Init
9041 (Def_Id, Known_To_Have_Preelab_Init (T));
9043 -- Private subtypes may have private dependents
9045 Set_Private_Dependents (Def_Id, New_Elmt_List);
9047 elsif Is_Class_Wide_Type (T) then
9048 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9050 else
9051 -- Incomplete type. Attach subtype to list of dependents, to be
9052 -- completed with full view of parent type, unless is it the
9053 -- designated subtype of a record component within an init_proc.
9054 -- This last case arises for a component of an access type whose
9055 -- designated type is incomplete (e.g. a Taft Amendment type).
9056 -- The designated subtype is within an inner scope, and needs no
9057 -- elaboration, because only the access type is needed in the
9058 -- initialization procedure.
9060 Set_Ekind (Def_Id, Ekind (T));
9062 if For_Access and then Within_Init_Proc then
9063 null;
9064 else
9065 Append_Elmt (Def_Id, Private_Dependents (T));
9066 end if;
9067 end if;
9069 Set_Etype (Def_Id, T);
9070 Init_Size_Align (Def_Id);
9071 Set_Has_Discriminants (Def_Id, Has_Discrs);
9072 Set_Is_Constrained (Def_Id, Constrained);
9074 Set_First_Entity (Def_Id, First_Entity (T));
9075 Set_Last_Entity (Def_Id, Last_Entity (T));
9076 Set_Has_Implicit_Dereference
9077 (Def_Id, Has_Implicit_Dereference (T));
9079 -- If the subtype is the completion of a private declaration, there may
9080 -- have been representation clauses for the partial view, and they must
9081 -- be preserved. Build_Derived_Type chains the inherited clauses with
9082 -- the ones appearing on the extension. If this comes from a subtype
9083 -- declaration, all clauses are inherited.
9085 if No (First_Rep_Item (Def_Id)) then
9086 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9087 end if;
9089 if Is_Tagged_Type (T) then
9090 Set_Is_Tagged_Type (Def_Id);
9091 Make_Class_Wide_Type (Def_Id);
9092 end if;
9094 Set_Stored_Constraint (Def_Id, No_Elist);
9096 if Has_Discrs then
9097 Set_Discriminant_Constraint (Def_Id, Elist);
9098 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9099 end if;
9101 if Is_Tagged_Type (T) then
9103 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9104 -- concurrent record type (which has the list of primitive
9105 -- operations).
9107 if Ada_Version >= Ada_2005
9108 and then Is_Concurrent_Type (T)
9109 then
9110 Set_Corresponding_Record_Type (Def_Id,
9111 Corresponding_Record_Type (T));
9112 else
9113 Set_Direct_Primitive_Operations (Def_Id,
9114 Direct_Primitive_Operations (T));
9115 end if;
9117 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9118 end if;
9120 -- Subtypes introduced by component declarations do not need to be
9121 -- marked as delayed, and do not get freeze nodes, because the semantics
9122 -- verifies that the parents of the subtypes are frozen before the
9123 -- enclosing record is frozen.
9125 if not Is_Type (Scope (Def_Id)) then
9126 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9128 if Is_Private_Type (T)
9129 and then Present (Full_View (T))
9130 then
9131 Conditional_Delay (Def_Id, Full_View (T));
9132 else
9133 Conditional_Delay (Def_Id, T);
9134 end if;
9135 end if;
9137 if Is_Record_Type (T) then
9138 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9140 if Has_Discrs
9141 and then not Is_Empty_Elmt_List (Elist)
9142 and then not For_Access
9143 then
9144 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9145 elsif not For_Access then
9146 Set_Cloned_Subtype (Def_Id, T);
9147 end if;
9148 end if;
9149 end Build_Discriminated_Subtype;
9151 ---------------------------
9152 -- Build_Itype_Reference --
9153 ---------------------------
9155 procedure Build_Itype_Reference
9156 (Ityp : Entity_Id;
9157 Nod : Node_Id)
9159 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9160 begin
9162 -- Itype references are only created for use by the back-end
9164 if Inside_A_Generic then
9165 return;
9166 else
9167 Set_Itype (IR, Ityp);
9168 Insert_After (Nod, IR);
9169 end if;
9170 end Build_Itype_Reference;
9172 ------------------------
9173 -- Build_Scalar_Bound --
9174 ------------------------
9176 function Build_Scalar_Bound
9177 (Bound : Node_Id;
9178 Par_T : Entity_Id;
9179 Der_T : Entity_Id) return Node_Id
9181 New_Bound : Entity_Id;
9183 begin
9184 -- Note: not clear why this is needed, how can the original bound
9185 -- be unanalyzed at this point? and if it is, what business do we
9186 -- have messing around with it? and why is the base type of the
9187 -- parent type the right type for the resolution. It probably is
9188 -- not. It is OK for the new bound we are creating, but not for
9189 -- the old one??? Still if it never happens, no problem.
9191 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9193 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9194 New_Bound := New_Copy (Bound);
9195 Set_Etype (New_Bound, Der_T);
9196 Set_Analyzed (New_Bound);
9198 elsif Is_Entity_Name (Bound) then
9199 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9201 -- The following is almost certainly wrong. What business do we have
9202 -- relocating a node (Bound) that is presumably still attached to
9203 -- the tree elsewhere???
9205 else
9206 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9207 end if;
9209 Set_Etype (New_Bound, Der_T);
9210 return New_Bound;
9211 end Build_Scalar_Bound;
9213 --------------------------------
9214 -- Build_Underlying_Full_View --
9215 --------------------------------
9217 procedure Build_Underlying_Full_View
9218 (N : Node_Id;
9219 Typ : Entity_Id;
9220 Par : Entity_Id)
9222 Loc : constant Source_Ptr := Sloc (N);
9223 Subt : constant Entity_Id :=
9224 Make_Defining_Identifier
9225 (Loc, New_External_Name (Chars (Typ), 'S'));
9227 Constr : Node_Id;
9228 Indic : Node_Id;
9229 C : Node_Id;
9230 Id : Node_Id;
9232 procedure Set_Discriminant_Name (Id : Node_Id);
9233 -- If the derived type has discriminants, they may rename discriminants
9234 -- of the parent. When building the full view of the parent, we need to
9235 -- recover the names of the original discriminants if the constraint is
9236 -- given by named associations.
9238 ---------------------------
9239 -- Set_Discriminant_Name --
9240 ---------------------------
9242 procedure Set_Discriminant_Name (Id : Node_Id) is
9243 Disc : Entity_Id;
9245 begin
9246 Set_Original_Discriminant (Id, Empty);
9248 if Has_Discriminants (Typ) then
9249 Disc := First_Discriminant (Typ);
9250 while Present (Disc) loop
9251 if Chars (Disc) = Chars (Id)
9252 and then Present (Corresponding_Discriminant (Disc))
9253 then
9254 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9255 end if;
9256 Next_Discriminant (Disc);
9257 end loop;
9258 end if;
9259 end Set_Discriminant_Name;
9261 -- Start of processing for Build_Underlying_Full_View
9263 begin
9264 if Nkind (N) = N_Full_Type_Declaration then
9265 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9267 elsif Nkind (N) = N_Subtype_Declaration then
9268 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9270 elsif Nkind (N) = N_Component_Declaration then
9271 Constr :=
9272 New_Copy_Tree
9273 (Constraint (Subtype_Indication (Component_Definition (N))));
9275 else
9276 raise Program_Error;
9277 end if;
9279 C := First (Constraints (Constr));
9280 while Present (C) loop
9281 if Nkind (C) = N_Discriminant_Association then
9282 Id := First (Selector_Names (C));
9283 while Present (Id) loop
9284 Set_Discriminant_Name (Id);
9285 Next (Id);
9286 end loop;
9287 end if;
9289 Next (C);
9290 end loop;
9292 Indic :=
9293 Make_Subtype_Declaration (Loc,
9294 Defining_Identifier => Subt,
9295 Subtype_Indication =>
9296 Make_Subtype_Indication (Loc,
9297 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9298 Constraint => New_Copy_Tree (Constr)));
9300 -- If this is a component subtype for an outer itype, it is not
9301 -- a list member, so simply set the parent link for analysis: if
9302 -- the enclosing type does not need to be in a declarative list,
9303 -- neither do the components.
9305 if Is_List_Member (N)
9306 and then Nkind (N) /= N_Component_Declaration
9307 then
9308 Insert_Before (N, Indic);
9309 else
9310 Set_Parent (Indic, Parent (N));
9311 end if;
9313 Analyze (Indic);
9314 Set_Underlying_Full_View (Typ, Full_View (Subt));
9315 end Build_Underlying_Full_View;
9317 -------------------------------
9318 -- Check_Abstract_Overriding --
9319 -------------------------------
9321 procedure Check_Abstract_Overriding (T : Entity_Id) is
9322 Alias_Subp : Entity_Id;
9323 Elmt : Elmt_Id;
9324 Op_List : Elist_Id;
9325 Subp : Entity_Id;
9326 Type_Def : Node_Id;
9328 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9329 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9330 -- which has pragma Implemented already set. Check whether Subp's entity
9331 -- kind conforms to the implementation kind of the overridden routine.
9333 procedure Check_Pragma_Implemented
9334 (Subp : Entity_Id;
9335 Iface_Subp : Entity_Id);
9336 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9337 -- Iface_Subp and both entities have pragma Implemented already set on
9338 -- them. Check whether the two implementation kinds are conforming.
9340 procedure Inherit_Pragma_Implemented
9341 (Subp : Entity_Id;
9342 Iface_Subp : Entity_Id);
9343 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9344 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9345 -- Propagate the implementation kind of Iface_Subp to Subp.
9347 ------------------------------
9348 -- Check_Pragma_Implemented --
9349 ------------------------------
9351 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9352 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9353 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9354 Subp_Alias : constant Entity_Id := Alias (Subp);
9355 Contr_Typ : Entity_Id;
9356 Impl_Subp : Entity_Id;
9358 begin
9359 -- Subp must have an alias since it is a hidden entity used to link
9360 -- an interface subprogram to its overriding counterpart.
9362 pragma Assert (Present (Subp_Alias));
9364 -- Handle aliases to synchronized wrappers
9366 Impl_Subp := Subp_Alias;
9368 if Is_Primitive_Wrapper (Impl_Subp) then
9369 Impl_Subp := Wrapped_Entity (Impl_Subp);
9370 end if;
9372 -- Extract the type of the controlling formal
9374 Contr_Typ := Etype (First_Formal (Subp_Alias));
9376 if Is_Concurrent_Record_Type (Contr_Typ) then
9377 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9378 end if;
9380 -- An interface subprogram whose implementation kind is By_Entry must
9381 -- be implemented by an entry.
9383 if Impl_Kind = Name_By_Entry
9384 and then Ekind (Impl_Subp) /= E_Entry
9385 then
9386 Error_Msg_Node_2 := Iface_Alias;
9387 Error_Msg_NE
9388 ("type & must implement abstract subprogram & with an entry",
9389 Subp_Alias, Contr_Typ);
9391 elsif Impl_Kind = Name_By_Protected_Procedure then
9393 -- An interface subprogram whose implementation kind is By_
9394 -- Protected_Procedure cannot be implemented by a primitive
9395 -- procedure of a task type.
9397 if Ekind (Contr_Typ) /= E_Protected_Type then
9398 Error_Msg_Node_2 := Contr_Typ;
9399 Error_Msg_NE
9400 ("interface subprogram & cannot be implemented by a " &
9401 "primitive procedure of task type &", Subp_Alias,
9402 Iface_Alias);
9404 -- An interface subprogram whose implementation kind is By_
9405 -- Protected_Procedure must be implemented by a procedure.
9407 elsif Ekind (Impl_Subp) /= E_Procedure then
9408 Error_Msg_Node_2 := Iface_Alias;
9409 Error_Msg_NE
9410 ("type & must implement abstract subprogram & with a " &
9411 "procedure", Subp_Alias, Contr_Typ);
9413 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9414 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9415 then
9416 Error_Msg_Name_1 := Impl_Kind;
9417 Error_Msg_N
9418 ("overriding operation& must have synchronization%",
9419 Subp_Alias);
9420 end if;
9422 -- If primitive has Optional synchronization, overriding operation
9423 -- must match if it has an explicit synchronization..
9425 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9426 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9427 then
9428 Error_Msg_Name_1 := Impl_Kind;
9429 Error_Msg_N
9430 ("overriding operation& must have syncrhonization%",
9431 Subp_Alias);
9432 end if;
9433 end Check_Pragma_Implemented;
9435 ------------------------------
9436 -- Check_Pragma_Implemented --
9437 ------------------------------
9439 procedure Check_Pragma_Implemented
9440 (Subp : Entity_Id;
9441 Iface_Subp : Entity_Id)
9443 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9444 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9446 begin
9447 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9448 -- and overriding subprogram are different. In general this is an
9449 -- error except when the implementation kind of the overridden
9450 -- subprograms is By_Any or Optional.
9452 if Iface_Kind /= Subp_Kind
9453 and then Iface_Kind /= Name_By_Any
9454 and then Iface_Kind /= Name_Optional
9455 then
9456 if Iface_Kind = Name_By_Entry then
9457 Error_Msg_N
9458 ("incompatible implementation kind, overridden subprogram " &
9459 "is marked By_Entry", Subp);
9460 else
9461 Error_Msg_N
9462 ("incompatible implementation kind, overridden subprogram " &
9463 "is marked By_Protected_Procedure", Subp);
9464 end if;
9465 end if;
9466 end Check_Pragma_Implemented;
9468 --------------------------------
9469 -- Inherit_Pragma_Implemented --
9470 --------------------------------
9472 procedure Inherit_Pragma_Implemented
9473 (Subp : Entity_Id;
9474 Iface_Subp : Entity_Id)
9476 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9477 Loc : constant Source_Ptr := Sloc (Subp);
9478 Impl_Prag : Node_Id;
9480 begin
9481 -- Since the implementation kind is stored as a representation item
9482 -- rather than a flag, create a pragma node.
9484 Impl_Prag :=
9485 Make_Pragma (Loc,
9486 Chars => Name_Implemented,
9487 Pragma_Argument_Associations => New_List (
9488 Make_Pragma_Argument_Association (Loc,
9489 Expression => New_Occurrence_Of (Subp, Loc)),
9491 Make_Pragma_Argument_Association (Loc,
9492 Expression => Make_Identifier (Loc, Iface_Kind))));
9494 -- The pragma doesn't need to be analyzed because it is internally
9495 -- built. It is safe to directly register it as a rep item since we
9496 -- are only interested in the characters of the implementation kind.
9498 Record_Rep_Item (Subp, Impl_Prag);
9499 end Inherit_Pragma_Implemented;
9501 -- Start of processing for Check_Abstract_Overriding
9503 begin
9504 Op_List := Primitive_Operations (T);
9506 -- Loop to check primitive operations
9508 Elmt := First_Elmt (Op_List);
9509 while Present (Elmt) loop
9510 Subp := Node (Elmt);
9511 Alias_Subp := Alias (Subp);
9513 -- Inherited subprograms are identified by the fact that they do not
9514 -- come from source, and the associated source location is the
9515 -- location of the first subtype of the derived type.
9517 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9518 -- subprograms that "require overriding".
9520 -- Special exception, do not complain about failure to override the
9521 -- stream routines _Input and _Output, as well as the primitive
9522 -- operations used in dispatching selects since we always provide
9523 -- automatic overridings for these subprograms.
9525 -- Also ignore this rule for convention CIL since .NET libraries
9526 -- do bizarre things with interfaces???
9528 -- The partial view of T may have been a private extension, for
9529 -- which inherited functions dispatching on result are abstract.
9530 -- If the full view is a null extension, there is no need for
9531 -- overriding in Ada 2005, but wrappers need to be built for them
9532 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9534 if Is_Null_Extension (T)
9535 and then Has_Controlling_Result (Subp)
9536 and then Ada_Version >= Ada_2005
9537 and then Present (Alias_Subp)
9538 and then not Comes_From_Source (Subp)
9539 and then not Is_Abstract_Subprogram (Alias_Subp)
9540 and then not Is_Access_Type (Etype (Subp))
9541 then
9542 null;
9544 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9545 -- processing because this check is done with the aliased
9546 -- entity
9548 elsif Present (Interface_Alias (Subp)) then
9549 null;
9551 elsif (Is_Abstract_Subprogram (Subp)
9552 or else Requires_Overriding (Subp)
9553 or else
9554 (Has_Controlling_Result (Subp)
9555 and then Present (Alias_Subp)
9556 and then not Comes_From_Source (Subp)
9557 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9558 and then not Is_TSS (Subp, TSS_Stream_Input)
9559 and then not Is_TSS (Subp, TSS_Stream_Output)
9560 and then not Is_Abstract_Type (T)
9561 and then Convention (T) /= Convention_CIL
9562 and then not Is_Predefined_Interface_Primitive (Subp)
9564 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9565 -- with abstract interface types because the check will be done
9566 -- with the aliased entity (otherwise we generate a duplicated
9567 -- error message).
9569 and then not Present (Interface_Alias (Subp))
9570 then
9571 if Present (Alias_Subp) then
9573 -- Only perform the check for a derived subprogram when the
9574 -- type has an explicit record extension. This avoids incorrect
9575 -- flagging of abstract subprograms for the case of a type
9576 -- without an extension that is derived from a formal type
9577 -- with a tagged actual (can occur within a private part).
9579 -- Ada 2005 (AI-391): In the case of an inherited function with
9580 -- a controlling result of the type, the rule does not apply if
9581 -- the type is a null extension (unless the parent function
9582 -- itself is abstract, in which case the function must still be
9583 -- be overridden). The expander will generate an overriding
9584 -- wrapper function calling the parent subprogram (see
9585 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9587 Type_Def := Type_Definition (Parent (T));
9589 if Nkind (Type_Def) = N_Derived_Type_Definition
9590 and then Present (Record_Extension_Part (Type_Def))
9591 and then
9592 (Ada_Version < Ada_2005
9593 or else not Is_Null_Extension (T)
9594 or else Ekind (Subp) = E_Procedure
9595 or else not Has_Controlling_Result (Subp)
9596 or else Is_Abstract_Subprogram (Alias_Subp)
9597 or else Requires_Overriding (Subp)
9598 or else Is_Access_Type (Etype (Subp)))
9599 then
9600 -- Avoid reporting error in case of abstract predefined
9601 -- primitive inherited from interface type because the
9602 -- body of internally generated predefined primitives
9603 -- of tagged types are generated later by Freeze_Type
9605 if Is_Interface (Root_Type (T))
9606 and then Is_Abstract_Subprogram (Subp)
9607 and then Is_Predefined_Dispatching_Operation (Subp)
9608 and then not Comes_From_Source (Ultimate_Alias (Subp))
9609 then
9610 null;
9612 else
9613 Error_Msg_NE
9614 ("type must be declared abstract or & overridden",
9615 T, Subp);
9617 -- Traverse the whole chain of aliased subprograms to
9618 -- complete the error notification. This is especially
9619 -- useful for traceability of the chain of entities when
9620 -- the subprogram corresponds with an interface
9621 -- subprogram (which may be defined in another package).
9623 if Present (Alias_Subp) then
9624 declare
9625 E : Entity_Id;
9627 begin
9628 E := Subp;
9629 while Present (Alias (E)) loop
9631 -- Avoid reporting redundant errors on entities
9632 -- inherited from interfaces
9634 if Sloc (E) /= Sloc (T) then
9635 Error_Msg_Sloc := Sloc (E);
9636 Error_Msg_NE
9637 ("\& has been inherited #", T, Subp);
9638 end if;
9640 E := Alias (E);
9641 end loop;
9643 Error_Msg_Sloc := Sloc (E);
9645 -- AI05-0068: report if there is an overriding
9646 -- non-abstract subprogram that is invisible.
9648 if Is_Hidden (E)
9649 and then not Is_Abstract_Subprogram (E)
9650 then
9651 Error_Msg_NE
9652 ("\& subprogram# is not visible",
9653 T, Subp);
9655 else
9656 Error_Msg_NE
9657 ("\& has been inherited from subprogram #",
9658 T, Subp);
9659 end if;
9660 end;
9661 end if;
9662 end if;
9664 -- Ada 2005 (AI-345): Protected or task type implementing
9665 -- abstract interfaces.
9667 elsif Is_Concurrent_Record_Type (T)
9668 and then Present (Interfaces (T))
9669 then
9670 -- If an inherited subprogram is implemented by a protected
9671 -- procedure or an entry, then the first parameter of the
9672 -- inherited subprogram shall be of mode OUT or IN OUT, or
9673 -- an access-to-variable parameter (RM 9.4(11.9/3))
9675 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
9676 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9677 and then Ekind (Subp) /= E_Function
9678 and then not Is_Predefined_Dispatching_Operation (Subp)
9679 then
9680 Error_Msg_PT (T, Subp);
9682 -- Some other kind of overriding failure
9684 else
9685 Error_Msg_NE
9686 ("interface subprogram & must be overridden",
9687 T, Subp);
9689 -- Examine primitive operations of synchronized type,
9690 -- to find homonyms that have the wrong profile.
9692 declare
9693 Prim : Entity_Id;
9695 begin
9696 Prim :=
9697 First_Entity (Corresponding_Concurrent_Type (T));
9698 while Present (Prim) loop
9699 if Chars (Prim) = Chars (Subp) then
9700 Error_Msg_NE
9701 ("profile is not type conformant with "
9702 & "prefixed view profile of "
9703 & "inherited operation&", Prim, Subp);
9704 end if;
9706 Next_Entity (Prim);
9707 end loop;
9708 end;
9709 end if;
9710 end if;
9712 else
9713 Error_Msg_Node_2 := T;
9714 Error_Msg_N
9715 ("abstract subprogram& not allowed for type&", Subp);
9717 -- Also post unconditional warning on the type (unconditional
9718 -- so that if there are more than one of these cases, we get
9719 -- them all, and not just the first one).
9721 Error_Msg_Node_2 := Subp;
9722 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9723 end if;
9724 end if;
9726 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
9728 -- Subp is an expander-generated procedure which maps an interface
9729 -- alias to a protected wrapper. The interface alias is flagged by
9730 -- pragma Implemented. Ensure that Subp is a procedure when the
9731 -- implementation kind is By_Protected_Procedure or an entry when
9732 -- By_Entry.
9734 if Ada_Version >= Ada_2012
9735 and then Is_Hidden (Subp)
9736 and then Present (Interface_Alias (Subp))
9737 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9738 then
9739 Check_Pragma_Implemented (Subp);
9740 end if;
9742 -- Subp is an interface primitive which overrides another interface
9743 -- primitive marked with pragma Implemented.
9745 if Ada_Version >= Ada_2012
9746 and then Present (Overridden_Operation (Subp))
9747 and then Has_Rep_Pragma
9748 (Overridden_Operation (Subp), Name_Implemented)
9749 then
9750 -- If the overriding routine is also marked by Implemented, check
9751 -- that the two implementation kinds are conforming.
9753 if Has_Rep_Pragma (Subp, Name_Implemented) then
9754 Check_Pragma_Implemented
9755 (Subp => Subp,
9756 Iface_Subp => Overridden_Operation (Subp));
9758 -- Otherwise the overriding routine inherits the implementation
9759 -- kind from the overridden subprogram.
9761 else
9762 Inherit_Pragma_Implemented
9763 (Subp => Subp,
9764 Iface_Subp => Overridden_Operation (Subp));
9765 end if;
9766 end if;
9768 -- If the operation is a wrapper for a synchronized primitive, it
9769 -- may be called indirectly through a dispatching select. We assume
9770 -- that it will be referenced elsewhere indirectly, and suppress
9771 -- warnings about an unused entity.
9773 if Is_Primitive_Wrapper (Subp)
9774 and then Present (Wrapped_Entity (Subp))
9775 then
9776 Set_Referenced (Wrapped_Entity (Subp));
9777 end if;
9779 Next_Elmt (Elmt);
9780 end loop;
9781 end Check_Abstract_Overriding;
9783 ------------------------------------------------
9784 -- Check_Access_Discriminant_Requires_Limited --
9785 ------------------------------------------------
9787 procedure Check_Access_Discriminant_Requires_Limited
9788 (D : Node_Id;
9789 Loc : Node_Id)
9791 begin
9792 -- A discriminant_specification for an access discriminant shall appear
9793 -- only in the declaration for a task or protected type, or for a type
9794 -- with the reserved word 'limited' in its definition or in one of its
9795 -- ancestors (RM 3.7(10)).
9797 -- AI-0063: The proper condition is that type must be immutably limited,
9798 -- or else be a partial view.
9800 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
9801 if Is_Limited_View (Current_Scope)
9802 or else
9803 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
9804 and then Limited_Present (Parent (Current_Scope)))
9805 then
9806 null;
9808 else
9809 Error_Msg_N
9810 ("access discriminants allowed only for limited types", Loc);
9811 end if;
9812 end if;
9813 end Check_Access_Discriminant_Requires_Limited;
9815 -----------------------------------
9816 -- Check_Aliased_Component_Types --
9817 -----------------------------------
9819 procedure Check_Aliased_Component_Types (T : Entity_Id) is
9820 C : Entity_Id;
9822 begin
9823 -- ??? Also need to check components of record extensions, but not
9824 -- components of protected types (which are always limited).
9826 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9827 -- types to be unconstrained. This is safe because it is illegal to
9828 -- create access subtypes to such types with explicit discriminant
9829 -- constraints.
9831 if not Is_Limited_Type (T) then
9832 if Ekind (T) = E_Record_Type then
9833 C := First_Component (T);
9834 while Present (C) loop
9835 if Is_Aliased (C)
9836 and then Has_Discriminants (Etype (C))
9837 and then not Is_Constrained (Etype (C))
9838 and then not In_Instance_Body
9839 and then Ada_Version < Ada_2005
9840 then
9841 Error_Msg_N
9842 ("aliased component must be constrained (RM 3.6(11))",
9844 end if;
9846 Next_Component (C);
9847 end loop;
9849 elsif Ekind (T) = E_Array_Type then
9850 if Has_Aliased_Components (T)
9851 and then Has_Discriminants (Component_Type (T))
9852 and then not Is_Constrained (Component_Type (T))
9853 and then not In_Instance_Body
9854 and then Ada_Version < Ada_2005
9855 then
9856 Error_Msg_N
9857 ("aliased component type must be constrained (RM 3.6(11))",
9859 end if;
9860 end if;
9861 end if;
9862 end Check_Aliased_Component_Types;
9864 ----------------------
9865 -- Check_Completion --
9866 ----------------------
9868 procedure Check_Completion (Body_Id : Node_Id := Empty) is
9869 E : Entity_Id;
9871 procedure Post_Error;
9872 -- Post error message for lack of completion for entity E
9874 ----------------
9875 -- Post_Error --
9876 ----------------
9878 procedure Post_Error is
9880 procedure Missing_Body;
9881 -- Output missing body message
9883 ------------------
9884 -- Missing_Body --
9885 ------------------
9887 procedure Missing_Body is
9888 begin
9889 -- Spec is in same unit, so we can post on spec
9891 if In_Same_Source_Unit (Body_Id, E) then
9892 Error_Msg_N ("missing body for &", E);
9894 -- Spec is in a separate unit, so we have to post on the body
9896 else
9897 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
9898 end if;
9899 end Missing_Body;
9901 -- Start of processing for Post_Error
9903 begin
9904 if not Comes_From_Source (E) then
9906 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
9907 -- It may be an anonymous protected type created for a
9908 -- single variable. Post error on variable, if present.
9910 declare
9911 Var : Entity_Id;
9913 begin
9914 Var := First_Entity (Current_Scope);
9915 while Present (Var) loop
9916 exit when Etype (Var) = E
9917 and then Comes_From_Source (Var);
9919 Next_Entity (Var);
9920 end loop;
9922 if Present (Var) then
9923 E := Var;
9924 end if;
9925 end;
9926 end if;
9927 end if;
9929 -- If a generated entity has no completion, then either previous
9930 -- semantic errors have disabled the expansion phase, or else we had
9931 -- missing subunits, or else we are compiling without expansion,
9932 -- or else something is very wrong.
9934 if not Comes_From_Source (E) then
9935 pragma Assert
9936 (Serious_Errors_Detected > 0
9937 or else Configurable_Run_Time_Violations > 0
9938 or else Subunits_Missing
9939 or else not Expander_Active);
9940 return;
9942 -- Here for source entity
9944 else
9945 -- Here if no body to post the error message, so we post the error
9946 -- on the declaration that has no completion. This is not really
9947 -- the right place to post it, think about this later ???
9949 if No (Body_Id) then
9950 if Is_Type (E) then
9951 Error_Msg_NE
9952 ("missing full declaration for }", Parent (E), E);
9953 else
9954 Error_Msg_NE ("missing body for &", Parent (E), E);
9955 end if;
9957 -- Package body has no completion for a declaration that appears
9958 -- in the corresponding spec. Post error on the body, with a
9959 -- reference to the non-completed declaration.
9961 else
9962 Error_Msg_Sloc := Sloc (E);
9964 if Is_Type (E) then
9965 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
9967 elsif Is_Overloadable (E)
9968 and then Current_Entity_In_Scope (E) /= E
9969 then
9970 -- It may be that the completion is mistyped and appears as
9971 -- a distinct overloading of the entity.
9973 declare
9974 Candidate : constant Entity_Id :=
9975 Current_Entity_In_Scope (E);
9976 Decl : constant Node_Id :=
9977 Unit_Declaration_Node (Candidate);
9979 begin
9980 if Is_Overloadable (Candidate)
9981 and then Ekind (Candidate) = Ekind (E)
9982 and then Nkind (Decl) = N_Subprogram_Body
9983 and then Acts_As_Spec (Decl)
9984 then
9985 Check_Type_Conformant (Candidate, E);
9987 else
9988 Missing_Body;
9989 end if;
9990 end;
9992 else
9993 Missing_Body;
9994 end if;
9995 end if;
9996 end if;
9997 end Post_Error;
9999 -- Start of processing for Check_Completion
10001 begin
10002 E := First_Entity (Current_Scope);
10003 while Present (E) loop
10004 if Is_Intrinsic_Subprogram (E) then
10005 null;
10007 -- The following situation requires special handling: a child unit
10008 -- that appears in the context clause of the body of its parent:
10010 -- procedure Parent.Child (...);
10012 -- with Parent.Child;
10013 -- package body Parent is
10015 -- Here Parent.Child appears as a local entity, but should not be
10016 -- flagged as requiring completion, because it is a compilation
10017 -- unit.
10019 -- Ignore missing completion for a subprogram that does not come from
10020 -- source (including the _Call primitive operation of RAS types,
10021 -- which has to have the flag Comes_From_Source for other purposes):
10022 -- we assume that the expander will provide the missing completion.
10023 -- In case of previous errors, other expansion actions that provide
10024 -- bodies for null procedures with not be invoked, so inhibit message
10025 -- in those cases.
10027 -- Note that E_Operator is not in the list that follows, because
10028 -- this kind is reserved for predefined operators, that are
10029 -- intrinsic and do not need completion.
10031 elsif Ekind (E) = E_Function
10032 or else Ekind (E) = E_Procedure
10033 or else Ekind (E) = E_Generic_Function
10034 or else Ekind (E) = E_Generic_Procedure
10035 then
10036 if Has_Completion (E) then
10037 null;
10039 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10040 null;
10042 elsif Is_Subprogram (E)
10043 and then (not Comes_From_Source (E)
10044 or else Chars (E) = Name_uCall)
10045 then
10046 null;
10048 elsif
10049 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10050 then
10051 null;
10053 elsif Nkind (Parent (E)) = N_Procedure_Specification
10054 and then Null_Present (Parent (E))
10055 and then Serious_Errors_Detected > 0
10056 then
10057 null;
10059 else
10060 Post_Error;
10061 end if;
10063 elsif Is_Entry (E) then
10064 if not Has_Completion (E) and then
10065 (Ekind (Scope (E)) = E_Protected_Object
10066 or else Ekind (Scope (E)) = E_Protected_Type)
10067 then
10068 Post_Error;
10069 end if;
10071 elsif Is_Package_Or_Generic_Package (E) then
10072 if Unit_Requires_Body (E) then
10073 if not Has_Completion (E)
10074 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10075 N_Compilation_Unit
10076 then
10077 Post_Error;
10078 end if;
10080 elsif not Is_Child_Unit (E) then
10081 May_Need_Implicit_Body (E);
10082 end if;
10084 -- A formal incomplete type (Ada 2012) does not require a completion;
10085 -- other incomplete type declarations do.
10087 elsif Ekind (E) = E_Incomplete_Type
10088 and then No (Underlying_Type (E))
10089 and then not Is_Generic_Type (E)
10090 then
10091 Post_Error;
10093 elsif (Ekind (E) = E_Task_Type or else
10094 Ekind (E) = E_Protected_Type)
10095 and then not Has_Completion (E)
10096 then
10097 Post_Error;
10099 -- A single task declared in the current scope is a constant, verify
10100 -- that the body of its anonymous type is in the same scope. If the
10101 -- task is defined elsewhere, this may be a renaming declaration for
10102 -- which no completion is needed.
10104 elsif Ekind (E) = E_Constant
10105 and then Ekind (Etype (E)) = E_Task_Type
10106 and then not Has_Completion (Etype (E))
10107 and then Scope (Etype (E)) = Current_Scope
10108 then
10109 Post_Error;
10111 elsif Ekind (E) = E_Protected_Object
10112 and then not Has_Completion (Etype (E))
10113 then
10114 Post_Error;
10116 elsif Ekind (E) = E_Record_Type then
10117 if Is_Tagged_Type (E) then
10118 Check_Abstract_Overriding (E);
10119 Check_Conventions (E);
10120 end if;
10122 Check_Aliased_Component_Types (E);
10124 elsif Ekind (E) = E_Array_Type then
10125 Check_Aliased_Component_Types (E);
10127 end if;
10129 Next_Entity (E);
10130 end loop;
10131 end Check_Completion;
10133 ------------------------------------
10134 -- Check_CPP_Type_Has_No_Defaults --
10135 ------------------------------------
10137 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10138 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10139 Clist : Node_Id;
10140 Comp : Node_Id;
10142 begin
10143 -- Obtain the component list
10145 if Nkind (Tdef) = N_Record_Definition then
10146 Clist := Component_List (Tdef);
10147 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10148 Clist := Component_List (Record_Extension_Part (Tdef));
10149 end if;
10151 -- Check all components to ensure no default expressions
10153 if Present (Clist) then
10154 Comp := First (Component_Items (Clist));
10155 while Present (Comp) loop
10156 if Present (Expression (Comp)) then
10157 Error_Msg_N
10158 ("component of imported 'C'P'P type cannot have "
10159 & "default expression", Expression (Comp));
10160 end if;
10162 Next (Comp);
10163 end loop;
10164 end if;
10165 end Check_CPP_Type_Has_No_Defaults;
10167 ----------------------------
10168 -- Check_Delta_Expression --
10169 ----------------------------
10171 procedure Check_Delta_Expression (E : Node_Id) is
10172 begin
10173 if not (Is_Real_Type (Etype (E))) then
10174 Wrong_Type (E, Any_Real);
10176 elsif not Is_OK_Static_Expression (E) then
10177 Flag_Non_Static_Expr
10178 ("non-static expression used for delta value!", E);
10180 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10181 Error_Msg_N ("delta expression must be positive", E);
10183 else
10184 return;
10185 end if;
10187 -- If any of above errors occurred, then replace the incorrect
10188 -- expression by the real 0.1, which should prevent further errors.
10190 Rewrite (E,
10191 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10192 Analyze_And_Resolve (E, Standard_Float);
10193 end Check_Delta_Expression;
10195 -----------------------------
10196 -- Check_Digits_Expression --
10197 -----------------------------
10199 procedure Check_Digits_Expression (E : Node_Id) is
10200 begin
10201 if not (Is_Integer_Type (Etype (E))) then
10202 Wrong_Type (E, Any_Integer);
10204 elsif not Is_OK_Static_Expression (E) then
10205 Flag_Non_Static_Expr
10206 ("non-static expression used for digits value!", E);
10208 elsif Expr_Value (E) <= 0 then
10209 Error_Msg_N ("digits value must be greater than zero", E);
10211 else
10212 return;
10213 end if;
10215 -- If any of above errors occurred, then replace the incorrect
10216 -- expression by the integer 1, which should prevent further errors.
10218 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
10219 Analyze_And_Resolve (E, Standard_Integer);
10221 end Check_Digits_Expression;
10223 --------------------------
10224 -- Check_Initialization --
10225 --------------------------
10227 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
10228 begin
10229 if Is_Limited_Type (T)
10230 and then not In_Instance
10231 and then not In_Inlined_Body
10232 then
10233 if not OK_For_Limited_Init (T, Exp) then
10235 -- In GNAT mode, this is just a warning, to allow it to be evilly
10236 -- turned off. Otherwise it is a real error.
10238 if GNAT_Mode then
10239 Error_Msg_N
10240 ("?cannot initialize entities of limited type!", Exp);
10242 elsif Ada_Version < Ada_2005 then
10244 -- The side effect removal machinery may generate illegal Ada
10245 -- code to avoid the usage of access types and 'reference in
10246 -- SPARK mode. Since this is legal code with respect to theorem
10247 -- proving, do not emit the error.
10249 if GNATprove_Mode
10250 and then Nkind (Exp) = N_Function_Call
10251 and then Nkind (Parent (Exp)) = N_Object_Declaration
10252 and then not Comes_From_Source
10253 (Defining_Identifier (Parent (Exp)))
10254 then
10255 null;
10257 else
10258 Error_Msg_N
10259 ("cannot initialize entities of limited type", Exp);
10260 Explain_Limited_Type (T, Exp);
10261 end if;
10263 else
10264 -- Specialize error message according to kind of illegal
10265 -- initial expression.
10267 if Nkind (Exp) = N_Type_Conversion
10268 and then Nkind (Expression (Exp)) = N_Function_Call
10269 then
10270 Error_Msg_N
10271 ("illegal context for call"
10272 & " to function with limited result", Exp);
10274 else
10275 Error_Msg_N
10276 ("initialization of limited object requires aggregate "
10277 & "or function call", Exp);
10278 end if;
10279 end if;
10280 end if;
10281 end if;
10282 end Check_Initialization;
10284 ----------------------
10285 -- Check_Interfaces --
10286 ----------------------
10288 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
10289 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
10291 Iface : Node_Id;
10292 Iface_Def : Node_Id;
10293 Iface_Typ : Entity_Id;
10294 Parent_Node : Node_Id;
10296 Is_Task : Boolean := False;
10297 -- Set True if parent type or any progenitor is a task interface
10299 Is_Protected : Boolean := False;
10300 -- Set True if parent type or any progenitor is a protected interface
10302 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
10303 -- Check that a progenitor is compatible with declaration.
10304 -- Error is posted on Error_Node.
10306 ------------------
10307 -- Check_Ifaces --
10308 ------------------
10310 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
10311 Iface_Id : constant Entity_Id :=
10312 Defining_Identifier (Parent (Iface_Def));
10313 Type_Def : Node_Id;
10315 begin
10316 if Nkind (N) = N_Private_Extension_Declaration then
10317 Type_Def := N;
10318 else
10319 Type_Def := Type_Definition (N);
10320 end if;
10322 if Is_Task_Interface (Iface_Id) then
10323 Is_Task := True;
10325 elsif Is_Protected_Interface (Iface_Id) then
10326 Is_Protected := True;
10327 end if;
10329 if Is_Synchronized_Interface (Iface_Id) then
10331 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10332 -- extension derived from a synchronized interface must explicitly
10333 -- be declared synchronized, because the full view will be a
10334 -- synchronized type.
10336 if Nkind (N) = N_Private_Extension_Declaration then
10337 if not Synchronized_Present (N) then
10338 Error_Msg_NE
10339 ("private extension of& must be explicitly synchronized",
10340 N, Iface_Id);
10341 end if;
10343 -- However, by 3.9.4(16/2), a full type that is a record extension
10344 -- is never allowed to derive from a synchronized interface (note
10345 -- that interfaces must be excluded from this check, because those
10346 -- are represented by derived type definitions in some cases).
10348 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10349 and then not Interface_Present (Type_Definition (N))
10350 then
10351 Error_Msg_N ("record extension cannot derive from synchronized"
10352 & " interface", Error_Node);
10353 end if;
10354 end if;
10356 -- Check that the characteristics of the progenitor are compatible
10357 -- with the explicit qualifier in the declaration.
10358 -- The check only applies to qualifiers that come from source.
10359 -- Limited_Present also appears in the declaration of corresponding
10360 -- records, and the check does not apply to them.
10362 if Limited_Present (Type_Def)
10363 and then not
10364 Is_Concurrent_Record_Type (Defining_Identifier (N))
10365 then
10366 if Is_Limited_Interface (Parent_Type)
10367 and then not Is_Limited_Interface (Iface_Id)
10368 then
10369 Error_Msg_NE
10370 ("progenitor& must be limited interface",
10371 Error_Node, Iface_Id);
10373 elsif
10374 (Task_Present (Iface_Def)
10375 or else Protected_Present (Iface_Def)
10376 or else Synchronized_Present (Iface_Def))
10377 and then Nkind (N) /= N_Private_Extension_Declaration
10378 and then not Error_Posted (N)
10379 then
10380 Error_Msg_NE
10381 ("progenitor& must be limited interface",
10382 Error_Node, Iface_Id);
10383 end if;
10385 -- Protected interfaces can only inherit from limited, synchronized
10386 -- or protected interfaces.
10388 elsif Nkind (N) = N_Full_Type_Declaration
10389 and then Protected_Present (Type_Def)
10390 then
10391 if Limited_Present (Iface_Def)
10392 or else Synchronized_Present (Iface_Def)
10393 or else Protected_Present (Iface_Def)
10394 then
10395 null;
10397 elsif Task_Present (Iface_Def) then
10398 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10399 & " from task interface", Error_Node);
10401 else
10402 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10403 & " from non-limited interface", Error_Node);
10404 end if;
10406 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
10407 -- limited and synchronized.
10409 elsif Synchronized_Present (Type_Def) then
10410 if Limited_Present (Iface_Def)
10411 or else Synchronized_Present (Iface_Def)
10412 then
10413 null;
10415 elsif Protected_Present (Iface_Def)
10416 and then Nkind (N) /= N_Private_Extension_Declaration
10417 then
10418 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10419 & " from protected interface", Error_Node);
10421 elsif Task_Present (Iface_Def)
10422 and then Nkind (N) /= N_Private_Extension_Declaration
10423 then
10424 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10425 & " from task interface", Error_Node);
10427 elsif not Is_Limited_Interface (Iface_Id) then
10428 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10429 & " from non-limited interface", Error_Node);
10430 end if;
10432 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
10433 -- synchronized or task interfaces.
10435 elsif Nkind (N) = N_Full_Type_Declaration
10436 and then Task_Present (Type_Def)
10437 then
10438 if Limited_Present (Iface_Def)
10439 or else Synchronized_Present (Iface_Def)
10440 or else Task_Present (Iface_Def)
10441 then
10442 null;
10444 elsif Protected_Present (Iface_Def) then
10445 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10446 & " protected interface", Error_Node);
10448 else
10449 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10450 & " non-limited interface", Error_Node);
10451 end if;
10452 end if;
10453 end Check_Ifaces;
10455 -- Start of processing for Check_Interfaces
10457 begin
10458 if Is_Interface (Parent_Type) then
10459 if Is_Task_Interface (Parent_Type) then
10460 Is_Task := True;
10462 elsif Is_Protected_Interface (Parent_Type) then
10463 Is_Protected := True;
10464 end if;
10465 end if;
10467 if Nkind (N) = N_Private_Extension_Declaration then
10469 -- Check that progenitors are compatible with declaration
10471 Iface := First (Interface_List (Def));
10472 while Present (Iface) loop
10473 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10475 Parent_Node := Parent (Base_Type (Iface_Typ));
10476 Iface_Def := Type_Definition (Parent_Node);
10478 if not Is_Interface (Iface_Typ) then
10479 Diagnose_Interface (Iface, Iface_Typ);
10481 else
10482 Check_Ifaces (Iface_Def, Iface);
10483 end if;
10485 Next (Iface);
10486 end loop;
10488 if Is_Task and Is_Protected then
10489 Error_Msg_N
10490 ("type cannot derive from task and protected interface", N);
10491 end if;
10493 return;
10494 end if;
10496 -- Full type declaration of derived type.
10497 -- Check compatibility with parent if it is interface type
10499 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10500 and then Is_Interface (Parent_Type)
10501 then
10502 Parent_Node := Parent (Parent_Type);
10504 -- More detailed checks for interface varieties
10506 Check_Ifaces
10507 (Iface_Def => Type_Definition (Parent_Node),
10508 Error_Node => Subtype_Indication (Type_Definition (N)));
10509 end if;
10511 Iface := First (Interface_List (Def));
10512 while Present (Iface) loop
10513 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10515 Parent_Node := Parent (Base_Type (Iface_Typ));
10516 Iface_Def := Type_Definition (Parent_Node);
10518 if not Is_Interface (Iface_Typ) then
10519 Diagnose_Interface (Iface, Iface_Typ);
10521 else
10522 -- "The declaration of a specific descendant of an interface
10523 -- type freezes the interface type" RM 13.14
10525 Freeze_Before (N, Iface_Typ);
10526 Check_Ifaces (Iface_Def, Error_Node => Iface);
10527 end if;
10529 Next (Iface);
10530 end loop;
10532 if Is_Task and Is_Protected then
10533 Error_Msg_N
10534 ("type cannot derive from task and protected interface", N);
10535 end if;
10536 end Check_Interfaces;
10538 ------------------------------------
10539 -- Check_Or_Process_Discriminants --
10540 ------------------------------------
10542 -- If an incomplete or private type declaration was already given for the
10543 -- type, the discriminants may have already been processed if they were
10544 -- present on the incomplete declaration. In this case a full conformance
10545 -- check has been performed in Find_Type_Name, and we then recheck here
10546 -- some properties that can't be checked on the partial view alone.
10547 -- Otherwise we call Process_Discriminants.
10549 procedure Check_Or_Process_Discriminants
10550 (N : Node_Id;
10551 T : Entity_Id;
10552 Prev : Entity_Id := Empty)
10554 begin
10555 if Has_Discriminants (T) then
10557 -- Discriminants are already set on T if they were already present
10558 -- on the partial view. Make them visible to component declarations.
10560 declare
10561 D : Entity_Id;
10562 -- Discriminant on T (full view) referencing expr on partial view
10564 Prev_D : Entity_Id;
10565 -- Entity of corresponding discriminant on partial view
10567 New_D : Node_Id;
10568 -- Discriminant specification for full view, expression is the
10569 -- syntactic copy on full view (which has been checked for
10570 -- conformance with partial view), only used here to post error
10571 -- message.
10573 begin
10574 D := First_Discriminant (T);
10575 New_D := First (Discriminant_Specifications (N));
10576 while Present (D) loop
10577 Prev_D := Current_Entity (D);
10578 Set_Current_Entity (D);
10579 Set_Is_Immediately_Visible (D);
10580 Set_Homonym (D, Prev_D);
10582 -- Handle the case where there is an untagged partial view and
10583 -- the full view is tagged: must disallow discriminants with
10584 -- defaults, unless compiling for Ada 2012, which allows a
10585 -- limited tagged type to have defaulted discriminants (see
10586 -- AI05-0214). However, suppress error here if it was already
10587 -- reported on the default expression of the partial view.
10589 if Is_Tagged_Type (T)
10590 and then Present (Expression (Parent (D)))
10591 and then (not Is_Limited_Type (Current_Scope)
10592 or else Ada_Version < Ada_2012)
10593 and then not Error_Posted (Expression (Parent (D)))
10594 then
10595 if Ada_Version >= Ada_2012 then
10596 Error_Msg_N
10597 ("discriminants of nonlimited tagged type cannot have"
10598 & " defaults",
10599 Expression (New_D));
10600 else
10601 Error_Msg_N
10602 ("discriminants of tagged type cannot have defaults",
10603 Expression (New_D));
10604 end if;
10605 end if;
10607 -- Ada 2005 (AI-230): Access discriminant allowed in
10608 -- non-limited record types.
10610 if Ada_Version < Ada_2005 then
10612 -- This restriction gets applied to the full type here. It
10613 -- has already been applied earlier to the partial view.
10615 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
10616 end if;
10618 Next_Discriminant (D);
10619 Next (New_D);
10620 end loop;
10621 end;
10623 elsif Present (Discriminant_Specifications (N)) then
10624 Process_Discriminants (N, Prev);
10625 end if;
10626 end Check_Or_Process_Discriminants;
10628 ----------------------
10629 -- Check_Real_Bound --
10630 ----------------------
10632 procedure Check_Real_Bound (Bound : Node_Id) is
10633 begin
10634 if not Is_Real_Type (Etype (Bound)) then
10635 Error_Msg_N
10636 ("bound in real type definition must be of real type", Bound);
10638 elsif not Is_OK_Static_Expression (Bound) then
10639 Flag_Non_Static_Expr
10640 ("non-static expression used for real type bound!", Bound);
10642 else
10643 return;
10644 end if;
10646 Rewrite
10647 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
10648 Analyze (Bound);
10649 Resolve (Bound, Standard_Float);
10650 end Check_Real_Bound;
10652 ------------------------------
10653 -- Complete_Private_Subtype --
10654 ------------------------------
10656 procedure Complete_Private_Subtype
10657 (Priv : Entity_Id;
10658 Full : Entity_Id;
10659 Full_Base : Entity_Id;
10660 Related_Nod : Node_Id)
10662 Save_Next_Entity : Entity_Id;
10663 Save_Homonym : Entity_Id;
10665 begin
10666 -- Set semantic attributes for (implicit) private subtype completion.
10667 -- If the full type has no discriminants, then it is a copy of the full
10668 -- view of the base. Otherwise, it is a subtype of the base with a
10669 -- possible discriminant constraint. Save and restore the original
10670 -- Next_Entity field of full to ensure that the calls to Copy_Node
10671 -- do not corrupt the entity chain.
10673 -- Note that the type of the full view is the same entity as the type of
10674 -- the partial view. In this fashion, the subtype has access to the
10675 -- correct view of the parent.
10677 Save_Next_Entity := Next_Entity (Full);
10678 Save_Homonym := Homonym (Priv);
10680 case Ekind (Full_Base) is
10681 when E_Record_Type |
10682 E_Record_Subtype |
10683 Class_Wide_Kind |
10684 Private_Kind |
10685 Task_Kind |
10686 Protected_Kind =>
10687 Copy_Node (Priv, Full);
10689 Set_Has_Discriminants
10690 (Full, Has_Discriminants (Full_Base));
10691 Set_Has_Unknown_Discriminants
10692 (Full, Has_Unknown_Discriminants (Full_Base));
10693 Set_First_Entity (Full, First_Entity (Full_Base));
10694 Set_Last_Entity (Full, Last_Entity (Full_Base));
10696 -- If the underlying base type is constrained, we know that the
10697 -- full view of the subtype is constrained as well (the converse
10698 -- is not necessarily true).
10700 if Is_Constrained (Full_Base) then
10701 Set_Is_Constrained (Full);
10702 end if;
10704 when others =>
10705 Copy_Node (Full_Base, Full);
10707 Set_Chars (Full, Chars (Priv));
10708 Conditional_Delay (Full, Priv);
10709 Set_Sloc (Full, Sloc (Priv));
10710 end case;
10712 Set_Next_Entity (Full, Save_Next_Entity);
10713 Set_Homonym (Full, Save_Homonym);
10714 Set_Associated_Node_For_Itype (Full, Related_Nod);
10716 -- Set common attributes for all subtypes: kind, convention, etc.
10718 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
10719 Set_Convention (Full, Convention (Full_Base));
10721 -- The Etype of the full view is inconsistent. Gigi needs to see the
10722 -- structural full view, which is what the current scheme gives:
10723 -- the Etype of the full view is the etype of the full base. However,
10724 -- if the full base is a derived type, the full view then looks like
10725 -- a subtype of the parent, not a subtype of the full base. If instead
10726 -- we write:
10728 -- Set_Etype (Full, Full_Base);
10730 -- then we get inconsistencies in the front-end (confusion between
10731 -- views). Several outstanding bugs are related to this ???
10733 Set_Is_First_Subtype (Full, False);
10734 Set_Scope (Full, Scope (Priv));
10735 Set_Size_Info (Full, Full_Base);
10736 Set_RM_Size (Full, RM_Size (Full_Base));
10737 Set_Is_Itype (Full);
10739 -- A subtype of a private-type-without-discriminants, whose full-view
10740 -- has discriminants with default expressions, is not constrained.
10742 if not Has_Discriminants (Priv) then
10743 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
10745 if Has_Discriminants (Full_Base) then
10746 Set_Discriminant_Constraint
10747 (Full, Discriminant_Constraint (Full_Base));
10749 -- The partial view may have been indefinite, the full view
10750 -- might not be.
10752 Set_Has_Unknown_Discriminants
10753 (Full, Has_Unknown_Discriminants (Full_Base));
10754 end if;
10755 end if;
10757 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
10758 Set_Depends_On_Private (Full, Has_Private_Component (Full));
10760 -- Freeze the private subtype entity if its parent is delayed, and not
10761 -- already frozen. We skip this processing if the type is an anonymous
10762 -- subtype of a record component, or is the corresponding record of a
10763 -- protected type, since ???
10765 if not Is_Type (Scope (Full)) then
10766 Set_Has_Delayed_Freeze (Full,
10767 Has_Delayed_Freeze (Full_Base)
10768 and then (not Is_Frozen (Full_Base)));
10769 end if;
10771 Set_Freeze_Node (Full, Empty);
10772 Set_Is_Frozen (Full, False);
10773 Set_Full_View (Priv, Full);
10775 if Has_Discriminants (Full) then
10776 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
10777 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
10779 if Has_Unknown_Discriminants (Full) then
10780 Set_Discriminant_Constraint (Full, No_Elist);
10781 end if;
10782 end if;
10784 if Ekind (Full_Base) = E_Record_Type
10785 and then Has_Discriminants (Full_Base)
10786 and then Has_Discriminants (Priv) -- might not, if errors
10787 and then not Has_Unknown_Discriminants (Priv)
10788 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
10789 then
10790 Create_Constrained_Components
10791 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
10793 -- If the full base is itself derived from private, build a congruent
10794 -- subtype of its underlying type, for use by the back end. For a
10795 -- constrained record component, the declaration cannot be placed on
10796 -- the component list, but it must nevertheless be built an analyzed, to
10797 -- supply enough information for Gigi to compute the size of component.
10799 elsif Ekind (Full_Base) in Private_Kind
10800 and then Is_Derived_Type (Full_Base)
10801 and then Has_Discriminants (Full_Base)
10802 and then (Ekind (Current_Scope) /= E_Record_Subtype)
10803 then
10804 if not Is_Itype (Priv)
10805 and then
10806 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
10807 then
10808 Build_Underlying_Full_View
10809 (Parent (Priv), Full, Etype (Full_Base));
10811 elsif Nkind (Related_Nod) = N_Component_Declaration then
10812 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
10813 end if;
10815 elsif Is_Record_Type (Full_Base) then
10817 -- Show Full is simply a renaming of Full_Base
10819 Set_Cloned_Subtype (Full, Full_Base);
10820 end if;
10822 -- It is unsafe to share the bounds of a scalar type, because the Itype
10823 -- is elaborated on demand, and if a bound is non-static then different
10824 -- orders of elaboration in different units will lead to different
10825 -- external symbols.
10827 if Is_Scalar_Type (Full_Base) then
10828 Set_Scalar_Range (Full,
10829 Make_Range (Sloc (Related_Nod),
10830 Low_Bound =>
10831 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
10832 High_Bound =>
10833 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
10835 -- This completion inherits the bounds of the full parent, but if
10836 -- the parent is an unconstrained floating point type, so is the
10837 -- completion.
10839 if Is_Floating_Point_Type (Full_Base) then
10840 Set_Includes_Infinities
10841 (Scalar_Range (Full), Has_Infinities (Full_Base));
10842 end if;
10843 end if;
10845 -- ??? It seems that a lot of fields are missing that should be copied
10846 -- from Full_Base to Full. Here are some that are introduced in a
10847 -- non-disruptive way but a cleanup is necessary.
10849 if Is_Tagged_Type (Full_Base) then
10850 Set_Is_Tagged_Type (Full);
10851 Set_Direct_Primitive_Operations (Full,
10852 Direct_Primitive_Operations (Full_Base));
10854 -- Inherit class_wide type of full_base in case the partial view was
10855 -- not tagged. Otherwise it has already been created when the private
10856 -- subtype was analyzed.
10858 if No (Class_Wide_Type (Full)) then
10859 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
10860 end if;
10862 -- If this is a subtype of a protected or task type, constrain its
10863 -- corresponding record, unless this is a subtype without constraints,
10864 -- i.e. a simple renaming as with an actual subtype in an instance.
10866 elsif Is_Concurrent_Type (Full_Base) then
10867 if Has_Discriminants (Full)
10868 and then Present (Corresponding_Record_Type (Full_Base))
10869 and then
10870 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
10871 then
10872 Set_Corresponding_Record_Type (Full,
10873 Constrain_Corresponding_Record
10874 (Full, Corresponding_Record_Type (Full_Base),
10875 Related_Nod, Full_Base));
10877 else
10878 Set_Corresponding_Record_Type (Full,
10879 Corresponding_Record_Type (Full_Base));
10880 end if;
10881 end if;
10883 -- Link rep item chain, and also setting of Has_Predicates from private
10884 -- subtype to full subtype, since we will need these on the full subtype
10885 -- to create the predicate function. Note that the full subtype may
10886 -- already have rep items, inherited from the full view of the base
10887 -- type, so we must be sure not to overwrite these entries.
10889 declare
10890 Append : Boolean;
10891 Item : Node_Id;
10892 Next_Item : Node_Id;
10894 begin
10895 Item := First_Rep_Item (Full);
10897 -- If no existing rep items on full type, we can just link directly
10898 -- to the list of items on the private type.
10900 if No (Item) then
10901 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
10903 -- Otherwise, search to the end of items currently linked to the full
10904 -- subtype and append the private items to the end. However, if Priv
10905 -- and Full already have the same list of rep items, then the append
10906 -- is not done, as that would create a circularity.
10908 elsif Item /= First_Rep_Item (Priv) then
10909 Append := True;
10911 loop
10912 Next_Item := Next_Rep_Item (Item);
10913 exit when No (Next_Item);
10914 Item := Next_Item;
10916 -- If the private view has aspect specifications, the full view
10917 -- inherits them. Since these aspects may already have been
10918 -- attached to the full view during derivation, do not append
10919 -- them if already present.
10921 if Item = First_Rep_Item (Priv) then
10922 Append := False;
10923 exit;
10924 end if;
10925 end loop;
10927 -- And link the private type items at the end of the chain
10929 if Append then
10930 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
10931 end if;
10932 end if;
10933 end;
10935 -- Make sure Has_Predicates is set on full type if it is set on the
10936 -- private type. Note that it may already be set on the full type and
10937 -- if so, we don't want to unset it.
10939 if Has_Predicates (Priv) then
10940 Set_Has_Predicates (Full);
10941 end if;
10942 end Complete_Private_Subtype;
10944 ----------------------------
10945 -- Constant_Redeclaration --
10946 ----------------------------
10948 procedure Constant_Redeclaration
10949 (Id : Entity_Id;
10950 N : Node_Id;
10951 T : out Entity_Id)
10953 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
10954 Obj_Def : constant Node_Id := Object_Definition (N);
10955 New_T : Entity_Id;
10957 procedure Check_Possible_Deferred_Completion
10958 (Prev_Id : Entity_Id;
10959 Prev_Obj_Def : Node_Id;
10960 Curr_Obj_Def : Node_Id);
10961 -- Determine whether the two object definitions describe the partial
10962 -- and the full view of a constrained deferred constant. Generate
10963 -- a subtype for the full view and verify that it statically matches
10964 -- the subtype of the partial view.
10966 procedure Check_Recursive_Declaration (Typ : Entity_Id);
10967 -- If deferred constant is an access type initialized with an allocator,
10968 -- check whether there is an illegal recursion in the definition,
10969 -- through a default value of some record subcomponent. This is normally
10970 -- detected when generating init procs, but requires this additional
10971 -- mechanism when expansion is disabled.
10973 ----------------------------------------
10974 -- Check_Possible_Deferred_Completion --
10975 ----------------------------------------
10977 procedure Check_Possible_Deferred_Completion
10978 (Prev_Id : Entity_Id;
10979 Prev_Obj_Def : Node_Id;
10980 Curr_Obj_Def : Node_Id)
10982 begin
10983 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
10984 and then Present (Constraint (Prev_Obj_Def))
10985 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
10986 and then Present (Constraint (Curr_Obj_Def))
10987 then
10988 declare
10989 Loc : constant Source_Ptr := Sloc (N);
10990 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
10991 Decl : constant Node_Id :=
10992 Make_Subtype_Declaration (Loc,
10993 Defining_Identifier => Def_Id,
10994 Subtype_Indication =>
10995 Relocate_Node (Curr_Obj_Def));
10997 begin
10998 Insert_Before_And_Analyze (N, Decl);
10999 Set_Etype (Id, Def_Id);
11001 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11002 Error_Msg_Sloc := Sloc (Prev_Id);
11003 Error_Msg_N ("subtype does not statically match deferred " &
11004 "declaration#", N);
11005 end if;
11006 end;
11007 end if;
11008 end Check_Possible_Deferred_Completion;
11010 ---------------------------------
11011 -- Check_Recursive_Declaration --
11012 ---------------------------------
11014 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11015 Comp : Entity_Id;
11017 begin
11018 if Is_Record_Type (Typ) then
11019 Comp := First_Component (Typ);
11020 while Present (Comp) loop
11021 if Comes_From_Source (Comp) then
11022 if Present (Expression (Parent (Comp)))
11023 and then Is_Entity_Name (Expression (Parent (Comp)))
11024 and then Entity (Expression (Parent (Comp))) = Prev
11025 then
11026 Error_Msg_Sloc := Sloc (Parent (Comp));
11027 Error_Msg_NE
11028 ("illegal circularity with declaration for&#",
11029 N, Comp);
11030 return;
11032 elsif Is_Record_Type (Etype (Comp)) then
11033 Check_Recursive_Declaration (Etype (Comp));
11034 end if;
11035 end if;
11037 Next_Component (Comp);
11038 end loop;
11039 end if;
11040 end Check_Recursive_Declaration;
11042 -- Start of processing for Constant_Redeclaration
11044 begin
11045 if Nkind (Parent (Prev)) = N_Object_Declaration then
11046 if Nkind (Object_Definition
11047 (Parent (Prev))) = N_Subtype_Indication
11048 then
11049 -- Find type of new declaration. The constraints of the two
11050 -- views must match statically, but there is no point in
11051 -- creating an itype for the full view.
11053 if Nkind (Obj_Def) = N_Subtype_Indication then
11054 Find_Type (Subtype_Mark (Obj_Def));
11055 New_T := Entity (Subtype_Mark (Obj_Def));
11057 else
11058 Find_Type (Obj_Def);
11059 New_T := Entity (Obj_Def);
11060 end if;
11062 T := Etype (Prev);
11064 else
11065 -- The full view may impose a constraint, even if the partial
11066 -- view does not, so construct the subtype.
11068 New_T := Find_Type_Of_Object (Obj_Def, N);
11069 T := New_T;
11070 end if;
11072 else
11073 -- Current declaration is illegal, diagnosed below in Enter_Name
11075 T := Empty;
11076 New_T := Any_Type;
11077 end if;
11079 -- If previous full declaration or a renaming declaration exists, or if
11080 -- a homograph is present, let Enter_Name handle it, either with an
11081 -- error or with the removal of an overridden implicit subprogram.
11082 -- The previous one is a full declaration if it has an expression
11083 -- (which in the case of an aggregate is indicated by the Init flag).
11085 if Ekind (Prev) /= E_Constant
11086 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11087 or else Present (Expression (Parent (Prev)))
11088 or else Has_Init_Expression (Parent (Prev))
11089 or else Present (Full_View (Prev))
11090 then
11091 Enter_Name (Id);
11093 -- Verify that types of both declarations match, or else that both types
11094 -- are anonymous access types whose designated subtypes statically match
11095 -- (as allowed in Ada 2005 by AI-385).
11097 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11098 and then
11099 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11100 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11101 or else Is_Access_Constant (Etype (New_T)) /=
11102 Is_Access_Constant (Etype (Prev))
11103 or else Can_Never_Be_Null (Etype (New_T)) /=
11104 Can_Never_Be_Null (Etype (Prev))
11105 or else Null_Exclusion_Present (Parent (Prev)) /=
11106 Null_Exclusion_Present (Parent (Id))
11107 or else not Subtypes_Statically_Match
11108 (Designated_Type (Etype (Prev)),
11109 Designated_Type (Etype (New_T))))
11110 then
11111 Error_Msg_Sloc := Sloc (Prev);
11112 Error_Msg_N ("type does not match declaration#", N);
11113 Set_Full_View (Prev, Id);
11114 Set_Etype (Id, Any_Type);
11116 elsif
11117 Null_Exclusion_Present (Parent (Prev))
11118 and then not Null_Exclusion_Present (N)
11119 then
11120 Error_Msg_Sloc := Sloc (Prev);
11121 Error_Msg_N ("null-exclusion does not match declaration#", N);
11122 Set_Full_View (Prev, Id);
11123 Set_Etype (Id, Any_Type);
11125 -- If so, process the full constant declaration
11127 else
11128 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11129 -- the deferred declaration is constrained, then the subtype defined
11130 -- by the subtype_indication in the full declaration shall match it
11131 -- statically.
11133 Check_Possible_Deferred_Completion
11134 (Prev_Id => Prev,
11135 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11136 Curr_Obj_Def => Obj_Def);
11138 Set_Full_View (Prev, Id);
11139 Set_Is_Public (Id, Is_Public (Prev));
11140 Set_Is_Internal (Id);
11141 Append_Entity (Id, Current_Scope);
11143 -- Check ALIASED present if present before (RM 7.4(7))
11145 if Is_Aliased (Prev)
11146 and then not Aliased_Present (N)
11147 then
11148 Error_Msg_Sloc := Sloc (Prev);
11149 Error_Msg_N ("ALIASED required (see declaration#)", N);
11150 end if;
11152 -- Check that placement is in private part and that the incomplete
11153 -- declaration appeared in the visible part.
11155 if Ekind (Current_Scope) = E_Package
11156 and then not In_Private_Part (Current_Scope)
11157 then
11158 Error_Msg_Sloc := Sloc (Prev);
11159 Error_Msg_N
11160 ("full constant for declaration#"
11161 & " must be in private part", N);
11163 elsif Ekind (Current_Scope) = E_Package
11164 and then
11165 List_Containing (Parent (Prev)) /=
11166 Visible_Declarations (Package_Specification (Current_Scope))
11167 then
11168 Error_Msg_N
11169 ("deferred constant must be declared in visible part",
11170 Parent (Prev));
11171 end if;
11173 if Is_Access_Type (T)
11174 and then Nkind (Expression (N)) = N_Allocator
11175 then
11176 Check_Recursive_Declaration (Designated_Type (T));
11177 end if;
11179 -- A deferred constant is a visible entity. If type has invariants,
11180 -- verify that the initial value satisfies them.
11182 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
11183 Insert_After (N,
11184 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
11185 end if;
11186 end if;
11187 end Constant_Redeclaration;
11189 ----------------------
11190 -- Constrain_Access --
11191 ----------------------
11193 procedure Constrain_Access
11194 (Def_Id : in out Entity_Id;
11195 S : Node_Id;
11196 Related_Nod : Node_Id)
11198 T : constant Entity_Id := Entity (Subtype_Mark (S));
11199 Desig_Type : constant Entity_Id := Designated_Type (T);
11200 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
11201 Constraint_OK : Boolean := True;
11203 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
11204 -- Simple predicate to test for defaulted discriminants
11205 -- Shouldn't this be in sem_util???
11207 ---------------------------------
11208 -- Has_Defaulted_Discriminants --
11209 ---------------------------------
11211 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
11212 begin
11213 return Has_Discriminants (Typ)
11214 and then Present (First_Discriminant (Typ))
11215 and then Present
11216 (Discriminant_Default_Value (First_Discriminant (Typ)));
11217 end Has_Defaulted_Discriminants;
11219 -- Start of processing for Constrain_Access
11221 begin
11222 if Is_Array_Type (Desig_Type) then
11223 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
11225 elsif (Is_Record_Type (Desig_Type)
11226 or else Is_Incomplete_Or_Private_Type (Desig_Type))
11227 and then not Is_Constrained (Desig_Type)
11228 then
11229 -- ??? The following code is a temporary kludge to ignore a
11230 -- discriminant constraint on access type if it is constraining
11231 -- the current record. Avoid creating the implicit subtype of the
11232 -- record we are currently compiling since right now, we cannot
11233 -- handle these. For now, just return the access type itself.
11235 if Desig_Type = Current_Scope
11236 and then No (Def_Id)
11237 then
11238 Set_Ekind (Desig_Subtype, E_Record_Subtype);
11239 Def_Id := Entity (Subtype_Mark (S));
11241 -- This call added to ensure that the constraint is analyzed
11242 -- (needed for a B test). Note that we still return early from
11243 -- this procedure to avoid recursive processing. ???
11245 Constrain_Discriminated_Type
11246 (Desig_Subtype, S, Related_Nod, For_Access => True);
11247 return;
11248 end if;
11250 -- Enforce rule that the constraint is illegal if there is an
11251 -- unconstrained view of the designated type. This means that the
11252 -- partial view (either a private type declaration or a derivation
11253 -- from a private type) has no discriminants. (Defect Report
11254 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11256 -- Rule updated for Ada 2005: The private type is said to have
11257 -- a constrained partial view, given that objects of the type
11258 -- can be declared. Furthermore, the rule applies to all access
11259 -- types, unlike the rule concerning default discriminants (see
11260 -- RM 3.7.1(7/3))
11262 if (Ekind (T) = E_General_Access_Type
11263 or else Ada_Version >= Ada_2005)
11264 and then Has_Private_Declaration (Desig_Type)
11265 and then In_Open_Scopes (Scope (Desig_Type))
11266 and then Has_Discriminants (Desig_Type)
11267 then
11268 declare
11269 Pack : constant Node_Id :=
11270 Unit_Declaration_Node (Scope (Desig_Type));
11271 Decls : List_Id;
11272 Decl : Node_Id;
11274 begin
11275 if Nkind (Pack) = N_Package_Declaration then
11276 Decls := Visible_Declarations (Specification (Pack));
11277 Decl := First (Decls);
11278 while Present (Decl) loop
11279 if (Nkind (Decl) = N_Private_Type_Declaration
11280 and then
11281 Chars (Defining_Identifier (Decl)) =
11282 Chars (Desig_Type))
11284 or else
11285 (Nkind (Decl) = N_Full_Type_Declaration
11286 and then
11287 Chars (Defining_Identifier (Decl)) =
11288 Chars (Desig_Type)
11289 and then Is_Derived_Type (Desig_Type)
11290 and then
11291 Has_Private_Declaration (Etype (Desig_Type)))
11292 then
11293 if No (Discriminant_Specifications (Decl)) then
11294 Error_Msg_N
11295 ("cannot constrain access type if designated " &
11296 "type has constrained partial view", S);
11297 end if;
11299 exit;
11300 end if;
11302 Next (Decl);
11303 end loop;
11304 end if;
11305 end;
11306 end if;
11308 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
11309 For_Access => True);
11311 elsif (Is_Task_Type (Desig_Type)
11312 or else Is_Protected_Type (Desig_Type))
11313 and then not Is_Constrained (Desig_Type)
11314 then
11315 Constrain_Concurrent
11316 (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
11318 else
11319 Error_Msg_N ("invalid constraint on access type", S);
11320 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
11321 Constraint_OK := False;
11322 end if;
11324 if No (Def_Id) then
11325 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
11326 else
11327 Set_Ekind (Def_Id, E_Access_Subtype);
11328 end if;
11330 if Constraint_OK then
11331 Set_Etype (Def_Id, Base_Type (T));
11333 if Is_Private_Type (Desig_Type) then
11334 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
11335 end if;
11336 else
11337 Set_Etype (Def_Id, Any_Type);
11338 end if;
11340 Set_Size_Info (Def_Id, T);
11341 Set_Is_Constrained (Def_Id, Constraint_OK);
11342 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
11343 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11344 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
11346 Conditional_Delay (Def_Id, T);
11348 -- AI-363 : Subtypes of general access types whose designated types have
11349 -- default discriminants are disallowed. In instances, the rule has to
11350 -- be checked against the actual, of which T is the subtype. In a
11351 -- generic body, the rule is checked assuming that the actual type has
11352 -- defaulted discriminants.
11354 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
11355 if Ekind (Base_Type (T)) = E_General_Access_Type
11356 and then Has_Defaulted_Discriminants (Desig_Type)
11357 then
11358 if Ada_Version < Ada_2005 then
11359 Error_Msg_N
11360 ("access subtype of general access type would not " &
11361 "be allowed in Ada 2005?y?", S);
11362 else
11363 Error_Msg_N
11364 ("access subtype of general access type not allowed", S);
11365 end if;
11367 Error_Msg_N ("\discriminants have defaults", S);
11369 elsif Is_Access_Type (T)
11370 and then Is_Generic_Type (Desig_Type)
11371 and then Has_Discriminants (Desig_Type)
11372 and then In_Package_Body (Current_Scope)
11373 then
11374 if Ada_Version < Ada_2005 then
11375 Error_Msg_N
11376 ("access subtype would not be allowed in generic body " &
11377 "in Ada 2005?y?", S);
11378 else
11379 Error_Msg_N
11380 ("access subtype not allowed in generic body", S);
11381 end if;
11383 Error_Msg_N
11384 ("\designated type is a discriminated formal", S);
11385 end if;
11386 end if;
11387 end Constrain_Access;
11389 ---------------------
11390 -- Constrain_Array --
11391 ---------------------
11393 procedure Constrain_Array
11394 (Def_Id : in out Entity_Id;
11395 SI : Node_Id;
11396 Related_Nod : Node_Id;
11397 Related_Id : Entity_Id;
11398 Suffix : Character)
11400 C : constant Node_Id := Constraint (SI);
11401 Number_Of_Constraints : Nat := 0;
11402 Index : Node_Id;
11403 S, T : Entity_Id;
11404 Constraint_OK : Boolean := True;
11406 begin
11407 T := Entity (Subtype_Mark (SI));
11409 if Ekind (T) in Access_Kind then
11410 T := Designated_Type (T);
11411 end if;
11413 -- If an index constraint follows a subtype mark in a subtype indication
11414 -- then the type or subtype denoted by the subtype mark must not already
11415 -- impose an index constraint. The subtype mark must denote either an
11416 -- unconstrained array type or an access type whose designated type
11417 -- is such an array type... (RM 3.6.1)
11419 if Is_Constrained (T) then
11420 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
11421 Constraint_OK := False;
11423 else
11424 S := First (Constraints (C));
11425 while Present (S) loop
11426 Number_Of_Constraints := Number_Of_Constraints + 1;
11427 Next (S);
11428 end loop;
11430 -- In either case, the index constraint must provide a discrete
11431 -- range for each index of the array type and the type of each
11432 -- discrete range must be the same as that of the corresponding
11433 -- index. (RM 3.6.1)
11435 if Number_Of_Constraints /= Number_Dimensions (T) then
11436 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
11437 Constraint_OK := False;
11439 else
11440 S := First (Constraints (C));
11441 Index := First_Index (T);
11442 Analyze (Index);
11444 -- Apply constraints to each index type
11446 for J in 1 .. Number_Of_Constraints loop
11447 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
11448 Next (Index);
11449 Next (S);
11450 end loop;
11452 end if;
11453 end if;
11455 if No (Def_Id) then
11456 Def_Id :=
11457 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
11458 Set_Parent (Def_Id, Related_Nod);
11460 else
11461 Set_Ekind (Def_Id, E_Array_Subtype);
11462 end if;
11464 Set_Size_Info (Def_Id, (T));
11465 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11466 Set_Etype (Def_Id, Base_Type (T));
11468 if Constraint_OK then
11469 Set_First_Index (Def_Id, First (Constraints (C)));
11470 else
11471 Set_First_Index (Def_Id, First_Index (T));
11472 end if;
11474 Set_Is_Constrained (Def_Id, True);
11475 Set_Is_Aliased (Def_Id, Is_Aliased (T));
11476 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11478 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
11479 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
11481 -- A subtype does not inherit the packed_array_type of is parent. We
11482 -- need to initialize the attribute because if Def_Id is previously
11483 -- analyzed through a limited_with clause, it will have the attributes
11484 -- of an incomplete type, one of which is an Elist that overlaps the
11485 -- Packed_Array_Type field.
11487 Set_Packed_Array_Type (Def_Id, Empty);
11489 -- Build a freeze node if parent still needs one. Also make sure that
11490 -- the Depends_On_Private status is set because the subtype will need
11491 -- reprocessing at the time the base type does, and also we must set a
11492 -- conditional delay.
11494 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
11495 Conditional_Delay (Def_Id, T);
11496 end Constrain_Array;
11498 ------------------------------
11499 -- Constrain_Component_Type --
11500 ------------------------------
11502 function Constrain_Component_Type
11503 (Comp : Entity_Id;
11504 Constrained_Typ : Entity_Id;
11505 Related_Node : Node_Id;
11506 Typ : Entity_Id;
11507 Constraints : Elist_Id) return Entity_Id
11509 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
11510 Compon_Type : constant Entity_Id := Etype (Comp);
11511 Array_Comp : Node_Id;
11513 function Build_Constrained_Array_Type
11514 (Old_Type : Entity_Id) return Entity_Id;
11515 -- If Old_Type is an array type, one of whose indexes is constrained
11516 -- by a discriminant, build an Itype whose constraint replaces the
11517 -- discriminant with its value in the constraint.
11519 function Build_Constrained_Discriminated_Type
11520 (Old_Type : Entity_Id) return Entity_Id;
11521 -- Ditto for record components
11523 function Build_Constrained_Access_Type
11524 (Old_Type : Entity_Id) return Entity_Id;
11525 -- Ditto for access types. Makes use of previous two functions, to
11526 -- constrain designated type.
11528 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
11529 -- T is an array or discriminated type, C is a list of constraints
11530 -- that apply to T. This routine builds the constrained subtype.
11532 function Is_Discriminant (Expr : Node_Id) return Boolean;
11533 -- Returns True if Expr is a discriminant
11535 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
11536 -- Find the value of discriminant Discrim in Constraint
11538 -----------------------------------
11539 -- Build_Constrained_Access_Type --
11540 -----------------------------------
11542 function Build_Constrained_Access_Type
11543 (Old_Type : Entity_Id) return Entity_Id
11545 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
11546 Itype : Entity_Id;
11547 Desig_Subtype : Entity_Id;
11548 Scop : Entity_Id;
11550 begin
11551 -- if the original access type was not embedded in the enclosing
11552 -- type definition, there is no need to produce a new access
11553 -- subtype. In fact every access type with an explicit constraint
11554 -- generates an itype whose scope is the enclosing record.
11556 if not Is_Type (Scope (Old_Type)) then
11557 return Old_Type;
11559 elsif Is_Array_Type (Desig_Type) then
11560 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
11562 elsif Has_Discriminants (Desig_Type) then
11564 -- This may be an access type to an enclosing record type for
11565 -- which we are constructing the constrained components. Return
11566 -- the enclosing record subtype. This is not always correct,
11567 -- but avoids infinite recursion. ???
11569 Desig_Subtype := Any_Type;
11571 for J in reverse 0 .. Scope_Stack.Last loop
11572 Scop := Scope_Stack.Table (J).Entity;
11574 if Is_Type (Scop)
11575 and then Base_Type (Scop) = Base_Type (Desig_Type)
11576 then
11577 Desig_Subtype := Scop;
11578 end if;
11580 exit when not Is_Type (Scop);
11581 end loop;
11583 if Desig_Subtype = Any_Type then
11584 Desig_Subtype :=
11585 Build_Constrained_Discriminated_Type (Desig_Type);
11586 end if;
11588 else
11589 return Old_Type;
11590 end if;
11592 if Desig_Subtype /= Desig_Type then
11594 -- The Related_Node better be here or else we won't be able
11595 -- to attach new itypes to a node in the tree.
11597 pragma Assert (Present (Related_Node));
11599 Itype := Create_Itype (E_Access_Subtype, Related_Node);
11601 Set_Etype (Itype, Base_Type (Old_Type));
11602 Set_Size_Info (Itype, (Old_Type));
11603 Set_Directly_Designated_Type (Itype, Desig_Subtype);
11604 Set_Depends_On_Private (Itype, Has_Private_Component
11605 (Old_Type));
11606 Set_Is_Access_Constant (Itype, Is_Access_Constant
11607 (Old_Type));
11609 -- The new itype needs freezing when it depends on a not frozen
11610 -- type and the enclosing subtype needs freezing.
11612 if Has_Delayed_Freeze (Constrained_Typ)
11613 and then not Is_Frozen (Constrained_Typ)
11614 then
11615 Conditional_Delay (Itype, Base_Type (Old_Type));
11616 end if;
11618 return Itype;
11620 else
11621 return Old_Type;
11622 end if;
11623 end Build_Constrained_Access_Type;
11625 ----------------------------------
11626 -- Build_Constrained_Array_Type --
11627 ----------------------------------
11629 function Build_Constrained_Array_Type
11630 (Old_Type : Entity_Id) return Entity_Id
11632 Lo_Expr : Node_Id;
11633 Hi_Expr : Node_Id;
11634 Old_Index : Node_Id;
11635 Range_Node : Node_Id;
11636 Constr_List : List_Id;
11638 Need_To_Create_Itype : Boolean := False;
11640 begin
11641 Old_Index := First_Index (Old_Type);
11642 while Present (Old_Index) loop
11643 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11645 if Is_Discriminant (Lo_Expr)
11646 or else Is_Discriminant (Hi_Expr)
11647 then
11648 Need_To_Create_Itype := True;
11649 end if;
11651 Next_Index (Old_Index);
11652 end loop;
11654 if Need_To_Create_Itype then
11655 Constr_List := New_List;
11657 Old_Index := First_Index (Old_Type);
11658 while Present (Old_Index) loop
11659 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11661 if Is_Discriminant (Lo_Expr) then
11662 Lo_Expr := Get_Discr_Value (Lo_Expr);
11663 end if;
11665 if Is_Discriminant (Hi_Expr) then
11666 Hi_Expr := Get_Discr_Value (Hi_Expr);
11667 end if;
11669 Range_Node :=
11670 Make_Range
11671 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
11673 Append (Range_Node, To => Constr_List);
11675 Next_Index (Old_Index);
11676 end loop;
11678 return Build_Subtype (Old_Type, Constr_List);
11680 else
11681 return Old_Type;
11682 end if;
11683 end Build_Constrained_Array_Type;
11685 ------------------------------------------
11686 -- Build_Constrained_Discriminated_Type --
11687 ------------------------------------------
11689 function Build_Constrained_Discriminated_Type
11690 (Old_Type : Entity_Id) return Entity_Id
11692 Expr : Node_Id;
11693 Constr_List : List_Id;
11694 Old_Constraint : Elmt_Id;
11696 Need_To_Create_Itype : Boolean := False;
11698 begin
11699 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11700 while Present (Old_Constraint) loop
11701 Expr := Node (Old_Constraint);
11703 if Is_Discriminant (Expr) then
11704 Need_To_Create_Itype := True;
11705 end if;
11707 Next_Elmt (Old_Constraint);
11708 end loop;
11710 if Need_To_Create_Itype then
11711 Constr_List := New_List;
11713 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11714 while Present (Old_Constraint) loop
11715 Expr := Node (Old_Constraint);
11717 if Is_Discriminant (Expr) then
11718 Expr := Get_Discr_Value (Expr);
11719 end if;
11721 Append (New_Copy_Tree (Expr), To => Constr_List);
11723 Next_Elmt (Old_Constraint);
11724 end loop;
11726 return Build_Subtype (Old_Type, Constr_List);
11728 else
11729 return Old_Type;
11730 end if;
11731 end Build_Constrained_Discriminated_Type;
11733 -------------------
11734 -- Build_Subtype --
11735 -------------------
11737 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
11738 Indic : Node_Id;
11739 Subtyp_Decl : Node_Id;
11740 Def_Id : Entity_Id;
11741 Btyp : Entity_Id := Base_Type (T);
11743 begin
11744 -- The Related_Node better be here or else we won't be able to
11745 -- attach new itypes to a node in the tree.
11747 pragma Assert (Present (Related_Node));
11749 -- If the view of the component's type is incomplete or private
11750 -- with unknown discriminants, then the constraint must be applied
11751 -- to the full type.
11753 if Has_Unknown_Discriminants (Btyp)
11754 and then Present (Underlying_Type (Btyp))
11755 then
11756 Btyp := Underlying_Type (Btyp);
11757 end if;
11759 Indic :=
11760 Make_Subtype_Indication (Loc,
11761 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
11762 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
11764 Def_Id := Create_Itype (Ekind (T), Related_Node);
11766 Subtyp_Decl :=
11767 Make_Subtype_Declaration (Loc,
11768 Defining_Identifier => Def_Id,
11769 Subtype_Indication => Indic);
11771 Set_Parent (Subtyp_Decl, Parent (Related_Node));
11773 -- Itypes must be analyzed with checks off (see package Itypes)
11775 Analyze (Subtyp_Decl, Suppress => All_Checks);
11777 return Def_Id;
11778 end Build_Subtype;
11780 ---------------------
11781 -- Get_Discr_Value --
11782 ---------------------
11784 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
11785 D : Entity_Id;
11786 E : Elmt_Id;
11788 begin
11789 -- The discriminant may be declared for the type, in which case we
11790 -- find it by iterating over the list of discriminants. If the
11791 -- discriminant is inherited from a parent type, it appears as the
11792 -- corresponding discriminant of the current type. This will be the
11793 -- case when constraining an inherited component whose constraint is
11794 -- given by a discriminant of the parent.
11796 D := First_Discriminant (Typ);
11797 E := First_Elmt (Constraints);
11799 while Present (D) loop
11800 if D = Entity (Discrim)
11801 or else D = CR_Discriminant (Entity (Discrim))
11802 or else Corresponding_Discriminant (D) = Entity (Discrim)
11803 then
11804 return Node (E);
11805 end if;
11807 Next_Discriminant (D);
11808 Next_Elmt (E);
11809 end loop;
11811 -- The Corresponding_Discriminant mechanism is incomplete, because
11812 -- the correspondence between new and old discriminants is not one
11813 -- to one: one new discriminant can constrain several old ones. In
11814 -- that case, scan sequentially the stored_constraint, the list of
11815 -- discriminants of the parents, and the constraints.
11817 -- Previous code checked for the present of the Stored_Constraint
11818 -- list for the derived type, but did not use it at all. Should it
11819 -- be present when the component is a discriminated task type?
11821 if Is_Derived_Type (Typ)
11822 and then Scope (Entity (Discrim)) = Etype (Typ)
11823 then
11824 D := First_Discriminant (Etype (Typ));
11825 E := First_Elmt (Constraints);
11826 while Present (D) loop
11827 if D = Entity (Discrim) then
11828 return Node (E);
11829 end if;
11831 Next_Discriminant (D);
11832 Next_Elmt (E);
11833 end loop;
11834 end if;
11836 -- Something is wrong if we did not find the value
11838 raise Program_Error;
11839 end Get_Discr_Value;
11841 ---------------------
11842 -- Is_Discriminant --
11843 ---------------------
11845 function Is_Discriminant (Expr : Node_Id) return Boolean is
11846 Discrim_Scope : Entity_Id;
11848 begin
11849 if Denotes_Discriminant (Expr) then
11850 Discrim_Scope := Scope (Entity (Expr));
11852 -- Either we have a reference to one of Typ's discriminants,
11854 pragma Assert (Discrim_Scope = Typ
11856 -- or to the discriminants of the parent type, in the case
11857 -- of a derivation of a tagged type with variants.
11859 or else Discrim_Scope = Etype (Typ)
11860 or else Full_View (Discrim_Scope) = Etype (Typ)
11862 -- or same as above for the case where the discriminants
11863 -- were declared in Typ's private view.
11865 or else (Is_Private_Type (Discrim_Scope)
11866 and then Chars (Discrim_Scope) = Chars (Typ))
11868 -- or else we are deriving from the full view and the
11869 -- discriminant is declared in the private entity.
11871 or else (Is_Private_Type (Typ)
11872 and then Chars (Discrim_Scope) = Chars (Typ))
11874 -- Or we are constrained the corresponding record of a
11875 -- synchronized type that completes a private declaration.
11877 or else (Is_Concurrent_Record_Type (Typ)
11878 and then
11879 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
11881 -- or we have a class-wide type, in which case make sure the
11882 -- discriminant found belongs to the root type.
11884 or else (Is_Class_Wide_Type (Typ)
11885 and then Etype (Typ) = Discrim_Scope));
11887 return True;
11888 end if;
11890 -- In all other cases we have something wrong
11892 return False;
11893 end Is_Discriminant;
11895 -- Start of processing for Constrain_Component_Type
11897 begin
11898 if Nkind (Parent (Comp)) = N_Component_Declaration
11899 and then Comes_From_Source (Parent (Comp))
11900 and then Comes_From_Source
11901 (Subtype_Indication (Component_Definition (Parent (Comp))))
11902 and then
11903 Is_Entity_Name
11904 (Subtype_Indication (Component_Definition (Parent (Comp))))
11905 then
11906 return Compon_Type;
11908 elsif Is_Array_Type (Compon_Type) then
11909 Array_Comp := Build_Constrained_Array_Type (Compon_Type);
11911 -- If the component of the parent is packed, and the record type is
11912 -- already frozen, as is the case for an itype, the component type
11913 -- itself will not be frozen, and the packed array type for it must
11914 -- be constructed explicitly. Since the creation of packed types is
11915 -- an expansion activity, we only do this if expansion is active.
11917 if Expander_Active
11918 and then Is_Packed (Compon_Type)
11919 and then Is_Frozen (Current_Scope)
11920 then
11921 Create_Packed_Array_Type (Array_Comp);
11922 end if;
11924 return Array_Comp;
11926 elsif Has_Discriminants (Compon_Type) then
11927 return Build_Constrained_Discriminated_Type (Compon_Type);
11929 elsif Is_Access_Type (Compon_Type) then
11930 return Build_Constrained_Access_Type (Compon_Type);
11932 else
11933 return Compon_Type;
11934 end if;
11935 end Constrain_Component_Type;
11937 --------------------------
11938 -- Constrain_Concurrent --
11939 --------------------------
11941 -- For concurrent types, the associated record value type carries the same
11942 -- discriminants, so when we constrain a concurrent type, we must constrain
11943 -- the corresponding record type as well.
11945 procedure Constrain_Concurrent
11946 (Def_Id : in out Entity_Id;
11947 SI : Node_Id;
11948 Related_Nod : Node_Id;
11949 Related_Id : Entity_Id;
11950 Suffix : Character)
11952 -- Retrieve Base_Type to ensure getting to the concurrent type in the
11953 -- case of a private subtype (needed when only doing semantic analysis).
11955 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
11956 T_Val : Entity_Id;
11958 begin
11959 if Ekind (T_Ent) in Access_Kind then
11960 T_Ent := Designated_Type (T_Ent);
11961 end if;
11963 T_Val := Corresponding_Record_Type (T_Ent);
11965 if Present (T_Val) then
11967 if No (Def_Id) then
11968 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
11969 end if;
11971 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
11973 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11974 Set_Corresponding_Record_Type (Def_Id,
11975 Constrain_Corresponding_Record
11976 (Def_Id, T_Val, Related_Nod, Related_Id));
11978 else
11979 -- If there is no associated record, expansion is disabled and this
11980 -- is a generic context. Create a subtype in any case, so that
11981 -- semantic analysis can proceed.
11983 if No (Def_Id) then
11984 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
11985 end if;
11987 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
11988 end if;
11989 end Constrain_Concurrent;
11991 ------------------------------------
11992 -- Constrain_Corresponding_Record --
11993 ------------------------------------
11995 function Constrain_Corresponding_Record
11996 (Prot_Subt : Entity_Id;
11997 Corr_Rec : Entity_Id;
11998 Related_Nod : Node_Id;
11999 Related_Id : Entity_Id) return Entity_Id
12001 T_Sub : constant Entity_Id :=
12002 Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
12004 begin
12005 Set_Etype (T_Sub, Corr_Rec);
12006 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12007 Set_Is_Constrained (T_Sub, True);
12008 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12009 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12011 -- As elsewhere, we do not want to create a freeze node for this itype
12012 -- if it is created for a constrained component of an enclosing record
12013 -- because references to outer discriminants will appear out of scope.
12015 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12016 Conditional_Delay (T_Sub, Corr_Rec);
12017 else
12018 Set_Is_Frozen (T_Sub);
12019 end if;
12021 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12022 Set_Discriminant_Constraint
12023 (T_Sub, Discriminant_Constraint (Prot_Subt));
12024 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12025 Create_Constrained_Components
12026 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12027 end if;
12029 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12031 return T_Sub;
12032 end Constrain_Corresponding_Record;
12034 -----------------------
12035 -- Constrain_Decimal --
12036 -----------------------
12038 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12039 T : constant Entity_Id := Entity (Subtype_Mark (S));
12040 C : constant Node_Id := Constraint (S);
12041 Loc : constant Source_Ptr := Sloc (C);
12042 Range_Expr : Node_Id;
12043 Digits_Expr : Node_Id;
12044 Digits_Val : Uint;
12045 Bound_Val : Ureal;
12047 begin
12048 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12050 if Nkind (C) = N_Range_Constraint then
12051 Range_Expr := Range_Expression (C);
12052 Digits_Val := Digits_Value (T);
12054 else
12055 pragma Assert (Nkind (C) = N_Digits_Constraint);
12057 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12059 Digits_Expr := Digits_Expression (C);
12060 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12062 Check_Digits_Expression (Digits_Expr);
12063 Digits_Val := Expr_Value (Digits_Expr);
12065 if Digits_Val > Digits_Value (T) then
12066 Error_Msg_N
12067 ("digits expression is incompatible with subtype", C);
12068 Digits_Val := Digits_Value (T);
12069 end if;
12071 if Present (Range_Constraint (C)) then
12072 Range_Expr := Range_Expression (Range_Constraint (C));
12073 else
12074 Range_Expr := Empty;
12075 end if;
12076 end if;
12078 Set_Etype (Def_Id, Base_Type (T));
12079 Set_Size_Info (Def_Id, (T));
12080 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12081 Set_Delta_Value (Def_Id, Delta_Value (T));
12082 Set_Scale_Value (Def_Id, Scale_Value (T));
12083 Set_Small_Value (Def_Id, Small_Value (T));
12084 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12085 Set_Digits_Value (Def_Id, Digits_Val);
12087 -- Manufacture range from given digits value if no range present
12089 if No (Range_Expr) then
12090 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12091 Range_Expr :=
12092 Make_Range (Loc,
12093 Low_Bound =>
12094 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12095 High_Bound =>
12096 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12097 end if;
12099 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12100 Set_Discrete_RM_Size (Def_Id);
12102 -- Unconditionally delay the freeze, since we cannot set size
12103 -- information in all cases correctly until the freeze point.
12105 Set_Has_Delayed_Freeze (Def_Id);
12106 end Constrain_Decimal;
12108 ----------------------------------
12109 -- Constrain_Discriminated_Type --
12110 ----------------------------------
12112 procedure Constrain_Discriminated_Type
12113 (Def_Id : Entity_Id;
12114 S : Node_Id;
12115 Related_Nod : Node_Id;
12116 For_Access : Boolean := False)
12118 E : constant Entity_Id := Entity (Subtype_Mark (S));
12119 T : Entity_Id;
12120 C : Node_Id;
12121 Elist : Elist_Id := New_Elmt_List;
12123 procedure Fixup_Bad_Constraint;
12124 -- This is called after finding a bad constraint, and after having
12125 -- posted an appropriate error message. The mission is to leave the
12126 -- entity T in as reasonable state as possible.
12128 --------------------------
12129 -- Fixup_Bad_Constraint --
12130 --------------------------
12132 procedure Fixup_Bad_Constraint is
12133 begin
12134 -- Set a reasonable Ekind for the entity. For an incomplete type,
12135 -- we can't do much, but for other types, we can set the proper
12136 -- corresponding subtype kind.
12138 if Ekind (T) = E_Incomplete_Type then
12139 Set_Ekind (Def_Id, Ekind (T));
12140 else
12141 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12142 end if;
12144 -- Set Etype to the known type, to reduce chances of cascaded errors
12146 Set_Etype (Def_Id, E);
12147 Set_Error_Posted (Def_Id);
12148 end Fixup_Bad_Constraint;
12150 -- Start of processing for Constrain_Discriminated_Type
12152 begin
12153 C := Constraint (S);
12155 -- A discriminant constraint is only allowed in a subtype indication,
12156 -- after a subtype mark. This subtype mark must denote either a type
12157 -- with discriminants, or an access type whose designated type is a
12158 -- type with discriminants. A discriminant constraint specifies the
12159 -- values of these discriminants (RM 3.7.2(5)).
12161 T := Base_Type (Entity (Subtype_Mark (S)));
12163 if Ekind (T) in Access_Kind then
12164 T := Designated_Type (T);
12165 end if;
12167 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12168 -- Avoid generating an error for access-to-incomplete subtypes.
12170 if Ada_Version >= Ada_2005
12171 and then Ekind (T) = E_Incomplete_Type
12172 and then Nkind (Parent (S)) = N_Subtype_Declaration
12173 and then not Is_Itype (Def_Id)
12174 then
12175 -- A little sanity check, emit an error message if the type
12176 -- has discriminants to begin with. Type T may be a regular
12177 -- incomplete type or imported via a limited with clause.
12179 if Has_Discriminants (T)
12180 or else (From_Limited_With (T)
12181 and then Present (Non_Limited_View (T))
12182 and then Nkind (Parent (Non_Limited_View (T))) =
12183 N_Full_Type_Declaration
12184 and then Present (Discriminant_Specifications
12185 (Parent (Non_Limited_View (T)))))
12186 then
12187 Error_Msg_N
12188 ("(Ada 2005) incomplete subtype may not be constrained", C);
12189 else
12190 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12191 end if;
12193 Fixup_Bad_Constraint;
12194 return;
12196 -- Check that the type has visible discriminants. The type may be
12197 -- a private type with unknown discriminants whose full view has
12198 -- discriminants which are invisible.
12200 elsif not Has_Discriminants (T)
12201 or else
12202 (Has_Unknown_Discriminants (T)
12203 and then Is_Private_Type (T))
12204 then
12205 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12206 Fixup_Bad_Constraint;
12207 return;
12209 elsif Is_Constrained (E)
12210 or else (Ekind (E) = E_Class_Wide_Subtype
12211 and then Present (Discriminant_Constraint (E)))
12212 then
12213 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
12214 Fixup_Bad_Constraint;
12215 return;
12216 end if;
12218 -- T may be an unconstrained subtype (e.g. a generic actual).
12219 -- Constraint applies to the base type.
12221 T := Base_Type (T);
12223 Elist := Build_Discriminant_Constraints (T, S);
12225 -- If the list returned was empty we had an error in building the
12226 -- discriminant constraint. We have also already signalled an error
12227 -- in the incomplete type case
12229 if Is_Empty_Elmt_List (Elist) then
12230 Fixup_Bad_Constraint;
12231 return;
12232 end if;
12234 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
12235 end Constrain_Discriminated_Type;
12237 ---------------------------
12238 -- Constrain_Enumeration --
12239 ---------------------------
12241 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
12242 T : constant Entity_Id := Entity (Subtype_Mark (S));
12243 C : constant Node_Id := Constraint (S);
12245 begin
12246 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12248 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
12250 Set_Etype (Def_Id, Base_Type (T));
12251 Set_Size_Info (Def_Id, (T));
12252 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12253 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12255 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12257 Set_Discrete_RM_Size (Def_Id);
12258 end Constrain_Enumeration;
12260 ----------------------
12261 -- Constrain_Float --
12262 ----------------------
12264 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
12265 T : constant Entity_Id := Entity (Subtype_Mark (S));
12266 C : Node_Id;
12267 D : Node_Id;
12268 Rais : Node_Id;
12270 begin
12271 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
12273 Set_Etype (Def_Id, Base_Type (T));
12274 Set_Size_Info (Def_Id, (T));
12275 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12277 -- Process the constraint
12279 C := Constraint (S);
12281 -- Digits constraint present
12283 if Nkind (C) = N_Digits_Constraint then
12285 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12286 Check_Restriction (No_Obsolescent_Features, C);
12288 if Warn_On_Obsolescent_Feature then
12289 Error_Msg_N
12290 ("subtype digits constraint is an " &
12291 "obsolescent feature (RM J.3(8))?j?", C);
12292 end if;
12294 D := Digits_Expression (C);
12295 Analyze_And_Resolve (D, Any_Integer);
12296 Check_Digits_Expression (D);
12297 Set_Digits_Value (Def_Id, Expr_Value (D));
12299 -- Check that digits value is in range. Obviously we can do this
12300 -- at compile time, but it is strictly a runtime check, and of
12301 -- course there is an ACVC test that checks this.
12303 if Digits_Value (Def_Id) > Digits_Value (T) then
12304 Error_Msg_Uint_1 := Digits_Value (T);
12305 Error_Msg_N ("??digits value is too large, maximum is ^", D);
12306 Rais :=
12307 Make_Raise_Constraint_Error (Sloc (D),
12308 Reason => CE_Range_Check_Failed);
12309 Insert_Action (Declaration_Node (Def_Id), Rais);
12310 end if;
12312 C := Range_Constraint (C);
12314 -- No digits constraint present
12316 else
12317 Set_Digits_Value (Def_Id, Digits_Value (T));
12318 end if;
12320 -- Range constraint present
12322 if Nkind (C) = N_Range_Constraint then
12323 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12325 -- No range constraint present
12327 else
12328 pragma Assert (No (C));
12329 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12330 end if;
12332 Set_Is_Constrained (Def_Id);
12333 end Constrain_Float;
12335 ---------------------
12336 -- Constrain_Index --
12337 ---------------------
12339 procedure Constrain_Index
12340 (Index : Node_Id;
12341 S : Node_Id;
12342 Related_Nod : Node_Id;
12343 Related_Id : Entity_Id;
12344 Suffix : Character;
12345 Suffix_Index : Nat)
12347 Def_Id : Entity_Id;
12348 R : Node_Id := Empty;
12349 T : constant Entity_Id := Etype (Index);
12351 begin
12352 if Nkind (S) = N_Range
12353 or else
12354 (Nkind (S) = N_Attribute_Reference
12355 and then Attribute_Name (S) = Name_Range)
12356 then
12357 -- A Range attribute will be transformed into N_Range by Resolve
12359 Analyze (S);
12360 Set_Etype (S, T);
12361 R := S;
12363 Process_Range_Expr_In_Decl (R, T, Empty_List);
12365 if not Error_Posted (S)
12366 and then
12367 (Nkind (S) /= N_Range
12368 or else not Covers (T, (Etype (Low_Bound (S))))
12369 or else not Covers (T, (Etype (High_Bound (S)))))
12370 then
12371 if Base_Type (T) /= Any_Type
12372 and then Etype (Low_Bound (S)) /= Any_Type
12373 and then Etype (High_Bound (S)) /= Any_Type
12374 then
12375 Error_Msg_N ("range expected", S);
12376 end if;
12377 end if;
12379 elsif Nkind (S) = N_Subtype_Indication then
12381 -- The parser has verified that this is a discrete indication
12383 Resolve_Discrete_Subtype_Indication (S, T);
12384 R := Range_Expression (Constraint (S));
12386 -- Capture values of bounds and generate temporaries for them if
12387 -- needed, since checks may cause duplication of the expressions
12388 -- which must not be reevaluated.
12390 -- The forced evaluation removes side effects from expressions, which
12391 -- should occur also in GNATprove mode. Otherwise, we end up with
12392 -- unexpected insertions of actions at places where this is not
12393 -- supposed to occur, e.g. on default parameters of a call.
12395 if Expander_Active or GNATprove_Mode then
12396 Force_Evaluation (Low_Bound (R));
12397 Force_Evaluation (High_Bound (R));
12398 end if;
12400 elsif Nkind (S) = N_Discriminant_Association then
12402 -- Syntactically valid in subtype indication
12404 Error_Msg_N ("invalid index constraint", S);
12405 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12406 return;
12408 -- Subtype_Mark case, no anonymous subtypes to construct
12410 else
12411 Analyze (S);
12413 if Is_Entity_Name (S) then
12414 if not Is_Type (Entity (S)) then
12415 Error_Msg_N ("expect subtype mark for index constraint", S);
12417 elsif Base_Type (Entity (S)) /= Base_Type (T) then
12418 Wrong_Type (S, Base_Type (T));
12420 -- Check error of subtype with predicate in index constraint
12422 else
12423 Bad_Predicated_Subtype_Use
12424 ("subtype& has predicate, not allowed in index constraint",
12425 S, Entity (S));
12426 end if;
12428 return;
12430 else
12431 Error_Msg_N ("invalid index constraint", S);
12432 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12433 return;
12434 end if;
12435 end if;
12437 Def_Id :=
12438 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
12440 Set_Etype (Def_Id, Base_Type (T));
12442 if Is_Modular_Integer_Type (T) then
12443 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12445 elsif Is_Integer_Type (T) then
12446 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12448 else
12449 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12450 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12451 Set_First_Literal (Def_Id, First_Literal (T));
12452 end if;
12454 Set_Size_Info (Def_Id, (T));
12455 Set_RM_Size (Def_Id, RM_Size (T));
12456 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12458 Set_Scalar_Range (Def_Id, R);
12460 Set_Etype (S, Def_Id);
12461 Set_Discrete_RM_Size (Def_Id);
12462 end Constrain_Index;
12464 -----------------------
12465 -- Constrain_Integer --
12466 -----------------------
12468 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
12469 T : constant Entity_Id := Entity (Subtype_Mark (S));
12470 C : constant Node_Id := Constraint (S);
12472 begin
12473 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12475 if Is_Modular_Integer_Type (T) then
12476 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12477 else
12478 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12479 end if;
12481 Set_Etype (Def_Id, Base_Type (T));
12482 Set_Size_Info (Def_Id, (T));
12483 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12484 Set_Discrete_RM_Size (Def_Id);
12485 end Constrain_Integer;
12487 ------------------------------
12488 -- Constrain_Ordinary_Fixed --
12489 ------------------------------
12491 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
12492 T : constant Entity_Id := Entity (Subtype_Mark (S));
12493 C : Node_Id;
12494 D : Node_Id;
12495 Rais : Node_Id;
12497 begin
12498 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
12499 Set_Etype (Def_Id, Base_Type (T));
12500 Set_Size_Info (Def_Id, (T));
12501 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12502 Set_Small_Value (Def_Id, Small_Value (T));
12504 -- Process the constraint
12506 C := Constraint (S);
12508 -- Delta constraint present
12510 if Nkind (C) = N_Delta_Constraint then
12512 Check_SPARK_Restriction ("delta constraint is not allowed", S);
12513 Check_Restriction (No_Obsolescent_Features, C);
12515 if Warn_On_Obsolescent_Feature then
12516 Error_Msg_S
12517 ("subtype delta constraint is an " &
12518 "obsolescent feature (RM J.3(7))?j?");
12519 end if;
12521 D := Delta_Expression (C);
12522 Analyze_And_Resolve (D, Any_Real);
12523 Check_Delta_Expression (D);
12524 Set_Delta_Value (Def_Id, Expr_Value_R (D));
12526 -- Check that delta value is in range. Obviously we can do this
12527 -- at compile time, but it is strictly a runtime check, and of
12528 -- course there is an ACVC test that checks this.
12530 if Delta_Value (Def_Id) < Delta_Value (T) then
12531 Error_Msg_N ("??delta value is too small", D);
12532 Rais :=
12533 Make_Raise_Constraint_Error (Sloc (D),
12534 Reason => CE_Range_Check_Failed);
12535 Insert_Action (Declaration_Node (Def_Id), Rais);
12536 end if;
12538 C := Range_Constraint (C);
12540 -- No delta constraint present
12542 else
12543 Set_Delta_Value (Def_Id, Delta_Value (T));
12544 end if;
12546 -- Range constraint present
12548 if Nkind (C) = N_Range_Constraint then
12549 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12551 -- No range constraint present
12553 else
12554 pragma Assert (No (C));
12555 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12557 end if;
12559 Set_Discrete_RM_Size (Def_Id);
12561 -- Unconditionally delay the freeze, since we cannot set size
12562 -- information in all cases correctly until the freeze point.
12564 Set_Has_Delayed_Freeze (Def_Id);
12565 end Constrain_Ordinary_Fixed;
12567 -----------------------
12568 -- Contain_Interface --
12569 -----------------------
12571 function Contain_Interface
12572 (Iface : Entity_Id;
12573 Ifaces : Elist_Id) return Boolean
12575 Iface_Elmt : Elmt_Id;
12577 begin
12578 if Present (Ifaces) then
12579 Iface_Elmt := First_Elmt (Ifaces);
12580 while Present (Iface_Elmt) loop
12581 if Node (Iface_Elmt) = Iface then
12582 return True;
12583 end if;
12585 Next_Elmt (Iface_Elmt);
12586 end loop;
12587 end if;
12589 return False;
12590 end Contain_Interface;
12592 ---------------------------
12593 -- Convert_Scalar_Bounds --
12594 ---------------------------
12596 procedure Convert_Scalar_Bounds
12597 (N : Node_Id;
12598 Parent_Type : Entity_Id;
12599 Derived_Type : Entity_Id;
12600 Loc : Source_Ptr)
12602 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
12604 Lo : Node_Id;
12605 Hi : Node_Id;
12606 Rng : Node_Id;
12608 begin
12609 -- Defend against previous errors
12611 if No (Scalar_Range (Derived_Type)) then
12612 Check_Error_Detected;
12613 return;
12614 end if;
12616 Lo := Build_Scalar_Bound
12617 (Type_Low_Bound (Derived_Type),
12618 Parent_Type, Implicit_Base);
12620 Hi := Build_Scalar_Bound
12621 (Type_High_Bound (Derived_Type),
12622 Parent_Type, Implicit_Base);
12624 Rng :=
12625 Make_Range (Loc,
12626 Low_Bound => Lo,
12627 High_Bound => Hi);
12629 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
12631 Set_Parent (Rng, N);
12632 Set_Scalar_Range (Derived_Type, Rng);
12634 -- Analyze the bounds
12636 Analyze_And_Resolve (Lo, Implicit_Base);
12637 Analyze_And_Resolve (Hi, Implicit_Base);
12639 -- Analyze the range itself, except that we do not analyze it if
12640 -- the bounds are real literals, and we have a fixed-point type.
12641 -- The reason for this is that we delay setting the bounds in this
12642 -- case till we know the final Small and Size values (see circuit
12643 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12645 if Is_Fixed_Point_Type (Parent_Type)
12646 and then Nkind (Lo) = N_Real_Literal
12647 and then Nkind (Hi) = N_Real_Literal
12648 then
12649 return;
12651 -- Here we do the analysis of the range
12653 -- Note: we do this manually, since if we do a normal Analyze and
12654 -- Resolve call, there are problems with the conversions used for
12655 -- the derived type range.
12657 else
12658 Set_Etype (Rng, Implicit_Base);
12659 Set_Analyzed (Rng, True);
12660 end if;
12661 end Convert_Scalar_Bounds;
12663 -------------------
12664 -- Copy_And_Swap --
12665 -------------------
12667 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
12668 begin
12669 -- Initialize new full declaration entity by copying the pertinent
12670 -- fields of the corresponding private declaration entity.
12672 -- We temporarily set Ekind to a value appropriate for a type to
12673 -- avoid assert failures in Einfo from checking for setting type
12674 -- attributes on something that is not a type. Ekind (Priv) is an
12675 -- appropriate choice, since it allowed the attributes to be set
12676 -- in the first place. This Ekind value will be modified later.
12678 Set_Ekind (Full, Ekind (Priv));
12680 -- Also set Etype temporarily to Any_Type, again, in the absence
12681 -- of errors, it will be properly reset, and if there are errors,
12682 -- then we want a value of Any_Type to remain.
12684 Set_Etype (Full, Any_Type);
12686 -- Now start copying attributes
12688 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
12690 if Has_Discriminants (Full) then
12691 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
12692 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
12693 end if;
12695 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
12696 Set_Homonym (Full, Homonym (Priv));
12697 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
12698 Set_Is_Public (Full, Is_Public (Priv));
12699 Set_Is_Pure (Full, Is_Pure (Priv));
12700 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
12701 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
12702 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
12703 Set_Has_Pragma_Unreferenced_Objects
12704 (Full, Has_Pragma_Unreferenced_Objects
12705 (Priv));
12707 Conditional_Delay (Full, Priv);
12709 if Is_Tagged_Type (Full) then
12710 Set_Direct_Primitive_Operations (Full,
12711 Direct_Primitive_Operations (Priv));
12713 if Is_Base_Type (Priv) then
12714 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
12715 end if;
12716 end if;
12718 Set_Is_Volatile (Full, Is_Volatile (Priv));
12719 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
12720 Set_Scope (Full, Scope (Priv));
12721 Set_Next_Entity (Full, Next_Entity (Priv));
12722 Set_First_Entity (Full, First_Entity (Priv));
12723 Set_Last_Entity (Full, Last_Entity (Priv));
12725 -- If access types have been recorded for later handling, keep them in
12726 -- the full view so that they get handled when the full view freeze
12727 -- node is expanded.
12729 if Present (Freeze_Node (Priv))
12730 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
12731 then
12732 Ensure_Freeze_Node (Full);
12733 Set_Access_Types_To_Process
12734 (Freeze_Node (Full),
12735 Access_Types_To_Process (Freeze_Node (Priv)));
12736 end if;
12738 -- Swap the two entities. Now Private is the full type entity and Full
12739 -- is the private one. They will be swapped back at the end of the
12740 -- private part. This swapping ensures that the entity that is visible
12741 -- in the private part is the full declaration.
12743 Exchange_Entities (Priv, Full);
12744 Append_Entity (Full, Scope (Full));
12745 end Copy_And_Swap;
12747 -------------------------------------
12748 -- Copy_Array_Base_Type_Attributes --
12749 -------------------------------------
12751 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
12752 begin
12753 Set_Component_Alignment (T1, Component_Alignment (T2));
12754 Set_Component_Type (T1, Component_Type (T2));
12755 Set_Component_Size (T1, Component_Size (T2));
12756 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
12757 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
12758 Set_Has_Task (T1, Has_Task (T2));
12759 Set_Is_Packed (T1, Is_Packed (T2));
12760 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
12761 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
12762 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
12763 end Copy_Array_Base_Type_Attributes;
12765 -----------------------------------
12766 -- Copy_Array_Subtype_Attributes --
12767 -----------------------------------
12769 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
12770 begin
12771 Set_Size_Info (T1, T2);
12773 Set_First_Index (T1, First_Index (T2));
12774 Set_Is_Aliased (T1, Is_Aliased (T2));
12775 Set_Is_Volatile (T1, Is_Volatile (T2));
12776 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
12777 Set_Is_Constrained (T1, Is_Constrained (T2));
12778 Set_Depends_On_Private (T1, Has_Private_Component (T2));
12779 Set_First_Rep_Item (T1, First_Rep_Item (T2));
12780 Set_Convention (T1, Convention (T2));
12781 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
12782 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
12783 Set_Packed_Array_Type (T1, Packed_Array_Type (T2));
12784 end Copy_Array_Subtype_Attributes;
12786 -----------------------------------
12787 -- Create_Constrained_Components --
12788 -----------------------------------
12790 procedure Create_Constrained_Components
12791 (Subt : Entity_Id;
12792 Decl_Node : Node_Id;
12793 Typ : Entity_Id;
12794 Constraints : Elist_Id)
12796 Loc : constant Source_Ptr := Sloc (Subt);
12797 Comp_List : constant Elist_Id := New_Elmt_List;
12798 Parent_Type : constant Entity_Id := Etype (Typ);
12799 Assoc_List : constant List_Id := New_List;
12800 Discr_Val : Elmt_Id;
12801 Errors : Boolean;
12802 New_C : Entity_Id;
12803 Old_C : Entity_Id;
12804 Is_Static : Boolean := True;
12806 procedure Collect_Fixed_Components (Typ : Entity_Id);
12807 -- Collect parent type components that do not appear in a variant part
12809 procedure Create_All_Components;
12810 -- Iterate over Comp_List to create the components of the subtype
12812 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
12813 -- Creates a new component from Old_Compon, copying all the fields from
12814 -- it, including its Etype, inserts the new component in the Subt entity
12815 -- chain and returns the new component.
12817 function Is_Variant_Record (T : Entity_Id) return Boolean;
12818 -- If true, and discriminants are static, collect only components from
12819 -- variants selected by discriminant values.
12821 ------------------------------
12822 -- Collect_Fixed_Components --
12823 ------------------------------
12825 procedure Collect_Fixed_Components (Typ : Entity_Id) is
12826 begin
12827 -- Build association list for discriminants, and find components of the
12828 -- variant part selected by the values of the discriminants.
12830 Old_C := First_Discriminant (Typ);
12831 Discr_Val := First_Elmt (Constraints);
12832 while Present (Old_C) loop
12833 Append_To (Assoc_List,
12834 Make_Component_Association (Loc,
12835 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
12836 Expression => New_Copy (Node (Discr_Val))));
12838 Next_Elmt (Discr_Val);
12839 Next_Discriminant (Old_C);
12840 end loop;
12842 -- The tag and the possible parent component are unconditionally in
12843 -- the subtype.
12845 if Is_Tagged_Type (Typ)
12846 or else Has_Controlled_Component (Typ)
12847 then
12848 Old_C := First_Component (Typ);
12849 while Present (Old_C) loop
12850 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
12851 Append_Elmt (Old_C, Comp_List);
12852 end if;
12854 Next_Component (Old_C);
12855 end loop;
12856 end if;
12857 end Collect_Fixed_Components;
12859 ---------------------------
12860 -- Create_All_Components --
12861 ---------------------------
12863 procedure Create_All_Components is
12864 Comp : Elmt_Id;
12866 begin
12867 Comp := First_Elmt (Comp_List);
12868 while Present (Comp) loop
12869 Old_C := Node (Comp);
12870 New_C := Create_Component (Old_C);
12872 Set_Etype
12873 (New_C,
12874 Constrain_Component_Type
12875 (Old_C, Subt, Decl_Node, Typ, Constraints));
12876 Set_Is_Public (New_C, Is_Public (Subt));
12878 Next_Elmt (Comp);
12879 end loop;
12880 end Create_All_Components;
12882 ----------------------
12883 -- Create_Component --
12884 ----------------------
12886 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
12887 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
12889 begin
12890 if Ekind (Old_Compon) = E_Discriminant
12891 and then Is_Completely_Hidden (Old_Compon)
12892 then
12893 -- This is a shadow discriminant created for a discriminant of
12894 -- the parent type, which needs to be present in the subtype.
12895 -- Give the shadow discriminant an internal name that cannot
12896 -- conflict with that of visible components.
12898 Set_Chars (New_Compon, New_Internal_Name ('C'));
12899 end if;
12901 -- Set the parent so we have a proper link for freezing etc. This is
12902 -- not a real parent pointer, since of course our parent does not own
12903 -- up to us and reference us, we are an illegitimate child of the
12904 -- original parent.
12906 Set_Parent (New_Compon, Parent (Old_Compon));
12908 -- If the old component's Esize was already determined and is a
12909 -- static value, then the new component simply inherits it. Otherwise
12910 -- the old component's size may require run-time determination, but
12911 -- the new component's size still might be statically determinable
12912 -- (if, for example it has a static constraint). In that case we want
12913 -- Layout_Type to recompute the component's size, so we reset its
12914 -- size and positional fields.
12916 if Frontend_Layout_On_Target
12917 and then not Known_Static_Esize (Old_Compon)
12918 then
12919 Set_Esize (New_Compon, Uint_0);
12920 Init_Normalized_First_Bit (New_Compon);
12921 Init_Normalized_Position (New_Compon);
12922 Init_Normalized_Position_Max (New_Compon);
12923 end if;
12925 -- We do not want this node marked as Comes_From_Source, since
12926 -- otherwise it would get first class status and a separate cross-
12927 -- reference line would be generated. Illegitimate children do not
12928 -- rate such recognition.
12930 Set_Comes_From_Source (New_Compon, False);
12932 -- But it is a real entity, and a birth certificate must be properly
12933 -- registered by entering it into the entity list.
12935 Enter_Name (New_Compon);
12937 return New_Compon;
12938 end Create_Component;
12940 -----------------------
12941 -- Is_Variant_Record --
12942 -----------------------
12944 function Is_Variant_Record (T : Entity_Id) return Boolean is
12945 begin
12946 return Nkind (Parent (T)) = N_Full_Type_Declaration
12947 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
12948 and then Present (Component_List (Type_Definition (Parent (T))))
12949 and then
12950 Present
12951 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
12952 end Is_Variant_Record;
12954 -- Start of processing for Create_Constrained_Components
12956 begin
12957 pragma Assert (Subt /= Base_Type (Subt));
12958 pragma Assert (Typ = Base_Type (Typ));
12960 Set_First_Entity (Subt, Empty);
12961 Set_Last_Entity (Subt, Empty);
12963 -- Check whether constraint is fully static, in which case we can
12964 -- optimize the list of components.
12966 Discr_Val := First_Elmt (Constraints);
12967 while Present (Discr_Val) loop
12968 if not Is_OK_Static_Expression (Node (Discr_Val)) then
12969 Is_Static := False;
12970 exit;
12971 end if;
12973 Next_Elmt (Discr_Val);
12974 end loop;
12976 Set_Has_Static_Discriminants (Subt, Is_Static);
12978 Push_Scope (Subt);
12980 -- Inherit the discriminants of the parent type
12982 Add_Discriminants : declare
12983 Num_Disc : Int;
12984 Num_Gird : Int;
12986 begin
12987 Num_Disc := 0;
12988 Old_C := First_Discriminant (Typ);
12990 while Present (Old_C) loop
12991 Num_Disc := Num_Disc + 1;
12992 New_C := Create_Component (Old_C);
12993 Set_Is_Public (New_C, Is_Public (Subt));
12994 Next_Discriminant (Old_C);
12995 end loop;
12997 -- For an untagged derived subtype, the number of discriminants may
12998 -- be smaller than the number of inherited discriminants, because
12999 -- several of them may be renamed by a single new discriminant or
13000 -- constrained. In this case, add the hidden discriminants back into
13001 -- the subtype, because they need to be present if the optimizer of
13002 -- the GCC 4.x back-end decides to break apart assignments between
13003 -- objects using the parent view into member-wise assignments.
13005 Num_Gird := 0;
13007 if Is_Derived_Type (Typ)
13008 and then not Is_Tagged_Type (Typ)
13009 then
13010 Old_C := First_Stored_Discriminant (Typ);
13012 while Present (Old_C) loop
13013 Num_Gird := Num_Gird + 1;
13014 Next_Stored_Discriminant (Old_C);
13015 end loop;
13016 end if;
13018 if Num_Gird > Num_Disc then
13020 -- Find out multiple uses of new discriminants, and add hidden
13021 -- components for the extra renamed discriminants. We recognize
13022 -- multiple uses through the Corresponding_Discriminant of a
13023 -- new discriminant: if it constrains several old discriminants,
13024 -- this field points to the last one in the parent type. The
13025 -- stored discriminants of the derived type have the same name
13026 -- as those of the parent.
13028 declare
13029 Constr : Elmt_Id;
13030 New_Discr : Entity_Id;
13031 Old_Discr : Entity_Id;
13033 begin
13034 Constr := First_Elmt (Stored_Constraint (Typ));
13035 Old_Discr := First_Stored_Discriminant (Typ);
13036 while Present (Constr) loop
13037 if Is_Entity_Name (Node (Constr))
13038 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13039 then
13040 New_Discr := Entity (Node (Constr));
13042 if Chars (Corresponding_Discriminant (New_Discr)) /=
13043 Chars (Old_Discr)
13044 then
13045 -- The new discriminant has been used to rename a
13046 -- subsequent old discriminant. Introduce a shadow
13047 -- component for the current old discriminant.
13049 New_C := Create_Component (Old_Discr);
13050 Set_Original_Record_Component (New_C, Old_Discr);
13051 end if;
13053 else
13054 -- The constraint has eliminated the old discriminant.
13055 -- Introduce a shadow component.
13057 New_C := Create_Component (Old_Discr);
13058 Set_Original_Record_Component (New_C, Old_Discr);
13059 end if;
13061 Next_Elmt (Constr);
13062 Next_Stored_Discriminant (Old_Discr);
13063 end loop;
13064 end;
13065 end if;
13066 end Add_Discriminants;
13068 if Is_Static
13069 and then Is_Variant_Record (Typ)
13070 then
13071 Collect_Fixed_Components (Typ);
13073 Gather_Components (
13074 Typ,
13075 Component_List (Type_Definition (Parent (Typ))),
13076 Governed_By => Assoc_List,
13077 Into => Comp_List,
13078 Report_Errors => Errors);
13079 pragma Assert (not Errors);
13081 Create_All_Components;
13083 -- If the subtype declaration is created for a tagged type derivation
13084 -- with constraints, we retrieve the record definition of the parent
13085 -- type to select the components of the proper variant.
13087 elsif Is_Static
13088 and then Is_Tagged_Type (Typ)
13089 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13090 and then
13091 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13092 and then Is_Variant_Record (Parent_Type)
13093 then
13094 Collect_Fixed_Components (Typ);
13096 Gather_Components (
13097 Typ,
13098 Component_List (Type_Definition (Parent (Parent_Type))),
13099 Governed_By => Assoc_List,
13100 Into => Comp_List,
13101 Report_Errors => Errors);
13102 pragma Assert (not Errors);
13104 -- If the tagged derivation has a type extension, collect all the
13105 -- new components therein.
13107 if Present
13108 (Record_Extension_Part (Type_Definition (Parent (Typ))))
13109 then
13110 Old_C := First_Component (Typ);
13111 while Present (Old_C) loop
13112 if Original_Record_Component (Old_C) = Old_C
13113 and then Chars (Old_C) /= Name_uTag
13114 and then Chars (Old_C) /= Name_uParent
13115 then
13116 Append_Elmt (Old_C, Comp_List);
13117 end if;
13119 Next_Component (Old_C);
13120 end loop;
13121 end if;
13123 Create_All_Components;
13125 else
13126 -- If discriminants are not static, or if this is a multi-level type
13127 -- extension, we have to include all components of the parent type.
13129 Old_C := First_Component (Typ);
13130 while Present (Old_C) loop
13131 New_C := Create_Component (Old_C);
13133 Set_Etype
13134 (New_C,
13135 Constrain_Component_Type
13136 (Old_C, Subt, Decl_Node, Typ, Constraints));
13137 Set_Is_Public (New_C, Is_Public (Subt));
13139 Next_Component (Old_C);
13140 end loop;
13141 end if;
13143 End_Scope;
13144 end Create_Constrained_Components;
13146 ------------------------------------------
13147 -- Decimal_Fixed_Point_Type_Declaration --
13148 ------------------------------------------
13150 procedure Decimal_Fixed_Point_Type_Declaration
13151 (T : Entity_Id;
13152 Def : Node_Id)
13154 Loc : constant Source_Ptr := Sloc (Def);
13155 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13156 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13157 Implicit_Base : Entity_Id;
13158 Digs_Val : Uint;
13159 Delta_Val : Ureal;
13160 Scale_Val : Uint;
13161 Bound_Val : Ureal;
13163 begin
13164 Check_SPARK_Restriction
13165 ("decimal fixed point type is not allowed", Def);
13166 Check_Restriction (No_Fixed_Point, Def);
13168 -- Create implicit base type
13170 Implicit_Base :=
13171 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13172 Set_Etype (Implicit_Base, Implicit_Base);
13174 -- Analyze and process delta expression
13176 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13178 Check_Delta_Expression (Delta_Expr);
13179 Delta_Val := Expr_Value_R (Delta_Expr);
13181 -- Check delta is power of 10, and determine scale value from it
13183 declare
13184 Val : Ureal;
13186 begin
13187 Scale_Val := Uint_0;
13188 Val := Delta_Val;
13190 if Val < Ureal_1 then
13191 while Val < Ureal_1 loop
13192 Val := Val * Ureal_10;
13193 Scale_Val := Scale_Val + 1;
13194 end loop;
13196 if Scale_Val > 18 then
13197 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13198 Scale_Val := UI_From_Int (+18);
13199 end if;
13201 else
13202 while Val > Ureal_1 loop
13203 Val := Val / Ureal_10;
13204 Scale_Val := Scale_Val - 1;
13205 end loop;
13207 if Scale_Val < -18 then
13208 Error_Msg_N ("scale is less than minimum value of -18", Def);
13209 Scale_Val := UI_From_Int (-18);
13210 end if;
13211 end if;
13213 if Val /= Ureal_1 then
13214 Error_Msg_N ("delta expression must be a power of 10", Def);
13215 Delta_Val := Ureal_10 ** (-Scale_Val);
13216 end if;
13217 end;
13219 -- Set delta, scale and small (small = delta for decimal type)
13221 Set_Delta_Value (Implicit_Base, Delta_Val);
13222 Set_Scale_Value (Implicit_Base, Scale_Val);
13223 Set_Small_Value (Implicit_Base, Delta_Val);
13225 -- Analyze and process digits expression
13227 Analyze_And_Resolve (Digs_Expr, Any_Integer);
13228 Check_Digits_Expression (Digs_Expr);
13229 Digs_Val := Expr_Value (Digs_Expr);
13231 if Digs_Val > 18 then
13232 Digs_Val := UI_From_Int (+18);
13233 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
13234 end if;
13236 Set_Digits_Value (Implicit_Base, Digs_Val);
13237 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
13239 -- Set range of base type from digits value for now. This will be
13240 -- expanded to represent the true underlying base range by Freeze.
13242 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
13244 -- Note: We leave size as zero for now, size will be set at freeze
13245 -- time. We have to do this for ordinary fixed-point, because the size
13246 -- depends on the specified small, and we might as well do the same for
13247 -- decimal fixed-point.
13249 pragma Assert (Esize (Implicit_Base) = Uint_0);
13251 -- If there are bounds given in the declaration use them as the
13252 -- bounds of the first named subtype.
13254 if Present (Real_Range_Specification (Def)) then
13255 declare
13256 RRS : constant Node_Id := Real_Range_Specification (Def);
13257 Low : constant Node_Id := Low_Bound (RRS);
13258 High : constant Node_Id := High_Bound (RRS);
13259 Low_Val : Ureal;
13260 High_Val : Ureal;
13262 begin
13263 Analyze_And_Resolve (Low, Any_Real);
13264 Analyze_And_Resolve (High, Any_Real);
13265 Check_Real_Bound (Low);
13266 Check_Real_Bound (High);
13267 Low_Val := Expr_Value_R (Low);
13268 High_Val := Expr_Value_R (High);
13270 if Low_Val < (-Bound_Val) then
13271 Error_Msg_N
13272 ("range low bound too small for digits value", Low);
13273 Low_Val := -Bound_Val;
13274 end if;
13276 if High_Val > Bound_Val then
13277 Error_Msg_N
13278 ("range high bound too large for digits value", High);
13279 High_Val := Bound_Val;
13280 end if;
13282 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13283 end;
13285 -- If no explicit range, use range that corresponds to given
13286 -- digits value. This will end up as the final range for the
13287 -- first subtype.
13289 else
13290 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
13291 end if;
13293 -- Complete entity for first subtype
13295 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
13296 Set_Etype (T, Implicit_Base);
13297 Set_Size_Info (T, Implicit_Base);
13298 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13299 Set_Digits_Value (T, Digs_Val);
13300 Set_Delta_Value (T, Delta_Val);
13301 Set_Small_Value (T, Delta_Val);
13302 Set_Scale_Value (T, Scale_Val);
13303 Set_Is_Constrained (T);
13304 end Decimal_Fixed_Point_Type_Declaration;
13306 -----------------------------------
13307 -- Derive_Progenitor_Subprograms --
13308 -----------------------------------
13310 procedure Derive_Progenitor_Subprograms
13311 (Parent_Type : Entity_Id;
13312 Tagged_Type : Entity_Id)
13314 E : Entity_Id;
13315 Elmt : Elmt_Id;
13316 Iface : Entity_Id;
13317 Iface_Elmt : Elmt_Id;
13318 Iface_Subp : Entity_Id;
13319 New_Subp : Entity_Id := Empty;
13320 Prim_Elmt : Elmt_Id;
13321 Subp : Entity_Id;
13322 Typ : Entity_Id;
13324 begin
13325 pragma Assert (Ada_Version >= Ada_2005
13326 and then Is_Record_Type (Tagged_Type)
13327 and then Is_Tagged_Type (Tagged_Type)
13328 and then Has_Interfaces (Tagged_Type));
13330 -- Step 1: Transfer to the full-view primitives associated with the
13331 -- partial-view that cover interface primitives. Conceptually this
13332 -- work should be done later by Process_Full_View; done here to
13333 -- simplify its implementation at later stages. It can be safely
13334 -- done here because interfaces must be visible in the partial and
13335 -- private view (RM 7.3(7.3/2)).
13337 -- Small optimization: This work is only required if the parent may
13338 -- have entities whose Alias attribute reference an interface primitive.
13339 -- Such a situation may occur if the parent is an abstract type and the
13340 -- primitive has not been yet overridden or if the parent is a generic
13341 -- formal type covering interfaces.
13343 -- If the tagged type is not abstract, it cannot have abstract
13344 -- primitives (the only entities in the list of primitives of
13345 -- non-abstract tagged types that can reference abstract primitives
13346 -- through its Alias attribute are the internal entities that have
13347 -- attribute Interface_Alias, and these entities are generated later
13348 -- by Add_Internal_Interface_Entities).
13350 if In_Private_Part (Current_Scope)
13351 and then (Is_Abstract_Type (Parent_Type)
13352 or else
13353 Is_Generic_Type (Parent_Type))
13354 then
13355 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
13356 while Present (Elmt) loop
13357 Subp := Node (Elmt);
13359 -- At this stage it is not possible to have entities in the list
13360 -- of primitives that have attribute Interface_Alias.
13362 pragma Assert (No (Interface_Alias (Subp)));
13364 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
13366 if Is_Interface (Typ) then
13367 E := Find_Primitive_Covering_Interface
13368 (Tagged_Type => Tagged_Type,
13369 Iface_Prim => Subp);
13371 if Present (E)
13372 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
13373 then
13374 Replace_Elmt (Elmt, E);
13375 Remove_Homonym (Subp);
13376 end if;
13377 end if;
13379 Next_Elmt (Elmt);
13380 end loop;
13381 end if;
13383 -- Step 2: Add primitives of progenitors that are not implemented by
13384 -- parents of Tagged_Type.
13386 if Present (Interfaces (Base_Type (Tagged_Type))) then
13387 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
13388 while Present (Iface_Elmt) loop
13389 Iface := Node (Iface_Elmt);
13391 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
13392 while Present (Prim_Elmt) loop
13393 Iface_Subp := Node (Prim_Elmt);
13395 -- Exclude derivation of predefined primitives except those
13396 -- that come from source, or are inherited from one that comes
13397 -- from source. Required to catch declarations of equality
13398 -- operators of interfaces. For example:
13400 -- type Iface is interface;
13401 -- function "=" (Left, Right : Iface) return Boolean;
13403 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
13404 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
13405 then
13406 E := Find_Primitive_Covering_Interface
13407 (Tagged_Type => Tagged_Type,
13408 Iface_Prim => Iface_Subp);
13410 -- If not found we derive a new primitive leaving its alias
13411 -- attribute referencing the interface primitive.
13413 if No (E) then
13414 Derive_Subprogram
13415 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13417 -- Ada 2012 (AI05-0197): If the covering primitive's name
13418 -- differs from the name of the interface primitive then it
13419 -- is a private primitive inherited from a parent type. In
13420 -- such case, given that Tagged_Type covers the interface,
13421 -- the inherited private primitive becomes visible. For such
13422 -- purpose we add a new entity that renames the inherited
13423 -- private primitive.
13425 elsif Chars (E) /= Chars (Iface_Subp) then
13426 pragma Assert (Has_Suffix (E, 'P'));
13427 Derive_Subprogram
13428 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13429 Set_Alias (New_Subp, E);
13430 Set_Is_Abstract_Subprogram (New_Subp,
13431 Is_Abstract_Subprogram (E));
13433 -- Propagate to the full view interface entities associated
13434 -- with the partial view.
13436 elsif In_Private_Part (Current_Scope)
13437 and then Present (Alias (E))
13438 and then Alias (E) = Iface_Subp
13439 and then
13440 List_Containing (Parent (E)) /=
13441 Private_Declarations
13442 (Specification
13443 (Unit_Declaration_Node (Current_Scope)))
13444 then
13445 Append_Elmt (E, Primitive_Operations (Tagged_Type));
13446 end if;
13447 end if;
13449 Next_Elmt (Prim_Elmt);
13450 end loop;
13452 Next_Elmt (Iface_Elmt);
13453 end loop;
13454 end if;
13455 end Derive_Progenitor_Subprograms;
13457 -----------------------
13458 -- Derive_Subprogram --
13459 -----------------------
13461 procedure Derive_Subprogram
13462 (New_Subp : in out Entity_Id;
13463 Parent_Subp : Entity_Id;
13464 Derived_Type : Entity_Id;
13465 Parent_Type : Entity_Id;
13466 Actual_Subp : Entity_Id := Empty)
13468 Formal : Entity_Id;
13469 -- Formal parameter of parent primitive operation
13471 Formal_Of_Actual : Entity_Id;
13472 -- Formal parameter of actual operation, when the derivation is to
13473 -- create a renaming for a primitive operation of an actual in an
13474 -- instantiation.
13476 New_Formal : Entity_Id;
13477 -- Formal of inherited operation
13479 Visible_Subp : Entity_Id := Parent_Subp;
13481 function Is_Private_Overriding return Boolean;
13482 -- If Subp is a private overriding of a visible operation, the inherited
13483 -- operation derives from the overridden op (even though its body is the
13484 -- overriding one) and the inherited operation is visible now. See
13485 -- sem_disp to see the full details of the handling of the overridden
13486 -- subprogram, which is removed from the list of primitive operations of
13487 -- the type. The overridden subprogram is saved locally in Visible_Subp,
13488 -- and used to diagnose abstract operations that need overriding in the
13489 -- derived type.
13491 procedure Replace_Type (Id, New_Id : Entity_Id);
13492 -- When the type is an anonymous access type, create a new access type
13493 -- designating the derived type.
13495 procedure Set_Derived_Name;
13496 -- This procedure sets the appropriate Chars name for New_Subp. This
13497 -- is normally just a copy of the parent name. An exception arises for
13498 -- type support subprograms, where the name is changed to reflect the
13499 -- name of the derived type, e.g. if type foo is derived from type bar,
13500 -- then a procedure barDA is derived with a name fooDA.
13502 ---------------------------
13503 -- Is_Private_Overriding --
13504 ---------------------------
13506 function Is_Private_Overriding return Boolean is
13507 Prev : Entity_Id;
13509 begin
13510 -- If the parent is not a dispatching operation there is no
13511 -- need to investigate overridings
13513 if not Is_Dispatching_Operation (Parent_Subp) then
13514 return False;
13515 end if;
13517 -- The visible operation that is overridden is a homonym of the
13518 -- parent subprogram. We scan the homonym chain to find the one
13519 -- whose alias is the subprogram we are deriving.
13521 Prev := Current_Entity (Parent_Subp);
13522 while Present (Prev) loop
13523 if Ekind (Prev) = Ekind (Parent_Subp)
13524 and then Alias (Prev) = Parent_Subp
13525 and then Scope (Parent_Subp) = Scope (Prev)
13526 and then not Is_Hidden (Prev)
13527 then
13528 Visible_Subp := Prev;
13529 return True;
13530 end if;
13532 Prev := Homonym (Prev);
13533 end loop;
13535 return False;
13536 end Is_Private_Overriding;
13538 ------------------
13539 -- Replace_Type --
13540 ------------------
13542 procedure Replace_Type (Id, New_Id : Entity_Id) is
13543 Acc_Type : Entity_Id;
13544 Par : constant Node_Id := Parent (Derived_Type);
13546 begin
13547 -- When the type is an anonymous access type, create a new access
13548 -- type designating the derived type. This itype must be elaborated
13549 -- at the point of the derivation, not on subsequent calls that may
13550 -- be out of the proper scope for Gigi, so we insert a reference to
13551 -- it after the derivation.
13553 if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
13554 declare
13555 Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
13557 begin
13558 if Ekind (Desig_Typ) = E_Record_Type_With_Private
13559 and then Present (Full_View (Desig_Typ))
13560 and then not Is_Private_Type (Parent_Type)
13561 then
13562 Desig_Typ := Full_View (Desig_Typ);
13563 end if;
13565 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
13567 -- Ada 2005 (AI-251): Handle also derivations of abstract
13568 -- interface primitives.
13570 or else (Is_Interface (Desig_Typ)
13571 and then not Is_Class_Wide_Type (Desig_Typ))
13572 then
13573 Acc_Type := New_Copy (Etype (Id));
13574 Set_Etype (Acc_Type, Acc_Type);
13575 Set_Scope (Acc_Type, New_Subp);
13577 -- Compute size of anonymous access type
13579 if Is_Array_Type (Desig_Typ)
13580 and then not Is_Constrained (Desig_Typ)
13581 then
13582 Init_Size (Acc_Type, 2 * System_Address_Size);
13583 else
13584 Init_Size (Acc_Type, System_Address_Size);
13585 end if;
13587 Init_Alignment (Acc_Type);
13588 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
13590 Set_Etype (New_Id, Acc_Type);
13591 Set_Scope (New_Id, New_Subp);
13593 -- Create a reference to it
13594 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
13596 else
13597 Set_Etype (New_Id, Etype (Id));
13598 end if;
13599 end;
13601 elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
13602 or else
13603 (Ekind (Etype (Id)) = E_Record_Type_With_Private
13604 and then Present (Full_View (Etype (Id)))
13605 and then
13606 Base_Type (Full_View (Etype (Id))) = Base_Type (Parent_Type))
13607 then
13608 -- Constraint checks on formals are generated during expansion,
13609 -- based on the signature of the original subprogram. The bounds
13610 -- of the derived type are not relevant, and thus we can use
13611 -- the base type for the formals. However, the return type may be
13612 -- used in a context that requires that the proper static bounds
13613 -- be used (a case statement, for example) and for those cases
13614 -- we must use the derived type (first subtype), not its base.
13616 -- If the derived_type_definition has no constraints, we know that
13617 -- the derived type has the same constraints as the first subtype
13618 -- of the parent, and we can also use it rather than its base,
13619 -- which can lead to more efficient code.
13621 if Etype (Id) = Parent_Type then
13622 if Is_Scalar_Type (Parent_Type)
13623 and then
13624 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
13625 then
13626 Set_Etype (New_Id, Derived_Type);
13628 elsif Nkind (Par) = N_Full_Type_Declaration
13629 and then
13630 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
13631 and then
13632 Is_Entity_Name
13633 (Subtype_Indication (Type_Definition (Par)))
13634 then
13635 Set_Etype (New_Id, Derived_Type);
13637 else
13638 Set_Etype (New_Id, Base_Type (Derived_Type));
13639 end if;
13641 else
13642 Set_Etype (New_Id, Base_Type (Derived_Type));
13643 end if;
13645 else
13646 Set_Etype (New_Id, Etype (Id));
13647 end if;
13648 end Replace_Type;
13650 ----------------------
13651 -- Set_Derived_Name --
13652 ----------------------
13654 procedure Set_Derived_Name is
13655 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
13656 begin
13657 if Nm = TSS_Null then
13658 Set_Chars (New_Subp, Chars (Parent_Subp));
13659 else
13660 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
13661 end if;
13662 end Set_Derived_Name;
13664 -- Start of processing for Derive_Subprogram
13666 begin
13667 New_Subp :=
13668 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
13669 Set_Ekind (New_Subp, Ekind (Parent_Subp));
13670 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
13672 -- Check whether the inherited subprogram is a private operation that
13673 -- should be inherited but not yet made visible. Such subprograms can
13674 -- become visible at a later point (e.g., the private part of a public
13675 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13676 -- following predicate is true, then this is not such a private
13677 -- operation and the subprogram simply inherits the name of the parent
13678 -- subprogram. Note the special check for the names of controlled
13679 -- operations, which are currently exempted from being inherited with
13680 -- a hidden name because they must be findable for generation of
13681 -- implicit run-time calls.
13683 if not Is_Hidden (Parent_Subp)
13684 or else Is_Internal (Parent_Subp)
13685 or else Is_Private_Overriding
13686 or else Is_Internal_Name (Chars (Parent_Subp))
13687 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
13688 Name_Adjust,
13689 Name_Finalize)
13690 then
13691 Set_Derived_Name;
13693 -- An inherited dispatching equality will be overridden by an internally
13694 -- generated one, or by an explicit one, so preserve its name and thus
13695 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13696 -- private operation it may become invisible if the full view has
13697 -- progenitors, and the dispatch table will be malformed.
13698 -- We check that the type is limited to handle the anomalous declaration
13699 -- of Limited_Controlled, which is derived from a non-limited type, and
13700 -- which is handled specially elsewhere as well.
13702 elsif Chars (Parent_Subp) = Name_Op_Eq
13703 and then Is_Dispatching_Operation (Parent_Subp)
13704 and then Etype (Parent_Subp) = Standard_Boolean
13705 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
13706 and then
13707 Etype (First_Formal (Parent_Subp)) =
13708 Etype (Next_Formal (First_Formal (Parent_Subp)))
13709 then
13710 Set_Derived_Name;
13712 -- If parent is hidden, this can be a regular derivation if the
13713 -- parent is immediately visible in a non-instantiating context,
13714 -- or if we are in the private part of an instance. This test
13715 -- should still be refined ???
13717 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13718 -- operation as a non-visible operation in cases where the parent
13719 -- subprogram might not be visible now, but was visible within the
13720 -- original generic, so it would be wrong to make the inherited
13721 -- subprogram non-visible now. (Not clear if this test is fully
13722 -- correct; are there any cases where we should declare the inherited
13723 -- operation as not visible to avoid it being overridden, e.g., when
13724 -- the parent type is a generic actual with private primitives ???)
13726 -- (they should be treated the same as other private inherited
13727 -- subprograms, but it's not clear how to do this cleanly). ???
13729 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
13730 and then Is_Immediately_Visible (Parent_Subp)
13731 and then not In_Instance)
13732 or else In_Instance_Not_Visible
13733 then
13734 Set_Derived_Name;
13736 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13737 -- overrides an interface primitive because interface primitives
13738 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13740 elsif Ada_Version >= Ada_2005
13741 and then Is_Dispatching_Operation (Parent_Subp)
13742 and then Covers_Some_Interface (Parent_Subp)
13743 then
13744 Set_Derived_Name;
13746 -- Otherwise, the type is inheriting a private operation, so enter
13747 -- it with a special name so it can't be overridden.
13749 else
13750 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
13751 end if;
13753 Set_Parent (New_Subp, Parent (Derived_Type));
13755 if Present (Actual_Subp) then
13756 Replace_Type (Actual_Subp, New_Subp);
13757 else
13758 Replace_Type (Parent_Subp, New_Subp);
13759 end if;
13761 Conditional_Delay (New_Subp, Parent_Subp);
13763 -- If we are creating a renaming for a primitive operation of an
13764 -- actual of a generic derived type, we must examine the signature
13765 -- of the actual primitive, not that of the generic formal, which for
13766 -- example may be an interface. However the name and initial value
13767 -- of the inherited operation are those of the formal primitive.
13769 Formal := First_Formal (Parent_Subp);
13771 if Present (Actual_Subp) then
13772 Formal_Of_Actual := First_Formal (Actual_Subp);
13773 else
13774 Formal_Of_Actual := Empty;
13775 end if;
13777 while Present (Formal) loop
13778 New_Formal := New_Copy (Formal);
13780 -- Normally we do not go copying parents, but in the case of
13781 -- formals, we need to link up to the declaration (which is the
13782 -- parameter specification), and it is fine to link up to the
13783 -- original formal's parameter specification in this case.
13785 Set_Parent (New_Formal, Parent (Formal));
13786 Append_Entity (New_Formal, New_Subp);
13788 if Present (Formal_Of_Actual) then
13789 Replace_Type (Formal_Of_Actual, New_Formal);
13790 Next_Formal (Formal_Of_Actual);
13791 else
13792 Replace_Type (Formal, New_Formal);
13793 end if;
13795 Next_Formal (Formal);
13796 end loop;
13798 -- If this derivation corresponds to a tagged generic actual, then
13799 -- primitive operations rename those of the actual. Otherwise the
13800 -- primitive operations rename those of the parent type, If the parent
13801 -- renames an intrinsic operator, so does the new subprogram. We except
13802 -- concatenation, which is always properly typed, and does not get
13803 -- expanded as other intrinsic operations.
13805 if No (Actual_Subp) then
13806 if Is_Intrinsic_Subprogram (Parent_Subp) then
13807 Set_Is_Intrinsic_Subprogram (New_Subp);
13809 if Present (Alias (Parent_Subp))
13810 and then Chars (Parent_Subp) /= Name_Op_Concat
13811 then
13812 Set_Alias (New_Subp, Alias (Parent_Subp));
13813 else
13814 Set_Alias (New_Subp, Parent_Subp);
13815 end if;
13817 else
13818 Set_Alias (New_Subp, Parent_Subp);
13819 end if;
13821 else
13822 Set_Alias (New_Subp, Actual_Subp);
13823 end if;
13825 -- Derived subprograms of a tagged type must inherit the convention
13826 -- of the parent subprogram (a requirement of AI-117). Derived
13827 -- subprograms of untagged types simply get convention Ada by default.
13829 -- If the derived type is a tagged generic formal type with unknown
13830 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
13832 -- However, if the type is derived from a generic formal, the further
13833 -- inherited subprogram has the convention of the non-generic ancestor.
13834 -- Otherwise there would be no way to override the operation.
13835 -- (This is subject to forthcoming ARG discussions).
13837 if Is_Tagged_Type (Derived_Type) then
13838 if Is_Generic_Type (Derived_Type)
13839 and then Has_Unknown_Discriminants (Derived_Type)
13840 then
13841 Set_Convention (New_Subp, Convention_Intrinsic);
13843 else
13844 if Is_Generic_Type (Parent_Type)
13845 and then Has_Unknown_Discriminants (Parent_Type)
13846 then
13847 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
13848 else
13849 Set_Convention (New_Subp, Convention (Parent_Subp));
13850 end if;
13851 end if;
13852 end if;
13854 -- Predefined controlled operations retain their name even if the parent
13855 -- is hidden (see above), but they are not primitive operations if the
13856 -- ancestor is not visible, for example if the parent is a private
13857 -- extension completed with a controlled extension. Note that a full
13858 -- type that is controlled can break privacy: the flag Is_Controlled is
13859 -- set on both views of the type.
13861 if Is_Controlled (Parent_Type)
13862 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
13863 Name_Adjust,
13864 Name_Finalize)
13865 and then Is_Hidden (Parent_Subp)
13866 and then not Is_Visibly_Controlled (Parent_Type)
13867 then
13868 Set_Is_Hidden (New_Subp);
13869 end if;
13871 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
13872 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
13874 if Ekind (Parent_Subp) = E_Procedure then
13875 Set_Is_Valued_Procedure
13876 (New_Subp, Is_Valued_Procedure (Parent_Subp));
13877 else
13878 Set_Has_Controlling_Result
13879 (New_Subp, Has_Controlling_Result (Parent_Subp));
13880 end if;
13882 -- No_Return must be inherited properly. If this is overridden in the
13883 -- case of a dispatching operation, then a check is made in Sem_Disp
13884 -- that the overriding operation is also No_Return (no such check is
13885 -- required for the case of non-dispatching operation.
13887 Set_No_Return (New_Subp, No_Return (Parent_Subp));
13889 -- A derived function with a controlling result is abstract. If the
13890 -- Derived_Type is a nonabstract formal generic derived type, then
13891 -- inherited operations are not abstract: the required check is done at
13892 -- instantiation time. If the derivation is for a generic actual, the
13893 -- function is not abstract unless the actual is.
13895 if Is_Generic_Type (Derived_Type)
13896 and then not Is_Abstract_Type (Derived_Type)
13897 then
13898 null;
13900 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
13901 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
13903 elsif Ada_Version >= Ada_2005
13904 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13905 or else (Is_Tagged_Type (Derived_Type)
13906 and then Etype (New_Subp) = Derived_Type
13907 and then not Is_Null_Extension (Derived_Type))
13908 or else (Is_Tagged_Type (Derived_Type)
13909 and then Ekind (Etype (New_Subp)) =
13910 E_Anonymous_Access_Type
13911 and then Designated_Type (Etype (New_Subp)) =
13912 Derived_Type
13913 and then not Is_Null_Extension (Derived_Type)))
13914 and then No (Actual_Subp)
13915 then
13916 if not Is_Tagged_Type (Derived_Type)
13917 or else Is_Abstract_Type (Derived_Type)
13918 or else Is_Abstract_Subprogram (Alias (New_Subp))
13919 then
13920 Set_Is_Abstract_Subprogram (New_Subp);
13921 else
13922 Set_Requires_Overriding (New_Subp);
13923 end if;
13925 elsif Ada_Version < Ada_2005
13926 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13927 or else (Is_Tagged_Type (Derived_Type)
13928 and then Etype (New_Subp) = Derived_Type
13929 and then No (Actual_Subp)))
13930 then
13931 Set_Is_Abstract_Subprogram (New_Subp);
13933 -- AI05-0097 : an inherited operation that dispatches on result is
13934 -- abstract if the derived type is abstract, even if the parent type
13935 -- is concrete and the derived type is a null extension.
13937 elsif Has_Controlling_Result (Alias (New_Subp))
13938 and then Is_Abstract_Type (Etype (New_Subp))
13939 then
13940 Set_Is_Abstract_Subprogram (New_Subp);
13942 -- Finally, if the parent type is abstract we must verify that all
13943 -- inherited operations are either non-abstract or overridden, or that
13944 -- the derived type itself is abstract (this check is performed at the
13945 -- end of a package declaration, in Check_Abstract_Overriding). A
13946 -- private overriding in the parent type will not be visible in the
13947 -- derivation if we are not in an inner package or in a child unit of
13948 -- the parent type, in which case the abstractness of the inherited
13949 -- operation is carried to the new subprogram.
13951 elsif Is_Abstract_Type (Parent_Type)
13952 and then not In_Open_Scopes (Scope (Parent_Type))
13953 and then Is_Private_Overriding
13954 and then Is_Abstract_Subprogram (Visible_Subp)
13955 then
13956 if No (Actual_Subp) then
13957 Set_Alias (New_Subp, Visible_Subp);
13958 Set_Is_Abstract_Subprogram (New_Subp, True);
13960 else
13961 -- If this is a derivation for an instance of a formal derived
13962 -- type, abstractness comes from the primitive operation of the
13963 -- actual, not from the operation inherited from the ancestor.
13965 Set_Is_Abstract_Subprogram
13966 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
13967 end if;
13968 end if;
13970 New_Overloaded_Entity (New_Subp, Derived_Type);
13972 -- Check for case of a derived subprogram for the instantiation of a
13973 -- formal derived tagged type, if so mark the subprogram as dispatching
13974 -- and inherit the dispatching attributes of the actual subprogram. The
13975 -- derived subprogram is effectively renaming of the actual subprogram,
13976 -- so it needs to have the same attributes as the actual.
13978 if Present (Actual_Subp)
13979 and then Is_Dispatching_Operation (Actual_Subp)
13980 then
13981 Set_Is_Dispatching_Operation (New_Subp);
13983 if Present (DTC_Entity (Actual_Subp)) then
13984 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
13985 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
13986 end if;
13987 end if;
13989 -- Indicate that a derived subprogram does not require a body and that
13990 -- it does not require processing of default expressions.
13992 Set_Has_Completion (New_Subp);
13993 Set_Default_Expressions_Processed (New_Subp);
13995 if Ekind (New_Subp) = E_Function then
13996 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
13997 end if;
13998 end Derive_Subprogram;
14000 ------------------------
14001 -- Derive_Subprograms --
14002 ------------------------
14004 procedure Derive_Subprograms
14005 (Parent_Type : Entity_Id;
14006 Derived_Type : Entity_Id;
14007 Generic_Actual : Entity_Id := Empty)
14009 Op_List : constant Elist_Id :=
14010 Collect_Primitive_Operations (Parent_Type);
14012 function Check_Derived_Type return Boolean;
14013 -- Check that all the entities derived from Parent_Type are found in
14014 -- the list of primitives of Derived_Type exactly in the same order.
14016 procedure Derive_Interface_Subprogram
14017 (New_Subp : in out Entity_Id;
14018 Subp : Entity_Id;
14019 Actual_Subp : Entity_Id);
14020 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14021 -- (which is an interface primitive). If Generic_Actual is present then
14022 -- Actual_Subp is the actual subprogram corresponding with the generic
14023 -- subprogram Subp.
14025 function Check_Derived_Type return Boolean is
14026 E : Entity_Id;
14027 Elmt : Elmt_Id;
14028 List : Elist_Id;
14029 New_Subp : Entity_Id;
14030 Op_Elmt : Elmt_Id;
14031 Subp : Entity_Id;
14033 begin
14034 -- Traverse list of entities in the current scope searching for
14035 -- an incomplete type whose full-view is derived type
14037 E := First_Entity (Scope (Derived_Type));
14038 while Present (E) and then E /= Derived_Type loop
14039 if Ekind (E) = E_Incomplete_Type
14040 and then Present (Full_View (E))
14041 and then Full_View (E) = Derived_Type
14042 then
14043 -- Disable this test if Derived_Type completes an incomplete
14044 -- type because in such case more primitives can be added
14045 -- later to the list of primitives of Derived_Type by routine
14046 -- Process_Incomplete_Dependents
14048 return True;
14049 end if;
14051 E := Next_Entity (E);
14052 end loop;
14054 List := Collect_Primitive_Operations (Derived_Type);
14055 Elmt := First_Elmt (List);
14057 Op_Elmt := First_Elmt (Op_List);
14058 while Present (Op_Elmt) loop
14059 Subp := Node (Op_Elmt);
14060 New_Subp := Node (Elmt);
14062 -- At this early stage Derived_Type has no entities with attribute
14063 -- Interface_Alias. In addition, such primitives are always
14064 -- located at the end of the list of primitives of Parent_Type.
14065 -- Therefore, if found we can safely stop processing pending
14066 -- entities.
14068 exit when Present (Interface_Alias (Subp));
14070 -- Handle hidden entities
14072 if not Is_Predefined_Dispatching_Operation (Subp)
14073 and then Is_Hidden (Subp)
14074 then
14075 if Present (New_Subp)
14076 and then Primitive_Names_Match (Subp, New_Subp)
14077 then
14078 Next_Elmt (Elmt);
14079 end if;
14081 else
14082 if not Present (New_Subp)
14083 or else Ekind (Subp) /= Ekind (New_Subp)
14084 or else not Primitive_Names_Match (Subp, New_Subp)
14085 then
14086 return False;
14087 end if;
14089 Next_Elmt (Elmt);
14090 end if;
14092 Next_Elmt (Op_Elmt);
14093 end loop;
14095 return True;
14096 end Check_Derived_Type;
14098 ---------------------------------
14099 -- Derive_Interface_Subprogram --
14100 ---------------------------------
14102 procedure Derive_Interface_Subprogram
14103 (New_Subp : in out Entity_Id;
14104 Subp : Entity_Id;
14105 Actual_Subp : Entity_Id)
14107 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14108 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14110 begin
14111 pragma Assert (Is_Interface (Iface_Type));
14113 Derive_Subprogram
14114 (New_Subp => New_Subp,
14115 Parent_Subp => Iface_Subp,
14116 Derived_Type => Derived_Type,
14117 Parent_Type => Iface_Type,
14118 Actual_Subp => Actual_Subp);
14120 -- Given that this new interface entity corresponds with a primitive
14121 -- of the parent that was not overridden we must leave it associated
14122 -- with its parent primitive to ensure that it will share the same
14123 -- dispatch table slot when overridden.
14125 if No (Actual_Subp) then
14126 Set_Alias (New_Subp, Subp);
14128 -- For instantiations this is not needed since the previous call to
14129 -- Derive_Subprogram leaves the entity well decorated.
14131 else
14132 pragma Assert (Alias (New_Subp) = Actual_Subp);
14133 null;
14134 end if;
14135 end Derive_Interface_Subprogram;
14137 -- Local variables
14139 Alias_Subp : Entity_Id;
14140 Act_List : Elist_Id;
14141 Act_Elmt : Elmt_Id;
14142 Act_Subp : Entity_Id := Empty;
14143 Elmt : Elmt_Id;
14144 Need_Search : Boolean := False;
14145 New_Subp : Entity_Id := Empty;
14146 Parent_Base : Entity_Id;
14147 Subp : Entity_Id;
14149 -- Start of processing for Derive_Subprograms
14151 begin
14152 if Ekind (Parent_Type) = E_Record_Type_With_Private
14153 and then Has_Discriminants (Parent_Type)
14154 and then Present (Full_View (Parent_Type))
14155 then
14156 Parent_Base := Full_View (Parent_Type);
14157 else
14158 Parent_Base := Parent_Type;
14159 end if;
14161 if Present (Generic_Actual) then
14162 Act_List := Collect_Primitive_Operations (Generic_Actual);
14163 Act_Elmt := First_Elmt (Act_List);
14164 else
14165 Act_List := No_Elist;
14166 Act_Elmt := No_Elmt;
14167 end if;
14169 -- Derive primitives inherited from the parent. Note that if the generic
14170 -- actual is present, this is not really a type derivation, it is a
14171 -- completion within an instance.
14173 -- Case 1: Derived_Type does not implement interfaces
14175 if not Is_Tagged_Type (Derived_Type)
14176 or else (not Has_Interfaces (Derived_Type)
14177 and then not (Present (Generic_Actual)
14178 and then Has_Interfaces (Generic_Actual)))
14179 then
14180 Elmt := First_Elmt (Op_List);
14181 while Present (Elmt) loop
14182 Subp := Node (Elmt);
14184 -- Literals are derived earlier in the process of building the
14185 -- derived type, and are skipped here.
14187 if Ekind (Subp) = E_Enumeration_Literal then
14188 null;
14190 -- The actual is a direct descendant and the common primitive
14191 -- operations appear in the same order.
14193 -- If the generic parent type is present, the derived type is an
14194 -- instance of a formal derived type, and within the instance its
14195 -- operations are those of the actual. We derive from the formal
14196 -- type but make the inherited operations aliases of the
14197 -- corresponding operations of the actual.
14199 else
14200 pragma Assert (No (Node (Act_Elmt))
14201 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
14202 and then
14203 Type_Conformant
14204 (Subp, Node (Act_Elmt),
14205 Skip_Controlling_Formals => True)));
14207 Derive_Subprogram
14208 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
14210 if Present (Act_Elmt) then
14211 Next_Elmt (Act_Elmt);
14212 end if;
14213 end if;
14215 Next_Elmt (Elmt);
14216 end loop;
14218 -- Case 2: Derived_Type implements interfaces
14220 else
14221 -- If the parent type has no predefined primitives we remove
14222 -- predefined primitives from the list of primitives of generic
14223 -- actual to simplify the complexity of this algorithm.
14225 if Present (Generic_Actual) then
14226 declare
14227 Has_Predefined_Primitives : Boolean := False;
14229 begin
14230 -- Check if the parent type has predefined primitives
14232 Elmt := First_Elmt (Op_List);
14233 while Present (Elmt) loop
14234 Subp := Node (Elmt);
14236 if Is_Predefined_Dispatching_Operation (Subp)
14237 and then not Comes_From_Source (Ultimate_Alias (Subp))
14238 then
14239 Has_Predefined_Primitives := True;
14240 exit;
14241 end if;
14243 Next_Elmt (Elmt);
14244 end loop;
14246 -- Remove predefined primitives of Generic_Actual. We must use
14247 -- an auxiliary list because in case of tagged types the value
14248 -- returned by Collect_Primitive_Operations is the value stored
14249 -- in its Primitive_Operations attribute (and we don't want to
14250 -- modify its current contents).
14252 if not Has_Predefined_Primitives then
14253 declare
14254 Aux_List : constant Elist_Id := New_Elmt_List;
14256 begin
14257 Elmt := First_Elmt (Act_List);
14258 while Present (Elmt) loop
14259 Subp := Node (Elmt);
14261 if not Is_Predefined_Dispatching_Operation (Subp)
14262 or else Comes_From_Source (Subp)
14263 then
14264 Append_Elmt (Subp, Aux_List);
14265 end if;
14267 Next_Elmt (Elmt);
14268 end loop;
14270 Act_List := Aux_List;
14271 end;
14272 end if;
14274 Act_Elmt := First_Elmt (Act_List);
14275 Act_Subp := Node (Act_Elmt);
14276 end;
14277 end if;
14279 -- Stage 1: If the generic actual is not present we derive the
14280 -- primitives inherited from the parent type. If the generic parent
14281 -- type is present, the derived type is an instance of a formal
14282 -- derived type, and within the instance its operations are those of
14283 -- the actual. We derive from the formal type but make the inherited
14284 -- operations aliases of the corresponding operations of the actual.
14286 Elmt := First_Elmt (Op_List);
14287 while Present (Elmt) loop
14288 Subp := Node (Elmt);
14289 Alias_Subp := Ultimate_Alias (Subp);
14291 -- Do not derive internal entities of the parent that link
14292 -- interface primitives with their covering primitive. These
14293 -- entities will be added to this type when frozen.
14295 if Present (Interface_Alias (Subp)) then
14296 goto Continue;
14297 end if;
14299 -- If the generic actual is present find the corresponding
14300 -- operation in the generic actual. If the parent type is a
14301 -- direct ancestor of the derived type then, even if it is an
14302 -- interface, the operations are inherited from the primary
14303 -- dispatch table and are in the proper order. If we detect here
14304 -- that primitives are not in the same order we traverse the list
14305 -- of primitive operations of the actual to find the one that
14306 -- implements the interface primitive.
14308 if Need_Search
14309 or else
14310 (Present (Generic_Actual)
14311 and then Present (Act_Subp)
14312 and then not
14313 (Primitive_Names_Match (Subp, Act_Subp)
14314 and then
14315 Type_Conformant (Subp, Act_Subp,
14316 Skip_Controlling_Formals => True)))
14317 then
14318 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
14319 Use_Full_View => True));
14321 -- Remember that we need searching for all pending primitives
14323 Need_Search := True;
14325 -- Handle entities associated with interface primitives
14327 if Present (Alias_Subp)
14328 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14329 and then not Is_Predefined_Dispatching_Operation (Subp)
14330 then
14331 -- Search for the primitive in the homonym chain
14333 Act_Subp :=
14334 Find_Primitive_Covering_Interface
14335 (Tagged_Type => Generic_Actual,
14336 Iface_Prim => Alias_Subp);
14338 -- Previous search may not locate primitives covering
14339 -- interfaces defined in generics units or instantiations.
14340 -- (it fails if the covering primitive has formals whose
14341 -- type is also defined in generics or instantiations).
14342 -- In such case we search in the list of primitives of the
14343 -- generic actual for the internal entity that links the
14344 -- interface primitive and the covering primitive.
14346 if No (Act_Subp)
14347 and then Is_Generic_Type (Parent_Type)
14348 then
14349 -- This code has been designed to handle only generic
14350 -- formals that implement interfaces that are defined
14351 -- in a generic unit or instantiation. If this code is
14352 -- needed for other cases we must review it because
14353 -- (given that it relies on Original_Location to locate
14354 -- the primitive of Generic_Actual that covers the
14355 -- interface) it could leave linked through attribute
14356 -- Alias entities of unrelated instantiations).
14358 pragma Assert
14359 (Is_Generic_Unit
14360 (Scope (Find_Dispatching_Type (Alias_Subp)))
14361 or else
14362 Instantiation_Depth
14363 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
14365 declare
14366 Iface_Prim_Loc : constant Source_Ptr :=
14367 Original_Location (Sloc (Alias_Subp));
14369 Elmt : Elmt_Id;
14370 Prim : Entity_Id;
14372 begin
14373 Elmt :=
14374 First_Elmt (Primitive_Operations (Generic_Actual));
14376 Search : while Present (Elmt) loop
14377 Prim := Node (Elmt);
14379 if Present (Interface_Alias (Prim))
14380 and then Original_Location
14381 (Sloc (Interface_Alias (Prim))) =
14382 Iface_Prim_Loc
14383 then
14384 Act_Subp := Alias (Prim);
14385 exit Search;
14386 end if;
14388 Next_Elmt (Elmt);
14389 end loop Search;
14390 end;
14391 end if;
14393 pragma Assert (Present (Act_Subp)
14394 or else Is_Abstract_Type (Generic_Actual)
14395 or else Serious_Errors_Detected > 0);
14397 -- Handle predefined primitives plus the rest of user-defined
14398 -- primitives
14400 else
14401 Act_Elmt := First_Elmt (Act_List);
14402 while Present (Act_Elmt) loop
14403 Act_Subp := Node (Act_Elmt);
14405 exit when Primitive_Names_Match (Subp, Act_Subp)
14406 and then Type_Conformant
14407 (Subp, Act_Subp,
14408 Skip_Controlling_Formals => True)
14409 and then No (Interface_Alias (Act_Subp));
14411 Next_Elmt (Act_Elmt);
14412 end loop;
14414 if No (Act_Elmt) then
14415 Act_Subp := Empty;
14416 end if;
14417 end if;
14418 end if;
14420 -- Case 1: If the parent is a limited interface then it has the
14421 -- predefined primitives of synchronized interfaces. However, the
14422 -- actual type may be a non-limited type and hence it does not
14423 -- have such primitives.
14425 if Present (Generic_Actual)
14426 and then not Present (Act_Subp)
14427 and then Is_Limited_Interface (Parent_Base)
14428 and then Is_Predefined_Interface_Primitive (Subp)
14429 then
14430 null;
14432 -- Case 2: Inherit entities associated with interfaces that were
14433 -- not covered by the parent type. We exclude here null interface
14434 -- primitives because they do not need special management.
14436 -- We also exclude interface operations that are renamings. If the
14437 -- subprogram is an explicit renaming of an interface primitive,
14438 -- it is a regular primitive operation, and the presence of its
14439 -- alias is not relevant: it has to be derived like any other
14440 -- primitive.
14442 elsif Present (Alias (Subp))
14443 and then Nkind (Unit_Declaration_Node (Subp)) /=
14444 N_Subprogram_Renaming_Declaration
14445 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14446 and then not
14447 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
14448 and then Null_Present (Parent (Alias_Subp)))
14449 then
14450 -- If this is an abstract private type then we transfer the
14451 -- derivation of the interface primitive from the partial view
14452 -- to the full view. This is safe because all the interfaces
14453 -- must be visible in the partial view. Done to avoid adding
14454 -- a new interface derivation to the private part of the
14455 -- enclosing package; otherwise this new derivation would be
14456 -- decorated as hidden when the analysis of the enclosing
14457 -- package completes.
14459 if Is_Abstract_Type (Derived_Type)
14460 and then In_Private_Part (Current_Scope)
14461 and then Has_Private_Declaration (Derived_Type)
14462 then
14463 declare
14464 Partial_View : Entity_Id;
14465 Elmt : Elmt_Id;
14466 Ent : Entity_Id;
14468 begin
14469 Partial_View := First_Entity (Current_Scope);
14470 loop
14471 exit when No (Partial_View)
14472 or else (Has_Private_Declaration (Partial_View)
14473 and then
14474 Full_View (Partial_View) = Derived_Type);
14476 Next_Entity (Partial_View);
14477 end loop;
14479 -- If the partial view was not found then the source code
14480 -- has errors and the derivation is not needed.
14482 if Present (Partial_View) then
14483 Elmt :=
14484 First_Elmt (Primitive_Operations (Partial_View));
14485 while Present (Elmt) loop
14486 Ent := Node (Elmt);
14488 if Present (Alias (Ent))
14489 and then Ultimate_Alias (Ent) = Alias (Subp)
14490 then
14491 Append_Elmt
14492 (Ent, Primitive_Operations (Derived_Type));
14493 exit;
14494 end if;
14496 Next_Elmt (Elmt);
14497 end loop;
14499 -- If the interface primitive was not found in the
14500 -- partial view then this interface primitive was
14501 -- overridden. We add a derivation to activate in
14502 -- Derive_Progenitor_Subprograms the machinery to
14503 -- search for it.
14505 if No (Elmt) then
14506 Derive_Interface_Subprogram
14507 (New_Subp => New_Subp,
14508 Subp => Subp,
14509 Actual_Subp => Act_Subp);
14510 end if;
14511 end if;
14512 end;
14513 else
14514 Derive_Interface_Subprogram
14515 (New_Subp => New_Subp,
14516 Subp => Subp,
14517 Actual_Subp => Act_Subp);
14518 end if;
14520 -- Case 3: Common derivation
14522 else
14523 Derive_Subprogram
14524 (New_Subp => New_Subp,
14525 Parent_Subp => Subp,
14526 Derived_Type => Derived_Type,
14527 Parent_Type => Parent_Base,
14528 Actual_Subp => Act_Subp);
14529 end if;
14531 -- No need to update Act_Elm if we must search for the
14532 -- corresponding operation in the generic actual
14534 if not Need_Search
14535 and then Present (Act_Elmt)
14536 then
14537 Next_Elmt (Act_Elmt);
14538 Act_Subp := Node (Act_Elmt);
14539 end if;
14541 <<Continue>>
14542 Next_Elmt (Elmt);
14543 end loop;
14545 -- Inherit additional operations from progenitors. If the derived
14546 -- type is a generic actual, there are not new primitive operations
14547 -- for the type because it has those of the actual, and therefore
14548 -- nothing needs to be done. The renamings generated above are not
14549 -- primitive operations, and their purpose is simply to make the
14550 -- proper operations visible within an instantiation.
14552 if No (Generic_Actual) then
14553 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
14554 end if;
14555 end if;
14557 -- Final check: Direct descendants must have their primitives in the
14558 -- same order. We exclude from this test untagged types and instances
14559 -- of formal derived types. We skip this test if we have already
14560 -- reported serious errors in the sources.
14562 pragma Assert (not Is_Tagged_Type (Derived_Type)
14563 or else Present (Generic_Actual)
14564 or else Serious_Errors_Detected > 0
14565 or else Check_Derived_Type);
14566 end Derive_Subprograms;
14568 --------------------------------
14569 -- Derived_Standard_Character --
14570 --------------------------------
14572 procedure Derived_Standard_Character
14573 (N : Node_Id;
14574 Parent_Type : Entity_Id;
14575 Derived_Type : Entity_Id)
14577 Loc : constant Source_Ptr := Sloc (N);
14578 Def : constant Node_Id := Type_Definition (N);
14579 Indic : constant Node_Id := Subtype_Indication (Def);
14580 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
14581 Implicit_Base : constant Entity_Id :=
14582 Create_Itype
14583 (E_Enumeration_Type, N, Derived_Type, 'B');
14585 Lo : Node_Id;
14586 Hi : Node_Id;
14588 begin
14589 Discard_Node (Process_Subtype (Indic, N));
14591 Set_Etype (Implicit_Base, Parent_Base);
14592 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
14593 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
14595 Set_Is_Character_Type (Implicit_Base, True);
14596 Set_Has_Delayed_Freeze (Implicit_Base);
14598 -- The bounds of the implicit base are the bounds of the parent base.
14599 -- Note that their type is the parent base.
14601 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
14602 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
14604 Set_Scalar_Range (Implicit_Base,
14605 Make_Range (Loc,
14606 Low_Bound => Lo,
14607 High_Bound => Hi));
14609 Conditional_Delay (Derived_Type, Parent_Type);
14611 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
14612 Set_Etype (Derived_Type, Implicit_Base);
14613 Set_Size_Info (Derived_Type, Parent_Type);
14615 if Unknown_RM_Size (Derived_Type) then
14616 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
14617 end if;
14619 Set_Is_Character_Type (Derived_Type, True);
14621 if Nkind (Indic) /= N_Subtype_Indication then
14623 -- If no explicit constraint, the bounds are those
14624 -- of the parent type.
14626 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
14627 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
14628 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
14629 end if;
14631 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
14633 -- Because the implicit base is used in the conversion of the bounds, we
14634 -- have to freeze it now. This is similar to what is done for numeric
14635 -- types, and it equally suspicious, but otherwise a non-static bound
14636 -- will have a reference to an unfrozen type, which is rejected by Gigi
14637 -- (???). This requires specific care for definition of stream
14638 -- attributes. For details, see comments at the end of
14639 -- Build_Derived_Numeric_Type.
14641 Freeze_Before (N, Implicit_Base);
14642 end Derived_Standard_Character;
14644 ------------------------------
14645 -- Derived_Type_Declaration --
14646 ------------------------------
14648 procedure Derived_Type_Declaration
14649 (T : Entity_Id;
14650 N : Node_Id;
14651 Is_Completion : Boolean)
14653 Parent_Type : Entity_Id;
14655 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
14656 -- Check whether the parent type is a generic formal, or derives
14657 -- directly or indirectly from one.
14659 ------------------------
14660 -- Comes_From_Generic --
14661 ------------------------
14663 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
14664 begin
14665 if Is_Generic_Type (Typ) then
14666 return True;
14668 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
14669 return True;
14671 elsif Is_Private_Type (Typ)
14672 and then Present (Full_View (Typ))
14673 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
14674 then
14675 return True;
14677 elsif Is_Generic_Actual_Type (Typ) then
14678 return True;
14680 else
14681 return False;
14682 end if;
14683 end Comes_From_Generic;
14685 -- Local variables
14687 Def : constant Node_Id := Type_Definition (N);
14688 Iface_Def : Node_Id;
14689 Indic : constant Node_Id := Subtype_Indication (Def);
14690 Extension : constant Node_Id := Record_Extension_Part (Def);
14691 Parent_Node : Node_Id;
14692 Taggd : Boolean;
14694 -- Start of processing for Derived_Type_Declaration
14696 begin
14697 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
14699 -- Ada 2005 (AI-251): In case of interface derivation check that the
14700 -- parent is also an interface.
14702 if Interface_Present (Def) then
14703 Check_SPARK_Restriction ("interface is not allowed", Def);
14705 if not Is_Interface (Parent_Type) then
14706 Diagnose_Interface (Indic, Parent_Type);
14708 else
14709 Parent_Node := Parent (Base_Type (Parent_Type));
14710 Iface_Def := Type_Definition (Parent_Node);
14712 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14713 -- other limited interfaces.
14715 if Limited_Present (Def) then
14716 if Limited_Present (Iface_Def) then
14717 null;
14719 elsif Protected_Present (Iface_Def) then
14720 Error_Msg_NE
14721 ("descendant of& must be declared"
14722 & " as a protected interface",
14723 N, Parent_Type);
14725 elsif Synchronized_Present (Iface_Def) then
14726 Error_Msg_NE
14727 ("descendant of& must be declared"
14728 & " as a synchronized interface",
14729 N, Parent_Type);
14731 elsif Task_Present (Iface_Def) then
14732 Error_Msg_NE
14733 ("descendant of& must be declared as a task interface",
14734 N, Parent_Type);
14736 else
14737 Error_Msg_N
14738 ("(Ada 2005) limited interface cannot "
14739 & "inherit from non-limited interface", Indic);
14740 end if;
14742 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14743 -- from non-limited or limited interfaces.
14745 elsif not Protected_Present (Def)
14746 and then not Synchronized_Present (Def)
14747 and then not Task_Present (Def)
14748 then
14749 if Limited_Present (Iface_Def) then
14750 null;
14752 elsif Protected_Present (Iface_Def) then
14753 Error_Msg_NE
14754 ("descendant of& must be declared"
14755 & " as a protected interface",
14756 N, Parent_Type);
14758 elsif Synchronized_Present (Iface_Def) then
14759 Error_Msg_NE
14760 ("descendant of& must be declared"
14761 & " as a synchronized interface",
14762 N, Parent_Type);
14764 elsif Task_Present (Iface_Def) then
14765 Error_Msg_NE
14766 ("descendant of& must be declared as a task interface",
14767 N, Parent_Type);
14768 else
14769 null;
14770 end if;
14771 end if;
14772 end if;
14773 end if;
14775 if Is_Tagged_Type (Parent_Type)
14776 and then Is_Concurrent_Type (Parent_Type)
14777 and then not Is_Interface (Parent_Type)
14778 then
14779 Error_Msg_N
14780 ("parent type of a record extension cannot be "
14781 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
14782 Set_Etype (T, Any_Type);
14783 return;
14784 end if;
14786 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14787 -- interfaces
14789 if Is_Tagged_Type (Parent_Type)
14790 and then Is_Non_Empty_List (Interface_List (Def))
14791 then
14792 declare
14793 Intf : Node_Id;
14794 T : Entity_Id;
14796 begin
14797 Intf := First (Interface_List (Def));
14798 while Present (Intf) loop
14799 T := Find_Type_Of_Subtype_Indic (Intf);
14801 if not Is_Interface (T) then
14802 Diagnose_Interface (Intf, T);
14804 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14805 -- a limited type from having a nonlimited progenitor.
14807 elsif (Limited_Present (Def)
14808 or else (not Is_Interface (Parent_Type)
14809 and then Is_Limited_Type (Parent_Type)))
14810 and then not Is_Limited_Interface (T)
14811 then
14812 Error_Msg_NE
14813 ("progenitor interface& of limited type must be limited",
14814 N, T);
14815 end if;
14817 Next (Intf);
14818 end loop;
14819 end;
14820 end if;
14822 if Parent_Type = Any_Type
14823 or else Etype (Parent_Type) = Any_Type
14824 or else (Is_Class_Wide_Type (Parent_Type)
14825 and then Etype (Parent_Type) = T)
14826 then
14827 -- If Parent_Type is undefined or illegal, make new type into a
14828 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14829 -- errors. If this is a self-definition, emit error now.
14831 if T = Parent_Type
14832 or else T = Etype (Parent_Type)
14833 then
14834 Error_Msg_N ("type cannot be used in its own definition", Indic);
14835 end if;
14837 Set_Ekind (T, Ekind (Parent_Type));
14838 Set_Etype (T, Any_Type);
14839 Set_Scalar_Range (T, Scalar_Range (Any_Type));
14841 if Is_Tagged_Type (T)
14842 and then Is_Record_Type (T)
14843 then
14844 Set_Direct_Primitive_Operations (T, New_Elmt_List);
14845 end if;
14847 return;
14848 end if;
14850 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14851 -- an interface is special because the list of interfaces in the full
14852 -- view can be given in any order. For example:
14854 -- type A is interface;
14855 -- type B is interface and A;
14856 -- type D is new B with private;
14857 -- private
14858 -- type D is new A and B with null record; -- 1 --
14860 -- In this case we perform the following transformation of -1-:
14862 -- type D is new B and A with null record;
14864 -- If the parent of the full-view covers the parent of the partial-view
14865 -- we have two possible cases:
14867 -- 1) They have the same parent
14868 -- 2) The parent of the full-view implements some further interfaces
14870 -- In both cases we do not need to perform the transformation. In the
14871 -- first case the source program is correct and the transformation is
14872 -- not needed; in the second case the source program does not fulfill
14873 -- the no-hidden interfaces rule (AI-396) and the error will be reported
14874 -- later.
14876 -- This transformation not only simplifies the rest of the analysis of
14877 -- this type declaration but also simplifies the correct generation of
14878 -- the object layout to the expander.
14880 if In_Private_Part (Current_Scope)
14881 and then Is_Interface (Parent_Type)
14882 then
14883 declare
14884 Iface : Node_Id;
14885 Partial_View : Entity_Id;
14886 Partial_View_Parent : Entity_Id;
14887 New_Iface : Node_Id;
14889 begin
14890 -- Look for the associated private type declaration
14892 Partial_View := First_Entity (Current_Scope);
14893 loop
14894 exit when No (Partial_View)
14895 or else (Has_Private_Declaration (Partial_View)
14896 and then Full_View (Partial_View) = T);
14898 Next_Entity (Partial_View);
14899 end loop;
14901 -- If the partial view was not found then the source code has
14902 -- errors and the transformation is not needed.
14904 if Present (Partial_View) then
14905 Partial_View_Parent := Etype (Partial_View);
14907 -- If the parent of the full-view covers the parent of the
14908 -- partial-view we have nothing else to do.
14910 if Interface_Present_In_Ancestor
14911 (Parent_Type, Partial_View_Parent)
14912 then
14913 null;
14915 -- Traverse the list of interfaces of the full-view to look
14916 -- for the parent of the partial-view and perform the tree
14917 -- transformation.
14919 else
14920 Iface := First (Interface_List (Def));
14921 while Present (Iface) loop
14922 if Etype (Iface) = Etype (Partial_View) then
14923 Rewrite (Subtype_Indication (Def),
14924 New_Copy (Subtype_Indication
14925 (Parent (Partial_View))));
14927 New_Iface :=
14928 Make_Identifier (Sloc (N), Chars (Parent_Type));
14929 Append (New_Iface, Interface_List (Def));
14931 -- Analyze the transformed code
14933 Derived_Type_Declaration (T, N, Is_Completion);
14934 return;
14935 end if;
14937 Next (Iface);
14938 end loop;
14939 end if;
14940 end if;
14941 end;
14942 end if;
14944 -- Only composite types other than array types are allowed to have
14945 -- discriminants. In SPARK, no types are allowed to have discriminants.
14947 if Present (Discriminant_Specifications (N)) then
14948 if (Is_Elementary_Type (Parent_Type)
14949 or else Is_Array_Type (Parent_Type))
14950 and then not Error_Posted (N)
14951 then
14952 Error_Msg_N
14953 ("elementary or array type cannot have discriminants",
14954 Defining_Identifier (First (Discriminant_Specifications (N))));
14955 Set_Has_Discriminants (T, False);
14956 else
14957 Check_SPARK_Restriction ("discriminant type is not allowed", N);
14958 end if;
14959 end if;
14961 -- In Ada 83, a derived type defined in a package specification cannot
14962 -- be used for further derivation until the end of its visible part.
14963 -- Note that derivation in the private part of the package is allowed.
14965 if Ada_Version = Ada_83
14966 and then Is_Derived_Type (Parent_Type)
14967 and then In_Visible_Part (Scope (Parent_Type))
14968 then
14969 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
14970 Error_Msg_N
14971 ("(Ada 83): premature use of type for derivation", Indic);
14972 end if;
14973 end if;
14975 -- Check for early use of incomplete or private type
14977 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
14978 Error_Msg_N ("premature derivation of incomplete type", Indic);
14979 return;
14981 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
14982 and then not Comes_From_Generic (Parent_Type))
14983 or else Has_Private_Component (Parent_Type)
14984 then
14985 -- The ancestor type of a formal type can be incomplete, in which
14986 -- case only the operations of the partial view are available in the
14987 -- generic. Subsequent checks may be required when the full view is
14988 -- analyzed to verify that a derivation from a tagged type has an
14989 -- extension.
14991 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
14992 null;
14994 elsif No (Underlying_Type (Parent_Type))
14995 or else Has_Private_Component (Parent_Type)
14996 then
14997 Error_Msg_N
14998 ("premature derivation of derived or private type", Indic);
15000 -- Flag the type itself as being in error, this prevents some
15001 -- nasty problems with subsequent uses of the malformed type.
15003 Set_Error_Posted (T);
15005 -- Check that within the immediate scope of an untagged partial
15006 -- view it's illegal to derive from the partial view if the
15007 -- full view is tagged. (7.3(7))
15009 -- We verify that the Parent_Type is a partial view by checking
15010 -- that it is not a Full_Type_Declaration (i.e. a private type or
15011 -- private extension declaration), to distinguish a partial view
15012 -- from a derivation from a private type which also appears as
15013 -- E_Private_Type. If the parent base type is not declared in an
15014 -- enclosing scope there is no need to check.
15016 elsif Present (Full_View (Parent_Type))
15017 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15018 and then not Is_Tagged_Type (Parent_Type)
15019 and then Is_Tagged_Type (Full_View (Parent_Type))
15020 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15021 then
15022 Error_Msg_N
15023 ("premature derivation from type with tagged full view",
15024 Indic);
15025 end if;
15026 end if;
15028 -- Check that form of derivation is appropriate
15030 Taggd := Is_Tagged_Type (Parent_Type);
15032 -- Perhaps the parent type should be changed to the class-wide type's
15033 -- specific type in this case to prevent cascading errors ???
15035 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15036 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15037 return;
15038 end if;
15040 if Present (Extension) and then not Taggd then
15041 Error_Msg_N
15042 ("type derived from untagged type cannot have extension", Indic);
15044 elsif No (Extension) and then Taggd then
15046 -- If this declaration is within a private part (or body) of a
15047 -- generic instantiation then the derivation is allowed (the parent
15048 -- type can only appear tagged in this case if it's a generic actual
15049 -- type, since it would otherwise have been rejected in the analysis
15050 -- of the generic template).
15052 if not Is_Generic_Actual_Type (Parent_Type)
15053 or else In_Visible_Part (Scope (Parent_Type))
15054 then
15055 if Is_Class_Wide_Type (Parent_Type) then
15056 Error_Msg_N
15057 ("parent type must not be a class-wide type", Indic);
15059 -- Use specific type to prevent cascaded errors.
15061 Parent_Type := Etype (Parent_Type);
15063 else
15064 Error_Msg_N
15065 ("type derived from tagged type must have extension", Indic);
15066 end if;
15067 end if;
15068 end if;
15070 -- AI-443: Synchronized formal derived types require a private
15071 -- extension. There is no point in checking the ancestor type or
15072 -- the progenitors since the construct is wrong to begin with.
15074 if Ada_Version >= Ada_2005
15075 and then Is_Generic_Type (T)
15076 and then Present (Original_Node (N))
15077 then
15078 declare
15079 Decl : constant Node_Id := Original_Node (N);
15081 begin
15082 if Nkind (Decl) = N_Formal_Type_Declaration
15083 and then Nkind (Formal_Type_Definition (Decl)) =
15084 N_Formal_Derived_Type_Definition
15085 and then Synchronized_Present (Formal_Type_Definition (Decl))
15086 and then No (Extension)
15088 -- Avoid emitting a duplicate error message
15090 and then not Error_Posted (Indic)
15091 then
15092 Error_Msg_N
15093 ("synchronized derived type must have extension", N);
15094 end if;
15095 end;
15096 end if;
15098 if Null_Exclusion_Present (Def)
15099 and then not Is_Access_Type (Parent_Type)
15100 then
15101 Error_Msg_N ("null exclusion can only apply to an access type", N);
15102 end if;
15104 -- Avoid deriving parent primitives of underlying record views
15106 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15107 Derive_Subps => not Is_Underlying_Record_View (T));
15109 -- AI-419: The parent type of an explicitly limited derived type must
15110 -- be a limited type or a limited interface.
15112 if Limited_Present (Def) then
15113 Set_Is_Limited_Record (T);
15115 if Is_Interface (T) then
15116 Set_Is_Limited_Interface (T);
15117 end if;
15119 if not Is_Limited_Type (Parent_Type)
15120 and then
15121 (not Is_Interface (Parent_Type)
15122 or else not Is_Limited_Interface (Parent_Type))
15123 then
15124 -- AI05-0096: a derivation in the private part of an instance is
15125 -- legal if the generic formal is untagged limited, and the actual
15126 -- is non-limited.
15128 if Is_Generic_Actual_Type (Parent_Type)
15129 and then In_Private_Part (Current_Scope)
15130 and then
15131 not Is_Tagged_Type
15132 (Generic_Parent_Type (Parent (Parent_Type)))
15133 then
15134 null;
15136 else
15137 Error_Msg_NE
15138 ("parent type& of limited type must be limited",
15139 N, Parent_Type);
15140 end if;
15141 end if;
15142 end if;
15144 -- In SPARK, there are no derived type definitions other than type
15145 -- extensions of tagged record types.
15147 if No (Extension) then
15148 Check_SPARK_Restriction
15149 ("derived type is not allowed", Original_Node (N));
15150 end if;
15151 end Derived_Type_Declaration;
15153 ------------------------
15154 -- Diagnose_Interface --
15155 ------------------------
15157 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
15158 begin
15159 if not Is_Interface (E)
15160 and then E /= Any_Type
15161 then
15162 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
15163 end if;
15164 end Diagnose_Interface;
15166 ----------------------------------
15167 -- Enumeration_Type_Declaration --
15168 ----------------------------------
15170 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15171 Ev : Uint;
15172 L : Node_Id;
15173 R_Node : Node_Id;
15174 B_Node : Node_Id;
15176 begin
15177 -- Create identifier node representing lower bound
15179 B_Node := New_Node (N_Identifier, Sloc (Def));
15180 L := First (Literals (Def));
15181 Set_Chars (B_Node, Chars (L));
15182 Set_Entity (B_Node, L);
15183 Set_Etype (B_Node, T);
15184 Set_Is_Static_Expression (B_Node, True);
15186 R_Node := New_Node (N_Range, Sloc (Def));
15187 Set_Low_Bound (R_Node, B_Node);
15189 Set_Ekind (T, E_Enumeration_Type);
15190 Set_First_Literal (T, L);
15191 Set_Etype (T, T);
15192 Set_Is_Constrained (T);
15194 Ev := Uint_0;
15196 -- Loop through literals of enumeration type setting pos and rep values
15197 -- except that if the Ekind is already set, then it means the literal
15198 -- was already constructed (case of a derived type declaration and we
15199 -- should not disturb the Pos and Rep values.
15201 while Present (L) loop
15202 if Ekind (L) /= E_Enumeration_Literal then
15203 Set_Ekind (L, E_Enumeration_Literal);
15204 Set_Enumeration_Pos (L, Ev);
15205 Set_Enumeration_Rep (L, Ev);
15206 Set_Is_Known_Valid (L, True);
15207 end if;
15209 Set_Etype (L, T);
15210 New_Overloaded_Entity (L);
15211 Generate_Definition (L);
15212 Set_Convention (L, Convention_Intrinsic);
15214 -- Case of character literal
15216 if Nkind (L) = N_Defining_Character_Literal then
15217 Set_Is_Character_Type (T, True);
15219 -- Check violation of No_Wide_Characters
15221 if Restriction_Check_Required (No_Wide_Characters) then
15222 Get_Name_String (Chars (L));
15224 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
15225 Check_Restriction (No_Wide_Characters, L);
15226 end if;
15227 end if;
15228 end if;
15230 Ev := Ev + 1;
15231 Next (L);
15232 end loop;
15234 -- Now create a node representing upper bound
15236 B_Node := New_Node (N_Identifier, Sloc (Def));
15237 Set_Chars (B_Node, Chars (Last (Literals (Def))));
15238 Set_Entity (B_Node, Last (Literals (Def)));
15239 Set_Etype (B_Node, T);
15240 Set_Is_Static_Expression (B_Node, True);
15242 Set_High_Bound (R_Node, B_Node);
15244 -- Initialize various fields of the type. Some of this information
15245 -- may be overwritten later through rep.clauses.
15247 Set_Scalar_Range (T, R_Node);
15248 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15249 Set_Enum_Esize (T);
15250 Set_Enum_Pos_To_Rep (T, Empty);
15252 -- Set Discard_Names if configuration pragma set, or if there is
15253 -- a parameterless pragma in the current declarative region
15255 if Global_Discard_Names or else Discard_Names (Scope (T)) then
15256 Set_Discard_Names (T);
15257 end if;
15259 -- Process end label if there is one
15261 if Present (Def) then
15262 Process_End_Label (Def, 'e', T);
15263 end if;
15264 end Enumeration_Type_Declaration;
15266 ---------------------------------
15267 -- Expand_To_Stored_Constraint --
15268 ---------------------------------
15270 function Expand_To_Stored_Constraint
15271 (Typ : Entity_Id;
15272 Constraint : Elist_Id) return Elist_Id
15274 Explicitly_Discriminated_Type : Entity_Id;
15275 Expansion : Elist_Id;
15276 Discriminant : Entity_Id;
15278 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
15279 -- Find the nearest type that actually specifies discriminants
15281 ---------------------------------
15282 -- Type_With_Explicit_Discrims --
15283 ---------------------------------
15285 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
15286 Typ : constant E := Base_Type (Id);
15288 begin
15289 if Ekind (Typ) in Incomplete_Or_Private_Kind then
15290 if Present (Full_View (Typ)) then
15291 return Type_With_Explicit_Discrims (Full_View (Typ));
15292 end if;
15294 else
15295 if Has_Discriminants (Typ) then
15296 return Typ;
15297 end if;
15298 end if;
15300 if Etype (Typ) = Typ then
15301 return Empty;
15302 elsif Has_Discriminants (Typ) then
15303 return Typ;
15304 else
15305 return Type_With_Explicit_Discrims (Etype (Typ));
15306 end if;
15308 end Type_With_Explicit_Discrims;
15310 -- Start of processing for Expand_To_Stored_Constraint
15312 begin
15313 if No (Constraint)
15314 or else Is_Empty_Elmt_List (Constraint)
15315 then
15316 return No_Elist;
15317 end if;
15319 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
15321 if No (Explicitly_Discriminated_Type) then
15322 return No_Elist;
15323 end if;
15325 Expansion := New_Elmt_List;
15327 Discriminant :=
15328 First_Stored_Discriminant (Explicitly_Discriminated_Type);
15329 while Present (Discriminant) loop
15330 Append_Elmt (
15331 Get_Discriminant_Value (
15332 Discriminant, Explicitly_Discriminated_Type, Constraint),
15333 Expansion);
15334 Next_Stored_Discriminant (Discriminant);
15335 end loop;
15337 return Expansion;
15338 end Expand_To_Stored_Constraint;
15340 ---------------------------
15341 -- Find_Hidden_Interface --
15342 ---------------------------
15344 function Find_Hidden_Interface
15345 (Src : Elist_Id;
15346 Dest : Elist_Id) return Entity_Id
15348 Iface : Entity_Id;
15349 Iface_Elmt : Elmt_Id;
15351 begin
15352 if Present (Src) and then Present (Dest) then
15353 Iface_Elmt := First_Elmt (Src);
15354 while Present (Iface_Elmt) loop
15355 Iface := Node (Iface_Elmt);
15357 if Is_Interface (Iface)
15358 and then not Contain_Interface (Iface, Dest)
15359 then
15360 return Iface;
15361 end if;
15363 Next_Elmt (Iface_Elmt);
15364 end loop;
15365 end if;
15367 return Empty;
15368 end Find_Hidden_Interface;
15370 --------------------
15371 -- Find_Type_Name --
15372 --------------------
15374 function Find_Type_Name (N : Node_Id) return Entity_Id is
15375 Id : constant Entity_Id := Defining_Identifier (N);
15376 Prev : Entity_Id;
15377 New_Id : Entity_Id;
15378 Prev_Par : Node_Id;
15380 procedure Check_Duplicate_Aspects;
15381 -- Check that aspects specified in a completion have not been specified
15382 -- already in the partial view. Type_Invariant and others can be
15383 -- specified on either view but never on both.
15385 procedure Tag_Mismatch;
15386 -- Diagnose a tagged partial view whose full view is untagged.
15387 -- We post the message on the full view, with a reference to
15388 -- the previous partial view. The partial view can be private
15389 -- or incomplete, and these are handled in a different manner,
15390 -- so we determine the position of the error message from the
15391 -- respective slocs of both.
15393 -----------------------------
15394 -- Check_Duplicate_Aspects --
15395 -----------------------------
15396 procedure Check_Duplicate_Aspects is
15397 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
15398 Full_Aspects : constant List_Id := Aspect_Specifications (N);
15399 F_Spec, P_Spec : Node_Id;
15401 begin
15402 if Present (Prev_Aspects) and then Present (Full_Aspects) then
15403 F_Spec := First (Full_Aspects);
15404 while Present (F_Spec) loop
15405 P_Spec := First (Prev_Aspects);
15406 while Present (P_Spec) loop
15408 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
15409 then
15410 Error_Msg_N
15411 ("aspect already specified in private declaration",
15412 F_Spec);
15413 Remove (F_Spec);
15414 return;
15415 end if;
15417 Next (P_Spec);
15418 end loop;
15420 Next (F_Spec);
15421 end loop;
15422 end if;
15423 end Check_Duplicate_Aspects;
15425 ------------------
15426 -- Tag_Mismatch --
15427 ------------------
15429 procedure Tag_Mismatch is
15430 begin
15431 if Sloc (Prev) < Sloc (Id) then
15432 if Ada_Version >= Ada_2012
15433 and then Nkind (N) = N_Private_Type_Declaration
15434 then
15435 Error_Msg_NE
15436 ("declaration of private } must be a tagged type ", Id, Prev);
15437 else
15438 Error_Msg_NE
15439 ("full declaration of } must be a tagged type ", Id, Prev);
15440 end if;
15442 else
15443 if Ada_Version >= Ada_2012
15444 and then Nkind (N) = N_Private_Type_Declaration
15445 then
15446 Error_Msg_NE
15447 ("declaration of private } must be a tagged type ", Prev, Id);
15448 else
15449 Error_Msg_NE
15450 ("full declaration of } must be a tagged type ", Prev, Id);
15451 end if;
15452 end if;
15453 end Tag_Mismatch;
15455 -- Start of processing for Find_Type_Name
15457 begin
15458 -- Find incomplete declaration, if one was given
15460 Prev := Current_Entity_In_Scope (Id);
15462 -- New type declaration
15464 if No (Prev) then
15465 Enter_Name (Id);
15466 return Id;
15468 -- Previous declaration exists
15470 else
15471 Prev_Par := Parent (Prev);
15473 -- Error if not incomplete/private case except if previous
15474 -- declaration is implicit, etc. Enter_Name will emit error if
15475 -- appropriate.
15477 if not Is_Incomplete_Or_Private_Type (Prev) then
15478 Enter_Name (Id);
15479 New_Id := Id;
15481 -- Check invalid completion of private or incomplete type
15483 elsif not Nkind_In (N, N_Full_Type_Declaration,
15484 N_Task_Type_Declaration,
15485 N_Protected_Type_Declaration)
15486 and then
15487 (Ada_Version < Ada_2012
15488 or else not Is_Incomplete_Type (Prev)
15489 or else not Nkind_In (N, N_Private_Type_Declaration,
15490 N_Private_Extension_Declaration))
15491 then
15492 -- Completion must be a full type declarations (RM 7.3(4))
15494 Error_Msg_Sloc := Sloc (Prev);
15495 Error_Msg_NE ("invalid completion of }", Id, Prev);
15497 -- Set scope of Id to avoid cascaded errors. Entity is never
15498 -- examined again, except when saving globals in generics.
15500 Set_Scope (Id, Current_Scope);
15501 New_Id := Id;
15503 -- If this is a repeated incomplete declaration, no further
15504 -- checks are possible.
15506 if Nkind (N) = N_Incomplete_Type_Declaration then
15507 return Prev;
15508 end if;
15510 -- Case of full declaration of incomplete type
15512 elsif Ekind (Prev) = E_Incomplete_Type
15513 and then (Ada_Version < Ada_2012
15514 or else No (Full_View (Prev))
15515 or else not Is_Private_Type (Full_View (Prev)))
15516 then
15518 -- Indicate that the incomplete declaration has a matching full
15519 -- declaration. The defining occurrence of the incomplete
15520 -- declaration remains the visible one, and the procedure
15521 -- Get_Full_View dereferences it whenever the type is used.
15523 if Present (Full_View (Prev)) then
15524 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15525 end if;
15527 Set_Full_View (Prev, Id);
15528 Append_Entity (Id, Current_Scope);
15529 Set_Is_Public (Id, Is_Public (Prev));
15530 Set_Is_Internal (Id);
15531 New_Id := Prev;
15533 -- If the incomplete view is tagged, a class_wide type has been
15534 -- created already. Use it for the private type as well, in order
15535 -- to prevent multiple incompatible class-wide types that may be
15536 -- created for self-referential anonymous access components.
15538 if Is_Tagged_Type (Prev)
15539 and then Present (Class_Wide_Type (Prev))
15540 then
15541 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
15542 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
15544 -- If the incomplete type is completed by a private declaration
15545 -- the class-wide type remains associated with the incomplete
15546 -- type, to prevent order-of-elaboration issues in gigi, else
15547 -- we associate the class-wide type with the known full view.
15549 if Nkind (N) /= N_Private_Type_Declaration then
15550 Set_Etype (Class_Wide_Type (Id), Id);
15551 end if;
15552 end if;
15554 -- Case of full declaration of private type
15556 else
15557 -- If the private type was a completion of an incomplete type then
15558 -- update Prev to reference the private type
15560 if Ada_Version >= Ada_2012
15561 and then Ekind (Prev) = E_Incomplete_Type
15562 and then Present (Full_View (Prev))
15563 and then Is_Private_Type (Full_View (Prev))
15564 then
15565 Prev := Full_View (Prev);
15566 Prev_Par := Parent (Prev);
15567 end if;
15569 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
15570 if Etype (Prev) /= Prev then
15572 -- Prev is a private subtype or a derived type, and needs
15573 -- no completion.
15575 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15576 New_Id := Id;
15578 elsif Ekind (Prev) = E_Private_Type
15579 and then Nkind_In (N, N_Task_Type_Declaration,
15580 N_Protected_Type_Declaration)
15581 then
15582 Error_Msg_N
15583 ("completion of nonlimited type cannot be limited", N);
15585 elsif Ekind (Prev) = E_Record_Type_With_Private
15586 and then Nkind_In (N, N_Task_Type_Declaration,
15587 N_Protected_Type_Declaration)
15588 then
15589 if not Is_Limited_Record (Prev) then
15590 Error_Msg_N
15591 ("completion of nonlimited type cannot be limited", N);
15593 elsif No (Interface_List (N)) then
15594 Error_Msg_N
15595 ("completion of tagged private type must be tagged",
15597 end if;
15599 elsif Nkind (N) = N_Full_Type_Declaration
15600 and then
15601 Nkind (Type_Definition (N)) = N_Record_Definition
15602 and then Interface_Present (Type_Definition (N))
15603 then
15604 Error_Msg_N
15605 ("completion of private type cannot be an interface", N);
15606 end if;
15608 -- Ada 2005 (AI-251): Private extension declaration of a task
15609 -- type or a protected type. This case arises when covering
15610 -- interface types.
15612 elsif Nkind_In (N, N_Task_Type_Declaration,
15613 N_Protected_Type_Declaration)
15614 then
15615 null;
15617 elsif Nkind (N) /= N_Full_Type_Declaration
15618 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
15619 then
15620 Error_Msg_N
15621 ("full view of private extension must be an extension", N);
15623 elsif not (Abstract_Present (Parent (Prev)))
15624 and then Abstract_Present (Type_Definition (N))
15625 then
15626 Error_Msg_N
15627 ("full view of non-abstract extension cannot be abstract", N);
15628 end if;
15630 if not In_Private_Part (Current_Scope) then
15631 Error_Msg_N
15632 ("declaration of full view must appear in private part", N);
15633 end if;
15635 if Ada_Version >= Ada_2012 then
15636 Check_Duplicate_Aspects;
15637 end if;
15639 Copy_And_Swap (Prev, Id);
15640 Set_Has_Private_Declaration (Prev);
15641 Set_Has_Private_Declaration (Id);
15643 -- Preserve aspect and iterator flags that may have been set on
15644 -- the partial view.
15646 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
15647 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
15649 -- If no error, propagate freeze_node from private to full view.
15650 -- It may have been generated for an early operational item.
15652 if Present (Freeze_Node (Id))
15653 and then Serious_Errors_Detected = 0
15654 and then No (Full_View (Id))
15655 then
15656 Set_Freeze_Node (Prev, Freeze_Node (Id));
15657 Set_Freeze_Node (Id, Empty);
15658 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
15659 end if;
15661 Set_Full_View (Id, Prev);
15662 New_Id := Prev;
15663 end if;
15665 -- Verify that full declaration conforms to partial one
15667 if Is_Incomplete_Or_Private_Type (Prev)
15668 and then Present (Discriminant_Specifications (Prev_Par))
15669 then
15670 if Present (Discriminant_Specifications (N)) then
15671 if Ekind (Prev) = E_Incomplete_Type then
15672 Check_Discriminant_Conformance (N, Prev, Prev);
15673 else
15674 Check_Discriminant_Conformance (N, Prev, Id);
15675 end if;
15677 else
15678 Error_Msg_N
15679 ("missing discriminants in full type declaration", N);
15681 -- To avoid cascaded errors on subsequent use, share the
15682 -- discriminants of the partial view.
15684 Set_Discriminant_Specifications (N,
15685 Discriminant_Specifications (Prev_Par));
15686 end if;
15687 end if;
15689 -- A prior untagged partial view can have an associated class-wide
15690 -- type due to use of the class attribute, and in this case the full
15691 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15692 -- of incomplete tagged declarations, but we check for it.
15694 if Is_Type (Prev)
15695 and then (Is_Tagged_Type (Prev)
15696 or else Present (Class_Wide_Type (Prev)))
15697 then
15698 -- Ada 2012 (AI05-0162): A private type may be the completion of
15699 -- an incomplete type.
15701 if Ada_Version >= Ada_2012
15702 and then Is_Incomplete_Type (Prev)
15703 and then Nkind_In (N, N_Private_Type_Declaration,
15704 N_Private_Extension_Declaration)
15705 then
15706 -- No need to check private extensions since they are tagged
15708 if Nkind (N) = N_Private_Type_Declaration
15709 and then not Tagged_Present (N)
15710 then
15711 Tag_Mismatch;
15712 end if;
15714 -- The full declaration is either a tagged type (including
15715 -- a synchronized type that implements interfaces) or a
15716 -- type extension, otherwise this is an error.
15718 elsif Nkind_In (N, N_Task_Type_Declaration,
15719 N_Protected_Type_Declaration)
15720 then
15721 if No (Interface_List (N))
15722 and then not Error_Posted (N)
15723 then
15724 Tag_Mismatch;
15725 end if;
15727 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
15729 -- Indicate that the previous declaration (tagged incomplete
15730 -- or private declaration) requires the same on the full one.
15732 if not Tagged_Present (Type_Definition (N)) then
15733 Tag_Mismatch;
15734 Set_Is_Tagged_Type (Id);
15735 end if;
15737 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
15738 if No (Record_Extension_Part (Type_Definition (N))) then
15739 Error_Msg_NE
15740 ("full declaration of } must be a record extension",
15741 Prev, Id);
15743 -- Set some attributes to produce a usable full view
15745 Set_Is_Tagged_Type (Id);
15746 end if;
15748 else
15749 Tag_Mismatch;
15750 end if;
15751 end if;
15753 if Present (Prev)
15754 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
15755 and then Present (Premature_Use (Parent (Prev)))
15756 then
15757 Error_Msg_Sloc := Sloc (N);
15758 Error_Msg_N
15759 ("\full declaration #", Premature_Use (Parent (Prev)));
15760 end if;
15762 return New_Id;
15763 end if;
15764 end Find_Type_Name;
15766 -------------------------
15767 -- Find_Type_Of_Object --
15768 -------------------------
15770 function Find_Type_Of_Object
15771 (Obj_Def : Node_Id;
15772 Related_Nod : Node_Id) return Entity_Id
15774 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
15775 P : Node_Id := Parent (Obj_Def);
15776 T : Entity_Id;
15777 Nam : Name_Id;
15779 begin
15780 -- If the parent is a component_definition node we climb to the
15781 -- component_declaration node
15783 if Nkind (P) = N_Component_Definition then
15784 P := Parent (P);
15785 end if;
15787 -- Case of an anonymous array subtype
15789 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
15790 N_Unconstrained_Array_Definition)
15791 then
15792 T := Empty;
15793 Array_Type_Declaration (T, Obj_Def);
15795 -- Create an explicit subtype whenever possible
15797 elsif Nkind (P) /= N_Component_Declaration
15798 and then Def_Kind = N_Subtype_Indication
15799 then
15800 -- Base name of subtype on object name, which will be unique in
15801 -- the current scope.
15803 -- If this is a duplicate declaration, return base type, to avoid
15804 -- generating duplicate anonymous types.
15806 if Error_Posted (P) then
15807 Analyze (Subtype_Mark (Obj_Def));
15808 return Entity (Subtype_Mark (Obj_Def));
15809 end if;
15811 Nam :=
15812 New_External_Name
15813 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
15815 T := Make_Defining_Identifier (Sloc (P), Nam);
15817 Insert_Action (Obj_Def,
15818 Make_Subtype_Declaration (Sloc (P),
15819 Defining_Identifier => T,
15820 Subtype_Indication => Relocate_Node (Obj_Def)));
15822 -- This subtype may need freezing, and this will not be done
15823 -- automatically if the object declaration is not in declarative
15824 -- part. Since this is an object declaration, the type cannot always
15825 -- be frozen here. Deferred constants do not freeze their type
15826 -- (which often enough will be private).
15828 if Nkind (P) = N_Object_Declaration
15829 and then Constant_Present (P)
15830 and then No (Expression (P))
15831 then
15832 null;
15834 -- Here we freeze the base type of object type to catch premature use
15835 -- of discriminated private type without a full view.
15837 else
15838 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
15839 end if;
15841 -- Ada 2005 AI-406: the object definition in an object declaration
15842 -- can be an access definition.
15844 elsif Def_Kind = N_Access_Definition then
15845 T := Access_Definition (Related_Nod, Obj_Def);
15847 Set_Is_Local_Anonymous_Access
15849 V => (Ada_Version < Ada_2012)
15850 or else (Nkind (P) /= N_Object_Declaration)
15851 or else Is_Library_Level_Entity (Defining_Identifier (P)));
15853 -- Otherwise, the object definition is just a subtype_mark
15855 else
15856 T := Process_Subtype (Obj_Def, Related_Nod);
15858 -- If expansion is disabled an object definition that is an aggregate
15859 -- will not get expanded and may lead to scoping problems in the back
15860 -- end, if the object is referenced in an inner scope. In that case
15861 -- create an itype reference for the object definition now. This
15862 -- may be redundant in some cases, but harmless.
15864 if Is_Itype (T)
15865 and then Nkind (Related_Nod) = N_Object_Declaration
15866 and then ASIS_Mode
15867 then
15868 Build_Itype_Reference (T, Related_Nod);
15869 end if;
15870 end if;
15872 return T;
15873 end Find_Type_Of_Object;
15875 --------------------------------
15876 -- Find_Type_Of_Subtype_Indic --
15877 --------------------------------
15879 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
15880 Typ : Entity_Id;
15882 begin
15883 -- Case of subtype mark with a constraint
15885 if Nkind (S) = N_Subtype_Indication then
15886 Find_Type (Subtype_Mark (S));
15887 Typ := Entity (Subtype_Mark (S));
15889 if not
15890 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
15891 then
15892 Error_Msg_N
15893 ("incorrect constraint for this kind of type", Constraint (S));
15894 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
15895 end if;
15897 -- Otherwise we have a subtype mark without a constraint
15899 elsif Error_Posted (S) then
15900 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
15901 return Any_Type;
15903 else
15904 Find_Type (S);
15905 Typ := Entity (S);
15906 end if;
15908 -- Check No_Wide_Characters restriction
15910 Check_Wide_Character_Restriction (Typ, S);
15912 return Typ;
15913 end Find_Type_Of_Subtype_Indic;
15915 -------------------------------------
15916 -- Floating_Point_Type_Declaration --
15917 -------------------------------------
15919 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15920 Digs : constant Node_Id := Digits_Expression (Def);
15921 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
15922 Digs_Val : Uint;
15923 Base_Typ : Entity_Id;
15924 Implicit_Base : Entity_Id;
15925 Bound : Node_Id;
15927 function Can_Derive_From (E : Entity_Id) return Boolean;
15928 -- Find if given digits value, and possibly a specified range, allows
15929 -- derivation from specified type
15931 function Find_Base_Type return Entity_Id;
15932 -- Find a predefined base type that Def can derive from, or generate
15933 -- an error and substitute Long_Long_Float if none exists.
15935 ---------------------
15936 -- Can_Derive_From --
15937 ---------------------
15939 function Can_Derive_From (E : Entity_Id) return Boolean is
15940 Spec : constant Entity_Id := Real_Range_Specification (Def);
15942 begin
15943 -- Check specified "digits" constraint
15945 if Digs_Val > Digits_Value (E) then
15946 return False;
15947 end if;
15949 -- Avoid types not matching pragma Float_Representation, if present
15951 if (Opt.Float_Format = 'I' and then Float_Rep (E) /= IEEE_Binary)
15952 or else
15953 (Opt.Float_Format = 'V' and then Float_Rep (E) /= VAX_Native)
15954 then
15955 return False;
15956 end if;
15958 -- Check for matching range, if specified
15960 if Present (Spec) then
15961 if Expr_Value_R (Type_Low_Bound (E)) >
15962 Expr_Value_R (Low_Bound (Spec))
15963 then
15964 return False;
15965 end if;
15967 if Expr_Value_R (Type_High_Bound (E)) <
15968 Expr_Value_R (High_Bound (Spec))
15969 then
15970 return False;
15971 end if;
15972 end if;
15974 return True;
15975 end Can_Derive_From;
15977 --------------------
15978 -- Find_Base_Type --
15979 --------------------
15981 function Find_Base_Type return Entity_Id is
15982 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
15984 begin
15985 -- Iterate over the predefined types in order, returning the first
15986 -- one that Def can derive from.
15988 while Present (Choice) loop
15989 if Can_Derive_From (Node (Choice)) then
15990 return Node (Choice);
15991 end if;
15993 Next_Elmt (Choice);
15994 end loop;
15996 -- If we can't derive from any existing type, use Long_Long_Float
15997 -- and give appropriate message explaining the problem.
15999 if Digs_Val > Max_Digs_Val then
16000 -- It might be the case that there is a type with the requested
16001 -- range, just not the combination of digits and range.
16003 Error_Msg_N
16004 ("no predefined type has requested range and precision",
16005 Real_Range_Specification (Def));
16007 else
16008 Error_Msg_N
16009 ("range too large for any predefined type",
16010 Real_Range_Specification (Def));
16011 end if;
16013 return Standard_Long_Long_Float;
16014 end Find_Base_Type;
16016 -- Start of processing for Floating_Point_Type_Declaration
16018 begin
16019 Check_Restriction (No_Floating_Point, Def);
16021 -- Create an implicit base type
16023 Implicit_Base :=
16024 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16026 -- Analyze and verify digits value
16028 Analyze_And_Resolve (Digs, Any_Integer);
16029 Check_Digits_Expression (Digs);
16030 Digs_Val := Expr_Value (Digs);
16032 -- Process possible range spec and find correct type to derive from
16034 Process_Real_Range_Specification (Def);
16036 -- Check that requested number of digits is not too high.
16038 if Digs_Val > Max_Digs_Val then
16039 -- The check for Max_Base_Digits may be somewhat expensive, as it
16040 -- requires reading System, so only do it when necessary.
16042 declare
16043 Max_Base_Digits : constant Uint :=
16044 Expr_Value
16045 (Expression
16046 (Parent (RTE (RE_Max_Base_Digits))));
16048 begin
16049 if Digs_Val > Max_Base_Digits then
16050 Error_Msg_Uint_1 := Max_Base_Digits;
16051 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16053 elsif No (Real_Range_Specification (Def)) then
16054 Error_Msg_Uint_1 := Max_Digs_Val;
16055 Error_Msg_N ("types with more than ^ digits need range spec "
16056 & "(RM 3.5.7(6))", Digs);
16057 end if;
16058 end;
16059 end if;
16061 -- Find a suitable type to derive from or complain and use a substitute
16063 Base_Typ := Find_Base_Type;
16065 -- If there are bounds given in the declaration use them as the bounds
16066 -- of the type, otherwise use the bounds of the predefined base type
16067 -- that was chosen based on the Digits value.
16069 if Present (Real_Range_Specification (Def)) then
16070 Set_Scalar_Range (T, Real_Range_Specification (Def));
16071 Set_Is_Constrained (T);
16073 -- The bounds of this range must be converted to machine numbers
16074 -- in accordance with RM 4.9(38).
16076 Bound := Type_Low_Bound (T);
16078 if Nkind (Bound) = N_Real_Literal then
16079 Set_Realval
16080 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16081 Set_Is_Machine_Number (Bound);
16082 end if;
16084 Bound := Type_High_Bound (T);
16086 if Nkind (Bound) = N_Real_Literal then
16087 Set_Realval
16088 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16089 Set_Is_Machine_Number (Bound);
16090 end if;
16092 else
16093 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16094 end if;
16096 -- Complete definition of implicit base and declared first subtype
16098 Set_Etype (Implicit_Base, Base_Typ);
16100 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16101 Set_Size_Info (Implicit_Base, (Base_Typ));
16102 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16103 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16104 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16105 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16107 Set_Ekind (T, E_Floating_Point_Subtype);
16108 Set_Etype (T, Implicit_Base);
16110 Set_Size_Info (T, (Implicit_Base));
16111 Set_RM_Size (T, RM_Size (Implicit_Base));
16112 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
16113 Set_Digits_Value (T, Digs_Val);
16114 end Floating_Point_Type_Declaration;
16116 ----------------------------
16117 -- Get_Discriminant_Value --
16118 ----------------------------
16120 -- This is the situation:
16122 -- There is a non-derived type
16124 -- type T0 (Dx, Dy, Dz...)
16126 -- There are zero or more levels of derivation, with each derivation
16127 -- either purely inheriting the discriminants, or defining its own.
16129 -- type Ti is new Ti-1
16130 -- or
16131 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16132 -- or
16133 -- subtype Ti is ...
16135 -- The subtype issue is avoided by the use of Original_Record_Component,
16136 -- and the fact that derived subtypes also derive the constraints.
16138 -- This chain leads back from
16140 -- Typ_For_Constraint
16142 -- Typ_For_Constraint has discriminants, and the value for each
16143 -- discriminant is given by its corresponding Elmt of Constraints.
16145 -- Discriminant is some discriminant in this hierarchy
16147 -- We need to return its value
16149 -- We do this by recursively searching each level, and looking for
16150 -- Discriminant. Once we get to the bottom, we start backing up
16151 -- returning the value for it which may in turn be a discriminant
16152 -- further up, so on the backup we continue the substitution.
16154 function Get_Discriminant_Value
16155 (Discriminant : Entity_Id;
16156 Typ_For_Constraint : Entity_Id;
16157 Constraint : Elist_Id) return Node_Id
16159 function Root_Corresponding_Discriminant
16160 (Discr : Entity_Id) return Entity_Id;
16161 -- Given a discriminant, traverse the chain of inherited discriminants
16162 -- and return the topmost discriminant.
16164 function Search_Derivation_Levels
16165 (Ti : Entity_Id;
16166 Discrim_Values : Elist_Id;
16167 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
16168 -- This is the routine that performs the recursive search of levels
16169 -- as described above.
16171 -------------------------------------
16172 -- Root_Corresponding_Discriminant --
16173 -------------------------------------
16175 function Root_Corresponding_Discriminant
16176 (Discr : Entity_Id) return Entity_Id
16178 D : Entity_Id;
16180 begin
16181 D := Discr;
16182 while Present (Corresponding_Discriminant (D)) loop
16183 D := Corresponding_Discriminant (D);
16184 end loop;
16186 return D;
16187 end Root_Corresponding_Discriminant;
16189 ------------------------------
16190 -- Search_Derivation_Levels --
16191 ------------------------------
16193 function Search_Derivation_Levels
16194 (Ti : Entity_Id;
16195 Discrim_Values : Elist_Id;
16196 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
16198 Assoc : Elmt_Id;
16199 Disc : Entity_Id;
16200 Result : Node_Or_Entity_Id;
16201 Result_Entity : Node_Id;
16203 begin
16204 -- If inappropriate type, return Error, this happens only in
16205 -- cascaded error situations, and we want to avoid a blow up.
16207 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
16208 return Error;
16209 end if;
16211 -- Look deeper if possible. Use Stored_Constraints only for
16212 -- untagged types. For tagged types use the given constraint.
16213 -- This asymmetry needs explanation???
16215 if not Stored_Discrim_Values
16216 and then Present (Stored_Constraint (Ti))
16217 and then not Is_Tagged_Type (Ti)
16218 then
16219 Result :=
16220 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
16221 else
16222 declare
16223 Td : constant Entity_Id := Etype (Ti);
16225 begin
16226 if Td = Ti then
16227 Result := Discriminant;
16229 else
16230 if Present (Stored_Constraint (Ti)) then
16231 Result :=
16232 Search_Derivation_Levels
16233 (Td, Stored_Constraint (Ti), True);
16234 else
16235 Result :=
16236 Search_Derivation_Levels
16237 (Td, Discrim_Values, Stored_Discrim_Values);
16238 end if;
16239 end if;
16240 end;
16241 end if;
16243 -- Extra underlying places to search, if not found above. For
16244 -- concurrent types, the relevant discriminant appears in the
16245 -- corresponding record. For a type derived from a private type
16246 -- without discriminant, the full view inherits the discriminants
16247 -- of the full view of the parent.
16249 if Result = Discriminant then
16250 if Is_Concurrent_Type (Ti)
16251 and then Present (Corresponding_Record_Type (Ti))
16252 then
16253 Result :=
16254 Search_Derivation_Levels (
16255 Corresponding_Record_Type (Ti),
16256 Discrim_Values,
16257 Stored_Discrim_Values);
16259 elsif Is_Private_Type (Ti)
16260 and then not Has_Discriminants (Ti)
16261 and then Present (Full_View (Ti))
16262 and then Etype (Full_View (Ti)) /= Ti
16263 then
16264 Result :=
16265 Search_Derivation_Levels (
16266 Full_View (Ti),
16267 Discrim_Values,
16268 Stored_Discrim_Values);
16269 end if;
16270 end if;
16272 -- If Result is not a (reference to a) discriminant, return it,
16273 -- otherwise set Result_Entity to the discriminant.
16275 if Nkind (Result) = N_Defining_Identifier then
16276 pragma Assert (Result = Discriminant);
16277 Result_Entity := Result;
16279 else
16280 if not Denotes_Discriminant (Result) then
16281 return Result;
16282 end if;
16284 Result_Entity := Entity (Result);
16285 end if;
16287 -- See if this level of derivation actually has discriminants
16288 -- because tagged derivations can add them, hence the lower
16289 -- levels need not have any.
16291 if not Has_Discriminants (Ti) then
16292 return Result;
16293 end if;
16295 -- Scan Ti's discriminants for Result_Entity,
16296 -- and return its corresponding value, if any.
16298 Result_Entity := Original_Record_Component (Result_Entity);
16300 Assoc := First_Elmt (Discrim_Values);
16302 if Stored_Discrim_Values then
16303 Disc := First_Stored_Discriminant (Ti);
16304 else
16305 Disc := First_Discriminant (Ti);
16306 end if;
16308 while Present (Disc) loop
16309 pragma Assert (Present (Assoc));
16311 if Original_Record_Component (Disc) = Result_Entity then
16312 return Node (Assoc);
16313 end if;
16315 Next_Elmt (Assoc);
16317 if Stored_Discrim_Values then
16318 Next_Stored_Discriminant (Disc);
16319 else
16320 Next_Discriminant (Disc);
16321 end if;
16322 end loop;
16324 -- Could not find it
16326 return Result;
16327 end Search_Derivation_Levels;
16329 -- Local Variables
16331 Result : Node_Or_Entity_Id;
16333 -- Start of processing for Get_Discriminant_Value
16335 begin
16336 -- ??? This routine is a gigantic mess and will be deleted. For the
16337 -- time being just test for the trivial case before calling recurse.
16339 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
16340 declare
16341 D : Entity_Id;
16342 E : Elmt_Id;
16344 begin
16345 D := First_Discriminant (Typ_For_Constraint);
16346 E := First_Elmt (Constraint);
16347 while Present (D) loop
16348 if Chars (D) = Chars (Discriminant) then
16349 return Node (E);
16350 end if;
16352 Next_Discriminant (D);
16353 Next_Elmt (E);
16354 end loop;
16355 end;
16356 end if;
16358 Result := Search_Derivation_Levels
16359 (Typ_For_Constraint, Constraint, False);
16361 -- ??? hack to disappear when this routine is gone
16363 if Nkind (Result) = N_Defining_Identifier then
16364 declare
16365 D : Entity_Id;
16366 E : Elmt_Id;
16368 begin
16369 D := First_Discriminant (Typ_For_Constraint);
16370 E := First_Elmt (Constraint);
16371 while Present (D) loop
16372 if Root_Corresponding_Discriminant (D) = Discriminant then
16373 return Node (E);
16374 end if;
16376 Next_Discriminant (D);
16377 Next_Elmt (E);
16378 end loop;
16379 end;
16380 end if;
16382 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
16383 return Result;
16384 end Get_Discriminant_Value;
16386 --------------------------
16387 -- Has_Range_Constraint --
16388 --------------------------
16390 function Has_Range_Constraint (N : Node_Id) return Boolean is
16391 C : constant Node_Id := Constraint (N);
16393 begin
16394 if Nkind (C) = N_Range_Constraint then
16395 return True;
16397 elsif Nkind (C) = N_Digits_Constraint then
16398 return
16399 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
16400 or else
16401 Present (Range_Constraint (C));
16403 elsif Nkind (C) = N_Delta_Constraint then
16404 return Present (Range_Constraint (C));
16406 else
16407 return False;
16408 end if;
16409 end Has_Range_Constraint;
16411 ------------------------
16412 -- Inherit_Components --
16413 ------------------------
16415 function Inherit_Components
16416 (N : Node_Id;
16417 Parent_Base : Entity_Id;
16418 Derived_Base : Entity_Id;
16419 Is_Tagged : Boolean;
16420 Inherit_Discr : Boolean;
16421 Discs : Elist_Id) return Elist_Id
16423 Assoc_List : constant Elist_Id := New_Elmt_List;
16425 procedure Inherit_Component
16426 (Old_C : Entity_Id;
16427 Plain_Discrim : Boolean := False;
16428 Stored_Discrim : Boolean := False);
16429 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
16430 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
16431 -- True, Old_C is a stored discriminant. If they are both false then
16432 -- Old_C is a regular component.
16434 -----------------------
16435 -- Inherit_Component --
16436 -----------------------
16438 procedure Inherit_Component
16439 (Old_C : Entity_Id;
16440 Plain_Discrim : Boolean := False;
16441 Stored_Discrim : Boolean := False)
16443 procedure Set_Anonymous_Type (Id : Entity_Id);
16444 -- Id denotes the entity of an access discriminant or anonymous
16445 -- access component. Set the type of Id to either the same type of
16446 -- Old_C or create a new one depending on whether the parent and
16447 -- the child types are in the same scope.
16449 ------------------------
16450 -- Set_Anonymous_Type --
16451 ------------------------
16453 procedure Set_Anonymous_Type (Id : Entity_Id) is
16454 Old_Typ : constant Entity_Id := Etype (Old_C);
16456 begin
16457 if Scope (Parent_Base) = Scope (Derived_Base) then
16458 Set_Etype (Id, Old_Typ);
16460 -- The parent and the derived type are in two different scopes.
16461 -- Reuse the type of the original discriminant / component by
16462 -- copying it in order to preserve all attributes.
16464 else
16465 declare
16466 Typ : constant Entity_Id := New_Copy (Old_Typ);
16468 begin
16469 Set_Etype (Id, Typ);
16471 -- Since we do not generate component declarations for
16472 -- inherited components, associate the itype with the
16473 -- derived type.
16475 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
16476 Set_Scope (Typ, Derived_Base);
16477 end;
16478 end if;
16479 end Set_Anonymous_Type;
16481 -- Local variables and constants
16483 New_C : constant Entity_Id := New_Copy (Old_C);
16485 Corr_Discrim : Entity_Id;
16486 Discrim : Entity_Id;
16488 -- Start of processing for Inherit_Component
16490 begin
16491 pragma Assert (not Is_Tagged or else not Stored_Discrim);
16493 Set_Parent (New_C, Parent (Old_C));
16495 -- Regular discriminants and components must be inserted in the scope
16496 -- of the Derived_Base. Do it here.
16498 if not Stored_Discrim then
16499 Enter_Name (New_C);
16500 end if;
16502 -- For tagged types the Original_Record_Component must point to
16503 -- whatever this field was pointing to in the parent type. This has
16504 -- already been achieved by the call to New_Copy above.
16506 if not Is_Tagged then
16507 Set_Original_Record_Component (New_C, New_C);
16508 end if;
16510 -- Set the proper type of an access discriminant
16512 if Ekind (New_C) = E_Discriminant
16513 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
16514 then
16515 Set_Anonymous_Type (New_C);
16516 end if;
16518 -- If we have inherited a component then see if its Etype contains
16519 -- references to Parent_Base discriminants. In this case, replace
16520 -- these references with the constraints given in Discs. We do not
16521 -- do this for the partial view of private types because this is
16522 -- not needed (only the components of the full view will be used
16523 -- for code generation) and cause problem. We also avoid this
16524 -- transformation in some error situations.
16526 if Ekind (New_C) = E_Component then
16528 -- Set the proper type of an anonymous access component
16530 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
16531 Set_Anonymous_Type (New_C);
16533 elsif (Is_Private_Type (Derived_Base)
16534 and then not Is_Generic_Type (Derived_Base))
16535 or else (Is_Empty_Elmt_List (Discs)
16536 and then not Expander_Active)
16537 then
16538 Set_Etype (New_C, Etype (Old_C));
16540 else
16541 -- The current component introduces a circularity of the
16542 -- following kind:
16544 -- limited with Pack_2;
16545 -- package Pack_1 is
16546 -- type T_1 is tagged record
16547 -- Comp : access Pack_2.T_2;
16548 -- ...
16549 -- end record;
16550 -- end Pack_1;
16552 -- with Pack_1;
16553 -- package Pack_2 is
16554 -- type T_2 is new Pack_1.T_1 with ...;
16555 -- end Pack_2;
16557 Set_Etype
16558 (New_C,
16559 Constrain_Component_Type
16560 (Old_C, Derived_Base, N, Parent_Base, Discs));
16561 end if;
16562 end if;
16564 -- In derived tagged types it is illegal to reference a non
16565 -- discriminant component in the parent type. To catch this, mark
16566 -- these components with an Ekind of E_Void. This will be reset in
16567 -- Record_Type_Definition after processing the record extension of
16568 -- the derived type.
16570 -- If the declaration is a private extension, there is no further
16571 -- record extension to process, and the components retain their
16572 -- current kind, because they are visible at this point.
16574 if Is_Tagged and then Ekind (New_C) = E_Component
16575 and then Nkind (N) /= N_Private_Extension_Declaration
16576 then
16577 Set_Ekind (New_C, E_Void);
16578 end if;
16580 if Plain_Discrim then
16581 Set_Corresponding_Discriminant (New_C, Old_C);
16582 Build_Discriminal (New_C);
16584 -- If we are explicitly inheriting a stored discriminant it will be
16585 -- completely hidden.
16587 elsif Stored_Discrim then
16588 Set_Corresponding_Discriminant (New_C, Empty);
16589 Set_Discriminal (New_C, Empty);
16590 Set_Is_Completely_Hidden (New_C);
16592 -- Set the Original_Record_Component of each discriminant in the
16593 -- derived base to point to the corresponding stored that we just
16594 -- created.
16596 Discrim := First_Discriminant (Derived_Base);
16597 while Present (Discrim) loop
16598 Corr_Discrim := Corresponding_Discriminant (Discrim);
16600 -- Corr_Discrim could be missing in an error situation
16602 if Present (Corr_Discrim)
16603 and then Original_Record_Component (Corr_Discrim) = Old_C
16604 then
16605 Set_Original_Record_Component (Discrim, New_C);
16606 end if;
16608 Next_Discriminant (Discrim);
16609 end loop;
16611 Append_Entity (New_C, Derived_Base);
16612 end if;
16614 if not Is_Tagged then
16615 Append_Elmt (Old_C, Assoc_List);
16616 Append_Elmt (New_C, Assoc_List);
16617 end if;
16618 end Inherit_Component;
16620 -- Variables local to Inherit_Component
16622 Loc : constant Source_Ptr := Sloc (N);
16624 Parent_Discrim : Entity_Id;
16625 Stored_Discrim : Entity_Id;
16626 D : Entity_Id;
16627 Component : Entity_Id;
16629 -- Start of processing for Inherit_Components
16631 begin
16632 if not Is_Tagged then
16633 Append_Elmt (Parent_Base, Assoc_List);
16634 Append_Elmt (Derived_Base, Assoc_List);
16635 end if;
16637 -- Inherit parent discriminants if needed
16639 if Inherit_Discr then
16640 Parent_Discrim := First_Discriminant (Parent_Base);
16641 while Present (Parent_Discrim) loop
16642 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
16643 Next_Discriminant (Parent_Discrim);
16644 end loop;
16645 end if;
16647 -- Create explicit stored discrims for untagged types when necessary
16649 if not Has_Unknown_Discriminants (Derived_Base)
16650 and then Has_Discriminants (Parent_Base)
16651 and then not Is_Tagged
16652 and then
16653 (not Inherit_Discr
16654 or else First_Discriminant (Parent_Base) /=
16655 First_Stored_Discriminant (Parent_Base))
16656 then
16657 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
16658 while Present (Stored_Discrim) loop
16659 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
16660 Next_Stored_Discriminant (Stored_Discrim);
16661 end loop;
16662 end if;
16664 -- See if we can apply the second transformation for derived types, as
16665 -- explained in point 6. in the comments above Build_Derived_Record_Type
16666 -- This is achieved by appending Derived_Base discriminants into Discs,
16667 -- which has the side effect of returning a non empty Discs list to the
16668 -- caller of Inherit_Components, which is what we want. This must be
16669 -- done for private derived types if there are explicit stored
16670 -- discriminants, to ensure that we can retrieve the values of the
16671 -- constraints provided in the ancestors.
16673 if Inherit_Discr
16674 and then Is_Empty_Elmt_List (Discs)
16675 and then Present (First_Discriminant (Derived_Base))
16676 and then
16677 (not Is_Private_Type (Derived_Base)
16678 or else Is_Completely_Hidden
16679 (First_Stored_Discriminant (Derived_Base))
16680 or else Is_Generic_Type (Derived_Base))
16681 then
16682 D := First_Discriminant (Derived_Base);
16683 while Present (D) loop
16684 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
16685 Next_Discriminant (D);
16686 end loop;
16687 end if;
16689 -- Finally, inherit non-discriminant components unless they are not
16690 -- visible because defined or inherited from the full view of the
16691 -- parent. Don't inherit the _parent field of the parent type.
16693 Component := First_Entity (Parent_Base);
16694 while Present (Component) loop
16696 -- Ada 2005 (AI-251): Do not inherit components associated with
16697 -- secondary tags of the parent.
16699 if Ekind (Component) = E_Component
16700 and then Present (Related_Type (Component))
16701 then
16702 null;
16704 elsif Ekind (Component) /= E_Component
16705 or else Chars (Component) = Name_uParent
16706 then
16707 null;
16709 -- If the derived type is within the parent type's declarative
16710 -- region, then the components can still be inherited even though
16711 -- they aren't visible at this point. This can occur for cases
16712 -- such as within public child units where the components must
16713 -- become visible upon entering the child unit's private part.
16715 elsif not Is_Visible_Component (Component)
16716 and then not In_Open_Scopes (Scope (Parent_Base))
16717 then
16718 null;
16720 elsif Ekind_In (Derived_Base, E_Private_Type,
16721 E_Limited_Private_Type)
16722 then
16723 null;
16725 else
16726 Inherit_Component (Component);
16727 end if;
16729 Next_Entity (Component);
16730 end loop;
16732 -- For tagged derived types, inherited discriminants cannot be used in
16733 -- component declarations of the record extension part. To achieve this
16734 -- we mark the inherited discriminants as not visible.
16736 if Is_Tagged and then Inherit_Discr then
16737 D := First_Discriminant (Derived_Base);
16738 while Present (D) loop
16739 Set_Is_Immediately_Visible (D, False);
16740 Next_Discriminant (D);
16741 end loop;
16742 end if;
16744 return Assoc_List;
16745 end Inherit_Components;
16747 -----------------------
16748 -- Is_Null_Extension --
16749 -----------------------
16751 function Is_Null_Extension (T : Entity_Id) return Boolean is
16752 Type_Decl : constant Node_Id := Parent (Base_Type (T));
16753 Comp_List : Node_Id;
16754 Comp : Node_Id;
16756 begin
16757 if Nkind (Type_Decl) /= N_Full_Type_Declaration
16758 or else not Is_Tagged_Type (T)
16759 or else Nkind (Type_Definition (Type_Decl)) /=
16760 N_Derived_Type_Definition
16761 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
16762 then
16763 return False;
16764 end if;
16766 Comp_List :=
16767 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
16769 if Present (Discriminant_Specifications (Type_Decl)) then
16770 return False;
16772 elsif Present (Comp_List)
16773 and then Is_Non_Empty_List (Component_Items (Comp_List))
16774 then
16775 Comp := First (Component_Items (Comp_List));
16777 -- Only user-defined components are relevant. The component list
16778 -- may also contain a parent component and internal components
16779 -- corresponding to secondary tags, but these do not determine
16780 -- whether this is a null extension.
16782 while Present (Comp) loop
16783 if Comes_From_Source (Comp) then
16784 return False;
16785 end if;
16787 Next (Comp);
16788 end loop;
16790 return True;
16791 else
16792 return True;
16793 end if;
16794 end Is_Null_Extension;
16796 ------------------------------
16797 -- Is_Valid_Constraint_Kind --
16798 ------------------------------
16800 function Is_Valid_Constraint_Kind
16801 (T_Kind : Type_Kind;
16802 Constraint_Kind : Node_Kind) return Boolean
16804 begin
16805 case T_Kind is
16806 when Enumeration_Kind |
16807 Integer_Kind =>
16808 return Constraint_Kind = N_Range_Constraint;
16810 when Decimal_Fixed_Point_Kind =>
16811 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16812 N_Range_Constraint);
16814 when Ordinary_Fixed_Point_Kind =>
16815 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
16816 N_Range_Constraint);
16818 when Float_Kind =>
16819 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16820 N_Range_Constraint);
16822 when Access_Kind |
16823 Array_Kind |
16824 E_Record_Type |
16825 E_Record_Subtype |
16826 Class_Wide_Kind |
16827 E_Incomplete_Type |
16828 Private_Kind |
16829 Concurrent_Kind =>
16830 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
16832 when others =>
16833 return True; -- Error will be detected later
16834 end case;
16835 end Is_Valid_Constraint_Kind;
16837 --------------------------
16838 -- Is_Visible_Component --
16839 --------------------------
16841 function Is_Visible_Component
16842 (C : Entity_Id;
16843 N : Node_Id := Empty) return Boolean
16845 Original_Comp : Entity_Id := Empty;
16846 Original_Scope : Entity_Id;
16847 Type_Scope : Entity_Id;
16849 function Is_Local_Type (Typ : Entity_Id) return Boolean;
16850 -- Check whether parent type of inherited component is declared locally,
16851 -- possibly within a nested package or instance. The current scope is
16852 -- the derived record itself.
16854 -------------------
16855 -- Is_Local_Type --
16856 -------------------
16858 function Is_Local_Type (Typ : Entity_Id) return Boolean is
16859 Scop : Entity_Id;
16861 begin
16862 Scop := Scope (Typ);
16863 while Present (Scop)
16864 and then Scop /= Standard_Standard
16865 loop
16866 if Scop = Scope (Current_Scope) then
16867 return True;
16868 end if;
16870 Scop := Scope (Scop);
16871 end loop;
16873 return False;
16874 end Is_Local_Type;
16876 -- Start of processing for Is_Visible_Component
16878 begin
16879 if Ekind_In (C, E_Component, E_Discriminant) then
16880 Original_Comp := Original_Record_Component (C);
16881 end if;
16883 if No (Original_Comp) then
16885 -- Premature usage, or previous error
16887 return False;
16889 else
16890 Original_Scope := Scope (Original_Comp);
16891 Type_Scope := Scope (Base_Type (Scope (C)));
16892 end if;
16894 -- For an untagged type derived from a private type, the only visible
16895 -- components are new discriminants. In an instance all components are
16896 -- visible (see Analyze_Selected_Component).
16898 if not Is_Tagged_Type (Original_Scope) then
16899 return not Has_Private_Ancestor (Original_Scope)
16900 or else In_Open_Scopes (Scope (Original_Scope))
16901 or else In_Instance
16902 or else (Ekind (Original_Comp) = E_Discriminant
16903 and then Original_Scope = Type_Scope);
16905 -- If it is _Parent or _Tag, there is no visibility issue
16907 elsif not Comes_From_Source (Original_Comp) then
16908 return True;
16910 -- Discriminants are visible unless the (private) type has unknown
16911 -- discriminants. If the discriminant reference is inserted for a
16912 -- discriminant check on a full view it is also visible.
16914 elsif Ekind (Original_Comp) = E_Discriminant
16915 and then
16916 (not Has_Unknown_Discriminants (Original_Scope)
16917 or else (Present (N)
16918 and then Nkind (N) = N_Selected_Component
16919 and then Nkind (Prefix (N)) = N_Type_Conversion
16920 and then not Comes_From_Source (Prefix (N))))
16921 then
16922 return True;
16924 -- In the body of an instantiation, no need to check for the visibility
16925 -- of a component.
16927 elsif In_Instance_Body then
16928 return True;
16930 -- If the component has been declared in an ancestor which is currently
16931 -- a private type, then it is not visible. The same applies if the
16932 -- component's containing type is not in an open scope and the original
16933 -- component's enclosing type is a visible full view of a private type
16934 -- (which can occur in cases where an attempt is being made to reference
16935 -- a component in a sibling package that is inherited from a visible
16936 -- component of a type in an ancestor package; the component in the
16937 -- sibling package should not be visible even though the component it
16938 -- inherited from is visible). This does not apply however in the case
16939 -- where the scope of the type is a private child unit, or when the
16940 -- parent comes from a local package in which the ancestor is currently
16941 -- visible. The latter suppression of visibility is needed for cases
16942 -- that are tested in B730006.
16944 elsif Is_Private_Type (Original_Scope)
16945 or else
16946 (not Is_Private_Descendant (Type_Scope)
16947 and then not In_Open_Scopes (Type_Scope)
16948 and then Has_Private_Declaration (Original_Scope))
16949 then
16950 -- If the type derives from an entity in a formal package, there
16951 -- are no additional visible components.
16953 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
16954 N_Formal_Package_Declaration
16955 then
16956 return False;
16958 -- if we are not in the private part of the current package, there
16959 -- are no additional visible components.
16961 elsif Ekind (Scope (Current_Scope)) = E_Package
16962 and then not In_Private_Part (Scope (Current_Scope))
16963 then
16964 return False;
16965 else
16966 return
16967 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
16968 and then In_Open_Scopes (Scope (Original_Scope))
16969 and then Is_Local_Type (Type_Scope);
16970 end if;
16972 -- There is another weird way in which a component may be invisible when
16973 -- the private and the full view are not derived from the same ancestor.
16974 -- Here is an example :
16976 -- type A1 is tagged record F1 : integer; end record;
16977 -- type A2 is new A1 with record F2 : integer; end record;
16978 -- type T is new A1 with private;
16979 -- private
16980 -- type T is new A2 with null record;
16982 -- In this case, the full view of T inherits F1 and F2 but the private
16983 -- view inherits only F1
16985 else
16986 declare
16987 Ancestor : Entity_Id := Scope (C);
16989 begin
16990 loop
16991 if Ancestor = Original_Scope then
16992 return True;
16993 elsif Ancestor = Etype (Ancestor) then
16994 return False;
16995 end if;
16997 Ancestor := Etype (Ancestor);
16998 end loop;
16999 end;
17000 end if;
17001 end Is_Visible_Component;
17003 --------------------------
17004 -- Make_Class_Wide_Type --
17005 --------------------------
17007 procedure Make_Class_Wide_Type (T : Entity_Id) is
17008 CW_Type : Entity_Id;
17009 CW_Name : Name_Id;
17010 Next_E : Entity_Id;
17012 begin
17013 if Present (Class_Wide_Type (T)) then
17015 -- The class-wide type is a partially decorated entity created for a
17016 -- unanalyzed tagged type referenced through a limited with clause.
17017 -- When the tagged type is analyzed, its class-wide type needs to be
17018 -- redecorated. Note that we reuse the entity created by Decorate_
17019 -- Tagged_Type in order to preserve all links.
17021 if Materialize_Entity (Class_Wide_Type (T)) then
17022 CW_Type := Class_Wide_Type (T);
17023 Set_Materialize_Entity (CW_Type, False);
17025 -- The class wide type can have been defined by the partial view, in
17026 -- which case everything is already done.
17028 else
17029 return;
17030 end if;
17032 -- Default case, we need to create a new class-wide type
17034 else
17035 CW_Type :=
17036 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17037 end if;
17039 -- Inherit root type characteristics
17041 CW_Name := Chars (CW_Type);
17042 Next_E := Next_Entity (CW_Type);
17043 Copy_Node (T, CW_Type);
17044 Set_Comes_From_Source (CW_Type, False);
17045 Set_Chars (CW_Type, CW_Name);
17046 Set_Parent (CW_Type, Parent (T));
17047 Set_Next_Entity (CW_Type, Next_E);
17049 -- Ensure we have a new freeze node for the class-wide type. The partial
17050 -- view may have freeze action of its own, requiring a proper freeze
17051 -- node, and the same freeze node cannot be shared between the two
17052 -- types.
17054 Set_Has_Delayed_Freeze (CW_Type);
17055 Set_Freeze_Node (CW_Type, Empty);
17057 -- Customize the class-wide type: It has no prim. op., it cannot be
17058 -- abstract and its Etype points back to the specific root type.
17060 Set_Ekind (CW_Type, E_Class_Wide_Type);
17061 Set_Is_Tagged_Type (CW_Type, True);
17062 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17063 Set_Is_Abstract_Type (CW_Type, False);
17064 Set_Is_Constrained (CW_Type, False);
17065 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17067 if Ekind (T) = E_Class_Wide_Subtype then
17068 Set_Etype (CW_Type, Etype (Base_Type (T)));
17069 else
17070 Set_Etype (CW_Type, T);
17071 end if;
17073 -- If this is the class_wide type of a constrained subtype, it does
17074 -- not have discriminants.
17076 Set_Has_Discriminants (CW_Type,
17077 Has_Discriminants (T) and then not Is_Constrained (T));
17079 Set_Has_Unknown_Discriminants (CW_Type, True);
17080 Set_Class_Wide_Type (T, CW_Type);
17081 Set_Equivalent_Type (CW_Type, Empty);
17083 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17085 Set_Class_Wide_Type (CW_Type, CW_Type);
17086 end Make_Class_Wide_Type;
17088 ----------------
17089 -- Make_Index --
17090 ----------------
17092 procedure Make_Index
17093 (I : Node_Id;
17094 Related_Nod : Node_Id;
17095 Related_Id : Entity_Id := Empty;
17096 Suffix_Index : Nat := 1;
17097 In_Iter_Schm : Boolean := False)
17099 R : Node_Id;
17100 T : Entity_Id;
17101 Def_Id : Entity_Id := Empty;
17102 Found : Boolean := False;
17104 begin
17105 -- For a discrete range used in a constrained array definition and
17106 -- defined by a range, an implicit conversion to the predefined type
17107 -- INTEGER is assumed if each bound is either a numeric literal, a named
17108 -- number, or an attribute, and the type of both bounds (prior to the
17109 -- implicit conversion) is the type universal_integer. Otherwise, both
17110 -- bounds must be of the same discrete type, other than universal
17111 -- integer; this type must be determinable independently of the
17112 -- context, but using the fact that the type must be discrete and that
17113 -- both bounds must have the same type.
17115 -- Character literals also have a universal type in the absence of
17116 -- of additional context, and are resolved to Standard_Character.
17118 if Nkind (I) = N_Range then
17120 -- The index is given by a range constraint. The bounds are known
17121 -- to be of a consistent type.
17123 if not Is_Overloaded (I) then
17124 T := Etype (I);
17126 -- For universal bounds, choose the specific predefined type
17128 if T = Universal_Integer then
17129 T := Standard_Integer;
17131 elsif T = Any_Character then
17132 Ambiguous_Character (Low_Bound (I));
17134 T := Standard_Character;
17135 end if;
17137 -- The node may be overloaded because some user-defined operators
17138 -- are available, but if a universal interpretation exists it is
17139 -- also the selected one.
17141 elsif Universal_Interpretation (I) = Universal_Integer then
17142 T := Standard_Integer;
17144 else
17145 T := Any_Type;
17147 declare
17148 Ind : Interp_Index;
17149 It : Interp;
17151 begin
17152 Get_First_Interp (I, Ind, It);
17153 while Present (It.Typ) loop
17154 if Is_Discrete_Type (It.Typ) then
17156 if Found
17157 and then not Covers (It.Typ, T)
17158 and then not Covers (T, It.Typ)
17159 then
17160 Error_Msg_N ("ambiguous bounds in discrete range", I);
17161 exit;
17162 else
17163 T := It.Typ;
17164 Found := True;
17165 end if;
17166 end if;
17168 Get_Next_Interp (Ind, It);
17169 end loop;
17171 if T = Any_Type then
17172 Error_Msg_N ("discrete type required for range", I);
17173 Set_Etype (I, Any_Type);
17174 return;
17176 elsif T = Universal_Integer then
17177 T := Standard_Integer;
17178 end if;
17179 end;
17180 end if;
17182 if not Is_Discrete_Type (T) then
17183 Error_Msg_N ("discrete type required for range", I);
17184 Set_Etype (I, Any_Type);
17185 return;
17186 end if;
17188 if Nkind (Low_Bound (I)) = N_Attribute_Reference
17189 and then Attribute_Name (Low_Bound (I)) = Name_First
17190 and then Is_Entity_Name (Prefix (Low_Bound (I)))
17191 and then Is_Type (Entity (Prefix (Low_Bound (I))))
17192 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (I))))
17193 then
17194 -- The type of the index will be the type of the prefix, as long
17195 -- as the upper bound is 'Last of the same type.
17197 Def_Id := Entity (Prefix (Low_Bound (I)));
17199 if Nkind (High_Bound (I)) /= N_Attribute_Reference
17200 or else Attribute_Name (High_Bound (I)) /= Name_Last
17201 or else not Is_Entity_Name (Prefix (High_Bound (I)))
17202 or else Entity (Prefix (High_Bound (I))) /= Def_Id
17203 then
17204 Def_Id := Empty;
17205 end if;
17206 end if;
17208 R := I;
17209 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
17211 elsif Nkind (I) = N_Subtype_Indication then
17213 -- The index is given by a subtype with a range constraint
17215 T := Base_Type (Entity (Subtype_Mark (I)));
17217 if not Is_Discrete_Type (T) then
17218 Error_Msg_N ("discrete type required for range", I);
17219 Set_Etype (I, Any_Type);
17220 return;
17221 end if;
17223 R := Range_Expression (Constraint (I));
17225 Resolve (R, T);
17226 Process_Range_Expr_In_Decl
17227 (R, Entity (Subtype_Mark (I)), In_Iter_Schm => In_Iter_Schm);
17229 elsif Nkind (I) = N_Attribute_Reference then
17231 -- The parser guarantees that the attribute is a RANGE attribute
17233 -- If the node denotes the range of a type mark, that is also the
17234 -- resulting type, and we do no need to create an Itype for it.
17236 if Is_Entity_Name (Prefix (I))
17237 and then Comes_From_Source (I)
17238 and then Is_Type (Entity (Prefix (I)))
17239 and then Is_Discrete_Type (Entity (Prefix (I)))
17240 then
17241 Def_Id := Entity (Prefix (I));
17242 end if;
17244 Analyze_And_Resolve (I);
17245 T := Etype (I);
17246 R := I;
17248 -- If none of the above, must be a subtype. We convert this to a
17249 -- range attribute reference because in the case of declared first
17250 -- named subtypes, the types in the range reference can be different
17251 -- from the type of the entity. A range attribute normalizes the
17252 -- reference and obtains the correct types for the bounds.
17254 -- This transformation is in the nature of an expansion, is only
17255 -- done if expansion is active. In particular, it is not done on
17256 -- formal generic types, because we need to retain the name of the
17257 -- original index for instantiation purposes.
17259 else
17260 if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
17261 Error_Msg_N ("invalid subtype mark in discrete range ", I);
17262 Set_Etype (I, Any_Integer);
17263 return;
17265 else
17266 -- The type mark may be that of an incomplete type. It is only
17267 -- now that we can get the full view, previous analysis does
17268 -- not look specifically for a type mark.
17270 Set_Entity (I, Get_Full_View (Entity (I)));
17271 Set_Etype (I, Entity (I));
17272 Def_Id := Entity (I);
17274 if not Is_Discrete_Type (Def_Id) then
17275 Error_Msg_N ("discrete type required for index", I);
17276 Set_Etype (I, Any_Type);
17277 return;
17278 end if;
17279 end if;
17281 if Expander_Active then
17282 Rewrite (I,
17283 Make_Attribute_Reference (Sloc (I),
17284 Attribute_Name => Name_Range,
17285 Prefix => Relocate_Node (I)));
17287 -- The original was a subtype mark that does not freeze. This
17288 -- means that the rewritten version must not freeze either.
17290 Set_Must_Not_Freeze (I);
17291 Set_Must_Not_Freeze (Prefix (I));
17292 Analyze_And_Resolve (I);
17293 T := Etype (I);
17294 R := I;
17296 -- If expander is inactive, type is legal, nothing else to construct
17298 else
17299 return;
17300 end if;
17301 end if;
17303 if not Is_Discrete_Type (T) then
17304 Error_Msg_N ("discrete type required for range", I);
17305 Set_Etype (I, Any_Type);
17306 return;
17308 elsif T = Any_Type then
17309 Set_Etype (I, Any_Type);
17310 return;
17311 end if;
17313 -- We will now create the appropriate Itype to describe the range, but
17314 -- first a check. If we originally had a subtype, then we just label
17315 -- the range with this subtype. Not only is there no need to construct
17316 -- a new subtype, but it is wrong to do so for two reasons:
17318 -- 1. A legality concern, if we have a subtype, it must not freeze,
17319 -- and the Itype would cause freezing incorrectly
17321 -- 2. An efficiency concern, if we created an Itype, it would not be
17322 -- recognized as the same type for the purposes of eliminating
17323 -- checks in some circumstances.
17325 -- We signal this case by setting the subtype entity in Def_Id
17327 if No (Def_Id) then
17328 Def_Id :=
17329 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
17330 Set_Etype (Def_Id, Base_Type (T));
17332 if Is_Signed_Integer_Type (T) then
17333 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
17335 elsif Is_Modular_Integer_Type (T) then
17336 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
17338 else
17339 Set_Ekind (Def_Id, E_Enumeration_Subtype);
17340 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
17341 Set_First_Literal (Def_Id, First_Literal (T));
17342 end if;
17344 Set_Size_Info (Def_Id, (T));
17345 Set_RM_Size (Def_Id, RM_Size (T));
17346 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
17348 Set_Scalar_Range (Def_Id, R);
17349 Conditional_Delay (Def_Id, T);
17351 -- In the subtype indication case, if the immediate parent of the
17352 -- new subtype is non-static, then the subtype we create is non-
17353 -- static, even if its bounds are static.
17355 if Nkind (I) = N_Subtype_Indication
17356 and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
17357 then
17358 Set_Is_Non_Static_Subtype (Def_Id);
17359 end if;
17360 end if;
17362 -- Final step is to label the index with this constructed type
17364 Set_Etype (I, Def_Id);
17365 end Make_Index;
17367 ------------------------------
17368 -- Modular_Type_Declaration --
17369 ------------------------------
17371 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17372 Mod_Expr : constant Node_Id := Expression (Def);
17373 M_Val : Uint;
17375 procedure Set_Modular_Size (Bits : Int);
17376 -- Sets RM_Size to Bits, and Esize to normal word size above this
17378 ----------------------
17379 -- Set_Modular_Size --
17380 ----------------------
17382 procedure Set_Modular_Size (Bits : Int) is
17383 begin
17384 Set_RM_Size (T, UI_From_Int (Bits));
17386 if Bits <= 8 then
17387 Init_Esize (T, 8);
17389 elsif Bits <= 16 then
17390 Init_Esize (T, 16);
17392 elsif Bits <= 32 then
17393 Init_Esize (T, 32);
17395 else
17396 Init_Esize (T, System_Max_Binary_Modulus_Power);
17397 end if;
17399 if not Non_Binary_Modulus (T)
17400 and then Esize (T) = RM_Size (T)
17401 then
17402 Set_Is_Known_Valid (T);
17403 end if;
17404 end Set_Modular_Size;
17406 -- Start of processing for Modular_Type_Declaration
17408 begin
17409 -- If the mod expression is (exactly) 2 * literal, where literal is
17410 -- 64 or less,then almost certainly the * was meant to be **. Warn.
17412 if Warn_On_Suspicious_Modulus_Value
17413 and then Nkind (Mod_Expr) = N_Op_Multiply
17414 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
17415 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
17416 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
17417 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
17418 then
17419 Error_Msg_N
17420 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
17421 end if;
17423 -- Proceed with analysis of mod expression
17425 Analyze_And_Resolve (Mod_Expr, Any_Integer);
17426 Set_Etype (T, T);
17427 Set_Ekind (T, E_Modular_Integer_Type);
17428 Init_Alignment (T);
17429 Set_Is_Constrained (T);
17431 if not Is_OK_Static_Expression (Mod_Expr) then
17432 Flag_Non_Static_Expr
17433 ("non-static expression used for modular type bound!", Mod_Expr);
17434 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17435 else
17436 M_Val := Expr_Value (Mod_Expr);
17437 end if;
17439 if M_Val < 1 then
17440 Error_Msg_N ("modulus value must be positive", Mod_Expr);
17441 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17442 end if;
17444 Set_Modulus (T, M_Val);
17446 -- Create bounds for the modular type based on the modulus given in
17447 -- the type declaration and then analyze and resolve those bounds.
17449 Set_Scalar_Range (T,
17450 Make_Range (Sloc (Mod_Expr),
17451 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
17452 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
17454 -- Properly analyze the literals for the range. We do this manually
17455 -- because we can't go calling Resolve, since we are resolving these
17456 -- bounds with the type, and this type is certainly not complete yet.
17458 Set_Etype (Low_Bound (Scalar_Range (T)), T);
17459 Set_Etype (High_Bound (Scalar_Range (T)), T);
17460 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
17461 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
17463 -- Loop through powers of two to find number of bits required
17465 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
17467 -- Binary case
17469 if M_Val = 2 ** Bits then
17470 Set_Modular_Size (Bits);
17471 return;
17473 -- Non-binary case
17475 elsif M_Val < 2 ** Bits then
17476 Check_SPARK_Restriction ("modulus should be a power of 2", T);
17477 Set_Non_Binary_Modulus (T);
17479 if Bits > System_Max_Nonbinary_Modulus_Power then
17480 Error_Msg_Uint_1 :=
17481 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
17482 Error_Msg_F
17483 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
17484 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17485 return;
17487 else
17488 -- In the non-binary case, set size as per RM 13.3(55)
17490 Set_Modular_Size (Bits);
17491 return;
17492 end if;
17493 end if;
17495 end loop;
17497 -- If we fall through, then the size exceed System.Max_Binary_Modulus
17498 -- so we just signal an error and set the maximum size.
17500 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
17501 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
17503 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17504 Init_Alignment (T);
17506 end Modular_Type_Declaration;
17508 --------------------------
17509 -- New_Concatenation_Op --
17510 --------------------------
17512 procedure New_Concatenation_Op (Typ : Entity_Id) is
17513 Loc : constant Source_Ptr := Sloc (Typ);
17514 Op : Entity_Id;
17516 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
17517 -- Create abbreviated declaration for the formal of a predefined
17518 -- Operator 'Op' of type 'Typ'
17520 --------------------
17521 -- Make_Op_Formal --
17522 --------------------
17524 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
17525 Formal : Entity_Id;
17526 begin
17527 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
17528 Set_Etype (Formal, Typ);
17529 Set_Mechanism (Formal, Default_Mechanism);
17530 return Formal;
17531 end Make_Op_Formal;
17533 -- Start of processing for New_Concatenation_Op
17535 begin
17536 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
17538 Set_Ekind (Op, E_Operator);
17539 Set_Scope (Op, Current_Scope);
17540 Set_Etype (Op, Typ);
17541 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
17542 Set_Is_Immediately_Visible (Op);
17543 Set_Is_Intrinsic_Subprogram (Op);
17544 Set_Has_Completion (Op);
17545 Append_Entity (Op, Current_Scope);
17547 Set_Name_Entity_Id (Name_Op_Concat, Op);
17549 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17550 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17551 end New_Concatenation_Op;
17553 -------------------------
17554 -- OK_For_Limited_Init --
17555 -------------------------
17557 -- ???Check all calls of this, and compare the conditions under which it's
17558 -- called.
17560 function OK_For_Limited_Init
17561 (Typ : Entity_Id;
17562 Exp : Node_Id) return Boolean
17564 begin
17565 return Is_CPP_Constructor_Call (Exp)
17566 or else (Ada_Version >= Ada_2005
17567 and then not Debug_Flag_Dot_L
17568 and then OK_For_Limited_Init_In_05 (Typ, Exp));
17569 end OK_For_Limited_Init;
17571 -------------------------------
17572 -- OK_For_Limited_Init_In_05 --
17573 -------------------------------
17575 function OK_For_Limited_Init_In_05
17576 (Typ : Entity_Id;
17577 Exp : Node_Id) return Boolean
17579 begin
17580 -- An object of a limited interface type can be initialized with any
17581 -- expression of a nonlimited descendant type.
17583 if Is_Class_Wide_Type (Typ)
17584 and then Is_Limited_Interface (Typ)
17585 and then not Is_Limited_Type (Etype (Exp))
17586 then
17587 return True;
17588 end if;
17590 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
17591 -- case of limited aggregates (including extension aggregates), and
17592 -- function calls. The function call may have been given in prefixed
17593 -- notation, in which case the original node is an indexed component.
17594 -- If the function is parameterless, the original node was an explicit
17595 -- dereference. The function may also be parameterless, in which case
17596 -- the source node is just an identifier.
17598 case Nkind (Original_Node (Exp)) is
17599 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
17600 return True;
17602 when N_Identifier =>
17603 return Present (Entity (Original_Node (Exp)))
17604 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
17606 when N_Qualified_Expression =>
17607 return
17608 OK_For_Limited_Init_In_05
17609 (Typ, Expression (Original_Node (Exp)));
17611 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
17612 -- with a function call, the expander has rewritten the call into an
17613 -- N_Type_Conversion node to force displacement of the pointer to
17614 -- reference the component containing the secondary dispatch table.
17615 -- Otherwise a type conversion is not a legal context.
17616 -- A return statement for a build-in-place function returning a
17617 -- synchronized type also introduces an unchecked conversion.
17619 when N_Type_Conversion |
17620 N_Unchecked_Type_Conversion =>
17621 return not Comes_From_Source (Exp)
17622 and then
17623 OK_For_Limited_Init_In_05
17624 (Typ, Expression (Original_Node (Exp)));
17626 when N_Indexed_Component |
17627 N_Selected_Component |
17628 N_Explicit_Dereference =>
17629 return Nkind (Exp) = N_Function_Call;
17631 -- A use of 'Input is a function call, hence allowed. Normally the
17632 -- attribute will be changed to a call, but the attribute by itself
17633 -- can occur with -gnatc.
17635 when N_Attribute_Reference =>
17636 return Attribute_Name (Original_Node (Exp)) = Name_Input;
17638 -- For a case expression, all dependent expressions must be legal
17640 when N_Case_Expression =>
17641 declare
17642 Alt : Node_Id;
17644 begin
17645 Alt := First (Alternatives (Original_Node (Exp)));
17646 while Present (Alt) loop
17647 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
17648 return False;
17649 end if;
17651 Next (Alt);
17652 end loop;
17654 return True;
17655 end;
17657 -- For an if expression, all dependent expressions must be legal
17659 when N_If_Expression =>
17660 declare
17661 Then_Expr : constant Node_Id :=
17662 Next (First (Expressions (Original_Node (Exp))));
17663 Else_Expr : constant Node_Id := Next (Then_Expr);
17664 begin
17665 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
17666 and then
17667 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
17668 end;
17670 when others =>
17671 return False;
17672 end case;
17673 end OK_For_Limited_Init_In_05;
17675 -------------------------------------------
17676 -- Ordinary_Fixed_Point_Type_Declaration --
17677 -------------------------------------------
17679 procedure Ordinary_Fixed_Point_Type_Declaration
17680 (T : Entity_Id;
17681 Def : Node_Id)
17683 Loc : constant Source_Ptr := Sloc (Def);
17684 Delta_Expr : constant Node_Id := Delta_Expression (Def);
17685 RRS : constant Node_Id := Real_Range_Specification (Def);
17686 Implicit_Base : Entity_Id;
17687 Delta_Val : Ureal;
17688 Small_Val : Ureal;
17689 Low_Val : Ureal;
17690 High_Val : Ureal;
17692 begin
17693 Check_Restriction (No_Fixed_Point, Def);
17695 -- Create implicit base type
17697 Implicit_Base :=
17698 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
17699 Set_Etype (Implicit_Base, Implicit_Base);
17701 -- Analyze and process delta expression
17703 Analyze_And_Resolve (Delta_Expr, Any_Real);
17705 Check_Delta_Expression (Delta_Expr);
17706 Delta_Val := Expr_Value_R (Delta_Expr);
17708 Set_Delta_Value (Implicit_Base, Delta_Val);
17710 -- Compute default small from given delta, which is the largest power
17711 -- of two that does not exceed the given delta value.
17713 declare
17714 Tmp : Ureal;
17715 Scale : Int;
17717 begin
17718 Tmp := Ureal_1;
17719 Scale := 0;
17721 if Delta_Val < Ureal_1 then
17722 while Delta_Val < Tmp loop
17723 Tmp := Tmp / Ureal_2;
17724 Scale := Scale + 1;
17725 end loop;
17727 else
17728 loop
17729 Tmp := Tmp * Ureal_2;
17730 exit when Tmp > Delta_Val;
17731 Scale := Scale - 1;
17732 end loop;
17733 end if;
17735 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
17736 end;
17738 Set_Small_Value (Implicit_Base, Small_Val);
17740 -- If no range was given, set a dummy range
17742 if RRS <= Empty_Or_Error then
17743 Low_Val := -Small_Val;
17744 High_Val := Small_Val;
17746 -- Otherwise analyze and process given range
17748 else
17749 declare
17750 Low : constant Node_Id := Low_Bound (RRS);
17751 High : constant Node_Id := High_Bound (RRS);
17753 begin
17754 Analyze_And_Resolve (Low, Any_Real);
17755 Analyze_And_Resolve (High, Any_Real);
17756 Check_Real_Bound (Low);
17757 Check_Real_Bound (High);
17759 -- Obtain and set the range
17761 Low_Val := Expr_Value_R (Low);
17762 High_Val := Expr_Value_R (High);
17764 if Low_Val > High_Val then
17765 Error_Msg_NE ("??fixed point type& has null range", Def, T);
17766 end if;
17767 end;
17768 end if;
17770 -- The range for both the implicit base and the declared first subtype
17771 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17772 -- set a temporary range in place. Note that the bounds of the base
17773 -- type will be widened to be symmetrical and to fill the available
17774 -- bits when the type is frozen.
17776 -- We could do this with all discrete types, and probably should, but
17777 -- we absolutely have to do it for fixed-point, since the end-points
17778 -- of the range and the size are determined by the small value, which
17779 -- could be reset before the freeze point.
17781 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
17782 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
17784 -- Complete definition of first subtype
17786 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
17787 Set_Etype (T, Implicit_Base);
17788 Init_Size_Align (T);
17789 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
17790 Set_Small_Value (T, Small_Val);
17791 Set_Delta_Value (T, Delta_Val);
17792 Set_Is_Constrained (T);
17794 end Ordinary_Fixed_Point_Type_Declaration;
17796 ----------------------------------------
17797 -- Prepare_Private_Subtype_Completion --
17798 ----------------------------------------
17800 procedure Prepare_Private_Subtype_Completion
17801 (Id : Entity_Id;
17802 Related_Nod : Node_Id)
17804 Id_B : constant Entity_Id := Base_Type (Id);
17805 Full_B : constant Entity_Id := Full_View (Id_B);
17806 Full : Entity_Id;
17808 begin
17809 if Present (Full_B) then
17811 -- The Base_Type is already completed, we can complete the subtype
17812 -- now. We have to create a new entity with the same name, Thus we
17813 -- can't use Create_Itype.
17815 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
17816 Set_Is_Itype (Full);
17817 Set_Associated_Node_For_Itype (Full, Related_Nod);
17818 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
17819 end if;
17821 -- The parent subtype may be private, but the base might not, in some
17822 -- nested instances. In that case, the subtype does not need to be
17823 -- exchanged. It would still be nice to make private subtypes and their
17824 -- bases consistent at all times ???
17826 if Is_Private_Type (Id_B) then
17827 Append_Elmt (Id, Private_Dependents (Id_B));
17828 end if;
17829 end Prepare_Private_Subtype_Completion;
17831 ---------------------------
17832 -- Process_Discriminants --
17833 ---------------------------
17835 procedure Process_Discriminants
17836 (N : Node_Id;
17837 Prev : Entity_Id := Empty)
17839 Elist : constant Elist_Id := New_Elmt_List;
17840 Id : Node_Id;
17841 Discr : Node_Id;
17842 Discr_Number : Uint;
17843 Discr_Type : Entity_Id;
17844 Default_Present : Boolean := False;
17845 Default_Not_Present : Boolean := False;
17847 begin
17848 -- A composite type other than an array type can have discriminants.
17849 -- On entry, the current scope is the composite type.
17851 -- The discriminants are initially entered into the scope of the type
17852 -- via Enter_Name with the default Ekind of E_Void to prevent premature
17853 -- use, as explained at the end of this procedure.
17855 Discr := First (Discriminant_Specifications (N));
17856 while Present (Discr) loop
17857 Enter_Name (Defining_Identifier (Discr));
17859 -- For navigation purposes we add a reference to the discriminant
17860 -- in the entity for the type. If the current declaration is a
17861 -- completion, place references on the partial view. Otherwise the
17862 -- type is the current scope.
17864 if Present (Prev) then
17866 -- The references go on the partial view, if present. If the
17867 -- partial view has discriminants, the references have been
17868 -- generated already.
17870 if not Has_Discriminants (Prev) then
17871 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
17872 end if;
17873 else
17874 Generate_Reference
17875 (Current_Scope, Defining_Identifier (Discr), 'd');
17876 end if;
17878 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
17879 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
17881 -- Ada 2005 (AI-254)
17883 if Present (Access_To_Subprogram_Definition
17884 (Discriminant_Type (Discr)))
17885 and then Protected_Present (Access_To_Subprogram_Definition
17886 (Discriminant_Type (Discr)))
17887 then
17888 Discr_Type :=
17889 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
17890 end if;
17892 else
17893 Find_Type (Discriminant_Type (Discr));
17894 Discr_Type := Etype (Discriminant_Type (Discr));
17896 if Error_Posted (Discriminant_Type (Discr)) then
17897 Discr_Type := Any_Type;
17898 end if;
17899 end if;
17901 if Is_Access_Type (Discr_Type) then
17903 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
17904 -- record types
17906 if Ada_Version < Ada_2005 then
17907 Check_Access_Discriminant_Requires_Limited
17908 (Discr, Discriminant_Type (Discr));
17909 end if;
17911 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
17912 Error_Msg_N
17913 ("(Ada 83) access discriminant not allowed", Discr);
17914 end if;
17916 elsif not Is_Discrete_Type (Discr_Type) then
17917 Error_Msg_N ("discriminants must have a discrete or access type",
17918 Discriminant_Type (Discr));
17919 end if;
17921 Set_Etype (Defining_Identifier (Discr), Discr_Type);
17923 -- If a discriminant specification includes the assignment compound
17924 -- delimiter followed by an expression, the expression is the default
17925 -- expression of the discriminant; the default expression must be of
17926 -- the type of the discriminant. (RM 3.7.1) Since this expression is
17927 -- a default expression, we do the special preanalysis, since this
17928 -- expression does not freeze (see "Handling of Default and Per-
17929 -- Object Expressions" in spec of package Sem).
17931 if Present (Expression (Discr)) then
17932 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
17934 if Nkind (N) = N_Formal_Type_Declaration then
17935 Error_Msg_N
17936 ("discriminant defaults not allowed for formal type",
17937 Expression (Discr));
17939 -- Flag an error for a tagged type with defaulted discriminants,
17940 -- excluding limited tagged types when compiling for Ada 2012
17941 -- (see AI05-0214).
17943 elsif Is_Tagged_Type (Current_Scope)
17944 and then (not Is_Limited_Type (Current_Scope)
17945 or else Ada_Version < Ada_2012)
17946 and then Comes_From_Source (N)
17947 then
17948 -- Note: see similar test in Check_Or_Process_Discriminants, to
17949 -- handle the (illegal) case of the completion of an untagged
17950 -- view with discriminants with defaults by a tagged full view.
17951 -- We skip the check if Discr does not come from source, to
17952 -- account for the case of an untagged derived type providing
17953 -- defaults for a renamed discriminant from a private untagged
17954 -- ancestor with a tagged full view (ACATS B460006).
17956 if Ada_Version >= Ada_2012 then
17957 Error_Msg_N
17958 ("discriminants of nonlimited tagged type cannot have"
17959 & " defaults",
17960 Expression (Discr));
17961 else
17962 Error_Msg_N
17963 ("discriminants of tagged type cannot have defaults",
17964 Expression (Discr));
17965 end if;
17967 else
17968 Default_Present := True;
17969 Append_Elmt (Expression (Discr), Elist);
17971 -- Tag the defining identifiers for the discriminants with
17972 -- their corresponding default expressions from the tree.
17974 Set_Discriminant_Default_Value
17975 (Defining_Identifier (Discr), Expression (Discr));
17976 end if;
17978 else
17979 Default_Not_Present := True;
17980 end if;
17982 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
17983 -- Discr_Type but with the null-exclusion attribute
17985 if Ada_Version >= Ada_2005 then
17987 -- Ada 2005 (AI-231): Static checks
17989 if Can_Never_Be_Null (Discr_Type) then
17990 Null_Exclusion_Static_Checks (Discr);
17992 elsif Is_Access_Type (Discr_Type)
17993 and then Null_Exclusion_Present (Discr)
17995 -- No need to check itypes because in their case this check
17996 -- was done at their point of creation
17998 and then not Is_Itype (Discr_Type)
17999 then
18000 if Can_Never_Be_Null (Discr_Type) then
18001 Error_Msg_NE
18002 ("`NOT NULL` not allowed (& already excludes null)",
18003 Discr,
18004 Discr_Type);
18005 end if;
18007 Set_Etype (Defining_Identifier (Discr),
18008 Create_Null_Excluding_Itype
18009 (T => Discr_Type,
18010 Related_Nod => Discr));
18012 -- Check for improper null exclusion if the type is otherwise
18013 -- legal for a discriminant.
18015 elsif Null_Exclusion_Present (Discr)
18016 and then Is_Discrete_Type (Discr_Type)
18017 then
18018 Error_Msg_N
18019 ("null exclusion can only apply to an access type", Discr);
18020 end if;
18022 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18023 -- can't have defaults. Synchronized types, or types that are
18024 -- explicitly limited are fine, but special tests apply to derived
18025 -- types in generics: in a generic body we have to assume the
18026 -- worst, and therefore defaults are not allowed if the parent is
18027 -- a generic formal private type (see ACATS B370001).
18029 if Is_Access_Type (Discr_Type) and then Default_Present then
18030 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
18031 or else Is_Limited_Record (Current_Scope)
18032 or else Is_Concurrent_Type (Current_Scope)
18033 or else Is_Concurrent_Record_Type (Current_Scope)
18034 or else Ekind (Current_Scope) = E_Limited_Private_Type
18035 then
18036 if not Is_Derived_Type (Current_Scope)
18037 or else not Is_Generic_Type (Etype (Current_Scope))
18038 or else not In_Package_Body (Scope (Etype (Current_Scope)))
18039 or else Limited_Present
18040 (Type_Definition (Parent (Current_Scope)))
18041 then
18042 null;
18044 else
18045 Error_Msg_N ("access discriminants of nonlimited types",
18046 Expression (Discr));
18047 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18048 end if;
18050 elsif Present (Expression (Discr)) then
18051 Error_Msg_N
18052 ("(Ada 2005) access discriminants of nonlimited types",
18053 Expression (Discr));
18054 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18055 end if;
18056 end if;
18057 end if;
18059 -- A discriminant cannot be volatile. This check is only relevant
18060 -- when SPARK_Mode is on as it is not standard Ada legality rule
18061 -- (SPARK RM 7.1.3(6)).
18063 if SPARK_Mode = On
18064 and then Is_SPARK_Volatile_Object (Defining_Identifier (Discr))
18065 then
18066 Error_Msg_N ("discriminant cannot be volatile", Discr);
18067 end if;
18069 Next (Discr);
18070 end loop;
18072 -- An element list consisting of the default expressions of the
18073 -- discriminants is constructed in the above loop and used to set
18074 -- the Discriminant_Constraint attribute for the type. If an object
18075 -- is declared of this (record or task) type without any explicit
18076 -- discriminant constraint given, this element list will form the
18077 -- actual parameters for the corresponding initialization procedure
18078 -- for the type.
18080 Set_Discriminant_Constraint (Current_Scope, Elist);
18081 Set_Stored_Constraint (Current_Scope, No_Elist);
18083 -- Default expressions must be provided either for all or for none
18084 -- of the discriminants of a discriminant part. (RM 3.7.1)
18086 if Default_Present and then Default_Not_Present then
18087 Error_Msg_N
18088 ("incomplete specification of defaults for discriminants", N);
18089 end if;
18091 -- The use of the name of a discriminant is not allowed in default
18092 -- expressions of a discriminant part if the specification of the
18093 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
18095 -- To detect this, the discriminant names are entered initially with an
18096 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
18097 -- attempt to use a void entity (for example in an expression that is
18098 -- type-checked) produces the error message: premature usage. Now after
18099 -- completing the semantic analysis of the discriminant part, we can set
18100 -- the Ekind of all the discriminants appropriately.
18102 Discr := First (Discriminant_Specifications (N));
18103 Discr_Number := Uint_1;
18104 while Present (Discr) loop
18105 Id := Defining_Identifier (Discr);
18106 Set_Ekind (Id, E_Discriminant);
18107 Init_Component_Location (Id);
18108 Init_Esize (Id);
18109 Set_Discriminant_Number (Id, Discr_Number);
18111 -- Make sure this is always set, even in illegal programs
18113 Set_Corresponding_Discriminant (Id, Empty);
18115 -- Initialize the Original_Record_Component to the entity itself.
18116 -- Inherit_Components will propagate the right value to
18117 -- discriminants in derived record types.
18119 Set_Original_Record_Component (Id, Id);
18121 -- Create the discriminal for the discriminant
18123 Build_Discriminal (Id);
18125 Next (Discr);
18126 Discr_Number := Discr_Number + 1;
18127 end loop;
18129 Set_Has_Discriminants (Current_Scope);
18130 end Process_Discriminants;
18132 -----------------------
18133 -- Process_Full_View --
18134 -----------------------
18136 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
18137 Priv_Parent : Entity_Id;
18138 Full_Parent : Entity_Id;
18139 Full_Indic : Node_Id;
18141 procedure Collect_Implemented_Interfaces
18142 (Typ : Entity_Id;
18143 Ifaces : Elist_Id);
18144 -- Ada 2005: Gather all the interfaces that Typ directly or
18145 -- inherently implements. Duplicate entries are not added to
18146 -- the list Ifaces.
18148 ------------------------------------
18149 -- Collect_Implemented_Interfaces --
18150 ------------------------------------
18152 procedure Collect_Implemented_Interfaces
18153 (Typ : Entity_Id;
18154 Ifaces : Elist_Id)
18156 Iface : Entity_Id;
18157 Iface_Elmt : Elmt_Id;
18159 begin
18160 -- Abstract interfaces are only associated with tagged record types
18162 if not Is_Tagged_Type (Typ)
18163 or else not Is_Record_Type (Typ)
18164 then
18165 return;
18166 end if;
18168 -- Recursively climb to the ancestors
18170 if Etype (Typ) /= Typ
18172 -- Protect the frontend against wrong cyclic declarations like:
18174 -- type B is new A with private;
18175 -- type C is new A with private;
18176 -- private
18177 -- type B is new C with null record;
18178 -- type C is new B with null record;
18180 and then Etype (Typ) /= Priv_T
18181 and then Etype (Typ) /= Full_T
18182 then
18183 -- Keep separate the management of private type declarations
18185 if Ekind (Typ) = E_Record_Type_With_Private then
18187 -- Handle the following erroneous case:
18188 -- type Private_Type is tagged private;
18189 -- private
18190 -- type Private_Type is new Type_Implementing_Iface;
18192 if Present (Full_View (Typ))
18193 and then Etype (Typ) /= Full_View (Typ)
18194 then
18195 if Is_Interface (Etype (Typ)) then
18196 Append_Unique_Elmt (Etype (Typ), Ifaces);
18197 end if;
18199 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18200 end if;
18202 -- Non-private types
18204 else
18205 if Is_Interface (Etype (Typ)) then
18206 Append_Unique_Elmt (Etype (Typ), Ifaces);
18207 end if;
18209 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18210 end if;
18211 end if;
18213 -- Handle entities in the list of abstract interfaces
18215 if Present (Interfaces (Typ)) then
18216 Iface_Elmt := First_Elmt (Interfaces (Typ));
18217 while Present (Iface_Elmt) loop
18218 Iface := Node (Iface_Elmt);
18220 pragma Assert (Is_Interface (Iface));
18222 if not Contain_Interface (Iface, Ifaces) then
18223 Append_Elmt (Iface, Ifaces);
18224 Collect_Implemented_Interfaces (Iface, Ifaces);
18225 end if;
18227 Next_Elmt (Iface_Elmt);
18228 end loop;
18229 end if;
18230 end Collect_Implemented_Interfaces;
18232 -- Start of processing for Process_Full_View
18234 begin
18235 -- First some sanity checks that must be done after semantic
18236 -- decoration of the full view and thus cannot be placed with other
18237 -- similar checks in Find_Type_Name
18239 if not Is_Limited_Type (Priv_T)
18240 and then (Is_Limited_Type (Full_T)
18241 or else Is_Limited_Composite (Full_T))
18242 then
18243 if In_Instance then
18244 null;
18245 else
18246 Error_Msg_N
18247 ("completion of nonlimited type cannot be limited", Full_T);
18248 Explain_Limited_Type (Full_T, Full_T);
18249 end if;
18251 elsif Is_Abstract_Type (Full_T)
18252 and then not Is_Abstract_Type (Priv_T)
18253 then
18254 Error_Msg_N
18255 ("completion of nonabstract type cannot be abstract", Full_T);
18257 elsif Is_Tagged_Type (Priv_T)
18258 and then Is_Limited_Type (Priv_T)
18259 and then not Is_Limited_Type (Full_T)
18260 then
18261 -- If pragma CPP_Class was applied to the private declaration
18262 -- propagate the limitedness to the full-view
18264 if Is_CPP_Class (Priv_T) then
18265 Set_Is_Limited_Record (Full_T);
18267 -- GNAT allow its own definition of Limited_Controlled to disobey
18268 -- this rule in order in ease the implementation. This test is safe
18269 -- because Root_Controlled is defined in a child of System that
18270 -- normal programs are not supposed to use.
18272 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
18273 Set_Is_Limited_Composite (Full_T);
18274 else
18275 Error_Msg_N
18276 ("completion of limited tagged type must be limited", Full_T);
18277 end if;
18279 elsif Is_Generic_Type (Priv_T) then
18280 Error_Msg_N ("generic type cannot have a completion", Full_T);
18281 end if;
18283 -- Check that ancestor interfaces of private and full views are
18284 -- consistent. We omit this check for synchronized types because
18285 -- they are performed on the corresponding record type when frozen.
18287 if Ada_Version >= Ada_2005
18288 and then Is_Tagged_Type (Priv_T)
18289 and then Is_Tagged_Type (Full_T)
18290 and then not Is_Concurrent_Type (Full_T)
18291 then
18292 declare
18293 Iface : Entity_Id;
18294 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
18295 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
18297 begin
18298 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
18299 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
18301 -- Ada 2005 (AI-251): The partial view shall be a descendant of
18302 -- an interface type if and only if the full type is descendant
18303 -- of the interface type (AARM 7.3 (7.3/2)).
18305 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
18307 if Present (Iface) then
18308 Error_Msg_NE
18309 ("interface & not implemented by full type " &
18310 "(RM-2005 7.3 (7.3/2))", Priv_T, Iface);
18311 end if;
18313 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
18315 if Present (Iface) then
18316 Error_Msg_NE
18317 ("interface & not implemented by partial view " &
18318 "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18319 end if;
18320 end;
18321 end if;
18323 if Is_Tagged_Type (Priv_T)
18324 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18325 and then Is_Derived_Type (Full_T)
18326 then
18327 Priv_Parent := Etype (Priv_T);
18329 -- The full view of a private extension may have been transformed
18330 -- into an unconstrained derived type declaration and a subtype
18331 -- declaration (see build_derived_record_type for details).
18333 if Nkind (N) = N_Subtype_Declaration then
18334 Full_Indic := Subtype_Indication (N);
18335 Full_Parent := Etype (Base_Type (Full_T));
18336 else
18337 Full_Indic := Subtype_Indication (Type_Definition (N));
18338 Full_Parent := Etype (Full_T);
18339 end if;
18341 -- Check that the parent type of the full type is a descendant of
18342 -- the ancestor subtype given in the private extension. If either
18343 -- entity has an Etype equal to Any_Type then we had some previous
18344 -- error situation [7.3(8)].
18346 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
18347 return;
18349 -- Ada 2005 (AI-251): Interfaces in the full-typ can be given in
18350 -- any order. Therefore we don't have to check that its parent must
18351 -- be a descendant of the parent of the private type declaration.
18353 elsif Is_Interface (Priv_Parent)
18354 and then Is_Interface (Full_Parent)
18355 then
18356 null;
18358 -- Ada 2005 (AI-251): If the parent of the private type declaration
18359 -- is an interface there is no need to check that it is an ancestor
18360 -- of the associated full type declaration. The required tests for
18361 -- this case are performed by Build_Derived_Record_Type.
18363 elsif not Is_Interface (Base_Type (Priv_Parent))
18364 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
18365 then
18366 Error_Msg_N
18367 ("parent of full type must descend from parent"
18368 & " of private extension", Full_Indic);
18370 -- First check a formal restriction, and then proceed with checking
18371 -- Ada rules. Since the formal restriction is not a serious error, we
18372 -- don't prevent further error detection for this check, hence the
18373 -- ELSE.
18375 else
18377 -- In formal mode, when completing a private extension the type
18378 -- named in the private part must be exactly the same as that
18379 -- named in the visible part.
18381 if Priv_Parent /= Full_Parent then
18382 Error_Msg_Name_1 := Chars (Priv_Parent);
18383 Check_SPARK_Restriction ("% expected", Full_Indic);
18384 end if;
18386 -- Check the rules of 7.3(10): if the private extension inherits
18387 -- known discriminants, then the full type must also inherit those
18388 -- discriminants from the same (ancestor) type, and the parent
18389 -- subtype of the full type must be constrained if and only if
18390 -- the ancestor subtype of the private extension is constrained.
18392 if No (Discriminant_Specifications (Parent (Priv_T)))
18393 and then not Has_Unknown_Discriminants (Priv_T)
18394 and then Has_Discriminants (Base_Type (Priv_Parent))
18395 then
18396 declare
18397 Priv_Indic : constant Node_Id :=
18398 Subtype_Indication (Parent (Priv_T));
18400 Priv_Constr : constant Boolean :=
18401 Is_Constrained (Priv_Parent)
18402 or else
18403 Nkind (Priv_Indic) = N_Subtype_Indication
18404 or else
18405 Is_Constrained (Entity (Priv_Indic));
18407 Full_Constr : constant Boolean :=
18408 Is_Constrained (Full_Parent)
18409 or else
18410 Nkind (Full_Indic) = N_Subtype_Indication
18411 or else
18412 Is_Constrained (Entity (Full_Indic));
18414 Priv_Discr : Entity_Id;
18415 Full_Discr : Entity_Id;
18417 begin
18418 Priv_Discr := First_Discriminant (Priv_Parent);
18419 Full_Discr := First_Discriminant (Full_Parent);
18420 while Present (Priv_Discr) and then Present (Full_Discr) loop
18421 if Original_Record_Component (Priv_Discr) =
18422 Original_Record_Component (Full_Discr)
18423 or else
18424 Corresponding_Discriminant (Priv_Discr) =
18425 Corresponding_Discriminant (Full_Discr)
18426 then
18427 null;
18428 else
18429 exit;
18430 end if;
18432 Next_Discriminant (Priv_Discr);
18433 Next_Discriminant (Full_Discr);
18434 end loop;
18436 if Present (Priv_Discr) or else Present (Full_Discr) then
18437 Error_Msg_N
18438 ("full view must inherit discriminants of the parent"
18439 & " type used in the private extension", Full_Indic);
18441 elsif Priv_Constr and then not Full_Constr then
18442 Error_Msg_N
18443 ("parent subtype of full type must be constrained",
18444 Full_Indic);
18446 elsif Full_Constr and then not Priv_Constr then
18447 Error_Msg_N
18448 ("parent subtype of full type must be unconstrained",
18449 Full_Indic);
18450 end if;
18451 end;
18453 -- Check the rules of 7.3(12): if a partial view has neither
18454 -- known or unknown discriminants, then the full type
18455 -- declaration shall define a definite subtype.
18457 elsif not Has_Unknown_Discriminants (Priv_T)
18458 and then not Has_Discriminants (Priv_T)
18459 and then not Is_Constrained (Full_T)
18460 then
18461 Error_Msg_N
18462 ("full view must define a constrained type if partial view"
18463 & " has no discriminants", Full_T);
18464 end if;
18466 -- ??????? Do we implement the following properly ?????
18467 -- If the ancestor subtype of a private extension has constrained
18468 -- discriminants, then the parent subtype of the full view shall
18469 -- impose a statically matching constraint on those discriminants
18470 -- [7.3(13)].
18471 end if;
18473 else
18474 -- For untagged types, verify that a type without discriminants is
18475 -- not completed with an unconstrained type. A separate error message
18476 -- is produced if the full type has defaulted discriminants.
18478 if not Is_Indefinite_Subtype (Priv_T)
18479 and then Is_Indefinite_Subtype (Full_T)
18480 then
18481 Error_Msg_Sloc := Sloc (Parent (Priv_T));
18482 Error_Msg_NE
18483 ("full view of& not compatible with declaration#",
18484 Full_T, Priv_T);
18486 if not Is_Tagged_Type (Full_T) then
18487 Error_Msg_N
18488 ("\one is constrained, the other unconstrained", Full_T);
18489 end if;
18490 end if;
18491 end if;
18493 -- AI-419: verify that the use of "limited" is consistent
18495 declare
18496 Orig_Decl : constant Node_Id := Original_Node (N);
18498 begin
18499 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18500 and then not Limited_Present (Parent (Priv_T))
18501 and then not Synchronized_Present (Parent (Priv_T))
18502 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
18503 and then Nkind
18504 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
18505 and then Limited_Present (Type_Definition (Orig_Decl))
18506 then
18507 Error_Msg_N
18508 ("full view of non-limited extension cannot be limited", N);
18509 end if;
18510 end;
18512 -- Ada 2005 (AI-443): A synchronized private extension must be
18513 -- completed by a task or protected type.
18515 if Ada_Version >= Ada_2005
18516 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18517 and then Synchronized_Present (Parent (Priv_T))
18518 and then not Is_Concurrent_Type (Full_T)
18519 then
18520 Error_Msg_N ("full view of synchronized extension must " &
18521 "be synchronized type", N);
18522 end if;
18524 -- Ada 2005 AI-363: if the full view has discriminants with
18525 -- defaults, it is illegal to declare constrained access subtypes
18526 -- whose designated type is the current type. This allows objects
18527 -- of the type that are declared in the heap to be unconstrained.
18529 if not Has_Unknown_Discriminants (Priv_T)
18530 and then not Has_Discriminants (Priv_T)
18531 and then Has_Discriminants (Full_T)
18532 and then
18533 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
18534 then
18535 Set_Has_Constrained_Partial_View (Full_T);
18536 Set_Has_Constrained_Partial_View (Priv_T);
18537 end if;
18539 -- Create a full declaration for all its subtypes recorded in
18540 -- Private_Dependents and swap them similarly to the base type. These
18541 -- are subtypes that have been define before the full declaration of
18542 -- the private type. We also swap the entry in Private_Dependents list
18543 -- so we can properly restore the private view on exit from the scope.
18545 declare
18546 Priv_Elmt : Elmt_Id;
18547 Priv : Entity_Id;
18548 Full : Entity_Id;
18550 begin
18551 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
18552 while Present (Priv_Elmt) loop
18553 Priv := Node (Priv_Elmt);
18555 if Ekind_In (Priv, E_Private_Subtype,
18556 E_Limited_Private_Subtype,
18557 E_Record_Subtype_With_Private)
18558 then
18559 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
18560 Set_Is_Itype (Full);
18561 Set_Parent (Full, Parent (Priv));
18562 Set_Associated_Node_For_Itype (Full, N);
18564 -- Now we need to complete the private subtype, but since the
18565 -- base type has already been swapped, we must also swap the
18566 -- subtypes (and thus, reverse the arguments in the call to
18567 -- Complete_Private_Subtype).
18569 Copy_And_Swap (Priv, Full);
18570 Complete_Private_Subtype (Full, Priv, Full_T, N);
18571 Replace_Elmt (Priv_Elmt, Full);
18572 end if;
18574 Next_Elmt (Priv_Elmt);
18575 end loop;
18576 end;
18578 -- If the private view was tagged, copy the new primitive operations
18579 -- from the private view to the full view.
18581 if Is_Tagged_Type (Full_T) then
18582 declare
18583 Disp_Typ : Entity_Id;
18584 Full_List : Elist_Id;
18585 Prim : Entity_Id;
18586 Prim_Elmt : Elmt_Id;
18587 Priv_List : Elist_Id;
18589 function Contains
18590 (E : Entity_Id;
18591 L : Elist_Id) return Boolean;
18592 -- Determine whether list L contains element E
18594 --------------
18595 -- Contains --
18596 --------------
18598 function Contains
18599 (E : Entity_Id;
18600 L : Elist_Id) return Boolean
18602 List_Elmt : Elmt_Id;
18604 begin
18605 List_Elmt := First_Elmt (L);
18606 while Present (List_Elmt) loop
18607 if Node (List_Elmt) = E then
18608 return True;
18609 end if;
18611 Next_Elmt (List_Elmt);
18612 end loop;
18614 return False;
18615 end Contains;
18617 -- Start of processing
18619 begin
18620 if Is_Tagged_Type (Priv_T) then
18621 Priv_List := Primitive_Operations (Priv_T);
18622 Prim_Elmt := First_Elmt (Priv_List);
18624 -- In the case of a concurrent type completing a private tagged
18625 -- type, primitives may have been declared in between the two
18626 -- views. These subprograms need to be wrapped the same way
18627 -- entries and protected procedures are handled because they
18628 -- cannot be directly shared by the two views.
18630 if Is_Concurrent_Type (Full_T) then
18631 declare
18632 Conc_Typ : constant Entity_Id :=
18633 Corresponding_Record_Type (Full_T);
18634 Curr_Nod : Node_Id := Parent (Conc_Typ);
18635 Wrap_Spec : Node_Id;
18637 begin
18638 while Present (Prim_Elmt) loop
18639 Prim := Node (Prim_Elmt);
18641 if Comes_From_Source (Prim)
18642 and then not Is_Abstract_Subprogram (Prim)
18643 then
18644 Wrap_Spec :=
18645 Make_Subprogram_Declaration (Sloc (Prim),
18646 Specification =>
18647 Build_Wrapper_Spec
18648 (Subp_Id => Prim,
18649 Obj_Typ => Conc_Typ,
18650 Formals =>
18651 Parameter_Specifications (
18652 Parent (Prim))));
18654 Insert_After (Curr_Nod, Wrap_Spec);
18655 Curr_Nod := Wrap_Spec;
18657 Analyze (Wrap_Spec);
18658 end if;
18660 Next_Elmt (Prim_Elmt);
18661 end loop;
18663 return;
18664 end;
18666 -- For non-concurrent types, transfer explicit primitives, but
18667 -- omit those inherited from the parent of the private view
18668 -- since they will be re-inherited later on.
18670 else
18671 Full_List := Primitive_Operations (Full_T);
18673 while Present (Prim_Elmt) loop
18674 Prim := Node (Prim_Elmt);
18676 if Comes_From_Source (Prim)
18677 and then not Contains (Prim, Full_List)
18678 then
18679 Append_Elmt (Prim, Full_List);
18680 end if;
18682 Next_Elmt (Prim_Elmt);
18683 end loop;
18684 end if;
18686 -- Untagged private view
18688 else
18689 Full_List := Primitive_Operations (Full_T);
18691 -- In this case the partial view is untagged, so here we locate
18692 -- all of the earlier primitives that need to be treated as
18693 -- dispatching (those that appear between the two views). Note
18694 -- that these additional operations must all be new operations
18695 -- (any earlier operations that override inherited operations
18696 -- of the full view will already have been inserted in the
18697 -- primitives list, marked by Check_Operation_From_Private_View
18698 -- as dispatching. Note that implicit "/=" operators are
18699 -- excluded from being added to the primitives list since they
18700 -- shouldn't be treated as dispatching (tagged "/=" is handled
18701 -- specially).
18703 Prim := Next_Entity (Full_T);
18704 while Present (Prim) and then Prim /= Priv_T loop
18705 if Ekind_In (Prim, E_Procedure, E_Function) then
18706 Disp_Typ := Find_Dispatching_Type (Prim);
18708 if Disp_Typ = Full_T
18709 and then (Chars (Prim) /= Name_Op_Ne
18710 or else Comes_From_Source (Prim))
18711 then
18712 Check_Controlling_Formals (Full_T, Prim);
18714 if not Is_Dispatching_Operation (Prim) then
18715 Append_Elmt (Prim, Full_List);
18716 Set_Is_Dispatching_Operation (Prim, True);
18717 Set_DT_Position (Prim, No_Uint);
18718 end if;
18720 elsif Is_Dispatching_Operation (Prim)
18721 and then Disp_Typ /= Full_T
18722 then
18724 -- Verify that it is not otherwise controlled by a
18725 -- formal or a return value of type T.
18727 Check_Controlling_Formals (Disp_Typ, Prim);
18728 end if;
18729 end if;
18731 Next_Entity (Prim);
18732 end loop;
18733 end if;
18735 -- For the tagged case, the two views can share the same primitive
18736 -- operations list and the same class-wide type. Update attributes
18737 -- of the class-wide type which depend on the full declaration.
18739 if Is_Tagged_Type (Priv_T) then
18740 Set_Direct_Primitive_Operations (Priv_T, Full_List);
18741 Set_Class_Wide_Type
18742 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
18744 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
18745 end if;
18746 end;
18747 end if;
18749 -- Ada 2005 AI 161: Check preelaborable initialization consistency
18751 if Known_To_Have_Preelab_Init (Priv_T) then
18753 -- Case where there is a pragma Preelaborable_Initialization. We
18754 -- always allow this in predefined units, which is a bit of a kludge,
18755 -- but it means we don't have to struggle to meet the requirements in
18756 -- the RM for having Preelaborable Initialization. Otherwise we
18757 -- require that the type meets the RM rules. But we can't check that
18758 -- yet, because of the rule about overriding Initialize, so we simply
18759 -- set a flag that will be checked at freeze time.
18761 if not In_Predefined_Unit (Full_T) then
18762 Set_Must_Have_Preelab_Init (Full_T);
18763 end if;
18764 end if;
18766 -- If pragma CPP_Class was applied to the private type declaration,
18767 -- propagate it now to the full type declaration.
18769 if Is_CPP_Class (Priv_T) then
18770 Set_Is_CPP_Class (Full_T);
18771 Set_Convention (Full_T, Convention_CPP);
18773 -- Check that components of imported CPP types do not have default
18774 -- expressions.
18776 Check_CPP_Type_Has_No_Defaults (Full_T);
18777 end if;
18779 -- If the private view has user specified stream attributes, then so has
18780 -- the full view.
18782 -- Why the test, how could these flags be already set in Full_T ???
18784 if Has_Specified_Stream_Read (Priv_T) then
18785 Set_Has_Specified_Stream_Read (Full_T);
18786 end if;
18788 if Has_Specified_Stream_Write (Priv_T) then
18789 Set_Has_Specified_Stream_Write (Full_T);
18790 end if;
18792 if Has_Specified_Stream_Input (Priv_T) then
18793 Set_Has_Specified_Stream_Input (Full_T);
18794 end if;
18796 if Has_Specified_Stream_Output (Priv_T) then
18797 Set_Has_Specified_Stream_Output (Full_T);
18798 end if;
18800 -- Propagate invariants to full type
18802 if Has_Invariants (Priv_T) then
18803 Set_Has_Invariants (Full_T);
18804 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
18805 end if;
18807 if Has_Inheritable_Invariants (Priv_T) then
18808 Set_Has_Inheritable_Invariants (Full_T);
18809 end if;
18811 -- Propagate predicates to full type, and predicate function if already
18812 -- defined. It is not clear that this can actually happen? the partial
18813 -- view cannot be frozen yet, and the predicate function has not been
18814 -- built. Still it is a cheap check and seems safer to make it.
18816 if Has_Predicates (Priv_T) then
18817 if Present (Predicate_Function (Priv_T)) then
18818 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
18819 end if;
18821 Set_Has_Predicates (Full_T);
18822 end if;
18823 end Process_Full_View;
18825 -----------------------------------
18826 -- Process_Incomplete_Dependents --
18827 -----------------------------------
18829 procedure Process_Incomplete_Dependents
18830 (N : Node_Id;
18831 Full_T : Entity_Id;
18832 Inc_T : Entity_Id)
18834 Inc_Elmt : Elmt_Id;
18835 Priv_Dep : Entity_Id;
18836 New_Subt : Entity_Id;
18838 Disc_Constraint : Elist_Id;
18840 begin
18841 if No (Private_Dependents (Inc_T)) then
18842 return;
18843 end if;
18845 -- Itypes that may be generated by the completion of an incomplete
18846 -- subtype are not used by the back-end and not attached to the tree.
18847 -- They are created only for constraint-checking purposes.
18849 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
18850 while Present (Inc_Elmt) loop
18851 Priv_Dep := Node (Inc_Elmt);
18853 if Ekind (Priv_Dep) = E_Subprogram_Type then
18855 -- An Access_To_Subprogram type may have a return type or a
18856 -- parameter type that is incomplete. Replace with the full view.
18858 if Etype (Priv_Dep) = Inc_T then
18859 Set_Etype (Priv_Dep, Full_T);
18860 end if;
18862 declare
18863 Formal : Entity_Id;
18865 begin
18866 Formal := First_Formal (Priv_Dep);
18867 while Present (Formal) loop
18868 if Etype (Formal) = Inc_T then
18869 Set_Etype (Formal, Full_T);
18870 end if;
18872 Next_Formal (Formal);
18873 end loop;
18874 end;
18876 elsif Is_Overloadable (Priv_Dep) then
18878 -- If a subprogram in the incomplete dependents list is primitive
18879 -- for a tagged full type then mark it as a dispatching operation,
18880 -- check whether it overrides an inherited subprogram, and check
18881 -- restrictions on its controlling formals. Note that a protected
18882 -- operation is never dispatching: only its wrapper operation
18883 -- (which has convention Ada) is.
18885 if Is_Tagged_Type (Full_T)
18886 and then Is_Primitive (Priv_Dep)
18887 and then Convention (Priv_Dep) /= Convention_Protected
18888 then
18889 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
18890 Set_Is_Dispatching_Operation (Priv_Dep);
18891 Check_Controlling_Formals (Full_T, Priv_Dep);
18892 end if;
18894 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
18896 -- Can happen during processing of a body before the completion
18897 -- of a TA type. Ignore, because spec is also on dependent list.
18899 return;
18901 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
18902 -- corresponding subtype of the full view.
18904 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
18905 Set_Subtype_Indication
18906 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
18907 Set_Etype (Priv_Dep, Full_T);
18908 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
18909 Set_Analyzed (Parent (Priv_Dep), False);
18911 -- Reanalyze the declaration, suppressing the call to
18912 -- Enter_Name to avoid duplicate names.
18914 Analyze_Subtype_Declaration
18915 (N => Parent (Priv_Dep),
18916 Skip => True);
18918 -- Dependent is a subtype
18920 else
18921 -- We build a new subtype indication using the full view of the
18922 -- incomplete parent. The discriminant constraints have been
18923 -- elaborated already at the point of the subtype declaration.
18925 New_Subt := Create_Itype (E_Void, N);
18927 if Has_Discriminants (Full_T) then
18928 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
18929 else
18930 Disc_Constraint := No_Elist;
18931 end if;
18933 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
18934 Set_Full_View (Priv_Dep, New_Subt);
18935 end if;
18937 Next_Elmt (Inc_Elmt);
18938 end loop;
18939 end Process_Incomplete_Dependents;
18941 --------------------------------
18942 -- Process_Range_Expr_In_Decl --
18943 --------------------------------
18945 procedure Process_Range_Expr_In_Decl
18946 (R : Node_Id;
18947 T : Entity_Id;
18948 Check_List : List_Id := Empty_List;
18949 R_Check_Off : Boolean := False;
18950 In_Iter_Schm : Boolean := False)
18952 Lo, Hi : Node_Id;
18953 R_Checks : Check_Result;
18954 Insert_Node : Node_Id;
18955 Def_Id : Entity_Id;
18957 begin
18958 Analyze_And_Resolve (R, Base_Type (T));
18960 if Nkind (R) = N_Range then
18962 -- In SPARK, all ranges should be static, with the exception of the
18963 -- discrete type definition of a loop parameter specification.
18965 if not In_Iter_Schm
18966 and then not Is_Static_Range (R)
18967 then
18968 Check_SPARK_Restriction ("range should be static", R);
18969 end if;
18971 Lo := Low_Bound (R);
18972 Hi := High_Bound (R);
18974 -- We need to ensure validity of the bounds here, because if we
18975 -- go ahead and do the expansion, then the expanded code will get
18976 -- analyzed with range checks suppressed and we miss the check.
18977 -- Validity checks on the range of a quantified expression are
18978 -- delayed until the construct is transformed into a loop.
18980 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
18981 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
18982 then
18983 Validity_Check_Range (R);
18984 end if;
18986 -- If there were errors in the declaration, try and patch up some
18987 -- common mistakes in the bounds. The cases handled are literals
18988 -- which are Integer where the expected type is Real and vice versa.
18989 -- These corrections allow the compilation process to proceed further
18990 -- along since some basic assumptions of the format of the bounds
18991 -- are guaranteed.
18993 if Etype (R) = Any_Type then
18994 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
18995 Rewrite (Lo,
18996 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
18998 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
18999 Rewrite (Hi,
19000 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
19002 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
19003 Rewrite (Lo,
19004 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
19006 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
19007 Rewrite (Hi,
19008 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
19009 end if;
19011 Set_Etype (Lo, T);
19012 Set_Etype (Hi, T);
19013 end if;
19015 -- If the bounds of the range have been mistakenly given as string
19016 -- literals (perhaps in place of character literals), then an error
19017 -- has already been reported, but we rewrite the string literal as a
19018 -- bound of the range's type to avoid blowups in later processing
19019 -- that looks at static values.
19021 if Nkind (Lo) = N_String_Literal then
19022 Rewrite (Lo,
19023 Make_Attribute_Reference (Sloc (Lo),
19024 Attribute_Name => Name_First,
19025 Prefix => New_Occurrence_Of (T, Sloc (Lo))));
19026 Analyze_And_Resolve (Lo);
19027 end if;
19029 if Nkind (Hi) = N_String_Literal then
19030 Rewrite (Hi,
19031 Make_Attribute_Reference (Sloc (Hi),
19032 Attribute_Name => Name_First,
19033 Prefix => New_Occurrence_Of (T, Sloc (Hi))));
19034 Analyze_And_Resolve (Hi);
19035 end if;
19037 -- If bounds aren't scalar at this point then exit, avoiding
19038 -- problems with further processing of the range in this procedure.
19040 if not Is_Scalar_Type (Etype (Lo)) then
19041 return;
19042 end if;
19044 -- Resolve (actually Sem_Eval) has checked that the bounds are in
19045 -- then range of the base type. Here we check whether the bounds
19046 -- are in the range of the subtype itself. Note that if the bounds
19047 -- represent the null range the Constraint_Error exception should
19048 -- not be raised.
19050 -- ??? The following code should be cleaned up as follows
19052 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
19053 -- is done in the call to Range_Check (R, T); below
19055 -- 2. The use of R_Check_Off should be investigated and possibly
19056 -- removed, this would clean up things a bit.
19058 if Is_Null_Range (Lo, Hi) then
19059 null;
19061 else
19062 -- Capture values of bounds and generate temporaries for them
19063 -- if needed, before applying checks, since checks may cause
19064 -- duplication of the expression without forcing evaluation.
19066 -- The forced evaluation removes side effects from expressions,
19067 -- which should occur also in GNATprove mode. Otherwise, we end up
19068 -- with unexpected insertions of actions at places where this is
19069 -- not supposed to occur, e.g. on default parameters of a call.
19071 if Expander_Active or GNATprove_Mode then
19072 Force_Evaluation (Lo);
19073 Force_Evaluation (Hi);
19074 end if;
19076 -- We use a flag here instead of suppressing checks on the
19077 -- type because the type we check against isn't necessarily
19078 -- the place where we put the check.
19080 if not R_Check_Off then
19081 R_Checks := Get_Range_Checks (R, T);
19083 -- Look up tree to find an appropriate insertion point. We
19084 -- can't just use insert_actions because later processing
19085 -- depends on the insertion node. Prior to Ada 2012 the
19086 -- insertion point could only be a declaration or a loop, but
19087 -- quantified expressions can appear within any context in an
19088 -- expression, and the insertion point can be any statement,
19089 -- pragma, or declaration.
19091 Insert_Node := Parent (R);
19092 while Present (Insert_Node) loop
19093 exit when
19094 Nkind (Insert_Node) in N_Declaration
19095 and then
19096 not Nkind_In
19097 (Insert_Node, N_Component_Declaration,
19098 N_Loop_Parameter_Specification,
19099 N_Function_Specification,
19100 N_Procedure_Specification);
19102 exit when Nkind (Insert_Node) in N_Later_Decl_Item
19103 or else Nkind (Insert_Node) in
19104 N_Statement_Other_Than_Procedure_Call
19105 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
19106 N_Pragma);
19108 Insert_Node := Parent (Insert_Node);
19109 end loop;
19111 -- Why would Type_Decl not be present??? Without this test,
19112 -- short regression tests fail.
19114 if Present (Insert_Node) then
19116 -- Case of loop statement. Verify that the range is part
19117 -- of the subtype indication of the iteration scheme.
19119 if Nkind (Insert_Node) = N_Loop_Statement then
19120 declare
19121 Indic : Node_Id;
19123 begin
19124 Indic := Parent (R);
19125 while Present (Indic)
19126 and then Nkind (Indic) /= N_Subtype_Indication
19127 loop
19128 Indic := Parent (Indic);
19129 end loop;
19131 if Present (Indic) then
19132 Def_Id := Etype (Subtype_Mark (Indic));
19134 Insert_Range_Checks
19135 (R_Checks,
19136 Insert_Node,
19137 Def_Id,
19138 Sloc (Insert_Node),
19140 Do_Before => True);
19141 end if;
19142 end;
19144 -- Insertion before a declaration. If the declaration
19145 -- includes discriminants, the list of applicable checks
19146 -- is given by the caller.
19148 elsif Nkind (Insert_Node) in N_Declaration then
19149 Def_Id := Defining_Identifier (Insert_Node);
19151 if (Ekind (Def_Id) = E_Record_Type
19152 and then Depends_On_Discriminant (R))
19153 or else
19154 (Ekind (Def_Id) = E_Protected_Type
19155 and then Has_Discriminants (Def_Id))
19156 then
19157 Append_Range_Checks
19158 (R_Checks,
19159 Check_List, Def_Id, Sloc (Insert_Node), R);
19161 else
19162 Insert_Range_Checks
19163 (R_Checks,
19164 Insert_Node, Def_Id, Sloc (Insert_Node), R);
19166 end if;
19168 -- Insertion before a statement. Range appears in the
19169 -- context of a quantified expression. Insertion will
19170 -- take place when expression is expanded.
19172 else
19173 null;
19174 end if;
19175 end if;
19176 end if;
19177 end if;
19179 -- Case of other than an explicit N_Range node
19181 -- The forced evaluation removes side effects from expressions, which
19182 -- should occur also in GNATprove mode. Otherwise, we end up with
19183 -- unexpected insertions of actions at places where this is not
19184 -- supposed to occur, e.g. on default parameters of a call.
19186 elsif Expander_Active or GNATprove_Mode then
19187 Get_Index_Bounds (R, Lo, Hi);
19188 Force_Evaluation (Lo);
19189 Force_Evaluation (Hi);
19190 end if;
19191 end Process_Range_Expr_In_Decl;
19193 --------------------------------------
19194 -- Process_Real_Range_Specification --
19195 --------------------------------------
19197 procedure Process_Real_Range_Specification (Def : Node_Id) is
19198 Spec : constant Node_Id := Real_Range_Specification (Def);
19199 Lo : Node_Id;
19200 Hi : Node_Id;
19201 Err : Boolean := False;
19203 procedure Analyze_Bound (N : Node_Id);
19204 -- Analyze and check one bound
19206 -------------------
19207 -- Analyze_Bound --
19208 -------------------
19210 procedure Analyze_Bound (N : Node_Id) is
19211 begin
19212 Analyze_And_Resolve (N, Any_Real);
19214 if not Is_OK_Static_Expression (N) then
19215 Flag_Non_Static_Expr
19216 ("bound in real type definition is not static!", N);
19217 Err := True;
19218 end if;
19219 end Analyze_Bound;
19221 -- Start of processing for Process_Real_Range_Specification
19223 begin
19224 if Present (Spec) then
19225 Lo := Low_Bound (Spec);
19226 Hi := High_Bound (Spec);
19227 Analyze_Bound (Lo);
19228 Analyze_Bound (Hi);
19230 -- If error, clear away junk range specification
19232 if Err then
19233 Set_Real_Range_Specification (Def, Empty);
19234 end if;
19235 end if;
19236 end Process_Real_Range_Specification;
19238 ---------------------
19239 -- Process_Subtype --
19240 ---------------------
19242 function Process_Subtype
19243 (S : Node_Id;
19244 Related_Nod : Node_Id;
19245 Related_Id : Entity_Id := Empty;
19246 Suffix : Character := ' ') return Entity_Id
19248 P : Node_Id;
19249 Def_Id : Entity_Id;
19250 Error_Node : Node_Id;
19251 Full_View_Id : Entity_Id;
19252 Subtype_Mark_Id : Entity_Id;
19254 May_Have_Null_Exclusion : Boolean;
19256 procedure Check_Incomplete (T : Entity_Id);
19257 -- Called to verify that an incomplete type is not used prematurely
19259 ----------------------
19260 -- Check_Incomplete --
19261 ----------------------
19263 procedure Check_Incomplete (T : Entity_Id) is
19264 begin
19265 -- Ada 2005 (AI-412): Incomplete subtypes are legal
19267 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
19268 and then
19269 not (Ada_Version >= Ada_2005
19270 and then
19271 (Nkind (Parent (T)) = N_Subtype_Declaration
19272 or else
19273 (Nkind (Parent (T)) = N_Subtype_Indication
19274 and then Nkind (Parent (Parent (T))) =
19275 N_Subtype_Declaration)))
19276 then
19277 Error_Msg_N ("invalid use of type before its full declaration", T);
19278 end if;
19279 end Check_Incomplete;
19281 -- Start of processing for Process_Subtype
19283 begin
19284 -- Case of no constraints present
19286 if Nkind (S) /= N_Subtype_Indication then
19287 Find_Type (S);
19288 Check_Incomplete (S);
19289 P := Parent (S);
19291 -- Ada 2005 (AI-231): Static check
19293 if Ada_Version >= Ada_2005
19294 and then Present (P)
19295 and then Null_Exclusion_Present (P)
19296 and then Nkind (P) /= N_Access_To_Object_Definition
19297 and then not Is_Access_Type (Entity (S))
19298 then
19299 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
19300 end if;
19302 -- The following is ugly, can't we have a range or even a flag???
19304 May_Have_Null_Exclusion :=
19305 Nkind_In (P, N_Access_Definition,
19306 N_Access_Function_Definition,
19307 N_Access_Procedure_Definition,
19308 N_Access_To_Object_Definition,
19309 N_Allocator,
19310 N_Component_Definition)
19311 or else
19312 Nkind_In (P, N_Derived_Type_Definition,
19313 N_Discriminant_Specification,
19314 N_Formal_Object_Declaration,
19315 N_Object_Declaration,
19316 N_Object_Renaming_Declaration,
19317 N_Parameter_Specification,
19318 N_Subtype_Declaration);
19320 -- Create an Itype that is a duplicate of Entity (S) but with the
19321 -- null-exclusion attribute.
19323 if May_Have_Null_Exclusion
19324 and then Is_Access_Type (Entity (S))
19325 and then Null_Exclusion_Present (P)
19327 -- No need to check the case of an access to object definition.
19328 -- It is correct to define double not-null pointers.
19330 -- Example:
19331 -- type Not_Null_Int_Ptr is not null access Integer;
19332 -- type Acc is not null access Not_Null_Int_Ptr;
19334 and then Nkind (P) /= N_Access_To_Object_Definition
19335 then
19336 if Can_Never_Be_Null (Entity (S)) then
19337 case Nkind (Related_Nod) is
19338 when N_Full_Type_Declaration =>
19339 if Nkind (Type_Definition (Related_Nod))
19340 in N_Array_Type_Definition
19341 then
19342 Error_Node :=
19343 Subtype_Indication
19344 (Component_Definition
19345 (Type_Definition (Related_Nod)));
19346 else
19347 Error_Node :=
19348 Subtype_Indication (Type_Definition (Related_Nod));
19349 end if;
19351 when N_Subtype_Declaration =>
19352 Error_Node := Subtype_Indication (Related_Nod);
19354 when N_Object_Declaration =>
19355 Error_Node := Object_Definition (Related_Nod);
19357 when N_Component_Declaration =>
19358 Error_Node :=
19359 Subtype_Indication (Component_Definition (Related_Nod));
19361 when N_Allocator =>
19362 Error_Node := Expression (Related_Nod);
19364 when others =>
19365 pragma Assert (False);
19366 Error_Node := Related_Nod;
19367 end case;
19369 Error_Msg_NE
19370 ("`NOT NULL` not allowed (& already excludes null)",
19371 Error_Node,
19372 Entity (S));
19373 end if;
19375 Set_Etype (S,
19376 Create_Null_Excluding_Itype
19377 (T => Entity (S),
19378 Related_Nod => P));
19379 Set_Entity (S, Etype (S));
19380 end if;
19382 return Entity (S);
19384 -- Case of constraint present, so that we have an N_Subtype_Indication
19385 -- node (this node is created only if constraints are present).
19387 else
19388 Find_Type (Subtype_Mark (S));
19390 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
19391 and then not
19392 (Nkind (Parent (S)) = N_Subtype_Declaration
19393 and then Is_Itype (Defining_Identifier (Parent (S))))
19394 then
19395 Check_Incomplete (Subtype_Mark (S));
19396 end if;
19398 P := Parent (S);
19399 Subtype_Mark_Id := Entity (Subtype_Mark (S));
19401 -- Explicit subtype declaration case
19403 if Nkind (P) = N_Subtype_Declaration then
19404 Def_Id := Defining_Identifier (P);
19406 -- Explicit derived type definition case
19408 elsif Nkind (P) = N_Derived_Type_Definition then
19409 Def_Id := Defining_Identifier (Parent (P));
19411 -- Implicit case, the Def_Id must be created as an implicit type.
19412 -- The one exception arises in the case of concurrent types, array
19413 -- and access types, where other subsidiary implicit types may be
19414 -- created and must appear before the main implicit type. In these
19415 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
19416 -- has not yet been called to create Def_Id.
19418 else
19419 if Is_Array_Type (Subtype_Mark_Id)
19420 or else Is_Concurrent_Type (Subtype_Mark_Id)
19421 or else Is_Access_Type (Subtype_Mark_Id)
19422 then
19423 Def_Id := Empty;
19425 -- For the other cases, we create a new unattached Itype,
19426 -- and set the indication to ensure it gets attached later.
19428 else
19429 Def_Id :=
19430 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19431 end if;
19432 end if;
19434 -- If the kind of constraint is invalid for this kind of type,
19435 -- then give an error, and then pretend no constraint was given.
19437 if not Is_Valid_Constraint_Kind
19438 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
19439 then
19440 Error_Msg_N
19441 ("incorrect constraint for this kind of type", Constraint (S));
19443 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
19445 -- Set Ekind of orphan itype, to prevent cascaded errors
19447 if Present (Def_Id) then
19448 Set_Ekind (Def_Id, Ekind (Any_Type));
19449 end if;
19451 -- Make recursive call, having got rid of the bogus constraint
19453 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
19454 end if;
19456 -- Remaining processing depends on type. Select on Base_Type kind to
19457 -- ensure getting to the concrete type kind in the case of a private
19458 -- subtype (needed when only doing semantic analysis).
19460 case Ekind (Base_Type (Subtype_Mark_Id)) is
19461 when Access_Kind =>
19463 -- If this is a constraint on a class-wide type, discard it.
19464 -- There is currently no way to express a partial discriminant
19465 -- constraint on a type with unknown discriminants. This is
19466 -- a pathology that the ACATS wisely decides not to test.
19468 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
19469 if Comes_From_Source (S) then
19470 Error_Msg_N
19471 ("constraint on class-wide type ignored?",
19472 Constraint (S));
19473 end if;
19475 if Nkind (P) = N_Subtype_Declaration then
19476 Set_Subtype_Indication (P,
19477 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
19478 end if;
19480 return Subtype_Mark_Id;
19481 end if;
19483 Constrain_Access (Def_Id, S, Related_Nod);
19485 if Expander_Active
19486 and then Is_Itype (Designated_Type (Def_Id))
19487 and then Nkind (Related_Nod) = N_Subtype_Declaration
19488 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
19489 then
19490 Build_Itype_Reference
19491 (Designated_Type (Def_Id), Related_Nod);
19492 end if;
19494 when Array_Kind =>
19495 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
19497 when Decimal_Fixed_Point_Kind =>
19498 Constrain_Decimal (Def_Id, S);
19500 when Enumeration_Kind =>
19501 Constrain_Enumeration (Def_Id, S);
19503 when Ordinary_Fixed_Point_Kind =>
19504 Constrain_Ordinary_Fixed (Def_Id, S);
19506 when Float_Kind =>
19507 Constrain_Float (Def_Id, S);
19509 when Integer_Kind =>
19510 Constrain_Integer (Def_Id, S);
19512 when E_Record_Type |
19513 E_Record_Subtype |
19514 Class_Wide_Kind |
19515 E_Incomplete_Type =>
19516 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19518 if Ekind (Def_Id) = E_Incomplete_Type then
19519 Set_Private_Dependents (Def_Id, New_Elmt_List);
19520 end if;
19522 when Private_Kind =>
19523 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19524 Set_Private_Dependents (Def_Id, New_Elmt_List);
19526 -- In case of an invalid constraint prevent further processing
19527 -- since the type constructed is missing expected fields.
19529 if Etype (Def_Id) = Any_Type then
19530 return Def_Id;
19531 end if;
19533 -- If the full view is that of a task with discriminants,
19534 -- we must constrain both the concurrent type and its
19535 -- corresponding record type. Otherwise we will just propagate
19536 -- the constraint to the full view, if available.
19538 if Present (Full_View (Subtype_Mark_Id))
19539 and then Has_Discriminants (Subtype_Mark_Id)
19540 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
19541 then
19542 Full_View_Id :=
19543 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19545 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
19546 Constrain_Concurrent (Full_View_Id, S,
19547 Related_Nod, Related_Id, Suffix);
19548 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
19549 Set_Full_View (Def_Id, Full_View_Id);
19551 -- Introduce an explicit reference to the private subtype,
19552 -- to prevent scope anomalies in gigi if first use appears
19553 -- in a nested context, e.g. a later function body.
19554 -- Should this be generated in other contexts than a full
19555 -- type declaration?
19557 if Is_Itype (Def_Id)
19558 and then
19559 Nkind (Parent (P)) = N_Full_Type_Declaration
19560 then
19561 Build_Itype_Reference (Def_Id, Parent (P));
19562 end if;
19564 else
19565 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
19566 end if;
19568 when Concurrent_Kind =>
19569 Constrain_Concurrent (Def_Id, S,
19570 Related_Nod, Related_Id, Suffix);
19572 when others =>
19573 Error_Msg_N ("invalid subtype mark in subtype indication", S);
19574 end case;
19576 -- Size and Convention are always inherited from the base type
19578 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
19579 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
19581 return Def_Id;
19582 end if;
19583 end Process_Subtype;
19585 ---------------------------------------
19586 -- Check_Anonymous_Access_Components --
19587 ---------------------------------------
19589 procedure Check_Anonymous_Access_Components
19590 (Typ_Decl : Node_Id;
19591 Typ : Entity_Id;
19592 Prev : Entity_Id;
19593 Comp_List : Node_Id)
19595 Loc : constant Source_Ptr := Sloc (Typ_Decl);
19596 Anon_Access : Entity_Id;
19597 Acc_Def : Node_Id;
19598 Comp : Node_Id;
19599 Comp_Def : Node_Id;
19600 Decl : Node_Id;
19601 Type_Def : Node_Id;
19603 procedure Build_Incomplete_Type_Declaration;
19604 -- If the record type contains components that include an access to the
19605 -- current record, then create an incomplete type declaration for the
19606 -- record, to be used as the designated type of the anonymous access.
19607 -- This is done only once, and only if there is no previous partial
19608 -- view of the type.
19610 function Designates_T (Subt : Node_Id) return Boolean;
19611 -- Check whether a node designates the enclosing record type, or 'Class
19612 -- of that type
19614 function Mentions_T (Acc_Def : Node_Id) return Boolean;
19615 -- Check whether an access definition includes a reference to
19616 -- the enclosing record type. The reference can be a subtype mark
19617 -- in the access definition itself, a 'Class attribute reference, or
19618 -- recursively a reference appearing in a parameter specification
19619 -- or result definition of an access_to_subprogram definition.
19621 --------------------------------------
19622 -- Build_Incomplete_Type_Declaration --
19623 --------------------------------------
19625 procedure Build_Incomplete_Type_Declaration is
19626 Decl : Node_Id;
19627 Inc_T : Entity_Id;
19628 H : Entity_Id;
19630 -- Is_Tagged indicates whether the type is tagged. It is tagged if
19631 -- it's "is new ... with record" or else "is tagged record ...".
19633 Is_Tagged : constant Boolean :=
19634 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
19635 and then
19636 Present
19637 (Record_Extension_Part (Type_Definition (Typ_Decl))))
19638 or else
19639 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
19640 and then Tagged_Present (Type_Definition (Typ_Decl)));
19642 begin
19643 -- If there is a previous partial view, no need to create a new one
19644 -- If the partial view, given by Prev, is incomplete, If Prev is
19645 -- a private declaration, full declaration is flagged accordingly.
19647 if Prev /= Typ then
19648 if Is_Tagged then
19649 Make_Class_Wide_Type (Prev);
19650 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
19651 Set_Etype (Class_Wide_Type (Typ), Typ);
19652 end if;
19654 return;
19656 elsif Has_Private_Declaration (Typ) then
19658 -- If we refer to T'Class inside T, and T is the completion of a
19659 -- private type, then we need to make sure the class-wide type
19660 -- exists.
19662 if Is_Tagged then
19663 Make_Class_Wide_Type (Typ);
19664 end if;
19666 return;
19668 -- If there was a previous anonymous access type, the incomplete
19669 -- type declaration will have been created already.
19671 elsif Present (Current_Entity (Typ))
19672 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
19673 and then Full_View (Current_Entity (Typ)) = Typ
19674 then
19675 if Is_Tagged
19676 and then Comes_From_Source (Current_Entity (Typ))
19677 and then not Is_Tagged_Type (Current_Entity (Typ))
19678 then
19679 Make_Class_Wide_Type (Typ);
19680 Error_Msg_N
19681 ("incomplete view of tagged type should be declared tagged??",
19682 Parent (Current_Entity (Typ)));
19683 end if;
19684 return;
19686 else
19687 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
19688 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
19690 -- Type has already been inserted into the current scope. Remove
19691 -- it, and add incomplete declaration for type, so that subsequent
19692 -- anonymous access types can use it. The entity is unchained from
19693 -- the homonym list and from immediate visibility. After analysis,
19694 -- the entity in the incomplete declaration becomes immediately
19695 -- visible in the record declaration that follows.
19697 H := Current_Entity (Typ);
19699 if H = Typ then
19700 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
19701 else
19702 while Present (H)
19703 and then Homonym (H) /= Typ
19704 loop
19705 H := Homonym (Typ);
19706 end loop;
19708 Set_Homonym (H, Homonym (Typ));
19709 end if;
19711 Insert_Before (Typ_Decl, Decl);
19712 Analyze (Decl);
19713 Set_Full_View (Inc_T, Typ);
19715 if Is_Tagged then
19717 -- Create a common class-wide type for both views, and set the
19718 -- Etype of the class-wide type to the full view.
19720 Make_Class_Wide_Type (Inc_T);
19721 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
19722 Set_Etype (Class_Wide_Type (Typ), Typ);
19723 end if;
19724 end if;
19725 end Build_Incomplete_Type_Declaration;
19727 ------------------
19728 -- Designates_T --
19729 ------------------
19731 function Designates_T (Subt : Node_Id) return Boolean is
19732 Type_Id : constant Name_Id := Chars (Typ);
19734 function Names_T (Nam : Node_Id) return Boolean;
19735 -- The record type has not been introduced in the current scope
19736 -- yet, so we must examine the name of the type itself, either
19737 -- an identifier T, or an expanded name of the form P.T, where
19738 -- P denotes the current scope.
19740 -------------
19741 -- Names_T --
19742 -------------
19744 function Names_T (Nam : Node_Id) return Boolean is
19745 begin
19746 if Nkind (Nam) = N_Identifier then
19747 return Chars (Nam) = Type_Id;
19749 elsif Nkind (Nam) = N_Selected_Component then
19750 if Chars (Selector_Name (Nam)) = Type_Id then
19751 if Nkind (Prefix (Nam)) = N_Identifier then
19752 return Chars (Prefix (Nam)) = Chars (Current_Scope);
19754 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
19755 return Chars (Selector_Name (Prefix (Nam))) =
19756 Chars (Current_Scope);
19757 else
19758 return False;
19759 end if;
19761 else
19762 return False;
19763 end if;
19765 else
19766 return False;
19767 end if;
19768 end Names_T;
19770 -- Start of processing for Designates_T
19772 begin
19773 if Nkind (Subt) = N_Identifier then
19774 return Chars (Subt) = Type_Id;
19776 -- Reference can be through an expanded name which has not been
19777 -- analyzed yet, and which designates enclosing scopes.
19779 elsif Nkind (Subt) = N_Selected_Component then
19780 if Names_T (Subt) then
19781 return True;
19783 -- Otherwise it must denote an entity that is already visible.
19784 -- The access definition may name a subtype of the enclosing
19785 -- type, if there is a previous incomplete declaration for it.
19787 else
19788 Find_Selected_Component (Subt);
19789 return
19790 Is_Entity_Name (Subt)
19791 and then Scope (Entity (Subt)) = Current_Scope
19792 and then
19793 (Chars (Base_Type (Entity (Subt))) = Type_Id
19794 or else
19795 (Is_Class_Wide_Type (Entity (Subt))
19796 and then
19797 Chars (Etype (Base_Type (Entity (Subt)))) =
19798 Type_Id));
19799 end if;
19801 -- A reference to the current type may appear as the prefix of
19802 -- a 'Class attribute.
19804 elsif Nkind (Subt) = N_Attribute_Reference
19805 and then Attribute_Name (Subt) = Name_Class
19806 then
19807 return Names_T (Prefix (Subt));
19809 else
19810 return False;
19811 end if;
19812 end Designates_T;
19814 ----------------
19815 -- Mentions_T --
19816 ----------------
19818 function Mentions_T (Acc_Def : Node_Id) return Boolean is
19819 Param_Spec : Node_Id;
19821 Acc_Subprg : constant Node_Id :=
19822 Access_To_Subprogram_Definition (Acc_Def);
19824 begin
19825 if No (Acc_Subprg) then
19826 return Designates_T (Subtype_Mark (Acc_Def));
19827 end if;
19829 -- Component is an access_to_subprogram: examine its formals,
19830 -- and result definition in the case of an access_to_function.
19832 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
19833 while Present (Param_Spec) loop
19834 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
19835 and then Mentions_T (Parameter_Type (Param_Spec))
19836 then
19837 return True;
19839 elsif Designates_T (Parameter_Type (Param_Spec)) then
19840 return True;
19841 end if;
19843 Next (Param_Spec);
19844 end loop;
19846 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
19847 if Nkind (Result_Definition (Acc_Subprg)) =
19848 N_Access_Definition
19849 then
19850 return Mentions_T (Result_Definition (Acc_Subprg));
19851 else
19852 return Designates_T (Result_Definition (Acc_Subprg));
19853 end if;
19854 end if;
19856 return False;
19857 end Mentions_T;
19859 -- Start of processing for Check_Anonymous_Access_Components
19861 begin
19862 if No (Comp_List) then
19863 return;
19864 end if;
19866 Comp := First (Component_Items (Comp_List));
19867 while Present (Comp) loop
19868 if Nkind (Comp) = N_Component_Declaration
19869 and then Present
19870 (Access_Definition (Component_Definition (Comp)))
19871 and then
19872 Mentions_T (Access_Definition (Component_Definition (Comp)))
19873 then
19874 Comp_Def := Component_Definition (Comp);
19875 Acc_Def :=
19876 Access_To_Subprogram_Definition
19877 (Access_Definition (Comp_Def));
19879 Build_Incomplete_Type_Declaration;
19880 Anon_Access := Make_Temporary (Loc, 'S');
19882 -- Create a declaration for the anonymous access type: either
19883 -- an access_to_object or an access_to_subprogram.
19885 if Present (Acc_Def) then
19886 if Nkind (Acc_Def) = N_Access_Function_Definition then
19887 Type_Def :=
19888 Make_Access_Function_Definition (Loc,
19889 Parameter_Specifications =>
19890 Parameter_Specifications (Acc_Def),
19891 Result_Definition => Result_Definition (Acc_Def));
19892 else
19893 Type_Def :=
19894 Make_Access_Procedure_Definition (Loc,
19895 Parameter_Specifications =>
19896 Parameter_Specifications (Acc_Def));
19897 end if;
19899 else
19900 Type_Def :=
19901 Make_Access_To_Object_Definition (Loc,
19902 Subtype_Indication =>
19903 Relocate_Node
19904 (Subtype_Mark
19905 (Access_Definition (Comp_Def))));
19907 Set_Constant_Present
19908 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
19909 Set_All_Present
19910 (Type_Def, All_Present (Access_Definition (Comp_Def)));
19911 end if;
19913 Set_Null_Exclusion_Present
19914 (Type_Def,
19915 Null_Exclusion_Present (Access_Definition (Comp_Def)));
19917 Decl :=
19918 Make_Full_Type_Declaration (Loc,
19919 Defining_Identifier => Anon_Access,
19920 Type_Definition => Type_Def);
19922 Insert_Before (Typ_Decl, Decl);
19923 Analyze (Decl);
19925 -- If an access to subprogram, create the extra formals
19927 if Present (Acc_Def) then
19928 Create_Extra_Formals (Designated_Type (Anon_Access));
19930 -- If an access to object, preserve entity of designated type,
19931 -- for ASIS use, before rewriting the component definition.
19933 else
19934 declare
19935 Desig : Entity_Id;
19937 begin
19938 Desig := Entity (Subtype_Indication (Type_Def));
19940 -- If the access definition is to the current record,
19941 -- the visible entity at this point is an incomplete
19942 -- type. Retrieve the full view to simplify ASIS queries
19944 if Ekind (Desig) = E_Incomplete_Type then
19945 Desig := Full_View (Desig);
19946 end if;
19948 Set_Entity
19949 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
19950 end;
19951 end if;
19953 Rewrite (Comp_Def,
19954 Make_Component_Definition (Loc,
19955 Subtype_Indication =>
19956 New_Occurrence_Of (Anon_Access, Loc)));
19958 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
19959 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
19960 else
19961 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
19962 end if;
19964 Set_Is_Local_Anonymous_Access (Anon_Access);
19965 end if;
19967 Next (Comp);
19968 end loop;
19970 if Present (Variant_Part (Comp_List)) then
19971 declare
19972 V : Node_Id;
19973 begin
19974 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
19975 while Present (V) loop
19976 Check_Anonymous_Access_Components
19977 (Typ_Decl, Typ, Prev, Component_List (V));
19978 Next_Non_Pragma (V);
19979 end loop;
19980 end;
19981 end if;
19982 end Check_Anonymous_Access_Components;
19984 ----------------------------------
19985 -- Preanalyze_Assert_Expression --
19986 ----------------------------------
19988 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19989 begin
19990 In_Assertion_Expr := In_Assertion_Expr + 1;
19991 Preanalyze_Spec_Expression (N, T);
19992 In_Assertion_Expr := In_Assertion_Expr - 1;
19993 end Preanalyze_Assert_Expression;
19995 --------------------------------
19996 -- Preanalyze_Spec_Expression --
19997 --------------------------------
19999 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
20000 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
20001 begin
20002 In_Spec_Expression := True;
20003 Preanalyze_And_Resolve (N, T);
20004 In_Spec_Expression := Save_In_Spec_Expression;
20005 end Preanalyze_Spec_Expression;
20007 -----------------------------
20008 -- Record_Type_Declaration --
20009 -----------------------------
20011 procedure Record_Type_Declaration
20012 (T : Entity_Id;
20013 N : Node_Id;
20014 Prev : Entity_Id)
20016 Def : constant Node_Id := Type_Definition (N);
20017 Is_Tagged : Boolean;
20018 Tag_Comp : Entity_Id;
20020 begin
20021 -- These flags must be initialized before calling Process_Discriminants
20022 -- because this routine makes use of them.
20024 Set_Ekind (T, E_Record_Type);
20025 Set_Etype (T, T);
20026 Init_Size_Align (T);
20027 Set_Interfaces (T, No_Elist);
20028 Set_Stored_Constraint (T, No_Elist);
20030 -- Normal case
20032 if Ada_Version < Ada_2005
20033 or else not Interface_Present (Def)
20034 then
20035 if Limited_Present (Def) then
20036 Check_SPARK_Restriction ("limited is not allowed", N);
20037 end if;
20039 if Abstract_Present (Def) then
20040 Check_SPARK_Restriction ("abstract is not allowed", N);
20041 end if;
20043 -- The flag Is_Tagged_Type might have already been set by
20044 -- Find_Type_Name if it detected an error for declaration T. This
20045 -- arises in the case of private tagged types where the full view
20046 -- omits the word tagged.
20048 Is_Tagged :=
20049 Tagged_Present (Def)
20050 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20052 Set_Is_Tagged_Type (T, Is_Tagged);
20053 Set_Is_Limited_Record (T, Limited_Present (Def));
20055 -- Type is abstract if full declaration carries keyword, or if
20056 -- previous partial view did.
20058 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20059 or else Abstract_Present (Def));
20061 else
20062 Check_SPARK_Restriction ("interface is not allowed", N);
20064 Is_Tagged := True;
20065 Analyze_Interface_Declaration (T, Def);
20067 if Present (Discriminant_Specifications (N)) then
20068 Error_Msg_N
20069 ("interface types cannot have discriminants",
20070 Defining_Identifier
20071 (First (Discriminant_Specifications (N))));
20072 end if;
20073 end if;
20075 -- First pass: if there are self-referential access components,
20076 -- create the required anonymous access type declarations, and if
20077 -- need be an incomplete type declaration for T itself.
20079 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20081 if Ada_Version >= Ada_2005
20082 and then Present (Interface_List (Def))
20083 then
20084 Check_Interfaces (N, Def);
20086 declare
20087 Ifaces_List : Elist_Id;
20089 begin
20090 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20091 -- already in the parents.
20093 Collect_Interfaces
20094 (T => T,
20095 Ifaces_List => Ifaces_List,
20096 Exclude_Parents => True);
20098 Set_Interfaces (T, Ifaces_List);
20099 end;
20100 end if;
20102 -- Records constitute a scope for the component declarations within.
20103 -- The scope is created prior to the processing of these declarations.
20104 -- Discriminants are processed first, so that they are visible when
20105 -- processing the other components. The Ekind of the record type itself
20106 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20108 -- Enter record scope
20110 Push_Scope (T);
20112 -- If an incomplete or private type declaration was already given for
20113 -- the type, then this scope already exists, and the discriminants have
20114 -- been declared within. We must verify that the full declaration
20115 -- matches the incomplete one.
20117 Check_Or_Process_Discriminants (N, T, Prev);
20119 Set_Is_Constrained (T, not Has_Discriminants (T));
20120 Set_Has_Delayed_Freeze (T, True);
20122 -- For tagged types add a manually analyzed component corresponding
20123 -- to the component _tag, the corresponding piece of tree will be
20124 -- expanded as part of the freezing actions if it is not a CPP_Class.
20126 if Is_Tagged then
20128 -- Do not add the tag unless we are in expansion mode
20130 if Expander_Active then
20131 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20132 Enter_Name (Tag_Comp);
20134 Set_Ekind (Tag_Comp, E_Component);
20135 Set_Is_Tag (Tag_Comp);
20136 Set_Is_Aliased (Tag_Comp);
20137 Set_Etype (Tag_Comp, RTE (RE_Tag));
20138 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20139 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20140 Init_Component_Location (Tag_Comp);
20142 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20143 -- implemented interfaces.
20145 if Has_Interfaces (T) then
20146 Add_Interface_Tag_Components (N, T);
20147 end if;
20148 end if;
20150 Make_Class_Wide_Type (T);
20151 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20152 end if;
20154 -- We must suppress range checks when processing record components in
20155 -- the presence of discriminants, since we don't want spurious checks to
20156 -- be generated during their analysis, but Suppress_Range_Checks flags
20157 -- must be reset the after processing the record definition.
20159 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20160 -- couldn't we just use the normal range check suppression method here.
20161 -- That would seem cleaner ???
20163 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20164 Set_Kill_Range_Checks (T, True);
20165 Record_Type_Definition (Def, Prev);
20166 Set_Kill_Range_Checks (T, False);
20167 else
20168 Record_Type_Definition (Def, Prev);
20169 end if;
20171 -- Exit from record scope
20173 End_Scope;
20175 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20176 -- the implemented interfaces and associate them an aliased entity.
20178 if Is_Tagged
20179 and then not Is_Empty_List (Interface_List (Def))
20180 then
20181 Derive_Progenitor_Subprograms (T, T);
20182 end if;
20184 Check_Function_Writable_Actuals (N);
20185 end Record_Type_Declaration;
20187 ----------------------------
20188 -- Record_Type_Definition --
20189 ----------------------------
20191 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
20192 Component : Entity_Id;
20193 Ctrl_Components : Boolean := False;
20194 Final_Storage_Only : Boolean;
20195 T : Entity_Id;
20197 begin
20198 if Ekind (Prev_T) = E_Incomplete_Type then
20199 T := Full_View (Prev_T);
20200 else
20201 T := Prev_T;
20202 end if;
20204 -- In SPARK, tagged types and type extensions may only be declared in
20205 -- the specification of library unit packages.
20207 if Present (Def) and then Is_Tagged_Type (T) then
20208 declare
20209 Typ : Node_Id;
20210 Ctxt : Node_Id;
20212 begin
20213 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
20214 Typ := Parent (Def);
20215 else
20216 pragma Assert
20217 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
20218 Typ := Parent (Parent (Def));
20219 end if;
20221 Ctxt := Parent (Typ);
20223 if Nkind (Ctxt) = N_Package_Body
20224 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
20225 then
20226 Check_SPARK_Restriction
20227 ("type should be defined in package specification", Typ);
20229 elsif Nkind (Ctxt) /= N_Package_Specification
20230 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
20231 then
20232 Check_SPARK_Restriction
20233 ("type should be defined in library unit package", Typ);
20234 end if;
20235 end;
20236 end if;
20238 Final_Storage_Only := not Is_Controlled (T);
20240 -- Ada 2005: Check whether an explicit Limited is present in a derived
20241 -- type declaration.
20243 if Nkind (Parent (Def)) = N_Derived_Type_Definition
20244 and then Limited_Present (Parent (Def))
20245 then
20246 Set_Is_Limited_Record (T);
20247 end if;
20249 -- If the component list of a record type is defined by the reserved
20250 -- word null and there is no discriminant part, then the record type has
20251 -- no components and all records of the type are null records (RM 3.7)
20252 -- This procedure is also called to process the extension part of a
20253 -- record extension, in which case the current scope may have inherited
20254 -- components.
20256 if No (Def)
20257 or else No (Component_List (Def))
20258 or else Null_Present (Component_List (Def))
20259 then
20260 if not Is_Tagged_Type (T) then
20261 Check_SPARK_Restriction ("non-tagged record cannot be null", Def);
20262 end if;
20264 else
20265 Analyze_Declarations (Component_Items (Component_List (Def)));
20267 if Present (Variant_Part (Component_List (Def))) then
20268 Check_SPARK_Restriction ("variant part is not allowed", Def);
20269 Analyze (Variant_Part (Component_List (Def)));
20270 end if;
20271 end if;
20273 -- After completing the semantic analysis of the record definition,
20274 -- record components, both new and inherited, are accessible. Set their
20275 -- kind accordingly. Exclude malformed itypes from illegal declarations,
20276 -- whose Ekind may be void.
20278 Component := First_Entity (Current_Scope);
20279 while Present (Component) loop
20280 if Ekind (Component) = E_Void
20281 and then not Is_Itype (Component)
20282 then
20283 Set_Ekind (Component, E_Component);
20284 Init_Component_Location (Component);
20285 end if;
20287 if Has_Task (Etype (Component)) then
20288 Set_Has_Task (T);
20289 end if;
20291 if Ekind (Component) /= E_Component then
20292 null;
20294 -- Do not set Has_Controlled_Component on a class-wide equivalent
20295 -- type. See Make_CW_Equivalent_Type.
20297 elsif not Is_Class_Wide_Equivalent_Type (T)
20298 and then (Has_Controlled_Component (Etype (Component))
20299 or else (Chars (Component) /= Name_uParent
20300 and then Is_Controlled (Etype (Component))))
20301 then
20302 Set_Has_Controlled_Component (T, True);
20303 Final_Storage_Only :=
20304 Final_Storage_Only
20305 and then Finalize_Storage_Only (Etype (Component));
20306 Ctrl_Components := True;
20307 end if;
20309 Next_Entity (Component);
20310 end loop;
20312 -- A Type is Finalize_Storage_Only only if all its controlled components
20313 -- are also.
20315 if Ctrl_Components then
20316 Set_Finalize_Storage_Only (T, Final_Storage_Only);
20317 end if;
20319 -- Place reference to end record on the proper entity, which may
20320 -- be a partial view.
20322 if Present (Def) then
20323 Process_End_Label (Def, 'e', Prev_T);
20324 end if;
20325 end Record_Type_Definition;
20327 ------------------------
20328 -- Replace_Components --
20329 ------------------------
20331 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
20332 function Process (N : Node_Id) return Traverse_Result;
20334 -------------
20335 -- Process --
20336 -------------
20338 function Process (N : Node_Id) return Traverse_Result is
20339 Comp : Entity_Id;
20341 begin
20342 if Nkind (N) = N_Discriminant_Specification then
20343 Comp := First_Discriminant (Typ);
20344 while Present (Comp) loop
20345 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20346 Set_Defining_Identifier (N, Comp);
20347 exit;
20348 end if;
20350 Next_Discriminant (Comp);
20351 end loop;
20353 elsif Nkind (N) = N_Component_Declaration then
20354 Comp := First_Component (Typ);
20355 while Present (Comp) loop
20356 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20357 Set_Defining_Identifier (N, Comp);
20358 exit;
20359 end if;
20361 Next_Component (Comp);
20362 end loop;
20363 end if;
20365 return OK;
20366 end Process;
20368 procedure Replace is new Traverse_Proc (Process);
20370 -- Start of processing for Replace_Components
20372 begin
20373 Replace (Decl);
20374 end Replace_Components;
20376 -------------------------------
20377 -- Set_Completion_Referenced --
20378 -------------------------------
20380 procedure Set_Completion_Referenced (E : Entity_Id) is
20381 begin
20382 -- If in main unit, mark entity that is a completion as referenced,
20383 -- warnings go on the partial view when needed.
20385 if In_Extended_Main_Source_Unit (E) then
20386 Set_Referenced (E);
20387 end if;
20388 end Set_Completion_Referenced;
20390 ---------------------
20391 -- Set_Fixed_Range --
20392 ---------------------
20394 -- The range for fixed-point types is complicated by the fact that we
20395 -- do not know the exact end points at the time of the declaration. This
20396 -- is true for three reasons:
20398 -- A size clause may affect the fudging of the end-points.
20399 -- A small clause may affect the values of the end-points.
20400 -- We try to include the end-points if it does not affect the size.
20402 -- This means that the actual end-points must be established at the
20403 -- point when the type is frozen. Meanwhile, we first narrow the range
20404 -- as permitted (so that it will fit if necessary in a small specified
20405 -- size), and then build a range subtree with these narrowed bounds.
20406 -- Set_Fixed_Range constructs the range from real literal values, and
20407 -- sets the range as the Scalar_Range of the given fixed-point type entity.
20409 -- The parent of this range is set to point to the entity so that it is
20410 -- properly hooked into the tree (unlike normal Scalar_Range entries for
20411 -- other scalar types, which are just pointers to the range in the
20412 -- original tree, this would otherwise be an orphan).
20414 -- The tree is left unanalyzed. When the type is frozen, the processing
20415 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
20416 -- analyzed, and uses this as an indication that it should complete
20417 -- work on the range (it will know the final small and size values).
20419 procedure Set_Fixed_Range
20420 (E : Entity_Id;
20421 Loc : Source_Ptr;
20422 Lo : Ureal;
20423 Hi : Ureal)
20425 S : constant Node_Id :=
20426 Make_Range (Loc,
20427 Low_Bound => Make_Real_Literal (Loc, Lo),
20428 High_Bound => Make_Real_Literal (Loc, Hi));
20429 begin
20430 Set_Scalar_Range (E, S);
20431 Set_Parent (S, E);
20433 -- Before the freeze point, the bounds of a fixed point are universal
20434 -- and carry the corresponding type.
20436 Set_Etype (Low_Bound (S), Universal_Real);
20437 Set_Etype (High_Bound (S), Universal_Real);
20438 end Set_Fixed_Range;
20440 ----------------------------------
20441 -- Set_Scalar_Range_For_Subtype --
20442 ----------------------------------
20444 procedure Set_Scalar_Range_For_Subtype
20445 (Def_Id : Entity_Id;
20446 R : Node_Id;
20447 Subt : Entity_Id)
20449 Kind : constant Entity_Kind := Ekind (Def_Id);
20451 begin
20452 -- Defend against previous error
20454 if Nkind (R) = N_Error then
20455 return;
20456 end if;
20458 Set_Scalar_Range (Def_Id, R);
20460 -- We need to link the range into the tree before resolving it so
20461 -- that types that are referenced, including importantly the subtype
20462 -- itself, are properly frozen (Freeze_Expression requires that the
20463 -- expression be properly linked into the tree). Of course if it is
20464 -- already linked in, then we do not disturb the current link.
20466 if No (Parent (R)) then
20467 Set_Parent (R, Def_Id);
20468 end if;
20470 -- Reset the kind of the subtype during analysis of the range, to
20471 -- catch possible premature use in the bounds themselves.
20473 Set_Ekind (Def_Id, E_Void);
20474 Process_Range_Expr_In_Decl (R, Subt);
20475 Set_Ekind (Def_Id, Kind);
20476 end Set_Scalar_Range_For_Subtype;
20478 --------------------------------------------------------
20479 -- Set_Stored_Constraint_From_Discriminant_Constraint --
20480 --------------------------------------------------------
20482 procedure Set_Stored_Constraint_From_Discriminant_Constraint
20483 (E : Entity_Id)
20485 begin
20486 -- Make sure set if encountered during Expand_To_Stored_Constraint
20488 Set_Stored_Constraint (E, No_Elist);
20490 -- Give it the right value
20492 if Is_Constrained (E) and then Has_Discriminants (E) then
20493 Set_Stored_Constraint (E,
20494 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
20495 end if;
20496 end Set_Stored_Constraint_From_Discriminant_Constraint;
20498 -------------------------------------
20499 -- Signed_Integer_Type_Declaration --
20500 -------------------------------------
20502 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
20503 Implicit_Base : Entity_Id;
20504 Base_Typ : Entity_Id;
20505 Lo_Val : Uint;
20506 Hi_Val : Uint;
20507 Errs : Boolean := False;
20508 Lo : Node_Id;
20509 Hi : Node_Id;
20511 function Can_Derive_From (E : Entity_Id) return Boolean;
20512 -- Determine whether given bounds allow derivation from specified type
20514 procedure Check_Bound (Expr : Node_Id);
20515 -- Check bound to make sure it is integral and static. If not, post
20516 -- appropriate error message and set Errs flag
20518 ---------------------
20519 -- Can_Derive_From --
20520 ---------------------
20522 -- Note we check both bounds against both end values, to deal with
20523 -- strange types like ones with a range of 0 .. -12341234.
20525 function Can_Derive_From (E : Entity_Id) return Boolean is
20526 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
20527 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
20528 begin
20529 return Lo <= Lo_Val and then Lo_Val <= Hi
20530 and then
20531 Lo <= Hi_Val and then Hi_Val <= Hi;
20532 end Can_Derive_From;
20534 -----------------
20535 -- Check_Bound --
20536 -----------------
20538 procedure Check_Bound (Expr : Node_Id) is
20539 begin
20540 -- If a range constraint is used as an integer type definition, each
20541 -- bound of the range must be defined by a static expression of some
20542 -- integer type, but the two bounds need not have the same integer
20543 -- type (Negative bounds are allowed.) (RM 3.5.4)
20545 if not Is_Integer_Type (Etype (Expr)) then
20546 Error_Msg_N
20547 ("integer type definition bounds must be of integer type", Expr);
20548 Errs := True;
20550 elsif not Is_OK_Static_Expression (Expr) then
20551 Flag_Non_Static_Expr
20552 ("non-static expression used for integer type bound!", Expr);
20553 Errs := True;
20555 -- The bounds are folded into literals, and we set their type to be
20556 -- universal, to avoid typing difficulties: we cannot set the type
20557 -- of the literal to the new type, because this would be a forward
20558 -- reference for the back end, and if the original type is user-
20559 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
20561 else
20562 if Is_Entity_Name (Expr) then
20563 Fold_Uint (Expr, Expr_Value (Expr), True);
20564 end if;
20566 Set_Etype (Expr, Universal_Integer);
20567 end if;
20568 end Check_Bound;
20570 -- Start of processing for Signed_Integer_Type_Declaration
20572 begin
20573 -- Create an anonymous base type
20575 Implicit_Base :=
20576 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
20578 -- Analyze and check the bounds, they can be of any integer type
20580 Lo := Low_Bound (Def);
20581 Hi := High_Bound (Def);
20583 -- Arbitrarily use Integer as the type if either bound had an error
20585 if Hi = Error or else Lo = Error then
20586 Base_Typ := Any_Integer;
20587 Set_Error_Posted (T, True);
20589 -- Here both bounds are OK expressions
20591 else
20592 Analyze_And_Resolve (Lo, Any_Integer);
20593 Analyze_And_Resolve (Hi, Any_Integer);
20595 Check_Bound (Lo);
20596 Check_Bound (Hi);
20598 if Errs then
20599 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20600 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20601 end if;
20603 -- Find type to derive from
20605 Lo_Val := Expr_Value (Lo);
20606 Hi_Val := Expr_Value (Hi);
20608 if Can_Derive_From (Standard_Short_Short_Integer) then
20609 Base_Typ := Base_Type (Standard_Short_Short_Integer);
20611 elsif Can_Derive_From (Standard_Short_Integer) then
20612 Base_Typ := Base_Type (Standard_Short_Integer);
20614 elsif Can_Derive_From (Standard_Integer) then
20615 Base_Typ := Base_Type (Standard_Integer);
20617 elsif Can_Derive_From (Standard_Long_Integer) then
20618 Base_Typ := Base_Type (Standard_Long_Integer);
20620 elsif Can_Derive_From (Standard_Long_Long_Integer) then
20621 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20623 else
20624 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20625 Error_Msg_N ("integer type definition bounds out of range", Def);
20626 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20627 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20628 end if;
20629 end if;
20631 -- Complete both implicit base and declared first subtype entities
20633 Set_Etype (Implicit_Base, Base_Typ);
20634 Set_Size_Info (Implicit_Base, (Base_Typ));
20635 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
20636 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
20638 Set_Ekind (T, E_Signed_Integer_Subtype);
20639 Set_Etype (T, Implicit_Base);
20641 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
20643 Set_Size_Info (T, (Implicit_Base));
20644 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
20645 Set_Scalar_Range (T, Def);
20646 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
20647 Set_Is_Constrained (T);
20648 end Signed_Integer_Type_Declaration;
20650 end Sem_Ch3;