2015-05-22 Ed Schonberg <schonberg@adacore.com>
[official-gcc.git] / gcc / reload1.c
blob3ac8c2da7642edefb28508697e24b6bc5101ee3d
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "ggc.h"
32 #include "flags.h"
33 #include "hashtab.h"
34 #include "hash-set.h"
35 #include "vec.h"
36 #include "input.h"
37 #include "function.h"
38 #include "symtab.h"
39 #include "rtl.h"
40 #include "statistics.h"
41 #include "double-int.h"
42 #include "real.h"
43 #include "fixed-value.h"
44 #include "alias.h"
45 #include "wide-int.h"
46 #include "inchash.h"
47 #include "tree.h"
48 #include "expmed.h"
49 #include "dojump.h"
50 #include "explow.h"
51 #include "calls.h"
52 #include "emit-rtl.h"
53 #include "varasm.h"
54 #include "stmt.h"
55 #include "expr.h"
56 #include "insn-codes.h"
57 #include "optabs.h"
58 #include "regs.h"
59 #include "addresses.h"
60 #include "predict.h"
61 #include "dominance.h"
62 #include "cfg.h"
63 #include "cfgrtl.h"
64 #include "cfgbuild.h"
65 #include "basic-block.h"
66 #include "df.h"
67 #include "reload.h"
68 #include "recog.h"
69 #include "except.h"
70 #include "ira.h"
71 #include "target.h"
72 #include "dumpfile.h"
73 #include "rtl-iter.h"
75 /* This file contains the reload pass of the compiler, which is
76 run after register allocation has been done. It checks that
77 each insn is valid (operands required to be in registers really
78 are in registers of the proper class) and fixes up invalid ones
79 by copying values temporarily into registers for the insns
80 that need them.
82 The results of register allocation are described by the vector
83 reg_renumber; the insns still contain pseudo regs, but reg_renumber
84 can be used to find which hard reg, if any, a pseudo reg is in.
86 The technique we always use is to free up a few hard regs that are
87 called ``reload regs'', and for each place where a pseudo reg
88 must be in a hard reg, copy it temporarily into one of the reload regs.
90 Reload regs are allocated locally for every instruction that needs
91 reloads. When there are pseudos which are allocated to a register that
92 has been chosen as a reload reg, such pseudos must be ``spilled''.
93 This means that they go to other hard regs, or to stack slots if no other
94 available hard regs can be found. Spilling can invalidate more
95 insns, requiring additional need for reloads, so we must keep checking
96 until the process stabilizes.
98 For machines with different classes of registers, we must keep track
99 of the register class needed for each reload, and make sure that
100 we allocate enough reload registers of each class.
102 The file reload.c contains the code that checks one insn for
103 validity and reports the reloads that it needs. This file
104 is in charge of scanning the entire rtl code, accumulating the
105 reload needs, spilling, assigning reload registers to use for
106 fixing up each insn, and generating the new insns to copy values
107 into the reload registers. */
109 struct target_reload default_target_reload;
110 #if SWITCHABLE_TARGET
111 struct target_reload *this_target_reload = &default_target_reload;
112 #endif
114 #define spill_indirect_levels \
115 (this_target_reload->x_spill_indirect_levels)
117 /* During reload_as_needed, element N contains a REG rtx for the hard reg
118 into which reg N has been reloaded (perhaps for a previous insn). */
119 static rtx *reg_last_reload_reg;
121 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
122 for an output reload that stores into reg N. */
123 static regset_head reg_has_output_reload;
125 /* Indicates which hard regs are reload-registers for an output reload
126 in the current insn. */
127 static HARD_REG_SET reg_is_output_reload;
129 /* Widest width in which each pseudo reg is referred to (via subreg). */
130 static unsigned int *reg_max_ref_width;
132 /* Vector to remember old contents of reg_renumber before spilling. */
133 static short *reg_old_renumber;
135 /* During reload_as_needed, element N contains the last pseudo regno reloaded
136 into hard register N. If that pseudo reg occupied more than one register,
137 reg_reloaded_contents points to that pseudo for each spill register in
138 use; all of these must remain set for an inheritance to occur. */
139 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
141 /* During reload_as_needed, element N contains the insn for which
142 hard register N was last used. Its contents are significant only
143 when reg_reloaded_valid is set for this register. */
144 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
146 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
147 static HARD_REG_SET reg_reloaded_valid;
148 /* Indicate if the register was dead at the end of the reload.
149 This is only valid if reg_reloaded_contents is set and valid. */
150 static HARD_REG_SET reg_reloaded_dead;
152 /* Indicate whether the register's current value is one that is not
153 safe to retain across a call, even for registers that are normally
154 call-saved. This is only meaningful for members of reg_reloaded_valid. */
155 static HARD_REG_SET reg_reloaded_call_part_clobbered;
157 /* Number of spill-regs so far; number of valid elements of spill_regs. */
158 static int n_spills;
160 /* In parallel with spill_regs, contains REG rtx's for those regs.
161 Holds the last rtx used for any given reg, or 0 if it has never
162 been used for spilling yet. This rtx is reused, provided it has
163 the proper mode. */
164 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
166 /* In parallel with spill_regs, contains nonzero for a spill reg
167 that was stored after the last time it was used.
168 The precise value is the insn generated to do the store. */
169 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
171 /* This is the register that was stored with spill_reg_store. This is a
172 copy of reload_out / reload_out_reg when the value was stored; if
173 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
174 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
176 /* This table is the inverse mapping of spill_regs:
177 indexed by hard reg number,
178 it contains the position of that reg in spill_regs,
179 or -1 for something that is not in spill_regs.
181 ?!? This is no longer accurate. */
182 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
184 /* This reg set indicates registers that can't be used as spill registers for
185 the currently processed insn. These are the hard registers which are live
186 during the insn, but not allocated to pseudos, as well as fixed
187 registers. */
188 static HARD_REG_SET bad_spill_regs;
190 /* These are the hard registers that can't be used as spill register for any
191 insn. This includes registers used for user variables and registers that
192 we can't eliminate. A register that appears in this set also can't be used
193 to retry register allocation. */
194 static HARD_REG_SET bad_spill_regs_global;
196 /* Describes order of use of registers for reloading
197 of spilled pseudo-registers. `n_spills' is the number of
198 elements that are actually valid; new ones are added at the end.
200 Both spill_regs and spill_reg_order are used on two occasions:
201 once during find_reload_regs, where they keep track of the spill registers
202 for a single insn, but also during reload_as_needed where they show all
203 the registers ever used by reload. For the latter case, the information
204 is calculated during finish_spills. */
205 static short spill_regs[FIRST_PSEUDO_REGISTER];
207 /* This vector of reg sets indicates, for each pseudo, which hard registers
208 may not be used for retrying global allocation because the register was
209 formerly spilled from one of them. If we allowed reallocating a pseudo to
210 a register that it was already allocated to, reload might not
211 terminate. */
212 static HARD_REG_SET *pseudo_previous_regs;
214 /* This vector of reg sets indicates, for each pseudo, which hard
215 registers may not be used for retrying global allocation because they
216 are used as spill registers during one of the insns in which the
217 pseudo is live. */
218 static HARD_REG_SET *pseudo_forbidden_regs;
220 /* All hard regs that have been used as spill registers for any insn are
221 marked in this set. */
222 static HARD_REG_SET used_spill_regs;
224 /* Index of last register assigned as a spill register. We allocate in
225 a round-robin fashion. */
226 static int last_spill_reg;
228 /* Record the stack slot for each spilled hard register. */
229 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
231 /* Width allocated so far for that stack slot. */
232 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
234 /* Record which pseudos needed to be spilled. */
235 static regset_head spilled_pseudos;
237 /* Record which pseudos changed their allocation in finish_spills. */
238 static regset_head changed_allocation_pseudos;
240 /* Used for communication between order_regs_for_reload and count_pseudo.
241 Used to avoid counting one pseudo twice. */
242 static regset_head pseudos_counted;
244 /* First uid used by insns created by reload in this function.
245 Used in find_equiv_reg. */
246 int reload_first_uid;
248 /* Flag set by local-alloc or global-alloc if anything is live in
249 a call-clobbered reg across calls. */
250 int caller_save_needed;
252 /* Set to 1 while reload_as_needed is operating.
253 Required by some machines to handle any generated moves differently. */
254 int reload_in_progress = 0;
256 /* This obstack is used for allocation of rtl during register elimination.
257 The allocated storage can be freed once find_reloads has processed the
258 insn. */
259 static struct obstack reload_obstack;
261 /* Points to the beginning of the reload_obstack. All insn_chain structures
262 are allocated first. */
263 static char *reload_startobj;
265 /* The point after all insn_chain structures. Used to quickly deallocate
266 memory allocated in copy_reloads during calculate_needs_all_insns. */
267 static char *reload_firstobj;
269 /* This points before all local rtl generated by register elimination.
270 Used to quickly free all memory after processing one insn. */
271 static char *reload_insn_firstobj;
273 /* List of insn_chain instructions, one for every insn that reload needs to
274 examine. */
275 struct insn_chain *reload_insn_chain;
277 /* TRUE if we potentially left dead insns in the insn stream and want to
278 run DCE immediately after reload, FALSE otherwise. */
279 static bool need_dce;
281 /* List of all insns needing reloads. */
282 static struct insn_chain *insns_need_reload;
284 /* This structure is used to record information about register eliminations.
285 Each array entry describes one possible way of eliminating a register
286 in favor of another. If there is more than one way of eliminating a
287 particular register, the most preferred should be specified first. */
289 struct elim_table
291 int from; /* Register number to be eliminated. */
292 int to; /* Register number used as replacement. */
293 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
294 int can_eliminate; /* Nonzero if this elimination can be done. */
295 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
296 target hook in previous scan over insns
297 made by reload. */
298 HOST_WIDE_INT offset; /* Current offset between the two regs. */
299 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
300 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
301 rtx from_rtx; /* REG rtx for the register to be eliminated.
302 We cannot simply compare the number since
303 we might then spuriously replace a hard
304 register corresponding to a pseudo
305 assigned to the reg to be eliminated. */
306 rtx to_rtx; /* REG rtx for the replacement. */
309 static struct elim_table *reg_eliminate = 0;
311 /* This is an intermediate structure to initialize the table. It has
312 exactly the members provided by ELIMINABLE_REGS. */
313 static const struct elim_table_1
315 const int from;
316 const int to;
317 } reg_eliminate_1[] =
319 /* If a set of eliminable registers was specified, define the table from it.
320 Otherwise, default to the normal case of the frame pointer being
321 replaced by the stack pointer. */
323 #ifdef ELIMINABLE_REGS
324 ELIMINABLE_REGS;
325 #else
326 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
327 #endif
329 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
331 /* Record the number of pending eliminations that have an offset not equal
332 to their initial offset. If nonzero, we use a new copy of each
333 replacement result in any insns encountered. */
334 int num_not_at_initial_offset;
336 /* Count the number of registers that we may be able to eliminate. */
337 static int num_eliminable;
338 /* And the number of registers that are equivalent to a constant that
339 can be eliminated to frame_pointer / arg_pointer + constant. */
340 static int num_eliminable_invariants;
342 /* For each label, we record the offset of each elimination. If we reach
343 a label by more than one path and an offset differs, we cannot do the
344 elimination. This information is indexed by the difference of the
345 number of the label and the first label number. We can't offset the
346 pointer itself as this can cause problems on machines with segmented
347 memory. The first table is an array of flags that records whether we
348 have yet encountered a label and the second table is an array of arrays,
349 one entry in the latter array for each elimination. */
351 static int first_label_num;
352 static char *offsets_known_at;
353 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
355 vec<reg_equivs_t, va_gc> *reg_equivs;
357 /* Stack of addresses where an rtx has been changed. We can undo the
358 changes by popping items off the stack and restoring the original
359 value at each location.
361 We use this simplistic undo capability rather than copy_rtx as copy_rtx
362 will not make a deep copy of a normally sharable rtx, such as
363 (const (plus (symbol_ref) (const_int))). If such an expression appears
364 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
365 rtx expression would be changed. See PR 42431. */
367 typedef rtx *rtx_p;
368 static vec<rtx_p> substitute_stack;
370 /* Number of labels in the current function. */
372 static int num_labels;
374 static void replace_pseudos_in (rtx *, machine_mode, rtx);
375 static void maybe_fix_stack_asms (void);
376 static void copy_reloads (struct insn_chain *);
377 static void calculate_needs_all_insns (int);
378 static int find_reg (struct insn_chain *, int);
379 static void find_reload_regs (struct insn_chain *);
380 static void select_reload_regs (void);
381 static void delete_caller_save_insns (void);
383 static void spill_failure (rtx_insn *, enum reg_class);
384 static void count_spilled_pseudo (int, int, int);
385 static void delete_dead_insn (rtx_insn *);
386 static void alter_reg (int, int, bool);
387 static void set_label_offsets (rtx, rtx_insn *, int);
388 static void check_eliminable_occurrences (rtx);
389 static void elimination_effects (rtx, machine_mode);
390 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
391 static int eliminate_regs_in_insn (rtx_insn *, int);
392 static void update_eliminable_offsets (void);
393 static void mark_not_eliminable (rtx, const_rtx, void *);
394 static void set_initial_elim_offsets (void);
395 static bool verify_initial_elim_offsets (void);
396 static void set_initial_label_offsets (void);
397 static void set_offsets_for_label (rtx_insn *);
398 static void init_eliminable_invariants (rtx_insn *, bool);
399 static void init_elim_table (void);
400 static void free_reg_equiv (void);
401 static void update_eliminables (HARD_REG_SET *);
402 static bool update_eliminables_and_spill (void);
403 static void elimination_costs_in_insn (rtx_insn *);
404 static void spill_hard_reg (unsigned int, int);
405 static int finish_spills (int);
406 static void scan_paradoxical_subregs (rtx);
407 static void count_pseudo (int);
408 static void order_regs_for_reload (struct insn_chain *);
409 static void reload_as_needed (int);
410 static void forget_old_reloads_1 (rtx, const_rtx, void *);
411 static void forget_marked_reloads (regset);
412 static int reload_reg_class_lower (const void *, const void *);
413 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
414 machine_mode);
415 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
416 machine_mode);
417 static int reload_reg_free_p (unsigned int, int, enum reload_type);
418 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
419 rtx, rtx, int, int);
420 static int free_for_value_p (int, machine_mode, int, enum reload_type,
421 rtx, rtx, int, int);
422 static int allocate_reload_reg (struct insn_chain *, int, int);
423 static int conflicts_with_override (rtx);
424 static void failed_reload (rtx_insn *, int);
425 static int set_reload_reg (int, int);
426 static void choose_reload_regs_init (struct insn_chain *, rtx *);
427 static void choose_reload_regs (struct insn_chain *);
428 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
429 rtx, int);
430 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
431 int);
432 static void do_input_reload (struct insn_chain *, struct reload *, int);
433 static void do_output_reload (struct insn_chain *, struct reload *, int);
434 static void emit_reload_insns (struct insn_chain *);
435 static void delete_output_reload (rtx_insn *, int, int, rtx);
436 static void delete_address_reloads (rtx_insn *, rtx_insn *);
437 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
438 static void inc_for_reload (rtx, rtx, rtx, int);
439 #ifdef AUTO_INC_DEC
440 static void add_auto_inc_notes (rtx_insn *, rtx);
441 #endif
442 static void substitute (rtx *, const_rtx, rtx);
443 static bool gen_reload_chain_without_interm_reg_p (int, int);
444 static int reloads_conflict (int, int);
445 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
446 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
448 /* Initialize the reload pass. This is called at the beginning of compilation
449 and may be called again if the target is reinitialized. */
451 void
452 init_reload (void)
454 int i;
456 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
457 Set spill_indirect_levels to the number of levels such addressing is
458 permitted, zero if it is not permitted at all. */
460 rtx tem
461 = gen_rtx_MEM (Pmode,
462 gen_rtx_PLUS (Pmode,
463 gen_rtx_REG (Pmode,
464 LAST_VIRTUAL_REGISTER + 1),
465 gen_int_mode (4, Pmode)));
466 spill_indirect_levels = 0;
468 while (memory_address_p (QImode, tem))
470 spill_indirect_levels++;
471 tem = gen_rtx_MEM (Pmode, tem);
474 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
476 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
477 indirect_symref_ok = memory_address_p (QImode, tem);
479 /* See if reg+reg is a valid (and offsettable) address. */
481 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
483 tem = gen_rtx_PLUS (Pmode,
484 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
485 gen_rtx_REG (Pmode, i));
487 /* This way, we make sure that reg+reg is an offsettable address. */
488 tem = plus_constant (Pmode, tem, 4);
490 if (memory_address_p (QImode, tem))
492 double_reg_address_ok = 1;
493 break;
497 /* Initialize obstack for our rtl allocation. */
498 if (reload_startobj == NULL)
500 gcc_obstack_init (&reload_obstack);
501 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
504 INIT_REG_SET (&spilled_pseudos);
505 INIT_REG_SET (&changed_allocation_pseudos);
506 INIT_REG_SET (&pseudos_counted);
509 /* List of insn chains that are currently unused. */
510 static struct insn_chain *unused_insn_chains = 0;
512 /* Allocate an empty insn_chain structure. */
513 struct insn_chain *
514 new_insn_chain (void)
516 struct insn_chain *c;
518 if (unused_insn_chains == 0)
520 c = XOBNEW (&reload_obstack, struct insn_chain);
521 INIT_REG_SET (&c->live_throughout);
522 INIT_REG_SET (&c->dead_or_set);
524 else
526 c = unused_insn_chains;
527 unused_insn_chains = c->next;
529 c->is_caller_save_insn = 0;
530 c->need_operand_change = 0;
531 c->need_reload = 0;
532 c->need_elim = 0;
533 return c;
536 /* Small utility function to set all regs in hard reg set TO which are
537 allocated to pseudos in regset FROM. */
539 void
540 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
542 unsigned int regno;
543 reg_set_iterator rsi;
545 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
547 int r = reg_renumber[regno];
549 if (r < 0)
551 /* reload_combine uses the information from DF_LIVE_IN,
552 which might still contain registers that have not
553 actually been allocated since they have an
554 equivalence. */
555 gcc_assert (ira_conflicts_p || reload_completed);
557 else
558 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
562 /* Replace all pseudos found in LOC with their corresponding
563 equivalences. */
565 static void
566 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
568 rtx x = *loc;
569 enum rtx_code code;
570 const char *fmt;
571 int i, j;
573 if (! x)
574 return;
576 code = GET_CODE (x);
577 if (code == REG)
579 unsigned int regno = REGNO (x);
581 if (regno < FIRST_PSEUDO_REGISTER)
582 return;
584 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
585 if (x != *loc)
587 *loc = x;
588 replace_pseudos_in (loc, mem_mode, usage);
589 return;
592 if (reg_equiv_constant (regno))
593 *loc = reg_equiv_constant (regno);
594 else if (reg_equiv_invariant (regno))
595 *loc = reg_equiv_invariant (regno);
596 else if (reg_equiv_mem (regno))
597 *loc = reg_equiv_mem (regno);
598 else if (reg_equiv_address (regno))
599 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
600 else
602 gcc_assert (!REG_P (regno_reg_rtx[regno])
603 || REGNO (regno_reg_rtx[regno]) != regno);
604 *loc = regno_reg_rtx[regno];
607 return;
609 else if (code == MEM)
611 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
612 return;
615 /* Process each of our operands recursively. */
616 fmt = GET_RTX_FORMAT (code);
617 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
618 if (*fmt == 'e')
619 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
620 else if (*fmt == 'E')
621 for (j = 0; j < XVECLEN (x, i); j++)
622 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
625 /* Determine if the current function has an exception receiver block
626 that reaches the exit block via non-exceptional edges */
628 static bool
629 has_nonexceptional_receiver (void)
631 edge e;
632 edge_iterator ei;
633 basic_block *tos, *worklist, bb;
635 /* If we're not optimizing, then just err on the safe side. */
636 if (!optimize)
637 return true;
639 /* First determine which blocks can reach exit via normal paths. */
640 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
642 FOR_EACH_BB_FN (bb, cfun)
643 bb->flags &= ~BB_REACHABLE;
645 /* Place the exit block on our worklist. */
646 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
647 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
649 /* Iterate: find everything reachable from what we've already seen. */
650 while (tos != worklist)
652 bb = *--tos;
654 FOR_EACH_EDGE (e, ei, bb->preds)
655 if (!(e->flags & EDGE_ABNORMAL))
657 basic_block src = e->src;
659 if (!(src->flags & BB_REACHABLE))
661 src->flags |= BB_REACHABLE;
662 *tos++ = src;
666 free (worklist);
668 /* Now see if there's a reachable block with an exceptional incoming
669 edge. */
670 FOR_EACH_BB_FN (bb, cfun)
671 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
672 return true;
674 /* No exceptional block reached exit unexceptionally. */
675 return false;
678 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
679 zero elements) to MAX_REG_NUM elements.
681 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
682 void
683 grow_reg_equivs (void)
685 int old_size = vec_safe_length (reg_equivs);
686 int max_regno = max_reg_num ();
687 int i;
688 reg_equivs_t ze;
690 memset (&ze, 0, sizeof (reg_equivs_t));
691 vec_safe_reserve (reg_equivs, max_regno);
692 for (i = old_size; i < max_regno; i++)
693 reg_equivs->quick_insert (i, ze);
697 /* Global variables used by reload and its subroutines. */
699 /* The current basic block while in calculate_elim_costs_all_insns. */
700 static basic_block elim_bb;
702 /* Set during calculate_needs if an insn needs register elimination. */
703 static int something_needs_elimination;
704 /* Set during calculate_needs if an insn needs an operand changed. */
705 static int something_needs_operands_changed;
706 /* Set by alter_regs if we spilled a register to the stack. */
707 static bool something_was_spilled;
709 /* Nonzero means we couldn't get enough spill regs. */
710 static int failure;
712 /* Temporary array of pseudo-register number. */
713 static int *temp_pseudo_reg_arr;
715 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
716 If that insn didn't set the register (i.e., it copied the register to
717 memory), just delete that insn instead of the equivalencing insn plus
718 anything now dead. If we call delete_dead_insn on that insn, we may
719 delete the insn that actually sets the register if the register dies
720 there and that is incorrect. */
721 static void
722 remove_init_insns ()
724 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
726 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
728 rtx list;
729 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
731 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
733 /* If we already deleted the insn or if it may trap, we can't
734 delete it. The latter case shouldn't happen, but can
735 if an insn has a variable address, gets a REG_EH_REGION
736 note added to it, and then gets converted into a load
737 from a constant address. */
738 if (NOTE_P (equiv_insn)
739 || can_throw_internal (equiv_insn))
741 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
742 delete_dead_insn (equiv_insn);
743 else
744 SET_INSN_DELETED (equiv_insn);
750 /* Return true if remove_init_insns will delete INSN. */
751 static bool
752 will_delete_init_insn_p (rtx_insn *insn)
754 rtx set = single_set (insn);
755 if (!set || !REG_P (SET_DEST (set)))
756 return false;
757 unsigned regno = REGNO (SET_DEST (set));
759 if (can_throw_internal (insn))
760 return false;
762 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
763 return false;
765 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
767 rtx equiv_insn = XEXP (list, 0);
768 if (equiv_insn == insn)
769 return true;
771 return false;
774 /* Main entry point for the reload pass.
776 FIRST is the first insn of the function being compiled.
778 GLOBAL nonzero means we were called from global_alloc
779 and should attempt to reallocate any pseudoregs that we
780 displace from hard regs we will use for reloads.
781 If GLOBAL is zero, we do not have enough information to do that,
782 so any pseudo reg that is spilled must go to the stack.
784 Return value is TRUE if reload likely left dead insns in the
785 stream and a DCE pass should be run to elimiante them. Else the
786 return value is FALSE. */
788 bool
789 reload (rtx_insn *first, int global)
791 int i, n;
792 rtx_insn *insn;
793 struct elim_table *ep;
794 basic_block bb;
795 bool inserted;
797 /* Make sure even insns with volatile mem refs are recognizable. */
798 init_recog ();
800 failure = 0;
802 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
804 /* Make sure that the last insn in the chain
805 is not something that needs reloading. */
806 emit_note (NOTE_INSN_DELETED);
808 /* Enable find_equiv_reg to distinguish insns made by reload. */
809 reload_first_uid = get_max_uid ();
811 #ifdef SECONDARY_MEMORY_NEEDED
812 /* Initialize the secondary memory table. */
813 clear_secondary_mem ();
814 #endif
816 /* We don't have a stack slot for any spill reg yet. */
817 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
818 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
820 /* Initialize the save area information for caller-save, in case some
821 are needed. */
822 init_save_areas ();
824 /* Compute which hard registers are now in use
825 as homes for pseudo registers.
826 This is done here rather than (eg) in global_alloc
827 because this point is reached even if not optimizing. */
828 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
829 mark_home_live (i);
831 /* A function that has a nonlocal label that can reach the exit
832 block via non-exceptional paths must save all call-saved
833 registers. */
834 if (cfun->has_nonlocal_label
835 && has_nonexceptional_receiver ())
836 crtl->saves_all_registers = 1;
838 if (crtl->saves_all_registers)
839 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
840 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
841 df_set_regs_ever_live (i, true);
843 /* Find all the pseudo registers that didn't get hard regs
844 but do have known equivalent constants or memory slots.
845 These include parameters (known equivalent to parameter slots)
846 and cse'd or loop-moved constant memory addresses.
848 Record constant equivalents in reg_equiv_constant
849 so they will be substituted by find_reloads.
850 Record memory equivalents in reg_mem_equiv so they can
851 be substituted eventually by altering the REG-rtx's. */
853 grow_reg_equivs ();
854 reg_old_renumber = XCNEWVEC (short, max_regno);
855 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
856 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
857 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
859 CLEAR_HARD_REG_SET (bad_spill_regs_global);
861 init_eliminable_invariants (first, true);
862 init_elim_table ();
864 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
865 stack slots to the pseudos that lack hard regs or equivalents.
866 Do not touch virtual registers. */
868 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
869 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
870 temp_pseudo_reg_arr[n++] = i;
872 if (ira_conflicts_p)
873 /* Ask IRA to order pseudo-registers for better stack slot
874 sharing. */
875 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
877 for (i = 0; i < n; i++)
878 alter_reg (temp_pseudo_reg_arr[i], -1, false);
880 /* If we have some registers we think can be eliminated, scan all insns to
881 see if there is an insn that sets one of these registers to something
882 other than itself plus a constant. If so, the register cannot be
883 eliminated. Doing this scan here eliminates an extra pass through the
884 main reload loop in the most common case where register elimination
885 cannot be done. */
886 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
887 if (INSN_P (insn))
888 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
890 maybe_fix_stack_asms ();
892 insns_need_reload = 0;
893 something_needs_elimination = 0;
895 /* Initialize to -1, which means take the first spill register. */
896 last_spill_reg = -1;
898 /* Spill any hard regs that we know we can't eliminate. */
899 CLEAR_HARD_REG_SET (used_spill_regs);
900 /* There can be multiple ways to eliminate a register;
901 they should be listed adjacently.
902 Elimination for any register fails only if all possible ways fail. */
903 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
905 int from = ep->from;
906 int can_eliminate = 0;
909 can_eliminate |= ep->can_eliminate;
910 ep++;
912 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
913 if (! can_eliminate)
914 spill_hard_reg (from, 1);
917 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
918 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
920 finish_spills (global);
922 /* From now on, we may need to generate moves differently. We may also
923 allow modifications of insns which cause them to not be recognized.
924 Any such modifications will be cleaned up during reload itself. */
925 reload_in_progress = 1;
927 /* This loop scans the entire function each go-round
928 and repeats until one repetition spills no additional hard regs. */
929 for (;;)
931 int something_changed;
932 int did_spill;
933 HOST_WIDE_INT starting_frame_size;
935 starting_frame_size = get_frame_size ();
936 something_was_spilled = false;
938 set_initial_elim_offsets ();
939 set_initial_label_offsets ();
941 /* For each pseudo register that has an equivalent location defined,
942 try to eliminate any eliminable registers (such as the frame pointer)
943 assuming initial offsets for the replacement register, which
944 is the normal case.
946 If the resulting location is directly addressable, substitute
947 the MEM we just got directly for the old REG.
949 If it is not addressable but is a constant or the sum of a hard reg
950 and constant, it is probably not addressable because the constant is
951 out of range, in that case record the address; we will generate
952 hairy code to compute the address in a register each time it is
953 needed. Similarly if it is a hard register, but one that is not
954 valid as an address register.
956 If the location is not addressable, but does not have one of the
957 above forms, assign a stack slot. We have to do this to avoid the
958 potential of producing lots of reloads if, e.g., a location involves
959 a pseudo that didn't get a hard register and has an equivalent memory
960 location that also involves a pseudo that didn't get a hard register.
962 Perhaps at some point we will improve reload_when_needed handling
963 so this problem goes away. But that's very hairy. */
965 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
966 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
968 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
969 NULL_RTX);
971 if (strict_memory_address_addr_space_p
972 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
973 MEM_ADDR_SPACE (x)))
974 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
975 else if (CONSTANT_P (XEXP (x, 0))
976 || (REG_P (XEXP (x, 0))
977 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
978 || (GET_CODE (XEXP (x, 0)) == PLUS
979 && REG_P (XEXP (XEXP (x, 0), 0))
980 && (REGNO (XEXP (XEXP (x, 0), 0))
981 < FIRST_PSEUDO_REGISTER)
982 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
983 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
984 else
986 /* Make a new stack slot. Then indicate that something
987 changed so we go back and recompute offsets for
988 eliminable registers because the allocation of memory
989 below might change some offset. reg_equiv_{mem,address}
990 will be set up for this pseudo on the next pass around
991 the loop. */
992 reg_equiv_memory_loc (i) = 0;
993 reg_equiv_init (i) = 0;
994 alter_reg (i, -1, true);
998 if (caller_save_needed)
999 setup_save_areas ();
1001 if (starting_frame_size && crtl->stack_alignment_needed)
1003 /* If we have a stack frame, we must align it now. The
1004 stack size may be a part of the offset computation for
1005 register elimination. So if this changes the stack size,
1006 then repeat the elimination bookkeeping. We don't
1007 realign when there is no stack, as that will cause a
1008 stack frame when none is needed should
1009 STARTING_FRAME_OFFSET not be already aligned to
1010 STACK_BOUNDARY. */
1011 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
1013 /* If we allocated another stack slot, redo elimination bookkeeping. */
1014 if (something_was_spilled || starting_frame_size != get_frame_size ())
1016 update_eliminables_and_spill ();
1017 continue;
1020 if (caller_save_needed)
1022 save_call_clobbered_regs ();
1023 /* That might have allocated new insn_chain structures. */
1024 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1027 calculate_needs_all_insns (global);
1029 if (! ira_conflicts_p)
1030 /* Don't do it for IRA. We need this info because we don't
1031 change live_throughout and dead_or_set for chains when IRA
1032 is used. */
1033 CLEAR_REG_SET (&spilled_pseudos);
1035 did_spill = 0;
1037 something_changed = 0;
1039 /* If we allocated any new memory locations, make another pass
1040 since it might have changed elimination offsets. */
1041 if (something_was_spilled || starting_frame_size != get_frame_size ())
1042 something_changed = 1;
1044 /* Even if the frame size remained the same, we might still have
1045 changed elimination offsets, e.g. if find_reloads called
1046 force_const_mem requiring the back end to allocate a constant
1047 pool base register that needs to be saved on the stack. */
1048 else if (!verify_initial_elim_offsets ())
1049 something_changed = 1;
1051 if (update_eliminables_and_spill ())
1053 did_spill = 1;
1054 something_changed = 1;
1057 select_reload_regs ();
1058 if (failure)
1059 goto failed;
1061 if (insns_need_reload != 0 || did_spill)
1062 something_changed |= finish_spills (global);
1064 if (! something_changed)
1065 break;
1067 if (caller_save_needed)
1068 delete_caller_save_insns ();
1070 obstack_free (&reload_obstack, reload_firstobj);
1073 /* If global-alloc was run, notify it of any register eliminations we have
1074 done. */
1075 if (global)
1076 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1077 if (ep->can_eliminate)
1078 mark_elimination (ep->from, ep->to);
1080 remove_init_insns ();
1082 /* Use the reload registers where necessary
1083 by generating move instructions to move the must-be-register
1084 values into or out of the reload registers. */
1086 if (insns_need_reload != 0 || something_needs_elimination
1087 || something_needs_operands_changed)
1089 HOST_WIDE_INT old_frame_size = get_frame_size ();
1091 reload_as_needed (global);
1093 gcc_assert (old_frame_size == get_frame_size ());
1095 gcc_assert (verify_initial_elim_offsets ());
1098 /* If we were able to eliminate the frame pointer, show that it is no
1099 longer live at the start of any basic block. If it ls live by
1100 virtue of being in a pseudo, that pseudo will be marked live
1101 and hence the frame pointer will be known to be live via that
1102 pseudo. */
1104 if (! frame_pointer_needed)
1105 FOR_EACH_BB_FN (bb, cfun)
1106 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1108 /* Come here (with failure set nonzero) if we can't get enough spill
1109 regs. */
1110 failed:
1112 CLEAR_REG_SET (&changed_allocation_pseudos);
1113 CLEAR_REG_SET (&spilled_pseudos);
1114 reload_in_progress = 0;
1116 /* Now eliminate all pseudo regs by modifying them into
1117 their equivalent memory references.
1118 The REG-rtx's for the pseudos are modified in place,
1119 so all insns that used to refer to them now refer to memory.
1121 For a reg that has a reg_equiv_address, all those insns
1122 were changed by reloading so that no insns refer to it any longer;
1123 but the DECL_RTL of a variable decl may refer to it,
1124 and if so this causes the debugging info to mention the variable. */
1126 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1128 rtx addr = 0;
1130 if (reg_equiv_mem (i))
1131 addr = XEXP (reg_equiv_mem (i), 0);
1133 if (reg_equiv_address (i))
1134 addr = reg_equiv_address (i);
1136 if (addr)
1138 if (reg_renumber[i] < 0)
1140 rtx reg = regno_reg_rtx[i];
1142 REG_USERVAR_P (reg) = 0;
1143 PUT_CODE (reg, MEM);
1144 XEXP (reg, 0) = addr;
1145 if (reg_equiv_memory_loc (i))
1146 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1147 else
1148 MEM_ATTRS (reg) = 0;
1149 MEM_NOTRAP_P (reg) = 1;
1151 else if (reg_equiv_mem (i))
1152 XEXP (reg_equiv_mem (i), 0) = addr;
1155 /* We don't want complex addressing modes in debug insns
1156 if simpler ones will do, so delegitimize equivalences
1157 in debug insns. */
1158 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1160 rtx reg = regno_reg_rtx[i];
1161 rtx equiv = 0;
1162 df_ref use, next;
1164 if (reg_equiv_constant (i))
1165 equiv = reg_equiv_constant (i);
1166 else if (reg_equiv_invariant (i))
1167 equiv = reg_equiv_invariant (i);
1168 else if (reg && MEM_P (reg))
1169 equiv = targetm.delegitimize_address (reg);
1170 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1171 equiv = reg;
1173 if (equiv == reg)
1174 continue;
1176 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1178 insn = DF_REF_INSN (use);
1180 /* Make sure the next ref is for a different instruction,
1181 so that we're not affected by the rescan. */
1182 next = DF_REF_NEXT_REG (use);
1183 while (next && DF_REF_INSN (next) == insn)
1184 next = DF_REF_NEXT_REG (next);
1186 if (DEBUG_INSN_P (insn))
1188 if (!equiv)
1190 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1191 df_insn_rescan_debug_internal (insn);
1193 else
1194 INSN_VAR_LOCATION_LOC (insn)
1195 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1196 reg, equiv);
1202 /* We must set reload_completed now since the cleanup_subreg_operands call
1203 below will re-recognize each insn and reload may have generated insns
1204 which are only valid during and after reload. */
1205 reload_completed = 1;
1207 /* Make a pass over all the insns and delete all USEs which we inserted
1208 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1209 notes. Delete all CLOBBER insns, except those that refer to the return
1210 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1211 from misarranging variable-array code, and simplify (subreg (reg))
1212 operands. Strip and regenerate REG_INC notes that may have been moved
1213 around. */
1215 for (insn = first; insn; insn = NEXT_INSN (insn))
1216 if (INSN_P (insn))
1218 rtx *pnote;
1220 if (CALL_P (insn))
1221 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1222 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1224 if ((GET_CODE (PATTERN (insn)) == USE
1225 /* We mark with QImode USEs introduced by reload itself. */
1226 && (GET_MODE (insn) == QImode
1227 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1228 || (GET_CODE (PATTERN (insn)) == CLOBBER
1229 && (!MEM_P (XEXP (PATTERN (insn), 0))
1230 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1231 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1232 && XEXP (XEXP (PATTERN (insn), 0), 0)
1233 != stack_pointer_rtx))
1234 && (!REG_P (XEXP (PATTERN (insn), 0))
1235 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1237 delete_insn (insn);
1238 continue;
1241 /* Some CLOBBERs may survive until here and still reference unassigned
1242 pseudos with const equivalent, which may in turn cause ICE in later
1243 passes if the reference remains in place. */
1244 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1245 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1246 VOIDmode, PATTERN (insn));
1248 /* Discard obvious no-ops, even without -O. This optimization
1249 is fast and doesn't interfere with debugging. */
1250 if (NONJUMP_INSN_P (insn)
1251 && GET_CODE (PATTERN (insn)) == SET
1252 && REG_P (SET_SRC (PATTERN (insn)))
1253 && REG_P (SET_DEST (PATTERN (insn)))
1254 && (REGNO (SET_SRC (PATTERN (insn)))
1255 == REGNO (SET_DEST (PATTERN (insn)))))
1257 delete_insn (insn);
1258 continue;
1261 pnote = &REG_NOTES (insn);
1262 while (*pnote != 0)
1264 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1265 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1266 || REG_NOTE_KIND (*pnote) == REG_INC)
1267 *pnote = XEXP (*pnote, 1);
1268 else
1269 pnote = &XEXP (*pnote, 1);
1272 #ifdef AUTO_INC_DEC
1273 add_auto_inc_notes (insn, PATTERN (insn));
1274 #endif
1276 /* Simplify (subreg (reg)) if it appears as an operand. */
1277 cleanup_subreg_operands (insn);
1279 /* Clean up invalid ASMs so that they don't confuse later passes.
1280 See PR 21299. */
1281 if (asm_noperands (PATTERN (insn)) >= 0)
1283 extract_insn (insn);
1284 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1286 error_for_asm (insn,
1287 "%<asm%> operand has impossible constraints");
1288 delete_insn (insn);
1289 continue;
1294 /* If we are doing generic stack checking, give a warning if this
1295 function's frame size is larger than we expect. */
1296 if (flag_stack_check == GENERIC_STACK_CHECK)
1298 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1299 static int verbose_warned = 0;
1301 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1302 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1303 size += UNITS_PER_WORD;
1305 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1307 warning (0, "frame size too large for reliable stack checking");
1308 if (! verbose_warned)
1310 warning (0, "try reducing the number of local variables");
1311 verbose_warned = 1;
1316 free (temp_pseudo_reg_arr);
1318 /* Indicate that we no longer have known memory locations or constants. */
1319 free_reg_equiv ();
1321 free (reg_max_ref_width);
1322 free (reg_old_renumber);
1323 free (pseudo_previous_regs);
1324 free (pseudo_forbidden_regs);
1326 CLEAR_HARD_REG_SET (used_spill_regs);
1327 for (i = 0; i < n_spills; i++)
1328 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1330 /* Free all the insn_chain structures at once. */
1331 obstack_free (&reload_obstack, reload_startobj);
1332 unused_insn_chains = 0;
1334 inserted = fixup_abnormal_edges ();
1336 /* We've possibly turned single trapping insn into multiple ones. */
1337 if (cfun->can_throw_non_call_exceptions)
1339 sbitmap blocks;
1340 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
1341 bitmap_ones (blocks);
1342 find_many_sub_basic_blocks (blocks);
1343 sbitmap_free (blocks);
1346 if (inserted)
1347 commit_edge_insertions ();
1349 /* Replacing pseudos with their memory equivalents might have
1350 created shared rtx. Subsequent passes would get confused
1351 by this, so unshare everything here. */
1352 unshare_all_rtl_again (first);
1354 #ifdef STACK_BOUNDARY
1355 /* init_emit has set the alignment of the hard frame pointer
1356 to STACK_BOUNDARY. It is very likely no longer valid if
1357 the hard frame pointer was used for register allocation. */
1358 if (!frame_pointer_needed)
1359 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1360 #endif
1362 substitute_stack.release ();
1364 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1366 reload_completed = !failure;
1368 return need_dce;
1371 /* Yet another special case. Unfortunately, reg-stack forces people to
1372 write incorrect clobbers in asm statements. These clobbers must not
1373 cause the register to appear in bad_spill_regs, otherwise we'll call
1374 fatal_insn later. We clear the corresponding regnos in the live
1375 register sets to avoid this.
1376 The whole thing is rather sick, I'm afraid. */
1378 static void
1379 maybe_fix_stack_asms (void)
1381 #ifdef STACK_REGS
1382 const char *constraints[MAX_RECOG_OPERANDS];
1383 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1384 struct insn_chain *chain;
1386 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1388 int i, noperands;
1389 HARD_REG_SET clobbered, allowed;
1390 rtx pat;
1392 if (! INSN_P (chain->insn)
1393 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1394 continue;
1395 pat = PATTERN (chain->insn);
1396 if (GET_CODE (pat) != PARALLEL)
1397 continue;
1399 CLEAR_HARD_REG_SET (clobbered);
1400 CLEAR_HARD_REG_SET (allowed);
1402 /* First, make a mask of all stack regs that are clobbered. */
1403 for (i = 0; i < XVECLEN (pat, 0); i++)
1405 rtx t = XVECEXP (pat, 0, i);
1406 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1407 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1410 /* Get the operand values and constraints out of the insn. */
1411 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1412 constraints, operand_mode, NULL);
1414 /* For every operand, see what registers are allowed. */
1415 for (i = 0; i < noperands; i++)
1417 const char *p = constraints[i];
1418 /* For every alternative, we compute the class of registers allowed
1419 for reloading in CLS, and merge its contents into the reg set
1420 ALLOWED. */
1421 int cls = (int) NO_REGS;
1423 for (;;)
1425 char c = *p;
1427 if (c == '\0' || c == ',' || c == '#')
1429 /* End of one alternative - mark the regs in the current
1430 class, and reset the class. */
1431 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1432 cls = NO_REGS;
1433 p++;
1434 if (c == '#')
1435 do {
1436 c = *p++;
1437 } while (c != '\0' && c != ',');
1438 if (c == '\0')
1439 break;
1440 continue;
1443 switch (c)
1445 case 'g':
1446 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1447 break;
1449 default:
1450 enum constraint_num cn = lookup_constraint (p);
1451 if (insn_extra_address_constraint (cn))
1452 cls = (int) reg_class_subunion[cls]
1453 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1454 ADDRESS, SCRATCH)];
1455 else
1456 cls = (int) reg_class_subunion[cls]
1457 [reg_class_for_constraint (cn)];
1458 break;
1460 p += CONSTRAINT_LEN (c, p);
1463 /* Those of the registers which are clobbered, but allowed by the
1464 constraints, must be usable as reload registers. So clear them
1465 out of the life information. */
1466 AND_HARD_REG_SET (allowed, clobbered);
1467 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1468 if (TEST_HARD_REG_BIT (allowed, i))
1470 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1471 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1475 #endif
1478 /* Copy the global variables n_reloads and rld into the corresponding elts
1479 of CHAIN. */
1480 static void
1481 copy_reloads (struct insn_chain *chain)
1483 chain->n_reloads = n_reloads;
1484 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1485 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1486 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1489 /* Walk the chain of insns, and determine for each whether it needs reloads
1490 and/or eliminations. Build the corresponding insns_need_reload list, and
1491 set something_needs_elimination as appropriate. */
1492 static void
1493 calculate_needs_all_insns (int global)
1495 struct insn_chain **pprev_reload = &insns_need_reload;
1496 struct insn_chain *chain, *next = 0;
1498 something_needs_elimination = 0;
1500 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1501 for (chain = reload_insn_chain; chain != 0; chain = next)
1503 rtx_insn *insn = chain->insn;
1505 next = chain->next;
1507 /* Clear out the shortcuts. */
1508 chain->n_reloads = 0;
1509 chain->need_elim = 0;
1510 chain->need_reload = 0;
1511 chain->need_operand_change = 0;
1513 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1514 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1515 what effects this has on the known offsets at labels. */
1517 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1518 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1519 set_label_offsets (insn, insn, 0);
1521 if (INSN_P (insn))
1523 rtx old_body = PATTERN (insn);
1524 int old_code = INSN_CODE (insn);
1525 rtx old_notes = REG_NOTES (insn);
1526 int did_elimination = 0;
1527 int operands_changed = 0;
1529 /* Skip insns that only set an equivalence. */
1530 if (will_delete_init_insn_p (insn))
1531 continue;
1533 /* If needed, eliminate any eliminable registers. */
1534 if (num_eliminable || num_eliminable_invariants)
1535 did_elimination = eliminate_regs_in_insn (insn, 0);
1537 /* Analyze the instruction. */
1538 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1539 global, spill_reg_order);
1541 /* If a no-op set needs more than one reload, this is likely
1542 to be something that needs input address reloads. We
1543 can't get rid of this cleanly later, and it is of no use
1544 anyway, so discard it now.
1545 We only do this when expensive_optimizations is enabled,
1546 since this complements reload inheritance / output
1547 reload deletion, and it can make debugging harder. */
1548 if (flag_expensive_optimizations && n_reloads > 1)
1550 rtx set = single_set (insn);
1551 if (set
1553 ((SET_SRC (set) == SET_DEST (set)
1554 && REG_P (SET_SRC (set))
1555 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1556 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1557 && reg_renumber[REGNO (SET_SRC (set))] < 0
1558 && reg_renumber[REGNO (SET_DEST (set))] < 0
1559 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1560 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1561 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1562 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1564 if (ira_conflicts_p)
1565 /* Inform IRA about the insn deletion. */
1566 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1567 REGNO (SET_SRC (set)));
1568 delete_insn (insn);
1569 /* Delete it from the reload chain. */
1570 if (chain->prev)
1571 chain->prev->next = next;
1572 else
1573 reload_insn_chain = next;
1574 if (next)
1575 next->prev = chain->prev;
1576 chain->next = unused_insn_chains;
1577 unused_insn_chains = chain;
1578 continue;
1581 if (num_eliminable)
1582 update_eliminable_offsets ();
1584 /* Remember for later shortcuts which insns had any reloads or
1585 register eliminations. */
1586 chain->need_elim = did_elimination;
1587 chain->need_reload = n_reloads > 0;
1588 chain->need_operand_change = operands_changed;
1590 /* Discard any register replacements done. */
1591 if (did_elimination)
1593 obstack_free (&reload_obstack, reload_insn_firstobj);
1594 PATTERN (insn) = old_body;
1595 INSN_CODE (insn) = old_code;
1596 REG_NOTES (insn) = old_notes;
1597 something_needs_elimination = 1;
1600 something_needs_operands_changed |= operands_changed;
1602 if (n_reloads != 0)
1604 copy_reloads (chain);
1605 *pprev_reload = chain;
1606 pprev_reload = &chain->next_need_reload;
1610 *pprev_reload = 0;
1613 /* This function is called from the register allocator to set up estimates
1614 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1615 an invariant. The structure is similar to calculate_needs_all_insns. */
1617 void
1618 calculate_elim_costs_all_insns (void)
1620 int *reg_equiv_init_cost;
1621 basic_block bb;
1622 int i;
1624 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1625 init_elim_table ();
1626 init_eliminable_invariants (get_insns (), false);
1628 set_initial_elim_offsets ();
1629 set_initial_label_offsets ();
1631 FOR_EACH_BB_FN (bb, cfun)
1633 rtx_insn *insn;
1634 elim_bb = bb;
1636 FOR_BB_INSNS (bb, insn)
1638 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1639 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1640 what effects this has on the known offsets at labels. */
1642 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1643 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1644 set_label_offsets (insn, insn, 0);
1646 if (INSN_P (insn))
1648 rtx set = single_set (insn);
1650 /* Skip insns that only set an equivalence. */
1651 if (set && REG_P (SET_DEST (set))
1652 && reg_renumber[REGNO (SET_DEST (set))] < 0
1653 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1654 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1656 unsigned regno = REGNO (SET_DEST (set));
1657 rtx init = reg_equiv_init (regno);
1658 if (init)
1660 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1661 false, true);
1662 int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1663 int freq = REG_FREQ_FROM_BB (bb);
1665 reg_equiv_init_cost[regno] = cost * freq;
1666 continue;
1669 /* If needed, eliminate any eliminable registers. */
1670 if (num_eliminable || num_eliminable_invariants)
1671 elimination_costs_in_insn (insn);
1673 if (num_eliminable)
1674 update_eliminable_offsets ();
1678 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1680 if (reg_equiv_invariant (i))
1682 if (reg_equiv_init (i))
1684 int cost = reg_equiv_init_cost[i];
1685 if (dump_file)
1686 fprintf (dump_file,
1687 "Reg %d has equivalence, initial gains %d\n", i, cost);
1688 if (cost != 0)
1689 ira_adjust_equiv_reg_cost (i, cost);
1691 else
1693 if (dump_file)
1694 fprintf (dump_file,
1695 "Reg %d had equivalence, but can't be eliminated\n",
1697 ira_adjust_equiv_reg_cost (i, 0);
1702 free (reg_equiv_init_cost);
1703 free (offsets_known_at);
1704 free (offsets_at);
1705 offsets_at = NULL;
1706 offsets_known_at = NULL;
1709 /* Comparison function for qsort to decide which of two reloads
1710 should be handled first. *P1 and *P2 are the reload numbers. */
1712 static int
1713 reload_reg_class_lower (const void *r1p, const void *r2p)
1715 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1716 int t;
1718 /* Consider required reloads before optional ones. */
1719 t = rld[r1].optional - rld[r2].optional;
1720 if (t != 0)
1721 return t;
1723 /* Count all solitary classes before non-solitary ones. */
1724 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1725 - (reg_class_size[(int) rld[r1].rclass] == 1));
1726 if (t != 0)
1727 return t;
1729 /* Aside from solitaires, consider all multi-reg groups first. */
1730 t = rld[r2].nregs - rld[r1].nregs;
1731 if (t != 0)
1732 return t;
1734 /* Consider reloads in order of increasing reg-class number. */
1735 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1736 if (t != 0)
1737 return t;
1739 /* If reloads are equally urgent, sort by reload number,
1740 so that the results of qsort leave nothing to chance. */
1741 return r1 - r2;
1744 /* The cost of spilling each hard reg. */
1745 static int spill_cost[FIRST_PSEUDO_REGISTER];
1747 /* When spilling multiple hard registers, we use SPILL_COST for the first
1748 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1749 only the first hard reg for a multi-reg pseudo. */
1750 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1752 /* Map of hard regno to pseudo regno currently occupying the hard
1753 reg. */
1754 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1756 /* Update the spill cost arrays, considering that pseudo REG is live. */
1758 static void
1759 count_pseudo (int reg)
1761 int freq = REG_FREQ (reg);
1762 int r = reg_renumber[reg];
1763 int nregs;
1765 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1766 if (ira_conflicts_p && r < 0)
1767 return;
1769 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1770 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1771 return;
1773 SET_REGNO_REG_SET (&pseudos_counted, reg);
1775 gcc_assert (r >= 0);
1777 spill_add_cost[r] += freq;
1778 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1779 while (nregs-- > 0)
1781 hard_regno_to_pseudo_regno[r + nregs] = reg;
1782 spill_cost[r + nregs] += freq;
1786 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1787 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1789 static void
1790 order_regs_for_reload (struct insn_chain *chain)
1792 unsigned i;
1793 HARD_REG_SET used_by_pseudos;
1794 HARD_REG_SET used_by_pseudos2;
1795 reg_set_iterator rsi;
1797 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1799 memset (spill_cost, 0, sizeof spill_cost);
1800 memset (spill_add_cost, 0, sizeof spill_add_cost);
1801 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1802 hard_regno_to_pseudo_regno[i] = -1;
1804 /* Count number of uses of each hard reg by pseudo regs allocated to it
1805 and then order them by decreasing use. First exclude hard registers
1806 that are live in or across this insn. */
1808 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1809 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1810 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1811 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1813 /* Now find out which pseudos are allocated to it, and update
1814 hard_reg_n_uses. */
1815 CLEAR_REG_SET (&pseudos_counted);
1817 EXECUTE_IF_SET_IN_REG_SET
1818 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1820 count_pseudo (i);
1822 EXECUTE_IF_SET_IN_REG_SET
1823 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1825 count_pseudo (i);
1827 CLEAR_REG_SET (&pseudos_counted);
1830 /* Vector of reload-numbers showing the order in which the reloads should
1831 be processed. */
1832 static short reload_order[MAX_RELOADS];
1834 /* This is used to keep track of the spill regs used in one insn. */
1835 static HARD_REG_SET used_spill_regs_local;
1837 /* We decided to spill hard register SPILLED, which has a size of
1838 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1839 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1840 update SPILL_COST/SPILL_ADD_COST. */
1842 static void
1843 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1845 int freq = REG_FREQ (reg);
1846 int r = reg_renumber[reg];
1847 int nregs;
1849 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1850 if (ira_conflicts_p && r < 0)
1851 return;
1853 gcc_assert (r >= 0);
1855 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1857 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1858 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1859 return;
1861 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1863 spill_add_cost[r] -= freq;
1864 while (nregs-- > 0)
1866 hard_regno_to_pseudo_regno[r + nregs] = -1;
1867 spill_cost[r + nregs] -= freq;
1871 /* Find reload register to use for reload number ORDER. */
1873 static int
1874 find_reg (struct insn_chain *chain, int order)
1876 int rnum = reload_order[order];
1877 struct reload *rl = rld + rnum;
1878 int best_cost = INT_MAX;
1879 int best_reg = -1;
1880 unsigned int i, j, n;
1881 int k;
1882 HARD_REG_SET not_usable;
1883 HARD_REG_SET used_by_other_reload;
1884 reg_set_iterator rsi;
1885 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1886 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1888 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1889 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1890 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1892 CLEAR_HARD_REG_SET (used_by_other_reload);
1893 for (k = 0; k < order; k++)
1895 int other = reload_order[k];
1897 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1898 for (j = 0; j < rld[other].nregs; j++)
1899 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1902 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1904 #ifdef REG_ALLOC_ORDER
1905 unsigned int regno = reg_alloc_order[i];
1906 #else
1907 unsigned int regno = i;
1908 #endif
1910 if (! TEST_HARD_REG_BIT (not_usable, regno)
1911 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1912 && HARD_REGNO_MODE_OK (regno, rl->mode))
1914 int this_cost = spill_cost[regno];
1915 int ok = 1;
1916 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1918 for (j = 1; j < this_nregs; j++)
1920 this_cost += spill_add_cost[regno + j];
1921 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1922 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1923 ok = 0;
1925 if (! ok)
1926 continue;
1928 if (ira_conflicts_p)
1930 /* Ask IRA to find a better pseudo-register for
1931 spilling. */
1932 for (n = j = 0; j < this_nregs; j++)
1934 int r = hard_regno_to_pseudo_regno[regno + j];
1936 if (r < 0)
1937 continue;
1938 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1939 regno_pseudo_regs[n++] = r;
1941 regno_pseudo_regs[n++] = -1;
1942 if (best_reg < 0
1943 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1944 best_regno_pseudo_regs,
1945 rl->in, rl->out,
1946 chain->insn))
1948 best_reg = regno;
1949 for (j = 0;; j++)
1951 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1952 if (regno_pseudo_regs[j] < 0)
1953 break;
1956 continue;
1959 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1960 this_cost--;
1961 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1962 this_cost--;
1963 if (this_cost < best_cost
1964 /* Among registers with equal cost, prefer caller-saved ones, or
1965 use REG_ALLOC_ORDER if it is defined. */
1966 || (this_cost == best_cost
1967 #ifdef REG_ALLOC_ORDER
1968 && (inv_reg_alloc_order[regno]
1969 < inv_reg_alloc_order[best_reg])
1970 #else
1971 && call_used_regs[regno]
1972 && ! call_used_regs[best_reg]
1973 #endif
1976 best_reg = regno;
1977 best_cost = this_cost;
1981 if (best_reg == -1)
1982 return 0;
1984 if (dump_file)
1985 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1987 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1988 rl->regno = best_reg;
1990 EXECUTE_IF_SET_IN_REG_SET
1991 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1993 count_spilled_pseudo (best_reg, rl->nregs, j);
1996 EXECUTE_IF_SET_IN_REG_SET
1997 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1999 count_spilled_pseudo (best_reg, rl->nregs, j);
2002 for (i = 0; i < rl->nregs; i++)
2004 gcc_assert (spill_cost[best_reg + i] == 0);
2005 gcc_assert (spill_add_cost[best_reg + i] == 0);
2006 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
2007 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
2009 return 1;
2012 /* Find more reload regs to satisfy the remaining need of an insn, which
2013 is given by CHAIN.
2014 Do it by ascending class number, since otherwise a reg
2015 might be spilled for a big class and might fail to count
2016 for a smaller class even though it belongs to that class. */
2018 static void
2019 find_reload_regs (struct insn_chain *chain)
2021 int i;
2023 /* In order to be certain of getting the registers we need,
2024 we must sort the reloads into order of increasing register class.
2025 Then our grabbing of reload registers will parallel the process
2026 that provided the reload registers. */
2027 for (i = 0; i < chain->n_reloads; i++)
2029 /* Show whether this reload already has a hard reg. */
2030 if (chain->rld[i].reg_rtx)
2032 int regno = REGNO (chain->rld[i].reg_rtx);
2033 chain->rld[i].regno = regno;
2034 chain->rld[i].nregs
2035 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2037 else
2038 chain->rld[i].regno = -1;
2039 reload_order[i] = i;
2042 n_reloads = chain->n_reloads;
2043 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2045 CLEAR_HARD_REG_SET (used_spill_regs_local);
2047 if (dump_file)
2048 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2050 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2052 /* Compute the order of preference for hard registers to spill. */
2054 order_regs_for_reload (chain);
2056 for (i = 0; i < n_reloads; i++)
2058 int r = reload_order[i];
2060 /* Ignore reloads that got marked inoperative. */
2061 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2062 && ! rld[r].optional
2063 && rld[r].regno == -1)
2064 if (! find_reg (chain, i))
2066 if (dump_file)
2067 fprintf (dump_file, "reload failure for reload %d\n", r);
2068 spill_failure (chain->insn, rld[r].rclass);
2069 failure = 1;
2070 return;
2074 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2075 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2077 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2080 static void
2081 select_reload_regs (void)
2083 struct insn_chain *chain;
2085 /* Try to satisfy the needs for each insn. */
2086 for (chain = insns_need_reload; chain != 0;
2087 chain = chain->next_need_reload)
2088 find_reload_regs (chain);
2091 /* Delete all insns that were inserted by emit_caller_save_insns during
2092 this iteration. */
2093 static void
2094 delete_caller_save_insns (void)
2096 struct insn_chain *c = reload_insn_chain;
2098 while (c != 0)
2100 while (c != 0 && c->is_caller_save_insn)
2102 struct insn_chain *next = c->next;
2103 rtx_insn *insn = c->insn;
2105 if (c == reload_insn_chain)
2106 reload_insn_chain = next;
2107 delete_insn (insn);
2109 if (next)
2110 next->prev = c->prev;
2111 if (c->prev)
2112 c->prev->next = next;
2113 c->next = unused_insn_chains;
2114 unused_insn_chains = c;
2115 c = next;
2117 if (c != 0)
2118 c = c->next;
2122 /* Handle the failure to find a register to spill.
2123 INSN should be one of the insns which needed this particular spill reg. */
2125 static void
2126 spill_failure (rtx_insn *insn, enum reg_class rclass)
2128 if (asm_noperands (PATTERN (insn)) >= 0)
2129 error_for_asm (insn, "can%'t find a register in class %qs while "
2130 "reloading %<asm%>",
2131 reg_class_names[rclass]);
2132 else
2134 error ("unable to find a register to spill in class %qs",
2135 reg_class_names[rclass]);
2137 if (dump_file)
2139 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2140 debug_reload_to_stream (dump_file);
2142 fatal_insn ("this is the insn:", insn);
2146 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2147 data that is dead in INSN. */
2149 static void
2150 delete_dead_insn (rtx_insn *insn)
2152 rtx_insn *prev = prev_active_insn (insn);
2153 rtx prev_dest;
2155 /* If the previous insn sets a register that dies in our insn make
2156 a note that we want to run DCE immediately after reload.
2158 We used to delete the previous insn & recurse, but that's wrong for
2159 block local equivalences. Instead of trying to figure out the exact
2160 circumstances where we can delete the potentially dead insns, just
2161 let DCE do the job. */
2162 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2163 && GET_CODE (PATTERN (prev)) == SET
2164 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2165 && reg_mentioned_p (prev_dest, PATTERN (insn))
2166 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2167 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2168 need_dce = 1;
2170 SET_INSN_DELETED (insn);
2173 /* Modify the home of pseudo-reg I.
2174 The new home is present in reg_renumber[I].
2176 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2177 or it may be -1, meaning there is none or it is not relevant.
2178 This is used so that all pseudos spilled from a given hard reg
2179 can share one stack slot. */
2181 static void
2182 alter_reg (int i, int from_reg, bool dont_share_p)
2184 /* When outputting an inline function, this can happen
2185 for a reg that isn't actually used. */
2186 if (regno_reg_rtx[i] == 0)
2187 return;
2189 /* If the reg got changed to a MEM at rtl-generation time,
2190 ignore it. */
2191 if (!REG_P (regno_reg_rtx[i]))
2192 return;
2194 /* Modify the reg-rtx to contain the new hard reg
2195 number or else to contain its pseudo reg number. */
2196 SET_REGNO (regno_reg_rtx[i],
2197 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2199 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2200 allocate a stack slot for it. */
2202 if (reg_renumber[i] < 0
2203 && REG_N_REFS (i) > 0
2204 && reg_equiv_constant (i) == 0
2205 && (reg_equiv_invariant (i) == 0
2206 || reg_equiv_init (i) == 0)
2207 && reg_equiv_memory_loc (i) == 0)
2209 rtx x = NULL_RTX;
2210 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2211 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2212 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2213 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2214 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2215 int adjust = 0;
2217 something_was_spilled = true;
2219 if (ira_conflicts_p)
2221 /* Mark the spill for IRA. */
2222 SET_REGNO_REG_SET (&spilled_pseudos, i);
2223 if (!dont_share_p)
2224 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2227 if (x)
2230 /* Each pseudo reg has an inherent size which comes from its own mode,
2231 and a total size which provides room for paradoxical subregs
2232 which refer to the pseudo reg in wider modes.
2234 We can use a slot already allocated if it provides both
2235 enough inherent space and enough total space.
2236 Otherwise, we allocate a new slot, making sure that it has no less
2237 inherent space, and no less total space, then the previous slot. */
2238 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2240 rtx stack_slot;
2242 /* No known place to spill from => no slot to reuse. */
2243 x = assign_stack_local (mode, total_size,
2244 min_align > inherent_align
2245 || total_size > inherent_size ? -1 : 0);
2247 stack_slot = x;
2249 /* Cancel the big-endian correction done in assign_stack_local.
2250 Get the address of the beginning of the slot. This is so we
2251 can do a big-endian correction unconditionally below. */
2252 if (BYTES_BIG_ENDIAN)
2254 adjust = inherent_size - total_size;
2255 if (adjust)
2256 stack_slot
2257 = adjust_address_nv (x, mode_for_size (total_size
2258 * BITS_PER_UNIT,
2259 MODE_INT, 1),
2260 adjust);
2263 if (! dont_share_p && ira_conflicts_p)
2264 /* Inform IRA about allocation a new stack slot. */
2265 ira_mark_new_stack_slot (stack_slot, i, total_size);
2268 /* Reuse a stack slot if possible. */
2269 else if (spill_stack_slot[from_reg] != 0
2270 && spill_stack_slot_width[from_reg] >= total_size
2271 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2272 >= inherent_size)
2273 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2274 x = spill_stack_slot[from_reg];
2276 /* Allocate a bigger slot. */
2277 else
2279 /* Compute maximum size needed, both for inherent size
2280 and for total size. */
2281 rtx stack_slot;
2283 if (spill_stack_slot[from_reg])
2285 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2286 > inherent_size)
2287 mode = GET_MODE (spill_stack_slot[from_reg]);
2288 if (spill_stack_slot_width[from_reg] > total_size)
2289 total_size = spill_stack_slot_width[from_reg];
2290 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2291 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2294 /* Make a slot with that size. */
2295 x = assign_stack_local (mode, total_size,
2296 min_align > inherent_align
2297 || total_size > inherent_size ? -1 : 0);
2298 stack_slot = x;
2300 /* Cancel the big-endian correction done in assign_stack_local.
2301 Get the address of the beginning of the slot. This is so we
2302 can do a big-endian correction unconditionally below. */
2303 if (BYTES_BIG_ENDIAN)
2305 adjust = GET_MODE_SIZE (mode) - total_size;
2306 if (adjust)
2307 stack_slot
2308 = adjust_address_nv (x, mode_for_size (total_size
2309 * BITS_PER_UNIT,
2310 MODE_INT, 1),
2311 adjust);
2314 spill_stack_slot[from_reg] = stack_slot;
2315 spill_stack_slot_width[from_reg] = total_size;
2318 /* On a big endian machine, the "address" of the slot
2319 is the address of the low part that fits its inherent mode. */
2320 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2321 adjust += (total_size - inherent_size);
2323 /* If we have any adjustment to make, or if the stack slot is the
2324 wrong mode, make a new stack slot. */
2325 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2327 /* Set all of the memory attributes as appropriate for a spill. */
2328 set_mem_attrs_for_spill (x);
2330 /* Save the stack slot for later. */
2331 reg_equiv_memory_loc (i) = x;
2335 /* Mark the slots in regs_ever_live for the hard regs used by
2336 pseudo-reg number REGNO, accessed in MODE. */
2338 static void
2339 mark_home_live_1 (int regno, machine_mode mode)
2341 int i, lim;
2343 i = reg_renumber[regno];
2344 if (i < 0)
2345 return;
2346 lim = end_hard_regno (mode, i);
2347 while (i < lim)
2348 df_set_regs_ever_live (i++, true);
2351 /* Mark the slots in regs_ever_live for the hard regs
2352 used by pseudo-reg number REGNO. */
2354 void
2355 mark_home_live (int regno)
2357 if (reg_renumber[regno] >= 0)
2358 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2361 /* This function handles the tracking of elimination offsets around branches.
2363 X is a piece of RTL being scanned.
2365 INSN is the insn that it came from, if any.
2367 INITIAL_P is nonzero if we are to set the offset to be the initial
2368 offset and zero if we are setting the offset of the label to be the
2369 current offset. */
2371 static void
2372 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2374 enum rtx_code code = GET_CODE (x);
2375 rtx tem;
2376 unsigned int i;
2377 struct elim_table *p;
2379 switch (code)
2381 case LABEL_REF:
2382 if (LABEL_REF_NONLOCAL_P (x))
2383 return;
2385 x = LABEL_REF_LABEL (x);
2387 /* ... fall through ... */
2389 case CODE_LABEL:
2390 /* If we know nothing about this label, set the desired offsets. Note
2391 that this sets the offset at a label to be the offset before a label
2392 if we don't know anything about the label. This is not correct for
2393 the label after a BARRIER, but is the best guess we can make. If
2394 we guessed wrong, we will suppress an elimination that might have
2395 been possible had we been able to guess correctly. */
2397 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2399 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2400 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2401 = (initial_p ? reg_eliminate[i].initial_offset
2402 : reg_eliminate[i].offset);
2403 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2406 /* Otherwise, if this is the definition of a label and it is
2407 preceded by a BARRIER, set our offsets to the known offset of
2408 that label. */
2410 else if (x == insn
2411 && (tem = prev_nonnote_insn (insn)) != 0
2412 && BARRIER_P (tem))
2413 set_offsets_for_label (insn);
2414 else
2415 /* If neither of the above cases is true, compare each offset
2416 with those previously recorded and suppress any eliminations
2417 where the offsets disagree. */
2419 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2420 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2421 != (initial_p ? reg_eliminate[i].initial_offset
2422 : reg_eliminate[i].offset))
2423 reg_eliminate[i].can_eliminate = 0;
2425 return;
2427 case JUMP_TABLE_DATA:
2428 set_label_offsets (PATTERN (insn), insn, initial_p);
2429 return;
2431 case JUMP_INSN:
2432 set_label_offsets (PATTERN (insn), insn, initial_p);
2434 /* ... fall through ... */
2436 case INSN:
2437 case CALL_INSN:
2438 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2439 to indirectly and hence must have all eliminations at their
2440 initial offsets. */
2441 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2442 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2443 set_label_offsets (XEXP (tem, 0), insn, 1);
2444 return;
2446 case PARALLEL:
2447 case ADDR_VEC:
2448 case ADDR_DIFF_VEC:
2449 /* Each of the labels in the parallel or address vector must be
2450 at their initial offsets. We want the first field for PARALLEL
2451 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2453 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2454 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2455 insn, initial_p);
2456 return;
2458 case SET:
2459 /* We only care about setting PC. If the source is not RETURN,
2460 IF_THEN_ELSE, or a label, disable any eliminations not at
2461 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2462 isn't one of those possibilities. For branches to a label,
2463 call ourselves recursively.
2465 Note that this can disable elimination unnecessarily when we have
2466 a non-local goto since it will look like a non-constant jump to
2467 someplace in the current function. This isn't a significant
2468 problem since such jumps will normally be when all elimination
2469 pairs are back to their initial offsets. */
2471 if (SET_DEST (x) != pc_rtx)
2472 return;
2474 switch (GET_CODE (SET_SRC (x)))
2476 case PC:
2477 case RETURN:
2478 return;
2480 case LABEL_REF:
2481 set_label_offsets (SET_SRC (x), insn, initial_p);
2482 return;
2484 case IF_THEN_ELSE:
2485 tem = XEXP (SET_SRC (x), 1);
2486 if (GET_CODE (tem) == LABEL_REF)
2487 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2488 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2489 break;
2491 tem = XEXP (SET_SRC (x), 2);
2492 if (GET_CODE (tem) == LABEL_REF)
2493 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2494 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2495 break;
2496 return;
2498 default:
2499 break;
2502 /* If we reach here, all eliminations must be at their initial
2503 offset because we are doing a jump to a variable address. */
2504 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2505 if (p->offset != p->initial_offset)
2506 p->can_eliminate = 0;
2507 break;
2509 default:
2510 break;
2514 /* This function examines every reg that occurs in X and adjusts the
2515 costs for its elimination which are gathered by IRA. INSN is the
2516 insn in which X occurs. We do not recurse into MEM expressions. */
2518 static void
2519 note_reg_elim_costly (const_rtx x, rtx insn)
2521 subrtx_iterator::array_type array;
2522 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2524 const_rtx x = *iter;
2525 if (MEM_P (x))
2526 iter.skip_subrtxes ();
2527 else if (REG_P (x)
2528 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2529 && reg_equiv_init (REGNO (x))
2530 && reg_equiv_invariant (REGNO (x)))
2532 rtx t = reg_equiv_invariant (REGNO (x));
2533 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2534 int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2535 int freq = REG_FREQ_FROM_BB (elim_bb);
2537 if (cost != 0)
2538 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2543 /* Scan X and replace any eliminable registers (such as fp) with a
2544 replacement (such as sp), plus an offset.
2546 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2547 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2548 MEM, we are allowed to replace a sum of a register and the constant zero
2549 with the register, which we cannot do outside a MEM. In addition, we need
2550 to record the fact that a register is referenced outside a MEM.
2552 If INSN is an insn, it is the insn containing X. If we replace a REG
2553 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2554 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2555 the REG is being modified.
2557 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2558 That's used when we eliminate in expressions stored in notes.
2559 This means, do not set ref_outside_mem even if the reference
2560 is outside of MEMs.
2562 If FOR_COSTS is true, we are being called before reload in order to
2563 estimate the costs of keeping registers with an equivalence unallocated.
2565 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2566 replacements done assuming all offsets are at their initial values. If
2567 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2568 encounter, return the actual location so that find_reloads will do
2569 the proper thing. */
2571 static rtx
2572 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2573 bool may_use_invariant, bool for_costs)
2575 enum rtx_code code = GET_CODE (x);
2576 struct elim_table *ep;
2577 int regno;
2578 rtx new_rtx;
2579 int i, j;
2580 const char *fmt;
2581 int copied = 0;
2583 if (! current_function_decl)
2584 return x;
2586 switch (code)
2588 CASE_CONST_ANY:
2589 case CONST:
2590 case SYMBOL_REF:
2591 case CODE_LABEL:
2592 case PC:
2593 case CC0:
2594 case ASM_INPUT:
2595 case ADDR_VEC:
2596 case ADDR_DIFF_VEC:
2597 case RETURN:
2598 return x;
2600 case REG:
2601 regno = REGNO (x);
2603 /* First handle the case where we encounter a bare register that
2604 is eliminable. Replace it with a PLUS. */
2605 if (regno < FIRST_PSEUDO_REGISTER)
2607 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2608 ep++)
2609 if (ep->from_rtx == x && ep->can_eliminate)
2610 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2613 else if (reg_renumber && reg_renumber[regno] < 0
2614 && reg_equivs
2615 && reg_equiv_invariant (regno))
2617 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2618 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2619 mem_mode, insn, true, for_costs);
2620 /* There exists at least one use of REGNO that cannot be
2621 eliminated. Prevent the defining insn from being deleted. */
2622 reg_equiv_init (regno) = NULL;
2623 if (!for_costs)
2624 alter_reg (regno, -1, true);
2626 return x;
2628 /* You might think handling MINUS in a manner similar to PLUS is a
2629 good idea. It is not. It has been tried multiple times and every
2630 time the change has had to have been reverted.
2632 Other parts of reload know a PLUS is special (gen_reload for example)
2633 and require special code to handle code a reloaded PLUS operand.
2635 Also consider backends where the flags register is clobbered by a
2636 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2637 lea instruction comes to mind). If we try to reload a MINUS, we
2638 may kill the flags register that was holding a useful value.
2640 So, please before trying to handle MINUS, consider reload as a
2641 whole instead of this little section as well as the backend issues. */
2642 case PLUS:
2643 /* If this is the sum of an eliminable register and a constant, rework
2644 the sum. */
2645 if (REG_P (XEXP (x, 0))
2646 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2647 && CONSTANT_P (XEXP (x, 1)))
2649 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2650 ep++)
2651 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2653 /* The only time we want to replace a PLUS with a REG (this
2654 occurs when the constant operand of the PLUS is the negative
2655 of the offset) is when we are inside a MEM. We won't want
2656 to do so at other times because that would change the
2657 structure of the insn in a way that reload can't handle.
2658 We special-case the commonest situation in
2659 eliminate_regs_in_insn, so just replace a PLUS with a
2660 PLUS here, unless inside a MEM. */
2661 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2662 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2663 return ep->to_rtx;
2664 else
2665 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2666 plus_constant (Pmode, XEXP (x, 1),
2667 ep->previous_offset));
2670 /* If the register is not eliminable, we are done since the other
2671 operand is a constant. */
2672 return x;
2675 /* If this is part of an address, we want to bring any constant to the
2676 outermost PLUS. We will do this by doing register replacement in
2677 our operands and seeing if a constant shows up in one of them.
2679 Note that there is no risk of modifying the structure of the insn,
2680 since we only get called for its operands, thus we are either
2681 modifying the address inside a MEM, or something like an address
2682 operand of a load-address insn. */
2685 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2686 for_costs);
2687 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2688 for_costs);
2690 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2692 /* If one side is a PLUS and the other side is a pseudo that
2693 didn't get a hard register but has a reg_equiv_constant,
2694 we must replace the constant here since it may no longer
2695 be in the position of any operand. */
2696 if (GET_CODE (new0) == PLUS && REG_P (new1)
2697 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2698 && reg_renumber[REGNO (new1)] < 0
2699 && reg_equivs
2700 && reg_equiv_constant (REGNO (new1)) != 0)
2701 new1 = reg_equiv_constant (REGNO (new1));
2702 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2703 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2704 && reg_renumber[REGNO (new0)] < 0
2705 && reg_equiv_constant (REGNO (new0)) != 0)
2706 new0 = reg_equiv_constant (REGNO (new0));
2708 new_rtx = form_sum (GET_MODE (x), new0, new1);
2710 /* As above, if we are not inside a MEM we do not want to
2711 turn a PLUS into something else. We might try to do so here
2712 for an addition of 0 if we aren't optimizing. */
2713 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2714 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2715 else
2716 return new_rtx;
2719 return x;
2721 case MULT:
2722 /* If this is the product of an eliminable register and a
2723 constant, apply the distribute law and move the constant out
2724 so that we have (plus (mult ..) ..). This is needed in order
2725 to keep load-address insns valid. This case is pathological.
2726 We ignore the possibility of overflow here. */
2727 if (REG_P (XEXP (x, 0))
2728 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2729 && CONST_INT_P (XEXP (x, 1)))
2730 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2731 ep++)
2732 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2734 if (! mem_mode
2735 /* Refs inside notes or in DEBUG_INSNs don't count for
2736 this purpose. */
2737 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2738 || GET_CODE (insn) == INSN_LIST
2739 || DEBUG_INSN_P (insn))))
2740 ep->ref_outside_mem = 1;
2742 return
2743 plus_constant (Pmode,
2744 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2745 ep->previous_offset * INTVAL (XEXP (x, 1)));
2748 /* ... fall through ... */
2750 case CALL:
2751 case COMPARE:
2752 /* See comments before PLUS about handling MINUS. */
2753 case MINUS:
2754 case DIV: case UDIV:
2755 case MOD: case UMOD:
2756 case AND: case IOR: case XOR:
2757 case ROTATERT: case ROTATE:
2758 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2759 case NE: case EQ:
2760 case GE: case GT: case GEU: case GTU:
2761 case LE: case LT: case LEU: case LTU:
2763 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2764 for_costs);
2765 rtx new1 = XEXP (x, 1)
2766 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2767 for_costs) : 0;
2769 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2770 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2772 return x;
2774 case EXPR_LIST:
2775 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2776 if (XEXP (x, 0))
2778 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2779 for_costs);
2780 if (new_rtx != XEXP (x, 0))
2782 /* If this is a REG_DEAD note, it is not valid anymore.
2783 Using the eliminated version could result in creating a
2784 REG_DEAD note for the stack or frame pointer. */
2785 if (REG_NOTE_KIND (x) == REG_DEAD)
2786 return (XEXP (x, 1)
2787 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2788 for_costs)
2789 : NULL_RTX);
2791 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2795 /* ... fall through ... */
2797 case INSN_LIST:
2798 case INT_LIST:
2799 /* Now do eliminations in the rest of the chain. If this was
2800 an EXPR_LIST, this might result in allocating more memory than is
2801 strictly needed, but it simplifies the code. */
2802 if (XEXP (x, 1))
2804 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2805 for_costs);
2806 if (new_rtx != XEXP (x, 1))
2807 return
2808 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2810 return x;
2812 case PRE_INC:
2813 case POST_INC:
2814 case PRE_DEC:
2815 case POST_DEC:
2816 /* We do not support elimination of a register that is modified.
2817 elimination_effects has already make sure that this does not
2818 happen. */
2819 return x;
2821 case PRE_MODIFY:
2822 case POST_MODIFY:
2823 /* We do not support elimination of a register that is modified.
2824 elimination_effects has already make sure that this does not
2825 happen. The only remaining case we need to consider here is
2826 that the increment value may be an eliminable register. */
2827 if (GET_CODE (XEXP (x, 1)) == PLUS
2828 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2830 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2831 insn, true, for_costs);
2833 if (new_rtx != XEXP (XEXP (x, 1), 1))
2834 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2835 gen_rtx_PLUS (GET_MODE (x),
2836 XEXP (x, 0), new_rtx));
2838 return x;
2840 case STRICT_LOW_PART:
2841 case NEG: case NOT:
2842 case SIGN_EXTEND: case ZERO_EXTEND:
2843 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2844 case FLOAT: case FIX:
2845 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2846 case ABS:
2847 case SQRT:
2848 case FFS:
2849 case CLZ:
2850 case CTZ:
2851 case POPCOUNT:
2852 case PARITY:
2853 case BSWAP:
2854 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2855 for_costs);
2856 if (new_rtx != XEXP (x, 0))
2857 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2858 return x;
2860 case SUBREG:
2861 /* Similar to above processing, but preserve SUBREG_BYTE.
2862 Convert (subreg (mem)) to (mem) if not paradoxical.
2863 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2864 pseudo didn't get a hard reg, we must replace this with the
2865 eliminated version of the memory location because push_reload
2866 may do the replacement in certain circumstances. */
2867 if (REG_P (SUBREG_REG (x))
2868 && !paradoxical_subreg_p (x)
2869 && reg_equivs
2870 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2872 new_rtx = SUBREG_REG (x);
2874 else
2875 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2877 if (new_rtx != SUBREG_REG (x))
2879 int x_size = GET_MODE_SIZE (GET_MODE (x));
2880 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2882 if (MEM_P (new_rtx)
2883 && ((x_size < new_size
2884 #ifdef WORD_REGISTER_OPERATIONS
2885 /* On these machines, combine can create rtl of the form
2886 (set (subreg:m1 (reg:m2 R) 0) ...)
2887 where m1 < m2, and expects something interesting to
2888 happen to the entire word. Moreover, it will use the
2889 (reg:m2 R) later, expecting all bits to be preserved.
2890 So if the number of words is the same, preserve the
2891 subreg so that push_reload can see it. */
2892 && ! ((x_size - 1) / UNITS_PER_WORD
2893 == (new_size -1 ) / UNITS_PER_WORD)
2894 #endif
2896 || x_size == new_size)
2898 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2899 else
2900 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2903 return x;
2905 case MEM:
2906 /* Our only special processing is to pass the mode of the MEM to our
2907 recursive call and copy the flags. While we are here, handle this
2908 case more efficiently. */
2910 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2911 for_costs);
2912 if (for_costs
2913 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2914 && !memory_address_p (GET_MODE (x), new_rtx))
2915 note_reg_elim_costly (XEXP (x, 0), insn);
2917 return replace_equiv_address_nv (x, new_rtx);
2919 case USE:
2920 /* Handle insn_list USE that a call to a pure function may generate. */
2921 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2922 for_costs);
2923 if (new_rtx != XEXP (x, 0))
2924 return gen_rtx_USE (GET_MODE (x), new_rtx);
2925 return x;
2927 case CLOBBER:
2928 case ASM_OPERANDS:
2929 gcc_assert (insn && DEBUG_INSN_P (insn));
2930 break;
2932 case SET:
2933 gcc_unreachable ();
2935 default:
2936 break;
2939 /* Process each of our operands recursively. If any have changed, make a
2940 copy of the rtx. */
2941 fmt = GET_RTX_FORMAT (code);
2942 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2944 if (*fmt == 'e')
2946 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2947 for_costs);
2948 if (new_rtx != XEXP (x, i) && ! copied)
2950 x = shallow_copy_rtx (x);
2951 copied = 1;
2953 XEXP (x, i) = new_rtx;
2955 else if (*fmt == 'E')
2957 int copied_vec = 0;
2958 for (j = 0; j < XVECLEN (x, i); j++)
2960 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2961 for_costs);
2962 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2964 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2965 XVEC (x, i)->elem);
2966 if (! copied)
2968 x = shallow_copy_rtx (x);
2969 copied = 1;
2971 XVEC (x, i) = new_v;
2972 copied_vec = 1;
2974 XVECEXP (x, i, j) = new_rtx;
2979 return x;
2983 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2985 if (reg_eliminate == NULL)
2987 gcc_assert (targetm.no_register_allocation);
2988 return x;
2990 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2993 /* Scan rtx X for modifications of elimination target registers. Update
2994 the table of eliminables to reflect the changed state. MEM_MODE is
2995 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2997 static void
2998 elimination_effects (rtx x, machine_mode mem_mode)
3000 enum rtx_code code = GET_CODE (x);
3001 struct elim_table *ep;
3002 int regno;
3003 int i, j;
3004 const char *fmt;
3006 switch (code)
3008 CASE_CONST_ANY:
3009 case CONST:
3010 case SYMBOL_REF:
3011 case CODE_LABEL:
3012 case PC:
3013 case CC0:
3014 case ASM_INPUT:
3015 case ADDR_VEC:
3016 case ADDR_DIFF_VEC:
3017 case RETURN:
3018 return;
3020 case REG:
3021 regno = REGNO (x);
3023 /* First handle the case where we encounter a bare register that
3024 is eliminable. Replace it with a PLUS. */
3025 if (regno < FIRST_PSEUDO_REGISTER)
3027 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3028 ep++)
3029 if (ep->from_rtx == x && ep->can_eliminate)
3031 if (! mem_mode)
3032 ep->ref_outside_mem = 1;
3033 return;
3037 else if (reg_renumber[regno] < 0
3038 && reg_equivs
3039 && reg_equiv_constant (regno)
3040 && ! function_invariant_p (reg_equiv_constant (regno)))
3041 elimination_effects (reg_equiv_constant (regno), mem_mode);
3042 return;
3044 case PRE_INC:
3045 case POST_INC:
3046 case PRE_DEC:
3047 case POST_DEC:
3048 case POST_MODIFY:
3049 case PRE_MODIFY:
3050 /* If we modify the source of an elimination rule, disable it. */
3051 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3052 if (ep->from_rtx == XEXP (x, 0))
3053 ep->can_eliminate = 0;
3055 /* If we modify the target of an elimination rule by adding a constant,
3056 update its offset. If we modify the target in any other way, we'll
3057 have to disable the rule as well. */
3058 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3059 if (ep->to_rtx == XEXP (x, 0))
3061 int size = GET_MODE_SIZE (mem_mode);
3063 /* If more bytes than MEM_MODE are pushed, account for them. */
3064 #ifdef PUSH_ROUNDING
3065 if (ep->to_rtx == stack_pointer_rtx)
3066 size = PUSH_ROUNDING (size);
3067 #endif
3068 if (code == PRE_DEC || code == POST_DEC)
3069 ep->offset += size;
3070 else if (code == PRE_INC || code == POST_INC)
3071 ep->offset -= size;
3072 else if (code == PRE_MODIFY || code == POST_MODIFY)
3074 if (GET_CODE (XEXP (x, 1)) == PLUS
3075 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3076 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3077 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3078 else
3079 ep->can_eliminate = 0;
3083 /* These two aren't unary operators. */
3084 if (code == POST_MODIFY || code == PRE_MODIFY)
3085 break;
3087 /* Fall through to generic unary operation case. */
3088 case STRICT_LOW_PART:
3089 case NEG: case NOT:
3090 case SIGN_EXTEND: case ZERO_EXTEND:
3091 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3092 case FLOAT: case FIX:
3093 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3094 case ABS:
3095 case SQRT:
3096 case FFS:
3097 case CLZ:
3098 case CTZ:
3099 case POPCOUNT:
3100 case PARITY:
3101 case BSWAP:
3102 elimination_effects (XEXP (x, 0), mem_mode);
3103 return;
3105 case SUBREG:
3106 if (REG_P (SUBREG_REG (x))
3107 && (GET_MODE_SIZE (GET_MODE (x))
3108 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3109 && reg_equivs
3110 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3111 return;
3113 elimination_effects (SUBREG_REG (x), mem_mode);
3114 return;
3116 case USE:
3117 /* If using a register that is the source of an eliminate we still
3118 think can be performed, note it cannot be performed since we don't
3119 know how this register is used. */
3120 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3121 if (ep->from_rtx == XEXP (x, 0))
3122 ep->can_eliminate = 0;
3124 elimination_effects (XEXP (x, 0), mem_mode);
3125 return;
3127 case CLOBBER:
3128 /* If clobbering a register that is the replacement register for an
3129 elimination we still think can be performed, note that it cannot
3130 be performed. Otherwise, we need not be concerned about it. */
3131 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3132 if (ep->to_rtx == XEXP (x, 0))
3133 ep->can_eliminate = 0;
3135 elimination_effects (XEXP (x, 0), mem_mode);
3136 return;
3138 case SET:
3139 /* Check for setting a register that we know about. */
3140 if (REG_P (SET_DEST (x)))
3142 /* See if this is setting the replacement register for an
3143 elimination.
3145 If DEST is the hard frame pointer, we do nothing because we
3146 assume that all assignments to the frame pointer are for
3147 non-local gotos and are being done at a time when they are valid
3148 and do not disturb anything else. Some machines want to
3149 eliminate a fake argument pointer (or even a fake frame pointer)
3150 with either the real frame or the stack pointer. Assignments to
3151 the hard frame pointer must not prevent this elimination. */
3153 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3154 ep++)
3155 if (ep->to_rtx == SET_DEST (x)
3156 && SET_DEST (x) != hard_frame_pointer_rtx)
3158 /* If it is being incremented, adjust the offset. Otherwise,
3159 this elimination can't be done. */
3160 rtx src = SET_SRC (x);
3162 if (GET_CODE (src) == PLUS
3163 && XEXP (src, 0) == SET_DEST (x)
3164 && CONST_INT_P (XEXP (src, 1)))
3165 ep->offset -= INTVAL (XEXP (src, 1));
3166 else
3167 ep->can_eliminate = 0;
3171 elimination_effects (SET_DEST (x), VOIDmode);
3172 elimination_effects (SET_SRC (x), VOIDmode);
3173 return;
3175 case MEM:
3176 /* Our only special processing is to pass the mode of the MEM to our
3177 recursive call. */
3178 elimination_effects (XEXP (x, 0), GET_MODE (x));
3179 return;
3181 default:
3182 break;
3185 fmt = GET_RTX_FORMAT (code);
3186 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3188 if (*fmt == 'e')
3189 elimination_effects (XEXP (x, i), mem_mode);
3190 else if (*fmt == 'E')
3191 for (j = 0; j < XVECLEN (x, i); j++)
3192 elimination_effects (XVECEXP (x, i, j), mem_mode);
3196 /* Descend through rtx X and verify that no references to eliminable registers
3197 remain. If any do remain, mark the involved register as not
3198 eliminable. */
3200 static void
3201 check_eliminable_occurrences (rtx x)
3203 const char *fmt;
3204 int i;
3205 enum rtx_code code;
3207 if (x == 0)
3208 return;
3210 code = GET_CODE (x);
3212 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3214 struct elim_table *ep;
3216 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3217 if (ep->from_rtx == x)
3218 ep->can_eliminate = 0;
3219 return;
3222 fmt = GET_RTX_FORMAT (code);
3223 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3225 if (*fmt == 'e')
3226 check_eliminable_occurrences (XEXP (x, i));
3227 else if (*fmt == 'E')
3229 int j;
3230 for (j = 0; j < XVECLEN (x, i); j++)
3231 check_eliminable_occurrences (XVECEXP (x, i, j));
3236 /* Scan INSN and eliminate all eliminable registers in it.
3238 If REPLACE is nonzero, do the replacement destructively. Also
3239 delete the insn as dead it if it is setting an eliminable register.
3241 If REPLACE is zero, do all our allocations in reload_obstack.
3243 If no eliminations were done and this insn doesn't require any elimination
3244 processing (these are not identical conditions: it might be updating sp,
3245 but not referencing fp; this needs to be seen during reload_as_needed so
3246 that the offset between fp and sp can be taken into consideration), zero
3247 is returned. Otherwise, 1 is returned. */
3249 static int
3250 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3252 int icode = recog_memoized (insn);
3253 rtx old_body = PATTERN (insn);
3254 int insn_is_asm = asm_noperands (old_body) >= 0;
3255 rtx old_set = single_set (insn);
3256 rtx new_body;
3257 int val = 0;
3258 int i;
3259 rtx substed_operand[MAX_RECOG_OPERANDS];
3260 rtx orig_operand[MAX_RECOG_OPERANDS];
3261 struct elim_table *ep;
3262 rtx plus_src, plus_cst_src;
3264 if (! insn_is_asm && icode < 0)
3266 gcc_assert (DEBUG_INSN_P (insn)
3267 || GET_CODE (PATTERN (insn)) == USE
3268 || GET_CODE (PATTERN (insn)) == CLOBBER
3269 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3270 if (DEBUG_INSN_P (insn))
3271 INSN_VAR_LOCATION_LOC (insn)
3272 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3273 return 0;
3276 if (old_set != 0 && REG_P (SET_DEST (old_set))
3277 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3279 /* Check for setting an eliminable register. */
3280 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3281 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3283 /* If this is setting the frame pointer register to the
3284 hardware frame pointer register and this is an elimination
3285 that will be done (tested above), this insn is really
3286 adjusting the frame pointer downward to compensate for
3287 the adjustment done before a nonlocal goto. */
3288 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
3289 && ep->from == FRAME_POINTER_REGNUM
3290 && ep->to == HARD_FRAME_POINTER_REGNUM)
3292 rtx base = SET_SRC (old_set);
3293 rtx_insn *base_insn = insn;
3294 HOST_WIDE_INT offset = 0;
3296 while (base != ep->to_rtx)
3298 rtx_insn *prev_insn;
3299 rtx prev_set;
3301 if (GET_CODE (base) == PLUS
3302 && CONST_INT_P (XEXP (base, 1)))
3304 offset += INTVAL (XEXP (base, 1));
3305 base = XEXP (base, 0);
3307 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3308 && (prev_set = single_set (prev_insn)) != 0
3309 && rtx_equal_p (SET_DEST (prev_set), base))
3311 base = SET_SRC (prev_set);
3312 base_insn = prev_insn;
3314 else
3315 break;
3318 if (base == ep->to_rtx)
3320 rtx src = plus_constant (Pmode, ep->to_rtx,
3321 offset - ep->offset);
3323 new_body = old_body;
3324 if (! replace)
3326 new_body = copy_insn (old_body);
3327 if (REG_NOTES (insn))
3328 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3330 PATTERN (insn) = new_body;
3331 old_set = single_set (insn);
3333 /* First see if this insn remains valid when we
3334 make the change. If not, keep the INSN_CODE
3335 the same and let reload fit it up. */
3336 validate_change (insn, &SET_SRC (old_set), src, 1);
3337 validate_change (insn, &SET_DEST (old_set),
3338 ep->to_rtx, 1);
3339 if (! apply_change_group ())
3341 SET_SRC (old_set) = src;
3342 SET_DEST (old_set) = ep->to_rtx;
3345 val = 1;
3346 goto done;
3350 /* In this case this insn isn't serving a useful purpose. We
3351 will delete it in reload_as_needed once we know that this
3352 elimination is, in fact, being done.
3354 If REPLACE isn't set, we can't delete this insn, but needn't
3355 process it since it won't be used unless something changes. */
3356 if (replace)
3358 delete_dead_insn (insn);
3359 return 1;
3361 val = 1;
3362 goto done;
3366 /* We allow one special case which happens to work on all machines we
3367 currently support: a single set with the source or a REG_EQUAL
3368 note being a PLUS of an eliminable register and a constant. */
3369 plus_src = plus_cst_src = 0;
3370 if (old_set && REG_P (SET_DEST (old_set)))
3372 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3373 plus_src = SET_SRC (old_set);
3374 /* First see if the source is of the form (plus (...) CST). */
3375 if (plus_src
3376 && CONST_INT_P (XEXP (plus_src, 1)))
3377 plus_cst_src = plus_src;
3378 else if (REG_P (SET_SRC (old_set))
3379 || plus_src)
3381 /* Otherwise, see if we have a REG_EQUAL note of the form
3382 (plus (...) CST). */
3383 rtx links;
3384 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3386 if ((REG_NOTE_KIND (links) == REG_EQUAL
3387 || REG_NOTE_KIND (links) == REG_EQUIV)
3388 && GET_CODE (XEXP (links, 0)) == PLUS
3389 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3391 plus_cst_src = XEXP (links, 0);
3392 break;
3397 /* Check that the first operand of the PLUS is a hard reg or
3398 the lowpart subreg of one. */
3399 if (plus_cst_src)
3401 rtx reg = XEXP (plus_cst_src, 0);
3402 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3403 reg = SUBREG_REG (reg);
3405 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3406 plus_cst_src = 0;
3409 if (plus_cst_src)
3411 rtx reg = XEXP (plus_cst_src, 0);
3412 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3414 if (GET_CODE (reg) == SUBREG)
3415 reg = SUBREG_REG (reg);
3417 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3418 if (ep->from_rtx == reg && ep->can_eliminate)
3420 rtx to_rtx = ep->to_rtx;
3421 offset += ep->offset;
3422 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3424 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3425 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3426 to_rtx);
3427 /* If we have a nonzero offset, and the source is already
3428 a simple REG, the following transformation would
3429 increase the cost of the insn by replacing a simple REG
3430 with (plus (reg sp) CST). So try only when we already
3431 had a PLUS before. */
3432 if (offset == 0 || plus_src)
3434 rtx new_src = plus_constant (GET_MODE (to_rtx),
3435 to_rtx, offset);
3437 new_body = old_body;
3438 if (! replace)
3440 new_body = copy_insn (old_body);
3441 if (REG_NOTES (insn))
3442 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3444 PATTERN (insn) = new_body;
3445 old_set = single_set (insn);
3447 /* First see if this insn remains valid when we make the
3448 change. If not, try to replace the whole pattern with
3449 a simple set (this may help if the original insn was a
3450 PARALLEL that was only recognized as single_set due to
3451 REG_UNUSED notes). If this isn't valid either, keep
3452 the INSN_CODE the same and let reload fix it up. */
3453 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3455 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3457 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3458 SET_SRC (old_set) = new_src;
3461 else
3462 break;
3464 val = 1;
3465 /* This can't have an effect on elimination offsets, so skip right
3466 to the end. */
3467 goto done;
3471 /* Determine the effects of this insn on elimination offsets. */
3472 elimination_effects (old_body, VOIDmode);
3474 /* Eliminate all eliminable registers occurring in operands that
3475 can be handled by reload. */
3476 extract_insn (insn);
3477 for (i = 0; i < recog_data.n_operands; i++)
3479 orig_operand[i] = recog_data.operand[i];
3480 substed_operand[i] = recog_data.operand[i];
3482 /* For an asm statement, every operand is eliminable. */
3483 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3485 bool is_set_src, in_plus;
3487 /* Check for setting a register that we know about. */
3488 if (recog_data.operand_type[i] != OP_IN
3489 && REG_P (orig_operand[i]))
3491 /* If we are assigning to a register that can be eliminated, it
3492 must be as part of a PARALLEL, since the code above handles
3493 single SETs. We must indicate that we can no longer
3494 eliminate this reg. */
3495 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3496 ep++)
3497 if (ep->from_rtx == orig_operand[i])
3498 ep->can_eliminate = 0;
3501 /* Companion to the above plus substitution, we can allow
3502 invariants as the source of a plain move. */
3503 is_set_src = false;
3504 if (old_set
3505 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3506 is_set_src = true;
3507 in_plus = false;
3508 if (plus_src
3509 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3510 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3511 in_plus = true;
3513 substed_operand[i]
3514 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3515 replace ? insn : NULL_RTX,
3516 is_set_src || in_plus, false);
3517 if (substed_operand[i] != orig_operand[i])
3518 val = 1;
3519 /* Terminate the search in check_eliminable_occurrences at
3520 this point. */
3521 *recog_data.operand_loc[i] = 0;
3523 /* If an output operand changed from a REG to a MEM and INSN is an
3524 insn, write a CLOBBER insn. */
3525 if (recog_data.operand_type[i] != OP_IN
3526 && REG_P (orig_operand[i])
3527 && MEM_P (substed_operand[i])
3528 && replace)
3529 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3533 for (i = 0; i < recog_data.n_dups; i++)
3534 *recog_data.dup_loc[i]
3535 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3537 /* If any eliminable remain, they aren't eliminable anymore. */
3538 check_eliminable_occurrences (old_body);
3540 /* Substitute the operands; the new values are in the substed_operand
3541 array. */
3542 for (i = 0; i < recog_data.n_operands; i++)
3543 *recog_data.operand_loc[i] = substed_operand[i];
3544 for (i = 0; i < recog_data.n_dups; i++)
3545 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3547 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3548 re-recognize the insn. We do this in case we had a simple addition
3549 but now can do this as a load-address. This saves an insn in this
3550 common case.
3551 If re-recognition fails, the old insn code number will still be used,
3552 and some register operands may have changed into PLUS expressions.
3553 These will be handled by find_reloads by loading them into a register
3554 again. */
3556 if (val)
3558 /* If we aren't replacing things permanently and we changed something,
3559 make another copy to ensure that all the RTL is new. Otherwise
3560 things can go wrong if find_reload swaps commutative operands
3561 and one is inside RTL that has been copied while the other is not. */
3562 new_body = old_body;
3563 if (! replace)
3565 new_body = copy_insn (old_body);
3566 if (REG_NOTES (insn))
3567 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3569 PATTERN (insn) = new_body;
3571 /* If we had a move insn but now we don't, rerecognize it. This will
3572 cause spurious re-recognition if the old move had a PARALLEL since
3573 the new one still will, but we can't call single_set without
3574 having put NEW_BODY into the insn and the re-recognition won't
3575 hurt in this rare case. */
3576 /* ??? Why this huge if statement - why don't we just rerecognize the
3577 thing always? */
3578 if (! insn_is_asm
3579 && old_set != 0
3580 && ((REG_P (SET_SRC (old_set))
3581 && (GET_CODE (new_body) != SET
3582 || !REG_P (SET_SRC (new_body))))
3583 /* If this was a load from or store to memory, compare
3584 the MEM in recog_data.operand to the one in the insn.
3585 If they are not equal, then rerecognize the insn. */
3586 || (old_set != 0
3587 && ((MEM_P (SET_SRC (old_set))
3588 && SET_SRC (old_set) != recog_data.operand[1])
3589 || (MEM_P (SET_DEST (old_set))
3590 && SET_DEST (old_set) != recog_data.operand[0])))
3591 /* If this was an add insn before, rerecognize. */
3592 || GET_CODE (SET_SRC (old_set)) == PLUS))
3594 int new_icode = recog (PATTERN (insn), insn, 0);
3595 if (new_icode >= 0)
3596 INSN_CODE (insn) = new_icode;
3600 /* Restore the old body. If there were any changes to it, we made a copy
3601 of it while the changes were still in place, so we'll correctly return
3602 a modified insn below. */
3603 if (! replace)
3605 /* Restore the old body. */
3606 for (i = 0; i < recog_data.n_operands; i++)
3607 /* Restoring a top-level match_parallel would clobber the new_body
3608 we installed in the insn. */
3609 if (recog_data.operand_loc[i] != &PATTERN (insn))
3610 *recog_data.operand_loc[i] = orig_operand[i];
3611 for (i = 0; i < recog_data.n_dups; i++)
3612 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3615 /* Update all elimination pairs to reflect the status after the current
3616 insn. The changes we make were determined by the earlier call to
3617 elimination_effects.
3619 We also detect cases where register elimination cannot be done,
3620 namely, if a register would be both changed and referenced outside a MEM
3621 in the resulting insn since such an insn is often undefined and, even if
3622 not, we cannot know what meaning will be given to it. Note that it is
3623 valid to have a register used in an address in an insn that changes it
3624 (presumably with a pre- or post-increment or decrement).
3626 If anything changes, return nonzero. */
3628 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3630 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3631 ep->can_eliminate = 0;
3633 ep->ref_outside_mem = 0;
3635 if (ep->previous_offset != ep->offset)
3636 val = 1;
3639 done:
3640 /* If we changed something, perform elimination in REG_NOTES. This is
3641 needed even when REPLACE is zero because a REG_DEAD note might refer
3642 to a register that we eliminate and could cause a different number
3643 of spill registers to be needed in the final reload pass than in
3644 the pre-passes. */
3645 if (val && REG_NOTES (insn) != 0)
3646 REG_NOTES (insn)
3647 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3648 false);
3650 return val;
3653 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3654 register allocator. INSN is the instruction we need to examine, we perform
3655 eliminations in its operands and record cases where eliminating a reg with
3656 an invariant equivalence would add extra cost. */
3658 static void
3659 elimination_costs_in_insn (rtx_insn *insn)
3661 int icode = recog_memoized (insn);
3662 rtx old_body = PATTERN (insn);
3663 int insn_is_asm = asm_noperands (old_body) >= 0;
3664 rtx old_set = single_set (insn);
3665 int i;
3666 rtx orig_operand[MAX_RECOG_OPERANDS];
3667 rtx orig_dup[MAX_RECOG_OPERANDS];
3668 struct elim_table *ep;
3669 rtx plus_src, plus_cst_src;
3670 bool sets_reg_p;
3672 if (! insn_is_asm && icode < 0)
3674 gcc_assert (DEBUG_INSN_P (insn)
3675 || GET_CODE (PATTERN (insn)) == USE
3676 || GET_CODE (PATTERN (insn)) == CLOBBER
3677 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3678 return;
3681 if (old_set != 0 && REG_P (SET_DEST (old_set))
3682 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3684 /* Check for setting an eliminable register. */
3685 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3686 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3687 return;
3690 /* We allow one special case which happens to work on all machines we
3691 currently support: a single set with the source or a REG_EQUAL
3692 note being a PLUS of an eliminable register and a constant. */
3693 plus_src = plus_cst_src = 0;
3694 sets_reg_p = false;
3695 if (old_set && REG_P (SET_DEST (old_set)))
3697 sets_reg_p = true;
3698 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3699 plus_src = SET_SRC (old_set);
3700 /* First see if the source is of the form (plus (...) CST). */
3701 if (plus_src
3702 && CONST_INT_P (XEXP (plus_src, 1)))
3703 plus_cst_src = plus_src;
3704 else if (REG_P (SET_SRC (old_set))
3705 || plus_src)
3707 /* Otherwise, see if we have a REG_EQUAL note of the form
3708 (plus (...) CST). */
3709 rtx links;
3710 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3712 if ((REG_NOTE_KIND (links) == REG_EQUAL
3713 || REG_NOTE_KIND (links) == REG_EQUIV)
3714 && GET_CODE (XEXP (links, 0)) == PLUS
3715 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3717 plus_cst_src = XEXP (links, 0);
3718 break;
3724 /* Determine the effects of this insn on elimination offsets. */
3725 elimination_effects (old_body, VOIDmode);
3727 /* Eliminate all eliminable registers occurring in operands that
3728 can be handled by reload. */
3729 extract_insn (insn);
3730 for (i = 0; i < recog_data.n_dups; i++)
3731 orig_dup[i] = *recog_data.dup_loc[i];
3733 for (i = 0; i < recog_data.n_operands; i++)
3735 orig_operand[i] = recog_data.operand[i];
3737 /* For an asm statement, every operand is eliminable. */
3738 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3740 bool is_set_src, in_plus;
3742 /* Check for setting a register that we know about. */
3743 if (recog_data.operand_type[i] != OP_IN
3744 && REG_P (orig_operand[i]))
3746 /* If we are assigning to a register that can be eliminated, it
3747 must be as part of a PARALLEL, since the code above handles
3748 single SETs. We must indicate that we can no longer
3749 eliminate this reg. */
3750 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3751 ep++)
3752 if (ep->from_rtx == orig_operand[i])
3753 ep->can_eliminate = 0;
3756 /* Companion to the above plus substitution, we can allow
3757 invariants as the source of a plain move. */
3758 is_set_src = false;
3759 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3760 is_set_src = true;
3761 if (is_set_src && !sets_reg_p)
3762 note_reg_elim_costly (SET_SRC (old_set), insn);
3763 in_plus = false;
3764 if (plus_src && sets_reg_p
3765 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3766 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3767 in_plus = true;
3769 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3770 NULL_RTX,
3771 is_set_src || in_plus, true);
3772 /* Terminate the search in check_eliminable_occurrences at
3773 this point. */
3774 *recog_data.operand_loc[i] = 0;
3778 for (i = 0; i < recog_data.n_dups; i++)
3779 *recog_data.dup_loc[i]
3780 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3782 /* If any eliminable remain, they aren't eliminable anymore. */
3783 check_eliminable_occurrences (old_body);
3785 /* Restore the old body. */
3786 for (i = 0; i < recog_data.n_operands; i++)
3787 *recog_data.operand_loc[i] = orig_operand[i];
3788 for (i = 0; i < recog_data.n_dups; i++)
3789 *recog_data.dup_loc[i] = orig_dup[i];
3791 /* Update all elimination pairs to reflect the status after the current
3792 insn. The changes we make were determined by the earlier call to
3793 elimination_effects. */
3795 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3797 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3798 ep->can_eliminate = 0;
3800 ep->ref_outside_mem = 0;
3803 return;
3806 /* Loop through all elimination pairs.
3807 Recalculate the number not at initial offset.
3809 Compute the maximum offset (minimum offset if the stack does not
3810 grow downward) for each elimination pair. */
3812 static void
3813 update_eliminable_offsets (void)
3815 struct elim_table *ep;
3817 num_not_at_initial_offset = 0;
3818 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3820 ep->previous_offset = ep->offset;
3821 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3822 num_not_at_initial_offset++;
3826 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3827 replacement we currently believe is valid, mark it as not eliminable if X
3828 modifies DEST in any way other than by adding a constant integer to it.
3830 If DEST is the frame pointer, we do nothing because we assume that
3831 all assignments to the hard frame pointer are nonlocal gotos and are being
3832 done at a time when they are valid and do not disturb anything else.
3833 Some machines want to eliminate a fake argument pointer with either the
3834 frame or stack pointer. Assignments to the hard frame pointer must not
3835 prevent this elimination.
3837 Called via note_stores from reload before starting its passes to scan
3838 the insns of the function. */
3840 static void
3841 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3843 unsigned int i;
3845 /* A SUBREG of a hard register here is just changing its mode. We should
3846 not see a SUBREG of an eliminable hard register, but check just in
3847 case. */
3848 if (GET_CODE (dest) == SUBREG)
3849 dest = SUBREG_REG (dest);
3851 if (dest == hard_frame_pointer_rtx)
3852 return;
3854 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3855 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3856 && (GET_CODE (x) != SET
3857 || GET_CODE (SET_SRC (x)) != PLUS
3858 || XEXP (SET_SRC (x), 0) != dest
3859 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3861 reg_eliminate[i].can_eliminate_previous
3862 = reg_eliminate[i].can_eliminate = 0;
3863 num_eliminable--;
3867 /* Verify that the initial elimination offsets did not change since the
3868 last call to set_initial_elim_offsets. This is used to catch cases
3869 where something illegal happened during reload_as_needed that could
3870 cause incorrect code to be generated if we did not check for it. */
3872 static bool
3873 verify_initial_elim_offsets (void)
3875 HOST_WIDE_INT t;
3877 if (!num_eliminable)
3878 return true;
3880 #ifdef ELIMINABLE_REGS
3882 struct elim_table *ep;
3884 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3886 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3887 if (t != ep->initial_offset)
3888 return false;
3891 #else
3892 INITIAL_FRAME_POINTER_OFFSET (t);
3893 if (t != reg_eliminate[0].initial_offset)
3894 return false;
3895 #endif
3897 return true;
3900 /* Reset all offsets on eliminable registers to their initial values. */
3902 static void
3903 set_initial_elim_offsets (void)
3905 struct elim_table *ep = reg_eliminate;
3907 #ifdef ELIMINABLE_REGS
3908 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3910 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3911 ep->previous_offset = ep->offset = ep->initial_offset;
3913 #else
3914 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3915 ep->previous_offset = ep->offset = ep->initial_offset;
3916 #endif
3918 num_not_at_initial_offset = 0;
3921 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3923 static void
3924 set_initial_eh_label_offset (rtx label)
3926 set_label_offsets (label, NULL, 1);
3929 /* Initialize the known label offsets.
3930 Set a known offset for each forced label to be at the initial offset
3931 of each elimination. We do this because we assume that all
3932 computed jumps occur from a location where each elimination is
3933 at its initial offset.
3934 For all other labels, show that we don't know the offsets. */
3936 static void
3937 set_initial_label_offsets (void)
3939 memset (offsets_known_at, 0, num_labels);
3941 for (rtx_insn_list *x = forced_labels; x; x = x->next ())
3942 if (x->insn ())
3943 set_label_offsets (x->insn (), NULL, 1);
3945 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3946 if (x->insn ())
3947 set_label_offsets (x->insn (), NULL, 1);
3949 for_each_eh_label (set_initial_eh_label_offset);
3952 /* Set all elimination offsets to the known values for the code label given
3953 by INSN. */
3955 static void
3956 set_offsets_for_label (rtx_insn *insn)
3958 unsigned int i;
3959 int label_nr = CODE_LABEL_NUMBER (insn);
3960 struct elim_table *ep;
3962 num_not_at_initial_offset = 0;
3963 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3965 ep->offset = ep->previous_offset
3966 = offsets_at[label_nr - first_label_num][i];
3967 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3968 num_not_at_initial_offset++;
3972 /* See if anything that happened changes which eliminations are valid.
3973 For example, on the SPARC, whether or not the frame pointer can
3974 be eliminated can depend on what registers have been used. We need
3975 not check some conditions again (such as flag_omit_frame_pointer)
3976 since they can't have changed. */
3978 static void
3979 update_eliminables (HARD_REG_SET *pset)
3981 int previous_frame_pointer_needed = frame_pointer_needed;
3982 struct elim_table *ep;
3984 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3985 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3986 && targetm.frame_pointer_required ())
3987 #ifdef ELIMINABLE_REGS
3988 || ! targetm.can_eliminate (ep->from, ep->to)
3989 #endif
3991 ep->can_eliminate = 0;
3993 /* Look for the case where we have discovered that we can't replace
3994 register A with register B and that means that we will now be
3995 trying to replace register A with register C. This means we can
3996 no longer replace register C with register B and we need to disable
3997 such an elimination, if it exists. This occurs often with A == ap,
3998 B == sp, and C == fp. */
4000 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4002 struct elim_table *op;
4003 int new_to = -1;
4005 if (! ep->can_eliminate && ep->can_eliminate_previous)
4007 /* Find the current elimination for ep->from, if there is a
4008 new one. */
4009 for (op = reg_eliminate;
4010 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
4011 if (op->from == ep->from && op->can_eliminate)
4013 new_to = op->to;
4014 break;
4017 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
4018 disable it. */
4019 for (op = reg_eliminate;
4020 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
4021 if (op->from == new_to && op->to == ep->to)
4022 op->can_eliminate = 0;
4026 /* See if any registers that we thought we could eliminate the previous
4027 time are no longer eliminable. If so, something has changed and we
4028 must spill the register. Also, recompute the number of eliminable
4029 registers and see if the frame pointer is needed; it is if there is
4030 no elimination of the frame pointer that we can perform. */
4032 frame_pointer_needed = 1;
4033 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4035 if (ep->can_eliminate
4036 && ep->from == FRAME_POINTER_REGNUM
4037 && ep->to != HARD_FRAME_POINTER_REGNUM
4038 && (! SUPPORTS_STACK_ALIGNMENT
4039 || ! crtl->stack_realign_needed))
4040 frame_pointer_needed = 0;
4042 if (! ep->can_eliminate && ep->can_eliminate_previous)
4044 ep->can_eliminate_previous = 0;
4045 SET_HARD_REG_BIT (*pset, ep->from);
4046 num_eliminable--;
4050 /* If we didn't need a frame pointer last time, but we do now, spill
4051 the hard frame pointer. */
4052 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4053 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4056 /* Call update_eliminables an spill any registers we can't eliminate anymore.
4057 Return true iff a register was spilled. */
4059 static bool
4060 update_eliminables_and_spill (void)
4062 int i;
4063 bool did_spill = false;
4064 HARD_REG_SET to_spill;
4065 CLEAR_HARD_REG_SET (to_spill);
4066 update_eliminables (&to_spill);
4067 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
4069 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4070 if (TEST_HARD_REG_BIT (to_spill, i))
4072 spill_hard_reg (i, 1);
4073 did_spill = true;
4075 /* Regardless of the state of spills, if we previously had
4076 a register that we thought we could eliminate, but now can
4077 not eliminate, we must run another pass.
4079 Consider pseudos which have an entry in reg_equiv_* which
4080 reference an eliminable register. We must make another pass
4081 to update reg_equiv_* so that we do not substitute in the
4082 old value from when we thought the elimination could be
4083 performed. */
4085 return did_spill;
4088 /* Return true if X is used as the target register of an elimination. */
4090 bool
4091 elimination_target_reg_p (rtx x)
4093 struct elim_table *ep;
4095 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4096 if (ep->to_rtx == x && ep->can_eliminate)
4097 return true;
4099 return false;
4102 /* Initialize the table of registers to eliminate.
4103 Pre-condition: global flag frame_pointer_needed has been set before
4104 calling this function. */
4106 static void
4107 init_elim_table (void)
4109 struct elim_table *ep;
4110 #ifdef ELIMINABLE_REGS
4111 const struct elim_table_1 *ep1;
4112 #endif
4114 if (!reg_eliminate)
4115 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4117 num_eliminable = 0;
4119 #ifdef ELIMINABLE_REGS
4120 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4121 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4123 ep->from = ep1->from;
4124 ep->to = ep1->to;
4125 ep->can_eliminate = ep->can_eliminate_previous
4126 = (targetm.can_eliminate (ep->from, ep->to)
4127 && ! (ep->to == STACK_POINTER_REGNUM
4128 && frame_pointer_needed
4129 && (! SUPPORTS_STACK_ALIGNMENT
4130 || ! stack_realign_fp)));
4132 #else
4133 reg_eliminate[0].from = reg_eliminate_1[0].from;
4134 reg_eliminate[0].to = reg_eliminate_1[0].to;
4135 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4136 = ! frame_pointer_needed;
4137 #endif
4139 /* Count the number of eliminable registers and build the FROM and TO
4140 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4141 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4142 We depend on this. */
4143 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4145 num_eliminable += ep->can_eliminate;
4146 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4147 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4151 /* Find all the pseudo registers that didn't get hard regs
4152 but do have known equivalent constants or memory slots.
4153 These include parameters (known equivalent to parameter slots)
4154 and cse'd or loop-moved constant memory addresses.
4156 Record constant equivalents in reg_equiv_constant
4157 so they will be substituted by find_reloads.
4158 Record memory equivalents in reg_mem_equiv so they can
4159 be substituted eventually by altering the REG-rtx's. */
4161 static void
4162 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4164 int i;
4165 rtx_insn *insn;
4167 grow_reg_equivs ();
4168 if (do_subregs)
4169 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4170 else
4171 reg_max_ref_width = NULL;
4173 num_eliminable_invariants = 0;
4175 first_label_num = get_first_label_num ();
4176 num_labels = max_label_num () - first_label_num;
4178 /* Allocate the tables used to store offset information at labels. */
4179 offsets_known_at = XNEWVEC (char, num_labels);
4180 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4182 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4183 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4184 find largest such for each pseudo. FIRST is the head of the insn
4185 list. */
4187 for (insn = first; insn; insn = NEXT_INSN (insn))
4189 rtx set = single_set (insn);
4191 /* We may introduce USEs that we want to remove at the end, so
4192 we'll mark them with QImode. Make sure there are no
4193 previously-marked insns left by say regmove. */
4194 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4195 && GET_MODE (insn) != VOIDmode)
4196 PUT_MODE (insn, VOIDmode);
4198 if (do_subregs && NONDEBUG_INSN_P (insn))
4199 scan_paradoxical_subregs (PATTERN (insn));
4201 if (set != 0 && REG_P (SET_DEST (set)))
4203 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4204 rtx x;
4206 if (! note)
4207 continue;
4209 i = REGNO (SET_DEST (set));
4210 x = XEXP (note, 0);
4212 if (i <= LAST_VIRTUAL_REGISTER)
4213 continue;
4215 /* If flag_pic and we have constant, verify it's legitimate. */
4216 if (!CONSTANT_P (x)
4217 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4219 /* It can happen that a REG_EQUIV note contains a MEM
4220 that is not a legitimate memory operand. As later
4221 stages of reload assume that all addresses found
4222 in the reg_equiv_* arrays were originally legitimate,
4223 we ignore such REG_EQUIV notes. */
4224 if (memory_operand (x, VOIDmode))
4226 /* Always unshare the equivalence, so we can
4227 substitute into this insn without touching the
4228 equivalence. */
4229 reg_equiv_memory_loc (i) = copy_rtx (x);
4231 else if (function_invariant_p (x))
4233 machine_mode mode;
4235 mode = GET_MODE (SET_DEST (set));
4236 if (GET_CODE (x) == PLUS)
4238 /* This is PLUS of frame pointer and a constant,
4239 and might be shared. Unshare it. */
4240 reg_equiv_invariant (i) = copy_rtx (x);
4241 num_eliminable_invariants++;
4243 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4245 reg_equiv_invariant (i) = x;
4246 num_eliminable_invariants++;
4248 else if (targetm.legitimate_constant_p (mode, x))
4249 reg_equiv_constant (i) = x;
4250 else
4252 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4253 if (! reg_equiv_memory_loc (i))
4254 reg_equiv_init (i) = NULL;
4257 else
4259 reg_equiv_init (i) = NULL;
4260 continue;
4263 else
4264 reg_equiv_init (i) = NULL;
4268 if (dump_file)
4269 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4270 if (reg_equiv_init (i))
4272 fprintf (dump_file, "init_insns for %u: ", i);
4273 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4274 fprintf (dump_file, "\n");
4278 /* Indicate that we no longer have known memory locations or constants.
4279 Free all data involved in tracking these. */
4281 static void
4282 free_reg_equiv (void)
4284 int i;
4286 free (offsets_known_at);
4287 free (offsets_at);
4288 offsets_at = 0;
4289 offsets_known_at = 0;
4291 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4292 if (reg_equiv_alt_mem_list (i))
4293 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4294 vec_free (reg_equivs);
4297 /* Kick all pseudos out of hard register REGNO.
4299 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4300 because we found we can't eliminate some register. In the case, no pseudos
4301 are allowed to be in the register, even if they are only in a block that
4302 doesn't require spill registers, unlike the case when we are spilling this
4303 hard reg to produce another spill register.
4305 Return nonzero if any pseudos needed to be kicked out. */
4307 static void
4308 spill_hard_reg (unsigned int regno, int cant_eliminate)
4310 int i;
4312 if (cant_eliminate)
4314 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4315 df_set_regs_ever_live (regno, true);
4318 /* Spill every pseudo reg that was allocated to this reg
4319 or to something that overlaps this reg. */
4321 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4322 if (reg_renumber[i] >= 0
4323 && (unsigned int) reg_renumber[i] <= regno
4324 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4325 SET_REGNO_REG_SET (&spilled_pseudos, i);
4328 /* After find_reload_regs has been run for all insn that need reloads,
4329 and/or spill_hard_regs was called, this function is used to actually
4330 spill pseudo registers and try to reallocate them. It also sets up the
4331 spill_regs array for use by choose_reload_regs. */
4333 static int
4334 finish_spills (int global)
4336 struct insn_chain *chain;
4337 int something_changed = 0;
4338 unsigned i;
4339 reg_set_iterator rsi;
4341 /* Build the spill_regs array for the function. */
4342 /* If there are some registers still to eliminate and one of the spill regs
4343 wasn't ever used before, additional stack space may have to be
4344 allocated to store this register. Thus, we may have changed the offset
4345 between the stack and frame pointers, so mark that something has changed.
4347 One might think that we need only set VAL to 1 if this is a call-used
4348 register. However, the set of registers that must be saved by the
4349 prologue is not identical to the call-used set. For example, the
4350 register used by the call insn for the return PC is a call-used register,
4351 but must be saved by the prologue. */
4353 n_spills = 0;
4354 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4355 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4357 spill_reg_order[i] = n_spills;
4358 spill_regs[n_spills++] = i;
4359 if (num_eliminable && ! df_regs_ever_live_p (i))
4360 something_changed = 1;
4361 df_set_regs_ever_live (i, true);
4363 else
4364 spill_reg_order[i] = -1;
4366 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4367 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4369 /* Record the current hard register the pseudo is allocated to
4370 in pseudo_previous_regs so we avoid reallocating it to the
4371 same hard reg in a later pass. */
4372 gcc_assert (reg_renumber[i] >= 0);
4374 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4375 /* Mark it as no longer having a hard register home. */
4376 reg_renumber[i] = -1;
4377 if (ira_conflicts_p)
4378 /* Inform IRA about the change. */
4379 ira_mark_allocation_change (i);
4380 /* We will need to scan everything again. */
4381 something_changed = 1;
4384 /* Retry global register allocation if possible. */
4385 if (global && ira_conflicts_p)
4387 unsigned int n;
4389 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4390 /* For every insn that needs reloads, set the registers used as spill
4391 regs in pseudo_forbidden_regs for every pseudo live across the
4392 insn. */
4393 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4395 EXECUTE_IF_SET_IN_REG_SET
4396 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4398 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4399 chain->used_spill_regs);
4401 EXECUTE_IF_SET_IN_REG_SET
4402 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4404 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4405 chain->used_spill_regs);
4409 /* Retry allocating the pseudos spilled in IRA and the
4410 reload. For each reg, merge the various reg sets that
4411 indicate which hard regs can't be used, and call
4412 ira_reassign_pseudos. */
4413 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4414 if (reg_old_renumber[i] != reg_renumber[i])
4416 if (reg_renumber[i] < 0)
4417 temp_pseudo_reg_arr[n++] = i;
4418 else
4419 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4421 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4422 bad_spill_regs_global,
4423 pseudo_forbidden_regs, pseudo_previous_regs,
4424 &spilled_pseudos))
4425 something_changed = 1;
4427 /* Fix up the register information in the insn chain.
4428 This involves deleting those of the spilled pseudos which did not get
4429 a new hard register home from the live_{before,after} sets. */
4430 for (chain = reload_insn_chain; chain; chain = chain->next)
4432 HARD_REG_SET used_by_pseudos;
4433 HARD_REG_SET used_by_pseudos2;
4435 if (! ira_conflicts_p)
4437 /* Don't do it for IRA because IRA and the reload still can
4438 assign hard registers to the spilled pseudos on next
4439 reload iterations. */
4440 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4441 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4443 /* Mark any unallocated hard regs as available for spills. That
4444 makes inheritance work somewhat better. */
4445 if (chain->need_reload)
4447 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4448 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4449 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4451 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4452 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4453 /* Value of chain->used_spill_regs from previous iteration
4454 may be not included in the value calculated here because
4455 of possible removing caller-saves insns (see function
4456 delete_caller_save_insns. */
4457 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4458 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4462 CLEAR_REG_SET (&changed_allocation_pseudos);
4463 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4464 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4466 int regno = reg_renumber[i];
4467 if (reg_old_renumber[i] == regno)
4468 continue;
4470 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4472 alter_reg (i, reg_old_renumber[i], false);
4473 reg_old_renumber[i] = regno;
4474 if (dump_file)
4476 if (regno == -1)
4477 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4478 else
4479 fprintf (dump_file, " Register %d now in %d.\n\n",
4480 i, reg_renumber[i]);
4484 return something_changed;
4487 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4489 static void
4490 scan_paradoxical_subregs (rtx x)
4492 int i;
4493 const char *fmt;
4494 enum rtx_code code = GET_CODE (x);
4496 switch (code)
4498 case REG:
4499 case CONST:
4500 case SYMBOL_REF:
4501 case LABEL_REF:
4502 CASE_CONST_ANY:
4503 case CC0:
4504 case PC:
4505 case USE:
4506 case CLOBBER:
4507 return;
4509 case SUBREG:
4510 if (REG_P (SUBREG_REG (x))
4511 && (GET_MODE_SIZE (GET_MODE (x))
4512 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4514 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4515 = GET_MODE_SIZE (GET_MODE (x));
4516 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4518 return;
4520 default:
4521 break;
4524 fmt = GET_RTX_FORMAT (code);
4525 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4527 if (fmt[i] == 'e')
4528 scan_paradoxical_subregs (XEXP (x, i));
4529 else if (fmt[i] == 'E')
4531 int j;
4532 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4533 scan_paradoxical_subregs (XVECEXP (x, i, j));
4538 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4539 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4540 and apply the corresponding narrowing subreg to *OTHER_PTR.
4541 Return true if the operands were changed, false otherwise. */
4543 static bool
4544 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4546 rtx op, inner, other, tem;
4548 op = *op_ptr;
4549 if (!paradoxical_subreg_p (op))
4550 return false;
4551 inner = SUBREG_REG (op);
4553 other = *other_ptr;
4554 tem = gen_lowpart_common (GET_MODE (inner), other);
4555 if (!tem)
4556 return false;
4558 /* If the lowpart operation turned a hard register into a subreg,
4559 rather than simplifying it to another hard register, then the
4560 mode change cannot be properly represented. For example, OTHER
4561 might be valid in its current mode, but not in the new one. */
4562 if (GET_CODE (tem) == SUBREG
4563 && REG_P (other)
4564 && HARD_REGISTER_P (other))
4565 return false;
4567 *op_ptr = inner;
4568 *other_ptr = tem;
4569 return true;
4572 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4573 examine all of the reload insns between PREV and NEXT exclusive, and
4574 annotate all that may trap. */
4576 static void
4577 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4579 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4580 if (note == NULL)
4581 return;
4582 if (!insn_could_throw_p (insn))
4583 remove_note (insn, note);
4584 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4587 /* Reload pseudo-registers into hard regs around each insn as needed.
4588 Additional register load insns are output before the insn that needs it
4589 and perhaps store insns after insns that modify the reloaded pseudo reg.
4591 reg_last_reload_reg and reg_reloaded_contents keep track of
4592 which registers are already available in reload registers.
4593 We update these for the reloads that we perform,
4594 as the insns are scanned. */
4596 static void
4597 reload_as_needed (int live_known)
4599 struct insn_chain *chain;
4600 #if defined (AUTO_INC_DEC)
4601 int i;
4602 #endif
4603 rtx_note *marker;
4605 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4606 memset (spill_reg_store, 0, sizeof spill_reg_store);
4607 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4608 INIT_REG_SET (&reg_has_output_reload);
4609 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4610 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4612 set_initial_elim_offsets ();
4614 /* Generate a marker insn that we will move around. */
4615 marker = emit_note (NOTE_INSN_DELETED);
4616 unlink_insn_chain (marker, marker);
4618 for (chain = reload_insn_chain; chain; chain = chain->next)
4620 rtx_insn *prev = 0;
4621 rtx_insn *insn = chain->insn;
4622 rtx_insn *old_next = NEXT_INSN (insn);
4623 #ifdef AUTO_INC_DEC
4624 rtx_insn *old_prev = PREV_INSN (insn);
4625 #endif
4627 if (will_delete_init_insn_p (insn))
4628 continue;
4630 /* If we pass a label, copy the offsets from the label information
4631 into the current offsets of each elimination. */
4632 if (LABEL_P (insn))
4633 set_offsets_for_label (insn);
4635 else if (INSN_P (insn))
4637 regset_head regs_to_forget;
4638 INIT_REG_SET (&regs_to_forget);
4639 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4641 /* If this is a USE and CLOBBER of a MEM, ensure that any
4642 references to eliminable registers have been removed. */
4644 if ((GET_CODE (PATTERN (insn)) == USE
4645 || GET_CODE (PATTERN (insn)) == CLOBBER)
4646 && MEM_P (XEXP (PATTERN (insn), 0)))
4647 XEXP (XEXP (PATTERN (insn), 0), 0)
4648 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4649 GET_MODE (XEXP (PATTERN (insn), 0)),
4650 NULL_RTX);
4652 /* If we need to do register elimination processing, do so.
4653 This might delete the insn, in which case we are done. */
4654 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4656 eliminate_regs_in_insn (insn, 1);
4657 if (NOTE_P (insn))
4659 update_eliminable_offsets ();
4660 CLEAR_REG_SET (&regs_to_forget);
4661 continue;
4665 /* If need_elim is nonzero but need_reload is zero, one might think
4666 that we could simply set n_reloads to 0. However, find_reloads
4667 could have done some manipulation of the insn (such as swapping
4668 commutative operands), and these manipulations are lost during
4669 the first pass for every insn that needs register elimination.
4670 So the actions of find_reloads must be redone here. */
4672 if (! chain->need_elim && ! chain->need_reload
4673 && ! chain->need_operand_change)
4674 n_reloads = 0;
4675 /* First find the pseudo regs that must be reloaded for this insn.
4676 This info is returned in the tables reload_... (see reload.h).
4677 Also modify the body of INSN by substituting RELOAD
4678 rtx's for those pseudo regs. */
4679 else
4681 CLEAR_REG_SET (&reg_has_output_reload);
4682 CLEAR_HARD_REG_SET (reg_is_output_reload);
4684 find_reloads (insn, 1, spill_indirect_levels, live_known,
4685 spill_reg_order);
4688 if (n_reloads > 0)
4690 rtx_insn *next = NEXT_INSN (insn);
4692 /* ??? PREV can get deleted by reload inheritance.
4693 Work around this by emitting a marker note. */
4694 prev = PREV_INSN (insn);
4695 reorder_insns_nobb (marker, marker, prev);
4697 /* Now compute which reload regs to reload them into. Perhaps
4698 reusing reload regs from previous insns, or else output
4699 load insns to reload them. Maybe output store insns too.
4700 Record the choices of reload reg in reload_reg_rtx. */
4701 choose_reload_regs (chain);
4703 /* Generate the insns to reload operands into or out of
4704 their reload regs. */
4705 emit_reload_insns (chain);
4707 /* Substitute the chosen reload regs from reload_reg_rtx
4708 into the insn's body (or perhaps into the bodies of other
4709 load and store insn that we just made for reloading
4710 and that we moved the structure into). */
4711 subst_reloads (insn);
4713 prev = PREV_INSN (marker);
4714 unlink_insn_chain (marker, marker);
4716 /* Adjust the exception region notes for loads and stores. */
4717 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4718 fixup_eh_region_note (insn, prev, next);
4720 /* Adjust the location of REG_ARGS_SIZE. */
4721 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4722 if (p)
4724 remove_note (insn, p);
4725 fixup_args_size_notes (prev, PREV_INSN (next),
4726 INTVAL (XEXP (p, 0)));
4729 /* If this was an ASM, make sure that all the reload insns
4730 we have generated are valid. If not, give an error
4731 and delete them. */
4732 if (asm_noperands (PATTERN (insn)) >= 0)
4733 for (rtx_insn *p = NEXT_INSN (prev);
4734 p != next;
4735 p = NEXT_INSN (p))
4736 if (p != insn && INSN_P (p)
4737 && GET_CODE (PATTERN (p)) != USE
4738 && (recog_memoized (p) < 0
4739 || (extract_insn (p),
4740 !(constrain_operands (1,
4741 get_enabled_alternatives (p))))))
4743 error_for_asm (insn,
4744 "%<asm%> operand requires "
4745 "impossible reload");
4746 delete_insn (p);
4750 if (num_eliminable && chain->need_elim)
4751 update_eliminable_offsets ();
4753 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4754 is no longer validly lying around to save a future reload.
4755 Note that this does not detect pseudos that were reloaded
4756 for this insn in order to be stored in
4757 (obeying register constraints). That is correct; such reload
4758 registers ARE still valid. */
4759 forget_marked_reloads (&regs_to_forget);
4760 CLEAR_REG_SET (&regs_to_forget);
4762 /* There may have been CLOBBER insns placed after INSN. So scan
4763 between INSN and NEXT and use them to forget old reloads. */
4764 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4765 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4766 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4768 #ifdef AUTO_INC_DEC
4769 /* Likewise for regs altered by auto-increment in this insn.
4770 REG_INC notes have been changed by reloading:
4771 find_reloads_address_1 records substitutions for them,
4772 which have been performed by subst_reloads above. */
4773 for (i = n_reloads - 1; i >= 0; i--)
4775 rtx in_reg = rld[i].in_reg;
4776 if (in_reg)
4778 enum rtx_code code = GET_CODE (in_reg);
4779 /* PRE_INC / PRE_DEC will have the reload register ending up
4780 with the same value as the stack slot, but that doesn't
4781 hold true for POST_INC / POST_DEC. Either we have to
4782 convert the memory access to a true POST_INC / POST_DEC,
4783 or we can't use the reload register for inheritance. */
4784 if ((code == POST_INC || code == POST_DEC)
4785 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4786 REGNO (rld[i].reg_rtx))
4787 /* Make sure it is the inc/dec pseudo, and not
4788 some other (e.g. output operand) pseudo. */
4789 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4790 == REGNO (XEXP (in_reg, 0))))
4793 rtx reload_reg = rld[i].reg_rtx;
4794 machine_mode mode = GET_MODE (reload_reg);
4795 int n = 0;
4796 rtx_insn *p;
4798 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4800 /* We really want to ignore REG_INC notes here, so
4801 use PATTERN (p) as argument to reg_set_p . */
4802 if (reg_set_p (reload_reg, PATTERN (p)))
4803 break;
4804 n = count_occurrences (PATTERN (p), reload_reg, 0);
4805 if (! n)
4806 continue;
4807 if (n == 1)
4809 rtx replace_reg
4810 = gen_rtx_fmt_e (code, mode, reload_reg);
4812 validate_replace_rtx_group (reload_reg,
4813 replace_reg, p);
4814 n = verify_changes (0);
4816 /* We must also verify that the constraints
4817 are met after the replacement. Make sure
4818 extract_insn is only called for an insn
4819 where the replacements were found to be
4820 valid so far. */
4821 if (n)
4823 extract_insn (p);
4824 n = constrain_operands (1,
4825 get_enabled_alternatives (p));
4828 /* If the constraints were not met, then
4829 undo the replacement, else confirm it. */
4830 if (!n)
4831 cancel_changes (0);
4832 else
4833 confirm_change_group ();
4835 break;
4837 if (n == 1)
4839 add_reg_note (p, REG_INC, reload_reg);
4840 /* Mark this as having an output reload so that the
4841 REG_INC processing code below won't invalidate
4842 the reload for inheritance. */
4843 SET_HARD_REG_BIT (reg_is_output_reload,
4844 REGNO (reload_reg));
4845 SET_REGNO_REG_SET (&reg_has_output_reload,
4846 REGNO (XEXP (in_reg, 0)));
4848 else
4849 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4850 NULL);
4852 else if ((code == PRE_INC || code == PRE_DEC)
4853 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4854 REGNO (rld[i].reg_rtx))
4855 /* Make sure it is the inc/dec pseudo, and not
4856 some other (e.g. output operand) pseudo. */
4857 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4858 == REGNO (XEXP (in_reg, 0))))
4860 SET_HARD_REG_BIT (reg_is_output_reload,
4861 REGNO (rld[i].reg_rtx));
4862 SET_REGNO_REG_SET (&reg_has_output_reload,
4863 REGNO (XEXP (in_reg, 0)));
4865 else if (code == PRE_INC || code == PRE_DEC
4866 || code == POST_INC || code == POST_DEC)
4868 int in_regno = REGNO (XEXP (in_reg, 0));
4870 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4872 int in_hard_regno;
4873 bool forget_p = true;
4875 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4876 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4877 in_hard_regno))
4879 for (rtx_insn *x = (old_prev ?
4880 NEXT_INSN (old_prev) : insn);
4881 x != old_next;
4882 x = NEXT_INSN (x))
4883 if (x == reg_reloaded_insn[in_hard_regno])
4885 forget_p = false;
4886 break;
4889 /* If for some reasons, we didn't set up
4890 reg_last_reload_reg in this insn,
4891 invalidate inheritance from previous
4892 insns for the incremented/decremented
4893 register. Such registers will be not in
4894 reg_has_output_reload. Invalidate it
4895 also if the corresponding element in
4896 reg_reloaded_insn is also
4897 invalidated. */
4898 if (forget_p)
4899 forget_old_reloads_1 (XEXP (in_reg, 0),
4900 NULL_RTX, NULL);
4905 /* If a pseudo that got a hard register is auto-incremented,
4906 we must purge records of copying it into pseudos without
4907 hard registers. */
4908 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4909 if (REG_NOTE_KIND (x) == REG_INC)
4911 /* See if this pseudo reg was reloaded in this insn.
4912 If so, its last-reload info is still valid
4913 because it is based on this insn's reload. */
4914 for (i = 0; i < n_reloads; i++)
4915 if (rld[i].out == XEXP (x, 0))
4916 break;
4918 if (i == n_reloads)
4919 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4921 #endif
4923 /* A reload reg's contents are unknown after a label. */
4924 if (LABEL_P (insn))
4925 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4927 /* Don't assume a reload reg is still good after a call insn
4928 if it is a call-used reg, or if it contains a value that will
4929 be partially clobbered by the call. */
4930 else if (CALL_P (insn))
4932 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4933 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4935 /* If this is a call to a setjmp-type function, we must not
4936 reuse any reload reg contents across the call; that will
4937 just be clobbered by other uses of the register in later
4938 code, before the longjmp. */
4939 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4940 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4944 /* Clean up. */
4945 free (reg_last_reload_reg);
4946 CLEAR_REG_SET (&reg_has_output_reload);
4949 /* Discard all record of any value reloaded from X,
4950 or reloaded in X from someplace else;
4951 unless X is an output reload reg of the current insn.
4953 X may be a hard reg (the reload reg)
4954 or it may be a pseudo reg that was reloaded from.
4956 When DATA is non-NULL just mark the registers in regset
4957 to be forgotten later. */
4959 static void
4960 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4961 void *data)
4963 unsigned int regno;
4964 unsigned int nr;
4965 regset regs = (regset) data;
4967 /* note_stores does give us subregs of hard regs,
4968 subreg_regno_offset requires a hard reg. */
4969 while (GET_CODE (x) == SUBREG)
4971 /* We ignore the subreg offset when calculating the regno,
4972 because we are using the entire underlying hard register
4973 below. */
4974 x = SUBREG_REG (x);
4977 if (!REG_P (x))
4978 return;
4980 regno = REGNO (x);
4982 if (regno >= FIRST_PSEUDO_REGISTER)
4983 nr = 1;
4984 else
4986 unsigned int i;
4988 nr = hard_regno_nregs[regno][GET_MODE (x)];
4989 /* Storing into a spilled-reg invalidates its contents.
4990 This can happen if a block-local pseudo is allocated to that reg
4991 and it wasn't spilled because this block's total need is 0.
4992 Then some insn might have an optional reload and use this reg. */
4993 if (!regs)
4994 for (i = 0; i < nr; i++)
4995 /* But don't do this if the reg actually serves as an output
4996 reload reg in the current instruction. */
4997 if (n_reloads == 0
4998 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
5000 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
5001 spill_reg_store[regno + i] = 0;
5005 if (regs)
5006 while (nr-- > 0)
5007 SET_REGNO_REG_SET (regs, regno + nr);
5008 else
5010 /* Since value of X has changed,
5011 forget any value previously copied from it. */
5013 while (nr-- > 0)
5014 /* But don't forget a copy if this is the output reload
5015 that establishes the copy's validity. */
5016 if (n_reloads == 0
5017 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
5018 reg_last_reload_reg[regno + nr] = 0;
5022 /* Forget the reloads marked in regset by previous function. */
5023 static void
5024 forget_marked_reloads (regset regs)
5026 unsigned int reg;
5027 reg_set_iterator rsi;
5028 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
5030 if (reg < FIRST_PSEUDO_REGISTER
5031 /* But don't do this if the reg actually serves as an output
5032 reload reg in the current instruction. */
5033 && (n_reloads == 0
5034 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
5036 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
5037 spill_reg_store[reg] = 0;
5039 if (n_reloads == 0
5040 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
5041 reg_last_reload_reg[reg] = 0;
5045 /* The following HARD_REG_SETs indicate when each hard register is
5046 used for a reload of various parts of the current insn. */
5048 /* If reg is unavailable for all reloads. */
5049 static HARD_REG_SET reload_reg_unavailable;
5050 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
5051 static HARD_REG_SET reload_reg_used;
5052 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
5053 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
5054 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
5055 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
5056 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
5057 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
5058 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
5059 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
5060 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
5061 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5062 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5063 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5064 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5065 static HARD_REG_SET reload_reg_used_in_op_addr;
5066 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5067 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5068 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5069 static HARD_REG_SET reload_reg_used_in_insn;
5070 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5071 static HARD_REG_SET reload_reg_used_in_other_addr;
5073 /* If reg is in use as a reload reg for any sort of reload. */
5074 static HARD_REG_SET reload_reg_used_at_all;
5076 /* If reg is use as an inherited reload. We just mark the first register
5077 in the group. */
5078 static HARD_REG_SET reload_reg_used_for_inherit;
5080 /* Records which hard regs are used in any way, either as explicit use or
5081 by being allocated to a pseudo during any point of the current insn. */
5082 static HARD_REG_SET reg_used_in_insn;
5084 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5085 TYPE. MODE is used to indicate how many consecutive regs are
5086 actually used. */
5088 static void
5089 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5090 machine_mode mode)
5092 switch (type)
5094 case RELOAD_OTHER:
5095 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5096 break;
5098 case RELOAD_FOR_INPUT_ADDRESS:
5099 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5100 break;
5102 case RELOAD_FOR_INPADDR_ADDRESS:
5103 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5104 break;
5106 case RELOAD_FOR_OUTPUT_ADDRESS:
5107 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5108 break;
5110 case RELOAD_FOR_OUTADDR_ADDRESS:
5111 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5112 break;
5114 case RELOAD_FOR_OPERAND_ADDRESS:
5115 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5116 break;
5118 case RELOAD_FOR_OPADDR_ADDR:
5119 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5120 break;
5122 case RELOAD_FOR_OTHER_ADDRESS:
5123 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5124 break;
5126 case RELOAD_FOR_INPUT:
5127 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5128 break;
5130 case RELOAD_FOR_OUTPUT:
5131 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5132 break;
5134 case RELOAD_FOR_INSN:
5135 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5136 break;
5139 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5142 /* Similarly, but show REGNO is no longer in use for a reload. */
5144 static void
5145 clear_reload_reg_in_use (unsigned int regno, int opnum,
5146 enum reload_type type, machine_mode mode)
5148 unsigned int nregs = hard_regno_nregs[regno][mode];
5149 unsigned int start_regno, end_regno, r;
5150 int i;
5151 /* A complication is that for some reload types, inheritance might
5152 allow multiple reloads of the same types to share a reload register.
5153 We set check_opnum if we have to check only reloads with the same
5154 operand number, and check_any if we have to check all reloads. */
5155 int check_opnum = 0;
5156 int check_any = 0;
5157 HARD_REG_SET *used_in_set;
5159 switch (type)
5161 case RELOAD_OTHER:
5162 used_in_set = &reload_reg_used;
5163 break;
5165 case RELOAD_FOR_INPUT_ADDRESS:
5166 used_in_set = &reload_reg_used_in_input_addr[opnum];
5167 break;
5169 case RELOAD_FOR_INPADDR_ADDRESS:
5170 check_opnum = 1;
5171 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5172 break;
5174 case RELOAD_FOR_OUTPUT_ADDRESS:
5175 used_in_set = &reload_reg_used_in_output_addr[opnum];
5176 break;
5178 case RELOAD_FOR_OUTADDR_ADDRESS:
5179 check_opnum = 1;
5180 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5181 break;
5183 case RELOAD_FOR_OPERAND_ADDRESS:
5184 used_in_set = &reload_reg_used_in_op_addr;
5185 break;
5187 case RELOAD_FOR_OPADDR_ADDR:
5188 check_any = 1;
5189 used_in_set = &reload_reg_used_in_op_addr_reload;
5190 break;
5192 case RELOAD_FOR_OTHER_ADDRESS:
5193 used_in_set = &reload_reg_used_in_other_addr;
5194 check_any = 1;
5195 break;
5197 case RELOAD_FOR_INPUT:
5198 used_in_set = &reload_reg_used_in_input[opnum];
5199 break;
5201 case RELOAD_FOR_OUTPUT:
5202 used_in_set = &reload_reg_used_in_output[opnum];
5203 break;
5205 case RELOAD_FOR_INSN:
5206 used_in_set = &reload_reg_used_in_insn;
5207 break;
5208 default:
5209 gcc_unreachable ();
5211 /* We resolve conflicts with remaining reloads of the same type by
5212 excluding the intervals of reload registers by them from the
5213 interval of freed reload registers. Since we only keep track of
5214 one set of interval bounds, we might have to exclude somewhat
5215 more than what would be necessary if we used a HARD_REG_SET here.
5216 But this should only happen very infrequently, so there should
5217 be no reason to worry about it. */
5219 start_regno = regno;
5220 end_regno = regno + nregs;
5221 if (check_opnum || check_any)
5223 for (i = n_reloads - 1; i >= 0; i--)
5225 if (rld[i].when_needed == type
5226 && (check_any || rld[i].opnum == opnum)
5227 && rld[i].reg_rtx)
5229 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5230 unsigned int conflict_end
5231 = end_hard_regno (rld[i].mode, conflict_start);
5233 /* If there is an overlap with the first to-be-freed register,
5234 adjust the interval start. */
5235 if (conflict_start <= start_regno && conflict_end > start_regno)
5236 start_regno = conflict_end;
5237 /* Otherwise, if there is a conflict with one of the other
5238 to-be-freed registers, adjust the interval end. */
5239 if (conflict_start > start_regno && conflict_start < end_regno)
5240 end_regno = conflict_start;
5245 for (r = start_regno; r < end_regno; r++)
5246 CLEAR_HARD_REG_BIT (*used_in_set, r);
5249 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5250 specified by OPNUM and TYPE. */
5252 static int
5253 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5255 int i;
5257 /* In use for a RELOAD_OTHER means it's not available for anything. */
5258 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5259 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5260 return 0;
5262 switch (type)
5264 case RELOAD_OTHER:
5265 /* In use for anything means we can't use it for RELOAD_OTHER. */
5266 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5267 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5268 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5269 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5270 return 0;
5272 for (i = 0; i < reload_n_operands; i++)
5273 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5274 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5275 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5276 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5277 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5278 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5279 return 0;
5281 return 1;
5283 case RELOAD_FOR_INPUT:
5284 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5285 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5286 return 0;
5288 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5289 return 0;
5291 /* If it is used for some other input, can't use it. */
5292 for (i = 0; i < reload_n_operands; i++)
5293 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5294 return 0;
5296 /* If it is used in a later operand's address, can't use it. */
5297 for (i = opnum + 1; i < reload_n_operands; i++)
5298 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5299 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5300 return 0;
5302 return 1;
5304 case RELOAD_FOR_INPUT_ADDRESS:
5305 /* Can't use a register if it is used for an input address for this
5306 operand or used as an input in an earlier one. */
5307 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5308 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5309 return 0;
5311 for (i = 0; i < opnum; i++)
5312 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5313 return 0;
5315 return 1;
5317 case RELOAD_FOR_INPADDR_ADDRESS:
5318 /* Can't use a register if it is used for an input address
5319 for this operand or used as an input in an earlier
5320 one. */
5321 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5322 return 0;
5324 for (i = 0; i < opnum; i++)
5325 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5326 return 0;
5328 return 1;
5330 case RELOAD_FOR_OUTPUT_ADDRESS:
5331 /* Can't use a register if it is used for an output address for this
5332 operand or used as an output in this or a later operand. Note
5333 that multiple output operands are emitted in reverse order, so
5334 the conflicting ones are those with lower indices. */
5335 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5336 return 0;
5338 for (i = 0; i <= opnum; i++)
5339 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5340 return 0;
5342 return 1;
5344 case RELOAD_FOR_OUTADDR_ADDRESS:
5345 /* Can't use a register if it is used for an output address
5346 for this operand or used as an output in this or a
5347 later operand. Note that multiple output operands are
5348 emitted in reverse order, so the conflicting ones are
5349 those with lower indices. */
5350 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5351 return 0;
5353 for (i = 0; i <= opnum; i++)
5354 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5355 return 0;
5357 return 1;
5359 case RELOAD_FOR_OPERAND_ADDRESS:
5360 for (i = 0; i < reload_n_operands; i++)
5361 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5362 return 0;
5364 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5365 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5367 case RELOAD_FOR_OPADDR_ADDR:
5368 for (i = 0; i < reload_n_operands; i++)
5369 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5370 return 0;
5372 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5374 case RELOAD_FOR_OUTPUT:
5375 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5376 outputs, or an operand address for this or an earlier output.
5377 Note that multiple output operands are emitted in reverse order,
5378 so the conflicting ones are those with higher indices. */
5379 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5380 return 0;
5382 for (i = 0; i < reload_n_operands; i++)
5383 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5384 return 0;
5386 for (i = opnum; i < reload_n_operands; i++)
5387 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5388 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5389 return 0;
5391 return 1;
5393 case RELOAD_FOR_INSN:
5394 for (i = 0; i < reload_n_operands; i++)
5395 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5396 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5397 return 0;
5399 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5400 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5402 case RELOAD_FOR_OTHER_ADDRESS:
5403 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5405 default:
5406 gcc_unreachable ();
5410 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5411 the number RELOADNUM, is still available in REGNO at the end of the insn.
5413 We can assume that the reload reg was already tested for availability
5414 at the time it is needed, and we should not check this again,
5415 in case the reg has already been marked in use. */
5417 static int
5418 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5420 int opnum = rld[reloadnum].opnum;
5421 enum reload_type type = rld[reloadnum].when_needed;
5422 int i;
5424 /* See if there is a reload with the same type for this operand, using
5425 the same register. This case is not handled by the code below. */
5426 for (i = reloadnum + 1; i < n_reloads; i++)
5428 rtx reg;
5429 int nregs;
5431 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5432 continue;
5433 reg = rld[i].reg_rtx;
5434 if (reg == NULL_RTX)
5435 continue;
5436 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5437 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5438 return 0;
5441 switch (type)
5443 case RELOAD_OTHER:
5444 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5445 its value must reach the end. */
5446 return 1;
5448 /* If this use is for part of the insn,
5449 its value reaches if no subsequent part uses the same register.
5450 Just like the above function, don't try to do this with lots
5451 of fallthroughs. */
5453 case RELOAD_FOR_OTHER_ADDRESS:
5454 /* Here we check for everything else, since these don't conflict
5455 with anything else and everything comes later. */
5457 for (i = 0; i < reload_n_operands; i++)
5458 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5459 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5460 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5461 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5462 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5463 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5464 return 0;
5466 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5467 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5468 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5469 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5471 case RELOAD_FOR_INPUT_ADDRESS:
5472 case RELOAD_FOR_INPADDR_ADDRESS:
5473 /* Similar, except that we check only for this and subsequent inputs
5474 and the address of only subsequent inputs and we do not need
5475 to check for RELOAD_OTHER objects since they are known not to
5476 conflict. */
5478 for (i = opnum; i < reload_n_operands; i++)
5479 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5480 return 0;
5482 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5483 could be killed if the register is also used by reload with type
5484 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5485 if (type == RELOAD_FOR_INPADDR_ADDRESS
5486 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5487 return 0;
5489 for (i = opnum + 1; i < reload_n_operands; i++)
5490 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5491 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5492 return 0;
5494 for (i = 0; i < reload_n_operands; i++)
5495 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5496 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5497 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5498 return 0;
5500 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5501 return 0;
5503 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5504 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5505 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5507 case RELOAD_FOR_INPUT:
5508 /* Similar to input address, except we start at the next operand for
5509 both input and input address and we do not check for
5510 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5511 would conflict. */
5513 for (i = opnum + 1; i < reload_n_operands; i++)
5514 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5515 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5516 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5517 return 0;
5519 /* ... fall through ... */
5521 case RELOAD_FOR_OPERAND_ADDRESS:
5522 /* Check outputs and their addresses. */
5524 for (i = 0; i < reload_n_operands; i++)
5525 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5526 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5527 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5528 return 0;
5530 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5532 case RELOAD_FOR_OPADDR_ADDR:
5533 for (i = 0; i < reload_n_operands; i++)
5534 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5535 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5536 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5537 return 0;
5539 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5540 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5541 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5543 case RELOAD_FOR_INSN:
5544 /* These conflict with other outputs with RELOAD_OTHER. So
5545 we need only check for output addresses. */
5547 opnum = reload_n_operands;
5549 /* ... fall through ... */
5551 case RELOAD_FOR_OUTPUT:
5552 case RELOAD_FOR_OUTPUT_ADDRESS:
5553 case RELOAD_FOR_OUTADDR_ADDRESS:
5554 /* We already know these can't conflict with a later output. So the
5555 only thing to check are later output addresses.
5556 Note that multiple output operands are emitted in reverse order,
5557 so the conflicting ones are those with lower indices. */
5558 for (i = 0; i < opnum; i++)
5559 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5560 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5561 return 0;
5563 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5564 could be killed if the register is also used by reload with type
5565 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5566 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5567 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5568 return 0;
5570 return 1;
5572 default:
5573 gcc_unreachable ();
5577 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5578 every register in REG. */
5580 static bool
5581 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5583 unsigned int i;
5585 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5586 if (!reload_reg_reaches_end_p (i, reloadnum))
5587 return false;
5588 return true;
5592 /* Returns whether R1 and R2 are uniquely chained: the value of one
5593 is used by the other, and that value is not used by any other
5594 reload for this insn. This is used to partially undo the decision
5595 made in find_reloads when in the case of multiple
5596 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5597 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5598 reloads. This code tries to avoid the conflict created by that
5599 change. It might be cleaner to explicitly keep track of which
5600 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5601 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5602 this after the fact. */
5603 static bool
5604 reloads_unique_chain_p (int r1, int r2)
5606 int i;
5608 /* We only check input reloads. */
5609 if (! rld[r1].in || ! rld[r2].in)
5610 return false;
5612 /* Avoid anything with output reloads. */
5613 if (rld[r1].out || rld[r2].out)
5614 return false;
5616 /* "chained" means one reload is a component of the other reload,
5617 not the same as the other reload. */
5618 if (rld[r1].opnum != rld[r2].opnum
5619 || rtx_equal_p (rld[r1].in, rld[r2].in)
5620 || rld[r1].optional || rld[r2].optional
5621 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5622 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5623 return false;
5625 /* The following loop assumes that r1 is the reload that feeds r2. */
5626 if (r1 > r2)
5628 int tmp = r2;
5629 r2 = r1;
5630 r1 = tmp;
5633 for (i = 0; i < n_reloads; i ++)
5634 /* Look for input reloads that aren't our two */
5635 if (i != r1 && i != r2 && rld[i].in)
5637 /* If our reload is mentioned at all, it isn't a simple chain. */
5638 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5639 return false;
5641 return true;
5644 /* The recursive function change all occurrences of WHAT in *WHERE
5645 to REPL. */
5646 static void
5647 substitute (rtx *where, const_rtx what, rtx repl)
5649 const char *fmt;
5650 int i;
5651 enum rtx_code code;
5653 if (*where == 0)
5654 return;
5656 if (*where == what || rtx_equal_p (*where, what))
5658 /* Record the location of the changed rtx. */
5659 substitute_stack.safe_push (where);
5660 *where = repl;
5661 return;
5664 code = GET_CODE (*where);
5665 fmt = GET_RTX_FORMAT (code);
5666 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5668 if (fmt[i] == 'E')
5670 int j;
5672 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5673 substitute (&XVECEXP (*where, i, j), what, repl);
5675 else if (fmt[i] == 'e')
5676 substitute (&XEXP (*where, i), what, repl);
5680 /* The function returns TRUE if chain of reload R1 and R2 (in any
5681 order) can be evaluated without usage of intermediate register for
5682 the reload containing another reload. It is important to see
5683 gen_reload to understand what the function is trying to do. As an
5684 example, let us have reload chain
5686 r2: const
5687 r1: <something> + const
5689 and reload R2 got reload reg HR. The function returns true if
5690 there is a correct insn HR = HR + <something>. Otherwise,
5691 gen_reload will use intermediate register (and this is the reload
5692 reg for R1) to reload <something>.
5694 We need this function to find a conflict for chain reloads. In our
5695 example, if HR = HR + <something> is incorrect insn, then we cannot
5696 use HR as a reload register for R2. If we do use it then we get a
5697 wrong code:
5699 HR = const
5700 HR = <something>
5701 HR = HR + HR
5704 static bool
5705 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5707 /* Assume other cases in gen_reload are not possible for
5708 chain reloads or do need an intermediate hard registers. */
5709 bool result = true;
5710 int regno, code;
5711 rtx out, in;
5712 rtx_insn *insn;
5713 rtx_insn *last = get_last_insn ();
5715 /* Make r2 a component of r1. */
5716 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5717 std::swap (r1, r2);
5719 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5720 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5721 gcc_assert (regno >= 0);
5722 out = gen_rtx_REG (rld[r1].mode, regno);
5723 in = rld[r1].in;
5724 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5726 /* If IN is a paradoxical SUBREG, remove it and try to put the
5727 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5728 strip_paradoxical_subreg (&in, &out);
5730 if (GET_CODE (in) == PLUS
5731 && (REG_P (XEXP (in, 0))
5732 || GET_CODE (XEXP (in, 0)) == SUBREG
5733 || MEM_P (XEXP (in, 0)))
5734 && (REG_P (XEXP (in, 1))
5735 || GET_CODE (XEXP (in, 1)) == SUBREG
5736 || CONSTANT_P (XEXP (in, 1))
5737 || MEM_P (XEXP (in, 1))))
5739 insn = emit_insn (gen_rtx_SET (out, in));
5740 code = recog_memoized (insn);
5741 result = false;
5743 if (code >= 0)
5745 extract_insn (insn);
5746 /* We want constrain operands to treat this insn strictly in
5747 its validity determination, i.e., the way it would after
5748 reload has completed. */
5749 result = constrain_operands (1, get_enabled_alternatives (insn));
5752 delete_insns_since (last);
5755 /* Restore the original value at each changed address within R1. */
5756 while (!substitute_stack.is_empty ())
5758 rtx *where = substitute_stack.pop ();
5759 *where = rld[r2].in;
5762 return result;
5765 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5766 Return 0 otherwise.
5768 This function uses the same algorithm as reload_reg_free_p above. */
5770 static int
5771 reloads_conflict (int r1, int r2)
5773 enum reload_type r1_type = rld[r1].when_needed;
5774 enum reload_type r2_type = rld[r2].when_needed;
5775 int r1_opnum = rld[r1].opnum;
5776 int r2_opnum = rld[r2].opnum;
5778 /* RELOAD_OTHER conflicts with everything. */
5779 if (r2_type == RELOAD_OTHER)
5780 return 1;
5782 /* Otherwise, check conflicts differently for each type. */
5784 switch (r1_type)
5786 case RELOAD_FOR_INPUT:
5787 return (r2_type == RELOAD_FOR_INSN
5788 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5789 || r2_type == RELOAD_FOR_OPADDR_ADDR
5790 || r2_type == RELOAD_FOR_INPUT
5791 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5792 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5793 && r2_opnum > r1_opnum));
5795 case RELOAD_FOR_INPUT_ADDRESS:
5796 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5797 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5799 case RELOAD_FOR_INPADDR_ADDRESS:
5800 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5801 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5803 case RELOAD_FOR_OUTPUT_ADDRESS:
5804 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5805 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5807 case RELOAD_FOR_OUTADDR_ADDRESS:
5808 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5809 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5811 case RELOAD_FOR_OPERAND_ADDRESS:
5812 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5813 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5814 && (!reloads_unique_chain_p (r1, r2)
5815 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5817 case RELOAD_FOR_OPADDR_ADDR:
5818 return (r2_type == RELOAD_FOR_INPUT
5819 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5821 case RELOAD_FOR_OUTPUT:
5822 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5823 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5824 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5825 && r2_opnum >= r1_opnum));
5827 case RELOAD_FOR_INSN:
5828 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5829 || r2_type == RELOAD_FOR_INSN
5830 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5832 case RELOAD_FOR_OTHER_ADDRESS:
5833 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5835 case RELOAD_OTHER:
5836 return 1;
5838 default:
5839 gcc_unreachable ();
5843 /* Indexed by reload number, 1 if incoming value
5844 inherited from previous insns. */
5845 static char reload_inherited[MAX_RELOADS];
5847 /* For an inherited reload, this is the insn the reload was inherited from,
5848 if we know it. Otherwise, this is 0. */
5849 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5851 /* If nonzero, this is a place to get the value of the reload,
5852 rather than using reload_in. */
5853 static rtx reload_override_in[MAX_RELOADS];
5855 /* For each reload, the hard register number of the register used,
5856 or -1 if we did not need a register for this reload. */
5857 static int reload_spill_index[MAX_RELOADS];
5859 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5860 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5862 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5863 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5865 /* Subroutine of free_for_value_p, used to check a single register.
5866 START_REGNO is the starting regno of the full reload register
5867 (possibly comprising multiple hard registers) that we are considering. */
5869 static int
5870 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5871 enum reload_type type, rtx value, rtx out,
5872 int reloadnum, int ignore_address_reloads)
5874 int time1;
5875 /* Set if we see an input reload that must not share its reload register
5876 with any new earlyclobber, but might otherwise share the reload
5877 register with an output or input-output reload. */
5878 int check_earlyclobber = 0;
5879 int i;
5880 int copy = 0;
5882 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5883 return 0;
5885 if (out == const0_rtx)
5887 copy = 1;
5888 out = NULL_RTX;
5891 /* We use some pseudo 'time' value to check if the lifetimes of the
5892 new register use would overlap with the one of a previous reload
5893 that is not read-only or uses a different value.
5894 The 'time' used doesn't have to be linear in any shape or form, just
5895 monotonic.
5896 Some reload types use different 'buckets' for each operand.
5897 So there are MAX_RECOG_OPERANDS different time values for each
5898 such reload type.
5899 We compute TIME1 as the time when the register for the prospective
5900 new reload ceases to be live, and TIME2 for each existing
5901 reload as the time when that the reload register of that reload
5902 becomes live.
5903 Where there is little to be gained by exact lifetime calculations,
5904 we just make conservative assumptions, i.e. a longer lifetime;
5905 this is done in the 'default:' cases. */
5906 switch (type)
5908 case RELOAD_FOR_OTHER_ADDRESS:
5909 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5910 time1 = copy ? 0 : 1;
5911 break;
5912 case RELOAD_OTHER:
5913 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5914 break;
5915 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5916 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5917 respectively, to the time values for these, we get distinct time
5918 values. To get distinct time values for each operand, we have to
5919 multiply opnum by at least three. We round that up to four because
5920 multiply by four is often cheaper. */
5921 case RELOAD_FOR_INPADDR_ADDRESS:
5922 time1 = opnum * 4 + 2;
5923 break;
5924 case RELOAD_FOR_INPUT_ADDRESS:
5925 time1 = opnum * 4 + 3;
5926 break;
5927 case RELOAD_FOR_INPUT:
5928 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5929 executes (inclusive). */
5930 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5931 break;
5932 case RELOAD_FOR_OPADDR_ADDR:
5933 /* opnum * 4 + 4
5934 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5935 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5936 break;
5937 case RELOAD_FOR_OPERAND_ADDRESS:
5938 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5939 is executed. */
5940 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5941 break;
5942 case RELOAD_FOR_OUTADDR_ADDRESS:
5943 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5944 break;
5945 case RELOAD_FOR_OUTPUT_ADDRESS:
5946 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5947 break;
5948 default:
5949 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5952 for (i = 0; i < n_reloads; i++)
5954 rtx reg = rld[i].reg_rtx;
5955 if (reg && REG_P (reg)
5956 && ((unsigned) regno - true_regnum (reg)
5957 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5958 && i != reloadnum)
5960 rtx other_input = rld[i].in;
5962 /* If the other reload loads the same input value, that
5963 will not cause a conflict only if it's loading it into
5964 the same register. */
5965 if (true_regnum (reg) != start_regno)
5966 other_input = NULL_RTX;
5967 if (! other_input || ! rtx_equal_p (other_input, value)
5968 || rld[i].out || out)
5970 int time2;
5971 switch (rld[i].when_needed)
5973 case RELOAD_FOR_OTHER_ADDRESS:
5974 time2 = 0;
5975 break;
5976 case RELOAD_FOR_INPADDR_ADDRESS:
5977 /* find_reloads makes sure that a
5978 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5979 by at most one - the first -
5980 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5981 address reload is inherited, the address address reload
5982 goes away, so we can ignore this conflict. */
5983 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5984 && ignore_address_reloads
5985 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5986 Then the address address is still needed to store
5987 back the new address. */
5988 && ! rld[reloadnum].out)
5989 continue;
5990 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5991 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5992 reloads go away. */
5993 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5994 && ignore_address_reloads
5995 /* Unless we are reloading an auto_inc expression. */
5996 && ! rld[reloadnum].out)
5997 continue;
5998 time2 = rld[i].opnum * 4 + 2;
5999 break;
6000 case RELOAD_FOR_INPUT_ADDRESS:
6001 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
6002 && ignore_address_reloads
6003 && ! rld[reloadnum].out)
6004 continue;
6005 time2 = rld[i].opnum * 4 + 3;
6006 break;
6007 case RELOAD_FOR_INPUT:
6008 time2 = rld[i].opnum * 4 + 4;
6009 check_earlyclobber = 1;
6010 break;
6011 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
6012 == MAX_RECOG_OPERAND * 4 */
6013 case RELOAD_FOR_OPADDR_ADDR:
6014 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
6015 && ignore_address_reloads
6016 && ! rld[reloadnum].out)
6017 continue;
6018 time2 = MAX_RECOG_OPERANDS * 4 + 1;
6019 break;
6020 case RELOAD_FOR_OPERAND_ADDRESS:
6021 time2 = MAX_RECOG_OPERANDS * 4 + 2;
6022 check_earlyclobber = 1;
6023 break;
6024 case RELOAD_FOR_INSN:
6025 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6026 break;
6027 case RELOAD_FOR_OUTPUT:
6028 /* All RELOAD_FOR_OUTPUT reloads become live just after the
6029 instruction is executed. */
6030 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6031 break;
6032 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
6033 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
6034 value. */
6035 case RELOAD_FOR_OUTADDR_ADDRESS:
6036 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
6037 && ignore_address_reloads
6038 && ! rld[reloadnum].out)
6039 continue;
6040 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
6041 break;
6042 case RELOAD_FOR_OUTPUT_ADDRESS:
6043 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
6044 break;
6045 case RELOAD_OTHER:
6046 /* If there is no conflict in the input part, handle this
6047 like an output reload. */
6048 if (! rld[i].in || rtx_equal_p (other_input, value))
6050 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6051 /* Earlyclobbered outputs must conflict with inputs. */
6052 if (earlyclobber_operand_p (rld[i].out))
6053 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6055 break;
6057 time2 = 1;
6058 /* RELOAD_OTHER might be live beyond instruction execution,
6059 but this is not obvious when we set time2 = 1. So check
6060 here if there might be a problem with the new reload
6061 clobbering the register used by the RELOAD_OTHER. */
6062 if (out)
6063 return 0;
6064 break;
6065 default:
6066 return 0;
6068 if ((time1 >= time2
6069 && (! rld[i].in || rld[i].out
6070 || ! rtx_equal_p (other_input, value)))
6071 || (out && rld[reloadnum].out_reg
6072 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6073 return 0;
6078 /* Earlyclobbered outputs must conflict with inputs. */
6079 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6080 return 0;
6082 return 1;
6085 /* Return 1 if the value in reload reg REGNO, as used by a reload
6086 needed for the part of the insn specified by OPNUM and TYPE,
6087 may be used to load VALUE into it.
6089 MODE is the mode in which the register is used, this is needed to
6090 determine how many hard regs to test.
6092 Other read-only reloads with the same value do not conflict
6093 unless OUT is nonzero and these other reloads have to live while
6094 output reloads live.
6095 If OUT is CONST0_RTX, this is a special case: it means that the
6096 test should not be for using register REGNO as reload register, but
6097 for copying from register REGNO into the reload register.
6099 RELOADNUM is the number of the reload we want to load this value for;
6100 a reload does not conflict with itself.
6102 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6103 reloads that load an address for the very reload we are considering.
6105 The caller has to make sure that there is no conflict with the return
6106 register. */
6108 static int
6109 free_for_value_p (int regno, machine_mode mode, int opnum,
6110 enum reload_type type, rtx value, rtx out, int reloadnum,
6111 int ignore_address_reloads)
6113 int nregs = hard_regno_nregs[regno][mode];
6114 while (nregs-- > 0)
6115 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6116 value, out, reloadnum,
6117 ignore_address_reloads))
6118 return 0;
6119 return 1;
6122 /* Return nonzero if the rtx X is invariant over the current function. */
6123 /* ??? Actually, the places where we use this expect exactly what is
6124 tested here, and not everything that is function invariant. In
6125 particular, the frame pointer and arg pointer are special cased;
6126 pic_offset_table_rtx is not, and we must not spill these things to
6127 memory. */
6130 function_invariant_p (const_rtx x)
6132 if (CONSTANT_P (x))
6133 return 1;
6134 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6135 return 1;
6136 if (GET_CODE (x) == PLUS
6137 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6138 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6139 return 1;
6140 return 0;
6143 /* Determine whether the reload reg X overlaps any rtx'es used for
6144 overriding inheritance. Return nonzero if so. */
6146 static int
6147 conflicts_with_override (rtx x)
6149 int i;
6150 for (i = 0; i < n_reloads; i++)
6151 if (reload_override_in[i]
6152 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6153 return 1;
6154 return 0;
6157 /* Give an error message saying we failed to find a reload for INSN,
6158 and clear out reload R. */
6159 static void
6160 failed_reload (rtx_insn *insn, int r)
6162 if (asm_noperands (PATTERN (insn)) < 0)
6163 /* It's the compiler's fault. */
6164 fatal_insn ("could not find a spill register", insn);
6166 /* It's the user's fault; the operand's mode and constraint
6167 don't match. Disable this reload so we don't crash in final. */
6168 error_for_asm (insn,
6169 "%<asm%> operand constraint incompatible with operand size");
6170 rld[r].in = 0;
6171 rld[r].out = 0;
6172 rld[r].reg_rtx = 0;
6173 rld[r].optional = 1;
6174 rld[r].secondary_p = 1;
6177 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6178 for reload R. If it's valid, get an rtx for it. Return nonzero if
6179 successful. */
6180 static int
6181 set_reload_reg (int i, int r)
6183 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6184 parameter. */
6185 int regno ATTRIBUTE_UNUSED;
6186 rtx reg = spill_reg_rtx[i];
6188 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6189 spill_reg_rtx[i] = reg
6190 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6192 regno = true_regnum (reg);
6194 /* Detect when the reload reg can't hold the reload mode.
6195 This used to be one `if', but Sequent compiler can't handle that. */
6196 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6198 machine_mode test_mode = VOIDmode;
6199 if (rld[r].in)
6200 test_mode = GET_MODE (rld[r].in);
6201 /* If rld[r].in has VOIDmode, it means we will load it
6202 in whatever mode the reload reg has: to wit, rld[r].mode.
6203 We have already tested that for validity. */
6204 /* Aside from that, we need to test that the expressions
6205 to reload from or into have modes which are valid for this
6206 reload register. Otherwise the reload insns would be invalid. */
6207 if (! (rld[r].in != 0 && test_mode != VOIDmode
6208 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6209 if (! (rld[r].out != 0
6210 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6212 /* The reg is OK. */
6213 last_spill_reg = i;
6215 /* Mark as in use for this insn the reload regs we use
6216 for this. */
6217 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6218 rld[r].when_needed, rld[r].mode);
6220 rld[r].reg_rtx = reg;
6221 reload_spill_index[r] = spill_regs[i];
6222 return 1;
6225 return 0;
6228 /* Find a spill register to use as a reload register for reload R.
6229 LAST_RELOAD is nonzero if this is the last reload for the insn being
6230 processed.
6232 Set rld[R].reg_rtx to the register allocated.
6234 We return 1 if successful, or 0 if we couldn't find a spill reg and
6235 we didn't change anything. */
6237 static int
6238 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6239 int last_reload)
6241 int i, pass, count;
6243 /* If we put this reload ahead, thinking it is a group,
6244 then insist on finding a group. Otherwise we can grab a
6245 reg that some other reload needs.
6246 (That can happen when we have a 68000 DATA_OR_FP_REG
6247 which is a group of data regs or one fp reg.)
6248 We need not be so restrictive if there are no more reloads
6249 for this insn.
6251 ??? Really it would be nicer to have smarter handling
6252 for that kind of reg class, where a problem like this is normal.
6253 Perhaps those classes should be avoided for reloading
6254 by use of more alternatives. */
6256 int force_group = rld[r].nregs > 1 && ! last_reload;
6258 /* If we want a single register and haven't yet found one,
6259 take any reg in the right class and not in use.
6260 If we want a consecutive group, here is where we look for it.
6262 We use three passes so we can first look for reload regs to
6263 reuse, which are already in use for other reloads in this insn,
6264 and only then use additional registers which are not "bad", then
6265 finally any register.
6267 I think that maximizing reuse is needed to make sure we don't
6268 run out of reload regs. Suppose we have three reloads, and
6269 reloads A and B can share regs. These need two regs.
6270 Suppose A and B are given different regs.
6271 That leaves none for C. */
6272 for (pass = 0; pass < 3; pass++)
6274 /* I is the index in spill_regs.
6275 We advance it round-robin between insns to use all spill regs
6276 equally, so that inherited reloads have a chance
6277 of leapfrogging each other. */
6279 i = last_spill_reg;
6281 for (count = 0; count < n_spills; count++)
6283 int rclass = (int) rld[r].rclass;
6284 int regnum;
6286 i++;
6287 if (i >= n_spills)
6288 i -= n_spills;
6289 regnum = spill_regs[i];
6291 if ((reload_reg_free_p (regnum, rld[r].opnum,
6292 rld[r].when_needed)
6293 || (rld[r].in
6294 /* We check reload_reg_used to make sure we
6295 don't clobber the return register. */
6296 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6297 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6298 rld[r].when_needed, rld[r].in,
6299 rld[r].out, r, 1)))
6300 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6301 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6302 /* Look first for regs to share, then for unshared. But
6303 don't share regs used for inherited reloads; they are
6304 the ones we want to preserve. */
6305 && (pass
6306 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6307 regnum)
6308 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6309 regnum))))
6311 int nr = hard_regno_nregs[regnum][rld[r].mode];
6313 /* During the second pass we want to avoid reload registers
6314 which are "bad" for this reload. */
6315 if (pass == 1
6316 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6317 continue;
6319 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6320 (on 68000) got us two FP regs. If NR is 1,
6321 we would reject both of them. */
6322 if (force_group)
6323 nr = rld[r].nregs;
6324 /* If we need only one reg, we have already won. */
6325 if (nr == 1)
6327 /* But reject a single reg if we demand a group. */
6328 if (force_group)
6329 continue;
6330 break;
6332 /* Otherwise check that as many consecutive regs as we need
6333 are available here. */
6334 while (nr > 1)
6336 int regno = regnum + nr - 1;
6337 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6338 && spill_reg_order[regno] >= 0
6339 && reload_reg_free_p (regno, rld[r].opnum,
6340 rld[r].when_needed)))
6341 break;
6342 nr--;
6344 if (nr == 1)
6345 break;
6349 /* If we found something on the current pass, omit later passes. */
6350 if (count < n_spills)
6351 break;
6354 /* We should have found a spill register by now. */
6355 if (count >= n_spills)
6356 return 0;
6358 /* I is the index in SPILL_REG_RTX of the reload register we are to
6359 allocate. Get an rtx for it and find its register number. */
6361 return set_reload_reg (i, r);
6364 /* Initialize all the tables needed to allocate reload registers.
6365 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6366 is the array we use to restore the reg_rtx field for every reload. */
6368 static void
6369 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6371 int i;
6373 for (i = 0; i < n_reloads; i++)
6374 rld[i].reg_rtx = save_reload_reg_rtx[i];
6376 memset (reload_inherited, 0, MAX_RELOADS);
6377 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6378 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6380 CLEAR_HARD_REG_SET (reload_reg_used);
6381 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6382 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6383 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6384 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6385 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6387 CLEAR_HARD_REG_SET (reg_used_in_insn);
6389 HARD_REG_SET tmp;
6390 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6391 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6392 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6393 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6394 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6395 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6398 for (i = 0; i < reload_n_operands; i++)
6400 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6401 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6402 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6403 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6404 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6405 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6408 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6410 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6412 for (i = 0; i < n_reloads; i++)
6413 /* If we have already decided to use a certain register,
6414 don't use it in another way. */
6415 if (rld[i].reg_rtx)
6416 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6417 rld[i].when_needed, rld[i].mode);
6420 #ifdef SECONDARY_MEMORY_NEEDED
6421 /* If X is not a subreg, return it unmodified. If it is a subreg,
6422 look up whether we made a replacement for the SUBREG_REG. Return
6423 either the replacement or the SUBREG_REG. */
6425 static rtx
6426 replaced_subreg (rtx x)
6428 if (GET_CODE (x) == SUBREG)
6429 return find_replacement (&SUBREG_REG (x));
6430 return x;
6432 #endif
6434 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6435 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6436 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6437 otherwise it is NULL. */
6439 static int
6440 compute_reload_subreg_offset (machine_mode outermode,
6441 rtx subreg,
6442 machine_mode innermode)
6444 int outer_offset;
6445 machine_mode middlemode;
6447 if (!subreg)
6448 return subreg_lowpart_offset (outermode, innermode);
6450 outer_offset = SUBREG_BYTE (subreg);
6451 middlemode = GET_MODE (SUBREG_REG (subreg));
6453 /* If SUBREG is paradoxical then return the normal lowpart offset
6454 for OUTERMODE and INNERMODE. Our caller has already checked
6455 that OUTERMODE fits in INNERMODE. */
6456 if (outer_offset == 0
6457 && GET_MODE_SIZE (outermode) > GET_MODE_SIZE (middlemode))
6458 return subreg_lowpart_offset (outermode, innermode);
6460 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6461 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6462 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6465 /* Assign hard reg targets for the pseudo-registers we must reload
6466 into hard regs for this insn.
6467 Also output the instructions to copy them in and out of the hard regs.
6469 For machines with register classes, we are responsible for
6470 finding a reload reg in the proper class. */
6472 static void
6473 choose_reload_regs (struct insn_chain *chain)
6475 rtx_insn *insn = chain->insn;
6476 int i, j;
6477 unsigned int max_group_size = 1;
6478 enum reg_class group_class = NO_REGS;
6479 int pass, win, inheritance;
6481 rtx save_reload_reg_rtx[MAX_RELOADS];
6483 /* In order to be certain of getting the registers we need,
6484 we must sort the reloads into order of increasing register class.
6485 Then our grabbing of reload registers will parallel the process
6486 that provided the reload registers.
6488 Also note whether any of the reloads wants a consecutive group of regs.
6489 If so, record the maximum size of the group desired and what
6490 register class contains all the groups needed by this insn. */
6492 for (j = 0; j < n_reloads; j++)
6494 reload_order[j] = j;
6495 if (rld[j].reg_rtx != NULL_RTX)
6497 gcc_assert (REG_P (rld[j].reg_rtx)
6498 && HARD_REGISTER_P (rld[j].reg_rtx));
6499 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6501 else
6502 reload_spill_index[j] = -1;
6504 if (rld[j].nregs > 1)
6506 max_group_size = MAX (rld[j].nregs, max_group_size);
6507 group_class
6508 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6511 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6514 if (n_reloads > 1)
6515 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6517 /* If -O, try first with inheritance, then turning it off.
6518 If not -O, don't do inheritance.
6519 Using inheritance when not optimizing leads to paradoxes
6520 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6521 because one side of the comparison might be inherited. */
6522 win = 0;
6523 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6525 choose_reload_regs_init (chain, save_reload_reg_rtx);
6527 /* Process the reloads in order of preference just found.
6528 Beyond this point, subregs can be found in reload_reg_rtx.
6530 This used to look for an existing reloaded home for all of the
6531 reloads, and only then perform any new reloads. But that could lose
6532 if the reloads were done out of reg-class order because a later
6533 reload with a looser constraint might have an old home in a register
6534 needed by an earlier reload with a tighter constraint.
6536 To solve this, we make two passes over the reloads, in the order
6537 described above. In the first pass we try to inherit a reload
6538 from a previous insn. If there is a later reload that needs a
6539 class that is a proper subset of the class being processed, we must
6540 also allocate a spill register during the first pass.
6542 Then make a second pass over the reloads to allocate any reloads
6543 that haven't been given registers yet. */
6545 for (j = 0; j < n_reloads; j++)
6547 int r = reload_order[j];
6548 rtx search_equiv = NULL_RTX;
6550 /* Ignore reloads that got marked inoperative. */
6551 if (rld[r].out == 0 && rld[r].in == 0
6552 && ! rld[r].secondary_p)
6553 continue;
6555 /* If find_reloads chose to use reload_in or reload_out as a reload
6556 register, we don't need to chose one. Otherwise, try even if it
6557 found one since we might save an insn if we find the value lying
6558 around.
6559 Try also when reload_in is a pseudo without a hard reg. */
6560 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6561 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6562 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6563 && !MEM_P (rld[r].in)
6564 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6565 continue;
6567 #if 0 /* No longer needed for correct operation.
6568 It might give better code, or might not; worth an experiment? */
6569 /* If this is an optional reload, we can't inherit from earlier insns
6570 until we are sure that any non-optional reloads have been allocated.
6571 The following code takes advantage of the fact that optional reloads
6572 are at the end of reload_order. */
6573 if (rld[r].optional != 0)
6574 for (i = 0; i < j; i++)
6575 if ((rld[reload_order[i]].out != 0
6576 || rld[reload_order[i]].in != 0
6577 || rld[reload_order[i]].secondary_p)
6578 && ! rld[reload_order[i]].optional
6579 && rld[reload_order[i]].reg_rtx == 0)
6580 allocate_reload_reg (chain, reload_order[i], 0);
6581 #endif
6583 /* First see if this pseudo is already available as reloaded
6584 for a previous insn. We cannot try to inherit for reloads
6585 that are smaller than the maximum number of registers needed
6586 for groups unless the register we would allocate cannot be used
6587 for the groups.
6589 We could check here to see if this is a secondary reload for
6590 an object that is already in a register of the desired class.
6591 This would avoid the need for the secondary reload register.
6592 But this is complex because we can't easily determine what
6593 objects might want to be loaded via this reload. So let a
6594 register be allocated here. In `emit_reload_insns' we suppress
6595 one of the loads in the case described above. */
6597 if (inheritance)
6599 int byte = 0;
6600 int regno = -1;
6601 machine_mode mode = VOIDmode;
6602 rtx subreg = NULL_RTX;
6604 if (rld[r].in == 0)
6606 else if (REG_P (rld[r].in))
6608 regno = REGNO (rld[r].in);
6609 mode = GET_MODE (rld[r].in);
6611 else if (REG_P (rld[r].in_reg))
6613 regno = REGNO (rld[r].in_reg);
6614 mode = GET_MODE (rld[r].in_reg);
6616 else if (GET_CODE (rld[r].in_reg) == SUBREG
6617 && REG_P (SUBREG_REG (rld[r].in_reg)))
6619 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6620 if (regno < FIRST_PSEUDO_REGISTER)
6621 regno = subreg_regno (rld[r].in_reg);
6622 else
6624 subreg = rld[r].in_reg;
6625 byte = SUBREG_BYTE (subreg);
6627 mode = GET_MODE (rld[r].in_reg);
6629 #ifdef AUTO_INC_DEC
6630 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6631 && REG_P (XEXP (rld[r].in_reg, 0)))
6633 regno = REGNO (XEXP (rld[r].in_reg, 0));
6634 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6635 rld[r].out = rld[r].in;
6637 #endif
6638 #if 0
6639 /* This won't work, since REGNO can be a pseudo reg number.
6640 Also, it takes much more hair to keep track of all the things
6641 that can invalidate an inherited reload of part of a pseudoreg. */
6642 else if (GET_CODE (rld[r].in) == SUBREG
6643 && REG_P (SUBREG_REG (rld[r].in)))
6644 regno = subreg_regno (rld[r].in);
6645 #endif
6647 if (regno >= 0
6648 && reg_last_reload_reg[regno] != 0
6649 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6650 >= GET_MODE_SIZE (mode) + byte)
6651 #ifdef CANNOT_CHANGE_MODE_CLASS
6652 /* Verify that the register it's in can be used in
6653 mode MODE. */
6654 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6655 GET_MODE (reg_last_reload_reg[regno]),
6656 mode)
6657 #endif
6660 enum reg_class rclass = rld[r].rclass, last_class;
6661 rtx last_reg = reg_last_reload_reg[regno];
6663 i = REGNO (last_reg);
6664 byte = compute_reload_subreg_offset (mode,
6665 subreg,
6666 GET_MODE (last_reg));
6667 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6668 last_class = REGNO_REG_CLASS (i);
6670 if (reg_reloaded_contents[i] == regno
6671 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6672 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6673 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6674 /* Even if we can't use this register as a reload
6675 register, we might use it for reload_override_in,
6676 if copying it to the desired class is cheap
6677 enough. */
6678 || ((register_move_cost (mode, last_class, rclass)
6679 < memory_move_cost (mode, rclass, true))
6680 && (secondary_reload_class (1, rclass, mode,
6681 last_reg)
6682 == NO_REGS)
6683 #ifdef SECONDARY_MEMORY_NEEDED
6684 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6685 mode)
6686 #endif
6689 && (rld[r].nregs == max_group_size
6690 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6692 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6693 rld[r].when_needed, rld[r].in,
6694 const0_rtx, r, 1))
6696 /* If a group is needed, verify that all the subsequent
6697 registers still have their values intact. */
6698 int nr = hard_regno_nregs[i][rld[r].mode];
6699 int k;
6701 for (k = 1; k < nr; k++)
6702 if (reg_reloaded_contents[i + k] != regno
6703 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6704 break;
6706 if (k == nr)
6708 int i1;
6709 int bad_for_class;
6711 last_reg = (GET_MODE (last_reg) == mode
6712 ? last_reg : gen_rtx_REG (mode, i));
6714 bad_for_class = 0;
6715 for (k = 0; k < nr; k++)
6716 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6717 i+k);
6719 /* We found a register that contains the
6720 value we need. If this register is the
6721 same as an `earlyclobber' operand of the
6722 current insn, just mark it as a place to
6723 reload from since we can't use it as the
6724 reload register itself. */
6726 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6727 if (reg_overlap_mentioned_for_reload_p
6728 (reg_last_reload_reg[regno],
6729 reload_earlyclobbers[i1]))
6730 break;
6732 if (i1 != n_earlyclobbers
6733 || ! (free_for_value_p (i, rld[r].mode,
6734 rld[r].opnum,
6735 rld[r].when_needed, rld[r].in,
6736 rld[r].out, r, 1))
6737 /* Don't use it if we'd clobber a pseudo reg. */
6738 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6739 && rld[r].out
6740 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6741 /* Don't clobber the frame pointer. */
6742 || (i == HARD_FRAME_POINTER_REGNUM
6743 && frame_pointer_needed
6744 && rld[r].out)
6745 /* Don't really use the inherited spill reg
6746 if we need it wider than we've got it. */
6747 || (GET_MODE_SIZE (rld[r].mode)
6748 > GET_MODE_SIZE (mode))
6749 || bad_for_class
6751 /* If find_reloads chose reload_out as reload
6752 register, stay with it - that leaves the
6753 inherited register for subsequent reloads. */
6754 || (rld[r].out && rld[r].reg_rtx
6755 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6757 if (! rld[r].optional)
6759 reload_override_in[r] = last_reg;
6760 reload_inheritance_insn[r]
6761 = reg_reloaded_insn[i];
6764 else
6766 int k;
6767 /* We can use this as a reload reg. */
6768 /* Mark the register as in use for this part of
6769 the insn. */
6770 mark_reload_reg_in_use (i,
6771 rld[r].opnum,
6772 rld[r].when_needed,
6773 rld[r].mode);
6774 rld[r].reg_rtx = last_reg;
6775 reload_inherited[r] = 1;
6776 reload_inheritance_insn[r]
6777 = reg_reloaded_insn[i];
6778 reload_spill_index[r] = i;
6779 for (k = 0; k < nr; k++)
6780 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6781 i + k);
6788 /* Here's another way to see if the value is already lying around. */
6789 if (inheritance
6790 && rld[r].in != 0
6791 && ! reload_inherited[r]
6792 && rld[r].out == 0
6793 && (CONSTANT_P (rld[r].in)
6794 || GET_CODE (rld[r].in) == PLUS
6795 || REG_P (rld[r].in)
6796 || MEM_P (rld[r].in))
6797 && (rld[r].nregs == max_group_size
6798 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6799 search_equiv = rld[r].in;
6801 if (search_equiv)
6803 rtx equiv
6804 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6805 -1, NULL, 0, rld[r].mode);
6806 int regno = 0;
6808 if (equiv != 0)
6810 if (REG_P (equiv))
6811 regno = REGNO (equiv);
6812 else
6814 /* This must be a SUBREG of a hard register.
6815 Make a new REG since this might be used in an
6816 address and not all machines support SUBREGs
6817 there. */
6818 gcc_assert (GET_CODE (equiv) == SUBREG);
6819 regno = subreg_regno (equiv);
6820 equiv = gen_rtx_REG (rld[r].mode, regno);
6821 /* If we choose EQUIV as the reload register, but the
6822 loop below decides to cancel the inheritance, we'll
6823 end up reloading EQUIV in rld[r].mode, not the mode
6824 it had originally. That isn't safe when EQUIV isn't
6825 available as a spill register since its value might
6826 still be live at this point. */
6827 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6828 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6829 equiv = 0;
6833 /* If we found a spill reg, reject it unless it is free
6834 and of the desired class. */
6835 if (equiv != 0)
6837 int regs_used = 0;
6838 int bad_for_class = 0;
6839 int max_regno = regno + rld[r].nregs;
6841 for (i = regno; i < max_regno; i++)
6843 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6845 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6849 if ((regs_used
6850 && ! free_for_value_p (regno, rld[r].mode,
6851 rld[r].opnum, rld[r].when_needed,
6852 rld[r].in, rld[r].out, r, 1))
6853 || bad_for_class)
6854 equiv = 0;
6857 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6858 equiv = 0;
6860 /* We found a register that contains the value we need.
6861 If this register is the same as an `earlyclobber' operand
6862 of the current insn, just mark it as a place to reload from
6863 since we can't use it as the reload register itself. */
6865 if (equiv != 0)
6866 for (i = 0; i < n_earlyclobbers; i++)
6867 if (reg_overlap_mentioned_for_reload_p (equiv,
6868 reload_earlyclobbers[i]))
6870 if (! rld[r].optional)
6871 reload_override_in[r] = equiv;
6872 equiv = 0;
6873 break;
6876 /* If the equiv register we have found is explicitly clobbered
6877 in the current insn, it depends on the reload type if we
6878 can use it, use it for reload_override_in, or not at all.
6879 In particular, we then can't use EQUIV for a
6880 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6882 if (equiv != 0)
6884 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6885 switch (rld[r].when_needed)
6887 case RELOAD_FOR_OTHER_ADDRESS:
6888 case RELOAD_FOR_INPADDR_ADDRESS:
6889 case RELOAD_FOR_INPUT_ADDRESS:
6890 case RELOAD_FOR_OPADDR_ADDR:
6891 break;
6892 case RELOAD_OTHER:
6893 case RELOAD_FOR_INPUT:
6894 case RELOAD_FOR_OPERAND_ADDRESS:
6895 if (! rld[r].optional)
6896 reload_override_in[r] = equiv;
6897 /* Fall through. */
6898 default:
6899 equiv = 0;
6900 break;
6902 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6903 switch (rld[r].when_needed)
6905 case RELOAD_FOR_OTHER_ADDRESS:
6906 case RELOAD_FOR_INPADDR_ADDRESS:
6907 case RELOAD_FOR_INPUT_ADDRESS:
6908 case RELOAD_FOR_OPADDR_ADDR:
6909 case RELOAD_FOR_OPERAND_ADDRESS:
6910 case RELOAD_FOR_INPUT:
6911 break;
6912 case RELOAD_OTHER:
6913 if (! rld[r].optional)
6914 reload_override_in[r] = equiv;
6915 /* Fall through. */
6916 default:
6917 equiv = 0;
6918 break;
6922 /* If we found an equivalent reg, say no code need be generated
6923 to load it, and use it as our reload reg. */
6924 if (equiv != 0
6925 && (regno != HARD_FRAME_POINTER_REGNUM
6926 || !frame_pointer_needed))
6928 int nr = hard_regno_nregs[regno][rld[r].mode];
6929 int k;
6930 rld[r].reg_rtx = equiv;
6931 reload_spill_index[r] = regno;
6932 reload_inherited[r] = 1;
6934 /* If reg_reloaded_valid is not set for this register,
6935 there might be a stale spill_reg_store lying around.
6936 We must clear it, since otherwise emit_reload_insns
6937 might delete the store. */
6938 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6939 spill_reg_store[regno] = NULL;
6940 /* If any of the hard registers in EQUIV are spill
6941 registers, mark them as in use for this insn. */
6942 for (k = 0; k < nr; k++)
6944 i = spill_reg_order[regno + k];
6945 if (i >= 0)
6947 mark_reload_reg_in_use (regno, rld[r].opnum,
6948 rld[r].when_needed,
6949 rld[r].mode);
6950 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6951 regno + k);
6957 /* If we found a register to use already, or if this is an optional
6958 reload, we are done. */
6959 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6960 continue;
6962 #if 0
6963 /* No longer needed for correct operation. Might or might
6964 not give better code on the average. Want to experiment? */
6966 /* See if there is a later reload that has a class different from our
6967 class that intersects our class or that requires less register
6968 than our reload. If so, we must allocate a register to this
6969 reload now, since that reload might inherit a previous reload
6970 and take the only available register in our class. Don't do this
6971 for optional reloads since they will force all previous reloads
6972 to be allocated. Also don't do this for reloads that have been
6973 turned off. */
6975 for (i = j + 1; i < n_reloads; i++)
6977 int s = reload_order[i];
6979 if ((rld[s].in == 0 && rld[s].out == 0
6980 && ! rld[s].secondary_p)
6981 || rld[s].optional)
6982 continue;
6984 if ((rld[s].rclass != rld[r].rclass
6985 && reg_classes_intersect_p (rld[r].rclass,
6986 rld[s].rclass))
6987 || rld[s].nregs < rld[r].nregs)
6988 break;
6991 if (i == n_reloads)
6992 continue;
6994 allocate_reload_reg (chain, r, j == n_reloads - 1);
6995 #endif
6998 /* Now allocate reload registers for anything non-optional that
6999 didn't get one yet. */
7000 for (j = 0; j < n_reloads; j++)
7002 int r = reload_order[j];
7004 /* Ignore reloads that got marked inoperative. */
7005 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
7006 continue;
7008 /* Skip reloads that already have a register allocated or are
7009 optional. */
7010 if (rld[r].reg_rtx != 0 || rld[r].optional)
7011 continue;
7013 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
7014 break;
7017 /* If that loop got all the way, we have won. */
7018 if (j == n_reloads)
7020 win = 1;
7021 break;
7024 /* Loop around and try without any inheritance. */
7027 if (! win)
7029 /* First undo everything done by the failed attempt
7030 to allocate with inheritance. */
7031 choose_reload_regs_init (chain, save_reload_reg_rtx);
7033 /* Some sanity tests to verify that the reloads found in the first
7034 pass are identical to the ones we have now. */
7035 gcc_assert (chain->n_reloads == n_reloads);
7037 for (i = 0; i < n_reloads; i++)
7039 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
7040 continue;
7041 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
7042 for (j = 0; j < n_spills; j++)
7043 if (spill_regs[j] == chain->rld[i].regno)
7044 if (! set_reload_reg (j, i))
7045 failed_reload (chain->insn, i);
7049 /* If we thought we could inherit a reload, because it seemed that
7050 nothing else wanted the same reload register earlier in the insn,
7051 verify that assumption, now that all reloads have been assigned.
7052 Likewise for reloads where reload_override_in has been set. */
7054 /* If doing expensive optimizations, do one preliminary pass that doesn't
7055 cancel any inheritance, but removes reloads that have been needed only
7056 for reloads that we know can be inherited. */
7057 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
7059 for (j = 0; j < n_reloads; j++)
7061 int r = reload_order[j];
7062 rtx check_reg;
7063 #ifdef SECONDARY_MEMORY_NEEDED
7064 rtx tem;
7065 #endif
7066 if (reload_inherited[r] && rld[r].reg_rtx)
7067 check_reg = rld[r].reg_rtx;
7068 else if (reload_override_in[r]
7069 && (REG_P (reload_override_in[r])
7070 || GET_CODE (reload_override_in[r]) == SUBREG))
7071 check_reg = reload_override_in[r];
7072 else
7073 continue;
7074 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
7075 rld[r].opnum, rld[r].when_needed, rld[r].in,
7076 (reload_inherited[r]
7077 ? rld[r].out : const0_rtx),
7078 r, 1))
7080 if (pass)
7081 continue;
7082 reload_inherited[r] = 0;
7083 reload_override_in[r] = 0;
7085 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7086 reload_override_in, then we do not need its related
7087 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7088 likewise for other reload types.
7089 We handle this by removing a reload when its only replacement
7090 is mentioned in reload_in of the reload we are going to inherit.
7091 A special case are auto_inc expressions; even if the input is
7092 inherited, we still need the address for the output. We can
7093 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7094 If we succeeded removing some reload and we are doing a preliminary
7095 pass just to remove such reloads, make another pass, since the
7096 removal of one reload might allow us to inherit another one. */
7097 else if (rld[r].in
7098 && rld[r].out != rld[r].in
7099 && remove_address_replacements (rld[r].in))
7101 if (pass)
7102 pass = 2;
7104 #ifdef SECONDARY_MEMORY_NEEDED
7105 /* If we needed a memory location for the reload, we also have to
7106 remove its related reloads. */
7107 else if (rld[r].in
7108 && rld[r].out != rld[r].in
7109 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7110 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7111 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7112 rld[r].rclass, rld[r].inmode)
7113 && remove_address_replacements
7114 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7115 rld[r].when_needed)))
7117 if (pass)
7118 pass = 2;
7120 #endif
7124 /* Now that reload_override_in is known valid,
7125 actually override reload_in. */
7126 for (j = 0; j < n_reloads; j++)
7127 if (reload_override_in[j])
7128 rld[j].in = reload_override_in[j];
7130 /* If this reload won't be done because it has been canceled or is
7131 optional and not inherited, clear reload_reg_rtx so other
7132 routines (such as subst_reloads) don't get confused. */
7133 for (j = 0; j < n_reloads; j++)
7134 if (rld[j].reg_rtx != 0
7135 && ((rld[j].optional && ! reload_inherited[j])
7136 || (rld[j].in == 0 && rld[j].out == 0
7137 && ! rld[j].secondary_p)))
7139 int regno = true_regnum (rld[j].reg_rtx);
7141 if (spill_reg_order[regno] >= 0)
7142 clear_reload_reg_in_use (regno, rld[j].opnum,
7143 rld[j].when_needed, rld[j].mode);
7144 rld[j].reg_rtx = 0;
7145 reload_spill_index[j] = -1;
7148 /* Record which pseudos and which spill regs have output reloads. */
7149 for (j = 0; j < n_reloads; j++)
7151 int r = reload_order[j];
7153 i = reload_spill_index[r];
7155 /* I is nonneg if this reload uses a register.
7156 If rld[r].reg_rtx is 0, this is an optional reload
7157 that we opted to ignore. */
7158 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7159 && rld[r].reg_rtx != 0)
7161 int nregno = REGNO (rld[r].out_reg);
7162 int nr = 1;
7164 if (nregno < FIRST_PSEUDO_REGISTER)
7165 nr = hard_regno_nregs[nregno][rld[r].mode];
7167 while (--nr >= 0)
7168 SET_REGNO_REG_SET (&reg_has_output_reload,
7169 nregno + nr);
7171 if (i >= 0)
7172 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7174 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7175 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7176 || rld[r].when_needed == RELOAD_FOR_INSN);
7181 /* Deallocate the reload register for reload R. This is called from
7182 remove_address_replacements. */
7184 void
7185 deallocate_reload_reg (int r)
7187 int regno;
7189 if (! rld[r].reg_rtx)
7190 return;
7191 regno = true_regnum (rld[r].reg_rtx);
7192 rld[r].reg_rtx = 0;
7193 if (spill_reg_order[regno] >= 0)
7194 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7195 rld[r].mode);
7196 reload_spill_index[r] = -1;
7199 /* These arrays are filled by emit_reload_insns and its subroutines. */
7200 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7201 static rtx_insn *other_input_address_reload_insns = 0;
7202 static rtx_insn *other_input_reload_insns = 0;
7203 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7204 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7205 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7206 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7207 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7208 static rtx_insn *operand_reload_insns = 0;
7209 static rtx_insn *other_operand_reload_insns = 0;
7210 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7212 /* Values to be put in spill_reg_store are put here first. Instructions
7213 must only be placed here if the associated reload register reaches
7214 the end of the instruction's reload sequence. */
7215 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7216 static HARD_REG_SET reg_reloaded_died;
7218 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7219 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7220 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7221 adjusted register, and return true. Otherwise, return false. */
7222 static bool
7223 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7224 enum reg_class new_class,
7225 machine_mode new_mode)
7228 rtx reg;
7230 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7232 unsigned regno = REGNO (reg);
7234 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7235 continue;
7236 if (GET_MODE (reg) != new_mode)
7238 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7239 continue;
7240 if (hard_regno_nregs[regno][new_mode]
7241 > hard_regno_nregs[regno][GET_MODE (reg)])
7242 continue;
7243 reg = reload_adjust_reg_for_mode (reg, new_mode);
7245 *reload_reg = reg;
7246 return true;
7248 return false;
7251 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7252 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7253 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7254 adjusted register, and return true. Otherwise, return false. */
7255 static bool
7256 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7257 enum insn_code icode)
7260 enum reg_class new_class = scratch_reload_class (icode);
7261 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7263 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7264 new_class, new_mode);
7267 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7268 has the number J. OLD contains the value to be used as input. */
7270 static void
7271 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7272 rtx old, int j)
7274 rtx_insn *insn = chain->insn;
7275 rtx reloadreg;
7276 rtx oldequiv_reg = 0;
7277 rtx oldequiv = 0;
7278 int special = 0;
7279 machine_mode mode;
7280 rtx_insn **where;
7282 /* delete_output_reload is only invoked properly if old contains
7283 the original pseudo register. Since this is replaced with a
7284 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7285 find the pseudo in RELOAD_IN_REG. This is also used to
7286 determine whether a secondary reload is needed. */
7287 if (reload_override_in[j]
7288 && (REG_P (rl->in_reg)
7289 || (GET_CODE (rl->in_reg) == SUBREG
7290 && REG_P (SUBREG_REG (rl->in_reg)))))
7292 oldequiv = old;
7293 old = rl->in_reg;
7295 if (oldequiv == 0)
7296 oldequiv = old;
7297 else if (REG_P (oldequiv))
7298 oldequiv_reg = oldequiv;
7299 else if (GET_CODE (oldequiv) == SUBREG)
7300 oldequiv_reg = SUBREG_REG (oldequiv);
7302 reloadreg = reload_reg_rtx_for_input[j];
7303 mode = GET_MODE (reloadreg);
7305 /* If we are reloading from a register that was recently stored in
7306 with an output-reload, see if we can prove there was
7307 actually no need to store the old value in it. */
7309 if (optimize && REG_P (oldequiv)
7310 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7311 && spill_reg_store[REGNO (oldequiv)]
7312 && REG_P (old)
7313 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7314 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7315 rl->out_reg)))
7316 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7318 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7319 OLDEQUIV. */
7321 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7322 oldequiv = SUBREG_REG (oldequiv);
7323 if (GET_MODE (oldequiv) != VOIDmode
7324 && mode != GET_MODE (oldequiv))
7325 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7327 /* Switch to the right place to emit the reload insns. */
7328 switch (rl->when_needed)
7330 case RELOAD_OTHER:
7331 where = &other_input_reload_insns;
7332 break;
7333 case RELOAD_FOR_INPUT:
7334 where = &input_reload_insns[rl->opnum];
7335 break;
7336 case RELOAD_FOR_INPUT_ADDRESS:
7337 where = &input_address_reload_insns[rl->opnum];
7338 break;
7339 case RELOAD_FOR_INPADDR_ADDRESS:
7340 where = &inpaddr_address_reload_insns[rl->opnum];
7341 break;
7342 case RELOAD_FOR_OUTPUT_ADDRESS:
7343 where = &output_address_reload_insns[rl->opnum];
7344 break;
7345 case RELOAD_FOR_OUTADDR_ADDRESS:
7346 where = &outaddr_address_reload_insns[rl->opnum];
7347 break;
7348 case RELOAD_FOR_OPERAND_ADDRESS:
7349 where = &operand_reload_insns;
7350 break;
7351 case RELOAD_FOR_OPADDR_ADDR:
7352 where = &other_operand_reload_insns;
7353 break;
7354 case RELOAD_FOR_OTHER_ADDRESS:
7355 where = &other_input_address_reload_insns;
7356 break;
7357 default:
7358 gcc_unreachable ();
7361 push_to_sequence (*where);
7363 /* Auto-increment addresses must be reloaded in a special way. */
7364 if (rl->out && ! rl->out_reg)
7366 /* We are not going to bother supporting the case where a
7367 incremented register can't be copied directly from
7368 OLDEQUIV since this seems highly unlikely. */
7369 gcc_assert (rl->secondary_in_reload < 0);
7371 if (reload_inherited[j])
7372 oldequiv = reloadreg;
7374 old = XEXP (rl->in_reg, 0);
7376 /* Prevent normal processing of this reload. */
7377 special = 1;
7378 /* Output a special code sequence for this case. */
7379 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7382 /* If we are reloading a pseudo-register that was set by the previous
7383 insn, see if we can get rid of that pseudo-register entirely
7384 by redirecting the previous insn into our reload register. */
7386 else if (optimize && REG_P (old)
7387 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7388 && dead_or_set_p (insn, old)
7389 /* This is unsafe if some other reload
7390 uses the same reg first. */
7391 && ! conflicts_with_override (reloadreg)
7392 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7393 rl->when_needed, old, rl->out, j, 0))
7395 rtx_insn *temp = PREV_INSN (insn);
7396 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7397 temp = PREV_INSN (temp);
7398 if (temp
7399 && NONJUMP_INSN_P (temp)
7400 && GET_CODE (PATTERN (temp)) == SET
7401 && SET_DEST (PATTERN (temp)) == old
7402 /* Make sure we can access insn_operand_constraint. */
7403 && asm_noperands (PATTERN (temp)) < 0
7404 /* This is unsafe if operand occurs more than once in current
7405 insn. Perhaps some occurrences aren't reloaded. */
7406 && count_occurrences (PATTERN (insn), old, 0) == 1)
7408 rtx old = SET_DEST (PATTERN (temp));
7409 /* Store into the reload register instead of the pseudo. */
7410 SET_DEST (PATTERN (temp)) = reloadreg;
7412 /* Verify that resulting insn is valid.
7414 Note that we have replaced the destination of TEMP with
7415 RELOADREG. If TEMP references RELOADREG within an
7416 autoincrement addressing mode, then the resulting insn
7417 is ill-formed and we must reject this optimization. */
7418 extract_insn (temp);
7419 if (constrain_operands (1, get_enabled_alternatives (temp))
7420 #ifdef AUTO_INC_DEC
7421 && ! find_reg_note (temp, REG_INC, reloadreg)
7422 #endif
7425 /* If the previous insn is an output reload, the source is
7426 a reload register, and its spill_reg_store entry will
7427 contain the previous destination. This is now
7428 invalid. */
7429 if (REG_P (SET_SRC (PATTERN (temp)))
7430 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7432 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7433 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7436 /* If these are the only uses of the pseudo reg,
7437 pretend for GDB it lives in the reload reg we used. */
7438 if (REG_N_DEATHS (REGNO (old)) == 1
7439 && REG_N_SETS (REGNO (old)) == 1)
7441 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7442 if (ira_conflicts_p)
7443 /* Inform IRA about the change. */
7444 ira_mark_allocation_change (REGNO (old));
7445 alter_reg (REGNO (old), -1, false);
7447 special = 1;
7449 /* Adjust any debug insns between temp and insn. */
7450 while ((temp = NEXT_INSN (temp)) != insn)
7451 if (DEBUG_INSN_P (temp))
7452 replace_rtx (PATTERN (temp), old, reloadreg);
7453 else
7454 gcc_assert (NOTE_P (temp));
7456 else
7458 SET_DEST (PATTERN (temp)) = old;
7463 /* We can't do that, so output an insn to load RELOADREG. */
7465 /* If we have a secondary reload, pick up the secondary register
7466 and icode, if any. If OLDEQUIV and OLD are different or
7467 if this is an in-out reload, recompute whether or not we
7468 still need a secondary register and what the icode should
7469 be. If we still need a secondary register and the class or
7470 icode is different, go back to reloading from OLD if using
7471 OLDEQUIV means that we got the wrong type of register. We
7472 cannot have different class or icode due to an in-out reload
7473 because we don't make such reloads when both the input and
7474 output need secondary reload registers. */
7476 if (! special && rl->secondary_in_reload >= 0)
7478 rtx second_reload_reg = 0;
7479 rtx third_reload_reg = 0;
7480 int secondary_reload = rl->secondary_in_reload;
7481 rtx real_oldequiv = oldequiv;
7482 rtx real_old = old;
7483 rtx tmp;
7484 enum insn_code icode;
7485 enum insn_code tertiary_icode = CODE_FOR_nothing;
7487 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7488 and similarly for OLD.
7489 See comments in get_secondary_reload in reload.c. */
7490 /* If it is a pseudo that cannot be replaced with its
7491 equivalent MEM, we must fall back to reload_in, which
7492 will have all the necessary substitutions registered.
7493 Likewise for a pseudo that can't be replaced with its
7494 equivalent constant.
7496 Take extra care for subregs of such pseudos. Note that
7497 we cannot use reg_equiv_mem in this case because it is
7498 not in the right mode. */
7500 tmp = oldequiv;
7501 if (GET_CODE (tmp) == SUBREG)
7502 tmp = SUBREG_REG (tmp);
7503 if (REG_P (tmp)
7504 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7505 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7506 || reg_equiv_constant (REGNO (tmp)) != 0))
7508 if (! reg_equiv_mem (REGNO (tmp))
7509 || num_not_at_initial_offset
7510 || GET_CODE (oldequiv) == SUBREG)
7511 real_oldequiv = rl->in;
7512 else
7513 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7516 tmp = old;
7517 if (GET_CODE (tmp) == SUBREG)
7518 tmp = SUBREG_REG (tmp);
7519 if (REG_P (tmp)
7520 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7521 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7522 || reg_equiv_constant (REGNO (tmp)) != 0))
7524 if (! reg_equiv_mem (REGNO (tmp))
7525 || num_not_at_initial_offset
7526 || GET_CODE (old) == SUBREG)
7527 real_old = rl->in;
7528 else
7529 real_old = reg_equiv_mem (REGNO (tmp));
7532 second_reload_reg = rld[secondary_reload].reg_rtx;
7533 if (rld[secondary_reload].secondary_in_reload >= 0)
7535 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7537 third_reload_reg = rld[tertiary_reload].reg_rtx;
7538 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7539 /* We'd have to add more code for quartary reloads. */
7540 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7542 icode = rl->secondary_in_icode;
7544 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7545 || (rl->in != 0 && rl->out != 0))
7547 secondary_reload_info sri, sri2;
7548 enum reg_class new_class, new_t_class;
7550 sri.icode = CODE_FOR_nothing;
7551 sri.prev_sri = NULL;
7552 new_class
7553 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7554 rl->rclass, mode,
7555 &sri);
7557 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7558 second_reload_reg = 0;
7559 else if (new_class == NO_REGS)
7561 if (reload_adjust_reg_for_icode (&second_reload_reg,
7562 third_reload_reg,
7563 (enum insn_code) sri.icode))
7565 icode = (enum insn_code) sri.icode;
7566 third_reload_reg = 0;
7568 else
7570 oldequiv = old;
7571 real_oldequiv = real_old;
7574 else if (sri.icode != CODE_FOR_nothing)
7575 /* We currently lack a way to express this in reloads. */
7576 gcc_unreachable ();
7577 else
7579 sri2.icode = CODE_FOR_nothing;
7580 sri2.prev_sri = &sri;
7581 new_t_class
7582 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7583 new_class, mode,
7584 &sri);
7585 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7587 if (reload_adjust_reg_for_temp (&second_reload_reg,
7588 third_reload_reg,
7589 new_class, mode))
7591 third_reload_reg = 0;
7592 tertiary_icode = (enum insn_code) sri2.icode;
7594 else
7596 oldequiv = old;
7597 real_oldequiv = real_old;
7600 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7602 rtx intermediate = second_reload_reg;
7604 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7605 new_class, mode)
7606 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7607 ((enum insn_code)
7608 sri2.icode)))
7610 second_reload_reg = intermediate;
7611 tertiary_icode = (enum insn_code) sri2.icode;
7613 else
7615 oldequiv = old;
7616 real_oldequiv = real_old;
7619 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7621 rtx intermediate = second_reload_reg;
7623 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7624 new_class, mode)
7625 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7626 new_t_class, mode))
7628 second_reload_reg = intermediate;
7629 tertiary_icode = (enum insn_code) sri2.icode;
7631 else
7633 oldequiv = old;
7634 real_oldequiv = real_old;
7637 else
7639 /* This could be handled more intelligently too. */
7640 oldequiv = old;
7641 real_oldequiv = real_old;
7646 /* If we still need a secondary reload register, check
7647 to see if it is being used as a scratch or intermediate
7648 register and generate code appropriately. If we need
7649 a scratch register, use REAL_OLDEQUIV since the form of
7650 the insn may depend on the actual address if it is
7651 a MEM. */
7653 if (second_reload_reg)
7655 if (icode != CODE_FOR_nothing)
7657 /* We'd have to add extra code to handle this case. */
7658 gcc_assert (!third_reload_reg);
7660 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7661 second_reload_reg));
7662 special = 1;
7664 else
7666 /* See if we need a scratch register to load the
7667 intermediate register (a tertiary reload). */
7668 if (tertiary_icode != CODE_FOR_nothing)
7670 emit_insn ((GEN_FCN (tertiary_icode)
7671 (second_reload_reg, real_oldequiv,
7672 third_reload_reg)));
7674 else if (third_reload_reg)
7676 gen_reload (third_reload_reg, real_oldequiv,
7677 rl->opnum,
7678 rl->when_needed);
7679 gen_reload (second_reload_reg, third_reload_reg,
7680 rl->opnum,
7681 rl->when_needed);
7683 else
7684 gen_reload (second_reload_reg, real_oldequiv,
7685 rl->opnum,
7686 rl->when_needed);
7688 oldequiv = second_reload_reg;
7693 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7695 rtx real_oldequiv = oldequiv;
7697 if ((REG_P (oldequiv)
7698 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7699 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7700 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7701 || (GET_CODE (oldequiv) == SUBREG
7702 && REG_P (SUBREG_REG (oldequiv))
7703 && (REGNO (SUBREG_REG (oldequiv))
7704 >= FIRST_PSEUDO_REGISTER)
7705 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7706 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7707 || (CONSTANT_P (oldequiv)
7708 && (targetm.preferred_reload_class (oldequiv,
7709 REGNO_REG_CLASS (REGNO (reloadreg)))
7710 == NO_REGS)))
7711 real_oldequiv = rl->in;
7712 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7713 rl->when_needed);
7716 if (cfun->can_throw_non_call_exceptions)
7717 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7719 /* End this sequence. */
7720 *where = get_insns ();
7721 end_sequence ();
7723 /* Update reload_override_in so that delete_address_reloads_1
7724 can see the actual register usage. */
7725 if (oldequiv_reg)
7726 reload_override_in[j] = oldequiv;
7729 /* Generate insns to for the output reload RL, which is for the insn described
7730 by CHAIN and has the number J. */
7731 static void
7732 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7733 int j)
7735 rtx reloadreg;
7736 rtx_insn *insn = chain->insn;
7737 int special = 0;
7738 rtx old = rl->out;
7739 machine_mode mode;
7740 rtx_insn *p;
7741 rtx rl_reg_rtx;
7743 if (rl->when_needed == RELOAD_OTHER)
7744 start_sequence ();
7745 else
7746 push_to_sequence (output_reload_insns[rl->opnum]);
7748 rl_reg_rtx = reload_reg_rtx_for_output[j];
7749 mode = GET_MODE (rl_reg_rtx);
7751 reloadreg = rl_reg_rtx;
7753 /* If we need two reload regs, set RELOADREG to the intermediate
7754 one, since it will be stored into OLD. We might need a secondary
7755 register only for an input reload, so check again here. */
7757 if (rl->secondary_out_reload >= 0)
7759 rtx real_old = old;
7760 int secondary_reload = rl->secondary_out_reload;
7761 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7763 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7764 && reg_equiv_mem (REGNO (old)) != 0)
7765 real_old = reg_equiv_mem (REGNO (old));
7767 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7769 rtx second_reloadreg = reloadreg;
7770 reloadreg = rld[secondary_reload].reg_rtx;
7772 /* See if RELOADREG is to be used as a scratch register
7773 or as an intermediate register. */
7774 if (rl->secondary_out_icode != CODE_FOR_nothing)
7776 /* We'd have to add extra code to handle this case. */
7777 gcc_assert (tertiary_reload < 0);
7779 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7780 (real_old, second_reloadreg, reloadreg)));
7781 special = 1;
7783 else
7785 /* See if we need both a scratch and intermediate reload
7786 register. */
7788 enum insn_code tertiary_icode
7789 = rld[secondary_reload].secondary_out_icode;
7791 /* We'd have to add more code for quartary reloads. */
7792 gcc_assert (tertiary_reload < 0
7793 || rld[tertiary_reload].secondary_out_reload < 0);
7795 if (GET_MODE (reloadreg) != mode)
7796 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7798 if (tertiary_icode != CODE_FOR_nothing)
7800 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7802 /* Copy primary reload reg to secondary reload reg.
7803 (Note that these have been swapped above, then
7804 secondary reload reg to OLD using our insn.) */
7806 /* If REAL_OLD is a paradoxical SUBREG, remove it
7807 and try to put the opposite SUBREG on
7808 RELOADREG. */
7809 strip_paradoxical_subreg (&real_old, &reloadreg);
7811 gen_reload (reloadreg, second_reloadreg,
7812 rl->opnum, rl->when_needed);
7813 emit_insn ((GEN_FCN (tertiary_icode)
7814 (real_old, reloadreg, third_reloadreg)));
7815 special = 1;
7818 else
7820 /* Copy between the reload regs here and then to
7821 OUT later. */
7823 gen_reload (reloadreg, second_reloadreg,
7824 rl->opnum, rl->when_needed);
7825 if (tertiary_reload >= 0)
7827 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7829 gen_reload (third_reloadreg, reloadreg,
7830 rl->opnum, rl->when_needed);
7831 reloadreg = third_reloadreg;
7838 /* Output the last reload insn. */
7839 if (! special)
7841 rtx set;
7843 /* Don't output the last reload if OLD is not the dest of
7844 INSN and is in the src and is clobbered by INSN. */
7845 if (! flag_expensive_optimizations
7846 || !REG_P (old)
7847 || !(set = single_set (insn))
7848 || rtx_equal_p (old, SET_DEST (set))
7849 || !reg_mentioned_p (old, SET_SRC (set))
7850 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7851 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7852 gen_reload (old, reloadreg, rl->opnum,
7853 rl->when_needed);
7856 /* Look at all insns we emitted, just to be safe. */
7857 for (p = get_insns (); p; p = NEXT_INSN (p))
7858 if (INSN_P (p))
7860 rtx pat = PATTERN (p);
7862 /* If this output reload doesn't come from a spill reg,
7863 clear any memory of reloaded copies of the pseudo reg.
7864 If this output reload comes from a spill reg,
7865 reg_has_output_reload will make this do nothing. */
7866 note_stores (pat, forget_old_reloads_1, NULL);
7868 if (reg_mentioned_p (rl_reg_rtx, pat))
7870 rtx set = single_set (insn);
7871 if (reload_spill_index[j] < 0
7872 && set
7873 && SET_SRC (set) == rl_reg_rtx)
7875 int src = REGNO (SET_SRC (set));
7877 reload_spill_index[j] = src;
7878 SET_HARD_REG_BIT (reg_is_output_reload, src);
7879 if (find_regno_note (insn, REG_DEAD, src))
7880 SET_HARD_REG_BIT (reg_reloaded_died, src);
7882 if (HARD_REGISTER_P (rl_reg_rtx))
7884 int s = rl->secondary_out_reload;
7885 set = single_set (p);
7886 /* If this reload copies only to the secondary reload
7887 register, the secondary reload does the actual
7888 store. */
7889 if (s >= 0 && set == NULL_RTX)
7890 /* We can't tell what function the secondary reload
7891 has and where the actual store to the pseudo is
7892 made; leave new_spill_reg_store alone. */
7894 else if (s >= 0
7895 && SET_SRC (set) == rl_reg_rtx
7896 && SET_DEST (set) == rld[s].reg_rtx)
7898 /* Usually the next instruction will be the
7899 secondary reload insn; if we can confirm
7900 that it is, setting new_spill_reg_store to
7901 that insn will allow an extra optimization. */
7902 rtx s_reg = rld[s].reg_rtx;
7903 rtx_insn *next = NEXT_INSN (p);
7904 rld[s].out = rl->out;
7905 rld[s].out_reg = rl->out_reg;
7906 set = single_set (next);
7907 if (set && SET_SRC (set) == s_reg
7908 && reload_reg_rtx_reaches_end_p (s_reg, s))
7910 SET_HARD_REG_BIT (reg_is_output_reload,
7911 REGNO (s_reg));
7912 new_spill_reg_store[REGNO (s_reg)] = next;
7915 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7916 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7921 if (rl->when_needed == RELOAD_OTHER)
7923 emit_insn (other_output_reload_insns[rl->opnum]);
7924 other_output_reload_insns[rl->opnum] = get_insns ();
7926 else
7927 output_reload_insns[rl->opnum] = get_insns ();
7929 if (cfun->can_throw_non_call_exceptions)
7930 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7932 end_sequence ();
7935 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7936 and has the number J. */
7937 static void
7938 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7940 rtx_insn *insn = chain->insn;
7941 rtx old = (rl->in && MEM_P (rl->in)
7942 ? rl->in_reg : rl->in);
7943 rtx reg_rtx = rl->reg_rtx;
7945 if (old && reg_rtx)
7947 machine_mode mode;
7949 /* Determine the mode to reload in.
7950 This is very tricky because we have three to choose from.
7951 There is the mode the insn operand wants (rl->inmode).
7952 There is the mode of the reload register RELOADREG.
7953 There is the intrinsic mode of the operand, which we could find
7954 by stripping some SUBREGs.
7955 It turns out that RELOADREG's mode is irrelevant:
7956 we can change that arbitrarily.
7958 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7959 then the reload reg may not support QImode moves, so use SImode.
7960 If foo is in memory due to spilling a pseudo reg, this is safe,
7961 because the QImode value is in the least significant part of a
7962 slot big enough for a SImode. If foo is some other sort of
7963 memory reference, then it is impossible to reload this case,
7964 so previous passes had better make sure this never happens.
7966 Then consider a one-word union which has SImode and one of its
7967 members is a float, being fetched as (SUBREG:SF union:SI).
7968 We must fetch that as SFmode because we could be loading into
7969 a float-only register. In this case OLD's mode is correct.
7971 Consider an immediate integer: it has VOIDmode. Here we need
7972 to get a mode from something else.
7974 In some cases, there is a fourth mode, the operand's
7975 containing mode. If the insn specifies a containing mode for
7976 this operand, it overrides all others.
7978 I am not sure whether the algorithm here is always right,
7979 but it does the right things in those cases. */
7981 mode = GET_MODE (old);
7982 if (mode == VOIDmode)
7983 mode = rl->inmode;
7985 /* We cannot use gen_lowpart_common since it can do the wrong thing
7986 when REG_RTX has a multi-word mode. Note that REG_RTX must
7987 always be a REG here. */
7988 if (GET_MODE (reg_rtx) != mode)
7989 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7991 reload_reg_rtx_for_input[j] = reg_rtx;
7993 if (old != 0
7994 /* AUTO_INC reloads need to be handled even if inherited. We got an
7995 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7996 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7997 && ! rtx_equal_p (reg_rtx, old)
7998 && reg_rtx != 0)
7999 emit_input_reload_insns (chain, rld + j, old, j);
8001 /* When inheriting a wider reload, we have a MEM in rl->in,
8002 e.g. inheriting a SImode output reload for
8003 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
8004 if (optimize && reload_inherited[j] && rl->in
8005 && MEM_P (rl->in)
8006 && MEM_P (rl->in_reg)
8007 && reload_spill_index[j] >= 0
8008 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
8009 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
8011 /* If we are reloading a register that was recently stored in with an
8012 output-reload, see if we can prove there was
8013 actually no need to store the old value in it. */
8015 if (optimize
8016 && (reload_inherited[j] || reload_override_in[j])
8017 && reg_rtx
8018 && REG_P (reg_rtx)
8019 && spill_reg_store[REGNO (reg_rtx)] != 0
8020 #if 0
8021 /* There doesn't seem to be any reason to restrict this to pseudos
8022 and doing so loses in the case where we are copying from a
8023 register of the wrong class. */
8024 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
8025 #endif
8026 /* The insn might have already some references to stackslots
8027 replaced by MEMs, while reload_out_reg still names the
8028 original pseudo. */
8029 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
8030 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
8031 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
8034 /* Do output reloading for reload RL, which is for the insn described by
8035 CHAIN and has the number J.
8036 ??? At some point we need to support handling output reloads of
8037 JUMP_INSNs or insns that set cc0. */
8038 static void
8039 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
8041 rtx note, old;
8042 rtx_insn *insn = chain->insn;
8043 /* If this is an output reload that stores something that is
8044 not loaded in this same reload, see if we can eliminate a previous
8045 store. */
8046 rtx pseudo = rl->out_reg;
8047 rtx reg_rtx = rl->reg_rtx;
8049 if (rl->out && reg_rtx)
8051 machine_mode mode;
8053 /* Determine the mode to reload in.
8054 See comments above (for input reloading). */
8055 mode = GET_MODE (rl->out);
8056 if (mode == VOIDmode)
8058 /* VOIDmode should never happen for an output. */
8059 if (asm_noperands (PATTERN (insn)) < 0)
8060 /* It's the compiler's fault. */
8061 fatal_insn ("VOIDmode on an output", insn);
8062 error_for_asm (insn, "output operand is constant in %<asm%>");
8063 /* Prevent crash--use something we know is valid. */
8064 mode = word_mode;
8065 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
8067 if (GET_MODE (reg_rtx) != mode)
8068 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
8070 reload_reg_rtx_for_output[j] = reg_rtx;
8072 if (pseudo
8073 && optimize
8074 && REG_P (pseudo)
8075 && ! rtx_equal_p (rl->in_reg, pseudo)
8076 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
8077 && reg_last_reload_reg[REGNO (pseudo)])
8079 int pseudo_no = REGNO (pseudo);
8080 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
8082 /* We don't need to test full validity of last_regno for
8083 inherit here; we only want to know if the store actually
8084 matches the pseudo. */
8085 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8086 && reg_reloaded_contents[last_regno] == pseudo_no
8087 && spill_reg_store[last_regno]
8088 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8089 delete_output_reload (insn, j, last_regno, reg_rtx);
8092 old = rl->out_reg;
8093 if (old == 0
8094 || reg_rtx == 0
8095 || rtx_equal_p (old, reg_rtx))
8096 return;
8098 /* An output operand that dies right away does need a reload,
8099 but need not be copied from it. Show the new location in the
8100 REG_UNUSED note. */
8101 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8102 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8104 XEXP (note, 0) = reg_rtx;
8105 return;
8107 /* Likewise for a SUBREG of an operand that dies. */
8108 else if (GET_CODE (old) == SUBREG
8109 && REG_P (SUBREG_REG (old))
8110 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8111 SUBREG_REG (old))))
8113 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8114 return;
8116 else if (GET_CODE (old) == SCRATCH)
8117 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8118 but we don't want to make an output reload. */
8119 return;
8121 /* If is a JUMP_INSN, we can't support output reloads yet. */
8122 gcc_assert (NONJUMP_INSN_P (insn));
8124 emit_output_reload_insns (chain, rld + j, j);
8127 /* A reload copies values of MODE from register SRC to register DEST.
8128 Return true if it can be treated for inheritance purposes like a
8129 group of reloads, each one reloading a single hard register. The
8130 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8131 occupy the same number of hard registers. */
8133 static bool
8134 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8135 int src ATTRIBUTE_UNUSED,
8136 machine_mode mode ATTRIBUTE_UNUSED)
8138 #ifdef CANNOT_CHANGE_MODE_CLASS
8139 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8140 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8141 #else
8142 return true;
8143 #endif
8146 /* Output insns to reload values in and out of the chosen reload regs. */
8148 static void
8149 emit_reload_insns (struct insn_chain *chain)
8151 rtx_insn *insn = chain->insn;
8153 int j;
8155 CLEAR_HARD_REG_SET (reg_reloaded_died);
8157 for (j = 0; j < reload_n_operands; j++)
8158 input_reload_insns[j] = input_address_reload_insns[j]
8159 = inpaddr_address_reload_insns[j]
8160 = output_reload_insns[j] = output_address_reload_insns[j]
8161 = outaddr_address_reload_insns[j]
8162 = other_output_reload_insns[j] = 0;
8163 other_input_address_reload_insns = 0;
8164 other_input_reload_insns = 0;
8165 operand_reload_insns = 0;
8166 other_operand_reload_insns = 0;
8168 /* Dump reloads into the dump file. */
8169 if (dump_file)
8171 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8172 debug_reload_to_stream (dump_file);
8175 for (j = 0; j < n_reloads; j++)
8176 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8178 unsigned int i;
8180 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8181 new_spill_reg_store[i] = 0;
8184 /* Now output the instructions to copy the data into and out of the
8185 reload registers. Do these in the order that the reloads were reported,
8186 since reloads of base and index registers precede reloads of operands
8187 and the operands may need the base and index registers reloaded. */
8189 for (j = 0; j < n_reloads; j++)
8191 do_input_reload (chain, rld + j, j);
8192 do_output_reload (chain, rld + j, j);
8195 /* Now write all the insns we made for reloads in the order expected by
8196 the allocation functions. Prior to the insn being reloaded, we write
8197 the following reloads:
8199 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8201 RELOAD_OTHER reloads.
8203 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8204 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8205 RELOAD_FOR_INPUT reload for the operand.
8207 RELOAD_FOR_OPADDR_ADDRS reloads.
8209 RELOAD_FOR_OPERAND_ADDRESS reloads.
8211 After the insn being reloaded, we write the following:
8213 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8214 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8215 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8216 reloads for the operand. The RELOAD_OTHER output reloads are
8217 output in descending order by reload number. */
8219 emit_insn_before (other_input_address_reload_insns, insn);
8220 emit_insn_before (other_input_reload_insns, insn);
8222 for (j = 0; j < reload_n_operands; j++)
8224 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8225 emit_insn_before (input_address_reload_insns[j], insn);
8226 emit_insn_before (input_reload_insns[j], insn);
8229 emit_insn_before (other_operand_reload_insns, insn);
8230 emit_insn_before (operand_reload_insns, insn);
8232 for (j = 0; j < reload_n_operands; j++)
8234 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8235 x = emit_insn_after (output_address_reload_insns[j], x);
8236 x = emit_insn_after (output_reload_insns[j], x);
8237 emit_insn_after (other_output_reload_insns[j], x);
8240 /* For all the spill regs newly reloaded in this instruction,
8241 record what they were reloaded from, so subsequent instructions
8242 can inherit the reloads.
8244 Update spill_reg_store for the reloads of this insn.
8245 Copy the elements that were updated in the loop above. */
8247 for (j = 0; j < n_reloads; j++)
8249 int r = reload_order[j];
8250 int i = reload_spill_index[r];
8252 /* If this is a non-inherited input reload from a pseudo, we must
8253 clear any memory of a previous store to the same pseudo. Only do
8254 something if there will not be an output reload for the pseudo
8255 being reloaded. */
8256 if (rld[r].in_reg != 0
8257 && ! (reload_inherited[r] || reload_override_in[r]))
8259 rtx reg = rld[r].in_reg;
8261 if (GET_CODE (reg) == SUBREG)
8262 reg = SUBREG_REG (reg);
8264 if (REG_P (reg)
8265 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8266 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8268 int nregno = REGNO (reg);
8270 if (reg_last_reload_reg[nregno])
8272 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8274 if (reg_reloaded_contents[last_regno] == nregno)
8275 spill_reg_store[last_regno] = 0;
8280 /* I is nonneg if this reload used a register.
8281 If rld[r].reg_rtx is 0, this is an optional reload
8282 that we opted to ignore. */
8284 if (i >= 0 && rld[r].reg_rtx != 0)
8286 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8287 int k;
8289 /* For a multi register reload, we need to check if all or part
8290 of the value lives to the end. */
8291 for (k = 0; k < nr; k++)
8292 if (reload_reg_reaches_end_p (i + k, r))
8293 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8295 /* Maybe the spill reg contains a copy of reload_out. */
8296 if (rld[r].out != 0
8297 && (REG_P (rld[r].out)
8298 || (rld[r].out_reg
8299 ? REG_P (rld[r].out_reg)
8300 /* The reload value is an auto-modification of
8301 some kind. For PRE_INC, POST_INC, PRE_DEC
8302 and POST_DEC, we record an equivalence
8303 between the reload register and the operand
8304 on the optimistic assumption that we can make
8305 the equivalence hold. reload_as_needed must
8306 then either make it hold or invalidate the
8307 equivalence.
8309 PRE_MODIFY and POST_MODIFY addresses are reloaded
8310 somewhat differently, and allowing them here leads
8311 to problems. */
8312 : (GET_CODE (rld[r].out) != POST_MODIFY
8313 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8315 rtx reg;
8317 reg = reload_reg_rtx_for_output[r];
8318 if (reload_reg_rtx_reaches_end_p (reg, r))
8320 machine_mode mode = GET_MODE (reg);
8321 int regno = REGNO (reg);
8322 int nregs = hard_regno_nregs[regno][mode];
8323 rtx out = (REG_P (rld[r].out)
8324 ? rld[r].out
8325 : rld[r].out_reg
8326 ? rld[r].out_reg
8327 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8328 int out_regno = REGNO (out);
8329 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8330 : hard_regno_nregs[out_regno][mode]);
8331 bool piecemeal;
8333 spill_reg_store[regno] = new_spill_reg_store[regno];
8334 spill_reg_stored_to[regno] = out;
8335 reg_last_reload_reg[out_regno] = reg;
8337 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8338 && nregs == out_nregs
8339 && inherit_piecemeal_p (out_regno, regno, mode));
8341 /* If OUT_REGNO is a hard register, it may occupy more than
8342 one register. If it does, say what is in the
8343 rest of the registers assuming that both registers
8344 agree on how many words the object takes. If not,
8345 invalidate the subsequent registers. */
8347 if (HARD_REGISTER_NUM_P (out_regno))
8348 for (k = 1; k < out_nregs; k++)
8349 reg_last_reload_reg[out_regno + k]
8350 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8352 /* Now do the inverse operation. */
8353 for (k = 0; k < nregs; k++)
8355 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8356 reg_reloaded_contents[regno + k]
8357 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8358 ? out_regno
8359 : out_regno + k);
8360 reg_reloaded_insn[regno + k] = insn;
8361 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8362 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8363 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8364 regno + k);
8365 else
8366 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8367 regno + k);
8371 /* Maybe the spill reg contains a copy of reload_in. Only do
8372 something if there will not be an output reload for
8373 the register being reloaded. */
8374 else if (rld[r].out_reg == 0
8375 && rld[r].in != 0
8376 && ((REG_P (rld[r].in)
8377 && !HARD_REGISTER_P (rld[r].in)
8378 && !REGNO_REG_SET_P (&reg_has_output_reload,
8379 REGNO (rld[r].in)))
8380 || (REG_P (rld[r].in_reg)
8381 && !REGNO_REG_SET_P (&reg_has_output_reload,
8382 REGNO (rld[r].in_reg))))
8383 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8385 rtx reg;
8387 reg = reload_reg_rtx_for_input[r];
8388 if (reload_reg_rtx_reaches_end_p (reg, r))
8390 machine_mode mode;
8391 int regno;
8392 int nregs;
8393 int in_regno;
8394 int in_nregs;
8395 rtx in;
8396 bool piecemeal;
8398 mode = GET_MODE (reg);
8399 regno = REGNO (reg);
8400 nregs = hard_regno_nregs[regno][mode];
8401 if (REG_P (rld[r].in)
8402 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8403 in = rld[r].in;
8404 else if (REG_P (rld[r].in_reg))
8405 in = rld[r].in_reg;
8406 else
8407 in = XEXP (rld[r].in_reg, 0);
8408 in_regno = REGNO (in);
8410 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8411 : hard_regno_nregs[in_regno][mode]);
8413 reg_last_reload_reg[in_regno] = reg;
8415 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8416 && nregs == in_nregs
8417 && inherit_piecemeal_p (regno, in_regno, mode));
8419 if (HARD_REGISTER_NUM_P (in_regno))
8420 for (k = 1; k < in_nregs; k++)
8421 reg_last_reload_reg[in_regno + k]
8422 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8424 /* Unless we inherited this reload, show we haven't
8425 recently done a store.
8426 Previous stores of inherited auto_inc expressions
8427 also have to be discarded. */
8428 if (! reload_inherited[r]
8429 || (rld[r].out && ! rld[r].out_reg))
8430 spill_reg_store[regno] = 0;
8432 for (k = 0; k < nregs; k++)
8434 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8435 reg_reloaded_contents[regno + k]
8436 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8437 ? in_regno
8438 : in_regno + k);
8439 reg_reloaded_insn[regno + k] = insn;
8440 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8441 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8442 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8443 regno + k);
8444 else
8445 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8446 regno + k);
8452 /* The following if-statement was #if 0'd in 1.34 (or before...).
8453 It's reenabled in 1.35 because supposedly nothing else
8454 deals with this problem. */
8456 /* If a register gets output-reloaded from a non-spill register,
8457 that invalidates any previous reloaded copy of it.
8458 But forget_old_reloads_1 won't get to see it, because
8459 it thinks only about the original insn. So invalidate it here.
8460 Also do the same thing for RELOAD_OTHER constraints where the
8461 output is discarded. */
8462 if (i < 0
8463 && ((rld[r].out != 0
8464 && (REG_P (rld[r].out)
8465 || (MEM_P (rld[r].out)
8466 && REG_P (rld[r].out_reg))))
8467 || (rld[r].out == 0 && rld[r].out_reg
8468 && REG_P (rld[r].out_reg))))
8470 rtx out = ((rld[r].out && REG_P (rld[r].out))
8471 ? rld[r].out : rld[r].out_reg);
8472 int out_regno = REGNO (out);
8473 machine_mode mode = GET_MODE (out);
8475 /* REG_RTX is now set or clobbered by the main instruction.
8476 As the comment above explains, forget_old_reloads_1 only
8477 sees the original instruction, and there is no guarantee
8478 that the original instruction also clobbered REG_RTX.
8479 For example, if find_reloads sees that the input side of
8480 a matched operand pair dies in this instruction, it may
8481 use the input register as the reload register.
8483 Calling forget_old_reloads_1 is a waste of effort if
8484 REG_RTX is also the output register.
8486 If we know that REG_RTX holds the value of a pseudo
8487 register, the code after the call will record that fact. */
8488 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8489 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8491 if (!HARD_REGISTER_NUM_P (out_regno))
8493 rtx src_reg;
8494 rtx_insn *store_insn = NULL;
8496 reg_last_reload_reg[out_regno] = 0;
8498 /* If we can find a hard register that is stored, record
8499 the storing insn so that we may delete this insn with
8500 delete_output_reload. */
8501 src_reg = reload_reg_rtx_for_output[r];
8503 if (src_reg)
8505 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8506 store_insn = new_spill_reg_store[REGNO (src_reg)];
8507 else
8508 src_reg = NULL_RTX;
8510 else
8512 /* If this is an optional reload, try to find the
8513 source reg from an input reload. */
8514 rtx set = single_set (insn);
8515 if (set && SET_DEST (set) == rld[r].out)
8517 int k;
8519 src_reg = SET_SRC (set);
8520 store_insn = insn;
8521 for (k = 0; k < n_reloads; k++)
8523 if (rld[k].in == src_reg)
8525 src_reg = reload_reg_rtx_for_input[k];
8526 break;
8531 if (src_reg && REG_P (src_reg)
8532 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8534 int src_regno, src_nregs, k;
8535 rtx note;
8537 gcc_assert (GET_MODE (src_reg) == mode);
8538 src_regno = REGNO (src_reg);
8539 src_nregs = hard_regno_nregs[src_regno][mode];
8540 /* The place where to find a death note varies with
8541 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8542 necessarily checked exactly in the code that moves
8543 notes, so just check both locations. */
8544 note = find_regno_note (insn, REG_DEAD, src_regno);
8545 if (! note && store_insn)
8546 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8547 for (k = 0; k < src_nregs; k++)
8549 spill_reg_store[src_regno + k] = store_insn;
8550 spill_reg_stored_to[src_regno + k] = out;
8551 reg_reloaded_contents[src_regno + k] = out_regno;
8552 reg_reloaded_insn[src_regno + k] = store_insn;
8553 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8554 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8555 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8556 mode))
8557 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8558 src_regno + k);
8559 else
8560 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8561 src_regno + k);
8562 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8563 if (note)
8564 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8565 else
8566 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8568 reg_last_reload_reg[out_regno] = src_reg;
8569 /* We have to set reg_has_output_reload here, or else
8570 forget_old_reloads_1 will clear reg_last_reload_reg
8571 right away. */
8572 SET_REGNO_REG_SET (&reg_has_output_reload,
8573 out_regno);
8576 else
8578 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8580 for (k = 0; k < out_nregs; k++)
8581 reg_last_reload_reg[out_regno + k] = 0;
8585 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8588 /* Go through the motions to emit INSN and test if it is strictly valid.
8589 Return the emitted insn if valid, else return NULL. */
8591 static rtx_insn *
8592 emit_insn_if_valid_for_reload (rtx pat)
8594 rtx_insn *last = get_last_insn ();
8595 int code;
8597 rtx_insn *insn = emit_insn (pat);
8598 code = recog_memoized (insn);
8600 if (code >= 0)
8602 extract_insn (insn);
8603 /* We want constrain operands to treat this insn strictly in its
8604 validity determination, i.e., the way it would after reload has
8605 completed. */
8606 if (constrain_operands (1, get_enabled_alternatives (insn)))
8607 return insn;
8610 delete_insns_since (last);
8611 return NULL;
8614 /* Emit code to perform a reload from IN (which may be a reload register) to
8615 OUT (which may also be a reload register). IN or OUT is from operand
8616 OPNUM with reload type TYPE.
8618 Returns first insn emitted. */
8620 static rtx_insn *
8621 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8623 rtx_insn *last = get_last_insn ();
8624 rtx_insn *tem;
8625 #ifdef SECONDARY_MEMORY_NEEDED
8626 rtx tem1, tem2;
8627 #endif
8629 /* If IN is a paradoxical SUBREG, remove it and try to put the
8630 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8631 if (!strip_paradoxical_subreg (&in, &out))
8632 strip_paradoxical_subreg (&out, &in);
8634 /* How to do this reload can get quite tricky. Normally, we are being
8635 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8636 register that didn't get a hard register. In that case we can just
8637 call emit_move_insn.
8639 We can also be asked to reload a PLUS that adds a register or a MEM to
8640 another register, constant or MEM. This can occur during frame pointer
8641 elimination and while reloading addresses. This case is handled by
8642 trying to emit a single insn to perform the add. If it is not valid,
8643 we use a two insn sequence.
8645 Or we can be asked to reload an unary operand that was a fragment of
8646 an addressing mode, into a register. If it isn't recognized as-is,
8647 we try making the unop operand and the reload-register the same:
8648 (set reg:X (unop:X expr:Y))
8649 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8651 Finally, we could be called to handle an 'o' constraint by putting
8652 an address into a register. In that case, we first try to do this
8653 with a named pattern of "reload_load_address". If no such pattern
8654 exists, we just emit a SET insn and hope for the best (it will normally
8655 be valid on machines that use 'o').
8657 This entire process is made complex because reload will never
8658 process the insns we generate here and so we must ensure that
8659 they will fit their constraints and also by the fact that parts of
8660 IN might be being reloaded separately and replaced with spill registers.
8661 Because of this, we are, in some sense, just guessing the right approach
8662 here. The one listed above seems to work.
8664 ??? At some point, this whole thing needs to be rethought. */
8666 if (GET_CODE (in) == PLUS
8667 && (REG_P (XEXP (in, 0))
8668 || GET_CODE (XEXP (in, 0)) == SUBREG
8669 || MEM_P (XEXP (in, 0)))
8670 && (REG_P (XEXP (in, 1))
8671 || GET_CODE (XEXP (in, 1)) == SUBREG
8672 || CONSTANT_P (XEXP (in, 1))
8673 || MEM_P (XEXP (in, 1))))
8675 /* We need to compute the sum of a register or a MEM and another
8676 register, constant, or MEM, and put it into the reload
8677 register. The best possible way of doing this is if the machine
8678 has a three-operand ADD insn that accepts the required operands.
8680 The simplest approach is to try to generate such an insn and see if it
8681 is recognized and matches its constraints. If so, it can be used.
8683 It might be better not to actually emit the insn unless it is valid,
8684 but we need to pass the insn as an operand to `recog' and
8685 `extract_insn' and it is simpler to emit and then delete the insn if
8686 not valid than to dummy things up. */
8688 rtx op0, op1, tem;
8689 rtx_insn *insn;
8690 enum insn_code code;
8692 op0 = find_replacement (&XEXP (in, 0));
8693 op1 = find_replacement (&XEXP (in, 1));
8695 /* Since constraint checking is strict, commutativity won't be
8696 checked, so we need to do that here to avoid spurious failure
8697 if the add instruction is two-address and the second operand
8698 of the add is the same as the reload reg, which is frequently
8699 the case. If the insn would be A = B + A, rearrange it so
8700 it will be A = A + B as constrain_operands expects. */
8702 if (REG_P (XEXP (in, 1))
8703 && REGNO (out) == REGNO (XEXP (in, 1)))
8704 tem = op0, op0 = op1, op1 = tem;
8706 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8707 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8709 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8710 if (insn)
8711 return insn;
8713 /* If that failed, we must use a conservative two-insn sequence.
8715 Use a move to copy one operand into the reload register. Prefer
8716 to reload a constant, MEM or pseudo since the move patterns can
8717 handle an arbitrary operand. If OP1 is not a constant, MEM or
8718 pseudo and OP1 is not a valid operand for an add instruction, then
8719 reload OP1.
8721 After reloading one of the operands into the reload register, add
8722 the reload register to the output register.
8724 If there is another way to do this for a specific machine, a
8725 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8726 we emit below. */
8728 code = optab_handler (add_optab, GET_MODE (out));
8730 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8731 || (REG_P (op1)
8732 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8733 || (code != CODE_FOR_nothing
8734 && !insn_operand_matches (code, 2, op1)))
8735 tem = op0, op0 = op1, op1 = tem;
8737 gen_reload (out, op0, opnum, type);
8739 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8740 This fixes a problem on the 32K where the stack pointer cannot
8741 be used as an operand of an add insn. */
8743 if (rtx_equal_p (op0, op1))
8744 op1 = out;
8746 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8747 if (insn)
8749 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8750 set_dst_reg_note (insn, REG_EQUIV, in, out);
8751 return insn;
8754 /* If that failed, copy the address register to the reload register.
8755 Then add the constant to the reload register. */
8757 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8758 gen_reload (out, op1, opnum, type);
8759 insn = emit_insn (gen_add2_insn (out, op0));
8760 set_dst_reg_note (insn, REG_EQUIV, in, out);
8763 #ifdef SECONDARY_MEMORY_NEEDED
8764 /* If we need a memory location to do the move, do it that way. */
8765 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8766 (REG_P (tem1) && REG_P (tem2)))
8767 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8768 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8769 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8770 REGNO_REG_CLASS (REGNO (tem2)),
8771 GET_MODE (out)))
8773 /* Get the memory to use and rewrite both registers to its mode. */
8774 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8776 if (GET_MODE (loc) != GET_MODE (out))
8777 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8779 if (GET_MODE (loc) != GET_MODE (in))
8780 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8782 gen_reload (loc, in, opnum, type);
8783 gen_reload (out, loc, opnum, type);
8785 #endif
8786 else if (REG_P (out) && UNARY_P (in))
8788 rtx insn;
8789 rtx op1;
8790 rtx out_moded;
8791 rtx_insn *set;
8793 op1 = find_replacement (&XEXP (in, 0));
8794 if (op1 != XEXP (in, 0))
8795 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8797 /* First, try a plain SET. */
8798 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8799 if (set)
8800 return set;
8802 /* If that failed, move the inner operand to the reload
8803 register, and try the same unop with the inner expression
8804 replaced with the reload register. */
8806 if (GET_MODE (op1) != GET_MODE (out))
8807 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8808 else
8809 out_moded = out;
8811 gen_reload (out_moded, op1, opnum, type);
8813 insn = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8814 out_moded));
8815 insn = emit_insn_if_valid_for_reload (insn);
8816 if (insn)
8818 set_unique_reg_note (insn, REG_EQUIV, in);
8819 return as_a <rtx_insn *> (insn);
8822 fatal_insn ("failure trying to reload:", set);
8824 /* If IN is a simple operand, use gen_move_insn. */
8825 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8827 tem = emit_insn (gen_move_insn (out, in));
8828 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8829 mark_jump_label (in, tem, 0);
8832 #ifdef HAVE_reload_load_address
8833 else if (HAVE_reload_load_address)
8834 emit_insn (gen_reload_load_address (out, in));
8835 #endif
8837 /* Otherwise, just write (set OUT IN) and hope for the best. */
8838 else
8839 emit_insn (gen_rtx_SET (out, in));
8841 /* Return the first insn emitted.
8842 We can not just return get_last_insn, because there may have
8843 been multiple instructions emitted. Also note that gen_move_insn may
8844 emit more than one insn itself, so we can not assume that there is one
8845 insn emitted per emit_insn_before call. */
8847 return last ? NEXT_INSN (last) : get_insns ();
8850 /* Delete a previously made output-reload whose result we now believe
8851 is not needed. First we double-check.
8853 INSN is the insn now being processed.
8854 LAST_RELOAD_REG is the hard register number for which we want to delete
8855 the last output reload.
8856 J is the reload-number that originally used REG. The caller has made
8857 certain that reload J doesn't use REG any longer for input.
8858 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8860 static void
8861 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8862 rtx new_reload_reg)
8864 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8865 rtx reg = spill_reg_stored_to[last_reload_reg];
8866 int k;
8867 int n_occurrences;
8868 int n_inherited = 0;
8869 rtx substed;
8870 unsigned regno;
8871 int nregs;
8873 /* It is possible that this reload has been only used to set another reload
8874 we eliminated earlier and thus deleted this instruction too. */
8875 if (output_reload_insn->deleted ())
8876 return;
8878 /* Get the raw pseudo-register referred to. */
8880 while (GET_CODE (reg) == SUBREG)
8881 reg = SUBREG_REG (reg);
8882 substed = reg_equiv_memory_loc (REGNO (reg));
8884 /* This is unsafe if the operand occurs more often in the current
8885 insn than it is inherited. */
8886 for (k = n_reloads - 1; k >= 0; k--)
8888 rtx reg2 = rld[k].in;
8889 if (! reg2)
8890 continue;
8891 if (MEM_P (reg2) || reload_override_in[k])
8892 reg2 = rld[k].in_reg;
8893 #ifdef AUTO_INC_DEC
8894 if (rld[k].out && ! rld[k].out_reg)
8895 reg2 = XEXP (rld[k].in_reg, 0);
8896 #endif
8897 while (GET_CODE (reg2) == SUBREG)
8898 reg2 = SUBREG_REG (reg2);
8899 if (rtx_equal_p (reg2, reg))
8901 if (reload_inherited[k] || reload_override_in[k] || k == j)
8902 n_inherited++;
8903 else
8904 return;
8907 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8908 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8909 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8910 reg, 0);
8911 if (substed)
8912 n_occurrences += count_occurrences (PATTERN (insn),
8913 eliminate_regs (substed, VOIDmode,
8914 NULL_RTX), 0);
8915 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8917 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8918 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8920 if (n_occurrences > n_inherited)
8921 return;
8923 regno = REGNO (reg);
8924 if (regno >= FIRST_PSEUDO_REGISTER)
8925 nregs = 1;
8926 else
8927 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8929 /* If the pseudo-reg we are reloading is no longer referenced
8930 anywhere between the store into it and here,
8931 and we're within the same basic block, then the value can only
8932 pass through the reload reg and end up here.
8933 Otherwise, give up--return. */
8934 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8935 i1 != insn; i1 = NEXT_INSN (i1))
8937 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8938 return;
8939 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8940 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8942 /* If this is USE in front of INSN, we only have to check that
8943 there are no more references than accounted for by inheritance. */
8944 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8946 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8947 i1 = NEXT_INSN (i1);
8949 if (n_occurrences <= n_inherited && i1 == insn)
8950 break;
8951 return;
8955 /* We will be deleting the insn. Remove the spill reg information. */
8956 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8958 spill_reg_store[last_reload_reg + k] = 0;
8959 spill_reg_stored_to[last_reload_reg + k] = 0;
8962 /* The caller has already checked that REG dies or is set in INSN.
8963 It has also checked that we are optimizing, and thus some
8964 inaccuracies in the debugging information are acceptable.
8965 So we could just delete output_reload_insn. But in some cases
8966 we can improve the debugging information without sacrificing
8967 optimization - maybe even improving the code: See if the pseudo
8968 reg has been completely replaced with reload regs. If so, delete
8969 the store insn and forget we had a stack slot for the pseudo. */
8970 if (rld[j].out != rld[j].in
8971 && REG_N_DEATHS (REGNO (reg)) == 1
8972 && REG_N_SETS (REGNO (reg)) == 1
8973 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8974 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8976 rtx_insn *i2;
8978 /* We know that it was used only between here and the beginning of
8979 the current basic block. (We also know that the last use before
8980 INSN was the output reload we are thinking of deleting, but never
8981 mind that.) Search that range; see if any ref remains. */
8982 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8984 rtx set = single_set (i2);
8986 /* Uses which just store in the pseudo don't count,
8987 since if they are the only uses, they are dead. */
8988 if (set != 0 && SET_DEST (set) == reg)
8989 continue;
8990 if (LABEL_P (i2) || JUMP_P (i2))
8991 break;
8992 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8993 && reg_mentioned_p (reg, PATTERN (i2)))
8995 /* Some other ref remains; just delete the output reload we
8996 know to be dead. */
8997 delete_address_reloads (output_reload_insn, insn);
8998 delete_insn (output_reload_insn);
8999 return;
9003 /* Delete the now-dead stores into this pseudo. Note that this
9004 loop also takes care of deleting output_reload_insn. */
9005 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
9007 rtx set = single_set (i2);
9009 if (set != 0 && SET_DEST (set) == reg)
9011 delete_address_reloads (i2, insn);
9012 delete_insn (i2);
9014 if (LABEL_P (i2) || JUMP_P (i2))
9015 break;
9018 /* For the debugging info, say the pseudo lives in this reload reg. */
9019 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
9020 if (ira_conflicts_p)
9021 /* Inform IRA about the change. */
9022 ira_mark_allocation_change (REGNO (reg));
9023 alter_reg (REGNO (reg), -1, false);
9025 else
9027 delete_address_reloads (output_reload_insn, insn);
9028 delete_insn (output_reload_insn);
9032 /* We are going to delete DEAD_INSN. Recursively delete loads of
9033 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
9034 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
9035 static void
9036 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
9038 rtx set = single_set (dead_insn);
9039 rtx set2, dst;
9040 rtx_insn *prev, *next;
9041 if (set)
9043 rtx dst = SET_DEST (set);
9044 if (MEM_P (dst))
9045 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
9047 /* If we deleted the store from a reloaded post_{in,de}c expression,
9048 we can delete the matching adds. */
9049 prev = PREV_INSN (dead_insn);
9050 next = NEXT_INSN (dead_insn);
9051 if (! prev || ! next)
9052 return;
9053 set = single_set (next);
9054 set2 = single_set (prev);
9055 if (! set || ! set2
9056 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
9057 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
9058 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
9059 return;
9060 dst = SET_DEST (set);
9061 if (! rtx_equal_p (dst, SET_DEST (set2))
9062 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
9063 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
9064 || (INTVAL (XEXP (SET_SRC (set), 1))
9065 != -INTVAL (XEXP (SET_SRC (set2), 1))))
9066 return;
9067 delete_related_insns (prev);
9068 delete_related_insns (next);
9071 /* Subfunction of delete_address_reloads: process registers found in X. */
9072 static void
9073 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
9075 rtx_insn *prev, *i2;
9076 rtx set, dst;
9077 int i, j;
9078 enum rtx_code code = GET_CODE (x);
9080 if (code != REG)
9082 const char *fmt = GET_RTX_FORMAT (code);
9083 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9085 if (fmt[i] == 'e')
9086 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
9087 else if (fmt[i] == 'E')
9089 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9090 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9091 current_insn);
9094 return;
9097 if (spill_reg_order[REGNO (x)] < 0)
9098 return;
9100 /* Scan backwards for the insn that sets x. This might be a way back due
9101 to inheritance. */
9102 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9104 code = GET_CODE (prev);
9105 if (code == CODE_LABEL || code == JUMP_INSN)
9106 return;
9107 if (!INSN_P (prev))
9108 continue;
9109 if (reg_set_p (x, PATTERN (prev)))
9110 break;
9111 if (reg_referenced_p (x, PATTERN (prev)))
9112 return;
9114 if (! prev || INSN_UID (prev) < reload_first_uid)
9115 return;
9116 /* Check that PREV only sets the reload register. */
9117 set = single_set (prev);
9118 if (! set)
9119 return;
9120 dst = SET_DEST (set);
9121 if (!REG_P (dst)
9122 || ! rtx_equal_p (dst, x))
9123 return;
9124 if (! reg_set_p (dst, PATTERN (dead_insn)))
9126 /* Check if DST was used in a later insn -
9127 it might have been inherited. */
9128 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9130 if (LABEL_P (i2))
9131 break;
9132 if (! INSN_P (i2))
9133 continue;
9134 if (reg_referenced_p (dst, PATTERN (i2)))
9136 /* If there is a reference to the register in the current insn,
9137 it might be loaded in a non-inherited reload. If no other
9138 reload uses it, that means the register is set before
9139 referenced. */
9140 if (i2 == current_insn)
9142 for (j = n_reloads - 1; j >= 0; j--)
9143 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9144 || reload_override_in[j] == dst)
9145 return;
9146 for (j = n_reloads - 1; j >= 0; j--)
9147 if (rld[j].in && rld[j].reg_rtx == dst)
9148 break;
9149 if (j >= 0)
9150 break;
9152 return;
9154 if (JUMP_P (i2))
9155 break;
9156 /* If DST is still live at CURRENT_INSN, check if it is used for
9157 any reload. Note that even if CURRENT_INSN sets DST, we still
9158 have to check the reloads. */
9159 if (i2 == current_insn)
9161 for (j = n_reloads - 1; j >= 0; j--)
9162 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9163 || reload_override_in[j] == dst)
9164 return;
9165 /* ??? We can't finish the loop here, because dst might be
9166 allocated to a pseudo in this block if no reload in this
9167 block needs any of the classes containing DST - see
9168 spill_hard_reg. There is no easy way to tell this, so we
9169 have to scan till the end of the basic block. */
9171 if (reg_set_p (dst, PATTERN (i2)))
9172 break;
9175 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9176 reg_reloaded_contents[REGNO (dst)] = -1;
9177 delete_insn (prev);
9180 /* Output reload-insns to reload VALUE into RELOADREG.
9181 VALUE is an autoincrement or autodecrement RTX whose operand
9182 is a register or memory location;
9183 so reloading involves incrementing that location.
9184 IN is either identical to VALUE, or some cheaper place to reload from.
9186 INC_AMOUNT is the number to increment or decrement by (always positive).
9187 This cannot be deduced from VALUE. */
9189 static void
9190 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9192 /* REG or MEM to be copied and incremented. */
9193 rtx incloc = find_replacement (&XEXP (value, 0));
9194 /* Nonzero if increment after copying. */
9195 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9196 || GET_CODE (value) == POST_MODIFY);
9197 rtx_insn *last;
9198 rtx inc;
9199 rtx_insn *add_insn;
9200 int code;
9201 rtx real_in = in == value ? incloc : in;
9203 /* No hard register is equivalent to this register after
9204 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9205 we could inc/dec that register as well (maybe even using it for
9206 the source), but I'm not sure it's worth worrying about. */
9207 if (REG_P (incloc))
9208 reg_last_reload_reg[REGNO (incloc)] = 0;
9210 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9212 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9213 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9215 else
9217 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9218 inc_amount = -inc_amount;
9220 inc = GEN_INT (inc_amount);
9223 /* If this is post-increment, first copy the location to the reload reg. */
9224 if (post && real_in != reloadreg)
9225 emit_insn (gen_move_insn (reloadreg, real_in));
9227 if (in == value)
9229 /* See if we can directly increment INCLOC. Use a method similar to
9230 that in gen_reload. */
9232 last = get_last_insn ();
9233 add_insn = emit_insn (gen_rtx_SET (incloc,
9234 gen_rtx_PLUS (GET_MODE (incloc),
9235 incloc, inc)));
9237 code = recog_memoized (add_insn);
9238 if (code >= 0)
9240 extract_insn (add_insn);
9241 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9243 /* If this is a pre-increment and we have incremented the value
9244 where it lives, copy the incremented value to RELOADREG to
9245 be used as an address. */
9247 if (! post)
9248 emit_insn (gen_move_insn (reloadreg, incloc));
9249 return;
9252 delete_insns_since (last);
9255 /* If couldn't do the increment directly, must increment in RELOADREG.
9256 The way we do this depends on whether this is pre- or post-increment.
9257 For pre-increment, copy INCLOC to the reload register, increment it
9258 there, then save back. */
9260 if (! post)
9262 if (in != reloadreg)
9263 emit_insn (gen_move_insn (reloadreg, real_in));
9264 emit_insn (gen_add2_insn (reloadreg, inc));
9265 emit_insn (gen_move_insn (incloc, reloadreg));
9267 else
9269 /* Postincrement.
9270 Because this might be a jump insn or a compare, and because RELOADREG
9271 may not be available after the insn in an input reload, we must do
9272 the incrementation before the insn being reloaded for.
9274 We have already copied IN to RELOADREG. Increment the copy in
9275 RELOADREG, save that back, then decrement RELOADREG so it has
9276 the original value. */
9278 emit_insn (gen_add2_insn (reloadreg, inc));
9279 emit_insn (gen_move_insn (incloc, reloadreg));
9280 if (CONST_INT_P (inc))
9281 emit_insn (gen_add2_insn (reloadreg,
9282 gen_int_mode (-INTVAL (inc),
9283 GET_MODE (reloadreg))));
9284 else
9285 emit_insn (gen_sub2_insn (reloadreg, inc));
9289 #ifdef AUTO_INC_DEC
9290 static void
9291 add_auto_inc_notes (rtx_insn *insn, rtx x)
9293 enum rtx_code code = GET_CODE (x);
9294 const char *fmt;
9295 int i, j;
9297 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9299 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9300 return;
9303 /* Scan all the operand sub-expressions. */
9304 fmt = GET_RTX_FORMAT (code);
9305 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9307 if (fmt[i] == 'e')
9308 add_auto_inc_notes (insn, XEXP (x, i));
9309 else if (fmt[i] == 'E')
9310 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9311 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9314 #endif