2015-05-12 Ed Schonberg <schonberg@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch5.adb
blob34cc18eff4ee3ce88c633cf00012856d9a684032
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Ch6; use Exp_Ch6;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Ghost; use Ghost;
36 with Lib; use Lib;
37 with Lib.Xref; use Lib.Xref;
38 with Namet; use Namet;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Rtsfind; use Rtsfind;
45 with Sem; use Sem;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Case; use Sem_Case;
48 with Sem_Ch3; use Sem_Ch3;
49 with Sem_Ch6; use Sem_Ch6;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Dim; use Sem_Dim;
52 with Sem_Disp; use Sem_Disp;
53 with Sem_Elab; use Sem_Elab;
54 with Sem_Eval; use Sem_Eval;
55 with Sem_Res; use Sem_Res;
56 with Sem_Type; use Sem_Type;
57 with Sem_Util; use Sem_Util;
58 with Sem_Warn; use Sem_Warn;
59 with Snames; use Snames;
60 with Stand; use Stand;
61 with Sinfo; use Sinfo;
62 with Targparm; use Targparm;
63 with Tbuild; use Tbuild;
64 with Uintp; use Uintp;
66 package body Sem_Ch5 is
68 Unblocked_Exit_Count : Nat := 0;
69 -- This variable is used when processing if statements, case statements,
70 -- and block statements. It counts the number of exit points that are not
71 -- blocked by unconditional transfer instructions: for IF and CASE, these
72 -- are the branches of the conditional; for a block, they are the statement
73 -- sequence of the block, and the statement sequences of any exception
74 -- handlers that are part of the block. When processing is complete, if
75 -- this count is zero, it means that control cannot fall through the IF,
76 -- CASE or block statement. This is used for the generation of warning
77 -- messages. This variable is recursively saved on entry to processing the
78 -- construct, and restored on exit.
80 procedure Preanalyze_Range (R_Copy : Node_Id);
81 -- Determine expected type of range or domain of iteration of Ada 2012
82 -- loop by analyzing separate copy. Do the analysis and resolution of the
83 -- copy of the bound(s) with expansion disabled, to prevent the generation
84 -- of finalization actions. This prevents memory leaks when the bounds
85 -- contain calls to functions returning controlled arrays or when the
86 -- domain of iteration is a container.
88 ------------------------
89 -- Analyze_Assignment --
90 ------------------------
92 procedure Analyze_Assignment (N : Node_Id) is
93 Lhs : constant Node_Id := Name (N);
94 Rhs : constant Node_Id := Expression (N);
95 T1 : Entity_Id;
96 T2 : Entity_Id;
97 Decl : Node_Id;
99 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
100 -- N is the node for the left hand side of an assignment, and it is not
101 -- a variable. This routine issues an appropriate diagnostic.
103 procedure Kill_Lhs;
104 -- This is called to kill current value settings of a simple variable
105 -- on the left hand side. We call it if we find any error in analyzing
106 -- the assignment, and at the end of processing before setting any new
107 -- current values in place.
109 procedure Set_Assignment_Type
110 (Opnd : Node_Id;
111 Opnd_Type : in out Entity_Id);
112 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
113 -- nominal subtype. This procedure is used to deal with cases where the
114 -- nominal subtype must be replaced by the actual subtype.
116 -------------------------------
117 -- Diagnose_Non_Variable_Lhs --
118 -------------------------------
120 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
121 begin
122 -- Not worth posting another error if left hand side already flagged
123 -- as being illegal in some respect.
125 if Error_Posted (N) then
126 return;
128 -- Some special bad cases of entity names
130 elsif Is_Entity_Name (N) then
131 declare
132 Ent : constant Entity_Id := Entity (N);
134 begin
135 if Ekind (Ent) = E_In_Parameter then
136 Error_Msg_N
137 ("assignment to IN mode parameter not allowed", N);
138 return;
140 -- Renamings of protected private components are turned into
141 -- constants when compiling a protected function. In the case
142 -- of single protected types, the private component appears
143 -- directly.
145 elsif (Is_Prival (Ent)
146 and then
147 (Ekind (Current_Scope) = E_Function
148 or else Ekind (Enclosing_Dynamic_Scope
149 (Current_Scope)) = E_Function))
150 or else
151 (Ekind (Ent) = E_Component
152 and then Is_Protected_Type (Scope (Ent)))
153 then
154 Error_Msg_N
155 ("protected function cannot modify protected object", N);
156 return;
158 elsif Ekind (Ent) = E_Loop_Parameter then
159 Error_Msg_N ("assignment to loop parameter not allowed", N);
160 return;
161 end if;
162 end;
164 -- For indexed components, test prefix if it is in array. We do not
165 -- want to recurse for cases where the prefix is a pointer, since we
166 -- may get a message confusing the pointer and what it references.
168 elsif Nkind (N) = N_Indexed_Component
169 and then Is_Array_Type (Etype (Prefix (N)))
170 then
171 Diagnose_Non_Variable_Lhs (Prefix (N));
172 return;
174 -- Another special case for assignment to discriminant
176 elsif Nkind (N) = N_Selected_Component then
177 if Present (Entity (Selector_Name (N)))
178 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
179 then
180 Error_Msg_N ("assignment to discriminant not allowed", N);
181 return;
183 -- For selection from record, diagnose prefix, but note that again
184 -- we only do this for a record, not e.g. for a pointer.
186 elsif Is_Record_Type (Etype (Prefix (N))) then
187 Diagnose_Non_Variable_Lhs (Prefix (N));
188 return;
189 end if;
190 end if;
192 -- If we fall through, we have no special message to issue
194 Error_Msg_N ("left hand side of assignment must be a variable", N);
195 end Diagnose_Non_Variable_Lhs;
197 --------------
198 -- Kill_Lhs --
199 --------------
201 procedure Kill_Lhs is
202 begin
203 if Is_Entity_Name (Lhs) then
204 declare
205 Ent : constant Entity_Id := Entity (Lhs);
206 begin
207 if Present (Ent) then
208 Kill_Current_Values (Ent);
209 end if;
210 end;
211 end if;
212 end Kill_Lhs;
214 -------------------------
215 -- Set_Assignment_Type --
216 -------------------------
218 procedure Set_Assignment_Type
219 (Opnd : Node_Id;
220 Opnd_Type : in out Entity_Id)
222 begin
223 Require_Entity (Opnd);
225 -- If the assignment operand is an in-out or out parameter, then we
226 -- get the actual subtype (needed for the unconstrained case). If the
227 -- operand is the actual in an entry declaration, then within the
228 -- accept statement it is replaced with a local renaming, which may
229 -- also have an actual subtype.
231 if Is_Entity_Name (Opnd)
232 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
233 or else Ekind_In (Entity (Opnd),
234 E_In_Out_Parameter,
235 E_Generic_In_Out_Parameter)
236 or else
237 (Ekind (Entity (Opnd)) = E_Variable
238 and then Nkind (Parent (Entity (Opnd))) =
239 N_Object_Renaming_Declaration
240 and then Nkind (Parent (Parent (Entity (Opnd)))) =
241 N_Accept_Statement))
242 then
243 Opnd_Type := Get_Actual_Subtype (Opnd);
245 -- If assignment operand is a component reference, then we get the
246 -- actual subtype of the component for the unconstrained case.
248 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
249 and then not Is_Unchecked_Union (Opnd_Type)
250 then
251 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
253 if Present (Decl) then
254 Insert_Action (N, Decl);
255 Mark_Rewrite_Insertion (Decl);
256 Analyze (Decl);
257 Opnd_Type := Defining_Identifier (Decl);
258 Set_Etype (Opnd, Opnd_Type);
259 Freeze_Itype (Opnd_Type, N);
261 elsif Is_Constrained (Etype (Opnd)) then
262 Opnd_Type := Etype (Opnd);
263 end if;
265 -- For slice, use the constrained subtype created for the slice
267 elsif Nkind (Opnd) = N_Slice then
268 Opnd_Type := Etype (Opnd);
269 end if;
270 end Set_Assignment_Type;
272 -- Start of processing for Analyze_Assignment
274 begin
275 Mark_Coextensions (N, Rhs);
277 -- Analyze the target of the assignment first in case the expression
278 -- contains references to Ghost entities. The checks that verify the
279 -- proper use of a Ghost entity need to know the enclosing context.
281 Analyze (Lhs);
283 -- The left hand side of an assignment may reference an entity subject
284 -- to pragma Ghost with policy Ignore. Set the mode now to ensure that
285 -- any nodes generated during analysis and expansion are properly
286 -- flagged as ignored Ghost.
288 Set_Ghost_Mode (N);
289 Analyze (Rhs);
291 -- Ensure that we never do an assignment on a variable marked as
292 -- as Safe_To_Reevaluate.
294 pragma Assert (not Is_Entity_Name (Lhs)
295 or else Ekind (Entity (Lhs)) /= E_Variable
296 or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
298 -- Start type analysis for assignment
300 T1 := Etype (Lhs);
302 -- In the most general case, both Lhs and Rhs can be overloaded, and we
303 -- must compute the intersection of the possible types on each side.
305 if Is_Overloaded (Lhs) then
306 declare
307 I : Interp_Index;
308 It : Interp;
310 begin
311 T1 := Any_Type;
312 Get_First_Interp (Lhs, I, It);
314 while Present (It.Typ) loop
315 if Has_Compatible_Type (Rhs, It.Typ) then
316 if T1 /= Any_Type then
318 -- An explicit dereference is overloaded if the prefix
319 -- is. Try to remove the ambiguity on the prefix, the
320 -- error will be posted there if the ambiguity is real.
322 if Nkind (Lhs) = N_Explicit_Dereference then
323 declare
324 PI : Interp_Index;
325 PI1 : Interp_Index := 0;
326 PIt : Interp;
327 Found : Boolean;
329 begin
330 Found := False;
331 Get_First_Interp (Prefix (Lhs), PI, PIt);
333 while Present (PIt.Typ) loop
334 if Is_Access_Type (PIt.Typ)
335 and then Has_Compatible_Type
336 (Rhs, Designated_Type (PIt.Typ))
337 then
338 if Found then
339 PIt :=
340 Disambiguate (Prefix (Lhs),
341 PI1, PI, Any_Type);
343 if PIt = No_Interp then
344 Error_Msg_N
345 ("ambiguous left-hand side"
346 & " in assignment", Lhs);
347 exit;
348 else
349 Resolve (Prefix (Lhs), PIt.Typ);
350 end if;
352 exit;
353 else
354 Found := True;
355 PI1 := PI;
356 end if;
357 end if;
359 Get_Next_Interp (PI, PIt);
360 end loop;
361 end;
363 else
364 Error_Msg_N
365 ("ambiguous left-hand side in assignment", Lhs);
366 exit;
367 end if;
368 else
369 T1 := It.Typ;
370 end if;
371 end if;
373 Get_Next_Interp (I, It);
374 end loop;
375 end;
377 if T1 = Any_Type then
378 Error_Msg_N
379 ("no valid types for left-hand side for assignment", Lhs);
380 Kill_Lhs;
381 return;
382 end if;
383 end if;
385 -- The resulting assignment type is T1, so now we will resolve the left
386 -- hand side of the assignment using this determined type.
388 Resolve (Lhs, T1);
390 -- Cases where Lhs is not a variable
392 if not Is_Variable (Lhs) then
394 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
395 -- protected object.
397 declare
398 Ent : Entity_Id;
399 S : Entity_Id;
401 begin
402 if Ada_Version >= Ada_2005 then
404 -- Handle chains of renamings
406 Ent := Lhs;
407 while Nkind (Ent) in N_Has_Entity
408 and then Present (Entity (Ent))
409 and then Present (Renamed_Object (Entity (Ent)))
410 loop
411 Ent := Renamed_Object (Entity (Ent));
412 end loop;
414 if (Nkind (Ent) = N_Attribute_Reference
415 and then Attribute_Name (Ent) = Name_Priority)
417 -- Renamings of the attribute Priority applied to protected
418 -- objects have been previously expanded into calls to the
419 -- Get_Ceiling run-time subprogram.
421 or else
422 (Nkind (Ent) = N_Function_Call
423 and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
424 or else
425 Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling)))
426 then
427 -- The enclosing subprogram cannot be a protected function
429 S := Current_Scope;
430 while not (Is_Subprogram (S)
431 and then Convention (S) = Convention_Protected)
432 and then S /= Standard_Standard
433 loop
434 S := Scope (S);
435 end loop;
437 if Ekind (S) = E_Function
438 and then Convention (S) = Convention_Protected
439 then
440 Error_Msg_N
441 ("protected function cannot modify protected object",
442 Lhs);
443 end if;
445 -- Changes of the ceiling priority of the protected object
446 -- are only effective if the Ceiling_Locking policy is in
447 -- effect (AARM D.5.2 (5/2)).
449 if Locking_Policy /= 'C' then
450 Error_Msg_N ("assignment to the attribute PRIORITY has " &
451 "no effect??", Lhs);
452 Error_Msg_N ("\since no Locking_Policy has been " &
453 "specified??", Lhs);
454 end if;
456 return;
457 end if;
458 end if;
459 end;
461 Diagnose_Non_Variable_Lhs (Lhs);
462 return;
464 -- Error of assigning to limited type. We do however allow this in
465 -- certain cases where the front end generates the assignments.
467 elsif Is_Limited_Type (T1)
468 and then not Assignment_OK (Lhs)
469 and then not Assignment_OK (Original_Node (Lhs))
470 and then not Is_Value_Type (T1)
471 then
472 -- CPP constructors can only be called in declarations
474 if Is_CPP_Constructor_Call (Rhs) then
475 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
476 else
477 Error_Msg_N
478 ("left hand of assignment must not be limited type", Lhs);
479 Explain_Limited_Type (T1, Lhs);
480 end if;
481 return;
483 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
484 -- abstract. This is only checked when the assignment Comes_From_Source,
485 -- because in some cases the expander generates such assignments (such
486 -- in the _assign operation for an abstract type).
488 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
489 Error_Msg_N
490 ("target of assignment operation must not be abstract", Lhs);
491 end if;
493 -- Resolution may have updated the subtype, in case the left-hand side
494 -- is a private protected component. Use the correct subtype to avoid
495 -- scoping issues in the back-end.
497 T1 := Etype (Lhs);
499 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
500 -- type. For example:
502 -- limited with P;
503 -- package Pkg is
504 -- type Acc is access P.T;
505 -- end Pkg;
507 -- with Pkg; use Acc;
508 -- procedure Example is
509 -- A, B : Acc;
510 -- begin
511 -- A.all := B.all; -- ERROR
512 -- end Example;
514 if Nkind (Lhs) = N_Explicit_Dereference
515 and then Ekind (T1) = E_Incomplete_Type
516 then
517 Error_Msg_N ("invalid use of incomplete type", Lhs);
518 Kill_Lhs;
519 return;
520 end if;
522 -- Now we can complete the resolution of the right hand side
524 Set_Assignment_Type (Lhs, T1);
525 Resolve (Rhs, T1);
527 -- This is the point at which we check for an unset reference
529 Check_Unset_Reference (Rhs);
530 Check_Unprotected_Access (Lhs, Rhs);
532 -- Remaining steps are skipped if Rhs was syntactically in error
534 if Rhs = Error then
535 Kill_Lhs;
536 return;
537 end if;
539 T2 := Etype (Rhs);
541 if not Covers (T1, T2) then
542 Wrong_Type (Rhs, Etype (Lhs));
543 Kill_Lhs;
544 return;
545 end if;
547 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
548 -- types, use the non-limited view if available
550 if Nkind (Rhs) = N_Explicit_Dereference
551 and then Is_Tagged_Type (T2)
552 and then Has_Non_Limited_View (T2)
553 then
554 T2 := Non_Limited_View (T2);
555 end if;
557 Set_Assignment_Type (Rhs, T2);
559 if Total_Errors_Detected /= 0 then
560 if No (T1) then
561 T1 := Any_Type;
562 end if;
564 if No (T2) then
565 T2 := Any_Type;
566 end if;
567 end if;
569 if T1 = Any_Type or else T2 = Any_Type then
570 Kill_Lhs;
571 return;
572 end if;
574 -- If the rhs is class-wide or dynamically tagged, then require the lhs
575 -- to be class-wide. The case where the rhs is a dynamically tagged call
576 -- to a dispatching operation with a controlling access result is
577 -- excluded from this check, since the target has an access type (and
578 -- no tag propagation occurs in that case).
580 if (Is_Class_Wide_Type (T2)
581 or else (Is_Dynamically_Tagged (Rhs)
582 and then not Is_Access_Type (T1)))
583 and then not Is_Class_Wide_Type (T1)
584 then
585 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
587 elsif Is_Class_Wide_Type (T1)
588 and then not Is_Class_Wide_Type (T2)
589 and then not Is_Tag_Indeterminate (Rhs)
590 and then not Is_Dynamically_Tagged (Rhs)
591 then
592 Error_Msg_N ("dynamically tagged expression required!", Rhs);
593 end if;
595 -- Propagate the tag from a class-wide target to the rhs when the rhs
596 -- is a tag-indeterminate call.
598 if Is_Tag_Indeterminate (Rhs) then
599 if Is_Class_Wide_Type (T1) then
600 Propagate_Tag (Lhs, Rhs);
602 elsif Nkind (Rhs) = N_Function_Call
603 and then Is_Entity_Name (Name (Rhs))
604 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
605 then
606 Error_Msg_N
607 ("call to abstract function must be dispatching", Name (Rhs));
609 elsif Nkind (Rhs) = N_Qualified_Expression
610 and then Nkind (Expression (Rhs)) = N_Function_Call
611 and then Is_Entity_Name (Name (Expression (Rhs)))
612 and then
613 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
614 then
615 Error_Msg_N
616 ("call to abstract function must be dispatching",
617 Name (Expression (Rhs)));
618 end if;
619 end if;
621 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
622 -- apply an implicit conversion of the rhs to that type to force
623 -- appropriate static and run-time accessibility checks. This applies
624 -- as well to anonymous access-to-subprogram types that are component
625 -- subtypes or formal parameters.
627 if Ada_Version >= Ada_2005 and then Is_Access_Type (T1) then
628 if Is_Local_Anonymous_Access (T1)
629 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
631 -- Handle assignment to an Ada 2012 stand-alone object
632 -- of an anonymous access type.
634 or else (Ekind (T1) = E_Anonymous_Access_Type
635 and then Nkind (Associated_Node_For_Itype (T1)) =
636 N_Object_Declaration)
638 then
639 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
640 Analyze_And_Resolve (Rhs, T1);
641 end if;
642 end if;
644 -- Ada 2005 (AI-231): Assignment to not null variable
646 if Ada_Version >= Ada_2005
647 and then Can_Never_Be_Null (T1)
648 and then not Assignment_OK (Lhs)
649 then
650 -- Case where we know the right hand side is null
652 if Known_Null (Rhs) then
653 Apply_Compile_Time_Constraint_Error
654 (N => Rhs,
655 Msg =>
656 "(Ada 2005) null not allowed in null-excluding objects??",
657 Reason => CE_Null_Not_Allowed);
659 -- We still mark this as a possible modification, that's necessary
660 -- to reset Is_True_Constant, and desirable for xref purposes.
662 Note_Possible_Modification (Lhs, Sure => True);
663 return;
665 -- If we know the right hand side is non-null, then we convert to the
666 -- target type, since we don't need a run time check in that case.
668 elsif not Can_Never_Be_Null (T2) then
669 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
670 Analyze_And_Resolve (Rhs, T1);
671 end if;
672 end if;
674 if Is_Scalar_Type (T1) then
675 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
677 -- For array types, verify that lengths match. If the right hand side
678 -- is a function call that has been inlined, the assignment has been
679 -- rewritten as a block, and the constraint check will be applied to the
680 -- assignment within the block.
682 elsif Is_Array_Type (T1)
683 and then (Nkind (Rhs) /= N_Type_Conversion
684 or else Is_Constrained (Etype (Rhs)))
685 and then (Nkind (Rhs) /= N_Function_Call
686 or else Nkind (N) /= N_Block_Statement)
687 then
688 -- Assignment verifies that the length of the Lsh and Rhs are equal,
689 -- but of course the indexes do not have to match. If the right-hand
690 -- side is a type conversion to an unconstrained type, a length check
691 -- is performed on the expression itself during expansion. In rare
692 -- cases, the redundant length check is computed on an index type
693 -- with a different representation, triggering incorrect code in the
694 -- back end.
696 Apply_Length_Check (Rhs, Etype (Lhs));
698 else
699 -- Discriminant checks are applied in the course of expansion
701 null;
702 end if;
704 -- Note: modifications of the Lhs may only be recorded after
705 -- checks have been applied.
707 Note_Possible_Modification (Lhs, Sure => True);
709 -- ??? a real accessibility check is needed when ???
711 -- Post warning for redundant assignment or variable to itself
713 if Warn_On_Redundant_Constructs
715 -- We only warn for source constructs
717 and then Comes_From_Source (N)
719 -- Where the object is the same on both sides
721 and then Same_Object (Lhs, Original_Node (Rhs))
723 -- But exclude the case where the right side was an operation that
724 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
725 -- don't want to warn in such a case, since it is reasonable to write
726 -- such expressions especially when K is defined symbolically in some
727 -- other package.
729 and then Nkind (Original_Node (Rhs)) not in N_Op
730 then
731 if Nkind (Lhs) in N_Has_Entity then
732 Error_Msg_NE -- CODEFIX
733 ("?r?useless assignment of & to itself!", N, Entity (Lhs));
734 else
735 Error_Msg_N -- CODEFIX
736 ("?r?useless assignment of object to itself!", N);
737 end if;
738 end if;
740 -- Check for non-allowed composite assignment
742 if not Support_Composite_Assign_On_Target
743 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
744 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
745 then
746 Error_Msg_CRT ("composite assignment", N);
747 end if;
749 -- Check elaboration warning for left side if not in elab code
751 if not In_Subprogram_Or_Concurrent_Unit then
752 Check_Elab_Assign (Lhs);
753 end if;
755 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
756 -- assignment is a source assignment in the extended main source unit.
757 -- We are not interested in any reference information outside this
758 -- context, or in compiler generated assignment statements.
760 if Comes_From_Source (N)
761 and then In_Extended_Main_Source_Unit (Lhs)
762 then
763 Set_Referenced_Modified (Lhs, Out_Param => False);
764 end if;
766 -- RM 7.3.2 (12/3) An assignment to a view conversion (from a type
767 -- to one of its ancestors) requires an invariant check. Apply check
768 -- only if expression comes from source, otherwise it will be applied
769 -- when value is assigned to source entity.
771 if Nkind (Lhs) = N_Type_Conversion
772 and then Has_Invariants (Etype (Expression (Lhs)))
773 and then Comes_From_Source (Expression (Lhs))
774 then
775 Insert_After (N, Make_Invariant_Call (Expression (Lhs)));
776 end if;
778 -- Final step. If left side is an entity, then we may be able to reset
779 -- the current tracked values to new safe values. We only have something
780 -- to do if the left side is an entity name, and expansion has not
781 -- modified the node into something other than an assignment, and of
782 -- course we only capture values if it is safe to do so.
784 if Is_Entity_Name (Lhs)
785 and then Nkind (N) = N_Assignment_Statement
786 then
787 declare
788 Ent : constant Entity_Id := Entity (Lhs);
790 begin
791 if Safe_To_Capture_Value (N, Ent) then
793 -- If simple variable on left side, warn if this assignment
794 -- blots out another one (rendering it useless). We only do
795 -- this for source assignments, otherwise we can generate bogus
796 -- warnings when an assignment is rewritten as another
797 -- assignment, and gets tied up with itself.
799 if Warn_On_Modified_Unread
800 and then Is_Assignable (Ent)
801 and then Comes_From_Source (N)
802 and then In_Extended_Main_Source_Unit (Ent)
803 then
804 Warn_On_Useless_Assignment (Ent, N);
805 end if;
807 -- If we are assigning an access type and the left side is an
808 -- entity, then make sure that the Is_Known_[Non_]Null flags
809 -- properly reflect the state of the entity after assignment.
811 if Is_Access_Type (T1) then
812 if Known_Non_Null (Rhs) then
813 Set_Is_Known_Non_Null (Ent, True);
815 elsif Known_Null (Rhs)
816 and then not Can_Never_Be_Null (Ent)
817 then
818 Set_Is_Known_Null (Ent, True);
820 else
821 Set_Is_Known_Null (Ent, False);
823 if not Can_Never_Be_Null (Ent) then
824 Set_Is_Known_Non_Null (Ent, False);
825 end if;
826 end if;
828 -- For discrete types, we may be able to set the current value
829 -- if the value is known at compile time.
831 elsif Is_Discrete_Type (T1)
832 and then Compile_Time_Known_Value (Rhs)
833 then
834 Set_Current_Value (Ent, Rhs);
835 else
836 Set_Current_Value (Ent, Empty);
837 end if;
839 -- If not safe to capture values, kill them
841 else
842 Kill_Lhs;
843 end if;
844 end;
845 end if;
847 -- If assigning to an object in whole or in part, note location of
848 -- assignment in case no one references value. We only do this for
849 -- source assignments, otherwise we can generate bogus warnings when an
850 -- assignment is rewritten as another assignment, and gets tied up with
851 -- itself.
853 declare
854 Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
855 begin
856 if Present (Ent)
857 and then Safe_To_Capture_Value (N, Ent)
858 and then Nkind (N) = N_Assignment_Statement
859 and then Warn_On_Modified_Unread
860 and then Is_Assignable (Ent)
861 and then Comes_From_Source (N)
862 and then In_Extended_Main_Source_Unit (Ent)
863 then
864 Set_Last_Assignment (Ent, Lhs);
865 end if;
866 end;
868 Analyze_Dimension (N);
869 end Analyze_Assignment;
871 -----------------------------
872 -- Analyze_Block_Statement --
873 -----------------------------
875 procedure Analyze_Block_Statement (N : Node_Id) is
876 procedure Install_Return_Entities (Scop : Entity_Id);
877 -- Install all entities of return statement scope Scop in the visibility
878 -- chain except for the return object since its entity is reused in a
879 -- renaming.
881 -----------------------------
882 -- Install_Return_Entities --
883 -----------------------------
885 procedure Install_Return_Entities (Scop : Entity_Id) is
886 Id : Entity_Id;
888 begin
889 Id := First_Entity (Scop);
890 while Present (Id) loop
892 -- Do not install the return object
894 if not Ekind_In (Id, E_Constant, E_Variable)
895 or else not Is_Return_Object (Id)
896 then
897 Install_Entity (Id);
898 end if;
900 Next_Entity (Id);
901 end loop;
902 end Install_Return_Entities;
904 -- Local constants and variables
906 Decls : constant List_Id := Declarations (N);
907 Id : constant Node_Id := Identifier (N);
908 HSS : constant Node_Id := Handled_Statement_Sequence (N);
910 Is_BIP_Return_Statement : Boolean;
912 -- Start of processing for Analyze_Block_Statement
914 begin
915 -- In SPARK mode, we reject block statements. Note that the case of
916 -- block statements generated by the expander is fine.
918 if Nkind (Original_Node (N)) = N_Block_Statement then
919 Check_SPARK_05_Restriction ("block statement is not allowed", N);
920 end if;
922 -- If no handled statement sequence is present, things are really messed
923 -- up, and we just return immediately (defence against previous errors).
925 if No (HSS) then
926 Check_Error_Detected;
927 return;
928 end if;
930 -- Detect whether the block is actually a rewritten return statement of
931 -- a build-in-place function.
933 Is_BIP_Return_Statement :=
934 Present (Id)
935 and then Present (Entity (Id))
936 and then Ekind (Entity (Id)) = E_Return_Statement
937 and then Is_Build_In_Place_Function
938 (Return_Applies_To (Entity (Id)));
940 -- Normal processing with HSS present
942 declare
943 EH : constant List_Id := Exception_Handlers (HSS);
944 Ent : Entity_Id := Empty;
945 S : Entity_Id;
947 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
948 -- Recursively save value of this global, will be restored on exit
950 begin
951 -- Initialize unblocked exit count for statements of begin block
952 -- plus one for each exception handler that is present.
954 Unblocked_Exit_Count := 1;
956 if Present (EH) then
957 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
958 end if;
960 -- If a label is present analyze it and mark it as referenced
962 if Present (Id) then
963 Analyze (Id);
964 Ent := Entity (Id);
966 -- An error defense. If we have an identifier, but no entity, then
967 -- something is wrong. If previous errors, then just remove the
968 -- identifier and continue, otherwise raise an exception.
970 if No (Ent) then
971 Check_Error_Detected;
972 Set_Identifier (N, Empty);
974 else
975 Set_Ekind (Ent, E_Block);
976 Generate_Reference (Ent, N, ' ');
977 Generate_Definition (Ent);
979 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
980 Set_Label_Construct (Parent (Ent), N);
981 end if;
982 end if;
983 end if;
985 -- If no entity set, create a label entity
987 if No (Ent) then
988 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
989 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
990 Set_Parent (Ent, N);
991 end if;
993 Set_Etype (Ent, Standard_Void_Type);
994 Set_Block_Node (Ent, Identifier (N));
995 Push_Scope (Ent);
997 -- The block served as an extended return statement. Ensure that any
998 -- entities created during the analysis and expansion of the return
999 -- object declaration are once again visible.
1001 if Is_BIP_Return_Statement then
1002 Install_Return_Entities (Ent);
1003 end if;
1005 if Present (Decls) then
1006 Analyze_Declarations (Decls);
1007 Check_Completion;
1008 Inspect_Deferred_Constant_Completion (Decls);
1009 end if;
1011 Analyze (HSS);
1012 Process_End_Label (HSS, 'e', Ent);
1014 -- If exception handlers are present, then we indicate that enclosing
1015 -- scopes contain a block with handlers. We only need to mark non-
1016 -- generic scopes.
1018 if Present (EH) then
1019 S := Scope (Ent);
1020 loop
1021 Set_Has_Nested_Block_With_Handler (S);
1022 exit when Is_Overloadable (S)
1023 or else Ekind (S) = E_Package
1024 or else Is_Generic_Unit (S);
1025 S := Scope (S);
1026 end loop;
1027 end if;
1029 Check_References (Ent);
1030 Warn_On_Useless_Assignments (Ent);
1031 End_Scope;
1033 if Unblocked_Exit_Count = 0 then
1034 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1035 Check_Unreachable_Code (N);
1036 else
1037 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1038 end if;
1039 end;
1040 end Analyze_Block_Statement;
1042 --------------------------------
1043 -- Analyze_Compound_Statement --
1044 --------------------------------
1046 procedure Analyze_Compound_Statement (N : Node_Id) is
1047 begin
1048 Analyze_List (Actions (N));
1049 end Analyze_Compound_Statement;
1051 ----------------------------
1052 -- Analyze_Case_Statement --
1053 ----------------------------
1055 procedure Analyze_Case_Statement (N : Node_Id) is
1056 Exp : Node_Id;
1057 Exp_Type : Entity_Id;
1058 Exp_Btype : Entity_Id;
1059 Last_Choice : Nat;
1061 Others_Present : Boolean;
1062 -- Indicates if Others was present
1064 pragma Warnings (Off, Last_Choice);
1065 -- Don't care about assigned value
1067 Statements_Analyzed : Boolean := False;
1068 -- Set True if at least some statement sequences get analyzed. If False
1069 -- on exit, means we had a serious error that prevented full analysis of
1070 -- the case statement, and as a result it is not a good idea to output
1071 -- warning messages about unreachable code.
1073 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1074 -- Recursively save value of this global, will be restored on exit
1076 procedure Non_Static_Choice_Error (Choice : Node_Id);
1077 -- Error routine invoked by the generic instantiation below when the
1078 -- case statement has a non static choice.
1080 procedure Process_Statements (Alternative : Node_Id);
1081 -- Analyzes the statements associated with a case alternative. Needed
1082 -- by instantiation below.
1084 package Analyze_Case_Choices is new
1085 Generic_Analyze_Choices
1086 (Process_Associated_Node => Process_Statements);
1087 use Analyze_Case_Choices;
1088 -- Instantiation of the generic choice analysis package
1090 package Check_Case_Choices is new
1091 Generic_Check_Choices
1092 (Process_Empty_Choice => No_OP,
1093 Process_Non_Static_Choice => Non_Static_Choice_Error,
1094 Process_Associated_Node => No_OP);
1095 use Check_Case_Choices;
1096 -- Instantiation of the generic choice processing package
1098 -----------------------------
1099 -- Non_Static_Choice_Error --
1100 -----------------------------
1102 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1103 begin
1104 Flag_Non_Static_Expr
1105 ("choice given in case statement is not static!", Choice);
1106 end Non_Static_Choice_Error;
1108 ------------------------
1109 -- Process_Statements --
1110 ------------------------
1112 procedure Process_Statements (Alternative : Node_Id) is
1113 Choices : constant List_Id := Discrete_Choices (Alternative);
1114 Ent : Entity_Id;
1116 begin
1117 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1118 Statements_Analyzed := True;
1120 -- An interesting optimization. If the case statement expression
1121 -- is a simple entity, then we can set the current value within an
1122 -- alternative if the alternative has one possible value.
1124 -- case N is
1125 -- when 1 => alpha
1126 -- when 2 | 3 => beta
1127 -- when others => gamma
1129 -- Here we know that N is initially 1 within alpha, but for beta and
1130 -- gamma, we do not know anything more about the initial value.
1132 if Is_Entity_Name (Exp) then
1133 Ent := Entity (Exp);
1135 if Ekind_In (Ent, E_Variable,
1136 E_In_Out_Parameter,
1137 E_Out_Parameter)
1138 then
1139 if List_Length (Choices) = 1
1140 and then Nkind (First (Choices)) in N_Subexpr
1141 and then Compile_Time_Known_Value (First (Choices))
1142 then
1143 Set_Current_Value (Entity (Exp), First (Choices));
1144 end if;
1146 Analyze_Statements (Statements (Alternative));
1148 -- After analyzing the case, set the current value to empty
1149 -- since we won't know what it is for the next alternative
1150 -- (unless reset by this same circuit), or after the case.
1152 Set_Current_Value (Entity (Exp), Empty);
1153 return;
1154 end if;
1155 end if;
1157 -- Case where expression is not an entity name of a variable
1159 Analyze_Statements (Statements (Alternative));
1160 end Process_Statements;
1162 -- Start of processing for Analyze_Case_Statement
1164 begin
1165 Unblocked_Exit_Count := 0;
1166 Exp := Expression (N);
1167 Analyze (Exp);
1169 -- The expression must be of any discrete type. In rare cases, the
1170 -- expander constructs a case statement whose expression has a private
1171 -- type whose full view is discrete. This can happen when generating
1172 -- a stream operation for a variant type after the type is frozen,
1173 -- when the partial of view of the type of the discriminant is private.
1174 -- In that case, use the full view to analyze case alternatives.
1176 if not Is_Overloaded (Exp)
1177 and then not Comes_From_Source (N)
1178 and then Is_Private_Type (Etype (Exp))
1179 and then Present (Full_View (Etype (Exp)))
1180 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1181 then
1182 Resolve (Exp, Etype (Exp));
1183 Exp_Type := Full_View (Etype (Exp));
1185 else
1186 Analyze_And_Resolve (Exp, Any_Discrete);
1187 Exp_Type := Etype (Exp);
1188 end if;
1190 Check_Unset_Reference (Exp);
1191 Exp_Btype := Base_Type (Exp_Type);
1193 -- The expression must be of a discrete type which must be determinable
1194 -- independently of the context in which the expression occurs, but
1195 -- using the fact that the expression must be of a discrete type.
1196 -- Moreover, the type this expression must not be a character literal
1197 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1199 -- If error already reported by Resolve, nothing more to do
1201 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1202 return;
1204 elsif Exp_Btype = Any_Character then
1205 Error_Msg_N
1206 ("character literal as case expression is ambiguous", Exp);
1207 return;
1209 elsif Ada_Version = Ada_83
1210 and then (Is_Generic_Type (Exp_Btype)
1211 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1212 then
1213 Error_Msg_N
1214 ("(Ada 83) case expression cannot be of a generic type", Exp);
1215 return;
1216 end if;
1218 -- If the case expression is a formal object of mode in out, then treat
1219 -- it as having a nonstatic subtype by forcing use of the base type
1220 -- (which has to get passed to Check_Case_Choices below). Also use base
1221 -- type when the case expression is parenthesized.
1223 if Paren_Count (Exp) > 0
1224 or else (Is_Entity_Name (Exp)
1225 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1226 then
1227 Exp_Type := Exp_Btype;
1228 end if;
1230 -- Call instantiated procedures to analyzwe and check discrete choices
1232 Analyze_Choices (Alternatives (N), Exp_Type);
1233 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1235 -- Case statement with single OTHERS alternative not allowed in SPARK
1237 if Others_Present and then List_Length (Alternatives (N)) = 1 then
1238 Check_SPARK_05_Restriction
1239 ("OTHERS as unique case alternative is not allowed", N);
1240 end if;
1242 if Exp_Type = Universal_Integer and then not Others_Present then
1243 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1244 end if;
1246 -- If all our exits were blocked by unconditional transfers of control,
1247 -- then the entire CASE statement acts as an unconditional transfer of
1248 -- control, so treat it like one, and check unreachable code. Skip this
1249 -- test if we had serious errors preventing any statement analysis.
1251 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1252 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1253 Check_Unreachable_Code (N);
1254 else
1255 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1256 end if;
1258 -- If the expander is active it will detect the case of a statically
1259 -- determined single alternative and remove warnings for the case, but
1260 -- if we are not doing expansion, that circuit won't be active. Here we
1261 -- duplicate the effect of removing warnings in the same way, so that
1262 -- we will get the same set of warnings in -gnatc mode.
1264 if not Expander_Active
1265 and then Compile_Time_Known_Value (Expression (N))
1266 and then Serious_Errors_Detected = 0
1267 then
1268 declare
1269 Chosen : constant Node_Id := Find_Static_Alternative (N);
1270 Alt : Node_Id;
1272 begin
1273 Alt := First (Alternatives (N));
1274 while Present (Alt) loop
1275 if Alt /= Chosen then
1276 Remove_Warning_Messages (Statements (Alt));
1277 end if;
1279 Next (Alt);
1280 end loop;
1281 end;
1282 end if;
1283 end Analyze_Case_Statement;
1285 ----------------------------
1286 -- Analyze_Exit_Statement --
1287 ----------------------------
1289 -- If the exit includes a name, it must be the name of a currently open
1290 -- loop. Otherwise there must be an innermost open loop on the stack, to
1291 -- which the statement implicitly refers.
1293 -- Additionally, in SPARK mode:
1295 -- The exit can only name the closest enclosing loop;
1297 -- An exit with a when clause must be directly contained in a loop;
1299 -- An exit without a when clause must be directly contained in an
1300 -- if-statement with no elsif or else, which is itself directly contained
1301 -- in a loop. The exit must be the last statement in the if-statement.
1303 procedure Analyze_Exit_Statement (N : Node_Id) is
1304 Target : constant Node_Id := Name (N);
1305 Cond : constant Node_Id := Condition (N);
1306 Scope_Id : Entity_Id;
1307 U_Name : Entity_Id;
1308 Kind : Entity_Kind;
1310 begin
1311 if No (Cond) then
1312 Check_Unreachable_Code (N);
1313 end if;
1315 if Present (Target) then
1316 Analyze (Target);
1317 U_Name := Entity (Target);
1319 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1320 Error_Msg_N ("invalid loop name in exit statement", N);
1321 return;
1323 else
1324 if Has_Loop_In_Inner_Open_Scopes (U_Name) then
1325 Check_SPARK_05_Restriction
1326 ("exit label must name the closest enclosing loop", N);
1327 end if;
1329 Set_Has_Exit (U_Name);
1330 end if;
1332 else
1333 U_Name := Empty;
1334 end if;
1336 for J in reverse 0 .. Scope_Stack.Last loop
1337 Scope_Id := Scope_Stack.Table (J).Entity;
1338 Kind := Ekind (Scope_Id);
1340 if Kind = E_Loop and then (No (Target) or else Scope_Id = U_Name) then
1341 Set_Has_Exit (Scope_Id);
1342 exit;
1344 elsif Kind = E_Block
1345 or else Kind = E_Loop
1346 or else Kind = E_Return_Statement
1347 then
1348 null;
1350 else
1351 Error_Msg_N
1352 ("cannot exit from program unit or accept statement", N);
1353 return;
1354 end if;
1355 end loop;
1357 -- Verify that if present the condition is a Boolean expression
1359 if Present (Cond) then
1360 Analyze_And_Resolve (Cond, Any_Boolean);
1361 Check_Unset_Reference (Cond);
1362 end if;
1364 -- In SPARK mode, verify that the exit statement respects the SPARK
1365 -- restrictions.
1367 if Present (Cond) then
1368 if Nkind (Parent (N)) /= N_Loop_Statement then
1369 Check_SPARK_05_Restriction
1370 ("exit with when clause must be directly in loop", N);
1371 end if;
1373 else
1374 if Nkind (Parent (N)) /= N_If_Statement then
1375 if Nkind (Parent (N)) = N_Elsif_Part then
1376 Check_SPARK_05_Restriction
1377 ("exit must be in IF without ELSIF", N);
1378 else
1379 Check_SPARK_05_Restriction ("exit must be directly in IF", N);
1380 end if;
1382 elsif Nkind (Parent (Parent (N))) /= N_Loop_Statement then
1383 Check_SPARK_05_Restriction
1384 ("exit must be in IF directly in loop", N);
1386 -- First test the presence of ELSE, so that an exit in an ELSE leads
1387 -- to an error mentioning the ELSE.
1389 elsif Present (Else_Statements (Parent (N))) then
1390 Check_SPARK_05_Restriction ("exit must be in IF without ELSE", N);
1392 -- An exit in an ELSIF does not reach here, as it would have been
1393 -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
1395 elsif Present (Elsif_Parts (Parent (N))) then
1396 Check_SPARK_05_Restriction ("exit must be in IF without ELSIF", N);
1397 end if;
1398 end if;
1400 -- Chain exit statement to associated loop entity
1402 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1403 Set_First_Exit_Statement (Scope_Id, N);
1405 -- Since the exit may take us out of a loop, any previous assignment
1406 -- statement is not useless, so clear last assignment indications. It
1407 -- is OK to keep other current values, since if the exit statement
1408 -- does not exit, then the current values are still valid.
1410 Kill_Current_Values (Last_Assignment_Only => True);
1411 end Analyze_Exit_Statement;
1413 ----------------------------
1414 -- Analyze_Goto_Statement --
1415 ----------------------------
1417 procedure Analyze_Goto_Statement (N : Node_Id) is
1418 Label : constant Node_Id := Name (N);
1419 Scope_Id : Entity_Id;
1420 Label_Scope : Entity_Id;
1421 Label_Ent : Entity_Id;
1423 begin
1424 Check_SPARK_05_Restriction ("goto statement is not allowed", N);
1426 -- Actual semantic checks
1428 Check_Unreachable_Code (N);
1429 Kill_Current_Values (Last_Assignment_Only => True);
1431 Analyze (Label);
1432 Label_Ent := Entity (Label);
1434 -- Ignore previous error
1436 if Label_Ent = Any_Id then
1437 Check_Error_Detected;
1438 return;
1440 -- We just have a label as the target of a goto
1442 elsif Ekind (Label_Ent) /= E_Label then
1443 Error_Msg_N ("target of goto statement must be a label", Label);
1444 return;
1446 -- Check that the target of the goto is reachable according to Ada
1447 -- scoping rules. Note: the special gotos we generate for optimizing
1448 -- local handling of exceptions would violate these rules, but we mark
1449 -- such gotos as analyzed when built, so this code is never entered.
1451 elsif not Reachable (Label_Ent) then
1452 Error_Msg_N ("target of goto statement is not reachable", Label);
1453 return;
1454 end if;
1456 -- Here if goto passes initial validity checks
1458 Label_Scope := Enclosing_Scope (Label_Ent);
1460 for J in reverse 0 .. Scope_Stack.Last loop
1461 Scope_Id := Scope_Stack.Table (J).Entity;
1463 if Label_Scope = Scope_Id
1464 or else not Ekind_In (Scope_Id, E_Block, E_Loop, E_Return_Statement)
1465 then
1466 if Scope_Id /= Label_Scope then
1467 Error_Msg_N
1468 ("cannot exit from program unit or accept statement", N);
1469 end if;
1471 return;
1472 end if;
1473 end loop;
1475 raise Program_Error;
1476 end Analyze_Goto_Statement;
1478 --------------------------
1479 -- Analyze_If_Statement --
1480 --------------------------
1482 -- A special complication arises in the analysis of if statements
1484 -- The expander has circuitry to completely delete code that it can tell
1485 -- will not be executed (as a result of compile time known conditions). In
1486 -- the analyzer, we ensure that code that will be deleted in this manner
1487 -- is analyzed but not expanded. This is obviously more efficient, but
1488 -- more significantly, difficulties arise if code is expanded and then
1489 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1490 -- generated in deleted code must be frozen from start, because the nodes
1491 -- on which they depend will not be available at the freeze point.
1493 procedure Analyze_If_Statement (N : Node_Id) is
1494 E : Node_Id;
1496 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1497 -- Recursively save value of this global, will be restored on exit
1499 Save_In_Deleted_Code : Boolean;
1501 Del : Boolean := False;
1502 -- This flag gets set True if a True condition has been found, which
1503 -- means that remaining ELSE/ELSIF parts are deleted.
1505 procedure Analyze_Cond_Then (Cnode : Node_Id);
1506 -- This is applied to either the N_If_Statement node itself or to an
1507 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1508 -- statements associated with it.
1510 -----------------------
1511 -- Analyze_Cond_Then --
1512 -----------------------
1514 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1515 Cond : constant Node_Id := Condition (Cnode);
1516 Tstm : constant List_Id := Then_Statements (Cnode);
1518 begin
1519 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1520 Analyze_And_Resolve (Cond, Any_Boolean);
1521 Check_Unset_Reference (Cond);
1522 Set_Current_Value_Condition (Cnode);
1524 -- If already deleting, then just analyze then statements
1526 if Del then
1527 Analyze_Statements (Tstm);
1529 -- Compile time known value, not deleting yet
1531 elsif Compile_Time_Known_Value (Cond) then
1532 Save_In_Deleted_Code := In_Deleted_Code;
1534 -- If condition is True, then analyze the THEN statements and set
1535 -- no expansion for ELSE and ELSIF parts.
1537 if Is_True (Expr_Value (Cond)) then
1538 Analyze_Statements (Tstm);
1539 Del := True;
1540 Expander_Mode_Save_And_Set (False);
1541 In_Deleted_Code := True;
1543 -- If condition is False, analyze THEN with expansion off
1545 else -- Is_False (Expr_Value (Cond))
1546 Expander_Mode_Save_And_Set (False);
1547 In_Deleted_Code := True;
1548 Analyze_Statements (Tstm);
1549 Expander_Mode_Restore;
1550 In_Deleted_Code := Save_In_Deleted_Code;
1551 end if;
1553 -- Not known at compile time, not deleting, normal analysis
1555 else
1556 Analyze_Statements (Tstm);
1557 end if;
1558 end Analyze_Cond_Then;
1560 -- Start of Analyze_If_Statement
1562 begin
1563 -- Initialize exit count for else statements. If there is no else part,
1564 -- this count will stay non-zero reflecting the fact that the uncovered
1565 -- else case is an unblocked exit.
1567 Unblocked_Exit_Count := 1;
1568 Analyze_Cond_Then (N);
1570 -- Now to analyze the elsif parts if any are present
1572 if Present (Elsif_Parts (N)) then
1573 E := First (Elsif_Parts (N));
1574 while Present (E) loop
1575 Analyze_Cond_Then (E);
1576 Next (E);
1577 end loop;
1578 end if;
1580 if Present (Else_Statements (N)) then
1581 Analyze_Statements (Else_Statements (N));
1582 end if;
1584 -- If all our exits were blocked by unconditional transfers of control,
1585 -- then the entire IF statement acts as an unconditional transfer of
1586 -- control, so treat it like one, and check unreachable code.
1588 if Unblocked_Exit_Count = 0 then
1589 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1590 Check_Unreachable_Code (N);
1591 else
1592 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1593 end if;
1595 if Del then
1596 Expander_Mode_Restore;
1597 In_Deleted_Code := Save_In_Deleted_Code;
1598 end if;
1600 if not Expander_Active
1601 and then Compile_Time_Known_Value (Condition (N))
1602 and then Serious_Errors_Detected = 0
1603 then
1604 if Is_True (Expr_Value (Condition (N))) then
1605 Remove_Warning_Messages (Else_Statements (N));
1607 if Present (Elsif_Parts (N)) then
1608 E := First (Elsif_Parts (N));
1609 while Present (E) loop
1610 Remove_Warning_Messages (Then_Statements (E));
1611 Next (E);
1612 end loop;
1613 end if;
1615 else
1616 Remove_Warning_Messages (Then_Statements (N));
1617 end if;
1618 end if;
1620 -- Warn on redundant if statement that has no effect
1622 -- Note, we could also check empty ELSIF parts ???
1624 if Warn_On_Redundant_Constructs
1626 -- If statement must be from source
1628 and then Comes_From_Source (N)
1630 -- Condition must not have obvious side effect
1632 and then Has_No_Obvious_Side_Effects (Condition (N))
1634 -- No elsif parts of else part
1636 and then No (Elsif_Parts (N))
1637 and then No (Else_Statements (N))
1639 -- Then must be a single null statement
1641 and then List_Length (Then_Statements (N)) = 1
1642 then
1643 -- Go to original node, since we may have rewritten something as
1644 -- a null statement (e.g. a case we could figure the outcome of).
1646 declare
1647 T : constant Node_Id := First (Then_Statements (N));
1648 S : constant Node_Id := Original_Node (T);
1650 begin
1651 if Comes_From_Source (S) and then Nkind (S) = N_Null_Statement then
1652 Error_Msg_N ("if statement has no effect?r?", N);
1653 end if;
1654 end;
1655 end if;
1656 end Analyze_If_Statement;
1658 ----------------------------------------
1659 -- Analyze_Implicit_Label_Declaration --
1660 ----------------------------------------
1662 -- An implicit label declaration is generated in the innermost enclosing
1663 -- declarative part. This is done for labels, and block and loop names.
1665 -- Note: any changes in this routine may need to be reflected in
1666 -- Analyze_Label_Entity.
1668 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1669 Id : constant Node_Id := Defining_Identifier (N);
1670 begin
1671 Enter_Name (Id);
1672 Set_Ekind (Id, E_Label);
1673 Set_Etype (Id, Standard_Void_Type);
1674 Set_Enclosing_Scope (Id, Current_Scope);
1675 end Analyze_Implicit_Label_Declaration;
1677 ------------------------------
1678 -- Analyze_Iteration_Scheme --
1679 ------------------------------
1681 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1682 Cond : Node_Id;
1683 Iter_Spec : Node_Id;
1684 Loop_Spec : Node_Id;
1686 begin
1687 -- For an infinite loop, there is no iteration scheme
1689 if No (N) then
1690 return;
1691 end if;
1693 Cond := Condition (N);
1694 Iter_Spec := Iterator_Specification (N);
1695 Loop_Spec := Loop_Parameter_Specification (N);
1697 if Present (Cond) then
1698 Analyze_And_Resolve (Cond, Any_Boolean);
1699 Check_Unset_Reference (Cond);
1700 Set_Current_Value_Condition (N);
1702 elsif Present (Iter_Spec) then
1703 Analyze_Iterator_Specification (Iter_Spec);
1705 else
1706 Analyze_Loop_Parameter_Specification (Loop_Spec);
1707 end if;
1708 end Analyze_Iteration_Scheme;
1710 ------------------------------------
1711 -- Analyze_Iterator_Specification --
1712 ------------------------------------
1714 procedure Analyze_Iterator_Specification (N : Node_Id) is
1715 Loc : constant Source_Ptr := Sloc (N);
1716 Def_Id : constant Node_Id := Defining_Identifier (N);
1717 Subt : constant Node_Id := Subtype_Indication (N);
1718 Iter_Name : constant Node_Id := Name (N);
1720 Ent : Entity_Id;
1721 Typ : Entity_Id;
1722 Bas : Entity_Id;
1724 procedure Check_Reverse_Iteration (Typ : Entity_Id);
1725 -- For an iteration over a container, if the loop carries the Reverse
1726 -- indicator, verify that the container type has an Iterate aspect that
1727 -- implements the reversible iterator interface.
1729 -----------------------------
1730 -- Check_Reverse_Iteration --
1731 -----------------------------
1733 procedure Check_Reverse_Iteration (Typ : Entity_Id) is
1734 begin
1735 if Reverse_Present (N)
1736 and then not Is_Array_Type (Typ)
1737 and then not Is_Reversible_Iterator (Typ)
1738 then
1739 Error_Msg_NE
1740 ("container type does not support reverse iteration", N, Typ);
1741 end if;
1742 end Check_Reverse_Iteration;
1744 -- Start of processing for Analyze_iterator_Specification
1746 begin
1747 Enter_Name (Def_Id);
1749 -- AI12-0151 specifies that when the subtype indication is present, it
1750 -- must statically match the type of the array or container element.
1751 -- To simplify this check, we introduce a subtype declaration with the
1752 -- given subtype indication when it carries a constraint, and rewrite
1753 -- the original as a reference to the created subtype entity.
1755 if Present (Subt) then
1756 if Nkind (Subt) = N_Subtype_Indication then
1757 declare
1758 S : constant Entity_Id := Make_Temporary (Sloc (Subt), 'S');
1759 Decl : constant Node_Id :=
1760 Make_Subtype_Declaration (Loc,
1761 Defining_Identifier => S,
1762 Subtype_Indication => New_Copy_Tree (Subt));
1763 begin
1764 Insert_Before (Parent (Parent (N)), Decl);
1765 Analyze (Decl);
1766 Rewrite (Subt, New_Occurrence_Of (S, Sloc (Subt)));
1767 end;
1768 else
1769 Analyze (Subt);
1770 end if;
1772 -- Save entity of subtype indication for subsequent check
1774 Bas := Entity (Subt);
1775 end if;
1777 Preanalyze_Range (Iter_Name);
1779 -- Set the kind of the loop variable, which is not visible within
1780 -- the iterator name.
1782 Set_Ekind (Def_Id, E_Variable);
1784 -- Provide a link between the iterator variable and the container, for
1785 -- subsequent use in cross-reference and modification information.
1787 if Of_Present (N) then
1788 Set_Related_Expression (Def_Id, Iter_Name);
1790 -- For a container, the iterator is specified through the aspect
1792 if not Is_Array_Type (Etype (Iter_Name)) then
1793 declare
1794 Iterator : constant Entity_Id :=
1795 Find_Value_Of_Aspect
1796 (Etype (Iter_Name), Aspect_Default_Iterator);
1798 I : Interp_Index;
1799 It : Interp;
1801 begin
1802 if No (Iterator) then
1803 null; -- error reported below.
1805 elsif not Is_Overloaded (Iterator) then
1806 Check_Reverse_Iteration (Etype (Iterator));
1808 -- If Iterator is overloaded, use reversible iterator if
1809 -- one is available.
1811 elsif Is_Overloaded (Iterator) then
1812 Get_First_Interp (Iterator, I, It);
1813 while Present (It.Nam) loop
1814 if Ekind (It.Nam) = E_Function
1815 and then Is_Reversible_Iterator (Etype (It.Nam))
1816 then
1817 Set_Etype (Iterator, It.Typ);
1818 Set_Entity (Iterator, It.Nam);
1819 exit;
1820 end if;
1822 Get_Next_Interp (I, It);
1823 end loop;
1825 Check_Reverse_Iteration (Etype (Iterator));
1826 end if;
1827 end;
1828 end if;
1829 end if;
1831 -- If the domain of iteration is an expression, create a declaration for
1832 -- it, so that finalization actions are introduced outside of the loop.
1833 -- The declaration must be a renaming because the body of the loop may
1834 -- assign to elements.
1836 if not Is_Entity_Name (Iter_Name)
1838 -- When the context is a quantified expression, the renaming
1839 -- declaration is delayed until the expansion phase if we are
1840 -- doing expansion.
1842 and then (Nkind (Parent (N)) /= N_Quantified_Expression
1843 or else Operating_Mode = Check_Semantics)
1845 -- Do not perform this expansion in SPARK mode, since the formal
1846 -- verification directly deals with the source form of the iterator.
1847 -- Ditto for ASIS, where the temporary may hide the transformation
1848 -- of a selected component into a prefixed function call.
1850 and then not GNATprove_Mode
1851 and then not ASIS_Mode
1852 then
1853 declare
1854 Id : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
1855 Decl : Node_Id;
1856 Act_S : Node_Id;
1858 begin
1860 -- If the domain of iteration is an array component that depends
1861 -- on a discriminant, create actual subtype for it. Pre-analysis
1862 -- does not generate the actual subtype of a selected component.
1864 if Nkind (Iter_Name) = N_Selected_Component
1865 and then Is_Array_Type (Etype (Iter_Name))
1866 then
1867 Act_S :=
1868 Build_Actual_Subtype_Of_Component
1869 (Etype (Selector_Name (Iter_Name)), Iter_Name);
1870 Insert_Action (N, Act_S);
1872 if Present (Act_S) then
1873 Typ := Defining_Identifier (Act_S);
1874 else
1875 Typ := Etype (Iter_Name);
1876 end if;
1878 else
1879 Typ := Etype (Iter_Name);
1881 -- Verify that the expression produces an iterator
1883 if not Of_Present (N) and then not Is_Iterator (Typ)
1884 and then not Is_Array_Type (Typ)
1885 and then No (Find_Aspect (Typ, Aspect_Iterable))
1886 then
1887 Error_Msg_N
1888 ("expect object that implements iterator interface",
1889 Iter_Name);
1890 end if;
1891 end if;
1893 -- Protect against malformed iterator
1895 if Typ = Any_Type then
1896 Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
1897 return;
1898 end if;
1900 if not Of_Present (N) then
1901 Check_Reverse_Iteration (Typ);
1902 end if;
1904 -- The name in the renaming declaration may be a function call.
1905 -- Indicate that it does not come from source, to suppress
1906 -- spurious warnings on renamings of parameterless functions,
1907 -- a common enough idiom in user-defined iterators.
1909 Decl :=
1910 Make_Object_Renaming_Declaration (Loc,
1911 Defining_Identifier => Id,
1912 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
1913 Name =>
1914 New_Copy_Tree (Iter_Name, New_Sloc => Loc));
1916 Insert_Actions (Parent (Parent (N)), New_List (Decl));
1917 Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
1918 Set_Etype (Id, Typ);
1919 Set_Etype (Name (N), Typ);
1920 end;
1922 -- Container is an entity or an array with uncontrolled components, or
1923 -- else it is a container iterator given by a function call, typically
1924 -- called Iterate in the case of predefined containers, even though
1925 -- Iterate is not a reserved name. What matters is that the return type
1926 -- of the function is an iterator type.
1928 elsif Is_Entity_Name (Iter_Name) then
1929 Analyze (Iter_Name);
1931 if Nkind (Iter_Name) = N_Function_Call then
1932 declare
1933 C : constant Node_Id := Name (Iter_Name);
1934 I : Interp_Index;
1935 It : Interp;
1937 begin
1938 if not Is_Overloaded (Iter_Name) then
1939 Resolve (Iter_Name, Etype (C));
1941 else
1942 Get_First_Interp (C, I, It);
1943 while It.Typ /= Empty loop
1944 if Reverse_Present (N) then
1945 if Is_Reversible_Iterator (It.Typ) then
1946 Resolve (Iter_Name, It.Typ);
1947 exit;
1948 end if;
1950 elsif Is_Iterator (It.Typ) then
1951 Resolve (Iter_Name, It.Typ);
1952 exit;
1953 end if;
1955 Get_Next_Interp (I, It);
1956 end loop;
1957 end if;
1958 end;
1960 -- Domain of iteration is not overloaded
1962 else
1963 Resolve (Iter_Name, Etype (Iter_Name));
1964 end if;
1966 if not Of_Present (N) then
1967 Check_Reverse_Iteration (Etype (Iter_Name));
1968 end if;
1969 end if;
1971 -- Get base type of container, for proper retrieval of Cursor type
1972 -- and primitive operations.
1974 Typ := Base_Type (Etype (Iter_Name));
1976 if Is_Array_Type (Typ) then
1977 if Of_Present (N) then
1978 Set_Etype (Def_Id, Component_Type (Typ));
1980 -- AI12-0151 stipulates that the container cannot be a component
1981 -- that depends on a discriminant if the enclosing object is
1982 -- mutable, to prevent a modification of the container in the
1983 -- course of an iteration.
1985 if Is_Entity_Name (Iter_Name)
1986 and then Nkind (Original_Node (Iter_Name)) = N_Selected_Component
1987 and then Is_Dependent_Component_Of_Mutable_Object
1988 (Renamed_Object (Entity (Iter_Name)))
1989 then
1990 Error_Msg_N
1991 ("container cannot be a discriminant-dependent "
1992 & "component of a mutable object", N);
1993 end if;
1995 if Present (Subt)
1996 and then
1997 (Base_Type (Bas) /= Base_Type (Component_Type (Typ))
1998 or else
1999 not Subtypes_Statically_Match (Bas, Component_Type (Typ)))
2000 then
2001 Error_Msg_N
2002 ("subtype indication does not match component type", Subt);
2003 end if;
2005 -- Here we have a missing Range attribute
2007 else
2008 Error_Msg_N
2009 ("missing Range attribute in iteration over an array", N);
2011 -- In Ada 2012 mode, this may be an attempt at an iterator
2013 if Ada_Version >= Ada_2012 then
2014 Error_Msg_NE
2015 ("\if& is meant to designate an element of the array, use OF",
2016 N, Def_Id);
2017 end if;
2019 -- Prevent cascaded errors
2021 Set_Ekind (Def_Id, E_Loop_Parameter);
2022 Set_Etype (Def_Id, Etype (First_Index (Typ)));
2023 end if;
2025 -- Check for type error in iterator
2027 elsif Typ = Any_Type then
2028 return;
2030 -- Iteration over a container
2032 else
2033 Set_Ekind (Def_Id, E_Loop_Parameter);
2034 Error_Msg_Ada_2012_Feature ("container iterator", Sloc (N));
2036 -- OF present
2038 if Of_Present (N) then
2039 if Has_Aspect (Typ, Aspect_Iterable) then
2040 declare
2041 Elt : constant Entity_Id :=
2042 Get_Iterable_Type_Primitive (Typ, Name_Element);
2043 begin
2044 if No (Elt) then
2045 Error_Msg_N
2046 ("missing Element primitive for iteration", N);
2047 else
2048 Set_Etype (Def_Id, Etype (Elt));
2049 end if;
2050 end;
2052 -- For a predefined container, The type of the loop variable is
2053 -- the Iterator_Element aspect of the container type.
2055 else
2056 declare
2057 Element : constant Entity_Id :=
2058 Find_Value_Of_Aspect (Typ, Aspect_Iterator_Element);
2060 begin
2061 if No (Element) then
2062 Error_Msg_NE ("cannot iterate over&", N, Typ);
2063 return;
2065 else
2066 Set_Etype (Def_Id, Entity (Element));
2068 -- If subtype indication was given, verify that it covers
2069 -- the element type of the container.
2071 if Present (Subt)
2072 and then (not Covers (Bas, Etype (Def_Id))
2073 or else not Subtypes_Statically_Match
2074 (Bas, Etype (Def_Id)))
2075 then
2076 Error_Msg_N
2077 ("subtype indication does not match element type",
2078 Subt);
2079 end if;
2081 -- If the container has a variable indexing aspect, the
2082 -- element is a variable and is modifiable in the loop.
2084 if Has_Aspect (Typ, Aspect_Variable_Indexing) then
2085 Set_Ekind (Def_Id, E_Variable);
2086 end if;
2087 end if;
2088 end;
2089 end if;
2091 -- IN iterator, domain is a range, or a call to Iterate function
2093 else
2094 -- For an iteration of the form IN, the name must denote an
2095 -- iterator, typically the result of a call to Iterate. Give a
2096 -- useful error message when the name is a container by itself.
2098 -- The type may be a formal container type, which has to have
2099 -- an Iterable aspect detailing the required primitives.
2101 if Is_Entity_Name (Original_Node (Name (N)))
2102 and then not Is_Iterator (Typ)
2103 then
2104 if Has_Aspect (Typ, Aspect_Iterable) then
2105 null;
2107 elsif not Has_Aspect (Typ, Aspect_Iterator_Element) then
2108 Error_Msg_NE
2109 ("cannot iterate over&", Name (N), Typ);
2110 else
2111 Error_Msg_N
2112 ("name must be an iterator, not a container", Name (N));
2113 end if;
2115 if Has_Aspect (Typ, Aspect_Iterable) then
2116 null;
2117 else
2118 Error_Msg_NE
2119 ("\to iterate directly over the elements of a container, "
2120 & "write `of &`", Name (N), Original_Node (Name (N)));
2122 -- No point in continuing analysis of iterator spec
2124 return;
2125 end if;
2126 end if;
2128 -- If the name is a call (typically prefixed) to some Iterate
2129 -- function, it has been rewritten as an object declaration.
2130 -- If that object is a selected component, verify that it is not
2131 -- a component of an unconstrained mutable object.
2133 if Nkind (Iter_Name) = N_Identifier then
2134 declare
2135 Iter_Kind : constant Node_Kind :=
2136 Nkind (Original_Node (Iter_Name));
2137 Obj : Node_Id;
2139 begin
2140 if Iter_Kind = N_Selected_Component then
2141 Obj := Prefix (Original_Node (Iter_Name));
2143 elsif Iter_Kind = N_Function_Call then
2144 Obj := First_Actual (Original_Node (Iter_Name));
2145 end if;
2147 if Nkind (Obj) = N_Selected_Component
2148 and then Is_Dependent_Component_Of_Mutable_Object (Obj)
2149 then
2150 Error_Msg_N
2151 ("container cannot be a discriminant-dependent " &
2152 "component of a mutable object", N);
2153 end if;
2154 end;
2155 end if;
2157 -- The result type of Iterate function is the classwide type of
2158 -- the interface parent. We need the specific Cursor type defined
2159 -- in the container package. We obtain it by name for a predefined
2160 -- container, or through the Iterable aspect for a formal one.
2162 if Has_Aspect (Typ, Aspect_Iterable) then
2163 Set_Etype (Def_Id,
2164 Get_Cursor_Type
2165 (Parent (Find_Value_Of_Aspect (Typ, Aspect_Iterable)),
2166 Typ));
2167 Ent := Etype (Def_Id);
2169 else
2170 Ent := First_Entity (Scope (Typ));
2171 while Present (Ent) loop
2172 if Chars (Ent) = Name_Cursor then
2173 Set_Etype (Def_Id, Etype (Ent));
2174 exit;
2175 end if;
2177 Next_Entity (Ent);
2178 end loop;
2179 end if;
2181 -- The cursor is the target of generated assignments in the
2182 -- loop, and cannot have a limited type.
2184 if Is_Limited_Type (Etype (Def_Id)) then
2185 Error_Msg_N ("cursor type cannot be limited", N);
2186 end if;
2187 end if;
2188 end if;
2190 -- A loop parameter cannot be effectively volatile. This check is
2191 -- peformed only when SPARK_Mode is on as it is not a standard Ada
2192 -- legality check (SPARK RM 7.1.3(6)).
2194 -- Not clear whether this applies to element iterators, where the
2195 -- cursor is not an explicit entity ???
2197 if SPARK_Mode = On
2198 and then not Of_Present (N)
2199 and then Is_Effectively_Volatile (Ent)
2200 then
2201 Error_Msg_N ("loop parameter cannot be volatile", Ent);
2202 end if;
2203 end Analyze_Iterator_Specification;
2205 -------------------
2206 -- Analyze_Label --
2207 -------------------
2209 -- Note: the semantic work required for analyzing labels (setting them as
2210 -- reachable) was done in a prepass through the statements in the block,
2211 -- so that forward gotos would be properly handled. See Analyze_Statements
2212 -- for further details. The only processing required here is to deal with
2213 -- optimizations that depend on an assumption of sequential control flow,
2214 -- since of course the occurrence of a label breaks this assumption.
2216 procedure Analyze_Label (N : Node_Id) is
2217 pragma Warnings (Off, N);
2218 begin
2219 Kill_Current_Values;
2220 end Analyze_Label;
2222 --------------------------
2223 -- Analyze_Label_Entity --
2224 --------------------------
2226 procedure Analyze_Label_Entity (E : Entity_Id) is
2227 begin
2228 Set_Ekind (E, E_Label);
2229 Set_Etype (E, Standard_Void_Type);
2230 Set_Enclosing_Scope (E, Current_Scope);
2231 Set_Reachable (E, True);
2232 end Analyze_Label_Entity;
2234 ------------------------------------------
2235 -- Analyze_Loop_Parameter_Specification --
2236 ------------------------------------------
2238 procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
2239 Loop_Nod : constant Node_Id := Parent (Parent (N));
2241 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
2242 -- If the bounds are given by a 'Range reference on a function call
2243 -- that returns a controlled array, introduce an explicit declaration
2244 -- to capture the bounds, so that the function result can be finalized
2245 -- in timely fashion.
2247 procedure Check_Predicate_Use (T : Entity_Id);
2248 -- Diagnose Attempt to iterate through non-static predicate. Note that
2249 -- a type with inherited predicates may have both static and dynamic
2250 -- forms. In this case it is not sufficent to check the static predicate
2251 -- function only, look for a dynamic predicate aspect as well.
2253 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean;
2254 -- N is the node for an arbitrary construct. This function searches the
2255 -- construct N to see if any expressions within it contain function
2256 -- calls that use the secondary stack, returning True if any such call
2257 -- is found, and False otherwise.
2259 procedure Process_Bounds (R : Node_Id);
2260 -- If the iteration is given by a range, create temporaries and
2261 -- assignment statements block to capture the bounds and perform
2262 -- required finalization actions in case a bound includes a function
2263 -- call that uses the temporary stack. We first pre-analyze a copy of
2264 -- the range in order to determine the expected type, and analyze and
2265 -- resolve the original bounds.
2267 --------------------------------------
2268 -- Check_Controlled_Array_Attribute --
2269 --------------------------------------
2271 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
2272 begin
2273 if Nkind (DS) = N_Attribute_Reference
2274 and then Is_Entity_Name (Prefix (DS))
2275 and then Ekind (Entity (Prefix (DS))) = E_Function
2276 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
2277 and then
2278 Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
2279 and then Expander_Active
2280 then
2281 declare
2282 Loc : constant Source_Ptr := Sloc (N);
2283 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
2284 Indx : constant Entity_Id :=
2285 Base_Type (Etype (First_Index (Arr)));
2286 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
2287 Decl : Node_Id;
2289 begin
2290 Decl :=
2291 Make_Subtype_Declaration (Loc,
2292 Defining_Identifier => Subt,
2293 Subtype_Indication =>
2294 Make_Subtype_Indication (Loc,
2295 Subtype_Mark => New_Occurrence_Of (Indx, Loc),
2296 Constraint =>
2297 Make_Range_Constraint (Loc, Relocate_Node (DS))));
2298 Insert_Before (Loop_Nod, Decl);
2299 Analyze (Decl);
2301 Rewrite (DS,
2302 Make_Attribute_Reference (Loc,
2303 Prefix => New_Occurrence_Of (Subt, Loc),
2304 Attribute_Name => Attribute_Name (DS)));
2306 Analyze (DS);
2307 end;
2308 end if;
2309 end Check_Controlled_Array_Attribute;
2311 -------------------------
2312 -- Check_Predicate_Use --
2313 -------------------------
2315 procedure Check_Predicate_Use (T : Entity_Id) is
2316 begin
2317 -- A predicated subtype is illegal in loops and related constructs
2318 -- if the predicate is not static, or if it is a non-static subtype
2319 -- of a statically predicated subtype.
2321 if Is_Discrete_Type (T)
2322 and then Has_Predicates (T)
2323 and then (not Has_Static_Predicate (T)
2324 or else not Is_Static_Subtype (T)
2325 or else Has_Dynamic_Predicate_Aspect (T))
2326 then
2327 -- Seems a confusing message for the case of a static predicate
2328 -- with a non-static subtype???
2330 Bad_Predicated_Subtype_Use
2331 ("cannot use subtype& with non-static predicate for loop "
2332 & "iteration", Discrete_Subtype_Definition (N),
2333 T, Suggest_Static => True);
2335 elsif Inside_A_Generic and then Is_Generic_Formal (T) then
2336 Set_No_Dynamic_Predicate_On_Actual (T);
2337 end if;
2338 end Check_Predicate_Use;
2340 ------------------------------------
2341 -- Has_Call_Using_Secondary_Stack --
2342 ------------------------------------
2344 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean is
2346 function Check_Call (N : Node_Id) return Traverse_Result;
2347 -- Check if N is a function call which uses the secondary stack
2349 ----------------
2350 -- Check_Call --
2351 ----------------
2353 function Check_Call (N : Node_Id) return Traverse_Result is
2354 Nam : Node_Id;
2355 Subp : Entity_Id;
2356 Return_Typ : Entity_Id;
2358 begin
2359 if Nkind (N) = N_Function_Call then
2360 Nam := Name (N);
2362 -- Call using access to subprogram with explicit dereference
2364 if Nkind (Nam) = N_Explicit_Dereference then
2365 Subp := Etype (Nam);
2367 -- Call using a selected component notation or Ada 2005 object
2368 -- operation notation
2370 elsif Nkind (Nam) = N_Selected_Component then
2371 Subp := Entity (Selector_Name (Nam));
2373 -- Common case
2375 else
2376 Subp := Entity (Nam);
2377 end if;
2379 Return_Typ := Etype (Subp);
2381 if Is_Composite_Type (Return_Typ)
2382 and then not Is_Constrained (Return_Typ)
2383 then
2384 return Abandon;
2386 elsif Sec_Stack_Needed_For_Return (Subp) then
2387 return Abandon;
2388 end if;
2389 end if;
2391 -- Continue traversing the tree
2393 return OK;
2394 end Check_Call;
2396 function Check_Calls is new Traverse_Func (Check_Call);
2398 -- Start of processing for Has_Call_Using_Secondary_Stack
2400 begin
2401 return Check_Calls (N) = Abandon;
2402 end Has_Call_Using_Secondary_Stack;
2404 --------------------
2405 -- Process_Bounds --
2406 --------------------
2408 procedure Process_Bounds (R : Node_Id) is
2409 Loc : constant Source_Ptr := Sloc (N);
2411 function One_Bound
2412 (Original_Bound : Node_Id;
2413 Analyzed_Bound : Node_Id;
2414 Typ : Entity_Id) return Node_Id;
2415 -- Capture value of bound and return captured value
2417 ---------------
2418 -- One_Bound --
2419 ---------------
2421 function One_Bound
2422 (Original_Bound : Node_Id;
2423 Analyzed_Bound : Node_Id;
2424 Typ : Entity_Id) return Node_Id
2426 Assign : Node_Id;
2427 Decl : Node_Id;
2428 Id : Entity_Id;
2430 begin
2431 -- If the bound is a constant or an object, no need for a separate
2432 -- declaration. If the bound is the result of previous expansion
2433 -- it is already analyzed and should not be modified. Note that
2434 -- the Bound will be resolved later, if needed, as part of the
2435 -- call to Make_Index (literal bounds may need to be resolved to
2436 -- type Integer).
2438 if Analyzed (Original_Bound) then
2439 return Original_Bound;
2441 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
2442 N_Character_Literal)
2443 or else Is_Entity_Name (Analyzed_Bound)
2444 then
2445 Analyze_And_Resolve (Original_Bound, Typ);
2446 return Original_Bound;
2447 end if;
2449 -- Normally, the best approach is simply to generate a constant
2450 -- declaration that captures the bound. However, there is a nasty
2451 -- case where this is wrong. If the bound is complex, and has a
2452 -- possible use of the secondary stack, we need to generate a
2453 -- separate assignment statement to ensure the creation of a block
2454 -- which will release the secondary stack.
2456 -- We prefer the constant declaration, since it leaves us with a
2457 -- proper trace of the value, useful in optimizations that get rid
2458 -- of junk range checks.
2460 if not Has_Call_Using_Secondary_Stack (Analyzed_Bound) then
2461 Analyze_And_Resolve (Original_Bound, Typ);
2463 -- Ensure that the bound is valid. This check should not be
2464 -- generated when the range belongs to a quantified expression
2465 -- as the construct is still not expanded into its final form.
2467 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
2468 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
2469 then
2470 Ensure_Valid (Original_Bound);
2471 end if;
2473 Force_Evaluation (Original_Bound);
2474 return Original_Bound;
2475 end if;
2477 Id := Make_Temporary (Loc, 'R', Original_Bound);
2479 -- Here we make a declaration with a separate assignment
2480 -- statement, and insert before loop header.
2482 Decl :=
2483 Make_Object_Declaration (Loc,
2484 Defining_Identifier => Id,
2485 Object_Definition => New_Occurrence_Of (Typ, Loc));
2487 Assign :=
2488 Make_Assignment_Statement (Loc,
2489 Name => New_Occurrence_Of (Id, Loc),
2490 Expression => Relocate_Node (Original_Bound));
2492 Insert_Actions (Loop_Nod, New_List (Decl, Assign));
2494 -- Now that this temporary variable is initialized we decorate it
2495 -- as safe-to-reevaluate to inform to the backend that no further
2496 -- asignment will be issued and hence it can be handled as side
2497 -- effect free. Note that this decoration must be done when the
2498 -- assignment has been analyzed because otherwise it will be
2499 -- rejected (see Analyze_Assignment).
2501 Set_Is_Safe_To_Reevaluate (Id);
2503 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
2505 if Nkind (Assign) = N_Assignment_Statement then
2506 return Expression (Assign);
2507 else
2508 return Original_Bound;
2509 end if;
2510 end One_Bound;
2512 Hi : constant Node_Id := High_Bound (R);
2513 Lo : constant Node_Id := Low_Bound (R);
2514 R_Copy : constant Node_Id := New_Copy_Tree (R);
2515 New_Hi : Node_Id;
2516 New_Lo : Node_Id;
2517 Typ : Entity_Id;
2519 -- Start of processing for Process_Bounds
2521 begin
2522 Set_Parent (R_Copy, Parent (R));
2523 Preanalyze_Range (R_Copy);
2524 Typ := Etype (R_Copy);
2526 -- If the type of the discrete range is Universal_Integer, then the
2527 -- bound's type must be resolved to Integer, and any object used to
2528 -- hold the bound must also have type Integer, unless the literal
2529 -- bounds are constant-folded expressions with a user-defined type.
2531 if Typ = Universal_Integer then
2532 if Nkind (Lo) = N_Integer_Literal
2533 and then Present (Etype (Lo))
2534 and then Scope (Etype (Lo)) /= Standard_Standard
2535 then
2536 Typ := Etype (Lo);
2538 elsif Nkind (Hi) = N_Integer_Literal
2539 and then Present (Etype (Hi))
2540 and then Scope (Etype (Hi)) /= Standard_Standard
2541 then
2542 Typ := Etype (Hi);
2544 else
2545 Typ := Standard_Integer;
2546 end if;
2547 end if;
2549 Set_Etype (R, Typ);
2551 New_Lo := One_Bound (Lo, Low_Bound (R_Copy), Typ);
2552 New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);
2554 -- Propagate staticness to loop range itself, in case the
2555 -- corresponding subtype is static.
2557 if New_Lo /= Lo and then Is_OK_Static_Expression (New_Lo) then
2558 Rewrite (Low_Bound (R), New_Copy (New_Lo));
2559 end if;
2561 if New_Hi /= Hi and then Is_OK_Static_Expression (New_Hi) then
2562 Rewrite (High_Bound (R), New_Copy (New_Hi));
2563 end if;
2564 end Process_Bounds;
2566 -- Local variables
2568 DS : constant Node_Id := Discrete_Subtype_Definition (N);
2569 Id : constant Entity_Id := Defining_Identifier (N);
2571 DS_Copy : Node_Id;
2573 -- Start of processing for Analyze_Loop_Parameter_Specification
2575 begin
2576 Enter_Name (Id);
2578 -- We always consider the loop variable to be referenced, since the loop
2579 -- may be used just for counting purposes.
2581 Generate_Reference (Id, N, ' ');
2583 -- Check for the case of loop variable hiding a local variable (used
2584 -- later on to give a nice warning if the hidden variable is never
2585 -- assigned).
2587 declare
2588 H : constant Entity_Id := Homonym (Id);
2589 begin
2590 if Present (H)
2591 and then Ekind (H) = E_Variable
2592 and then Is_Discrete_Type (Etype (H))
2593 and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
2594 then
2595 Set_Hiding_Loop_Variable (H, Id);
2596 end if;
2597 end;
2599 -- Loop parameter specification must include subtype mark in SPARK
2601 if Nkind (DS) = N_Range then
2602 Check_SPARK_05_Restriction
2603 ("loop parameter specification must include subtype mark", N);
2604 end if;
2606 -- Analyze the subtype definition and create temporaries for the bounds.
2607 -- Do not evaluate the range when preanalyzing a quantified expression
2608 -- because bounds expressed as function calls with side effects will be
2609 -- incorrectly replicated.
2611 if Nkind (DS) = N_Range
2612 and then Expander_Active
2613 and then Nkind (Parent (N)) /= N_Quantified_Expression
2614 then
2615 Process_Bounds (DS);
2617 -- Either the expander not active or the range of iteration is a subtype
2618 -- indication, an entity, or a function call that yields an aggregate or
2619 -- a container.
2621 else
2622 DS_Copy := New_Copy_Tree (DS);
2623 Set_Parent (DS_Copy, Parent (DS));
2624 Preanalyze_Range (DS_Copy);
2626 -- Ada 2012: If the domain of iteration is:
2628 -- a) a function call,
2629 -- b) an identifier that is not a type,
2630 -- c) an attribute reference 'Old (within a postcondition)
2631 -- d) an unchecked conversion
2633 -- then it is an iteration over a container. It was classified as
2634 -- a loop specification by the parser, and must be rewritten now
2635 -- to activate container iteration. The last case will occur within
2636 -- an expanded inlined call, where the expansion wraps an actual in
2637 -- an unchecked conversion when needed. The expression of the
2638 -- conversion is always an object.
2640 if Nkind (DS_Copy) = N_Function_Call
2641 or else (Is_Entity_Name (DS_Copy)
2642 and then not Is_Type (Entity (DS_Copy)))
2643 or else (Nkind (DS_Copy) = N_Attribute_Reference
2644 and then Nam_In (Attribute_Name (DS_Copy),
2645 Name_Old, Name_Loop_Entry))
2646 or else Nkind (DS_Copy) = N_Unchecked_Type_Conversion
2647 or else Has_Aspect (Etype (DS_Copy), Aspect_Iterable)
2648 then
2649 -- This is an iterator specification. Rewrite it as such and
2650 -- analyze it to capture function calls that may require
2651 -- finalization actions.
2653 declare
2654 I_Spec : constant Node_Id :=
2655 Make_Iterator_Specification (Sloc (N),
2656 Defining_Identifier => Relocate_Node (Id),
2657 Name => DS_Copy,
2658 Subtype_Indication => Empty,
2659 Reverse_Present => Reverse_Present (N));
2660 Scheme : constant Node_Id := Parent (N);
2662 begin
2663 Set_Iterator_Specification (Scheme, I_Spec);
2664 Set_Loop_Parameter_Specification (Scheme, Empty);
2665 Analyze_Iterator_Specification (I_Spec);
2667 -- In a generic context, analyze the original domain of
2668 -- iteration, for name capture.
2670 if not Expander_Active then
2671 Analyze (DS);
2672 end if;
2674 -- Set kind of loop parameter, which may be used in the
2675 -- subsequent analysis of the condition in a quantified
2676 -- expression.
2678 Set_Ekind (Id, E_Loop_Parameter);
2679 return;
2680 end;
2682 -- Domain of iteration is not a function call, and is side-effect
2683 -- free.
2685 else
2686 -- A quantified expression that appears in a pre/post condition
2687 -- is pre-analyzed several times. If the range is given by an
2688 -- attribute reference it is rewritten as a range, and this is
2689 -- done even with expansion disabled. If the type is already set
2690 -- do not reanalyze, because a range with static bounds may be
2691 -- typed Integer by default.
2693 if Nkind (Parent (N)) = N_Quantified_Expression
2694 and then Present (Etype (DS))
2695 then
2696 null;
2697 else
2698 Analyze (DS);
2699 end if;
2700 end if;
2701 end if;
2703 if DS = Error then
2704 return;
2705 end if;
2707 -- Some additional checks if we are iterating through a type
2709 if Is_Entity_Name (DS)
2710 and then Present (Entity (DS))
2711 and then Is_Type (Entity (DS))
2712 then
2713 -- The subtype indication may denote the completion of an incomplete
2714 -- type declaration.
2716 if Ekind (Entity (DS)) = E_Incomplete_Type then
2717 Set_Entity (DS, Get_Full_View (Entity (DS)));
2718 Set_Etype (DS, Entity (DS));
2719 end if;
2721 Check_Predicate_Use (Entity (DS));
2722 end if;
2724 -- Error if not discrete type
2726 if not Is_Discrete_Type (Etype (DS)) then
2727 Wrong_Type (DS, Any_Discrete);
2728 Set_Etype (DS, Any_Type);
2729 end if;
2731 Check_Controlled_Array_Attribute (DS);
2733 if Nkind (DS) = N_Subtype_Indication then
2734 Check_Predicate_Use (Entity (Subtype_Mark (DS)));
2735 end if;
2737 Make_Index (DS, N, In_Iter_Schm => True);
2738 Set_Ekind (Id, E_Loop_Parameter);
2740 -- A quantified expression which appears in a pre- or post-condition may
2741 -- be analyzed multiple times. The analysis of the range creates several
2742 -- itypes which reside in different scopes depending on whether the pre-
2743 -- or post-condition has been expanded. Update the type of the loop
2744 -- variable to reflect the proper itype at each stage of analysis.
2746 if No (Etype (Id))
2747 or else Etype (Id) = Any_Type
2748 or else
2749 (Present (Etype (Id))
2750 and then Is_Itype (Etype (Id))
2751 and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
2752 and then Nkind (Original_Node (Parent (Loop_Nod))) =
2753 N_Quantified_Expression)
2754 then
2755 Set_Etype (Id, Etype (DS));
2756 end if;
2758 -- Treat a range as an implicit reference to the type, to inhibit
2759 -- spurious warnings.
2761 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
2762 Set_Is_Known_Valid (Id, True);
2764 -- The loop is not a declarative part, so the loop variable must be
2765 -- frozen explicitly. Do not freeze while preanalyzing a quantified
2766 -- expression because the freeze node will not be inserted into the
2767 -- tree due to flag Is_Spec_Expression being set.
2769 if Nkind (Parent (N)) /= N_Quantified_Expression then
2770 declare
2771 Flist : constant List_Id := Freeze_Entity (Id, N);
2772 begin
2773 if Is_Non_Empty_List (Flist) then
2774 Insert_Actions (N, Flist);
2775 end if;
2776 end;
2777 end if;
2779 -- Case where we have a range or a subtype, get type bounds
2781 if Nkind_In (DS, N_Range, N_Subtype_Indication)
2782 and then not Error_Posted (DS)
2783 and then Etype (DS) /= Any_Type
2784 and then Is_Discrete_Type (Etype (DS))
2785 then
2786 declare
2787 L : Node_Id;
2788 H : Node_Id;
2790 begin
2791 if Nkind (DS) = N_Range then
2792 L := Low_Bound (DS);
2793 H := High_Bound (DS);
2794 else
2795 L :=
2796 Type_Low_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
2797 H :=
2798 Type_High_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
2799 end if;
2801 -- Check for null or possibly null range and issue warning. We
2802 -- suppress such messages in generic templates and instances,
2803 -- because in practice they tend to be dubious in these cases. The
2804 -- check applies as well to rewritten array element loops where a
2805 -- null range may be detected statically.
2807 if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
2809 -- Suppress the warning if inside a generic template or
2810 -- instance, since in practice they tend to be dubious in these
2811 -- cases since they can result from intended parameterization.
2813 if not Inside_A_Generic and then not In_Instance then
2815 -- Specialize msg if invalid values could make the loop
2816 -- non-null after all.
2818 if Compile_Time_Compare
2819 (L, H, Assume_Valid => False) = GT
2820 then
2821 -- Since we know the range of the loop is null, set the
2822 -- appropriate flag to remove the loop entirely during
2823 -- expansion.
2825 Set_Is_Null_Loop (Loop_Nod);
2827 if Comes_From_Source (N) then
2828 Error_Msg_N
2829 ("??loop range is null, loop will not execute", DS);
2830 end if;
2832 -- Here is where the loop could execute because of
2833 -- invalid values, so issue appropriate message and in
2834 -- this case we do not set the Is_Null_Loop flag since
2835 -- the loop may execute.
2837 elsif Comes_From_Source (N) then
2838 Error_Msg_N
2839 ("??loop range may be null, loop may not execute",
2840 DS);
2841 Error_Msg_N
2842 ("??can only execute if invalid values are present",
2843 DS);
2844 end if;
2845 end if;
2847 -- In either case, suppress warnings in the body of the loop,
2848 -- since it is likely that these warnings will be inappropriate
2849 -- if the loop never actually executes, which is likely.
2851 Set_Suppress_Loop_Warnings (Loop_Nod);
2853 -- The other case for a warning is a reverse loop where the
2854 -- upper bound is the integer literal zero or one, and the
2855 -- lower bound may exceed this value.
2857 -- For example, we have
2859 -- for J in reverse N .. 1 loop
2861 -- In practice, this is very likely to be a case of reversing
2862 -- the bounds incorrectly in the range.
2864 elsif Reverse_Present (N)
2865 and then Nkind (Original_Node (H)) = N_Integer_Literal
2866 and then
2867 (Intval (Original_Node (H)) = Uint_0
2868 or else
2869 Intval (Original_Node (H)) = Uint_1)
2870 then
2871 -- Lower bound may in fact be known and known not to exceed
2872 -- upper bound (e.g. reverse 0 .. 1) and that's OK.
2874 if Compile_Time_Known_Value (L)
2875 and then Expr_Value (L) <= Expr_Value (H)
2876 then
2877 null;
2879 -- Otherwise warning is warranted
2881 else
2882 Error_Msg_N ("??loop range may be null", DS);
2883 Error_Msg_N ("\??bounds may be wrong way round", DS);
2884 end if;
2885 end if;
2887 -- Check if either bound is known to be outside the range of the
2888 -- loop parameter type, this is e.g. the case of a loop from
2889 -- 20..X where the type is 1..19.
2891 -- Such a loop is dubious since either it raises CE or it executes
2892 -- zero times, and that cannot be useful!
2894 if Etype (DS) /= Any_Type
2895 and then not Error_Posted (DS)
2896 and then Nkind (DS) = N_Subtype_Indication
2897 and then Nkind (Constraint (DS)) = N_Range_Constraint
2898 then
2899 declare
2900 LLo : constant Node_Id :=
2901 Low_Bound (Range_Expression (Constraint (DS)));
2902 LHi : constant Node_Id :=
2903 High_Bound (Range_Expression (Constraint (DS)));
2905 Bad_Bound : Node_Id := Empty;
2906 -- Suspicious loop bound
2908 begin
2909 -- At this stage L, H are the bounds of the type, and LLo
2910 -- Lhi are the low bound and high bound of the loop.
2912 if Compile_Time_Compare (LLo, L, Assume_Valid => True) = LT
2913 or else
2914 Compile_Time_Compare (LLo, H, Assume_Valid => True) = GT
2915 then
2916 Bad_Bound := LLo;
2917 end if;
2919 if Compile_Time_Compare (LHi, L, Assume_Valid => True) = LT
2920 or else
2921 Compile_Time_Compare (LHi, H, Assume_Valid => True) = GT
2922 then
2923 Bad_Bound := LHi;
2924 end if;
2926 if Present (Bad_Bound) then
2927 Error_Msg_N
2928 ("suspicious loop bound out of range of "
2929 & "loop subtype??", Bad_Bound);
2930 Error_Msg_N
2931 ("\loop executes zero times or raises "
2932 & "Constraint_Error??", Bad_Bound);
2933 end if;
2934 end;
2935 end if;
2937 -- This declare block is about warnings, if we get an exception while
2938 -- testing for warnings, we simply abandon the attempt silently. This
2939 -- most likely occurs as the result of a previous error, but might
2940 -- just be an obscure case we have missed. In either case, not giving
2941 -- the warning is perfectly acceptable.
2943 exception
2944 when others => null;
2945 end;
2946 end if;
2948 -- A loop parameter cannot be effectively volatile. This check is
2949 -- peformed only when SPARK_Mode is on as it is not a standard Ada
2950 -- legality check (SPARK RM 7.1.3(6)).
2952 if SPARK_Mode = On and then Is_Effectively_Volatile (Id) then
2953 Error_Msg_N ("loop parameter cannot be volatile", Id);
2954 end if;
2955 end Analyze_Loop_Parameter_Specification;
2957 ----------------------------
2958 -- Analyze_Loop_Statement --
2959 ----------------------------
2961 procedure Analyze_Loop_Statement (N : Node_Id) is
2963 function Is_Container_Iterator (Iter : Node_Id) return Boolean;
2964 -- Given a loop iteration scheme, determine whether it is an Ada 2012
2965 -- container iteration.
2967 function Is_Wrapped_In_Block (N : Node_Id) return Boolean;
2968 -- Determine whether loop statement N has been wrapped in a block to
2969 -- capture finalization actions that may be generated for container
2970 -- iterators. Prevents infinite recursion when block is analyzed.
2971 -- Routine is a noop if loop is single statement within source block.
2973 ---------------------------
2974 -- Is_Container_Iterator --
2975 ---------------------------
2977 function Is_Container_Iterator (Iter : Node_Id) return Boolean is
2978 begin
2979 -- Infinite loop
2981 if No (Iter) then
2982 return False;
2984 -- While loop
2986 elsif Present (Condition (Iter)) then
2987 return False;
2989 -- for Def_Id in [reverse] Name loop
2990 -- for Def_Id [: Subtype_Indication] of [reverse] Name loop
2992 elsif Present (Iterator_Specification (Iter)) then
2993 declare
2994 Nam : constant Node_Id := Name (Iterator_Specification (Iter));
2995 Nam_Copy : Node_Id;
2997 begin
2998 Nam_Copy := New_Copy_Tree (Nam);
2999 Set_Parent (Nam_Copy, Parent (Nam));
3000 Preanalyze_Range (Nam_Copy);
3002 -- The only two options here are iteration over a container or
3003 -- an array.
3005 return not Is_Array_Type (Etype (Nam_Copy));
3006 end;
3008 -- for Def_Id in [reverse] Discrete_Subtype_Definition loop
3010 else
3011 declare
3012 LP : constant Node_Id := Loop_Parameter_Specification (Iter);
3013 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
3014 DS_Copy : Node_Id;
3016 begin
3017 DS_Copy := New_Copy_Tree (DS);
3018 Set_Parent (DS_Copy, Parent (DS));
3019 Preanalyze_Range (DS_Copy);
3021 -- Check for a call to Iterate ()
3023 return
3024 Nkind (DS_Copy) = N_Function_Call
3025 and then Needs_Finalization (Etype (DS_Copy));
3026 end;
3027 end if;
3028 end Is_Container_Iterator;
3030 -------------------------
3031 -- Is_Wrapped_In_Block --
3032 -------------------------
3034 function Is_Wrapped_In_Block (N : Node_Id) return Boolean is
3035 HSS : Node_Id;
3036 Stat : Node_Id;
3038 begin
3040 -- Check if current scope is a block that is not a transient block.
3042 if Ekind (Current_Scope) /= E_Block
3043 or else No (Block_Node (Current_Scope))
3044 then
3045 return False;
3047 else
3048 HSS :=
3049 Handled_Statement_Sequence (Parent (Block_Node (Current_Scope)));
3051 -- Skip leading pragmas that may be introduced for invariant and
3052 -- predicate checks.
3054 Stat := First (Statements (HSS));
3055 while Present (Stat) and then Nkind (Stat) = N_Pragma loop
3056 Stat := Next (Stat);
3057 end loop;
3059 return Stat = N and then No (Next (Stat));
3060 end if;
3061 end Is_Wrapped_In_Block;
3063 -- Local declarations
3065 Id : constant Node_Id := Identifier (N);
3066 Iter : constant Node_Id := Iteration_Scheme (N);
3067 Loc : constant Source_Ptr := Sloc (N);
3068 Ent : Entity_Id;
3069 Stmt : Node_Id;
3071 -- Start of processing for Analyze_Loop_Statement
3073 begin
3074 if Present (Id) then
3076 -- Make name visible, e.g. for use in exit statements. Loop labels
3077 -- are always considered to be referenced.
3079 Analyze (Id);
3080 Ent := Entity (Id);
3082 -- Guard against serious error (typically, a scope mismatch when
3083 -- semantic analysis is requested) by creating loop entity to
3084 -- continue analysis.
3086 if No (Ent) then
3087 if Total_Errors_Detected /= 0 then
3088 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
3089 else
3090 raise Program_Error;
3091 end if;
3093 -- Verify that the loop name is hot hidden by an unrelated
3094 -- declaration in an inner scope.
3096 elsif Ekind (Ent) /= E_Label and then Ekind (Ent) /= E_Loop then
3097 Error_Msg_Sloc := Sloc (Ent);
3098 Error_Msg_N ("implicit label declaration for & is hidden#", Id);
3100 if Present (Homonym (Ent))
3101 and then Ekind (Homonym (Ent)) = E_Label
3102 then
3103 Set_Entity (Id, Ent);
3104 Set_Ekind (Ent, E_Loop);
3105 end if;
3107 else
3108 Generate_Reference (Ent, N, ' ');
3109 Generate_Definition (Ent);
3111 -- If we found a label, mark its type. If not, ignore it, since it
3112 -- means we have a conflicting declaration, which would already
3113 -- have been diagnosed at declaration time. Set Label_Construct
3114 -- of the implicit label declaration, which is not created by the
3115 -- parser for generic units.
3117 if Ekind (Ent) = E_Label then
3118 Set_Ekind (Ent, E_Loop);
3120 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
3121 Set_Label_Construct (Parent (Ent), N);
3122 end if;
3123 end if;
3124 end if;
3126 -- Case of no identifier present
3128 else
3129 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
3130 Set_Etype (Ent, Standard_Void_Type);
3131 Set_Parent (Ent, N);
3132 end if;
3134 -- Iteration over a container in Ada 2012 involves the creation of a
3135 -- controlled iterator object. Wrap the loop in a block to ensure the
3136 -- timely finalization of the iterator and release of container locks.
3137 -- The same applies to the use of secondary stack when obtaining an
3138 -- iterator.
3140 if Ada_Version >= Ada_2012
3141 and then Is_Container_Iterator (Iter)
3142 and then not Is_Wrapped_In_Block (N)
3143 then
3144 declare
3145 Block_Nod : Node_Id;
3146 Block_Id : Entity_Id;
3148 begin
3149 Block_Nod :=
3150 Make_Block_Statement (Loc,
3151 Declarations => New_List,
3152 Handled_Statement_Sequence =>
3153 Make_Handled_Sequence_Of_Statements (Loc,
3154 Statements => New_List (Relocate_Node (N))));
3156 Add_Block_Identifier (Block_Nod, Block_Id);
3158 -- The expansion of iterator loops generates an iterator in order
3159 -- to traverse the elements of a container:
3161 -- Iter : <iterator type> := Iterate (Container)'reference;
3163 -- The iterator is controlled and returned on the secondary stack.
3164 -- The analysis of the call to Iterate establishes a transient
3165 -- scope to deal with the secondary stack management, but never
3166 -- really creates a physical block as this would kill the iterator
3167 -- too early (see Wrap_Transient_Declaration). To address this
3168 -- case, mark the generated block as needing secondary stack
3169 -- management.
3171 Set_Uses_Sec_Stack (Block_Id);
3173 Rewrite (N, Block_Nod);
3174 Analyze (N);
3175 return;
3176 end;
3177 end if;
3179 -- Kill current values on entry to loop, since statements in the body of
3180 -- the loop may have been executed before the loop is entered. Similarly
3181 -- we kill values after the loop, since we do not know that the body of
3182 -- the loop was executed.
3184 Kill_Current_Values;
3185 Push_Scope (Ent);
3186 Analyze_Iteration_Scheme (Iter);
3188 -- Check for following case which merits a warning if the type E of is
3189 -- a multi-dimensional array (and no explicit subscript ranges present).
3191 -- for J in E'Range
3192 -- for K in E'Range
3194 if Present (Iter)
3195 and then Present (Loop_Parameter_Specification (Iter))
3196 then
3197 declare
3198 LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
3199 DSD : constant Node_Id :=
3200 Original_Node (Discrete_Subtype_Definition (LPS));
3201 begin
3202 if Nkind (DSD) = N_Attribute_Reference
3203 and then Attribute_Name (DSD) = Name_Range
3204 and then No (Expressions (DSD))
3205 then
3206 declare
3207 Typ : constant Entity_Id := Etype (Prefix (DSD));
3208 begin
3209 if Is_Array_Type (Typ)
3210 and then Number_Dimensions (Typ) > 1
3211 and then Nkind (Parent (N)) = N_Loop_Statement
3212 and then Present (Iteration_Scheme (Parent (N)))
3213 then
3214 declare
3215 OIter : constant Node_Id :=
3216 Iteration_Scheme (Parent (N));
3217 OLPS : constant Node_Id :=
3218 Loop_Parameter_Specification (OIter);
3219 ODSD : constant Node_Id :=
3220 Original_Node (Discrete_Subtype_Definition (OLPS));
3221 begin
3222 if Nkind (ODSD) = N_Attribute_Reference
3223 and then Attribute_Name (ODSD) = Name_Range
3224 and then No (Expressions (ODSD))
3225 and then Etype (Prefix (ODSD)) = Typ
3226 then
3227 Error_Msg_Sloc := Sloc (ODSD);
3228 Error_Msg_N
3229 ("inner range same as outer range#??", DSD);
3230 end if;
3231 end;
3232 end if;
3233 end;
3234 end if;
3235 end;
3236 end if;
3238 -- Analyze the statements of the body except in the case of an Ada 2012
3239 -- iterator with the expander active. In this case the expander will do
3240 -- a rewrite of the loop into a while loop. We will then analyze the
3241 -- loop body when we analyze this while loop.
3243 -- We need to do this delay because if the container is for indefinite
3244 -- types the actual subtype of the components will only be determined
3245 -- when the cursor declaration is analyzed.
3247 -- If the expander is not active, or in SPARK mode, then we want to
3248 -- analyze the loop body now even in the Ada 2012 iterator case, since
3249 -- the rewriting will not be done. Insert the loop variable in the
3250 -- current scope, if not done when analysing the iteration scheme.
3251 -- Set its kind properly to detect improper uses in the loop body.
3253 if Present (Iter)
3254 and then Present (Iterator_Specification (Iter))
3255 then
3256 if not Expander_Active then
3257 declare
3258 I_Spec : constant Node_Id := Iterator_Specification (Iter);
3259 Id : constant Entity_Id := Defining_Identifier (I_Spec);
3261 begin
3262 if Scope (Id) /= Current_Scope then
3263 Enter_Name (Id);
3264 end if;
3266 -- In an element iterator, The loop parameter is a variable if
3267 -- the domain of iteration (container or array) is a variable.
3269 if not Of_Present (I_Spec)
3270 or else not Is_Variable (Name (I_Spec))
3271 then
3272 Set_Ekind (Id, E_Loop_Parameter);
3273 end if;
3274 end;
3276 Analyze_Statements (Statements (N));
3277 end if;
3279 else
3281 -- Pre-Ada2012 for-loops and while loops.
3283 Analyze_Statements (Statements (N));
3284 end if;
3286 -- When the iteration scheme of a loop contains attribute 'Loop_Entry,
3287 -- the loop is transformed into a conditional block. Retrieve the loop.
3289 Stmt := N;
3291 if Subject_To_Loop_Entry_Attributes (Stmt) then
3292 Stmt := Find_Loop_In_Conditional_Block (Stmt);
3293 end if;
3295 -- Finish up processing for the loop. We kill all current values, since
3296 -- in general we don't know if the statements in the loop have been
3297 -- executed. We could do a bit better than this with a loop that we
3298 -- know will execute at least once, but it's not worth the trouble and
3299 -- the front end is not in the business of flow tracing.
3301 Process_End_Label (Stmt, 'e', Ent);
3302 End_Scope;
3303 Kill_Current_Values;
3305 -- Check for infinite loop. Skip check for generated code, since it
3306 -- justs waste time and makes debugging the routine called harder.
3308 -- Note that we have to wait till the body of the loop is fully analyzed
3309 -- before making this call, since Check_Infinite_Loop_Warning relies on
3310 -- being able to use semantic visibility information to find references.
3312 if Comes_From_Source (Stmt) then
3313 Check_Infinite_Loop_Warning (Stmt);
3314 end if;
3316 -- Code after loop is unreachable if the loop has no WHILE or FOR and
3317 -- contains no EXIT statements within the body of the loop.
3319 if No (Iter) and then not Has_Exit (Ent) then
3320 Check_Unreachable_Code (Stmt);
3321 end if;
3322 end Analyze_Loop_Statement;
3324 ----------------------------
3325 -- Analyze_Null_Statement --
3326 ----------------------------
3328 -- Note: the semantics of the null statement is implemented by a single
3329 -- null statement, too bad everything isn't as simple as this.
3331 procedure Analyze_Null_Statement (N : Node_Id) is
3332 pragma Warnings (Off, N);
3333 begin
3334 null;
3335 end Analyze_Null_Statement;
3337 ------------------------
3338 -- Analyze_Statements --
3339 ------------------------
3341 procedure Analyze_Statements (L : List_Id) is
3342 S : Node_Id;
3343 Lab : Entity_Id;
3345 begin
3346 -- The labels declared in the statement list are reachable from
3347 -- statements in the list. We do this as a prepass so that any goto
3348 -- statement will be properly flagged if its target is not reachable.
3349 -- This is not required, but is nice behavior.
3351 S := First (L);
3352 while Present (S) loop
3353 if Nkind (S) = N_Label then
3354 Analyze (Identifier (S));
3355 Lab := Entity (Identifier (S));
3357 -- If we found a label mark it as reachable
3359 if Ekind (Lab) = E_Label then
3360 Generate_Definition (Lab);
3361 Set_Reachable (Lab);
3363 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
3364 Set_Label_Construct (Parent (Lab), S);
3365 end if;
3367 -- If we failed to find a label, it means the implicit declaration
3368 -- of the label was hidden. A for-loop parameter can do this to
3369 -- a label with the same name inside the loop, since the implicit
3370 -- label declaration is in the innermost enclosing body or block
3371 -- statement.
3373 else
3374 Error_Msg_Sloc := Sloc (Lab);
3375 Error_Msg_N
3376 ("implicit label declaration for & is hidden#",
3377 Identifier (S));
3378 end if;
3379 end if;
3381 Next (S);
3382 end loop;
3384 -- Perform semantic analysis on all statements
3386 Conditional_Statements_Begin;
3388 S := First (L);
3389 while Present (S) loop
3390 Analyze (S);
3392 -- Remove dimension in all statements
3394 Remove_Dimension_In_Statement (S);
3395 Next (S);
3396 end loop;
3398 Conditional_Statements_End;
3400 -- Make labels unreachable. Visibility is not sufficient, because labels
3401 -- in one if-branch for example are not reachable from the other branch,
3402 -- even though their declarations are in the enclosing declarative part.
3404 S := First (L);
3405 while Present (S) loop
3406 if Nkind (S) = N_Label then
3407 Set_Reachable (Entity (Identifier (S)), False);
3408 end if;
3410 Next (S);
3411 end loop;
3412 end Analyze_Statements;
3414 ----------------------------
3415 -- Check_Unreachable_Code --
3416 ----------------------------
3418 procedure Check_Unreachable_Code (N : Node_Id) is
3419 Error_Node : Node_Id;
3420 P : Node_Id;
3422 begin
3423 if Is_List_Member (N) and then Comes_From_Source (N) then
3424 declare
3425 Nxt : Node_Id;
3427 begin
3428 Nxt := Original_Node (Next (N));
3430 -- Skip past pragmas
3432 while Nkind (Nxt) = N_Pragma loop
3433 Nxt := Original_Node (Next (Nxt));
3434 end loop;
3436 -- If a label follows us, then we never have dead code, since
3437 -- someone could branch to the label, so we just ignore it, unless
3438 -- we are in formal mode where goto statements are not allowed.
3440 if Nkind (Nxt) = N_Label
3441 and then not Restriction_Check_Required (SPARK_05)
3442 then
3443 return;
3445 -- Otherwise see if we have a real statement following us
3447 elsif Present (Nxt)
3448 and then Comes_From_Source (Nxt)
3449 and then Is_Statement (Nxt)
3450 then
3451 -- Special very annoying exception. If we have a return that
3452 -- follows a raise, then we allow it without a warning, since
3453 -- the Ada RM annoyingly requires a useless return here.
3455 if Nkind (Original_Node (N)) /= N_Raise_Statement
3456 or else Nkind (Nxt) /= N_Simple_Return_Statement
3457 then
3458 -- The rather strange shenanigans with the warning message
3459 -- here reflects the fact that Kill_Dead_Code is very good
3460 -- at removing warnings in deleted code, and this is one
3461 -- warning we would prefer NOT to have removed.
3463 Error_Node := Nxt;
3465 -- If we have unreachable code, analyze and remove the
3466 -- unreachable code, since it is useless and we don't
3467 -- want to generate junk warnings.
3469 -- We skip this step if we are not in code generation mode
3470 -- or CodePeer mode.
3472 -- This is the one case where we remove dead code in the
3473 -- semantics as opposed to the expander, and we do not want
3474 -- to remove code if we are not in code generation mode,
3475 -- since this messes up the ASIS trees or loses useful
3476 -- information in the CodePeer tree.
3478 -- Note that one might react by moving the whole circuit to
3479 -- exp_ch5, but then we lose the warning in -gnatc mode.
3481 if Operating_Mode = Generate_Code
3482 and then not CodePeer_Mode
3483 then
3484 loop
3485 Nxt := Next (N);
3487 -- Quit deleting when we have nothing more to delete
3488 -- or if we hit a label (since someone could transfer
3489 -- control to a label, so we should not delete it).
3491 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
3493 -- Statement/declaration is to be deleted
3495 Analyze (Nxt);
3496 Remove (Nxt);
3497 Kill_Dead_Code (Nxt);
3498 end loop;
3499 end if;
3501 -- Now issue the warning (or error in formal mode)
3503 if Restriction_Check_Required (SPARK_05) then
3504 Check_SPARK_05_Restriction
3505 ("unreachable code is not allowed", Error_Node);
3506 else
3507 Error_Msg ("??unreachable code!", Sloc (Error_Node));
3508 end if;
3509 end if;
3511 -- If the unconditional transfer of control instruction is the
3512 -- last statement of a sequence, then see if our parent is one of
3513 -- the constructs for which we count unblocked exits, and if so,
3514 -- adjust the count.
3516 else
3517 P := Parent (N);
3519 -- Statements in THEN part or ELSE part of IF statement
3521 if Nkind (P) = N_If_Statement then
3522 null;
3524 -- Statements in ELSIF part of an IF statement
3526 elsif Nkind (P) = N_Elsif_Part then
3527 P := Parent (P);
3528 pragma Assert (Nkind (P) = N_If_Statement);
3530 -- Statements in CASE statement alternative
3532 elsif Nkind (P) = N_Case_Statement_Alternative then
3533 P := Parent (P);
3534 pragma Assert (Nkind (P) = N_Case_Statement);
3536 -- Statements in body of block
3538 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
3539 and then Nkind (Parent (P)) = N_Block_Statement
3540 then
3541 -- The original loop is now placed inside a block statement
3542 -- due to the expansion of attribute 'Loop_Entry. Return as
3543 -- this is not a "real" block for the purposes of exit
3544 -- counting.
3546 if Nkind (N) = N_Loop_Statement
3547 and then Subject_To_Loop_Entry_Attributes (N)
3548 then
3549 return;
3550 end if;
3552 -- Statements in exception handler in a block
3554 elsif Nkind (P) = N_Exception_Handler
3555 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
3556 and then Nkind (Parent (Parent (P))) = N_Block_Statement
3557 then
3558 null;
3560 -- None of these cases, so return
3562 else
3563 return;
3564 end if;
3566 -- This was one of the cases we are looking for (i.e. the
3567 -- parent construct was IF, CASE or block) so decrement count.
3569 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
3570 end if;
3571 end;
3572 end if;
3573 end Check_Unreachable_Code;
3575 ----------------------
3576 -- Preanalyze_Range --
3577 ----------------------
3579 procedure Preanalyze_Range (R_Copy : Node_Id) is
3580 Save_Analysis : constant Boolean := Full_Analysis;
3581 Typ : Entity_Id;
3583 begin
3584 Full_Analysis := False;
3585 Expander_Mode_Save_And_Set (False);
3587 Analyze (R_Copy);
3589 if Nkind (R_Copy) in N_Subexpr and then Is_Overloaded (R_Copy) then
3591 -- Apply preference rules for range of predefined integer types, or
3592 -- diagnose true ambiguity.
3594 declare
3595 I : Interp_Index;
3596 It : Interp;
3597 Found : Entity_Id := Empty;
3599 begin
3600 Get_First_Interp (R_Copy, I, It);
3601 while Present (It.Typ) loop
3602 if Is_Discrete_Type (It.Typ) then
3603 if No (Found) then
3604 Found := It.Typ;
3605 else
3606 if Scope (Found) = Standard_Standard then
3607 null;
3609 elsif Scope (It.Typ) = Standard_Standard then
3610 Found := It.Typ;
3612 else
3613 -- Both of them are user-defined
3615 Error_Msg_N
3616 ("ambiguous bounds in range of iteration", R_Copy);
3617 Error_Msg_N ("\possible interpretations:", R_Copy);
3618 Error_Msg_NE ("\\} ", R_Copy, Found);
3619 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
3620 exit;
3621 end if;
3622 end if;
3623 end if;
3625 Get_Next_Interp (I, It);
3626 end loop;
3627 end;
3628 end if;
3630 -- Subtype mark in iteration scheme
3632 if Is_Entity_Name (R_Copy) and then Is_Type (Entity (R_Copy)) then
3633 null;
3635 -- Expression in range, or Ada 2012 iterator
3637 elsif Nkind (R_Copy) in N_Subexpr then
3638 Resolve (R_Copy);
3639 Typ := Etype (R_Copy);
3641 if Is_Discrete_Type (Typ) then
3642 null;
3644 -- Check that the resulting object is an iterable container
3646 elsif Has_Aspect (Typ, Aspect_Iterator_Element)
3647 or else Has_Aspect (Typ, Aspect_Constant_Indexing)
3648 or else Has_Aspect (Typ, Aspect_Variable_Indexing)
3649 then
3650 null;
3652 -- The expression may yield an implicit reference to an iterable
3653 -- container. Insert explicit dereference so that proper type is
3654 -- visible in the loop.
3656 elsif Has_Implicit_Dereference (Etype (R_Copy)) then
3657 declare
3658 Disc : Entity_Id;
3660 begin
3661 Disc := First_Discriminant (Typ);
3662 while Present (Disc) loop
3663 if Has_Implicit_Dereference (Disc) then
3664 Build_Explicit_Dereference (R_Copy, Disc);
3665 exit;
3666 end if;
3668 Next_Discriminant (Disc);
3669 end loop;
3670 end;
3672 end if;
3673 end if;
3675 Expander_Mode_Restore;
3676 Full_Analysis := Save_Analysis;
3677 end Preanalyze_Range;
3679 end Sem_Ch5;