1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Elists
; use Elists
;
31 with Einfo
; use Einfo
;
32 with Errout
; use Errout
;
33 with Eval_Fat
; use Eval_Fat
;
34 with Exp_Ch3
; use Exp_Ch3
;
35 with Exp_Ch9
; use Exp_Ch9
;
36 with Exp_Disp
; use Exp_Disp
;
37 with Exp_Dist
; use Exp_Dist
;
38 with Exp_Tss
; use Exp_Tss
;
39 with Exp_Util
; use Exp_Util
;
40 with Fname
; use Fname
;
41 with Freeze
; use Freeze
;
42 with Itypes
; use Itypes
;
43 with Layout
; use Layout
;
45 with Lib
.Xref
; use Lib
.Xref
;
46 with Namet
; use Namet
;
47 with Nmake
; use Nmake
;
49 with Restrict
; use Restrict
;
50 with Rident
; use Rident
;
51 with Rtsfind
; use Rtsfind
;
53 with Sem_Aux
; use Sem_Aux
;
54 with Sem_Case
; use Sem_Case
;
55 with Sem_Cat
; use Sem_Cat
;
56 with Sem_Ch6
; use Sem_Ch6
;
57 with Sem_Ch7
; use Sem_Ch7
;
58 with Sem_Ch8
; use Sem_Ch8
;
59 with Sem_Ch10
; use Sem_Ch10
;
60 with Sem_Ch13
; use Sem_Ch13
;
61 with Sem_Dim
; use Sem_Dim
;
62 with Sem_Disp
; use Sem_Disp
;
63 with Sem_Dist
; use Sem_Dist
;
64 with Sem_Elim
; use Sem_Elim
;
65 with Sem_Eval
; use Sem_Eval
;
66 with Sem_Mech
; use Sem_Mech
;
67 with Sem_Prag
; use Sem_Prag
;
68 with Sem_Res
; use Sem_Res
;
69 with Sem_Smem
; use Sem_Smem
;
70 with Sem_Type
; use Sem_Type
;
71 with Sem_Util
; use Sem_Util
;
72 with Sem_Warn
; use Sem_Warn
;
73 with Stand
; use Stand
;
74 with Sinfo
; use Sinfo
;
75 with Sinput
; use Sinput
;
76 with Snames
; use Snames
;
77 with Targparm
; use Targparm
;
78 with Tbuild
; use Tbuild
;
79 with Ttypes
; use Ttypes
;
80 with Uintp
; use Uintp
;
81 with Urealp
; use Urealp
;
83 package body Sem_Ch3
is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
94 procedure Analyze_Object_Contract
(Obj_Id
: Entity_Id
);
95 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
96 -- if they appeared at the end of the declarative region. The pragmas to be
104 procedure Build_Derived_Type
106 Parent_Type
: Entity_Id
;
107 Derived_Type
: Entity_Id
;
108 Is_Completion
: Boolean;
109 Derive_Subps
: Boolean := True);
110 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
111 -- the N_Full_Type_Declaration node containing the derived type definition.
112 -- Parent_Type is the entity for the parent type in the derived type
113 -- definition and Derived_Type the actual derived type. Is_Completion must
114 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
115 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
116 -- completion of a private type declaration. If Is_Completion is set to
117 -- True, N is the completion of a private type declaration and Derived_Type
118 -- is different from the defining identifier inside N (i.e. Derived_Type /=
119 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
120 -- subprograms should be derived. The only case where this parameter is
121 -- False is when Build_Derived_Type is recursively called to process an
122 -- implicit derived full type for a type derived from a private type (in
123 -- that case the subprograms must only be derived for the private view of
126 -- ??? These flags need a bit of re-examination and re-documentation:
127 -- ??? are they both necessary (both seem related to the recursion)?
129 procedure Build_Derived_Access_Type
131 Parent_Type
: Entity_Id
;
132 Derived_Type
: Entity_Id
);
133 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
134 -- create an implicit base if the parent type is constrained or if the
135 -- subtype indication has a constraint.
137 procedure Build_Derived_Array_Type
139 Parent_Type
: Entity_Id
;
140 Derived_Type
: Entity_Id
);
141 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
142 -- create an implicit base if the parent type is constrained or if the
143 -- subtype indication has a constraint.
145 procedure Build_Derived_Concurrent_Type
147 Parent_Type
: Entity_Id
;
148 Derived_Type
: Entity_Id
);
149 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
150 -- protected type, inherit entries and protected subprograms, check
151 -- legality of discriminant constraints if any.
153 procedure Build_Derived_Enumeration_Type
155 Parent_Type
: Entity_Id
;
156 Derived_Type
: Entity_Id
);
157 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
158 -- type, we must create a new list of literals. Types derived from
159 -- Character and [Wide_]Wide_Character are special-cased.
161 procedure Build_Derived_Numeric_Type
163 Parent_Type
: Entity_Id
;
164 Derived_Type
: Entity_Id
);
165 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
166 -- an anonymous base type, and propagate constraint to subtype if needed.
168 procedure Build_Derived_Private_Type
170 Parent_Type
: Entity_Id
;
171 Derived_Type
: Entity_Id
;
172 Is_Completion
: Boolean;
173 Derive_Subps
: Boolean := True);
174 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
175 -- because the parent may or may not have a completion, and the derivation
176 -- may itself be a completion.
178 procedure Build_Derived_Record_Type
180 Parent_Type
: Entity_Id
;
181 Derived_Type
: Entity_Id
;
182 Derive_Subps
: Boolean := True);
183 -- Subsidiary procedure used for tagged and untagged record types
184 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
185 -- All parameters are as in Build_Derived_Type except that N, in
186 -- addition to being an N_Full_Type_Declaration node, can also be an
187 -- N_Private_Extension_Declaration node. See the definition of this routine
188 -- for much more info. Derive_Subps indicates whether subprograms should be
189 -- derived from the parent type. The only case where Derive_Subps is False
190 -- is for an implicit derived full type for a type derived from a private
191 -- type (see Build_Derived_Type).
193 procedure Build_Discriminal
(Discrim
: Entity_Id
);
194 -- Create the discriminal corresponding to discriminant Discrim, that is
195 -- the parameter corresponding to Discrim to be used in initialization
196 -- procedures for the type where Discrim is a discriminant. Discriminals
197 -- are not used during semantic analysis, and are not fully defined
198 -- entities until expansion. Thus they are not given a scope until
199 -- initialization procedures are built.
201 function Build_Discriminant_Constraints
204 Derived_Def
: Boolean := False) return Elist_Id
;
205 -- Validate discriminant constraints and return the list of the constraints
206 -- in order of discriminant declarations, where T is the discriminated
207 -- unconstrained type. Def is the N_Subtype_Indication node where the
208 -- discriminants constraints for T are specified. Derived_Def is True
209 -- when building the discriminant constraints in a derived type definition
210 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
211 -- type and Def is the constraint "(xxx)" on T and this routine sets the
212 -- Corresponding_Discriminant field of the discriminants in the derived
213 -- type D to point to the corresponding discriminants in the parent type T.
215 procedure Build_Discriminated_Subtype
219 Related_Nod
: Node_Id
;
220 For_Access
: Boolean := False);
221 -- Subsidiary procedure to Constrain_Discriminated_Type and to
222 -- Process_Incomplete_Dependents. Given
224 -- T (a possibly discriminated base type)
225 -- Def_Id (a very partially built subtype for T),
227 -- the call completes Def_Id to be the appropriate E_*_Subtype.
229 -- The Elist is the list of discriminant constraints if any (it is set
230 -- to No_Elist if T is not a discriminated type, and to an empty list if
231 -- T has discriminants but there are no discriminant constraints). The
232 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
233 -- The For_Access says whether or not this subtype is really constraining
234 -- an access type. That is its sole purpose is the designated type of an
235 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
236 -- is built to avoid freezing T when the access subtype is frozen.
238 function Build_Scalar_Bound
241 Der_T
: Entity_Id
) return Node_Id
;
242 -- The bounds of a derived scalar type are conversions of the bounds of
243 -- the parent type. Optimize the representation if the bounds are literals.
244 -- Needs a more complete spec--what are the parameters exactly, and what
245 -- exactly is the returned value, and how is Bound affected???
247 procedure Build_Underlying_Full_View
251 -- If the completion of a private type is itself derived from a private
252 -- type, or if the full view of a private subtype is itself private, the
253 -- back-end has no way to compute the actual size of this type. We build
254 -- an internal subtype declaration of the proper parent type to convey
255 -- this information. This extra mechanism is needed because a full
256 -- view cannot itself have a full view (it would get clobbered during
259 procedure Check_Access_Discriminant_Requires_Limited
262 -- Check the restriction that the type to which an access discriminant
263 -- belongs must be a concurrent type or a descendant of a type with
264 -- the reserved word 'limited' in its declaration.
266 procedure Check_Anonymous_Access_Components
270 Comp_List
: Node_Id
);
271 -- Ada 2005 AI-382: an access component in a record definition can refer to
272 -- the enclosing record, in which case it denotes the type itself, and not
273 -- the current instance of the type. We create an anonymous access type for
274 -- the component, and flag it as an access to a component, so accessibility
275 -- checks are properly performed on it. The declaration of the access type
276 -- is placed ahead of that of the record to prevent order-of-elaboration
277 -- circularity issues in Gigi. We create an incomplete type for the record
278 -- declaration, which is the designated type of the anonymous access.
280 procedure Check_Delta_Expression
(E
: Node_Id
);
281 -- Check that the expression represented by E is suitable for use as a
282 -- delta expression, i.e. it is of real type and is static.
284 procedure Check_Digits_Expression
(E
: Node_Id
);
285 -- Check that the expression represented by E is suitable for use as a
286 -- digits expression, i.e. it is of integer type, positive and static.
288 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
289 -- Validate the initialization of an object declaration. T is the required
290 -- type, and Exp is the initialization expression.
292 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
);
293 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
295 procedure Check_Or_Process_Discriminants
298 Prev
: Entity_Id
:= Empty
);
299 -- If N is the full declaration of the completion T of an incomplete or
300 -- private type, check its discriminants (which are already known to be
301 -- conformant with those of the partial view, see Find_Type_Name),
302 -- otherwise process them. Prev is the entity of the partial declaration,
305 procedure Check_Real_Bound
(Bound
: Node_Id
);
306 -- Check given bound for being of real type and static. If not, post an
307 -- appropriate message, and rewrite the bound with the real literal zero.
309 procedure Constant_Redeclaration
313 -- Various checks on legality of full declaration of deferred constant.
314 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
315 -- node. The caller has not yet set any attributes of this entity.
317 function Contain_Interface
319 Ifaces
: Elist_Id
) return Boolean;
320 -- Ada 2005: Determine whether Iface is present in the list Ifaces
322 procedure Convert_Scalar_Bounds
324 Parent_Type
: Entity_Id
;
325 Derived_Type
: Entity_Id
;
327 -- For derived scalar types, convert the bounds in the type definition to
328 -- the derived type, and complete their analysis. Given a constraint of the
329 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
330 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
331 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
332 -- subtype are conversions of those bounds to the derived_type, so that
333 -- their typing is consistent.
335 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
336 -- Copies attributes from array base type T2 to array base type T1. Copies
337 -- only attributes that apply to base types, but not subtypes.
339 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
340 -- Copies attributes from array subtype T2 to array subtype T1. Copies
341 -- attributes that apply to both subtypes and base types.
343 procedure Create_Constrained_Components
347 Constraints
: Elist_Id
);
348 -- Build the list of entities for a constrained discriminated record
349 -- subtype. If a component depends on a discriminant, replace its subtype
350 -- using the discriminant values in the discriminant constraint. Subt
351 -- is the defining identifier for the subtype whose list of constrained
352 -- entities we will create. Decl_Node is the type declaration node where
353 -- we will attach all the itypes created. Typ is the base discriminated
354 -- type for the subtype Subt. Constraints is the list of discriminant
355 -- constraints for Typ.
357 function Constrain_Component_Type
359 Constrained_Typ
: Entity_Id
;
360 Related_Node
: Node_Id
;
362 Constraints
: Elist_Id
) return Entity_Id
;
363 -- Given a discriminated base type Typ, a list of discriminant constraints,
364 -- Constraints, for Typ and a component Comp of Typ, create and return the
365 -- type corresponding to Etype (Comp) where all discriminant references
366 -- are replaced with the corresponding constraint. If Etype (Comp) contains
367 -- no discriminant references then it is returned as-is. Constrained_Typ
368 -- is the final constrained subtype to which the constrained component
369 -- belongs. Related_Node is the node where we attach all created itypes.
371 procedure Constrain_Access
372 (Def_Id
: in out Entity_Id
;
374 Related_Nod
: Node_Id
);
375 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
376 -- an anonymous type created for a subtype indication. In that case it is
377 -- created in the procedure and attached to Related_Nod.
379 procedure Constrain_Array
380 (Def_Id
: in out Entity_Id
;
382 Related_Nod
: Node_Id
;
383 Related_Id
: Entity_Id
;
385 -- Apply a list of index constraints to an unconstrained array type. The
386 -- first parameter is the entity for the resulting subtype. A value of
387 -- Empty for Def_Id indicates that an implicit type must be created, but
388 -- creation is delayed (and must be done by this procedure) because other
389 -- subsidiary implicit types must be created first (which is why Def_Id
390 -- is an in/out parameter). The second parameter is a subtype indication
391 -- node for the constrained array to be created (e.g. something of the
392 -- form string (1 .. 10)). Related_Nod gives the place where this type
393 -- has to be inserted in the tree. The Related_Id and Suffix parameters
394 -- are used to build the associated Implicit type name.
396 procedure Constrain_Concurrent
397 (Def_Id
: in out Entity_Id
;
399 Related_Nod
: Node_Id
;
400 Related_Id
: Entity_Id
;
402 -- Apply list of discriminant constraints to an unconstrained concurrent
405 -- SI is the N_Subtype_Indication node containing the constraint and
406 -- the unconstrained type to constrain.
408 -- Def_Id is the entity for the resulting constrained subtype. A value
409 -- of Empty for Def_Id indicates that an implicit type must be created,
410 -- but creation is delayed (and must be done by this procedure) because
411 -- other subsidiary implicit types must be created first (which is why
412 -- Def_Id is an in/out parameter).
414 -- Related_Nod gives the place where this type has to be inserted
417 -- The last two arguments are used to create its external name if needed.
419 function Constrain_Corresponding_Record
420 (Prot_Subt
: Entity_Id
;
421 Corr_Rec
: Entity_Id
;
422 Related_Nod
: Node_Id
) return Entity_Id
;
423 -- When constraining a protected type or task type with discriminants,
424 -- constrain the corresponding record with the same discriminant values.
426 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
);
427 -- Constrain a decimal fixed point type with a digits constraint and/or a
428 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
430 procedure Constrain_Discriminated_Type
433 Related_Nod
: Node_Id
;
434 For_Access
: Boolean := False);
435 -- Process discriminant constraints of composite type. Verify that values
436 -- have been provided for all discriminants, that the original type is
437 -- unconstrained, and that the types of the supplied expressions match
438 -- the discriminant types. The first three parameters are like in routine
439 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
442 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
);
443 -- Constrain an enumeration type with a range constraint. This is identical
444 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
446 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
);
447 -- Constrain a floating point type with either a digits constraint
448 -- and/or a range constraint, building a E_Floating_Point_Subtype.
450 procedure Constrain_Index
453 Related_Nod
: Node_Id
;
454 Related_Id
: Entity_Id
;
457 -- Process an index constraint S in a constrained array declaration. The
458 -- constraint can be a subtype name, or a range with or without an explicit
459 -- subtype mark. The index is the corresponding index of the unconstrained
460 -- array. The Related_Id and Suffix parameters are used to build the
461 -- associated Implicit type name.
463 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
);
464 -- Build subtype of a signed or modular integer type
466 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
);
467 -- Constrain an ordinary fixed point type with a range constraint, and
468 -- build an E_Ordinary_Fixed_Point_Subtype entity.
470 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
);
471 -- Copy the Priv entity into the entity of its full declaration then swap
472 -- the two entities in such a manner that the former private type is now
473 -- seen as a full type.
475 procedure Decimal_Fixed_Point_Type_Declaration
478 -- Create a new decimal fixed point type, and apply the constraint to
479 -- obtain a subtype of this new type.
481 procedure Complete_Private_Subtype
484 Full_Base
: Entity_Id
;
485 Related_Nod
: Node_Id
);
486 -- Complete the implicit full view of a private subtype by setting the
487 -- appropriate semantic fields. If the full view of the parent is a record
488 -- type, build constrained components of subtype.
490 procedure Derive_Progenitor_Subprograms
491 (Parent_Type
: Entity_Id
;
492 Tagged_Type
: Entity_Id
);
493 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
494 -- operations of progenitors of Tagged_Type, and replace the subsidiary
495 -- subtypes with Tagged_Type, to build the specs of the inherited interface
496 -- primitives. The derived primitives are aliased to those of the
497 -- interface. This routine takes care also of transferring to the full view
498 -- subprograms associated with the partial view of Tagged_Type that cover
499 -- interface primitives.
501 procedure Derived_Standard_Character
503 Parent_Type
: Entity_Id
;
504 Derived_Type
: Entity_Id
);
505 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
506 -- derivations from types Standard.Character and Standard.Wide_Character.
508 procedure Derived_Type_Declaration
511 Is_Completion
: Boolean);
512 -- Process a derived type declaration. Build_Derived_Type is invoked
513 -- to process the actual derived type definition. Parameters N and
514 -- Is_Completion have the same meaning as in Build_Derived_Type.
515 -- T is the N_Defining_Identifier for the entity defined in the
516 -- N_Full_Type_Declaration node N, that is T is the derived type.
518 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
519 -- Insert each literal in symbol table, as an overloadable identifier. Each
520 -- enumeration type is mapped into a sequence of integers, and each literal
521 -- is defined as a constant with integer value. If any of the literals are
522 -- character literals, the type is a character type, which means that
523 -- strings are legal aggregates for arrays of components of the type.
525 function Expand_To_Stored_Constraint
527 Constraint
: Elist_Id
) return Elist_Id
;
528 -- Given a constraint (i.e. a list of expressions) on the discriminants of
529 -- Typ, expand it into a constraint on the stored discriminants and return
530 -- the new list of expressions constraining the stored discriminants.
532 function Find_Type_Of_Object
534 Related_Nod
: Node_Id
) return Entity_Id
;
535 -- Get type entity for object referenced by Obj_Def, attaching the
536 -- implicit types generated to Related_Nod
538 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
539 -- Create a new float and apply the constraint to obtain subtype of it
541 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
542 -- Given an N_Subtype_Indication node N, return True if a range constraint
543 -- is present, either directly, or as part of a digits or delta constraint.
544 -- In addition, a digits constraint in the decimal case returns True, since
545 -- it establishes a default range if no explicit range is present.
547 function Inherit_Components
549 Parent_Base
: Entity_Id
;
550 Derived_Base
: Entity_Id
;
552 Inherit_Discr
: Boolean;
553 Discs
: Elist_Id
) return Elist_Id
;
554 -- Called from Build_Derived_Record_Type to inherit the components of
555 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
556 -- For more information on derived types and component inheritance please
557 -- consult the comment above the body of Build_Derived_Record_Type.
559 -- N is the original derived type declaration
561 -- Is_Tagged is set if we are dealing with tagged types
563 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
564 -- Parent_Base, otherwise no discriminants are inherited.
566 -- Discs gives the list of constraints that apply to Parent_Base in the
567 -- derived type declaration. If Discs is set to No_Elist, then we have
568 -- the following situation:
570 -- type Parent (D1..Dn : ..) is [tagged] record ...;
571 -- type Derived is new Parent [with ...];
573 -- which gets treated as
575 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
577 -- For untagged types the returned value is an association list. The list
578 -- starts from the association (Parent_Base => Derived_Base), and then it
579 -- contains a sequence of the associations of the form
581 -- (Old_Component => New_Component),
583 -- where Old_Component is the Entity_Id of a component in Parent_Base and
584 -- New_Component is the Entity_Id of the corresponding component in
585 -- Derived_Base. For untagged records, this association list is needed when
586 -- copying the record declaration for the derived base. In the tagged case
587 -- the value returned is irrelevant.
589 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
);
590 -- Propagate static and dynamic predicate flags from a parent to the
591 -- subtype in a subtype declaration with and without constraints.
593 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean;
594 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
595 -- Determine whether subprogram Subp is a procedure subject to pragma
596 -- Extensions_Visible with value False and has at least one controlling
597 -- parameter of mode OUT.
599 function Is_Valid_Constraint_Kind
601 Constraint_Kind
: Node_Kind
) return Boolean;
602 -- Returns True if it is legal to apply the given kind of constraint to the
603 -- given kind of type (index constraint to an array type, for example).
605 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
606 -- Create new modular type. Verify that modulus is in bounds
608 procedure New_Concatenation_Op
(Typ
: Entity_Id
);
609 -- Create an abbreviated declaration for an operator in order to
610 -- materialize concatenation on array types.
612 procedure Ordinary_Fixed_Point_Type_Declaration
615 -- Create a new ordinary fixed point type, and apply the constraint to
616 -- obtain subtype of it.
618 procedure Prepare_Private_Subtype_Completion
620 Related_Nod
: Node_Id
);
621 -- Id is a subtype of some private type. Creates the full declaration
622 -- associated with Id whenever possible, i.e. when the full declaration
623 -- of the base type is already known. Records each subtype into
624 -- Private_Dependents of the base type.
626 procedure Process_Incomplete_Dependents
630 -- Process all entities that depend on an incomplete type. There include
631 -- subtypes, subprogram types that mention the incomplete type in their
632 -- profiles, and subprogram with access parameters that designate the
635 -- Inc_T is the defining identifier of an incomplete type declaration, its
636 -- Ekind is E_Incomplete_Type.
638 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
640 -- Full_T is N's defining identifier.
642 -- Subtypes of incomplete types with discriminants are completed when the
643 -- parent type is. This is simpler than private subtypes, because they can
644 -- only appear in the same scope, and there is no need to exchange views.
645 -- Similarly, access_to_subprogram types may have a parameter or a return
646 -- type that is an incomplete type, and that must be replaced with the
649 -- If the full type is tagged, subprogram with access parameters that
650 -- designated the incomplete may be primitive operations of the full type,
651 -- and have to be processed accordingly.
653 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
654 -- Given the type definition for a real type, this procedure processes and
655 -- checks the real range specification of this type definition if one is
656 -- present. If errors are found, error messages are posted, and the
657 -- Real_Range_Specification of Def is reset to Empty.
659 procedure Propagate_Default_Init_Cond_Attributes
660 (From_Typ
: Entity_Id
;
662 Parent_To_Derivation
: Boolean := False;
663 Private_To_Full_View
: Boolean := False);
664 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
665 -- all attributes related to pragma Default_Initial_Condition from From_Typ
666 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
667 -- the creation of a derived type. Flag Private_To_Full_View should be set
668 -- when processing both views of a private type.
670 procedure Record_Type_Declaration
674 -- Process a record type declaration (for both untagged and tagged
675 -- records). Parameters T and N are exactly like in procedure
676 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
677 -- for this routine. If this is the completion of an incomplete type
678 -- declaration, Prev is the entity of the incomplete declaration, used for
679 -- cross-referencing. Otherwise Prev = T.
681 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
);
682 -- This routine is used to process the actual record type definition (both
683 -- for untagged and tagged records). Def is a record type definition node.
684 -- This procedure analyzes the components in this record type definition.
685 -- Prev_T is the entity for the enclosing record type. It is provided so
686 -- that its Has_Task flag can be set if any of the component have Has_Task
687 -- set. If the declaration is the completion of an incomplete type
688 -- declaration, Prev_T is the original incomplete type, whose full view is
691 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
);
692 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
693 -- build a copy of the declaration tree of the parent, and we create
694 -- independently the list of components for the derived type. Semantic
695 -- information uses the component entities, but record representation
696 -- clauses are validated on the declaration tree. This procedure replaces
697 -- discriminants and components in the declaration with those that have
698 -- been created by Inherit_Components.
700 procedure Set_Fixed_Range
705 -- Build a range node with the given bounds and set it as the Scalar_Range
706 -- of the given fixed-point type entity. Loc is the source location used
707 -- for the constructed range. See body for further details.
709 procedure Set_Scalar_Range_For_Subtype
713 -- This routine is used to set the scalar range field for a subtype given
714 -- Def_Id, the entity for the subtype, and R, the range expression for the
715 -- scalar range. Subt provides the parent subtype to be used to analyze,
716 -- resolve, and check the given range.
718 procedure Set_Default_SSO
(T
: Entity_Id
);
719 -- T is the entity for an array or record being declared. This procedure
720 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
721 -- to the setting of Opt.Default_SSO.
723 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
724 -- Create a new signed integer entity, and apply the constraint to obtain
725 -- the required first named subtype of this type.
727 procedure Set_Stored_Constraint_From_Discriminant_Constraint
729 -- E is some record type. This routine computes E's Stored_Constraint
730 -- from its Discriminant_Constraint.
732 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
);
733 -- Check that an entity in a list of progenitors is an interface,
734 -- emit error otherwise.
736 -----------------------
737 -- Access_Definition --
738 -----------------------
740 function Access_Definition
741 (Related_Nod
: Node_Id
;
742 N
: Node_Id
) return Entity_Id
744 Anon_Type
: Entity_Id
;
745 Anon_Scope
: Entity_Id
;
746 Desig_Type
: Entity_Id
;
747 Enclosing_Prot_Type
: Entity_Id
:= Empty
;
750 Check_SPARK_05_Restriction
("access type is not allowed", N
);
752 if Is_Entry
(Current_Scope
)
753 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
755 Error_Msg_N
("task entries cannot have access parameters", N
);
759 -- Ada 2005: For an object declaration the corresponding anonymous
760 -- type is declared in the current scope.
762 -- If the access definition is the return type of another access to
763 -- function, scope is the current one, because it is the one of the
764 -- current type declaration, except for the pathological case below.
766 if Nkind_In
(Related_Nod
, N_Object_Declaration
,
767 N_Access_Function_Definition
)
769 Anon_Scope
:= Current_Scope
;
771 -- A pathological case: function returning access functions that
772 -- return access functions, etc. Each anonymous access type created
773 -- is in the enclosing scope of the outermost function.
780 while Nkind_In
(Par
, N_Access_Function_Definition
,
786 if Nkind
(Par
) = N_Function_Specification
then
787 Anon_Scope
:= Scope
(Defining_Entity
(Par
));
791 -- For the anonymous function result case, retrieve the scope of the
792 -- function specification's associated entity rather than using the
793 -- current scope. The current scope will be the function itself if the
794 -- formal part is currently being analyzed, but will be the parent scope
795 -- in the case of a parameterless function, and we always want to use
796 -- the function's parent scope. Finally, if the function is a child
797 -- unit, we must traverse the tree to retrieve the proper entity.
799 elsif Nkind
(Related_Nod
) = N_Function_Specification
800 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
802 -- If the current scope is a protected type, the anonymous access
803 -- is associated with one of the protected operations, and must
804 -- be available in the scope that encloses the protected declaration.
805 -- Otherwise the type is in the scope enclosing the subprogram.
807 -- If the function has formals, The return type of a subprogram
808 -- declaration is analyzed in the scope of the subprogram (see
809 -- Process_Formals) and thus the protected type, if present, is
810 -- the scope of the current function scope.
812 if Ekind
(Current_Scope
) = E_Protected_Type
then
813 Enclosing_Prot_Type
:= Current_Scope
;
815 elsif Ekind
(Current_Scope
) = E_Function
816 and then Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
818 Enclosing_Prot_Type
:= Scope
(Current_Scope
);
821 if Present
(Enclosing_Prot_Type
) then
822 Anon_Scope
:= Scope
(Enclosing_Prot_Type
);
825 Anon_Scope
:= Scope
(Defining_Entity
(Related_Nod
));
828 -- For an access type definition, if the current scope is a child
829 -- unit it is the scope of the type.
831 elsif Is_Compilation_Unit
(Current_Scope
) then
832 Anon_Scope
:= Current_Scope
;
834 -- For access formals, access components, and access discriminants, the
835 -- scope is that of the enclosing declaration,
838 Anon_Scope
:= Scope
(Current_Scope
);
843 (E_Anonymous_Access_Type
, Related_Nod
, Scope_Id
=> Anon_Scope
);
846 and then Ada_Version
>= Ada_2005
848 Error_Msg_N
("ALL is not permitted for anonymous access types", N
);
851 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
852 -- the corresponding semantic routine
854 if Present
(Access_To_Subprogram_Definition
(N
)) then
856 -- Compiler runtime units are compiled in Ada 2005 mode when building
857 -- the runtime library but must also be compilable in Ada 95 mode
858 -- (when bootstrapping the compiler).
860 Check_Compiler_Unit
("anonymous access to subprogram", N
);
862 Access_Subprogram_Declaration
863 (T_Name
=> Anon_Type
,
864 T_Def
=> Access_To_Subprogram_Definition
(N
));
866 if Ekind
(Anon_Type
) = E_Access_Protected_Subprogram_Type
then
868 (Anon_Type
, E_Anonymous_Access_Protected_Subprogram_Type
);
870 Set_Ekind
(Anon_Type
, E_Anonymous_Access_Subprogram_Type
);
873 Set_Can_Use_Internal_Rep
874 (Anon_Type
, not Always_Compatible_Rep_On_Target
);
876 -- If the anonymous access is associated with a protected operation,
877 -- create a reference to it after the enclosing protected definition
878 -- because the itype will be used in the subsequent bodies.
880 if Ekind
(Current_Scope
) = E_Protected_Type
then
881 Build_Itype_Reference
(Anon_Type
, Parent
(Current_Scope
));
887 Find_Type
(Subtype_Mark
(N
));
888 Desig_Type
:= Entity
(Subtype_Mark
(N
));
890 Set_Directly_Designated_Type
(Anon_Type
, Desig_Type
);
891 Set_Etype
(Anon_Type
, Anon_Type
);
893 -- Make sure the anonymous access type has size and alignment fields
894 -- set, as required by gigi. This is necessary in the case of the
895 -- Task_Body_Procedure.
897 if not Has_Private_Component
(Desig_Type
) then
898 Layout_Type
(Anon_Type
);
901 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
902 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
903 -- the null value is allowed. In Ada 95 the null value is never allowed.
905 if Ada_Version
>= Ada_2005
then
906 Set_Can_Never_Be_Null
(Anon_Type
, Null_Exclusion_Present
(N
));
908 Set_Can_Never_Be_Null
(Anon_Type
, True);
911 -- The anonymous access type is as public as the discriminated type or
912 -- subprogram that defines it. It is imported (for back-end purposes)
913 -- if the designated type is.
915 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
917 -- Ada 2005 (AI-231): Propagate the access-constant attribute
919 Set_Is_Access_Constant
(Anon_Type
, Constant_Present
(N
));
921 -- The context is either a subprogram declaration, object declaration,
922 -- or an access discriminant, in a private or a full type declaration.
923 -- In the case of a subprogram, if the designated type is incomplete,
924 -- the operation will be a primitive operation of the full type, to be
925 -- updated subsequently. If the type is imported through a limited_with
926 -- clause, the subprogram is not a primitive operation of the type
927 -- (which is declared elsewhere in some other scope).
929 if Ekind
(Desig_Type
) = E_Incomplete_Type
930 and then not From_Limited_With
(Desig_Type
)
931 and then Is_Overloadable
(Current_Scope
)
933 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
934 Set_Has_Delayed_Freeze
(Current_Scope
);
937 -- Ada 2005: If the designated type is an interface that may contain
938 -- tasks, create a Master entity for the declaration. This must be done
939 -- before expansion of the full declaration, because the declaration may
940 -- include an expression that is an allocator, whose expansion needs the
941 -- proper Master for the created tasks.
943 if Nkind
(Related_Nod
) = N_Object_Declaration
and then Expander_Active
945 if Is_Interface
(Desig_Type
) and then Is_Limited_Record
(Desig_Type
)
947 Build_Class_Wide_Master
(Anon_Type
);
949 -- Similarly, if the type is an anonymous access that designates
950 -- tasks, create a master entity for it in the current context.
952 elsif Has_Task
(Desig_Type
) and then Comes_From_Source
(Related_Nod
)
954 Build_Master_Entity
(Defining_Identifier
(Related_Nod
));
955 Build_Master_Renaming
(Anon_Type
);
959 -- For a private component of a protected type, it is imperative that
960 -- the back-end elaborate the type immediately after the protected
961 -- declaration, because this type will be used in the declarations
962 -- created for the component within each protected body, so we must
963 -- create an itype reference for it now.
965 if Nkind
(Parent
(Related_Nod
)) = N_Protected_Definition
then
966 Build_Itype_Reference
(Anon_Type
, Parent
(Parent
(Related_Nod
)));
968 -- Similarly, if the access definition is the return result of a
969 -- function, create an itype reference for it because it will be used
970 -- within the function body. For a regular function that is not a
971 -- compilation unit, insert reference after the declaration. For a
972 -- protected operation, insert it after the enclosing protected type
973 -- declaration. In either case, do not create a reference for a type
974 -- obtained through a limited_with clause, because this would introduce
975 -- semantic dependencies.
977 -- Similarly, do not create a reference if the designated type is a
978 -- generic formal, because no use of it will reach the backend.
980 elsif Nkind
(Related_Nod
) = N_Function_Specification
981 and then not From_Limited_With
(Desig_Type
)
982 and then not Is_Generic_Type
(Desig_Type
)
984 if Present
(Enclosing_Prot_Type
) then
985 Build_Itype_Reference
(Anon_Type
, Parent
(Enclosing_Prot_Type
));
987 elsif Is_List_Member
(Parent
(Related_Nod
))
988 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
990 Build_Itype_Reference
(Anon_Type
, Parent
(Related_Nod
));
993 -- Finally, create an itype reference for an object declaration of an
994 -- anonymous access type. This is strictly necessary only for deferred
995 -- constants, but in any case will avoid out-of-scope problems in the
998 elsif Nkind
(Related_Nod
) = N_Object_Declaration
then
999 Build_Itype_Reference
(Anon_Type
, Related_Nod
);
1003 end Access_Definition
;
1005 -----------------------------------
1006 -- Access_Subprogram_Declaration --
1007 -----------------------------------
1009 procedure Access_Subprogram_Declaration
1010 (T_Name
: Entity_Id
;
1013 procedure Check_For_Premature_Usage
(Def
: Node_Id
);
1014 -- Check that type T_Name is not used, directly or recursively, as a
1015 -- parameter or a return type in Def. Def is either a subtype, an
1016 -- access_definition, or an access_to_subprogram_definition.
1018 -------------------------------
1019 -- Check_For_Premature_Usage --
1020 -------------------------------
1022 procedure Check_For_Premature_Usage
(Def
: Node_Id
) is
1026 -- Check for a subtype mark
1028 if Nkind
(Def
) in N_Has_Etype
then
1029 if Etype
(Def
) = T_Name
then
1031 ("type& cannot be used before end of its declaration", Def
);
1034 -- If this is not a subtype, then this is an access_definition
1036 elsif Nkind
(Def
) = N_Access_Definition
then
1037 if Present
(Access_To_Subprogram_Definition
(Def
)) then
1038 Check_For_Premature_Usage
1039 (Access_To_Subprogram_Definition
(Def
));
1041 Check_For_Premature_Usage
(Subtype_Mark
(Def
));
1044 -- The only cases left are N_Access_Function_Definition and
1045 -- N_Access_Procedure_Definition.
1048 if Present
(Parameter_Specifications
(Def
)) then
1049 Param
:= First
(Parameter_Specifications
(Def
));
1050 while Present
(Param
) loop
1051 Check_For_Premature_Usage
(Parameter_Type
(Param
));
1052 Param
:= Next
(Param
);
1056 if Nkind
(Def
) = N_Access_Function_Definition
then
1057 Check_For_Premature_Usage
(Result_Definition
(Def
));
1060 end Check_For_Premature_Usage
;
1064 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
1067 Desig_Type
: constant Entity_Id
:=
1068 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
1070 -- Start of processing for Access_Subprogram_Declaration
1073 Check_SPARK_05_Restriction
("access type is not allowed", T_Def
);
1075 -- Associate the Itype node with the inner full-type declaration or
1076 -- subprogram spec or entry body. This is required to handle nested
1077 -- anonymous declarations. For example:
1080 -- (X : access procedure
1081 -- (Y : access procedure
1084 D_Ityp
:= Associated_Node_For_Itype
(Desig_Type
);
1085 while not (Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1086 N_Private_Type_Declaration
,
1087 N_Private_Extension_Declaration
,
1088 N_Procedure_Specification
,
1089 N_Function_Specification
,
1093 Nkind_In
(D_Ityp
, N_Object_Declaration
,
1094 N_Object_Renaming_Declaration
,
1095 N_Formal_Object_Declaration
,
1096 N_Formal_Type_Declaration
,
1097 N_Task_Type_Declaration
,
1098 N_Protected_Type_Declaration
))
1100 D_Ityp
:= Parent
(D_Ityp
);
1101 pragma Assert
(D_Ityp
/= Empty
);
1104 Set_Associated_Node_For_Itype
(Desig_Type
, D_Ityp
);
1106 if Nkind_In
(D_Ityp
, N_Procedure_Specification
,
1107 N_Function_Specification
)
1109 Set_Scope
(Desig_Type
, Scope
(Defining_Entity
(D_Ityp
)));
1111 elsif Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1112 N_Object_Declaration
,
1113 N_Object_Renaming_Declaration
,
1114 N_Formal_Type_Declaration
)
1116 Set_Scope
(Desig_Type
, Scope
(Defining_Identifier
(D_Ityp
)));
1119 if Nkind
(T_Def
) = N_Access_Function_Definition
then
1120 if Nkind
(Result_Definition
(T_Def
)) = N_Access_Definition
then
1122 Acc
: constant Node_Id
:= Result_Definition
(T_Def
);
1125 if Present
(Access_To_Subprogram_Definition
(Acc
))
1127 Protected_Present
(Access_To_Subprogram_Definition
(Acc
))
1131 Replace_Anonymous_Access_To_Protected_Subprogram
1137 Access_Definition
(T_Def
, Result_Definition
(T_Def
)));
1142 Analyze
(Result_Definition
(T_Def
));
1145 Typ
: constant Entity_Id
:= Entity
(Result_Definition
(T_Def
));
1148 -- If a null exclusion is imposed on the result type, then
1149 -- create a null-excluding itype (an access subtype) and use
1150 -- it as the function's Etype.
1152 if Is_Access_Type
(Typ
)
1153 and then Null_Exclusion_In_Return_Present
(T_Def
)
1155 Set_Etype
(Desig_Type
,
1156 Create_Null_Excluding_Itype
1158 Related_Nod
=> T_Def
,
1159 Scope_Id
=> Current_Scope
));
1162 if From_Limited_With
(Typ
) then
1164 -- AI05-151: Incomplete types are allowed in all basic
1165 -- declarations, including access to subprograms.
1167 if Ada_Version
>= Ada_2012
then
1172 ("illegal use of incomplete type&",
1173 Result_Definition
(T_Def
), Typ
);
1176 elsif Ekind
(Current_Scope
) = E_Package
1177 and then In_Private_Part
(Current_Scope
)
1179 if Ekind
(Typ
) = E_Incomplete_Type
then
1180 Append_Elmt
(Desig_Type
, Private_Dependents
(Typ
));
1182 elsif Is_Class_Wide_Type
(Typ
)
1183 and then Ekind
(Etype
(Typ
)) = E_Incomplete_Type
1186 (Desig_Type
, Private_Dependents
(Etype
(Typ
)));
1190 Set_Etype
(Desig_Type
, Typ
);
1195 if not (Is_Type
(Etype
(Desig_Type
))) then
1197 ("expect type in function specification",
1198 Result_Definition
(T_Def
));
1202 Set_Etype
(Desig_Type
, Standard_Void_Type
);
1205 if Present
(Formals
) then
1206 Push_Scope
(Desig_Type
);
1208 -- Some special tests here. These special tests can be removed
1209 -- if and when Itypes always have proper parent pointers to their
1212 -- Special test 1) Link defining_identifier of formals. Required by
1213 -- First_Formal to provide its functionality.
1219 F
:= First
(Formals
);
1221 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1222 -- when it is part of an unconstrained type and subtype expansion
1223 -- is disabled. To avoid back-end problems with shared profiles,
1224 -- use previous subprogram type as the designated type, and then
1225 -- remove scope added above.
1227 if ASIS_Mode
and then Present
(Scope
(Defining_Identifier
(F
)))
1229 Set_Etype
(T_Name
, T_Name
);
1230 Init_Size_Align
(T_Name
);
1231 Set_Directly_Designated_Type
(T_Name
,
1232 Scope
(Defining_Identifier
(F
)));
1237 while Present
(F
) loop
1238 if No
(Parent
(Defining_Identifier
(F
))) then
1239 Set_Parent
(Defining_Identifier
(F
), F
);
1246 Process_Formals
(Formals
, Parent
(T_Def
));
1248 -- Special test 2) End_Scope requires that the parent pointer be set
1249 -- to something reasonable, but Itypes don't have parent pointers. So
1250 -- we set it and then unset it ???
1252 Set_Parent
(Desig_Type
, T_Name
);
1254 Set_Parent
(Desig_Type
, Empty
);
1257 -- Check for premature usage of the type being defined
1259 Check_For_Premature_Usage
(T_Def
);
1261 -- The return type and/or any parameter type may be incomplete. Mark the
1262 -- subprogram_type as depending on the incomplete type, so that it can
1263 -- be updated when the full type declaration is seen. This only applies
1264 -- to incomplete types declared in some enclosing scope, not to limited
1265 -- views from other packages.
1267 -- Prior to Ada 2012, access to functions can only have in_parameters.
1269 if Present
(Formals
) then
1270 Formal
:= First_Formal
(Desig_Type
);
1271 while Present
(Formal
) loop
1272 if Ekind
(Formal
) /= E_In_Parameter
1273 and then Nkind
(T_Def
) = N_Access_Function_Definition
1274 and then Ada_Version
< Ada_2012
1276 Error_Msg_N
("functions can only have IN parameters", Formal
);
1279 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
1280 and then In_Open_Scopes
(Scope
(Etype
(Formal
)))
1282 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
1283 Set_Has_Delayed_Freeze
(Desig_Type
);
1286 Next_Formal
(Formal
);
1290 -- Check whether an indirect call without actuals may be possible. This
1291 -- is used when resolving calls whose result is then indexed.
1293 May_Need_Actuals
(Desig_Type
);
1295 -- If the return type is incomplete, this is legal as long as the type
1296 -- is declared in the current scope and will be completed in it (rather
1297 -- than being part of limited view).
1299 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
1300 and then not Has_Delayed_Freeze
(Desig_Type
)
1301 and then In_Open_Scopes
(Scope
(Etype
(Desig_Type
)))
1303 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
1304 Set_Has_Delayed_Freeze
(Desig_Type
);
1307 Check_Delayed_Subprogram
(Desig_Type
);
1309 if Protected_Present
(T_Def
) then
1310 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
1311 Set_Convention
(Desig_Type
, Convention_Protected
);
1313 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
1316 Set_Can_Use_Internal_Rep
(T_Name
, not Always_Compatible_Rep_On_Target
);
1318 Set_Etype
(T_Name
, T_Name
);
1319 Init_Size_Align
(T_Name
);
1320 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
1322 Generate_Reference_To_Formals
(T_Name
);
1324 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1326 Set_Can_Never_Be_Null
(T_Name
, Null_Exclusion_Present
(T_Def
));
1328 Check_Restriction
(No_Access_Subprograms
, T_Def
);
1329 end Access_Subprogram_Declaration
;
1331 ----------------------------
1332 -- Access_Type_Declaration --
1333 ----------------------------
1335 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
1336 P
: constant Node_Id
:= Parent
(Def
);
1337 S
: constant Node_Id
:= Subtype_Indication
(Def
);
1339 Full_Desig
: Entity_Id
;
1342 Check_SPARK_05_Restriction
("access type is not allowed", Def
);
1344 -- Check for permissible use of incomplete type
1346 if Nkind
(S
) /= N_Subtype_Indication
then
1349 if Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
then
1350 Set_Directly_Designated_Type
(T
, Entity
(S
));
1352 -- If the designated type is a limited view, we cannot tell if
1353 -- the full view contains tasks, and there is no way to handle
1354 -- that full view in a client. We create a master entity for the
1355 -- scope, which will be used when a client determines that one
1358 if From_Limited_With
(Entity
(S
))
1359 and then not Is_Class_Wide_Type
(Entity
(S
))
1361 Set_Ekind
(T
, E_Access_Type
);
1362 Build_Master_Entity
(T
);
1363 Build_Master_Renaming
(T
);
1367 Set_Directly_Designated_Type
(T
, Process_Subtype
(S
, P
, T
, 'P'));
1370 -- If the access definition is of the form: ACCESS NOT NULL ..
1371 -- the subtype indication must be of an access type. Create
1372 -- a null-excluding subtype of it.
1374 if Null_Excluding_Subtype
(Def
) then
1375 if not Is_Access_Type
(Entity
(S
)) then
1376 Error_Msg_N
("null exclusion must apply to access type", Def
);
1380 Loc
: constant Source_Ptr
:= Sloc
(S
);
1382 Nam
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
1386 Make_Subtype_Declaration
(Loc
,
1387 Defining_Identifier
=> Nam
,
1388 Subtype_Indication
=>
1389 New_Occurrence_Of
(Entity
(S
), Loc
));
1390 Set_Null_Exclusion_Present
(Decl
);
1391 Insert_Before
(Parent
(Def
), Decl
);
1393 Set_Entity
(S
, Nam
);
1399 Set_Directly_Designated_Type
(T
,
1400 Process_Subtype
(S
, P
, T
, 'P'));
1403 if All_Present
(Def
) or Constant_Present
(Def
) then
1404 Set_Ekind
(T
, E_General_Access_Type
);
1406 Set_Ekind
(T
, E_Access_Type
);
1409 Full_Desig
:= Designated_Type
(T
);
1411 if Base_Type
(Full_Desig
) = T
then
1412 Error_Msg_N
("access type cannot designate itself", S
);
1414 -- In Ada 2005, the type may have a limited view through some unit in
1415 -- its own context, allowing the following circularity that cannot be
1416 -- detected earlier.
1418 elsif Is_Class_Wide_Type
(Full_Desig
) and then Etype
(Full_Desig
) = T
1421 ("access type cannot designate its own classwide type", S
);
1423 -- Clean up indication of tagged status to prevent cascaded errors
1425 Set_Is_Tagged_Type
(T
, False);
1430 -- If the type has appeared already in a with_type clause, it is frozen
1431 -- and the pointer size is already set. Else, initialize.
1433 if not From_Limited_With
(T
) then
1434 Init_Size_Align
(T
);
1437 -- Note that Has_Task is always false, since the access type itself
1438 -- is not a task type. See Einfo for more description on this point.
1439 -- Exactly the same consideration applies to Has_Controlled_Component
1440 -- and to Has_Protected.
1442 Set_Has_Task
(T
, False);
1443 Set_Has_Controlled_Component
(T
, False);
1444 Set_Has_Protected
(T
, False);
1446 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1447 -- problems where an incomplete view of this entity has been previously
1448 -- established by a limited with and an overlaid version of this field
1449 -- (Stored_Constraint) was initialized for the incomplete view.
1451 -- This reset is performed in most cases except where the access type
1452 -- has been created for the purposes of allocating or deallocating a
1453 -- build-in-place object. Such access types have explicitly set pools
1454 -- and finalization masters.
1456 if No
(Associated_Storage_Pool
(T
)) then
1457 Set_Finalization_Master
(T
, Empty
);
1460 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1463 Set_Can_Never_Be_Null
(T
, Null_Exclusion_Present
(Def
));
1464 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
1465 end Access_Type_Declaration
;
1467 ----------------------------------
1468 -- Add_Interface_Tag_Components --
1469 ----------------------------------
1471 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
) is
1472 Loc
: constant Source_Ptr
:= Sloc
(N
);
1476 procedure Add_Tag
(Iface
: Entity_Id
);
1477 -- Add tag for one of the progenitor interfaces
1483 procedure Add_Tag
(Iface
: Entity_Id
) is
1490 pragma Assert
(Is_Tagged_Type
(Iface
) and then Is_Interface
(Iface
));
1492 -- This is a reasonable place to propagate predicates
1494 if Has_Predicates
(Iface
) then
1495 Set_Has_Predicates
(Typ
);
1499 Make_Component_Definition
(Loc
,
1500 Aliased_Present
=> True,
1501 Subtype_Indication
=>
1502 New_Occurrence_Of
(RTE
(RE_Interface_Tag
), Loc
));
1504 Tag
:= Make_Temporary
(Loc
, 'V');
1507 Make_Component_Declaration
(Loc
,
1508 Defining_Identifier
=> Tag
,
1509 Component_Definition
=> Def
);
1511 Analyze_Component_Declaration
(Decl
);
1513 Set_Analyzed
(Decl
);
1514 Set_Ekind
(Tag
, E_Component
);
1516 Set_Is_Aliased
(Tag
);
1517 Set_Related_Type
(Tag
, Iface
);
1518 Init_Component_Location
(Tag
);
1520 pragma Assert
(Is_Frozen
(Iface
));
1522 Set_DT_Entry_Count
(Tag
,
1523 DT_Entry_Count
(First_Entity
(Iface
)));
1525 if No
(Last_Tag
) then
1528 Insert_After
(Last_Tag
, Decl
);
1533 -- If the ancestor has discriminants we need to give special support
1534 -- to store the offset_to_top value of the secondary dispatch tables.
1535 -- For this purpose we add a supplementary component just after the
1536 -- field that contains the tag associated with each secondary DT.
1538 if Typ
/= Etype
(Typ
) and then Has_Discriminants
(Etype
(Typ
)) then
1540 Make_Component_Definition
(Loc
,
1541 Subtype_Indication
=>
1542 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
1544 Offset
:= Make_Temporary
(Loc
, 'V');
1547 Make_Component_Declaration
(Loc
,
1548 Defining_Identifier
=> Offset
,
1549 Component_Definition
=> Def
);
1551 Analyze_Component_Declaration
(Decl
);
1553 Set_Analyzed
(Decl
);
1554 Set_Ekind
(Offset
, E_Component
);
1555 Set_Is_Aliased
(Offset
);
1556 Set_Related_Type
(Offset
, Iface
);
1557 Init_Component_Location
(Offset
);
1558 Insert_After
(Last_Tag
, Decl
);
1569 -- Start of processing for Add_Interface_Tag_Components
1572 if not RTE_Available
(RE_Interface_Tag
) then
1574 ("(Ada 2005) interface types not supported by this run-time!",
1579 if Ekind
(Typ
) /= E_Record_Type
1580 or else (Is_Concurrent_Record_Type
(Typ
)
1581 and then Is_Empty_List
(Abstract_Interface_List
(Typ
)))
1582 or else (not Is_Concurrent_Record_Type
(Typ
)
1583 and then No
(Interfaces
(Typ
))
1584 and then Is_Empty_Elmt_List
(Interfaces
(Typ
)))
1589 -- Find the current last tag
1591 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1592 Ext
:= Record_Extension_Part
(Type_Definition
(N
));
1594 pragma Assert
(Nkind
(Type_Definition
(N
)) = N_Record_Definition
);
1595 Ext
:= Type_Definition
(N
);
1600 if not (Present
(Component_List
(Ext
))) then
1601 Set_Null_Present
(Ext
, False);
1603 Set_Component_List
(Ext
,
1604 Make_Component_List
(Loc
,
1605 Component_Items
=> L
,
1606 Null_Present
=> False));
1608 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1609 L
:= Component_Items
1611 (Record_Extension_Part
1612 (Type_Definition
(N
))));
1614 L
:= Component_Items
1616 (Type_Definition
(N
)));
1619 -- Find the last tag component
1622 while Present
(Comp
) loop
1623 if Nkind
(Comp
) = N_Component_Declaration
1624 and then Is_Tag
(Defining_Identifier
(Comp
))
1633 -- At this point L references the list of components and Last_Tag
1634 -- references the current last tag (if any). Now we add the tag
1635 -- corresponding with all the interfaces that are not implemented
1638 if Present
(Interfaces
(Typ
)) then
1639 Elmt
:= First_Elmt
(Interfaces
(Typ
));
1640 while Present
(Elmt
) loop
1641 Add_Tag
(Node
(Elmt
));
1645 end Add_Interface_Tag_Components
;
1647 -------------------------------------
1648 -- Add_Internal_Interface_Entities --
1649 -------------------------------------
1651 procedure Add_Internal_Interface_Entities
(Tagged_Type
: Entity_Id
) is
1654 Iface_Elmt
: Elmt_Id
;
1655 Iface_Prim
: Entity_Id
;
1656 Ifaces_List
: Elist_Id
;
1657 New_Subp
: Entity_Id
:= Empty
;
1659 Restore_Scope
: Boolean := False;
1662 pragma Assert
(Ada_Version
>= Ada_2005
1663 and then Is_Record_Type
(Tagged_Type
)
1664 and then Is_Tagged_Type
(Tagged_Type
)
1665 and then Has_Interfaces
(Tagged_Type
)
1666 and then not Is_Interface
(Tagged_Type
));
1668 -- Ensure that the internal entities are added to the scope of the type
1670 if Scope
(Tagged_Type
) /= Current_Scope
then
1671 Push_Scope
(Scope
(Tagged_Type
));
1672 Restore_Scope
:= True;
1675 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1677 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1678 while Present
(Iface_Elmt
) loop
1679 Iface
:= Node
(Iface_Elmt
);
1681 -- Originally we excluded here from this processing interfaces that
1682 -- are parents of Tagged_Type because their primitives are located
1683 -- in the primary dispatch table (and hence no auxiliary internal
1684 -- entities are required to handle secondary dispatch tables in such
1685 -- case). However, these auxiliary entities are also required to
1686 -- handle derivations of interfaces in formals of generics (see
1687 -- Derive_Subprograms).
1689 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
1690 while Present
(Elmt
) loop
1691 Iface_Prim
:= Node
(Elmt
);
1693 if not Is_Predefined_Dispatching_Operation
(Iface_Prim
) then
1695 Find_Primitive_Covering_Interface
1696 (Tagged_Type
=> Tagged_Type
,
1697 Iface_Prim
=> Iface_Prim
);
1699 if No
(Prim
) and then Serious_Errors_Detected
> 0 then
1703 pragma Assert
(Present
(Prim
));
1705 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1706 -- differs from the name of the interface primitive then it is
1707 -- a private primitive inherited from a parent type. In such
1708 -- case, given that Tagged_Type covers the interface, the
1709 -- inherited private primitive becomes visible. For such
1710 -- purpose we add a new entity that renames the inherited
1711 -- private primitive.
1713 if Chars
(Prim
) /= Chars
(Iface_Prim
) then
1714 pragma Assert
(Has_Suffix
(Prim
, 'P'));
1716 (New_Subp
=> New_Subp
,
1717 Parent_Subp
=> Iface_Prim
,
1718 Derived_Type
=> Tagged_Type
,
1719 Parent_Type
=> Iface
);
1720 Set_Alias
(New_Subp
, Prim
);
1721 Set_Is_Abstract_Subprogram
1722 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1726 (New_Subp
=> New_Subp
,
1727 Parent_Subp
=> Iface_Prim
,
1728 Derived_Type
=> Tagged_Type
,
1729 Parent_Type
=> Iface
);
1731 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1732 -- associated with interface types. These entities are
1733 -- only registered in the list of primitives of its
1734 -- corresponding tagged type because they are only used
1735 -- to fill the contents of the secondary dispatch tables.
1736 -- Therefore they are removed from the homonym chains.
1738 Set_Is_Hidden
(New_Subp
);
1739 Set_Is_Internal
(New_Subp
);
1740 Set_Alias
(New_Subp
, Prim
);
1741 Set_Is_Abstract_Subprogram
1742 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1743 Set_Interface_Alias
(New_Subp
, Iface_Prim
);
1745 -- If the returned type is an interface then propagate it to
1746 -- the returned type. Needed by the thunk to generate the code
1747 -- which displaces "this" to reference the corresponding
1748 -- secondary dispatch table in the returned object.
1750 if Is_Interface
(Etype
(Iface_Prim
)) then
1751 Set_Etype
(New_Subp
, Etype
(Iface_Prim
));
1754 -- Internal entities associated with interface types are
1755 -- only registered in the list of primitives of the tagged
1756 -- type. They are only used to fill the contents of the
1757 -- secondary dispatch tables. Therefore they are not needed
1758 -- in the homonym chains.
1760 Remove_Homonym
(New_Subp
);
1762 -- Hidden entities associated with interfaces must have set
1763 -- the Has_Delay_Freeze attribute to ensure that, in case of
1764 -- locally defined tagged types (or compiling with static
1765 -- dispatch tables generation disabled) the corresponding
1766 -- entry of the secondary dispatch table is filled when
1767 -- such an entity is frozen.
1769 Set_Has_Delayed_Freeze
(New_Subp
);
1776 Next_Elmt
(Iface_Elmt
);
1779 if Restore_Scope
then
1782 end Add_Internal_Interface_Entities
;
1784 -----------------------------------
1785 -- Analyze_Component_Declaration --
1786 -----------------------------------
1788 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
1789 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1790 E
: constant Node_Id
:= Expression
(N
);
1791 Typ
: constant Node_Id
:=
1792 Subtype_Indication
(Component_Definition
(N
));
1796 function Contains_POC
(Constr
: Node_Id
) return Boolean;
1797 -- Determines whether a constraint uses the discriminant of a record
1798 -- type thus becoming a per-object constraint (POC).
1800 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean;
1801 -- Typ is the type of the current component, check whether this type is
1802 -- a limited type. Used to validate declaration against that of
1803 -- enclosing record.
1809 function Contains_POC
(Constr
: Node_Id
) return Boolean is
1811 -- Prevent cascaded errors
1813 if Error_Posted
(Constr
) then
1817 case Nkind
(Constr
) is
1818 when N_Attribute_Reference
=>
1819 return Attribute_Name
(Constr
) = Name_Access
1820 and then Prefix
(Constr
) = Scope
(Entity
(Prefix
(Constr
)));
1822 when N_Discriminant_Association
=>
1823 return Denotes_Discriminant
(Expression
(Constr
));
1825 when N_Identifier
=>
1826 return Denotes_Discriminant
(Constr
);
1828 when N_Index_Or_Discriminant_Constraint
=>
1833 IDC
:= First
(Constraints
(Constr
));
1834 while Present
(IDC
) loop
1836 -- One per-object constraint is sufficient
1838 if Contains_POC
(IDC
) then
1849 return Denotes_Discriminant
(Low_Bound
(Constr
))
1851 Denotes_Discriminant
(High_Bound
(Constr
));
1853 when N_Range_Constraint
=>
1854 return Denotes_Discriminant
(Range_Expression
(Constr
));
1862 ----------------------
1863 -- Is_Known_Limited --
1864 ----------------------
1866 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean is
1867 P
: constant Entity_Id
:= Etype
(Typ
);
1868 R
: constant Entity_Id
:= Root_Type
(Typ
);
1871 if Is_Limited_Record
(Typ
) then
1874 -- If the root type is limited (and not a limited interface)
1875 -- so is the current type
1877 elsif Is_Limited_Record
(R
)
1878 and then (not Is_Interface
(R
) or else not Is_Limited_Interface
(R
))
1882 -- Else the type may have a limited interface progenitor, but a
1883 -- limited record parent.
1885 elsif R
/= P
and then Is_Limited_Record
(P
) then
1891 end Is_Known_Limited
;
1893 -- Start of processing for Analyze_Component_Declaration
1896 Generate_Definition
(Id
);
1899 if Present
(Typ
) then
1900 T
:= Find_Type_Of_Object
1901 (Subtype_Indication
(Component_Definition
(N
)), N
);
1903 if not Nkind_In
(Typ
, N_Identifier
, N_Expanded_Name
) then
1904 Check_SPARK_05_Restriction
("subtype mark required", Typ
);
1907 -- Ada 2005 (AI-230): Access Definition case
1910 pragma Assert
(Present
1911 (Access_Definition
(Component_Definition
(N
))));
1913 T
:= Access_Definition
1915 N
=> Access_Definition
(Component_Definition
(N
)));
1916 Set_Is_Local_Anonymous_Access
(T
);
1918 -- Ada 2005 (AI-254)
1920 if Present
(Access_To_Subprogram_Definition
1921 (Access_Definition
(Component_Definition
(N
))))
1922 and then Protected_Present
(Access_To_Subprogram_Definition
1924 (Component_Definition
(N
))))
1926 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1930 -- If the subtype is a constrained subtype of the enclosing record,
1931 -- (which must have a partial view) the back-end does not properly
1932 -- handle the recursion. Rewrite the component declaration with an
1933 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1934 -- the tree directly because side effects have already been removed from
1935 -- discriminant constraints.
1937 if Ekind
(T
) = E_Access_Subtype
1938 and then Is_Entity_Name
(Subtype_Indication
(Component_Definition
(N
)))
1939 and then Comes_From_Source
(T
)
1940 and then Nkind
(Parent
(T
)) = N_Subtype_Declaration
1941 and then Etype
(Directly_Designated_Type
(T
)) = Current_Scope
1944 (Subtype_Indication
(Component_Definition
(N
)),
1945 New_Copy_Tree
(Subtype_Indication
(Parent
(T
))));
1946 T
:= Find_Type_Of_Object
1947 (Subtype_Indication
(Component_Definition
(N
)), N
);
1950 -- If the component declaration includes a default expression, then we
1951 -- check that the component is not of a limited type (RM 3.7(5)),
1952 -- and do the special preanalysis of the expression (see section on
1953 -- "Handling of Default and Per-Object Expressions" in the spec of
1957 Check_SPARK_05_Restriction
("default expression is not allowed", E
);
1958 Preanalyze_Default_Expression
(E
, T
);
1959 Check_Initialization
(T
, E
);
1961 if Ada_Version
>= Ada_2005
1962 and then Ekind
(T
) = E_Anonymous_Access_Type
1963 and then Etype
(E
) /= Any_Type
1965 -- Check RM 3.9.2(9): "if the expected type for an expression is
1966 -- an anonymous access-to-specific tagged type, then the object
1967 -- designated by the expression shall not be dynamically tagged
1968 -- unless it is a controlling operand in a call on a dispatching
1971 if Is_Tagged_Type
(Directly_Designated_Type
(T
))
1973 Ekind
(Directly_Designated_Type
(T
)) /= E_Class_Wide_Type
1975 Ekind
(Directly_Designated_Type
(Etype
(E
))) =
1979 ("access to specific tagged type required (RM 3.9.2(9))", E
);
1982 -- (Ada 2005: AI-230): Accessibility check for anonymous
1985 if Type_Access_Level
(Etype
(E
)) >
1986 Deepest_Type_Access_Level
(T
)
1989 ("expression has deeper access level than component " &
1990 "(RM 3.10.2 (12.2))", E
);
1993 -- The initialization expression is a reference to an access
1994 -- discriminant. The type of the discriminant is always deeper
1995 -- than any access type.
1997 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
1998 and then Is_Entity_Name
(E
)
1999 and then Ekind
(Entity
(E
)) = E_In_Parameter
2000 and then Present
(Discriminal_Link
(Entity
(E
)))
2003 ("discriminant has deeper accessibility level than target",
2009 -- The parent type may be a private view with unknown discriminants,
2010 -- and thus unconstrained. Regular components must be constrained.
2012 if Is_Indefinite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
2013 if Is_Class_Wide_Type
(T
) then
2015 ("class-wide subtype with unknown discriminants" &
2016 " in component declaration",
2017 Subtype_Indication
(Component_Definition
(N
)));
2020 ("unconstrained subtype in component declaration",
2021 Subtype_Indication
(Component_Definition
(N
)));
2024 -- Components cannot be abstract, except for the special case of
2025 -- the _Parent field (case of extending an abstract tagged type)
2027 elsif Is_Abstract_Type
(T
) and then Chars
(Id
) /= Name_uParent
then
2028 Error_Msg_N
("type of a component cannot be abstract", N
);
2032 Set_Is_Aliased
(Id
, Aliased_Present
(Component_Definition
(N
)));
2034 -- The component declaration may have a per-object constraint, set
2035 -- the appropriate flag in the defining identifier of the subtype.
2037 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
2039 Sindic
: constant Node_Id
:=
2040 Subtype_Indication
(Component_Definition
(N
));
2042 if Nkind
(Sindic
) = N_Subtype_Indication
2043 and then Present
(Constraint
(Sindic
))
2044 and then Contains_POC
(Constraint
(Sindic
))
2046 Set_Has_Per_Object_Constraint
(Id
);
2051 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2052 -- out some static checks.
2054 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
2055 Null_Exclusion_Static_Checks
(N
);
2058 -- If this component is private (or depends on a private type), flag the
2059 -- record type to indicate that some operations are not available.
2061 P
:= Private_Component
(T
);
2065 -- Check for circular definitions
2067 if P
= Any_Type
then
2068 Set_Etype
(Id
, Any_Type
);
2070 -- There is a gap in the visibility of operations only if the
2071 -- component type is not defined in the scope of the record type.
2073 elsif Scope
(P
) = Scope
(Current_Scope
) then
2076 elsif Is_Limited_Type
(P
) then
2077 Set_Is_Limited_Composite
(Current_Scope
);
2080 Set_Is_Private_Composite
(Current_Scope
);
2085 and then Is_Limited_Type
(T
)
2086 and then Chars
(Id
) /= Name_uParent
2087 and then Is_Tagged_Type
(Current_Scope
)
2089 if Is_Derived_Type
(Current_Scope
)
2090 and then not Is_Known_Limited
(Current_Scope
)
2093 ("extension of nonlimited type cannot have limited components",
2096 if Is_Interface
(Root_Type
(Current_Scope
)) then
2098 ("\limitedness is not inherited from limited interface", N
);
2099 Error_Msg_N
("\add LIMITED to type indication", N
);
2102 Explain_Limited_Type
(T
, N
);
2103 Set_Etype
(Id
, Any_Type
);
2104 Set_Is_Limited_Composite
(Current_Scope
, False);
2106 elsif not Is_Derived_Type
(Current_Scope
)
2107 and then not Is_Limited_Record
(Current_Scope
)
2108 and then not Is_Concurrent_Type
(Current_Scope
)
2111 ("nonlimited tagged type cannot have limited components", N
);
2112 Explain_Limited_Type
(T
, N
);
2113 Set_Etype
(Id
, Any_Type
);
2114 Set_Is_Limited_Composite
(Current_Scope
, False);
2118 Set_Original_Record_Component
(Id
, Id
);
2120 if Has_Aspects
(N
) then
2121 Analyze_Aspect_Specifications
(N
, Id
);
2124 Analyze_Dimension
(N
);
2125 end Analyze_Component_Declaration
;
2127 --------------------------
2128 -- Analyze_Declarations --
2129 --------------------------
2131 procedure Analyze_Declarations
(L
: List_Id
) is
2134 procedure Adjust_Decl
;
2135 -- Adjust Decl not to include implicit label declarations, since these
2136 -- have strange Sloc values that result in elaboration check problems.
2137 -- (They have the sloc of the label as found in the source, and that
2138 -- is ahead of the current declarative part).
2140 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
);
2141 -- Determine whether Body_Decl denotes the body of a late controlled
2142 -- primitive (either Initialize, Adjust or Finalize). If this is the
2143 -- case, add a proper spec if the body lacks one. The spec is inserted
2144 -- before Body_Decl and immedately analyzed.
2146 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
);
2147 -- Spec_Id is the entity of a package that may define abstract states.
2148 -- If the states have visible refinement, remove the visibility of each
2149 -- constituent at the end of the package body declarations.
2155 procedure Adjust_Decl
is
2157 while Present
(Prev
(Decl
))
2158 and then Nkind
(Decl
) = N_Implicit_Label_Declaration
2164 --------------------------------------
2165 -- Handle_Late_Controlled_Primitive --
2166 --------------------------------------
2168 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
) is
2169 Body_Spec
: constant Node_Id
:= Specification
(Body_Decl
);
2170 Body_Id
: constant Entity_Id
:= Defining_Entity
(Body_Spec
);
2171 Loc
: constant Source_Ptr
:= Sloc
(Body_Id
);
2172 Params
: constant List_Id
:=
2173 Parameter_Specifications
(Body_Spec
);
2175 Spec_Id
: Entity_Id
;
2179 -- Consider only procedure bodies whose name matches one of the three
2180 -- controlled primitives.
2182 if Nkind
(Body_Spec
) /= N_Procedure_Specification
2183 or else not Nam_In
(Chars
(Body_Id
), Name_Adjust
,
2189 -- A controlled primitive must have exactly one formal which is not
2190 -- an anonymous access type.
2192 elsif List_Length
(Params
) /= 1 then
2196 Typ
:= Parameter_Type
(First
(Params
));
2198 if Nkind
(Typ
) = N_Access_Definition
then
2204 -- The type of the formal must be derived from [Limited_]Controlled
2206 if not Is_Controlled
(Entity
(Typ
)) then
2210 -- Check whether a specification exists for this body. We do not
2211 -- analyze the spec of the body in full, because it will be analyzed
2212 -- again when the body is properly analyzed, and we cannot create
2213 -- duplicate entries in the formals chain. We look for an explicit
2214 -- specification because the body may be an overriding operation and
2215 -- an inherited spec may be present.
2217 Spec_Id
:= Current_Entity
(Body_Id
);
2219 while Present
(Spec_Id
) loop
2220 if Ekind_In
(Spec_Id
, E_Procedure
, E_Generic_Procedure
)
2221 and then Scope
(Spec_Id
) = Current_Scope
2222 and then Present
(First_Formal
(Spec_Id
))
2223 and then No
(Next_Formal
(First_Formal
(Spec_Id
)))
2224 and then Etype
(First_Formal
(Spec_Id
)) = Entity
(Typ
)
2225 and then Comes_From_Source
(Spec_Id
)
2230 Spec_Id
:= Homonym
(Spec_Id
);
2233 -- At this point the body is known to be a late controlled primitive.
2234 -- Generate a matching spec and insert it before the body. Note the
2235 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2236 -- tree in this case.
2238 Spec
:= Copy_Separate_Tree
(Body_Spec
);
2240 -- Ensure that the subprogram declaration does not inherit the null
2241 -- indicator from the body as we now have a proper spec/body pair.
2243 Set_Null_Present
(Spec
, False);
2245 Insert_Before_And_Analyze
(Body_Decl
,
2246 Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
));
2247 end Handle_Late_Controlled_Primitive
;
2249 --------------------------------
2250 -- Remove_Visible_Refinements --
2251 --------------------------------
2253 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
) is
2254 State_Elmt
: Elmt_Id
;
2256 if Present
(Abstract_States
(Spec_Id
)) then
2257 State_Elmt
:= First_Elmt
(Abstract_States
(Spec_Id
));
2258 while Present
(State_Elmt
) loop
2259 Set_Has_Visible_Refinement
(Node
(State_Elmt
), False);
2260 Next_Elmt
(State_Elmt
);
2263 end Remove_Visible_Refinements
;
2268 Freeze_From
: Entity_Id
:= Empty
;
2269 Next_Decl
: Node_Id
;
2270 Spec_Id
: Entity_Id
;
2272 Body_Seen
: Boolean := False;
2273 -- Flag set when the first body [stub] is encountered
2275 In_Package_Body
: Boolean := False;
2276 -- Flag set when the current declaration list belongs to a package body
2278 -- Start of processing for Analyze_Declarations
2281 if Restriction_Check_Required
(SPARK_05
) then
2282 Check_Later_Vs_Basic_Declarations
(L
, During_Parsing
=> False);
2286 while Present
(Decl
) loop
2288 -- Package spec cannot contain a package declaration in SPARK
2290 if Nkind
(Decl
) = N_Package_Declaration
2291 and then Nkind
(Parent
(L
)) = N_Package_Specification
2293 Check_SPARK_05_Restriction
2294 ("package specification cannot contain a package declaration",
2298 -- Complete analysis of declaration
2301 Next_Decl
:= Next
(Decl
);
2303 if No
(Freeze_From
) then
2304 Freeze_From
:= First_Entity
(Current_Scope
);
2307 -- At the end of a declarative part, freeze remaining entities
2308 -- declared in it. The end of the visible declarations of package
2309 -- specification is not the end of a declarative part if private
2310 -- declarations are present. The end of a package declaration is a
2311 -- freezing point only if it a library package. A task definition or
2312 -- protected type definition is not a freeze point either. Finally,
2313 -- we do not freeze entities in generic scopes, because there is no
2314 -- code generated for them and freeze nodes will be generated for
2317 -- The end of a package instantiation is not a freeze point, but
2318 -- for now we make it one, because the generic body is inserted
2319 -- (currently) immediately after. Generic instantiations will not
2320 -- be a freeze point once delayed freezing of bodies is implemented.
2321 -- (This is needed in any case for early instantiations ???).
2323 if No
(Next_Decl
) then
2324 if Nkind_In
(Parent
(L
), N_Component_List
,
2326 N_Protected_Definition
)
2330 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
2331 if Nkind
(Parent
(L
)) = N_Package_Body
then
2332 Freeze_From
:= First_Entity
(Current_Scope
);
2335 -- There may have been several freezing points previously,
2336 -- for example object declarations or subprogram bodies, but
2337 -- at the end of a declarative part we check freezing from
2338 -- the beginning, even though entities may already be frozen,
2339 -- in order to perform visibility checks on delayed aspects.
2342 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2343 Freeze_From
:= Last_Entity
(Current_Scope
);
2345 elsif Scope
(Current_Scope
) /= Standard_Standard
2346 and then not Is_Child_Unit
(Current_Scope
)
2347 and then No
(Generic_Parent
(Parent
(L
)))
2351 elsif L
/= Visible_Declarations
(Parent
(L
))
2352 or else No
(Private_Declarations
(Parent
(L
)))
2353 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
2356 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2357 Freeze_From
:= Last_Entity
(Current_Scope
);
2360 -- If next node is a body then freeze all types before the body.
2361 -- An exception occurs for some expander-generated bodies. If these
2362 -- are generated at places where in general language rules would not
2363 -- allow a freeze point, then we assume that the expander has
2364 -- explicitly checked that all required types are properly frozen,
2365 -- and we do not cause general freezing here. This special circuit
2366 -- is used when the encountered body is marked as having already
2369 -- In all other cases (bodies that come from source, and expander
2370 -- generated bodies that have not been analyzed yet), freeze all
2371 -- types now. Note that in the latter case, the expander must take
2372 -- care to attach the bodies at a proper place in the tree so as to
2373 -- not cause unwanted freezing at that point.
2375 elsif not Analyzed
(Next_Decl
) and then Is_Body
(Next_Decl
) then
2377 -- When a controlled type is frozen, the expander generates stream
2378 -- and controlled type support routines. If the freeze is caused
2379 -- by the stand alone body of Initialize, Adjust and Finalize, the
2380 -- expander will end up using the wrong version of these routines
2381 -- as the body has not been processed yet. To remedy this, detect
2382 -- a late controlled primitive and create a proper spec for it.
2383 -- This ensures that the primitive will override its inherited
2384 -- counterpart before the freeze takes place.
2386 -- If the declaration we just processed is a body, do not attempt
2387 -- to examine Next_Decl as the late primitive idiom can only apply
2388 -- to the first encountered body.
2390 -- The spec of the late primitive is not generated in ASIS mode to
2391 -- ensure a consistent list of primitives that indicates the true
2392 -- semantic structure of the program (which is not relevant when
2393 -- generating executable code.
2395 -- ??? a cleaner approach may be possible and/or this solution
2396 -- could be extended to general-purpose late primitives, TBD.
2398 if not ASIS_Mode
and then not Body_Seen
and then not Is_Body
(Decl
)
2402 if Nkind
(Next_Decl
) = N_Subprogram_Body
then
2403 Handle_Late_Controlled_Primitive
(Next_Decl
);
2408 Freeze_All
(Freeze_From
, Decl
);
2409 Freeze_From
:= Last_Entity
(Current_Scope
);
2415 -- Analyze the contracts of packages and their bodies
2418 Context
:= Parent
(L
);
2420 if Nkind
(Context
) = N_Package_Specification
then
2422 -- When a package has private declarations, its contract must be
2423 -- analyzed at the end of the said declarations. This way both the
2424 -- analysis and freeze actions are properly synchronized in case
2425 -- of private type use within the contract.
2427 if L
= Private_Declarations
(Context
) then
2428 Analyze_Package_Contract
(Defining_Entity
(Context
));
2430 -- Build the bodies of the default initial condition procedures
2431 -- for all types subject to pragma Default_Initial_Condition.
2432 -- From a purely Ada stand point, this is a freezing activity,
2433 -- however freezing is not available under GNATprove_Mode. To
2434 -- accomodate both scenarios, the bodies are build at the end
2435 -- of private declaration analysis.
2437 Build_Default_Init_Cond_Procedure_Bodies
(L
);
2439 -- Otherwise the contract is analyzed at the end of the visible
2442 elsif L
= Visible_Declarations
(Context
)
2443 and then No
(Private_Declarations
(Context
))
2445 Analyze_Package_Contract
(Defining_Entity
(Context
));
2448 elsif Nkind
(Context
) = N_Package_Body
then
2449 In_Package_Body
:= True;
2450 Spec_Id
:= Corresponding_Spec
(Context
);
2452 Analyze_Package_Body_Contract
(Defining_Entity
(Context
));
2456 -- Analyze the contracts of subprogram declarations, subprogram bodies
2457 -- and variables now due to the delayed visibility requirements of their
2461 while Present
(Decl
) loop
2462 if Nkind
(Decl
) = N_Object_Declaration
then
2463 Analyze_Object_Contract
(Defining_Entity
(Decl
));
2465 elsif Nkind_In
(Decl
, N_Abstract_Subprogram_Declaration
,
2466 N_Subprogram_Declaration
)
2468 Analyze_Subprogram_Contract
(Defining_Entity
(Decl
));
2470 elsif Nkind
(Decl
) = N_Subprogram_Body
then
2471 Analyze_Subprogram_Body_Contract
(Defining_Entity
(Decl
));
2473 elsif Nkind
(Decl
) = N_Subprogram_Body_Stub
then
2474 Analyze_Subprogram_Body_Stub_Contract
(Defining_Entity
(Decl
));
2480 -- State refinements are visible upto the end the of the package body
2481 -- declarations. Hide the refinements from visibility to restore the
2482 -- original state conditions.
2484 if In_Package_Body
then
2485 Remove_Visible_Refinements
(Spec_Id
);
2487 end Analyze_Declarations
;
2489 -----------------------------------
2490 -- Analyze_Full_Type_Declaration --
2491 -----------------------------------
2493 procedure Analyze_Full_Type_Declaration
(N
: Node_Id
) is
2494 Def
: constant Node_Id
:= Type_Definition
(N
);
2495 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2499 Is_Remote
: constant Boolean :=
2500 (Is_Remote_Types
(Current_Scope
)
2501 or else Is_Remote_Call_Interface
(Current_Scope
))
2502 and then not (In_Private_Part
(Current_Scope
)
2503 or else In_Package_Body
(Current_Scope
));
2505 procedure Check_Ops_From_Incomplete_Type
;
2506 -- If there is a tagged incomplete partial view of the type, traverse
2507 -- the primitives of the incomplete view and change the type of any
2508 -- controlling formals and result to indicate the full view. The
2509 -- primitives will be added to the full type's primitive operations
2510 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2511 -- is called from Process_Incomplete_Dependents).
2513 ------------------------------------
2514 -- Check_Ops_From_Incomplete_Type --
2515 ------------------------------------
2517 procedure Check_Ops_From_Incomplete_Type
is
2524 and then Ekind
(Prev
) = E_Incomplete_Type
2525 and then Is_Tagged_Type
(Prev
)
2526 and then Is_Tagged_Type
(T
)
2528 Elmt
:= First_Elmt
(Primitive_Operations
(Prev
));
2529 while Present
(Elmt
) loop
2532 Formal
:= First_Formal
(Op
);
2533 while Present
(Formal
) loop
2534 if Etype
(Formal
) = Prev
then
2535 Set_Etype
(Formal
, T
);
2538 Next_Formal
(Formal
);
2541 if Etype
(Op
) = Prev
then
2548 end Check_Ops_From_Incomplete_Type
;
2550 -- Start of processing for Analyze_Full_Type_Declaration
2553 Prev
:= Find_Type_Name
(N
);
2555 -- The full view, if present, now points to the current type
2556 -- If there is an incomplete partial view, set a link to it, to
2557 -- simplify the retrieval of primitive operations of the type.
2559 -- Ada 2005 (AI-50217): If the type was previously decorated when
2560 -- imported through a LIMITED WITH clause, it appears as incomplete
2561 -- but has no full view.
2563 if Ekind
(Prev
) = E_Incomplete_Type
2564 and then Present
(Full_View
(Prev
))
2566 T
:= Full_View
(Prev
);
2567 Set_Incomplete_View
(N
, Parent
(Prev
));
2572 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
2574 -- We set the flag Is_First_Subtype here. It is needed to set the
2575 -- corresponding flag for the Implicit class-wide-type created
2576 -- during tagged types processing.
2578 Set_Is_First_Subtype
(T
, True);
2580 -- Only composite types other than array types are allowed to have
2585 -- For derived types, the rule will be checked once we've figured
2586 -- out the parent type.
2588 when N_Derived_Type_Definition
=>
2591 -- For record types, discriminants are allowed, unless we are in
2594 when N_Record_Definition
=>
2595 if Present
(Discriminant_Specifications
(N
)) then
2596 Check_SPARK_05_Restriction
2597 ("discriminant type is not allowed",
2599 (First
(Discriminant_Specifications
(N
))));
2603 if Present
(Discriminant_Specifications
(N
)) then
2605 ("elementary or array type cannot have discriminants",
2607 (First
(Discriminant_Specifications
(N
))));
2611 -- Elaborate the type definition according to kind, and generate
2612 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2613 -- already done (this happens during the reanalysis that follows a call
2614 -- to the high level optimizer).
2616 if not Analyzed
(T
) then
2621 when N_Access_To_Subprogram_Definition
=>
2622 Access_Subprogram_Declaration
(T
, Def
);
2624 -- If this is a remote access to subprogram, we must create the
2625 -- equivalent fat pointer type, and related subprograms.
2628 Process_Remote_AST_Declaration
(N
);
2631 -- Validate categorization rule against access type declaration
2632 -- usually a violation in Pure unit, Shared_Passive unit.
2634 Validate_Access_Type_Declaration
(T
, N
);
2636 when N_Access_To_Object_Definition
=>
2637 Access_Type_Declaration
(T
, Def
);
2639 -- Validate categorization rule against access type declaration
2640 -- usually a violation in Pure unit, Shared_Passive unit.
2642 Validate_Access_Type_Declaration
(T
, N
);
2644 -- If we are in a Remote_Call_Interface package and define a
2645 -- RACW, then calling stubs and specific stream attributes
2649 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
2651 Add_RACW_Features
(Def_Id
);
2654 -- Set no strict aliasing flag if config pragma seen
2656 if Opt
.No_Strict_Aliasing
then
2657 Set_No_Strict_Aliasing
(Base_Type
(Def_Id
));
2660 when N_Array_Type_Definition
=>
2661 Array_Type_Declaration
(T
, Def
);
2663 when N_Derived_Type_Definition
=>
2664 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
2666 when N_Enumeration_Type_Definition
=>
2667 Enumeration_Type_Declaration
(T
, Def
);
2669 when N_Floating_Point_Definition
=>
2670 Floating_Point_Type_Declaration
(T
, Def
);
2672 when N_Decimal_Fixed_Point_Definition
=>
2673 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
2675 when N_Ordinary_Fixed_Point_Definition
=>
2676 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
2678 when N_Signed_Integer_Type_Definition
=>
2679 Signed_Integer_Type_Declaration
(T
, Def
);
2681 when N_Modular_Type_Definition
=>
2682 Modular_Type_Declaration
(T
, Def
);
2684 when N_Record_Definition
=>
2685 Record_Type_Declaration
(T
, N
, Prev
);
2687 -- If declaration has a parse error, nothing to elaborate.
2693 raise Program_Error
;
2698 if Etype
(T
) = Any_Type
then
2702 -- Controlled type is not allowed in SPARK
2704 if Is_Visibly_Controlled
(T
) then
2705 Check_SPARK_05_Restriction
("controlled type is not allowed", N
);
2708 -- Some common processing for all types
2710 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
2711 Check_Ops_From_Incomplete_Type
;
2713 -- Both the declared entity, and its anonymous base type if one
2714 -- was created, need freeze nodes allocated.
2717 B
: constant Entity_Id
:= Base_Type
(T
);
2720 -- In the case where the base type differs from the first subtype, we
2721 -- pre-allocate a freeze node, and set the proper link to the first
2722 -- subtype. Freeze_Entity will use this preallocated freeze node when
2723 -- it freezes the entity.
2725 -- This does not apply if the base type is a generic type, whose
2726 -- declaration is independent of the current derived definition.
2728 if B
/= T
and then not Is_Generic_Type
(B
) then
2729 Ensure_Freeze_Node
(B
);
2730 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
2733 -- A type that is imported through a limited_with clause cannot
2734 -- generate any code, and thus need not be frozen. However, an access
2735 -- type with an imported designated type needs a finalization list,
2736 -- which may be referenced in some other package that has non-limited
2737 -- visibility on the designated type. Thus we must create the
2738 -- finalization list at the point the access type is frozen, to
2739 -- prevent unsatisfied references at link time.
2741 if not From_Limited_With
(T
) or else Is_Access_Type
(T
) then
2742 Set_Has_Delayed_Freeze
(T
);
2746 -- Case where T is the full declaration of some private type which has
2747 -- been swapped in Defining_Identifier (N).
2749 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
2750 Process_Full_View
(N
, T
, Def_Id
);
2752 -- Record the reference. The form of this is a little strange, since
2753 -- the full declaration has been swapped in. So the first parameter
2754 -- here represents the entity to which a reference is made which is
2755 -- the "real" entity, i.e. the one swapped in, and the second
2756 -- parameter provides the reference location.
2758 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2759 -- since we don't want a complaint about the full type being an
2760 -- unwanted reference to the private type
2763 B
: constant Boolean := Has_Pragma_Unreferenced
(T
);
2765 Set_Has_Pragma_Unreferenced
(T
, False);
2766 Generate_Reference
(T
, T
, 'c');
2767 Set_Has_Pragma_Unreferenced
(T
, B
);
2770 Set_Completion_Referenced
(Def_Id
);
2772 -- For completion of incomplete type, process incomplete dependents
2773 -- and always mark the full type as referenced (it is the incomplete
2774 -- type that we get for any real reference).
2776 elsif Ekind
(Prev
) = E_Incomplete_Type
then
2777 Process_Incomplete_Dependents
(N
, T
, Prev
);
2778 Generate_Reference
(Prev
, Def_Id
, 'c');
2779 Set_Completion_Referenced
(Def_Id
);
2781 -- If not private type or incomplete type completion, this is a real
2782 -- definition of a new entity, so record it.
2785 Generate_Definition
(Def_Id
);
2788 if Chars
(Scope
(Def_Id
)) = Name_System
2789 and then Chars
(Def_Id
) = Name_Address
2790 and then Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(N
)))
2792 Set_Is_Descendent_Of_Address
(Def_Id
);
2793 Set_Is_Descendent_Of_Address
(Base_Type
(Def_Id
));
2794 Set_Is_Descendent_Of_Address
(Prev
);
2797 Set_Optimize_Alignment_Flags
(Def_Id
);
2798 Check_Eliminated
(Def_Id
);
2800 -- If the declaration is a completion and aspects are present, apply
2801 -- them to the entity for the type which is currently the partial
2802 -- view, but which is the one that will be frozen.
2804 if Has_Aspects
(N
) then
2806 -- In most cases the partial view is a private type, and both views
2807 -- appear in different declarative parts. In the unusual case where
2808 -- the partial view is incomplete, perform the analysis on the
2809 -- full view, to prevent freezing anomalies with the corresponding
2810 -- class-wide type, which otherwise might be frozen before the
2811 -- dispatch table is built.
2814 and then Ekind
(Prev
) /= E_Incomplete_Type
2816 Analyze_Aspect_Specifications
(N
, Prev
);
2821 Analyze_Aspect_Specifications
(N
, Def_Id
);
2824 end Analyze_Full_Type_Declaration
;
2826 ----------------------------------
2827 -- Analyze_Incomplete_Type_Decl --
2828 ----------------------------------
2830 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
2831 F
: constant Boolean := Is_Pure
(Current_Scope
);
2835 Check_SPARK_05_Restriction
("incomplete type is not allowed", N
);
2837 Generate_Definition
(Defining_Identifier
(N
));
2839 -- Process an incomplete declaration. The identifier must not have been
2840 -- declared already in the scope. However, an incomplete declaration may
2841 -- appear in the private part of a package, for a private type that has
2842 -- already been declared.
2844 -- In this case, the discriminants (if any) must match
2846 T
:= Find_Type_Name
(N
);
2848 Set_Ekind
(T
, E_Incomplete_Type
);
2849 Init_Size_Align
(T
);
2850 Set_Is_First_Subtype
(T
, True);
2853 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2854 -- incomplete types.
2856 if Tagged_Present
(N
) then
2857 Set_Is_Tagged_Type
(T
, True);
2858 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
2859 Make_Class_Wide_Type
(T
);
2860 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2865 Set_Stored_Constraint
(T
, No_Elist
);
2867 if Present
(Discriminant_Specifications
(N
)) then
2868 Process_Discriminants
(N
);
2873 -- If the type has discriminants, non-trivial subtypes may be
2874 -- declared before the full view of the type. The full views of those
2875 -- subtypes will be built after the full view of the type.
2877 Set_Private_Dependents
(T
, New_Elmt_List
);
2879 end Analyze_Incomplete_Type_Decl
;
2881 -----------------------------------
2882 -- Analyze_Interface_Declaration --
2883 -----------------------------------
2885 procedure Analyze_Interface_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
2886 CW
: constant Entity_Id
:= Class_Wide_Type
(T
);
2889 Set_Is_Tagged_Type
(T
);
2890 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
2892 Set_Is_Limited_Record
(T
, Limited_Present
(Def
)
2893 or else Task_Present
(Def
)
2894 or else Protected_Present
(Def
)
2895 or else Synchronized_Present
(Def
));
2897 -- Type is abstract if full declaration carries keyword, or if previous
2898 -- partial view did.
2900 Set_Is_Abstract_Type
(T
);
2901 Set_Is_Interface
(T
);
2903 -- Type is a limited interface if it includes the keyword limited, task,
2904 -- protected, or synchronized.
2906 Set_Is_Limited_Interface
2907 (T
, Limited_Present
(Def
)
2908 or else Protected_Present
(Def
)
2909 or else Synchronized_Present
(Def
)
2910 or else Task_Present
(Def
));
2912 Set_Interfaces
(T
, New_Elmt_List
);
2913 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2915 -- Complete the decoration of the class-wide entity if it was already
2916 -- built (i.e. during the creation of the limited view)
2918 if Present
(CW
) then
2919 Set_Is_Interface
(CW
);
2920 Set_Is_Limited_Interface
(CW
, Is_Limited_Interface
(T
));
2923 -- Check runtime support for synchronized interfaces
2925 if VM_Target
= No_VM
2926 and then (Is_Task_Interface
(T
)
2927 or else Is_Protected_Interface
(T
)
2928 or else Is_Synchronized_Interface
(T
))
2929 and then not RTE_Available
(RE_Select_Specific_Data
)
2931 Error_Msg_CRT
("synchronized interfaces", T
);
2933 end Analyze_Interface_Declaration
;
2935 -----------------------------
2936 -- Analyze_Itype_Reference --
2937 -----------------------------
2939 -- Nothing to do. This node is placed in the tree only for the benefit of
2940 -- back end processing, and has no effect on the semantic processing.
2942 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
2944 pragma Assert
(Is_Itype
(Itype
(N
)));
2946 end Analyze_Itype_Reference
;
2948 --------------------------------
2949 -- Analyze_Number_Declaration --
2950 --------------------------------
2952 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
2953 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2954 E
: constant Node_Id
:= Expression
(N
);
2956 Index
: Interp_Index
;
2960 Generate_Definition
(Id
);
2963 -- This is an optimization of a common case of an integer literal
2965 if Nkind
(E
) = N_Integer_Literal
then
2966 Set_Is_Static_Expression
(E
, True);
2967 Set_Etype
(E
, Universal_Integer
);
2969 Set_Etype
(Id
, Universal_Integer
);
2970 Set_Ekind
(Id
, E_Named_Integer
);
2971 Set_Is_Frozen
(Id
, True);
2975 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
2977 -- Process expression, replacing error by integer zero, to avoid
2978 -- cascaded errors or aborts further along in the processing
2980 -- Replace Error by integer zero, which seems least likely to cause
2984 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
2985 Set_Error_Posted
(E
);
2990 -- Verify that the expression is static and numeric. If
2991 -- the expression is overloaded, we apply the preference
2992 -- rule that favors root numeric types.
2994 if not Is_Overloaded
(E
) then
2996 if Has_Dynamic_Predicate_Aspect
(T
) then
2998 ("subtype has dynamic predicate, "
2999 & "not allowed in number declaration", N
);
3005 Get_First_Interp
(E
, Index
, It
);
3006 while Present
(It
.Typ
) loop
3007 if (Is_Integer_Type
(It
.Typ
) or else Is_Real_Type
(It
.Typ
))
3008 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
3010 if T
= Any_Type
then
3013 elsif It
.Typ
= Universal_Real
3015 It
.Typ
= Universal_Integer
3017 -- Choose universal interpretation over any other
3024 Get_Next_Interp
(Index
, It
);
3028 if Is_Integer_Type
(T
) then
3030 Set_Etype
(Id
, Universal_Integer
);
3031 Set_Ekind
(Id
, E_Named_Integer
);
3033 elsif Is_Real_Type
(T
) then
3035 -- Because the real value is converted to universal_real, this is a
3036 -- legal context for a universal fixed expression.
3038 if T
= Universal_Fixed
then
3040 Loc
: constant Source_Ptr
:= Sloc
(N
);
3041 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
3043 New_Occurrence_Of
(Universal_Real
, Loc
),
3044 Expression
=> Relocate_Node
(E
));
3051 elsif T
= Any_Fixed
then
3052 Error_Msg_N
("illegal context for mixed mode operation", E
);
3054 -- Expression is of the form : universal_fixed * integer. Try to
3055 -- resolve as universal_real.
3057 T
:= Universal_Real
;
3062 Set_Etype
(Id
, Universal_Real
);
3063 Set_Ekind
(Id
, E_Named_Real
);
3066 Wrong_Type
(E
, Any_Numeric
);
3070 Set_Ekind
(Id
, E_Constant
);
3071 Set_Never_Set_In_Source
(Id
, True);
3072 Set_Is_True_Constant
(Id
, True);
3076 if Nkind_In
(E
, N_Integer_Literal
, N_Real_Literal
) then
3077 Set_Etype
(E
, Etype
(Id
));
3080 if not Is_OK_Static_Expression
(E
) then
3081 Flag_Non_Static_Expr
3082 ("non-static expression used in number declaration!", E
);
3083 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
3084 Set_Etype
(E
, Any_Type
);
3086 end Analyze_Number_Declaration
;
3088 -----------------------------
3089 -- Analyze_Object_Contract --
3090 -----------------------------
3092 procedure Analyze_Object_Contract
(Obj_Id
: Entity_Id
) is
3093 Obj_Typ
: constant Entity_Id
:= Etype
(Obj_Id
);
3094 AR_Val
: Boolean := False;
3095 AW_Val
: Boolean := False;
3096 ER_Val
: Boolean := False;
3097 EW_Val
: Boolean := False;
3099 Seen
: Boolean := False;
3102 if Ekind
(Obj_Id
) = E_Constant
then
3104 -- A constant cannot be effectively volatile. This check is only
3105 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3106 -- rule. Do not flag internally-generated constants that map generic
3107 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3110 and then Is_Effectively_Volatile
(Obj_Id
)
3111 and then No
(Corresponding_Generic_Association
(Parent
(Obj_Id
)))
3113 Error_Msg_N
("constant cannot be volatile", Obj_Id
);
3116 -- The loop parameter in an element iterator over a formal container
3117 -- is declared with an object declaration but no contracts apply.
3119 elsif Ekind
(Obj_Id
) = E_Loop_Parameter
then
3122 else pragma Assert
(Ekind
(Obj_Id
) = E_Variable
);
3124 -- The following checks are only relevant when SPARK_Mode is on as
3125 -- they are not standard Ada legality rules. Internally generated
3126 -- temporaries are ignored.
3128 if SPARK_Mode
= On
and then Comes_From_Source
(Obj_Id
) then
3129 if Is_Effectively_Volatile
(Obj_Id
) then
3131 -- The declaration of an effectively volatile object must
3132 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3134 if not Is_Library_Level_Entity
(Obj_Id
) then
3136 ("volatile variable & must be declared at library level",
3139 -- An object of a discriminated type cannot be effectively
3140 -- volatile (SPARK RM C.6(4)).
3142 elsif Has_Discriminants
(Obj_Typ
) then
3144 ("discriminated object & cannot be volatile", Obj_Id
);
3146 -- An object of a tagged type cannot be effectively volatile
3147 -- (SPARK RM C.6(5)).
3149 elsif Is_Tagged_Type
(Obj_Typ
) then
3150 Error_Msg_N
("tagged object & cannot be volatile", Obj_Id
);
3153 -- The object is not effectively volatile
3156 -- A non-effectively volatile object cannot have effectively
3157 -- volatile components (SPARK RM 7.1.3(7)).
3159 if not Is_Effectively_Volatile
(Obj_Id
)
3160 and then Has_Volatile_Component
(Obj_Typ
)
3163 ("non-volatile object & cannot have volatile components",
3169 -- Analyze all external properties
3171 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Async_Readers
);
3173 if Present
(Prag
) then
3174 Analyze_External_Property_In_Decl_Part
(Prag
, AR_Val
);
3178 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Async_Writers
);
3180 if Present
(Prag
) then
3181 Analyze_External_Property_In_Decl_Part
(Prag
, AW_Val
);
3185 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Effective_Reads
);
3187 if Present
(Prag
) then
3188 Analyze_External_Property_In_Decl_Part
(Prag
, ER_Val
);
3192 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Effective_Writes
);
3194 if Present
(Prag
) then
3195 Analyze_External_Property_In_Decl_Part
(Prag
, EW_Val
);
3199 -- Verify the mutual interaction of the various external properties
3202 Check_External_Properties
(Obj_Id
, AR_Val
, AW_Val
, ER_Val
, EW_Val
);
3205 -- Check whether the lack of indicator Part_Of agrees with the
3206 -- placement of the variable with respect to the state space.
3208 Prag
:= Get_Pragma
(Obj_Id
, Pragma_Part_Of
);
3211 Check_Missing_Part_Of
(Obj_Id
);
3214 end Analyze_Object_Contract
;
3216 --------------------------------
3217 -- Analyze_Object_Declaration --
3218 --------------------------------
3220 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
3221 Loc
: constant Source_Ptr
:= Sloc
(N
);
3222 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3226 E
: Node_Id
:= Expression
(N
);
3227 -- E is set to Expression (N) throughout this routine. When
3228 -- Expression (N) is modified, E is changed accordingly.
3230 Prev_Entity
: Entity_Id
:= Empty
;
3232 function Count_Tasks
(T
: Entity_Id
) return Uint
;
3233 -- This function is called when a non-generic library level object of a
3234 -- task type is declared. Its function is to count the static number of
3235 -- tasks declared within the type (it is only called if Has_Tasks is set
3236 -- for T). As a side effect, if an array of tasks with non-static bounds
3237 -- or a variant record type is encountered, Check_Restrictions is called
3238 -- indicating the count is unknown.
3244 function Count_Tasks
(T
: Entity_Id
) return Uint
is
3250 if Is_Task_Type
(T
) then
3253 elsif Is_Record_Type
(T
) then
3254 if Has_Discriminants
(T
) then
3255 Check_Restriction
(Max_Tasks
, N
);
3260 C
:= First_Component
(T
);
3261 while Present
(C
) loop
3262 V
:= V
+ Count_Tasks
(Etype
(C
));
3269 elsif Is_Array_Type
(T
) then
3270 X
:= First_Index
(T
);
3271 V
:= Count_Tasks
(Component_Type
(T
));
3272 while Present
(X
) loop
3275 if not Is_OK_Static_Subtype
(C
) then
3276 Check_Restriction
(Max_Tasks
, N
);
3279 V
:= V
* (UI_Max
(Uint_0
,
3280 Expr_Value
(Type_High_Bound
(C
)) -
3281 Expr_Value
(Type_Low_Bound
(C
)) + Uint_1
));
3294 -- Start of processing for Analyze_Object_Declaration
3297 -- There are three kinds of implicit types generated by an
3298 -- object declaration:
3300 -- 1. Those generated by the original Object Definition
3302 -- 2. Those generated by the Expression
3304 -- 3. Those used to constrain the Object Definition with the
3305 -- expression constraints when the definition is unconstrained.
3307 -- They must be generated in this order to avoid order of elaboration
3308 -- issues. Thus the first step (after entering the name) is to analyze
3309 -- the object definition.
3311 if Constant_Present
(N
) then
3312 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
3314 if Present
(Prev_Entity
)
3316 -- If the homograph is an implicit subprogram, it is overridden
3317 -- by the current declaration.
3319 ((Is_Overloadable
(Prev_Entity
)
3320 and then Is_Inherited_Operation
(Prev_Entity
))
3322 -- The current object is a discriminal generated for an entry
3323 -- family index. Even though the index is a constant, in this
3324 -- particular context there is no true constant redeclaration.
3325 -- Enter_Name will handle the visibility.
3328 (Is_Discriminal
(Id
)
3329 and then Ekind
(Discriminal_Link
(Id
)) =
3330 E_Entry_Index_Parameter
)
3332 -- The current object is the renaming for a generic declared
3333 -- within the instance.
3336 (Ekind
(Prev_Entity
) = E_Package
3337 and then Nkind
(Parent
(Prev_Entity
)) =
3338 N_Package_Renaming_Declaration
3339 and then not Comes_From_Source
(Prev_Entity
)
3341 Is_Generic_Instance
(Renamed_Entity
(Prev_Entity
))))
3343 Prev_Entity
:= Empty
;
3347 if Present
(Prev_Entity
) then
3348 Constant_Redeclaration
(Id
, N
, T
);
3350 Generate_Reference
(Prev_Entity
, Id
, 'c');
3351 Set_Completion_Referenced
(Id
);
3353 if Error_Posted
(N
) then
3355 -- Type mismatch or illegal redeclaration, Do not analyze
3356 -- expression to avoid cascaded errors.
3358 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3360 Set_Ekind
(Id
, E_Variable
);
3364 -- In the normal case, enter identifier at the start to catch premature
3365 -- usage in the initialization expression.
3368 Generate_Definition
(Id
);
3371 Mark_Coextensions
(N
, Object_Definition
(N
));
3373 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3375 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
3377 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3378 and then Protected_Present
3379 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3381 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
3384 if Error_Posted
(Id
) then
3386 Set_Ekind
(Id
, E_Variable
);
3391 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3392 -- out some static checks
3394 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
3396 -- In case of aggregates we must also take care of the correct
3397 -- initialization of nested aggregates bug this is done at the
3398 -- point of the analysis of the aggregate (see sem_aggr.adb).
3400 if Present
(Expression
(N
))
3401 and then Nkind
(Expression
(N
)) = N_Aggregate
3407 Save_Typ
: constant Entity_Id
:= Etype
(Id
);
3409 Set_Etype
(Id
, T
); -- Temp. decoration for static checks
3410 Null_Exclusion_Static_Checks
(N
);
3411 Set_Etype
(Id
, Save_Typ
);
3416 -- Object is marked pure if it is in a pure scope
3418 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3420 -- If deferred constant, make sure context is appropriate. We detect
3421 -- a deferred constant as a constant declaration with no expression.
3422 -- A deferred constant can appear in a package body if its completion
3423 -- is by means of an interface pragma.
3425 if Constant_Present
(N
) and then No
(E
) then
3427 -- A deferred constant may appear in the declarative part of the
3428 -- following constructs:
3432 -- extended return statements
3435 -- subprogram bodies
3438 -- When declared inside a package spec, a deferred constant must be
3439 -- completed by a full constant declaration or pragma Import. In all
3440 -- other cases, the only proper completion is pragma Import. Extended
3441 -- return statements are flagged as invalid contexts because they do
3442 -- not have a declarative part and so cannot accommodate the pragma.
3444 if Ekind
(Current_Scope
) = E_Return_Statement
then
3446 ("invalid context for deferred constant declaration (RM 7.4)",
3449 ("\declaration requires an initialization expression",
3451 Set_Constant_Present
(N
, False);
3453 -- In Ada 83, deferred constant must be of private type
3455 elsif not Is_Private_Type
(T
) then
3456 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
3458 ("(Ada 83) deferred constant must be private type", N
);
3462 -- If not a deferred constant, then the object declaration freezes
3463 -- its type, unless the object is of an anonymous type and has delayed
3464 -- aspects. In that case the type is frozen when the object itself is.
3467 Check_Fully_Declared
(T
, N
);
3469 if Has_Delayed_Aspects
(Id
)
3470 and then Is_Array_Type
(T
)
3471 and then Is_Itype
(T
)
3473 Set_Has_Delayed_Freeze
(T
);
3475 Freeze_Before
(N
, T
);
3479 -- If the object was created by a constrained array definition, then
3480 -- set the link in both the anonymous base type and anonymous subtype
3481 -- that are built to represent the array type to point to the object.
3483 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
3484 N_Constrained_Array_Definition
3486 Set_Related_Array_Object
(T
, Id
);
3487 Set_Related_Array_Object
(Base_Type
(T
), Id
);
3490 -- Special checks for protected objects not at library level
3492 if Is_Protected_Type
(T
)
3493 and then not Is_Library_Level_Entity
(Id
)
3495 Check_Restriction
(No_Local_Protected_Objects
, Id
);
3497 -- Protected objects with interrupt handlers must be at library level
3499 -- Ada 2005: This test is not needed (and the corresponding clause
3500 -- in the RM is removed) because accessibility checks are sufficient
3501 -- to make handlers not at the library level illegal.
3503 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3504 -- applies to the '95 version of the language as well.
3506 if Has_Interrupt_Handler
(T
) and then Ada_Version
< Ada_95
then
3508 ("interrupt object can only be declared at library level", Id
);
3512 -- The actual subtype of the object is the nominal subtype, unless
3513 -- the nominal one is unconstrained and obtained from the expression.
3517 -- These checks should be performed before the initialization expression
3518 -- is considered, so that the Object_Definition node is still the same
3519 -- as in source code.
3521 -- In SPARK, the nominal subtype is always given by a subtype mark
3522 -- and must not be unconstrained. (The only exception to this is the
3523 -- acceptance of declarations of constants of type String.)
3526 Nkind_In
(Object_Definition
(N
), N_Identifier
, N_Expanded_Name
)
3528 Check_SPARK_05_Restriction
3529 ("subtype mark required", Object_Definition
(N
));
3531 elsif Is_Array_Type
(T
)
3532 and then not Is_Constrained
(T
)
3533 and then T
/= Standard_String
3535 Check_SPARK_05_Restriction
3536 ("subtype mark of constrained type expected",
3537 Object_Definition
(N
));
3540 -- There are no aliased objects in SPARK
3542 if Aliased_Present
(N
) then
3543 Check_SPARK_05_Restriction
("aliased object is not allowed", N
);
3546 -- Process initialization expression if present and not in error
3548 if Present
(E
) and then E
/= Error
then
3550 -- Generate an error in case of CPP class-wide object initialization.
3551 -- Required because otherwise the expansion of the class-wide
3552 -- assignment would try to use 'size to initialize the object
3553 -- (primitive that is not available in CPP tagged types).
3555 if Is_Class_Wide_Type
(Act_T
)
3557 (Is_CPP_Class
(Root_Type
(Etype
(Act_T
)))
3559 (Present
(Full_View
(Root_Type
(Etype
(Act_T
))))
3561 Is_CPP_Class
(Full_View
(Root_Type
(Etype
(Act_T
))))))
3564 ("predefined assignment not available for 'C'P'P tagged types",
3568 Mark_Coextensions
(N
, E
);
3571 -- In case of errors detected in the analysis of the expression,
3572 -- decorate it with the expected type to avoid cascaded errors
3574 if No
(Etype
(E
)) then
3578 -- If an initialization expression is present, then we set the
3579 -- Is_True_Constant flag. It will be reset if this is a variable
3580 -- and it is indeed modified.
3582 Set_Is_True_Constant
(Id
, True);
3584 -- If we are analyzing a constant declaration, set its completion
3585 -- flag after analyzing and resolving the expression.
3587 if Constant_Present
(N
) then
3588 Set_Has_Completion
(Id
);
3591 -- Set type and resolve (type may be overridden later on). Note:
3592 -- Ekind (Id) must still be E_Void at this point so that incorrect
3593 -- early usage within E is properly diagnosed.
3597 -- If the expression is an aggregate we must look ahead to detect
3598 -- the possible presence of an address clause, and defer resolution
3599 -- and expansion of the aggregate to the freeze point of the entity.
3601 if Comes_From_Source
(N
)
3602 and then Expander_Active
3603 and then Present
(Following_Address_Clause
(N
))
3604 and then Nkind
(E
) = N_Aggregate
3612 -- No further action needed if E is a call to an inlined function
3613 -- which returns an unconstrained type and it has been expanded into
3614 -- a procedure call. In that case N has been replaced by an object
3615 -- declaration without initializing expression and it has been
3616 -- analyzed (see Expand_Inlined_Call).
3618 if Back_End_Inlining
3619 and then Expander_Active
3620 and then Nkind
(E
) = N_Function_Call
3621 and then Nkind
(Name
(E
)) in N_Has_Entity
3622 and then Is_Inlined
(Entity
(Name
(E
)))
3623 and then not Is_Constrained
(Etype
(E
))
3624 and then Analyzed
(N
)
3625 and then No
(Expression
(N
))
3630 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3631 -- node (which was marked already-analyzed), we need to set the type
3632 -- to something other than Any_Access in order to keep gigi happy.
3634 if Etype
(E
) = Any_Access
then
3638 -- If the object is an access to variable, the initialization
3639 -- expression cannot be an access to constant.
3641 if Is_Access_Type
(T
)
3642 and then not Is_Access_Constant
(T
)
3643 and then Is_Access_Type
(Etype
(E
))
3644 and then Is_Access_Constant
(Etype
(E
))
3647 ("access to variable cannot be initialized with an "
3648 & "access-to-constant expression", E
);
3651 if not Assignment_OK
(N
) then
3652 Check_Initialization
(T
, E
);
3655 Check_Unset_Reference
(E
);
3657 -- If this is a variable, then set current value. If this is a
3658 -- declared constant of a scalar type with a static expression,
3659 -- indicate that it is always valid.
3661 if not Constant_Present
(N
) then
3662 if Compile_Time_Known_Value
(E
) then
3663 Set_Current_Value
(Id
, E
);
3666 elsif Is_Scalar_Type
(T
) and then Is_OK_Static_Expression
(E
) then
3667 Set_Is_Known_Valid
(Id
);
3670 -- Deal with setting of null flags
3672 if Is_Access_Type
(T
) then
3673 if Known_Non_Null
(E
) then
3674 Set_Is_Known_Non_Null
(Id
, True);
3675 elsif Known_Null
(E
) and then not Can_Never_Be_Null
(Id
) then
3676 Set_Is_Known_Null
(Id
, True);
3680 -- Check incorrect use of dynamically tagged expressions
3682 if Is_Tagged_Type
(T
) then
3683 Check_Dynamically_Tagged_Expression
3689 Apply_Scalar_Range_Check
(E
, T
);
3690 Apply_Static_Length_Check
(E
, T
);
3692 if Nkind
(Original_Node
(N
)) = N_Object_Declaration
3693 and then Comes_From_Source
(Original_Node
(N
))
3695 -- Only call test if needed
3697 and then Restriction_Check_Required
(SPARK_05
)
3698 and then not Is_SPARK_05_Initialization_Expr
(Original_Node
(E
))
3700 Check_SPARK_05_Restriction
3701 ("initialization expression is not appropriate", E
);
3704 -- A formal parameter of a specific tagged type whose related
3705 -- subprogram is subject to pragma Extensions_Visible with value
3706 -- "False" cannot be implicitly converted to a class-wide type by
3707 -- means of an initialization expression (SPARK RM 6.1.7(3)).
3709 if Is_Class_Wide_Type
(T
) and then Is_EVF_Expression
(E
) then
3711 ("formal parameter with Extensions_Visible False cannot be "
3712 & "implicitly converted to class-wide type", E
);
3716 -- If the No_Streams restriction is set, check that the type of the
3717 -- object is not, and does not contain, any subtype derived from
3718 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3719 -- Has_Stream just for efficiency reasons. There is no point in
3720 -- spending time on a Has_Stream check if the restriction is not set.
3722 if Restriction_Check_Required
(No_Streams
) then
3723 if Has_Stream
(T
) then
3724 Check_Restriction
(No_Streams
, N
);
3728 -- Deal with predicate check before we start to do major rewriting. It
3729 -- is OK to initialize and then check the initialized value, since the
3730 -- object goes out of scope if we get a predicate failure. Note that we
3731 -- do this in the analyzer and not the expander because the analyzer
3732 -- does some substantial rewriting in some cases.
3734 -- We need a predicate check if the type has predicates, and if either
3735 -- there is an initializing expression, or for default initialization
3736 -- when we have at least one case of an explicit default initial value
3737 -- and then this is not an internal declaration whose initialization
3738 -- comes later (as for an aggregate expansion).
3740 if not Suppress_Assignment_Checks
(N
)
3741 and then Present
(Predicate_Function
(T
))
3742 and then not No_Initialization
(N
)
3746 Is_Partially_Initialized_Type
(T
, Include_Implicit
=> False))
3748 -- If the type has a static predicate and the expression is known at
3749 -- compile time, see if the expression satisfies the predicate.
3752 Check_Expression_Against_Static_Predicate
(E
, T
);
3756 Make_Predicate_Check
(T
, New_Occurrence_Of
(Id
, Loc
)));
3759 -- Case of unconstrained type
3761 if Is_Indefinite_Subtype
(T
) then
3763 -- In SPARK, a declaration of unconstrained type is allowed
3764 -- only for constants of type string.
3766 if Is_String_Type
(T
) and then not Constant_Present
(N
) then
3767 Check_SPARK_05_Restriction
3768 ("declaration of object of unconstrained type not allowed", N
);
3771 -- Nothing to do in deferred constant case
3773 if Constant_Present
(N
) and then No
(E
) then
3776 -- Case of no initialization present
3779 if No_Initialization
(N
) then
3782 elsif Is_Class_Wide_Type
(T
) then
3784 ("initialization required in class-wide declaration ", N
);
3788 ("unconstrained subtype not allowed (need initialization)",
3789 Object_Definition
(N
));
3791 if Is_Record_Type
(T
) and then Has_Discriminants
(T
) then
3793 ("\provide initial value or explicit discriminant values",
3794 Object_Definition
(N
));
3797 ("\or give default discriminant values for type&",
3798 Object_Definition
(N
), T
);
3800 elsif Is_Array_Type
(T
) then
3802 ("\provide initial value or explicit array bounds",
3803 Object_Definition
(N
));
3807 -- Case of initialization present but in error. Set initial
3808 -- expression as absent (but do not make above complaints)
3810 elsif E
= Error
then
3811 Set_Expression
(N
, Empty
);
3814 -- Case of initialization present
3817 -- Check restrictions in Ada 83
3819 if not Constant_Present
(N
) then
3821 -- Unconstrained variables not allowed in Ada 83 mode
3823 if Ada_Version
= Ada_83
3824 and then Comes_From_Source
(Object_Definition
(N
))
3827 ("(Ada 83) unconstrained variable not allowed",
3828 Object_Definition
(N
));
3832 -- Now we constrain the variable from the initializing expression
3834 -- If the expression is an aggregate, it has been expanded into
3835 -- individual assignments. Retrieve the actual type from the
3836 -- expanded construct.
3838 if Is_Array_Type
(T
)
3839 and then No_Initialization
(N
)
3840 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3844 -- In case of class-wide interface object declarations we delay
3845 -- the generation of the equivalent record type declarations until
3846 -- its expansion because there are cases in they are not required.
3848 elsif Is_Interface
(T
) then
3851 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3852 -- we should prevent the generation of another Itype with the
3853 -- same name as the one already generated, or we end up with
3854 -- two identical types in GNATprove.
3856 elsif GNATprove_Mode
then
3859 -- If the type is an unchecked union, no subtype can be built from
3860 -- the expression. Rewrite declaration as a renaming, which the
3861 -- back-end can handle properly. This is a rather unusual case,
3862 -- because most unchecked_union declarations have default values
3863 -- for discriminants and are thus not indefinite.
3865 elsif Is_Unchecked_Union
(T
) then
3866 if Constant_Present
(N
) or else Nkind
(E
) = N_Function_Call
then
3867 Set_Ekind
(Id
, E_Constant
);
3869 Set_Ekind
(Id
, E_Variable
);
3873 Make_Object_Renaming_Declaration
(Loc
,
3874 Defining_Identifier
=> Id
,
3875 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
3878 Set_Renamed_Object
(Id
, E
);
3879 Freeze_Before
(N
, T
);
3884 Expand_Subtype_From_Expr
(N
, T
, Object_Definition
(N
), E
);
3885 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3888 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
3890 if Aliased_Present
(N
) then
3891 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
3894 Freeze_Before
(N
, Act_T
);
3895 Freeze_Before
(N
, T
);
3898 elsif Is_Array_Type
(T
)
3899 and then No_Initialization
(N
)
3900 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3902 if not Is_Entity_Name
(Object_Definition
(N
)) then
3904 Check_Compile_Time_Size
(Act_T
);
3906 if Aliased_Present
(N
) then
3907 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
3911 -- When the given object definition and the aggregate are specified
3912 -- independently, and their lengths might differ do a length check.
3913 -- This cannot happen if the aggregate is of the form (others =>...)
3915 if not Is_Constrained
(T
) then
3918 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
3920 -- Aggregate is statically illegal. Place back in declaration
3922 Set_Expression
(N
, E
);
3923 Set_No_Initialization
(N
, False);
3925 elsif T
= Etype
(E
) then
3928 elsif Nkind
(E
) = N_Aggregate
3929 and then Present
(Component_Associations
(E
))
3930 and then Present
(Choices
(First
(Component_Associations
(E
))))
3931 and then Nkind
(First
3932 (Choices
(First
(Component_Associations
(E
))))) = N_Others_Choice
3937 Apply_Length_Check
(E
, T
);
3940 -- If the type is limited unconstrained with defaulted discriminants and
3941 -- there is no expression, then the object is constrained by the
3942 -- defaults, so it is worthwhile building the corresponding subtype.
3944 elsif (Is_Limited_Record
(T
) or else Is_Concurrent_Type
(T
))
3945 and then not Is_Constrained
(T
)
3946 and then Has_Discriminants
(T
)
3949 Act_T
:= Build_Default_Subtype
(T
, N
);
3951 -- Ada 2005: A limited object may be initialized by means of an
3952 -- aggregate. If the type has default discriminants it has an
3953 -- unconstrained nominal type, Its actual subtype will be obtained
3954 -- from the aggregate, and not from the default discriminants.
3959 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
3961 elsif Nkind
(E
) = N_Function_Call
3962 and then Constant_Present
(N
)
3963 and then Has_Unconstrained_Elements
(Etype
(E
))
3965 -- The back-end has problems with constants of a discriminated type
3966 -- with defaults, if the initial value is a function call. We
3967 -- generate an intermediate temporary that will receive a reference
3968 -- to the result of the call. The initialization expression then
3969 -- becomes a dereference of that temporary.
3971 Remove_Side_Effects
(E
);
3973 -- If this is a constant declaration of an unconstrained type and
3974 -- the initialization is an aggregate, we can use the subtype of the
3975 -- aggregate for the declared entity because it is immutable.
3977 elsif not Is_Constrained
(T
)
3978 and then Has_Discriminants
(T
)
3979 and then Constant_Present
(N
)
3980 and then not Has_Unchecked_Union
(T
)
3981 and then Nkind
(E
) = N_Aggregate
3986 -- Check No_Wide_Characters restriction
3988 Check_Wide_Character_Restriction
(T
, Object_Definition
(N
));
3990 -- Indicate this is not set in source. Certainly true for constants, and
3991 -- true for variables so far (will be reset for a variable if and when
3992 -- we encounter a modification in the source).
3994 Set_Never_Set_In_Source
(Id
, True);
3996 -- Now establish the proper kind and type of the object
3998 if Constant_Present
(N
) then
3999 Set_Ekind
(Id
, E_Constant
);
4000 Set_Is_True_Constant
(Id
);
4003 Set_Ekind
(Id
, E_Variable
);
4005 -- A variable is set as shared passive if it appears in a shared
4006 -- passive package, and is at the outer level. This is not done for
4007 -- entities generated during expansion, because those are always
4008 -- manipulated locally.
4010 if Is_Shared_Passive
(Current_Scope
)
4011 and then Is_Library_Level_Entity
(Id
)
4012 and then Comes_From_Source
(Id
)
4014 Set_Is_Shared_Passive
(Id
);
4015 Check_Shared_Var
(Id
, T
, N
);
4018 -- Set Has_Initial_Value if initializing expression present. Note
4019 -- that if there is no initializing expression, we leave the state
4020 -- of this flag unchanged (usually it will be False, but notably in
4021 -- the case of exception choice variables, it will already be true).
4024 Set_Has_Initial_Value
(Id
, True);
4027 Set_Contract
(Id
, Make_Contract
(Sloc
(Id
)));
4030 -- Initialize alignment and size and capture alignment setting
4032 Init_Alignment
(Id
);
4034 Set_Optimize_Alignment_Flags
(Id
);
4036 -- Deal with aliased case
4038 if Aliased_Present
(N
) then
4039 Set_Is_Aliased
(Id
);
4041 -- If the object is aliased and the type is unconstrained with
4042 -- defaulted discriminants and there is no expression, then the
4043 -- object is constrained by the defaults, so it is worthwhile
4044 -- building the corresponding subtype.
4046 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4047 -- unconstrained, then only establish an actual subtype if the
4048 -- nominal subtype is indefinite. In definite cases the object is
4049 -- unconstrained in Ada 2005.
4052 and then Is_Record_Type
(T
)
4053 and then not Is_Constrained
(T
)
4054 and then Has_Discriminants
(T
)
4055 and then (Ada_Version
< Ada_2005
or else Is_Indefinite_Subtype
(T
))
4057 Set_Actual_Subtype
(Id
, Build_Default_Subtype
(T
, N
));
4061 -- Now we can set the type of the object
4063 Set_Etype
(Id
, Act_T
);
4065 -- Non-constant object is marked to be treated as volatile if type is
4066 -- volatile and we clear the Current_Value setting that may have been
4067 -- set above. Doing so for constants isn't required and might interfere
4068 -- with possible uses of the object as a static expression in contexts
4069 -- incompatible with volatility (e.g. as a case-statement alternative).
4071 if Ekind
(Id
) /= E_Constant
and then Treat_As_Volatile
(Etype
(Id
)) then
4072 Set_Treat_As_Volatile
(Id
);
4073 Set_Current_Value
(Id
, Empty
);
4076 -- Deal with controlled types
4078 if Has_Controlled_Component
(Etype
(Id
))
4079 or else Is_Controlled
(Etype
(Id
))
4081 if not Is_Library_Level_Entity
(Id
) then
4082 Check_Restriction
(No_Nested_Finalization
, N
);
4084 Validate_Controlled_Object
(Id
);
4088 if Has_Task
(Etype
(Id
)) then
4089 Check_Restriction
(No_Tasking
, N
);
4091 -- Deal with counting max tasks
4093 -- Nothing to do if inside a generic
4095 if Inside_A_Generic
then
4098 -- If library level entity, then count tasks
4100 elsif Is_Library_Level_Entity
(Id
) then
4101 Check_Restriction
(Max_Tasks
, N
, Count_Tasks
(Etype
(Id
)));
4103 -- If not library level entity, then indicate we don't know max
4104 -- tasks and also check task hierarchy restriction and blocking
4105 -- operation (since starting a task is definitely blocking).
4108 Check_Restriction
(Max_Tasks
, N
);
4109 Check_Restriction
(No_Task_Hierarchy
, N
);
4110 Check_Potentially_Blocking_Operation
(N
);
4113 -- A rather specialized test. If we see two tasks being declared
4114 -- of the same type in the same object declaration, and the task
4115 -- has an entry with an address clause, we know that program error
4116 -- will be raised at run time since we can't have two tasks with
4117 -- entries at the same address.
4119 if Is_Task_Type
(Etype
(Id
)) and then More_Ids
(N
) then
4124 E
:= First_Entity
(Etype
(Id
));
4125 while Present
(E
) loop
4126 if Ekind
(E
) = E_Entry
4127 and then Present
(Get_Attribute_Definition_Clause
4128 (E
, Attribute_Address
))
4130 Error_Msg_Warn
:= SPARK_Mode
/= On
;
4132 ("more than one task with same entry address<<", N
);
4133 Error_Msg_N
("\Program_Error [<<", N
);
4135 Make_Raise_Program_Error
(Loc
,
4136 Reason
=> PE_Duplicated_Entry_Address
));
4146 -- Some simple constant-propagation: if the expression is a constant
4147 -- string initialized with a literal, share the literal. This avoids
4151 and then Is_Entity_Name
(E
)
4152 and then Ekind
(Entity
(E
)) = E_Constant
4153 and then Base_Type
(Etype
(E
)) = Standard_String
4156 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
4158 if Present
(Val
) and then Nkind
(Val
) = N_String_Literal
then
4159 Rewrite
(E
, New_Copy
(Val
));
4164 -- Another optimization: if the nominal subtype is unconstrained and
4165 -- the expression is a function call that returns an unconstrained
4166 -- type, rewrite the declaration as a renaming of the result of the
4167 -- call. The exceptions below are cases where the copy is expected,
4168 -- either by the back end (Aliased case) or by the semantics, as for
4169 -- initializing controlled types or copying tags for classwide types.
4172 and then Nkind
(E
) = N_Explicit_Dereference
4173 and then Nkind
(Original_Node
(E
)) = N_Function_Call
4174 and then not Is_Library_Level_Entity
(Id
)
4175 and then not Is_Constrained
(Underlying_Type
(T
))
4176 and then not Is_Aliased
(Id
)
4177 and then not Is_Class_Wide_Type
(T
)
4178 and then not Is_Controlled
(T
)
4179 and then not Has_Controlled_Component
(Base_Type
(T
))
4180 and then Expander_Active
4183 Make_Object_Renaming_Declaration
(Loc
,
4184 Defining_Identifier
=> Id
,
4185 Access_Definition
=> Empty
,
4186 Subtype_Mark
=> New_Occurrence_Of
4187 (Base_Type
(Etype
(Id
)), Loc
),
4190 Set_Renamed_Object
(Id
, E
);
4192 -- Force generation of debugging information for the constant and for
4193 -- the renamed function call.
4195 Set_Debug_Info_Needed
(Id
);
4196 Set_Debug_Info_Needed
(Entity
(Prefix
(E
)));
4199 if Present
(Prev_Entity
)
4200 and then Is_Frozen
(Prev_Entity
)
4201 and then not Error_Posted
(Id
)
4203 Error_Msg_N
("full constant declaration appears too late", N
);
4206 Check_Eliminated
(Id
);
4208 -- Deal with setting In_Private_Part flag if in private part
4210 if Ekind
(Scope
(Id
)) = E_Package
and then In_Private_Part
(Scope
(Id
))
4212 Set_In_Private_Part
(Id
);
4215 -- Check for violation of No_Local_Timing_Events
4217 if Restriction_Check_Required
(No_Local_Timing_Events
)
4218 and then not Is_Library_Level_Entity
(Id
)
4219 and then Is_RTE
(Etype
(Id
), RE_Timing_Event
)
4221 Check_Restriction
(No_Local_Timing_Events
, N
);
4225 -- Initialize the refined state of a variable here because this is a
4226 -- common destination for legal and illegal object declarations.
4228 if Ekind
(Id
) = E_Variable
then
4229 Set_Encapsulating_State
(Id
, Empty
);
4232 if Has_Aspects
(N
) then
4233 Analyze_Aspect_Specifications
(N
, Id
);
4236 Analyze_Dimension
(N
);
4238 -- Verify whether the object declaration introduces an illegal hidden
4239 -- state within a package subject to a null abstract state.
4241 if Ekind
(Id
) = E_Variable
then
4242 Check_No_Hidden_State
(Id
);
4244 end Analyze_Object_Declaration
;
4246 ---------------------------
4247 -- Analyze_Others_Choice --
4248 ---------------------------
4250 -- Nothing to do for the others choice node itself, the semantic analysis
4251 -- of the others choice will occur as part of the processing of the parent
4253 procedure Analyze_Others_Choice
(N
: Node_Id
) is
4254 pragma Warnings
(Off
, N
);
4257 end Analyze_Others_Choice
;
4259 -------------------------------------------
4260 -- Analyze_Private_Extension_Declaration --
4261 -------------------------------------------
4263 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
4264 T
: constant Entity_Id
:= Defining_Identifier
(N
);
4265 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
4266 Parent_Type
: Entity_Id
;
4267 Parent_Base
: Entity_Id
;
4270 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4272 if Is_Non_Empty_List
(Interface_List
(N
)) then
4278 Intf
:= First
(Interface_List
(N
));
4279 while Present
(Intf
) loop
4280 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
4282 Diagnose_Interface
(Intf
, T
);
4288 Generate_Definition
(T
);
4290 -- For other than Ada 2012, just enter the name in the current scope
4292 if Ada_Version
< Ada_2012
then
4295 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4296 -- case of private type that completes an incomplete type.
4303 Prev
:= Find_Type_Name
(N
);
4305 pragma Assert
(Prev
= T
4306 or else (Ekind
(Prev
) = E_Incomplete_Type
4307 and then Present
(Full_View
(Prev
))
4308 and then Full_View
(Prev
) = T
));
4312 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
4313 Parent_Base
:= Base_Type
(Parent_Type
);
4315 if Parent_Type
= Any_Type
or else Etype
(Parent_Type
) = Any_Type
then
4316 Set_Ekind
(T
, Ekind
(Parent_Type
));
4317 Set_Etype
(T
, Any_Type
);
4320 elsif not Is_Tagged_Type
(Parent_Type
) then
4322 ("parent of type extension must be a tagged type ", Indic
);
4325 elsif Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
4326 Error_Msg_N
("premature derivation of incomplete type", Indic
);
4329 elsif Is_Concurrent_Type
(Parent_Type
) then
4331 ("parent type of a private extension cannot be "
4332 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
4334 Set_Etype
(T
, Any_Type
);
4335 Set_Ekind
(T
, E_Limited_Private_Type
);
4336 Set_Private_Dependents
(T
, New_Elmt_List
);
4337 Set_Error_Posted
(T
);
4341 -- Perhaps the parent type should be changed to the class-wide type's
4342 -- specific type in this case to prevent cascading errors ???
4344 if Is_Class_Wide_Type
(Parent_Type
) then
4346 ("parent of type extension must not be a class-wide type", Indic
);
4350 if (not Is_Package_Or_Generic_Package
(Current_Scope
)
4351 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
4352 or else In_Private_Part
(Current_Scope
)
4355 Error_Msg_N
("invalid context for private extension", N
);
4358 -- Set common attributes
4360 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
4361 Set_Scope
(T
, Current_Scope
);
4362 Set_Ekind
(T
, E_Record_Type_With_Private
);
4363 Init_Size_Align
(T
);
4364 Set_Default_SSO
(T
);
4366 Set_Etype
(T
, Parent_Base
);
4367 Set_Has_Task
(T
, Has_Task
(Parent_Base
));
4368 Set_Has_Protected
(T
, Has_Task
(Parent_Base
));
4370 Set_Convention
(T
, Convention
(Parent_Type
));
4371 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
4372 Set_Is_First_Subtype
(T
);
4373 Make_Class_Wide_Type
(T
);
4375 if Unknown_Discriminants_Present
(N
) then
4376 Set_Discriminant_Constraint
(T
, No_Elist
);
4379 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
4381 -- Propagate inherited invariant information. The new type has
4382 -- invariants, if the parent type has inheritable invariants,
4383 -- and these invariants can in turn be inherited.
4385 if Has_Inheritable_Invariants
(Parent_Type
) then
4386 Set_Has_Inheritable_Invariants
(T
);
4387 Set_Has_Invariants
(T
);
4390 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4391 -- synchronized formal derived type.
4393 if Ada_Version
>= Ada_2005
and then Synchronized_Present
(N
) then
4394 Set_Is_Limited_Record
(T
);
4396 -- Formal derived type case
4398 if Is_Generic_Type
(T
) then
4400 -- The parent must be a tagged limited type or a synchronized
4403 if (not Is_Tagged_Type
(Parent_Type
)
4404 or else not Is_Limited_Type
(Parent_Type
))
4406 (not Is_Interface
(Parent_Type
)
4407 or else not Is_Synchronized_Interface
(Parent_Type
))
4409 Error_Msg_NE
("parent type of & must be tagged limited " &
4410 "or synchronized", N
, T
);
4413 -- The progenitors (if any) must be limited or synchronized
4416 if Present
(Interfaces
(T
)) then
4419 Iface_Elmt
: Elmt_Id
;
4422 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
4423 while Present
(Iface_Elmt
) loop
4424 Iface
:= Node
(Iface_Elmt
);
4426 if not Is_Limited_Interface
(Iface
)
4427 and then not Is_Synchronized_Interface
(Iface
)
4429 Error_Msg_NE
("progenitor & must be limited " &
4430 "or synchronized", N
, Iface
);
4433 Next_Elmt
(Iface_Elmt
);
4438 -- Regular derived extension, the parent must be a limited or
4439 -- synchronized interface.
4442 if not Is_Interface
(Parent_Type
)
4443 or else (not Is_Limited_Interface
(Parent_Type
)
4444 and then not Is_Synchronized_Interface
(Parent_Type
))
4447 ("parent type of & must be limited interface", N
, T
);
4451 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4452 -- extension with a synchronized parent must be explicitly declared
4453 -- synchronized, because the full view will be a synchronized type.
4454 -- This must be checked before the check for limited types below,
4455 -- to ensure that types declared limited are not allowed to extend
4456 -- synchronized interfaces.
4458 elsif Is_Interface
(Parent_Type
)
4459 and then Is_Synchronized_Interface
(Parent_Type
)
4460 and then not Synchronized_Present
(N
)
4463 ("private extension of& must be explicitly synchronized",
4466 elsif Limited_Present
(N
) then
4467 Set_Is_Limited_Record
(T
);
4469 if not Is_Limited_Type
(Parent_Type
)
4471 (not Is_Interface
(Parent_Type
)
4472 or else not Is_Limited_Interface
(Parent_Type
))
4474 Error_Msg_NE
("parent type& of limited extension must be limited",
4480 if Has_Aspects
(N
) then
4481 Analyze_Aspect_Specifications
(N
, T
);
4483 end Analyze_Private_Extension_Declaration
;
4485 ---------------------------------
4486 -- Analyze_Subtype_Declaration --
4487 ---------------------------------
4489 procedure Analyze_Subtype_Declaration
4491 Skip
: Boolean := False)
4493 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
4495 R_Checks
: Check_Result
;
4498 Generate_Definition
(Id
);
4499 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
4500 Init_Size_Align
(Id
);
4502 -- The following guard condition on Enter_Name is to handle cases where
4503 -- the defining identifier has already been entered into the scope but
4504 -- the declaration as a whole needs to be analyzed.
4506 -- This case in particular happens for derived enumeration types. The
4507 -- derived enumeration type is processed as an inserted enumeration type
4508 -- declaration followed by a rewritten subtype declaration. The defining
4509 -- identifier, however, is entered into the name scope very early in the
4510 -- processing of the original type declaration and therefore needs to be
4511 -- avoided here, when the created subtype declaration is analyzed. (See
4512 -- Build_Derived_Types)
4514 -- This also happens when the full view of a private type is derived
4515 -- type with constraints. In this case the entity has been introduced
4516 -- in the private declaration.
4518 -- Finally this happens in some complex cases when validity checks are
4519 -- enabled, where the same subtype declaration may be analyzed twice.
4520 -- This can happen if the subtype is created by the pre-analysis of
4521 -- an attribute tht gives the range of a loop statement, and the loop
4522 -- itself appears within an if_statement that will be rewritten during
4526 or else (Present
(Etype
(Id
))
4527 and then (Is_Private_Type
(Etype
(Id
))
4528 or else Is_Task_Type
(Etype
(Id
))
4529 or else Is_Rewrite_Substitution
(N
)))
4533 elsif Current_Entity
(Id
) = Id
then
4540 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
4542 -- Class-wide equivalent types of records with unknown discriminants
4543 -- involve the generation of an itype which serves as the private view
4544 -- of a constrained record subtype. In such cases the base type of the
4545 -- current subtype we are processing is the private itype. Use the full
4546 -- of the private itype when decorating various attributes.
4549 and then Is_Private_Type
(T
)
4550 and then Present
(Full_View
(T
))
4555 -- Inherit common attributes
4557 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
4558 Set_Treat_As_Volatile
(Id
, Treat_As_Volatile
(T
));
4559 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
4560 Set_Convention
(Id
, Convention
(T
));
4562 -- If ancestor has predicates then so does the subtype, and in addition
4563 -- we must delay the freeze to properly arrange predicate inheritance.
4565 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4566 -- in which T = ID, so the above tests and assignments do nothing???
4568 if Has_Predicates
(T
)
4569 or else (Present
(Ancestor_Subtype
(T
))
4570 and then Has_Predicates
(Ancestor_Subtype
(T
)))
4572 Set_Has_Predicates
(Id
);
4573 Set_Has_Delayed_Freeze
(Id
);
4576 -- Subtype of Boolean cannot have a constraint in SPARK
4578 if Is_Boolean_Type
(T
)
4579 and then Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
4581 Check_SPARK_05_Restriction
4582 ("subtype of Boolean cannot have constraint", N
);
4585 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4587 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
4593 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
then
4594 One_Cstr
:= First
(Constraints
(Cstr
));
4595 while Present
(One_Cstr
) loop
4597 -- Index or discriminant constraint in SPARK must be a
4601 Nkind_In
(One_Cstr
, N_Identifier
, N_Expanded_Name
)
4603 Check_SPARK_05_Restriction
4604 ("subtype mark required", One_Cstr
);
4606 -- String subtype must have a lower bound of 1 in SPARK.
4607 -- Note that we do not need to test for the non-static case
4608 -- here, since that was already taken care of in
4609 -- Process_Range_Expr_In_Decl.
4611 elsif Base_Type
(T
) = Standard_String
then
4612 Get_Index_Bounds
(One_Cstr
, Low
, High
);
4614 if Is_OK_Static_Expression
(Low
)
4615 and then Expr_Value
(Low
) /= 1
4617 Check_SPARK_05_Restriction
4618 ("String subtype must have lower bound of 1", N
);
4628 -- In the case where there is no constraint given in the subtype
4629 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4630 -- semantic attributes must be established here.
4632 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
4633 Set_Etype
(Id
, Base_Type
(T
));
4635 -- Subtype of unconstrained array without constraint is not allowed
4638 if Is_Array_Type
(T
) and then not Is_Constrained
(T
) then
4639 Check_SPARK_05_Restriction
4640 ("subtype of unconstrained array must have constraint", N
);
4645 Set_Ekind
(Id
, E_Array_Subtype
);
4646 Copy_Array_Subtype_Attributes
(Id
, T
);
4648 when Decimal_Fixed_Point_Kind
=>
4649 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
4650 Set_Digits_Value
(Id
, Digits_Value
(T
));
4651 Set_Delta_Value
(Id
, Delta_Value
(T
));
4652 Set_Scale_Value
(Id
, Scale_Value
(T
));
4653 Set_Small_Value
(Id
, Small_Value
(T
));
4654 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4655 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
4656 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4657 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4658 Set_RM_Size
(Id
, RM_Size
(T
));
4660 when Enumeration_Kind
=>
4661 Set_Ekind
(Id
, E_Enumeration_Subtype
);
4662 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
4663 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4664 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
4665 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4666 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4667 Set_RM_Size
(Id
, RM_Size
(T
));
4668 Inherit_Predicate_Flags
(Id
, T
);
4670 when Ordinary_Fixed_Point_Kind
=>
4671 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
4672 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4673 Set_Small_Value
(Id
, Small_Value
(T
));
4674 Set_Delta_Value
(Id
, Delta_Value
(T
));
4675 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4676 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4677 Set_RM_Size
(Id
, RM_Size
(T
));
4680 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
4681 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4682 Set_Digits_Value
(Id
, Digits_Value
(T
));
4683 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4685 when Signed_Integer_Kind
=>
4686 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
4687 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4688 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4689 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4690 Set_RM_Size
(Id
, RM_Size
(T
));
4691 Inherit_Predicate_Flags
(Id
, T
);
4693 when Modular_Integer_Kind
=>
4694 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
4695 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4696 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4697 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4698 Set_RM_Size
(Id
, RM_Size
(T
));
4699 Inherit_Predicate_Flags
(Id
, T
);
4701 when Class_Wide_Kind
=>
4702 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
4703 Set_First_Entity
(Id
, First_Entity
(T
));
4704 Set_Last_Entity
(Id
, Last_Entity
(T
));
4705 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4706 Set_Cloned_Subtype
(Id
, T
);
4707 Set_Is_Tagged_Type
(Id
, True);
4708 Set_Has_Unknown_Discriminants
4710 Set_No_Tagged_Streams_Pragma
4711 (Id
, No_Tagged_Streams_Pragma
(T
));
4713 if Ekind
(T
) = E_Class_Wide_Subtype
then
4714 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
4717 when E_Record_Type | E_Record_Subtype
=>
4718 Set_Ekind
(Id
, E_Record_Subtype
);
4720 if Ekind
(T
) = E_Record_Subtype
4721 and then Present
(Cloned_Subtype
(T
))
4723 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
4725 Set_Cloned_Subtype
(Id
, T
);
4728 Set_First_Entity
(Id
, First_Entity
(T
));
4729 Set_Last_Entity
(Id
, Last_Entity
(T
));
4730 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4731 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4732 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4733 Set_Has_Implicit_Dereference
4734 (Id
, Has_Implicit_Dereference
(T
));
4735 Set_Has_Unknown_Discriminants
4736 (Id
, Has_Unknown_Discriminants
(T
));
4738 if Has_Discriminants
(T
) then
4739 Set_Discriminant_Constraint
4740 (Id
, Discriminant_Constraint
(T
));
4741 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4743 elsif Has_Unknown_Discriminants
(Id
) then
4744 Set_Discriminant_Constraint
(Id
, No_Elist
);
4747 if Is_Tagged_Type
(T
) then
4748 Set_Is_Tagged_Type
(Id
, True);
4749 Set_No_Tagged_Streams_Pragma
4750 (Id
, No_Tagged_Streams_Pragma
(T
));
4751 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4752 Set_Direct_Primitive_Operations
4753 (Id
, Direct_Primitive_Operations
(T
));
4754 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4756 if Is_Interface
(T
) then
4757 Set_Is_Interface
(Id
);
4758 Set_Is_Limited_Interface
(Id
, Is_Limited_Interface
(T
));
4762 when Private_Kind
=>
4763 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4764 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4765 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4766 Set_First_Entity
(Id
, First_Entity
(T
));
4767 Set_Last_Entity
(Id
, Last_Entity
(T
));
4768 Set_Private_Dependents
(Id
, New_Elmt_List
);
4769 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4770 Set_Has_Implicit_Dereference
4771 (Id
, Has_Implicit_Dereference
(T
));
4772 Set_Has_Unknown_Discriminants
4773 (Id
, Has_Unknown_Discriminants
(T
));
4774 Set_Known_To_Have_Preelab_Init
4775 (Id
, Known_To_Have_Preelab_Init
(T
));
4777 if Is_Tagged_Type
(T
) then
4778 Set_Is_Tagged_Type
(Id
);
4779 Set_No_Tagged_Streams_Pragma
(Id
,
4780 No_Tagged_Streams_Pragma
(T
));
4781 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4782 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4783 Set_Direct_Primitive_Operations
(Id
,
4784 Direct_Primitive_Operations
(T
));
4787 -- In general the attributes of the subtype of a private type
4788 -- are the attributes of the partial view of parent. However,
4789 -- the full view may be a discriminated type, and the subtype
4790 -- must share the discriminant constraint to generate correct
4791 -- calls to initialization procedures.
4793 if Has_Discriminants
(T
) then
4794 Set_Discriminant_Constraint
4795 (Id
, Discriminant_Constraint
(T
));
4796 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4798 elsif Present
(Full_View
(T
))
4799 and then Has_Discriminants
(Full_View
(T
))
4801 Set_Discriminant_Constraint
4802 (Id
, Discriminant_Constraint
(Full_View
(T
)));
4803 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4805 -- This would seem semantically correct, but apparently
4806 -- generates spurious errors about missing components ???
4808 -- Set_Has_Discriminants (Id);
4811 Prepare_Private_Subtype_Completion
(Id
, N
);
4813 -- If this is the subtype of a constrained private type with
4814 -- discriminants that has got a full view and we also have
4815 -- built a completion just above, show that the completion
4816 -- is a clone of the full view to the back-end.
4818 if Has_Discriminants
(T
)
4819 and then not Has_Unknown_Discriminants
(T
)
4820 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(T
))
4821 and then Present
(Full_View
(T
))
4822 and then Present
(Full_View
(Id
))
4824 Set_Cloned_Subtype
(Full_View
(Id
), Full_View
(T
));
4828 Set_Ekind
(Id
, E_Access_Subtype
);
4829 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4830 Set_Is_Access_Constant
4831 (Id
, Is_Access_Constant
(T
));
4832 Set_Directly_Designated_Type
4833 (Id
, Designated_Type
(T
));
4834 Set_Can_Never_Be_Null
(Id
, Can_Never_Be_Null
(T
));
4836 -- A Pure library_item must not contain the declaration of a
4837 -- named access type, except within a subprogram, generic
4838 -- subprogram, task unit, or protected unit, or if it has
4839 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4841 if Comes_From_Source
(Id
)
4842 and then In_Pure_Unit
4843 and then not In_Subprogram_Task_Protected_Unit
4844 and then not No_Pool_Assigned
(Id
)
4847 ("named access types not allowed in pure unit", N
);
4850 when Concurrent_Kind
=>
4851 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4852 Set_Corresponding_Record_Type
(Id
,
4853 Corresponding_Record_Type
(T
));
4854 Set_First_Entity
(Id
, First_Entity
(T
));
4855 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
4856 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4857 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4858 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
4859 Set_Last_Entity
(Id
, Last_Entity
(T
));
4861 if Is_Tagged_Type
(T
) then
4862 Set_No_Tagged_Streams_Pragma
4863 (Id
, No_Tagged_Streams_Pragma
(T
));
4866 if Has_Discriminants
(T
) then
4867 Set_Discriminant_Constraint
(Id
,
4868 Discriminant_Constraint
(T
));
4869 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4872 when E_Incomplete_Type
=>
4873 if Ada_Version
>= Ada_2005
then
4875 -- In Ada 2005 an incomplete type can be explicitly tagged:
4876 -- propagate indication.
4878 Set_Ekind
(Id
, E_Incomplete_Subtype
);
4879 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
4880 Set_Private_Dependents
(Id
, New_Elmt_List
);
4882 if Is_Tagged_Type
(Id
) then
4883 Set_No_Tagged_Streams_Pragma
4884 (Id
, No_Tagged_Streams_Pragma
(T
));
4887 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4888 -- incomplete type visible through a limited with clause.
4890 if From_Limited_With
(T
)
4891 and then Present
(Non_Limited_View
(T
))
4893 Set_From_Limited_With
(Id
);
4894 Set_Non_Limited_View
(Id
, Non_Limited_View
(T
));
4896 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4897 -- to the private dependents of the original incomplete
4898 -- type for future transformation.
4901 Append_Elmt
(Id
, Private_Dependents
(T
));
4904 -- If the subtype name denotes an incomplete type an error
4905 -- was already reported by Process_Subtype.
4908 Set_Etype
(Id
, Any_Type
);
4912 raise Program_Error
;
4916 if Etype
(Id
) = Any_Type
then
4920 -- Some common processing on all types
4922 Set_Size_Info
(Id
, T
);
4923 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
4925 -- If the parent type is a generic actual, so is the subtype. This may
4926 -- happen in a nested instance. Why Comes_From_Source test???
4928 if not Comes_From_Source
(N
) then
4929 Set_Is_Generic_Actual_Type
(Id
, Is_Generic_Actual_Type
(T
));
4934 Set_Is_Immediately_Visible
(Id
, True);
4935 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
4936 Set_Is_Descendent_Of_Address
(Id
, Is_Descendent_Of_Address
(T
));
4938 if Is_Interface
(T
) then
4939 Set_Is_Interface
(Id
);
4942 if Present
(Generic_Parent_Type
(N
))
4944 (Nkind
(Parent
(Generic_Parent_Type
(N
))) /=
4945 N_Formal_Type_Declaration
4946 or else Nkind
(Formal_Type_Definition
4947 (Parent
(Generic_Parent_Type
(N
)))) /=
4948 N_Formal_Private_Type_Definition
)
4950 if Is_Tagged_Type
(Id
) then
4952 -- If this is a generic actual subtype for a synchronized type,
4953 -- the primitive operations are those of the corresponding record
4954 -- for which there is a separate subtype declaration.
4956 if Is_Concurrent_Type
(Id
) then
4958 elsif Is_Class_Wide_Type
(Id
) then
4959 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
4961 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
4964 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
4965 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
4969 if Is_Private_Type
(T
) and then Present
(Full_View
(T
)) then
4970 Conditional_Delay
(Id
, Full_View
(T
));
4972 -- The subtypes of components or subcomponents of protected types
4973 -- do not need freeze nodes, which would otherwise appear in the
4974 -- wrong scope (before the freeze node for the protected type). The
4975 -- proper subtypes are those of the subcomponents of the corresponding
4978 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
4979 and then Present
(Scope
(Scope
(Id
))) -- error defense
4980 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
4982 Conditional_Delay
(Id
, T
);
4985 -- Check that Constraint_Error is raised for a scalar subtype indication
4986 -- when the lower or upper bound of a non-null range lies outside the
4987 -- range of the type mark.
4989 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4990 if Is_Scalar_Type
(Etype
(Id
))
4991 and then Scalar_Range
(Id
) /=
4992 Scalar_Range
(Etype
(Subtype_Mark
4993 (Subtype_Indication
(N
))))
4997 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
4999 -- In the array case, check compatibility for each index
5001 elsif Is_Array_Type
(Etype
(Id
)) and then Present
(First_Index
(Id
))
5003 -- This really should be a subprogram that finds the indications
5007 Subt_Index
: Node_Id
:= First_Index
(Id
);
5008 Target_Index
: Node_Id
:=
5010 (Subtype_Mark
(Subtype_Indication
(N
))));
5011 Has_Dyn_Chk
: Boolean := Has_Dynamic_Range_Check
(N
);
5014 while Present
(Subt_Index
) loop
5015 if ((Nkind
(Subt_Index
) = N_Identifier
5016 and then Ekind
(Entity
(Subt_Index
)) in Scalar_Kind
)
5017 or else Nkind
(Subt_Index
) = N_Subtype_Indication
)
5019 Nkind
(Scalar_Range
(Etype
(Subt_Index
))) = N_Range
5022 Target_Typ
: constant Entity_Id
:=
5023 Etype
(Target_Index
);
5027 (Scalar_Range
(Etype
(Subt_Index
)),
5030 Defining_Identifier
(N
));
5032 -- Reset Has_Dynamic_Range_Check on the subtype to
5033 -- prevent elision of the index check due to a dynamic
5034 -- check generated for a preceding index (needed since
5035 -- Insert_Range_Checks tries to avoid generating
5036 -- redundant checks on a given declaration).
5038 Set_Has_Dynamic_Range_Check
(N
, False);
5044 Sloc
(Defining_Identifier
(N
)));
5046 -- Record whether this index involved a dynamic check
5049 Has_Dyn_Chk
or else Has_Dynamic_Range_Check
(N
);
5053 Next_Index
(Subt_Index
);
5054 Next_Index
(Target_Index
);
5057 -- Finally, mark whether the subtype involves dynamic checks
5059 Set_Has_Dynamic_Range_Check
(N
, Has_Dyn_Chk
);
5064 -- A type invariant applies to any subtype in its scope, in particular
5065 -- to a generic actual.
5067 if Has_Invariants
(T
) and then In_Open_Scopes
(Scope
(T
)) then
5068 Set_Has_Invariants
(Id
);
5069 Set_Invariant_Procedure
(Id
, Invariant_Procedure
(T
));
5072 -- Make sure that generic actual types are properly frozen. The subtype
5073 -- is marked as a generic actual type when the enclosing instance is
5074 -- analyzed, so here we identify the subtype from the tree structure.
5077 and then Is_Generic_Actual_Type
(Id
)
5078 and then In_Instance
5079 and then not Comes_From_Source
(N
)
5080 and then Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
5081 and then Is_Frozen
(T
)
5083 Freeze_Before
(N
, Id
);
5086 Set_Optimize_Alignment_Flags
(Id
);
5087 Check_Eliminated
(Id
);
5090 if Has_Aspects
(N
) then
5091 Analyze_Aspect_Specifications
(N
, Id
);
5094 Analyze_Dimension
(N
);
5095 end Analyze_Subtype_Declaration
;
5097 --------------------------------
5098 -- Analyze_Subtype_Indication --
5099 --------------------------------
5101 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
5102 T
: constant Entity_Id
:= Subtype_Mark
(N
);
5103 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
5110 Set_Etype
(N
, Etype
(R
));
5111 Resolve
(R
, Entity
(T
));
5113 Set_Error_Posted
(R
);
5114 Set_Error_Posted
(T
);
5116 end Analyze_Subtype_Indication
;
5118 --------------------------
5119 -- Analyze_Variant_Part --
5120 --------------------------
5122 procedure Analyze_Variant_Part
(N
: Node_Id
) is
5123 Discr_Name
: Node_Id
;
5124 Discr_Type
: Entity_Id
;
5126 procedure Process_Variant
(A
: Node_Id
);
5127 -- Analyze declarations for a single variant
5129 package Analyze_Variant_Choices
is
5130 new Generic_Analyze_Choices
(Process_Variant
);
5131 use Analyze_Variant_Choices
;
5133 ---------------------
5134 -- Process_Variant --
5135 ---------------------
5137 procedure Process_Variant
(A
: Node_Id
) is
5138 CL
: constant Node_Id
:= Component_List
(A
);
5140 if not Null_Present
(CL
) then
5141 Analyze_Declarations
(Component_Items
(CL
));
5143 if Present
(Variant_Part
(CL
)) then
5144 Analyze
(Variant_Part
(CL
));
5147 end Process_Variant
;
5149 -- Start of processing for Analyze_Variant_Part
5152 Discr_Name
:= Name
(N
);
5153 Analyze
(Discr_Name
);
5155 -- If Discr_Name bad, get out (prevent cascaded errors)
5157 if Etype
(Discr_Name
) = Any_Type
then
5161 -- Check invalid discriminant in variant part
5163 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
5164 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
5167 Discr_Type
:= Etype
(Entity
(Discr_Name
));
5169 if not Is_Discrete_Type
(Discr_Type
) then
5171 ("discriminant in a variant part must be of a discrete type",
5176 -- Now analyze the choices, which also analyzes the declarations that
5177 -- are associated with each choice.
5179 Analyze_Choices
(Variants
(N
), Discr_Type
);
5181 -- Note: we used to instantiate and call Check_Choices here to check
5182 -- that the choices covered the discriminant, but it's too early to do
5183 -- that because of statically predicated subtypes, whose analysis may
5184 -- be deferred to their freeze point which may be as late as the freeze
5185 -- point of the containing record. So this call is now to be found in
5186 -- Freeze_Record_Declaration.
5188 end Analyze_Variant_Part
;
5190 ----------------------------
5191 -- Array_Type_Declaration --
5192 ----------------------------
5194 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
5195 Component_Def
: constant Node_Id
:= Component_Definition
(Def
);
5196 Component_Typ
: constant Node_Id
:= Subtype_Indication
(Component_Def
);
5197 Element_Type
: Entity_Id
;
5198 Implicit_Base
: Entity_Id
;
5200 Related_Id
: Entity_Id
:= Empty
;
5202 P
: constant Node_Id
:= Parent
(Def
);
5206 if Nkind
(Def
) = N_Constrained_Array_Definition
then
5207 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
5209 Index
:= First
(Subtype_Marks
(Def
));
5212 -- Find proper names for the implicit types which may be public. In case
5213 -- of anonymous arrays we use the name of the first object of that type
5217 Related_Id
:= Defining_Identifier
(P
);
5223 while Present
(Index
) loop
5226 -- Test for odd case of trying to index a type by the type itself
5228 if Is_Entity_Name
(Index
) and then Entity
(Index
) = T
then
5229 Error_Msg_N
("type& cannot be indexed by itself", Index
);
5230 Set_Entity
(Index
, Standard_Boolean
);
5231 Set_Etype
(Index
, Standard_Boolean
);
5234 -- Check SPARK restriction requiring a subtype mark
5236 if not Nkind_In
(Index
, N_Identifier
, N_Expanded_Name
) then
5237 Check_SPARK_05_Restriction
("subtype mark required", Index
);
5240 -- Add a subtype declaration for each index of private array type
5241 -- declaration whose etype is also private. For example:
5244 -- type Index is private;
5246 -- type Table is array (Index) of ...
5249 -- This is currently required by the expander for the internally
5250 -- generated equality subprogram of records with variant parts in
5251 -- which the etype of some component is such private type.
5253 if Ekind
(Current_Scope
) = E_Package
5254 and then In_Private_Part
(Current_Scope
)
5255 and then Has_Private_Declaration
(Etype
(Index
))
5258 Loc
: constant Source_Ptr
:= Sloc
(Def
);
5263 New_E
:= Make_Temporary
(Loc
, 'T');
5264 Set_Is_Internal
(New_E
);
5267 Make_Subtype_Declaration
(Loc
,
5268 Defining_Identifier
=> New_E
,
5269 Subtype_Indication
=>
5270 New_Occurrence_Of
(Etype
(Index
), Loc
));
5272 Insert_Before
(Parent
(Def
), Decl
);
5274 Set_Etype
(Index
, New_E
);
5276 -- If the index is a range the Entity attribute is not
5277 -- available. Example:
5280 -- type T is private;
5282 -- type T is new Natural;
5283 -- Table : array (T(1) .. T(10)) of Boolean;
5286 if Nkind
(Index
) /= N_Range
then
5287 Set_Entity
(Index
, New_E
);
5292 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
5294 -- Check error of subtype with predicate for index type
5296 Bad_Predicated_Subtype_Use
5297 ("subtype& has predicate, not allowed as index subtype",
5298 Index
, Etype
(Index
));
5300 -- Move to next index
5303 Nb_Index
:= Nb_Index
+ 1;
5306 -- Process subtype indication if one is present
5308 if Present
(Component_Typ
) then
5309 Element_Type
:= Process_Subtype
(Component_Typ
, P
, Related_Id
, 'C');
5311 Set_Etype
(Component_Typ
, Element_Type
);
5313 if not Nkind_In
(Component_Typ
, N_Identifier
, N_Expanded_Name
) then
5314 Check_SPARK_05_Restriction
5315 ("subtype mark required", Component_Typ
);
5318 -- Ada 2005 (AI-230): Access Definition case
5320 else pragma Assert
(Present
(Access_Definition
(Component_Def
)));
5322 -- Indicate that the anonymous access type is created by the
5323 -- array type declaration.
5325 Element_Type
:= Access_Definition
5327 N
=> Access_Definition
(Component_Def
));
5328 Set_Is_Local_Anonymous_Access
(Element_Type
);
5330 -- Propagate the parent. This field is needed if we have to generate
5331 -- the master_id associated with an anonymous access to task type
5332 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5334 Set_Parent
(Element_Type
, Parent
(T
));
5336 -- Ada 2005 (AI-230): In case of components that are anonymous access
5337 -- types the level of accessibility depends on the enclosing type
5340 Set_Scope
(Element_Type
, Current_Scope
); -- Ada 2005 (AI-230)
5342 -- Ada 2005 (AI-254)
5345 CD
: constant Node_Id
:=
5346 Access_To_Subprogram_Definition
5347 (Access_Definition
(Component_Def
));
5349 if Present
(CD
) and then Protected_Present
(CD
) then
5351 Replace_Anonymous_Access_To_Protected_Subprogram
(Def
);
5356 -- Constrained array case
5359 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
5362 if Nkind
(Def
) = N_Constrained_Array_Definition
then
5364 -- Establish Implicit_Base as unconstrained base type
5366 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
5368 Set_Etype
(Implicit_Base
, Implicit_Base
);
5369 Set_Scope
(Implicit_Base
, Current_Scope
);
5370 Set_Has_Delayed_Freeze
(Implicit_Base
);
5371 Set_Default_SSO
(Implicit_Base
);
5373 -- The constrained array type is a subtype of the unconstrained one
5375 Set_Ekind
(T
, E_Array_Subtype
);
5376 Init_Size_Align
(T
);
5377 Set_Etype
(T
, Implicit_Base
);
5378 Set_Scope
(T
, Current_Scope
);
5379 Set_Is_Constrained
(T
, True);
5380 Set_First_Index
(T
, First
(Discrete_Subtype_Definitions
(Def
)));
5381 Set_Has_Delayed_Freeze
(T
);
5383 -- Complete setup of implicit base type
5385 Set_First_Index
(Implicit_Base
, First_Index
(T
));
5386 Set_Component_Type
(Implicit_Base
, Element_Type
);
5387 Set_Has_Task
(Implicit_Base
, Has_Task
(Element_Type
));
5388 Set_Has_Protected
(Implicit_Base
, Has_Protected
(Element_Type
));
5389 Set_Component_Size
(Implicit_Base
, Uint_0
);
5390 Set_Packed_Array_Impl_Type
(Implicit_Base
, Empty
);
5391 Set_Has_Controlled_Component
5393 Has_Controlled_Component
(Element_Type
)
5394 or else Is_Controlled
(Element_Type
));
5395 Set_Finalize_Storage_Only
5396 (Implicit_Base
, Finalize_Storage_Only
5399 -- Unconstrained array case
5402 Set_Ekind
(T
, E_Array_Type
);
5403 Init_Size_Align
(T
);
5405 Set_Scope
(T
, Current_Scope
);
5406 Set_Component_Size
(T
, Uint_0
);
5407 Set_Is_Constrained
(T
, False);
5408 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
5409 Set_Has_Delayed_Freeze
(T
, True);
5410 Set_Has_Task
(T
, Has_Task
(Element_Type
));
5411 Set_Has_Protected
(T
, Has_Protected
(Element_Type
));
5412 Set_Has_Controlled_Component
(T
, Has_Controlled_Component
5415 Is_Controlled
(Element_Type
));
5416 Set_Finalize_Storage_Only
(T
, Finalize_Storage_Only
5418 Set_Default_SSO
(T
);
5421 -- Common attributes for both cases
5423 Set_Component_Type
(Base_Type
(T
), Element_Type
);
5424 Set_Packed_Array_Impl_Type
(T
, Empty
);
5426 if Aliased_Present
(Component_Definition
(Def
)) then
5427 Check_SPARK_05_Restriction
5428 ("aliased is not allowed", Component_Definition
(Def
));
5429 Set_Has_Aliased_Components
(Etype
(T
));
5432 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5433 -- array type to ensure that objects of this type are initialized.
5435 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(Element_Type
) then
5436 Set_Can_Never_Be_Null
(T
);
5438 if Null_Exclusion_Present
(Component_Definition
(Def
))
5440 -- No need to check itypes because in their case this check was
5441 -- done at their point of creation
5443 and then not Is_Itype
(Element_Type
)
5446 ("`NOT NULL` not allowed (null already excluded)",
5447 Subtype_Indication
(Component_Definition
(Def
)));
5451 Priv
:= Private_Component
(Element_Type
);
5453 if Present
(Priv
) then
5455 -- Check for circular definitions
5457 if Priv
= Any_Type
then
5458 Set_Component_Type
(Etype
(T
), Any_Type
);
5460 -- There is a gap in the visibility of operations on the composite
5461 -- type only if the component type is defined in a different scope.
5463 elsif Scope
(Priv
) = Current_Scope
then
5466 elsif Is_Limited_Type
(Priv
) then
5467 Set_Is_Limited_Composite
(Etype
(T
));
5468 Set_Is_Limited_Composite
(T
);
5470 Set_Is_Private_Composite
(Etype
(T
));
5471 Set_Is_Private_Composite
(T
);
5475 -- A syntax error in the declaration itself may lead to an empty index
5476 -- list, in which case do a minimal patch.
5478 if No
(First_Index
(T
)) then
5479 Error_Msg_N
("missing index definition in array type declaration", T
);
5482 Indexes
: constant List_Id
:=
5483 New_List
(New_Occurrence_Of
(Any_Id
, Sloc
(T
)));
5485 Set_Discrete_Subtype_Definitions
(Def
, Indexes
);
5486 Set_First_Index
(T
, First
(Indexes
));
5491 -- Create a concatenation operator for the new type. Internal array
5492 -- types created for packed entities do not need such, they are
5493 -- compatible with the user-defined type.
5495 if Number_Dimensions
(T
) = 1
5496 and then not Is_Packed_Array_Impl_Type
(T
)
5498 New_Concatenation_Op
(T
);
5501 -- In the case of an unconstrained array the parser has already verified
5502 -- that all the indexes are unconstrained but we still need to make sure
5503 -- that the element type is constrained.
5505 if Is_Indefinite_Subtype
(Element_Type
) then
5507 ("unconstrained element type in array declaration",
5508 Subtype_Indication
(Component_Def
));
5510 elsif Is_Abstract_Type
(Element_Type
) then
5512 ("the type of a component cannot be abstract",
5513 Subtype_Indication
(Component_Def
));
5516 -- There may be an invariant declared for the component type, but
5517 -- the construction of the component invariant checking procedure
5518 -- takes place during expansion.
5519 end Array_Type_Declaration
;
5521 ------------------------------------------------------
5522 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5523 ------------------------------------------------------
5525 function Replace_Anonymous_Access_To_Protected_Subprogram
5526 (N
: Node_Id
) return Entity_Id
5528 Loc
: constant Source_Ptr
:= Sloc
(N
);
5530 Curr_Scope
: constant Scope_Stack_Entry
:=
5531 Scope_Stack
.Table
(Scope_Stack
.Last
);
5533 Anon
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5536 -- Access definition in declaration
5539 -- Object definition or formal definition with an access definition
5542 -- Declaration of anonymous access to subprogram type
5545 -- Original specification in access to subprogram
5550 Set_Is_Internal
(Anon
);
5553 when N_Component_Declaration |
5554 N_Unconstrained_Array_Definition |
5555 N_Constrained_Array_Definition
=>
5556 Comp
:= Component_Definition
(N
);
5557 Acc
:= Access_Definition
(Comp
);
5559 when N_Discriminant_Specification
=>
5560 Comp
:= Discriminant_Type
(N
);
5563 when N_Parameter_Specification
=>
5564 Comp
:= Parameter_Type
(N
);
5567 when N_Access_Function_Definition
=>
5568 Comp
:= Result_Definition
(N
);
5571 when N_Object_Declaration
=>
5572 Comp
:= Object_Definition
(N
);
5575 when N_Function_Specification
=>
5576 Comp
:= Result_Definition
(N
);
5580 raise Program_Error
;
5583 Spec
:= Access_To_Subprogram_Definition
(Acc
);
5586 Make_Full_Type_Declaration
(Loc
,
5587 Defining_Identifier
=> Anon
,
5588 Type_Definition
=> Copy_Separate_Tree
(Spec
));
5590 Mark_Rewrite_Insertion
(Decl
);
5592 -- In ASIS mode, analyze the profile on the original node, because
5593 -- the separate copy does not provide enough links to recover the
5594 -- original tree. Analysis is limited to type annotations, within
5595 -- a temporary scope that serves as an anonymous subprogram to collect
5596 -- otherwise useless temporaries and itypes.
5600 Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5603 if Nkind
(Spec
) = N_Access_Function_Definition
then
5604 Set_Ekind
(Typ
, E_Function
);
5606 Set_Ekind
(Typ
, E_Procedure
);
5609 Set_Parent
(Typ
, N
);
5610 Set_Scope
(Typ
, Current_Scope
);
5613 Process_Formals
(Parameter_Specifications
(Spec
), Spec
);
5615 if Nkind
(Spec
) = N_Access_Function_Definition
then
5617 Def
: constant Node_Id
:= Result_Definition
(Spec
);
5620 -- The result might itself be an anonymous access type, so
5623 if Nkind
(Def
) = N_Access_Definition
then
5624 if Present
(Access_To_Subprogram_Definition
(Def
)) then
5627 Replace_Anonymous_Access_To_Protected_Subprogram
5630 Find_Type
(Subtype_Mark
(Def
));
5643 -- Insert the new declaration in the nearest enclosing scope. If the
5644 -- node is a body and N is its return type, the declaration belongs in
5645 -- the enclosing scope.
5649 if Nkind
(P
) = N_Subprogram_Body
5650 and then Nkind
(N
) = N_Function_Specification
5655 while Present
(P
) and then not Has_Declarations
(P
) loop
5659 pragma Assert
(Present
(P
));
5661 if Nkind
(P
) = N_Package_Specification
then
5662 Prepend
(Decl
, Visible_Declarations
(P
));
5664 Prepend
(Decl
, Declarations
(P
));
5667 -- Replace the anonymous type with an occurrence of the new declaration.
5668 -- In all cases the rewritten node does not have the null-exclusion
5669 -- attribute because (if present) it was already inherited by the
5670 -- anonymous entity (Anon). Thus, in case of components we do not
5671 -- inherit this attribute.
5673 if Nkind
(N
) = N_Parameter_Specification
then
5674 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5675 Set_Etype
(Defining_Identifier
(N
), Anon
);
5676 Set_Null_Exclusion_Present
(N
, False);
5678 elsif Nkind
(N
) = N_Object_Declaration
then
5679 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5680 Set_Etype
(Defining_Identifier
(N
), Anon
);
5682 elsif Nkind
(N
) = N_Access_Function_Definition
then
5683 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5685 elsif Nkind
(N
) = N_Function_Specification
then
5686 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5687 Set_Etype
(Defining_Unit_Name
(N
), Anon
);
5691 Make_Component_Definition
(Loc
,
5692 Subtype_Indication
=> New_Occurrence_Of
(Anon
, Loc
)));
5695 Mark_Rewrite_Insertion
(Comp
);
5697 if Nkind_In
(N
, N_Object_Declaration
, N_Access_Function_Definition
) then
5701 -- Temporarily remove the current scope (record or subprogram) from
5702 -- the stack to add the new declarations to the enclosing scope.
5704 Scope_Stack
.Decrement_Last
;
5706 Set_Is_Itype
(Anon
);
5707 Scope_Stack
.Append
(Curr_Scope
);
5710 Set_Ekind
(Anon
, E_Anonymous_Access_Protected_Subprogram_Type
);
5711 Set_Can_Use_Internal_Rep
(Anon
, not Always_Compatible_Rep_On_Target
);
5713 end Replace_Anonymous_Access_To_Protected_Subprogram
;
5715 -------------------------------
5716 -- Build_Derived_Access_Type --
5717 -------------------------------
5719 procedure Build_Derived_Access_Type
5721 Parent_Type
: Entity_Id
;
5722 Derived_Type
: Entity_Id
)
5724 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
5726 Desig_Type
: Entity_Id
;
5728 Discr_Con_Elist
: Elist_Id
;
5729 Discr_Con_El
: Elmt_Id
;
5733 -- Set the designated type so it is available in case this is an access
5734 -- to a self-referential type, e.g. a standard list type with a next
5735 -- pointer. Will be reset after subtype is built.
5737 Set_Directly_Designated_Type
5738 (Derived_Type
, Designated_Type
(Parent_Type
));
5740 Subt
:= Process_Subtype
(S
, N
);
5742 if Nkind
(S
) /= N_Subtype_Indication
5743 and then Subt
/= Base_Type
(Subt
)
5745 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
5748 if Ekind
(Derived_Type
) = E_Access_Subtype
then
5750 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5751 Ibase
: constant Entity_Id
:=
5752 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
5753 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
5754 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
5757 Copy_Node
(Pbase
, Ibase
);
5759 Set_Chars
(Ibase
, Svg_Chars
);
5760 Set_Next_Entity
(Ibase
, Svg_Next_E
);
5761 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
5762 Set_Scope
(Ibase
, Scope
(Derived_Type
));
5763 Set_Freeze_Node
(Ibase
, Empty
);
5764 Set_Is_Frozen
(Ibase
, False);
5765 Set_Comes_From_Source
(Ibase
, False);
5766 Set_Is_First_Subtype
(Ibase
, False);
5768 Set_Etype
(Ibase
, Pbase
);
5769 Set_Etype
(Derived_Type
, Ibase
);
5773 Set_Directly_Designated_Type
5774 (Derived_Type
, Designated_Type
(Subt
));
5776 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
5777 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
5778 Set_Size_Info
(Derived_Type
, Parent_Type
);
5779 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
5780 Set_Depends_On_Private
(Derived_Type
,
5781 Has_Private_Component
(Derived_Type
));
5782 Conditional_Delay
(Derived_Type
, Subt
);
5784 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5785 -- that it is not redundant.
5787 if Null_Exclusion_Present
(Type_Definition
(N
)) then
5788 Set_Can_Never_Be_Null
(Derived_Type
);
5790 -- What is with the "AND THEN FALSE" here ???
5792 if Can_Never_Be_Null
(Parent_Type
)
5796 ("`NOT NULL` not allowed (& already excludes null)",
5800 elsif Can_Never_Be_Null
(Parent_Type
) then
5801 Set_Can_Never_Be_Null
(Derived_Type
);
5804 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5805 -- the root type for this information.
5807 -- Apply range checks to discriminants for derived record case
5808 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5810 Desig_Type
:= Designated_Type
(Derived_Type
);
5811 if Is_Composite_Type
(Desig_Type
)
5812 and then (not Is_Array_Type
(Desig_Type
))
5813 and then Has_Discriminants
(Desig_Type
)
5814 and then Base_Type
(Desig_Type
) /= Desig_Type
5816 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
5817 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
5819 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
5820 while Present
(Discr_Con_El
) loop
5821 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
5822 Next_Elmt
(Discr_Con_El
);
5823 Next_Discriminant
(Discr
);
5826 end Build_Derived_Access_Type
;
5828 ------------------------------
5829 -- Build_Derived_Array_Type --
5830 ------------------------------
5832 procedure Build_Derived_Array_Type
5834 Parent_Type
: Entity_Id
;
5835 Derived_Type
: Entity_Id
)
5837 Loc
: constant Source_Ptr
:= Sloc
(N
);
5838 Tdef
: constant Node_Id
:= Type_Definition
(N
);
5839 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
5840 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5841 Implicit_Base
: Entity_Id
;
5842 New_Indic
: Node_Id
;
5844 procedure Make_Implicit_Base
;
5845 -- If the parent subtype is constrained, the derived type is a subtype
5846 -- of an implicit base type derived from the parent base.
5848 ------------------------
5849 -- Make_Implicit_Base --
5850 ------------------------
5852 procedure Make_Implicit_Base
is
5855 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
5857 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
5858 Set_Etype
(Implicit_Base
, Parent_Base
);
5860 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
5861 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
5863 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
5864 end Make_Implicit_Base
;
5866 -- Start of processing for Build_Derived_Array_Type
5869 if not Is_Constrained
(Parent_Type
) then
5870 if Nkind
(Indic
) /= N_Subtype_Indication
then
5871 Set_Ekind
(Derived_Type
, E_Array_Type
);
5873 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
5874 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
5876 Set_Has_Delayed_Freeze
(Derived_Type
, True);
5880 Set_Etype
(Derived_Type
, Implicit_Base
);
5883 Make_Subtype_Declaration
(Loc
,
5884 Defining_Identifier
=> Derived_Type
,
5885 Subtype_Indication
=>
5886 Make_Subtype_Indication
(Loc
,
5887 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
5888 Constraint
=> Constraint
(Indic
)));
5890 Rewrite
(N
, New_Indic
);
5895 if Nkind
(Indic
) /= N_Subtype_Indication
then
5898 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
5899 Set_Etype
(Derived_Type
, Implicit_Base
);
5900 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
5903 Error_Msg_N
("illegal constraint on constrained type", Indic
);
5907 -- If parent type is not a derived type itself, and is declared in
5908 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5909 -- the new type's concatenation operator since Derive_Subprograms
5910 -- will not inherit the parent's operator. If the parent type is
5911 -- unconstrained, the operator is of the unconstrained base type.
5913 if Number_Dimensions
(Parent_Type
) = 1
5914 and then not Is_Limited_Type
(Parent_Type
)
5915 and then not Is_Derived_Type
(Parent_Type
)
5916 and then not Is_Package_Or_Generic_Package
5917 (Scope
(Base_Type
(Parent_Type
)))
5919 if not Is_Constrained
(Parent_Type
)
5920 and then Is_Constrained
(Derived_Type
)
5922 New_Concatenation_Op
(Implicit_Base
);
5924 New_Concatenation_Op
(Derived_Type
);
5927 end Build_Derived_Array_Type
;
5929 -----------------------------------
5930 -- Build_Derived_Concurrent_Type --
5931 -----------------------------------
5933 procedure Build_Derived_Concurrent_Type
5935 Parent_Type
: Entity_Id
;
5936 Derived_Type
: Entity_Id
)
5938 Loc
: constant Source_Ptr
:= Sloc
(N
);
5940 Corr_Record
: constant Entity_Id
:= Make_Temporary
(Loc
, 'C');
5941 Corr_Decl
: Node_Id
;
5942 Corr_Decl_Needed
: Boolean;
5943 -- If the derived type has fewer discriminants than its parent, the
5944 -- corresponding record is also a derived type, in order to account for
5945 -- the bound discriminants. We create a full type declaration for it in
5948 Constraint_Present
: constant Boolean :=
5949 Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
5950 N_Subtype_Indication
;
5952 D_Constraint
: Node_Id
;
5953 New_Constraint
: Elist_Id
;
5954 Old_Disc
: Entity_Id
;
5955 New_Disc
: Entity_Id
;
5959 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
5960 Corr_Decl_Needed
:= False;
5963 if Present
(Discriminant_Specifications
(N
))
5964 and then Constraint_Present
5966 Old_Disc
:= First_Discriminant
(Parent_Type
);
5967 New_Disc
:= First
(Discriminant_Specifications
(N
));
5968 while Present
(New_Disc
) and then Present
(Old_Disc
) loop
5969 Next_Discriminant
(Old_Disc
);
5974 if Present
(Old_Disc
) and then Expander_Active
then
5976 -- The new type has fewer discriminants, so we need to create a new
5977 -- corresponding record, which is derived from the corresponding
5978 -- record of the parent, and has a stored constraint that captures
5979 -- the values of the discriminant constraints. The corresponding
5980 -- record is needed only if expander is active and code generation is
5983 -- The type declaration for the derived corresponding record has the
5984 -- same discriminant part and constraints as the current declaration.
5985 -- Copy the unanalyzed tree to build declaration.
5987 Corr_Decl_Needed
:= True;
5988 New_N
:= Copy_Separate_Tree
(N
);
5991 Make_Full_Type_Declaration
(Loc
,
5992 Defining_Identifier
=> Corr_Record
,
5993 Discriminant_Specifications
=>
5994 Discriminant_Specifications
(New_N
),
5996 Make_Derived_Type_Definition
(Loc
,
5997 Subtype_Indication
=>
5998 Make_Subtype_Indication
(Loc
,
6001 (Corresponding_Record_Type
(Parent_Type
), Loc
),
6004 (Subtype_Indication
(Type_Definition
(New_N
))))));
6007 -- Copy Storage_Size and Relative_Deadline variables if task case
6009 if Is_Task_Type
(Parent_Type
) then
6010 Set_Storage_Size_Variable
(Derived_Type
,
6011 Storage_Size_Variable
(Parent_Type
));
6012 Set_Relative_Deadline_Variable
(Derived_Type
,
6013 Relative_Deadline_Variable
(Parent_Type
));
6016 if Present
(Discriminant_Specifications
(N
)) then
6017 Push_Scope
(Derived_Type
);
6018 Check_Or_Process_Discriminants
(N
, Derived_Type
);
6020 if Constraint_Present
then
6022 Expand_To_Stored_Constraint
6024 Build_Discriminant_Constraints
6026 Subtype_Indication
(Type_Definition
(N
)), True));
6031 elsif Constraint_Present
then
6033 -- Build constrained subtype, copying the constraint, and derive
6034 -- from it to create a derived constrained type.
6037 Loc
: constant Source_Ptr
:= Sloc
(N
);
6038 Anon
: constant Entity_Id
:=
6039 Make_Defining_Identifier
(Loc
,
6040 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'T'));
6045 Make_Subtype_Declaration
(Loc
,
6046 Defining_Identifier
=> Anon
,
6047 Subtype_Indication
=>
6048 New_Copy_Tree
(Subtype_Indication
(Type_Definition
(N
))));
6049 Insert_Before
(N
, Decl
);
6052 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
6053 New_Occurrence_Of
(Anon
, Loc
));
6054 Set_Analyzed
(Derived_Type
, False);
6060 -- By default, operations and private data are inherited from parent.
6061 -- However, in the presence of bound discriminants, a new corresponding
6062 -- record will be created, see below.
6064 Set_Has_Discriminants
6065 (Derived_Type
, Has_Discriminants
(Parent_Type
));
6066 Set_Corresponding_Record_Type
6067 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
6069 -- Is_Constrained is set according the parent subtype, but is set to
6070 -- False if the derived type is declared with new discriminants.
6074 (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
6075 and then not Present
(Discriminant_Specifications
(N
)));
6077 if Constraint_Present
then
6078 if not Has_Discriminants
(Parent_Type
) then
6079 Error_Msg_N
("untagged parent must have discriminants", N
);
6081 elsif Present
(Discriminant_Specifications
(N
)) then
6083 -- Verify that new discriminants are used to constrain old ones
6088 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
6090 Old_Disc
:= First_Discriminant
(Parent_Type
);
6092 while Present
(D_Constraint
) loop
6093 if Nkind
(D_Constraint
) /= N_Discriminant_Association
then
6095 -- Positional constraint. If it is a reference to a new
6096 -- discriminant, it constrains the corresponding old one.
6098 if Nkind
(D_Constraint
) = N_Identifier
then
6099 New_Disc
:= First_Discriminant
(Derived_Type
);
6100 while Present
(New_Disc
) loop
6101 exit when Chars
(New_Disc
) = Chars
(D_Constraint
);
6102 Next_Discriminant
(New_Disc
);
6105 if Present
(New_Disc
) then
6106 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
6110 Next_Discriminant
(Old_Disc
);
6112 -- if this is a named constraint, search by name for the old
6113 -- discriminants constrained by the new one.
6115 elsif Nkind
(Expression
(D_Constraint
)) = N_Identifier
then
6117 -- Find new discriminant with that name
6119 New_Disc
:= First_Discriminant
(Derived_Type
);
6120 while Present
(New_Disc
) loop
6122 Chars
(New_Disc
) = Chars
(Expression
(D_Constraint
));
6123 Next_Discriminant
(New_Disc
);
6126 if Present
(New_Disc
) then
6128 -- Verify that new discriminant renames some discriminant
6129 -- of the parent type, and associate the new discriminant
6130 -- with one or more old ones that it renames.
6136 Selector
:= First
(Selector_Names
(D_Constraint
));
6137 while Present
(Selector
) loop
6138 Old_Disc
:= First_Discriminant
(Parent_Type
);
6139 while Present
(Old_Disc
) loop
6140 exit when Chars
(Old_Disc
) = Chars
(Selector
);
6141 Next_Discriminant
(Old_Disc
);
6144 if Present
(Old_Disc
) then
6145 Set_Corresponding_Discriminant
6146 (New_Disc
, Old_Disc
);
6155 Next
(D_Constraint
);
6158 New_Disc
:= First_Discriminant
(Derived_Type
);
6159 while Present
(New_Disc
) loop
6160 if No
(Corresponding_Discriminant
(New_Disc
)) then
6162 ("new discriminant& must constrain old one", N
, New_Disc
);
6165 Subtypes_Statically_Compatible
6167 Etype
(Corresponding_Discriminant
(New_Disc
)))
6170 ("& not statically compatible with parent discriminant",
6174 Next_Discriminant
(New_Disc
);
6178 elsif Present
(Discriminant_Specifications
(N
)) then
6180 ("missing discriminant constraint in untagged derivation", N
);
6183 -- The entity chain of the derived type includes the new discriminants
6184 -- but shares operations with the parent.
6186 if Present
(Discriminant_Specifications
(N
)) then
6187 Old_Disc
:= First_Discriminant
(Parent_Type
);
6188 while Present
(Old_Disc
) loop
6189 if No
(Next_Entity
(Old_Disc
))
6190 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
6193 (Last_Entity
(Derived_Type
), Next_Entity
(Old_Disc
));
6197 Next_Discriminant
(Old_Disc
);
6201 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
6202 if Has_Discriminants
(Parent_Type
) then
6203 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6204 Set_Discriminant_Constraint
(
6205 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
6209 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
6211 Set_Has_Completion
(Derived_Type
);
6213 if Corr_Decl_Needed
then
6214 Set_Stored_Constraint
(Derived_Type
, New_Constraint
);
6215 Insert_After
(N
, Corr_Decl
);
6216 Analyze
(Corr_Decl
);
6217 Set_Corresponding_Record_Type
(Derived_Type
, Corr_Record
);
6219 end Build_Derived_Concurrent_Type
;
6221 ------------------------------------
6222 -- Build_Derived_Enumeration_Type --
6223 ------------------------------------
6225 procedure Build_Derived_Enumeration_Type
6227 Parent_Type
: Entity_Id
;
6228 Derived_Type
: Entity_Id
)
6230 Loc
: constant Source_Ptr
:= Sloc
(N
);
6231 Def
: constant Node_Id
:= Type_Definition
(N
);
6232 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
6233 Implicit_Base
: Entity_Id
;
6234 Literal
: Entity_Id
;
6235 New_Lit
: Entity_Id
;
6236 Literals_List
: List_Id
;
6237 Type_Decl
: Node_Id
;
6239 Rang_Expr
: Node_Id
;
6242 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6243 -- not have explicit literals lists we need to process types derived
6244 -- from them specially. This is handled by Derived_Standard_Character.
6245 -- If the parent type is a generic type, there are no literals either,
6246 -- and we construct the same skeletal representation as for the generic
6249 if Is_Standard_Character_Type
(Parent_Type
) then
6250 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
6252 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
6258 if Nkind
(Indic
) /= N_Subtype_Indication
then
6260 Make_Attribute_Reference
(Loc
,
6261 Attribute_Name
=> Name_First
,
6262 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
6263 Set_Etype
(Lo
, Derived_Type
);
6266 Make_Attribute_Reference
(Loc
,
6267 Attribute_Name
=> Name_Last
,
6268 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
6269 Set_Etype
(Hi
, Derived_Type
);
6271 Set_Scalar_Range
(Derived_Type
,
6277 -- Analyze subtype indication and verify compatibility
6278 -- with parent type.
6280 if Base_Type
(Process_Subtype
(Indic
, N
)) /=
6281 Base_Type
(Parent_Type
)
6284 ("illegal constraint for formal discrete type", N
);
6290 -- If a constraint is present, analyze the bounds to catch
6291 -- premature usage of the derived literals.
6293 if Nkind
(Indic
) = N_Subtype_Indication
6294 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
6296 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
6297 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
6300 -- Introduce an implicit base type for the derived type even if there
6301 -- is no constraint attached to it, since this seems closer to the
6302 -- Ada semantics. Build a full type declaration tree for the derived
6303 -- type using the implicit base type as the defining identifier. The
6304 -- build a subtype declaration tree which applies the constraint (if
6305 -- any) have it replace the derived type declaration.
6307 Literal
:= First_Literal
(Parent_Type
);
6308 Literals_List
:= New_List
;
6309 while Present
(Literal
)
6310 and then Ekind
(Literal
) = E_Enumeration_Literal
6312 -- Literals of the derived type have the same representation as
6313 -- those of the parent type, but this representation can be
6314 -- overridden by an explicit representation clause. Indicate
6315 -- that there is no explicit representation given yet. These
6316 -- derived literals are implicit operations of the new type,
6317 -- and can be overridden by explicit ones.
6319 if Nkind
(Literal
) = N_Defining_Character_Literal
then
6321 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
6323 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
6326 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
6327 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
6328 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
6329 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
6330 Set_Alias
(New_Lit
, Literal
);
6331 Set_Is_Known_Valid
(New_Lit
, True);
6333 Append
(New_Lit
, Literals_List
);
6334 Next_Literal
(Literal
);
6338 Make_Defining_Identifier
(Sloc
(Derived_Type
),
6339 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'B'));
6341 -- Indicate the proper nature of the derived type. This must be done
6342 -- before analysis of the literals, to recognize cases when a literal
6343 -- may be hidden by a previous explicit function definition (cf.
6346 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
6347 Set_Etype
(Derived_Type
, Implicit_Base
);
6350 Make_Full_Type_Declaration
(Loc
,
6351 Defining_Identifier
=> Implicit_Base
,
6352 Discriminant_Specifications
=> No_List
,
6354 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
6356 Mark_Rewrite_Insertion
(Type_Decl
);
6357 Insert_Before
(N
, Type_Decl
);
6358 Analyze
(Type_Decl
);
6360 -- After the implicit base is analyzed its Etype needs to be changed
6361 -- to reflect the fact that it is derived from the parent type which
6362 -- was ignored during analysis. We also set the size at this point.
6364 Set_Etype
(Implicit_Base
, Parent_Type
);
6366 Set_Size_Info
(Implicit_Base
, Parent_Type
);
6367 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
6368 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
6370 -- Copy other flags from parent type
6372 Set_Has_Non_Standard_Rep
6373 (Implicit_Base
, Has_Non_Standard_Rep
6375 Set_Has_Pragma_Ordered
6376 (Implicit_Base
, Has_Pragma_Ordered
6378 Set_Has_Delayed_Freeze
(Implicit_Base
);
6380 -- Process the subtype indication including a validation check on the
6381 -- constraint, if any. If a constraint is given, its bounds must be
6382 -- implicitly converted to the new type.
6384 if Nkind
(Indic
) = N_Subtype_Indication
then
6386 R
: constant Node_Id
:=
6387 Range_Expression
(Constraint
(Indic
));
6390 if Nkind
(R
) = N_Range
then
6391 Hi
:= Build_Scalar_Bound
6392 (High_Bound
(R
), Parent_Type
, Implicit_Base
);
6393 Lo
:= Build_Scalar_Bound
6394 (Low_Bound
(R
), Parent_Type
, Implicit_Base
);
6397 -- Constraint is a Range attribute. Replace with explicit
6398 -- mention of the bounds of the prefix, which must be a
6401 Analyze
(Prefix
(R
));
6403 Convert_To
(Implicit_Base
,
6404 Make_Attribute_Reference
(Loc
,
6405 Attribute_Name
=> Name_Last
,
6407 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
6410 Convert_To
(Implicit_Base
,
6411 Make_Attribute_Reference
(Loc
,
6412 Attribute_Name
=> Name_First
,
6414 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
6421 (Type_High_Bound
(Parent_Type
),
6422 Parent_Type
, Implicit_Base
);
6425 (Type_Low_Bound
(Parent_Type
),
6426 Parent_Type
, Implicit_Base
);
6434 -- If we constructed a default range for the case where no range
6435 -- was given, then the expressions in the range must not freeze
6436 -- since they do not correspond to expressions in the source.
6438 if Nkind
(Indic
) /= N_Subtype_Indication
then
6439 Set_Must_Not_Freeze
(Lo
);
6440 Set_Must_Not_Freeze
(Hi
);
6441 Set_Must_Not_Freeze
(Rang_Expr
);
6445 Make_Subtype_Declaration
(Loc
,
6446 Defining_Identifier
=> Derived_Type
,
6447 Subtype_Indication
=>
6448 Make_Subtype_Indication
(Loc
,
6449 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
6451 Make_Range_Constraint
(Loc
,
6452 Range_Expression
=> Rang_Expr
))));
6456 -- Propagate the aspects from the original type declaration to the
6457 -- declaration of the implicit base.
6459 Move_Aspects
(From
=> Original_Node
(N
), To
=> Type_Decl
);
6461 -- Apply a range check. Since this range expression doesn't have an
6462 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6465 if Nkind
(Indic
) = N_Subtype_Indication
then
6467 (Range_Expression
(Constraint
(Indic
)), Parent_Type
,
6468 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
6471 end Build_Derived_Enumeration_Type
;
6473 --------------------------------
6474 -- Build_Derived_Numeric_Type --
6475 --------------------------------
6477 procedure Build_Derived_Numeric_Type
6479 Parent_Type
: Entity_Id
;
6480 Derived_Type
: Entity_Id
)
6482 Loc
: constant Source_Ptr
:= Sloc
(N
);
6483 Tdef
: constant Node_Id
:= Type_Definition
(N
);
6484 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
6485 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6486 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
6487 N_Subtype_Indication
;
6488 Implicit_Base
: Entity_Id
;
6494 -- Process the subtype indication including a validation check on
6495 -- the constraint if any.
6497 Discard_Node
(Process_Subtype
(Indic
, N
));
6499 -- Introduce an implicit base type for the derived type even if there
6500 -- is no constraint attached to it, since this seems closer to the Ada
6504 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
6506 Set_Etype
(Implicit_Base
, Parent_Base
);
6507 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
6508 Set_Size_Info
(Implicit_Base
, Parent_Base
);
6509 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
6510 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
6511 Set_Is_Known_Valid
(Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6513 -- Set RM Size for discrete type or decimal fixed-point type
6514 -- Ordinary fixed-point is excluded, why???
6516 if Is_Discrete_Type
(Parent_Base
)
6517 or else Is_Decimal_Fixed_Point_Type
(Parent_Base
)
6519 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
6522 Set_Has_Delayed_Freeze
(Implicit_Base
);
6524 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
6525 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
6527 Set_Scalar_Range
(Implicit_Base
,
6532 if Has_Infinities
(Parent_Base
) then
6533 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
6536 -- The Derived_Type, which is the entity of the declaration, is a
6537 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6538 -- absence of an explicit constraint.
6540 Set_Etype
(Derived_Type
, Implicit_Base
);
6542 -- If we did not have a constraint, then the Ekind is set from the
6543 -- parent type (otherwise Process_Subtype has set the bounds)
6545 if No_Constraint
then
6546 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
6549 -- If we did not have a range constraint, then set the range from the
6550 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6552 if No_Constraint
or else not Has_Range_Constraint
(Indic
) then
6553 Set_Scalar_Range
(Derived_Type
,
6555 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
6556 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
6557 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6559 if Has_Infinities
(Parent_Type
) then
6560 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
6563 Set_Is_Known_Valid
(Derived_Type
, Is_Known_Valid
(Parent_Type
));
6566 Set_Is_Descendent_Of_Address
(Derived_Type
,
6567 Is_Descendent_Of_Address
(Parent_Type
));
6568 Set_Is_Descendent_Of_Address
(Implicit_Base
,
6569 Is_Descendent_Of_Address
(Parent_Type
));
6571 -- Set remaining type-specific fields, depending on numeric type
6573 if Is_Modular_Integer_Type
(Parent_Type
) then
6574 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
6576 Set_Non_Binary_Modulus
6577 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
6580 (Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6582 elsif Is_Floating_Point_Type
(Parent_Type
) then
6584 -- Digits of base type is always copied from the digits value of
6585 -- the parent base type, but the digits of the derived type will
6586 -- already have been set if there was a constraint present.
6588 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6589 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Parent_Base
));
6591 if No_Constraint
then
6592 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
6595 elsif Is_Fixed_Point_Type
(Parent_Type
) then
6597 -- Small of base type and derived type are always copied from the
6598 -- parent base type, since smalls never change. The delta of the
6599 -- base type is also copied from the parent base type. However the
6600 -- delta of the derived type will have been set already if a
6601 -- constraint was present.
6603 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
6604 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
6605 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
6607 if No_Constraint
then
6608 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
6611 -- The scale and machine radix in the decimal case are always
6612 -- copied from the parent base type.
6614 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
6615 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
6616 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
6618 Set_Machine_Radix_10
6619 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
6620 Set_Machine_Radix_10
6621 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
6623 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6625 if No_Constraint
then
6626 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
6629 -- the analysis of the subtype_indication sets the
6630 -- digits value of the derived type.
6637 if Is_Integer_Type
(Parent_Type
) then
6638 Set_Has_Shift_Operator
6639 (Implicit_Base
, Has_Shift_Operator
(Parent_Type
));
6642 -- The type of the bounds is that of the parent type, and they
6643 -- must be converted to the derived type.
6645 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
6647 -- The implicit_base should be frozen when the derived type is frozen,
6648 -- but note that it is used in the conversions of the bounds. For fixed
6649 -- types we delay the determination of the bounds until the proper
6650 -- freezing point. For other numeric types this is rejected by GCC, for
6651 -- reasons that are currently unclear (???), so we choose to freeze the
6652 -- implicit base now. In the case of integers and floating point types
6653 -- this is harmless because subsequent representation clauses cannot
6654 -- affect anything, but it is still baffling that we cannot use the
6655 -- same mechanism for all derived numeric types.
6657 -- There is a further complication: actually some representation
6658 -- clauses can affect the implicit base type. For example, attribute
6659 -- definition clauses for stream-oriented attributes need to set the
6660 -- corresponding TSS entries on the base type, and this normally
6661 -- cannot be done after the base type is frozen, so the circuitry in
6662 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6663 -- and not use Set_TSS in this case.
6665 -- There are also consequences for the case of delayed representation
6666 -- aspects for some cases. For example, a Size aspect is delayed and
6667 -- should not be evaluated to the freeze point. This early freezing
6668 -- means that the size attribute evaluation happens too early???
6670 if Is_Fixed_Point_Type
(Parent_Type
) then
6671 Conditional_Delay
(Implicit_Base
, Parent_Type
);
6673 Freeze_Before
(N
, Implicit_Base
);
6675 end Build_Derived_Numeric_Type
;
6677 --------------------------------
6678 -- Build_Derived_Private_Type --
6679 --------------------------------
6681 procedure Build_Derived_Private_Type
6683 Parent_Type
: Entity_Id
;
6684 Derived_Type
: Entity_Id
;
6685 Is_Completion
: Boolean;
6686 Derive_Subps
: Boolean := True)
6688 Loc
: constant Source_Ptr
:= Sloc
(N
);
6689 Par_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6690 Par_Scope
: constant Entity_Id
:= Scope
(Par_Base
);
6691 Full_N
: constant Node_Id
:= New_Copy_Tree
(N
);
6692 Full_Der
: Entity_Id
:= New_Copy
(Derived_Type
);
6695 procedure Build_Full_Derivation
;
6696 -- Build full derivation, i.e. derive from the full view
6698 procedure Copy_And_Build
;
6699 -- Copy derived type declaration, replace parent with its full view,
6700 -- and build derivation
6702 ---------------------------
6703 -- Build_Full_Derivation --
6704 ---------------------------
6706 procedure Build_Full_Derivation
is
6708 -- If parent scope is not open, install the declarations
6710 if not In_Open_Scopes
(Par_Scope
) then
6711 Install_Private_Declarations
(Par_Scope
);
6712 Install_Visible_Declarations
(Par_Scope
);
6714 Uninstall_Declarations
(Par_Scope
);
6716 -- If parent scope is open and in another unit, and parent has a
6717 -- completion, then the derivation is taking place in the visible
6718 -- part of a child unit. In that case retrieve the full view of
6719 -- the parent momentarily.
6721 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
6722 Full_P
:= Full_View
(Parent_Type
);
6723 Exchange_Declarations
(Parent_Type
);
6725 Exchange_Declarations
(Full_P
);
6727 -- Otherwise it is a local derivation
6732 end Build_Full_Derivation
;
6734 --------------------
6735 -- Copy_And_Build --
6736 --------------------
6738 procedure Copy_And_Build
is
6739 Full_Parent
: Entity_Id
:= Parent_Type
;
6742 -- If the parent is itself derived from another private type,
6743 -- installing the private declarations has not affected its
6744 -- privacy status, so use its own full view explicitly.
6746 if Is_Private_Type
(Full_Parent
)
6747 and then Present
(Full_View
(Full_Parent
))
6749 Full_Parent
:= Full_View
(Full_Parent
);
6752 -- And its underlying full view if necessary
6754 if Is_Private_Type
(Full_Parent
)
6755 and then Present
(Underlying_Full_View
(Full_Parent
))
6757 Full_Parent
:= Underlying_Full_View
(Full_Parent
);
6760 -- For record, access and most enumeration types, derivation from
6761 -- the full view requires a fully-fledged declaration. In the other
6762 -- cases, just use an itype.
6764 if Ekind
(Full_Parent
) in Record_Kind
6765 or else Ekind
(Full_Parent
) in Access_Kind
6767 (Ekind
(Full_Parent
) in Enumeration_Kind
6768 and then not Is_Standard_Character_Type
(Full_Parent
)
6769 and then not Is_Generic_Type
(Root_Type
(Full_Parent
)))
6771 -- Copy and adjust declaration to provide a completion for what
6772 -- is originally a private declaration. Indicate that full view
6773 -- is internally generated.
6775 Set_Comes_From_Source
(Full_N
, False);
6776 Set_Comes_From_Source
(Full_Der
, False);
6777 Set_Parent
(Full_Der
, Full_N
);
6778 Set_Defining_Identifier
(Full_N
, Full_Der
);
6780 -- If there are no constraints, adjust the subtype mark
6782 if Nkind
(Subtype_Indication
(Type_Definition
(Full_N
))) /=
6783 N_Subtype_Indication
6785 Set_Subtype_Indication
6786 (Type_Definition
(Full_N
),
6787 New_Occurrence_Of
(Full_Parent
, Sloc
(Full_N
)));
6790 Insert_After
(N
, Full_N
);
6792 -- Build full view of derived type from full view of parent which
6793 -- is now installed. Subprograms have been derived on the partial
6794 -- view, the completion does not derive them anew.
6796 if Ekind
(Full_Parent
) in Record_Kind
then
6798 -- If parent type is tagged, the completion inherits the proper
6799 -- primitive operations.
6801 if Is_Tagged_Type
(Parent_Type
) then
6802 Build_Derived_Record_Type
6803 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
);
6805 Build_Derived_Record_Type
6806 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
=> False);
6811 (Full_N
, Full_Parent
, Full_Der
,
6812 Is_Completion
=> False, Derive_Subps
=> False);
6815 -- The full declaration has been introduced into the tree and
6816 -- processed in the step above. It should not be analyzed again
6817 -- (when encountered later in the current list of declarations)
6818 -- to prevent spurious name conflicts. The full entity remains
6821 Set_Analyzed
(Full_N
);
6825 Make_Defining_Identifier
(Sloc
(Derived_Type
),
6826 Chars
=> Chars
(Derived_Type
));
6827 Set_Is_Itype
(Full_Der
);
6828 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6829 Set_Parent
(Full_Der
, N
);
6831 (N
, Full_Parent
, Full_Der
,
6832 Is_Completion
=> False, Derive_Subps
=> False);
6835 Set_Has_Private_Declaration
(Full_Der
);
6836 Set_Has_Private_Declaration
(Derived_Type
);
6838 Set_Scope
(Full_Der
, Scope
(Derived_Type
));
6839 Set_Is_First_Subtype
(Full_Der
, Is_First_Subtype
(Derived_Type
));
6840 Set_Has_Size_Clause
(Full_Der
, False);
6841 Set_Has_Alignment_Clause
(Full_Der
, False);
6842 Set_Has_Delayed_Freeze
(Full_Der
);
6843 Set_Is_Frozen
(Full_Der
, False);
6844 Set_Freeze_Node
(Full_Der
, Empty
);
6845 Set_Depends_On_Private
(Full_Der
, Has_Private_Component
(Full_Der
));
6846 Set_Is_Public
(Full_Der
, Is_Public
(Derived_Type
));
6848 -- The convention on the base type may be set in the private part
6849 -- and not propagated to the subtype until later, so we obtain the
6850 -- convention from the base type of the parent.
6852 Set_Convention
(Full_Der
, Convention
(Base_Type
(Full_Parent
)));
6855 -- Start of processing for Build_Derived_Private_Type
6858 if Is_Tagged_Type
(Parent_Type
) then
6859 Full_P
:= Full_View
(Parent_Type
);
6861 -- A type extension of a type with unknown discriminants is an
6862 -- indefinite type that the back-end cannot handle directly.
6863 -- We treat it as a private type, and build a completion that is
6864 -- derived from the full view of the parent, and hopefully has
6865 -- known discriminants.
6867 -- If the full view of the parent type has an underlying record view,
6868 -- use it to generate the underlying record view of this derived type
6869 -- (required for chains of derivations with unknown discriminants).
6871 -- Minor optimization: we avoid the generation of useless underlying
6872 -- record view entities if the private type declaration has unknown
6873 -- discriminants but its corresponding full view has no
6876 if Has_Unknown_Discriminants
(Parent_Type
)
6877 and then Present
(Full_P
)
6878 and then (Has_Discriminants
(Full_P
)
6879 or else Present
(Underlying_Record_View
(Full_P
)))
6880 and then not In_Open_Scopes
(Par_Scope
)
6881 and then Expander_Active
6884 Full_Der
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
6885 New_Ext
: constant Node_Id
:=
6887 (Record_Extension_Part
(Type_Definition
(N
)));
6891 Build_Derived_Record_Type
6892 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
6894 -- Build anonymous completion, as a derivation from the full
6895 -- view of the parent. This is not a completion in the usual
6896 -- sense, because the current type is not private.
6899 Make_Full_Type_Declaration
(Loc
,
6900 Defining_Identifier
=> Full_Der
,
6902 Make_Derived_Type_Definition
(Loc
,
6903 Subtype_Indication
=>
6905 (Subtype_Indication
(Type_Definition
(N
))),
6906 Record_Extension_Part
=> New_Ext
));
6908 -- If the parent type has an underlying record view, use it
6909 -- here to build the new underlying record view.
6911 if Present
(Underlying_Record_View
(Full_P
)) then
6913 (Nkind
(Subtype_Indication
(Type_Definition
(Decl
)))
6915 Set_Entity
(Subtype_Indication
(Type_Definition
(Decl
)),
6916 Underlying_Record_View
(Full_P
));
6919 Install_Private_Declarations
(Par_Scope
);
6920 Install_Visible_Declarations
(Par_Scope
);
6921 Insert_Before
(N
, Decl
);
6923 -- Mark entity as an underlying record view before analysis,
6924 -- to avoid generating the list of its primitive operations
6925 -- (which is not really required for this entity) and thus
6926 -- prevent spurious errors associated with missing overriding
6927 -- of abstract primitives (overridden only for Derived_Type).
6929 Set_Ekind
(Full_Der
, E_Record_Type
);
6930 Set_Is_Underlying_Record_View
(Full_Der
);
6931 Set_Default_SSO
(Full_Der
);
6935 pragma Assert
(Has_Discriminants
(Full_Der
)
6936 and then not Has_Unknown_Discriminants
(Full_Der
));
6938 Uninstall_Declarations
(Par_Scope
);
6940 -- Freeze the underlying record view, to prevent generation of
6941 -- useless dispatching information, which is simply shared with
6942 -- the real derived type.
6944 Set_Is_Frozen
(Full_Der
);
6946 -- If the derived type has access discriminants, create
6947 -- references to their anonymous types now, to prevent
6948 -- back-end problems when their first use is in generated
6949 -- bodies of primitives.
6955 E
:= First_Entity
(Full_Der
);
6957 while Present
(E
) loop
6958 if Ekind
(E
) = E_Discriminant
6959 and then Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
6961 Build_Itype_Reference
(Etype
(E
), Decl
);
6968 -- Set up links between real entity and underlying record view
6970 Set_Underlying_Record_View
(Derived_Type
, Base_Type
(Full_Der
));
6971 Set_Underlying_Record_View
(Base_Type
(Full_Der
), Derived_Type
);
6974 -- If discriminants are known, build derived record
6977 Build_Derived_Record_Type
6978 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
6983 elsif Has_Discriminants
(Parent_Type
) then
6985 -- Build partial view of derived type from partial view of parent.
6986 -- This must be done before building the full derivation because the
6987 -- second derivation will modify the discriminants of the first and
6988 -- the discriminants are chained with the rest of the components in
6989 -- the full derivation.
6991 Build_Derived_Record_Type
6992 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
6994 -- Build the full derivation if this is not the anonymous derived
6995 -- base type created by Build_Derived_Record_Type in the constrained
6996 -- case (see point 5. of its head comment) since we build it for the
6997 -- derived subtype. And skip it for protected types altogether, as
6998 -- gigi does not use these types directly.
7000 if Present
(Full_View
(Parent_Type
))
7001 and then not Is_Itype
(Derived_Type
)
7002 and then not (Ekind
(Full_View
(Parent_Type
)) in Protected_Kind
)
7005 Der_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
7007 Last_Discr
: Entity_Id
;
7010 -- If this is not a completion, construct the implicit full
7011 -- view by deriving from the full view of the parent type.
7012 -- But if this is a completion, the derived private type
7013 -- being built is a full view and the full derivation can
7014 -- only be its underlying full view.
7016 Build_Full_Derivation
;
7018 if not Is_Completion
then
7019 Set_Full_View
(Derived_Type
, Full_Der
);
7021 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7024 if not Is_Base_Type
(Derived_Type
) then
7025 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
7028 -- Copy the discriminant list from full view to the partial
7029 -- view (base type and its subtype). Gigi requires that the
7030 -- partial and full views have the same discriminants.
7032 -- Note that since the partial view points to discriminants
7033 -- in the full view, their scope will be that of the full
7034 -- view. This might cause some front end problems and need
7037 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
7038 Set_First_Entity
(Der_Base
, Discr
);
7041 Last_Discr
:= Discr
;
7042 Next_Discriminant
(Discr
);
7043 exit when No
(Discr
);
7046 Set_Last_Entity
(Der_Base
, Last_Discr
);
7047 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
7048 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
7050 Set_Stored_Constraint
7051 (Full_Der
, Stored_Constraint
(Derived_Type
));
7055 elsif Present
(Full_View
(Parent_Type
))
7056 and then Has_Discriminants
(Full_View
(Parent_Type
))
7058 if Has_Unknown_Discriminants
(Parent_Type
)
7059 and then Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7060 N_Subtype_Indication
7063 ("cannot constrain type with unknown discriminants",
7064 Subtype_Indication
(Type_Definition
(N
)));
7068 -- If this is not a completion, construct the implicit full view by
7069 -- deriving from the full view of the parent type. But if this is a
7070 -- completion, the derived private type being built is a full view
7071 -- and the full derivation can only be its underlying full view.
7073 Build_Full_Derivation
;
7075 if not Is_Completion
then
7076 Set_Full_View
(Derived_Type
, Full_Der
);
7078 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7081 -- In any case, the primitive operations are inherited from the
7082 -- parent type, not from the internal full view.
7084 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
7086 if Derive_Subps
then
7087 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7090 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7092 (Derived_Type
, Is_Constrained
(Full_View
(Parent_Type
)));
7095 -- Untagged type, No discriminants on either view
7097 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7098 N_Subtype_Indication
7101 ("illegal constraint on type without discriminants", N
);
7104 if Present
(Discriminant_Specifications
(N
))
7105 and then Present
(Full_View
(Parent_Type
))
7106 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7108 Error_Msg_N
("cannot add discriminants to untagged type", N
);
7111 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7112 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
7113 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
7114 Set_Has_Controlled_Component
7115 (Derived_Type
, Has_Controlled_Component
7118 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7120 if not Is_Controlled
(Parent_Type
) then
7121 Set_Finalize_Storage_Only
7122 (Base_Type
(Derived_Type
), Finalize_Storage_Only
(Parent_Type
));
7125 -- If this is not a completion, construct the implicit full view by
7126 -- deriving from the full view of the parent type.
7128 -- ??? If the parent is untagged private and its completion is
7129 -- tagged, this mechanism will not work because we cannot derive from
7130 -- the tagged full view unless we have an extension.
7132 if Present
(Full_View
(Parent_Type
))
7133 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7134 and then not Is_Completion
7136 Build_Full_Derivation
;
7137 Set_Full_View
(Derived_Type
, Full_Der
);
7141 Set_Has_Unknown_Discriminants
(Derived_Type
,
7142 Has_Unknown_Discriminants
(Parent_Type
));
7144 if Is_Private_Type
(Derived_Type
) then
7145 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
7148 -- If the parent base type is in scope, add the derived type to its
7149 -- list of private dependents, because its full view may become
7150 -- visible subsequently (in a nested private part, a body, or in a
7151 -- further child unit).
7153 if Is_Private_Type
(Par_Base
) and then In_Open_Scopes
(Par_Scope
) then
7154 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
7156 -- Check for unusual case where a type completed by a private
7157 -- derivation occurs within a package nested in a child unit, and
7158 -- the parent is declared in an ancestor.
7160 if Is_Child_Unit
(Scope
(Current_Scope
))
7161 and then Is_Completion
7162 and then In_Private_Part
(Current_Scope
)
7163 and then Scope
(Parent_Type
) /= Current_Scope
7165 -- Note that if the parent has a completion in the private part,
7166 -- (which is itself a derivation from some other private type)
7167 -- it is that completion that is visible, there is no full view
7168 -- available, and no special processing is needed.
7170 and then Present
(Full_View
(Parent_Type
))
7172 -- In this case, the full view of the parent type will become
7173 -- visible in the body of the enclosing child, and only then will
7174 -- the current type be possibly non-private. Build an underlying
7175 -- full view that will be installed when the enclosing child body
7178 if Present
(Underlying_Full_View
(Derived_Type
)) then
7179 Full_Der
:= Underlying_Full_View
(Derived_Type
);
7181 Build_Full_Derivation
;
7182 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7185 -- The full view will be used to swap entities on entry/exit to
7186 -- the body, and must appear in the entity list for the package.
7188 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
7191 end Build_Derived_Private_Type
;
7193 -------------------------------
7194 -- Build_Derived_Record_Type --
7195 -------------------------------
7199 -- Ideally we would like to use the same model of type derivation for
7200 -- tagged and untagged record types. Unfortunately this is not quite
7201 -- possible because the semantics of representation clauses is different
7202 -- for tagged and untagged records under inheritance. Consider the
7205 -- type R (...) is [tagged] record ... end record;
7206 -- type T (...) is new R (...) [with ...];
7208 -- The representation clauses for T can specify a completely different
7209 -- record layout from R's. Hence the same component can be placed in two
7210 -- very different positions in objects of type T and R. If R and T are
7211 -- tagged types, representation clauses for T can only specify the layout
7212 -- of non inherited components, thus components that are common in R and T
7213 -- have the same position in objects of type R and T.
7215 -- This has two implications. The first is that the entire tree for R's
7216 -- declaration needs to be copied for T in the untagged case, so that T
7217 -- can be viewed as a record type of its own with its own representation
7218 -- clauses. The second implication is the way we handle discriminants.
7219 -- Specifically, in the untagged case we need a way to communicate to Gigi
7220 -- what are the real discriminants in the record, while for the semantics
7221 -- we need to consider those introduced by the user to rename the
7222 -- discriminants in the parent type. This is handled by introducing the
7223 -- notion of stored discriminants. See below for more.
7225 -- Fortunately the way regular components are inherited can be handled in
7226 -- the same way in tagged and untagged types.
7228 -- To complicate things a bit more the private view of a private extension
7229 -- cannot be handled in the same way as the full view (for one thing the
7230 -- semantic rules are somewhat different). We will explain what differs
7233 -- 2. DISCRIMINANTS UNDER INHERITANCE
7235 -- The semantic rules governing the discriminants of derived types are
7238 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7239 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7241 -- If parent type has discriminants, then the discriminants that are
7242 -- declared in the derived type are [3.4 (11)]:
7244 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7247 -- o Otherwise, each discriminant of the parent type (implicitly declared
7248 -- in the same order with the same specifications). In this case, the
7249 -- discriminants are said to be "inherited", or if unknown in the parent
7250 -- are also unknown in the derived type.
7252 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7254 -- o The parent subtype must be constrained;
7256 -- o If the parent type is not a tagged type, then each discriminant of
7257 -- the derived type must be used in the constraint defining a parent
7258 -- subtype. [Implementation note: This ensures that the new discriminant
7259 -- can share storage with an existing discriminant.]
7261 -- For the derived type each discriminant of the parent type is either
7262 -- inherited, constrained to equal some new discriminant of the derived
7263 -- type, or constrained to the value of an expression.
7265 -- When inherited or constrained to equal some new discriminant, the
7266 -- parent discriminant and the discriminant of the derived type are said
7269 -- If a discriminant of the parent type is constrained to a specific value
7270 -- in the derived type definition, then the discriminant is said to be
7271 -- "specified" by that derived type definition.
7273 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7275 -- We have spoken about stored discriminants in point 1 (introduction)
7276 -- above. There are two sort of stored discriminants: implicit and
7277 -- explicit. As long as the derived type inherits the same discriminants as
7278 -- the root record type, stored discriminants are the same as regular
7279 -- discriminants, and are said to be implicit. However, if any discriminant
7280 -- in the root type was renamed in the derived type, then the derived
7281 -- type will contain explicit stored discriminants. Explicit stored
7282 -- discriminants are discriminants in addition to the semantically visible
7283 -- discriminants defined for the derived type. Stored discriminants are
7284 -- used by Gigi to figure out what are the physical discriminants in
7285 -- objects of the derived type (see precise definition in einfo.ads).
7286 -- As an example, consider the following:
7288 -- type R (D1, D2, D3 : Int) is record ... end record;
7289 -- type T1 is new R;
7290 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7291 -- type T3 is new T2;
7292 -- type T4 (Y : Int) is new T3 (Y, 99);
7294 -- The following table summarizes the discriminants and stored
7295 -- discriminants in R and T1 through T4.
7297 -- Type Discrim Stored Discrim Comment
7298 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7299 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7300 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7301 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7302 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7304 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7305 -- find the corresponding discriminant in the parent type, while
7306 -- Original_Record_Component (abbreviated ORC below), the actual physical
7307 -- component that is renamed. Finally the field Is_Completely_Hidden
7308 -- (abbreviated ICH below) is set for all explicit stored discriminants
7309 -- (see einfo.ads for more info). For the above example this gives:
7311 -- Discrim CD ORC ICH
7312 -- ^^^^^^^ ^^ ^^^ ^^^
7313 -- D1 in R empty itself no
7314 -- D2 in R empty itself no
7315 -- D3 in R empty itself no
7317 -- D1 in T1 D1 in R itself no
7318 -- D2 in T1 D2 in R itself no
7319 -- D3 in T1 D3 in R itself no
7321 -- X1 in T2 D3 in T1 D3 in T2 no
7322 -- X2 in T2 D1 in T1 D1 in T2 no
7323 -- D1 in T2 empty itself yes
7324 -- D2 in T2 empty itself yes
7325 -- D3 in T2 empty itself yes
7327 -- X1 in T3 X1 in T2 D3 in T3 no
7328 -- X2 in T3 X2 in T2 D1 in T3 no
7329 -- D1 in T3 empty itself yes
7330 -- D2 in T3 empty itself yes
7331 -- D3 in T3 empty itself yes
7333 -- Y in T4 X1 in T3 D3 in T3 no
7334 -- D1 in T3 empty itself yes
7335 -- D2 in T3 empty itself yes
7336 -- D3 in T3 empty itself yes
7338 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7340 -- Type derivation for tagged types is fairly straightforward. If no
7341 -- discriminants are specified by the derived type, these are inherited
7342 -- from the parent. No explicit stored discriminants are ever necessary.
7343 -- The only manipulation that is done to the tree is that of adding a
7344 -- _parent field with parent type and constrained to the same constraint
7345 -- specified for the parent in the derived type definition. For instance:
7347 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7348 -- type T1 is new R with null record;
7349 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7351 -- are changed into:
7353 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7354 -- _parent : R (D1, D2, D3);
7357 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7358 -- _parent : T1 (X2, 88, X1);
7361 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7362 -- ORC and ICH fields are:
7364 -- Discrim CD ORC ICH
7365 -- ^^^^^^^ ^^ ^^^ ^^^
7366 -- D1 in R empty itself no
7367 -- D2 in R empty itself no
7368 -- D3 in R empty itself no
7370 -- D1 in T1 D1 in R D1 in R no
7371 -- D2 in T1 D2 in R D2 in R no
7372 -- D3 in T1 D3 in R D3 in R no
7374 -- X1 in T2 D3 in T1 D3 in R no
7375 -- X2 in T2 D1 in T1 D1 in R no
7377 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7379 -- Regardless of whether we dealing with a tagged or untagged type
7380 -- we will transform all derived type declarations of the form
7382 -- type T is new R (...) [with ...];
7384 -- subtype S is R (...);
7385 -- type T is new S [with ...];
7387 -- type BT is new R [with ...];
7388 -- subtype T is BT (...);
7390 -- That is, the base derived type is constrained only if it has no
7391 -- discriminants. The reason for doing this is that GNAT's semantic model
7392 -- assumes that a base type with discriminants is unconstrained.
7394 -- Note that, strictly speaking, the above transformation is not always
7395 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7397 -- procedure B34011A is
7398 -- type REC (D : integer := 0) is record
7403 -- type T6 is new Rec;
7404 -- function F return T6;
7409 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7412 -- The definition of Q6.U is illegal. However transforming Q6.U into
7414 -- type BaseU is new T6;
7415 -- subtype U is BaseU (Q6.F.I)
7417 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7418 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7419 -- the transformation described above.
7421 -- There is another instance where the above transformation is incorrect.
7425 -- type Base (D : Integer) is tagged null record;
7426 -- procedure P (X : Base);
7428 -- type Der is new Base (2) with null record;
7429 -- procedure P (X : Der);
7432 -- Then the above transformation turns this into
7434 -- type Der_Base is new Base with null record;
7435 -- -- procedure P (X : Base) is implicitly inherited here
7436 -- -- as procedure P (X : Der_Base).
7438 -- subtype Der is Der_Base (2);
7439 -- procedure P (X : Der);
7440 -- -- The overriding of P (X : Der_Base) is illegal since we
7441 -- -- have a parameter conformance problem.
7443 -- To get around this problem, after having semantically processed Der_Base
7444 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7445 -- Discriminant_Constraint from Der so that when parameter conformance is
7446 -- checked when P is overridden, no semantic errors are flagged.
7448 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7450 -- Regardless of whether we are dealing with a tagged or untagged type
7451 -- we will transform all derived type declarations of the form
7453 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7454 -- type T is new R [with ...];
7456 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7458 -- The reason for such transformation is that it allows us to implement a
7459 -- very clean form of component inheritance as explained below.
7461 -- Note that this transformation is not achieved by direct tree rewriting
7462 -- and manipulation, but rather by redoing the semantic actions that the
7463 -- above transformation will entail. This is done directly in routine
7464 -- Inherit_Components.
7466 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7468 -- In both tagged and untagged derived types, regular non discriminant
7469 -- components are inherited in the derived type from the parent type. In
7470 -- the absence of discriminants component, inheritance is straightforward
7471 -- as components can simply be copied from the parent.
7473 -- If the parent has discriminants, inheriting components constrained with
7474 -- these discriminants requires caution. Consider the following example:
7476 -- type R (D1, D2 : Positive) is [tagged] record
7477 -- S : String (D1 .. D2);
7480 -- type T1 is new R [with null record];
7481 -- type T2 (X : positive) is new R (1, X) [with null record];
7483 -- As explained in 6. above, T1 is rewritten as
7484 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7485 -- which makes the treatment for T1 and T2 identical.
7487 -- What we want when inheriting S, is that references to D1 and D2 in R are
7488 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7489 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7490 -- with either discriminant references in the derived type or expressions.
7491 -- This replacement is achieved as follows: before inheriting R's
7492 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7493 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7494 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7495 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7496 -- by String (1 .. X).
7498 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7500 -- We explain here the rules governing private type extensions relevant to
7501 -- type derivation. These rules are explained on the following example:
7503 -- type D [(...)] is new A [(...)] with private; <-- partial view
7504 -- type D [(...)] is new P [(...)] with null record; <-- full view
7506 -- Type A is called the ancestor subtype of the private extension.
7507 -- Type P is the parent type of the full view of the private extension. It
7508 -- must be A or a type derived from A.
7510 -- The rules concerning the discriminants of private type extensions are
7513 -- o If a private extension inherits known discriminants from the ancestor
7514 -- subtype, then the full view must also inherit its discriminants from
7515 -- the ancestor subtype and the parent subtype of the full view must be
7516 -- constrained if and only if the ancestor subtype is constrained.
7518 -- o If a partial view has unknown discriminants, then the full view may
7519 -- define a definite or an indefinite subtype, with or without
7522 -- o If a partial view has neither known nor unknown discriminants, then
7523 -- the full view must define a definite subtype.
7525 -- o If the ancestor subtype of a private extension has constrained
7526 -- discriminants, then the parent subtype of the full view must impose a
7527 -- statically matching constraint on those discriminants.
7529 -- This means that only the following forms of private extensions are
7532 -- type D is new A with private; <-- partial view
7533 -- type D is new P with null record; <-- full view
7535 -- If A has no discriminants than P has no discriminants, otherwise P must
7536 -- inherit A's discriminants.
7538 -- type D is new A (...) with private; <-- partial view
7539 -- type D is new P (:::) with null record; <-- full view
7541 -- P must inherit A's discriminants and (...) and (:::) must statically
7544 -- subtype A is R (...);
7545 -- type D is new A with private; <-- partial view
7546 -- type D is new P with null record; <-- full view
7548 -- P must have inherited R's discriminants and must be derived from A or
7549 -- any of its subtypes.
7551 -- type D (..) is new A with private; <-- partial view
7552 -- type D (..) is new P [(:::)] with null record; <-- full view
7554 -- No specific constraints on P's discriminants or constraint (:::).
7555 -- Note that A can be unconstrained, but the parent subtype P must either
7556 -- be constrained or (:::) must be present.
7558 -- type D (..) is new A [(...)] with private; <-- partial view
7559 -- type D (..) is new P [(:::)] with null record; <-- full view
7561 -- P's constraints on A's discriminants must statically match those
7562 -- imposed by (...).
7564 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7566 -- The full view of a private extension is handled exactly as described
7567 -- above. The model chose for the private view of a private extension is
7568 -- the same for what concerns discriminants (i.e. they receive the same
7569 -- treatment as in the tagged case). However, the private view of the
7570 -- private extension always inherits the components of the parent base,
7571 -- without replacing any discriminant reference. Strictly speaking this is
7572 -- incorrect. However, Gigi never uses this view to generate code so this
7573 -- is a purely semantic issue. In theory, a set of transformations similar
7574 -- to those given in 5. and 6. above could be applied to private views of
7575 -- private extensions to have the same model of component inheritance as
7576 -- for non private extensions. However, this is not done because it would
7577 -- further complicate private type processing. Semantically speaking, this
7578 -- leaves us in an uncomfortable situation. As an example consider:
7581 -- type R (D : integer) is tagged record
7582 -- S : String (1 .. D);
7584 -- procedure P (X : R);
7585 -- type T is new R (1) with private;
7587 -- type T is new R (1) with null record;
7590 -- This is transformed into:
7593 -- type R (D : integer) is tagged record
7594 -- S : String (1 .. D);
7596 -- procedure P (X : R);
7597 -- type T is new R (1) with private;
7599 -- type BaseT is new R with null record;
7600 -- subtype T is BaseT (1);
7603 -- (strictly speaking the above is incorrect Ada)
7605 -- From the semantic standpoint the private view of private extension T
7606 -- should be flagged as constrained since one can clearly have
7610 -- in a unit withing Pack. However, when deriving subprograms for the
7611 -- private view of private extension T, T must be seen as unconstrained
7612 -- since T has discriminants (this is a constraint of the current
7613 -- subprogram derivation model). Thus, when processing the private view of
7614 -- a private extension such as T, we first mark T as unconstrained, we
7615 -- process it, we perform program derivation and just before returning from
7616 -- Build_Derived_Record_Type we mark T as constrained.
7618 -- ??? Are there are other uncomfortable cases that we will have to
7621 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7623 -- Types that are derived from a visible record type and have a private
7624 -- extension present other peculiarities. They behave mostly like private
7625 -- types, but if they have primitive operations defined, these will not
7626 -- have the proper signatures for further inheritance, because other
7627 -- primitive operations will use the implicit base that we define for
7628 -- private derivations below. This affect subprogram inheritance (see
7629 -- Derive_Subprograms for details). We also derive the implicit base from
7630 -- the base type of the full view, so that the implicit base is a record
7631 -- type and not another private type, This avoids infinite loops.
7633 procedure Build_Derived_Record_Type
7635 Parent_Type
: Entity_Id
;
7636 Derived_Type
: Entity_Id
;
7637 Derive_Subps
: Boolean := True)
7639 Discriminant_Specs
: constant Boolean :=
7640 Present
(Discriminant_Specifications
(N
));
7641 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
7642 Loc
: constant Source_Ptr
:= Sloc
(N
);
7643 Private_Extension
: constant Boolean :=
7644 Nkind
(N
) = N_Private_Extension_Declaration
;
7645 Assoc_List
: Elist_Id
;
7646 Constraint_Present
: Boolean;
7648 Discrim
: Entity_Id
;
7650 Inherit_Discrims
: Boolean := False;
7651 Last_Discrim
: Entity_Id
;
7652 New_Base
: Entity_Id
;
7654 New_Discrs
: Elist_Id
;
7655 New_Indic
: Node_Id
;
7656 Parent_Base
: Entity_Id
;
7657 Save_Etype
: Entity_Id
;
7658 Save_Discr_Constr
: Elist_Id
;
7659 Save_Next_Entity
: Entity_Id
;
7662 Discs
: Elist_Id
:= New_Elmt_List
;
7663 -- An empty Discs list means that there were no constraints in the
7664 -- subtype indication or that there was an error processing it.
7667 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
7668 and then Present
(Full_View
(Parent_Type
))
7669 and then Has_Discriminants
(Parent_Type
)
7671 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
7673 Parent_Base
:= Base_Type
(Parent_Type
);
7676 -- AI05-0115 : if this is a derivation from a private type in some
7677 -- other scope that may lead to invisible components for the derived
7678 -- type, mark it accordingly.
7680 if Is_Private_Type
(Parent_Type
) then
7681 if Scope
(Parent_Type
) = Scope
(Derived_Type
) then
7684 elsif In_Open_Scopes
(Scope
(Parent_Type
))
7685 and then In_Private_Part
(Scope
(Parent_Type
))
7690 Set_Has_Private_Ancestor
(Derived_Type
);
7694 Set_Has_Private_Ancestor
7695 (Derived_Type
, Has_Private_Ancestor
(Parent_Type
));
7698 -- Before we start the previously documented transformations, here is
7699 -- little fix for size and alignment of tagged types. Normally when we
7700 -- derive type D from type P, we copy the size and alignment of P as the
7701 -- default for D, and in the absence of explicit representation clauses
7702 -- for D, the size and alignment are indeed the same as the parent.
7704 -- But this is wrong for tagged types, since fields may be added, and
7705 -- the default size may need to be larger, and the default alignment may
7706 -- need to be larger.
7708 -- We therefore reset the size and alignment fields in the tagged case.
7709 -- Note that the size and alignment will in any case be at least as
7710 -- large as the parent type (since the derived type has a copy of the
7711 -- parent type in the _parent field)
7713 -- The type is also marked as being tagged here, which is needed when
7714 -- processing components with a self-referential anonymous access type
7715 -- in the call to Check_Anonymous_Access_Components below. Note that
7716 -- this flag is also set later on for completeness.
7719 Set_Is_Tagged_Type
(Derived_Type
);
7720 Init_Size_Align
(Derived_Type
);
7723 -- STEP 0a: figure out what kind of derived type declaration we have
7725 if Private_Extension
then
7727 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
7728 Set_Default_SSO
(Derived_Type
);
7731 Type_Def
:= Type_Definition
(N
);
7733 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7734 -- Parent_Base can be a private type or private extension. However,
7735 -- for tagged types with an extension the newly added fields are
7736 -- visible and hence the Derived_Type is always an E_Record_Type.
7737 -- (except that the parent may have its own private fields).
7738 -- For untagged types we preserve the Ekind of the Parent_Base.
7740 if Present
(Record_Extension_Part
(Type_Def
)) then
7741 Set_Ekind
(Derived_Type
, E_Record_Type
);
7742 Set_Default_SSO
(Derived_Type
);
7744 -- Create internal access types for components with anonymous
7747 if Ada_Version
>= Ada_2005
then
7748 Check_Anonymous_Access_Components
7749 (N
, Derived_Type
, Derived_Type
,
7750 Component_List
(Record_Extension_Part
(Type_Def
)));
7754 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
7758 -- Indic can either be an N_Identifier if the subtype indication
7759 -- contains no constraint or an N_Subtype_Indication if the subtype
7760 -- indication has a constraint.
7762 Indic
:= Subtype_Indication
(Type_Def
);
7763 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
7765 -- Check that the type has visible discriminants. The type may be
7766 -- a private type with unknown discriminants whose full view has
7767 -- discriminants which are invisible.
7769 if Constraint_Present
then
7770 if not Has_Discriminants
(Parent_Base
)
7772 (Has_Unknown_Discriminants
(Parent_Base
)
7773 and then Is_Private_Type
(Parent_Base
))
7776 ("invalid constraint: type has no discriminant",
7777 Constraint
(Indic
));
7779 Constraint_Present
:= False;
7780 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7782 elsif Is_Constrained
(Parent_Type
) then
7784 ("invalid constraint: parent type is already constrained",
7785 Constraint
(Indic
));
7787 Constraint_Present
:= False;
7788 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7792 -- STEP 0b: If needed, apply transformation given in point 5. above
7794 if not Private_Extension
7795 and then Has_Discriminants
(Parent_Type
)
7796 and then not Discriminant_Specs
7797 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
7799 -- First, we must analyze the constraint (see comment in point 5.)
7800 -- The constraint may come from the subtype indication of the full
7803 if Constraint_Present
then
7804 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
7806 -- If there is no explicit constraint, there might be one that is
7807 -- inherited from a constrained parent type. In that case verify that
7808 -- it conforms to the constraint in the partial view. In perverse
7809 -- cases the parent subtypes of the partial and full view can have
7810 -- different constraints.
7812 elsif Present
(Stored_Constraint
(Parent_Type
)) then
7813 New_Discrs
:= Stored_Constraint
(Parent_Type
);
7816 New_Discrs
:= No_Elist
;
7819 if Has_Discriminants
(Derived_Type
)
7820 and then Has_Private_Declaration
(Derived_Type
)
7821 and then Present
(Discriminant_Constraint
(Derived_Type
))
7822 and then Present
(New_Discrs
)
7824 -- Verify that constraints of the full view statically match
7825 -- those given in the partial view.
7831 C1
:= First_Elmt
(New_Discrs
);
7832 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
7833 while Present
(C1
) and then Present
(C2
) loop
7834 if Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
7836 (Is_OK_Static_Expression
(Node
(C1
))
7837 and then Is_OK_Static_Expression
(Node
(C2
))
7839 Expr_Value
(Node
(C1
)) = Expr_Value
(Node
(C2
)))
7844 if Constraint_Present
then
7846 ("constraint not conformant to previous declaration",
7850 ("constraint of full view is incompatible "
7851 & "with partial view", N
);
7861 -- Insert and analyze the declaration for the unconstrained base type
7863 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
7866 Make_Full_Type_Declaration
(Loc
,
7867 Defining_Identifier
=> New_Base
,
7869 Make_Derived_Type_Definition
(Loc
,
7870 Abstract_Present
=> Abstract_Present
(Type_Def
),
7871 Limited_Present
=> Limited_Present
(Type_Def
),
7872 Subtype_Indication
=>
7873 New_Occurrence_Of
(Parent_Base
, Loc
),
7874 Record_Extension_Part
=>
7875 Relocate_Node
(Record_Extension_Part
(Type_Def
)),
7876 Interface_List
=> Interface_List
(Type_Def
)));
7878 Set_Parent
(New_Decl
, Parent
(N
));
7879 Mark_Rewrite_Insertion
(New_Decl
);
7880 Insert_Before
(N
, New_Decl
);
7882 -- In the extension case, make sure ancestor is frozen appropriately
7883 -- (see also non-discriminated case below).
7885 if Present
(Record_Extension_Part
(Type_Def
))
7886 or else Is_Interface
(Parent_Base
)
7888 Freeze_Before
(New_Decl
, Parent_Type
);
7891 -- Note that this call passes False for the Derive_Subps parameter
7892 -- because subprogram derivation is deferred until after creating
7893 -- the subtype (see below).
7896 (New_Decl
, Parent_Base
, New_Base
,
7897 Is_Completion
=> False, Derive_Subps
=> False);
7899 -- ??? This needs re-examination to determine whether the
7900 -- above call can simply be replaced by a call to Analyze.
7902 Set_Analyzed
(New_Decl
);
7904 -- Insert and analyze the declaration for the constrained subtype
7906 if Constraint_Present
then
7908 Make_Subtype_Indication
(Loc
,
7909 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
7910 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
7914 Constr_List
: constant List_Id
:= New_List
;
7919 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
7920 while Present
(C
) loop
7923 -- It is safe here to call New_Copy_Tree since
7924 -- Force_Evaluation was called on each constraint in
7925 -- Build_Discriminant_Constraints.
7927 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
7933 Make_Subtype_Indication
(Loc
,
7934 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
7936 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
7941 Make_Subtype_Declaration
(Loc
,
7942 Defining_Identifier
=> Derived_Type
,
7943 Subtype_Indication
=> New_Indic
));
7947 -- Derivation of subprograms must be delayed until the full subtype
7948 -- has been established, to ensure proper overriding of subprograms
7949 -- inherited by full types. If the derivations occurred as part of
7950 -- the call to Build_Derived_Type above, then the check for type
7951 -- conformance would fail because earlier primitive subprograms
7952 -- could still refer to the full type prior the change to the new
7953 -- subtype and hence would not match the new base type created here.
7954 -- Subprograms are not derived, however, when Derive_Subps is False
7955 -- (since otherwise there could be redundant derivations).
7957 if Derive_Subps
then
7958 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7961 -- For tagged types the Discriminant_Constraint of the new base itype
7962 -- is inherited from the first subtype so that no subtype conformance
7963 -- problem arise when the first subtype overrides primitive
7964 -- operations inherited by the implicit base type.
7967 Set_Discriminant_Constraint
7968 (New_Base
, Discriminant_Constraint
(Derived_Type
));
7974 -- If we get here Derived_Type will have no discriminants or it will be
7975 -- a discriminated unconstrained base type.
7977 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7981 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7982 -- The declaration of a specific descendant of an interface type
7983 -- freezes the interface type (RM 13.14).
7985 if not Private_Extension
or else Is_Interface
(Parent_Base
) then
7986 Freeze_Before
(N
, Parent_Type
);
7989 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7990 -- cannot be declared at a deeper level than its parent type is
7991 -- removed. The check on derivation within a generic body is also
7992 -- relaxed, but there's a restriction that a derived tagged type
7993 -- cannot be declared in a generic body if it's derived directly
7994 -- or indirectly from a formal type of that generic.
7996 if Ada_Version
>= Ada_2005
then
7997 if Present
(Enclosing_Generic_Body
(Derived_Type
)) then
7999 Ancestor_Type
: Entity_Id
;
8002 -- Check to see if any ancestor of the derived type is a
8005 Ancestor_Type
:= Parent_Type
;
8006 while not Is_Generic_Type
(Ancestor_Type
)
8007 and then Etype
(Ancestor_Type
) /= Ancestor_Type
8009 Ancestor_Type
:= Etype
(Ancestor_Type
);
8012 -- If the derived type does have a formal type as an
8013 -- ancestor, then it's an error if the derived type is
8014 -- declared within the body of the generic unit that
8015 -- declares the formal type in its generic formal part. It's
8016 -- sufficient to check whether the ancestor type is declared
8017 -- inside the same generic body as the derived type (such as
8018 -- within a nested generic spec), in which case the
8019 -- derivation is legal. If the formal type is declared
8020 -- outside of that generic body, then it's guaranteed that
8021 -- the derived type is declared within the generic body of
8022 -- the generic unit declaring the formal type.
8024 if Is_Generic_Type
(Ancestor_Type
)
8025 and then Enclosing_Generic_Body
(Ancestor_Type
) /=
8026 Enclosing_Generic_Body
(Derived_Type
)
8029 ("parent type of& must not be descendant of formal type"
8030 & " of an enclosing generic body",
8031 Indic
, Derived_Type
);
8036 elsif Type_Access_Level
(Derived_Type
) /=
8037 Type_Access_Level
(Parent_Type
)
8038 and then not Is_Generic_Type
(Derived_Type
)
8040 if Is_Controlled
(Parent_Type
) then
8042 ("controlled type must be declared at the library level",
8046 ("type extension at deeper accessibility level than parent",
8052 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
8055 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
8058 ("parent type of& must not be outside generic body"
8060 Indic
, Derived_Type
);
8066 -- Ada 2005 (AI-251)
8068 if Ada_Version
>= Ada_2005
and then Is_Tagged
then
8070 -- "The declaration of a specific descendant of an interface type
8071 -- freezes the interface type" (RM 13.14).
8076 if Is_Non_Empty_List
(Interface_List
(Type_Def
)) then
8077 Iface
:= First
(Interface_List
(Type_Def
));
8078 while Present
(Iface
) loop
8079 Freeze_Before
(N
, Etype
(Iface
));
8086 -- STEP 1b : preliminary cleanup of the full view of private types
8088 -- If the type is already marked as having discriminants, then it's the
8089 -- completion of a private type or private extension and we need to
8090 -- retain the discriminants from the partial view if the current
8091 -- declaration has Discriminant_Specifications so that we can verify
8092 -- conformance. However, we must remove any existing components that
8093 -- were inherited from the parent (and attached in Copy_And_Swap)
8094 -- because the full type inherits all appropriate components anyway, and
8095 -- we do not want the partial view's components interfering.
8097 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
8098 Discrim
:= First_Discriminant
(Derived_Type
);
8100 Last_Discrim
:= Discrim
;
8101 Next_Discriminant
(Discrim
);
8102 exit when No
(Discrim
);
8105 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
8107 -- In all other cases wipe out the list of inherited components (even
8108 -- inherited discriminants), it will be properly rebuilt here.
8111 Set_First_Entity
(Derived_Type
, Empty
);
8112 Set_Last_Entity
(Derived_Type
, Empty
);
8115 -- STEP 1c: Initialize some flags for the Derived_Type
8117 -- The following flags must be initialized here so that
8118 -- Process_Discriminants can check that discriminants of tagged types do
8119 -- not have a default initial value and that access discriminants are
8120 -- only specified for limited records. For completeness, these flags are
8121 -- also initialized along with all the other flags below.
8123 -- AI-419: Limitedness is not inherited from an interface parent, so to
8124 -- be limited in that case the type must be explicitly declared as
8125 -- limited. However, task and protected interfaces are always limited.
8127 if Limited_Present
(Type_Def
) then
8128 Set_Is_Limited_Record
(Derived_Type
);
8130 elsif Is_Limited_Record
(Parent_Type
)
8131 or else (Present
(Full_View
(Parent_Type
))
8132 and then Is_Limited_Record
(Full_View
(Parent_Type
)))
8134 if not Is_Interface
(Parent_Type
)
8135 or else Is_Synchronized_Interface
(Parent_Type
)
8136 or else Is_Protected_Interface
(Parent_Type
)
8137 or else Is_Task_Interface
(Parent_Type
)
8139 Set_Is_Limited_Record
(Derived_Type
);
8143 -- STEP 2a: process discriminants of derived type if any
8145 Push_Scope
(Derived_Type
);
8147 if Discriminant_Specs
then
8148 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
8150 -- The following call initializes fields Has_Discriminants and
8151 -- Discriminant_Constraint, unless we are processing the completion
8152 -- of a private type declaration.
8154 Check_Or_Process_Discriminants
(N
, Derived_Type
);
8156 -- For untagged types, the constraint on the Parent_Type must be
8157 -- present and is used to rename the discriminants.
8159 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
8160 Error_Msg_N
("untagged parent must have discriminants", Indic
);
8162 elsif not Is_Tagged
and then not Constraint_Present
then
8164 ("discriminant constraint needed for derived untagged records",
8167 -- Otherwise the parent subtype must be constrained unless we have a
8168 -- private extension.
8170 elsif not Constraint_Present
8171 and then not Private_Extension
8172 and then not Is_Constrained
(Parent_Type
)
8175 ("unconstrained type not allowed in this context", Indic
);
8177 elsif Constraint_Present
then
8178 -- The following call sets the field Corresponding_Discriminant
8179 -- for the discriminants in the Derived_Type.
8181 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
8183 -- For untagged types all new discriminants must rename
8184 -- discriminants in the parent. For private extensions new
8185 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8187 Discrim
:= First_Discriminant
(Derived_Type
);
8188 while Present
(Discrim
) loop
8190 and then No
(Corresponding_Discriminant
(Discrim
))
8193 ("new discriminants must constrain old ones", Discrim
);
8195 elsif Private_Extension
8196 and then Present
(Corresponding_Discriminant
(Discrim
))
8199 ("only static constraints allowed for parent"
8200 & " discriminants in the partial view", Indic
);
8204 -- If a new discriminant is used in the constraint, then its
8205 -- subtype must be statically compatible with the parent
8206 -- discriminant's subtype (3.7(15)).
8208 -- However, if the record contains an array constrained by
8209 -- the discriminant but with some different bound, the compiler
8210 -- attemps to create a smaller range for the discriminant type.
8211 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8212 -- the discriminant type is a scalar type, the check must use
8213 -- the original discriminant type in the parent declaration.
8216 Corr_Disc
: constant Entity_Id
:=
8217 Corresponding_Discriminant
(Discrim
);
8218 Disc_Type
: constant Entity_Id
:= Etype
(Discrim
);
8219 Corr_Type
: Entity_Id
;
8222 if Present
(Corr_Disc
) then
8223 if Is_Scalar_Type
(Disc_Type
) then
8225 Entity
(Discriminant_Type
(Parent
(Corr_Disc
)));
8227 Corr_Type
:= Etype
(Corr_Disc
);
8231 Subtypes_Statically_Compatible
(Disc_Type
, Corr_Type
)
8234 ("subtype must be compatible "
8235 & "with parent discriminant",
8241 Next_Discriminant
(Discrim
);
8244 -- Check whether the constraints of the full view statically
8245 -- match those imposed by the parent subtype [7.3(13)].
8247 if Present
(Stored_Constraint
(Derived_Type
)) then
8252 C1
:= First_Elmt
(Discs
);
8253 C2
:= First_Elmt
(Stored_Constraint
(Derived_Type
));
8254 while Present
(C1
) and then Present
(C2
) loop
8256 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
8259 ("not conformant with previous declaration",
8270 -- STEP 2b: No new discriminants, inherit discriminants if any
8273 if Private_Extension
then
8274 Set_Has_Unknown_Discriminants
8276 Has_Unknown_Discriminants
(Parent_Type
)
8277 or else Unknown_Discriminants_Present
(N
));
8279 -- The partial view of the parent may have unknown discriminants,
8280 -- but if the full view has discriminants and the parent type is
8281 -- in scope they must be inherited.
8283 elsif Has_Unknown_Discriminants
(Parent_Type
)
8285 (not Has_Discriminants
(Parent_Type
)
8286 or else not In_Open_Scopes
(Scope
(Parent_Type
)))
8288 Set_Has_Unknown_Discriminants
(Derived_Type
);
8291 if not Has_Unknown_Discriminants
(Derived_Type
)
8292 and then not Has_Unknown_Discriminants
(Parent_Base
)
8293 and then Has_Discriminants
(Parent_Type
)
8295 Inherit_Discrims
:= True;
8296 Set_Has_Discriminants
8297 (Derived_Type
, True);
8298 Set_Discriminant_Constraint
8299 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
8302 -- The following test is true for private types (remember
8303 -- transformation 5. is not applied to those) and in an error
8306 if Constraint_Present
then
8307 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
8310 -- For now mark a new derived type as constrained only if it has no
8311 -- discriminants. At the end of Build_Derived_Record_Type we properly
8312 -- set this flag in the case of private extensions. See comments in
8313 -- point 9. just before body of Build_Derived_Record_Type.
8317 not (Inherit_Discrims
8318 or else Has_Unknown_Discriminants
(Derived_Type
)));
8321 -- STEP 3: initialize fields of derived type
8323 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
8324 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
8326 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8327 -- but cannot be interfaces
8329 if not Private_Extension
8330 and then Ekind
(Derived_Type
) /= E_Private_Type
8331 and then Ekind
(Derived_Type
) /= E_Limited_Private_Type
8333 if Interface_Present
(Type_Def
) then
8334 Analyze_Interface_Declaration
(Derived_Type
, Type_Def
);
8337 Set_Interfaces
(Derived_Type
, No_Elist
);
8340 -- Fields inherited from the Parent_Type
8342 Set_Has_Specified_Layout
8343 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
8344 Set_Is_Limited_Composite
8345 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
8346 Set_Is_Private_Composite
8347 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
8349 if Is_Tagged_Type
(Parent_Type
) then
8350 Set_No_Tagged_Streams_Pragma
8351 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
8354 -- Fields inherited from the Parent_Base
8356 Set_Has_Controlled_Component
8357 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
8358 Set_Has_Non_Standard_Rep
8359 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
8360 Set_Has_Primitive_Operations
8361 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
8363 -- Fields inherited from the Parent_Base in the non-private case
8365 if Ekind
(Derived_Type
) = E_Record_Type
then
8366 Set_Has_Complex_Representation
8367 (Derived_Type
, Has_Complex_Representation
(Parent_Base
));
8370 -- Fields inherited from the Parent_Base for record types
8372 if Is_Record_Type
(Derived_Type
) then
8374 Parent_Full
: Entity_Id
;
8377 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8378 -- Parent_Base can be a private type or private extension. Go
8379 -- to the full view here to get the E_Record_Type specific flags.
8381 if Present
(Full_View
(Parent_Base
)) then
8382 Parent_Full
:= Full_View
(Parent_Base
);
8384 Parent_Full
:= Parent_Base
;
8387 Set_OK_To_Reorder_Components
8388 (Derived_Type
, OK_To_Reorder_Components
(Parent_Full
));
8392 -- Set fields for private derived types
8394 if Is_Private_Type
(Derived_Type
) then
8395 Set_Depends_On_Private
(Derived_Type
, True);
8396 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
8398 -- Inherit fields from non private record types. If this is the
8399 -- completion of a derivation from a private type, the parent itself
8400 -- is private, and the attributes come from its full view, which must
8404 if Is_Private_Type
(Parent_Base
)
8405 and then not Is_Record_Type
(Parent_Base
)
8407 Set_Component_Alignment
8408 (Derived_Type
, Component_Alignment
(Full_View
(Parent_Base
)));
8410 (Derived_Type
, C_Pass_By_Copy
(Full_View
(Parent_Base
)));
8412 Set_Component_Alignment
8413 (Derived_Type
, Component_Alignment
(Parent_Base
));
8415 (Derived_Type
, C_Pass_By_Copy
(Parent_Base
));
8419 -- Set fields for tagged types
8422 Set_Direct_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
8424 -- All tagged types defined in Ada.Finalization are controlled
8426 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
8427 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
8428 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
8430 Set_Is_Controlled
(Derived_Type
);
8432 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Base
));
8435 -- Minor optimization: there is no need to generate the class-wide
8436 -- entity associated with an underlying record view.
8438 if not Is_Underlying_Record_View
(Derived_Type
) then
8439 Make_Class_Wide_Type
(Derived_Type
);
8442 Set_Is_Abstract_Type
(Derived_Type
, Abstract_Present
(Type_Def
));
8444 if Has_Discriminants
(Derived_Type
)
8445 and then Constraint_Present
8447 Set_Stored_Constraint
8448 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Base
, Discs
));
8451 if Ada_Version
>= Ada_2005
then
8453 Ifaces_List
: Elist_Id
;
8456 -- Checks rules 3.9.4 (13/2 and 14/2)
8458 if Comes_From_Source
(Derived_Type
)
8459 and then not Is_Private_Type
(Derived_Type
)
8460 and then Is_Interface
(Parent_Type
)
8461 and then not Is_Interface
(Derived_Type
)
8463 if Is_Task_Interface
(Parent_Type
) then
8465 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8468 elsif Is_Protected_Interface
(Parent_Type
) then
8470 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8475 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8477 Check_Interfaces
(N
, Type_Def
);
8479 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8480 -- not already in the parents.
8484 Ifaces_List
=> Ifaces_List
,
8485 Exclude_Parents
=> True);
8487 Set_Interfaces
(Derived_Type
, Ifaces_List
);
8489 -- If the derived type is the anonymous type created for
8490 -- a declaration whose parent has a constraint, propagate
8491 -- the interface list to the source type. This must be done
8492 -- prior to the completion of the analysis of the source type
8493 -- because the components in the extension may contain current
8494 -- instances whose legality depends on some ancestor.
8496 if Is_Itype
(Derived_Type
) then
8498 Def
: constant Node_Id
:=
8499 Associated_Node_For_Itype
(Derived_Type
);
8502 and then Nkind
(Def
) = N_Full_Type_Declaration
8505 (Defining_Identifier
(Def
), Ifaces_List
);
8513 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Base
));
8514 Set_Has_Non_Standard_Rep
8515 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
8518 -- STEP 4: Inherit components from the parent base and constrain them.
8519 -- Apply the second transformation described in point 6. above.
8521 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
8522 or else not Has_Discriminants
(Parent_Type
)
8523 or else not Is_Constrained
(Parent_Type
)
8527 Constrs
:= Discriminant_Constraint
(Parent_Type
);
8532 (N
, Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
8534 -- STEP 5a: Copy the parent record declaration for untagged types
8536 if not Is_Tagged
then
8538 -- Discriminant_Constraint (Derived_Type) has been properly
8539 -- constructed. Save it and temporarily set it to Empty because we
8540 -- do not want the call to New_Copy_Tree below to mess this list.
8542 if Has_Discriminants
(Derived_Type
) then
8543 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
8544 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
8546 Save_Discr_Constr
:= No_Elist
;
8549 -- Save the Etype field of Derived_Type. It is correctly set now,
8550 -- but the call to New_Copy tree may remap it to point to itself,
8551 -- which is not what we want. Ditto for the Next_Entity field.
8553 Save_Etype
:= Etype
(Derived_Type
);
8554 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
8556 -- Assoc_List maps all stored discriminants in the Parent_Base to
8557 -- stored discriminants in the Derived_Type. It is fundamental that
8558 -- no types or itypes with discriminants other than the stored
8559 -- discriminants appear in the entities declared inside
8560 -- Derived_Type, since the back end cannot deal with it.
8564 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
8566 -- Restore the fields saved prior to the New_Copy_Tree call
8567 -- and compute the stored constraint.
8569 Set_Etype
(Derived_Type
, Save_Etype
);
8570 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
8572 if Has_Discriminants
(Derived_Type
) then
8573 Set_Discriminant_Constraint
8574 (Derived_Type
, Save_Discr_Constr
);
8575 Set_Stored_Constraint
8576 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Type
, Discs
));
8577 Replace_Components
(Derived_Type
, New_Decl
);
8578 Set_Has_Implicit_Dereference
8579 (Derived_Type
, Has_Implicit_Dereference
(Parent_Type
));
8582 -- Insert the new derived type declaration
8584 Rewrite
(N
, New_Decl
);
8586 -- STEP 5b: Complete the processing for record extensions in generics
8588 -- There is no completion for record extensions declared in the
8589 -- parameter part of a generic, so we need to complete processing for
8590 -- these generic record extensions here. The Record_Type_Definition call
8591 -- will change the Ekind of the components from E_Void to E_Component.
8593 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
8594 Record_Type_Definition
(Empty
, Derived_Type
);
8596 -- STEP 5c: Process the record extension for non private tagged types
8598 elsif not Private_Extension
then
8599 Expand_Record_Extension
(Derived_Type
, Type_Def
);
8601 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8602 -- derived type to propagate some semantic information. This led
8603 -- to other ASIS failures and has been removed.
8605 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8606 -- implemented interfaces if we are in expansion mode
8609 and then Has_Interfaces
(Derived_Type
)
8611 Add_Interface_Tag_Components
(N
, Derived_Type
);
8614 -- Analyze the record extension
8616 Record_Type_Definition
8617 (Record_Extension_Part
(Type_Def
), Derived_Type
);
8622 -- Nothing else to do if there is an error in the derivation.
8623 -- An unusual case: the full view may be derived from a type in an
8624 -- instance, when the partial view was used illegally as an actual
8625 -- in that instance, leading to a circular definition.
8627 if Etype
(Derived_Type
) = Any_Type
8628 or else Etype
(Parent_Type
) = Derived_Type
8633 -- Set delayed freeze and then derive subprograms, we need to do
8634 -- this in this order so that derived subprograms inherit the
8635 -- derived freeze if necessary.
8637 Set_Has_Delayed_Freeze
(Derived_Type
);
8639 if Derive_Subps
then
8640 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8643 -- If we have a private extension which defines a constrained derived
8644 -- type mark as constrained here after we have derived subprograms. See
8645 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8647 if Private_Extension
and then Inherit_Discrims
then
8648 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
8649 Set_Is_Constrained
(Derived_Type
, True);
8650 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
8652 elsif Is_Constrained
(Parent_Type
) then
8654 (Derived_Type
, True);
8655 Set_Discriminant_Constraint
8656 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
8660 -- Update the class-wide type, which shares the now-completed entity
8661 -- list with its specific type. In case of underlying record views,
8662 -- we do not generate the corresponding class wide entity.
8665 and then not Is_Underlying_Record_View
(Derived_Type
)
8668 (Class_Wide_Type
(Derived_Type
), First_Entity
(Derived_Type
));
8670 (Class_Wide_Type
(Derived_Type
), Last_Entity
(Derived_Type
));
8673 Check_Function_Writable_Actuals
(N
);
8674 end Build_Derived_Record_Type
;
8676 ------------------------
8677 -- Build_Derived_Type --
8678 ------------------------
8680 procedure Build_Derived_Type
8682 Parent_Type
: Entity_Id
;
8683 Derived_Type
: Entity_Id
;
8684 Is_Completion
: Boolean;
8685 Derive_Subps
: Boolean := True)
8687 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
8690 -- Set common attributes
8692 Set_Scope
(Derived_Type
, Current_Scope
);
8694 Set_Etype
(Derived_Type
, Parent_Base
);
8695 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
8696 Set_Has_Task
(Derived_Type
, Has_Task
(Parent_Base
));
8697 Set_Has_Protected
(Derived_Type
, Has_Protected
(Parent_Base
));
8699 Set_Size_Info
(Derived_Type
, Parent_Type
);
8700 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
8701 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
8702 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged_Type
(Parent_Type
));
8704 if Is_Tagged_Type
(Derived_Type
) then
8705 Set_No_Tagged_Streams_Pragma
8706 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
8709 -- If the parent has primitive routines, set the derived type link
8711 if Has_Primitive_Operations
(Parent_Type
) then
8712 Set_Derived_Type_Link
(Parent_Base
, Derived_Type
);
8715 -- If the parent type is a private subtype, the convention on the base
8716 -- type may be set in the private part, and not propagated to the
8717 -- subtype until later, so we obtain the convention from the base type.
8719 Set_Convention
(Derived_Type
, Convention
(Parent_Base
));
8721 -- Set SSO default for record or array type
8723 if (Is_Array_Type
(Derived_Type
) or else Is_Record_Type
(Derived_Type
))
8724 and then Is_Base_Type
(Derived_Type
)
8726 Set_Default_SSO
(Derived_Type
);
8729 -- Propagate invariant information. The new type has invariants if
8730 -- they are inherited from the parent type, and these invariants can
8731 -- be further inherited, so both flags are set.
8733 -- We similarly inherit predicates
8735 if Has_Predicates
(Parent_Type
) then
8736 Set_Has_Predicates
(Derived_Type
);
8739 -- The derived type inherits the representation clauses of the parent
8741 Inherit_Rep_Item_Chain
(Derived_Type
, Parent_Type
);
8743 -- Propagate the attributes related to pragma Default_Initial_Condition
8744 -- from the parent type to the private extension. A derived type always
8745 -- inherits the default initial condition flag from the parent type. If
8746 -- the derived type carries its own Default_Initial_Condition pragma,
8747 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8748 -- mutually exclusive.
8750 Propagate_Default_Init_Cond_Attributes
8751 (From_Typ
=> Parent_Type
,
8752 To_Typ
=> Derived_Type
,
8753 Parent_To_Derivation
=> True);
8755 -- If the parent type has delayed rep aspects, then mark the derived
8756 -- type as possibly inheriting a delayed rep aspect.
8758 if Has_Delayed_Rep_Aspects
(Parent_Type
) then
8759 Set_May_Inherit_Delayed_Rep_Aspects
(Derived_Type
);
8762 -- Type dependent processing
8764 case Ekind
(Parent_Type
) is
8765 when Numeric_Kind
=>
8766 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
8769 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
8773 | Class_Wide_Kind
=>
8774 Build_Derived_Record_Type
8775 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
8778 when Enumeration_Kind
=>
8779 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
8782 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
8784 when Incomplete_Or_Private_Kind
=>
8785 Build_Derived_Private_Type
8786 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
8788 -- For discriminated types, the derivation includes deriving
8789 -- primitive operations. For others it is done below.
8791 if Is_Tagged_Type
(Parent_Type
)
8792 or else Has_Discriminants
(Parent_Type
)
8793 or else (Present
(Full_View
(Parent_Type
))
8794 and then Has_Discriminants
(Full_View
(Parent_Type
)))
8799 when Concurrent_Kind
=>
8800 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
8803 raise Program_Error
;
8806 -- Nothing more to do if some error occurred
8808 if Etype
(Derived_Type
) = Any_Type
then
8812 -- Set delayed freeze and then derive subprograms, we need to do this
8813 -- in this order so that derived subprograms inherit the derived freeze
8816 Set_Has_Delayed_Freeze
(Derived_Type
);
8818 if Derive_Subps
then
8819 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8822 Set_Has_Primitive_Operations
8823 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
8824 end Build_Derived_Type
;
8826 -----------------------
8827 -- Build_Discriminal --
8828 -----------------------
8830 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
8831 D_Minal
: Entity_Id
;
8832 CR_Disc
: Entity_Id
;
8835 -- A discriminal has the same name as the discriminant
8837 D_Minal
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
8839 Set_Ekind
(D_Minal
, E_In_Parameter
);
8840 Set_Mechanism
(D_Minal
, Default_Mechanism
);
8841 Set_Etype
(D_Minal
, Etype
(Discrim
));
8842 Set_Scope
(D_Minal
, Current_Scope
);
8844 Set_Discriminal
(Discrim
, D_Minal
);
8845 Set_Discriminal_Link
(D_Minal
, Discrim
);
8847 -- For task types, build at once the discriminants of the corresponding
8848 -- record, which are needed if discriminants are used in entry defaults
8849 -- and in family bounds.
8851 if Is_Concurrent_Type
(Current_Scope
)
8853 Is_Limited_Type
(Current_Scope
)
8855 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
8857 Set_Ekind
(CR_Disc
, E_In_Parameter
);
8858 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
8859 Set_Etype
(CR_Disc
, Etype
(Discrim
));
8860 Set_Scope
(CR_Disc
, Current_Scope
);
8861 Set_Discriminal_Link
(CR_Disc
, Discrim
);
8862 Set_CR_Discriminant
(Discrim
, CR_Disc
);
8864 end Build_Discriminal
;
8866 ------------------------------------
8867 -- Build_Discriminant_Constraints --
8868 ------------------------------------
8870 function Build_Discriminant_Constraints
8873 Derived_Def
: Boolean := False) return Elist_Id
8875 C
: constant Node_Id
:= Constraint
(Def
);
8876 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
8878 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
8879 -- Saves the expression corresponding to a given discriminant in T
8881 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
8882 -- Return the Position number within array Discr_Expr of a discriminant
8883 -- D within the discriminant list of the discriminated type T.
8885 procedure Process_Discriminant_Expression
8888 -- If this is a discriminant constraint on a partial view, do not
8889 -- generate an overflow check on the discriminant expression. The check
8890 -- will be generated when constraining the full view. Otherwise the
8891 -- backend creates duplicate symbols for the temporaries corresponding
8892 -- to the expressions to be checked, causing spurious assembler errors.
8898 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
8902 Disc
:= First_Discriminant
(T
);
8903 for J
in Discr_Expr
'Range loop
8908 Next_Discriminant
(Disc
);
8911 -- Note: Since this function is called on discriminants that are
8912 -- known to belong to the discriminated type, falling through the
8913 -- loop with no match signals an internal compiler error.
8915 raise Program_Error
;
8918 -------------------------------------
8919 -- Process_Discriminant_Expression --
8920 -------------------------------------
8922 procedure Process_Discriminant_Expression
8926 BDT
: constant Entity_Id
:= Base_Type
(Etype
(D
));
8929 -- If this is a discriminant constraint on a partial view, do
8930 -- not generate an overflow on the discriminant expression. The
8931 -- check will be generated when constraining the full view.
8933 if Is_Private_Type
(T
)
8934 and then Present
(Full_View
(T
))
8936 Analyze_And_Resolve
(Expr
, BDT
, Suppress
=> Overflow_Check
);
8938 Analyze_And_Resolve
(Expr
, BDT
);
8940 end Process_Discriminant_Expression
;
8942 -- Declarations local to Build_Discriminant_Constraints
8946 Elist
: constant Elist_Id
:= New_Elmt_List
;
8954 Discrim_Present
: Boolean := False;
8956 -- Start of processing for Build_Discriminant_Constraints
8959 -- The following loop will process positional associations only.
8960 -- For a positional association, the (single) discriminant is
8961 -- implicitly specified by position, in textual order (RM 3.7.2).
8963 Discr
:= First_Discriminant
(T
);
8964 Constr
:= First
(Constraints
(C
));
8965 for D
in Discr_Expr
'Range loop
8966 exit when Nkind
(Constr
) = N_Discriminant_Association
;
8969 Error_Msg_N
("too few discriminants given in constraint", C
);
8970 return New_Elmt_List
;
8972 elsif Nkind
(Constr
) = N_Range
8973 or else (Nkind
(Constr
) = N_Attribute_Reference
8974 and then Attribute_Name
(Constr
) = Name_Range
)
8977 ("a range is not a valid discriminant constraint", Constr
);
8978 Discr_Expr
(D
) := Error
;
8981 Process_Discriminant_Expression
(Constr
, Discr
);
8982 Discr_Expr
(D
) := Constr
;
8985 Next_Discriminant
(Discr
);
8989 if No
(Discr
) and then Present
(Constr
) then
8990 Error_Msg_N
("too many discriminants given in constraint", Constr
);
8991 return New_Elmt_List
;
8994 -- Named associations can be given in any order, but if both positional
8995 -- and named associations are used in the same discriminant constraint,
8996 -- then positional associations must occur first, at their normal
8997 -- position. Hence once a named association is used, the rest of the
8998 -- discriminant constraint must use only named associations.
9000 while Present
(Constr
) loop
9002 -- Positional association forbidden after a named association
9004 if Nkind
(Constr
) /= N_Discriminant_Association
then
9005 Error_Msg_N
("positional association follows named one", Constr
);
9006 return New_Elmt_List
;
9008 -- Otherwise it is a named association
9011 -- E records the type of the discriminants in the named
9012 -- association. All the discriminants specified in the same name
9013 -- association must have the same type.
9017 -- Search the list of discriminants in T to see if the simple name
9018 -- given in the constraint matches any of them.
9020 Id
:= First
(Selector_Names
(Constr
));
9021 while Present
(Id
) loop
9024 -- If Original_Discriminant is present, we are processing a
9025 -- generic instantiation and this is an instance node. We need
9026 -- to find the name of the corresponding discriminant in the
9027 -- actual record type T and not the name of the discriminant in
9028 -- the generic formal. Example:
9031 -- type G (D : int) is private;
9033 -- subtype W is G (D => 1);
9035 -- type Rec (X : int) is record ... end record;
9036 -- package Q is new P (G => Rec);
9038 -- At the point of the instantiation, formal type G is Rec
9039 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9040 -- which really looks like "subtype W is Rec (D => 1);" at
9041 -- the point of instantiation, we want to find the discriminant
9042 -- that corresponds to D in Rec, i.e. X.
9044 if Present
(Original_Discriminant
(Id
))
9045 and then In_Instance
9047 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
9051 Discr
:= First_Discriminant
(T
);
9052 while Present
(Discr
) loop
9053 if Chars
(Discr
) = Chars
(Id
) then
9058 Next_Discriminant
(Discr
);
9062 Error_Msg_N
("& does not match any discriminant", Id
);
9063 return New_Elmt_List
;
9065 -- If the parent type is a generic formal, preserve the
9066 -- name of the discriminant for subsequent instances.
9067 -- see comment at the beginning of this if statement.
9069 elsif Is_Generic_Type
(Root_Type
(T
)) then
9070 Set_Original_Discriminant
(Id
, Discr
);
9074 Position
:= Pos_Of_Discr
(T
, Discr
);
9076 if Present
(Discr_Expr
(Position
)) then
9077 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
9080 -- Each discriminant specified in the same named association
9081 -- must be associated with a separate copy of the
9082 -- corresponding expression.
9084 if Present
(Next
(Id
)) then
9085 Expr
:= New_Copy_Tree
(Expression
(Constr
));
9086 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
9088 Expr
:= Expression
(Constr
);
9091 Discr_Expr
(Position
) := Expr
;
9092 Process_Discriminant_Expression
(Expr
, Discr
);
9095 -- A discriminant association with more than one discriminant
9096 -- name is only allowed if the named discriminants are all of
9097 -- the same type (RM 3.7.1(8)).
9100 E
:= Base_Type
(Etype
(Discr
));
9102 elsif Base_Type
(Etype
(Discr
)) /= E
then
9104 ("all discriminants in an association " &
9105 "must have the same type", Id
);
9115 -- A discriminant constraint must provide exactly one value for each
9116 -- discriminant of the type (RM 3.7.1(8)).
9118 for J
in Discr_Expr
'Range loop
9119 if No
(Discr_Expr
(J
)) then
9120 Error_Msg_N
("too few discriminants given in constraint", C
);
9121 return New_Elmt_List
;
9125 -- Determine if there are discriminant expressions in the constraint
9127 for J
in Discr_Expr
'Range loop
9128 if Denotes_Discriminant
9129 (Discr_Expr
(J
), Check_Concurrent
=> True)
9131 Discrim_Present
:= True;
9135 -- Build an element list consisting of the expressions given in the
9136 -- discriminant constraint and apply the appropriate checks. The list
9137 -- is constructed after resolving any named discriminant associations
9138 -- and therefore the expressions appear in the textual order of the
9141 Discr
:= First_Discriminant
(T
);
9142 for J
in Discr_Expr
'Range loop
9143 if Discr_Expr
(J
) /= Error
then
9144 Append_Elmt
(Discr_Expr
(J
), Elist
);
9146 -- If any of the discriminant constraints is given by a
9147 -- discriminant and we are in a derived type declaration we
9148 -- have a discriminant renaming. Establish link between new
9149 -- and old discriminant.
9151 if Denotes_Discriminant
(Discr_Expr
(J
)) then
9153 Set_Corresponding_Discriminant
9154 (Entity
(Discr_Expr
(J
)), Discr
);
9157 -- Force the evaluation of non-discriminant expressions.
9158 -- If we have found a discriminant in the constraint 3.4(26)
9159 -- and 3.8(18) demand that no range checks are performed are
9160 -- after evaluation. If the constraint is for a component
9161 -- definition that has a per-object constraint, expressions are
9162 -- evaluated but not checked either. In all other cases perform
9166 if Discrim_Present
then
9169 elsif Nkind
(Parent
(Parent
(Def
))) = N_Component_Declaration
9171 Has_Per_Object_Constraint
9172 (Defining_Identifier
(Parent
(Parent
(Def
))))
9176 elsif Is_Access_Type
(Etype
(Discr
)) then
9177 Apply_Constraint_Check
(Discr_Expr
(J
), Etype
(Discr
));
9180 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
9183 Force_Evaluation
(Discr_Expr
(J
));
9186 -- Check that the designated type of an access discriminant's
9187 -- expression is not a class-wide type unless the discriminant's
9188 -- designated type is also class-wide.
9190 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
9191 and then not Is_Class_Wide_Type
9192 (Designated_Type
(Etype
(Discr
)))
9193 and then Etype
(Discr_Expr
(J
)) /= Any_Type
9194 and then Is_Class_Wide_Type
9195 (Designated_Type
(Etype
(Discr_Expr
(J
))))
9197 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
9199 elsif Is_Access_Type
(Etype
(Discr
))
9200 and then not Is_Access_Constant
(Etype
(Discr
))
9201 and then Is_Access_Type
(Etype
(Discr_Expr
(J
)))
9202 and then Is_Access_Constant
(Etype
(Discr_Expr
(J
)))
9205 ("constraint for discriminant& must be access to variable",
9210 Next_Discriminant
(Discr
);
9214 end Build_Discriminant_Constraints
;
9216 ---------------------------------
9217 -- Build_Discriminated_Subtype --
9218 ---------------------------------
9220 procedure Build_Discriminated_Subtype
9224 Related_Nod
: Node_Id
;
9225 For_Access
: Boolean := False)
9227 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
9228 Constrained
: constant Boolean :=
9230 and then not Is_Empty_Elmt_List
(Elist
)
9231 and then not Is_Class_Wide_Type
(T
))
9232 or else Is_Constrained
(T
);
9235 if Ekind
(T
) = E_Record_Type
then
9237 Set_Ekind
(Def_Id
, E_Private_Subtype
);
9238 Set_Is_For_Access_Subtype
(Def_Id
, True);
9240 Set_Ekind
(Def_Id
, E_Record_Subtype
);
9243 -- Inherit preelaboration flag from base, for types for which it
9244 -- may have been set: records, private types, protected types.
9246 Set_Known_To_Have_Preelab_Init
9247 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9249 elsif Ekind
(T
) = E_Task_Type
then
9250 Set_Ekind
(Def_Id
, E_Task_Subtype
);
9252 elsif Ekind
(T
) = E_Protected_Type
then
9253 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
9254 Set_Known_To_Have_Preelab_Init
9255 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9257 elsif Is_Private_Type
(T
) then
9258 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
9259 Set_Known_To_Have_Preelab_Init
9260 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9262 -- Private subtypes may have private dependents
9264 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
9266 elsif Is_Class_Wide_Type
(T
) then
9267 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
9270 -- Incomplete type. Attach subtype to list of dependents, to be
9271 -- completed with full view of parent type, unless is it the
9272 -- designated subtype of a record component within an init_proc.
9273 -- This last case arises for a component of an access type whose
9274 -- designated type is incomplete (e.g. a Taft Amendment type).
9275 -- The designated subtype is within an inner scope, and needs no
9276 -- elaboration, because only the access type is needed in the
9277 -- initialization procedure.
9279 Set_Ekind
(Def_Id
, Ekind
(T
));
9281 if For_Access
and then Within_Init_Proc
then
9284 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
9288 Set_Etype
(Def_Id
, T
);
9289 Init_Size_Align
(Def_Id
);
9290 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
9291 Set_Is_Constrained
(Def_Id
, Constrained
);
9293 Set_First_Entity
(Def_Id
, First_Entity
(T
));
9294 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
9295 Set_Has_Implicit_Dereference
9296 (Def_Id
, Has_Implicit_Dereference
(T
));
9298 -- If the subtype is the completion of a private declaration, there may
9299 -- have been representation clauses for the partial view, and they must
9300 -- be preserved. Build_Derived_Type chains the inherited clauses with
9301 -- the ones appearing on the extension. If this comes from a subtype
9302 -- declaration, all clauses are inherited.
9304 if No
(First_Rep_Item
(Def_Id
)) then
9305 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
9308 if Is_Tagged_Type
(T
) then
9309 Set_Is_Tagged_Type
(Def_Id
);
9310 Set_No_Tagged_Streams_Pragma
(Def_Id
, No_Tagged_Streams_Pragma
(T
));
9311 Make_Class_Wide_Type
(Def_Id
);
9314 Set_Stored_Constraint
(Def_Id
, No_Elist
);
9317 Set_Discriminant_Constraint
(Def_Id
, Elist
);
9318 Set_Stored_Constraint_From_Discriminant_Constraint
(Def_Id
);
9321 if Is_Tagged_Type
(T
) then
9323 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9324 -- concurrent record type (which has the list of primitive
9327 if Ada_Version
>= Ada_2005
9328 and then Is_Concurrent_Type
(T
)
9330 Set_Corresponding_Record_Type
(Def_Id
,
9331 Corresponding_Record_Type
(T
));
9333 Set_Direct_Primitive_Operations
(Def_Id
,
9334 Direct_Primitive_Operations
(T
));
9337 Set_Is_Abstract_Type
(Def_Id
, Is_Abstract_Type
(T
));
9340 -- Subtypes introduced by component declarations do not need to be
9341 -- marked as delayed, and do not get freeze nodes, because the semantics
9342 -- verifies that the parents of the subtypes are frozen before the
9343 -- enclosing record is frozen.
9345 if not Is_Type
(Scope
(Def_Id
)) then
9346 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
9348 if Is_Private_Type
(T
)
9349 and then Present
(Full_View
(T
))
9351 Conditional_Delay
(Def_Id
, Full_View
(T
));
9353 Conditional_Delay
(Def_Id
, T
);
9357 if Is_Record_Type
(T
) then
9358 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
9361 and then not Is_Empty_Elmt_List
(Elist
)
9362 and then not For_Access
9364 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
9365 elsif not For_Access
then
9366 Set_Cloned_Subtype
(Def_Id
, T
);
9369 end Build_Discriminated_Subtype
;
9371 ---------------------------
9372 -- Build_Itype_Reference --
9373 ---------------------------
9375 procedure Build_Itype_Reference
9379 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(Nod
));
9382 -- Itype references are only created for use by the back-end
9384 if Inside_A_Generic
then
9387 Set_Itype
(IR
, Ityp
);
9388 Insert_After
(Nod
, IR
);
9390 end Build_Itype_Reference
;
9392 ------------------------
9393 -- Build_Scalar_Bound --
9394 ------------------------
9396 function Build_Scalar_Bound
9399 Der_T
: Entity_Id
) return Node_Id
9401 New_Bound
: Entity_Id
;
9404 -- Note: not clear why this is needed, how can the original bound
9405 -- be unanalyzed at this point? and if it is, what business do we
9406 -- have messing around with it? and why is the base type of the
9407 -- parent type the right type for the resolution. It probably is
9408 -- not. It is OK for the new bound we are creating, but not for
9409 -- the old one??? Still if it never happens, no problem.
9411 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
9413 if Nkind_In
(Bound
, N_Integer_Literal
, N_Real_Literal
) then
9414 New_Bound
:= New_Copy
(Bound
);
9415 Set_Etype
(New_Bound
, Der_T
);
9416 Set_Analyzed
(New_Bound
);
9418 elsif Is_Entity_Name
(Bound
) then
9419 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
9421 -- The following is almost certainly wrong. What business do we have
9422 -- relocating a node (Bound) that is presumably still attached to
9423 -- the tree elsewhere???
9426 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
9429 Set_Etype
(New_Bound
, Der_T
);
9431 end Build_Scalar_Bound
;
9433 --------------------------------
9434 -- Build_Underlying_Full_View --
9435 --------------------------------
9437 procedure Build_Underlying_Full_View
9442 Loc
: constant Source_Ptr
:= Sloc
(N
);
9443 Subt
: constant Entity_Id
:=
9444 Make_Defining_Identifier
9445 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
9452 procedure Set_Discriminant_Name
(Id
: Node_Id
);
9453 -- If the derived type has discriminants, they may rename discriminants
9454 -- of the parent. When building the full view of the parent, we need to
9455 -- recover the names of the original discriminants if the constraint is
9456 -- given by named associations.
9458 ---------------------------
9459 -- Set_Discriminant_Name --
9460 ---------------------------
9462 procedure Set_Discriminant_Name
(Id
: Node_Id
) is
9466 Set_Original_Discriminant
(Id
, Empty
);
9468 if Has_Discriminants
(Typ
) then
9469 Disc
:= First_Discriminant
(Typ
);
9470 while Present
(Disc
) loop
9471 if Chars
(Disc
) = Chars
(Id
)
9472 and then Present
(Corresponding_Discriminant
(Disc
))
9474 Set_Chars
(Id
, Chars
(Corresponding_Discriminant
(Disc
)));
9476 Next_Discriminant
(Disc
);
9479 end Set_Discriminant_Name
;
9481 -- Start of processing for Build_Underlying_Full_View
9484 if Nkind
(N
) = N_Full_Type_Declaration
then
9485 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
9487 elsif Nkind
(N
) = N_Subtype_Declaration
then
9488 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
9490 elsif Nkind
(N
) = N_Component_Declaration
then
9493 (Constraint
(Subtype_Indication
(Component_Definition
(N
))));
9496 raise Program_Error
;
9499 C
:= First
(Constraints
(Constr
));
9500 while Present
(C
) loop
9501 if Nkind
(C
) = N_Discriminant_Association
then
9502 Id
:= First
(Selector_Names
(C
));
9503 while Present
(Id
) loop
9504 Set_Discriminant_Name
(Id
);
9513 Make_Subtype_Declaration
(Loc
,
9514 Defining_Identifier
=> Subt
,
9515 Subtype_Indication
=>
9516 Make_Subtype_Indication
(Loc
,
9517 Subtype_Mark
=> New_Occurrence_Of
(Par
, Loc
),
9518 Constraint
=> New_Copy_Tree
(Constr
)));
9520 -- If this is a component subtype for an outer itype, it is not
9521 -- a list member, so simply set the parent link for analysis: if
9522 -- the enclosing type does not need to be in a declarative list,
9523 -- neither do the components.
9525 if Is_List_Member
(N
)
9526 and then Nkind
(N
) /= N_Component_Declaration
9528 Insert_Before
(N
, Indic
);
9530 Set_Parent
(Indic
, Parent
(N
));
9534 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
9535 end Build_Underlying_Full_View
;
9537 -------------------------------
9538 -- Check_Abstract_Overriding --
9539 -------------------------------
9541 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
9542 Alias_Subp
: Entity_Id
;
9548 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
);
9549 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9550 -- which has pragma Implemented already set. Check whether Subp's entity
9551 -- kind conforms to the implementation kind of the overridden routine.
9553 procedure Check_Pragma_Implemented
9555 Iface_Subp
: Entity_Id
);
9556 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9557 -- Iface_Subp and both entities have pragma Implemented already set on
9558 -- them. Check whether the two implementation kinds are conforming.
9560 procedure Inherit_Pragma_Implemented
9562 Iface_Subp
: Entity_Id
);
9563 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9564 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9565 -- Propagate the implementation kind of Iface_Subp to Subp.
9567 ------------------------------
9568 -- Check_Pragma_Implemented --
9569 ------------------------------
9571 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
) is
9572 Iface_Alias
: constant Entity_Id
:= Interface_Alias
(Subp
);
9573 Impl_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Alias
);
9574 Subp_Alias
: constant Entity_Id
:= Alias
(Subp
);
9575 Contr_Typ
: Entity_Id
;
9576 Impl_Subp
: Entity_Id
;
9579 -- Subp must have an alias since it is a hidden entity used to link
9580 -- an interface subprogram to its overriding counterpart.
9582 pragma Assert
(Present
(Subp_Alias
));
9584 -- Handle aliases to synchronized wrappers
9586 Impl_Subp
:= Subp_Alias
;
9588 if Is_Primitive_Wrapper
(Impl_Subp
) then
9589 Impl_Subp
:= Wrapped_Entity
(Impl_Subp
);
9592 -- Extract the type of the controlling formal
9594 Contr_Typ
:= Etype
(First_Formal
(Subp_Alias
));
9596 if Is_Concurrent_Record_Type
(Contr_Typ
) then
9597 Contr_Typ
:= Corresponding_Concurrent_Type
(Contr_Typ
);
9600 -- An interface subprogram whose implementation kind is By_Entry must
9601 -- be implemented by an entry.
9603 if Impl_Kind
= Name_By_Entry
9604 and then Ekind
(Impl_Subp
) /= E_Entry
9606 Error_Msg_Node_2
:= Iface_Alias
;
9608 ("type & must implement abstract subprogram & with an entry",
9609 Subp_Alias
, Contr_Typ
);
9611 elsif Impl_Kind
= Name_By_Protected_Procedure
then
9613 -- An interface subprogram whose implementation kind is By_
9614 -- Protected_Procedure cannot be implemented by a primitive
9615 -- procedure of a task type.
9617 if Ekind
(Contr_Typ
) /= E_Protected_Type
then
9618 Error_Msg_Node_2
:= Contr_Typ
;
9620 ("interface subprogram & cannot be implemented by a " &
9621 "primitive procedure of task type &", Subp_Alias
,
9624 -- An interface subprogram whose implementation kind is By_
9625 -- Protected_Procedure must be implemented by a procedure.
9627 elsif Ekind
(Impl_Subp
) /= E_Procedure
then
9628 Error_Msg_Node_2
:= Iface_Alias
;
9630 ("type & must implement abstract subprogram & with a " &
9631 "procedure", Subp_Alias
, Contr_Typ
);
9633 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
9634 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
9636 Error_Msg_Name_1
:= Impl_Kind
;
9638 ("overriding operation& must have synchronization%",
9642 -- If primitive has Optional synchronization, overriding operation
9643 -- must match if it has an explicit synchronization..
9645 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
9646 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
9648 Error_Msg_Name_1
:= Impl_Kind
;
9650 ("overriding operation& must have syncrhonization%",
9653 end Check_Pragma_Implemented
;
9655 ------------------------------
9656 -- Check_Pragma_Implemented --
9657 ------------------------------
9659 procedure Check_Pragma_Implemented
9661 Iface_Subp
: Entity_Id
)
9663 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
9664 Subp_Kind
: constant Name_Id
:= Implementation_Kind
(Subp
);
9667 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9668 -- and overriding subprogram are different. In general this is an
9669 -- error except when the implementation kind of the overridden
9670 -- subprograms is By_Any or Optional.
9672 if Iface_Kind
/= Subp_Kind
9673 and then Iface_Kind
/= Name_By_Any
9674 and then Iface_Kind
/= Name_Optional
9676 if Iface_Kind
= Name_By_Entry
then
9678 ("incompatible implementation kind, overridden subprogram " &
9679 "is marked By_Entry", Subp
);
9682 ("incompatible implementation kind, overridden subprogram " &
9683 "is marked By_Protected_Procedure", Subp
);
9686 end Check_Pragma_Implemented
;
9688 --------------------------------
9689 -- Inherit_Pragma_Implemented --
9690 --------------------------------
9692 procedure Inherit_Pragma_Implemented
9694 Iface_Subp
: Entity_Id
)
9696 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
9697 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
9698 Impl_Prag
: Node_Id
;
9701 -- Since the implementation kind is stored as a representation item
9702 -- rather than a flag, create a pragma node.
9706 Chars
=> Name_Implemented
,
9707 Pragma_Argument_Associations
=> New_List
(
9708 Make_Pragma_Argument_Association
(Loc
,
9709 Expression
=> New_Occurrence_Of
(Subp
, Loc
)),
9711 Make_Pragma_Argument_Association
(Loc
,
9712 Expression
=> Make_Identifier
(Loc
, Iface_Kind
))));
9714 -- The pragma doesn't need to be analyzed because it is internally
9715 -- built. It is safe to directly register it as a rep item since we
9716 -- are only interested in the characters of the implementation kind.
9718 Record_Rep_Item
(Subp
, Impl_Prag
);
9719 end Inherit_Pragma_Implemented
;
9721 -- Start of processing for Check_Abstract_Overriding
9724 Op_List
:= Primitive_Operations
(T
);
9726 -- Loop to check primitive operations
9728 Elmt
:= First_Elmt
(Op_List
);
9729 while Present
(Elmt
) loop
9730 Subp
:= Node
(Elmt
);
9731 Alias_Subp
:= Alias
(Subp
);
9733 -- Inherited subprograms are identified by the fact that they do not
9734 -- come from source, and the associated source location is the
9735 -- location of the first subtype of the derived type.
9737 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9738 -- subprograms that "require overriding".
9740 -- Special exception, do not complain about failure to override the
9741 -- stream routines _Input and _Output, as well as the primitive
9742 -- operations used in dispatching selects since we always provide
9743 -- automatic overridings for these subprograms.
9745 -- Also ignore this rule for convention CIL since .NET libraries
9746 -- do bizarre things with interfaces???
9748 -- The partial view of T may have been a private extension, for
9749 -- which inherited functions dispatching on result are abstract.
9750 -- If the full view is a null extension, there is no need for
9751 -- overriding in Ada 2005, but wrappers need to be built for them
9752 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9754 if Is_Null_Extension
(T
)
9755 and then Has_Controlling_Result
(Subp
)
9756 and then Ada_Version
>= Ada_2005
9757 and then Present
(Alias_Subp
)
9758 and then not Comes_From_Source
(Subp
)
9759 and then not Is_Abstract_Subprogram
(Alias_Subp
)
9760 and then not Is_Access_Type
(Etype
(Subp
))
9764 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9765 -- processing because this check is done with the aliased
9768 elsif Present
(Interface_Alias
(Subp
)) then
9771 elsif (Is_Abstract_Subprogram
(Subp
)
9772 or else Requires_Overriding
(Subp
)
9774 (Has_Controlling_Result
(Subp
)
9775 and then Present
(Alias_Subp
)
9776 and then not Comes_From_Source
(Subp
)
9777 and then Sloc
(Subp
) = Sloc
(First_Subtype
(T
))))
9778 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
9779 and then not Is_TSS
(Subp
, TSS_Stream_Output
)
9780 and then not Is_Abstract_Type
(T
)
9781 and then Convention
(T
) /= Convention_CIL
9782 and then not Is_Predefined_Interface_Primitive
(Subp
)
9784 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9785 -- with abstract interface types because the check will be done
9786 -- with the aliased entity (otherwise we generate a duplicated
9789 and then not Present
(Interface_Alias
(Subp
))
9791 if Present
(Alias_Subp
) then
9793 -- Only perform the check for a derived subprogram when the
9794 -- type has an explicit record extension. This avoids incorrect
9795 -- flagging of abstract subprograms for the case of a type
9796 -- without an extension that is derived from a formal type
9797 -- with a tagged actual (can occur within a private part).
9799 -- Ada 2005 (AI-391): In the case of an inherited function with
9800 -- a controlling result of the type, the rule does not apply if
9801 -- the type is a null extension (unless the parent function
9802 -- itself is abstract, in which case the function must still be
9803 -- be overridden). The expander will generate an overriding
9804 -- wrapper function calling the parent subprogram (see
9805 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9807 Type_Def
:= Type_Definition
(Parent
(T
));
9809 if Nkind
(Type_Def
) = N_Derived_Type_Definition
9810 and then Present
(Record_Extension_Part
(Type_Def
))
9812 (Ada_Version
< Ada_2005
9813 or else not Is_Null_Extension
(T
)
9814 or else Ekind
(Subp
) = E_Procedure
9815 or else not Has_Controlling_Result
(Subp
)
9816 or else Is_Abstract_Subprogram
(Alias_Subp
)
9817 or else Requires_Overriding
(Subp
)
9818 or else Is_Access_Type
(Etype
(Subp
)))
9820 -- Avoid reporting error in case of abstract predefined
9821 -- primitive inherited from interface type because the
9822 -- body of internally generated predefined primitives
9823 -- of tagged types are generated later by Freeze_Type
9825 if Is_Interface
(Root_Type
(T
))
9826 and then Is_Abstract_Subprogram
(Subp
)
9827 and then Is_Predefined_Dispatching_Operation
(Subp
)
9828 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
9832 -- A null extension is not obliged to override an inherited
9833 -- procedure subject to pragma Extensions_Visible with value
9834 -- False and at least one controlling OUT parameter
9835 -- (SPARK RM 6.1.7(6)).
9837 elsif Is_Null_Extension
(T
)
9838 and then Is_EVF_Procedure
(Subp
)
9844 ("type must be declared abstract or & overridden",
9847 -- Traverse the whole chain of aliased subprograms to
9848 -- complete the error notification. This is especially
9849 -- useful for traceability of the chain of entities when
9850 -- the subprogram corresponds with an interface
9851 -- subprogram (which may be defined in another package).
9853 if Present
(Alias_Subp
) then
9859 while Present
(Alias
(E
)) loop
9861 -- Avoid reporting redundant errors on entities
9862 -- inherited from interfaces
9864 if Sloc
(E
) /= Sloc
(T
) then
9865 Error_Msg_Sloc
:= Sloc
(E
);
9867 ("\& has been inherited #", T
, Subp
);
9873 Error_Msg_Sloc
:= Sloc
(E
);
9875 -- AI05-0068: report if there is an overriding
9876 -- non-abstract subprogram that is invisible.
9879 and then not Is_Abstract_Subprogram
(E
)
9882 ("\& subprogram# is not visible",
9885 -- Clarify the case where a non-null extension must
9886 -- override inherited procedure subject to pragma
9887 -- Extensions_Visible with value False and at least
9888 -- one controlling OUT param.
9890 elsif Is_EVF_Procedure
(E
) then
9892 ("\& # is subject to Extensions_Visible False",
9897 ("\& has been inherited from subprogram #",
9904 -- Ada 2005 (AI-345): Protected or task type implementing
9905 -- abstract interfaces.
9907 elsif Is_Concurrent_Record_Type
(T
)
9908 and then Present
(Interfaces
(T
))
9910 -- If an inherited subprogram is implemented by a protected
9911 -- procedure or an entry, then the first parameter of the
9912 -- inherited subprogram shall be of mode OUT or IN OUT, or
9913 -- an access-to-variable parameter (RM 9.4(11.9/3))
9915 if Is_Protected_Type
(Corresponding_Concurrent_Type
(T
))
9916 and then Ekind
(First_Formal
(Subp
)) = E_In_Parameter
9917 and then Ekind
(Subp
) /= E_Function
9918 and then not Is_Predefined_Dispatching_Operation
(Subp
)
9920 Error_Msg_PT
(T
, Subp
);
9922 -- Some other kind of overriding failure
9926 ("interface subprogram & must be overridden",
9929 -- Examine primitive operations of synchronized type,
9930 -- to find homonyms that have the wrong profile.
9937 First_Entity
(Corresponding_Concurrent_Type
(T
));
9938 while Present
(Prim
) loop
9939 if Chars
(Prim
) = Chars
(Subp
) then
9941 ("profile is not type conformant with "
9942 & "prefixed view profile of "
9943 & "inherited operation&", Prim
, Subp
);
9953 Error_Msg_Node_2
:= T
;
9955 ("abstract subprogram& not allowed for type&", Subp
);
9957 -- Also post unconditional warning on the type (unconditional
9958 -- so that if there are more than one of these cases, we get
9959 -- them all, and not just the first one).
9961 Error_Msg_Node_2
:= Subp
;
9962 Error_Msg_N
("nonabstract type& has abstract subprogram&!", T
);
9965 -- A subprogram subject to pragma Extensions_Visible with value
9966 -- "True" cannot override a subprogram subject to the same pragma
9967 -- with value "False" (SPARK RM 6.1.7(5)).
9969 elsif Extensions_Visible_Status
(Subp
) = Extensions_Visible_True
9970 and then Present
(Overridden_Operation
(Subp
))
9971 and then Extensions_Visible_Status
(Overridden_Operation
(Subp
)) =
9972 Extensions_Visible_False
9974 Error_Msg_Sloc
:= Sloc
(Overridden_Operation
(Subp
));
9976 ("subprogram & with Extensions_Visible True cannot override "
9977 & "subprogram # with Extensions_Visible False", Subp
);
9980 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
9982 -- Subp is an expander-generated procedure which maps an interface
9983 -- alias to a protected wrapper. The interface alias is flagged by
9984 -- pragma Implemented. Ensure that Subp is a procedure when the
9985 -- implementation kind is By_Protected_Procedure or an entry when
9988 if Ada_Version
>= Ada_2012
9989 and then Is_Hidden
(Subp
)
9990 and then Present
(Interface_Alias
(Subp
))
9991 and then Has_Rep_Pragma
(Interface_Alias
(Subp
), Name_Implemented
)
9993 Check_Pragma_Implemented
(Subp
);
9996 -- Subp is an interface primitive which overrides another interface
9997 -- primitive marked with pragma Implemented.
9999 if Ada_Version
>= Ada_2012
10000 and then Present
(Overridden_Operation
(Subp
))
10001 and then Has_Rep_Pragma
10002 (Overridden_Operation
(Subp
), Name_Implemented
)
10004 -- If the overriding routine is also marked by Implemented, check
10005 -- that the two implementation kinds are conforming.
10007 if Has_Rep_Pragma
(Subp
, Name_Implemented
) then
10008 Check_Pragma_Implemented
10010 Iface_Subp
=> Overridden_Operation
(Subp
));
10012 -- Otherwise the overriding routine inherits the implementation
10013 -- kind from the overridden subprogram.
10016 Inherit_Pragma_Implemented
10018 Iface_Subp
=> Overridden_Operation
(Subp
));
10022 -- If the operation is a wrapper for a synchronized primitive, it
10023 -- may be called indirectly through a dispatching select. We assume
10024 -- that it will be referenced elsewhere indirectly, and suppress
10025 -- warnings about an unused entity.
10027 if Is_Primitive_Wrapper
(Subp
)
10028 and then Present
(Wrapped_Entity
(Subp
))
10030 Set_Referenced
(Wrapped_Entity
(Subp
));
10035 end Check_Abstract_Overriding
;
10037 ------------------------------------------------
10038 -- Check_Access_Discriminant_Requires_Limited --
10039 ------------------------------------------------
10041 procedure Check_Access_Discriminant_Requires_Limited
10046 -- A discriminant_specification for an access discriminant shall appear
10047 -- only in the declaration for a task or protected type, or for a type
10048 -- with the reserved word 'limited' in its definition or in one of its
10049 -- ancestors (RM 3.7(10)).
10051 -- AI-0063: The proper condition is that type must be immutably limited,
10052 -- or else be a partial view.
10054 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
then
10055 if Is_Limited_View
(Current_Scope
)
10057 (Nkind
(Parent
(Current_Scope
)) = N_Private_Type_Declaration
10058 and then Limited_Present
(Parent
(Current_Scope
)))
10064 ("access discriminants allowed only for limited types", Loc
);
10067 end Check_Access_Discriminant_Requires_Limited
;
10069 -----------------------------------
10070 -- Check_Aliased_Component_Types --
10071 -----------------------------------
10073 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
10077 -- ??? Also need to check components of record extensions, but not
10078 -- components of protected types (which are always limited).
10080 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10081 -- types to be unconstrained. This is safe because it is illegal to
10082 -- create access subtypes to such types with explicit discriminant
10085 if not Is_Limited_Type
(T
) then
10086 if Ekind
(T
) = E_Record_Type
then
10087 C
:= First_Component
(T
);
10088 while Present
(C
) loop
10090 and then Has_Discriminants
(Etype
(C
))
10091 and then not Is_Constrained
(Etype
(C
))
10092 and then not In_Instance_Body
10093 and then Ada_Version
< Ada_2005
10096 ("aliased component must be constrained (RM 3.6(11))",
10100 Next_Component
(C
);
10103 elsif Ekind
(T
) = E_Array_Type
then
10104 if Has_Aliased_Components
(T
)
10105 and then Has_Discriminants
(Component_Type
(T
))
10106 and then not Is_Constrained
(Component_Type
(T
))
10107 and then not In_Instance_Body
10108 and then Ada_Version
< Ada_2005
10111 ("aliased component type must be constrained (RM 3.6(11))",
10116 end Check_Aliased_Component_Types
;
10118 ---------------------------------------
10119 -- Check_Anonymous_Access_Components --
10120 ---------------------------------------
10122 procedure Check_Anonymous_Access_Components
10123 (Typ_Decl
: Node_Id
;
10126 Comp_List
: Node_Id
)
10128 Loc
: constant Source_Ptr
:= Sloc
(Typ_Decl
);
10129 Anon_Access
: Entity_Id
;
10132 Comp_Def
: Node_Id
;
10134 Type_Def
: Node_Id
;
10136 procedure Build_Incomplete_Type_Declaration
;
10137 -- If the record type contains components that include an access to the
10138 -- current record, then create an incomplete type declaration for the
10139 -- record, to be used as the designated type of the anonymous access.
10140 -- This is done only once, and only if there is no previous partial
10141 -- view of the type.
10143 function Designates_T
(Subt
: Node_Id
) return Boolean;
10144 -- Check whether a node designates the enclosing record type, or 'Class
10147 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean;
10148 -- Check whether an access definition includes a reference to
10149 -- the enclosing record type. The reference can be a subtype mark
10150 -- in the access definition itself, a 'Class attribute reference, or
10151 -- recursively a reference appearing in a parameter specification
10152 -- or result definition of an access_to_subprogram definition.
10154 --------------------------------------
10155 -- Build_Incomplete_Type_Declaration --
10156 --------------------------------------
10158 procedure Build_Incomplete_Type_Declaration
is
10163 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10164 -- it's "is new ... with record" or else "is tagged record ...".
10166 Is_Tagged
: constant Boolean :=
10167 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Derived_Type_Definition
10169 Present
(Record_Extension_Part
(Type_Definition
(Typ_Decl
))))
10171 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Record_Definition
10172 and then Tagged_Present
(Type_Definition
(Typ_Decl
)));
10175 -- If there is a previous partial view, no need to create a new one
10176 -- If the partial view, given by Prev, is incomplete, If Prev is
10177 -- a private declaration, full declaration is flagged accordingly.
10179 if Prev
/= Typ
then
10181 Make_Class_Wide_Type
(Prev
);
10182 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Prev
));
10183 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
10188 elsif Has_Private_Declaration
(Typ
) then
10190 -- If we refer to T'Class inside T, and T is the completion of a
10191 -- private type, then make sure the class-wide type exists.
10194 Make_Class_Wide_Type
(Typ
);
10199 -- If there was a previous anonymous access type, the incomplete
10200 -- type declaration will have been created already.
10202 elsif Present
(Current_Entity
(Typ
))
10203 and then Ekind
(Current_Entity
(Typ
)) = E_Incomplete_Type
10204 and then Full_View
(Current_Entity
(Typ
)) = Typ
10207 and then Comes_From_Source
(Current_Entity
(Typ
))
10208 and then not Is_Tagged_Type
(Current_Entity
(Typ
))
10210 Make_Class_Wide_Type
(Typ
);
10212 ("incomplete view of tagged type should be declared tagged??",
10213 Parent
(Current_Entity
(Typ
)));
10218 Inc_T
:= Make_Defining_Identifier
(Loc
, Chars
(Typ
));
10219 Decl
:= Make_Incomplete_Type_Declaration
(Loc
, Inc_T
);
10221 -- Type has already been inserted into the current scope. Remove
10222 -- it, and add incomplete declaration for type, so that subsequent
10223 -- anonymous access types can use it. The entity is unchained from
10224 -- the homonym list and from immediate visibility. After analysis,
10225 -- the entity in the incomplete declaration becomes immediately
10226 -- visible in the record declaration that follows.
10228 H
:= Current_Entity
(Typ
);
10231 Set_Name_Entity_Id
(Chars
(Typ
), Homonym
(Typ
));
10234 and then Homonym
(H
) /= Typ
10236 H
:= Homonym
(Typ
);
10239 Set_Homonym
(H
, Homonym
(Typ
));
10242 Insert_Before
(Typ_Decl
, Decl
);
10244 Set_Full_View
(Inc_T
, Typ
);
10248 -- Create a common class-wide type for both views, and set the
10249 -- Etype of the class-wide type to the full view.
10251 Make_Class_Wide_Type
(Inc_T
);
10252 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Inc_T
));
10253 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
10256 end Build_Incomplete_Type_Declaration
;
10262 function Designates_T
(Subt
: Node_Id
) return Boolean is
10263 Type_Id
: constant Name_Id
:= Chars
(Typ
);
10265 function Names_T
(Nam
: Node_Id
) return Boolean;
10266 -- The record type has not been introduced in the current scope
10267 -- yet, so we must examine the name of the type itself, either
10268 -- an identifier T, or an expanded name of the form P.T, where
10269 -- P denotes the current scope.
10275 function Names_T
(Nam
: Node_Id
) return Boolean is
10277 if Nkind
(Nam
) = N_Identifier
then
10278 return Chars
(Nam
) = Type_Id
;
10280 elsif Nkind
(Nam
) = N_Selected_Component
then
10281 if Chars
(Selector_Name
(Nam
)) = Type_Id
then
10282 if Nkind
(Prefix
(Nam
)) = N_Identifier
then
10283 return Chars
(Prefix
(Nam
)) = Chars
(Current_Scope
);
10285 elsif Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
10286 return Chars
(Selector_Name
(Prefix
(Nam
))) =
10287 Chars
(Current_Scope
);
10301 -- Start of processing for Designates_T
10304 if Nkind
(Subt
) = N_Identifier
then
10305 return Chars
(Subt
) = Type_Id
;
10307 -- Reference can be through an expanded name which has not been
10308 -- analyzed yet, and which designates enclosing scopes.
10310 elsif Nkind
(Subt
) = N_Selected_Component
then
10311 if Names_T
(Subt
) then
10314 -- Otherwise it must denote an entity that is already visible.
10315 -- The access definition may name a subtype of the enclosing
10316 -- type, if there is a previous incomplete declaration for it.
10319 Find_Selected_Component
(Subt
);
10321 Is_Entity_Name
(Subt
)
10322 and then Scope
(Entity
(Subt
)) = Current_Scope
10324 (Chars
(Base_Type
(Entity
(Subt
))) = Type_Id
10326 (Is_Class_Wide_Type
(Entity
(Subt
))
10328 Chars
(Etype
(Base_Type
(Entity
(Subt
)))) =
10332 -- A reference to the current type may appear as the prefix of
10333 -- a 'Class attribute.
10335 elsif Nkind
(Subt
) = N_Attribute_Reference
10336 and then Attribute_Name
(Subt
) = Name_Class
10338 return Names_T
(Prefix
(Subt
));
10349 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean is
10350 Param_Spec
: Node_Id
;
10352 Acc_Subprg
: constant Node_Id
:=
10353 Access_To_Subprogram_Definition
(Acc_Def
);
10356 if No
(Acc_Subprg
) then
10357 return Designates_T
(Subtype_Mark
(Acc_Def
));
10360 -- Component is an access_to_subprogram: examine its formals,
10361 -- and result definition in the case of an access_to_function.
10363 Param_Spec
:= First
(Parameter_Specifications
(Acc_Subprg
));
10364 while Present
(Param_Spec
) loop
10365 if Nkind
(Parameter_Type
(Param_Spec
)) = N_Access_Definition
10366 and then Mentions_T
(Parameter_Type
(Param_Spec
))
10370 elsif Designates_T
(Parameter_Type
(Param_Spec
)) then
10377 if Nkind
(Acc_Subprg
) = N_Access_Function_Definition
then
10378 if Nkind
(Result_Definition
(Acc_Subprg
)) =
10379 N_Access_Definition
10381 return Mentions_T
(Result_Definition
(Acc_Subprg
));
10383 return Designates_T
(Result_Definition
(Acc_Subprg
));
10390 -- Start of processing for Check_Anonymous_Access_Components
10393 if No
(Comp_List
) then
10397 Comp
:= First
(Component_Items
(Comp_List
));
10398 while Present
(Comp
) loop
10399 if Nkind
(Comp
) = N_Component_Declaration
10401 (Access_Definition
(Component_Definition
(Comp
)))
10403 Mentions_T
(Access_Definition
(Component_Definition
(Comp
)))
10405 Comp_Def
:= Component_Definition
(Comp
);
10407 Access_To_Subprogram_Definition
(Access_Definition
(Comp_Def
));
10409 Build_Incomplete_Type_Declaration
;
10410 Anon_Access
:= Make_Temporary
(Loc
, 'S');
10412 -- Create a declaration for the anonymous access type: either
10413 -- an access_to_object or an access_to_subprogram.
10415 if Present
(Acc_Def
) then
10416 if Nkind
(Acc_Def
) = N_Access_Function_Definition
then
10418 Make_Access_Function_Definition
(Loc
,
10419 Parameter_Specifications
=>
10420 Parameter_Specifications
(Acc_Def
),
10421 Result_Definition
=> Result_Definition
(Acc_Def
));
10424 Make_Access_Procedure_Definition
(Loc
,
10425 Parameter_Specifications
=>
10426 Parameter_Specifications
(Acc_Def
));
10431 Make_Access_To_Object_Definition
(Loc
,
10432 Subtype_Indication
=>
10434 (Subtype_Mark
(Access_Definition
(Comp_Def
))));
10436 Set_Constant_Present
10437 (Type_Def
, Constant_Present
(Access_Definition
(Comp_Def
)));
10439 (Type_Def
, All_Present
(Access_Definition
(Comp_Def
)));
10442 Set_Null_Exclusion_Present
10444 Null_Exclusion_Present
(Access_Definition
(Comp_Def
)));
10447 Make_Full_Type_Declaration
(Loc
,
10448 Defining_Identifier
=> Anon_Access
,
10449 Type_Definition
=> Type_Def
);
10451 Insert_Before
(Typ_Decl
, Decl
);
10454 -- If an access to subprogram, create the extra formals
10456 if Present
(Acc_Def
) then
10457 Create_Extra_Formals
(Designated_Type
(Anon_Access
));
10459 -- If an access to object, preserve entity of designated type,
10460 -- for ASIS use, before rewriting the component definition.
10467 Desig
:= Entity
(Subtype_Indication
(Type_Def
));
10469 -- If the access definition is to the current record,
10470 -- the visible entity at this point is an incomplete
10471 -- type. Retrieve the full view to simplify ASIS queries
10473 if Ekind
(Desig
) = E_Incomplete_Type
then
10474 Desig
:= Full_View
(Desig
);
10478 (Subtype_Mark
(Access_Definition
(Comp_Def
)), Desig
);
10483 Make_Component_Definition
(Loc
,
10484 Subtype_Indication
=>
10485 New_Occurrence_Of
(Anon_Access
, Loc
)));
10487 if Ekind
(Designated_Type
(Anon_Access
)) = E_Subprogram_Type
then
10488 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Subprogram_Type
);
10490 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Type
);
10493 Set_Is_Local_Anonymous_Access
(Anon_Access
);
10499 if Present
(Variant_Part
(Comp_List
)) then
10503 V
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
10504 while Present
(V
) loop
10505 Check_Anonymous_Access_Components
10506 (Typ_Decl
, Typ
, Prev
, Component_List
(V
));
10507 Next_Non_Pragma
(V
);
10511 end Check_Anonymous_Access_Components
;
10513 ----------------------
10514 -- Check_Completion --
10515 ----------------------
10517 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
10520 procedure Post_Error
;
10521 -- Post error message for lack of completion for entity E
10527 procedure Post_Error
is
10529 procedure Missing_Body
;
10530 -- Output missing body message
10536 procedure Missing_Body
is
10538 -- Spec is in same unit, so we can post on spec
10540 if In_Same_Source_Unit
(Body_Id
, E
) then
10541 Error_Msg_N
("missing body for &", E
);
10543 -- Spec is in a separate unit, so we have to post on the body
10546 Error_Msg_NE
("missing body for & declared#!", Body_Id
, E
);
10550 -- Start of processing for Post_Error
10553 if not Comes_From_Source
(E
) then
10555 if Ekind_In
(E
, E_Task_Type
, E_Protected_Type
) then
10557 -- It may be an anonymous protected type created for a
10558 -- single variable. Post error on variable, if present.
10564 Var
:= First_Entity
(Current_Scope
);
10565 while Present
(Var
) loop
10566 exit when Etype
(Var
) = E
10567 and then Comes_From_Source
(Var
);
10572 if Present
(Var
) then
10579 -- If a generated entity has no completion, then either previous
10580 -- semantic errors have disabled the expansion phase, or else we had
10581 -- missing subunits, or else we are compiling without expansion,
10582 -- or else something is very wrong.
10584 if not Comes_From_Source
(E
) then
10586 (Serious_Errors_Detected
> 0
10587 or else Configurable_Run_Time_Violations
> 0
10588 or else Subunits_Missing
10589 or else not Expander_Active
);
10592 -- Here for source entity
10595 -- Here if no body to post the error message, so we post the error
10596 -- on the declaration that has no completion. This is not really
10597 -- the right place to post it, think about this later ???
10599 if No
(Body_Id
) then
10600 if Is_Type
(E
) then
10602 ("missing full declaration for }", Parent
(E
), E
);
10604 Error_Msg_NE
("missing body for &", Parent
(E
), E
);
10607 -- Package body has no completion for a declaration that appears
10608 -- in the corresponding spec. Post error on the body, with a
10609 -- reference to the non-completed declaration.
10612 Error_Msg_Sloc
:= Sloc
(E
);
10614 if Is_Type
(E
) then
10615 Error_Msg_NE
("missing full declaration for }!", Body_Id
, E
);
10617 elsif Is_Overloadable
(E
)
10618 and then Current_Entity_In_Scope
(E
) /= E
10620 -- It may be that the completion is mistyped and appears as
10621 -- a distinct overloading of the entity.
10624 Candidate
: constant Entity_Id
:=
10625 Current_Entity_In_Scope
(E
);
10626 Decl
: constant Node_Id
:=
10627 Unit_Declaration_Node
(Candidate
);
10630 if Is_Overloadable
(Candidate
)
10631 and then Ekind
(Candidate
) = Ekind
(E
)
10632 and then Nkind
(Decl
) = N_Subprogram_Body
10633 and then Acts_As_Spec
(Decl
)
10635 Check_Type_Conformant
(Candidate
, E
);
10649 -- Start of processing for Check_Completion
10652 E
:= First_Entity
(Current_Scope
);
10653 while Present
(E
) loop
10654 if Is_Intrinsic_Subprogram
(E
) then
10657 -- The following situation requires special handling: a child unit
10658 -- that appears in the context clause of the body of its parent:
10660 -- procedure Parent.Child (...);
10662 -- with Parent.Child;
10663 -- package body Parent is
10665 -- Here Parent.Child appears as a local entity, but should not be
10666 -- flagged as requiring completion, because it is a compilation
10669 -- Ignore missing completion for a subprogram that does not come from
10670 -- source (including the _Call primitive operation of RAS types,
10671 -- which has to have the flag Comes_From_Source for other purposes):
10672 -- we assume that the expander will provide the missing completion.
10673 -- In case of previous errors, other expansion actions that provide
10674 -- bodies for null procedures with not be invoked, so inhibit message
10677 -- Note that E_Operator is not in the list that follows, because
10678 -- this kind is reserved for predefined operators, that are
10679 -- intrinsic and do not need completion.
10681 elsif Ekind_In
(E
, E_Function
,
10683 E_Generic_Function
,
10684 E_Generic_Procedure
)
10686 if Has_Completion
(E
) then
10689 elsif Is_Subprogram
(E
) and then Is_Abstract_Subprogram
(E
) then
10692 elsif Is_Subprogram
(E
)
10693 and then (not Comes_From_Source
(E
)
10694 or else Chars
(E
) = Name_uCall
)
10699 Nkind
(Parent
(Unit_Declaration_Node
(E
))) = N_Compilation_Unit
10703 elsif Nkind
(Parent
(E
)) = N_Procedure_Specification
10704 and then Null_Present
(Parent
(E
))
10705 and then Serious_Errors_Detected
> 0
10713 elsif Is_Entry
(E
) then
10714 if not Has_Completion
(E
) and then
10715 (Ekind
(Scope
(E
)) = E_Protected_Object
10716 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
10721 elsif Is_Package_Or_Generic_Package
(E
) then
10722 if Unit_Requires_Body
(E
) then
10723 if not Has_Completion
(E
)
10724 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
10730 elsif not Is_Child_Unit
(E
) then
10731 May_Need_Implicit_Body
(E
);
10734 -- A formal incomplete type (Ada 2012) does not require a completion;
10735 -- other incomplete type declarations do.
10737 elsif Ekind
(E
) = E_Incomplete_Type
10738 and then No
(Underlying_Type
(E
))
10739 and then not Is_Generic_Type
(E
)
10743 elsif Ekind_In
(E
, E_Task_Type
, E_Protected_Type
)
10744 and then not Has_Completion
(E
)
10748 -- A single task declared in the current scope is a constant, verify
10749 -- that the body of its anonymous type is in the same scope. If the
10750 -- task is defined elsewhere, this may be a renaming declaration for
10751 -- which no completion is needed.
10753 elsif Ekind
(E
) = E_Constant
10754 and then Ekind
(Etype
(E
)) = E_Task_Type
10755 and then not Has_Completion
(Etype
(E
))
10756 and then Scope
(Etype
(E
)) = Current_Scope
10760 elsif Ekind
(E
) = E_Protected_Object
10761 and then not Has_Completion
(Etype
(E
))
10765 elsif Ekind
(E
) = E_Record_Type
then
10766 if Is_Tagged_Type
(E
) then
10767 Check_Abstract_Overriding
(E
);
10768 Check_Conventions
(E
);
10771 Check_Aliased_Component_Types
(E
);
10773 elsif Ekind
(E
) = E_Array_Type
then
10774 Check_Aliased_Component_Types
(E
);
10780 end Check_Completion
;
10782 ------------------------------------
10783 -- Check_CPP_Type_Has_No_Defaults --
10784 ------------------------------------
10786 procedure Check_CPP_Type_Has_No_Defaults
(T
: Entity_Id
) is
10787 Tdef
: constant Node_Id
:= Type_Definition
(Declaration_Node
(T
));
10792 -- Obtain the component list
10794 if Nkind
(Tdef
) = N_Record_Definition
then
10795 Clist
:= Component_List
(Tdef
);
10796 else pragma Assert
(Nkind
(Tdef
) = N_Derived_Type_Definition
);
10797 Clist
:= Component_List
(Record_Extension_Part
(Tdef
));
10800 -- Check all components to ensure no default expressions
10802 if Present
(Clist
) then
10803 Comp
:= First
(Component_Items
(Clist
));
10804 while Present
(Comp
) loop
10805 if Present
(Expression
(Comp
)) then
10807 ("component of imported 'C'P'P type cannot have "
10808 & "default expression", Expression
(Comp
));
10814 end Check_CPP_Type_Has_No_Defaults
;
10816 ----------------------------
10817 -- Check_Delta_Expression --
10818 ----------------------------
10820 procedure Check_Delta_Expression
(E
: Node_Id
) is
10822 if not (Is_Real_Type
(Etype
(E
))) then
10823 Wrong_Type
(E
, Any_Real
);
10825 elsif not Is_OK_Static_Expression
(E
) then
10826 Flag_Non_Static_Expr
10827 ("non-static expression used for delta value!", E
);
10829 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
10830 Error_Msg_N
("delta expression must be positive", E
);
10836 -- If any of above errors occurred, then replace the incorrect
10837 -- expression by the real 0.1, which should prevent further errors.
10840 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
10841 Analyze_And_Resolve
(E
, Standard_Float
);
10842 end Check_Delta_Expression
;
10844 -----------------------------
10845 -- Check_Digits_Expression --
10846 -----------------------------
10848 procedure Check_Digits_Expression
(E
: Node_Id
) is
10850 if not (Is_Integer_Type
(Etype
(E
))) then
10851 Wrong_Type
(E
, Any_Integer
);
10853 elsif not Is_OK_Static_Expression
(E
) then
10854 Flag_Non_Static_Expr
10855 ("non-static expression used for digits value!", E
);
10857 elsif Expr_Value
(E
) <= 0 then
10858 Error_Msg_N
("digits value must be greater than zero", E
);
10864 -- If any of above errors occurred, then replace the incorrect
10865 -- expression by the integer 1, which should prevent further errors.
10867 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
10868 Analyze_And_Resolve
(E
, Standard_Integer
);
10870 end Check_Digits_Expression
;
10872 --------------------------
10873 -- Check_Initialization --
10874 --------------------------
10876 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
10878 -- Special processing for limited types
10880 if Is_Limited_Type
(T
)
10881 and then not In_Instance
10882 and then not In_Inlined_Body
10884 if not OK_For_Limited_Init
(T
, Exp
) then
10886 -- In GNAT mode, this is just a warning, to allow it to be evilly
10887 -- turned off. Otherwise it is a real error.
10891 ("??cannot initialize entities of limited type!", Exp
);
10893 elsif Ada_Version
< Ada_2005
then
10895 -- The side effect removal machinery may generate illegal Ada
10896 -- code to avoid the usage of access types and 'reference in
10897 -- SPARK mode. Since this is legal code with respect to theorem
10898 -- proving, do not emit the error.
10901 and then Nkind
(Exp
) = N_Function_Call
10902 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
10903 and then not Comes_From_Source
10904 (Defining_Identifier
(Parent
(Exp
)))
10910 ("cannot initialize entities of limited type", Exp
);
10911 Explain_Limited_Type
(T
, Exp
);
10915 -- Specialize error message according to kind of illegal
10916 -- initial expression.
10918 if Nkind
(Exp
) = N_Type_Conversion
10919 and then Nkind
(Expression
(Exp
)) = N_Function_Call
10922 ("illegal context for call"
10923 & " to function with limited result", Exp
);
10927 ("initialization of limited object requires aggregate "
10928 & "or function call", Exp
);
10934 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
10935 -- set unless we can be sure that no range check is required.
10937 if (GNATprove_Mode
or not Expander_Active
)
10938 and then Is_Scalar_Type
(T
)
10939 and then not Is_In_Range
(Exp
, T
, Assume_Valid
=> True)
10941 Set_Do_Range_Check
(Exp
);
10943 end Check_Initialization
;
10945 ----------------------
10946 -- Check_Interfaces --
10947 ----------------------
10949 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
) is
10950 Parent_Type
: constant Entity_Id
:= Etype
(Defining_Identifier
(N
));
10953 Iface_Def
: Node_Id
;
10954 Iface_Typ
: Entity_Id
;
10955 Parent_Node
: Node_Id
;
10957 Is_Task
: Boolean := False;
10958 -- Set True if parent type or any progenitor is a task interface
10960 Is_Protected
: Boolean := False;
10961 -- Set True if parent type or any progenitor is a protected interface
10963 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
);
10964 -- Check that a progenitor is compatible with declaration. If an error
10965 -- message is output, it is posted on Error_Node.
10971 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
) is
10972 Iface_Id
: constant Entity_Id
:=
10973 Defining_Identifier
(Parent
(Iface_Def
));
10974 Type_Def
: Node_Id
;
10977 if Nkind
(N
) = N_Private_Extension_Declaration
then
10980 Type_Def
:= Type_Definition
(N
);
10983 if Is_Task_Interface
(Iface_Id
) then
10986 elsif Is_Protected_Interface
(Iface_Id
) then
10987 Is_Protected
:= True;
10990 if Is_Synchronized_Interface
(Iface_Id
) then
10992 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10993 -- extension derived from a synchronized interface must explicitly
10994 -- be declared synchronized, because the full view will be a
10995 -- synchronized type.
10997 if Nkind
(N
) = N_Private_Extension_Declaration
then
10998 if not Synchronized_Present
(N
) then
11000 ("private extension of& must be explicitly synchronized",
11004 -- However, by 3.9.4(16/2), a full type that is a record extension
11005 -- is never allowed to derive from a synchronized interface (note
11006 -- that interfaces must be excluded from this check, because those
11007 -- are represented by derived type definitions in some cases).
11009 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11010 and then not Interface_Present
(Type_Definition
(N
))
11012 Error_Msg_N
("record extension cannot derive from synchronized "
11013 & "interface", Error_Node
);
11017 -- Check that the characteristics of the progenitor are compatible
11018 -- with the explicit qualifier in the declaration.
11019 -- The check only applies to qualifiers that come from source.
11020 -- Limited_Present also appears in the declaration of corresponding
11021 -- records, and the check does not apply to them.
11023 if Limited_Present
(Type_Def
)
11025 Is_Concurrent_Record_Type
(Defining_Identifier
(N
))
11027 if Is_Limited_Interface
(Parent_Type
)
11028 and then not Is_Limited_Interface
(Iface_Id
)
11031 ("progenitor & must be limited interface",
11032 Error_Node
, Iface_Id
);
11035 (Task_Present
(Iface_Def
)
11036 or else Protected_Present
(Iface_Def
)
11037 or else Synchronized_Present
(Iface_Def
))
11038 and then Nkind
(N
) /= N_Private_Extension_Declaration
11039 and then not Error_Posted
(N
)
11042 ("progenitor & must be limited interface",
11043 Error_Node
, Iface_Id
);
11046 -- Protected interfaces can only inherit from limited, synchronized
11047 -- or protected interfaces.
11049 elsif Nkind
(N
) = N_Full_Type_Declaration
11050 and then Protected_Present
(Type_Def
)
11052 if Limited_Present
(Iface_Def
)
11053 or else Synchronized_Present
(Iface_Def
)
11054 or else Protected_Present
(Iface_Def
)
11058 elsif Task_Present
(Iface_Def
) then
11059 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11060 & "from task interface", Error_Node
);
11063 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11064 & "from non-limited interface", Error_Node
);
11067 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11068 -- limited and synchronized.
11070 elsif Synchronized_Present
(Type_Def
) then
11071 if Limited_Present
(Iface_Def
)
11072 or else Synchronized_Present
(Iface_Def
)
11076 elsif Protected_Present
(Iface_Def
)
11077 and then Nkind
(N
) /= N_Private_Extension_Declaration
11079 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11080 & "from protected interface", Error_Node
);
11082 elsif Task_Present
(Iface_Def
)
11083 and then Nkind
(N
) /= N_Private_Extension_Declaration
11085 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11086 & "from task interface", Error_Node
);
11088 elsif not Is_Limited_Interface
(Iface_Id
) then
11089 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11090 & "from non-limited interface", Error_Node
);
11093 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11094 -- synchronized or task interfaces.
11096 elsif Nkind
(N
) = N_Full_Type_Declaration
11097 and then Task_Present
(Type_Def
)
11099 if Limited_Present
(Iface_Def
)
11100 or else Synchronized_Present
(Iface_Def
)
11101 or else Task_Present
(Iface_Def
)
11105 elsif Protected_Present
(Iface_Def
) then
11106 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11107 & "protected interface", Error_Node
);
11110 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11111 & "non-limited interface", Error_Node
);
11116 -- Start of processing for Check_Interfaces
11119 if Is_Interface
(Parent_Type
) then
11120 if Is_Task_Interface
(Parent_Type
) then
11123 elsif Is_Protected_Interface
(Parent_Type
) then
11124 Is_Protected
:= True;
11128 if Nkind
(N
) = N_Private_Extension_Declaration
then
11130 -- Check that progenitors are compatible with declaration
11132 Iface
:= First
(Interface_List
(Def
));
11133 while Present
(Iface
) loop
11134 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11136 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11137 Iface_Def
:= Type_Definition
(Parent_Node
);
11139 if not Is_Interface
(Iface_Typ
) then
11140 Diagnose_Interface
(Iface
, Iface_Typ
);
11142 Check_Ifaces
(Iface_Def
, Iface
);
11148 if Is_Task
and Is_Protected
then
11150 ("type cannot derive from task and protected interface", N
);
11156 -- Full type declaration of derived type.
11157 -- Check compatibility with parent if it is interface type
11159 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11160 and then Is_Interface
(Parent_Type
)
11162 Parent_Node
:= Parent
(Parent_Type
);
11164 -- More detailed checks for interface varieties
11167 (Iface_Def
=> Type_Definition
(Parent_Node
),
11168 Error_Node
=> Subtype_Indication
(Type_Definition
(N
)));
11171 Iface
:= First
(Interface_List
(Def
));
11172 while Present
(Iface
) loop
11173 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11175 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11176 Iface_Def
:= Type_Definition
(Parent_Node
);
11178 if not Is_Interface
(Iface_Typ
) then
11179 Diagnose_Interface
(Iface
, Iface_Typ
);
11182 -- "The declaration of a specific descendant of an interface
11183 -- type freezes the interface type" RM 13.14
11185 Freeze_Before
(N
, Iface_Typ
);
11186 Check_Ifaces
(Iface_Def
, Error_Node
=> Iface
);
11192 if Is_Task
and Is_Protected
then
11194 ("type cannot derive from task and protected interface", N
);
11196 end Check_Interfaces
;
11198 ------------------------------------
11199 -- Check_Or_Process_Discriminants --
11200 ------------------------------------
11202 -- If an incomplete or private type declaration was already given for the
11203 -- type, the discriminants may have already been processed if they were
11204 -- present on the incomplete declaration. In this case a full conformance
11205 -- check has been performed in Find_Type_Name, and we then recheck here
11206 -- some properties that can't be checked on the partial view alone.
11207 -- Otherwise we call Process_Discriminants.
11209 procedure Check_Or_Process_Discriminants
11212 Prev
: Entity_Id
:= Empty
)
11215 if Has_Discriminants
(T
) then
11217 -- Discriminants are already set on T if they were already present
11218 -- on the partial view. Make them visible to component declarations.
11222 -- Discriminant on T (full view) referencing expr on partial view
11224 Prev_D
: Entity_Id
;
11225 -- Entity of corresponding discriminant on partial view
11228 -- Discriminant specification for full view, expression is
11229 -- the syntactic copy on full view (which has been checked for
11230 -- conformance with partial view), only used here to post error
11234 D
:= First_Discriminant
(T
);
11235 New_D
:= First
(Discriminant_Specifications
(N
));
11236 while Present
(D
) loop
11237 Prev_D
:= Current_Entity
(D
);
11238 Set_Current_Entity
(D
);
11239 Set_Is_Immediately_Visible
(D
);
11240 Set_Homonym
(D
, Prev_D
);
11242 -- Handle the case where there is an untagged partial view and
11243 -- the full view is tagged: must disallow discriminants with
11244 -- defaults, unless compiling for Ada 2012, which allows a
11245 -- limited tagged type to have defaulted discriminants (see
11246 -- AI05-0214). However, suppress error here if it was already
11247 -- reported on the default expression of the partial view.
11249 if Is_Tagged_Type
(T
)
11250 and then Present
(Expression
(Parent
(D
)))
11251 and then (not Is_Limited_Type
(Current_Scope
)
11252 or else Ada_Version
< Ada_2012
)
11253 and then not Error_Posted
(Expression
(Parent
(D
)))
11255 if Ada_Version
>= Ada_2012
then
11257 ("discriminants of nonlimited tagged type cannot have "
11259 Expression
(New_D
));
11262 ("discriminants of tagged type cannot have defaults",
11263 Expression
(New_D
));
11267 -- Ada 2005 (AI-230): Access discriminant allowed in
11268 -- non-limited record types.
11270 if Ada_Version
< Ada_2005
then
11272 -- This restriction gets applied to the full type here. It
11273 -- has already been applied earlier to the partial view.
11275 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
11278 Next_Discriminant
(D
);
11283 elsif Present
(Discriminant_Specifications
(N
)) then
11284 Process_Discriminants
(N
, Prev
);
11286 end Check_Or_Process_Discriminants
;
11288 ----------------------
11289 -- Check_Real_Bound --
11290 ----------------------
11292 procedure Check_Real_Bound
(Bound
: Node_Id
) is
11294 if not Is_Real_Type
(Etype
(Bound
)) then
11296 ("bound in real type definition must be of real type", Bound
);
11298 elsif not Is_OK_Static_Expression
(Bound
) then
11299 Flag_Non_Static_Expr
11300 ("non-static expression used for real type bound!", Bound
);
11307 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
11309 Resolve
(Bound
, Standard_Float
);
11310 end Check_Real_Bound
;
11312 ------------------------------
11313 -- Complete_Private_Subtype --
11314 ------------------------------
11316 procedure Complete_Private_Subtype
11319 Full_Base
: Entity_Id
;
11320 Related_Nod
: Node_Id
)
11322 Save_Next_Entity
: Entity_Id
;
11323 Save_Homonym
: Entity_Id
;
11326 -- Set semantic attributes for (implicit) private subtype completion.
11327 -- If the full type has no discriminants, then it is a copy of the
11328 -- full view of the base. Otherwise, it is a subtype of the base with
11329 -- a possible discriminant constraint. Save and restore the original
11330 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11331 -- not corrupt the entity chain.
11333 -- Note that the type of the full view is the same entity as the type
11334 -- of the partial view. In this fashion, the subtype has access to the
11335 -- correct view of the parent.
11337 Save_Next_Entity
:= Next_Entity
(Full
);
11338 Save_Homonym
:= Homonym
(Priv
);
11340 case Ekind
(Full_Base
) is
11341 when E_Record_Type |
11347 Copy_Node
(Priv
, Full
);
11349 Set_Has_Discriminants
11350 (Full
, Has_Discriminants
(Full_Base
));
11351 Set_Has_Unknown_Discriminants
11352 (Full
, Has_Unknown_Discriminants
(Full_Base
));
11353 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
11354 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
11356 -- If the underlying base type is constrained, we know that the
11357 -- full view of the subtype is constrained as well (the converse
11358 -- is not necessarily true).
11360 if Is_Constrained
(Full_Base
) then
11361 Set_Is_Constrained
(Full
);
11365 Copy_Node
(Full_Base
, Full
);
11367 Set_Chars
(Full
, Chars
(Priv
));
11368 Conditional_Delay
(Full
, Priv
);
11369 Set_Sloc
(Full
, Sloc
(Priv
));
11372 Set_Next_Entity
(Full
, Save_Next_Entity
);
11373 Set_Homonym
(Full
, Save_Homonym
);
11374 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
11376 -- Set common attributes for all subtypes: kind, convention, etc.
11378 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
11379 Set_Convention
(Full
, Convention
(Full_Base
));
11381 -- The Etype of the full view is inconsistent. Gigi needs to see the
11382 -- structural full view, which is what the current scheme gives: the
11383 -- Etype of the full view is the etype of the full base. However, if the
11384 -- full base is a derived type, the full view then looks like a subtype
11385 -- of the parent, not a subtype of the full base. If instead we write:
11387 -- Set_Etype (Full, Full_Base);
11389 -- then we get inconsistencies in the front-end (confusion between
11390 -- views). Several outstanding bugs are related to this ???
11392 Set_Is_First_Subtype
(Full
, False);
11393 Set_Scope
(Full
, Scope
(Priv
));
11394 Set_Size_Info
(Full
, Full_Base
);
11395 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
11396 Set_Is_Itype
(Full
);
11398 -- A subtype of a private-type-without-discriminants, whose full-view
11399 -- has discriminants with default expressions, is not constrained.
11401 if not Has_Discriminants
(Priv
) then
11402 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
11404 if Has_Discriminants
(Full_Base
) then
11405 Set_Discriminant_Constraint
11406 (Full
, Discriminant_Constraint
(Full_Base
));
11408 -- The partial view may have been indefinite, the full view
11411 Set_Has_Unknown_Discriminants
11412 (Full
, Has_Unknown_Discriminants
(Full_Base
));
11416 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
11417 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
11419 -- Freeze the private subtype entity if its parent is delayed, and not
11420 -- already frozen. We skip this processing if the type is an anonymous
11421 -- subtype of a record component, or is the corresponding record of a
11422 -- protected type, since ???
11424 if not Is_Type
(Scope
(Full
)) then
11425 Set_Has_Delayed_Freeze
(Full
,
11426 Has_Delayed_Freeze
(Full_Base
)
11427 and then (not Is_Frozen
(Full_Base
)));
11430 Set_Freeze_Node
(Full
, Empty
);
11431 Set_Is_Frozen
(Full
, False);
11432 Set_Full_View
(Priv
, Full
);
11434 if Has_Discriminants
(Full
) then
11435 Set_Stored_Constraint_From_Discriminant_Constraint
(Full
);
11436 Set_Stored_Constraint
(Priv
, Stored_Constraint
(Full
));
11438 if Has_Unknown_Discriminants
(Full
) then
11439 Set_Discriminant_Constraint
(Full
, No_Elist
);
11443 if Ekind
(Full_Base
) = E_Record_Type
11444 and then Has_Discriminants
(Full_Base
)
11445 and then Has_Discriminants
(Priv
) -- might not, if errors
11446 and then not Has_Unknown_Discriminants
(Priv
)
11447 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
11449 Create_Constrained_Components
11450 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
11452 -- If the full base is itself derived from private, build a congruent
11453 -- subtype of its underlying type, for use by the back end. For a
11454 -- constrained record component, the declaration cannot be placed on
11455 -- the component list, but it must nevertheless be built an analyzed, to
11456 -- supply enough information for Gigi to compute the size of component.
11458 elsif Ekind
(Full_Base
) in Private_Kind
11459 and then Is_Derived_Type
(Full_Base
)
11460 and then Has_Discriminants
(Full_Base
)
11461 and then (Ekind
(Current_Scope
) /= E_Record_Subtype
)
11463 if not Is_Itype
(Priv
)
11465 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
11467 Build_Underlying_Full_View
11468 (Parent
(Priv
), Full
, Etype
(Full_Base
));
11470 elsif Nkind
(Related_Nod
) = N_Component_Declaration
then
11471 Build_Underlying_Full_View
(Related_Nod
, Full
, Etype
(Full_Base
));
11474 elsif Is_Record_Type
(Full_Base
) then
11476 -- Show Full is simply a renaming of Full_Base
11478 Set_Cloned_Subtype
(Full
, Full_Base
);
11481 -- It is unsafe to share the bounds of a scalar type, because the Itype
11482 -- is elaborated on demand, and if a bound is non-static then different
11483 -- orders of elaboration in different units will lead to different
11484 -- external symbols.
11486 if Is_Scalar_Type
(Full_Base
) then
11487 Set_Scalar_Range
(Full
,
11488 Make_Range
(Sloc
(Related_Nod
),
11490 Duplicate_Subexpr_No_Checks
(Type_Low_Bound
(Full_Base
)),
11492 Duplicate_Subexpr_No_Checks
(Type_High_Bound
(Full_Base
))));
11494 -- This completion inherits the bounds of the full parent, but if
11495 -- the parent is an unconstrained floating point type, so is the
11498 if Is_Floating_Point_Type
(Full_Base
) then
11499 Set_Includes_Infinities
11500 (Scalar_Range
(Full
), Has_Infinities
(Full_Base
));
11504 -- ??? It seems that a lot of fields are missing that should be copied
11505 -- from Full_Base to Full. Here are some that are introduced in a
11506 -- non-disruptive way but a cleanup is necessary.
11508 if Is_Tagged_Type
(Full_Base
) then
11509 Set_Is_Tagged_Type
(Full
);
11510 Set_Direct_Primitive_Operations
11511 (Full
, Direct_Primitive_Operations
(Full_Base
));
11512 Set_No_Tagged_Streams_Pragma
11513 (Full
, No_Tagged_Streams_Pragma
(Full_Base
));
11515 -- Inherit class_wide type of full_base in case the partial view was
11516 -- not tagged. Otherwise it has already been created when the private
11517 -- subtype was analyzed.
11519 if No
(Class_Wide_Type
(Full
)) then
11520 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Full_Base
));
11523 -- If this is a subtype of a protected or task type, constrain its
11524 -- corresponding record, unless this is a subtype without constraints,
11525 -- i.e. a simple renaming as with an actual subtype in an instance.
11527 elsif Is_Concurrent_Type
(Full_Base
) then
11528 if Has_Discriminants
(Full
)
11529 and then Present
(Corresponding_Record_Type
(Full_Base
))
11531 not Is_Empty_Elmt_List
(Discriminant_Constraint
(Full
))
11533 Set_Corresponding_Record_Type
(Full
,
11534 Constrain_Corresponding_Record
11535 (Full
, Corresponding_Record_Type
(Full_Base
), Related_Nod
));
11538 Set_Corresponding_Record_Type
(Full
,
11539 Corresponding_Record_Type
(Full_Base
));
11543 -- Link rep item chain, and also setting of Has_Predicates from private
11544 -- subtype to full subtype, since we will need these on the full subtype
11545 -- to create the predicate function. Note that the full subtype may
11546 -- already have rep items, inherited from the full view of the base
11547 -- type, so we must be sure not to overwrite these entries.
11552 Next_Item
: Node_Id
;
11555 Item
:= First_Rep_Item
(Full
);
11557 -- If no existing rep items on full type, we can just link directly
11558 -- to the list of items on the private type.
11561 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
11563 -- Otherwise, search to the end of items currently linked to the full
11564 -- subtype and append the private items to the end. However, if Priv
11565 -- and Full already have the same list of rep items, then the append
11566 -- is not done, as that would create a circularity.
11568 elsif Item
/= First_Rep_Item
(Priv
) then
11571 Next_Item
:= Next_Rep_Item
(Item
);
11572 exit when No
(Next_Item
);
11575 -- If the private view has aspect specifications, the full view
11576 -- inherits them. Since these aspects may already have been
11577 -- attached to the full view during derivation, do not append
11578 -- them if already present.
11580 if Item
= First_Rep_Item
(Priv
) then
11586 -- And link the private type items at the end of the chain
11589 Set_Next_Rep_Item
(Item
, First_Rep_Item
(Priv
));
11594 -- Make sure Has_Predicates is set on full type if it is set on the
11595 -- private type. Note that it may already be set on the full type and
11596 -- if so, we don't want to unset it.
11598 if Has_Predicates
(Priv
) then
11599 Set_Has_Predicates
(Full
);
11601 end Complete_Private_Subtype
;
11603 ----------------------------
11604 -- Constant_Redeclaration --
11605 ----------------------------
11607 procedure Constant_Redeclaration
11612 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
11613 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
11616 procedure Check_Possible_Deferred_Completion
11617 (Prev_Id
: Entity_Id
;
11618 Prev_Obj_Def
: Node_Id
;
11619 Curr_Obj_Def
: Node_Id
);
11620 -- Determine whether the two object definitions describe the partial
11621 -- and the full view of a constrained deferred constant. Generate
11622 -- a subtype for the full view and verify that it statically matches
11623 -- the subtype of the partial view.
11625 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
);
11626 -- If deferred constant is an access type initialized with an allocator,
11627 -- check whether there is an illegal recursion in the definition,
11628 -- through a default value of some record subcomponent. This is normally
11629 -- detected when generating init procs, but requires this additional
11630 -- mechanism when expansion is disabled.
11632 ----------------------------------------
11633 -- Check_Possible_Deferred_Completion --
11634 ----------------------------------------
11636 procedure Check_Possible_Deferred_Completion
11637 (Prev_Id
: Entity_Id
;
11638 Prev_Obj_Def
: Node_Id
;
11639 Curr_Obj_Def
: Node_Id
)
11642 if Nkind
(Prev_Obj_Def
) = N_Subtype_Indication
11643 and then Present
(Constraint
(Prev_Obj_Def
))
11644 and then Nkind
(Curr_Obj_Def
) = N_Subtype_Indication
11645 and then Present
(Constraint
(Curr_Obj_Def
))
11648 Loc
: constant Source_Ptr
:= Sloc
(N
);
11649 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
11650 Decl
: constant Node_Id
:=
11651 Make_Subtype_Declaration
(Loc
,
11652 Defining_Identifier
=> Def_Id
,
11653 Subtype_Indication
=>
11654 Relocate_Node
(Curr_Obj_Def
));
11657 Insert_Before_And_Analyze
(N
, Decl
);
11658 Set_Etype
(Id
, Def_Id
);
11660 if not Subtypes_Statically_Match
(Etype
(Prev_Id
), Def_Id
) then
11661 Error_Msg_Sloc
:= Sloc
(Prev_Id
);
11662 Error_Msg_N
("subtype does not statically match deferred "
11663 & "declaration #", N
);
11667 end Check_Possible_Deferred_Completion
;
11669 ---------------------------------
11670 -- Check_Recursive_Declaration --
11671 ---------------------------------
11673 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
) is
11677 if Is_Record_Type
(Typ
) then
11678 Comp
:= First_Component
(Typ
);
11679 while Present
(Comp
) loop
11680 if Comes_From_Source
(Comp
) then
11681 if Present
(Expression
(Parent
(Comp
)))
11682 and then Is_Entity_Name
(Expression
(Parent
(Comp
)))
11683 and then Entity
(Expression
(Parent
(Comp
))) = Prev
11685 Error_Msg_Sloc
:= Sloc
(Parent
(Comp
));
11687 ("illegal circularity with declaration for & #",
11691 elsif Is_Record_Type
(Etype
(Comp
)) then
11692 Check_Recursive_Declaration
(Etype
(Comp
));
11696 Next_Component
(Comp
);
11699 end Check_Recursive_Declaration
;
11701 -- Start of processing for Constant_Redeclaration
11704 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
11705 if Nkind
(Object_Definition
11706 (Parent
(Prev
))) = N_Subtype_Indication
11708 -- Find type of new declaration. The constraints of the two
11709 -- views must match statically, but there is no point in
11710 -- creating an itype for the full view.
11712 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
11713 Find_Type
(Subtype_Mark
(Obj_Def
));
11714 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
11717 Find_Type
(Obj_Def
);
11718 New_T
:= Entity
(Obj_Def
);
11724 -- The full view may impose a constraint, even if the partial
11725 -- view does not, so construct the subtype.
11727 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
11732 -- Current declaration is illegal, diagnosed below in Enter_Name
11738 -- If previous full declaration or a renaming declaration exists, or if
11739 -- a homograph is present, let Enter_Name handle it, either with an
11740 -- error or with the removal of an overridden implicit subprogram.
11741 -- The previous one is a full declaration if it has an expression
11742 -- (which in the case of an aggregate is indicated by the Init flag).
11744 if Ekind
(Prev
) /= E_Constant
11745 or else Nkind
(Parent
(Prev
)) = N_Object_Renaming_Declaration
11746 or else Present
(Expression
(Parent
(Prev
)))
11747 or else Has_Init_Expression
(Parent
(Prev
))
11748 or else Present
(Full_View
(Prev
))
11752 -- Verify that types of both declarations match, or else that both types
11753 -- are anonymous access types whose designated subtypes statically match
11754 -- (as allowed in Ada 2005 by AI-385).
11756 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
)
11758 (Ekind
(Etype
(Prev
)) /= E_Anonymous_Access_Type
11759 or else Ekind
(Etype
(New_T
)) /= E_Anonymous_Access_Type
11760 or else Is_Access_Constant
(Etype
(New_T
)) /=
11761 Is_Access_Constant
(Etype
(Prev
))
11762 or else Can_Never_Be_Null
(Etype
(New_T
)) /=
11763 Can_Never_Be_Null
(Etype
(Prev
))
11764 or else Null_Exclusion_Present
(Parent
(Prev
)) /=
11765 Null_Exclusion_Present
(Parent
(Id
))
11766 or else not Subtypes_Statically_Match
11767 (Designated_Type
(Etype
(Prev
)),
11768 Designated_Type
(Etype
(New_T
))))
11770 Error_Msg_Sloc
:= Sloc
(Prev
);
11771 Error_Msg_N
("type does not match declaration#", N
);
11772 Set_Full_View
(Prev
, Id
);
11773 Set_Etype
(Id
, Any_Type
);
11775 -- A deferred constant whose type is an anonymous array is always
11776 -- illegal (unless imported). A detailed error message might be
11777 -- helpful for Ada beginners.
11779 if Nkind
(Object_Definition
(Parent
(Prev
)))
11780 = N_Constrained_Array_Definition
11781 and then Nkind
(Object_Definition
(N
))
11782 = N_Constrained_Array_Definition
11784 Error_Msg_N
("\each anonymous array is a distinct type", N
);
11785 Error_Msg_N
("a deferred constant must have a named type",
11786 Object_Definition
(Parent
(Prev
)));
11790 Null_Exclusion_Present
(Parent
(Prev
))
11791 and then not Null_Exclusion_Present
(N
)
11793 Error_Msg_Sloc
:= Sloc
(Prev
);
11794 Error_Msg_N
("null-exclusion does not match declaration#", N
);
11795 Set_Full_View
(Prev
, Id
);
11796 Set_Etype
(Id
, Any_Type
);
11798 -- If so, process the full constant declaration
11801 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11802 -- the deferred declaration is constrained, then the subtype defined
11803 -- by the subtype_indication in the full declaration shall match it
11806 Check_Possible_Deferred_Completion
11808 Prev_Obj_Def
=> Object_Definition
(Parent
(Prev
)),
11809 Curr_Obj_Def
=> Obj_Def
);
11811 Set_Full_View
(Prev
, Id
);
11812 Set_Is_Public
(Id
, Is_Public
(Prev
));
11813 Set_Is_Internal
(Id
);
11814 Append_Entity
(Id
, Current_Scope
);
11816 -- Check ALIASED present if present before (RM 7.4(7))
11818 if Is_Aliased
(Prev
)
11819 and then not Aliased_Present
(N
)
11821 Error_Msg_Sloc
:= Sloc
(Prev
);
11822 Error_Msg_N
("ALIASED required (see declaration #)", N
);
11825 -- Check that placement is in private part and that the incomplete
11826 -- declaration appeared in the visible part.
11828 if Ekind
(Current_Scope
) = E_Package
11829 and then not In_Private_Part
(Current_Scope
)
11831 Error_Msg_Sloc
:= Sloc
(Prev
);
11833 ("full constant for declaration#"
11834 & " must be in private part", N
);
11836 elsif Ekind
(Current_Scope
) = E_Package
11838 List_Containing
(Parent
(Prev
)) /=
11839 Visible_Declarations
(Package_Specification
(Current_Scope
))
11842 ("deferred constant must be declared in visible part",
11846 if Is_Access_Type
(T
)
11847 and then Nkind
(Expression
(N
)) = N_Allocator
11849 Check_Recursive_Declaration
(Designated_Type
(T
));
11852 -- A deferred constant is a visible entity. If type has invariants,
11853 -- verify that the initial value satisfies them.
11855 if Has_Invariants
(T
) and then Present
(Invariant_Procedure
(T
)) then
11857 Make_Invariant_Call
(New_Occurrence_Of
(Prev
, Sloc
(N
))));
11860 end Constant_Redeclaration
;
11862 ----------------------
11863 -- Constrain_Access --
11864 ----------------------
11866 procedure Constrain_Access
11867 (Def_Id
: in out Entity_Id
;
11869 Related_Nod
: Node_Id
)
11871 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11872 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
11873 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
11874 Constraint_OK
: Boolean := True;
11877 if Is_Array_Type
(Desig_Type
) then
11878 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
11880 elsif (Is_Record_Type
(Desig_Type
)
11881 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
11882 and then not Is_Constrained
(Desig_Type
)
11884 -- ??? The following code is a temporary bypass to ignore a
11885 -- discriminant constraint on access type if it is constraining
11886 -- the current record. Avoid creating the implicit subtype of the
11887 -- record we are currently compiling since right now, we cannot
11888 -- handle these. For now, just return the access type itself.
11890 if Desig_Type
= Current_Scope
11891 and then No
(Def_Id
)
11893 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
11894 Def_Id
:= Entity
(Subtype_Mark
(S
));
11896 -- This call added to ensure that the constraint is analyzed
11897 -- (needed for a B test). Note that we still return early from
11898 -- this procedure to avoid recursive processing. ???
11900 Constrain_Discriminated_Type
11901 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
11905 -- Enforce rule that the constraint is illegal if there is an
11906 -- unconstrained view of the designated type. This means that the
11907 -- partial view (either a private type declaration or a derivation
11908 -- from a private type) has no discriminants. (Defect Report
11909 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11911 -- Rule updated for Ada 2005: The private type is said to have
11912 -- a constrained partial view, given that objects of the type
11913 -- can be declared. Furthermore, the rule applies to all access
11914 -- types, unlike the rule concerning default discriminants (see
11917 if (Ekind
(T
) = E_General_Access_Type
or else Ada_Version
>= Ada_2005
)
11918 and then Has_Private_Declaration
(Desig_Type
)
11919 and then In_Open_Scopes
(Scope
(Desig_Type
))
11920 and then Has_Discriminants
(Desig_Type
)
11923 Pack
: constant Node_Id
:=
11924 Unit_Declaration_Node
(Scope
(Desig_Type
));
11929 if Nkind
(Pack
) = N_Package_Declaration
then
11930 Decls
:= Visible_Declarations
(Specification
(Pack
));
11931 Decl
:= First
(Decls
);
11932 while Present
(Decl
) loop
11933 if (Nkind
(Decl
) = N_Private_Type_Declaration
11934 and then Chars
(Defining_Identifier
(Decl
)) =
11935 Chars
(Desig_Type
))
11938 (Nkind
(Decl
) = N_Full_Type_Declaration
11940 Chars
(Defining_Identifier
(Decl
)) =
11942 and then Is_Derived_Type
(Desig_Type
)
11944 Has_Private_Declaration
(Etype
(Desig_Type
)))
11946 if No
(Discriminant_Specifications
(Decl
)) then
11948 ("cannot constrain access type if designated "
11949 & "type has constrained partial view", S
);
11961 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
11962 For_Access
=> True);
11964 elsif Is_Concurrent_Type
(Desig_Type
)
11965 and then not Is_Constrained
(Desig_Type
)
11967 Constrain_Concurrent
(Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
11970 Error_Msg_N
("invalid constraint on access type", S
);
11972 -- We simply ignore an invalid constraint
11974 Desig_Subtype
:= Desig_Type
;
11975 Constraint_OK
:= False;
11978 if No
(Def_Id
) then
11979 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
11981 Set_Ekind
(Def_Id
, E_Access_Subtype
);
11984 if Constraint_OK
then
11985 Set_Etype
(Def_Id
, Base_Type
(T
));
11987 if Is_Private_Type
(Desig_Type
) then
11988 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
11991 Set_Etype
(Def_Id
, Any_Type
);
11994 Set_Size_Info
(Def_Id
, T
);
11995 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
11996 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
11997 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
11998 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
12000 Conditional_Delay
(Def_Id
, T
);
12002 -- AI-363 : Subtypes of general access types whose designated types have
12003 -- default discriminants are disallowed. In instances, the rule has to
12004 -- be checked against the actual, of which T is the subtype. In a
12005 -- generic body, the rule is checked assuming that the actual type has
12006 -- defaulted discriminants.
12008 if Ada_Version
>= Ada_2005
or else Warn_On_Ada_2005_Compatibility
then
12009 if Ekind
(Base_Type
(T
)) = E_General_Access_Type
12010 and then Has_Defaulted_Discriminants
(Desig_Type
)
12012 if Ada_Version
< Ada_2005
then
12014 ("access subtype of general access type would not " &
12015 "be allowed in Ada 2005?y?", S
);
12018 ("access subtype of general access type not allowed", S
);
12021 Error_Msg_N
("\discriminants have defaults", S
);
12023 elsif Is_Access_Type
(T
)
12024 and then Is_Generic_Type
(Desig_Type
)
12025 and then Has_Discriminants
(Desig_Type
)
12026 and then In_Package_Body
(Current_Scope
)
12028 if Ada_Version
< Ada_2005
then
12030 ("access subtype would not be allowed in generic body "
12031 & "in Ada 2005?y?", S
);
12034 ("access subtype not allowed in generic body", S
);
12038 ("\designated type is a discriminated formal", S
);
12041 end Constrain_Access
;
12043 ---------------------
12044 -- Constrain_Array --
12045 ---------------------
12047 procedure Constrain_Array
12048 (Def_Id
: in out Entity_Id
;
12050 Related_Nod
: Node_Id
;
12051 Related_Id
: Entity_Id
;
12052 Suffix
: Character)
12054 C
: constant Node_Id
:= Constraint
(SI
);
12055 Number_Of_Constraints
: Nat
:= 0;
12058 Constraint_OK
: Boolean := True;
12061 T
:= Entity
(Subtype_Mark
(SI
));
12063 if Is_Access_Type
(T
) then
12064 T
:= Designated_Type
(T
);
12067 -- If an index constraint follows a subtype mark in a subtype indication
12068 -- then the type or subtype denoted by the subtype mark must not already
12069 -- impose an index constraint. The subtype mark must denote either an
12070 -- unconstrained array type or an access type whose designated type
12071 -- is such an array type... (RM 3.6.1)
12073 if Is_Constrained
(T
) then
12074 Error_Msg_N
("array type is already constrained", Subtype_Mark
(SI
));
12075 Constraint_OK
:= False;
12078 S
:= First
(Constraints
(C
));
12079 while Present
(S
) loop
12080 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
12084 -- In either case, the index constraint must provide a discrete
12085 -- range for each index of the array type and the type of each
12086 -- discrete range must be the same as that of the corresponding
12087 -- index. (RM 3.6.1)
12089 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
12090 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
12091 Constraint_OK
:= False;
12094 S
:= First
(Constraints
(C
));
12095 Index
:= First_Index
(T
);
12098 -- Apply constraints to each index type
12100 for J
in 1 .. Number_Of_Constraints
loop
12101 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
12109 if No
(Def_Id
) then
12111 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
12112 Set_Parent
(Def_Id
, Related_Nod
);
12115 Set_Ekind
(Def_Id
, E_Array_Subtype
);
12118 Set_Size_Info
(Def_Id
, (T
));
12119 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12120 Set_Etype
(Def_Id
, Base_Type
(T
));
12122 if Constraint_OK
then
12123 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
12125 Set_First_Index
(Def_Id
, First_Index
(T
));
12128 Set_Is_Constrained
(Def_Id
, True);
12129 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
12130 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12132 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
12133 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
12135 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12136 -- We need to initialize the attribute because if Def_Id is previously
12137 -- analyzed through a limited_with clause, it will have the attributes
12138 -- of an incomplete type, one of which is an Elist that overlaps the
12139 -- Packed_Array_Impl_Type field.
12141 Set_Packed_Array_Impl_Type
(Def_Id
, Empty
);
12143 -- Build a freeze node if parent still needs one. Also make sure that
12144 -- the Depends_On_Private status is set because the subtype will need
12145 -- reprocessing at the time the base type does, and also we must set a
12146 -- conditional delay.
12148 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
12149 Conditional_Delay
(Def_Id
, T
);
12150 end Constrain_Array
;
12152 ------------------------------
12153 -- Constrain_Component_Type --
12154 ------------------------------
12156 function Constrain_Component_Type
12158 Constrained_Typ
: Entity_Id
;
12159 Related_Node
: Node_Id
;
12161 Constraints
: Elist_Id
) return Entity_Id
12163 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
12164 Compon_Type
: constant Entity_Id
:= Etype
(Comp
);
12166 function Build_Constrained_Array_Type
12167 (Old_Type
: Entity_Id
) return Entity_Id
;
12168 -- If Old_Type is an array type, one of whose indexes is constrained
12169 -- by a discriminant, build an Itype whose constraint replaces the
12170 -- discriminant with its value in the constraint.
12172 function Build_Constrained_Discriminated_Type
12173 (Old_Type
: Entity_Id
) return Entity_Id
;
12174 -- Ditto for record components
12176 function Build_Constrained_Access_Type
12177 (Old_Type
: Entity_Id
) return Entity_Id
;
12178 -- Ditto for access types. Makes use of previous two functions, to
12179 -- constrain designated type.
12181 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
12182 -- T is an array or discriminated type, C is a list of constraints
12183 -- that apply to T. This routine builds the constrained subtype.
12185 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
12186 -- Returns True if Expr is a discriminant
12188 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
;
12189 -- Find the value of discriminant Discrim in Constraint
12191 -----------------------------------
12192 -- Build_Constrained_Access_Type --
12193 -----------------------------------
12195 function Build_Constrained_Access_Type
12196 (Old_Type
: Entity_Id
) return Entity_Id
12198 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
12200 Desig_Subtype
: Entity_Id
;
12204 -- if the original access type was not embedded in the enclosing
12205 -- type definition, there is no need to produce a new access
12206 -- subtype. In fact every access type with an explicit constraint
12207 -- generates an itype whose scope is the enclosing record.
12209 if not Is_Type
(Scope
(Old_Type
)) then
12212 elsif Is_Array_Type
(Desig_Type
) then
12213 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
12215 elsif Has_Discriminants
(Desig_Type
) then
12217 -- This may be an access type to an enclosing record type for
12218 -- which we are constructing the constrained components. Return
12219 -- the enclosing record subtype. This is not always correct,
12220 -- but avoids infinite recursion. ???
12222 Desig_Subtype
:= Any_Type
;
12224 for J
in reverse 0 .. Scope_Stack
.Last
loop
12225 Scop
:= Scope_Stack
.Table
(J
).Entity
;
12228 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
12230 Desig_Subtype
:= Scop
;
12233 exit when not Is_Type
(Scop
);
12236 if Desig_Subtype
= Any_Type
then
12238 Build_Constrained_Discriminated_Type
(Desig_Type
);
12245 if Desig_Subtype
/= Desig_Type
then
12247 -- The Related_Node better be here or else we won't be able
12248 -- to attach new itypes to a node in the tree.
12250 pragma Assert
(Present
(Related_Node
));
12252 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
12254 Set_Etype
(Itype
, Base_Type
(Old_Type
));
12255 Set_Size_Info
(Itype
, (Old_Type
));
12256 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
12257 Set_Depends_On_Private
(Itype
, Has_Private_Component
12259 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
12262 -- The new itype needs freezing when it depends on a not frozen
12263 -- type and the enclosing subtype needs freezing.
12265 if Has_Delayed_Freeze
(Constrained_Typ
)
12266 and then not Is_Frozen
(Constrained_Typ
)
12268 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
12276 end Build_Constrained_Access_Type
;
12278 ----------------------------------
12279 -- Build_Constrained_Array_Type --
12280 ----------------------------------
12282 function Build_Constrained_Array_Type
12283 (Old_Type
: Entity_Id
) return Entity_Id
12287 Old_Index
: Node_Id
;
12288 Range_Node
: Node_Id
;
12289 Constr_List
: List_Id
;
12291 Need_To_Create_Itype
: Boolean := False;
12294 Old_Index
:= First_Index
(Old_Type
);
12295 while Present
(Old_Index
) loop
12296 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
12298 if Is_Discriminant
(Lo_Expr
)
12300 Is_Discriminant
(Hi_Expr
)
12302 Need_To_Create_Itype
:= True;
12305 Next_Index
(Old_Index
);
12308 if Need_To_Create_Itype
then
12309 Constr_List
:= New_List
;
12311 Old_Index
:= First_Index
(Old_Type
);
12312 while Present
(Old_Index
) loop
12313 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
12315 if Is_Discriminant
(Lo_Expr
) then
12316 Lo_Expr
:= Get_Discr_Value
(Lo_Expr
);
12319 if Is_Discriminant
(Hi_Expr
) then
12320 Hi_Expr
:= Get_Discr_Value
(Hi_Expr
);
12325 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
12327 Append
(Range_Node
, To
=> Constr_List
);
12329 Next_Index
(Old_Index
);
12332 return Build_Subtype
(Old_Type
, Constr_List
);
12337 end Build_Constrained_Array_Type
;
12339 ------------------------------------------
12340 -- Build_Constrained_Discriminated_Type --
12341 ------------------------------------------
12343 function Build_Constrained_Discriminated_Type
12344 (Old_Type
: Entity_Id
) return Entity_Id
12347 Constr_List
: List_Id
;
12348 Old_Constraint
: Elmt_Id
;
12350 Need_To_Create_Itype
: Boolean := False;
12353 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
12354 while Present
(Old_Constraint
) loop
12355 Expr
:= Node
(Old_Constraint
);
12357 if Is_Discriminant
(Expr
) then
12358 Need_To_Create_Itype
:= True;
12361 Next_Elmt
(Old_Constraint
);
12364 if Need_To_Create_Itype
then
12365 Constr_List
:= New_List
;
12367 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
12368 while Present
(Old_Constraint
) loop
12369 Expr
:= Node
(Old_Constraint
);
12371 if Is_Discriminant
(Expr
) then
12372 Expr
:= Get_Discr_Value
(Expr
);
12375 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
12377 Next_Elmt
(Old_Constraint
);
12380 return Build_Subtype
(Old_Type
, Constr_List
);
12385 end Build_Constrained_Discriminated_Type
;
12387 -------------------
12388 -- Build_Subtype --
12389 -------------------
12391 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
12393 Subtyp_Decl
: Node_Id
;
12394 Def_Id
: Entity_Id
;
12395 Btyp
: Entity_Id
:= Base_Type
(T
);
12398 -- The Related_Node better be here or else we won't be able to
12399 -- attach new itypes to a node in the tree.
12401 pragma Assert
(Present
(Related_Node
));
12403 -- If the view of the component's type is incomplete or private
12404 -- with unknown discriminants, then the constraint must be applied
12405 -- to the full type.
12407 if Has_Unknown_Discriminants
(Btyp
)
12408 and then Present
(Underlying_Type
(Btyp
))
12410 Btyp
:= Underlying_Type
(Btyp
);
12414 Make_Subtype_Indication
(Loc
,
12415 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
12416 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
12418 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
12421 Make_Subtype_Declaration
(Loc
,
12422 Defining_Identifier
=> Def_Id
,
12423 Subtype_Indication
=> Indic
);
12425 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
12427 -- Itypes must be analyzed with checks off (see package Itypes)
12429 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
12434 ---------------------
12435 -- Get_Discr_Value --
12436 ---------------------
12438 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
is
12443 -- The discriminant may be declared for the type, in which case we
12444 -- find it by iterating over the list of discriminants. If the
12445 -- discriminant is inherited from a parent type, it appears as the
12446 -- corresponding discriminant of the current type. This will be the
12447 -- case when constraining an inherited component whose constraint is
12448 -- given by a discriminant of the parent.
12450 D
:= First_Discriminant
(Typ
);
12451 E
:= First_Elmt
(Constraints
);
12453 while Present
(D
) loop
12454 if D
= Entity
(Discrim
)
12455 or else D
= CR_Discriminant
(Entity
(Discrim
))
12456 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
12461 Next_Discriminant
(D
);
12465 -- The Corresponding_Discriminant mechanism is incomplete, because
12466 -- the correspondence between new and old discriminants is not one
12467 -- to one: one new discriminant can constrain several old ones. In
12468 -- that case, scan sequentially the stored_constraint, the list of
12469 -- discriminants of the parents, and the constraints.
12471 -- Previous code checked for the present of the Stored_Constraint
12472 -- list for the derived type, but did not use it at all. Should it
12473 -- be present when the component is a discriminated task type?
12475 if Is_Derived_Type
(Typ
)
12476 and then Scope
(Entity
(Discrim
)) = Etype
(Typ
)
12478 D
:= First_Discriminant
(Etype
(Typ
));
12479 E
:= First_Elmt
(Constraints
);
12480 while Present
(D
) loop
12481 if D
= Entity
(Discrim
) then
12485 Next_Discriminant
(D
);
12490 -- Something is wrong if we did not find the value
12492 raise Program_Error
;
12493 end Get_Discr_Value
;
12495 ---------------------
12496 -- Is_Discriminant --
12497 ---------------------
12499 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
12500 Discrim_Scope
: Entity_Id
;
12503 if Denotes_Discriminant
(Expr
) then
12504 Discrim_Scope
:= Scope
(Entity
(Expr
));
12506 -- Either we have a reference to one of Typ's discriminants,
12508 pragma Assert
(Discrim_Scope
= Typ
12510 -- or to the discriminants of the parent type, in the case
12511 -- of a derivation of a tagged type with variants.
12513 or else Discrim_Scope
= Etype
(Typ
)
12514 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
12516 -- or same as above for the case where the discriminants
12517 -- were declared in Typ's private view.
12519 or else (Is_Private_Type
(Discrim_Scope
)
12520 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
12522 -- or else we are deriving from the full view and the
12523 -- discriminant is declared in the private entity.
12525 or else (Is_Private_Type
(Typ
)
12526 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
12528 -- Or we are constrained the corresponding record of a
12529 -- synchronized type that completes a private declaration.
12531 or else (Is_Concurrent_Record_Type
(Typ
)
12533 Corresponding_Concurrent_Type
(Typ
) = Discrim_Scope
)
12535 -- or we have a class-wide type, in which case make sure the
12536 -- discriminant found belongs to the root type.
12538 or else (Is_Class_Wide_Type
(Typ
)
12539 and then Etype
(Typ
) = Discrim_Scope
));
12544 -- In all other cases we have something wrong
12547 end Is_Discriminant
;
12549 -- Start of processing for Constrain_Component_Type
12552 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
12553 and then Comes_From_Source
(Parent
(Comp
))
12554 and then Comes_From_Source
12555 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
12558 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
12560 return Compon_Type
;
12562 elsif Is_Array_Type
(Compon_Type
) then
12563 return Build_Constrained_Array_Type
(Compon_Type
);
12565 elsif Has_Discriminants
(Compon_Type
) then
12566 return Build_Constrained_Discriminated_Type
(Compon_Type
);
12568 elsif Is_Access_Type
(Compon_Type
) then
12569 return Build_Constrained_Access_Type
(Compon_Type
);
12572 return Compon_Type
;
12574 end Constrain_Component_Type
;
12576 --------------------------
12577 -- Constrain_Concurrent --
12578 --------------------------
12580 -- For concurrent types, the associated record value type carries the same
12581 -- discriminants, so when we constrain a concurrent type, we must constrain
12582 -- the corresponding record type as well.
12584 procedure Constrain_Concurrent
12585 (Def_Id
: in out Entity_Id
;
12587 Related_Nod
: Node_Id
;
12588 Related_Id
: Entity_Id
;
12589 Suffix
: Character)
12591 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12592 -- case of a private subtype (needed when only doing semantic analysis).
12594 T_Ent
: Entity_Id
:= Base_Type
(Entity
(Subtype_Mark
(SI
)));
12598 if Is_Access_Type
(T_Ent
) then
12599 T_Ent
:= Designated_Type
(T_Ent
);
12602 T_Val
:= Corresponding_Record_Type
(T_Ent
);
12604 if Present
(T_Val
) then
12606 if No
(Def_Id
) then
12607 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
12610 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
12612 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12613 Set_Corresponding_Record_Type
(Def_Id
,
12614 Constrain_Corresponding_Record
(Def_Id
, T_Val
, Related_Nod
));
12617 -- If there is no associated record, expansion is disabled and this
12618 -- is a generic context. Create a subtype in any case, so that
12619 -- semantic analysis can proceed.
12621 if No
(Def_Id
) then
12622 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
12625 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
12627 end Constrain_Concurrent
;
12629 ------------------------------------
12630 -- Constrain_Corresponding_Record --
12631 ------------------------------------
12633 function Constrain_Corresponding_Record
12634 (Prot_Subt
: Entity_Id
;
12635 Corr_Rec
: Entity_Id
;
12636 Related_Nod
: Node_Id
) return Entity_Id
12638 T_Sub
: constant Entity_Id
:=
12639 Create_Itype
(E_Record_Subtype
, Related_Nod
, Corr_Rec
, 'C');
12642 Set_Etype
(T_Sub
, Corr_Rec
);
12643 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
12644 Set_Is_Constrained
(T_Sub
, True);
12645 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
12646 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
12648 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
12649 Set_Discriminant_Constraint
12650 (T_Sub
, Discriminant_Constraint
(Prot_Subt
));
12651 Set_Stored_Constraint_From_Discriminant_Constraint
(T_Sub
);
12652 Create_Constrained_Components
12653 (T_Sub
, Related_Nod
, Corr_Rec
, Discriminant_Constraint
(T_Sub
));
12656 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
12658 if Ekind
(Scope
(Prot_Subt
)) /= E_Record_Type
then
12659 Conditional_Delay
(T_Sub
, Corr_Rec
);
12662 -- This is a component subtype: it will be frozen in the context of
12663 -- the enclosing record's init_proc, so that discriminant references
12664 -- are resolved to discriminals. (Note: we used to skip freezing
12665 -- altogether in that case, which caused errors downstream for
12666 -- components of a bit packed array type).
12668 Set_Has_Delayed_Freeze
(T_Sub
);
12672 end Constrain_Corresponding_Record
;
12674 -----------------------
12675 -- Constrain_Decimal --
12676 -----------------------
12678 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
) is
12679 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12680 C
: constant Node_Id
:= Constraint
(S
);
12681 Loc
: constant Source_Ptr
:= Sloc
(C
);
12682 Range_Expr
: Node_Id
;
12683 Digits_Expr
: Node_Id
;
12688 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
12690 if Nkind
(C
) = N_Range_Constraint
then
12691 Range_Expr
:= Range_Expression
(C
);
12692 Digits_Val
:= Digits_Value
(T
);
12695 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
12697 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
12699 Digits_Expr
:= Digits_Expression
(C
);
12700 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
12702 Check_Digits_Expression
(Digits_Expr
);
12703 Digits_Val
:= Expr_Value
(Digits_Expr
);
12705 if Digits_Val
> Digits_Value
(T
) then
12707 ("digits expression is incompatible with subtype", C
);
12708 Digits_Val
:= Digits_Value
(T
);
12711 if Present
(Range_Constraint
(C
)) then
12712 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
12714 Range_Expr
:= Empty
;
12718 Set_Etype
(Def_Id
, Base_Type
(T
));
12719 Set_Size_Info
(Def_Id
, (T
));
12720 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12721 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
12722 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
12723 Set_Small_Value
(Def_Id
, Small_Value
(T
));
12724 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
12725 Set_Digits_Value
(Def_Id
, Digits_Val
);
12727 -- Manufacture range from given digits value if no range present
12729 if No
(Range_Expr
) then
12730 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
12734 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
12736 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
12739 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
);
12740 Set_Discrete_RM_Size
(Def_Id
);
12742 -- Unconditionally delay the freeze, since we cannot set size
12743 -- information in all cases correctly until the freeze point.
12745 Set_Has_Delayed_Freeze
(Def_Id
);
12746 end Constrain_Decimal
;
12748 ----------------------------------
12749 -- Constrain_Discriminated_Type --
12750 ----------------------------------
12752 procedure Constrain_Discriminated_Type
12753 (Def_Id
: Entity_Id
;
12755 Related_Nod
: Node_Id
;
12756 For_Access
: Boolean := False)
12758 E
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12761 Elist
: Elist_Id
:= New_Elmt_List
;
12763 procedure Fixup_Bad_Constraint
;
12764 -- This is called after finding a bad constraint, and after having
12765 -- posted an appropriate error message. The mission is to leave the
12766 -- entity T in as reasonable state as possible.
12768 --------------------------
12769 -- Fixup_Bad_Constraint --
12770 --------------------------
12772 procedure Fixup_Bad_Constraint
is
12774 -- Set a reasonable Ekind for the entity. For an incomplete type,
12775 -- we can't do much, but for other types, we can set the proper
12776 -- corresponding subtype kind.
12778 if Ekind
(T
) = E_Incomplete_Type
then
12779 Set_Ekind
(Def_Id
, Ekind
(T
));
12781 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
12784 -- Set Etype to the known type, to reduce chances of cascaded errors
12786 Set_Etype
(Def_Id
, E
);
12787 Set_Error_Posted
(Def_Id
);
12788 end Fixup_Bad_Constraint
;
12790 -- Start of processing for Constrain_Discriminated_Type
12793 C
:= Constraint
(S
);
12795 -- A discriminant constraint is only allowed in a subtype indication,
12796 -- after a subtype mark. This subtype mark must denote either a type
12797 -- with discriminants, or an access type whose designated type is a
12798 -- type with discriminants. A discriminant constraint specifies the
12799 -- values of these discriminants (RM 3.7.2(5)).
12801 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
12803 if Is_Access_Type
(T
) then
12804 T
:= Designated_Type
(T
);
12807 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12808 -- Avoid generating an error for access-to-incomplete subtypes.
12810 if Ada_Version
>= Ada_2005
12811 and then Ekind
(T
) = E_Incomplete_Type
12812 and then Nkind
(Parent
(S
)) = N_Subtype_Declaration
12813 and then not Is_Itype
(Def_Id
)
12815 -- A little sanity check, emit an error message if the type
12816 -- has discriminants to begin with. Type T may be a regular
12817 -- incomplete type or imported via a limited with clause.
12819 if Has_Discriminants
(T
)
12820 or else (From_Limited_With
(T
)
12821 and then Present
(Non_Limited_View
(T
))
12822 and then Nkind
(Parent
(Non_Limited_View
(T
))) =
12823 N_Full_Type_Declaration
12824 and then Present
(Discriminant_Specifications
12825 (Parent
(Non_Limited_View
(T
)))))
12828 ("(Ada 2005) incomplete subtype may not be constrained", C
);
12830 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
12833 Fixup_Bad_Constraint
;
12836 -- Check that the type has visible discriminants. The type may be
12837 -- a private type with unknown discriminants whose full view has
12838 -- discriminants which are invisible.
12840 elsif not Has_Discriminants
(T
)
12842 (Has_Unknown_Discriminants
(T
)
12843 and then Is_Private_Type
(T
))
12845 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
12846 Fixup_Bad_Constraint
;
12849 elsif Is_Constrained
(E
)
12850 or else (Ekind
(E
) = E_Class_Wide_Subtype
12851 and then Present
(Discriminant_Constraint
(E
)))
12853 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
12854 Fixup_Bad_Constraint
;
12858 -- T may be an unconstrained subtype (e.g. a generic actual).
12859 -- Constraint applies to the base type.
12861 T
:= Base_Type
(T
);
12863 Elist
:= Build_Discriminant_Constraints
(T
, S
);
12865 -- If the list returned was empty we had an error in building the
12866 -- discriminant constraint. We have also already signalled an error
12867 -- in the incomplete type case
12869 if Is_Empty_Elmt_List
(Elist
) then
12870 Fixup_Bad_Constraint
;
12874 Build_Discriminated_Subtype
(T
, Def_Id
, Elist
, Related_Nod
, For_Access
);
12875 end Constrain_Discriminated_Type
;
12877 ---------------------------
12878 -- Constrain_Enumeration --
12879 ---------------------------
12881 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
) is
12882 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12883 C
: constant Node_Id
:= Constraint
(S
);
12886 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
12888 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
12890 Set_Etype
(Def_Id
, Base_Type
(T
));
12891 Set_Size_Info
(Def_Id
, (T
));
12892 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12893 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
12895 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
12897 Set_Discrete_RM_Size
(Def_Id
);
12898 end Constrain_Enumeration
;
12900 ----------------------
12901 -- Constrain_Float --
12902 ----------------------
12904 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
) is
12905 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12911 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
12913 Set_Etype
(Def_Id
, Base_Type
(T
));
12914 Set_Size_Info
(Def_Id
, (T
));
12915 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12917 -- Process the constraint
12919 C
:= Constraint
(S
);
12921 -- Digits constraint present
12923 if Nkind
(C
) = N_Digits_Constraint
then
12925 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
12926 Check_Restriction
(No_Obsolescent_Features
, C
);
12928 if Warn_On_Obsolescent_Feature
then
12930 ("subtype digits constraint is an " &
12931 "obsolescent feature (RM J.3(8))?j?", C
);
12934 D
:= Digits_Expression
(C
);
12935 Analyze_And_Resolve
(D
, Any_Integer
);
12936 Check_Digits_Expression
(D
);
12937 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
12939 -- Check that digits value is in range. Obviously we can do this
12940 -- at compile time, but it is strictly a runtime check, and of
12941 -- course there is an ACVC test that checks this.
12943 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
12944 Error_Msg_Uint_1
:= Digits_Value
(T
);
12945 Error_Msg_N
("??digits value is too large, maximum is ^", D
);
12947 Make_Raise_Constraint_Error
(Sloc
(D
),
12948 Reason
=> CE_Range_Check_Failed
);
12949 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
12952 C
:= Range_Constraint
(C
);
12954 -- No digits constraint present
12957 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
12960 -- Range constraint present
12962 if Nkind
(C
) = N_Range_Constraint
then
12963 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
12965 -- No range constraint present
12968 pragma Assert
(No
(C
));
12969 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
12972 Set_Is_Constrained
(Def_Id
);
12973 end Constrain_Float
;
12975 ---------------------
12976 -- Constrain_Index --
12977 ---------------------
12979 procedure Constrain_Index
12982 Related_Nod
: Node_Id
;
12983 Related_Id
: Entity_Id
;
12984 Suffix
: Character;
12985 Suffix_Index
: Nat
)
12987 Def_Id
: Entity_Id
;
12988 R
: Node_Id
:= Empty
;
12989 T
: constant Entity_Id
:= Etype
(Index
);
12992 if Nkind
(S
) = N_Range
12994 (Nkind
(S
) = N_Attribute_Reference
12995 and then Attribute_Name
(S
) = Name_Range
)
12997 -- A Range attribute will be transformed into N_Range by Resolve
13003 Process_Range_Expr_In_Decl
(R
, T
);
13005 if not Error_Posted
(S
)
13007 (Nkind
(S
) /= N_Range
13008 or else not Covers
(T
, (Etype
(Low_Bound
(S
))))
13009 or else not Covers
(T
, (Etype
(High_Bound
(S
)))))
13011 if Base_Type
(T
) /= Any_Type
13012 and then Etype
(Low_Bound
(S
)) /= Any_Type
13013 and then Etype
(High_Bound
(S
)) /= Any_Type
13015 Error_Msg_N
("range expected", S
);
13019 elsif Nkind
(S
) = N_Subtype_Indication
then
13021 -- The parser has verified that this is a discrete indication
13023 Resolve_Discrete_Subtype_Indication
(S
, T
);
13024 Bad_Predicated_Subtype_Use
13025 ("subtype& has predicate, not allowed in index constraint",
13026 S
, Entity
(Subtype_Mark
(S
)));
13028 R
:= Range_Expression
(Constraint
(S
));
13030 -- Capture values of bounds and generate temporaries for them if
13031 -- needed, since checks may cause duplication of the expressions
13032 -- which must not be reevaluated.
13034 -- The forced evaluation removes side effects from expressions, which
13035 -- should occur also in GNATprove mode. Otherwise, we end up with
13036 -- unexpected insertions of actions at places where this is not
13037 -- supposed to occur, e.g. on default parameters of a call.
13039 if Expander_Active
or GNATprove_Mode
then
13040 Force_Evaluation
(Low_Bound
(R
));
13041 Force_Evaluation
(High_Bound
(R
));
13044 elsif Nkind
(S
) = N_Discriminant_Association
then
13046 -- Syntactically valid in subtype indication
13048 Error_Msg_N
("invalid index constraint", S
);
13049 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13052 -- Subtype_Mark case, no anonymous subtypes to construct
13057 if Is_Entity_Name
(S
) then
13058 if not Is_Type
(Entity
(S
)) then
13059 Error_Msg_N
("expect subtype mark for index constraint", S
);
13061 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
13062 Wrong_Type
(S
, Base_Type
(T
));
13064 -- Check error of subtype with predicate in index constraint
13067 Bad_Predicated_Subtype_Use
13068 ("subtype& has predicate, not allowed in index constraint",
13075 Error_Msg_N
("invalid index constraint", S
);
13076 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13082 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
13084 Set_Etype
(Def_Id
, Base_Type
(T
));
13086 if Is_Modular_Integer_Type
(T
) then
13087 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
13089 elsif Is_Integer_Type
(T
) then
13090 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
13093 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13094 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13095 Set_First_Literal
(Def_Id
, First_Literal
(T
));
13098 Set_Size_Info
(Def_Id
, (T
));
13099 Set_RM_Size
(Def_Id
, RM_Size
(T
));
13100 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13102 Set_Scalar_Range
(Def_Id
, R
);
13104 Set_Etype
(S
, Def_Id
);
13105 Set_Discrete_RM_Size
(Def_Id
);
13106 end Constrain_Index
;
13108 -----------------------
13109 -- Constrain_Integer --
13110 -----------------------
13112 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
) is
13113 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13114 C
: constant Node_Id
:= Constraint
(S
);
13117 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13119 if Is_Modular_Integer_Type
(T
) then
13120 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
13122 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
13125 Set_Etype
(Def_Id
, Base_Type
(T
));
13126 Set_Size_Info
(Def_Id
, (T
));
13127 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13128 Set_Discrete_RM_Size
(Def_Id
);
13129 end Constrain_Integer
;
13131 ------------------------------
13132 -- Constrain_Ordinary_Fixed --
13133 ------------------------------
13135 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
) is
13136 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13142 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
13143 Set_Etype
(Def_Id
, Base_Type
(T
));
13144 Set_Size_Info
(Def_Id
, (T
));
13145 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13146 Set_Small_Value
(Def_Id
, Small_Value
(T
));
13148 -- Process the constraint
13150 C
:= Constraint
(S
);
13152 -- Delta constraint present
13154 if Nkind
(C
) = N_Delta_Constraint
then
13156 Check_SPARK_05_Restriction
("delta constraint is not allowed", S
);
13157 Check_Restriction
(No_Obsolescent_Features
, C
);
13159 if Warn_On_Obsolescent_Feature
then
13161 ("subtype delta constraint is an " &
13162 "obsolescent feature (RM J.3(7))?j?");
13165 D
:= Delta_Expression
(C
);
13166 Analyze_And_Resolve
(D
, Any_Real
);
13167 Check_Delta_Expression
(D
);
13168 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
13170 -- Check that delta value is in range. Obviously we can do this
13171 -- at compile time, but it is strictly a runtime check, and of
13172 -- course there is an ACVC test that checks this.
13174 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
13175 Error_Msg_N
("??delta value is too small", D
);
13177 Make_Raise_Constraint_Error
(Sloc
(D
),
13178 Reason
=> CE_Range_Check_Failed
);
13179 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
13182 C
:= Range_Constraint
(C
);
13184 -- No delta constraint present
13187 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
13190 -- Range constraint present
13192 if Nkind
(C
) = N_Range_Constraint
then
13193 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13195 -- No range constraint present
13198 pragma Assert
(No
(C
));
13199 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
13203 Set_Discrete_RM_Size
(Def_Id
);
13205 -- Unconditionally delay the freeze, since we cannot set size
13206 -- information in all cases correctly until the freeze point.
13208 Set_Has_Delayed_Freeze
(Def_Id
);
13209 end Constrain_Ordinary_Fixed
;
13211 -----------------------
13212 -- Contain_Interface --
13213 -----------------------
13215 function Contain_Interface
13216 (Iface
: Entity_Id
;
13217 Ifaces
: Elist_Id
) return Boolean
13219 Iface_Elmt
: Elmt_Id
;
13222 if Present
(Ifaces
) then
13223 Iface_Elmt
:= First_Elmt
(Ifaces
);
13224 while Present
(Iface_Elmt
) loop
13225 if Node
(Iface_Elmt
) = Iface
then
13229 Next_Elmt
(Iface_Elmt
);
13234 end Contain_Interface
;
13236 ---------------------------
13237 -- Convert_Scalar_Bounds --
13238 ---------------------------
13240 procedure Convert_Scalar_Bounds
13242 Parent_Type
: Entity_Id
;
13243 Derived_Type
: Entity_Id
;
13246 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
13253 -- Defend against previous errors
13255 if No
(Scalar_Range
(Derived_Type
)) then
13256 Check_Error_Detected
;
13260 Lo
:= Build_Scalar_Bound
13261 (Type_Low_Bound
(Derived_Type
),
13262 Parent_Type
, Implicit_Base
);
13264 Hi
:= Build_Scalar_Bound
13265 (Type_High_Bound
(Derived_Type
),
13266 Parent_Type
, Implicit_Base
);
13273 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
13275 Set_Parent
(Rng
, N
);
13276 Set_Scalar_Range
(Derived_Type
, Rng
);
13278 -- Analyze the bounds
13280 Analyze_And_Resolve
(Lo
, Implicit_Base
);
13281 Analyze_And_Resolve
(Hi
, Implicit_Base
);
13283 -- Analyze the range itself, except that we do not analyze it if
13284 -- the bounds are real literals, and we have a fixed-point type.
13285 -- The reason for this is that we delay setting the bounds in this
13286 -- case till we know the final Small and Size values (see circuit
13287 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13289 if Is_Fixed_Point_Type
(Parent_Type
)
13290 and then Nkind
(Lo
) = N_Real_Literal
13291 and then Nkind
(Hi
) = N_Real_Literal
13295 -- Here we do the analysis of the range
13297 -- Note: we do this manually, since if we do a normal Analyze and
13298 -- Resolve call, there are problems with the conversions used for
13299 -- the derived type range.
13302 Set_Etype
(Rng
, Implicit_Base
);
13303 Set_Analyzed
(Rng
, True);
13305 end Convert_Scalar_Bounds
;
13307 -------------------
13308 -- Copy_And_Swap --
13309 -------------------
13311 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
) is
13313 -- Initialize new full declaration entity by copying the pertinent
13314 -- fields of the corresponding private declaration entity.
13316 -- We temporarily set Ekind to a value appropriate for a type to
13317 -- avoid assert failures in Einfo from checking for setting type
13318 -- attributes on something that is not a type. Ekind (Priv) is an
13319 -- appropriate choice, since it allowed the attributes to be set
13320 -- in the first place. This Ekind value will be modified later.
13322 Set_Ekind
(Full
, Ekind
(Priv
));
13324 -- Also set Etype temporarily to Any_Type, again, in the absence
13325 -- of errors, it will be properly reset, and if there are errors,
13326 -- then we want a value of Any_Type to remain.
13328 Set_Etype
(Full
, Any_Type
);
13330 -- Now start copying attributes
13332 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
13334 if Has_Discriminants
(Full
) then
13335 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
13336 Set_Stored_Constraint
(Full
, Stored_Constraint
(Priv
));
13339 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
13340 Set_Homonym
(Full
, Homonym
(Priv
));
13341 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
13342 Set_Is_Public
(Full
, Is_Public
(Priv
));
13343 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
13344 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
13345 Set_Has_Pragma_Unmodified
(Full
, Has_Pragma_Unmodified
(Priv
));
13346 Set_Has_Pragma_Unreferenced
(Full
, Has_Pragma_Unreferenced
(Priv
));
13347 Set_Has_Pragma_Unreferenced_Objects
13348 (Full
, Has_Pragma_Unreferenced_Objects
13351 Conditional_Delay
(Full
, Priv
);
13353 if Is_Tagged_Type
(Full
) then
13354 Set_Direct_Primitive_Operations
13355 (Full
, Direct_Primitive_Operations
(Priv
));
13356 Set_No_Tagged_Streams_Pragma
13357 (Full
, No_Tagged_Streams_Pragma
(Priv
));
13359 if Is_Base_Type
(Priv
) then
13360 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
13364 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
13365 Set_Treat_As_Volatile
(Full
, Treat_As_Volatile
(Priv
));
13366 Set_Scope
(Full
, Scope
(Priv
));
13367 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
13368 Set_First_Entity
(Full
, First_Entity
(Priv
));
13369 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
13371 -- If access types have been recorded for later handling, keep them in
13372 -- the full view so that they get handled when the full view freeze
13373 -- node is expanded.
13375 if Present
(Freeze_Node
(Priv
))
13376 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
13378 Ensure_Freeze_Node
(Full
);
13379 Set_Access_Types_To_Process
13380 (Freeze_Node
(Full
),
13381 Access_Types_To_Process
(Freeze_Node
(Priv
)));
13384 -- Swap the two entities. Now Private is the full type entity and Full
13385 -- is the private one. They will be swapped back at the end of the
13386 -- private part. This swapping ensures that the entity that is visible
13387 -- in the private part is the full declaration.
13389 Exchange_Entities
(Priv
, Full
);
13390 Append_Entity
(Full
, Scope
(Full
));
13393 -------------------------------------
13394 -- Copy_Array_Base_Type_Attributes --
13395 -------------------------------------
13397 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
13399 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
13400 Set_Component_Type
(T1
, Component_Type
(T2
));
13401 Set_Component_Size
(T1
, Component_Size
(T2
));
13402 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
13403 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
13404 Set_Has_Protected
(T1
, Has_Protected
(T2
));
13405 Set_Has_Task
(T1
, Has_Task
(T2
));
13406 Set_Is_Packed
(T1
, Is_Packed
(T2
));
13407 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
13408 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
13409 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
13410 end Copy_Array_Base_Type_Attributes
;
13412 -----------------------------------
13413 -- Copy_Array_Subtype_Attributes --
13414 -----------------------------------
13416 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
13418 Set_Size_Info
(T1
, T2
);
13420 Set_First_Index
(T1
, First_Index
(T2
));
13421 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
13422 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
13423 Set_Treat_As_Volatile
(T1
, Treat_As_Volatile
(T2
));
13424 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
13425 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
13426 Inherit_Rep_Item_Chain
(T1
, T2
);
13427 Set_Convention
(T1
, Convention
(T2
));
13428 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
13429 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
13430 Set_Packed_Array_Impl_Type
(T1
, Packed_Array_Impl_Type
(T2
));
13431 end Copy_Array_Subtype_Attributes
;
13433 -----------------------------------
13434 -- Create_Constrained_Components --
13435 -----------------------------------
13437 procedure Create_Constrained_Components
13439 Decl_Node
: Node_Id
;
13441 Constraints
: Elist_Id
)
13443 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
13444 Comp_List
: constant Elist_Id
:= New_Elmt_List
;
13445 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
13446 Assoc_List
: constant List_Id
:= New_List
;
13447 Discr_Val
: Elmt_Id
;
13451 Is_Static
: Boolean := True;
13453 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
13454 -- Collect parent type components that do not appear in a variant part
13456 procedure Create_All_Components
;
13457 -- Iterate over Comp_List to create the components of the subtype
13459 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
13460 -- Creates a new component from Old_Compon, copying all the fields from
13461 -- it, including its Etype, inserts the new component in the Subt entity
13462 -- chain and returns the new component.
13464 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
13465 -- If true, and discriminants are static, collect only components from
13466 -- variants selected by discriminant values.
13468 ------------------------------
13469 -- Collect_Fixed_Components --
13470 ------------------------------
13472 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
13474 -- Build association list for discriminants, and find components of the
13475 -- variant part selected by the values of the discriminants.
13477 Old_C
:= First_Discriminant
(Typ
);
13478 Discr_Val
:= First_Elmt
(Constraints
);
13479 while Present
(Old_C
) loop
13480 Append_To
(Assoc_List
,
13481 Make_Component_Association
(Loc
,
13482 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
13483 Expression
=> New_Copy
(Node
(Discr_Val
))));
13485 Next_Elmt
(Discr_Val
);
13486 Next_Discriminant
(Old_C
);
13489 -- The tag and the possible parent component are unconditionally in
13492 if Is_Tagged_Type
(Typ
) or else Has_Controlled_Component
(Typ
) then
13493 Old_C
:= First_Component
(Typ
);
13494 while Present
(Old_C
) loop
13495 if Nam_In
(Chars
(Old_C
), Name_uTag
, Name_uParent
) then
13496 Append_Elmt
(Old_C
, Comp_List
);
13499 Next_Component
(Old_C
);
13502 end Collect_Fixed_Components
;
13504 ---------------------------
13505 -- Create_All_Components --
13506 ---------------------------
13508 procedure Create_All_Components
is
13512 Comp
:= First_Elmt
(Comp_List
);
13513 while Present
(Comp
) loop
13514 Old_C
:= Node
(Comp
);
13515 New_C
:= Create_Component
(Old_C
);
13519 Constrain_Component_Type
13520 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
13521 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13525 end Create_All_Components
;
13527 ----------------------
13528 -- Create_Component --
13529 ----------------------
13531 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
13532 New_Compon
: constant Entity_Id
:= New_Copy
(Old_Compon
);
13535 if Ekind
(Old_Compon
) = E_Discriminant
13536 and then Is_Completely_Hidden
(Old_Compon
)
13538 -- This is a shadow discriminant created for a discriminant of
13539 -- the parent type, which needs to be present in the subtype.
13540 -- Give the shadow discriminant an internal name that cannot
13541 -- conflict with that of visible components.
13543 Set_Chars
(New_Compon
, New_Internal_Name
('C'));
13546 -- Set the parent so we have a proper link for freezing etc. This is
13547 -- not a real parent pointer, since of course our parent does not own
13548 -- up to us and reference us, we are an illegitimate child of the
13549 -- original parent.
13551 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
13553 -- If the old component's Esize was already determined and is a
13554 -- static value, then the new component simply inherits it. Otherwise
13555 -- the old component's size may require run-time determination, but
13556 -- the new component's size still might be statically determinable
13557 -- (if, for example it has a static constraint). In that case we want
13558 -- Layout_Type to recompute the component's size, so we reset its
13559 -- size and positional fields.
13561 if Frontend_Layout_On_Target
13562 and then not Known_Static_Esize
(Old_Compon
)
13564 Set_Esize
(New_Compon
, Uint_0
);
13565 Init_Normalized_First_Bit
(New_Compon
);
13566 Init_Normalized_Position
(New_Compon
);
13567 Init_Normalized_Position_Max
(New_Compon
);
13570 -- We do not want this node marked as Comes_From_Source, since
13571 -- otherwise it would get first class status and a separate cross-
13572 -- reference line would be generated. Illegitimate children do not
13573 -- rate such recognition.
13575 Set_Comes_From_Source
(New_Compon
, False);
13577 -- But it is a real entity, and a birth certificate must be properly
13578 -- registered by entering it into the entity list.
13580 Enter_Name
(New_Compon
);
13583 end Create_Component
;
13585 -----------------------
13586 -- Is_Variant_Record --
13587 -----------------------
13589 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
13591 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
13592 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
13593 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
13596 (Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
13597 end Is_Variant_Record
;
13599 -- Start of processing for Create_Constrained_Components
13602 pragma Assert
(Subt
/= Base_Type
(Subt
));
13603 pragma Assert
(Typ
= Base_Type
(Typ
));
13605 Set_First_Entity
(Subt
, Empty
);
13606 Set_Last_Entity
(Subt
, Empty
);
13608 -- Check whether constraint is fully static, in which case we can
13609 -- optimize the list of components.
13611 Discr_Val
:= First_Elmt
(Constraints
);
13612 while Present
(Discr_Val
) loop
13613 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
13614 Is_Static
:= False;
13618 Next_Elmt
(Discr_Val
);
13621 Set_Has_Static_Discriminants
(Subt
, Is_Static
);
13625 -- Inherit the discriminants of the parent type
13627 Add_Discriminants
: declare
13633 Old_C
:= First_Discriminant
(Typ
);
13635 while Present
(Old_C
) loop
13636 Num_Disc
:= Num_Disc
+ 1;
13637 New_C
:= Create_Component
(Old_C
);
13638 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13639 Next_Discriminant
(Old_C
);
13642 -- For an untagged derived subtype, the number of discriminants may
13643 -- be smaller than the number of inherited discriminants, because
13644 -- several of them may be renamed by a single new discriminant or
13645 -- constrained. In this case, add the hidden discriminants back into
13646 -- the subtype, because they need to be present if the optimizer of
13647 -- the GCC 4.x back-end decides to break apart assignments between
13648 -- objects using the parent view into member-wise assignments.
13652 if Is_Derived_Type
(Typ
)
13653 and then not Is_Tagged_Type
(Typ
)
13655 Old_C
:= First_Stored_Discriminant
(Typ
);
13657 while Present
(Old_C
) loop
13658 Num_Gird
:= Num_Gird
+ 1;
13659 Next_Stored_Discriminant
(Old_C
);
13663 if Num_Gird
> Num_Disc
then
13665 -- Find out multiple uses of new discriminants, and add hidden
13666 -- components for the extra renamed discriminants. We recognize
13667 -- multiple uses through the Corresponding_Discriminant of a
13668 -- new discriminant: if it constrains several old discriminants,
13669 -- this field points to the last one in the parent type. The
13670 -- stored discriminants of the derived type have the same name
13671 -- as those of the parent.
13675 New_Discr
: Entity_Id
;
13676 Old_Discr
: Entity_Id
;
13679 Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
13680 Old_Discr
:= First_Stored_Discriminant
(Typ
);
13681 while Present
(Constr
) loop
13682 if Is_Entity_Name
(Node
(Constr
))
13683 and then Ekind
(Entity
(Node
(Constr
))) = E_Discriminant
13685 New_Discr
:= Entity
(Node
(Constr
));
13687 if Chars
(Corresponding_Discriminant
(New_Discr
)) /=
13690 -- The new discriminant has been used to rename a
13691 -- subsequent old discriminant. Introduce a shadow
13692 -- component for the current old discriminant.
13694 New_C
:= Create_Component
(Old_Discr
);
13695 Set_Original_Record_Component
(New_C
, Old_Discr
);
13699 -- The constraint has eliminated the old discriminant.
13700 -- Introduce a shadow component.
13702 New_C
:= Create_Component
(Old_Discr
);
13703 Set_Original_Record_Component
(New_C
, Old_Discr
);
13706 Next_Elmt
(Constr
);
13707 Next_Stored_Discriminant
(Old_Discr
);
13711 end Add_Discriminants
;
13714 and then Is_Variant_Record
(Typ
)
13716 Collect_Fixed_Components
(Typ
);
13718 Gather_Components
(
13720 Component_List
(Type_Definition
(Parent
(Typ
))),
13721 Governed_By
=> Assoc_List
,
13723 Report_Errors
=> Errors
);
13724 pragma Assert
(not Errors
);
13726 Create_All_Components
;
13728 -- If the subtype declaration is created for a tagged type derivation
13729 -- with constraints, we retrieve the record definition of the parent
13730 -- type to select the components of the proper variant.
13733 and then Is_Tagged_Type
(Typ
)
13734 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
13736 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
13737 and then Is_Variant_Record
(Parent_Type
)
13739 Collect_Fixed_Components
(Typ
);
13741 Gather_Components
(
13743 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
13744 Governed_By
=> Assoc_List
,
13746 Report_Errors
=> Errors
);
13747 pragma Assert
(not Errors
);
13749 -- If the tagged derivation has a type extension, collect all the
13750 -- new components therein.
13753 (Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
13755 Old_C
:= First_Component
(Typ
);
13756 while Present
(Old_C
) loop
13757 if Original_Record_Component
(Old_C
) = Old_C
13758 and then Chars
(Old_C
) /= Name_uTag
13759 and then Chars
(Old_C
) /= Name_uParent
13761 Append_Elmt
(Old_C
, Comp_List
);
13764 Next_Component
(Old_C
);
13768 Create_All_Components
;
13771 -- If discriminants are not static, or if this is a multi-level type
13772 -- extension, we have to include all components of the parent type.
13774 Old_C
:= First_Component
(Typ
);
13775 while Present
(Old_C
) loop
13776 New_C
:= Create_Component
(Old_C
);
13780 Constrain_Component_Type
13781 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
13782 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13784 Next_Component
(Old_C
);
13789 end Create_Constrained_Components
;
13791 ------------------------------------------
13792 -- Decimal_Fixed_Point_Type_Declaration --
13793 ------------------------------------------
13795 procedure Decimal_Fixed_Point_Type_Declaration
13799 Loc
: constant Source_Ptr
:= Sloc
(Def
);
13800 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
13801 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
13802 Implicit_Base
: Entity_Id
;
13809 Check_SPARK_05_Restriction
13810 ("decimal fixed point type is not allowed", Def
);
13811 Check_Restriction
(No_Fixed_Point
, Def
);
13813 -- Create implicit base type
13816 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
13817 Set_Etype
(Implicit_Base
, Implicit_Base
);
13819 -- Analyze and process delta expression
13821 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
13823 Check_Delta_Expression
(Delta_Expr
);
13824 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
13826 -- Check delta is power of 10, and determine scale value from it
13832 Scale_Val
:= Uint_0
;
13835 if Val
< Ureal_1
then
13836 while Val
< Ureal_1
loop
13837 Val
:= Val
* Ureal_10
;
13838 Scale_Val
:= Scale_Val
+ 1;
13841 if Scale_Val
> 18 then
13842 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
13843 Scale_Val
:= UI_From_Int
(+18);
13847 while Val
> Ureal_1
loop
13848 Val
:= Val
/ Ureal_10
;
13849 Scale_Val
:= Scale_Val
- 1;
13852 if Scale_Val
< -18 then
13853 Error_Msg_N
("scale is less than minimum value of -18", Def
);
13854 Scale_Val
:= UI_From_Int
(-18);
13858 if Val
/= Ureal_1
then
13859 Error_Msg_N
("delta expression must be a power of 10", Def
);
13860 Delta_Val
:= Ureal_10
** (-Scale_Val
);
13864 -- Set delta, scale and small (small = delta for decimal type)
13866 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
13867 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
13868 Set_Small_Value
(Implicit_Base
, Delta_Val
);
13870 -- Analyze and process digits expression
13872 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
13873 Check_Digits_Expression
(Digs_Expr
);
13874 Digs_Val
:= Expr_Value
(Digs_Expr
);
13876 if Digs_Val
> 18 then
13877 Digs_Val
:= UI_From_Int
(+18);
13878 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
13881 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
13882 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
13884 -- Set range of base type from digits value for now. This will be
13885 -- expanded to represent the true underlying base range by Freeze.
13887 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
13889 -- Note: We leave size as zero for now, size will be set at freeze
13890 -- time. We have to do this for ordinary fixed-point, because the size
13891 -- depends on the specified small, and we might as well do the same for
13892 -- decimal fixed-point.
13894 pragma Assert
(Esize
(Implicit_Base
) = Uint_0
);
13896 -- If there are bounds given in the declaration use them as the
13897 -- bounds of the first named subtype.
13899 if Present
(Real_Range_Specification
(Def
)) then
13901 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
13902 Low
: constant Node_Id
:= Low_Bound
(RRS
);
13903 High
: constant Node_Id
:= High_Bound
(RRS
);
13908 Analyze_And_Resolve
(Low
, Any_Real
);
13909 Analyze_And_Resolve
(High
, Any_Real
);
13910 Check_Real_Bound
(Low
);
13911 Check_Real_Bound
(High
);
13912 Low_Val
:= Expr_Value_R
(Low
);
13913 High_Val
:= Expr_Value_R
(High
);
13915 if Low_Val
< (-Bound_Val
) then
13917 ("range low bound too small for digits value", Low
);
13918 Low_Val
:= -Bound_Val
;
13921 if High_Val
> Bound_Val
then
13923 ("range high bound too large for digits value", High
);
13924 High_Val
:= Bound_Val
;
13927 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
13930 -- If no explicit range, use range that corresponds to given
13931 -- digits value. This will end up as the final range for the
13935 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
13938 -- Complete entity for first subtype. The inheritance of the rep item
13939 -- chain ensures that SPARK-related pragmas are not clobbered when the
13940 -- decimal fixed point type acts as a full view of a private type.
13942 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
13943 Set_Etype
(T
, Implicit_Base
);
13944 Set_Size_Info
(T
, Implicit_Base
);
13945 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
13946 Set_Digits_Value
(T
, Digs_Val
);
13947 Set_Delta_Value
(T
, Delta_Val
);
13948 Set_Small_Value
(T
, Delta_Val
);
13949 Set_Scale_Value
(T
, Scale_Val
);
13950 Set_Is_Constrained
(T
);
13951 end Decimal_Fixed_Point_Type_Declaration
;
13953 -----------------------------------
13954 -- Derive_Progenitor_Subprograms --
13955 -----------------------------------
13957 procedure Derive_Progenitor_Subprograms
13958 (Parent_Type
: Entity_Id
;
13959 Tagged_Type
: Entity_Id
)
13964 Iface_Elmt
: Elmt_Id
;
13965 Iface_Subp
: Entity_Id
;
13966 New_Subp
: Entity_Id
:= Empty
;
13967 Prim_Elmt
: Elmt_Id
;
13972 pragma Assert
(Ada_Version
>= Ada_2005
13973 and then Is_Record_Type
(Tagged_Type
)
13974 and then Is_Tagged_Type
(Tagged_Type
)
13975 and then Has_Interfaces
(Tagged_Type
));
13977 -- Step 1: Transfer to the full-view primitives associated with the
13978 -- partial-view that cover interface primitives. Conceptually this
13979 -- work should be done later by Process_Full_View; done here to
13980 -- simplify its implementation at later stages. It can be safely
13981 -- done here because interfaces must be visible in the partial and
13982 -- private view (RM 7.3(7.3/2)).
13984 -- Small optimization: This work is only required if the parent may
13985 -- have entities whose Alias attribute reference an interface primitive.
13986 -- Such a situation may occur if the parent is an abstract type and the
13987 -- primitive has not been yet overridden or if the parent is a generic
13988 -- formal type covering interfaces.
13990 -- If the tagged type is not abstract, it cannot have abstract
13991 -- primitives (the only entities in the list of primitives of
13992 -- non-abstract tagged types that can reference abstract primitives
13993 -- through its Alias attribute are the internal entities that have
13994 -- attribute Interface_Alias, and these entities are generated later
13995 -- by Add_Internal_Interface_Entities).
13997 if In_Private_Part
(Current_Scope
)
13998 and then (Is_Abstract_Type
(Parent_Type
)
14000 Is_Generic_Type
(Parent_Type
))
14002 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
14003 while Present
(Elmt
) loop
14004 Subp
:= Node
(Elmt
);
14006 -- At this stage it is not possible to have entities in the list
14007 -- of primitives that have attribute Interface_Alias.
14009 pragma Assert
(No
(Interface_Alias
(Subp
)));
14011 Typ
:= Find_Dispatching_Type
(Ultimate_Alias
(Subp
));
14013 if Is_Interface
(Typ
) then
14014 E
:= Find_Primitive_Covering_Interface
14015 (Tagged_Type
=> Tagged_Type
,
14016 Iface_Prim
=> Subp
);
14019 and then Find_Dispatching_Type
(Ultimate_Alias
(E
)) /= Typ
14021 Replace_Elmt
(Elmt
, E
);
14022 Remove_Homonym
(Subp
);
14030 -- Step 2: Add primitives of progenitors that are not implemented by
14031 -- parents of Tagged_Type.
14033 if Present
(Interfaces
(Base_Type
(Tagged_Type
))) then
14034 Iface_Elmt
:= First_Elmt
(Interfaces
(Base_Type
(Tagged_Type
)));
14035 while Present
(Iface_Elmt
) loop
14036 Iface
:= Node
(Iface_Elmt
);
14038 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
14039 while Present
(Prim_Elmt
) loop
14040 Iface_Subp
:= Node
(Prim_Elmt
);
14042 -- Exclude derivation of predefined primitives except those
14043 -- that come from source, or are inherited from one that comes
14044 -- from source. Required to catch declarations of equality
14045 -- operators of interfaces. For example:
14047 -- type Iface is interface;
14048 -- function "=" (Left, Right : Iface) return Boolean;
14050 if not Is_Predefined_Dispatching_Operation
(Iface_Subp
)
14051 or else Comes_From_Source
(Ultimate_Alias
(Iface_Subp
))
14053 E
:= Find_Primitive_Covering_Interface
14054 (Tagged_Type
=> Tagged_Type
,
14055 Iface_Prim
=> Iface_Subp
);
14057 -- If not found we derive a new primitive leaving its alias
14058 -- attribute referencing the interface primitive.
14062 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14064 -- Ada 2012 (AI05-0197): If the covering primitive's name
14065 -- differs from the name of the interface primitive then it
14066 -- is a private primitive inherited from a parent type. In
14067 -- such case, given that Tagged_Type covers the interface,
14068 -- the inherited private primitive becomes visible. For such
14069 -- purpose we add a new entity that renames the inherited
14070 -- private primitive.
14072 elsif Chars
(E
) /= Chars
(Iface_Subp
) then
14073 pragma Assert
(Has_Suffix
(E
, 'P'));
14075 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14076 Set_Alias
(New_Subp
, E
);
14077 Set_Is_Abstract_Subprogram
(New_Subp
,
14078 Is_Abstract_Subprogram
(E
));
14080 -- Propagate to the full view interface entities associated
14081 -- with the partial view.
14083 elsif In_Private_Part
(Current_Scope
)
14084 and then Present
(Alias
(E
))
14085 and then Alias
(E
) = Iface_Subp
14087 List_Containing
(Parent
(E
)) /=
14088 Private_Declarations
14090 (Unit_Declaration_Node
(Current_Scope
)))
14092 Append_Elmt
(E
, Primitive_Operations
(Tagged_Type
));
14096 Next_Elmt
(Prim_Elmt
);
14099 Next_Elmt
(Iface_Elmt
);
14102 end Derive_Progenitor_Subprograms
;
14104 -----------------------
14105 -- Derive_Subprogram --
14106 -----------------------
14108 procedure Derive_Subprogram
14109 (New_Subp
: in out Entity_Id
;
14110 Parent_Subp
: Entity_Id
;
14111 Derived_Type
: Entity_Id
;
14112 Parent_Type
: Entity_Id
;
14113 Actual_Subp
: Entity_Id
:= Empty
)
14115 Formal
: Entity_Id
;
14116 -- Formal parameter of parent primitive operation
14118 Formal_Of_Actual
: Entity_Id
;
14119 -- Formal parameter of actual operation, when the derivation is to
14120 -- create a renaming for a primitive operation of an actual in an
14123 New_Formal
: Entity_Id
;
14124 -- Formal of inherited operation
14126 Visible_Subp
: Entity_Id
:= Parent_Subp
;
14128 function Is_Private_Overriding
return Boolean;
14129 -- If Subp is a private overriding of a visible operation, the inherited
14130 -- operation derives from the overridden op (even though its body is the
14131 -- overriding one) and the inherited operation is visible now. See
14132 -- sem_disp to see the full details of the handling of the overridden
14133 -- subprogram, which is removed from the list of primitive operations of
14134 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14135 -- and used to diagnose abstract operations that need overriding in the
14138 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
14139 -- When the type is an anonymous access type, create a new access type
14140 -- designating the derived type.
14142 procedure Set_Derived_Name
;
14143 -- This procedure sets the appropriate Chars name for New_Subp. This
14144 -- is normally just a copy of the parent name. An exception arises for
14145 -- type support subprograms, where the name is changed to reflect the
14146 -- name of the derived type, e.g. if type foo is derived from type bar,
14147 -- then a procedure barDA is derived with a name fooDA.
14149 ---------------------------
14150 -- Is_Private_Overriding --
14151 ---------------------------
14153 function Is_Private_Overriding
return Boolean is
14157 -- If the parent is not a dispatching operation there is no
14158 -- need to investigate overridings
14160 if not Is_Dispatching_Operation
(Parent_Subp
) then
14164 -- The visible operation that is overridden is a homonym of the
14165 -- parent subprogram. We scan the homonym chain to find the one
14166 -- whose alias is the subprogram we are deriving.
14168 Prev
:= Current_Entity
(Parent_Subp
);
14169 while Present
(Prev
) loop
14170 if Ekind
(Prev
) = Ekind
(Parent_Subp
)
14171 and then Alias
(Prev
) = Parent_Subp
14172 and then Scope
(Parent_Subp
) = Scope
(Prev
)
14173 and then not Is_Hidden
(Prev
)
14175 Visible_Subp
:= Prev
;
14179 Prev
:= Homonym
(Prev
);
14183 end Is_Private_Overriding
;
14189 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
14190 Id_Type
: constant Entity_Id
:= Etype
(Id
);
14191 Acc_Type
: Entity_Id
;
14192 Par
: constant Node_Id
:= Parent
(Derived_Type
);
14195 -- When the type is an anonymous access type, create a new access
14196 -- type designating the derived type. This itype must be elaborated
14197 -- at the point of the derivation, not on subsequent calls that may
14198 -- be out of the proper scope for Gigi, so we insert a reference to
14199 -- it after the derivation.
14201 if Ekind
(Id_Type
) = E_Anonymous_Access_Type
then
14203 Desig_Typ
: Entity_Id
:= Designated_Type
(Id_Type
);
14206 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
14207 and then Present
(Full_View
(Desig_Typ
))
14208 and then not Is_Private_Type
(Parent_Type
)
14210 Desig_Typ
:= Full_View
(Desig_Typ
);
14213 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
)
14215 -- Ada 2005 (AI-251): Handle also derivations of abstract
14216 -- interface primitives.
14218 or else (Is_Interface
(Desig_Typ
)
14219 and then not Is_Class_Wide_Type
(Desig_Typ
))
14221 Acc_Type
:= New_Copy
(Id_Type
);
14222 Set_Etype
(Acc_Type
, Acc_Type
);
14223 Set_Scope
(Acc_Type
, New_Subp
);
14225 -- Set size of anonymous access type. If we have an access
14226 -- to an unconstrained array, this is a fat pointer, so it
14227 -- is sizes at twice addtress size.
14229 if Is_Array_Type
(Desig_Typ
)
14230 and then not Is_Constrained
(Desig_Typ
)
14232 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
14234 -- Other cases use a thin pointer
14237 Init_Size
(Acc_Type
, System_Address_Size
);
14240 -- Set remaining characterstics of anonymous access type
14242 Init_Alignment
(Acc_Type
);
14243 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
14245 Set_Etype
(New_Id
, Acc_Type
);
14246 Set_Scope
(New_Id
, New_Subp
);
14248 -- Create a reference to it
14250 Build_Itype_Reference
(Acc_Type
, Parent
(Derived_Type
));
14253 Set_Etype
(New_Id
, Id_Type
);
14257 -- In Ada2012, a formal may have an incomplete type but the type
14258 -- derivation that inherits the primitive follows the full view.
14260 elsif Base_Type
(Id_Type
) = Base_Type
(Parent_Type
)
14262 (Ekind
(Id_Type
) = E_Record_Type_With_Private
14263 and then Present
(Full_View
(Id_Type
))
14265 Base_Type
(Full_View
(Id_Type
)) = Base_Type
(Parent_Type
))
14267 (Ada_Version
>= Ada_2012
14268 and then Ekind
(Id_Type
) = E_Incomplete_Type
14269 and then Full_View
(Id_Type
) = Parent_Type
)
14271 -- Constraint checks on formals are generated during expansion,
14272 -- based on the signature of the original subprogram. The bounds
14273 -- of the derived type are not relevant, and thus we can use
14274 -- the base type for the formals. However, the return type may be
14275 -- used in a context that requires that the proper static bounds
14276 -- be used (a case statement, for example) and for those cases
14277 -- we must use the derived type (first subtype), not its base.
14279 -- If the derived_type_definition has no constraints, we know that
14280 -- the derived type has the same constraints as the first subtype
14281 -- of the parent, and we can also use it rather than its base,
14282 -- which can lead to more efficient code.
14284 if Etype
(Id
) = Parent_Type
then
14285 if Is_Scalar_Type
(Parent_Type
)
14287 Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
)
14289 Set_Etype
(New_Id
, Derived_Type
);
14291 elsif Nkind
(Par
) = N_Full_Type_Declaration
14293 Nkind
(Type_Definition
(Par
)) = N_Derived_Type_Definition
14296 (Subtype_Indication
(Type_Definition
(Par
)))
14298 Set_Etype
(New_Id
, Derived_Type
);
14301 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
14305 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
14309 Set_Etype
(New_Id
, Etype
(Id
));
14313 ----------------------
14314 -- Set_Derived_Name --
14315 ----------------------
14317 procedure Set_Derived_Name
is
14318 Nm
: constant TSS_Name_Type
:= Get_TSS_Name
(Parent_Subp
);
14320 if Nm
= TSS_Null
then
14321 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
14323 Set_Chars
(New_Subp
, Make_TSS_Name
(Base_Type
(Derived_Type
), Nm
));
14325 end Set_Derived_Name
;
14327 -- Start of processing for Derive_Subprogram
14330 New_Subp
:= New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
14331 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
14332 Set_Contract
(New_Subp
, Make_Contract
(Sloc
(New_Subp
)));
14334 -- Check whether the inherited subprogram is a private operation that
14335 -- should be inherited but not yet made visible. Such subprograms can
14336 -- become visible at a later point (e.g., the private part of a public
14337 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14338 -- following predicate is true, then this is not such a private
14339 -- operation and the subprogram simply inherits the name of the parent
14340 -- subprogram. Note the special check for the names of controlled
14341 -- operations, which are currently exempted from being inherited with
14342 -- a hidden name because they must be findable for generation of
14343 -- implicit run-time calls.
14345 if not Is_Hidden
(Parent_Subp
)
14346 or else Is_Internal
(Parent_Subp
)
14347 or else Is_Private_Overriding
14348 or else Is_Internal_Name
(Chars
(Parent_Subp
))
14349 or else Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
14355 -- An inherited dispatching equality will be overridden by an internally
14356 -- generated one, or by an explicit one, so preserve its name and thus
14357 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14358 -- private operation it may become invisible if the full view has
14359 -- progenitors, and the dispatch table will be malformed.
14360 -- We check that the type is limited to handle the anomalous declaration
14361 -- of Limited_Controlled, which is derived from a non-limited type, and
14362 -- which is handled specially elsewhere as well.
14364 elsif Chars
(Parent_Subp
) = Name_Op_Eq
14365 and then Is_Dispatching_Operation
(Parent_Subp
)
14366 and then Etype
(Parent_Subp
) = Standard_Boolean
14367 and then not Is_Limited_Type
(Etype
(First_Formal
(Parent_Subp
)))
14369 Etype
(First_Formal
(Parent_Subp
)) =
14370 Etype
(Next_Formal
(First_Formal
(Parent_Subp
)))
14374 -- If parent is hidden, this can be a regular derivation if the
14375 -- parent is immediately visible in a non-instantiating context,
14376 -- or if we are in the private part of an instance. This test
14377 -- should still be refined ???
14379 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14380 -- operation as a non-visible operation in cases where the parent
14381 -- subprogram might not be visible now, but was visible within the
14382 -- original generic, so it would be wrong to make the inherited
14383 -- subprogram non-visible now. (Not clear if this test is fully
14384 -- correct; are there any cases where we should declare the inherited
14385 -- operation as not visible to avoid it being overridden, e.g., when
14386 -- the parent type is a generic actual with private primitives ???)
14388 -- (they should be treated the same as other private inherited
14389 -- subprograms, but it's not clear how to do this cleanly). ???
14391 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
14392 and then Is_Immediately_Visible
(Parent_Subp
)
14393 and then not In_Instance
)
14394 or else In_Instance_Not_Visible
14398 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14399 -- overrides an interface primitive because interface primitives
14400 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14402 elsif Ada_Version
>= Ada_2005
14403 and then Is_Dispatching_Operation
(Parent_Subp
)
14404 and then Covers_Some_Interface
(Parent_Subp
)
14408 -- Otherwise, the type is inheriting a private operation, so enter
14409 -- it with a special name so it can't be overridden.
14412 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
14415 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
14417 if Present
(Actual_Subp
) then
14418 Replace_Type
(Actual_Subp
, New_Subp
);
14420 Replace_Type
(Parent_Subp
, New_Subp
);
14423 Conditional_Delay
(New_Subp
, Parent_Subp
);
14425 -- If we are creating a renaming for a primitive operation of an
14426 -- actual of a generic derived type, we must examine the signature
14427 -- of the actual primitive, not that of the generic formal, which for
14428 -- example may be an interface. However the name and initial value
14429 -- of the inherited operation are those of the formal primitive.
14431 Formal
:= First_Formal
(Parent_Subp
);
14433 if Present
(Actual_Subp
) then
14434 Formal_Of_Actual
:= First_Formal
(Actual_Subp
);
14436 Formal_Of_Actual
:= Empty
;
14439 while Present
(Formal
) loop
14440 New_Formal
:= New_Copy
(Formal
);
14442 -- Normally we do not go copying parents, but in the case of
14443 -- formals, we need to link up to the declaration (which is the
14444 -- parameter specification), and it is fine to link up to the
14445 -- original formal's parameter specification in this case.
14447 Set_Parent
(New_Formal
, Parent
(Formal
));
14448 Append_Entity
(New_Formal
, New_Subp
);
14450 if Present
(Formal_Of_Actual
) then
14451 Replace_Type
(Formal_Of_Actual
, New_Formal
);
14452 Next_Formal
(Formal_Of_Actual
);
14454 Replace_Type
(Formal
, New_Formal
);
14457 Next_Formal
(Formal
);
14460 -- If this derivation corresponds to a tagged generic actual, then
14461 -- primitive operations rename those of the actual. Otherwise the
14462 -- primitive operations rename those of the parent type, If the parent
14463 -- renames an intrinsic operator, so does the new subprogram. We except
14464 -- concatenation, which is always properly typed, and does not get
14465 -- expanded as other intrinsic operations.
14467 if No
(Actual_Subp
) then
14468 if Is_Intrinsic_Subprogram
(Parent_Subp
) then
14469 Set_Is_Intrinsic_Subprogram
(New_Subp
);
14471 if Present
(Alias
(Parent_Subp
))
14472 and then Chars
(Parent_Subp
) /= Name_Op_Concat
14474 Set_Alias
(New_Subp
, Alias
(Parent_Subp
));
14476 Set_Alias
(New_Subp
, Parent_Subp
);
14480 Set_Alias
(New_Subp
, Parent_Subp
);
14484 Set_Alias
(New_Subp
, Actual_Subp
);
14487 -- Derived subprograms of a tagged type must inherit the convention
14488 -- of the parent subprogram (a requirement of AI-117). Derived
14489 -- subprograms of untagged types simply get convention Ada by default.
14491 -- If the derived type is a tagged generic formal type with unknown
14492 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14494 -- However, if the type is derived from a generic formal, the further
14495 -- inherited subprogram has the convention of the non-generic ancestor.
14496 -- Otherwise there would be no way to override the operation.
14497 -- (This is subject to forthcoming ARG discussions).
14499 if Is_Tagged_Type
(Derived_Type
) then
14500 if Is_Generic_Type
(Derived_Type
)
14501 and then Has_Unknown_Discriminants
(Derived_Type
)
14503 Set_Convention
(New_Subp
, Convention_Intrinsic
);
14506 if Is_Generic_Type
(Parent_Type
)
14507 and then Has_Unknown_Discriminants
(Parent_Type
)
14509 Set_Convention
(New_Subp
, Convention
(Alias
(Parent_Subp
)));
14511 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
14516 -- Predefined controlled operations retain their name even if the parent
14517 -- is hidden (see above), but they are not primitive operations if the
14518 -- ancestor is not visible, for example if the parent is a private
14519 -- extension completed with a controlled extension. Note that a full
14520 -- type that is controlled can break privacy: the flag Is_Controlled is
14521 -- set on both views of the type.
14523 if Is_Controlled
(Parent_Type
)
14524 and then Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
14527 and then Is_Hidden
(Parent_Subp
)
14528 and then not Is_Visibly_Controlled
(Parent_Type
)
14530 Set_Is_Hidden
(New_Subp
);
14533 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
14534 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
14536 if Ekind
(Parent_Subp
) = E_Procedure
then
14537 Set_Is_Valued_Procedure
14538 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
14540 Set_Has_Controlling_Result
14541 (New_Subp
, Has_Controlling_Result
(Parent_Subp
));
14544 -- No_Return must be inherited properly. If this is overridden in the
14545 -- case of a dispatching operation, then a check is made in Sem_Disp
14546 -- that the overriding operation is also No_Return (no such check is
14547 -- required for the case of non-dispatching operation.
14549 Set_No_Return
(New_Subp
, No_Return
(Parent_Subp
));
14551 -- A derived function with a controlling result is abstract. If the
14552 -- Derived_Type is a nonabstract formal generic derived type, then
14553 -- inherited operations are not abstract: the required check is done at
14554 -- instantiation time. If the derivation is for a generic actual, the
14555 -- function is not abstract unless the actual is.
14557 if Is_Generic_Type
(Derived_Type
)
14558 and then not Is_Abstract_Type
(Derived_Type
)
14562 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14563 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14565 -- A subprogram subject to pragma Extensions_Visible with value False
14566 -- requires overriding if the subprogram has at least one controlling
14567 -- OUT parameter (SPARK RM 6.1.7(6)).
14569 elsif Ada_Version
>= Ada_2005
14570 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
14571 or else (Is_Tagged_Type
(Derived_Type
)
14572 and then Etype
(New_Subp
) = Derived_Type
14573 and then not Is_Null_Extension
(Derived_Type
))
14574 or else (Is_Tagged_Type
(Derived_Type
)
14575 and then Ekind
(Etype
(New_Subp
)) =
14576 E_Anonymous_Access_Type
14577 and then Designated_Type
(Etype
(New_Subp
)) =
14579 and then not Is_Null_Extension
(Derived_Type
))
14580 or else Is_EVF_Procedure
(Alias
(New_Subp
)))
14581 and then No
(Actual_Subp
)
14583 if not Is_Tagged_Type
(Derived_Type
)
14584 or else Is_Abstract_Type
(Derived_Type
)
14585 or else Is_Abstract_Subprogram
(Alias
(New_Subp
))
14587 Set_Is_Abstract_Subprogram
(New_Subp
);
14589 Set_Requires_Overriding
(New_Subp
);
14592 elsif Ada_Version
< Ada_2005
14593 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
14594 or else (Is_Tagged_Type
(Derived_Type
)
14595 and then Etype
(New_Subp
) = Derived_Type
14596 and then No
(Actual_Subp
)))
14598 Set_Is_Abstract_Subprogram
(New_Subp
);
14600 -- AI05-0097 : an inherited operation that dispatches on result is
14601 -- abstract if the derived type is abstract, even if the parent type
14602 -- is concrete and the derived type is a null extension.
14604 elsif Has_Controlling_Result
(Alias
(New_Subp
))
14605 and then Is_Abstract_Type
(Etype
(New_Subp
))
14607 Set_Is_Abstract_Subprogram
(New_Subp
);
14609 -- Finally, if the parent type is abstract we must verify that all
14610 -- inherited operations are either non-abstract or overridden, or that
14611 -- the derived type itself is abstract (this check is performed at the
14612 -- end of a package declaration, in Check_Abstract_Overriding). A
14613 -- private overriding in the parent type will not be visible in the
14614 -- derivation if we are not in an inner package or in a child unit of
14615 -- the parent type, in which case the abstractness of the inherited
14616 -- operation is carried to the new subprogram.
14618 elsif Is_Abstract_Type
(Parent_Type
)
14619 and then not In_Open_Scopes
(Scope
(Parent_Type
))
14620 and then Is_Private_Overriding
14621 and then Is_Abstract_Subprogram
(Visible_Subp
)
14623 if No
(Actual_Subp
) then
14624 Set_Alias
(New_Subp
, Visible_Subp
);
14625 Set_Is_Abstract_Subprogram
(New_Subp
, True);
14628 -- If this is a derivation for an instance of a formal derived
14629 -- type, abstractness comes from the primitive operation of the
14630 -- actual, not from the operation inherited from the ancestor.
14632 Set_Is_Abstract_Subprogram
14633 (New_Subp
, Is_Abstract_Subprogram
(Actual_Subp
));
14637 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
14639 -- Check for case of a derived subprogram for the instantiation of a
14640 -- formal derived tagged type, if so mark the subprogram as dispatching
14641 -- and inherit the dispatching attributes of the actual subprogram. The
14642 -- derived subprogram is effectively renaming of the actual subprogram,
14643 -- so it needs to have the same attributes as the actual.
14645 if Present
(Actual_Subp
)
14646 and then Is_Dispatching_Operation
(Actual_Subp
)
14648 Set_Is_Dispatching_Operation
(New_Subp
);
14650 if Present
(DTC_Entity
(Actual_Subp
)) then
14651 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Actual_Subp
));
14652 Set_DT_Position
(New_Subp
, DT_Position
(Actual_Subp
));
14656 -- Indicate that a derived subprogram does not require a body and that
14657 -- it does not require processing of default expressions.
14659 Set_Has_Completion
(New_Subp
);
14660 Set_Default_Expressions_Processed
(New_Subp
);
14662 if Ekind
(New_Subp
) = E_Function
then
14663 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
14665 end Derive_Subprogram
;
14667 ------------------------
14668 -- Derive_Subprograms --
14669 ------------------------
14671 procedure Derive_Subprograms
14672 (Parent_Type
: Entity_Id
;
14673 Derived_Type
: Entity_Id
;
14674 Generic_Actual
: Entity_Id
:= Empty
)
14676 Op_List
: constant Elist_Id
:=
14677 Collect_Primitive_Operations
(Parent_Type
);
14679 function Check_Derived_Type
return Boolean;
14680 -- Check that all the entities derived from Parent_Type are found in
14681 -- the list of primitives of Derived_Type exactly in the same order.
14683 procedure Derive_Interface_Subprogram
14684 (New_Subp
: in out Entity_Id
;
14686 Actual_Subp
: Entity_Id
);
14687 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14688 -- (which is an interface primitive). If Generic_Actual is present then
14689 -- Actual_Subp is the actual subprogram corresponding with the generic
14690 -- subprogram Subp.
14692 function Check_Derived_Type
return Boolean is
14696 New_Subp
: Entity_Id
;
14701 -- Traverse list of entities in the current scope searching for
14702 -- an incomplete type whose full-view is derived type
14704 E
:= First_Entity
(Scope
(Derived_Type
));
14705 while Present
(E
) and then E
/= Derived_Type
loop
14706 if Ekind
(E
) = E_Incomplete_Type
14707 and then Present
(Full_View
(E
))
14708 and then Full_View
(E
) = Derived_Type
14710 -- Disable this test if Derived_Type completes an incomplete
14711 -- type because in such case more primitives can be added
14712 -- later to the list of primitives of Derived_Type by routine
14713 -- Process_Incomplete_Dependents
14718 E
:= Next_Entity
(E
);
14721 List
:= Collect_Primitive_Operations
(Derived_Type
);
14722 Elmt
:= First_Elmt
(List
);
14724 Op_Elmt
:= First_Elmt
(Op_List
);
14725 while Present
(Op_Elmt
) loop
14726 Subp
:= Node
(Op_Elmt
);
14727 New_Subp
:= Node
(Elmt
);
14729 -- At this early stage Derived_Type has no entities with attribute
14730 -- Interface_Alias. In addition, such primitives are always
14731 -- located at the end of the list of primitives of Parent_Type.
14732 -- Therefore, if found we can safely stop processing pending
14735 exit when Present
(Interface_Alias
(Subp
));
14737 -- Handle hidden entities
14739 if not Is_Predefined_Dispatching_Operation
(Subp
)
14740 and then Is_Hidden
(Subp
)
14742 if Present
(New_Subp
)
14743 and then Primitive_Names_Match
(Subp
, New_Subp
)
14749 if not Present
(New_Subp
)
14750 or else Ekind
(Subp
) /= Ekind
(New_Subp
)
14751 or else not Primitive_Names_Match
(Subp
, New_Subp
)
14759 Next_Elmt
(Op_Elmt
);
14763 end Check_Derived_Type
;
14765 ---------------------------------
14766 -- Derive_Interface_Subprogram --
14767 ---------------------------------
14769 procedure Derive_Interface_Subprogram
14770 (New_Subp
: in out Entity_Id
;
14772 Actual_Subp
: Entity_Id
)
14774 Iface_Subp
: constant Entity_Id
:= Ultimate_Alias
(Subp
);
14775 Iface_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Iface_Subp
);
14778 pragma Assert
(Is_Interface
(Iface_Type
));
14781 (New_Subp
=> New_Subp
,
14782 Parent_Subp
=> Iface_Subp
,
14783 Derived_Type
=> Derived_Type
,
14784 Parent_Type
=> Iface_Type
,
14785 Actual_Subp
=> Actual_Subp
);
14787 -- Given that this new interface entity corresponds with a primitive
14788 -- of the parent that was not overridden we must leave it associated
14789 -- with its parent primitive to ensure that it will share the same
14790 -- dispatch table slot when overridden.
14792 if No
(Actual_Subp
) then
14793 Set_Alias
(New_Subp
, Subp
);
14795 -- For instantiations this is not needed since the previous call to
14796 -- Derive_Subprogram leaves the entity well decorated.
14799 pragma Assert
(Alias
(New_Subp
) = Actual_Subp
);
14802 end Derive_Interface_Subprogram
;
14806 Alias_Subp
: Entity_Id
;
14807 Act_List
: Elist_Id
;
14808 Act_Elmt
: Elmt_Id
;
14809 Act_Subp
: Entity_Id
:= Empty
;
14811 Need_Search
: Boolean := False;
14812 New_Subp
: Entity_Id
:= Empty
;
14813 Parent_Base
: Entity_Id
;
14816 -- Start of processing for Derive_Subprograms
14819 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
14820 and then Has_Discriminants
(Parent_Type
)
14821 and then Present
(Full_View
(Parent_Type
))
14823 Parent_Base
:= Full_View
(Parent_Type
);
14825 Parent_Base
:= Parent_Type
;
14828 if Present
(Generic_Actual
) then
14829 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
14830 Act_Elmt
:= First_Elmt
(Act_List
);
14832 Act_List
:= No_Elist
;
14833 Act_Elmt
:= No_Elmt
;
14836 -- Derive primitives inherited from the parent. Note that if the generic
14837 -- actual is present, this is not really a type derivation, it is a
14838 -- completion within an instance.
14840 -- Case 1: Derived_Type does not implement interfaces
14842 if not Is_Tagged_Type
(Derived_Type
)
14843 or else (not Has_Interfaces
(Derived_Type
)
14844 and then not (Present
(Generic_Actual
)
14845 and then Has_Interfaces
(Generic_Actual
)))
14847 Elmt
:= First_Elmt
(Op_List
);
14848 while Present
(Elmt
) loop
14849 Subp
:= Node
(Elmt
);
14851 -- Literals are derived earlier in the process of building the
14852 -- derived type, and are skipped here.
14854 if Ekind
(Subp
) = E_Enumeration_Literal
then
14857 -- The actual is a direct descendant and the common primitive
14858 -- operations appear in the same order.
14860 -- If the generic parent type is present, the derived type is an
14861 -- instance of a formal derived type, and within the instance its
14862 -- operations are those of the actual. We derive from the formal
14863 -- type but make the inherited operations aliases of the
14864 -- corresponding operations of the actual.
14867 pragma Assert
(No
(Node
(Act_Elmt
))
14868 or else (Primitive_Names_Match
(Subp
, Node
(Act_Elmt
))
14871 (Subp
, Node
(Act_Elmt
),
14872 Skip_Controlling_Formals
=> True)));
14875 (New_Subp
, Subp
, Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
14877 if Present
(Act_Elmt
) then
14878 Next_Elmt
(Act_Elmt
);
14885 -- Case 2: Derived_Type implements interfaces
14888 -- If the parent type has no predefined primitives we remove
14889 -- predefined primitives from the list of primitives of generic
14890 -- actual to simplify the complexity of this algorithm.
14892 if Present
(Generic_Actual
) then
14894 Has_Predefined_Primitives
: Boolean := False;
14897 -- Check if the parent type has predefined primitives
14899 Elmt
:= First_Elmt
(Op_List
);
14900 while Present
(Elmt
) loop
14901 Subp
:= Node
(Elmt
);
14903 if Is_Predefined_Dispatching_Operation
(Subp
)
14904 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
14906 Has_Predefined_Primitives
:= True;
14913 -- Remove predefined primitives of Generic_Actual. We must use
14914 -- an auxiliary list because in case of tagged types the value
14915 -- returned by Collect_Primitive_Operations is the value stored
14916 -- in its Primitive_Operations attribute (and we don't want to
14917 -- modify its current contents).
14919 if not Has_Predefined_Primitives
then
14921 Aux_List
: constant Elist_Id
:= New_Elmt_List
;
14924 Elmt
:= First_Elmt
(Act_List
);
14925 while Present
(Elmt
) loop
14926 Subp
:= Node
(Elmt
);
14928 if not Is_Predefined_Dispatching_Operation
(Subp
)
14929 or else Comes_From_Source
(Subp
)
14931 Append_Elmt
(Subp
, Aux_List
);
14937 Act_List
:= Aux_List
;
14941 Act_Elmt
:= First_Elmt
(Act_List
);
14942 Act_Subp
:= Node
(Act_Elmt
);
14946 -- Stage 1: If the generic actual is not present we derive the
14947 -- primitives inherited from the parent type. If the generic parent
14948 -- type is present, the derived type is an instance of a formal
14949 -- derived type, and within the instance its operations are those of
14950 -- the actual. We derive from the formal type but make the inherited
14951 -- operations aliases of the corresponding operations of the actual.
14953 Elmt
:= First_Elmt
(Op_List
);
14954 while Present
(Elmt
) loop
14955 Subp
:= Node
(Elmt
);
14956 Alias_Subp
:= Ultimate_Alias
(Subp
);
14958 -- Do not derive internal entities of the parent that link
14959 -- interface primitives with their covering primitive. These
14960 -- entities will be added to this type when frozen.
14962 if Present
(Interface_Alias
(Subp
)) then
14966 -- If the generic actual is present find the corresponding
14967 -- operation in the generic actual. If the parent type is a
14968 -- direct ancestor of the derived type then, even if it is an
14969 -- interface, the operations are inherited from the primary
14970 -- dispatch table and are in the proper order. If we detect here
14971 -- that primitives are not in the same order we traverse the list
14972 -- of primitive operations of the actual to find the one that
14973 -- implements the interface primitive.
14977 (Present
(Generic_Actual
)
14978 and then Present
(Act_Subp
)
14980 (Primitive_Names_Match
(Subp
, Act_Subp
)
14982 Type_Conformant
(Subp
, Act_Subp
,
14983 Skip_Controlling_Formals
=> True)))
14985 pragma Assert
(not Is_Ancestor
(Parent_Base
, Generic_Actual
,
14986 Use_Full_View
=> True));
14988 -- Remember that we need searching for all pending primitives
14990 Need_Search
:= True;
14992 -- Handle entities associated with interface primitives
14994 if Present
(Alias_Subp
)
14995 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
14996 and then not Is_Predefined_Dispatching_Operation
(Subp
)
14998 -- Search for the primitive in the homonym chain
15001 Find_Primitive_Covering_Interface
15002 (Tagged_Type
=> Generic_Actual
,
15003 Iface_Prim
=> Alias_Subp
);
15005 -- Previous search may not locate primitives covering
15006 -- interfaces defined in generics units or instantiations.
15007 -- (it fails if the covering primitive has formals whose
15008 -- type is also defined in generics or instantiations).
15009 -- In such case we search in the list of primitives of the
15010 -- generic actual for the internal entity that links the
15011 -- interface primitive and the covering primitive.
15014 and then Is_Generic_Type
(Parent_Type
)
15016 -- This code has been designed to handle only generic
15017 -- formals that implement interfaces that are defined
15018 -- in a generic unit or instantiation. If this code is
15019 -- needed for other cases we must review it because
15020 -- (given that it relies on Original_Location to locate
15021 -- the primitive of Generic_Actual that covers the
15022 -- interface) it could leave linked through attribute
15023 -- Alias entities of unrelated instantiations).
15027 (Scope
(Find_Dispatching_Type
(Alias_Subp
)))
15029 Instantiation_Depth
15030 (Sloc
(Find_Dispatching_Type
(Alias_Subp
))) > 0);
15033 Iface_Prim_Loc
: constant Source_Ptr
:=
15034 Original_Location
(Sloc
(Alias_Subp
));
15041 First_Elmt
(Primitive_Operations
(Generic_Actual
));
15043 Search
: while Present
(Elmt
) loop
15044 Prim
:= Node
(Elmt
);
15046 if Present
(Interface_Alias
(Prim
))
15047 and then Original_Location
15048 (Sloc
(Interface_Alias
(Prim
))) =
15051 Act_Subp
:= Alias
(Prim
);
15060 pragma Assert
(Present
(Act_Subp
)
15061 or else Is_Abstract_Type
(Generic_Actual
)
15062 or else Serious_Errors_Detected
> 0);
15064 -- Handle predefined primitives plus the rest of user-defined
15068 Act_Elmt
:= First_Elmt
(Act_List
);
15069 while Present
(Act_Elmt
) loop
15070 Act_Subp
:= Node
(Act_Elmt
);
15072 exit when Primitive_Names_Match
(Subp
, Act_Subp
)
15073 and then Type_Conformant
15075 Skip_Controlling_Formals
=> True)
15076 and then No
(Interface_Alias
(Act_Subp
));
15078 Next_Elmt
(Act_Elmt
);
15081 if No
(Act_Elmt
) then
15087 -- Case 1: If the parent is a limited interface then it has the
15088 -- predefined primitives of synchronized interfaces. However, the
15089 -- actual type may be a non-limited type and hence it does not
15090 -- have such primitives.
15092 if Present
(Generic_Actual
)
15093 and then not Present
(Act_Subp
)
15094 and then Is_Limited_Interface
(Parent_Base
)
15095 and then Is_Predefined_Interface_Primitive
(Subp
)
15099 -- Case 2: Inherit entities associated with interfaces that were
15100 -- not covered by the parent type. We exclude here null interface
15101 -- primitives because they do not need special management.
15103 -- We also exclude interface operations that are renamings. If the
15104 -- subprogram is an explicit renaming of an interface primitive,
15105 -- it is a regular primitive operation, and the presence of its
15106 -- alias is not relevant: it has to be derived like any other
15109 elsif Present
(Alias
(Subp
))
15110 and then Nkind
(Unit_Declaration_Node
(Subp
)) /=
15111 N_Subprogram_Renaming_Declaration
15112 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
15114 (Nkind
(Parent
(Alias_Subp
)) = N_Procedure_Specification
15115 and then Null_Present
(Parent
(Alias_Subp
)))
15117 -- If this is an abstract private type then we transfer the
15118 -- derivation of the interface primitive from the partial view
15119 -- to the full view. This is safe because all the interfaces
15120 -- must be visible in the partial view. Done to avoid adding
15121 -- a new interface derivation to the private part of the
15122 -- enclosing package; otherwise this new derivation would be
15123 -- decorated as hidden when the analysis of the enclosing
15124 -- package completes.
15126 if Is_Abstract_Type
(Derived_Type
)
15127 and then In_Private_Part
(Current_Scope
)
15128 and then Has_Private_Declaration
(Derived_Type
)
15131 Partial_View
: Entity_Id
;
15136 Partial_View
:= First_Entity
(Current_Scope
);
15138 exit when No
(Partial_View
)
15139 or else (Has_Private_Declaration
(Partial_View
)
15141 Full_View
(Partial_View
) = Derived_Type
);
15143 Next_Entity
(Partial_View
);
15146 -- If the partial view was not found then the source code
15147 -- has errors and the derivation is not needed.
15149 if Present
(Partial_View
) then
15151 First_Elmt
(Primitive_Operations
(Partial_View
));
15152 while Present
(Elmt
) loop
15153 Ent
:= Node
(Elmt
);
15155 if Present
(Alias
(Ent
))
15156 and then Ultimate_Alias
(Ent
) = Alias
(Subp
)
15159 (Ent
, Primitive_Operations
(Derived_Type
));
15166 -- If the interface primitive was not found in the
15167 -- partial view then this interface primitive was
15168 -- overridden. We add a derivation to activate in
15169 -- Derive_Progenitor_Subprograms the machinery to
15173 Derive_Interface_Subprogram
15174 (New_Subp
=> New_Subp
,
15176 Actual_Subp
=> Act_Subp
);
15181 Derive_Interface_Subprogram
15182 (New_Subp
=> New_Subp
,
15184 Actual_Subp
=> Act_Subp
);
15187 -- Case 3: Common derivation
15191 (New_Subp
=> New_Subp
,
15192 Parent_Subp
=> Subp
,
15193 Derived_Type
=> Derived_Type
,
15194 Parent_Type
=> Parent_Base
,
15195 Actual_Subp
=> Act_Subp
);
15198 -- No need to update Act_Elm if we must search for the
15199 -- corresponding operation in the generic actual
15202 and then Present
(Act_Elmt
)
15204 Next_Elmt
(Act_Elmt
);
15205 Act_Subp
:= Node
(Act_Elmt
);
15212 -- Inherit additional operations from progenitors. If the derived
15213 -- type is a generic actual, there are not new primitive operations
15214 -- for the type because it has those of the actual, and therefore
15215 -- nothing needs to be done. The renamings generated above are not
15216 -- primitive operations, and their purpose is simply to make the
15217 -- proper operations visible within an instantiation.
15219 if No
(Generic_Actual
) then
15220 Derive_Progenitor_Subprograms
(Parent_Base
, Derived_Type
);
15224 -- Final check: Direct descendants must have their primitives in the
15225 -- same order. We exclude from this test untagged types and instances
15226 -- of formal derived types. We skip this test if we have already
15227 -- reported serious errors in the sources.
15229 pragma Assert
(not Is_Tagged_Type
(Derived_Type
)
15230 or else Present
(Generic_Actual
)
15231 or else Serious_Errors_Detected
> 0
15232 or else Check_Derived_Type
);
15233 end Derive_Subprograms
;
15235 --------------------------------
15236 -- Derived_Standard_Character --
15237 --------------------------------
15239 procedure Derived_Standard_Character
15241 Parent_Type
: Entity_Id
;
15242 Derived_Type
: Entity_Id
)
15244 Loc
: constant Source_Ptr
:= Sloc
(N
);
15245 Def
: constant Node_Id
:= Type_Definition
(N
);
15246 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
15247 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
15248 Implicit_Base
: constant Entity_Id
:=
15250 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
15256 Discard_Node
(Process_Subtype
(Indic
, N
));
15258 Set_Etype
(Implicit_Base
, Parent_Base
);
15259 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
15260 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
15262 Set_Is_Character_Type
(Implicit_Base
, True);
15263 Set_Has_Delayed_Freeze
(Implicit_Base
);
15265 -- The bounds of the implicit base are the bounds of the parent base.
15266 -- Note that their type is the parent base.
15268 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
15269 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
15271 Set_Scalar_Range
(Implicit_Base
,
15274 High_Bound
=> Hi
));
15276 Conditional_Delay
(Derived_Type
, Parent_Type
);
15278 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
15279 Set_Etype
(Derived_Type
, Implicit_Base
);
15280 Set_Size_Info
(Derived_Type
, Parent_Type
);
15282 if Unknown_RM_Size
(Derived_Type
) then
15283 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
15286 Set_Is_Character_Type
(Derived_Type
, True);
15288 if Nkind
(Indic
) /= N_Subtype_Indication
then
15290 -- If no explicit constraint, the bounds are those
15291 -- of the parent type.
15293 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
15294 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
15295 Set_Scalar_Range
(Derived_Type
, Make_Range
(Loc
, Lo
, Hi
));
15298 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
15300 -- Because the implicit base is used in the conversion of the bounds, we
15301 -- have to freeze it now. This is similar to what is done for numeric
15302 -- types, and it equally suspicious, but otherwise a non-static bound
15303 -- will have a reference to an unfrozen type, which is rejected by Gigi
15304 -- (???). This requires specific care for definition of stream
15305 -- attributes. For details, see comments at the end of
15306 -- Build_Derived_Numeric_Type.
15308 Freeze_Before
(N
, Implicit_Base
);
15309 end Derived_Standard_Character
;
15311 ------------------------------
15312 -- Derived_Type_Declaration --
15313 ------------------------------
15315 procedure Derived_Type_Declaration
15318 Is_Completion
: Boolean)
15320 Parent_Type
: Entity_Id
;
15322 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean;
15323 -- Check whether the parent type is a generic formal, or derives
15324 -- directly or indirectly from one.
15326 ------------------------
15327 -- Comes_From_Generic --
15328 ------------------------
15330 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean is
15332 if Is_Generic_Type
(Typ
) then
15335 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
15338 elsif Is_Private_Type
(Typ
)
15339 and then Present
(Full_View
(Typ
))
15340 and then Is_Generic_Type
(Root_Type
(Full_View
(Typ
)))
15344 elsif Is_Generic_Actual_Type
(Typ
) then
15350 end Comes_From_Generic
;
15354 Def
: constant Node_Id
:= Type_Definition
(N
);
15355 Iface_Def
: Node_Id
;
15356 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
15357 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
15358 Parent_Node
: Node_Id
;
15361 -- Start of processing for Derived_Type_Declaration
15364 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
15366 -- Ada 2005 (AI-251): In case of interface derivation check that the
15367 -- parent is also an interface.
15369 if Interface_Present
(Def
) then
15370 Check_SPARK_05_Restriction
("interface is not allowed", Def
);
15372 if not Is_Interface
(Parent_Type
) then
15373 Diagnose_Interface
(Indic
, Parent_Type
);
15376 Parent_Node
:= Parent
(Base_Type
(Parent_Type
));
15377 Iface_Def
:= Type_Definition
(Parent_Node
);
15379 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15380 -- other limited interfaces.
15382 if Limited_Present
(Def
) then
15383 if Limited_Present
(Iface_Def
) then
15386 elsif Protected_Present
(Iface_Def
) then
15388 ("descendant of& must be declared"
15389 & " as a protected interface",
15392 elsif Synchronized_Present
(Iface_Def
) then
15394 ("descendant of& must be declared"
15395 & " as a synchronized interface",
15398 elsif Task_Present
(Iface_Def
) then
15400 ("descendant of& must be declared as a task interface",
15405 ("(Ada 2005) limited interface cannot "
15406 & "inherit from non-limited interface", Indic
);
15409 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15410 -- from non-limited or limited interfaces.
15412 elsif not Protected_Present
(Def
)
15413 and then not Synchronized_Present
(Def
)
15414 and then not Task_Present
(Def
)
15416 if Limited_Present
(Iface_Def
) then
15419 elsif Protected_Present
(Iface_Def
) then
15421 ("descendant of& must be declared"
15422 & " as a protected interface",
15425 elsif Synchronized_Present
(Iface_Def
) then
15427 ("descendant of& must be declared"
15428 & " as a synchronized interface",
15431 elsif Task_Present
(Iface_Def
) then
15433 ("descendant of& must be declared as a task interface",
15442 if Is_Tagged_Type
(Parent_Type
)
15443 and then Is_Concurrent_Type
(Parent_Type
)
15444 and then not Is_Interface
(Parent_Type
)
15447 ("parent type of a record extension cannot be "
15448 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
15449 Set_Etype
(T
, Any_Type
);
15453 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15456 if Is_Tagged_Type
(Parent_Type
)
15457 and then Is_Non_Empty_List
(Interface_List
(Def
))
15464 Intf
:= First
(Interface_List
(Def
));
15465 while Present
(Intf
) loop
15466 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
15468 if not Is_Interface
(T
) then
15469 Diagnose_Interface
(Intf
, T
);
15471 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15472 -- a limited type from having a nonlimited progenitor.
15474 elsif (Limited_Present
(Def
)
15475 or else (not Is_Interface
(Parent_Type
)
15476 and then Is_Limited_Type
(Parent_Type
)))
15477 and then not Is_Limited_Interface
(T
)
15480 ("progenitor interface& of limited type must be limited",
15489 if Parent_Type
= Any_Type
15490 or else Etype
(Parent_Type
) = Any_Type
15491 or else (Is_Class_Wide_Type
(Parent_Type
)
15492 and then Etype
(Parent_Type
) = T
)
15494 -- If Parent_Type is undefined or illegal, make new type into a
15495 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15496 -- errors. If this is a self-definition, emit error now.
15498 if T
= Parent_Type
or else T
= Etype
(Parent_Type
) then
15499 Error_Msg_N
("type cannot be used in its own definition", Indic
);
15502 Set_Ekind
(T
, Ekind
(Parent_Type
));
15503 Set_Etype
(T
, Any_Type
);
15504 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
15506 if Is_Tagged_Type
(T
)
15507 and then Is_Record_Type
(T
)
15509 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
15515 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15516 -- an interface is special because the list of interfaces in the full
15517 -- view can be given in any order. For example:
15519 -- type A is interface;
15520 -- type B is interface and A;
15521 -- type D is new B with private;
15523 -- type D is new A and B with null record; -- 1 --
15525 -- In this case we perform the following transformation of -1-:
15527 -- type D is new B and A with null record;
15529 -- If the parent of the full-view covers the parent of the partial-view
15530 -- we have two possible cases:
15532 -- 1) They have the same parent
15533 -- 2) The parent of the full-view implements some further interfaces
15535 -- In both cases we do not need to perform the transformation. In the
15536 -- first case the source program is correct and the transformation is
15537 -- not needed; in the second case the source program does not fulfill
15538 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15541 -- This transformation not only simplifies the rest of the analysis of
15542 -- this type declaration but also simplifies the correct generation of
15543 -- the object layout to the expander.
15545 if In_Private_Part
(Current_Scope
)
15546 and then Is_Interface
(Parent_Type
)
15550 Partial_View
: Entity_Id
;
15551 Partial_View_Parent
: Entity_Id
;
15552 New_Iface
: Node_Id
;
15555 -- Look for the associated private type declaration
15557 Partial_View
:= First_Entity
(Current_Scope
);
15559 exit when No
(Partial_View
)
15560 or else (Has_Private_Declaration
(Partial_View
)
15561 and then Full_View
(Partial_View
) = T
);
15563 Next_Entity
(Partial_View
);
15566 -- If the partial view was not found then the source code has
15567 -- errors and the transformation is not needed.
15569 if Present
(Partial_View
) then
15570 Partial_View_Parent
:= Etype
(Partial_View
);
15572 -- If the parent of the full-view covers the parent of the
15573 -- partial-view we have nothing else to do.
15575 if Interface_Present_In_Ancestor
15576 (Parent_Type
, Partial_View_Parent
)
15580 -- Traverse the list of interfaces of the full-view to look
15581 -- for the parent of the partial-view and perform the tree
15585 Iface
:= First
(Interface_List
(Def
));
15586 while Present
(Iface
) loop
15587 if Etype
(Iface
) = Etype
(Partial_View
) then
15588 Rewrite
(Subtype_Indication
(Def
),
15589 New_Copy
(Subtype_Indication
15590 (Parent
(Partial_View
))));
15593 Make_Identifier
(Sloc
(N
), Chars
(Parent_Type
));
15594 Append
(New_Iface
, Interface_List
(Def
));
15596 -- Analyze the transformed code
15598 Derived_Type_Declaration
(T
, N
, Is_Completion
);
15609 -- Only composite types other than array types are allowed to have
15612 if Present
(Discriminant_Specifications
(N
)) then
15613 if (Is_Elementary_Type
(Parent_Type
)
15615 Is_Array_Type
(Parent_Type
))
15616 and then not Error_Posted
(N
)
15619 ("elementary or array type cannot have discriminants",
15620 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
15621 Set_Has_Discriminants
(T
, False);
15623 -- The type is allowed to have discriminants
15626 Check_SPARK_05_Restriction
("discriminant type is not allowed", N
);
15630 -- In Ada 83, a derived type defined in a package specification cannot
15631 -- be used for further derivation until the end of its visible part.
15632 -- Note that derivation in the private part of the package is allowed.
15634 if Ada_Version
= Ada_83
15635 and then Is_Derived_Type
(Parent_Type
)
15636 and then In_Visible_Part
(Scope
(Parent_Type
))
15638 if Ada_Version
= Ada_83
and then Comes_From_Source
(Indic
) then
15640 ("(Ada 83): premature use of type for derivation", Indic
);
15644 -- Check for early use of incomplete or private type
15646 if Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
15647 Error_Msg_N
("premature derivation of incomplete type", Indic
);
15650 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
15651 and then not Comes_From_Generic
(Parent_Type
))
15652 or else Has_Private_Component
(Parent_Type
)
15654 -- The ancestor type of a formal type can be incomplete, in which
15655 -- case only the operations of the partial view are available in the
15656 -- generic. Subsequent checks may be required when the full view is
15657 -- analyzed to verify that a derivation from a tagged type has an
15660 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
15663 elsif No
(Underlying_Type
(Parent_Type
))
15664 or else Has_Private_Component
(Parent_Type
)
15667 ("premature derivation of derived or private type", Indic
);
15669 -- Flag the type itself as being in error, this prevents some
15670 -- nasty problems with subsequent uses of the malformed type.
15672 Set_Error_Posted
(T
);
15674 -- Check that within the immediate scope of an untagged partial
15675 -- view it's illegal to derive from the partial view if the
15676 -- full view is tagged. (7.3(7))
15678 -- We verify that the Parent_Type is a partial view by checking
15679 -- that it is not a Full_Type_Declaration (i.e. a private type or
15680 -- private extension declaration), to distinguish a partial view
15681 -- from a derivation from a private type which also appears as
15682 -- E_Private_Type. If the parent base type is not declared in an
15683 -- enclosing scope there is no need to check.
15685 elsif Present
(Full_View
(Parent_Type
))
15686 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
15687 and then not Is_Tagged_Type
(Parent_Type
)
15688 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
15689 and then In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
15692 ("premature derivation from type with tagged full view",
15697 -- Check that form of derivation is appropriate
15699 Taggd
:= Is_Tagged_Type
(Parent_Type
);
15701 -- Perhaps the parent type should be changed to the class-wide type's
15702 -- specific type in this case to prevent cascading errors ???
15704 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
15705 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
15709 if Present
(Extension
) and then not Taggd
then
15711 ("type derived from untagged type cannot have extension", Indic
);
15713 elsif No
(Extension
) and then Taggd
then
15715 -- If this declaration is within a private part (or body) of a
15716 -- generic instantiation then the derivation is allowed (the parent
15717 -- type can only appear tagged in this case if it's a generic actual
15718 -- type, since it would otherwise have been rejected in the analysis
15719 -- of the generic template).
15721 if not Is_Generic_Actual_Type
(Parent_Type
)
15722 or else In_Visible_Part
(Scope
(Parent_Type
))
15724 if Is_Class_Wide_Type
(Parent_Type
) then
15726 ("parent type must not be a class-wide type", Indic
);
15728 -- Use specific type to prevent cascaded errors.
15730 Parent_Type
:= Etype
(Parent_Type
);
15734 ("type derived from tagged type must have extension", Indic
);
15739 -- AI-443: Synchronized formal derived types require a private
15740 -- extension. There is no point in checking the ancestor type or
15741 -- the progenitors since the construct is wrong to begin with.
15743 if Ada_Version
>= Ada_2005
15744 and then Is_Generic_Type
(T
)
15745 and then Present
(Original_Node
(N
))
15748 Decl
: constant Node_Id
:= Original_Node
(N
);
15751 if Nkind
(Decl
) = N_Formal_Type_Declaration
15752 and then Nkind
(Formal_Type_Definition
(Decl
)) =
15753 N_Formal_Derived_Type_Definition
15754 and then Synchronized_Present
(Formal_Type_Definition
(Decl
))
15755 and then No
(Extension
)
15757 -- Avoid emitting a duplicate error message
15759 and then not Error_Posted
(Indic
)
15762 ("synchronized derived type must have extension", N
);
15767 if Null_Exclusion_Present
(Def
)
15768 and then not Is_Access_Type
(Parent_Type
)
15770 Error_Msg_N
("null exclusion can only apply to an access type", N
);
15773 -- Avoid deriving parent primitives of underlying record views
15775 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
,
15776 Derive_Subps
=> not Is_Underlying_Record_View
(T
));
15778 -- AI-419: The parent type of an explicitly limited derived type must
15779 -- be a limited type or a limited interface.
15781 if Limited_Present
(Def
) then
15782 Set_Is_Limited_Record
(T
);
15784 if Is_Interface
(T
) then
15785 Set_Is_Limited_Interface
(T
);
15788 if not Is_Limited_Type
(Parent_Type
)
15790 (not Is_Interface
(Parent_Type
)
15791 or else not Is_Limited_Interface
(Parent_Type
))
15793 -- AI05-0096: a derivation in the private part of an instance is
15794 -- legal if the generic formal is untagged limited, and the actual
15797 if Is_Generic_Actual_Type
(Parent_Type
)
15798 and then In_Private_Part
(Current_Scope
)
15801 (Generic_Parent_Type
(Parent
(Parent_Type
)))
15807 ("parent type& of limited type must be limited",
15813 -- In SPARK, there are no derived type definitions other than type
15814 -- extensions of tagged record types.
15816 if No
(Extension
) then
15817 Check_SPARK_05_Restriction
15818 ("derived type is not allowed", Original_Node
(N
));
15820 end Derived_Type_Declaration
;
15822 ------------------------
15823 -- Diagnose_Interface --
15824 ------------------------
15826 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
) is
15828 if not Is_Interface
(E
)
15829 and then E
/= Any_Type
15831 Error_Msg_NE
("(Ada 2005) & must be an interface", N
, E
);
15833 end Diagnose_Interface
;
15835 ----------------------------------
15836 -- Enumeration_Type_Declaration --
15837 ----------------------------------
15839 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
15846 -- Create identifier node representing lower bound
15848 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
15849 L
:= First
(Literals
(Def
));
15850 Set_Chars
(B_Node
, Chars
(L
));
15851 Set_Entity
(B_Node
, L
);
15852 Set_Etype
(B_Node
, T
);
15853 Set_Is_Static_Expression
(B_Node
, True);
15855 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
15856 Set_Low_Bound
(R_Node
, B_Node
);
15858 Set_Ekind
(T
, E_Enumeration_Type
);
15859 Set_First_Literal
(T
, L
);
15861 Set_Is_Constrained
(T
);
15865 -- Loop through literals of enumeration type setting pos and rep values
15866 -- except that if the Ekind is already set, then it means the literal
15867 -- was already constructed (case of a derived type declaration and we
15868 -- should not disturb the Pos and Rep values.
15870 while Present
(L
) loop
15871 if Ekind
(L
) /= E_Enumeration_Literal
then
15872 Set_Ekind
(L
, E_Enumeration_Literal
);
15873 Set_Enumeration_Pos
(L
, Ev
);
15874 Set_Enumeration_Rep
(L
, Ev
);
15875 Set_Is_Known_Valid
(L
, True);
15879 New_Overloaded_Entity
(L
);
15880 Generate_Definition
(L
);
15881 Set_Convention
(L
, Convention_Intrinsic
);
15883 -- Case of character literal
15885 if Nkind
(L
) = N_Defining_Character_Literal
then
15886 Set_Is_Character_Type
(T
, True);
15888 -- Check violation of No_Wide_Characters
15890 if Restriction_Check_Required
(No_Wide_Characters
) then
15891 Get_Name_String
(Chars
(L
));
15893 if Name_Len
>= 3 and then Name_Buffer
(1 .. 2) = "QW" then
15894 Check_Restriction
(No_Wide_Characters
, L
);
15903 -- Now create a node representing upper bound
15905 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
15906 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
15907 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
15908 Set_Etype
(B_Node
, T
);
15909 Set_Is_Static_Expression
(B_Node
, True);
15911 Set_High_Bound
(R_Node
, B_Node
);
15913 -- Initialize various fields of the type. Some of this information
15914 -- may be overwritten later through rep.clauses.
15916 Set_Scalar_Range
(T
, R_Node
);
15917 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
15918 Set_Enum_Esize
(T
);
15919 Set_Enum_Pos_To_Rep
(T
, Empty
);
15921 -- Set Discard_Names if configuration pragma set, or if there is
15922 -- a parameterless pragma in the current declarative region
15924 if Global_Discard_Names
or else Discard_Names
(Scope
(T
)) then
15925 Set_Discard_Names
(T
);
15928 -- Process end label if there is one
15930 if Present
(Def
) then
15931 Process_End_Label
(Def
, 'e', T
);
15933 end Enumeration_Type_Declaration
;
15935 ---------------------------------
15936 -- Expand_To_Stored_Constraint --
15937 ---------------------------------
15939 function Expand_To_Stored_Constraint
15941 Constraint
: Elist_Id
) return Elist_Id
15943 Explicitly_Discriminated_Type
: Entity_Id
;
15944 Expansion
: Elist_Id
;
15945 Discriminant
: Entity_Id
;
15947 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
15948 -- Find the nearest type that actually specifies discriminants
15950 ---------------------------------
15951 -- Type_With_Explicit_Discrims --
15952 ---------------------------------
15954 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
15955 Typ
: constant E
:= Base_Type
(Id
);
15958 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
15959 if Present
(Full_View
(Typ
)) then
15960 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
15964 if Has_Discriminants
(Typ
) then
15969 if Etype
(Typ
) = Typ
then
15971 elsif Has_Discriminants
(Typ
) then
15974 return Type_With_Explicit_Discrims
(Etype
(Typ
));
15977 end Type_With_Explicit_Discrims
;
15979 -- Start of processing for Expand_To_Stored_Constraint
15982 if No
(Constraint
) or else Is_Empty_Elmt_List
(Constraint
) then
15986 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
15988 if No
(Explicitly_Discriminated_Type
) then
15992 Expansion
:= New_Elmt_List
;
15995 First_Stored_Discriminant
(Explicitly_Discriminated_Type
);
15996 while Present
(Discriminant
) loop
15998 (Get_Discriminant_Value
15999 (Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
16001 Next_Stored_Discriminant
(Discriminant
);
16005 end Expand_To_Stored_Constraint
;
16007 ---------------------------
16008 -- Find_Hidden_Interface --
16009 ---------------------------
16011 function Find_Hidden_Interface
16013 Dest
: Elist_Id
) return Entity_Id
16016 Iface_Elmt
: Elmt_Id
;
16019 if Present
(Src
) and then Present
(Dest
) then
16020 Iface_Elmt
:= First_Elmt
(Src
);
16021 while Present
(Iface_Elmt
) loop
16022 Iface
:= Node
(Iface_Elmt
);
16024 if Is_Interface
(Iface
)
16025 and then not Contain_Interface
(Iface
, Dest
)
16030 Next_Elmt
(Iface_Elmt
);
16035 end Find_Hidden_Interface
;
16037 --------------------
16038 -- Find_Type_Name --
16039 --------------------
16041 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
16042 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
16044 New_Id
: Entity_Id
;
16045 Prev_Par
: Node_Id
;
16047 procedure Check_Duplicate_Aspects
;
16048 -- Check that aspects specified in a completion have not been specified
16049 -- already in the partial view. Type_Invariant and others can be
16050 -- specified on either view but never on both.
16052 procedure Tag_Mismatch
;
16053 -- Diagnose a tagged partial view whose full view is untagged.
16054 -- We post the message on the full view, with a reference to
16055 -- the previous partial view. The partial view can be private
16056 -- or incomplete, and these are handled in a different manner,
16057 -- so we determine the position of the error message from the
16058 -- respective slocs of both.
16060 -----------------------------
16061 -- Check_Duplicate_Aspects --
16062 -----------------------------
16063 procedure Check_Duplicate_Aspects
is
16064 Prev_Aspects
: constant List_Id
:= Aspect_Specifications
(Prev_Par
);
16065 Full_Aspects
: constant List_Id
:= Aspect_Specifications
(N
);
16066 F_Spec
, P_Spec
: Node_Id
;
16069 if Present
(Prev_Aspects
) and then Present
(Full_Aspects
) then
16070 F_Spec
:= First
(Full_Aspects
);
16071 while Present
(F_Spec
) loop
16072 P_Spec
:= First
(Prev_Aspects
);
16073 while Present
(P_Spec
) loop
16075 Chars
(Identifier
(P_Spec
)) = Chars
(Identifier
(F_Spec
))
16078 ("aspect already specified in private declaration",
16090 end Check_Duplicate_Aspects
;
16096 procedure Tag_Mismatch
is
16098 if Sloc
(Prev
) < Sloc
(Id
) then
16099 if Ada_Version
>= Ada_2012
16100 and then Nkind
(N
) = N_Private_Type_Declaration
16103 ("declaration of private } must be a tagged type ", Id
, Prev
);
16106 ("full declaration of } must be a tagged type ", Id
, Prev
);
16110 if Ada_Version
>= Ada_2012
16111 and then Nkind
(N
) = N_Private_Type_Declaration
16114 ("declaration of private } must be a tagged type ", Prev
, Id
);
16117 ("full declaration of } must be a tagged type ", Prev
, Id
);
16122 -- Start of processing for Find_Type_Name
16125 -- Find incomplete declaration, if one was given
16127 Prev
:= Current_Entity_In_Scope
(Id
);
16129 -- New type declaration
16135 -- Previous declaration exists
16138 Prev_Par
:= Parent
(Prev
);
16140 -- Error if not incomplete/private case except if previous
16141 -- declaration is implicit, etc. Enter_Name will emit error if
16144 if not Is_Incomplete_Or_Private_Type
(Prev
) then
16148 -- Check invalid completion of private or incomplete type
16150 elsif not Nkind_In
(N
, N_Full_Type_Declaration
,
16151 N_Task_Type_Declaration
,
16152 N_Protected_Type_Declaration
)
16154 (Ada_Version
< Ada_2012
16155 or else not Is_Incomplete_Type
(Prev
)
16156 or else not Nkind_In
(N
, N_Private_Type_Declaration
,
16157 N_Private_Extension_Declaration
))
16159 -- Completion must be a full type declarations (RM 7.3(4))
16161 Error_Msg_Sloc
:= Sloc
(Prev
);
16162 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
16164 -- Set scope of Id to avoid cascaded errors. Entity is never
16165 -- examined again, except when saving globals in generics.
16167 Set_Scope
(Id
, Current_Scope
);
16170 -- If this is a repeated incomplete declaration, no further
16171 -- checks are possible.
16173 if Nkind
(N
) = N_Incomplete_Type_Declaration
then
16177 -- Case of full declaration of incomplete type
16179 elsif Ekind
(Prev
) = E_Incomplete_Type
16180 and then (Ada_Version
< Ada_2012
16181 or else No
(Full_View
(Prev
))
16182 or else not Is_Private_Type
(Full_View
(Prev
)))
16184 -- Indicate that the incomplete declaration has a matching full
16185 -- declaration. The defining occurrence of the incomplete
16186 -- declaration remains the visible one, and the procedure
16187 -- Get_Full_View dereferences it whenever the type is used.
16189 if Present
(Full_View
(Prev
)) then
16190 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
16193 Set_Full_View
(Prev
, Id
);
16194 Append_Entity
(Id
, Current_Scope
);
16195 Set_Is_Public
(Id
, Is_Public
(Prev
));
16196 Set_Is_Internal
(Id
);
16199 -- If the incomplete view is tagged, a class_wide type has been
16200 -- created already. Use it for the private type as well, in order
16201 -- to prevent multiple incompatible class-wide types that may be
16202 -- created for self-referential anonymous access components.
16204 if Is_Tagged_Type
(Prev
)
16205 and then Present
(Class_Wide_Type
(Prev
))
16207 Set_Ekind
(Id
, Ekind
(Prev
)); -- will be reset later
16208 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(Prev
));
16210 -- If the incomplete type is completed by a private declaration
16211 -- the class-wide type remains associated with the incomplete
16212 -- type, to prevent order-of-elaboration issues in gigi, else
16213 -- we associate the class-wide type with the known full view.
16215 if Nkind
(N
) /= N_Private_Type_Declaration
then
16216 Set_Etype
(Class_Wide_Type
(Id
), Id
);
16220 -- Case of full declaration of private type
16223 -- If the private type was a completion of an incomplete type then
16224 -- update Prev to reference the private type
16226 if Ada_Version
>= Ada_2012
16227 and then Ekind
(Prev
) = E_Incomplete_Type
16228 and then Present
(Full_View
(Prev
))
16229 and then Is_Private_Type
(Full_View
(Prev
))
16231 Prev
:= Full_View
(Prev
);
16232 Prev_Par
:= Parent
(Prev
);
16235 if Nkind
(N
) = N_Full_Type_Declaration
16237 (Type_Definition
(N
), N_Record_Definition
,
16238 N_Derived_Type_Definition
)
16239 and then Interface_Present
(Type_Definition
(N
))
16242 ("completion of private type cannot be an interface", N
);
16245 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
16246 if Etype
(Prev
) /= Prev
then
16248 -- Prev is a private subtype or a derived type, and needs
16251 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
16254 elsif Ekind
(Prev
) = E_Private_Type
16255 and then Nkind_In
(N
, N_Task_Type_Declaration
,
16256 N_Protected_Type_Declaration
)
16259 ("completion of nonlimited type cannot be limited", N
);
16261 elsif Ekind
(Prev
) = E_Record_Type_With_Private
16262 and then Nkind_In
(N
, N_Task_Type_Declaration
,
16263 N_Protected_Type_Declaration
)
16265 if not Is_Limited_Record
(Prev
) then
16267 ("completion of nonlimited type cannot be limited", N
);
16269 elsif No
(Interface_List
(N
)) then
16271 ("completion of tagged private type must be tagged",
16276 -- Ada 2005 (AI-251): Private extension declaration of a task
16277 -- type or a protected type. This case arises when covering
16278 -- interface types.
16280 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
16281 N_Protected_Type_Declaration
)
16285 elsif Nkind
(N
) /= N_Full_Type_Declaration
16286 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
16289 ("full view of private extension must be an extension", N
);
16291 elsif not (Abstract_Present
(Parent
(Prev
)))
16292 and then Abstract_Present
(Type_Definition
(N
))
16295 ("full view of non-abstract extension cannot be abstract", N
);
16298 if not In_Private_Part
(Current_Scope
) then
16300 ("declaration of full view must appear in private part", N
);
16303 if Ada_Version
>= Ada_2012
then
16304 Check_Duplicate_Aspects
;
16307 Copy_And_Swap
(Prev
, Id
);
16308 Set_Has_Private_Declaration
(Prev
);
16309 Set_Has_Private_Declaration
(Id
);
16311 -- Preserve aspect and iterator flags that may have been set on
16312 -- the partial view.
16314 Set_Has_Delayed_Aspects
(Prev
, Has_Delayed_Aspects
(Id
));
16315 Set_Has_Implicit_Dereference
(Prev
, Has_Implicit_Dereference
(Id
));
16317 -- If no error, propagate freeze_node from private to full view.
16318 -- It may have been generated for an early operational item.
16320 if Present
(Freeze_Node
(Id
))
16321 and then Serious_Errors_Detected
= 0
16322 and then No
(Full_View
(Id
))
16324 Set_Freeze_Node
(Prev
, Freeze_Node
(Id
));
16325 Set_Freeze_Node
(Id
, Empty
);
16326 Set_First_Rep_Item
(Prev
, First_Rep_Item
(Id
));
16329 Set_Full_View
(Id
, Prev
);
16333 -- Verify that full declaration conforms to partial one
16335 if Is_Incomplete_Or_Private_Type
(Prev
)
16336 and then Present
(Discriminant_Specifications
(Prev_Par
))
16338 if Present
(Discriminant_Specifications
(N
)) then
16339 if Ekind
(Prev
) = E_Incomplete_Type
then
16340 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
16342 Check_Discriminant_Conformance
(N
, Prev
, Id
);
16347 ("missing discriminants in full type declaration", N
);
16349 -- To avoid cascaded errors on subsequent use, share the
16350 -- discriminants of the partial view.
16352 Set_Discriminant_Specifications
(N
,
16353 Discriminant_Specifications
(Prev_Par
));
16357 -- A prior untagged partial view can have an associated class-wide
16358 -- type due to use of the class attribute, and in this case the full
16359 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16360 -- of incomplete tagged declarations, but we check for it.
16363 and then (Is_Tagged_Type
(Prev
)
16364 or else Present
(Class_Wide_Type
(Prev
)))
16366 -- Ada 2012 (AI05-0162): A private type may be the completion of
16367 -- an incomplete type.
16369 if Ada_Version
>= Ada_2012
16370 and then Is_Incomplete_Type
(Prev
)
16371 and then Nkind_In
(N
, N_Private_Type_Declaration
,
16372 N_Private_Extension_Declaration
)
16374 -- No need to check private extensions since they are tagged
16376 if Nkind
(N
) = N_Private_Type_Declaration
16377 and then not Tagged_Present
(N
)
16382 -- The full declaration is either a tagged type (including
16383 -- a synchronized type that implements interfaces) or a
16384 -- type extension, otherwise this is an error.
16386 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
16387 N_Protected_Type_Declaration
)
16389 if No
(Interface_List
(N
))
16390 and then not Error_Posted
(N
)
16395 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
16397 -- Indicate that the previous declaration (tagged incomplete
16398 -- or private declaration) requires the same on the full one.
16400 if not Tagged_Present
(Type_Definition
(N
)) then
16402 Set_Is_Tagged_Type
(Id
);
16405 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
16406 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
16408 ("full declaration of } must be a record extension",
16411 -- Set some attributes to produce a usable full view
16413 Set_Is_Tagged_Type
(Id
);
16422 and then Nkind
(Parent
(Prev
)) = N_Incomplete_Type_Declaration
16423 and then Present
(Premature_Use
(Parent
(Prev
)))
16425 Error_Msg_Sloc
:= Sloc
(N
);
16427 ("\full declaration #", Premature_Use
(Parent
(Prev
)));
16432 end Find_Type_Name
;
16434 -------------------------
16435 -- Find_Type_Of_Object --
16436 -------------------------
16438 function Find_Type_Of_Object
16439 (Obj_Def
: Node_Id
;
16440 Related_Nod
: Node_Id
) return Entity_Id
16442 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
16443 P
: Node_Id
:= Parent
(Obj_Def
);
16448 -- If the parent is a component_definition node we climb to the
16449 -- component_declaration node
16451 if Nkind
(P
) = N_Component_Definition
then
16455 -- Case of an anonymous array subtype
16457 if Nkind_In
(Def_Kind
, N_Constrained_Array_Definition
,
16458 N_Unconstrained_Array_Definition
)
16461 Array_Type_Declaration
(T
, Obj_Def
);
16463 -- Create an explicit subtype whenever possible
16465 elsif Nkind
(P
) /= N_Component_Declaration
16466 and then Def_Kind
= N_Subtype_Indication
16468 -- Base name of subtype on object name, which will be unique in
16469 -- the current scope.
16471 -- If this is a duplicate declaration, return base type, to avoid
16472 -- generating duplicate anonymous types.
16474 if Error_Posted
(P
) then
16475 Analyze
(Subtype_Mark
(Obj_Def
));
16476 return Entity
(Subtype_Mark
(Obj_Def
));
16481 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
16483 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
16485 Insert_Action
(Obj_Def
,
16486 Make_Subtype_Declaration
(Sloc
(P
),
16487 Defining_Identifier
=> T
,
16488 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
16490 -- This subtype may need freezing, and this will not be done
16491 -- automatically if the object declaration is not in declarative
16492 -- part. Since this is an object declaration, the type cannot always
16493 -- be frozen here. Deferred constants do not freeze their type
16494 -- (which often enough will be private).
16496 if Nkind
(P
) = N_Object_Declaration
16497 and then Constant_Present
(P
)
16498 and then No
(Expression
(P
))
16502 -- Here we freeze the base type of object type to catch premature use
16503 -- of discriminated private type without a full view.
16506 Insert_Actions
(Obj_Def
, Freeze_Entity
(Base_Type
(T
), P
));
16509 -- Ada 2005 AI-406: the object definition in an object declaration
16510 -- can be an access definition.
16512 elsif Def_Kind
= N_Access_Definition
then
16513 T
:= Access_Definition
(Related_Nod
, Obj_Def
);
16515 Set_Is_Local_Anonymous_Access
16517 V
=> (Ada_Version
< Ada_2012
)
16518 or else (Nkind
(P
) /= N_Object_Declaration
)
16519 or else Is_Library_Level_Entity
(Defining_Identifier
(P
)));
16521 -- Otherwise, the object definition is just a subtype_mark
16524 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
16526 -- If expansion is disabled an object definition that is an aggregate
16527 -- will not get expanded and may lead to scoping problems in the back
16528 -- end, if the object is referenced in an inner scope. In that case
16529 -- create an itype reference for the object definition now. This
16530 -- may be redundant in some cases, but harmless.
16533 and then Nkind
(Related_Nod
) = N_Object_Declaration
16536 Build_Itype_Reference
(T
, Related_Nod
);
16541 end Find_Type_Of_Object
;
16543 --------------------------------
16544 -- Find_Type_Of_Subtype_Indic --
16545 --------------------------------
16547 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
16551 -- Case of subtype mark with a constraint
16553 if Nkind
(S
) = N_Subtype_Indication
then
16554 Find_Type
(Subtype_Mark
(S
));
16555 Typ
:= Entity
(Subtype_Mark
(S
));
16558 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
16561 ("incorrect constraint for this kind of type", Constraint
(S
));
16562 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
16565 -- Otherwise we have a subtype mark without a constraint
16567 elsif Error_Posted
(S
) then
16568 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
16576 -- Check No_Wide_Characters restriction
16578 Check_Wide_Character_Restriction
(Typ
, S
);
16581 end Find_Type_Of_Subtype_Indic
;
16583 -------------------------------------
16584 -- Floating_Point_Type_Declaration --
16585 -------------------------------------
16587 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16588 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
16589 Max_Digs_Val
: constant Uint
:= Digits_Value
(Standard_Long_Long_Float
);
16591 Base_Typ
: Entity_Id
;
16592 Implicit_Base
: Entity_Id
;
16595 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
16596 -- Find if given digits value, and possibly a specified range, allows
16597 -- derivation from specified type
16599 function Find_Base_Type
return Entity_Id
;
16600 -- Find a predefined base type that Def can derive from, or generate
16601 -- an error and substitute Long_Long_Float if none exists.
16603 ---------------------
16604 -- Can_Derive_From --
16605 ---------------------
16607 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
16608 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
16611 -- Check specified "digits" constraint
16613 if Digs_Val
> Digits_Value
(E
) then
16617 -- Check for matching range, if specified
16619 if Present
(Spec
) then
16620 if Expr_Value_R
(Type_Low_Bound
(E
)) >
16621 Expr_Value_R
(Low_Bound
(Spec
))
16626 if Expr_Value_R
(Type_High_Bound
(E
)) <
16627 Expr_Value_R
(High_Bound
(Spec
))
16634 end Can_Derive_From
;
16636 --------------------
16637 -- Find_Base_Type --
16638 --------------------
16640 function Find_Base_Type
return Entity_Id
is
16641 Choice
: Elmt_Id
:= First_Elmt
(Predefined_Float_Types
);
16644 -- Iterate over the predefined types in order, returning the first
16645 -- one that Def can derive from.
16647 while Present
(Choice
) loop
16648 if Can_Derive_From
(Node
(Choice
)) then
16649 return Node
(Choice
);
16652 Next_Elmt
(Choice
);
16655 -- If we can't derive from any existing type, use Long_Long_Float
16656 -- and give appropriate message explaining the problem.
16658 if Digs_Val
> Max_Digs_Val
then
16659 -- It might be the case that there is a type with the requested
16660 -- range, just not the combination of digits and range.
16663 ("no predefined type has requested range and precision",
16664 Real_Range_Specification
(Def
));
16668 ("range too large for any predefined type",
16669 Real_Range_Specification
(Def
));
16672 return Standard_Long_Long_Float
;
16673 end Find_Base_Type
;
16675 -- Start of processing for Floating_Point_Type_Declaration
16678 Check_Restriction
(No_Floating_Point
, Def
);
16680 -- Create an implicit base type
16683 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
16685 -- Analyze and verify digits value
16687 Analyze_And_Resolve
(Digs
, Any_Integer
);
16688 Check_Digits_Expression
(Digs
);
16689 Digs_Val
:= Expr_Value
(Digs
);
16691 -- Process possible range spec and find correct type to derive from
16693 Process_Real_Range_Specification
(Def
);
16695 -- Check that requested number of digits is not too high.
16697 if Digs_Val
> Max_Digs_Val
then
16698 -- The check for Max_Base_Digits may be somewhat expensive, as it
16699 -- requires reading System, so only do it when necessary.
16702 Max_Base_Digits
: constant Uint
:=
16705 (Parent
(RTE
(RE_Max_Base_Digits
))));
16708 if Digs_Val
> Max_Base_Digits
then
16709 Error_Msg_Uint_1
:= Max_Base_Digits
;
16710 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
16712 elsif No
(Real_Range_Specification
(Def
)) then
16713 Error_Msg_Uint_1
:= Max_Digs_Val
;
16714 Error_Msg_N
("types with more than ^ digits need range spec "
16715 & "(RM 3.5.7(6))", Digs
);
16720 -- Find a suitable type to derive from or complain and use a substitute
16722 Base_Typ
:= Find_Base_Type
;
16724 -- If there are bounds given in the declaration use them as the bounds
16725 -- of the type, otherwise use the bounds of the predefined base type
16726 -- that was chosen based on the Digits value.
16728 if Present
(Real_Range_Specification
(Def
)) then
16729 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
16730 Set_Is_Constrained
(T
);
16732 -- The bounds of this range must be converted to machine numbers
16733 -- in accordance with RM 4.9(38).
16735 Bound
:= Type_Low_Bound
(T
);
16737 if Nkind
(Bound
) = N_Real_Literal
then
16739 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
16740 Set_Is_Machine_Number
(Bound
);
16743 Bound
:= Type_High_Bound
(T
);
16745 if Nkind
(Bound
) = N_Real_Literal
then
16747 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
16748 Set_Is_Machine_Number
(Bound
);
16752 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
16755 -- Complete definition of implicit base and declared first subtype. The
16756 -- inheritance of the rep item chain ensures that SPARK-related pragmas
16757 -- are not clobbered when the floating point type acts as a full view of
16760 Set_Etype
(Implicit_Base
, Base_Typ
);
16761 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
16762 Set_Size_Info
(Implicit_Base
, Base_Typ
);
16763 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
16764 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
16765 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
16766 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Base_Typ
));
16768 Set_Ekind
(T
, E_Floating_Point_Subtype
);
16769 Set_Etype
(T
, Implicit_Base
);
16770 Set_Size_Info
(T
, Implicit_Base
);
16771 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
16772 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
16773 Set_Digits_Value
(T
, Digs_Val
);
16774 end Floating_Point_Type_Declaration
;
16776 ----------------------------
16777 -- Get_Discriminant_Value --
16778 ----------------------------
16780 -- This is the situation:
16782 -- There is a non-derived type
16784 -- type T0 (Dx, Dy, Dz...)
16786 -- There are zero or more levels of derivation, with each derivation
16787 -- either purely inheriting the discriminants, or defining its own.
16789 -- type Ti is new Ti-1
16791 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16793 -- subtype Ti is ...
16795 -- The subtype issue is avoided by the use of Original_Record_Component,
16796 -- and the fact that derived subtypes also derive the constraints.
16798 -- This chain leads back from
16800 -- Typ_For_Constraint
16802 -- Typ_For_Constraint has discriminants, and the value for each
16803 -- discriminant is given by its corresponding Elmt of Constraints.
16805 -- Discriminant is some discriminant in this hierarchy
16807 -- We need to return its value
16809 -- We do this by recursively searching each level, and looking for
16810 -- Discriminant. Once we get to the bottom, we start backing up
16811 -- returning the value for it which may in turn be a discriminant
16812 -- further up, so on the backup we continue the substitution.
16814 function Get_Discriminant_Value
16815 (Discriminant
: Entity_Id
;
16816 Typ_For_Constraint
: Entity_Id
;
16817 Constraint
: Elist_Id
) return Node_Id
16819 function Root_Corresponding_Discriminant
16820 (Discr
: Entity_Id
) return Entity_Id
;
16821 -- Given a discriminant, traverse the chain of inherited discriminants
16822 -- and return the topmost discriminant.
16824 function Search_Derivation_Levels
16826 Discrim_Values
: Elist_Id
;
16827 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
;
16828 -- This is the routine that performs the recursive search of levels
16829 -- as described above.
16831 -------------------------------------
16832 -- Root_Corresponding_Discriminant --
16833 -------------------------------------
16835 function Root_Corresponding_Discriminant
16836 (Discr
: Entity_Id
) return Entity_Id
16842 while Present
(Corresponding_Discriminant
(D
)) loop
16843 D
:= Corresponding_Discriminant
(D
);
16847 end Root_Corresponding_Discriminant
;
16849 ------------------------------
16850 -- Search_Derivation_Levels --
16851 ------------------------------
16853 function Search_Derivation_Levels
16855 Discrim_Values
: Elist_Id
;
16856 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
16860 Result
: Node_Or_Entity_Id
;
16861 Result_Entity
: Node_Id
;
16864 -- If inappropriate type, return Error, this happens only in
16865 -- cascaded error situations, and we want to avoid a blow up.
16867 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
16871 -- Look deeper if possible. Use Stored_Constraints only for
16872 -- untagged types. For tagged types use the given constraint.
16873 -- This asymmetry needs explanation???
16875 if not Stored_Discrim_Values
16876 and then Present
(Stored_Constraint
(Ti
))
16877 and then not Is_Tagged_Type
(Ti
)
16880 Search_Derivation_Levels
(Ti
, Stored_Constraint
(Ti
), True);
16883 Td
: constant Entity_Id
:= Etype
(Ti
);
16887 Result
:= Discriminant
;
16890 if Present
(Stored_Constraint
(Ti
)) then
16892 Search_Derivation_Levels
16893 (Td
, Stored_Constraint
(Ti
), True);
16896 Search_Derivation_Levels
16897 (Td
, Discrim_Values
, Stored_Discrim_Values
);
16903 -- Extra underlying places to search, if not found above. For
16904 -- concurrent types, the relevant discriminant appears in the
16905 -- corresponding record. For a type derived from a private type
16906 -- without discriminant, the full view inherits the discriminants
16907 -- of the full view of the parent.
16909 if Result
= Discriminant
then
16910 if Is_Concurrent_Type
(Ti
)
16911 and then Present
(Corresponding_Record_Type
(Ti
))
16914 Search_Derivation_Levels
(
16915 Corresponding_Record_Type
(Ti
),
16917 Stored_Discrim_Values
);
16919 elsif Is_Private_Type
(Ti
)
16920 and then not Has_Discriminants
(Ti
)
16921 and then Present
(Full_View
(Ti
))
16922 and then Etype
(Full_View
(Ti
)) /= Ti
16925 Search_Derivation_Levels
(
16928 Stored_Discrim_Values
);
16932 -- If Result is not a (reference to a) discriminant, return it,
16933 -- otherwise set Result_Entity to the discriminant.
16935 if Nkind
(Result
) = N_Defining_Identifier
then
16936 pragma Assert
(Result
= Discriminant
);
16937 Result_Entity
:= Result
;
16940 if not Denotes_Discriminant
(Result
) then
16944 Result_Entity
:= Entity
(Result
);
16947 -- See if this level of derivation actually has discriminants
16948 -- because tagged derivations can add them, hence the lower
16949 -- levels need not have any.
16951 if not Has_Discriminants
(Ti
) then
16955 -- Scan Ti's discriminants for Result_Entity,
16956 -- and return its corresponding value, if any.
16958 Result_Entity
:= Original_Record_Component
(Result_Entity
);
16960 Assoc
:= First_Elmt
(Discrim_Values
);
16962 if Stored_Discrim_Values
then
16963 Disc
:= First_Stored_Discriminant
(Ti
);
16965 Disc
:= First_Discriminant
(Ti
);
16968 while Present
(Disc
) loop
16969 pragma Assert
(Present
(Assoc
));
16971 if Original_Record_Component
(Disc
) = Result_Entity
then
16972 return Node
(Assoc
);
16977 if Stored_Discrim_Values
then
16978 Next_Stored_Discriminant
(Disc
);
16980 Next_Discriminant
(Disc
);
16984 -- Could not find it
16987 end Search_Derivation_Levels
;
16991 Result
: Node_Or_Entity_Id
;
16993 -- Start of processing for Get_Discriminant_Value
16996 -- ??? This routine is a gigantic mess and will be deleted. For the
16997 -- time being just test for the trivial case before calling recurse.
16999 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
17005 D
:= First_Discriminant
(Typ_For_Constraint
);
17006 E
:= First_Elmt
(Constraint
);
17007 while Present
(D
) loop
17008 if Chars
(D
) = Chars
(Discriminant
) then
17012 Next_Discriminant
(D
);
17018 Result
:= Search_Derivation_Levels
17019 (Typ_For_Constraint
, Constraint
, False);
17021 -- ??? hack to disappear when this routine is gone
17023 if Nkind
(Result
) = N_Defining_Identifier
then
17029 D
:= First_Discriminant
(Typ_For_Constraint
);
17030 E
:= First_Elmt
(Constraint
);
17031 while Present
(D
) loop
17032 if Root_Corresponding_Discriminant
(D
) = Discriminant
then
17036 Next_Discriminant
(D
);
17042 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
17044 end Get_Discriminant_Value
;
17046 --------------------------
17047 -- Has_Range_Constraint --
17048 --------------------------
17050 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
17051 C
: constant Node_Id
:= Constraint
(N
);
17054 if Nkind
(C
) = N_Range_Constraint
then
17057 elsif Nkind
(C
) = N_Digits_Constraint
then
17059 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
17060 or else Present
(Range_Constraint
(C
));
17062 elsif Nkind
(C
) = N_Delta_Constraint
then
17063 return Present
(Range_Constraint
(C
));
17068 end Has_Range_Constraint
;
17070 ------------------------
17071 -- Inherit_Components --
17072 ------------------------
17074 function Inherit_Components
17076 Parent_Base
: Entity_Id
;
17077 Derived_Base
: Entity_Id
;
17078 Is_Tagged
: Boolean;
17079 Inherit_Discr
: Boolean;
17080 Discs
: Elist_Id
) return Elist_Id
17082 Assoc_List
: constant Elist_Id
:= New_Elmt_List
;
17084 procedure Inherit_Component
17085 (Old_C
: Entity_Id
;
17086 Plain_Discrim
: Boolean := False;
17087 Stored_Discrim
: Boolean := False);
17088 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17089 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17090 -- True, Old_C is a stored discriminant. If they are both false then
17091 -- Old_C is a regular component.
17093 -----------------------
17094 -- Inherit_Component --
17095 -----------------------
17097 procedure Inherit_Component
17098 (Old_C
: Entity_Id
;
17099 Plain_Discrim
: Boolean := False;
17100 Stored_Discrim
: Boolean := False)
17102 procedure Set_Anonymous_Type
(Id
: Entity_Id
);
17103 -- Id denotes the entity of an access discriminant or anonymous
17104 -- access component. Set the type of Id to either the same type of
17105 -- Old_C or create a new one depending on whether the parent and
17106 -- the child types are in the same scope.
17108 ------------------------
17109 -- Set_Anonymous_Type --
17110 ------------------------
17112 procedure Set_Anonymous_Type
(Id
: Entity_Id
) is
17113 Old_Typ
: constant Entity_Id
:= Etype
(Old_C
);
17116 if Scope
(Parent_Base
) = Scope
(Derived_Base
) then
17117 Set_Etype
(Id
, Old_Typ
);
17119 -- The parent and the derived type are in two different scopes.
17120 -- Reuse the type of the original discriminant / component by
17121 -- copying it in order to preserve all attributes.
17125 Typ
: constant Entity_Id
:= New_Copy
(Old_Typ
);
17128 Set_Etype
(Id
, Typ
);
17130 -- Since we do not generate component declarations for
17131 -- inherited components, associate the itype with the
17134 Set_Associated_Node_For_Itype
(Typ
, Parent
(Derived_Base
));
17135 Set_Scope
(Typ
, Derived_Base
);
17138 end Set_Anonymous_Type
;
17140 -- Local variables and constants
17142 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
17144 Corr_Discrim
: Entity_Id
;
17145 Discrim
: Entity_Id
;
17147 -- Start of processing for Inherit_Component
17150 pragma Assert
(not Is_Tagged
or not Stored_Discrim
);
17152 Set_Parent
(New_C
, Parent
(Old_C
));
17154 -- Regular discriminants and components must be inserted in the scope
17155 -- of the Derived_Base. Do it here.
17157 if not Stored_Discrim
then
17158 Enter_Name
(New_C
);
17161 -- For tagged types the Original_Record_Component must point to
17162 -- whatever this field was pointing to in the parent type. This has
17163 -- already been achieved by the call to New_Copy above.
17165 if not Is_Tagged
then
17166 Set_Original_Record_Component
(New_C
, New_C
);
17169 -- Set the proper type of an access discriminant
17171 if Ekind
(New_C
) = E_Discriminant
17172 and then Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
17174 Set_Anonymous_Type
(New_C
);
17177 -- If we have inherited a component then see if its Etype contains
17178 -- references to Parent_Base discriminants. In this case, replace
17179 -- these references with the constraints given in Discs. We do not
17180 -- do this for the partial view of private types because this is
17181 -- not needed (only the components of the full view will be used
17182 -- for code generation) and cause problem. We also avoid this
17183 -- transformation in some error situations.
17185 if Ekind
(New_C
) = E_Component
then
17187 -- Set the proper type of an anonymous access component
17189 if Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
then
17190 Set_Anonymous_Type
(New_C
);
17192 elsif (Is_Private_Type
(Derived_Base
)
17193 and then not Is_Generic_Type
(Derived_Base
))
17194 or else (Is_Empty_Elmt_List
(Discs
)
17195 and then not Expander_Active
)
17197 Set_Etype
(New_C
, Etype
(Old_C
));
17200 -- The current component introduces a circularity of the
17203 -- limited with Pack_2;
17204 -- package Pack_1 is
17205 -- type T_1 is tagged record
17206 -- Comp : access Pack_2.T_2;
17212 -- package Pack_2 is
17213 -- type T_2 is new Pack_1.T_1 with ...;
17218 Constrain_Component_Type
17219 (Old_C
, Derived_Base
, N
, Parent_Base
, Discs
));
17223 -- In derived tagged types it is illegal to reference a non
17224 -- discriminant component in the parent type. To catch this, mark
17225 -- these components with an Ekind of E_Void. This will be reset in
17226 -- Record_Type_Definition after processing the record extension of
17227 -- the derived type.
17229 -- If the declaration is a private extension, there is no further
17230 -- record extension to process, and the components retain their
17231 -- current kind, because they are visible at this point.
17233 if Is_Tagged
and then Ekind
(New_C
) = E_Component
17234 and then Nkind
(N
) /= N_Private_Extension_Declaration
17236 Set_Ekind
(New_C
, E_Void
);
17239 if Plain_Discrim
then
17240 Set_Corresponding_Discriminant
(New_C
, Old_C
);
17241 Build_Discriminal
(New_C
);
17243 -- If we are explicitly inheriting a stored discriminant it will be
17244 -- completely hidden.
17246 elsif Stored_Discrim
then
17247 Set_Corresponding_Discriminant
(New_C
, Empty
);
17248 Set_Discriminal
(New_C
, Empty
);
17249 Set_Is_Completely_Hidden
(New_C
);
17251 -- Set the Original_Record_Component of each discriminant in the
17252 -- derived base to point to the corresponding stored that we just
17255 Discrim
:= First_Discriminant
(Derived_Base
);
17256 while Present
(Discrim
) loop
17257 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
17259 -- Corr_Discrim could be missing in an error situation
17261 if Present
(Corr_Discrim
)
17262 and then Original_Record_Component
(Corr_Discrim
) = Old_C
17264 Set_Original_Record_Component
(Discrim
, New_C
);
17267 Next_Discriminant
(Discrim
);
17270 Append_Entity
(New_C
, Derived_Base
);
17273 if not Is_Tagged
then
17274 Append_Elmt
(Old_C
, Assoc_List
);
17275 Append_Elmt
(New_C
, Assoc_List
);
17277 end Inherit_Component
;
17279 -- Variables local to Inherit_Component
17281 Loc
: constant Source_Ptr
:= Sloc
(N
);
17283 Parent_Discrim
: Entity_Id
;
17284 Stored_Discrim
: Entity_Id
;
17286 Component
: Entity_Id
;
17288 -- Start of processing for Inherit_Components
17291 if not Is_Tagged
then
17292 Append_Elmt
(Parent_Base
, Assoc_List
);
17293 Append_Elmt
(Derived_Base
, Assoc_List
);
17296 -- Inherit parent discriminants if needed
17298 if Inherit_Discr
then
17299 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
17300 while Present
(Parent_Discrim
) loop
17301 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
17302 Next_Discriminant
(Parent_Discrim
);
17306 -- Create explicit stored discrims for untagged types when necessary
17308 if not Has_Unknown_Discriminants
(Derived_Base
)
17309 and then Has_Discriminants
(Parent_Base
)
17310 and then not Is_Tagged
17313 or else First_Discriminant
(Parent_Base
) /=
17314 First_Stored_Discriminant
(Parent_Base
))
17316 Stored_Discrim
:= First_Stored_Discriminant
(Parent_Base
);
17317 while Present
(Stored_Discrim
) loop
17318 Inherit_Component
(Stored_Discrim
, Stored_Discrim
=> True);
17319 Next_Stored_Discriminant
(Stored_Discrim
);
17323 -- See if we can apply the second transformation for derived types, as
17324 -- explained in point 6. in the comments above Build_Derived_Record_Type
17325 -- This is achieved by appending Derived_Base discriminants into Discs,
17326 -- which has the side effect of returning a non empty Discs list to the
17327 -- caller of Inherit_Components, which is what we want. This must be
17328 -- done for private derived types if there are explicit stored
17329 -- discriminants, to ensure that we can retrieve the values of the
17330 -- constraints provided in the ancestors.
17333 and then Is_Empty_Elmt_List
(Discs
)
17334 and then Present
(First_Discriminant
(Derived_Base
))
17336 (not Is_Private_Type
(Derived_Base
)
17337 or else Is_Completely_Hidden
17338 (First_Stored_Discriminant
(Derived_Base
))
17339 or else Is_Generic_Type
(Derived_Base
))
17341 D
:= First_Discriminant
(Derived_Base
);
17342 while Present
(D
) loop
17343 Append_Elmt
(New_Occurrence_Of
(D
, Loc
), Discs
);
17344 Next_Discriminant
(D
);
17348 -- Finally, inherit non-discriminant components unless they are not
17349 -- visible because defined or inherited from the full view of the
17350 -- parent. Don't inherit the _parent field of the parent type.
17352 Component
:= First_Entity
(Parent_Base
);
17353 while Present
(Component
) loop
17355 -- Ada 2005 (AI-251): Do not inherit components associated with
17356 -- secondary tags of the parent.
17358 if Ekind
(Component
) = E_Component
17359 and then Present
(Related_Type
(Component
))
17363 elsif Ekind
(Component
) /= E_Component
17364 or else Chars
(Component
) = Name_uParent
17368 -- If the derived type is within the parent type's declarative
17369 -- region, then the components can still be inherited even though
17370 -- they aren't visible at this point. This can occur for cases
17371 -- such as within public child units where the components must
17372 -- become visible upon entering the child unit's private part.
17374 elsif not Is_Visible_Component
(Component
)
17375 and then not In_Open_Scopes
(Scope
(Parent_Base
))
17379 elsif Ekind_In
(Derived_Base
, E_Private_Type
,
17380 E_Limited_Private_Type
)
17385 Inherit_Component
(Component
);
17388 Next_Entity
(Component
);
17391 -- For tagged derived types, inherited discriminants cannot be used in
17392 -- component declarations of the record extension part. To achieve this
17393 -- we mark the inherited discriminants as not visible.
17395 if Is_Tagged
and then Inherit_Discr
then
17396 D
:= First_Discriminant
(Derived_Base
);
17397 while Present
(D
) loop
17398 Set_Is_Immediately_Visible
(D
, False);
17399 Next_Discriminant
(D
);
17404 end Inherit_Components
;
17406 -----------------------------
17407 -- Inherit_Predicate_Flags --
17408 -----------------------------
17410 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
) is
17412 Set_Has_Predicates
(Subt
, Has_Predicates
(Par
));
17413 Set_Has_Static_Predicate_Aspect
17414 (Subt
, Has_Static_Predicate_Aspect
(Par
));
17415 Set_Has_Dynamic_Predicate_Aspect
17416 (Subt
, Has_Dynamic_Predicate_Aspect
(Par
));
17417 end Inherit_Predicate_Flags
;
17419 ----------------------
17420 -- Is_EVF_Procedure --
17421 ----------------------
17423 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean is
17424 Formal
: Entity_Id
;
17427 -- Examine the formals of an Extensions_Visible False procedure looking
17428 -- for a controlling OUT parameter.
17430 if Ekind
(Subp
) = E_Procedure
17431 and then Extensions_Visible_Status
(Subp
) = Extensions_Visible_False
17433 Formal
:= First_Formal
(Subp
);
17434 while Present
(Formal
) loop
17435 if Ekind
(Formal
) = E_Out_Parameter
17436 and then Is_Controlling_Formal
(Formal
)
17441 Next_Formal
(Formal
);
17446 end Is_EVF_Procedure
;
17448 -----------------------
17449 -- Is_Null_Extension --
17450 -----------------------
17452 function Is_Null_Extension
(T
: Entity_Id
) return Boolean is
17453 Type_Decl
: constant Node_Id
:= Parent
(Base_Type
(T
));
17454 Comp_List
: Node_Id
;
17458 if Nkind
(Type_Decl
) /= N_Full_Type_Declaration
17459 or else not Is_Tagged_Type
(T
)
17460 or else Nkind
(Type_Definition
(Type_Decl
)) /=
17461 N_Derived_Type_Definition
17462 or else No
(Record_Extension_Part
(Type_Definition
(Type_Decl
)))
17468 Component_List
(Record_Extension_Part
(Type_Definition
(Type_Decl
)));
17470 if Present
(Discriminant_Specifications
(Type_Decl
)) then
17473 elsif Present
(Comp_List
)
17474 and then Is_Non_Empty_List
(Component_Items
(Comp_List
))
17476 Comp
:= First
(Component_Items
(Comp_List
));
17478 -- Only user-defined components are relevant. The component list
17479 -- may also contain a parent component and internal components
17480 -- corresponding to secondary tags, but these do not determine
17481 -- whether this is a null extension.
17483 while Present
(Comp
) loop
17484 if Comes_From_Source
(Comp
) then
17495 end Is_Null_Extension
;
17497 ------------------------------
17498 -- Is_Valid_Constraint_Kind --
17499 ------------------------------
17501 function Is_Valid_Constraint_Kind
17502 (T_Kind
: Type_Kind
;
17503 Constraint_Kind
: Node_Kind
) return Boolean
17507 when Enumeration_Kind |
17509 return Constraint_Kind
= N_Range_Constraint
;
17511 when Decimal_Fixed_Point_Kind
=>
17512 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
17513 N_Range_Constraint
);
17515 when Ordinary_Fixed_Point_Kind
=>
17516 return Nkind_In
(Constraint_Kind
, N_Delta_Constraint
,
17517 N_Range_Constraint
);
17520 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
17521 N_Range_Constraint
);
17528 E_Incomplete_Type |
17531 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
17534 return True; -- Error will be detected later
17536 end Is_Valid_Constraint_Kind
;
17538 --------------------------
17539 -- Is_Visible_Component --
17540 --------------------------
17542 function Is_Visible_Component
17544 N
: Node_Id
:= Empty
) return Boolean
17546 Original_Comp
: Entity_Id
:= Empty
;
17547 Original_Scope
: Entity_Id
;
17548 Type_Scope
: Entity_Id
;
17550 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean;
17551 -- Check whether parent type of inherited component is declared locally,
17552 -- possibly within a nested package or instance. The current scope is
17553 -- the derived record itself.
17555 -------------------
17556 -- Is_Local_Type --
17557 -------------------
17559 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean is
17563 Scop
:= Scope
(Typ
);
17564 while Present
(Scop
)
17565 and then Scop
/= Standard_Standard
17567 if Scop
= Scope
(Current_Scope
) then
17571 Scop
:= Scope
(Scop
);
17577 -- Start of processing for Is_Visible_Component
17580 if Ekind_In
(C
, E_Component
, E_Discriminant
) then
17581 Original_Comp
:= Original_Record_Component
(C
);
17584 if No
(Original_Comp
) then
17586 -- Premature usage, or previous error
17591 Original_Scope
:= Scope
(Original_Comp
);
17592 Type_Scope
:= Scope
(Base_Type
(Scope
(C
)));
17595 -- This test only concerns tagged types
17597 if not Is_Tagged_Type
(Original_Scope
) then
17600 -- If it is _Parent or _Tag, there is no visibility issue
17602 elsif not Comes_From_Source
(Original_Comp
) then
17605 -- Discriminants are visible unless the (private) type has unknown
17606 -- discriminants. If the discriminant reference is inserted for a
17607 -- discriminant check on a full view it is also visible.
17609 elsif Ekind
(Original_Comp
) = E_Discriminant
17611 (not Has_Unknown_Discriminants
(Original_Scope
)
17612 or else (Present
(N
)
17613 and then Nkind
(N
) = N_Selected_Component
17614 and then Nkind
(Prefix
(N
)) = N_Type_Conversion
17615 and then not Comes_From_Source
(Prefix
(N
))))
17619 -- In the body of an instantiation, no need to check for the visibility
17622 elsif In_Instance_Body
then
17625 -- If the component has been declared in an ancestor which is currently
17626 -- a private type, then it is not visible. The same applies if the
17627 -- component's containing type is not in an open scope and the original
17628 -- component's enclosing type is a visible full view of a private type
17629 -- (which can occur in cases where an attempt is being made to reference
17630 -- a component in a sibling package that is inherited from a visible
17631 -- component of a type in an ancestor package; the component in the
17632 -- sibling package should not be visible even though the component it
17633 -- inherited from is visible). This does not apply however in the case
17634 -- where the scope of the type is a private child unit, or when the
17635 -- parent comes from a local package in which the ancestor is currently
17636 -- visible. The latter suppression of visibility is needed for cases
17637 -- that are tested in B730006.
17639 elsif Is_Private_Type
(Original_Scope
)
17641 (not Is_Private_Descendant
(Type_Scope
)
17642 and then not In_Open_Scopes
(Type_Scope
)
17643 and then Has_Private_Declaration
(Original_Scope
))
17645 -- If the type derives from an entity in a formal package, there
17646 -- are no additional visible components.
17648 if Nkind
(Original_Node
(Unit_Declaration_Node
(Type_Scope
))) =
17649 N_Formal_Package_Declaration
17653 -- if we are not in the private part of the current package, there
17654 -- are no additional visible components.
17656 elsif Ekind
(Scope
(Current_Scope
)) = E_Package
17657 and then not In_Private_Part
(Scope
(Current_Scope
))
17662 Is_Child_Unit
(Cunit_Entity
(Current_Sem_Unit
))
17663 and then In_Open_Scopes
(Scope
(Original_Scope
))
17664 and then Is_Local_Type
(Type_Scope
);
17667 -- There is another weird way in which a component may be invisible when
17668 -- the private and the full view are not derived from the same ancestor.
17669 -- Here is an example :
17671 -- type A1 is tagged record F1 : integer; end record;
17672 -- type A2 is new A1 with record F2 : integer; end record;
17673 -- type T is new A1 with private;
17675 -- type T is new A2 with null record;
17677 -- In this case, the full view of T inherits F1 and F2 but the private
17678 -- view inherits only F1
17682 Ancestor
: Entity_Id
:= Scope
(C
);
17686 if Ancestor
= Original_Scope
then
17688 elsif Ancestor
= Etype
(Ancestor
) then
17692 Ancestor
:= Etype
(Ancestor
);
17696 end Is_Visible_Component
;
17698 --------------------------
17699 -- Make_Class_Wide_Type --
17700 --------------------------
17702 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
17703 CW_Type
: Entity_Id
;
17705 Next_E
: Entity_Id
;
17708 if Present
(Class_Wide_Type
(T
)) then
17710 -- The class-wide type is a partially decorated entity created for a
17711 -- unanalyzed tagged type referenced through a limited with clause.
17712 -- When the tagged type is analyzed, its class-wide type needs to be
17713 -- redecorated. Note that we reuse the entity created by Decorate_
17714 -- Tagged_Type in order to preserve all links.
17716 if Materialize_Entity
(Class_Wide_Type
(T
)) then
17717 CW_Type
:= Class_Wide_Type
(T
);
17718 Set_Materialize_Entity
(CW_Type
, False);
17720 -- The class wide type can have been defined by the partial view, in
17721 -- which case everything is already done.
17727 -- Default case, we need to create a new class-wide type
17731 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
17734 -- Inherit root type characteristics
17736 CW_Name
:= Chars
(CW_Type
);
17737 Next_E
:= Next_Entity
(CW_Type
);
17738 Copy_Node
(T
, CW_Type
);
17739 Set_Comes_From_Source
(CW_Type
, False);
17740 Set_Chars
(CW_Type
, CW_Name
);
17741 Set_Parent
(CW_Type
, Parent
(T
));
17742 Set_Next_Entity
(CW_Type
, Next_E
);
17744 -- Ensure we have a new freeze node for the class-wide type. The partial
17745 -- view may have freeze action of its own, requiring a proper freeze
17746 -- node, and the same freeze node cannot be shared between the two
17749 Set_Has_Delayed_Freeze
(CW_Type
);
17750 Set_Freeze_Node
(CW_Type
, Empty
);
17752 -- Customize the class-wide type: It has no prim. op., it cannot be
17753 -- abstract and its Etype points back to the specific root type.
17755 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
17756 Set_Is_Tagged_Type
(CW_Type
, True);
17757 Set_Direct_Primitive_Operations
(CW_Type
, New_Elmt_List
);
17758 Set_Is_Abstract_Type
(CW_Type
, False);
17759 Set_Is_Constrained
(CW_Type
, False);
17760 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
17761 Set_Default_SSO
(CW_Type
);
17763 if Ekind
(T
) = E_Class_Wide_Subtype
then
17764 Set_Etype
(CW_Type
, Etype
(Base_Type
(T
)));
17766 Set_Etype
(CW_Type
, T
);
17769 Set_No_Tagged_Streams_Pragma
(CW_Type
, No_Tagged_Streams
);
17771 -- If this is the class_wide type of a constrained subtype, it does
17772 -- not have discriminants.
17774 Set_Has_Discriminants
(CW_Type
,
17775 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
17777 Set_Has_Unknown_Discriminants
(CW_Type
, True);
17778 Set_Class_Wide_Type
(T
, CW_Type
);
17779 Set_Equivalent_Type
(CW_Type
, Empty
);
17781 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17783 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
17784 end Make_Class_Wide_Type
;
17790 procedure Make_Index
17792 Related_Nod
: Node_Id
;
17793 Related_Id
: Entity_Id
:= Empty
;
17794 Suffix_Index
: Nat
:= 1;
17795 In_Iter_Schm
: Boolean := False)
17799 Def_Id
: Entity_Id
:= Empty
;
17800 Found
: Boolean := False;
17803 -- For a discrete range used in a constrained array definition and
17804 -- defined by a range, an implicit conversion to the predefined type
17805 -- INTEGER is assumed if each bound is either a numeric literal, a named
17806 -- number, or an attribute, and the type of both bounds (prior to the
17807 -- implicit conversion) is the type universal_integer. Otherwise, both
17808 -- bounds must be of the same discrete type, other than universal
17809 -- integer; this type must be determinable independently of the
17810 -- context, but using the fact that the type must be discrete and that
17811 -- both bounds must have the same type.
17813 -- Character literals also have a universal type in the absence of
17814 -- of additional context, and are resolved to Standard_Character.
17816 if Nkind
(N
) = N_Range
then
17818 -- The index is given by a range constraint. The bounds are known
17819 -- to be of a consistent type.
17821 if not Is_Overloaded
(N
) then
17824 -- For universal bounds, choose the specific predefined type
17826 if T
= Universal_Integer
then
17827 T
:= Standard_Integer
;
17829 elsif T
= Any_Character
then
17830 Ambiguous_Character
(Low_Bound
(N
));
17832 T
:= Standard_Character
;
17835 -- The node may be overloaded because some user-defined operators
17836 -- are available, but if a universal interpretation exists it is
17837 -- also the selected one.
17839 elsif Universal_Interpretation
(N
) = Universal_Integer
then
17840 T
:= Standard_Integer
;
17846 Ind
: Interp_Index
;
17850 Get_First_Interp
(N
, Ind
, It
);
17851 while Present
(It
.Typ
) loop
17852 if Is_Discrete_Type
(It
.Typ
) then
17855 and then not Covers
(It
.Typ
, T
)
17856 and then not Covers
(T
, It
.Typ
)
17858 Error_Msg_N
("ambiguous bounds in discrete range", N
);
17866 Get_Next_Interp
(Ind
, It
);
17869 if T
= Any_Type
then
17870 Error_Msg_N
("discrete type required for range", N
);
17871 Set_Etype
(N
, Any_Type
);
17874 elsif T
= Universal_Integer
then
17875 T
:= Standard_Integer
;
17880 if not Is_Discrete_Type
(T
) then
17881 Error_Msg_N
("discrete type required for range", N
);
17882 Set_Etype
(N
, Any_Type
);
17886 if Nkind
(Low_Bound
(N
)) = N_Attribute_Reference
17887 and then Attribute_Name
(Low_Bound
(N
)) = Name_First
17888 and then Is_Entity_Name
(Prefix
(Low_Bound
(N
)))
17889 and then Is_Type
(Entity
(Prefix
(Low_Bound
(N
))))
17890 and then Is_Discrete_Type
(Entity
(Prefix
(Low_Bound
(N
))))
17892 -- The type of the index will be the type of the prefix, as long
17893 -- as the upper bound is 'Last of the same type.
17895 Def_Id
:= Entity
(Prefix
(Low_Bound
(N
)));
17897 if Nkind
(High_Bound
(N
)) /= N_Attribute_Reference
17898 or else Attribute_Name
(High_Bound
(N
)) /= Name_Last
17899 or else not Is_Entity_Name
(Prefix
(High_Bound
(N
)))
17900 or else Entity
(Prefix
(High_Bound
(N
))) /= Def_Id
17907 Process_Range_Expr_In_Decl
(R
, T
, In_Iter_Schm
=> In_Iter_Schm
);
17909 elsif Nkind
(N
) = N_Subtype_Indication
then
17911 -- The index is given by a subtype with a range constraint
17913 T
:= Base_Type
(Entity
(Subtype_Mark
(N
)));
17915 if not Is_Discrete_Type
(T
) then
17916 Error_Msg_N
("discrete type required for range", N
);
17917 Set_Etype
(N
, Any_Type
);
17921 R
:= Range_Expression
(Constraint
(N
));
17924 Process_Range_Expr_In_Decl
17925 (R
, Entity
(Subtype_Mark
(N
)), In_Iter_Schm
=> In_Iter_Schm
);
17927 elsif Nkind
(N
) = N_Attribute_Reference
then
17929 -- Catch beginner's error (use of attribute other than 'Range)
17931 if Attribute_Name
(N
) /= Name_Range
then
17932 Error_Msg_N
("expect attribute ''Range", N
);
17933 Set_Etype
(N
, Any_Type
);
17937 -- If the node denotes the range of a type mark, that is also the
17938 -- resulting type, and we do not need to create an Itype for it.
17940 if Is_Entity_Name
(Prefix
(N
))
17941 and then Comes_From_Source
(N
)
17942 and then Is_Type
(Entity
(Prefix
(N
)))
17943 and then Is_Discrete_Type
(Entity
(Prefix
(N
)))
17945 Def_Id
:= Entity
(Prefix
(N
));
17948 Analyze_And_Resolve
(N
);
17952 -- If none of the above, must be a subtype. We convert this to a
17953 -- range attribute reference because in the case of declared first
17954 -- named subtypes, the types in the range reference can be different
17955 -- from the type of the entity. A range attribute normalizes the
17956 -- reference and obtains the correct types for the bounds.
17958 -- This transformation is in the nature of an expansion, is only
17959 -- done if expansion is active. In particular, it is not done on
17960 -- formal generic types, because we need to retain the name of the
17961 -- original index for instantiation purposes.
17964 if not Is_Entity_Name
(N
) or else not Is_Type
(Entity
(N
)) then
17965 Error_Msg_N
("invalid subtype mark in discrete range ", N
);
17966 Set_Etype
(N
, Any_Integer
);
17970 -- The type mark may be that of an incomplete type. It is only
17971 -- now that we can get the full view, previous analysis does
17972 -- not look specifically for a type mark.
17974 Set_Entity
(N
, Get_Full_View
(Entity
(N
)));
17975 Set_Etype
(N
, Entity
(N
));
17976 Def_Id
:= Entity
(N
);
17978 if not Is_Discrete_Type
(Def_Id
) then
17979 Error_Msg_N
("discrete type required for index", N
);
17980 Set_Etype
(N
, Any_Type
);
17985 if Expander_Active
then
17987 Make_Attribute_Reference
(Sloc
(N
),
17988 Attribute_Name
=> Name_Range
,
17989 Prefix
=> Relocate_Node
(N
)));
17991 -- The original was a subtype mark that does not freeze. This
17992 -- means that the rewritten version must not freeze either.
17994 Set_Must_Not_Freeze
(N
);
17995 Set_Must_Not_Freeze
(Prefix
(N
));
17996 Analyze_And_Resolve
(N
);
18000 -- If expander is inactive, type is legal, nothing else to construct
18007 if not Is_Discrete_Type
(T
) then
18008 Error_Msg_N
("discrete type required for range", N
);
18009 Set_Etype
(N
, Any_Type
);
18012 elsif T
= Any_Type
then
18013 Set_Etype
(N
, Any_Type
);
18017 -- We will now create the appropriate Itype to describe the range, but
18018 -- first a check. If we originally had a subtype, then we just label
18019 -- the range with this subtype. Not only is there no need to construct
18020 -- a new subtype, but it is wrong to do so for two reasons:
18022 -- 1. A legality concern, if we have a subtype, it must not freeze,
18023 -- and the Itype would cause freezing incorrectly
18025 -- 2. An efficiency concern, if we created an Itype, it would not be
18026 -- recognized as the same type for the purposes of eliminating
18027 -- checks in some circumstances.
18029 -- We signal this case by setting the subtype entity in Def_Id
18031 if No
(Def_Id
) then
18033 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
18034 Set_Etype
(Def_Id
, Base_Type
(T
));
18036 if Is_Signed_Integer_Type
(T
) then
18037 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
18039 elsif Is_Modular_Integer_Type
(T
) then
18040 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
18043 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
18044 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
18045 Set_First_Literal
(Def_Id
, First_Literal
(T
));
18048 Set_Size_Info
(Def_Id
, (T
));
18049 Set_RM_Size
(Def_Id
, RM_Size
(T
));
18050 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
18052 Set_Scalar_Range
(Def_Id
, R
);
18053 Conditional_Delay
(Def_Id
, T
);
18055 if Nkind
(N
) = N_Subtype_Indication
then
18056 Inherit_Predicate_Flags
(Def_Id
, Entity
(Subtype_Mark
(N
)));
18059 -- In the subtype indication case, if the immediate parent of the
18060 -- new subtype is non-static, then the subtype we create is non-
18061 -- static, even if its bounds are static.
18063 if Nkind
(N
) = N_Subtype_Indication
18064 and then not Is_OK_Static_Subtype
(Entity
(Subtype_Mark
(N
)))
18066 Set_Is_Non_Static_Subtype
(Def_Id
);
18070 -- Final step is to label the index with this constructed type
18072 Set_Etype
(N
, Def_Id
);
18075 ------------------------------
18076 -- Modular_Type_Declaration --
18077 ------------------------------
18079 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
18080 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
18083 procedure Set_Modular_Size
(Bits
: Int
);
18084 -- Sets RM_Size to Bits, and Esize to normal word size above this
18086 ----------------------
18087 -- Set_Modular_Size --
18088 ----------------------
18090 procedure Set_Modular_Size
(Bits
: Int
) is
18092 Set_RM_Size
(T
, UI_From_Int
(Bits
));
18097 elsif Bits
<= 16 then
18098 Init_Esize
(T
, 16);
18100 elsif Bits
<= 32 then
18101 Init_Esize
(T
, 32);
18104 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
18107 if not Non_Binary_Modulus
(T
)
18108 and then Esize
(T
) = RM_Size
(T
)
18110 Set_Is_Known_Valid
(T
);
18112 end Set_Modular_Size
;
18114 -- Start of processing for Modular_Type_Declaration
18117 -- If the mod expression is (exactly) 2 * literal, where literal is
18118 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18120 if Warn_On_Suspicious_Modulus_Value
18121 and then Nkind
(Mod_Expr
) = N_Op_Multiply
18122 and then Nkind
(Left_Opnd
(Mod_Expr
)) = N_Integer_Literal
18123 and then Intval
(Left_Opnd
(Mod_Expr
)) = Uint_2
18124 and then Nkind
(Right_Opnd
(Mod_Expr
)) = N_Integer_Literal
18125 and then Intval
(Right_Opnd
(Mod_Expr
)) <= Uint_64
18128 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr
);
18131 -- Proceed with analysis of mod expression
18133 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
18135 Set_Ekind
(T
, E_Modular_Integer_Type
);
18136 Init_Alignment
(T
);
18137 Set_Is_Constrained
(T
);
18139 if not Is_OK_Static_Expression
(Mod_Expr
) then
18140 Flag_Non_Static_Expr
18141 ("non-static expression used for modular type bound!", Mod_Expr
);
18142 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
18144 M_Val
:= Expr_Value
(Mod_Expr
);
18148 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
18149 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
18152 if M_Val
> 2 ** Standard_Long_Integer_Size
then
18153 Check_Restriction
(No_Long_Long_Integers
, Mod_Expr
);
18156 Set_Modulus
(T
, M_Val
);
18158 -- Create bounds for the modular type based on the modulus given in
18159 -- the type declaration and then analyze and resolve those bounds.
18161 Set_Scalar_Range
(T
,
18162 Make_Range
(Sloc
(Mod_Expr
),
18163 Low_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
18164 High_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
18166 -- Properly analyze the literals for the range. We do this manually
18167 -- because we can't go calling Resolve, since we are resolving these
18168 -- bounds with the type, and this type is certainly not complete yet.
18170 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
18171 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
18172 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
18173 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
18175 -- Loop through powers of two to find number of bits required
18177 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
18181 if M_Val
= 2 ** Bits
then
18182 Set_Modular_Size
(Bits
);
18187 elsif M_Val
< 2 ** Bits
then
18188 Check_SPARK_05_Restriction
("modulus should be a power of 2", T
);
18189 Set_Non_Binary_Modulus
(T
);
18191 if Bits
> System_Max_Nonbinary_Modulus_Power
then
18192 Error_Msg_Uint_1
:=
18193 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
18195 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
18196 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
18200 -- In the non-binary case, set size as per RM 13.3(55)
18202 Set_Modular_Size
(Bits
);
18209 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18210 -- so we just signal an error and set the maximum size.
18212 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
18213 Error_Msg_F
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
18215 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
18216 Init_Alignment
(T
);
18218 end Modular_Type_Declaration
;
18220 --------------------------
18221 -- New_Concatenation_Op --
18222 --------------------------
18224 procedure New_Concatenation_Op
(Typ
: Entity_Id
) is
18225 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
18228 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
18229 -- Create abbreviated declaration for the formal of a predefined
18230 -- Operator 'Op' of type 'Typ'
18232 --------------------
18233 -- Make_Op_Formal --
18234 --------------------
18236 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
18237 Formal
: Entity_Id
;
18239 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
18240 Set_Etype
(Formal
, Typ
);
18241 Set_Mechanism
(Formal
, Default_Mechanism
);
18243 end Make_Op_Formal
;
18245 -- Start of processing for New_Concatenation_Op
18248 Op
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Concat
);
18250 Set_Ekind
(Op
, E_Operator
);
18251 Set_Scope
(Op
, Current_Scope
);
18252 Set_Etype
(Op
, Typ
);
18253 Set_Homonym
(Op
, Get_Name_Entity_Id
(Name_Op_Concat
));
18254 Set_Is_Immediately_Visible
(Op
);
18255 Set_Is_Intrinsic_Subprogram
(Op
);
18256 Set_Has_Completion
(Op
);
18257 Append_Entity
(Op
, Current_Scope
);
18259 Set_Name_Entity_Id
(Name_Op_Concat
, Op
);
18261 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
18262 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
18263 end New_Concatenation_Op
;
18265 -------------------------
18266 -- OK_For_Limited_Init --
18267 -------------------------
18269 -- ???Check all calls of this, and compare the conditions under which it's
18272 function OK_For_Limited_Init
18274 Exp
: Node_Id
) return Boolean
18277 return Is_CPP_Constructor_Call
(Exp
)
18278 or else (Ada_Version
>= Ada_2005
18279 and then not Debug_Flag_Dot_L
18280 and then OK_For_Limited_Init_In_05
(Typ
, Exp
));
18281 end OK_For_Limited_Init
;
18283 -------------------------------
18284 -- OK_For_Limited_Init_In_05 --
18285 -------------------------------
18287 function OK_For_Limited_Init_In_05
18289 Exp
: Node_Id
) return Boolean
18292 -- An object of a limited interface type can be initialized with any
18293 -- expression of a nonlimited descendant type.
18295 if Is_Class_Wide_Type
(Typ
)
18296 and then Is_Limited_Interface
(Typ
)
18297 and then not Is_Limited_Type
(Etype
(Exp
))
18302 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18303 -- case of limited aggregates (including extension aggregates), and
18304 -- function calls. The function call may have been given in prefixed
18305 -- notation, in which case the original node is an indexed component.
18306 -- If the function is parameterless, the original node was an explicit
18307 -- dereference. The function may also be parameterless, in which case
18308 -- the source node is just an identifier.
18310 case Nkind
(Original_Node
(Exp
)) is
18311 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op
=>
18314 when N_Identifier
=>
18315 return Present
(Entity
(Original_Node
(Exp
)))
18316 and then Ekind
(Entity
(Original_Node
(Exp
))) = E_Function
;
18318 when N_Qualified_Expression
=>
18320 OK_For_Limited_Init_In_05
18321 (Typ
, Expression
(Original_Node
(Exp
)));
18323 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18324 -- with a function call, the expander has rewritten the call into an
18325 -- N_Type_Conversion node to force displacement of the pointer to
18326 -- reference the component containing the secondary dispatch table.
18327 -- Otherwise a type conversion is not a legal context.
18328 -- A return statement for a build-in-place function returning a
18329 -- synchronized type also introduces an unchecked conversion.
18331 when N_Type_Conversion |
18332 N_Unchecked_Type_Conversion
=>
18333 return not Comes_From_Source
(Exp
)
18335 OK_For_Limited_Init_In_05
18336 (Typ
, Expression
(Original_Node
(Exp
)));
18338 when N_Indexed_Component |
18339 N_Selected_Component |
18340 N_Explicit_Dereference
=>
18341 return Nkind
(Exp
) = N_Function_Call
;
18343 -- A use of 'Input is a function call, hence allowed. Normally the
18344 -- attribute will be changed to a call, but the attribute by itself
18345 -- can occur with -gnatc.
18347 when N_Attribute_Reference
=>
18348 return Attribute_Name
(Original_Node
(Exp
)) = Name_Input
;
18350 -- For a case expression, all dependent expressions must be legal
18352 when N_Case_Expression
=>
18357 Alt
:= First
(Alternatives
(Original_Node
(Exp
)));
18358 while Present
(Alt
) loop
18359 if not OK_For_Limited_Init_In_05
(Typ
, Expression
(Alt
)) then
18369 -- For an if expression, all dependent expressions must be legal
18371 when N_If_Expression
=>
18373 Then_Expr
: constant Node_Id
:=
18374 Next
(First
(Expressions
(Original_Node
(Exp
))));
18375 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
18377 return OK_For_Limited_Init_In_05
(Typ
, Then_Expr
)
18379 OK_For_Limited_Init_In_05
(Typ
, Else_Expr
);
18385 end OK_For_Limited_Init_In_05
;
18387 -------------------------------------------
18388 -- Ordinary_Fixed_Point_Type_Declaration --
18389 -------------------------------------------
18391 procedure Ordinary_Fixed_Point_Type_Declaration
18395 Loc
: constant Source_Ptr
:= Sloc
(Def
);
18396 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
18397 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
18398 Implicit_Base
: Entity_Id
;
18405 Check_Restriction
(No_Fixed_Point
, Def
);
18407 -- Create implicit base type
18410 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
18411 Set_Etype
(Implicit_Base
, Implicit_Base
);
18413 -- Analyze and process delta expression
18415 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
18417 Check_Delta_Expression
(Delta_Expr
);
18418 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
18420 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
18422 -- Compute default small from given delta, which is the largest power
18423 -- of two that does not exceed the given delta value.
18433 if Delta_Val
< Ureal_1
then
18434 while Delta_Val
< Tmp
loop
18435 Tmp
:= Tmp
/ Ureal_2
;
18436 Scale
:= Scale
+ 1;
18441 Tmp
:= Tmp
* Ureal_2
;
18442 exit when Tmp
> Delta_Val
;
18443 Scale
:= Scale
- 1;
18447 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
18450 Set_Small_Value
(Implicit_Base
, Small_Val
);
18452 -- If no range was given, set a dummy range
18454 if RRS
<= Empty_Or_Error
then
18455 Low_Val
:= -Small_Val
;
18456 High_Val
:= Small_Val
;
18458 -- Otherwise analyze and process given range
18462 Low
: constant Node_Id
:= Low_Bound
(RRS
);
18463 High
: constant Node_Id
:= High_Bound
(RRS
);
18466 Analyze_And_Resolve
(Low
, Any_Real
);
18467 Analyze_And_Resolve
(High
, Any_Real
);
18468 Check_Real_Bound
(Low
);
18469 Check_Real_Bound
(High
);
18471 -- Obtain and set the range
18473 Low_Val
:= Expr_Value_R
(Low
);
18474 High_Val
:= Expr_Value_R
(High
);
18476 if Low_Val
> High_Val
then
18477 Error_Msg_NE
("??fixed point type& has null range", Def
, T
);
18482 -- The range for both the implicit base and the declared first subtype
18483 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18484 -- set a temporary range in place. Note that the bounds of the base
18485 -- type will be widened to be symmetrical and to fill the available
18486 -- bits when the type is frozen.
18488 -- We could do this with all discrete types, and probably should, but
18489 -- we absolutely have to do it for fixed-point, since the end-points
18490 -- of the range and the size are determined by the small value, which
18491 -- could be reset before the freeze point.
18493 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
18494 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
18496 -- Complete definition of first subtype. The inheritance of the rep item
18497 -- chain ensures that SPARK-related pragmas are not clobbered when the
18498 -- ordinary fixed point type acts as a full view of a private type.
18500 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
18501 Set_Etype
(T
, Implicit_Base
);
18502 Init_Size_Align
(T
);
18503 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
18504 Set_Small_Value
(T
, Small_Val
);
18505 Set_Delta_Value
(T
, Delta_Val
);
18506 Set_Is_Constrained
(T
);
18507 end Ordinary_Fixed_Point_Type_Declaration
;
18509 ----------------------------------
18510 -- Preanalyze_Assert_Expression --
18511 ----------------------------------
18513 procedure Preanalyze_Assert_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18515 In_Assertion_Expr
:= In_Assertion_Expr
+ 1;
18516 Preanalyze_Spec_Expression
(N
, T
);
18517 In_Assertion_Expr
:= In_Assertion_Expr
- 1;
18518 end Preanalyze_Assert_Expression
;
18520 -----------------------------------
18521 -- Preanalyze_Default_Expression --
18522 -----------------------------------
18524 procedure Preanalyze_Default_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18525 Save_In_Default_Expr
: constant Boolean := In_Default_Expr
;
18527 In_Default_Expr
:= True;
18528 Preanalyze_Spec_Expression
(N
, T
);
18529 In_Default_Expr
:= Save_In_Default_Expr
;
18530 end Preanalyze_Default_Expression
;
18532 --------------------------------
18533 -- Preanalyze_Spec_Expression --
18534 --------------------------------
18536 procedure Preanalyze_Spec_Expression
(N
: Node_Id
; T
: Entity_Id
) is
18537 Save_In_Spec_Expression
: constant Boolean := In_Spec_Expression
;
18539 In_Spec_Expression
:= True;
18540 Preanalyze_And_Resolve
(N
, T
);
18541 In_Spec_Expression
:= Save_In_Spec_Expression
;
18542 end Preanalyze_Spec_Expression
;
18544 ----------------------------------------
18545 -- Prepare_Private_Subtype_Completion --
18546 ----------------------------------------
18548 procedure Prepare_Private_Subtype_Completion
18550 Related_Nod
: Node_Id
)
18552 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
18553 Full_B
: Entity_Id
:= Full_View
(Id_B
);
18557 if Present
(Full_B
) then
18559 -- Get to the underlying full view if necessary
18561 if Is_Private_Type
(Full_B
)
18562 and then Present
(Underlying_Full_View
(Full_B
))
18564 Full_B
:= Underlying_Full_View
(Full_B
);
18567 -- The Base_Type is already completed, we can complete the subtype
18568 -- now. We have to create a new entity with the same name, Thus we
18569 -- can't use Create_Itype.
18571 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
18572 Set_Is_Itype
(Full
);
18573 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
18574 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
18577 -- The parent subtype may be private, but the base might not, in some
18578 -- nested instances. In that case, the subtype does not need to be
18579 -- exchanged. It would still be nice to make private subtypes and their
18580 -- bases consistent at all times ???
18582 if Is_Private_Type
(Id_B
) then
18583 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
18585 end Prepare_Private_Subtype_Completion
;
18587 ---------------------------
18588 -- Process_Discriminants --
18589 ---------------------------
18591 procedure Process_Discriminants
18593 Prev
: Entity_Id
:= Empty
)
18595 Elist
: constant Elist_Id
:= New_Elmt_List
;
18598 Discr_Number
: Uint
;
18599 Discr_Type
: Entity_Id
;
18600 Default_Present
: Boolean := False;
18601 Default_Not_Present
: Boolean := False;
18604 -- A composite type other than an array type can have discriminants.
18605 -- On entry, the current scope is the composite type.
18607 -- The discriminants are initially entered into the scope of the type
18608 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18609 -- use, as explained at the end of this procedure.
18611 Discr
:= First
(Discriminant_Specifications
(N
));
18612 while Present
(Discr
) loop
18613 Enter_Name
(Defining_Identifier
(Discr
));
18615 -- For navigation purposes we add a reference to the discriminant
18616 -- in the entity for the type. If the current declaration is a
18617 -- completion, place references on the partial view. Otherwise the
18618 -- type is the current scope.
18620 if Present
(Prev
) then
18622 -- The references go on the partial view, if present. If the
18623 -- partial view has discriminants, the references have been
18624 -- generated already.
18626 if not Has_Discriminants
(Prev
) then
18627 Generate_Reference
(Prev
, Defining_Identifier
(Discr
), 'd');
18631 (Current_Scope
, Defining_Identifier
(Discr
), 'd');
18634 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
18635 Discr_Type
:= Access_Definition
(Discr
, Discriminant_Type
(Discr
));
18637 -- Ada 2005 (AI-254)
18639 if Present
(Access_To_Subprogram_Definition
18640 (Discriminant_Type
(Discr
)))
18641 and then Protected_Present
(Access_To_Subprogram_Definition
18642 (Discriminant_Type
(Discr
)))
18645 Replace_Anonymous_Access_To_Protected_Subprogram
(Discr
);
18649 Find_Type
(Discriminant_Type
(Discr
));
18650 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
18652 if Error_Posted
(Discriminant_Type
(Discr
)) then
18653 Discr_Type
:= Any_Type
;
18657 -- Handling of discriminants that are access types
18659 if Is_Access_Type
(Discr_Type
) then
18661 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18662 -- limited record types
18664 if Ada_Version
< Ada_2005
then
18665 Check_Access_Discriminant_Requires_Limited
18666 (Discr
, Discriminant_Type
(Discr
));
18669 if Ada_Version
= Ada_83
and then Comes_From_Source
(Discr
) then
18671 ("(Ada 83) access discriminant not allowed", Discr
);
18674 -- If not access type, must be a discrete type
18676 elsif not Is_Discrete_Type
(Discr_Type
) then
18678 ("discriminants must have a discrete or access type",
18679 Discriminant_Type
(Discr
));
18682 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
18684 -- If a discriminant specification includes the assignment compound
18685 -- delimiter followed by an expression, the expression is the default
18686 -- expression of the discriminant; the default expression must be of
18687 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18688 -- a default expression, we do the special preanalysis, since this
18689 -- expression does not freeze (see section "Handling of Default and
18690 -- Per-Object Expressions" in spec of package Sem).
18692 if Present
(Expression
(Discr
)) then
18693 Preanalyze_Spec_Expression
(Expression
(Discr
), Discr_Type
);
18697 if Nkind
(N
) = N_Formal_Type_Declaration
then
18699 ("discriminant defaults not allowed for formal type",
18700 Expression
(Discr
));
18702 -- Flag an error for a tagged type with defaulted discriminants,
18703 -- excluding limited tagged types when compiling for Ada 2012
18704 -- (see AI05-0214).
18706 elsif Is_Tagged_Type
(Current_Scope
)
18707 and then (not Is_Limited_Type
(Current_Scope
)
18708 or else Ada_Version
< Ada_2012
)
18709 and then Comes_From_Source
(N
)
18711 -- Note: see similar test in Check_Or_Process_Discriminants, to
18712 -- handle the (illegal) case of the completion of an untagged
18713 -- view with discriminants with defaults by a tagged full view.
18714 -- We skip the check if Discr does not come from source, to
18715 -- account for the case of an untagged derived type providing
18716 -- defaults for a renamed discriminant from a private untagged
18717 -- ancestor with a tagged full view (ACATS B460006).
18719 if Ada_Version
>= Ada_2012
then
18721 ("discriminants of nonlimited tagged type cannot have"
18723 Expression
(Discr
));
18726 ("discriminants of tagged type cannot have defaults",
18727 Expression
(Discr
));
18731 Default_Present
:= True;
18732 Append_Elmt
(Expression
(Discr
), Elist
);
18734 -- Tag the defining identifiers for the discriminants with
18735 -- their corresponding default expressions from the tree.
18737 Set_Discriminant_Default_Value
18738 (Defining_Identifier
(Discr
), Expression
(Discr
));
18741 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
18742 -- gets set unless we can be sure that no range check is required.
18744 if (GNATprove_Mode
or not Expander_Active
)
18747 (Expression
(Discr
), Discr_Type
, Assume_Valid
=> True)
18749 Set_Do_Range_Check
(Expression
(Discr
));
18752 -- No default discriminant value given
18755 Default_Not_Present
:= True;
18758 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18759 -- Discr_Type but with the null-exclusion attribute
18761 if Ada_Version
>= Ada_2005
then
18763 -- Ada 2005 (AI-231): Static checks
18765 if Can_Never_Be_Null
(Discr_Type
) then
18766 Null_Exclusion_Static_Checks
(Discr
);
18768 elsif Is_Access_Type
(Discr_Type
)
18769 and then Null_Exclusion_Present
(Discr
)
18771 -- No need to check itypes because in their case this check
18772 -- was done at their point of creation
18774 and then not Is_Itype
(Discr_Type
)
18776 if Can_Never_Be_Null
(Discr_Type
) then
18778 ("`NOT NULL` not allowed (& already excludes null)",
18783 Set_Etype
(Defining_Identifier
(Discr
),
18784 Create_Null_Excluding_Itype
18786 Related_Nod
=> Discr
));
18788 -- Check for improper null exclusion if the type is otherwise
18789 -- legal for a discriminant.
18791 elsif Null_Exclusion_Present
(Discr
)
18792 and then Is_Discrete_Type
(Discr_Type
)
18795 ("null exclusion can only apply to an access type", Discr
);
18798 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18799 -- can't have defaults. Synchronized types, or types that are
18800 -- explicitly limited are fine, but special tests apply to derived
18801 -- types in generics: in a generic body we have to assume the
18802 -- worst, and therefore defaults are not allowed if the parent is
18803 -- a generic formal private type (see ACATS B370001).
18805 if Is_Access_Type
(Discr_Type
) and then Default_Present
then
18806 if Ekind
(Discr_Type
) /= E_Anonymous_Access_Type
18807 or else Is_Limited_Record
(Current_Scope
)
18808 or else Is_Concurrent_Type
(Current_Scope
)
18809 or else Is_Concurrent_Record_Type
(Current_Scope
)
18810 or else Ekind
(Current_Scope
) = E_Limited_Private_Type
18812 if not Is_Derived_Type
(Current_Scope
)
18813 or else not Is_Generic_Type
(Etype
(Current_Scope
))
18814 or else not In_Package_Body
(Scope
(Etype
(Current_Scope
)))
18815 or else Limited_Present
18816 (Type_Definition
(Parent
(Current_Scope
)))
18821 Error_Msg_N
("access discriminants of nonlimited types",
18822 Expression
(Discr
));
18823 Error_Msg_N
("\cannot have defaults", Expression
(Discr
));
18826 elsif Present
(Expression
(Discr
)) then
18828 ("(Ada 2005) access discriminants of nonlimited types",
18829 Expression
(Discr
));
18830 Error_Msg_N
("\cannot have defaults", Expression
(Discr
));
18835 -- A discriminant cannot be effectively volatile. This check is only
18836 -- relevant when SPARK_Mode is on as it is not standard Ada legality
18837 -- rule (SPARK RM 7.1.3(6)).
18840 and then Is_Effectively_Volatile
(Defining_Identifier
(Discr
))
18842 Error_Msg_N
("discriminant cannot be volatile", Discr
);
18848 -- An element list consisting of the default expressions of the
18849 -- discriminants is constructed in the above loop and used to set
18850 -- the Discriminant_Constraint attribute for the type. If an object
18851 -- is declared of this (record or task) type without any explicit
18852 -- discriminant constraint given, this element list will form the
18853 -- actual parameters for the corresponding initialization procedure
18856 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
18857 Set_Stored_Constraint
(Current_Scope
, No_Elist
);
18859 -- Default expressions must be provided either for all or for none
18860 -- of the discriminants of a discriminant part. (RM 3.7.1)
18862 if Default_Present
and then Default_Not_Present
then
18864 ("incomplete specification of defaults for discriminants", N
);
18867 -- The use of the name of a discriminant is not allowed in default
18868 -- expressions of a discriminant part if the specification of the
18869 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
18871 -- To detect this, the discriminant names are entered initially with an
18872 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
18873 -- attempt to use a void entity (for example in an expression that is
18874 -- type-checked) produces the error message: premature usage. Now after
18875 -- completing the semantic analysis of the discriminant part, we can set
18876 -- the Ekind of all the discriminants appropriately.
18878 Discr
:= First
(Discriminant_Specifications
(N
));
18879 Discr_Number
:= Uint_1
;
18880 while Present
(Discr
) loop
18881 Id
:= Defining_Identifier
(Discr
);
18882 Set_Ekind
(Id
, E_Discriminant
);
18883 Init_Component_Location
(Id
);
18885 Set_Discriminant_Number
(Id
, Discr_Number
);
18887 -- Make sure this is always set, even in illegal programs
18889 Set_Corresponding_Discriminant
(Id
, Empty
);
18891 -- Initialize the Original_Record_Component to the entity itself.
18892 -- Inherit_Components will propagate the right value to
18893 -- discriminants in derived record types.
18895 Set_Original_Record_Component
(Id
, Id
);
18897 -- Create the discriminal for the discriminant
18899 Build_Discriminal
(Id
);
18902 Discr_Number
:= Discr_Number
+ 1;
18905 Set_Has_Discriminants
(Current_Scope
);
18906 end Process_Discriminants
;
18908 -----------------------
18909 -- Process_Full_View --
18910 -----------------------
18912 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
18913 procedure Collect_Implemented_Interfaces
18915 Ifaces
: Elist_Id
);
18916 -- Ada 2005: Gather all the interfaces that Typ directly or
18917 -- inherently implements. Duplicate entries are not added to
18918 -- the list Ifaces.
18920 ------------------------------------
18921 -- Collect_Implemented_Interfaces --
18922 ------------------------------------
18924 procedure Collect_Implemented_Interfaces
18929 Iface_Elmt
: Elmt_Id
;
18932 -- Abstract interfaces are only associated with tagged record types
18934 if not Is_Tagged_Type
(Typ
) or else not Is_Record_Type
(Typ
) then
18938 -- Recursively climb to the ancestors
18940 if Etype
(Typ
) /= Typ
18942 -- Protect the frontend against wrong cyclic declarations like:
18944 -- type B is new A with private;
18945 -- type C is new A with private;
18947 -- type B is new C with null record;
18948 -- type C is new B with null record;
18950 and then Etype
(Typ
) /= Priv_T
18951 and then Etype
(Typ
) /= Full_T
18953 -- Keep separate the management of private type declarations
18955 if Ekind
(Typ
) = E_Record_Type_With_Private
then
18957 -- Handle the following illegal usage:
18958 -- type Private_Type is tagged private;
18960 -- type Private_Type is new Type_Implementing_Iface;
18962 if Present
(Full_View
(Typ
))
18963 and then Etype
(Typ
) /= Full_View
(Typ
)
18965 if Is_Interface
(Etype
(Typ
)) then
18966 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
18969 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
18972 -- Non-private types
18975 if Is_Interface
(Etype
(Typ
)) then
18976 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
18979 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
18983 -- Handle entities in the list of abstract interfaces
18985 if Present
(Interfaces
(Typ
)) then
18986 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
18987 while Present
(Iface_Elmt
) loop
18988 Iface
:= Node
(Iface_Elmt
);
18990 pragma Assert
(Is_Interface
(Iface
));
18992 if not Contain_Interface
(Iface
, Ifaces
) then
18993 Append_Elmt
(Iface
, Ifaces
);
18994 Collect_Implemented_Interfaces
(Iface
, Ifaces
);
18997 Next_Elmt
(Iface_Elmt
);
19000 end Collect_Implemented_Interfaces
;
19004 Full_Indic
: Node_Id
;
19005 Full_Parent
: Entity_Id
;
19006 Priv_Parent
: Entity_Id
;
19008 -- Start of processing for Process_Full_View
19011 -- First some sanity checks that must be done after semantic
19012 -- decoration of the full view and thus cannot be placed with other
19013 -- similar checks in Find_Type_Name
19015 if not Is_Limited_Type
(Priv_T
)
19016 and then (Is_Limited_Type
(Full_T
)
19017 or else Is_Limited_Composite
(Full_T
))
19019 if In_Instance
then
19023 ("completion of nonlimited type cannot be limited", Full_T
);
19024 Explain_Limited_Type
(Full_T
, Full_T
);
19027 elsif Is_Abstract_Type
(Full_T
)
19028 and then not Is_Abstract_Type
(Priv_T
)
19031 ("completion of nonabstract type cannot be abstract", Full_T
);
19033 elsif Is_Tagged_Type
(Priv_T
)
19034 and then Is_Limited_Type
(Priv_T
)
19035 and then not Is_Limited_Type
(Full_T
)
19037 -- If pragma CPP_Class was applied to the private declaration
19038 -- propagate the limitedness to the full-view
19040 if Is_CPP_Class
(Priv_T
) then
19041 Set_Is_Limited_Record
(Full_T
);
19043 -- GNAT allow its own definition of Limited_Controlled to disobey
19044 -- this rule in order in ease the implementation. This test is safe
19045 -- because Root_Controlled is defined in a child of System that
19046 -- normal programs are not supposed to use.
19048 elsif Is_RTE
(Etype
(Full_T
), RE_Root_Controlled
) then
19049 Set_Is_Limited_Composite
(Full_T
);
19052 ("completion of limited tagged type must be limited", Full_T
);
19055 elsif Is_Generic_Type
(Priv_T
) then
19056 Error_Msg_N
("generic type cannot have a completion", Full_T
);
19059 -- Check that ancestor interfaces of private and full views are
19060 -- consistent. We omit this check for synchronized types because
19061 -- they are performed on the corresponding record type when frozen.
19063 if Ada_Version
>= Ada_2005
19064 and then Is_Tagged_Type
(Priv_T
)
19065 and then Is_Tagged_Type
(Full_T
)
19066 and then not Is_Concurrent_Type
(Full_T
)
19070 Priv_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
19071 Full_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
19074 Collect_Implemented_Interfaces
(Priv_T
, Priv_T_Ifaces
);
19075 Collect_Implemented_Interfaces
(Full_T
, Full_T_Ifaces
);
19077 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19078 -- an interface type if and only if the full type is descendant
19079 -- of the interface type (AARM 7.3 (7.3/2)).
19081 Iface
:= Find_Hidden_Interface
(Priv_T_Ifaces
, Full_T_Ifaces
);
19083 if Present
(Iface
) then
19085 ("interface in partial view& not implemented by full type "
19086 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
19089 Iface
:= Find_Hidden_Interface
(Full_T_Ifaces
, Priv_T_Ifaces
);
19091 if Present
(Iface
) then
19093 ("interface & not implemented by partial view "
19094 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
19099 if Is_Tagged_Type
(Priv_T
)
19100 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19101 and then Is_Derived_Type
(Full_T
)
19103 Priv_Parent
:= Etype
(Priv_T
);
19105 -- The full view of a private extension may have been transformed
19106 -- into an unconstrained derived type declaration and a subtype
19107 -- declaration (see build_derived_record_type for details).
19109 if Nkind
(N
) = N_Subtype_Declaration
then
19110 Full_Indic
:= Subtype_Indication
(N
);
19111 Full_Parent
:= Etype
(Base_Type
(Full_T
));
19113 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
19114 Full_Parent
:= Etype
(Full_T
);
19117 -- Check that the parent type of the full type is a descendant of
19118 -- the ancestor subtype given in the private extension. If either
19119 -- entity has an Etype equal to Any_Type then we had some previous
19120 -- error situation [7.3(8)].
19122 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
19125 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19126 -- any order. Therefore we don't have to check that its parent must
19127 -- be a descendant of the parent of the private type declaration.
19129 elsif Is_Interface
(Priv_Parent
)
19130 and then Is_Interface
(Full_Parent
)
19134 -- Ada 2005 (AI-251): If the parent of the private type declaration
19135 -- is an interface there is no need to check that it is an ancestor
19136 -- of the associated full type declaration. The required tests for
19137 -- this case are performed by Build_Derived_Record_Type.
19139 elsif not Is_Interface
(Base_Type
(Priv_Parent
))
19140 and then not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
)
19143 ("parent of full type must descend from parent"
19144 & " of private extension", Full_Indic
);
19146 -- First check a formal restriction, and then proceed with checking
19147 -- Ada rules. Since the formal restriction is not a serious error, we
19148 -- don't prevent further error detection for this check, hence the
19152 -- In formal mode, when completing a private extension the type
19153 -- named in the private part must be exactly the same as that
19154 -- named in the visible part.
19156 if Priv_Parent
/= Full_Parent
then
19157 Error_Msg_Name_1
:= Chars
(Priv_Parent
);
19158 Check_SPARK_05_Restriction
("% expected", Full_Indic
);
19161 -- Check the rules of 7.3(10): if the private extension inherits
19162 -- known discriminants, then the full type must also inherit those
19163 -- discriminants from the same (ancestor) type, and the parent
19164 -- subtype of the full type must be constrained if and only if
19165 -- the ancestor subtype of the private extension is constrained.
19167 if No
(Discriminant_Specifications
(Parent
(Priv_T
)))
19168 and then not Has_Unknown_Discriminants
(Priv_T
)
19169 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
19172 Priv_Indic
: constant Node_Id
:=
19173 Subtype_Indication
(Parent
(Priv_T
));
19175 Priv_Constr
: constant Boolean :=
19176 Is_Constrained
(Priv_Parent
)
19178 Nkind
(Priv_Indic
) = N_Subtype_Indication
19180 Is_Constrained
(Entity
(Priv_Indic
));
19182 Full_Constr
: constant Boolean :=
19183 Is_Constrained
(Full_Parent
)
19185 Nkind
(Full_Indic
) = N_Subtype_Indication
19187 Is_Constrained
(Entity
(Full_Indic
));
19189 Priv_Discr
: Entity_Id
;
19190 Full_Discr
: Entity_Id
;
19193 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
19194 Full_Discr
:= First_Discriminant
(Full_Parent
);
19195 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
19196 if Original_Record_Component
(Priv_Discr
) =
19197 Original_Record_Component
(Full_Discr
)
19199 Corresponding_Discriminant
(Priv_Discr
) =
19200 Corresponding_Discriminant
(Full_Discr
)
19207 Next_Discriminant
(Priv_Discr
);
19208 Next_Discriminant
(Full_Discr
);
19211 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
19213 ("full view must inherit discriminants of the parent"
19214 & " type used in the private extension", Full_Indic
);
19216 elsif Priv_Constr
and then not Full_Constr
then
19218 ("parent subtype of full type must be constrained",
19221 elsif Full_Constr
and then not Priv_Constr
then
19223 ("parent subtype of full type must be unconstrained",
19228 -- Check the rules of 7.3(12): if a partial view has neither
19229 -- known or unknown discriminants, then the full type
19230 -- declaration shall define a definite subtype.
19232 elsif not Has_Unknown_Discriminants
(Priv_T
)
19233 and then not Has_Discriminants
(Priv_T
)
19234 and then not Is_Constrained
(Full_T
)
19237 ("full view must define a constrained type if partial view"
19238 & " has no discriminants", Full_T
);
19241 -- ??????? Do we implement the following properly ?????
19242 -- If the ancestor subtype of a private extension has constrained
19243 -- discriminants, then the parent subtype of the full view shall
19244 -- impose a statically matching constraint on those discriminants
19249 -- For untagged types, verify that a type without discriminants is
19250 -- not completed with an unconstrained type. A separate error message
19251 -- is produced if the full type has defaulted discriminants.
19253 if not Is_Indefinite_Subtype
(Priv_T
)
19254 and then Is_Indefinite_Subtype
(Full_T
)
19256 Error_Msg_Sloc
:= Sloc
(Parent
(Priv_T
));
19258 ("full view of& not compatible with declaration#",
19261 if not Is_Tagged_Type
(Full_T
) then
19263 ("\one is constrained, the other unconstrained", Full_T
);
19268 -- AI-419: verify that the use of "limited" is consistent
19271 Orig_Decl
: constant Node_Id
:= Original_Node
(N
);
19274 if Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19275 and then not Limited_Present
(Parent
(Priv_T
))
19276 and then not Synchronized_Present
(Parent
(Priv_T
))
19277 and then Nkind
(Orig_Decl
) = N_Full_Type_Declaration
19279 (Type_Definition
(Orig_Decl
)) = N_Derived_Type_Definition
19280 and then Limited_Present
(Type_Definition
(Orig_Decl
))
19283 ("full view of non-limited extension cannot be limited", N
);
19287 -- Ada 2005 (AI-443): A synchronized private extension must be
19288 -- completed by a task or protected type.
19290 if Ada_Version
>= Ada_2005
19291 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19292 and then Synchronized_Present
(Parent
(Priv_T
))
19293 and then not Is_Concurrent_Type
(Full_T
)
19295 Error_Msg_N
("full view of synchronized extension must " &
19296 "be synchronized type", N
);
19299 -- Ada 2005 AI-363: if the full view has discriminants with
19300 -- defaults, it is illegal to declare constrained access subtypes
19301 -- whose designated type is the current type. This allows objects
19302 -- of the type that are declared in the heap to be unconstrained.
19304 if not Has_Unknown_Discriminants
(Priv_T
)
19305 and then not Has_Discriminants
(Priv_T
)
19306 and then Has_Discriminants
(Full_T
)
19308 Present
(Discriminant_Default_Value
(First_Discriminant
(Full_T
)))
19310 Set_Has_Constrained_Partial_View
(Full_T
);
19311 Set_Has_Constrained_Partial_View
(Priv_T
);
19314 -- Create a full declaration for all its subtypes recorded in
19315 -- Private_Dependents and swap them similarly to the base type. These
19316 -- are subtypes that have been define before the full declaration of
19317 -- the private type. We also swap the entry in Private_Dependents list
19318 -- so we can properly restore the private view on exit from the scope.
19321 Priv_Elmt
: Elmt_Id
;
19322 Priv_Scop
: Entity_Id
;
19327 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
19328 while Present
(Priv_Elmt
) loop
19329 Priv
:= Node
(Priv_Elmt
);
19330 Priv_Scop
:= Scope
(Priv
);
19332 if Ekind_In
(Priv
, E_Private_Subtype
,
19333 E_Limited_Private_Subtype
,
19334 E_Record_Subtype_With_Private
)
19336 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
19337 Set_Is_Itype
(Full
);
19338 Set_Parent
(Full
, Parent
(Priv
));
19339 Set_Associated_Node_For_Itype
(Full
, N
);
19341 -- Now we need to complete the private subtype, but since the
19342 -- base type has already been swapped, we must also swap the
19343 -- subtypes (and thus, reverse the arguments in the call to
19344 -- Complete_Private_Subtype). Also note that we may need to
19345 -- re-establish the scope of the private subtype.
19347 Copy_And_Swap
(Priv
, Full
);
19349 if not In_Open_Scopes
(Priv_Scop
) then
19350 Push_Scope
(Priv_Scop
);
19353 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19355 Priv_Scop
:= Empty
;
19358 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
19360 if Present
(Priv_Scop
) then
19364 Replace_Elmt
(Priv_Elmt
, Full
);
19367 Next_Elmt
(Priv_Elmt
);
19371 -- If the private view was tagged, copy the new primitive operations
19372 -- from the private view to the full view.
19374 if Is_Tagged_Type
(Full_T
) then
19376 Disp_Typ
: Entity_Id
;
19377 Full_List
: Elist_Id
;
19379 Prim_Elmt
: Elmt_Id
;
19380 Priv_List
: Elist_Id
;
19384 L
: Elist_Id
) return Boolean;
19385 -- Determine whether list L contains element E
19393 L
: Elist_Id
) return Boolean
19395 List_Elmt
: Elmt_Id
;
19398 List_Elmt
:= First_Elmt
(L
);
19399 while Present
(List_Elmt
) loop
19400 if Node
(List_Elmt
) = E
then
19404 Next_Elmt
(List_Elmt
);
19410 -- Start of processing
19413 if Is_Tagged_Type
(Priv_T
) then
19414 Priv_List
:= Primitive_Operations
(Priv_T
);
19415 Prim_Elmt
:= First_Elmt
(Priv_List
);
19417 -- In the case of a concurrent type completing a private tagged
19418 -- type, primitives may have been declared in between the two
19419 -- views. These subprograms need to be wrapped the same way
19420 -- entries and protected procedures are handled because they
19421 -- cannot be directly shared by the two views.
19423 if Is_Concurrent_Type
(Full_T
) then
19425 Conc_Typ
: constant Entity_Id
:=
19426 Corresponding_Record_Type
(Full_T
);
19427 Curr_Nod
: Node_Id
:= Parent
(Conc_Typ
);
19428 Wrap_Spec
: Node_Id
;
19431 while Present
(Prim_Elmt
) loop
19432 Prim
:= Node
(Prim_Elmt
);
19434 if Comes_From_Source
(Prim
)
19435 and then not Is_Abstract_Subprogram
(Prim
)
19438 Make_Subprogram_Declaration
(Sloc
(Prim
),
19442 Obj_Typ
=> Conc_Typ
,
19444 Parameter_Specifications
(
19447 Insert_After
(Curr_Nod
, Wrap_Spec
);
19448 Curr_Nod
:= Wrap_Spec
;
19450 Analyze
(Wrap_Spec
);
19453 Next_Elmt
(Prim_Elmt
);
19459 -- For non-concurrent types, transfer explicit primitives, but
19460 -- omit those inherited from the parent of the private view
19461 -- since they will be re-inherited later on.
19464 Full_List
:= Primitive_Operations
(Full_T
);
19466 while Present
(Prim_Elmt
) loop
19467 Prim
:= Node
(Prim_Elmt
);
19469 if Comes_From_Source
(Prim
)
19470 and then not Contains
(Prim
, Full_List
)
19472 Append_Elmt
(Prim
, Full_List
);
19475 Next_Elmt
(Prim_Elmt
);
19479 -- Untagged private view
19482 Full_List
:= Primitive_Operations
(Full_T
);
19484 -- In this case the partial view is untagged, so here we locate
19485 -- all of the earlier primitives that need to be treated as
19486 -- dispatching (those that appear between the two views). Note
19487 -- that these additional operations must all be new operations
19488 -- (any earlier operations that override inherited operations
19489 -- of the full view will already have been inserted in the
19490 -- primitives list, marked by Check_Operation_From_Private_View
19491 -- as dispatching. Note that implicit "/=" operators are
19492 -- excluded from being added to the primitives list since they
19493 -- shouldn't be treated as dispatching (tagged "/=" is handled
19496 Prim
:= Next_Entity
(Full_T
);
19497 while Present
(Prim
) and then Prim
/= Priv_T
loop
19498 if Ekind_In
(Prim
, E_Procedure
, E_Function
) then
19499 Disp_Typ
:= Find_Dispatching_Type
(Prim
);
19501 if Disp_Typ
= Full_T
19502 and then (Chars
(Prim
) /= Name_Op_Ne
19503 or else Comes_From_Source
(Prim
))
19505 Check_Controlling_Formals
(Full_T
, Prim
);
19507 if not Is_Dispatching_Operation
(Prim
) then
19508 Append_Elmt
(Prim
, Full_List
);
19509 Set_Is_Dispatching_Operation
(Prim
, True);
19510 Set_DT_Position
(Prim
, No_Uint
);
19513 elsif Is_Dispatching_Operation
(Prim
)
19514 and then Disp_Typ
/= Full_T
19517 -- Verify that it is not otherwise controlled by a
19518 -- formal or a return value of type T.
19520 Check_Controlling_Formals
(Disp_Typ
, Prim
);
19524 Next_Entity
(Prim
);
19528 -- For the tagged case, the two views can share the same primitive
19529 -- operations list and the same class-wide type. Update attributes
19530 -- of the class-wide type which depend on the full declaration.
19532 if Is_Tagged_Type
(Priv_T
) then
19533 Set_Direct_Primitive_Operations
(Priv_T
, Full_List
);
19534 Set_Class_Wide_Type
19535 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
19537 Set_Has_Task
(Class_Wide_Type
(Priv_T
), Has_Task
(Full_T
));
19539 (Class_Wide_Type
(Priv_T
), Has_Protected
(Full_T
));
19544 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19546 if Known_To_Have_Preelab_Init
(Priv_T
) then
19548 -- Case where there is a pragma Preelaborable_Initialization. We
19549 -- always allow this in predefined units, which is cheating a bit,
19550 -- but it means we don't have to struggle to meet the requirements in
19551 -- the RM for having Preelaborable Initialization. Otherwise we
19552 -- require that the type meets the RM rules. But we can't check that
19553 -- yet, because of the rule about overriding Initialize, so we simply
19554 -- set a flag that will be checked at freeze time.
19556 if not In_Predefined_Unit
(Full_T
) then
19557 Set_Must_Have_Preelab_Init
(Full_T
);
19561 -- If pragma CPP_Class was applied to the private type declaration,
19562 -- propagate it now to the full type declaration.
19564 if Is_CPP_Class
(Priv_T
) then
19565 Set_Is_CPP_Class
(Full_T
);
19566 Set_Convention
(Full_T
, Convention_CPP
);
19568 -- Check that components of imported CPP types do not have default
19571 Check_CPP_Type_Has_No_Defaults
(Full_T
);
19574 -- If the private view has user specified stream attributes, then so has
19577 -- Why the test, how could these flags be already set in Full_T ???
19579 if Has_Specified_Stream_Read
(Priv_T
) then
19580 Set_Has_Specified_Stream_Read
(Full_T
);
19583 if Has_Specified_Stream_Write
(Priv_T
) then
19584 Set_Has_Specified_Stream_Write
(Full_T
);
19587 if Has_Specified_Stream_Input
(Priv_T
) then
19588 Set_Has_Specified_Stream_Input
(Full_T
);
19591 if Has_Specified_Stream_Output
(Priv_T
) then
19592 Set_Has_Specified_Stream_Output
(Full_T
);
19595 -- Propagate the attributes related to pragma Default_Initial_Condition
19596 -- from the private to the full view. Note that both flags are mutually
19599 if Has_Default_Init_Cond
(Priv_T
)
19600 or else Has_Inherited_Default_Init_Cond
(Priv_T
)
19602 Propagate_Default_Init_Cond_Attributes
19603 (From_Typ
=> Priv_T
,
19605 Private_To_Full_View
=> True);
19607 -- In the case where the full view is derived from another private type,
19608 -- the attributes related to pragma Default_Initial_Condition must be
19609 -- propagated from the full to the private view to maintain consistency
19613 -- type Parent_Typ is private
19614 -- with Default_Initial_Condition ...;
19616 -- type Parent_Typ is ...;
19619 -- with Pack; use Pack;
19620 -- package Pack_2 is
19621 -- type Deriv_Typ is private; -- must inherit
19623 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19626 elsif Has_Default_Init_Cond
(Full_T
)
19627 or else Has_Inherited_Default_Init_Cond
(Full_T
)
19629 Propagate_Default_Init_Cond_Attributes
19630 (From_Typ
=> Full_T
,
19632 Private_To_Full_View
=> True);
19635 -- Propagate invariants to full type
19637 if Has_Invariants
(Priv_T
) then
19638 Set_Has_Invariants
(Full_T
);
19639 Set_Invariant_Procedure
(Full_T
, Invariant_Procedure
(Priv_T
));
19642 if Has_Inheritable_Invariants
(Priv_T
) then
19643 Set_Has_Inheritable_Invariants
(Full_T
);
19646 -- Propagate predicates to full type, and predicate function if already
19647 -- defined. It is not clear that this can actually happen? the partial
19648 -- view cannot be frozen yet, and the predicate function has not been
19649 -- built. Still it is a cheap check and seems safer to make it.
19651 if Has_Predicates
(Priv_T
) then
19652 if Present
(Predicate_Function
(Priv_T
)) then
19653 Set_Predicate_Function
(Full_T
, Predicate_Function
(Priv_T
));
19656 Set_Has_Predicates
(Full_T
);
19658 end Process_Full_View
;
19660 -----------------------------------
19661 -- Process_Incomplete_Dependents --
19662 -----------------------------------
19664 procedure Process_Incomplete_Dependents
19666 Full_T
: Entity_Id
;
19669 Inc_Elmt
: Elmt_Id
;
19670 Priv_Dep
: Entity_Id
;
19671 New_Subt
: Entity_Id
;
19673 Disc_Constraint
: Elist_Id
;
19676 if No
(Private_Dependents
(Inc_T
)) then
19680 -- Itypes that may be generated by the completion of an incomplete
19681 -- subtype are not used by the back-end and not attached to the tree.
19682 -- They are created only for constraint-checking purposes.
19684 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
19685 while Present
(Inc_Elmt
) loop
19686 Priv_Dep
:= Node
(Inc_Elmt
);
19688 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
19690 -- An Access_To_Subprogram type may have a return type or a
19691 -- parameter type that is incomplete. Replace with the full view.
19693 if Etype
(Priv_Dep
) = Inc_T
then
19694 Set_Etype
(Priv_Dep
, Full_T
);
19698 Formal
: Entity_Id
;
19701 Formal
:= First_Formal
(Priv_Dep
);
19702 while Present
(Formal
) loop
19703 if Etype
(Formal
) = Inc_T
then
19704 Set_Etype
(Formal
, Full_T
);
19707 Next_Formal
(Formal
);
19711 elsif Is_Overloadable
(Priv_Dep
) then
19713 -- If a subprogram in the incomplete dependents list is primitive
19714 -- for a tagged full type then mark it as a dispatching operation,
19715 -- check whether it overrides an inherited subprogram, and check
19716 -- restrictions on its controlling formals. Note that a protected
19717 -- operation is never dispatching: only its wrapper operation
19718 -- (which has convention Ada) is.
19720 if Is_Tagged_Type
(Full_T
)
19721 and then Is_Primitive
(Priv_Dep
)
19722 and then Convention
(Priv_Dep
) /= Convention_Protected
19724 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
19725 Set_Is_Dispatching_Operation
(Priv_Dep
);
19726 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
19729 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
19731 -- Can happen during processing of a body before the completion
19732 -- of a TA type. Ignore, because spec is also on dependent list.
19736 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
19737 -- corresponding subtype of the full view.
19739 elsif Ekind
(Priv_Dep
) = E_Incomplete_Subtype
then
19740 Set_Subtype_Indication
19741 (Parent
(Priv_Dep
), New_Occurrence_Of
(Full_T
, Sloc
(Priv_Dep
)));
19742 Set_Etype
(Priv_Dep
, Full_T
);
19743 Set_Ekind
(Priv_Dep
, Subtype_Kind
(Ekind
(Full_T
)));
19744 Set_Analyzed
(Parent
(Priv_Dep
), False);
19746 -- Reanalyze the declaration, suppressing the call to
19747 -- Enter_Name to avoid duplicate names.
19749 Analyze_Subtype_Declaration
19750 (N
=> Parent
(Priv_Dep
),
19753 -- Dependent is a subtype
19756 -- We build a new subtype indication using the full view of the
19757 -- incomplete parent. The discriminant constraints have been
19758 -- elaborated already at the point of the subtype declaration.
19760 New_Subt
:= Create_Itype
(E_Void
, N
);
19762 if Has_Discriminants
(Full_T
) then
19763 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
19765 Disc_Constraint
:= No_Elist
;
19768 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
19769 Set_Full_View
(Priv_Dep
, New_Subt
);
19772 Next_Elmt
(Inc_Elmt
);
19774 end Process_Incomplete_Dependents
;
19776 --------------------------------
19777 -- Process_Range_Expr_In_Decl --
19778 --------------------------------
19780 procedure Process_Range_Expr_In_Decl
19783 Subtyp
: Entity_Id
:= Empty
;
19784 Check_List
: List_Id
:= Empty_List
;
19785 R_Check_Off
: Boolean := False;
19786 In_Iter_Schm
: Boolean := False)
19789 R_Checks
: Check_Result
;
19790 Insert_Node
: Node_Id
;
19791 Def_Id
: Entity_Id
;
19794 Analyze_And_Resolve
(R
, Base_Type
(T
));
19796 if Nkind
(R
) = N_Range
then
19798 -- In SPARK, all ranges should be static, with the exception of the
19799 -- discrete type definition of a loop parameter specification.
19801 if not In_Iter_Schm
19802 and then not Is_OK_Static_Range
(R
)
19804 Check_SPARK_05_Restriction
("range should be static", R
);
19807 Lo
:= Low_Bound
(R
);
19808 Hi
:= High_Bound
(R
);
19810 -- Validity checks on the range of a quantified expression are
19811 -- delayed until the construct is transformed into a loop.
19813 if Nkind
(Parent
(R
)) = N_Loop_Parameter_Specification
19814 and then Nkind
(Parent
(Parent
(R
))) = N_Quantified_Expression
19818 -- We need to ensure validity of the bounds here, because if we
19819 -- go ahead and do the expansion, then the expanded code will get
19820 -- analyzed with range checks suppressed and we miss the check.
19822 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
19823 -- the temporaries generated by routine Remove_Side_Effects by means
19824 -- of validity checks must use the same names. When a range appears
19825 -- in the parent of a generic, the range is processed with checks
19826 -- disabled as part of the generic context and with checks enabled
19827 -- for code generation purposes. This leads to link issues as the
19828 -- generic contains references to xxx_FIRST/_LAST, but the inlined
19829 -- template sees the temporaries generated by Remove_Side_Effects.
19832 Validity_Check_Range
(R
, Subtyp
);
19835 -- If there were errors in the declaration, try and patch up some
19836 -- common mistakes in the bounds. The cases handled are literals
19837 -- which are Integer where the expected type is Real and vice versa.
19838 -- These corrections allow the compilation process to proceed further
19839 -- along since some basic assumptions of the format of the bounds
19842 if Etype
(R
) = Any_Type
then
19843 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
19845 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
19847 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
19849 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
19851 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
19853 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
19855 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
19857 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
19864 -- If the bounds of the range have been mistakenly given as string
19865 -- literals (perhaps in place of character literals), then an error
19866 -- has already been reported, but we rewrite the string literal as a
19867 -- bound of the range's type to avoid blowups in later processing
19868 -- that looks at static values.
19870 if Nkind
(Lo
) = N_String_Literal
then
19872 Make_Attribute_Reference
(Sloc
(Lo
),
19873 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Lo
)),
19874 Attribute_Name
=> Name_First
));
19875 Analyze_And_Resolve
(Lo
);
19878 if Nkind
(Hi
) = N_String_Literal
then
19880 Make_Attribute_Reference
(Sloc
(Hi
),
19881 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Hi
)),
19882 Attribute_Name
=> Name_First
));
19883 Analyze_And_Resolve
(Hi
);
19886 -- If bounds aren't scalar at this point then exit, avoiding
19887 -- problems with further processing of the range in this procedure.
19889 if not Is_Scalar_Type
(Etype
(Lo
)) then
19893 -- Resolve (actually Sem_Eval) has checked that the bounds are in
19894 -- then range of the base type. Here we check whether the bounds
19895 -- are in the range of the subtype itself. Note that if the bounds
19896 -- represent the null range the Constraint_Error exception should
19899 -- ??? The following code should be cleaned up as follows
19901 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
19902 -- is done in the call to Range_Check (R, T); below
19904 -- 2. The use of R_Check_Off should be investigated and possibly
19905 -- removed, this would clean up things a bit.
19907 if Is_Null_Range
(Lo
, Hi
) then
19911 -- Capture values of bounds and generate temporaries for them
19912 -- if needed, before applying checks, since checks may cause
19913 -- duplication of the expression without forcing evaluation.
19915 -- The forced evaluation removes side effects from expressions,
19916 -- which should occur also in GNATprove mode. Otherwise, we end up
19917 -- with unexpected insertions of actions at places where this is
19918 -- not supposed to occur, e.g. on default parameters of a call.
19920 if Expander_Active
or GNATprove_Mode
then
19922 -- If no subtype name, then just call Force_Evaluation to
19923 -- create declarations as needed to deal with side effects.
19924 -- Also ignore calls from within a record type, where we
19925 -- have possible scoping issues.
19927 if No
(Subtyp
) or else Is_Record_Type
(Current_Scope
) then
19928 Force_Evaluation
(Lo
);
19929 Force_Evaluation
(Hi
);
19931 -- If a subtype is given, then we capture the bounds if they
19932 -- are not known at compile time, using constant identifiers
19933 -- xxx_FIRST and xxx_LAST where xxx is the name of the subtype.
19935 -- Note: we do this transformation even if expansion is not
19936 -- active, and in particular we do it in GNATprove_Mode since
19937 -- the transformation is in general required to ensure that the
19938 -- resulting tree has proper Ada semantics.
19940 -- Historical note: We used to just do Force_Evaluation calls
19941 -- in all cases, but it is better to capture the bounds with
19942 -- proper non-serialized names, since these will be accessed
19943 -- from other units, and hence may be public, and also we can
19944 -- then expand 'First and 'Last references to be references to
19945 -- these special names.
19948 if not Compile_Time_Known_Value
(Lo
)
19950 -- No need to capture bounds if they already are
19951 -- references to constants.
19953 and then not (Is_Entity_Name
(Lo
)
19954 and then Is_Constant_Object
(Entity
(Lo
)))
19957 Loc
: constant Source_Ptr
:= Sloc
(Lo
);
19958 Lov
: constant Entity_Id
:=
19959 Make_Defining_Identifier
(Loc
,
19961 New_External_Name
(Chars
(Subtyp
), "_FIRST"));
19964 Make_Object_Declaration
(Loc
,
19965 Defining_Identifier
=> Lov
,
19966 Object_Definition
=>
19967 New_Occurrence_Of
(Base_Type
(T
), Loc
),
19968 Constant_Present
=> True,
19969 Expression
=> Relocate_Node
(Lo
)));
19970 Rewrite
(Lo
, New_Occurrence_Of
(Lov
, Loc
));
19974 if not Compile_Time_Known_Value
(Hi
)
19975 and then not (Is_Entity_Name
(Hi
)
19976 and then Is_Constant_Object
(Entity
(Hi
)))
19979 Loc
: constant Source_Ptr
:= Sloc
(Hi
);
19980 Hiv
: constant Entity_Id
:=
19981 Make_Defining_Identifier
(Loc
,
19983 New_External_Name
(Chars
(Subtyp
), "_LAST"));
19986 Make_Object_Declaration
(Loc
,
19987 Defining_Identifier
=> Hiv
,
19988 Object_Definition
=>
19989 New_Occurrence_Of
(Base_Type
(T
), Loc
),
19990 Constant_Present
=> True,
19991 Expression
=> Relocate_Node
(Hi
)));
19992 Rewrite
(Hi
, New_Occurrence_Of
(Hiv
, Loc
));
19998 -- We use a flag here instead of suppressing checks on the
19999 -- type because the type we check against isn't necessarily
20000 -- the place where we put the check.
20002 if not R_Check_Off
then
20003 R_Checks
:= Get_Range_Checks
(R
, T
);
20005 -- Look up tree to find an appropriate insertion point. We
20006 -- can't just use insert_actions because later processing
20007 -- depends on the insertion node. Prior to Ada 2012 the
20008 -- insertion point could only be a declaration or a loop, but
20009 -- quantified expressions can appear within any context in an
20010 -- expression, and the insertion point can be any statement,
20011 -- pragma, or declaration.
20013 Insert_Node
:= Parent
(R
);
20014 while Present
(Insert_Node
) loop
20016 Nkind
(Insert_Node
) in N_Declaration
20019 (Insert_Node
, N_Component_Declaration
,
20020 N_Loop_Parameter_Specification
,
20021 N_Function_Specification
,
20022 N_Procedure_Specification
);
20024 exit when Nkind
(Insert_Node
) in N_Later_Decl_Item
20025 or else Nkind
(Insert_Node
) in
20026 N_Statement_Other_Than_Procedure_Call
20027 or else Nkind_In
(Insert_Node
, N_Procedure_Call_Statement
,
20030 Insert_Node
:= Parent
(Insert_Node
);
20033 -- Why would Type_Decl not be present??? Without this test,
20034 -- short regression tests fail.
20036 if Present
(Insert_Node
) then
20038 -- Case of loop statement. Verify that the range is part
20039 -- of the subtype indication of the iteration scheme.
20041 if Nkind
(Insert_Node
) = N_Loop_Statement
then
20046 Indic
:= Parent
(R
);
20047 while Present
(Indic
)
20048 and then Nkind
(Indic
) /= N_Subtype_Indication
20050 Indic
:= Parent
(Indic
);
20053 if Present
(Indic
) then
20054 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
20056 Insert_Range_Checks
20060 Sloc
(Insert_Node
),
20062 Do_Before
=> True);
20066 -- Insertion before a declaration. If the declaration
20067 -- includes discriminants, the list of applicable checks
20068 -- is given by the caller.
20070 elsif Nkind
(Insert_Node
) in N_Declaration
then
20071 Def_Id
:= Defining_Identifier
(Insert_Node
);
20073 if (Ekind
(Def_Id
) = E_Record_Type
20074 and then Depends_On_Discriminant
(R
))
20076 (Ekind
(Def_Id
) = E_Protected_Type
20077 and then Has_Discriminants
(Def_Id
))
20079 Append_Range_Checks
20081 Check_List
, Def_Id
, Sloc
(Insert_Node
), R
);
20084 Insert_Range_Checks
20086 Insert_Node
, Def_Id
, Sloc
(Insert_Node
), R
);
20090 -- Insertion before a statement. Range appears in the
20091 -- context of a quantified expression. Insertion will
20092 -- take place when expression is expanded.
20101 -- Case of other than an explicit N_Range node
20103 -- The forced evaluation removes side effects from expressions, which
20104 -- should occur also in GNATprove mode. Otherwise, we end up with
20105 -- unexpected insertions of actions at places where this is not
20106 -- supposed to occur, e.g. on default parameters of a call.
20108 elsif Expander_Active
or GNATprove_Mode
then
20109 Get_Index_Bounds
(R
, Lo
, Hi
);
20110 Force_Evaluation
(Lo
);
20111 Force_Evaluation
(Hi
);
20113 end Process_Range_Expr_In_Decl
;
20115 --------------------------------------
20116 -- Process_Real_Range_Specification --
20117 --------------------------------------
20119 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
20120 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
20123 Err
: Boolean := False;
20125 procedure Analyze_Bound
(N
: Node_Id
);
20126 -- Analyze and check one bound
20128 -------------------
20129 -- Analyze_Bound --
20130 -------------------
20132 procedure Analyze_Bound
(N
: Node_Id
) is
20134 Analyze_And_Resolve
(N
, Any_Real
);
20136 if not Is_OK_Static_Expression
(N
) then
20137 Flag_Non_Static_Expr
20138 ("bound in real type definition is not static!", N
);
20143 -- Start of processing for Process_Real_Range_Specification
20146 if Present
(Spec
) then
20147 Lo
:= Low_Bound
(Spec
);
20148 Hi
:= High_Bound
(Spec
);
20149 Analyze_Bound
(Lo
);
20150 Analyze_Bound
(Hi
);
20152 -- If error, clear away junk range specification
20155 Set_Real_Range_Specification
(Def
, Empty
);
20158 end Process_Real_Range_Specification
;
20160 ---------------------
20161 -- Process_Subtype --
20162 ---------------------
20164 function Process_Subtype
20166 Related_Nod
: Node_Id
;
20167 Related_Id
: Entity_Id
:= Empty
;
20168 Suffix
: Character := ' ') return Entity_Id
20171 Def_Id
: Entity_Id
;
20172 Error_Node
: Node_Id
;
20173 Full_View_Id
: Entity_Id
;
20174 Subtype_Mark_Id
: Entity_Id
;
20176 May_Have_Null_Exclusion
: Boolean;
20178 procedure Check_Incomplete
(T
: Entity_Id
);
20179 -- Called to verify that an incomplete type is not used prematurely
20181 ----------------------
20182 -- Check_Incomplete --
20183 ----------------------
20185 procedure Check_Incomplete
(T
: Entity_Id
) is
20187 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20189 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
20191 not (Ada_Version
>= Ada_2005
20193 (Nkind
(Parent
(T
)) = N_Subtype_Declaration
20194 or else (Nkind
(Parent
(T
)) = N_Subtype_Indication
20195 and then Nkind
(Parent
(Parent
(T
))) =
20196 N_Subtype_Declaration
)))
20198 Error_Msg_N
("invalid use of type before its full declaration", T
);
20200 end Check_Incomplete
;
20202 -- Start of processing for Process_Subtype
20205 -- Case of no constraints present
20207 if Nkind
(S
) /= N_Subtype_Indication
then
20209 Check_Incomplete
(S
);
20212 -- Ada 2005 (AI-231): Static check
20214 if Ada_Version
>= Ada_2005
20215 and then Present
(P
)
20216 and then Null_Exclusion_Present
(P
)
20217 and then Nkind
(P
) /= N_Access_To_Object_Definition
20218 and then not Is_Access_Type
(Entity
(S
))
20220 Error_Msg_N
("`NOT NULL` only allowed for an access type", S
);
20223 -- The following is ugly, can't we have a range or even a flag???
20225 May_Have_Null_Exclusion
:=
20226 Nkind_In
(P
, N_Access_Definition
,
20227 N_Access_Function_Definition
,
20228 N_Access_Procedure_Definition
,
20229 N_Access_To_Object_Definition
,
20231 N_Component_Definition
)
20233 Nkind_In
(P
, N_Derived_Type_Definition
,
20234 N_Discriminant_Specification
,
20235 N_Formal_Object_Declaration
,
20236 N_Object_Declaration
,
20237 N_Object_Renaming_Declaration
,
20238 N_Parameter_Specification
,
20239 N_Subtype_Declaration
);
20241 -- Create an Itype that is a duplicate of Entity (S) but with the
20242 -- null-exclusion attribute.
20244 if May_Have_Null_Exclusion
20245 and then Is_Access_Type
(Entity
(S
))
20246 and then Null_Exclusion_Present
(P
)
20248 -- No need to check the case of an access to object definition.
20249 -- It is correct to define double not-null pointers.
20252 -- type Not_Null_Int_Ptr is not null access Integer;
20253 -- type Acc is not null access Not_Null_Int_Ptr;
20255 and then Nkind
(P
) /= N_Access_To_Object_Definition
20257 if Can_Never_Be_Null
(Entity
(S
)) then
20258 case Nkind
(Related_Nod
) is
20259 when N_Full_Type_Declaration
=>
20260 if Nkind
(Type_Definition
(Related_Nod
))
20261 in N_Array_Type_Definition
20265 (Component_Definition
20266 (Type_Definition
(Related_Nod
)));
20269 Subtype_Indication
(Type_Definition
(Related_Nod
));
20272 when N_Subtype_Declaration
=>
20273 Error_Node
:= Subtype_Indication
(Related_Nod
);
20275 when N_Object_Declaration
=>
20276 Error_Node
:= Object_Definition
(Related_Nod
);
20278 when N_Component_Declaration
=>
20280 Subtype_Indication
(Component_Definition
(Related_Nod
));
20282 when N_Allocator
=>
20283 Error_Node
:= Expression
(Related_Nod
);
20286 pragma Assert
(False);
20287 Error_Node
:= Related_Nod
;
20291 ("`NOT NULL` not allowed (& already excludes null)",
20297 Create_Null_Excluding_Itype
20299 Related_Nod
=> P
));
20300 Set_Entity
(S
, Etype
(S
));
20305 -- Case of constraint present, so that we have an N_Subtype_Indication
20306 -- node (this node is created only if constraints are present).
20309 Find_Type
(Subtype_Mark
(S
));
20311 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
20313 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
20314 and then Is_Itype
(Defining_Identifier
(Parent
(S
))))
20316 Check_Incomplete
(Subtype_Mark
(S
));
20320 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
20322 -- Explicit subtype declaration case
20324 if Nkind
(P
) = N_Subtype_Declaration
then
20325 Def_Id
:= Defining_Identifier
(P
);
20327 -- Explicit derived type definition case
20329 elsif Nkind
(P
) = N_Derived_Type_Definition
then
20330 Def_Id
:= Defining_Identifier
(Parent
(P
));
20332 -- Implicit case, the Def_Id must be created as an implicit type.
20333 -- The one exception arises in the case of concurrent types, array
20334 -- and access types, where other subsidiary implicit types may be
20335 -- created and must appear before the main implicit type. In these
20336 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20337 -- has not yet been called to create Def_Id.
20340 if Is_Array_Type
(Subtype_Mark_Id
)
20341 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
20342 or else Is_Access_Type
(Subtype_Mark_Id
)
20346 -- For the other cases, we create a new unattached Itype,
20347 -- and set the indication to ensure it gets attached later.
20351 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
20355 -- If the kind of constraint is invalid for this kind of type,
20356 -- then give an error, and then pretend no constraint was given.
20358 if not Is_Valid_Constraint_Kind
20359 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
20362 ("incorrect constraint for this kind of type", Constraint
(S
));
20364 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
20366 -- Set Ekind of orphan itype, to prevent cascaded errors
20368 if Present
(Def_Id
) then
20369 Set_Ekind
(Def_Id
, Ekind
(Any_Type
));
20372 -- Make recursive call, having got rid of the bogus constraint
20374 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
20377 -- Remaining processing depends on type. Select on Base_Type kind to
20378 -- ensure getting to the concrete type kind in the case of a private
20379 -- subtype (needed when only doing semantic analysis).
20381 case Ekind
(Base_Type
(Subtype_Mark_Id
)) is
20382 when Access_Kind
=>
20384 -- If this is a constraint on a class-wide type, discard it.
20385 -- There is currently no way to express a partial discriminant
20386 -- constraint on a type with unknown discriminants. This is
20387 -- a pathology that the ACATS wisely decides not to test.
20389 if Is_Class_Wide_Type
(Designated_Type
(Subtype_Mark_Id
)) then
20390 if Comes_From_Source
(S
) then
20392 ("constraint on class-wide type ignored??",
20396 if Nkind
(P
) = N_Subtype_Declaration
then
20397 Set_Subtype_Indication
(P
,
20398 New_Occurrence_Of
(Subtype_Mark_Id
, Sloc
(S
)));
20401 return Subtype_Mark_Id
;
20404 Constrain_Access
(Def_Id
, S
, Related_Nod
);
20407 and then Is_Itype
(Designated_Type
(Def_Id
))
20408 and then Nkind
(Related_Nod
) = N_Subtype_Declaration
20409 and then not Is_Incomplete_Type
(Designated_Type
(Def_Id
))
20411 Build_Itype_Reference
20412 (Designated_Type
(Def_Id
), Related_Nod
);
20416 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
20418 when Decimal_Fixed_Point_Kind
=>
20419 Constrain_Decimal
(Def_Id
, S
);
20421 when Enumeration_Kind
=>
20422 Constrain_Enumeration
(Def_Id
, S
);
20423 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
20425 when Ordinary_Fixed_Point_Kind
=>
20426 Constrain_Ordinary_Fixed
(Def_Id
, S
);
20429 Constrain_Float
(Def_Id
, S
);
20431 when Integer_Kind
=>
20432 Constrain_Integer
(Def_Id
, S
);
20433 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
20435 when E_Record_Type |
20438 E_Incomplete_Type
=>
20439 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
20441 if Ekind
(Def_Id
) = E_Incomplete_Type
then
20442 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
20445 when Private_Kind
=>
20446 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
20447 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
20449 -- In case of an invalid constraint prevent further processing
20450 -- since the type constructed is missing expected fields.
20452 if Etype
(Def_Id
) = Any_Type
then
20456 -- If the full view is that of a task with discriminants,
20457 -- we must constrain both the concurrent type and its
20458 -- corresponding record type. Otherwise we will just propagate
20459 -- the constraint to the full view, if available.
20461 if Present
(Full_View
(Subtype_Mark_Id
))
20462 and then Has_Discriminants
(Subtype_Mark_Id
)
20463 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
20466 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
20468 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
20469 Constrain_Concurrent
(Full_View_Id
, S
,
20470 Related_Nod
, Related_Id
, Suffix
);
20471 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
20472 Set_Full_View
(Def_Id
, Full_View_Id
);
20474 -- Introduce an explicit reference to the private subtype,
20475 -- to prevent scope anomalies in gigi if first use appears
20476 -- in a nested context, e.g. a later function body.
20477 -- Should this be generated in other contexts than a full
20478 -- type declaration?
20480 if Is_Itype
(Def_Id
)
20482 Nkind
(Parent
(P
)) = N_Full_Type_Declaration
20484 Build_Itype_Reference
(Def_Id
, Parent
(P
));
20488 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
20491 when Concurrent_Kind
=>
20492 Constrain_Concurrent
(Def_Id
, S
,
20493 Related_Nod
, Related_Id
, Suffix
);
20496 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
20499 -- Size and Convention are always inherited from the base type
20501 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
20502 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
20506 end Process_Subtype
;
20508 --------------------------------------------
20509 -- Propagate_Default_Init_Cond_Attributes --
20510 --------------------------------------------
20512 procedure Propagate_Default_Init_Cond_Attributes
20513 (From_Typ
: Entity_Id
;
20514 To_Typ
: Entity_Id
;
20515 Parent_To_Derivation
: Boolean := False;
20516 Private_To_Full_View
: Boolean := False)
20518 procedure Remove_Default_Init_Cond_Procedure
(Typ
: Entity_Id
);
20519 -- Remove the default initial procedure (if any) from the rep chain of
20522 ----------------------------------------
20523 -- Remove_Default_Init_Cond_Procedure --
20524 ----------------------------------------
20526 procedure Remove_Default_Init_Cond_Procedure
(Typ
: Entity_Id
) is
20527 Found
: Boolean := False;
20533 Subp
:= Subprograms_For_Type
(Typ
);
20534 while Present
(Subp
) loop
20535 if Is_Default_Init_Cond_Procedure
(Subp
) then
20541 Subp
:= Subprograms_For_Type
(Subp
);
20545 Set_Subprograms_For_Type
(Prev
, Subprograms_For_Type
(Subp
));
20546 Set_Subprograms_For_Type
(Subp
, Empty
);
20548 end Remove_Default_Init_Cond_Procedure
;
20552 Inherit_Procedure
: Boolean := False;
20554 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20557 if Has_Default_Init_Cond
(From_Typ
) then
20559 -- A derived type inherits the attributes from its parent type
20561 if Parent_To_Derivation
then
20562 Set_Has_Inherited_Default_Init_Cond
(To_Typ
);
20564 -- A full view shares the attributes with its private view
20567 Set_Has_Default_Init_Cond
(To_Typ
);
20570 Inherit_Procedure
:= True;
20572 -- Due to the order of expansion, a derived private type is processed
20573 -- by two routines which both attempt to set the attributes related
20574 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20575 -- Process_Full_View.
20578 -- type Parent_Typ is private
20579 -- with Default_Initial_Condition ...;
20581 -- type Parent_Typ is ...;
20584 -- with Pack; use Pack;
20585 -- package Pack_2 is
20586 -- type Deriv_Typ is private
20587 -- with Default_Initial_Condition ...;
20589 -- type Deriv_Typ is new Parent_Typ;
20592 -- When Build_Derived_Type operates, it sets the attributes on the
20593 -- full view without taking into account that the private view may
20594 -- define its own default initial condition procedure. This becomes
20595 -- apparent in Process_Full_View which must undo some of the work by
20596 -- Build_Derived_Type and propagate the attributes from the private
20597 -- to the full view.
20599 if Private_To_Full_View
then
20600 Set_Has_Inherited_Default_Init_Cond
(To_Typ
, False);
20601 Remove_Default_Init_Cond_Procedure
(To_Typ
);
20604 -- A type must inherit the default initial condition procedure from a
20605 -- parent type when the parent itself is inheriting the procedure or
20606 -- when it is defining one. This circuitry is also used when dealing
20607 -- with the private / full view of a type.
20609 elsif Has_Inherited_Default_Init_Cond
(From_Typ
)
20610 or (Parent_To_Derivation
20611 and Present
(Get_Pragma
20612 (From_Typ
, Pragma_Default_Initial_Condition
)))
20614 Set_Has_Inherited_Default_Init_Cond
(To_Typ
);
20615 Inherit_Procedure
:= True;
20618 if Inherit_Procedure
20619 and then No
(Default_Init_Cond_Procedure
(To_Typ
))
20621 Set_Default_Init_Cond_Procedure
20622 (To_Typ
, Default_Init_Cond_Procedure
(From_Typ
));
20624 end Propagate_Default_Init_Cond_Attributes
;
20626 -----------------------------
20627 -- Record_Type_Declaration --
20628 -----------------------------
20630 procedure Record_Type_Declaration
20635 Def
: constant Node_Id
:= Type_Definition
(N
);
20636 Is_Tagged
: Boolean;
20637 Tag_Comp
: Entity_Id
;
20640 -- These flags must be initialized before calling Process_Discriminants
20641 -- because this routine makes use of them.
20643 Set_Ekind
(T
, E_Record_Type
);
20645 Init_Size_Align
(T
);
20646 Set_Interfaces
(T
, No_Elist
);
20647 Set_Stored_Constraint
(T
, No_Elist
);
20648 Set_Default_SSO
(T
);
20652 if Ada_Version
< Ada_2005
or else not Interface_Present
(Def
) then
20653 if Limited_Present
(Def
) then
20654 Check_SPARK_05_Restriction
("limited is not allowed", N
);
20657 if Abstract_Present
(Def
) then
20658 Check_SPARK_05_Restriction
("abstract is not allowed", N
);
20661 -- The flag Is_Tagged_Type might have already been set by
20662 -- Find_Type_Name if it detected an error for declaration T. This
20663 -- arises in the case of private tagged types where the full view
20664 -- omits the word tagged.
20667 Tagged_Present
(Def
)
20668 or else (Serious_Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
20670 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
20673 Set_Is_Tagged_Type
(T
, True);
20674 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
20677 -- Type is abstract if full declaration carries keyword, or if
20678 -- previous partial view did.
20680 Set_Is_Abstract_Type
(T
, Is_Abstract_Type
(T
)
20681 or else Abstract_Present
(Def
));
20684 Check_SPARK_05_Restriction
("interface is not allowed", N
);
20687 Analyze_Interface_Declaration
(T
, Def
);
20689 if Present
(Discriminant_Specifications
(N
)) then
20691 ("interface types cannot have discriminants",
20692 Defining_Identifier
20693 (First
(Discriminant_Specifications
(N
))));
20697 -- First pass: if there are self-referential access components,
20698 -- create the required anonymous access type declarations, and if
20699 -- need be an incomplete type declaration for T itself.
20701 Check_Anonymous_Access_Components
(N
, T
, Prev
, Component_List
(Def
));
20703 if Ada_Version
>= Ada_2005
20704 and then Present
(Interface_List
(Def
))
20706 Check_Interfaces
(N
, Def
);
20709 Ifaces_List
: Elist_Id
;
20712 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20713 -- already in the parents.
20717 Ifaces_List
=> Ifaces_List
,
20718 Exclude_Parents
=> True);
20720 Set_Interfaces
(T
, Ifaces_List
);
20724 -- Records constitute a scope for the component declarations within.
20725 -- The scope is created prior to the processing of these declarations.
20726 -- Discriminants are processed first, so that they are visible when
20727 -- processing the other components. The Ekind of the record type itself
20728 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20730 -- Enter record scope
20734 -- If an incomplete or private type declaration was already given for
20735 -- the type, then this scope already exists, and the discriminants have
20736 -- been declared within. We must verify that the full declaration
20737 -- matches the incomplete one.
20739 Check_Or_Process_Discriminants
(N
, T
, Prev
);
20741 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
20742 Set_Has_Delayed_Freeze
(T
, True);
20744 -- For tagged types add a manually analyzed component corresponding
20745 -- to the component _tag, the corresponding piece of tree will be
20746 -- expanded as part of the freezing actions if it is not a CPP_Class.
20750 -- Do not add the tag unless we are in expansion mode
20752 if Expander_Active
then
20753 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
20754 Enter_Name
(Tag_Comp
);
20756 Set_Ekind
(Tag_Comp
, E_Component
);
20757 Set_Is_Tag
(Tag_Comp
);
20758 Set_Is_Aliased
(Tag_Comp
);
20759 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
20760 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
20761 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
20762 Init_Component_Location
(Tag_Comp
);
20764 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20765 -- implemented interfaces.
20767 if Has_Interfaces
(T
) then
20768 Add_Interface_Tag_Components
(N
, T
);
20772 Make_Class_Wide_Type
(T
);
20773 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
20776 -- We must suppress range checks when processing record components in
20777 -- the presence of discriminants, since we don't want spurious checks to
20778 -- be generated during their analysis, but Suppress_Range_Checks flags
20779 -- must be reset the after processing the record definition.
20781 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20782 -- couldn't we just use the normal range check suppression method here.
20783 -- That would seem cleaner ???
20785 if Has_Discriminants
(T
) and then not Range_Checks_Suppressed
(T
) then
20786 Set_Kill_Range_Checks
(T
, True);
20787 Record_Type_Definition
(Def
, Prev
);
20788 Set_Kill_Range_Checks
(T
, False);
20790 Record_Type_Definition
(Def
, Prev
);
20793 -- Exit from record scope
20797 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20798 -- the implemented interfaces and associate them an aliased entity.
20801 and then not Is_Empty_List
(Interface_List
(Def
))
20803 Derive_Progenitor_Subprograms
(T
, T
);
20806 Check_Function_Writable_Actuals
(N
);
20807 end Record_Type_Declaration
;
20809 ----------------------------
20810 -- Record_Type_Definition --
20811 ----------------------------
20813 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
) is
20814 Component
: Entity_Id
;
20815 Ctrl_Components
: Boolean := False;
20816 Final_Storage_Only
: Boolean;
20820 if Ekind
(Prev_T
) = E_Incomplete_Type
then
20821 T
:= Full_View
(Prev_T
);
20826 -- In SPARK, tagged types and type extensions may only be declared in
20827 -- the specification of library unit packages.
20829 if Present
(Def
) and then Is_Tagged_Type
(T
) then
20835 if Nkind
(Parent
(Def
)) = N_Full_Type_Declaration
then
20836 Typ
:= Parent
(Def
);
20839 (Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
);
20840 Typ
:= Parent
(Parent
(Def
));
20843 Ctxt
:= Parent
(Typ
);
20845 if Nkind
(Ctxt
) = N_Package_Body
20846 and then Nkind
(Parent
(Ctxt
)) = N_Compilation_Unit
20848 Check_SPARK_05_Restriction
20849 ("type should be defined in package specification", Typ
);
20851 elsif Nkind
(Ctxt
) /= N_Package_Specification
20852 or else Nkind
(Parent
(Parent
(Ctxt
))) /= N_Compilation_Unit
20854 Check_SPARK_05_Restriction
20855 ("type should be defined in library unit package", Typ
);
20860 Final_Storage_Only
:= not Is_Controlled
(T
);
20862 -- Ada 2005: Check whether an explicit Limited is present in a derived
20863 -- type declaration.
20865 if Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
20866 and then Limited_Present
(Parent
(Def
))
20868 Set_Is_Limited_Record
(T
);
20871 -- If the component list of a record type is defined by the reserved
20872 -- word null and there is no discriminant part, then the record type has
20873 -- no components and all records of the type are null records (RM 3.7)
20874 -- This procedure is also called to process the extension part of a
20875 -- record extension, in which case the current scope may have inherited
20879 or else No
(Component_List
(Def
))
20880 or else Null_Present
(Component_List
(Def
))
20882 if not Is_Tagged_Type
(T
) then
20883 Check_SPARK_05_Restriction
("untagged record cannot be null", Def
);
20887 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
20889 if Present
(Variant_Part
(Component_List
(Def
))) then
20890 Check_SPARK_05_Restriction
("variant part is not allowed", Def
);
20891 Analyze
(Variant_Part
(Component_List
(Def
)));
20895 -- After completing the semantic analysis of the record definition,
20896 -- record components, both new and inherited, are accessible. Set their
20897 -- kind accordingly. Exclude malformed itypes from illegal declarations,
20898 -- whose Ekind may be void.
20900 Component
:= First_Entity
(Current_Scope
);
20901 while Present
(Component
) loop
20902 if Ekind
(Component
) = E_Void
20903 and then not Is_Itype
(Component
)
20905 Set_Ekind
(Component
, E_Component
);
20906 Init_Component_Location
(Component
);
20909 if Has_Task
(Etype
(Component
)) then
20913 if Has_Protected
(Etype
(Component
)) then
20914 Set_Has_Protected
(T
);
20917 if Ekind
(Component
) /= E_Component
then
20920 -- Do not set Has_Controlled_Component on a class-wide equivalent
20921 -- type. See Make_CW_Equivalent_Type.
20923 elsif not Is_Class_Wide_Equivalent_Type
(T
)
20924 and then (Has_Controlled_Component
(Etype
(Component
))
20925 or else (Chars
(Component
) /= Name_uParent
20926 and then Is_Controlled
(Etype
(Component
))))
20928 Set_Has_Controlled_Component
(T
, True);
20929 Final_Storage_Only
:=
20931 and then Finalize_Storage_Only
(Etype
(Component
));
20932 Ctrl_Components
:= True;
20935 Next_Entity
(Component
);
20938 -- A Type is Finalize_Storage_Only only if all its controlled components
20941 if Ctrl_Components
then
20942 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
20945 -- Place reference to end record on the proper entity, which may
20946 -- be a partial view.
20948 if Present
(Def
) then
20949 Process_End_Label
(Def
, 'e', Prev_T
);
20951 end Record_Type_Definition
;
20953 ------------------------
20954 -- Replace_Components --
20955 ------------------------
20957 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
) is
20958 function Process
(N
: Node_Id
) return Traverse_Result
;
20964 function Process
(N
: Node_Id
) return Traverse_Result
is
20968 if Nkind
(N
) = N_Discriminant_Specification
then
20969 Comp
:= First_Discriminant
(Typ
);
20970 while Present
(Comp
) loop
20971 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
20972 Set_Defining_Identifier
(N
, Comp
);
20976 Next_Discriminant
(Comp
);
20979 elsif Nkind
(N
) = N_Component_Declaration
then
20980 Comp
:= First_Component
(Typ
);
20981 while Present
(Comp
) loop
20982 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
20983 Set_Defining_Identifier
(N
, Comp
);
20987 Next_Component
(Comp
);
20994 procedure Replace
is new Traverse_Proc
(Process
);
20996 -- Start of processing for Replace_Components
21000 end Replace_Components
;
21002 -------------------------------
21003 -- Set_Completion_Referenced --
21004 -------------------------------
21006 procedure Set_Completion_Referenced
(E
: Entity_Id
) is
21008 -- If in main unit, mark entity that is a completion as referenced,
21009 -- warnings go on the partial view when needed.
21011 if In_Extended_Main_Source_Unit
(E
) then
21012 Set_Referenced
(E
);
21014 end Set_Completion_Referenced
;
21016 ---------------------
21017 -- Set_Default_SSO --
21018 ---------------------
21020 procedure Set_Default_SSO
(T
: Entity_Id
) is
21022 case Opt
.Default_SSO
is
21026 Set_SSO_Set_Low_By_Default
(T
, True);
21028 Set_SSO_Set_High_By_Default
(T
, True);
21030 raise Program_Error
;
21032 end Set_Default_SSO
;
21034 ---------------------
21035 -- Set_Fixed_Range --
21036 ---------------------
21038 -- The range for fixed-point types is complicated by the fact that we
21039 -- do not know the exact end points at the time of the declaration. This
21040 -- is true for three reasons:
21042 -- A size clause may affect the fudging of the end-points.
21043 -- A small clause may affect the values of the end-points.
21044 -- We try to include the end-points if it does not affect the size.
21046 -- This means that the actual end-points must be established at the
21047 -- point when the type is frozen. Meanwhile, we first narrow the range
21048 -- as permitted (so that it will fit if necessary in a small specified
21049 -- size), and then build a range subtree with these narrowed bounds.
21050 -- Set_Fixed_Range constructs the range from real literal values, and
21051 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21053 -- The parent of this range is set to point to the entity so that it is
21054 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21055 -- other scalar types, which are just pointers to the range in the
21056 -- original tree, this would otherwise be an orphan).
21058 -- The tree is left unanalyzed. When the type is frozen, the processing
21059 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21060 -- analyzed, and uses this as an indication that it should complete
21061 -- work on the range (it will know the final small and size values).
21063 procedure Set_Fixed_Range
21069 S
: constant Node_Id
:=
21071 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
21072 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
21074 Set_Scalar_Range
(E
, S
);
21077 -- Before the freeze point, the bounds of a fixed point are universal
21078 -- and carry the corresponding type.
21080 Set_Etype
(Low_Bound
(S
), Universal_Real
);
21081 Set_Etype
(High_Bound
(S
), Universal_Real
);
21082 end Set_Fixed_Range
;
21084 ----------------------------------
21085 -- Set_Scalar_Range_For_Subtype --
21086 ----------------------------------
21088 procedure Set_Scalar_Range_For_Subtype
21089 (Def_Id
: Entity_Id
;
21093 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
21096 -- Defend against previous error
21098 if Nkind
(R
) = N_Error
then
21102 Set_Scalar_Range
(Def_Id
, R
);
21104 -- We need to link the range into the tree before resolving it so
21105 -- that types that are referenced, including importantly the subtype
21106 -- itself, are properly frozen (Freeze_Expression requires that the
21107 -- expression be properly linked into the tree). Of course if it is
21108 -- already linked in, then we do not disturb the current link.
21110 if No
(Parent
(R
)) then
21111 Set_Parent
(R
, Def_Id
);
21114 -- Reset the kind of the subtype during analysis of the range, to
21115 -- catch possible premature use in the bounds themselves.
21117 Set_Ekind
(Def_Id
, E_Void
);
21118 Process_Range_Expr_In_Decl
(R
, Subt
, Subtyp
=> Def_Id
);
21119 Set_Ekind
(Def_Id
, Kind
);
21120 end Set_Scalar_Range_For_Subtype
;
21122 --------------------------------------------------------
21123 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21124 --------------------------------------------------------
21126 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21130 -- Make sure set if encountered during Expand_To_Stored_Constraint
21132 Set_Stored_Constraint
(E
, No_Elist
);
21134 -- Give it the right value
21136 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
21137 Set_Stored_Constraint
(E
,
21138 Expand_To_Stored_Constraint
(E
, Discriminant_Constraint
(E
)));
21140 end Set_Stored_Constraint_From_Discriminant_Constraint
;
21142 -------------------------------------
21143 -- Signed_Integer_Type_Declaration --
21144 -------------------------------------
21146 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
21147 Implicit_Base
: Entity_Id
;
21148 Base_Typ
: Entity_Id
;
21151 Errs
: Boolean := False;
21155 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
21156 -- Determine whether given bounds allow derivation from specified type
21158 procedure Check_Bound
(Expr
: Node_Id
);
21159 -- Check bound to make sure it is integral and static. If not, post
21160 -- appropriate error message and set Errs flag
21162 ---------------------
21163 -- Can_Derive_From --
21164 ---------------------
21166 -- Note we check both bounds against both end values, to deal with
21167 -- strange types like ones with a range of 0 .. -12341234.
21169 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
21170 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
21171 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
21173 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
21175 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
21176 end Can_Derive_From
;
21182 procedure Check_Bound
(Expr
: Node_Id
) is
21184 -- If a range constraint is used as an integer type definition, each
21185 -- bound of the range must be defined by a static expression of some
21186 -- integer type, but the two bounds need not have the same integer
21187 -- type (Negative bounds are allowed.) (RM 3.5.4)
21189 if not Is_Integer_Type
(Etype
(Expr
)) then
21191 ("integer type definition bounds must be of integer type", Expr
);
21194 elsif not Is_OK_Static_Expression
(Expr
) then
21195 Flag_Non_Static_Expr
21196 ("non-static expression used for integer type bound!", Expr
);
21199 -- The bounds are folded into literals, and we set their type to be
21200 -- universal, to avoid typing difficulties: we cannot set the type
21201 -- of the literal to the new type, because this would be a forward
21202 -- reference for the back end, and if the original type is user-
21203 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21206 if Is_Entity_Name
(Expr
) then
21207 Fold_Uint
(Expr
, Expr_Value
(Expr
), True);
21210 Set_Etype
(Expr
, Universal_Integer
);
21214 -- Start of processing for Signed_Integer_Type_Declaration
21217 -- Create an anonymous base type
21220 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
21222 -- Analyze and check the bounds, they can be of any integer type
21224 Lo
:= Low_Bound
(Def
);
21225 Hi
:= High_Bound
(Def
);
21227 -- Arbitrarily use Integer as the type if either bound had an error
21229 if Hi
= Error
or else Lo
= Error
then
21230 Base_Typ
:= Any_Integer
;
21231 Set_Error_Posted
(T
, True);
21233 -- Here both bounds are OK expressions
21236 Analyze_And_Resolve
(Lo
, Any_Integer
);
21237 Analyze_And_Resolve
(Hi
, Any_Integer
);
21243 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
21244 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
21247 -- Find type to derive from
21249 Lo_Val
:= Expr_Value
(Lo
);
21250 Hi_Val
:= Expr_Value
(Hi
);
21252 if Can_Derive_From
(Standard_Short_Short_Integer
) then
21253 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
21255 elsif Can_Derive_From
(Standard_Short_Integer
) then
21256 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
21258 elsif Can_Derive_From
(Standard_Integer
) then
21259 Base_Typ
:= Base_Type
(Standard_Integer
);
21261 elsif Can_Derive_From
(Standard_Long_Integer
) then
21262 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
21264 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
21265 Check_Restriction
(No_Long_Long_Integers
, Def
);
21266 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
21269 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
21270 Error_Msg_N
("integer type definition bounds out of range", Def
);
21271 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
21272 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
21276 -- Complete both implicit base and declared first subtype entities. The
21277 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21278 -- are not clobbered when the signed integer type acts as a full view of
21281 Set_Etype
(Implicit_Base
, Base_Typ
);
21282 Set_Size_Info
(Implicit_Base
, Base_Typ
);
21283 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
21284 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
21285 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
21287 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
21288 Set_Etype
(T
, Implicit_Base
);
21289 Set_Size_Info
(T
, Implicit_Base
);
21290 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
21291 Set_Scalar_Range
(T
, Def
);
21292 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
21293 Set_Is_Constrained
(T
);
21294 end Signed_Integer_Type_Declaration
;