[multiple changes]
[official-gcc.git] / gcc / ada / sem_ch3.adb
blobc60f7c01281c5f52a429da9cbbc0ad6c2b86be90
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Itypes; use Itypes;
43 with Layout; use Layout;
44 with Lib; use Lib;
45 with Lib.Xref; use Lib.Xref;
46 with Namet; use Namet;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Case; use Sem_Case;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch6; use Sem_Ch6;
57 with Sem_Ch7; use Sem_Ch7;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch10; use Sem_Ch10;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
83 package body Sem_Ch3 is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
94 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
95 -- Analyze all delayed pragmas chained on the contract of object Obj_Id as
96 -- if they appeared at the end of the declarative region. The pragmas to be
97 -- considered are:
98 -- Async_Readers
99 -- Async_Writers
100 -- Effective_Reads
101 -- Effective_Writes
102 -- Part_Of
104 procedure Build_Derived_Type
105 (N : Node_Id;
106 Parent_Type : Entity_Id;
107 Derived_Type : Entity_Id;
108 Is_Completion : Boolean;
109 Derive_Subps : Boolean := True);
110 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
111 -- the N_Full_Type_Declaration node containing the derived type definition.
112 -- Parent_Type is the entity for the parent type in the derived type
113 -- definition and Derived_Type the actual derived type. Is_Completion must
114 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
115 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
116 -- completion of a private type declaration. If Is_Completion is set to
117 -- True, N is the completion of a private type declaration and Derived_Type
118 -- is different from the defining identifier inside N (i.e. Derived_Type /=
119 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
120 -- subprograms should be derived. The only case where this parameter is
121 -- False is when Build_Derived_Type is recursively called to process an
122 -- implicit derived full type for a type derived from a private type (in
123 -- that case the subprograms must only be derived for the private view of
124 -- the type).
126 -- ??? These flags need a bit of re-examination and re-documentation:
127 -- ??? are they both necessary (both seem related to the recursion)?
129 procedure Build_Derived_Access_Type
130 (N : Node_Id;
131 Parent_Type : Entity_Id;
132 Derived_Type : Entity_Id);
133 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
134 -- create an implicit base if the parent type is constrained or if the
135 -- subtype indication has a constraint.
137 procedure Build_Derived_Array_Type
138 (N : Node_Id;
139 Parent_Type : Entity_Id;
140 Derived_Type : Entity_Id);
141 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
142 -- create an implicit base if the parent type is constrained or if the
143 -- subtype indication has a constraint.
145 procedure Build_Derived_Concurrent_Type
146 (N : Node_Id;
147 Parent_Type : Entity_Id;
148 Derived_Type : Entity_Id);
149 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
150 -- protected type, inherit entries and protected subprograms, check
151 -- legality of discriminant constraints if any.
153 procedure Build_Derived_Enumeration_Type
154 (N : Node_Id;
155 Parent_Type : Entity_Id;
156 Derived_Type : Entity_Id);
157 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
158 -- type, we must create a new list of literals. Types derived from
159 -- Character and [Wide_]Wide_Character are special-cased.
161 procedure Build_Derived_Numeric_Type
162 (N : Node_Id;
163 Parent_Type : Entity_Id;
164 Derived_Type : Entity_Id);
165 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
166 -- an anonymous base type, and propagate constraint to subtype if needed.
168 procedure Build_Derived_Private_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Is_Completion : Boolean;
173 Derive_Subps : Boolean := True);
174 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
175 -- because the parent may or may not have a completion, and the derivation
176 -- may itself be a completion.
178 procedure Build_Derived_Record_Type
179 (N : Node_Id;
180 Parent_Type : Entity_Id;
181 Derived_Type : Entity_Id;
182 Derive_Subps : Boolean := True);
183 -- Subsidiary procedure used for tagged and untagged record types
184 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
185 -- All parameters are as in Build_Derived_Type except that N, in
186 -- addition to being an N_Full_Type_Declaration node, can also be an
187 -- N_Private_Extension_Declaration node. See the definition of this routine
188 -- for much more info. Derive_Subps indicates whether subprograms should be
189 -- derived from the parent type. The only case where Derive_Subps is False
190 -- is for an implicit derived full type for a type derived from a private
191 -- type (see Build_Derived_Type).
193 procedure Build_Discriminal (Discrim : Entity_Id);
194 -- Create the discriminal corresponding to discriminant Discrim, that is
195 -- the parameter corresponding to Discrim to be used in initialization
196 -- procedures for the type where Discrim is a discriminant. Discriminals
197 -- are not used during semantic analysis, and are not fully defined
198 -- entities until expansion. Thus they are not given a scope until
199 -- initialization procedures are built.
201 function Build_Discriminant_Constraints
202 (T : Entity_Id;
203 Def : Node_Id;
204 Derived_Def : Boolean := False) return Elist_Id;
205 -- Validate discriminant constraints and return the list of the constraints
206 -- in order of discriminant declarations, where T is the discriminated
207 -- unconstrained type. Def is the N_Subtype_Indication node where the
208 -- discriminants constraints for T are specified. Derived_Def is True
209 -- when building the discriminant constraints in a derived type definition
210 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
211 -- type and Def is the constraint "(xxx)" on T and this routine sets the
212 -- Corresponding_Discriminant field of the discriminants in the derived
213 -- type D to point to the corresponding discriminants in the parent type T.
215 procedure Build_Discriminated_Subtype
216 (T : Entity_Id;
217 Def_Id : Entity_Id;
218 Elist : Elist_Id;
219 Related_Nod : Node_Id;
220 For_Access : Boolean := False);
221 -- Subsidiary procedure to Constrain_Discriminated_Type and to
222 -- Process_Incomplete_Dependents. Given
224 -- T (a possibly discriminated base type)
225 -- Def_Id (a very partially built subtype for T),
227 -- the call completes Def_Id to be the appropriate E_*_Subtype.
229 -- The Elist is the list of discriminant constraints if any (it is set
230 -- to No_Elist if T is not a discriminated type, and to an empty list if
231 -- T has discriminants but there are no discriminant constraints). The
232 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
233 -- The For_Access says whether or not this subtype is really constraining
234 -- an access type. That is its sole purpose is the designated type of an
235 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
236 -- is built to avoid freezing T when the access subtype is frozen.
238 function Build_Scalar_Bound
239 (Bound : Node_Id;
240 Par_T : Entity_Id;
241 Der_T : Entity_Id) return Node_Id;
242 -- The bounds of a derived scalar type are conversions of the bounds of
243 -- the parent type. Optimize the representation if the bounds are literals.
244 -- Needs a more complete spec--what are the parameters exactly, and what
245 -- exactly is the returned value, and how is Bound affected???
247 procedure Build_Underlying_Full_View
248 (N : Node_Id;
249 Typ : Entity_Id;
250 Par : Entity_Id);
251 -- If the completion of a private type is itself derived from a private
252 -- type, or if the full view of a private subtype is itself private, the
253 -- back-end has no way to compute the actual size of this type. We build
254 -- an internal subtype declaration of the proper parent type to convey
255 -- this information. This extra mechanism is needed because a full
256 -- view cannot itself have a full view (it would get clobbered during
257 -- view exchanges).
259 procedure Check_Access_Discriminant_Requires_Limited
260 (D : Node_Id;
261 Loc : Node_Id);
262 -- Check the restriction that the type to which an access discriminant
263 -- belongs must be a concurrent type or a descendant of a type with
264 -- the reserved word 'limited' in its declaration.
266 procedure Check_Anonymous_Access_Components
267 (Typ_Decl : Node_Id;
268 Typ : Entity_Id;
269 Prev : Entity_Id;
270 Comp_List : Node_Id);
271 -- Ada 2005 AI-382: an access component in a record definition can refer to
272 -- the enclosing record, in which case it denotes the type itself, and not
273 -- the current instance of the type. We create an anonymous access type for
274 -- the component, and flag it as an access to a component, so accessibility
275 -- checks are properly performed on it. The declaration of the access type
276 -- is placed ahead of that of the record to prevent order-of-elaboration
277 -- circularity issues in Gigi. We create an incomplete type for the record
278 -- declaration, which is the designated type of the anonymous access.
280 procedure Check_Delta_Expression (E : Node_Id);
281 -- Check that the expression represented by E is suitable for use as a
282 -- delta expression, i.e. it is of real type and is static.
284 procedure Check_Digits_Expression (E : Node_Id);
285 -- Check that the expression represented by E is suitable for use as a
286 -- digits expression, i.e. it is of integer type, positive and static.
288 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
289 -- Validate the initialization of an object declaration. T is the required
290 -- type, and Exp is the initialization expression.
292 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
293 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
295 procedure Check_Or_Process_Discriminants
296 (N : Node_Id;
297 T : Entity_Id;
298 Prev : Entity_Id := Empty);
299 -- If N is the full declaration of the completion T of an incomplete or
300 -- private type, check its discriminants (which are already known to be
301 -- conformant with those of the partial view, see Find_Type_Name),
302 -- otherwise process them. Prev is the entity of the partial declaration,
303 -- if any.
305 procedure Check_Real_Bound (Bound : Node_Id);
306 -- Check given bound for being of real type and static. If not, post an
307 -- appropriate message, and rewrite the bound with the real literal zero.
309 procedure Constant_Redeclaration
310 (Id : Entity_Id;
311 N : Node_Id;
312 T : out Entity_Id);
313 -- Various checks on legality of full declaration of deferred constant.
314 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
315 -- node. The caller has not yet set any attributes of this entity.
317 function Contain_Interface
318 (Iface : Entity_Id;
319 Ifaces : Elist_Id) return Boolean;
320 -- Ada 2005: Determine whether Iface is present in the list Ifaces
322 procedure Convert_Scalar_Bounds
323 (N : Node_Id;
324 Parent_Type : Entity_Id;
325 Derived_Type : Entity_Id;
326 Loc : Source_Ptr);
327 -- For derived scalar types, convert the bounds in the type definition to
328 -- the derived type, and complete their analysis. Given a constraint of the
329 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
330 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
331 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
332 -- subtype are conversions of those bounds to the derived_type, so that
333 -- their typing is consistent.
335 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
336 -- Copies attributes from array base type T2 to array base type T1. Copies
337 -- only attributes that apply to base types, but not subtypes.
339 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
340 -- Copies attributes from array subtype T2 to array subtype T1. Copies
341 -- attributes that apply to both subtypes and base types.
343 procedure Create_Constrained_Components
344 (Subt : Entity_Id;
345 Decl_Node : Node_Id;
346 Typ : Entity_Id;
347 Constraints : Elist_Id);
348 -- Build the list of entities for a constrained discriminated record
349 -- subtype. If a component depends on a discriminant, replace its subtype
350 -- using the discriminant values in the discriminant constraint. Subt
351 -- is the defining identifier for the subtype whose list of constrained
352 -- entities we will create. Decl_Node is the type declaration node where
353 -- we will attach all the itypes created. Typ is the base discriminated
354 -- type for the subtype Subt. Constraints is the list of discriminant
355 -- constraints for Typ.
357 function Constrain_Component_Type
358 (Comp : Entity_Id;
359 Constrained_Typ : Entity_Id;
360 Related_Node : Node_Id;
361 Typ : Entity_Id;
362 Constraints : Elist_Id) return Entity_Id;
363 -- Given a discriminated base type Typ, a list of discriminant constraints,
364 -- Constraints, for Typ and a component Comp of Typ, create and return the
365 -- type corresponding to Etype (Comp) where all discriminant references
366 -- are replaced with the corresponding constraint. If Etype (Comp) contains
367 -- no discriminant references then it is returned as-is. Constrained_Typ
368 -- is the final constrained subtype to which the constrained component
369 -- belongs. Related_Node is the node where we attach all created itypes.
371 procedure Constrain_Access
372 (Def_Id : in out Entity_Id;
373 S : Node_Id;
374 Related_Nod : Node_Id);
375 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
376 -- an anonymous type created for a subtype indication. In that case it is
377 -- created in the procedure and attached to Related_Nod.
379 procedure Constrain_Array
380 (Def_Id : in out Entity_Id;
381 SI : Node_Id;
382 Related_Nod : Node_Id;
383 Related_Id : Entity_Id;
384 Suffix : Character);
385 -- Apply a list of index constraints to an unconstrained array type. The
386 -- first parameter is the entity for the resulting subtype. A value of
387 -- Empty for Def_Id indicates that an implicit type must be created, but
388 -- creation is delayed (and must be done by this procedure) because other
389 -- subsidiary implicit types must be created first (which is why Def_Id
390 -- is an in/out parameter). The second parameter is a subtype indication
391 -- node for the constrained array to be created (e.g. something of the
392 -- form string (1 .. 10)). Related_Nod gives the place where this type
393 -- has to be inserted in the tree. The Related_Id and Suffix parameters
394 -- are used to build the associated Implicit type name.
396 procedure Constrain_Concurrent
397 (Def_Id : in out Entity_Id;
398 SI : Node_Id;
399 Related_Nod : Node_Id;
400 Related_Id : Entity_Id;
401 Suffix : Character);
402 -- Apply list of discriminant constraints to an unconstrained concurrent
403 -- type.
405 -- SI is the N_Subtype_Indication node containing the constraint and
406 -- the unconstrained type to constrain.
408 -- Def_Id is the entity for the resulting constrained subtype. A value
409 -- of Empty for Def_Id indicates that an implicit type must be created,
410 -- but creation is delayed (and must be done by this procedure) because
411 -- other subsidiary implicit types must be created first (which is why
412 -- Def_Id is an in/out parameter).
414 -- Related_Nod gives the place where this type has to be inserted
415 -- in the tree.
417 -- The last two arguments are used to create its external name if needed.
419 function Constrain_Corresponding_Record
420 (Prot_Subt : Entity_Id;
421 Corr_Rec : Entity_Id;
422 Related_Nod : Node_Id) return Entity_Id;
423 -- When constraining a protected type or task type with discriminants,
424 -- constrain the corresponding record with the same discriminant values.
426 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
427 -- Constrain a decimal fixed point type with a digits constraint and/or a
428 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
430 procedure Constrain_Discriminated_Type
431 (Def_Id : Entity_Id;
432 S : Node_Id;
433 Related_Nod : Node_Id;
434 For_Access : Boolean := False);
435 -- Process discriminant constraints of composite type. Verify that values
436 -- have been provided for all discriminants, that the original type is
437 -- unconstrained, and that the types of the supplied expressions match
438 -- the discriminant types. The first three parameters are like in routine
439 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
440 -- of For_Access.
442 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
443 -- Constrain an enumeration type with a range constraint. This is identical
444 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
446 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
447 -- Constrain a floating point type with either a digits constraint
448 -- and/or a range constraint, building a E_Floating_Point_Subtype.
450 procedure Constrain_Index
451 (Index : Node_Id;
452 S : Node_Id;
453 Related_Nod : Node_Id;
454 Related_Id : Entity_Id;
455 Suffix : Character;
456 Suffix_Index : Nat);
457 -- Process an index constraint S in a constrained array declaration. The
458 -- constraint can be a subtype name, or a range with or without an explicit
459 -- subtype mark. The index is the corresponding index of the unconstrained
460 -- array. The Related_Id and Suffix parameters are used to build the
461 -- associated Implicit type name.
463 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
464 -- Build subtype of a signed or modular integer type
466 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
467 -- Constrain an ordinary fixed point type with a range constraint, and
468 -- build an E_Ordinary_Fixed_Point_Subtype entity.
470 procedure Copy_And_Swap (Priv, Full : Entity_Id);
471 -- Copy the Priv entity into the entity of its full declaration then swap
472 -- the two entities in such a manner that the former private type is now
473 -- seen as a full type.
475 procedure Decimal_Fixed_Point_Type_Declaration
476 (T : Entity_Id;
477 Def : Node_Id);
478 -- Create a new decimal fixed point type, and apply the constraint to
479 -- obtain a subtype of this new type.
481 procedure Complete_Private_Subtype
482 (Priv : Entity_Id;
483 Full : Entity_Id;
484 Full_Base : Entity_Id;
485 Related_Nod : Node_Id);
486 -- Complete the implicit full view of a private subtype by setting the
487 -- appropriate semantic fields. If the full view of the parent is a record
488 -- type, build constrained components of subtype.
490 procedure Derive_Progenitor_Subprograms
491 (Parent_Type : Entity_Id;
492 Tagged_Type : Entity_Id);
493 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
494 -- operations of progenitors of Tagged_Type, and replace the subsidiary
495 -- subtypes with Tagged_Type, to build the specs of the inherited interface
496 -- primitives. The derived primitives are aliased to those of the
497 -- interface. This routine takes care also of transferring to the full view
498 -- subprograms associated with the partial view of Tagged_Type that cover
499 -- interface primitives.
501 procedure Derived_Standard_Character
502 (N : Node_Id;
503 Parent_Type : Entity_Id;
504 Derived_Type : Entity_Id);
505 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
506 -- derivations from types Standard.Character and Standard.Wide_Character.
508 procedure Derived_Type_Declaration
509 (T : Entity_Id;
510 N : Node_Id;
511 Is_Completion : Boolean);
512 -- Process a derived type declaration. Build_Derived_Type is invoked
513 -- to process the actual derived type definition. Parameters N and
514 -- Is_Completion have the same meaning as in Build_Derived_Type.
515 -- T is the N_Defining_Identifier for the entity defined in the
516 -- N_Full_Type_Declaration node N, that is T is the derived type.
518 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
519 -- Insert each literal in symbol table, as an overloadable identifier. Each
520 -- enumeration type is mapped into a sequence of integers, and each literal
521 -- is defined as a constant with integer value. If any of the literals are
522 -- character literals, the type is a character type, which means that
523 -- strings are legal aggregates for arrays of components of the type.
525 function Expand_To_Stored_Constraint
526 (Typ : Entity_Id;
527 Constraint : Elist_Id) return Elist_Id;
528 -- Given a constraint (i.e. a list of expressions) on the discriminants of
529 -- Typ, expand it into a constraint on the stored discriminants and return
530 -- the new list of expressions constraining the stored discriminants.
532 function Find_Type_Of_Object
533 (Obj_Def : Node_Id;
534 Related_Nod : Node_Id) return Entity_Id;
535 -- Get type entity for object referenced by Obj_Def, attaching the
536 -- implicit types generated to Related_Nod
538 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
539 -- Create a new float and apply the constraint to obtain subtype of it
541 function Has_Range_Constraint (N : Node_Id) return Boolean;
542 -- Given an N_Subtype_Indication node N, return True if a range constraint
543 -- is present, either directly, or as part of a digits or delta constraint.
544 -- In addition, a digits constraint in the decimal case returns True, since
545 -- it establishes a default range if no explicit range is present.
547 function Inherit_Components
548 (N : Node_Id;
549 Parent_Base : Entity_Id;
550 Derived_Base : Entity_Id;
551 Is_Tagged : Boolean;
552 Inherit_Discr : Boolean;
553 Discs : Elist_Id) return Elist_Id;
554 -- Called from Build_Derived_Record_Type to inherit the components of
555 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
556 -- For more information on derived types and component inheritance please
557 -- consult the comment above the body of Build_Derived_Record_Type.
559 -- N is the original derived type declaration
561 -- Is_Tagged is set if we are dealing with tagged types
563 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
564 -- Parent_Base, otherwise no discriminants are inherited.
566 -- Discs gives the list of constraints that apply to Parent_Base in the
567 -- derived type declaration. If Discs is set to No_Elist, then we have
568 -- the following situation:
570 -- type Parent (D1..Dn : ..) is [tagged] record ...;
571 -- type Derived is new Parent [with ...];
573 -- which gets treated as
575 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
577 -- For untagged types the returned value is an association list. The list
578 -- starts from the association (Parent_Base => Derived_Base), and then it
579 -- contains a sequence of the associations of the form
581 -- (Old_Component => New_Component),
583 -- where Old_Component is the Entity_Id of a component in Parent_Base and
584 -- New_Component is the Entity_Id of the corresponding component in
585 -- Derived_Base. For untagged records, this association list is needed when
586 -- copying the record declaration for the derived base. In the tagged case
587 -- the value returned is irrelevant.
589 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
590 -- Propagate static and dynamic predicate flags from a parent to the
591 -- subtype in a subtype declaration with and without constraints.
593 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
594 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
595 -- Determine whether subprogram Subp is a procedure subject to pragma
596 -- Extensions_Visible with value False and has at least one controlling
597 -- parameter of mode OUT.
599 function Is_Valid_Constraint_Kind
600 (T_Kind : Type_Kind;
601 Constraint_Kind : Node_Kind) return Boolean;
602 -- Returns True if it is legal to apply the given kind of constraint to the
603 -- given kind of type (index constraint to an array type, for example).
605 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
606 -- Create new modular type. Verify that modulus is in bounds
608 procedure New_Concatenation_Op (Typ : Entity_Id);
609 -- Create an abbreviated declaration for an operator in order to
610 -- materialize concatenation on array types.
612 procedure Ordinary_Fixed_Point_Type_Declaration
613 (T : Entity_Id;
614 Def : Node_Id);
615 -- Create a new ordinary fixed point type, and apply the constraint to
616 -- obtain subtype of it.
618 procedure Prepare_Private_Subtype_Completion
619 (Id : Entity_Id;
620 Related_Nod : Node_Id);
621 -- Id is a subtype of some private type. Creates the full declaration
622 -- associated with Id whenever possible, i.e. when the full declaration
623 -- of the base type is already known. Records each subtype into
624 -- Private_Dependents of the base type.
626 procedure Process_Incomplete_Dependents
627 (N : Node_Id;
628 Full_T : Entity_Id;
629 Inc_T : Entity_Id);
630 -- Process all entities that depend on an incomplete type. There include
631 -- subtypes, subprogram types that mention the incomplete type in their
632 -- profiles, and subprogram with access parameters that designate the
633 -- incomplete type.
635 -- Inc_T is the defining identifier of an incomplete type declaration, its
636 -- Ekind is E_Incomplete_Type.
638 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
640 -- Full_T is N's defining identifier.
642 -- Subtypes of incomplete types with discriminants are completed when the
643 -- parent type is. This is simpler than private subtypes, because they can
644 -- only appear in the same scope, and there is no need to exchange views.
645 -- Similarly, access_to_subprogram types may have a parameter or a return
646 -- type that is an incomplete type, and that must be replaced with the
647 -- full type.
649 -- If the full type is tagged, subprogram with access parameters that
650 -- designated the incomplete may be primitive operations of the full type,
651 -- and have to be processed accordingly.
653 procedure Process_Real_Range_Specification (Def : Node_Id);
654 -- Given the type definition for a real type, this procedure processes and
655 -- checks the real range specification of this type definition if one is
656 -- present. If errors are found, error messages are posted, and the
657 -- Real_Range_Specification of Def is reset to Empty.
659 procedure Propagate_Default_Init_Cond_Attributes
660 (From_Typ : Entity_Id;
661 To_Typ : Entity_Id;
662 Parent_To_Derivation : Boolean := False;
663 Private_To_Full_View : Boolean := False);
664 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
665 -- all attributes related to pragma Default_Initial_Condition from From_Typ
666 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
667 -- the creation of a derived type. Flag Private_To_Full_View should be set
668 -- when processing both views of a private type.
670 procedure Record_Type_Declaration
671 (T : Entity_Id;
672 N : Node_Id;
673 Prev : Entity_Id);
674 -- Process a record type declaration (for both untagged and tagged
675 -- records). Parameters T and N are exactly like in procedure
676 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
677 -- for this routine. If this is the completion of an incomplete type
678 -- declaration, Prev is the entity of the incomplete declaration, used for
679 -- cross-referencing. Otherwise Prev = T.
681 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
682 -- This routine is used to process the actual record type definition (both
683 -- for untagged and tagged records). Def is a record type definition node.
684 -- This procedure analyzes the components in this record type definition.
685 -- Prev_T is the entity for the enclosing record type. It is provided so
686 -- that its Has_Task flag can be set if any of the component have Has_Task
687 -- set. If the declaration is the completion of an incomplete type
688 -- declaration, Prev_T is the original incomplete type, whose full view is
689 -- the record type.
691 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
692 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
693 -- build a copy of the declaration tree of the parent, and we create
694 -- independently the list of components for the derived type. Semantic
695 -- information uses the component entities, but record representation
696 -- clauses are validated on the declaration tree. This procedure replaces
697 -- discriminants and components in the declaration with those that have
698 -- been created by Inherit_Components.
700 procedure Set_Fixed_Range
701 (E : Entity_Id;
702 Loc : Source_Ptr;
703 Lo : Ureal;
704 Hi : Ureal);
705 -- Build a range node with the given bounds and set it as the Scalar_Range
706 -- of the given fixed-point type entity. Loc is the source location used
707 -- for the constructed range. See body for further details.
709 procedure Set_Scalar_Range_For_Subtype
710 (Def_Id : Entity_Id;
711 R : Node_Id;
712 Subt : Entity_Id);
713 -- This routine is used to set the scalar range field for a subtype given
714 -- Def_Id, the entity for the subtype, and R, the range expression for the
715 -- scalar range. Subt provides the parent subtype to be used to analyze,
716 -- resolve, and check the given range.
718 procedure Set_Default_SSO (T : Entity_Id);
719 -- T is the entity for an array or record being declared. This procedure
720 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
721 -- to the setting of Opt.Default_SSO.
723 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
724 -- Create a new signed integer entity, and apply the constraint to obtain
725 -- the required first named subtype of this type.
727 procedure Set_Stored_Constraint_From_Discriminant_Constraint
728 (E : Entity_Id);
729 -- E is some record type. This routine computes E's Stored_Constraint
730 -- from its Discriminant_Constraint.
732 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
733 -- Check that an entity in a list of progenitors is an interface,
734 -- emit error otherwise.
736 -----------------------
737 -- Access_Definition --
738 -----------------------
740 function Access_Definition
741 (Related_Nod : Node_Id;
742 N : Node_Id) return Entity_Id
744 Anon_Type : Entity_Id;
745 Anon_Scope : Entity_Id;
746 Desig_Type : Entity_Id;
747 Enclosing_Prot_Type : Entity_Id := Empty;
749 begin
750 Check_SPARK_05_Restriction ("access type is not allowed", N);
752 if Is_Entry (Current_Scope)
753 and then Is_Task_Type (Etype (Scope (Current_Scope)))
754 then
755 Error_Msg_N ("task entries cannot have access parameters", N);
756 return Empty;
757 end if;
759 -- Ada 2005: For an object declaration the corresponding anonymous
760 -- type is declared in the current scope.
762 -- If the access definition is the return type of another access to
763 -- function, scope is the current one, because it is the one of the
764 -- current type declaration, except for the pathological case below.
766 if Nkind_In (Related_Nod, N_Object_Declaration,
767 N_Access_Function_Definition)
768 then
769 Anon_Scope := Current_Scope;
771 -- A pathological case: function returning access functions that
772 -- return access functions, etc. Each anonymous access type created
773 -- is in the enclosing scope of the outermost function.
775 declare
776 Par : Node_Id;
778 begin
779 Par := Related_Nod;
780 while Nkind_In (Par, N_Access_Function_Definition,
781 N_Access_Definition)
782 loop
783 Par := Parent (Par);
784 end loop;
786 if Nkind (Par) = N_Function_Specification then
787 Anon_Scope := Scope (Defining_Entity (Par));
788 end if;
789 end;
791 -- For the anonymous function result case, retrieve the scope of the
792 -- function specification's associated entity rather than using the
793 -- current scope. The current scope will be the function itself if the
794 -- formal part is currently being analyzed, but will be the parent scope
795 -- in the case of a parameterless function, and we always want to use
796 -- the function's parent scope. Finally, if the function is a child
797 -- unit, we must traverse the tree to retrieve the proper entity.
799 elsif Nkind (Related_Nod) = N_Function_Specification
800 and then Nkind (Parent (N)) /= N_Parameter_Specification
801 then
802 -- If the current scope is a protected type, the anonymous access
803 -- is associated with one of the protected operations, and must
804 -- be available in the scope that encloses the protected declaration.
805 -- Otherwise the type is in the scope enclosing the subprogram.
807 -- If the function has formals, The return type of a subprogram
808 -- declaration is analyzed in the scope of the subprogram (see
809 -- Process_Formals) and thus the protected type, if present, is
810 -- the scope of the current function scope.
812 if Ekind (Current_Scope) = E_Protected_Type then
813 Enclosing_Prot_Type := Current_Scope;
815 elsif Ekind (Current_Scope) = E_Function
816 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
817 then
818 Enclosing_Prot_Type := Scope (Current_Scope);
819 end if;
821 if Present (Enclosing_Prot_Type) then
822 Anon_Scope := Scope (Enclosing_Prot_Type);
824 else
825 Anon_Scope := Scope (Defining_Entity (Related_Nod));
826 end if;
828 -- For an access type definition, if the current scope is a child
829 -- unit it is the scope of the type.
831 elsif Is_Compilation_Unit (Current_Scope) then
832 Anon_Scope := Current_Scope;
834 -- For access formals, access components, and access discriminants, the
835 -- scope is that of the enclosing declaration,
837 else
838 Anon_Scope := Scope (Current_Scope);
839 end if;
841 Anon_Type :=
842 Create_Itype
843 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
845 if All_Present (N)
846 and then Ada_Version >= Ada_2005
847 then
848 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
849 end if;
851 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
852 -- the corresponding semantic routine
854 if Present (Access_To_Subprogram_Definition (N)) then
856 -- Compiler runtime units are compiled in Ada 2005 mode when building
857 -- the runtime library but must also be compilable in Ada 95 mode
858 -- (when bootstrapping the compiler).
860 Check_Compiler_Unit ("anonymous access to subprogram", N);
862 Access_Subprogram_Declaration
863 (T_Name => Anon_Type,
864 T_Def => Access_To_Subprogram_Definition (N));
866 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
867 Set_Ekind
868 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
869 else
870 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
871 end if;
873 Set_Can_Use_Internal_Rep
874 (Anon_Type, not Always_Compatible_Rep_On_Target);
876 -- If the anonymous access is associated with a protected operation,
877 -- create a reference to it after the enclosing protected definition
878 -- because the itype will be used in the subsequent bodies.
880 if Ekind (Current_Scope) = E_Protected_Type then
881 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
882 end if;
884 return Anon_Type;
885 end if;
887 Find_Type (Subtype_Mark (N));
888 Desig_Type := Entity (Subtype_Mark (N));
890 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
891 Set_Etype (Anon_Type, Anon_Type);
893 -- Make sure the anonymous access type has size and alignment fields
894 -- set, as required by gigi. This is necessary in the case of the
895 -- Task_Body_Procedure.
897 if not Has_Private_Component (Desig_Type) then
898 Layout_Type (Anon_Type);
899 end if;
901 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
902 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
903 -- the null value is allowed. In Ada 95 the null value is never allowed.
905 if Ada_Version >= Ada_2005 then
906 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
907 else
908 Set_Can_Never_Be_Null (Anon_Type, True);
909 end if;
911 -- The anonymous access type is as public as the discriminated type or
912 -- subprogram that defines it. It is imported (for back-end purposes)
913 -- if the designated type is.
915 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
917 -- Ada 2005 (AI-231): Propagate the access-constant attribute
919 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
921 -- The context is either a subprogram declaration, object declaration,
922 -- or an access discriminant, in a private or a full type declaration.
923 -- In the case of a subprogram, if the designated type is incomplete,
924 -- the operation will be a primitive operation of the full type, to be
925 -- updated subsequently. If the type is imported through a limited_with
926 -- clause, the subprogram is not a primitive operation of the type
927 -- (which is declared elsewhere in some other scope).
929 if Ekind (Desig_Type) = E_Incomplete_Type
930 and then not From_Limited_With (Desig_Type)
931 and then Is_Overloadable (Current_Scope)
932 then
933 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
934 Set_Has_Delayed_Freeze (Current_Scope);
935 end if;
937 -- Ada 2005: If the designated type is an interface that may contain
938 -- tasks, create a Master entity for the declaration. This must be done
939 -- before expansion of the full declaration, because the declaration may
940 -- include an expression that is an allocator, whose expansion needs the
941 -- proper Master for the created tasks.
943 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
944 then
945 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
946 then
947 Build_Class_Wide_Master (Anon_Type);
949 -- Similarly, if the type is an anonymous access that designates
950 -- tasks, create a master entity for it in the current context.
952 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
953 then
954 Build_Master_Entity (Defining_Identifier (Related_Nod));
955 Build_Master_Renaming (Anon_Type);
956 end if;
957 end if;
959 -- For a private component of a protected type, it is imperative that
960 -- the back-end elaborate the type immediately after the protected
961 -- declaration, because this type will be used in the declarations
962 -- created for the component within each protected body, so we must
963 -- create an itype reference for it now.
965 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
966 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
968 -- Similarly, if the access definition is the return result of a
969 -- function, create an itype reference for it because it will be used
970 -- within the function body. For a regular function that is not a
971 -- compilation unit, insert reference after the declaration. For a
972 -- protected operation, insert it after the enclosing protected type
973 -- declaration. In either case, do not create a reference for a type
974 -- obtained through a limited_with clause, because this would introduce
975 -- semantic dependencies.
977 -- Similarly, do not create a reference if the designated type is a
978 -- generic formal, because no use of it will reach the backend.
980 elsif Nkind (Related_Nod) = N_Function_Specification
981 and then not From_Limited_With (Desig_Type)
982 and then not Is_Generic_Type (Desig_Type)
983 then
984 if Present (Enclosing_Prot_Type) then
985 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
987 elsif Is_List_Member (Parent (Related_Nod))
988 and then Nkind (Parent (N)) /= N_Parameter_Specification
989 then
990 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
991 end if;
993 -- Finally, create an itype reference for an object declaration of an
994 -- anonymous access type. This is strictly necessary only for deferred
995 -- constants, but in any case will avoid out-of-scope problems in the
996 -- back-end.
998 elsif Nkind (Related_Nod) = N_Object_Declaration then
999 Build_Itype_Reference (Anon_Type, Related_Nod);
1000 end if;
1002 return Anon_Type;
1003 end Access_Definition;
1005 -----------------------------------
1006 -- Access_Subprogram_Declaration --
1007 -----------------------------------
1009 procedure Access_Subprogram_Declaration
1010 (T_Name : Entity_Id;
1011 T_Def : Node_Id)
1013 procedure Check_For_Premature_Usage (Def : Node_Id);
1014 -- Check that type T_Name is not used, directly or recursively, as a
1015 -- parameter or a return type in Def. Def is either a subtype, an
1016 -- access_definition, or an access_to_subprogram_definition.
1018 -------------------------------
1019 -- Check_For_Premature_Usage --
1020 -------------------------------
1022 procedure Check_For_Premature_Usage (Def : Node_Id) is
1023 Param : Node_Id;
1025 begin
1026 -- Check for a subtype mark
1028 if Nkind (Def) in N_Has_Etype then
1029 if Etype (Def) = T_Name then
1030 Error_Msg_N
1031 ("type& cannot be used before end of its declaration", Def);
1032 end if;
1034 -- If this is not a subtype, then this is an access_definition
1036 elsif Nkind (Def) = N_Access_Definition then
1037 if Present (Access_To_Subprogram_Definition (Def)) then
1038 Check_For_Premature_Usage
1039 (Access_To_Subprogram_Definition (Def));
1040 else
1041 Check_For_Premature_Usage (Subtype_Mark (Def));
1042 end if;
1044 -- The only cases left are N_Access_Function_Definition and
1045 -- N_Access_Procedure_Definition.
1047 else
1048 if Present (Parameter_Specifications (Def)) then
1049 Param := First (Parameter_Specifications (Def));
1050 while Present (Param) loop
1051 Check_For_Premature_Usage (Parameter_Type (Param));
1052 Param := Next (Param);
1053 end loop;
1054 end if;
1056 if Nkind (Def) = N_Access_Function_Definition then
1057 Check_For_Premature_Usage (Result_Definition (Def));
1058 end if;
1059 end if;
1060 end Check_For_Premature_Usage;
1062 -- Local variables
1064 Formals : constant List_Id := Parameter_Specifications (T_Def);
1065 Formal : Entity_Id;
1066 D_Ityp : Node_Id;
1067 Desig_Type : constant Entity_Id :=
1068 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1070 -- Start of processing for Access_Subprogram_Declaration
1072 begin
1073 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1075 -- Associate the Itype node with the inner full-type declaration or
1076 -- subprogram spec or entry body. This is required to handle nested
1077 -- anonymous declarations. For example:
1079 -- procedure P
1080 -- (X : access procedure
1081 -- (Y : access procedure
1082 -- (Z : access T)))
1084 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1085 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1086 N_Private_Type_Declaration,
1087 N_Private_Extension_Declaration,
1088 N_Procedure_Specification,
1089 N_Function_Specification,
1090 N_Entry_Body)
1092 or else
1093 Nkind_In (D_Ityp, N_Object_Declaration,
1094 N_Object_Renaming_Declaration,
1095 N_Formal_Object_Declaration,
1096 N_Formal_Type_Declaration,
1097 N_Task_Type_Declaration,
1098 N_Protected_Type_Declaration))
1099 loop
1100 D_Ityp := Parent (D_Ityp);
1101 pragma Assert (D_Ityp /= Empty);
1102 end loop;
1104 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1106 if Nkind_In (D_Ityp, N_Procedure_Specification,
1107 N_Function_Specification)
1108 then
1109 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1111 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1112 N_Object_Declaration,
1113 N_Object_Renaming_Declaration,
1114 N_Formal_Type_Declaration)
1115 then
1116 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1117 end if;
1119 if Nkind (T_Def) = N_Access_Function_Definition then
1120 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1121 declare
1122 Acc : constant Node_Id := Result_Definition (T_Def);
1124 begin
1125 if Present (Access_To_Subprogram_Definition (Acc))
1126 and then
1127 Protected_Present (Access_To_Subprogram_Definition (Acc))
1128 then
1129 Set_Etype
1130 (Desig_Type,
1131 Replace_Anonymous_Access_To_Protected_Subprogram
1132 (T_Def));
1134 else
1135 Set_Etype
1136 (Desig_Type,
1137 Access_Definition (T_Def, Result_Definition (T_Def)));
1138 end if;
1139 end;
1141 else
1142 Analyze (Result_Definition (T_Def));
1144 declare
1145 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1147 begin
1148 -- If a null exclusion is imposed on the result type, then
1149 -- create a null-excluding itype (an access subtype) and use
1150 -- it as the function's Etype.
1152 if Is_Access_Type (Typ)
1153 and then Null_Exclusion_In_Return_Present (T_Def)
1154 then
1155 Set_Etype (Desig_Type,
1156 Create_Null_Excluding_Itype
1157 (T => Typ,
1158 Related_Nod => T_Def,
1159 Scope_Id => Current_Scope));
1161 else
1162 if From_Limited_With (Typ) then
1164 -- AI05-151: Incomplete types are allowed in all basic
1165 -- declarations, including access to subprograms.
1167 if Ada_Version >= Ada_2012 then
1168 null;
1170 else
1171 Error_Msg_NE
1172 ("illegal use of incomplete type&",
1173 Result_Definition (T_Def), Typ);
1174 end if;
1176 elsif Ekind (Current_Scope) = E_Package
1177 and then In_Private_Part (Current_Scope)
1178 then
1179 if Ekind (Typ) = E_Incomplete_Type then
1180 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1182 elsif Is_Class_Wide_Type (Typ)
1183 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1184 then
1185 Append_Elmt
1186 (Desig_Type, Private_Dependents (Etype (Typ)));
1187 end if;
1188 end if;
1190 Set_Etype (Desig_Type, Typ);
1191 end if;
1192 end;
1193 end if;
1195 if not (Is_Type (Etype (Desig_Type))) then
1196 Error_Msg_N
1197 ("expect type in function specification",
1198 Result_Definition (T_Def));
1199 end if;
1201 else
1202 Set_Etype (Desig_Type, Standard_Void_Type);
1203 end if;
1205 if Present (Formals) then
1206 Push_Scope (Desig_Type);
1208 -- Some special tests here. These special tests can be removed
1209 -- if and when Itypes always have proper parent pointers to their
1210 -- declarations???
1212 -- Special test 1) Link defining_identifier of formals. Required by
1213 -- First_Formal to provide its functionality.
1215 declare
1216 F : Node_Id;
1218 begin
1219 F := First (Formals);
1221 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1222 -- when it is part of an unconstrained type and subtype expansion
1223 -- is disabled. To avoid back-end problems with shared profiles,
1224 -- use previous subprogram type as the designated type, and then
1225 -- remove scope added above.
1227 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1228 then
1229 Set_Etype (T_Name, T_Name);
1230 Init_Size_Align (T_Name);
1231 Set_Directly_Designated_Type (T_Name,
1232 Scope (Defining_Identifier (F)));
1233 End_Scope;
1234 return;
1235 end if;
1237 while Present (F) loop
1238 if No (Parent (Defining_Identifier (F))) then
1239 Set_Parent (Defining_Identifier (F), F);
1240 end if;
1242 Next (F);
1243 end loop;
1244 end;
1246 Process_Formals (Formals, Parent (T_Def));
1248 -- Special test 2) End_Scope requires that the parent pointer be set
1249 -- to something reasonable, but Itypes don't have parent pointers. So
1250 -- we set it and then unset it ???
1252 Set_Parent (Desig_Type, T_Name);
1253 End_Scope;
1254 Set_Parent (Desig_Type, Empty);
1255 end if;
1257 -- Check for premature usage of the type being defined
1259 Check_For_Premature_Usage (T_Def);
1261 -- The return type and/or any parameter type may be incomplete. Mark the
1262 -- subprogram_type as depending on the incomplete type, so that it can
1263 -- be updated when the full type declaration is seen. This only applies
1264 -- to incomplete types declared in some enclosing scope, not to limited
1265 -- views from other packages.
1267 -- Prior to Ada 2012, access to functions can only have in_parameters.
1269 if Present (Formals) then
1270 Formal := First_Formal (Desig_Type);
1271 while Present (Formal) loop
1272 if Ekind (Formal) /= E_In_Parameter
1273 and then Nkind (T_Def) = N_Access_Function_Definition
1274 and then Ada_Version < Ada_2012
1275 then
1276 Error_Msg_N ("functions can only have IN parameters", Formal);
1277 end if;
1279 if Ekind (Etype (Formal)) = E_Incomplete_Type
1280 and then In_Open_Scopes (Scope (Etype (Formal)))
1281 then
1282 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1283 Set_Has_Delayed_Freeze (Desig_Type);
1284 end if;
1286 Next_Formal (Formal);
1287 end loop;
1288 end if;
1290 -- Check whether an indirect call without actuals may be possible. This
1291 -- is used when resolving calls whose result is then indexed.
1293 May_Need_Actuals (Desig_Type);
1295 -- If the return type is incomplete, this is legal as long as the type
1296 -- is declared in the current scope and will be completed in it (rather
1297 -- than being part of limited view).
1299 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1300 and then not Has_Delayed_Freeze (Desig_Type)
1301 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1302 then
1303 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1304 Set_Has_Delayed_Freeze (Desig_Type);
1305 end if;
1307 Check_Delayed_Subprogram (Desig_Type);
1309 if Protected_Present (T_Def) then
1310 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1311 Set_Convention (Desig_Type, Convention_Protected);
1312 else
1313 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1314 end if;
1316 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1318 Set_Etype (T_Name, T_Name);
1319 Init_Size_Align (T_Name);
1320 Set_Directly_Designated_Type (T_Name, Desig_Type);
1322 Generate_Reference_To_Formals (T_Name);
1324 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1326 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1328 Check_Restriction (No_Access_Subprograms, T_Def);
1329 end Access_Subprogram_Declaration;
1331 ----------------------------
1332 -- Access_Type_Declaration --
1333 ----------------------------
1335 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1336 P : constant Node_Id := Parent (Def);
1337 S : constant Node_Id := Subtype_Indication (Def);
1339 Full_Desig : Entity_Id;
1341 begin
1342 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1344 -- Check for permissible use of incomplete type
1346 if Nkind (S) /= N_Subtype_Indication then
1347 Analyze (S);
1349 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1350 Set_Directly_Designated_Type (T, Entity (S));
1352 -- If the designated type is a limited view, we cannot tell if
1353 -- the full view contains tasks, and there is no way to handle
1354 -- that full view in a client. We create a master entity for the
1355 -- scope, which will be used when a client determines that one
1356 -- is needed.
1358 if From_Limited_With (Entity (S))
1359 and then not Is_Class_Wide_Type (Entity (S))
1360 then
1361 Set_Ekind (T, E_Access_Type);
1362 Build_Master_Entity (T);
1363 Build_Master_Renaming (T);
1364 end if;
1366 else
1367 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1368 end if;
1370 -- If the access definition is of the form: ACCESS NOT NULL ..
1371 -- the subtype indication must be of an access type. Create
1372 -- a null-excluding subtype of it.
1374 if Null_Excluding_Subtype (Def) then
1375 if not Is_Access_Type (Entity (S)) then
1376 Error_Msg_N ("null exclusion must apply to access type", Def);
1378 else
1379 declare
1380 Loc : constant Source_Ptr := Sloc (S);
1381 Decl : Node_Id;
1382 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1384 begin
1385 Decl :=
1386 Make_Subtype_Declaration (Loc,
1387 Defining_Identifier => Nam,
1388 Subtype_Indication =>
1389 New_Occurrence_Of (Entity (S), Loc));
1390 Set_Null_Exclusion_Present (Decl);
1391 Insert_Before (Parent (Def), Decl);
1392 Analyze (Decl);
1393 Set_Entity (S, Nam);
1394 end;
1395 end if;
1396 end if;
1398 else
1399 Set_Directly_Designated_Type (T,
1400 Process_Subtype (S, P, T, 'P'));
1401 end if;
1403 if All_Present (Def) or Constant_Present (Def) then
1404 Set_Ekind (T, E_General_Access_Type);
1405 else
1406 Set_Ekind (T, E_Access_Type);
1407 end if;
1409 Full_Desig := Designated_Type (T);
1411 if Base_Type (Full_Desig) = T then
1412 Error_Msg_N ("access type cannot designate itself", S);
1414 -- In Ada 2005, the type may have a limited view through some unit in
1415 -- its own context, allowing the following circularity that cannot be
1416 -- detected earlier.
1418 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1419 then
1420 Error_Msg_N
1421 ("access type cannot designate its own classwide type", S);
1423 -- Clean up indication of tagged status to prevent cascaded errors
1425 Set_Is_Tagged_Type (T, False);
1426 end if;
1428 Set_Etype (T, T);
1430 -- If the type has appeared already in a with_type clause, it is frozen
1431 -- and the pointer size is already set. Else, initialize.
1433 if not From_Limited_With (T) then
1434 Init_Size_Align (T);
1435 end if;
1437 -- Note that Has_Task is always false, since the access type itself
1438 -- is not a task type. See Einfo for more description on this point.
1439 -- Exactly the same consideration applies to Has_Controlled_Component
1440 -- and to Has_Protected.
1442 Set_Has_Task (T, False);
1443 Set_Has_Controlled_Component (T, False);
1444 Set_Has_Protected (T, False);
1446 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1447 -- problems where an incomplete view of this entity has been previously
1448 -- established by a limited with and an overlaid version of this field
1449 -- (Stored_Constraint) was initialized for the incomplete view.
1451 -- This reset is performed in most cases except where the access type
1452 -- has been created for the purposes of allocating or deallocating a
1453 -- build-in-place object. Such access types have explicitly set pools
1454 -- and finalization masters.
1456 if No (Associated_Storage_Pool (T)) then
1457 Set_Finalization_Master (T, Empty);
1458 end if;
1460 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1461 -- attributes
1463 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1464 Set_Is_Access_Constant (T, Constant_Present (Def));
1465 end Access_Type_Declaration;
1467 ----------------------------------
1468 -- Add_Interface_Tag_Components --
1469 ----------------------------------
1471 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1472 Loc : constant Source_Ptr := Sloc (N);
1473 L : List_Id;
1474 Last_Tag : Node_Id;
1476 procedure Add_Tag (Iface : Entity_Id);
1477 -- Add tag for one of the progenitor interfaces
1479 -------------
1480 -- Add_Tag --
1481 -------------
1483 procedure Add_Tag (Iface : Entity_Id) is
1484 Decl : Node_Id;
1485 Def : Node_Id;
1486 Tag : Entity_Id;
1487 Offset : Entity_Id;
1489 begin
1490 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1492 -- This is a reasonable place to propagate predicates
1494 if Has_Predicates (Iface) then
1495 Set_Has_Predicates (Typ);
1496 end if;
1498 Def :=
1499 Make_Component_Definition (Loc,
1500 Aliased_Present => True,
1501 Subtype_Indication =>
1502 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1504 Tag := Make_Temporary (Loc, 'V');
1506 Decl :=
1507 Make_Component_Declaration (Loc,
1508 Defining_Identifier => Tag,
1509 Component_Definition => Def);
1511 Analyze_Component_Declaration (Decl);
1513 Set_Analyzed (Decl);
1514 Set_Ekind (Tag, E_Component);
1515 Set_Is_Tag (Tag);
1516 Set_Is_Aliased (Tag);
1517 Set_Related_Type (Tag, Iface);
1518 Init_Component_Location (Tag);
1520 pragma Assert (Is_Frozen (Iface));
1522 Set_DT_Entry_Count (Tag,
1523 DT_Entry_Count (First_Entity (Iface)));
1525 if No (Last_Tag) then
1526 Prepend (Decl, L);
1527 else
1528 Insert_After (Last_Tag, Decl);
1529 end if;
1531 Last_Tag := Decl;
1533 -- If the ancestor has discriminants we need to give special support
1534 -- to store the offset_to_top value of the secondary dispatch tables.
1535 -- For this purpose we add a supplementary component just after the
1536 -- field that contains the tag associated with each secondary DT.
1538 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1539 Def :=
1540 Make_Component_Definition (Loc,
1541 Subtype_Indication =>
1542 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1544 Offset := Make_Temporary (Loc, 'V');
1546 Decl :=
1547 Make_Component_Declaration (Loc,
1548 Defining_Identifier => Offset,
1549 Component_Definition => Def);
1551 Analyze_Component_Declaration (Decl);
1553 Set_Analyzed (Decl);
1554 Set_Ekind (Offset, E_Component);
1555 Set_Is_Aliased (Offset);
1556 Set_Related_Type (Offset, Iface);
1557 Init_Component_Location (Offset);
1558 Insert_After (Last_Tag, Decl);
1559 Last_Tag := Decl;
1560 end if;
1561 end Add_Tag;
1563 -- Local variables
1565 Elmt : Elmt_Id;
1566 Ext : Node_Id;
1567 Comp : Node_Id;
1569 -- Start of processing for Add_Interface_Tag_Components
1571 begin
1572 if not RTE_Available (RE_Interface_Tag) then
1573 Error_Msg
1574 ("(Ada 2005) interface types not supported by this run-time!",
1575 Sloc (N));
1576 return;
1577 end if;
1579 if Ekind (Typ) /= E_Record_Type
1580 or else (Is_Concurrent_Record_Type (Typ)
1581 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1582 or else (not Is_Concurrent_Record_Type (Typ)
1583 and then No (Interfaces (Typ))
1584 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1585 then
1586 return;
1587 end if;
1589 -- Find the current last tag
1591 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1592 Ext := Record_Extension_Part (Type_Definition (N));
1593 else
1594 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1595 Ext := Type_Definition (N);
1596 end if;
1598 Last_Tag := Empty;
1600 if not (Present (Component_List (Ext))) then
1601 Set_Null_Present (Ext, False);
1602 L := New_List;
1603 Set_Component_List (Ext,
1604 Make_Component_List (Loc,
1605 Component_Items => L,
1606 Null_Present => False));
1607 else
1608 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1609 L := Component_Items
1610 (Component_List
1611 (Record_Extension_Part
1612 (Type_Definition (N))));
1613 else
1614 L := Component_Items
1615 (Component_List
1616 (Type_Definition (N)));
1617 end if;
1619 -- Find the last tag component
1621 Comp := First (L);
1622 while Present (Comp) loop
1623 if Nkind (Comp) = N_Component_Declaration
1624 and then Is_Tag (Defining_Identifier (Comp))
1625 then
1626 Last_Tag := Comp;
1627 end if;
1629 Next (Comp);
1630 end loop;
1631 end if;
1633 -- At this point L references the list of components and Last_Tag
1634 -- references the current last tag (if any). Now we add the tag
1635 -- corresponding with all the interfaces that are not implemented
1636 -- by the parent.
1638 if Present (Interfaces (Typ)) then
1639 Elmt := First_Elmt (Interfaces (Typ));
1640 while Present (Elmt) loop
1641 Add_Tag (Node (Elmt));
1642 Next_Elmt (Elmt);
1643 end loop;
1644 end if;
1645 end Add_Interface_Tag_Components;
1647 -------------------------------------
1648 -- Add_Internal_Interface_Entities --
1649 -------------------------------------
1651 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1652 Elmt : Elmt_Id;
1653 Iface : Entity_Id;
1654 Iface_Elmt : Elmt_Id;
1655 Iface_Prim : Entity_Id;
1656 Ifaces_List : Elist_Id;
1657 New_Subp : Entity_Id := Empty;
1658 Prim : Entity_Id;
1659 Restore_Scope : Boolean := False;
1661 begin
1662 pragma Assert (Ada_Version >= Ada_2005
1663 and then Is_Record_Type (Tagged_Type)
1664 and then Is_Tagged_Type (Tagged_Type)
1665 and then Has_Interfaces (Tagged_Type)
1666 and then not Is_Interface (Tagged_Type));
1668 -- Ensure that the internal entities are added to the scope of the type
1670 if Scope (Tagged_Type) /= Current_Scope then
1671 Push_Scope (Scope (Tagged_Type));
1672 Restore_Scope := True;
1673 end if;
1675 Collect_Interfaces (Tagged_Type, Ifaces_List);
1677 Iface_Elmt := First_Elmt (Ifaces_List);
1678 while Present (Iface_Elmt) loop
1679 Iface := Node (Iface_Elmt);
1681 -- Originally we excluded here from this processing interfaces that
1682 -- are parents of Tagged_Type because their primitives are located
1683 -- in the primary dispatch table (and hence no auxiliary internal
1684 -- entities are required to handle secondary dispatch tables in such
1685 -- case). However, these auxiliary entities are also required to
1686 -- handle derivations of interfaces in formals of generics (see
1687 -- Derive_Subprograms).
1689 Elmt := First_Elmt (Primitive_Operations (Iface));
1690 while Present (Elmt) loop
1691 Iface_Prim := Node (Elmt);
1693 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1694 Prim :=
1695 Find_Primitive_Covering_Interface
1696 (Tagged_Type => Tagged_Type,
1697 Iface_Prim => Iface_Prim);
1699 if No (Prim) and then Serious_Errors_Detected > 0 then
1700 goto Continue;
1701 end if;
1703 pragma Assert (Present (Prim));
1705 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1706 -- differs from the name of the interface primitive then it is
1707 -- a private primitive inherited from a parent type. In such
1708 -- case, given that Tagged_Type covers the interface, the
1709 -- inherited private primitive becomes visible. For such
1710 -- purpose we add a new entity that renames the inherited
1711 -- private primitive.
1713 if Chars (Prim) /= Chars (Iface_Prim) then
1714 pragma Assert (Has_Suffix (Prim, 'P'));
1715 Derive_Subprogram
1716 (New_Subp => New_Subp,
1717 Parent_Subp => Iface_Prim,
1718 Derived_Type => Tagged_Type,
1719 Parent_Type => Iface);
1720 Set_Alias (New_Subp, Prim);
1721 Set_Is_Abstract_Subprogram
1722 (New_Subp, Is_Abstract_Subprogram (Prim));
1723 end if;
1725 Derive_Subprogram
1726 (New_Subp => New_Subp,
1727 Parent_Subp => Iface_Prim,
1728 Derived_Type => Tagged_Type,
1729 Parent_Type => Iface);
1731 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1732 -- associated with interface types. These entities are
1733 -- only registered in the list of primitives of its
1734 -- corresponding tagged type because they are only used
1735 -- to fill the contents of the secondary dispatch tables.
1736 -- Therefore they are removed from the homonym chains.
1738 Set_Is_Hidden (New_Subp);
1739 Set_Is_Internal (New_Subp);
1740 Set_Alias (New_Subp, Prim);
1741 Set_Is_Abstract_Subprogram
1742 (New_Subp, Is_Abstract_Subprogram (Prim));
1743 Set_Interface_Alias (New_Subp, Iface_Prim);
1745 -- If the returned type is an interface then propagate it to
1746 -- the returned type. Needed by the thunk to generate the code
1747 -- which displaces "this" to reference the corresponding
1748 -- secondary dispatch table in the returned object.
1750 if Is_Interface (Etype (Iface_Prim)) then
1751 Set_Etype (New_Subp, Etype (Iface_Prim));
1752 end if;
1754 -- Internal entities associated with interface types are
1755 -- only registered in the list of primitives of the tagged
1756 -- type. They are only used to fill the contents of the
1757 -- secondary dispatch tables. Therefore they are not needed
1758 -- in the homonym chains.
1760 Remove_Homonym (New_Subp);
1762 -- Hidden entities associated with interfaces must have set
1763 -- the Has_Delay_Freeze attribute to ensure that, in case of
1764 -- locally defined tagged types (or compiling with static
1765 -- dispatch tables generation disabled) the corresponding
1766 -- entry of the secondary dispatch table is filled when
1767 -- such an entity is frozen.
1769 Set_Has_Delayed_Freeze (New_Subp);
1770 end if;
1772 <<Continue>>
1773 Next_Elmt (Elmt);
1774 end loop;
1776 Next_Elmt (Iface_Elmt);
1777 end loop;
1779 if Restore_Scope then
1780 Pop_Scope;
1781 end if;
1782 end Add_Internal_Interface_Entities;
1784 -----------------------------------
1785 -- Analyze_Component_Declaration --
1786 -----------------------------------
1788 procedure Analyze_Component_Declaration (N : Node_Id) is
1789 Id : constant Entity_Id := Defining_Identifier (N);
1790 E : constant Node_Id := Expression (N);
1791 Typ : constant Node_Id :=
1792 Subtype_Indication (Component_Definition (N));
1793 T : Entity_Id;
1794 P : Entity_Id;
1796 function Contains_POC (Constr : Node_Id) return Boolean;
1797 -- Determines whether a constraint uses the discriminant of a record
1798 -- type thus becoming a per-object constraint (POC).
1800 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1801 -- Typ is the type of the current component, check whether this type is
1802 -- a limited type. Used to validate declaration against that of
1803 -- enclosing record.
1805 ------------------
1806 -- Contains_POC --
1807 ------------------
1809 function Contains_POC (Constr : Node_Id) return Boolean is
1810 begin
1811 -- Prevent cascaded errors
1813 if Error_Posted (Constr) then
1814 return False;
1815 end if;
1817 case Nkind (Constr) is
1818 when N_Attribute_Reference =>
1819 return Attribute_Name (Constr) = Name_Access
1820 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1822 when N_Discriminant_Association =>
1823 return Denotes_Discriminant (Expression (Constr));
1825 when N_Identifier =>
1826 return Denotes_Discriminant (Constr);
1828 when N_Index_Or_Discriminant_Constraint =>
1829 declare
1830 IDC : Node_Id;
1832 begin
1833 IDC := First (Constraints (Constr));
1834 while Present (IDC) loop
1836 -- One per-object constraint is sufficient
1838 if Contains_POC (IDC) then
1839 return True;
1840 end if;
1842 Next (IDC);
1843 end loop;
1845 return False;
1846 end;
1848 when N_Range =>
1849 return Denotes_Discriminant (Low_Bound (Constr))
1850 or else
1851 Denotes_Discriminant (High_Bound (Constr));
1853 when N_Range_Constraint =>
1854 return Denotes_Discriminant (Range_Expression (Constr));
1856 when others =>
1857 return False;
1859 end case;
1860 end Contains_POC;
1862 ----------------------
1863 -- Is_Known_Limited --
1864 ----------------------
1866 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1867 P : constant Entity_Id := Etype (Typ);
1868 R : constant Entity_Id := Root_Type (Typ);
1870 begin
1871 if Is_Limited_Record (Typ) then
1872 return True;
1874 -- If the root type is limited (and not a limited interface)
1875 -- so is the current type
1877 elsif Is_Limited_Record (R)
1878 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1879 then
1880 return True;
1882 -- Else the type may have a limited interface progenitor, but a
1883 -- limited record parent.
1885 elsif R /= P and then Is_Limited_Record (P) then
1886 return True;
1888 else
1889 return False;
1890 end if;
1891 end Is_Known_Limited;
1893 -- Start of processing for Analyze_Component_Declaration
1895 begin
1896 Generate_Definition (Id);
1897 Enter_Name (Id);
1899 if Present (Typ) then
1900 T := Find_Type_Of_Object
1901 (Subtype_Indication (Component_Definition (N)), N);
1903 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1904 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1905 end if;
1907 -- Ada 2005 (AI-230): Access Definition case
1909 else
1910 pragma Assert (Present
1911 (Access_Definition (Component_Definition (N))));
1913 T := Access_Definition
1914 (Related_Nod => N,
1915 N => Access_Definition (Component_Definition (N)));
1916 Set_Is_Local_Anonymous_Access (T);
1918 -- Ada 2005 (AI-254)
1920 if Present (Access_To_Subprogram_Definition
1921 (Access_Definition (Component_Definition (N))))
1922 and then Protected_Present (Access_To_Subprogram_Definition
1923 (Access_Definition
1924 (Component_Definition (N))))
1925 then
1926 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1927 end if;
1928 end if;
1930 -- If the subtype is a constrained subtype of the enclosing record,
1931 -- (which must have a partial view) the back-end does not properly
1932 -- handle the recursion. Rewrite the component declaration with an
1933 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1934 -- the tree directly because side effects have already been removed from
1935 -- discriminant constraints.
1937 if Ekind (T) = E_Access_Subtype
1938 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1939 and then Comes_From_Source (T)
1940 and then Nkind (Parent (T)) = N_Subtype_Declaration
1941 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1942 then
1943 Rewrite
1944 (Subtype_Indication (Component_Definition (N)),
1945 New_Copy_Tree (Subtype_Indication (Parent (T))));
1946 T := Find_Type_Of_Object
1947 (Subtype_Indication (Component_Definition (N)), N);
1948 end if;
1950 -- If the component declaration includes a default expression, then we
1951 -- check that the component is not of a limited type (RM 3.7(5)),
1952 -- and do the special preanalysis of the expression (see section on
1953 -- "Handling of Default and Per-Object Expressions" in the spec of
1954 -- package Sem).
1956 if Present (E) then
1957 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1958 Preanalyze_Default_Expression (E, T);
1959 Check_Initialization (T, E);
1961 if Ada_Version >= Ada_2005
1962 and then Ekind (T) = E_Anonymous_Access_Type
1963 and then Etype (E) /= Any_Type
1964 then
1965 -- Check RM 3.9.2(9): "if the expected type for an expression is
1966 -- an anonymous access-to-specific tagged type, then the object
1967 -- designated by the expression shall not be dynamically tagged
1968 -- unless it is a controlling operand in a call on a dispatching
1969 -- operation"
1971 if Is_Tagged_Type (Directly_Designated_Type (T))
1972 and then
1973 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1974 and then
1975 Ekind (Directly_Designated_Type (Etype (E))) =
1976 E_Class_Wide_Type
1977 then
1978 Error_Msg_N
1979 ("access to specific tagged type required (RM 3.9.2(9))", E);
1980 end if;
1982 -- (Ada 2005: AI-230): Accessibility check for anonymous
1983 -- components
1985 if Type_Access_Level (Etype (E)) >
1986 Deepest_Type_Access_Level (T)
1987 then
1988 Error_Msg_N
1989 ("expression has deeper access level than component " &
1990 "(RM 3.10.2 (12.2))", E);
1991 end if;
1993 -- The initialization expression is a reference to an access
1994 -- discriminant. The type of the discriminant is always deeper
1995 -- than any access type.
1997 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1998 and then Is_Entity_Name (E)
1999 and then Ekind (Entity (E)) = E_In_Parameter
2000 and then Present (Discriminal_Link (Entity (E)))
2001 then
2002 Error_Msg_N
2003 ("discriminant has deeper accessibility level than target",
2005 end if;
2006 end if;
2007 end if;
2009 -- The parent type may be a private view with unknown discriminants,
2010 -- and thus unconstrained. Regular components must be constrained.
2012 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
2013 if Is_Class_Wide_Type (T) then
2014 Error_Msg_N
2015 ("class-wide subtype with unknown discriminants" &
2016 " in component declaration",
2017 Subtype_Indication (Component_Definition (N)));
2018 else
2019 Error_Msg_N
2020 ("unconstrained subtype in component declaration",
2021 Subtype_Indication (Component_Definition (N)));
2022 end if;
2024 -- Components cannot be abstract, except for the special case of
2025 -- the _Parent field (case of extending an abstract tagged type)
2027 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2028 Error_Msg_N ("type of a component cannot be abstract", N);
2029 end if;
2031 Set_Etype (Id, T);
2032 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2034 -- The component declaration may have a per-object constraint, set
2035 -- the appropriate flag in the defining identifier of the subtype.
2037 if Present (Subtype_Indication (Component_Definition (N))) then
2038 declare
2039 Sindic : constant Node_Id :=
2040 Subtype_Indication (Component_Definition (N));
2041 begin
2042 if Nkind (Sindic) = N_Subtype_Indication
2043 and then Present (Constraint (Sindic))
2044 and then Contains_POC (Constraint (Sindic))
2045 then
2046 Set_Has_Per_Object_Constraint (Id);
2047 end if;
2048 end;
2049 end if;
2051 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2052 -- out some static checks.
2054 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2055 Null_Exclusion_Static_Checks (N);
2056 end if;
2058 -- If this component is private (or depends on a private type), flag the
2059 -- record type to indicate that some operations are not available.
2061 P := Private_Component (T);
2063 if Present (P) then
2065 -- Check for circular definitions
2067 if P = Any_Type then
2068 Set_Etype (Id, Any_Type);
2070 -- There is a gap in the visibility of operations only if the
2071 -- component type is not defined in the scope of the record type.
2073 elsif Scope (P) = Scope (Current_Scope) then
2074 null;
2076 elsif Is_Limited_Type (P) then
2077 Set_Is_Limited_Composite (Current_Scope);
2079 else
2080 Set_Is_Private_Composite (Current_Scope);
2081 end if;
2082 end if;
2084 if P /= Any_Type
2085 and then Is_Limited_Type (T)
2086 and then Chars (Id) /= Name_uParent
2087 and then Is_Tagged_Type (Current_Scope)
2088 then
2089 if Is_Derived_Type (Current_Scope)
2090 and then not Is_Known_Limited (Current_Scope)
2091 then
2092 Error_Msg_N
2093 ("extension of nonlimited type cannot have limited components",
2096 if Is_Interface (Root_Type (Current_Scope)) then
2097 Error_Msg_N
2098 ("\limitedness is not inherited from limited interface", N);
2099 Error_Msg_N ("\add LIMITED to type indication", N);
2100 end if;
2102 Explain_Limited_Type (T, N);
2103 Set_Etype (Id, Any_Type);
2104 Set_Is_Limited_Composite (Current_Scope, False);
2106 elsif not Is_Derived_Type (Current_Scope)
2107 and then not Is_Limited_Record (Current_Scope)
2108 and then not Is_Concurrent_Type (Current_Scope)
2109 then
2110 Error_Msg_N
2111 ("nonlimited tagged type cannot have limited components", N);
2112 Explain_Limited_Type (T, N);
2113 Set_Etype (Id, Any_Type);
2114 Set_Is_Limited_Composite (Current_Scope, False);
2115 end if;
2116 end if;
2118 Set_Original_Record_Component (Id, Id);
2120 if Has_Aspects (N) then
2121 Analyze_Aspect_Specifications (N, Id);
2122 end if;
2124 Analyze_Dimension (N);
2125 end Analyze_Component_Declaration;
2127 --------------------------
2128 -- Analyze_Declarations --
2129 --------------------------
2131 procedure Analyze_Declarations (L : List_Id) is
2132 Decl : Node_Id;
2134 procedure Adjust_Decl;
2135 -- Adjust Decl not to include implicit label declarations, since these
2136 -- have strange Sloc values that result in elaboration check problems.
2137 -- (They have the sloc of the label as found in the source, and that
2138 -- is ahead of the current declarative part).
2140 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2141 -- Determine whether Body_Decl denotes the body of a late controlled
2142 -- primitive (either Initialize, Adjust or Finalize). If this is the
2143 -- case, add a proper spec if the body lacks one. The spec is inserted
2144 -- before Body_Decl and immedately analyzed.
2146 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2147 -- Spec_Id is the entity of a package that may define abstract states.
2148 -- If the states have visible refinement, remove the visibility of each
2149 -- constituent at the end of the package body declarations.
2151 -----------------
2152 -- Adjust_Decl --
2153 -----------------
2155 procedure Adjust_Decl is
2156 begin
2157 while Present (Prev (Decl))
2158 and then Nkind (Decl) = N_Implicit_Label_Declaration
2159 loop
2160 Prev (Decl);
2161 end loop;
2162 end Adjust_Decl;
2164 --------------------------------------
2165 -- Handle_Late_Controlled_Primitive --
2166 --------------------------------------
2168 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2169 Body_Spec : constant Node_Id := Specification (Body_Decl);
2170 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2171 Loc : constant Source_Ptr := Sloc (Body_Id);
2172 Params : constant List_Id :=
2173 Parameter_Specifications (Body_Spec);
2174 Spec : Node_Id;
2175 Spec_Id : Entity_Id;
2176 Typ : Node_Id;
2178 begin
2179 -- Consider only procedure bodies whose name matches one of the three
2180 -- controlled primitives.
2182 if Nkind (Body_Spec) /= N_Procedure_Specification
2183 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2184 Name_Finalize,
2185 Name_Initialize)
2186 then
2187 return;
2189 -- A controlled primitive must have exactly one formal which is not
2190 -- an anonymous access type.
2192 elsif List_Length (Params) /= 1 then
2193 return;
2194 end if;
2196 Typ := Parameter_Type (First (Params));
2198 if Nkind (Typ) = N_Access_Definition then
2199 return;
2200 end if;
2202 Find_Type (Typ);
2204 -- The type of the formal must be derived from [Limited_]Controlled
2206 if not Is_Controlled (Entity (Typ)) then
2207 return;
2208 end if;
2210 -- Check whether a specification exists for this body. We do not
2211 -- analyze the spec of the body in full, because it will be analyzed
2212 -- again when the body is properly analyzed, and we cannot create
2213 -- duplicate entries in the formals chain. We look for an explicit
2214 -- specification because the body may be an overriding operation and
2215 -- an inherited spec may be present.
2217 Spec_Id := Current_Entity (Body_Id);
2219 while Present (Spec_Id) loop
2220 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2221 and then Scope (Spec_Id) = Current_Scope
2222 and then Present (First_Formal (Spec_Id))
2223 and then No (Next_Formal (First_Formal (Spec_Id)))
2224 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2225 and then Comes_From_Source (Spec_Id)
2226 then
2227 return;
2228 end if;
2230 Spec_Id := Homonym (Spec_Id);
2231 end loop;
2233 -- At this point the body is known to be a late controlled primitive.
2234 -- Generate a matching spec and insert it before the body. Note the
2235 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2236 -- tree in this case.
2238 Spec := Copy_Separate_Tree (Body_Spec);
2240 -- Ensure that the subprogram declaration does not inherit the null
2241 -- indicator from the body as we now have a proper spec/body pair.
2243 Set_Null_Present (Spec, False);
2245 Insert_Before_And_Analyze (Body_Decl,
2246 Make_Subprogram_Declaration (Loc, Specification => Spec));
2247 end Handle_Late_Controlled_Primitive;
2249 --------------------------------
2250 -- Remove_Visible_Refinements --
2251 --------------------------------
2253 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2254 State_Elmt : Elmt_Id;
2255 begin
2256 if Present (Abstract_States (Spec_Id)) then
2257 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2258 while Present (State_Elmt) loop
2259 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2260 Next_Elmt (State_Elmt);
2261 end loop;
2262 end if;
2263 end Remove_Visible_Refinements;
2265 -- Local variables
2267 Context : Node_Id;
2268 Freeze_From : Entity_Id := Empty;
2269 Next_Decl : Node_Id;
2270 Spec_Id : Entity_Id;
2272 Body_Seen : Boolean := False;
2273 -- Flag set when the first body [stub] is encountered
2275 In_Package_Body : Boolean := False;
2276 -- Flag set when the current declaration list belongs to a package body
2278 -- Start of processing for Analyze_Declarations
2280 begin
2281 if Restriction_Check_Required (SPARK_05) then
2282 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2283 end if;
2285 Decl := First (L);
2286 while Present (Decl) loop
2288 -- Package spec cannot contain a package declaration in SPARK
2290 if Nkind (Decl) = N_Package_Declaration
2291 and then Nkind (Parent (L)) = N_Package_Specification
2292 then
2293 Check_SPARK_05_Restriction
2294 ("package specification cannot contain a package declaration",
2295 Decl);
2296 end if;
2298 -- Complete analysis of declaration
2300 Analyze (Decl);
2301 Next_Decl := Next (Decl);
2303 if No (Freeze_From) then
2304 Freeze_From := First_Entity (Current_Scope);
2305 end if;
2307 -- At the end of a declarative part, freeze remaining entities
2308 -- declared in it. The end of the visible declarations of package
2309 -- specification is not the end of a declarative part if private
2310 -- declarations are present. The end of a package declaration is a
2311 -- freezing point only if it a library package. A task definition or
2312 -- protected type definition is not a freeze point either. Finally,
2313 -- we do not freeze entities in generic scopes, because there is no
2314 -- code generated for them and freeze nodes will be generated for
2315 -- the instance.
2317 -- The end of a package instantiation is not a freeze point, but
2318 -- for now we make it one, because the generic body is inserted
2319 -- (currently) immediately after. Generic instantiations will not
2320 -- be a freeze point once delayed freezing of bodies is implemented.
2321 -- (This is needed in any case for early instantiations ???).
2323 if No (Next_Decl) then
2324 if Nkind_In (Parent (L), N_Component_List,
2325 N_Task_Definition,
2326 N_Protected_Definition)
2327 then
2328 null;
2330 elsif Nkind (Parent (L)) /= N_Package_Specification then
2331 if Nkind (Parent (L)) = N_Package_Body then
2332 Freeze_From := First_Entity (Current_Scope);
2333 end if;
2335 -- There may have been several freezing points previously,
2336 -- for example object declarations or subprogram bodies, but
2337 -- at the end of a declarative part we check freezing from
2338 -- the beginning, even though entities may already be frozen,
2339 -- in order to perform visibility checks on delayed aspects.
2341 Adjust_Decl;
2342 Freeze_All (First_Entity (Current_Scope), Decl);
2343 Freeze_From := Last_Entity (Current_Scope);
2345 elsif Scope (Current_Scope) /= Standard_Standard
2346 and then not Is_Child_Unit (Current_Scope)
2347 and then No (Generic_Parent (Parent (L)))
2348 then
2349 null;
2351 elsif L /= Visible_Declarations (Parent (L))
2352 or else No (Private_Declarations (Parent (L)))
2353 or else Is_Empty_List (Private_Declarations (Parent (L)))
2354 then
2355 Adjust_Decl;
2356 Freeze_All (First_Entity (Current_Scope), Decl);
2357 Freeze_From := Last_Entity (Current_Scope);
2358 end if;
2360 -- If next node is a body then freeze all types before the body.
2361 -- An exception occurs for some expander-generated bodies. If these
2362 -- are generated at places where in general language rules would not
2363 -- allow a freeze point, then we assume that the expander has
2364 -- explicitly checked that all required types are properly frozen,
2365 -- and we do not cause general freezing here. This special circuit
2366 -- is used when the encountered body is marked as having already
2367 -- been analyzed.
2369 -- In all other cases (bodies that come from source, and expander
2370 -- generated bodies that have not been analyzed yet), freeze all
2371 -- types now. Note that in the latter case, the expander must take
2372 -- care to attach the bodies at a proper place in the tree so as to
2373 -- not cause unwanted freezing at that point.
2375 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2377 -- When a controlled type is frozen, the expander generates stream
2378 -- and controlled type support routines. If the freeze is caused
2379 -- by the stand alone body of Initialize, Adjust and Finalize, the
2380 -- expander will end up using the wrong version of these routines
2381 -- as the body has not been processed yet. To remedy this, detect
2382 -- a late controlled primitive and create a proper spec for it.
2383 -- This ensures that the primitive will override its inherited
2384 -- counterpart before the freeze takes place.
2386 -- If the declaration we just processed is a body, do not attempt
2387 -- to examine Next_Decl as the late primitive idiom can only apply
2388 -- to the first encountered body.
2390 -- The spec of the late primitive is not generated in ASIS mode to
2391 -- ensure a consistent list of primitives that indicates the true
2392 -- semantic structure of the program (which is not relevant when
2393 -- generating executable code.
2395 -- ??? a cleaner approach may be possible and/or this solution
2396 -- could be extended to general-purpose late primitives, TBD.
2398 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2399 then
2400 Body_Seen := True;
2402 if Nkind (Next_Decl) = N_Subprogram_Body then
2403 Handle_Late_Controlled_Primitive (Next_Decl);
2404 end if;
2405 end if;
2407 Adjust_Decl;
2408 Freeze_All (Freeze_From, Decl);
2409 Freeze_From := Last_Entity (Current_Scope);
2410 end if;
2412 Decl := Next_Decl;
2413 end loop;
2415 -- Analyze the contracts of packages and their bodies
2417 if Present (L) then
2418 Context := Parent (L);
2420 if Nkind (Context) = N_Package_Specification then
2422 -- When a package has private declarations, its contract must be
2423 -- analyzed at the end of the said declarations. This way both the
2424 -- analysis and freeze actions are properly synchronized in case
2425 -- of private type use within the contract.
2427 if L = Private_Declarations (Context) then
2428 Analyze_Package_Contract (Defining_Entity (Context));
2430 -- Build the bodies of the default initial condition procedures
2431 -- for all types subject to pragma Default_Initial_Condition.
2432 -- From a purely Ada stand point, this is a freezing activity,
2433 -- however freezing is not available under GNATprove_Mode. To
2434 -- accomodate both scenarios, the bodies are build at the end
2435 -- of private declaration analysis.
2437 Build_Default_Init_Cond_Procedure_Bodies (L);
2439 -- Otherwise the contract is analyzed at the end of the visible
2440 -- declarations.
2442 elsif L = Visible_Declarations (Context)
2443 and then No (Private_Declarations (Context))
2444 then
2445 Analyze_Package_Contract (Defining_Entity (Context));
2446 end if;
2448 elsif Nkind (Context) = N_Package_Body then
2449 In_Package_Body := True;
2450 Spec_Id := Corresponding_Spec (Context);
2452 Analyze_Package_Body_Contract (Defining_Entity (Context));
2453 end if;
2454 end if;
2456 -- Analyze the contracts of subprogram declarations, subprogram bodies
2457 -- and variables now due to the delayed visibility requirements of their
2458 -- aspects.
2460 Decl := First (L);
2461 while Present (Decl) loop
2462 if Nkind (Decl) = N_Object_Declaration then
2463 Analyze_Object_Contract (Defining_Entity (Decl));
2465 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2466 N_Subprogram_Declaration)
2467 then
2468 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2470 elsif Nkind (Decl) = N_Subprogram_Body then
2471 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2473 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2474 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2475 end if;
2477 Next (Decl);
2478 end loop;
2480 -- State refinements are visible upto the end the of the package body
2481 -- declarations. Hide the refinements from visibility to restore the
2482 -- original state conditions.
2484 if In_Package_Body then
2485 Remove_Visible_Refinements (Spec_Id);
2486 end if;
2487 end Analyze_Declarations;
2489 -----------------------------------
2490 -- Analyze_Full_Type_Declaration --
2491 -----------------------------------
2493 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2494 Def : constant Node_Id := Type_Definition (N);
2495 Def_Id : constant Entity_Id := Defining_Identifier (N);
2496 T : Entity_Id;
2497 Prev : Entity_Id;
2499 Is_Remote : constant Boolean :=
2500 (Is_Remote_Types (Current_Scope)
2501 or else Is_Remote_Call_Interface (Current_Scope))
2502 and then not (In_Private_Part (Current_Scope)
2503 or else In_Package_Body (Current_Scope));
2505 procedure Check_Ops_From_Incomplete_Type;
2506 -- If there is a tagged incomplete partial view of the type, traverse
2507 -- the primitives of the incomplete view and change the type of any
2508 -- controlling formals and result to indicate the full view. The
2509 -- primitives will be added to the full type's primitive operations
2510 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2511 -- is called from Process_Incomplete_Dependents).
2513 ------------------------------------
2514 -- Check_Ops_From_Incomplete_Type --
2515 ------------------------------------
2517 procedure Check_Ops_From_Incomplete_Type is
2518 Elmt : Elmt_Id;
2519 Formal : Entity_Id;
2520 Op : Entity_Id;
2522 begin
2523 if Prev /= T
2524 and then Ekind (Prev) = E_Incomplete_Type
2525 and then Is_Tagged_Type (Prev)
2526 and then Is_Tagged_Type (T)
2527 then
2528 Elmt := First_Elmt (Primitive_Operations (Prev));
2529 while Present (Elmt) loop
2530 Op := Node (Elmt);
2532 Formal := First_Formal (Op);
2533 while Present (Formal) loop
2534 if Etype (Formal) = Prev then
2535 Set_Etype (Formal, T);
2536 end if;
2538 Next_Formal (Formal);
2539 end loop;
2541 if Etype (Op) = Prev then
2542 Set_Etype (Op, T);
2543 end if;
2545 Next_Elmt (Elmt);
2546 end loop;
2547 end if;
2548 end Check_Ops_From_Incomplete_Type;
2550 -- Start of processing for Analyze_Full_Type_Declaration
2552 begin
2553 Prev := Find_Type_Name (N);
2555 -- The full view, if present, now points to the current type
2556 -- If there is an incomplete partial view, set a link to it, to
2557 -- simplify the retrieval of primitive operations of the type.
2559 -- Ada 2005 (AI-50217): If the type was previously decorated when
2560 -- imported through a LIMITED WITH clause, it appears as incomplete
2561 -- but has no full view.
2563 if Ekind (Prev) = E_Incomplete_Type
2564 and then Present (Full_View (Prev))
2565 then
2566 T := Full_View (Prev);
2567 Set_Incomplete_View (N, Parent (Prev));
2568 else
2569 T := Prev;
2570 end if;
2572 Set_Is_Pure (T, Is_Pure (Current_Scope));
2574 -- We set the flag Is_First_Subtype here. It is needed to set the
2575 -- corresponding flag for the Implicit class-wide-type created
2576 -- during tagged types processing.
2578 Set_Is_First_Subtype (T, True);
2580 -- Only composite types other than array types are allowed to have
2581 -- discriminants.
2583 case Nkind (Def) is
2585 -- For derived types, the rule will be checked once we've figured
2586 -- out the parent type.
2588 when N_Derived_Type_Definition =>
2589 null;
2591 -- For record types, discriminants are allowed, unless we are in
2592 -- SPARK.
2594 when N_Record_Definition =>
2595 if Present (Discriminant_Specifications (N)) then
2596 Check_SPARK_05_Restriction
2597 ("discriminant type is not allowed",
2598 Defining_Identifier
2599 (First (Discriminant_Specifications (N))));
2600 end if;
2602 when others =>
2603 if Present (Discriminant_Specifications (N)) then
2604 Error_Msg_N
2605 ("elementary or array type cannot have discriminants",
2606 Defining_Identifier
2607 (First (Discriminant_Specifications (N))));
2608 end if;
2609 end case;
2611 -- Elaborate the type definition according to kind, and generate
2612 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2613 -- already done (this happens during the reanalysis that follows a call
2614 -- to the high level optimizer).
2616 if not Analyzed (T) then
2617 Set_Analyzed (T);
2619 case Nkind (Def) is
2621 when N_Access_To_Subprogram_Definition =>
2622 Access_Subprogram_Declaration (T, Def);
2624 -- If this is a remote access to subprogram, we must create the
2625 -- equivalent fat pointer type, and related subprograms.
2627 if Is_Remote then
2628 Process_Remote_AST_Declaration (N);
2629 end if;
2631 -- Validate categorization rule against access type declaration
2632 -- usually a violation in Pure unit, Shared_Passive unit.
2634 Validate_Access_Type_Declaration (T, N);
2636 when N_Access_To_Object_Definition =>
2637 Access_Type_Declaration (T, Def);
2639 -- Validate categorization rule against access type declaration
2640 -- usually a violation in Pure unit, Shared_Passive unit.
2642 Validate_Access_Type_Declaration (T, N);
2644 -- If we are in a Remote_Call_Interface package and define a
2645 -- RACW, then calling stubs and specific stream attributes
2646 -- must be added.
2648 if Is_Remote
2649 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2650 then
2651 Add_RACW_Features (Def_Id);
2652 end if;
2654 -- Set no strict aliasing flag if config pragma seen
2656 if Opt.No_Strict_Aliasing then
2657 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2658 end if;
2660 when N_Array_Type_Definition =>
2661 Array_Type_Declaration (T, Def);
2663 when N_Derived_Type_Definition =>
2664 Derived_Type_Declaration (T, N, T /= Def_Id);
2666 when N_Enumeration_Type_Definition =>
2667 Enumeration_Type_Declaration (T, Def);
2669 when N_Floating_Point_Definition =>
2670 Floating_Point_Type_Declaration (T, Def);
2672 when N_Decimal_Fixed_Point_Definition =>
2673 Decimal_Fixed_Point_Type_Declaration (T, Def);
2675 when N_Ordinary_Fixed_Point_Definition =>
2676 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2678 when N_Signed_Integer_Type_Definition =>
2679 Signed_Integer_Type_Declaration (T, Def);
2681 when N_Modular_Type_Definition =>
2682 Modular_Type_Declaration (T, Def);
2684 when N_Record_Definition =>
2685 Record_Type_Declaration (T, N, Prev);
2687 -- If declaration has a parse error, nothing to elaborate.
2689 when N_Error =>
2690 null;
2692 when others =>
2693 raise Program_Error;
2695 end case;
2696 end if;
2698 if Etype (T) = Any_Type then
2699 return;
2700 end if;
2702 -- Controlled type is not allowed in SPARK
2704 if Is_Visibly_Controlled (T) then
2705 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2706 end if;
2708 -- Some common processing for all types
2710 Set_Depends_On_Private (T, Has_Private_Component (T));
2711 Check_Ops_From_Incomplete_Type;
2713 -- Both the declared entity, and its anonymous base type if one
2714 -- was created, need freeze nodes allocated.
2716 declare
2717 B : constant Entity_Id := Base_Type (T);
2719 begin
2720 -- In the case where the base type differs from the first subtype, we
2721 -- pre-allocate a freeze node, and set the proper link to the first
2722 -- subtype. Freeze_Entity will use this preallocated freeze node when
2723 -- it freezes the entity.
2725 -- This does not apply if the base type is a generic type, whose
2726 -- declaration is independent of the current derived definition.
2728 if B /= T and then not Is_Generic_Type (B) then
2729 Ensure_Freeze_Node (B);
2730 Set_First_Subtype_Link (Freeze_Node (B), T);
2731 end if;
2733 -- A type that is imported through a limited_with clause cannot
2734 -- generate any code, and thus need not be frozen. However, an access
2735 -- type with an imported designated type needs a finalization list,
2736 -- which may be referenced in some other package that has non-limited
2737 -- visibility on the designated type. Thus we must create the
2738 -- finalization list at the point the access type is frozen, to
2739 -- prevent unsatisfied references at link time.
2741 if not From_Limited_With (T) or else Is_Access_Type (T) then
2742 Set_Has_Delayed_Freeze (T);
2743 end if;
2744 end;
2746 -- Case where T is the full declaration of some private type which has
2747 -- been swapped in Defining_Identifier (N).
2749 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2750 Process_Full_View (N, T, Def_Id);
2752 -- Record the reference. The form of this is a little strange, since
2753 -- the full declaration has been swapped in. So the first parameter
2754 -- here represents the entity to which a reference is made which is
2755 -- the "real" entity, i.e. the one swapped in, and the second
2756 -- parameter provides the reference location.
2758 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2759 -- since we don't want a complaint about the full type being an
2760 -- unwanted reference to the private type
2762 declare
2763 B : constant Boolean := Has_Pragma_Unreferenced (T);
2764 begin
2765 Set_Has_Pragma_Unreferenced (T, False);
2766 Generate_Reference (T, T, 'c');
2767 Set_Has_Pragma_Unreferenced (T, B);
2768 end;
2770 Set_Completion_Referenced (Def_Id);
2772 -- For completion of incomplete type, process incomplete dependents
2773 -- and always mark the full type as referenced (it is the incomplete
2774 -- type that we get for any real reference).
2776 elsif Ekind (Prev) = E_Incomplete_Type then
2777 Process_Incomplete_Dependents (N, T, Prev);
2778 Generate_Reference (Prev, Def_Id, 'c');
2779 Set_Completion_Referenced (Def_Id);
2781 -- If not private type or incomplete type completion, this is a real
2782 -- definition of a new entity, so record it.
2784 else
2785 Generate_Definition (Def_Id);
2786 end if;
2788 if Chars (Scope (Def_Id)) = Name_System
2789 and then Chars (Def_Id) = Name_Address
2790 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2791 then
2792 Set_Is_Descendent_Of_Address (Def_Id);
2793 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2794 Set_Is_Descendent_Of_Address (Prev);
2795 end if;
2797 Set_Optimize_Alignment_Flags (Def_Id);
2798 Check_Eliminated (Def_Id);
2800 -- If the declaration is a completion and aspects are present, apply
2801 -- them to the entity for the type which is currently the partial
2802 -- view, but which is the one that will be frozen.
2804 if Has_Aspects (N) then
2806 -- In most cases the partial view is a private type, and both views
2807 -- appear in different declarative parts. In the unusual case where
2808 -- the partial view is incomplete, perform the analysis on the
2809 -- full view, to prevent freezing anomalies with the corresponding
2810 -- class-wide type, which otherwise might be frozen before the
2811 -- dispatch table is built.
2813 if Prev /= Def_Id
2814 and then Ekind (Prev) /= E_Incomplete_Type
2815 then
2816 Analyze_Aspect_Specifications (N, Prev);
2818 -- Normal case
2820 else
2821 Analyze_Aspect_Specifications (N, Def_Id);
2822 end if;
2823 end if;
2824 end Analyze_Full_Type_Declaration;
2826 ----------------------------------
2827 -- Analyze_Incomplete_Type_Decl --
2828 ----------------------------------
2830 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2831 F : constant Boolean := Is_Pure (Current_Scope);
2832 T : Entity_Id;
2834 begin
2835 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
2837 Generate_Definition (Defining_Identifier (N));
2839 -- Process an incomplete declaration. The identifier must not have been
2840 -- declared already in the scope. However, an incomplete declaration may
2841 -- appear in the private part of a package, for a private type that has
2842 -- already been declared.
2844 -- In this case, the discriminants (if any) must match
2846 T := Find_Type_Name (N);
2848 Set_Ekind (T, E_Incomplete_Type);
2849 Init_Size_Align (T);
2850 Set_Is_First_Subtype (T, True);
2851 Set_Etype (T, T);
2853 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2854 -- incomplete types.
2856 if Tagged_Present (N) then
2857 Set_Is_Tagged_Type (T, True);
2858 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2859 Make_Class_Wide_Type (T);
2860 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2861 end if;
2863 Push_Scope (T);
2865 Set_Stored_Constraint (T, No_Elist);
2867 if Present (Discriminant_Specifications (N)) then
2868 Process_Discriminants (N);
2869 end if;
2871 End_Scope;
2873 -- If the type has discriminants, non-trivial subtypes may be
2874 -- declared before the full view of the type. The full views of those
2875 -- subtypes will be built after the full view of the type.
2877 Set_Private_Dependents (T, New_Elmt_List);
2878 Set_Is_Pure (T, F);
2879 end Analyze_Incomplete_Type_Decl;
2881 -----------------------------------
2882 -- Analyze_Interface_Declaration --
2883 -----------------------------------
2885 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2886 CW : constant Entity_Id := Class_Wide_Type (T);
2888 begin
2889 Set_Is_Tagged_Type (T);
2890 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
2892 Set_Is_Limited_Record (T, Limited_Present (Def)
2893 or else Task_Present (Def)
2894 or else Protected_Present (Def)
2895 or else Synchronized_Present (Def));
2897 -- Type is abstract if full declaration carries keyword, or if previous
2898 -- partial view did.
2900 Set_Is_Abstract_Type (T);
2901 Set_Is_Interface (T);
2903 -- Type is a limited interface if it includes the keyword limited, task,
2904 -- protected, or synchronized.
2906 Set_Is_Limited_Interface
2907 (T, Limited_Present (Def)
2908 or else Protected_Present (Def)
2909 or else Synchronized_Present (Def)
2910 or else Task_Present (Def));
2912 Set_Interfaces (T, New_Elmt_List);
2913 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2915 -- Complete the decoration of the class-wide entity if it was already
2916 -- built (i.e. during the creation of the limited view)
2918 if Present (CW) then
2919 Set_Is_Interface (CW);
2920 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2921 end if;
2923 -- Check runtime support for synchronized interfaces
2925 if VM_Target = No_VM
2926 and then (Is_Task_Interface (T)
2927 or else Is_Protected_Interface (T)
2928 or else Is_Synchronized_Interface (T))
2929 and then not RTE_Available (RE_Select_Specific_Data)
2930 then
2931 Error_Msg_CRT ("synchronized interfaces", T);
2932 end if;
2933 end Analyze_Interface_Declaration;
2935 -----------------------------
2936 -- Analyze_Itype_Reference --
2937 -----------------------------
2939 -- Nothing to do. This node is placed in the tree only for the benefit of
2940 -- back end processing, and has no effect on the semantic processing.
2942 procedure Analyze_Itype_Reference (N : Node_Id) is
2943 begin
2944 pragma Assert (Is_Itype (Itype (N)));
2945 null;
2946 end Analyze_Itype_Reference;
2948 --------------------------------
2949 -- Analyze_Number_Declaration --
2950 --------------------------------
2952 procedure Analyze_Number_Declaration (N : Node_Id) is
2953 Id : constant Entity_Id := Defining_Identifier (N);
2954 E : constant Node_Id := Expression (N);
2955 T : Entity_Id;
2956 Index : Interp_Index;
2957 It : Interp;
2959 begin
2960 Generate_Definition (Id);
2961 Enter_Name (Id);
2963 -- This is an optimization of a common case of an integer literal
2965 if Nkind (E) = N_Integer_Literal then
2966 Set_Is_Static_Expression (E, True);
2967 Set_Etype (E, Universal_Integer);
2969 Set_Etype (Id, Universal_Integer);
2970 Set_Ekind (Id, E_Named_Integer);
2971 Set_Is_Frozen (Id, True);
2972 return;
2973 end if;
2975 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2977 -- Process expression, replacing error by integer zero, to avoid
2978 -- cascaded errors or aborts further along in the processing
2980 -- Replace Error by integer zero, which seems least likely to cause
2981 -- cascaded errors.
2983 if E = Error then
2984 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2985 Set_Error_Posted (E);
2986 end if;
2988 Analyze (E);
2990 -- Verify that the expression is static and numeric. If
2991 -- the expression is overloaded, we apply the preference
2992 -- rule that favors root numeric types.
2994 if not Is_Overloaded (E) then
2995 T := Etype (E);
2996 if Has_Dynamic_Predicate_Aspect (T) then
2997 Error_Msg_N
2998 ("subtype has dynamic predicate, "
2999 & "not allowed in number declaration", N);
3000 end if;
3002 else
3003 T := Any_Type;
3005 Get_First_Interp (E, Index, It);
3006 while Present (It.Typ) loop
3007 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3008 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3009 then
3010 if T = Any_Type then
3011 T := It.Typ;
3013 elsif It.Typ = Universal_Real
3014 or else
3015 It.Typ = Universal_Integer
3016 then
3017 -- Choose universal interpretation over any other
3019 T := It.Typ;
3020 exit;
3021 end if;
3022 end if;
3024 Get_Next_Interp (Index, It);
3025 end loop;
3026 end if;
3028 if Is_Integer_Type (T) then
3029 Resolve (E, T);
3030 Set_Etype (Id, Universal_Integer);
3031 Set_Ekind (Id, E_Named_Integer);
3033 elsif Is_Real_Type (T) then
3035 -- Because the real value is converted to universal_real, this is a
3036 -- legal context for a universal fixed expression.
3038 if T = Universal_Fixed then
3039 declare
3040 Loc : constant Source_Ptr := Sloc (N);
3041 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3042 Subtype_Mark =>
3043 New_Occurrence_Of (Universal_Real, Loc),
3044 Expression => Relocate_Node (E));
3046 begin
3047 Rewrite (E, Conv);
3048 Analyze (E);
3049 end;
3051 elsif T = Any_Fixed then
3052 Error_Msg_N ("illegal context for mixed mode operation", E);
3054 -- Expression is of the form : universal_fixed * integer. Try to
3055 -- resolve as universal_real.
3057 T := Universal_Real;
3058 Set_Etype (E, T);
3059 end if;
3061 Resolve (E, T);
3062 Set_Etype (Id, Universal_Real);
3063 Set_Ekind (Id, E_Named_Real);
3065 else
3066 Wrong_Type (E, Any_Numeric);
3067 Resolve (E, T);
3069 Set_Etype (Id, T);
3070 Set_Ekind (Id, E_Constant);
3071 Set_Never_Set_In_Source (Id, True);
3072 Set_Is_True_Constant (Id, True);
3073 return;
3074 end if;
3076 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3077 Set_Etype (E, Etype (Id));
3078 end if;
3080 if not Is_OK_Static_Expression (E) then
3081 Flag_Non_Static_Expr
3082 ("non-static expression used in number declaration!", E);
3083 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3084 Set_Etype (E, Any_Type);
3085 end if;
3086 end Analyze_Number_Declaration;
3088 -----------------------------
3089 -- Analyze_Object_Contract --
3090 -----------------------------
3092 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3093 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3094 AR_Val : Boolean := False;
3095 AW_Val : Boolean := False;
3096 ER_Val : Boolean := False;
3097 EW_Val : Boolean := False;
3098 Prag : Node_Id;
3099 Seen : Boolean := False;
3101 begin
3102 if Ekind (Obj_Id) = E_Constant then
3104 -- A constant cannot be effectively volatile. This check is only
3105 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3106 -- rule. Do not flag internally-generated constants that map generic
3107 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3109 if SPARK_Mode = On
3110 and then Is_Effectively_Volatile (Obj_Id)
3111 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3112 then
3113 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3114 end if;
3116 -- The loop parameter in an element iterator over a formal container
3117 -- is declared with an object declaration but no contracts apply.
3119 elsif Ekind (Obj_Id) = E_Loop_Parameter then
3120 null;
3122 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3124 -- The following checks are only relevant when SPARK_Mode is on as
3125 -- they are not standard Ada legality rules. Internally generated
3126 -- temporaries are ignored.
3128 if SPARK_Mode = On and then Comes_From_Source (Obj_Id) then
3129 if Is_Effectively_Volatile (Obj_Id) then
3131 -- The declaration of an effectively volatile object must
3132 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3134 if not Is_Library_Level_Entity (Obj_Id) then
3135 Error_Msg_N
3136 ("volatile variable & must be declared at library level",
3137 Obj_Id);
3139 -- An object of a discriminated type cannot be effectively
3140 -- volatile (SPARK RM C.6(4)).
3142 elsif Has_Discriminants (Obj_Typ) then
3143 Error_Msg_N
3144 ("discriminated object & cannot be volatile", Obj_Id);
3146 -- An object of a tagged type cannot be effectively volatile
3147 -- (SPARK RM C.6(5)).
3149 elsif Is_Tagged_Type (Obj_Typ) then
3150 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3151 end if;
3153 -- The object is not effectively volatile
3155 else
3156 -- A non-effectively volatile object cannot have effectively
3157 -- volatile components (SPARK RM 7.1.3(7)).
3159 if not Is_Effectively_Volatile (Obj_Id)
3160 and then Has_Volatile_Component (Obj_Typ)
3161 then
3162 Error_Msg_N
3163 ("non-volatile object & cannot have volatile components",
3164 Obj_Id);
3165 end if;
3166 end if;
3167 end if;
3169 -- Analyze all external properties
3171 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3173 if Present (Prag) then
3174 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3175 Seen := True;
3176 end if;
3178 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3180 if Present (Prag) then
3181 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3182 Seen := True;
3183 end if;
3185 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3187 if Present (Prag) then
3188 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3189 Seen := True;
3190 end if;
3192 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3194 if Present (Prag) then
3195 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3196 Seen := True;
3197 end if;
3199 -- Verify the mutual interaction of the various external properties
3201 if Seen then
3202 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3203 end if;
3205 -- Check whether the lack of indicator Part_Of agrees with the
3206 -- placement of the variable with respect to the state space.
3208 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3210 if No (Prag) then
3211 Check_Missing_Part_Of (Obj_Id);
3212 end if;
3213 end if;
3214 end Analyze_Object_Contract;
3216 --------------------------------
3217 -- Analyze_Object_Declaration --
3218 --------------------------------
3220 procedure Analyze_Object_Declaration (N : Node_Id) is
3221 Loc : constant Source_Ptr := Sloc (N);
3222 Id : constant Entity_Id := Defining_Identifier (N);
3223 T : Entity_Id;
3224 Act_T : Entity_Id;
3226 E : Node_Id := Expression (N);
3227 -- E is set to Expression (N) throughout this routine. When
3228 -- Expression (N) is modified, E is changed accordingly.
3230 Prev_Entity : Entity_Id := Empty;
3232 function Count_Tasks (T : Entity_Id) return Uint;
3233 -- This function is called when a non-generic library level object of a
3234 -- task type is declared. Its function is to count the static number of
3235 -- tasks declared within the type (it is only called if Has_Tasks is set
3236 -- for T). As a side effect, if an array of tasks with non-static bounds
3237 -- or a variant record type is encountered, Check_Restrictions is called
3238 -- indicating the count is unknown.
3240 -----------------
3241 -- Count_Tasks --
3242 -----------------
3244 function Count_Tasks (T : Entity_Id) return Uint is
3245 C : Entity_Id;
3246 X : Node_Id;
3247 V : Uint;
3249 begin
3250 if Is_Task_Type (T) then
3251 return Uint_1;
3253 elsif Is_Record_Type (T) then
3254 if Has_Discriminants (T) then
3255 Check_Restriction (Max_Tasks, N);
3256 return Uint_0;
3258 else
3259 V := Uint_0;
3260 C := First_Component (T);
3261 while Present (C) loop
3262 V := V + Count_Tasks (Etype (C));
3263 Next_Component (C);
3264 end loop;
3266 return V;
3267 end if;
3269 elsif Is_Array_Type (T) then
3270 X := First_Index (T);
3271 V := Count_Tasks (Component_Type (T));
3272 while Present (X) loop
3273 C := Etype (X);
3275 if not Is_OK_Static_Subtype (C) then
3276 Check_Restriction (Max_Tasks, N);
3277 return Uint_0;
3278 else
3279 V := V * (UI_Max (Uint_0,
3280 Expr_Value (Type_High_Bound (C)) -
3281 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3282 end if;
3284 Next_Index (X);
3285 end loop;
3287 return V;
3289 else
3290 return Uint_0;
3291 end if;
3292 end Count_Tasks;
3294 -- Start of processing for Analyze_Object_Declaration
3296 begin
3297 -- There are three kinds of implicit types generated by an
3298 -- object declaration:
3300 -- 1. Those generated by the original Object Definition
3302 -- 2. Those generated by the Expression
3304 -- 3. Those used to constrain the Object Definition with the
3305 -- expression constraints when the definition is unconstrained.
3307 -- They must be generated in this order to avoid order of elaboration
3308 -- issues. Thus the first step (after entering the name) is to analyze
3309 -- the object definition.
3311 if Constant_Present (N) then
3312 Prev_Entity := Current_Entity_In_Scope (Id);
3314 if Present (Prev_Entity)
3315 and then
3316 -- If the homograph is an implicit subprogram, it is overridden
3317 -- by the current declaration.
3319 ((Is_Overloadable (Prev_Entity)
3320 and then Is_Inherited_Operation (Prev_Entity))
3322 -- The current object is a discriminal generated for an entry
3323 -- family index. Even though the index is a constant, in this
3324 -- particular context there is no true constant redeclaration.
3325 -- Enter_Name will handle the visibility.
3327 or else
3328 (Is_Discriminal (Id)
3329 and then Ekind (Discriminal_Link (Id)) =
3330 E_Entry_Index_Parameter)
3332 -- The current object is the renaming for a generic declared
3333 -- within the instance.
3335 or else
3336 (Ekind (Prev_Entity) = E_Package
3337 and then Nkind (Parent (Prev_Entity)) =
3338 N_Package_Renaming_Declaration
3339 and then not Comes_From_Source (Prev_Entity)
3340 and then
3341 Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3342 then
3343 Prev_Entity := Empty;
3344 end if;
3345 end if;
3347 if Present (Prev_Entity) then
3348 Constant_Redeclaration (Id, N, T);
3350 Generate_Reference (Prev_Entity, Id, 'c');
3351 Set_Completion_Referenced (Id);
3353 if Error_Posted (N) then
3355 -- Type mismatch or illegal redeclaration, Do not analyze
3356 -- expression to avoid cascaded errors.
3358 T := Find_Type_Of_Object (Object_Definition (N), N);
3359 Set_Etype (Id, T);
3360 Set_Ekind (Id, E_Variable);
3361 goto Leave;
3362 end if;
3364 -- In the normal case, enter identifier at the start to catch premature
3365 -- usage in the initialization expression.
3367 else
3368 Generate_Definition (Id);
3369 Enter_Name (Id);
3371 Mark_Coextensions (N, Object_Definition (N));
3373 T := Find_Type_Of_Object (Object_Definition (N), N);
3375 if Nkind (Object_Definition (N)) = N_Access_Definition
3376 and then Present
3377 (Access_To_Subprogram_Definition (Object_Definition (N)))
3378 and then Protected_Present
3379 (Access_To_Subprogram_Definition (Object_Definition (N)))
3380 then
3381 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3382 end if;
3384 if Error_Posted (Id) then
3385 Set_Etype (Id, T);
3386 Set_Ekind (Id, E_Variable);
3387 goto Leave;
3388 end if;
3389 end if;
3391 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3392 -- out some static checks
3394 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3396 -- In case of aggregates we must also take care of the correct
3397 -- initialization of nested aggregates bug this is done at the
3398 -- point of the analysis of the aggregate (see sem_aggr.adb).
3400 if Present (Expression (N))
3401 and then Nkind (Expression (N)) = N_Aggregate
3402 then
3403 null;
3405 else
3406 declare
3407 Save_Typ : constant Entity_Id := Etype (Id);
3408 begin
3409 Set_Etype (Id, T); -- Temp. decoration for static checks
3410 Null_Exclusion_Static_Checks (N);
3411 Set_Etype (Id, Save_Typ);
3412 end;
3413 end if;
3414 end if;
3416 -- Object is marked pure if it is in a pure scope
3418 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3420 -- If deferred constant, make sure context is appropriate. We detect
3421 -- a deferred constant as a constant declaration with no expression.
3422 -- A deferred constant can appear in a package body if its completion
3423 -- is by means of an interface pragma.
3425 if Constant_Present (N) and then No (E) then
3427 -- A deferred constant may appear in the declarative part of the
3428 -- following constructs:
3430 -- blocks
3431 -- entry bodies
3432 -- extended return statements
3433 -- package specs
3434 -- package bodies
3435 -- subprogram bodies
3436 -- task bodies
3438 -- When declared inside a package spec, a deferred constant must be
3439 -- completed by a full constant declaration or pragma Import. In all
3440 -- other cases, the only proper completion is pragma Import. Extended
3441 -- return statements are flagged as invalid contexts because they do
3442 -- not have a declarative part and so cannot accommodate the pragma.
3444 if Ekind (Current_Scope) = E_Return_Statement then
3445 Error_Msg_N
3446 ("invalid context for deferred constant declaration (RM 7.4)",
3448 Error_Msg_N
3449 ("\declaration requires an initialization expression",
3451 Set_Constant_Present (N, False);
3453 -- In Ada 83, deferred constant must be of private type
3455 elsif not Is_Private_Type (T) then
3456 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3457 Error_Msg_N
3458 ("(Ada 83) deferred constant must be private type", N);
3459 end if;
3460 end if;
3462 -- If not a deferred constant, then the object declaration freezes
3463 -- its type, unless the object is of an anonymous type and has delayed
3464 -- aspects. In that case the type is frozen when the object itself is.
3466 else
3467 Check_Fully_Declared (T, N);
3469 if Has_Delayed_Aspects (Id)
3470 and then Is_Array_Type (T)
3471 and then Is_Itype (T)
3472 then
3473 Set_Has_Delayed_Freeze (T);
3474 else
3475 Freeze_Before (N, T);
3476 end if;
3477 end if;
3479 -- If the object was created by a constrained array definition, then
3480 -- set the link in both the anonymous base type and anonymous subtype
3481 -- that are built to represent the array type to point to the object.
3483 if Nkind (Object_Definition (Declaration_Node (Id))) =
3484 N_Constrained_Array_Definition
3485 then
3486 Set_Related_Array_Object (T, Id);
3487 Set_Related_Array_Object (Base_Type (T), Id);
3488 end if;
3490 -- Special checks for protected objects not at library level
3492 if Is_Protected_Type (T)
3493 and then not Is_Library_Level_Entity (Id)
3494 then
3495 Check_Restriction (No_Local_Protected_Objects, Id);
3497 -- Protected objects with interrupt handlers must be at library level
3499 -- Ada 2005: This test is not needed (and the corresponding clause
3500 -- in the RM is removed) because accessibility checks are sufficient
3501 -- to make handlers not at the library level illegal.
3503 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3504 -- applies to the '95 version of the language as well.
3506 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3507 Error_Msg_N
3508 ("interrupt object can only be declared at library level", Id);
3509 end if;
3510 end if;
3512 -- The actual subtype of the object is the nominal subtype, unless
3513 -- the nominal one is unconstrained and obtained from the expression.
3515 Act_T := T;
3517 -- These checks should be performed before the initialization expression
3518 -- is considered, so that the Object_Definition node is still the same
3519 -- as in source code.
3521 -- In SPARK, the nominal subtype is always given by a subtype mark
3522 -- and must not be unconstrained. (The only exception to this is the
3523 -- acceptance of declarations of constants of type String.)
3525 if not
3526 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3527 then
3528 Check_SPARK_05_Restriction
3529 ("subtype mark required", Object_Definition (N));
3531 elsif Is_Array_Type (T)
3532 and then not Is_Constrained (T)
3533 and then T /= Standard_String
3534 then
3535 Check_SPARK_05_Restriction
3536 ("subtype mark of constrained type expected",
3537 Object_Definition (N));
3538 end if;
3540 -- There are no aliased objects in SPARK
3542 if Aliased_Present (N) then
3543 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3544 end if;
3546 -- Process initialization expression if present and not in error
3548 if Present (E) and then E /= Error then
3550 -- Generate an error in case of CPP class-wide object initialization.
3551 -- Required because otherwise the expansion of the class-wide
3552 -- assignment would try to use 'size to initialize the object
3553 -- (primitive that is not available in CPP tagged types).
3555 if Is_Class_Wide_Type (Act_T)
3556 and then
3557 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3558 or else
3559 (Present (Full_View (Root_Type (Etype (Act_T))))
3560 and then
3561 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3562 then
3563 Error_Msg_N
3564 ("predefined assignment not available for 'C'P'P tagged types",
3566 end if;
3568 Mark_Coextensions (N, E);
3569 Analyze (E);
3571 -- In case of errors detected in the analysis of the expression,
3572 -- decorate it with the expected type to avoid cascaded errors
3574 if No (Etype (E)) then
3575 Set_Etype (E, T);
3576 end if;
3578 -- If an initialization expression is present, then we set the
3579 -- Is_True_Constant flag. It will be reset if this is a variable
3580 -- and it is indeed modified.
3582 Set_Is_True_Constant (Id, True);
3584 -- If we are analyzing a constant declaration, set its completion
3585 -- flag after analyzing and resolving the expression.
3587 if Constant_Present (N) then
3588 Set_Has_Completion (Id);
3589 end if;
3591 -- Set type and resolve (type may be overridden later on). Note:
3592 -- Ekind (Id) must still be E_Void at this point so that incorrect
3593 -- early usage within E is properly diagnosed.
3595 Set_Etype (Id, T);
3597 -- If the expression is an aggregate we must look ahead to detect
3598 -- the possible presence of an address clause, and defer resolution
3599 -- and expansion of the aggregate to the freeze point of the entity.
3601 if Comes_From_Source (N)
3602 and then Expander_Active
3603 and then Present (Following_Address_Clause (N))
3604 and then Nkind (E) = N_Aggregate
3605 then
3606 Set_Etype (E, T);
3608 else
3609 Resolve (E, T);
3610 end if;
3612 -- No further action needed if E is a call to an inlined function
3613 -- which returns an unconstrained type and it has been expanded into
3614 -- a procedure call. In that case N has been replaced by an object
3615 -- declaration without initializing expression and it has been
3616 -- analyzed (see Expand_Inlined_Call).
3618 if Back_End_Inlining
3619 and then Expander_Active
3620 and then Nkind (E) = N_Function_Call
3621 and then Nkind (Name (E)) in N_Has_Entity
3622 and then Is_Inlined (Entity (Name (E)))
3623 and then not Is_Constrained (Etype (E))
3624 and then Analyzed (N)
3625 and then No (Expression (N))
3626 then
3627 return;
3628 end if;
3630 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3631 -- node (which was marked already-analyzed), we need to set the type
3632 -- to something other than Any_Access in order to keep gigi happy.
3634 if Etype (E) = Any_Access then
3635 Set_Etype (E, T);
3636 end if;
3638 -- If the object is an access to variable, the initialization
3639 -- expression cannot be an access to constant.
3641 if Is_Access_Type (T)
3642 and then not Is_Access_Constant (T)
3643 and then Is_Access_Type (Etype (E))
3644 and then Is_Access_Constant (Etype (E))
3645 then
3646 Error_Msg_N
3647 ("access to variable cannot be initialized with an "
3648 & "access-to-constant expression", E);
3649 end if;
3651 if not Assignment_OK (N) then
3652 Check_Initialization (T, E);
3653 end if;
3655 Check_Unset_Reference (E);
3657 -- If this is a variable, then set current value. If this is a
3658 -- declared constant of a scalar type with a static expression,
3659 -- indicate that it is always valid.
3661 if not Constant_Present (N) then
3662 if Compile_Time_Known_Value (E) then
3663 Set_Current_Value (Id, E);
3664 end if;
3666 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3667 Set_Is_Known_Valid (Id);
3668 end if;
3670 -- Deal with setting of null flags
3672 if Is_Access_Type (T) then
3673 if Known_Non_Null (E) then
3674 Set_Is_Known_Non_Null (Id, True);
3675 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3676 Set_Is_Known_Null (Id, True);
3677 end if;
3678 end if;
3680 -- Check incorrect use of dynamically tagged expressions
3682 if Is_Tagged_Type (T) then
3683 Check_Dynamically_Tagged_Expression
3684 (Expr => E,
3685 Typ => T,
3686 Related_Nod => N);
3687 end if;
3689 Apply_Scalar_Range_Check (E, T);
3690 Apply_Static_Length_Check (E, T);
3692 if Nkind (Original_Node (N)) = N_Object_Declaration
3693 and then Comes_From_Source (Original_Node (N))
3695 -- Only call test if needed
3697 and then Restriction_Check_Required (SPARK_05)
3698 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3699 then
3700 Check_SPARK_05_Restriction
3701 ("initialization expression is not appropriate", E);
3702 end if;
3704 -- A formal parameter of a specific tagged type whose related
3705 -- subprogram is subject to pragma Extensions_Visible with value
3706 -- "False" cannot be implicitly converted to a class-wide type by
3707 -- means of an initialization expression (SPARK RM 6.1.7(3)).
3709 if Is_Class_Wide_Type (T) and then Is_EVF_Expression (E) then
3710 Error_Msg_N
3711 ("formal parameter with Extensions_Visible False cannot be "
3712 & "implicitly converted to class-wide type", E);
3713 end if;
3714 end if;
3716 -- If the No_Streams restriction is set, check that the type of the
3717 -- object is not, and does not contain, any subtype derived from
3718 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3719 -- Has_Stream just for efficiency reasons. There is no point in
3720 -- spending time on a Has_Stream check if the restriction is not set.
3722 if Restriction_Check_Required (No_Streams) then
3723 if Has_Stream (T) then
3724 Check_Restriction (No_Streams, N);
3725 end if;
3726 end if;
3728 -- Deal with predicate check before we start to do major rewriting. It
3729 -- is OK to initialize and then check the initialized value, since the
3730 -- object goes out of scope if we get a predicate failure. Note that we
3731 -- do this in the analyzer and not the expander because the analyzer
3732 -- does some substantial rewriting in some cases.
3734 -- We need a predicate check if the type has predicates, and if either
3735 -- there is an initializing expression, or for default initialization
3736 -- when we have at least one case of an explicit default initial value
3737 -- and then this is not an internal declaration whose initialization
3738 -- comes later (as for an aggregate expansion).
3740 if not Suppress_Assignment_Checks (N)
3741 and then Present (Predicate_Function (T))
3742 and then not No_Initialization (N)
3743 and then
3744 (Present (E)
3745 or else
3746 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3747 then
3748 -- If the type has a static predicate and the expression is known at
3749 -- compile time, see if the expression satisfies the predicate.
3751 if Present (E) then
3752 Check_Expression_Against_Static_Predicate (E, T);
3753 end if;
3755 Insert_After (N,
3756 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3757 end if;
3759 -- Case of unconstrained type
3761 if Is_Indefinite_Subtype (T) then
3763 -- In SPARK, a declaration of unconstrained type is allowed
3764 -- only for constants of type string.
3766 if Is_String_Type (T) and then not Constant_Present (N) then
3767 Check_SPARK_05_Restriction
3768 ("declaration of object of unconstrained type not allowed", N);
3769 end if;
3771 -- Nothing to do in deferred constant case
3773 if Constant_Present (N) and then No (E) then
3774 null;
3776 -- Case of no initialization present
3778 elsif No (E) then
3779 if No_Initialization (N) then
3780 null;
3782 elsif Is_Class_Wide_Type (T) then
3783 Error_Msg_N
3784 ("initialization required in class-wide declaration ", N);
3786 else
3787 Error_Msg_N
3788 ("unconstrained subtype not allowed (need initialization)",
3789 Object_Definition (N));
3791 if Is_Record_Type (T) and then Has_Discriminants (T) then
3792 Error_Msg_N
3793 ("\provide initial value or explicit discriminant values",
3794 Object_Definition (N));
3796 Error_Msg_NE
3797 ("\or give default discriminant values for type&",
3798 Object_Definition (N), T);
3800 elsif Is_Array_Type (T) then
3801 Error_Msg_N
3802 ("\provide initial value or explicit array bounds",
3803 Object_Definition (N));
3804 end if;
3805 end if;
3807 -- Case of initialization present but in error. Set initial
3808 -- expression as absent (but do not make above complaints)
3810 elsif E = Error then
3811 Set_Expression (N, Empty);
3812 E := Empty;
3814 -- Case of initialization present
3816 else
3817 -- Check restrictions in Ada 83
3819 if not Constant_Present (N) then
3821 -- Unconstrained variables not allowed in Ada 83 mode
3823 if Ada_Version = Ada_83
3824 and then Comes_From_Source (Object_Definition (N))
3825 then
3826 Error_Msg_N
3827 ("(Ada 83) unconstrained variable not allowed",
3828 Object_Definition (N));
3829 end if;
3830 end if;
3832 -- Now we constrain the variable from the initializing expression
3834 -- If the expression is an aggregate, it has been expanded into
3835 -- individual assignments. Retrieve the actual type from the
3836 -- expanded construct.
3838 if Is_Array_Type (T)
3839 and then No_Initialization (N)
3840 and then Nkind (Original_Node (E)) = N_Aggregate
3841 then
3842 Act_T := Etype (E);
3844 -- In case of class-wide interface object declarations we delay
3845 -- the generation of the equivalent record type declarations until
3846 -- its expansion because there are cases in they are not required.
3848 elsif Is_Interface (T) then
3849 null;
3851 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3852 -- we should prevent the generation of another Itype with the
3853 -- same name as the one already generated, or we end up with
3854 -- two identical types in GNATprove.
3856 elsif GNATprove_Mode then
3857 null;
3859 -- If the type is an unchecked union, no subtype can be built from
3860 -- the expression. Rewrite declaration as a renaming, which the
3861 -- back-end can handle properly. This is a rather unusual case,
3862 -- because most unchecked_union declarations have default values
3863 -- for discriminants and are thus not indefinite.
3865 elsif Is_Unchecked_Union (T) then
3866 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
3867 Set_Ekind (Id, E_Constant);
3868 else
3869 Set_Ekind (Id, E_Variable);
3870 end if;
3872 Rewrite (N,
3873 Make_Object_Renaming_Declaration (Loc,
3874 Defining_Identifier => Id,
3875 Subtype_Mark => New_Occurrence_Of (T, Loc),
3876 Name => E));
3878 Set_Renamed_Object (Id, E);
3879 Freeze_Before (N, T);
3880 Set_Is_Frozen (Id);
3881 return;
3883 else
3884 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3885 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3886 end if;
3888 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3890 if Aliased_Present (N) then
3891 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3892 end if;
3894 Freeze_Before (N, Act_T);
3895 Freeze_Before (N, T);
3896 end if;
3898 elsif Is_Array_Type (T)
3899 and then No_Initialization (N)
3900 and then Nkind (Original_Node (E)) = N_Aggregate
3901 then
3902 if not Is_Entity_Name (Object_Definition (N)) then
3903 Act_T := Etype (E);
3904 Check_Compile_Time_Size (Act_T);
3906 if Aliased_Present (N) then
3907 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3908 end if;
3909 end if;
3911 -- When the given object definition and the aggregate are specified
3912 -- independently, and their lengths might differ do a length check.
3913 -- This cannot happen if the aggregate is of the form (others =>...)
3915 if not Is_Constrained (T) then
3916 null;
3918 elsif Nkind (E) = N_Raise_Constraint_Error then
3920 -- Aggregate is statically illegal. Place back in declaration
3922 Set_Expression (N, E);
3923 Set_No_Initialization (N, False);
3925 elsif T = Etype (E) then
3926 null;
3928 elsif Nkind (E) = N_Aggregate
3929 and then Present (Component_Associations (E))
3930 and then Present (Choices (First (Component_Associations (E))))
3931 and then Nkind (First
3932 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3933 then
3934 null;
3936 else
3937 Apply_Length_Check (E, T);
3938 end if;
3940 -- If the type is limited unconstrained with defaulted discriminants and
3941 -- there is no expression, then the object is constrained by the
3942 -- defaults, so it is worthwhile building the corresponding subtype.
3944 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3945 and then not Is_Constrained (T)
3946 and then Has_Discriminants (T)
3947 then
3948 if No (E) then
3949 Act_T := Build_Default_Subtype (T, N);
3950 else
3951 -- Ada 2005: A limited object may be initialized by means of an
3952 -- aggregate. If the type has default discriminants it has an
3953 -- unconstrained nominal type, Its actual subtype will be obtained
3954 -- from the aggregate, and not from the default discriminants.
3956 Act_T := Etype (E);
3957 end if;
3959 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3961 elsif Nkind (E) = N_Function_Call
3962 and then Constant_Present (N)
3963 and then Has_Unconstrained_Elements (Etype (E))
3964 then
3965 -- The back-end has problems with constants of a discriminated type
3966 -- with defaults, if the initial value is a function call. We
3967 -- generate an intermediate temporary that will receive a reference
3968 -- to the result of the call. The initialization expression then
3969 -- becomes a dereference of that temporary.
3971 Remove_Side_Effects (E);
3973 -- If this is a constant declaration of an unconstrained type and
3974 -- the initialization is an aggregate, we can use the subtype of the
3975 -- aggregate for the declared entity because it is immutable.
3977 elsif not Is_Constrained (T)
3978 and then Has_Discriminants (T)
3979 and then Constant_Present (N)
3980 and then not Has_Unchecked_Union (T)
3981 and then Nkind (E) = N_Aggregate
3982 then
3983 Act_T := Etype (E);
3984 end if;
3986 -- Check No_Wide_Characters restriction
3988 Check_Wide_Character_Restriction (T, Object_Definition (N));
3990 -- Indicate this is not set in source. Certainly true for constants, and
3991 -- true for variables so far (will be reset for a variable if and when
3992 -- we encounter a modification in the source).
3994 Set_Never_Set_In_Source (Id, True);
3996 -- Now establish the proper kind and type of the object
3998 if Constant_Present (N) then
3999 Set_Ekind (Id, E_Constant);
4000 Set_Is_True_Constant (Id);
4002 else
4003 Set_Ekind (Id, E_Variable);
4005 -- A variable is set as shared passive if it appears in a shared
4006 -- passive package, and is at the outer level. This is not done for
4007 -- entities generated during expansion, because those are always
4008 -- manipulated locally.
4010 if Is_Shared_Passive (Current_Scope)
4011 and then Is_Library_Level_Entity (Id)
4012 and then Comes_From_Source (Id)
4013 then
4014 Set_Is_Shared_Passive (Id);
4015 Check_Shared_Var (Id, T, N);
4016 end if;
4018 -- Set Has_Initial_Value if initializing expression present. Note
4019 -- that if there is no initializing expression, we leave the state
4020 -- of this flag unchanged (usually it will be False, but notably in
4021 -- the case of exception choice variables, it will already be true).
4023 if Present (E) then
4024 Set_Has_Initial_Value (Id, True);
4025 end if;
4027 Set_Contract (Id, Make_Contract (Sloc (Id)));
4028 end if;
4030 -- Initialize alignment and size and capture alignment setting
4032 Init_Alignment (Id);
4033 Init_Esize (Id);
4034 Set_Optimize_Alignment_Flags (Id);
4036 -- Deal with aliased case
4038 if Aliased_Present (N) then
4039 Set_Is_Aliased (Id);
4041 -- If the object is aliased and the type is unconstrained with
4042 -- defaulted discriminants and there is no expression, then the
4043 -- object is constrained by the defaults, so it is worthwhile
4044 -- building the corresponding subtype.
4046 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4047 -- unconstrained, then only establish an actual subtype if the
4048 -- nominal subtype is indefinite. In definite cases the object is
4049 -- unconstrained in Ada 2005.
4051 if No (E)
4052 and then Is_Record_Type (T)
4053 and then not Is_Constrained (T)
4054 and then Has_Discriminants (T)
4055 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
4056 then
4057 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4058 end if;
4059 end if;
4061 -- Now we can set the type of the object
4063 Set_Etype (Id, Act_T);
4065 -- Non-constant object is marked to be treated as volatile if type is
4066 -- volatile and we clear the Current_Value setting that may have been
4067 -- set above. Doing so for constants isn't required and might interfere
4068 -- with possible uses of the object as a static expression in contexts
4069 -- incompatible with volatility (e.g. as a case-statement alternative).
4071 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4072 Set_Treat_As_Volatile (Id);
4073 Set_Current_Value (Id, Empty);
4074 end if;
4076 -- Deal with controlled types
4078 if Has_Controlled_Component (Etype (Id))
4079 or else Is_Controlled (Etype (Id))
4080 then
4081 if not Is_Library_Level_Entity (Id) then
4082 Check_Restriction (No_Nested_Finalization, N);
4083 else
4084 Validate_Controlled_Object (Id);
4085 end if;
4086 end if;
4088 if Has_Task (Etype (Id)) then
4089 Check_Restriction (No_Tasking, N);
4091 -- Deal with counting max tasks
4093 -- Nothing to do if inside a generic
4095 if Inside_A_Generic then
4096 null;
4098 -- If library level entity, then count tasks
4100 elsif Is_Library_Level_Entity (Id) then
4101 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4103 -- If not library level entity, then indicate we don't know max
4104 -- tasks and also check task hierarchy restriction and blocking
4105 -- operation (since starting a task is definitely blocking).
4107 else
4108 Check_Restriction (Max_Tasks, N);
4109 Check_Restriction (No_Task_Hierarchy, N);
4110 Check_Potentially_Blocking_Operation (N);
4111 end if;
4113 -- A rather specialized test. If we see two tasks being declared
4114 -- of the same type in the same object declaration, and the task
4115 -- has an entry with an address clause, we know that program error
4116 -- will be raised at run time since we can't have two tasks with
4117 -- entries at the same address.
4119 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4120 declare
4121 E : Entity_Id;
4123 begin
4124 E := First_Entity (Etype (Id));
4125 while Present (E) loop
4126 if Ekind (E) = E_Entry
4127 and then Present (Get_Attribute_Definition_Clause
4128 (E, Attribute_Address))
4129 then
4130 Error_Msg_Warn := SPARK_Mode /= On;
4131 Error_Msg_N
4132 ("more than one task with same entry address<<", N);
4133 Error_Msg_N ("\Program_Error [<<", N);
4134 Insert_Action (N,
4135 Make_Raise_Program_Error (Loc,
4136 Reason => PE_Duplicated_Entry_Address));
4137 exit;
4138 end if;
4140 Next_Entity (E);
4141 end loop;
4142 end;
4143 end if;
4144 end if;
4146 -- Some simple constant-propagation: if the expression is a constant
4147 -- string initialized with a literal, share the literal. This avoids
4148 -- a run-time copy.
4150 if Present (E)
4151 and then Is_Entity_Name (E)
4152 and then Ekind (Entity (E)) = E_Constant
4153 and then Base_Type (Etype (E)) = Standard_String
4154 then
4155 declare
4156 Val : constant Node_Id := Constant_Value (Entity (E));
4157 begin
4158 if Present (Val) and then Nkind (Val) = N_String_Literal then
4159 Rewrite (E, New_Copy (Val));
4160 end if;
4161 end;
4162 end if;
4164 -- Another optimization: if the nominal subtype is unconstrained and
4165 -- the expression is a function call that returns an unconstrained
4166 -- type, rewrite the declaration as a renaming of the result of the
4167 -- call. The exceptions below are cases where the copy is expected,
4168 -- either by the back end (Aliased case) or by the semantics, as for
4169 -- initializing controlled types or copying tags for classwide types.
4171 if Present (E)
4172 and then Nkind (E) = N_Explicit_Dereference
4173 and then Nkind (Original_Node (E)) = N_Function_Call
4174 and then not Is_Library_Level_Entity (Id)
4175 and then not Is_Constrained (Underlying_Type (T))
4176 and then not Is_Aliased (Id)
4177 and then not Is_Class_Wide_Type (T)
4178 and then not Is_Controlled (T)
4179 and then not Has_Controlled_Component (Base_Type (T))
4180 and then Expander_Active
4181 then
4182 Rewrite (N,
4183 Make_Object_Renaming_Declaration (Loc,
4184 Defining_Identifier => Id,
4185 Access_Definition => Empty,
4186 Subtype_Mark => New_Occurrence_Of
4187 (Base_Type (Etype (Id)), Loc),
4188 Name => E));
4190 Set_Renamed_Object (Id, E);
4192 -- Force generation of debugging information for the constant and for
4193 -- the renamed function call.
4195 Set_Debug_Info_Needed (Id);
4196 Set_Debug_Info_Needed (Entity (Prefix (E)));
4197 end if;
4199 if Present (Prev_Entity)
4200 and then Is_Frozen (Prev_Entity)
4201 and then not Error_Posted (Id)
4202 then
4203 Error_Msg_N ("full constant declaration appears too late", N);
4204 end if;
4206 Check_Eliminated (Id);
4208 -- Deal with setting In_Private_Part flag if in private part
4210 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4211 then
4212 Set_In_Private_Part (Id);
4213 end if;
4215 -- Check for violation of No_Local_Timing_Events
4217 if Restriction_Check_Required (No_Local_Timing_Events)
4218 and then not Is_Library_Level_Entity (Id)
4219 and then Is_RTE (Etype (Id), RE_Timing_Event)
4220 then
4221 Check_Restriction (No_Local_Timing_Events, N);
4222 end if;
4224 <<Leave>>
4225 -- Initialize the refined state of a variable here because this is a
4226 -- common destination for legal and illegal object declarations.
4228 if Ekind (Id) = E_Variable then
4229 Set_Encapsulating_State (Id, Empty);
4230 end if;
4232 if Has_Aspects (N) then
4233 Analyze_Aspect_Specifications (N, Id);
4234 end if;
4236 Analyze_Dimension (N);
4238 -- Verify whether the object declaration introduces an illegal hidden
4239 -- state within a package subject to a null abstract state.
4241 if Ekind (Id) = E_Variable then
4242 Check_No_Hidden_State (Id);
4243 end if;
4244 end Analyze_Object_Declaration;
4246 ---------------------------
4247 -- Analyze_Others_Choice --
4248 ---------------------------
4250 -- Nothing to do for the others choice node itself, the semantic analysis
4251 -- of the others choice will occur as part of the processing of the parent
4253 procedure Analyze_Others_Choice (N : Node_Id) is
4254 pragma Warnings (Off, N);
4255 begin
4256 null;
4257 end Analyze_Others_Choice;
4259 -------------------------------------------
4260 -- Analyze_Private_Extension_Declaration --
4261 -------------------------------------------
4263 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4264 T : constant Entity_Id := Defining_Identifier (N);
4265 Indic : constant Node_Id := Subtype_Indication (N);
4266 Parent_Type : Entity_Id;
4267 Parent_Base : Entity_Id;
4269 begin
4270 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4272 if Is_Non_Empty_List (Interface_List (N)) then
4273 declare
4274 Intf : Node_Id;
4275 T : Entity_Id;
4277 begin
4278 Intf := First (Interface_List (N));
4279 while Present (Intf) loop
4280 T := Find_Type_Of_Subtype_Indic (Intf);
4282 Diagnose_Interface (Intf, T);
4283 Next (Intf);
4284 end loop;
4285 end;
4286 end if;
4288 Generate_Definition (T);
4290 -- For other than Ada 2012, just enter the name in the current scope
4292 if Ada_Version < Ada_2012 then
4293 Enter_Name (T);
4295 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4296 -- case of private type that completes an incomplete type.
4298 else
4299 declare
4300 Prev : Entity_Id;
4302 begin
4303 Prev := Find_Type_Name (N);
4305 pragma Assert (Prev = T
4306 or else (Ekind (Prev) = E_Incomplete_Type
4307 and then Present (Full_View (Prev))
4308 and then Full_View (Prev) = T));
4309 end;
4310 end if;
4312 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4313 Parent_Base := Base_Type (Parent_Type);
4315 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4316 Set_Ekind (T, Ekind (Parent_Type));
4317 Set_Etype (T, Any_Type);
4318 goto Leave;
4320 elsif not Is_Tagged_Type (Parent_Type) then
4321 Error_Msg_N
4322 ("parent of type extension must be a tagged type ", Indic);
4323 goto Leave;
4325 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4326 Error_Msg_N ("premature derivation of incomplete type", Indic);
4327 goto Leave;
4329 elsif Is_Concurrent_Type (Parent_Type) then
4330 Error_Msg_N
4331 ("parent type of a private extension cannot be "
4332 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4334 Set_Etype (T, Any_Type);
4335 Set_Ekind (T, E_Limited_Private_Type);
4336 Set_Private_Dependents (T, New_Elmt_List);
4337 Set_Error_Posted (T);
4338 goto Leave;
4339 end if;
4341 -- Perhaps the parent type should be changed to the class-wide type's
4342 -- specific type in this case to prevent cascading errors ???
4344 if Is_Class_Wide_Type (Parent_Type) then
4345 Error_Msg_N
4346 ("parent of type extension must not be a class-wide type", Indic);
4347 goto Leave;
4348 end if;
4350 if (not Is_Package_Or_Generic_Package (Current_Scope)
4351 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4352 or else In_Private_Part (Current_Scope)
4354 then
4355 Error_Msg_N ("invalid context for private extension", N);
4356 end if;
4358 -- Set common attributes
4360 Set_Is_Pure (T, Is_Pure (Current_Scope));
4361 Set_Scope (T, Current_Scope);
4362 Set_Ekind (T, E_Record_Type_With_Private);
4363 Init_Size_Align (T);
4364 Set_Default_SSO (T);
4366 Set_Etype (T, Parent_Base);
4367 Set_Has_Task (T, Has_Task (Parent_Base));
4368 Set_Has_Protected (T, Has_Task (Parent_Base));
4370 Set_Convention (T, Convention (Parent_Type));
4371 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4372 Set_Is_First_Subtype (T);
4373 Make_Class_Wide_Type (T);
4375 if Unknown_Discriminants_Present (N) then
4376 Set_Discriminant_Constraint (T, No_Elist);
4377 end if;
4379 Build_Derived_Record_Type (N, Parent_Type, T);
4381 -- Propagate inherited invariant information. The new type has
4382 -- invariants, if the parent type has inheritable invariants,
4383 -- and these invariants can in turn be inherited.
4385 if Has_Inheritable_Invariants (Parent_Type) then
4386 Set_Has_Inheritable_Invariants (T);
4387 Set_Has_Invariants (T);
4388 end if;
4390 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4391 -- synchronized formal derived type.
4393 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4394 Set_Is_Limited_Record (T);
4396 -- Formal derived type case
4398 if Is_Generic_Type (T) then
4400 -- The parent must be a tagged limited type or a synchronized
4401 -- interface.
4403 if (not Is_Tagged_Type (Parent_Type)
4404 or else not Is_Limited_Type (Parent_Type))
4405 and then
4406 (not Is_Interface (Parent_Type)
4407 or else not Is_Synchronized_Interface (Parent_Type))
4408 then
4409 Error_Msg_NE ("parent type of & must be tagged limited " &
4410 "or synchronized", N, T);
4411 end if;
4413 -- The progenitors (if any) must be limited or synchronized
4414 -- interfaces.
4416 if Present (Interfaces (T)) then
4417 declare
4418 Iface : Entity_Id;
4419 Iface_Elmt : Elmt_Id;
4421 begin
4422 Iface_Elmt := First_Elmt (Interfaces (T));
4423 while Present (Iface_Elmt) loop
4424 Iface := Node (Iface_Elmt);
4426 if not Is_Limited_Interface (Iface)
4427 and then not Is_Synchronized_Interface (Iface)
4428 then
4429 Error_Msg_NE ("progenitor & must be limited " &
4430 "or synchronized", N, Iface);
4431 end if;
4433 Next_Elmt (Iface_Elmt);
4434 end loop;
4435 end;
4436 end if;
4438 -- Regular derived extension, the parent must be a limited or
4439 -- synchronized interface.
4441 else
4442 if not Is_Interface (Parent_Type)
4443 or else (not Is_Limited_Interface (Parent_Type)
4444 and then not Is_Synchronized_Interface (Parent_Type))
4445 then
4446 Error_Msg_NE
4447 ("parent type of & must be limited interface", N, T);
4448 end if;
4449 end if;
4451 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4452 -- extension with a synchronized parent must be explicitly declared
4453 -- synchronized, because the full view will be a synchronized type.
4454 -- This must be checked before the check for limited types below,
4455 -- to ensure that types declared limited are not allowed to extend
4456 -- synchronized interfaces.
4458 elsif Is_Interface (Parent_Type)
4459 and then Is_Synchronized_Interface (Parent_Type)
4460 and then not Synchronized_Present (N)
4461 then
4462 Error_Msg_NE
4463 ("private extension of& must be explicitly synchronized",
4464 N, Parent_Type);
4466 elsif Limited_Present (N) then
4467 Set_Is_Limited_Record (T);
4469 if not Is_Limited_Type (Parent_Type)
4470 and then
4471 (not Is_Interface (Parent_Type)
4472 or else not Is_Limited_Interface (Parent_Type))
4473 then
4474 Error_Msg_NE ("parent type& of limited extension must be limited",
4475 N, Parent_Type);
4476 end if;
4477 end if;
4479 <<Leave>>
4480 if Has_Aspects (N) then
4481 Analyze_Aspect_Specifications (N, T);
4482 end if;
4483 end Analyze_Private_Extension_Declaration;
4485 ---------------------------------
4486 -- Analyze_Subtype_Declaration --
4487 ---------------------------------
4489 procedure Analyze_Subtype_Declaration
4490 (N : Node_Id;
4491 Skip : Boolean := False)
4493 Id : constant Entity_Id := Defining_Identifier (N);
4494 T : Entity_Id;
4495 R_Checks : Check_Result;
4497 begin
4498 Generate_Definition (Id);
4499 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4500 Init_Size_Align (Id);
4502 -- The following guard condition on Enter_Name is to handle cases where
4503 -- the defining identifier has already been entered into the scope but
4504 -- the declaration as a whole needs to be analyzed.
4506 -- This case in particular happens for derived enumeration types. The
4507 -- derived enumeration type is processed as an inserted enumeration type
4508 -- declaration followed by a rewritten subtype declaration. The defining
4509 -- identifier, however, is entered into the name scope very early in the
4510 -- processing of the original type declaration and therefore needs to be
4511 -- avoided here, when the created subtype declaration is analyzed. (See
4512 -- Build_Derived_Types)
4514 -- This also happens when the full view of a private type is derived
4515 -- type with constraints. In this case the entity has been introduced
4516 -- in the private declaration.
4518 -- Finally this happens in some complex cases when validity checks are
4519 -- enabled, where the same subtype declaration may be analyzed twice.
4520 -- This can happen if the subtype is created by the pre-analysis of
4521 -- an attribute tht gives the range of a loop statement, and the loop
4522 -- itself appears within an if_statement that will be rewritten during
4523 -- expansion.
4525 if Skip
4526 or else (Present (Etype (Id))
4527 and then (Is_Private_Type (Etype (Id))
4528 or else Is_Task_Type (Etype (Id))
4529 or else Is_Rewrite_Substitution (N)))
4530 then
4531 null;
4533 elsif Current_Entity (Id) = Id then
4534 null;
4536 else
4537 Enter_Name (Id);
4538 end if;
4540 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4542 -- Class-wide equivalent types of records with unknown discriminants
4543 -- involve the generation of an itype which serves as the private view
4544 -- of a constrained record subtype. In such cases the base type of the
4545 -- current subtype we are processing is the private itype. Use the full
4546 -- of the private itype when decorating various attributes.
4548 if Is_Itype (T)
4549 and then Is_Private_Type (T)
4550 and then Present (Full_View (T))
4551 then
4552 T := Full_View (T);
4553 end if;
4555 -- Inherit common attributes
4557 Set_Is_Volatile (Id, Is_Volatile (T));
4558 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4559 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4560 Set_Convention (Id, Convention (T));
4562 -- If ancestor has predicates then so does the subtype, and in addition
4563 -- we must delay the freeze to properly arrange predicate inheritance.
4565 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4566 -- in which T = ID, so the above tests and assignments do nothing???
4568 if Has_Predicates (T)
4569 or else (Present (Ancestor_Subtype (T))
4570 and then Has_Predicates (Ancestor_Subtype (T)))
4571 then
4572 Set_Has_Predicates (Id);
4573 Set_Has_Delayed_Freeze (Id);
4574 end if;
4576 -- Subtype of Boolean cannot have a constraint in SPARK
4578 if Is_Boolean_Type (T)
4579 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4580 then
4581 Check_SPARK_05_Restriction
4582 ("subtype of Boolean cannot have constraint", N);
4583 end if;
4585 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4586 declare
4587 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4588 One_Cstr : Node_Id;
4589 Low : Node_Id;
4590 High : Node_Id;
4592 begin
4593 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4594 One_Cstr := First (Constraints (Cstr));
4595 while Present (One_Cstr) loop
4597 -- Index or discriminant constraint in SPARK must be a
4598 -- subtype mark.
4600 if not
4601 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4602 then
4603 Check_SPARK_05_Restriction
4604 ("subtype mark required", One_Cstr);
4606 -- String subtype must have a lower bound of 1 in SPARK.
4607 -- Note that we do not need to test for the non-static case
4608 -- here, since that was already taken care of in
4609 -- Process_Range_Expr_In_Decl.
4611 elsif Base_Type (T) = Standard_String then
4612 Get_Index_Bounds (One_Cstr, Low, High);
4614 if Is_OK_Static_Expression (Low)
4615 and then Expr_Value (Low) /= 1
4616 then
4617 Check_SPARK_05_Restriction
4618 ("String subtype must have lower bound of 1", N);
4619 end if;
4620 end if;
4622 Next (One_Cstr);
4623 end loop;
4624 end if;
4625 end;
4626 end if;
4628 -- In the case where there is no constraint given in the subtype
4629 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4630 -- semantic attributes must be established here.
4632 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4633 Set_Etype (Id, Base_Type (T));
4635 -- Subtype of unconstrained array without constraint is not allowed
4636 -- in SPARK.
4638 if Is_Array_Type (T) and then not Is_Constrained (T) then
4639 Check_SPARK_05_Restriction
4640 ("subtype of unconstrained array must have constraint", N);
4641 end if;
4643 case Ekind (T) is
4644 when Array_Kind =>
4645 Set_Ekind (Id, E_Array_Subtype);
4646 Copy_Array_Subtype_Attributes (Id, T);
4648 when Decimal_Fixed_Point_Kind =>
4649 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4650 Set_Digits_Value (Id, Digits_Value (T));
4651 Set_Delta_Value (Id, Delta_Value (T));
4652 Set_Scale_Value (Id, Scale_Value (T));
4653 Set_Small_Value (Id, Small_Value (T));
4654 Set_Scalar_Range (Id, Scalar_Range (T));
4655 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4656 Set_Is_Constrained (Id, Is_Constrained (T));
4657 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4658 Set_RM_Size (Id, RM_Size (T));
4660 when Enumeration_Kind =>
4661 Set_Ekind (Id, E_Enumeration_Subtype);
4662 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4663 Set_Scalar_Range (Id, Scalar_Range (T));
4664 Set_Is_Character_Type (Id, Is_Character_Type (T));
4665 Set_Is_Constrained (Id, Is_Constrained (T));
4666 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4667 Set_RM_Size (Id, RM_Size (T));
4668 Inherit_Predicate_Flags (Id, T);
4670 when Ordinary_Fixed_Point_Kind =>
4671 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4672 Set_Scalar_Range (Id, Scalar_Range (T));
4673 Set_Small_Value (Id, Small_Value (T));
4674 Set_Delta_Value (Id, Delta_Value (T));
4675 Set_Is_Constrained (Id, Is_Constrained (T));
4676 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4677 Set_RM_Size (Id, RM_Size (T));
4679 when Float_Kind =>
4680 Set_Ekind (Id, E_Floating_Point_Subtype);
4681 Set_Scalar_Range (Id, Scalar_Range (T));
4682 Set_Digits_Value (Id, Digits_Value (T));
4683 Set_Is_Constrained (Id, Is_Constrained (T));
4685 when Signed_Integer_Kind =>
4686 Set_Ekind (Id, E_Signed_Integer_Subtype);
4687 Set_Scalar_Range (Id, Scalar_Range (T));
4688 Set_Is_Constrained (Id, Is_Constrained (T));
4689 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4690 Set_RM_Size (Id, RM_Size (T));
4691 Inherit_Predicate_Flags (Id, T);
4693 when Modular_Integer_Kind =>
4694 Set_Ekind (Id, E_Modular_Integer_Subtype);
4695 Set_Scalar_Range (Id, Scalar_Range (T));
4696 Set_Is_Constrained (Id, Is_Constrained (T));
4697 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4698 Set_RM_Size (Id, RM_Size (T));
4699 Inherit_Predicate_Flags (Id, T);
4701 when Class_Wide_Kind =>
4702 Set_Ekind (Id, E_Class_Wide_Subtype);
4703 Set_First_Entity (Id, First_Entity (T));
4704 Set_Last_Entity (Id, Last_Entity (T));
4705 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4706 Set_Cloned_Subtype (Id, T);
4707 Set_Is_Tagged_Type (Id, True);
4708 Set_Has_Unknown_Discriminants
4709 (Id, True);
4710 Set_No_Tagged_Streams_Pragma
4711 (Id, No_Tagged_Streams_Pragma (T));
4713 if Ekind (T) = E_Class_Wide_Subtype then
4714 Set_Equivalent_Type (Id, Equivalent_Type (T));
4715 end if;
4717 when E_Record_Type | E_Record_Subtype =>
4718 Set_Ekind (Id, E_Record_Subtype);
4720 if Ekind (T) = E_Record_Subtype
4721 and then Present (Cloned_Subtype (T))
4722 then
4723 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4724 else
4725 Set_Cloned_Subtype (Id, T);
4726 end if;
4728 Set_First_Entity (Id, First_Entity (T));
4729 Set_Last_Entity (Id, Last_Entity (T));
4730 Set_Has_Discriminants (Id, Has_Discriminants (T));
4731 Set_Is_Constrained (Id, Is_Constrained (T));
4732 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4733 Set_Has_Implicit_Dereference
4734 (Id, Has_Implicit_Dereference (T));
4735 Set_Has_Unknown_Discriminants
4736 (Id, Has_Unknown_Discriminants (T));
4738 if Has_Discriminants (T) then
4739 Set_Discriminant_Constraint
4740 (Id, Discriminant_Constraint (T));
4741 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4743 elsif Has_Unknown_Discriminants (Id) then
4744 Set_Discriminant_Constraint (Id, No_Elist);
4745 end if;
4747 if Is_Tagged_Type (T) then
4748 Set_Is_Tagged_Type (Id, True);
4749 Set_No_Tagged_Streams_Pragma
4750 (Id, No_Tagged_Streams_Pragma (T));
4751 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4752 Set_Direct_Primitive_Operations
4753 (Id, Direct_Primitive_Operations (T));
4754 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4756 if Is_Interface (T) then
4757 Set_Is_Interface (Id);
4758 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4759 end if;
4760 end if;
4762 when Private_Kind =>
4763 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4764 Set_Has_Discriminants (Id, Has_Discriminants (T));
4765 Set_Is_Constrained (Id, Is_Constrained (T));
4766 Set_First_Entity (Id, First_Entity (T));
4767 Set_Last_Entity (Id, Last_Entity (T));
4768 Set_Private_Dependents (Id, New_Elmt_List);
4769 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4770 Set_Has_Implicit_Dereference
4771 (Id, Has_Implicit_Dereference (T));
4772 Set_Has_Unknown_Discriminants
4773 (Id, Has_Unknown_Discriminants (T));
4774 Set_Known_To_Have_Preelab_Init
4775 (Id, Known_To_Have_Preelab_Init (T));
4777 if Is_Tagged_Type (T) then
4778 Set_Is_Tagged_Type (Id);
4779 Set_No_Tagged_Streams_Pragma (Id,
4780 No_Tagged_Streams_Pragma (T));
4781 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4782 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4783 Set_Direct_Primitive_Operations (Id,
4784 Direct_Primitive_Operations (T));
4785 end if;
4787 -- In general the attributes of the subtype of a private type
4788 -- are the attributes of the partial view of parent. However,
4789 -- the full view may be a discriminated type, and the subtype
4790 -- must share the discriminant constraint to generate correct
4791 -- calls to initialization procedures.
4793 if Has_Discriminants (T) then
4794 Set_Discriminant_Constraint
4795 (Id, Discriminant_Constraint (T));
4796 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4798 elsif Present (Full_View (T))
4799 and then Has_Discriminants (Full_View (T))
4800 then
4801 Set_Discriminant_Constraint
4802 (Id, Discriminant_Constraint (Full_View (T)));
4803 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4805 -- This would seem semantically correct, but apparently
4806 -- generates spurious errors about missing components ???
4808 -- Set_Has_Discriminants (Id);
4809 end if;
4811 Prepare_Private_Subtype_Completion (Id, N);
4813 -- If this is the subtype of a constrained private type with
4814 -- discriminants that has got a full view and we also have
4815 -- built a completion just above, show that the completion
4816 -- is a clone of the full view to the back-end.
4818 if Has_Discriminants (T)
4819 and then not Has_Unknown_Discriminants (T)
4820 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4821 and then Present (Full_View (T))
4822 and then Present (Full_View (Id))
4823 then
4824 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4825 end if;
4827 when Access_Kind =>
4828 Set_Ekind (Id, E_Access_Subtype);
4829 Set_Is_Constrained (Id, Is_Constrained (T));
4830 Set_Is_Access_Constant
4831 (Id, Is_Access_Constant (T));
4832 Set_Directly_Designated_Type
4833 (Id, Designated_Type (T));
4834 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4836 -- A Pure library_item must not contain the declaration of a
4837 -- named access type, except within a subprogram, generic
4838 -- subprogram, task unit, or protected unit, or if it has
4839 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4841 if Comes_From_Source (Id)
4842 and then In_Pure_Unit
4843 and then not In_Subprogram_Task_Protected_Unit
4844 and then not No_Pool_Assigned (Id)
4845 then
4846 Error_Msg_N
4847 ("named access types not allowed in pure unit", N);
4848 end if;
4850 when Concurrent_Kind =>
4851 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4852 Set_Corresponding_Record_Type (Id,
4853 Corresponding_Record_Type (T));
4854 Set_First_Entity (Id, First_Entity (T));
4855 Set_First_Private_Entity (Id, First_Private_Entity (T));
4856 Set_Has_Discriminants (Id, Has_Discriminants (T));
4857 Set_Is_Constrained (Id, Is_Constrained (T));
4858 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4859 Set_Last_Entity (Id, Last_Entity (T));
4861 if Is_Tagged_Type (T) then
4862 Set_No_Tagged_Streams_Pragma
4863 (Id, No_Tagged_Streams_Pragma (T));
4864 end if;
4866 if Has_Discriminants (T) then
4867 Set_Discriminant_Constraint (Id,
4868 Discriminant_Constraint (T));
4869 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4870 end if;
4872 when E_Incomplete_Type =>
4873 if Ada_Version >= Ada_2005 then
4875 -- In Ada 2005 an incomplete type can be explicitly tagged:
4876 -- propagate indication.
4878 Set_Ekind (Id, E_Incomplete_Subtype);
4879 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4880 Set_Private_Dependents (Id, New_Elmt_List);
4882 if Is_Tagged_Type (Id) then
4883 Set_No_Tagged_Streams_Pragma
4884 (Id, No_Tagged_Streams_Pragma (T));
4885 end if;
4887 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4888 -- incomplete type visible through a limited with clause.
4890 if From_Limited_With (T)
4891 and then Present (Non_Limited_View (T))
4892 then
4893 Set_From_Limited_With (Id);
4894 Set_Non_Limited_View (Id, Non_Limited_View (T));
4896 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4897 -- to the private dependents of the original incomplete
4898 -- type for future transformation.
4900 else
4901 Append_Elmt (Id, Private_Dependents (T));
4902 end if;
4904 -- If the subtype name denotes an incomplete type an error
4905 -- was already reported by Process_Subtype.
4907 else
4908 Set_Etype (Id, Any_Type);
4909 end if;
4911 when others =>
4912 raise Program_Error;
4913 end case;
4914 end if;
4916 if Etype (Id) = Any_Type then
4917 goto Leave;
4918 end if;
4920 -- Some common processing on all types
4922 Set_Size_Info (Id, T);
4923 Set_First_Rep_Item (Id, First_Rep_Item (T));
4925 -- If the parent type is a generic actual, so is the subtype. This may
4926 -- happen in a nested instance. Why Comes_From_Source test???
4928 if not Comes_From_Source (N) then
4929 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
4930 end if;
4932 T := Etype (Id);
4934 Set_Is_Immediately_Visible (Id, True);
4935 Set_Depends_On_Private (Id, Has_Private_Component (T));
4936 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4938 if Is_Interface (T) then
4939 Set_Is_Interface (Id);
4940 end if;
4942 if Present (Generic_Parent_Type (N))
4943 and then
4944 (Nkind (Parent (Generic_Parent_Type (N))) /=
4945 N_Formal_Type_Declaration
4946 or else Nkind (Formal_Type_Definition
4947 (Parent (Generic_Parent_Type (N)))) /=
4948 N_Formal_Private_Type_Definition)
4949 then
4950 if Is_Tagged_Type (Id) then
4952 -- If this is a generic actual subtype for a synchronized type,
4953 -- the primitive operations are those of the corresponding record
4954 -- for which there is a separate subtype declaration.
4956 if Is_Concurrent_Type (Id) then
4957 null;
4958 elsif Is_Class_Wide_Type (Id) then
4959 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4960 else
4961 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4962 end if;
4964 elsif Scope (Etype (Id)) /= Standard_Standard then
4965 Derive_Subprograms (Generic_Parent_Type (N), Id);
4966 end if;
4967 end if;
4969 if Is_Private_Type (T) and then Present (Full_View (T)) then
4970 Conditional_Delay (Id, Full_View (T));
4972 -- The subtypes of components or subcomponents of protected types
4973 -- do not need freeze nodes, which would otherwise appear in the
4974 -- wrong scope (before the freeze node for the protected type). The
4975 -- proper subtypes are those of the subcomponents of the corresponding
4976 -- record.
4978 elsif Ekind (Scope (Id)) /= E_Protected_Type
4979 and then Present (Scope (Scope (Id))) -- error defense
4980 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4981 then
4982 Conditional_Delay (Id, T);
4983 end if;
4985 -- Check that Constraint_Error is raised for a scalar subtype indication
4986 -- when the lower or upper bound of a non-null range lies outside the
4987 -- range of the type mark.
4989 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4990 if Is_Scalar_Type (Etype (Id))
4991 and then Scalar_Range (Id) /=
4992 Scalar_Range (Etype (Subtype_Mark
4993 (Subtype_Indication (N))))
4994 then
4995 Apply_Range_Check
4996 (Scalar_Range (Id),
4997 Etype (Subtype_Mark (Subtype_Indication (N))));
4999 -- In the array case, check compatibility for each index
5001 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5002 then
5003 -- This really should be a subprogram that finds the indications
5004 -- to check???
5006 declare
5007 Subt_Index : Node_Id := First_Index (Id);
5008 Target_Index : Node_Id :=
5009 First_Index (Etype
5010 (Subtype_Mark (Subtype_Indication (N))));
5011 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5013 begin
5014 while Present (Subt_Index) loop
5015 if ((Nkind (Subt_Index) = N_Identifier
5016 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5017 or else Nkind (Subt_Index) = N_Subtype_Indication)
5018 and then
5019 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5020 then
5021 declare
5022 Target_Typ : constant Entity_Id :=
5023 Etype (Target_Index);
5024 begin
5025 R_Checks :=
5026 Get_Range_Checks
5027 (Scalar_Range (Etype (Subt_Index)),
5028 Target_Typ,
5029 Etype (Subt_Index),
5030 Defining_Identifier (N));
5032 -- Reset Has_Dynamic_Range_Check on the subtype to
5033 -- prevent elision of the index check due to a dynamic
5034 -- check generated for a preceding index (needed since
5035 -- Insert_Range_Checks tries to avoid generating
5036 -- redundant checks on a given declaration).
5038 Set_Has_Dynamic_Range_Check (N, False);
5040 Insert_Range_Checks
5041 (R_Checks,
5043 Target_Typ,
5044 Sloc (Defining_Identifier (N)));
5046 -- Record whether this index involved a dynamic check
5048 Has_Dyn_Chk :=
5049 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5050 end;
5051 end if;
5053 Next_Index (Subt_Index);
5054 Next_Index (Target_Index);
5055 end loop;
5057 -- Finally, mark whether the subtype involves dynamic checks
5059 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5060 end;
5061 end if;
5062 end if;
5064 -- A type invariant applies to any subtype in its scope, in particular
5065 -- to a generic actual.
5067 if Has_Invariants (T) and then In_Open_Scopes (Scope (T)) then
5068 Set_Has_Invariants (Id);
5069 Set_Invariant_Procedure (Id, Invariant_Procedure (T));
5070 end if;
5072 -- Make sure that generic actual types are properly frozen. The subtype
5073 -- is marked as a generic actual type when the enclosing instance is
5074 -- analyzed, so here we identify the subtype from the tree structure.
5076 if Expander_Active
5077 and then Is_Generic_Actual_Type (Id)
5078 and then In_Instance
5079 and then not Comes_From_Source (N)
5080 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
5081 and then Is_Frozen (T)
5082 then
5083 Freeze_Before (N, Id);
5084 end if;
5086 Set_Optimize_Alignment_Flags (Id);
5087 Check_Eliminated (Id);
5089 <<Leave>>
5090 if Has_Aspects (N) then
5091 Analyze_Aspect_Specifications (N, Id);
5092 end if;
5094 Analyze_Dimension (N);
5095 end Analyze_Subtype_Declaration;
5097 --------------------------------
5098 -- Analyze_Subtype_Indication --
5099 --------------------------------
5101 procedure Analyze_Subtype_Indication (N : Node_Id) is
5102 T : constant Entity_Id := Subtype_Mark (N);
5103 R : constant Node_Id := Range_Expression (Constraint (N));
5105 begin
5106 Analyze (T);
5108 if R /= Error then
5109 Analyze (R);
5110 Set_Etype (N, Etype (R));
5111 Resolve (R, Entity (T));
5112 else
5113 Set_Error_Posted (R);
5114 Set_Error_Posted (T);
5115 end if;
5116 end Analyze_Subtype_Indication;
5118 --------------------------
5119 -- Analyze_Variant_Part --
5120 --------------------------
5122 procedure Analyze_Variant_Part (N : Node_Id) is
5123 Discr_Name : Node_Id;
5124 Discr_Type : Entity_Id;
5126 procedure Process_Variant (A : Node_Id);
5127 -- Analyze declarations for a single variant
5129 package Analyze_Variant_Choices is
5130 new Generic_Analyze_Choices (Process_Variant);
5131 use Analyze_Variant_Choices;
5133 ---------------------
5134 -- Process_Variant --
5135 ---------------------
5137 procedure Process_Variant (A : Node_Id) is
5138 CL : constant Node_Id := Component_List (A);
5139 begin
5140 if not Null_Present (CL) then
5141 Analyze_Declarations (Component_Items (CL));
5143 if Present (Variant_Part (CL)) then
5144 Analyze (Variant_Part (CL));
5145 end if;
5146 end if;
5147 end Process_Variant;
5149 -- Start of processing for Analyze_Variant_Part
5151 begin
5152 Discr_Name := Name (N);
5153 Analyze (Discr_Name);
5155 -- If Discr_Name bad, get out (prevent cascaded errors)
5157 if Etype (Discr_Name) = Any_Type then
5158 return;
5159 end if;
5161 -- Check invalid discriminant in variant part
5163 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5164 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5165 end if;
5167 Discr_Type := Etype (Entity (Discr_Name));
5169 if not Is_Discrete_Type (Discr_Type) then
5170 Error_Msg_N
5171 ("discriminant in a variant part must be of a discrete type",
5172 Name (N));
5173 return;
5174 end if;
5176 -- Now analyze the choices, which also analyzes the declarations that
5177 -- are associated with each choice.
5179 Analyze_Choices (Variants (N), Discr_Type);
5181 -- Note: we used to instantiate and call Check_Choices here to check
5182 -- that the choices covered the discriminant, but it's too early to do
5183 -- that because of statically predicated subtypes, whose analysis may
5184 -- be deferred to their freeze point which may be as late as the freeze
5185 -- point of the containing record. So this call is now to be found in
5186 -- Freeze_Record_Declaration.
5188 end Analyze_Variant_Part;
5190 ----------------------------
5191 -- Array_Type_Declaration --
5192 ----------------------------
5194 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5195 Component_Def : constant Node_Id := Component_Definition (Def);
5196 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5197 Element_Type : Entity_Id;
5198 Implicit_Base : Entity_Id;
5199 Index : Node_Id;
5200 Related_Id : Entity_Id := Empty;
5201 Nb_Index : Nat;
5202 P : constant Node_Id := Parent (Def);
5203 Priv : Entity_Id;
5205 begin
5206 if Nkind (Def) = N_Constrained_Array_Definition then
5207 Index := First (Discrete_Subtype_Definitions (Def));
5208 else
5209 Index := First (Subtype_Marks (Def));
5210 end if;
5212 -- Find proper names for the implicit types which may be public. In case
5213 -- of anonymous arrays we use the name of the first object of that type
5214 -- as prefix.
5216 if No (T) then
5217 Related_Id := Defining_Identifier (P);
5218 else
5219 Related_Id := T;
5220 end if;
5222 Nb_Index := 1;
5223 while Present (Index) loop
5224 Analyze (Index);
5226 -- Test for odd case of trying to index a type by the type itself
5228 if Is_Entity_Name (Index) and then Entity (Index) = T then
5229 Error_Msg_N ("type& cannot be indexed by itself", Index);
5230 Set_Entity (Index, Standard_Boolean);
5231 Set_Etype (Index, Standard_Boolean);
5232 end if;
5234 -- Check SPARK restriction requiring a subtype mark
5236 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5237 Check_SPARK_05_Restriction ("subtype mark required", Index);
5238 end if;
5240 -- Add a subtype declaration for each index of private array type
5241 -- declaration whose etype is also private. For example:
5243 -- package Pkg is
5244 -- type Index is private;
5245 -- private
5246 -- type Table is array (Index) of ...
5247 -- end;
5249 -- This is currently required by the expander for the internally
5250 -- generated equality subprogram of records with variant parts in
5251 -- which the etype of some component is such private type.
5253 if Ekind (Current_Scope) = E_Package
5254 and then In_Private_Part (Current_Scope)
5255 and then Has_Private_Declaration (Etype (Index))
5256 then
5257 declare
5258 Loc : constant Source_Ptr := Sloc (Def);
5259 New_E : Entity_Id;
5260 Decl : Entity_Id;
5262 begin
5263 New_E := Make_Temporary (Loc, 'T');
5264 Set_Is_Internal (New_E);
5266 Decl :=
5267 Make_Subtype_Declaration (Loc,
5268 Defining_Identifier => New_E,
5269 Subtype_Indication =>
5270 New_Occurrence_Of (Etype (Index), Loc));
5272 Insert_Before (Parent (Def), Decl);
5273 Analyze (Decl);
5274 Set_Etype (Index, New_E);
5276 -- If the index is a range the Entity attribute is not
5277 -- available. Example:
5279 -- package Pkg is
5280 -- type T is private;
5281 -- private
5282 -- type T is new Natural;
5283 -- Table : array (T(1) .. T(10)) of Boolean;
5284 -- end Pkg;
5286 if Nkind (Index) /= N_Range then
5287 Set_Entity (Index, New_E);
5288 end if;
5289 end;
5290 end if;
5292 Make_Index (Index, P, Related_Id, Nb_Index);
5294 -- Check error of subtype with predicate for index type
5296 Bad_Predicated_Subtype_Use
5297 ("subtype& has predicate, not allowed as index subtype",
5298 Index, Etype (Index));
5300 -- Move to next index
5302 Next_Index (Index);
5303 Nb_Index := Nb_Index + 1;
5304 end loop;
5306 -- Process subtype indication if one is present
5308 if Present (Component_Typ) then
5309 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5311 Set_Etype (Component_Typ, Element_Type);
5313 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5314 Check_SPARK_05_Restriction
5315 ("subtype mark required", Component_Typ);
5316 end if;
5318 -- Ada 2005 (AI-230): Access Definition case
5320 else pragma Assert (Present (Access_Definition (Component_Def)));
5322 -- Indicate that the anonymous access type is created by the
5323 -- array type declaration.
5325 Element_Type := Access_Definition
5326 (Related_Nod => P,
5327 N => Access_Definition (Component_Def));
5328 Set_Is_Local_Anonymous_Access (Element_Type);
5330 -- Propagate the parent. This field is needed if we have to generate
5331 -- the master_id associated with an anonymous access to task type
5332 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5334 Set_Parent (Element_Type, Parent (T));
5336 -- Ada 2005 (AI-230): In case of components that are anonymous access
5337 -- types the level of accessibility depends on the enclosing type
5338 -- declaration
5340 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5342 -- Ada 2005 (AI-254)
5344 declare
5345 CD : constant Node_Id :=
5346 Access_To_Subprogram_Definition
5347 (Access_Definition (Component_Def));
5348 begin
5349 if Present (CD) and then Protected_Present (CD) then
5350 Element_Type :=
5351 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5352 end if;
5353 end;
5354 end if;
5356 -- Constrained array case
5358 if No (T) then
5359 T := Create_Itype (E_Void, P, Related_Id, 'T');
5360 end if;
5362 if Nkind (Def) = N_Constrained_Array_Definition then
5364 -- Establish Implicit_Base as unconstrained base type
5366 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5368 Set_Etype (Implicit_Base, Implicit_Base);
5369 Set_Scope (Implicit_Base, Current_Scope);
5370 Set_Has_Delayed_Freeze (Implicit_Base);
5371 Set_Default_SSO (Implicit_Base);
5373 -- The constrained array type is a subtype of the unconstrained one
5375 Set_Ekind (T, E_Array_Subtype);
5376 Init_Size_Align (T);
5377 Set_Etype (T, Implicit_Base);
5378 Set_Scope (T, Current_Scope);
5379 Set_Is_Constrained (T, True);
5380 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
5381 Set_Has_Delayed_Freeze (T);
5383 -- Complete setup of implicit base type
5385 Set_First_Index (Implicit_Base, First_Index (T));
5386 Set_Component_Type (Implicit_Base, Element_Type);
5387 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5388 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5389 Set_Component_Size (Implicit_Base, Uint_0);
5390 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5391 Set_Has_Controlled_Component
5392 (Implicit_Base,
5393 Has_Controlled_Component (Element_Type)
5394 or else Is_Controlled (Element_Type));
5395 Set_Finalize_Storage_Only
5396 (Implicit_Base, Finalize_Storage_Only
5397 (Element_Type));
5399 -- Unconstrained array case
5401 else
5402 Set_Ekind (T, E_Array_Type);
5403 Init_Size_Align (T);
5404 Set_Etype (T, T);
5405 Set_Scope (T, Current_Scope);
5406 Set_Component_Size (T, Uint_0);
5407 Set_Is_Constrained (T, False);
5408 Set_First_Index (T, First (Subtype_Marks (Def)));
5409 Set_Has_Delayed_Freeze (T, True);
5410 Set_Has_Task (T, Has_Task (Element_Type));
5411 Set_Has_Protected (T, Has_Protected (Element_Type));
5412 Set_Has_Controlled_Component (T, Has_Controlled_Component
5413 (Element_Type)
5414 or else
5415 Is_Controlled (Element_Type));
5416 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5417 (Element_Type));
5418 Set_Default_SSO (T);
5419 end if;
5421 -- Common attributes for both cases
5423 Set_Component_Type (Base_Type (T), Element_Type);
5424 Set_Packed_Array_Impl_Type (T, Empty);
5426 if Aliased_Present (Component_Definition (Def)) then
5427 Check_SPARK_05_Restriction
5428 ("aliased is not allowed", Component_Definition (Def));
5429 Set_Has_Aliased_Components (Etype (T));
5430 end if;
5432 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5433 -- array type to ensure that objects of this type are initialized.
5435 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5436 Set_Can_Never_Be_Null (T);
5438 if Null_Exclusion_Present (Component_Definition (Def))
5440 -- No need to check itypes because in their case this check was
5441 -- done at their point of creation
5443 and then not Is_Itype (Element_Type)
5444 then
5445 Error_Msg_N
5446 ("`NOT NULL` not allowed (null already excluded)",
5447 Subtype_Indication (Component_Definition (Def)));
5448 end if;
5449 end if;
5451 Priv := Private_Component (Element_Type);
5453 if Present (Priv) then
5455 -- Check for circular definitions
5457 if Priv = Any_Type then
5458 Set_Component_Type (Etype (T), Any_Type);
5460 -- There is a gap in the visibility of operations on the composite
5461 -- type only if the component type is defined in a different scope.
5463 elsif Scope (Priv) = Current_Scope then
5464 null;
5466 elsif Is_Limited_Type (Priv) then
5467 Set_Is_Limited_Composite (Etype (T));
5468 Set_Is_Limited_Composite (T);
5469 else
5470 Set_Is_Private_Composite (Etype (T));
5471 Set_Is_Private_Composite (T);
5472 end if;
5473 end if;
5475 -- A syntax error in the declaration itself may lead to an empty index
5476 -- list, in which case do a minimal patch.
5478 if No (First_Index (T)) then
5479 Error_Msg_N ("missing index definition in array type declaration", T);
5481 declare
5482 Indexes : constant List_Id :=
5483 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5484 begin
5485 Set_Discrete_Subtype_Definitions (Def, Indexes);
5486 Set_First_Index (T, First (Indexes));
5487 return;
5488 end;
5489 end if;
5491 -- Create a concatenation operator for the new type. Internal array
5492 -- types created for packed entities do not need such, they are
5493 -- compatible with the user-defined type.
5495 if Number_Dimensions (T) = 1
5496 and then not Is_Packed_Array_Impl_Type (T)
5497 then
5498 New_Concatenation_Op (T);
5499 end if;
5501 -- In the case of an unconstrained array the parser has already verified
5502 -- that all the indexes are unconstrained but we still need to make sure
5503 -- that the element type is constrained.
5505 if Is_Indefinite_Subtype (Element_Type) then
5506 Error_Msg_N
5507 ("unconstrained element type in array declaration",
5508 Subtype_Indication (Component_Def));
5510 elsif Is_Abstract_Type (Element_Type) then
5511 Error_Msg_N
5512 ("the type of a component cannot be abstract",
5513 Subtype_Indication (Component_Def));
5514 end if;
5516 -- There may be an invariant declared for the component type, but
5517 -- the construction of the component invariant checking procedure
5518 -- takes place during expansion.
5519 end Array_Type_Declaration;
5521 ------------------------------------------------------
5522 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5523 ------------------------------------------------------
5525 function Replace_Anonymous_Access_To_Protected_Subprogram
5526 (N : Node_Id) return Entity_Id
5528 Loc : constant Source_Ptr := Sloc (N);
5530 Curr_Scope : constant Scope_Stack_Entry :=
5531 Scope_Stack.Table (Scope_Stack.Last);
5533 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5535 Acc : Node_Id;
5536 -- Access definition in declaration
5538 Comp : Node_Id;
5539 -- Object definition or formal definition with an access definition
5541 Decl : Node_Id;
5542 -- Declaration of anonymous access to subprogram type
5544 Spec : Node_Id;
5545 -- Original specification in access to subprogram
5547 P : Node_Id;
5549 begin
5550 Set_Is_Internal (Anon);
5552 case Nkind (N) is
5553 when N_Component_Declaration |
5554 N_Unconstrained_Array_Definition |
5555 N_Constrained_Array_Definition =>
5556 Comp := Component_Definition (N);
5557 Acc := Access_Definition (Comp);
5559 when N_Discriminant_Specification =>
5560 Comp := Discriminant_Type (N);
5561 Acc := Comp;
5563 when N_Parameter_Specification =>
5564 Comp := Parameter_Type (N);
5565 Acc := Comp;
5567 when N_Access_Function_Definition =>
5568 Comp := Result_Definition (N);
5569 Acc := Comp;
5571 when N_Object_Declaration =>
5572 Comp := Object_Definition (N);
5573 Acc := Comp;
5575 when N_Function_Specification =>
5576 Comp := Result_Definition (N);
5577 Acc := Comp;
5579 when others =>
5580 raise Program_Error;
5581 end case;
5583 Spec := Access_To_Subprogram_Definition (Acc);
5585 Decl :=
5586 Make_Full_Type_Declaration (Loc,
5587 Defining_Identifier => Anon,
5588 Type_Definition => Copy_Separate_Tree (Spec));
5590 Mark_Rewrite_Insertion (Decl);
5592 -- In ASIS mode, analyze the profile on the original node, because
5593 -- the separate copy does not provide enough links to recover the
5594 -- original tree. Analysis is limited to type annotations, within
5595 -- a temporary scope that serves as an anonymous subprogram to collect
5596 -- otherwise useless temporaries and itypes.
5598 if ASIS_Mode then
5599 declare
5600 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5602 begin
5603 if Nkind (Spec) = N_Access_Function_Definition then
5604 Set_Ekind (Typ, E_Function);
5605 else
5606 Set_Ekind (Typ, E_Procedure);
5607 end if;
5609 Set_Parent (Typ, N);
5610 Set_Scope (Typ, Current_Scope);
5611 Push_Scope (Typ);
5613 Process_Formals (Parameter_Specifications (Spec), Spec);
5615 if Nkind (Spec) = N_Access_Function_Definition then
5616 declare
5617 Def : constant Node_Id := Result_Definition (Spec);
5619 begin
5620 -- The result might itself be an anonymous access type, so
5621 -- have to recurse.
5623 if Nkind (Def) = N_Access_Definition then
5624 if Present (Access_To_Subprogram_Definition (Def)) then
5625 Set_Etype
5626 (Def,
5627 Replace_Anonymous_Access_To_Protected_Subprogram
5628 (Spec));
5629 else
5630 Find_Type (Subtype_Mark (Def));
5631 end if;
5633 else
5634 Find_Type (Def);
5635 end if;
5636 end;
5637 end if;
5639 End_Scope;
5640 end;
5641 end if;
5643 -- Insert the new declaration in the nearest enclosing scope. If the
5644 -- node is a body and N is its return type, the declaration belongs in
5645 -- the enclosing scope.
5647 P := Parent (N);
5649 if Nkind (P) = N_Subprogram_Body
5650 and then Nkind (N) = N_Function_Specification
5651 then
5652 P := Parent (P);
5653 end if;
5655 while Present (P) and then not Has_Declarations (P) loop
5656 P := Parent (P);
5657 end loop;
5659 pragma Assert (Present (P));
5661 if Nkind (P) = N_Package_Specification then
5662 Prepend (Decl, Visible_Declarations (P));
5663 else
5664 Prepend (Decl, Declarations (P));
5665 end if;
5667 -- Replace the anonymous type with an occurrence of the new declaration.
5668 -- In all cases the rewritten node does not have the null-exclusion
5669 -- attribute because (if present) it was already inherited by the
5670 -- anonymous entity (Anon). Thus, in case of components we do not
5671 -- inherit this attribute.
5673 if Nkind (N) = N_Parameter_Specification then
5674 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5675 Set_Etype (Defining_Identifier (N), Anon);
5676 Set_Null_Exclusion_Present (N, False);
5678 elsif Nkind (N) = N_Object_Declaration then
5679 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5680 Set_Etype (Defining_Identifier (N), Anon);
5682 elsif Nkind (N) = N_Access_Function_Definition then
5683 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5685 elsif Nkind (N) = N_Function_Specification then
5686 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5687 Set_Etype (Defining_Unit_Name (N), Anon);
5689 else
5690 Rewrite (Comp,
5691 Make_Component_Definition (Loc,
5692 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5693 end if;
5695 Mark_Rewrite_Insertion (Comp);
5697 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5698 Analyze (Decl);
5700 else
5701 -- Temporarily remove the current scope (record or subprogram) from
5702 -- the stack to add the new declarations to the enclosing scope.
5704 Scope_Stack.Decrement_Last;
5705 Analyze (Decl);
5706 Set_Is_Itype (Anon);
5707 Scope_Stack.Append (Curr_Scope);
5708 end if;
5710 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5711 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5712 return Anon;
5713 end Replace_Anonymous_Access_To_Protected_Subprogram;
5715 -------------------------------
5716 -- Build_Derived_Access_Type --
5717 -------------------------------
5719 procedure Build_Derived_Access_Type
5720 (N : Node_Id;
5721 Parent_Type : Entity_Id;
5722 Derived_Type : Entity_Id)
5724 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5726 Desig_Type : Entity_Id;
5727 Discr : Entity_Id;
5728 Discr_Con_Elist : Elist_Id;
5729 Discr_Con_El : Elmt_Id;
5730 Subt : Entity_Id;
5732 begin
5733 -- Set the designated type so it is available in case this is an access
5734 -- to a self-referential type, e.g. a standard list type with a next
5735 -- pointer. Will be reset after subtype is built.
5737 Set_Directly_Designated_Type
5738 (Derived_Type, Designated_Type (Parent_Type));
5740 Subt := Process_Subtype (S, N);
5742 if Nkind (S) /= N_Subtype_Indication
5743 and then Subt /= Base_Type (Subt)
5744 then
5745 Set_Ekind (Derived_Type, E_Access_Subtype);
5746 end if;
5748 if Ekind (Derived_Type) = E_Access_Subtype then
5749 declare
5750 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5751 Ibase : constant Entity_Id :=
5752 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5753 Svg_Chars : constant Name_Id := Chars (Ibase);
5754 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5756 begin
5757 Copy_Node (Pbase, Ibase);
5759 Set_Chars (Ibase, Svg_Chars);
5760 Set_Next_Entity (Ibase, Svg_Next_E);
5761 Set_Sloc (Ibase, Sloc (Derived_Type));
5762 Set_Scope (Ibase, Scope (Derived_Type));
5763 Set_Freeze_Node (Ibase, Empty);
5764 Set_Is_Frozen (Ibase, False);
5765 Set_Comes_From_Source (Ibase, False);
5766 Set_Is_First_Subtype (Ibase, False);
5768 Set_Etype (Ibase, Pbase);
5769 Set_Etype (Derived_Type, Ibase);
5770 end;
5771 end if;
5773 Set_Directly_Designated_Type
5774 (Derived_Type, Designated_Type (Subt));
5776 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5777 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5778 Set_Size_Info (Derived_Type, Parent_Type);
5779 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5780 Set_Depends_On_Private (Derived_Type,
5781 Has_Private_Component (Derived_Type));
5782 Conditional_Delay (Derived_Type, Subt);
5784 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5785 -- that it is not redundant.
5787 if Null_Exclusion_Present (Type_Definition (N)) then
5788 Set_Can_Never_Be_Null (Derived_Type);
5790 -- What is with the "AND THEN FALSE" here ???
5792 if Can_Never_Be_Null (Parent_Type)
5793 and then False
5794 then
5795 Error_Msg_NE
5796 ("`NOT NULL` not allowed (& already excludes null)",
5797 N, Parent_Type);
5798 end if;
5800 elsif Can_Never_Be_Null (Parent_Type) then
5801 Set_Can_Never_Be_Null (Derived_Type);
5802 end if;
5804 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5805 -- the root type for this information.
5807 -- Apply range checks to discriminants for derived record case
5808 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5810 Desig_Type := Designated_Type (Derived_Type);
5811 if Is_Composite_Type (Desig_Type)
5812 and then (not Is_Array_Type (Desig_Type))
5813 and then Has_Discriminants (Desig_Type)
5814 and then Base_Type (Desig_Type) /= Desig_Type
5815 then
5816 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5817 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5819 Discr := First_Discriminant (Base_Type (Desig_Type));
5820 while Present (Discr_Con_El) loop
5821 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5822 Next_Elmt (Discr_Con_El);
5823 Next_Discriminant (Discr);
5824 end loop;
5825 end if;
5826 end Build_Derived_Access_Type;
5828 ------------------------------
5829 -- Build_Derived_Array_Type --
5830 ------------------------------
5832 procedure Build_Derived_Array_Type
5833 (N : Node_Id;
5834 Parent_Type : Entity_Id;
5835 Derived_Type : Entity_Id)
5837 Loc : constant Source_Ptr := Sloc (N);
5838 Tdef : constant Node_Id := Type_Definition (N);
5839 Indic : constant Node_Id := Subtype_Indication (Tdef);
5840 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5841 Implicit_Base : Entity_Id;
5842 New_Indic : Node_Id;
5844 procedure Make_Implicit_Base;
5845 -- If the parent subtype is constrained, the derived type is a subtype
5846 -- of an implicit base type derived from the parent base.
5848 ------------------------
5849 -- Make_Implicit_Base --
5850 ------------------------
5852 procedure Make_Implicit_Base is
5853 begin
5854 Implicit_Base :=
5855 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5857 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5858 Set_Etype (Implicit_Base, Parent_Base);
5860 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5861 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5863 Set_Has_Delayed_Freeze (Implicit_Base, True);
5864 end Make_Implicit_Base;
5866 -- Start of processing for Build_Derived_Array_Type
5868 begin
5869 if not Is_Constrained (Parent_Type) then
5870 if Nkind (Indic) /= N_Subtype_Indication then
5871 Set_Ekind (Derived_Type, E_Array_Type);
5873 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5874 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5876 Set_Has_Delayed_Freeze (Derived_Type, True);
5878 else
5879 Make_Implicit_Base;
5880 Set_Etype (Derived_Type, Implicit_Base);
5882 New_Indic :=
5883 Make_Subtype_Declaration (Loc,
5884 Defining_Identifier => Derived_Type,
5885 Subtype_Indication =>
5886 Make_Subtype_Indication (Loc,
5887 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5888 Constraint => Constraint (Indic)));
5890 Rewrite (N, New_Indic);
5891 Analyze (N);
5892 end if;
5894 else
5895 if Nkind (Indic) /= N_Subtype_Indication then
5896 Make_Implicit_Base;
5898 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5899 Set_Etype (Derived_Type, Implicit_Base);
5900 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5902 else
5903 Error_Msg_N ("illegal constraint on constrained type", Indic);
5904 end if;
5905 end if;
5907 -- If parent type is not a derived type itself, and is declared in
5908 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5909 -- the new type's concatenation operator since Derive_Subprograms
5910 -- will not inherit the parent's operator. If the parent type is
5911 -- unconstrained, the operator is of the unconstrained base type.
5913 if Number_Dimensions (Parent_Type) = 1
5914 and then not Is_Limited_Type (Parent_Type)
5915 and then not Is_Derived_Type (Parent_Type)
5916 and then not Is_Package_Or_Generic_Package
5917 (Scope (Base_Type (Parent_Type)))
5918 then
5919 if not Is_Constrained (Parent_Type)
5920 and then Is_Constrained (Derived_Type)
5921 then
5922 New_Concatenation_Op (Implicit_Base);
5923 else
5924 New_Concatenation_Op (Derived_Type);
5925 end if;
5926 end if;
5927 end Build_Derived_Array_Type;
5929 -----------------------------------
5930 -- Build_Derived_Concurrent_Type --
5931 -----------------------------------
5933 procedure Build_Derived_Concurrent_Type
5934 (N : Node_Id;
5935 Parent_Type : Entity_Id;
5936 Derived_Type : Entity_Id)
5938 Loc : constant Source_Ptr := Sloc (N);
5940 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5941 Corr_Decl : Node_Id;
5942 Corr_Decl_Needed : Boolean;
5943 -- If the derived type has fewer discriminants than its parent, the
5944 -- corresponding record is also a derived type, in order to account for
5945 -- the bound discriminants. We create a full type declaration for it in
5946 -- this case.
5948 Constraint_Present : constant Boolean :=
5949 Nkind (Subtype_Indication (Type_Definition (N))) =
5950 N_Subtype_Indication;
5952 D_Constraint : Node_Id;
5953 New_Constraint : Elist_Id;
5954 Old_Disc : Entity_Id;
5955 New_Disc : Entity_Id;
5956 New_N : Node_Id;
5958 begin
5959 Set_Stored_Constraint (Derived_Type, No_Elist);
5960 Corr_Decl_Needed := False;
5961 Old_Disc := Empty;
5963 if Present (Discriminant_Specifications (N))
5964 and then Constraint_Present
5965 then
5966 Old_Disc := First_Discriminant (Parent_Type);
5967 New_Disc := First (Discriminant_Specifications (N));
5968 while Present (New_Disc) and then Present (Old_Disc) loop
5969 Next_Discriminant (Old_Disc);
5970 Next (New_Disc);
5971 end loop;
5972 end if;
5974 if Present (Old_Disc) and then Expander_Active then
5976 -- The new type has fewer discriminants, so we need to create a new
5977 -- corresponding record, which is derived from the corresponding
5978 -- record of the parent, and has a stored constraint that captures
5979 -- the values of the discriminant constraints. The corresponding
5980 -- record is needed only if expander is active and code generation is
5981 -- enabled.
5983 -- The type declaration for the derived corresponding record has the
5984 -- same discriminant part and constraints as the current declaration.
5985 -- Copy the unanalyzed tree to build declaration.
5987 Corr_Decl_Needed := True;
5988 New_N := Copy_Separate_Tree (N);
5990 Corr_Decl :=
5991 Make_Full_Type_Declaration (Loc,
5992 Defining_Identifier => Corr_Record,
5993 Discriminant_Specifications =>
5994 Discriminant_Specifications (New_N),
5995 Type_Definition =>
5996 Make_Derived_Type_Definition (Loc,
5997 Subtype_Indication =>
5998 Make_Subtype_Indication (Loc,
5999 Subtype_Mark =>
6000 New_Occurrence_Of
6001 (Corresponding_Record_Type (Parent_Type), Loc),
6002 Constraint =>
6003 Constraint
6004 (Subtype_Indication (Type_Definition (New_N))))));
6005 end if;
6007 -- Copy Storage_Size and Relative_Deadline variables if task case
6009 if Is_Task_Type (Parent_Type) then
6010 Set_Storage_Size_Variable (Derived_Type,
6011 Storage_Size_Variable (Parent_Type));
6012 Set_Relative_Deadline_Variable (Derived_Type,
6013 Relative_Deadline_Variable (Parent_Type));
6014 end if;
6016 if Present (Discriminant_Specifications (N)) then
6017 Push_Scope (Derived_Type);
6018 Check_Or_Process_Discriminants (N, Derived_Type);
6020 if Constraint_Present then
6021 New_Constraint :=
6022 Expand_To_Stored_Constraint
6023 (Parent_Type,
6024 Build_Discriminant_Constraints
6025 (Parent_Type,
6026 Subtype_Indication (Type_Definition (N)), True));
6027 end if;
6029 End_Scope;
6031 elsif Constraint_Present then
6033 -- Build constrained subtype, copying the constraint, and derive
6034 -- from it to create a derived constrained type.
6036 declare
6037 Loc : constant Source_Ptr := Sloc (N);
6038 Anon : constant Entity_Id :=
6039 Make_Defining_Identifier (Loc,
6040 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6041 Decl : Node_Id;
6043 begin
6044 Decl :=
6045 Make_Subtype_Declaration (Loc,
6046 Defining_Identifier => Anon,
6047 Subtype_Indication =>
6048 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6049 Insert_Before (N, Decl);
6050 Analyze (Decl);
6052 Rewrite (Subtype_Indication (Type_Definition (N)),
6053 New_Occurrence_Of (Anon, Loc));
6054 Set_Analyzed (Derived_Type, False);
6055 Analyze (N);
6056 return;
6057 end;
6058 end if;
6060 -- By default, operations and private data are inherited from parent.
6061 -- However, in the presence of bound discriminants, a new corresponding
6062 -- record will be created, see below.
6064 Set_Has_Discriminants
6065 (Derived_Type, Has_Discriminants (Parent_Type));
6066 Set_Corresponding_Record_Type
6067 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6069 -- Is_Constrained is set according the parent subtype, but is set to
6070 -- False if the derived type is declared with new discriminants.
6072 Set_Is_Constrained
6073 (Derived_Type,
6074 (Is_Constrained (Parent_Type) or else Constraint_Present)
6075 and then not Present (Discriminant_Specifications (N)));
6077 if Constraint_Present then
6078 if not Has_Discriminants (Parent_Type) then
6079 Error_Msg_N ("untagged parent must have discriminants", N);
6081 elsif Present (Discriminant_Specifications (N)) then
6083 -- Verify that new discriminants are used to constrain old ones
6085 D_Constraint :=
6086 First
6087 (Constraints
6088 (Constraint (Subtype_Indication (Type_Definition (N)))));
6090 Old_Disc := First_Discriminant (Parent_Type);
6092 while Present (D_Constraint) loop
6093 if Nkind (D_Constraint) /= N_Discriminant_Association then
6095 -- Positional constraint. If it is a reference to a new
6096 -- discriminant, it constrains the corresponding old one.
6098 if Nkind (D_Constraint) = N_Identifier then
6099 New_Disc := First_Discriminant (Derived_Type);
6100 while Present (New_Disc) loop
6101 exit when Chars (New_Disc) = Chars (D_Constraint);
6102 Next_Discriminant (New_Disc);
6103 end loop;
6105 if Present (New_Disc) then
6106 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6107 end if;
6108 end if;
6110 Next_Discriminant (Old_Disc);
6112 -- if this is a named constraint, search by name for the old
6113 -- discriminants constrained by the new one.
6115 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6117 -- Find new discriminant with that name
6119 New_Disc := First_Discriminant (Derived_Type);
6120 while Present (New_Disc) loop
6121 exit when
6122 Chars (New_Disc) = Chars (Expression (D_Constraint));
6123 Next_Discriminant (New_Disc);
6124 end loop;
6126 if Present (New_Disc) then
6128 -- Verify that new discriminant renames some discriminant
6129 -- of the parent type, and associate the new discriminant
6130 -- with one or more old ones that it renames.
6132 declare
6133 Selector : Node_Id;
6135 begin
6136 Selector := First (Selector_Names (D_Constraint));
6137 while Present (Selector) loop
6138 Old_Disc := First_Discriminant (Parent_Type);
6139 while Present (Old_Disc) loop
6140 exit when Chars (Old_Disc) = Chars (Selector);
6141 Next_Discriminant (Old_Disc);
6142 end loop;
6144 if Present (Old_Disc) then
6145 Set_Corresponding_Discriminant
6146 (New_Disc, Old_Disc);
6147 end if;
6149 Next (Selector);
6150 end loop;
6151 end;
6152 end if;
6153 end if;
6155 Next (D_Constraint);
6156 end loop;
6158 New_Disc := First_Discriminant (Derived_Type);
6159 while Present (New_Disc) loop
6160 if No (Corresponding_Discriminant (New_Disc)) then
6161 Error_Msg_NE
6162 ("new discriminant& must constrain old one", N, New_Disc);
6164 elsif not
6165 Subtypes_Statically_Compatible
6166 (Etype (New_Disc),
6167 Etype (Corresponding_Discriminant (New_Disc)))
6168 then
6169 Error_Msg_NE
6170 ("& not statically compatible with parent discriminant",
6171 N, New_Disc);
6172 end if;
6174 Next_Discriminant (New_Disc);
6175 end loop;
6176 end if;
6178 elsif Present (Discriminant_Specifications (N)) then
6179 Error_Msg_N
6180 ("missing discriminant constraint in untagged derivation", N);
6181 end if;
6183 -- The entity chain of the derived type includes the new discriminants
6184 -- but shares operations with the parent.
6186 if Present (Discriminant_Specifications (N)) then
6187 Old_Disc := First_Discriminant (Parent_Type);
6188 while Present (Old_Disc) loop
6189 if No (Next_Entity (Old_Disc))
6190 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6191 then
6192 Set_Next_Entity
6193 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6194 exit;
6195 end if;
6197 Next_Discriminant (Old_Disc);
6198 end loop;
6200 else
6201 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6202 if Has_Discriminants (Parent_Type) then
6203 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6204 Set_Discriminant_Constraint (
6205 Derived_Type, Discriminant_Constraint (Parent_Type));
6206 end if;
6207 end if;
6209 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6211 Set_Has_Completion (Derived_Type);
6213 if Corr_Decl_Needed then
6214 Set_Stored_Constraint (Derived_Type, New_Constraint);
6215 Insert_After (N, Corr_Decl);
6216 Analyze (Corr_Decl);
6217 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6218 end if;
6219 end Build_Derived_Concurrent_Type;
6221 ------------------------------------
6222 -- Build_Derived_Enumeration_Type --
6223 ------------------------------------
6225 procedure Build_Derived_Enumeration_Type
6226 (N : Node_Id;
6227 Parent_Type : Entity_Id;
6228 Derived_Type : Entity_Id)
6230 Loc : constant Source_Ptr := Sloc (N);
6231 Def : constant Node_Id := Type_Definition (N);
6232 Indic : constant Node_Id := Subtype_Indication (Def);
6233 Implicit_Base : Entity_Id;
6234 Literal : Entity_Id;
6235 New_Lit : Entity_Id;
6236 Literals_List : List_Id;
6237 Type_Decl : Node_Id;
6238 Hi, Lo : Node_Id;
6239 Rang_Expr : Node_Id;
6241 begin
6242 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6243 -- not have explicit literals lists we need to process types derived
6244 -- from them specially. This is handled by Derived_Standard_Character.
6245 -- If the parent type is a generic type, there are no literals either,
6246 -- and we construct the same skeletal representation as for the generic
6247 -- parent type.
6249 if Is_Standard_Character_Type (Parent_Type) then
6250 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6252 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6253 declare
6254 Lo : Node_Id;
6255 Hi : Node_Id;
6257 begin
6258 if Nkind (Indic) /= N_Subtype_Indication then
6259 Lo :=
6260 Make_Attribute_Reference (Loc,
6261 Attribute_Name => Name_First,
6262 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6263 Set_Etype (Lo, Derived_Type);
6265 Hi :=
6266 Make_Attribute_Reference (Loc,
6267 Attribute_Name => Name_Last,
6268 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6269 Set_Etype (Hi, Derived_Type);
6271 Set_Scalar_Range (Derived_Type,
6272 Make_Range (Loc,
6273 Low_Bound => Lo,
6274 High_Bound => Hi));
6275 else
6277 -- Analyze subtype indication and verify compatibility
6278 -- with parent type.
6280 if Base_Type (Process_Subtype (Indic, N)) /=
6281 Base_Type (Parent_Type)
6282 then
6283 Error_Msg_N
6284 ("illegal constraint for formal discrete type", N);
6285 end if;
6286 end if;
6287 end;
6289 else
6290 -- If a constraint is present, analyze the bounds to catch
6291 -- premature usage of the derived literals.
6293 if Nkind (Indic) = N_Subtype_Indication
6294 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6295 then
6296 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6297 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6298 end if;
6300 -- Introduce an implicit base type for the derived type even if there
6301 -- is no constraint attached to it, since this seems closer to the
6302 -- Ada semantics. Build a full type declaration tree for the derived
6303 -- type using the implicit base type as the defining identifier. The
6304 -- build a subtype declaration tree which applies the constraint (if
6305 -- any) have it replace the derived type declaration.
6307 Literal := First_Literal (Parent_Type);
6308 Literals_List := New_List;
6309 while Present (Literal)
6310 and then Ekind (Literal) = E_Enumeration_Literal
6311 loop
6312 -- Literals of the derived type have the same representation as
6313 -- those of the parent type, but this representation can be
6314 -- overridden by an explicit representation clause. Indicate
6315 -- that there is no explicit representation given yet. These
6316 -- derived literals are implicit operations of the new type,
6317 -- and can be overridden by explicit ones.
6319 if Nkind (Literal) = N_Defining_Character_Literal then
6320 New_Lit :=
6321 Make_Defining_Character_Literal (Loc, Chars (Literal));
6322 else
6323 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6324 end if;
6326 Set_Ekind (New_Lit, E_Enumeration_Literal);
6327 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6328 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6329 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6330 Set_Alias (New_Lit, Literal);
6331 Set_Is_Known_Valid (New_Lit, True);
6333 Append (New_Lit, Literals_List);
6334 Next_Literal (Literal);
6335 end loop;
6337 Implicit_Base :=
6338 Make_Defining_Identifier (Sloc (Derived_Type),
6339 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6341 -- Indicate the proper nature of the derived type. This must be done
6342 -- before analysis of the literals, to recognize cases when a literal
6343 -- may be hidden by a previous explicit function definition (cf.
6344 -- c83031a).
6346 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6347 Set_Etype (Derived_Type, Implicit_Base);
6349 Type_Decl :=
6350 Make_Full_Type_Declaration (Loc,
6351 Defining_Identifier => Implicit_Base,
6352 Discriminant_Specifications => No_List,
6353 Type_Definition =>
6354 Make_Enumeration_Type_Definition (Loc, Literals_List));
6356 Mark_Rewrite_Insertion (Type_Decl);
6357 Insert_Before (N, Type_Decl);
6358 Analyze (Type_Decl);
6360 -- After the implicit base is analyzed its Etype needs to be changed
6361 -- to reflect the fact that it is derived from the parent type which
6362 -- was ignored during analysis. We also set the size at this point.
6364 Set_Etype (Implicit_Base, Parent_Type);
6366 Set_Size_Info (Implicit_Base, Parent_Type);
6367 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6368 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6370 -- Copy other flags from parent type
6372 Set_Has_Non_Standard_Rep
6373 (Implicit_Base, Has_Non_Standard_Rep
6374 (Parent_Type));
6375 Set_Has_Pragma_Ordered
6376 (Implicit_Base, Has_Pragma_Ordered
6377 (Parent_Type));
6378 Set_Has_Delayed_Freeze (Implicit_Base);
6380 -- Process the subtype indication including a validation check on the
6381 -- constraint, if any. If a constraint is given, its bounds must be
6382 -- implicitly converted to the new type.
6384 if Nkind (Indic) = N_Subtype_Indication then
6385 declare
6386 R : constant Node_Id :=
6387 Range_Expression (Constraint (Indic));
6389 begin
6390 if Nkind (R) = N_Range then
6391 Hi := Build_Scalar_Bound
6392 (High_Bound (R), Parent_Type, Implicit_Base);
6393 Lo := Build_Scalar_Bound
6394 (Low_Bound (R), Parent_Type, Implicit_Base);
6396 else
6397 -- Constraint is a Range attribute. Replace with explicit
6398 -- mention of the bounds of the prefix, which must be a
6399 -- subtype.
6401 Analyze (Prefix (R));
6402 Hi :=
6403 Convert_To (Implicit_Base,
6404 Make_Attribute_Reference (Loc,
6405 Attribute_Name => Name_Last,
6406 Prefix =>
6407 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6409 Lo :=
6410 Convert_To (Implicit_Base,
6411 Make_Attribute_Reference (Loc,
6412 Attribute_Name => Name_First,
6413 Prefix =>
6414 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6415 end if;
6416 end;
6418 else
6419 Hi :=
6420 Build_Scalar_Bound
6421 (Type_High_Bound (Parent_Type),
6422 Parent_Type, Implicit_Base);
6423 Lo :=
6424 Build_Scalar_Bound
6425 (Type_Low_Bound (Parent_Type),
6426 Parent_Type, Implicit_Base);
6427 end if;
6429 Rang_Expr :=
6430 Make_Range (Loc,
6431 Low_Bound => Lo,
6432 High_Bound => Hi);
6434 -- If we constructed a default range for the case where no range
6435 -- was given, then the expressions in the range must not freeze
6436 -- since they do not correspond to expressions in the source.
6438 if Nkind (Indic) /= N_Subtype_Indication then
6439 Set_Must_Not_Freeze (Lo);
6440 Set_Must_Not_Freeze (Hi);
6441 Set_Must_Not_Freeze (Rang_Expr);
6442 end if;
6444 Rewrite (N,
6445 Make_Subtype_Declaration (Loc,
6446 Defining_Identifier => Derived_Type,
6447 Subtype_Indication =>
6448 Make_Subtype_Indication (Loc,
6449 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6450 Constraint =>
6451 Make_Range_Constraint (Loc,
6452 Range_Expression => Rang_Expr))));
6454 Analyze (N);
6456 -- Propagate the aspects from the original type declaration to the
6457 -- declaration of the implicit base.
6459 Move_Aspects (From => Original_Node (N), To => Type_Decl);
6461 -- Apply a range check. Since this range expression doesn't have an
6462 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6463 -- this right???
6465 if Nkind (Indic) = N_Subtype_Indication then
6466 Apply_Range_Check
6467 (Range_Expression (Constraint (Indic)), Parent_Type,
6468 Source_Typ => Entity (Subtype_Mark (Indic)));
6469 end if;
6470 end if;
6471 end Build_Derived_Enumeration_Type;
6473 --------------------------------
6474 -- Build_Derived_Numeric_Type --
6475 --------------------------------
6477 procedure Build_Derived_Numeric_Type
6478 (N : Node_Id;
6479 Parent_Type : Entity_Id;
6480 Derived_Type : Entity_Id)
6482 Loc : constant Source_Ptr := Sloc (N);
6483 Tdef : constant Node_Id := Type_Definition (N);
6484 Indic : constant Node_Id := Subtype_Indication (Tdef);
6485 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6486 No_Constraint : constant Boolean := Nkind (Indic) /=
6487 N_Subtype_Indication;
6488 Implicit_Base : Entity_Id;
6490 Lo : Node_Id;
6491 Hi : Node_Id;
6493 begin
6494 -- Process the subtype indication including a validation check on
6495 -- the constraint if any.
6497 Discard_Node (Process_Subtype (Indic, N));
6499 -- Introduce an implicit base type for the derived type even if there
6500 -- is no constraint attached to it, since this seems closer to the Ada
6501 -- semantics.
6503 Implicit_Base :=
6504 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6506 Set_Etype (Implicit_Base, Parent_Base);
6507 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6508 Set_Size_Info (Implicit_Base, Parent_Base);
6509 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6510 Set_Parent (Implicit_Base, Parent (Derived_Type));
6511 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6513 -- Set RM Size for discrete type or decimal fixed-point type
6514 -- Ordinary fixed-point is excluded, why???
6516 if Is_Discrete_Type (Parent_Base)
6517 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6518 then
6519 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6520 end if;
6522 Set_Has_Delayed_Freeze (Implicit_Base);
6524 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6525 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6527 Set_Scalar_Range (Implicit_Base,
6528 Make_Range (Loc,
6529 Low_Bound => Lo,
6530 High_Bound => Hi));
6532 if Has_Infinities (Parent_Base) then
6533 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6534 end if;
6536 -- The Derived_Type, which is the entity of the declaration, is a
6537 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6538 -- absence of an explicit constraint.
6540 Set_Etype (Derived_Type, Implicit_Base);
6542 -- If we did not have a constraint, then the Ekind is set from the
6543 -- parent type (otherwise Process_Subtype has set the bounds)
6545 if No_Constraint then
6546 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6547 end if;
6549 -- If we did not have a range constraint, then set the range from the
6550 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6552 if No_Constraint or else not Has_Range_Constraint (Indic) then
6553 Set_Scalar_Range (Derived_Type,
6554 Make_Range (Loc,
6555 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6556 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6557 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6559 if Has_Infinities (Parent_Type) then
6560 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6561 end if;
6563 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6564 end if;
6566 Set_Is_Descendent_Of_Address (Derived_Type,
6567 Is_Descendent_Of_Address (Parent_Type));
6568 Set_Is_Descendent_Of_Address (Implicit_Base,
6569 Is_Descendent_Of_Address (Parent_Type));
6571 -- Set remaining type-specific fields, depending on numeric type
6573 if Is_Modular_Integer_Type (Parent_Type) then
6574 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6576 Set_Non_Binary_Modulus
6577 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6579 Set_Is_Known_Valid
6580 (Implicit_Base, Is_Known_Valid (Parent_Base));
6582 elsif Is_Floating_Point_Type (Parent_Type) then
6584 -- Digits of base type is always copied from the digits value of
6585 -- the parent base type, but the digits of the derived type will
6586 -- already have been set if there was a constraint present.
6588 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6589 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6591 if No_Constraint then
6592 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6593 end if;
6595 elsif Is_Fixed_Point_Type (Parent_Type) then
6597 -- Small of base type and derived type are always copied from the
6598 -- parent base type, since smalls never change. The delta of the
6599 -- base type is also copied from the parent base type. However the
6600 -- delta of the derived type will have been set already if a
6601 -- constraint was present.
6603 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6604 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6605 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6607 if No_Constraint then
6608 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6609 end if;
6611 -- The scale and machine radix in the decimal case are always
6612 -- copied from the parent base type.
6614 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6615 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6616 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6618 Set_Machine_Radix_10
6619 (Derived_Type, Machine_Radix_10 (Parent_Base));
6620 Set_Machine_Radix_10
6621 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6623 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6625 if No_Constraint then
6626 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6628 else
6629 -- the analysis of the subtype_indication sets the
6630 -- digits value of the derived type.
6632 null;
6633 end if;
6634 end if;
6635 end if;
6637 if Is_Integer_Type (Parent_Type) then
6638 Set_Has_Shift_Operator
6639 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6640 end if;
6642 -- The type of the bounds is that of the parent type, and they
6643 -- must be converted to the derived type.
6645 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6647 -- The implicit_base should be frozen when the derived type is frozen,
6648 -- but note that it is used in the conversions of the bounds. For fixed
6649 -- types we delay the determination of the bounds until the proper
6650 -- freezing point. For other numeric types this is rejected by GCC, for
6651 -- reasons that are currently unclear (???), so we choose to freeze the
6652 -- implicit base now. In the case of integers and floating point types
6653 -- this is harmless because subsequent representation clauses cannot
6654 -- affect anything, but it is still baffling that we cannot use the
6655 -- same mechanism for all derived numeric types.
6657 -- There is a further complication: actually some representation
6658 -- clauses can affect the implicit base type. For example, attribute
6659 -- definition clauses for stream-oriented attributes need to set the
6660 -- corresponding TSS entries on the base type, and this normally
6661 -- cannot be done after the base type is frozen, so the circuitry in
6662 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6663 -- and not use Set_TSS in this case.
6665 -- There are also consequences for the case of delayed representation
6666 -- aspects for some cases. For example, a Size aspect is delayed and
6667 -- should not be evaluated to the freeze point. This early freezing
6668 -- means that the size attribute evaluation happens too early???
6670 if Is_Fixed_Point_Type (Parent_Type) then
6671 Conditional_Delay (Implicit_Base, Parent_Type);
6672 else
6673 Freeze_Before (N, Implicit_Base);
6674 end if;
6675 end Build_Derived_Numeric_Type;
6677 --------------------------------
6678 -- Build_Derived_Private_Type --
6679 --------------------------------
6681 procedure Build_Derived_Private_Type
6682 (N : Node_Id;
6683 Parent_Type : Entity_Id;
6684 Derived_Type : Entity_Id;
6685 Is_Completion : Boolean;
6686 Derive_Subps : Boolean := True)
6688 Loc : constant Source_Ptr := Sloc (N);
6689 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
6690 Par_Scope : constant Entity_Id := Scope (Par_Base);
6691 Full_N : constant Node_Id := New_Copy_Tree (N);
6692 Full_Der : Entity_Id := New_Copy (Derived_Type);
6693 Full_P : Entity_Id;
6695 procedure Build_Full_Derivation;
6696 -- Build full derivation, i.e. derive from the full view
6698 procedure Copy_And_Build;
6699 -- Copy derived type declaration, replace parent with its full view,
6700 -- and build derivation
6702 ---------------------------
6703 -- Build_Full_Derivation --
6704 ---------------------------
6706 procedure Build_Full_Derivation is
6707 begin
6708 -- If parent scope is not open, install the declarations
6710 if not In_Open_Scopes (Par_Scope) then
6711 Install_Private_Declarations (Par_Scope);
6712 Install_Visible_Declarations (Par_Scope);
6713 Copy_And_Build;
6714 Uninstall_Declarations (Par_Scope);
6716 -- If parent scope is open and in another unit, and parent has a
6717 -- completion, then the derivation is taking place in the visible
6718 -- part of a child unit. In that case retrieve the full view of
6719 -- the parent momentarily.
6721 elsif not In_Same_Source_Unit (N, Parent_Type) then
6722 Full_P := Full_View (Parent_Type);
6723 Exchange_Declarations (Parent_Type);
6724 Copy_And_Build;
6725 Exchange_Declarations (Full_P);
6727 -- Otherwise it is a local derivation
6729 else
6730 Copy_And_Build;
6731 end if;
6732 end Build_Full_Derivation;
6734 --------------------
6735 -- Copy_And_Build --
6736 --------------------
6738 procedure Copy_And_Build is
6739 Full_Parent : Entity_Id := Parent_Type;
6741 begin
6742 -- If the parent is itself derived from another private type,
6743 -- installing the private declarations has not affected its
6744 -- privacy status, so use its own full view explicitly.
6746 if Is_Private_Type (Full_Parent)
6747 and then Present (Full_View (Full_Parent))
6748 then
6749 Full_Parent := Full_View (Full_Parent);
6750 end if;
6752 -- And its underlying full view if necessary
6754 if Is_Private_Type (Full_Parent)
6755 and then Present (Underlying_Full_View (Full_Parent))
6756 then
6757 Full_Parent := Underlying_Full_View (Full_Parent);
6758 end if;
6760 -- For record, access and most enumeration types, derivation from
6761 -- the full view requires a fully-fledged declaration. In the other
6762 -- cases, just use an itype.
6764 if Ekind (Full_Parent) in Record_Kind
6765 or else Ekind (Full_Parent) in Access_Kind
6766 or else
6767 (Ekind (Full_Parent) in Enumeration_Kind
6768 and then not Is_Standard_Character_Type (Full_Parent)
6769 and then not Is_Generic_Type (Root_Type (Full_Parent)))
6770 then
6771 -- Copy and adjust declaration to provide a completion for what
6772 -- is originally a private declaration. Indicate that full view
6773 -- is internally generated.
6775 Set_Comes_From_Source (Full_N, False);
6776 Set_Comes_From_Source (Full_Der, False);
6777 Set_Parent (Full_Der, Full_N);
6778 Set_Defining_Identifier (Full_N, Full_Der);
6780 -- If there are no constraints, adjust the subtype mark
6782 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
6783 N_Subtype_Indication
6784 then
6785 Set_Subtype_Indication
6786 (Type_Definition (Full_N),
6787 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
6788 end if;
6790 Insert_After (N, Full_N);
6792 -- Build full view of derived type from full view of parent which
6793 -- is now installed. Subprograms have been derived on the partial
6794 -- view, the completion does not derive them anew.
6796 if Ekind (Full_Parent) in Record_Kind then
6798 -- If parent type is tagged, the completion inherits the proper
6799 -- primitive operations.
6801 if Is_Tagged_Type (Parent_Type) then
6802 Build_Derived_Record_Type
6803 (Full_N, Full_Parent, Full_Der, Derive_Subps);
6804 else
6805 Build_Derived_Record_Type
6806 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
6807 end if;
6809 else
6810 Build_Derived_Type
6811 (Full_N, Full_Parent, Full_Der,
6812 Is_Completion => False, Derive_Subps => False);
6813 end if;
6815 -- The full declaration has been introduced into the tree and
6816 -- processed in the step above. It should not be analyzed again
6817 -- (when encountered later in the current list of declarations)
6818 -- to prevent spurious name conflicts. The full entity remains
6819 -- invisible.
6821 Set_Analyzed (Full_N);
6823 else
6824 Full_Der :=
6825 Make_Defining_Identifier (Sloc (Derived_Type),
6826 Chars => Chars (Derived_Type));
6827 Set_Is_Itype (Full_Der);
6828 Set_Associated_Node_For_Itype (Full_Der, N);
6829 Set_Parent (Full_Der, N);
6830 Build_Derived_Type
6831 (N, Full_Parent, Full_Der,
6832 Is_Completion => False, Derive_Subps => False);
6833 end if;
6835 Set_Has_Private_Declaration (Full_Der);
6836 Set_Has_Private_Declaration (Derived_Type);
6838 Set_Scope (Full_Der, Scope (Derived_Type));
6839 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
6840 Set_Has_Size_Clause (Full_Der, False);
6841 Set_Has_Alignment_Clause (Full_Der, False);
6842 Set_Has_Delayed_Freeze (Full_Der);
6843 Set_Is_Frozen (Full_Der, False);
6844 Set_Freeze_Node (Full_Der, Empty);
6845 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
6846 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6848 -- The convention on the base type may be set in the private part
6849 -- and not propagated to the subtype until later, so we obtain the
6850 -- convention from the base type of the parent.
6852 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
6853 end Copy_And_Build;
6855 -- Start of processing for Build_Derived_Private_Type
6857 begin
6858 if Is_Tagged_Type (Parent_Type) then
6859 Full_P := Full_View (Parent_Type);
6861 -- A type extension of a type with unknown discriminants is an
6862 -- indefinite type that the back-end cannot handle directly.
6863 -- We treat it as a private type, and build a completion that is
6864 -- derived from the full view of the parent, and hopefully has
6865 -- known discriminants.
6867 -- If the full view of the parent type has an underlying record view,
6868 -- use it to generate the underlying record view of this derived type
6869 -- (required for chains of derivations with unknown discriminants).
6871 -- Minor optimization: we avoid the generation of useless underlying
6872 -- record view entities if the private type declaration has unknown
6873 -- discriminants but its corresponding full view has no
6874 -- discriminants.
6876 if Has_Unknown_Discriminants (Parent_Type)
6877 and then Present (Full_P)
6878 and then (Has_Discriminants (Full_P)
6879 or else Present (Underlying_Record_View (Full_P)))
6880 and then not In_Open_Scopes (Par_Scope)
6881 and then Expander_Active
6882 then
6883 declare
6884 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6885 New_Ext : constant Node_Id :=
6886 Copy_Separate_Tree
6887 (Record_Extension_Part (Type_Definition (N)));
6888 Decl : Node_Id;
6890 begin
6891 Build_Derived_Record_Type
6892 (N, Parent_Type, Derived_Type, Derive_Subps);
6894 -- Build anonymous completion, as a derivation from the full
6895 -- view of the parent. This is not a completion in the usual
6896 -- sense, because the current type is not private.
6898 Decl :=
6899 Make_Full_Type_Declaration (Loc,
6900 Defining_Identifier => Full_Der,
6901 Type_Definition =>
6902 Make_Derived_Type_Definition (Loc,
6903 Subtype_Indication =>
6904 New_Copy_Tree
6905 (Subtype_Indication (Type_Definition (N))),
6906 Record_Extension_Part => New_Ext));
6908 -- If the parent type has an underlying record view, use it
6909 -- here to build the new underlying record view.
6911 if Present (Underlying_Record_View (Full_P)) then
6912 pragma Assert
6913 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6914 = N_Identifier);
6915 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6916 Underlying_Record_View (Full_P));
6917 end if;
6919 Install_Private_Declarations (Par_Scope);
6920 Install_Visible_Declarations (Par_Scope);
6921 Insert_Before (N, Decl);
6923 -- Mark entity as an underlying record view before analysis,
6924 -- to avoid generating the list of its primitive operations
6925 -- (which is not really required for this entity) and thus
6926 -- prevent spurious errors associated with missing overriding
6927 -- of abstract primitives (overridden only for Derived_Type).
6929 Set_Ekind (Full_Der, E_Record_Type);
6930 Set_Is_Underlying_Record_View (Full_Der);
6931 Set_Default_SSO (Full_Der);
6933 Analyze (Decl);
6935 pragma Assert (Has_Discriminants (Full_Der)
6936 and then not Has_Unknown_Discriminants (Full_Der));
6938 Uninstall_Declarations (Par_Scope);
6940 -- Freeze the underlying record view, to prevent generation of
6941 -- useless dispatching information, which is simply shared with
6942 -- the real derived type.
6944 Set_Is_Frozen (Full_Der);
6946 -- If the derived type has access discriminants, create
6947 -- references to their anonymous types now, to prevent
6948 -- back-end problems when their first use is in generated
6949 -- bodies of primitives.
6951 declare
6952 E : Entity_Id;
6954 begin
6955 E := First_Entity (Full_Der);
6957 while Present (E) loop
6958 if Ekind (E) = E_Discriminant
6959 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
6960 then
6961 Build_Itype_Reference (Etype (E), Decl);
6962 end if;
6964 Next_Entity (E);
6965 end loop;
6966 end;
6968 -- Set up links between real entity and underlying record view
6970 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6971 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6972 end;
6974 -- If discriminants are known, build derived record
6976 else
6977 Build_Derived_Record_Type
6978 (N, Parent_Type, Derived_Type, Derive_Subps);
6979 end if;
6981 return;
6983 elsif Has_Discriminants (Parent_Type) then
6985 -- Build partial view of derived type from partial view of parent.
6986 -- This must be done before building the full derivation because the
6987 -- second derivation will modify the discriminants of the first and
6988 -- the discriminants are chained with the rest of the components in
6989 -- the full derivation.
6991 Build_Derived_Record_Type
6992 (N, Parent_Type, Derived_Type, Derive_Subps);
6994 -- Build the full derivation if this is not the anonymous derived
6995 -- base type created by Build_Derived_Record_Type in the constrained
6996 -- case (see point 5. of its head comment) since we build it for the
6997 -- derived subtype. And skip it for protected types altogether, as
6998 -- gigi does not use these types directly.
7000 if Present (Full_View (Parent_Type))
7001 and then not Is_Itype (Derived_Type)
7002 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7003 then
7004 declare
7005 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7006 Discr : Entity_Id;
7007 Last_Discr : Entity_Id;
7009 begin
7010 -- If this is not a completion, construct the implicit full
7011 -- view by deriving from the full view of the parent type.
7012 -- But if this is a completion, the derived private type
7013 -- being built is a full view and the full derivation can
7014 -- only be its underlying full view.
7016 Build_Full_Derivation;
7018 if not Is_Completion then
7019 Set_Full_View (Derived_Type, Full_Der);
7020 else
7021 Set_Underlying_Full_View (Derived_Type, Full_Der);
7022 end if;
7024 if not Is_Base_Type (Derived_Type) then
7025 Set_Full_View (Der_Base, Base_Type (Full_Der));
7026 end if;
7028 -- Copy the discriminant list from full view to the partial
7029 -- view (base type and its subtype). Gigi requires that the
7030 -- partial and full views have the same discriminants.
7032 -- Note that since the partial view points to discriminants
7033 -- in the full view, their scope will be that of the full
7034 -- view. This might cause some front end problems and need
7035 -- adjustment???
7037 Discr := First_Discriminant (Base_Type (Full_Der));
7038 Set_First_Entity (Der_Base, Discr);
7040 loop
7041 Last_Discr := Discr;
7042 Next_Discriminant (Discr);
7043 exit when No (Discr);
7044 end loop;
7046 Set_Last_Entity (Der_Base, Last_Discr);
7047 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7048 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7050 Set_Stored_Constraint
7051 (Full_Der, Stored_Constraint (Derived_Type));
7052 end;
7053 end if;
7055 elsif Present (Full_View (Parent_Type))
7056 and then Has_Discriminants (Full_View (Parent_Type))
7057 then
7058 if Has_Unknown_Discriminants (Parent_Type)
7059 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7060 N_Subtype_Indication
7061 then
7062 Error_Msg_N
7063 ("cannot constrain type with unknown discriminants",
7064 Subtype_Indication (Type_Definition (N)));
7065 return;
7066 end if;
7068 -- If this is not a completion, construct the implicit full view by
7069 -- deriving from the full view of the parent type. But if this is a
7070 -- completion, the derived private type being built is a full view
7071 -- and the full derivation can only be its underlying full view.
7073 Build_Full_Derivation;
7075 if not Is_Completion then
7076 Set_Full_View (Derived_Type, Full_Der);
7077 else
7078 Set_Underlying_Full_View (Derived_Type, Full_Der);
7079 end if;
7081 -- In any case, the primitive operations are inherited from the
7082 -- parent type, not from the internal full view.
7084 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7086 if Derive_Subps then
7087 Derive_Subprograms (Parent_Type, Derived_Type);
7088 end if;
7090 Set_Stored_Constraint (Derived_Type, No_Elist);
7091 Set_Is_Constrained
7092 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7094 else
7095 -- Untagged type, No discriminants on either view
7097 if Nkind (Subtype_Indication (Type_Definition (N))) =
7098 N_Subtype_Indication
7099 then
7100 Error_Msg_N
7101 ("illegal constraint on type without discriminants", N);
7102 end if;
7104 if Present (Discriminant_Specifications (N))
7105 and then Present (Full_View (Parent_Type))
7106 and then not Is_Tagged_Type (Full_View (Parent_Type))
7107 then
7108 Error_Msg_N ("cannot add discriminants to untagged type", N);
7109 end if;
7111 Set_Stored_Constraint (Derived_Type, No_Elist);
7112 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7113 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7114 Set_Has_Controlled_Component
7115 (Derived_Type, Has_Controlled_Component
7116 (Parent_Type));
7118 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7120 if not Is_Controlled (Parent_Type) then
7121 Set_Finalize_Storage_Only
7122 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7123 end if;
7125 -- If this is not a completion, construct the implicit full view by
7126 -- deriving from the full view of the parent type.
7128 -- ??? If the parent is untagged private and its completion is
7129 -- tagged, this mechanism will not work because we cannot derive from
7130 -- the tagged full view unless we have an extension.
7132 if Present (Full_View (Parent_Type))
7133 and then not Is_Tagged_Type (Full_View (Parent_Type))
7134 and then not Is_Completion
7135 then
7136 Build_Full_Derivation;
7137 Set_Full_View (Derived_Type, Full_Der);
7138 end if;
7139 end if;
7141 Set_Has_Unknown_Discriminants (Derived_Type,
7142 Has_Unknown_Discriminants (Parent_Type));
7144 if Is_Private_Type (Derived_Type) then
7145 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7146 end if;
7148 -- If the parent base type is in scope, add the derived type to its
7149 -- list of private dependents, because its full view may become
7150 -- visible subsequently (in a nested private part, a body, or in a
7151 -- further child unit).
7153 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7154 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7156 -- Check for unusual case where a type completed by a private
7157 -- derivation occurs within a package nested in a child unit, and
7158 -- the parent is declared in an ancestor.
7160 if Is_Child_Unit (Scope (Current_Scope))
7161 and then Is_Completion
7162 and then In_Private_Part (Current_Scope)
7163 and then Scope (Parent_Type) /= Current_Scope
7165 -- Note that if the parent has a completion in the private part,
7166 -- (which is itself a derivation from some other private type)
7167 -- it is that completion that is visible, there is no full view
7168 -- available, and no special processing is needed.
7170 and then Present (Full_View (Parent_Type))
7171 then
7172 -- In this case, the full view of the parent type will become
7173 -- visible in the body of the enclosing child, and only then will
7174 -- the current type be possibly non-private. Build an underlying
7175 -- full view that will be installed when the enclosing child body
7176 -- is compiled.
7178 if Present (Underlying_Full_View (Derived_Type)) then
7179 Full_Der := Underlying_Full_View (Derived_Type);
7180 else
7181 Build_Full_Derivation;
7182 Set_Underlying_Full_View (Derived_Type, Full_Der);
7183 end if;
7185 -- The full view will be used to swap entities on entry/exit to
7186 -- the body, and must appear in the entity list for the package.
7188 Append_Entity (Full_Der, Scope (Derived_Type));
7189 end if;
7190 end if;
7191 end Build_Derived_Private_Type;
7193 -------------------------------
7194 -- Build_Derived_Record_Type --
7195 -------------------------------
7197 -- 1. INTRODUCTION
7199 -- Ideally we would like to use the same model of type derivation for
7200 -- tagged and untagged record types. Unfortunately this is not quite
7201 -- possible because the semantics of representation clauses is different
7202 -- for tagged and untagged records under inheritance. Consider the
7203 -- following:
7205 -- type R (...) is [tagged] record ... end record;
7206 -- type T (...) is new R (...) [with ...];
7208 -- The representation clauses for T can specify a completely different
7209 -- record layout from R's. Hence the same component can be placed in two
7210 -- very different positions in objects of type T and R. If R and T are
7211 -- tagged types, representation clauses for T can only specify the layout
7212 -- of non inherited components, thus components that are common in R and T
7213 -- have the same position in objects of type R and T.
7215 -- This has two implications. The first is that the entire tree for R's
7216 -- declaration needs to be copied for T in the untagged case, so that T
7217 -- can be viewed as a record type of its own with its own representation
7218 -- clauses. The second implication is the way we handle discriminants.
7219 -- Specifically, in the untagged case we need a way to communicate to Gigi
7220 -- what are the real discriminants in the record, while for the semantics
7221 -- we need to consider those introduced by the user to rename the
7222 -- discriminants in the parent type. This is handled by introducing the
7223 -- notion of stored discriminants. See below for more.
7225 -- Fortunately the way regular components are inherited can be handled in
7226 -- the same way in tagged and untagged types.
7228 -- To complicate things a bit more the private view of a private extension
7229 -- cannot be handled in the same way as the full view (for one thing the
7230 -- semantic rules are somewhat different). We will explain what differs
7231 -- below.
7233 -- 2. DISCRIMINANTS UNDER INHERITANCE
7235 -- The semantic rules governing the discriminants of derived types are
7236 -- quite subtle.
7238 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7239 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7241 -- If parent type has discriminants, then the discriminants that are
7242 -- declared in the derived type are [3.4 (11)]:
7244 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7245 -- there is one;
7247 -- o Otherwise, each discriminant of the parent type (implicitly declared
7248 -- in the same order with the same specifications). In this case, the
7249 -- discriminants are said to be "inherited", or if unknown in the parent
7250 -- are also unknown in the derived type.
7252 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7254 -- o The parent subtype must be constrained;
7256 -- o If the parent type is not a tagged type, then each discriminant of
7257 -- the derived type must be used in the constraint defining a parent
7258 -- subtype. [Implementation note: This ensures that the new discriminant
7259 -- can share storage with an existing discriminant.]
7261 -- For the derived type each discriminant of the parent type is either
7262 -- inherited, constrained to equal some new discriminant of the derived
7263 -- type, or constrained to the value of an expression.
7265 -- When inherited or constrained to equal some new discriminant, the
7266 -- parent discriminant and the discriminant of the derived type are said
7267 -- to "correspond".
7269 -- If a discriminant of the parent type is constrained to a specific value
7270 -- in the derived type definition, then the discriminant is said to be
7271 -- "specified" by that derived type definition.
7273 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7275 -- We have spoken about stored discriminants in point 1 (introduction)
7276 -- above. There are two sort of stored discriminants: implicit and
7277 -- explicit. As long as the derived type inherits the same discriminants as
7278 -- the root record type, stored discriminants are the same as regular
7279 -- discriminants, and are said to be implicit. However, if any discriminant
7280 -- in the root type was renamed in the derived type, then the derived
7281 -- type will contain explicit stored discriminants. Explicit stored
7282 -- discriminants are discriminants in addition to the semantically visible
7283 -- discriminants defined for the derived type. Stored discriminants are
7284 -- used by Gigi to figure out what are the physical discriminants in
7285 -- objects of the derived type (see precise definition in einfo.ads).
7286 -- As an example, consider the following:
7288 -- type R (D1, D2, D3 : Int) is record ... end record;
7289 -- type T1 is new R;
7290 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7291 -- type T3 is new T2;
7292 -- type T4 (Y : Int) is new T3 (Y, 99);
7294 -- The following table summarizes the discriminants and stored
7295 -- discriminants in R and T1 through T4.
7297 -- Type Discrim Stored Discrim Comment
7298 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7299 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7300 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7301 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7302 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7304 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7305 -- find the corresponding discriminant in the parent type, while
7306 -- Original_Record_Component (abbreviated ORC below), the actual physical
7307 -- component that is renamed. Finally the field Is_Completely_Hidden
7308 -- (abbreviated ICH below) is set for all explicit stored discriminants
7309 -- (see einfo.ads for more info). For the above example this gives:
7311 -- Discrim CD ORC ICH
7312 -- ^^^^^^^ ^^ ^^^ ^^^
7313 -- D1 in R empty itself no
7314 -- D2 in R empty itself no
7315 -- D3 in R empty itself no
7317 -- D1 in T1 D1 in R itself no
7318 -- D2 in T1 D2 in R itself no
7319 -- D3 in T1 D3 in R itself no
7321 -- X1 in T2 D3 in T1 D3 in T2 no
7322 -- X2 in T2 D1 in T1 D1 in T2 no
7323 -- D1 in T2 empty itself yes
7324 -- D2 in T2 empty itself yes
7325 -- D3 in T2 empty itself yes
7327 -- X1 in T3 X1 in T2 D3 in T3 no
7328 -- X2 in T3 X2 in T2 D1 in T3 no
7329 -- D1 in T3 empty itself yes
7330 -- D2 in T3 empty itself yes
7331 -- D3 in T3 empty itself yes
7333 -- Y in T4 X1 in T3 D3 in T3 no
7334 -- D1 in T3 empty itself yes
7335 -- D2 in T3 empty itself yes
7336 -- D3 in T3 empty itself yes
7338 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7340 -- Type derivation for tagged types is fairly straightforward. If no
7341 -- discriminants are specified by the derived type, these are inherited
7342 -- from the parent. No explicit stored discriminants are ever necessary.
7343 -- The only manipulation that is done to the tree is that of adding a
7344 -- _parent field with parent type and constrained to the same constraint
7345 -- specified for the parent in the derived type definition. For instance:
7347 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7348 -- type T1 is new R with null record;
7349 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7351 -- are changed into:
7353 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7354 -- _parent : R (D1, D2, D3);
7355 -- end record;
7357 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7358 -- _parent : T1 (X2, 88, X1);
7359 -- end record;
7361 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7362 -- ORC and ICH fields are:
7364 -- Discrim CD ORC ICH
7365 -- ^^^^^^^ ^^ ^^^ ^^^
7366 -- D1 in R empty itself no
7367 -- D2 in R empty itself no
7368 -- D3 in R empty itself no
7370 -- D1 in T1 D1 in R D1 in R no
7371 -- D2 in T1 D2 in R D2 in R no
7372 -- D3 in T1 D3 in R D3 in R no
7374 -- X1 in T2 D3 in T1 D3 in R no
7375 -- X2 in T2 D1 in T1 D1 in R no
7377 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7379 -- Regardless of whether we dealing with a tagged or untagged type
7380 -- we will transform all derived type declarations of the form
7382 -- type T is new R (...) [with ...];
7383 -- or
7384 -- subtype S is R (...);
7385 -- type T is new S [with ...];
7386 -- into
7387 -- type BT is new R [with ...];
7388 -- subtype T is BT (...);
7390 -- That is, the base derived type is constrained only if it has no
7391 -- discriminants. The reason for doing this is that GNAT's semantic model
7392 -- assumes that a base type with discriminants is unconstrained.
7394 -- Note that, strictly speaking, the above transformation is not always
7395 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7397 -- procedure B34011A is
7398 -- type REC (D : integer := 0) is record
7399 -- I : Integer;
7400 -- end record;
7402 -- package P is
7403 -- type T6 is new Rec;
7404 -- function F return T6;
7405 -- end P;
7407 -- use P;
7408 -- package Q6 is
7409 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7410 -- end Q6;
7412 -- The definition of Q6.U is illegal. However transforming Q6.U into
7414 -- type BaseU is new T6;
7415 -- subtype U is BaseU (Q6.F.I)
7417 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7418 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7419 -- the transformation described above.
7421 -- There is another instance where the above transformation is incorrect.
7422 -- Consider:
7424 -- package Pack is
7425 -- type Base (D : Integer) is tagged null record;
7426 -- procedure P (X : Base);
7428 -- type Der is new Base (2) with null record;
7429 -- procedure P (X : Der);
7430 -- end Pack;
7432 -- Then the above transformation turns this into
7434 -- type Der_Base is new Base with null record;
7435 -- -- procedure P (X : Base) is implicitly inherited here
7436 -- -- as procedure P (X : Der_Base).
7438 -- subtype Der is Der_Base (2);
7439 -- procedure P (X : Der);
7440 -- -- The overriding of P (X : Der_Base) is illegal since we
7441 -- -- have a parameter conformance problem.
7443 -- To get around this problem, after having semantically processed Der_Base
7444 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7445 -- Discriminant_Constraint from Der so that when parameter conformance is
7446 -- checked when P is overridden, no semantic errors are flagged.
7448 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7450 -- Regardless of whether we are dealing with a tagged or untagged type
7451 -- we will transform all derived type declarations of the form
7453 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7454 -- type T is new R [with ...];
7455 -- into
7456 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7458 -- The reason for such transformation is that it allows us to implement a
7459 -- very clean form of component inheritance as explained below.
7461 -- Note that this transformation is not achieved by direct tree rewriting
7462 -- and manipulation, but rather by redoing the semantic actions that the
7463 -- above transformation will entail. This is done directly in routine
7464 -- Inherit_Components.
7466 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7468 -- In both tagged and untagged derived types, regular non discriminant
7469 -- components are inherited in the derived type from the parent type. In
7470 -- the absence of discriminants component, inheritance is straightforward
7471 -- as components can simply be copied from the parent.
7473 -- If the parent has discriminants, inheriting components constrained with
7474 -- these discriminants requires caution. Consider the following example:
7476 -- type R (D1, D2 : Positive) is [tagged] record
7477 -- S : String (D1 .. D2);
7478 -- end record;
7480 -- type T1 is new R [with null record];
7481 -- type T2 (X : positive) is new R (1, X) [with null record];
7483 -- As explained in 6. above, T1 is rewritten as
7484 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7485 -- which makes the treatment for T1 and T2 identical.
7487 -- What we want when inheriting S, is that references to D1 and D2 in R are
7488 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7489 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7490 -- with either discriminant references in the derived type or expressions.
7491 -- This replacement is achieved as follows: before inheriting R's
7492 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7493 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7494 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7495 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7496 -- by String (1 .. X).
7498 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7500 -- We explain here the rules governing private type extensions relevant to
7501 -- type derivation. These rules are explained on the following example:
7503 -- type D [(...)] is new A [(...)] with private; <-- partial view
7504 -- type D [(...)] is new P [(...)] with null record; <-- full view
7506 -- Type A is called the ancestor subtype of the private extension.
7507 -- Type P is the parent type of the full view of the private extension. It
7508 -- must be A or a type derived from A.
7510 -- The rules concerning the discriminants of private type extensions are
7511 -- [7.3(10-13)]:
7513 -- o If a private extension inherits known discriminants from the ancestor
7514 -- subtype, then the full view must also inherit its discriminants from
7515 -- the ancestor subtype and the parent subtype of the full view must be
7516 -- constrained if and only if the ancestor subtype is constrained.
7518 -- o If a partial view has unknown discriminants, then the full view may
7519 -- define a definite or an indefinite subtype, with or without
7520 -- discriminants.
7522 -- o If a partial view has neither known nor unknown discriminants, then
7523 -- the full view must define a definite subtype.
7525 -- o If the ancestor subtype of a private extension has constrained
7526 -- discriminants, then the parent subtype of the full view must impose a
7527 -- statically matching constraint on those discriminants.
7529 -- This means that only the following forms of private extensions are
7530 -- allowed:
7532 -- type D is new A with private; <-- partial view
7533 -- type D is new P with null record; <-- full view
7535 -- If A has no discriminants than P has no discriminants, otherwise P must
7536 -- inherit A's discriminants.
7538 -- type D is new A (...) with private; <-- partial view
7539 -- type D is new P (:::) with null record; <-- full view
7541 -- P must inherit A's discriminants and (...) and (:::) must statically
7542 -- match.
7544 -- subtype A is R (...);
7545 -- type D is new A with private; <-- partial view
7546 -- type D is new P with null record; <-- full view
7548 -- P must have inherited R's discriminants and must be derived from A or
7549 -- any of its subtypes.
7551 -- type D (..) is new A with private; <-- partial view
7552 -- type D (..) is new P [(:::)] with null record; <-- full view
7554 -- No specific constraints on P's discriminants or constraint (:::).
7555 -- Note that A can be unconstrained, but the parent subtype P must either
7556 -- be constrained or (:::) must be present.
7558 -- type D (..) is new A [(...)] with private; <-- partial view
7559 -- type D (..) is new P [(:::)] with null record; <-- full view
7561 -- P's constraints on A's discriminants must statically match those
7562 -- imposed by (...).
7564 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7566 -- The full view of a private extension is handled exactly as described
7567 -- above. The model chose for the private view of a private extension is
7568 -- the same for what concerns discriminants (i.e. they receive the same
7569 -- treatment as in the tagged case). However, the private view of the
7570 -- private extension always inherits the components of the parent base,
7571 -- without replacing any discriminant reference. Strictly speaking this is
7572 -- incorrect. However, Gigi never uses this view to generate code so this
7573 -- is a purely semantic issue. In theory, a set of transformations similar
7574 -- to those given in 5. and 6. above could be applied to private views of
7575 -- private extensions to have the same model of component inheritance as
7576 -- for non private extensions. However, this is not done because it would
7577 -- further complicate private type processing. Semantically speaking, this
7578 -- leaves us in an uncomfortable situation. As an example consider:
7580 -- package Pack is
7581 -- type R (D : integer) is tagged record
7582 -- S : String (1 .. D);
7583 -- end record;
7584 -- procedure P (X : R);
7585 -- type T is new R (1) with private;
7586 -- private
7587 -- type T is new R (1) with null record;
7588 -- end;
7590 -- This is transformed into:
7592 -- package Pack is
7593 -- type R (D : integer) is tagged record
7594 -- S : String (1 .. D);
7595 -- end record;
7596 -- procedure P (X : R);
7597 -- type T is new R (1) with private;
7598 -- private
7599 -- type BaseT is new R with null record;
7600 -- subtype T is BaseT (1);
7601 -- end;
7603 -- (strictly speaking the above is incorrect Ada)
7605 -- From the semantic standpoint the private view of private extension T
7606 -- should be flagged as constrained since one can clearly have
7608 -- Obj : T;
7610 -- in a unit withing Pack. However, when deriving subprograms for the
7611 -- private view of private extension T, T must be seen as unconstrained
7612 -- since T has discriminants (this is a constraint of the current
7613 -- subprogram derivation model). Thus, when processing the private view of
7614 -- a private extension such as T, we first mark T as unconstrained, we
7615 -- process it, we perform program derivation and just before returning from
7616 -- Build_Derived_Record_Type we mark T as constrained.
7618 -- ??? Are there are other uncomfortable cases that we will have to
7619 -- deal with.
7621 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7623 -- Types that are derived from a visible record type and have a private
7624 -- extension present other peculiarities. They behave mostly like private
7625 -- types, but if they have primitive operations defined, these will not
7626 -- have the proper signatures for further inheritance, because other
7627 -- primitive operations will use the implicit base that we define for
7628 -- private derivations below. This affect subprogram inheritance (see
7629 -- Derive_Subprograms for details). We also derive the implicit base from
7630 -- the base type of the full view, so that the implicit base is a record
7631 -- type and not another private type, This avoids infinite loops.
7633 procedure Build_Derived_Record_Type
7634 (N : Node_Id;
7635 Parent_Type : Entity_Id;
7636 Derived_Type : Entity_Id;
7637 Derive_Subps : Boolean := True)
7639 Discriminant_Specs : constant Boolean :=
7640 Present (Discriminant_Specifications (N));
7641 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7642 Loc : constant Source_Ptr := Sloc (N);
7643 Private_Extension : constant Boolean :=
7644 Nkind (N) = N_Private_Extension_Declaration;
7645 Assoc_List : Elist_Id;
7646 Constraint_Present : Boolean;
7647 Constrs : Elist_Id;
7648 Discrim : Entity_Id;
7649 Indic : Node_Id;
7650 Inherit_Discrims : Boolean := False;
7651 Last_Discrim : Entity_Id;
7652 New_Base : Entity_Id;
7653 New_Decl : Node_Id;
7654 New_Discrs : Elist_Id;
7655 New_Indic : Node_Id;
7656 Parent_Base : Entity_Id;
7657 Save_Etype : Entity_Id;
7658 Save_Discr_Constr : Elist_Id;
7659 Save_Next_Entity : Entity_Id;
7660 Type_Def : Node_Id;
7662 Discs : Elist_Id := New_Elmt_List;
7663 -- An empty Discs list means that there were no constraints in the
7664 -- subtype indication or that there was an error processing it.
7666 begin
7667 if Ekind (Parent_Type) = E_Record_Type_With_Private
7668 and then Present (Full_View (Parent_Type))
7669 and then Has_Discriminants (Parent_Type)
7670 then
7671 Parent_Base := Base_Type (Full_View (Parent_Type));
7672 else
7673 Parent_Base := Base_Type (Parent_Type);
7674 end if;
7676 -- AI05-0115 : if this is a derivation from a private type in some
7677 -- other scope that may lead to invisible components for the derived
7678 -- type, mark it accordingly.
7680 if Is_Private_Type (Parent_Type) then
7681 if Scope (Parent_Type) = Scope (Derived_Type) then
7682 null;
7684 elsif In_Open_Scopes (Scope (Parent_Type))
7685 and then In_Private_Part (Scope (Parent_Type))
7686 then
7687 null;
7689 else
7690 Set_Has_Private_Ancestor (Derived_Type);
7691 end if;
7693 else
7694 Set_Has_Private_Ancestor
7695 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7696 end if;
7698 -- Before we start the previously documented transformations, here is
7699 -- little fix for size and alignment of tagged types. Normally when we
7700 -- derive type D from type P, we copy the size and alignment of P as the
7701 -- default for D, and in the absence of explicit representation clauses
7702 -- for D, the size and alignment are indeed the same as the parent.
7704 -- But this is wrong for tagged types, since fields may be added, and
7705 -- the default size may need to be larger, and the default alignment may
7706 -- need to be larger.
7708 -- We therefore reset the size and alignment fields in the tagged case.
7709 -- Note that the size and alignment will in any case be at least as
7710 -- large as the parent type (since the derived type has a copy of the
7711 -- parent type in the _parent field)
7713 -- The type is also marked as being tagged here, which is needed when
7714 -- processing components with a self-referential anonymous access type
7715 -- in the call to Check_Anonymous_Access_Components below. Note that
7716 -- this flag is also set later on for completeness.
7718 if Is_Tagged then
7719 Set_Is_Tagged_Type (Derived_Type);
7720 Init_Size_Align (Derived_Type);
7721 end if;
7723 -- STEP 0a: figure out what kind of derived type declaration we have
7725 if Private_Extension then
7726 Type_Def := N;
7727 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7728 Set_Default_SSO (Derived_Type);
7730 else
7731 Type_Def := Type_Definition (N);
7733 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7734 -- Parent_Base can be a private type or private extension. However,
7735 -- for tagged types with an extension the newly added fields are
7736 -- visible and hence the Derived_Type is always an E_Record_Type.
7737 -- (except that the parent may have its own private fields).
7738 -- For untagged types we preserve the Ekind of the Parent_Base.
7740 if Present (Record_Extension_Part (Type_Def)) then
7741 Set_Ekind (Derived_Type, E_Record_Type);
7742 Set_Default_SSO (Derived_Type);
7744 -- Create internal access types for components with anonymous
7745 -- access types.
7747 if Ada_Version >= Ada_2005 then
7748 Check_Anonymous_Access_Components
7749 (N, Derived_Type, Derived_Type,
7750 Component_List (Record_Extension_Part (Type_Def)));
7751 end if;
7753 else
7754 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7755 end if;
7756 end if;
7758 -- Indic can either be an N_Identifier if the subtype indication
7759 -- contains no constraint or an N_Subtype_Indication if the subtype
7760 -- indication has a constraint.
7762 Indic := Subtype_Indication (Type_Def);
7763 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7765 -- Check that the type has visible discriminants. The type may be
7766 -- a private type with unknown discriminants whose full view has
7767 -- discriminants which are invisible.
7769 if Constraint_Present then
7770 if not Has_Discriminants (Parent_Base)
7771 or else
7772 (Has_Unknown_Discriminants (Parent_Base)
7773 and then Is_Private_Type (Parent_Base))
7774 then
7775 Error_Msg_N
7776 ("invalid constraint: type has no discriminant",
7777 Constraint (Indic));
7779 Constraint_Present := False;
7780 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7782 elsif Is_Constrained (Parent_Type) then
7783 Error_Msg_N
7784 ("invalid constraint: parent type is already constrained",
7785 Constraint (Indic));
7787 Constraint_Present := False;
7788 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7789 end if;
7790 end if;
7792 -- STEP 0b: If needed, apply transformation given in point 5. above
7794 if not Private_Extension
7795 and then Has_Discriminants (Parent_Type)
7796 and then not Discriminant_Specs
7797 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7798 then
7799 -- First, we must analyze the constraint (see comment in point 5.)
7800 -- The constraint may come from the subtype indication of the full
7801 -- declaration.
7803 if Constraint_Present then
7804 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7806 -- If there is no explicit constraint, there might be one that is
7807 -- inherited from a constrained parent type. In that case verify that
7808 -- it conforms to the constraint in the partial view. In perverse
7809 -- cases the parent subtypes of the partial and full view can have
7810 -- different constraints.
7812 elsif Present (Stored_Constraint (Parent_Type)) then
7813 New_Discrs := Stored_Constraint (Parent_Type);
7815 else
7816 New_Discrs := No_Elist;
7817 end if;
7819 if Has_Discriminants (Derived_Type)
7820 and then Has_Private_Declaration (Derived_Type)
7821 and then Present (Discriminant_Constraint (Derived_Type))
7822 and then Present (New_Discrs)
7823 then
7824 -- Verify that constraints of the full view statically match
7825 -- those given in the partial view.
7827 declare
7828 C1, C2 : Elmt_Id;
7830 begin
7831 C1 := First_Elmt (New_Discrs);
7832 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7833 while Present (C1) and then Present (C2) loop
7834 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7835 or else
7836 (Is_OK_Static_Expression (Node (C1))
7837 and then Is_OK_Static_Expression (Node (C2))
7838 and then
7839 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7840 then
7841 null;
7843 else
7844 if Constraint_Present then
7845 Error_Msg_N
7846 ("constraint not conformant to previous declaration",
7847 Node (C1));
7848 else
7849 Error_Msg_N
7850 ("constraint of full view is incompatible "
7851 & "with partial view", N);
7852 end if;
7853 end if;
7855 Next_Elmt (C1);
7856 Next_Elmt (C2);
7857 end loop;
7858 end;
7859 end if;
7861 -- Insert and analyze the declaration for the unconstrained base type
7863 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7865 New_Decl :=
7866 Make_Full_Type_Declaration (Loc,
7867 Defining_Identifier => New_Base,
7868 Type_Definition =>
7869 Make_Derived_Type_Definition (Loc,
7870 Abstract_Present => Abstract_Present (Type_Def),
7871 Limited_Present => Limited_Present (Type_Def),
7872 Subtype_Indication =>
7873 New_Occurrence_Of (Parent_Base, Loc),
7874 Record_Extension_Part =>
7875 Relocate_Node (Record_Extension_Part (Type_Def)),
7876 Interface_List => Interface_List (Type_Def)));
7878 Set_Parent (New_Decl, Parent (N));
7879 Mark_Rewrite_Insertion (New_Decl);
7880 Insert_Before (N, New_Decl);
7882 -- In the extension case, make sure ancestor is frozen appropriately
7883 -- (see also non-discriminated case below).
7885 if Present (Record_Extension_Part (Type_Def))
7886 or else Is_Interface (Parent_Base)
7887 then
7888 Freeze_Before (New_Decl, Parent_Type);
7889 end if;
7891 -- Note that this call passes False for the Derive_Subps parameter
7892 -- because subprogram derivation is deferred until after creating
7893 -- the subtype (see below).
7895 Build_Derived_Type
7896 (New_Decl, Parent_Base, New_Base,
7897 Is_Completion => False, Derive_Subps => False);
7899 -- ??? This needs re-examination to determine whether the
7900 -- above call can simply be replaced by a call to Analyze.
7902 Set_Analyzed (New_Decl);
7904 -- Insert and analyze the declaration for the constrained subtype
7906 if Constraint_Present then
7907 New_Indic :=
7908 Make_Subtype_Indication (Loc,
7909 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7910 Constraint => Relocate_Node (Constraint (Indic)));
7912 else
7913 declare
7914 Constr_List : constant List_Id := New_List;
7915 C : Elmt_Id;
7916 Expr : Node_Id;
7918 begin
7919 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7920 while Present (C) loop
7921 Expr := Node (C);
7923 -- It is safe here to call New_Copy_Tree since
7924 -- Force_Evaluation was called on each constraint in
7925 -- Build_Discriminant_Constraints.
7927 Append (New_Copy_Tree (Expr), To => Constr_List);
7929 Next_Elmt (C);
7930 end loop;
7932 New_Indic :=
7933 Make_Subtype_Indication (Loc,
7934 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7935 Constraint =>
7936 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7937 end;
7938 end if;
7940 Rewrite (N,
7941 Make_Subtype_Declaration (Loc,
7942 Defining_Identifier => Derived_Type,
7943 Subtype_Indication => New_Indic));
7945 Analyze (N);
7947 -- Derivation of subprograms must be delayed until the full subtype
7948 -- has been established, to ensure proper overriding of subprograms
7949 -- inherited by full types. If the derivations occurred as part of
7950 -- the call to Build_Derived_Type above, then the check for type
7951 -- conformance would fail because earlier primitive subprograms
7952 -- could still refer to the full type prior the change to the new
7953 -- subtype and hence would not match the new base type created here.
7954 -- Subprograms are not derived, however, when Derive_Subps is False
7955 -- (since otherwise there could be redundant derivations).
7957 if Derive_Subps then
7958 Derive_Subprograms (Parent_Type, Derived_Type);
7959 end if;
7961 -- For tagged types the Discriminant_Constraint of the new base itype
7962 -- is inherited from the first subtype so that no subtype conformance
7963 -- problem arise when the first subtype overrides primitive
7964 -- operations inherited by the implicit base type.
7966 if Is_Tagged then
7967 Set_Discriminant_Constraint
7968 (New_Base, Discriminant_Constraint (Derived_Type));
7969 end if;
7971 return;
7972 end if;
7974 -- If we get here Derived_Type will have no discriminants or it will be
7975 -- a discriminated unconstrained base type.
7977 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7979 if Is_Tagged then
7981 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7982 -- The declaration of a specific descendant of an interface type
7983 -- freezes the interface type (RM 13.14).
7985 if not Private_Extension or else Is_Interface (Parent_Base) then
7986 Freeze_Before (N, Parent_Type);
7987 end if;
7989 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7990 -- cannot be declared at a deeper level than its parent type is
7991 -- removed. The check on derivation within a generic body is also
7992 -- relaxed, but there's a restriction that a derived tagged type
7993 -- cannot be declared in a generic body if it's derived directly
7994 -- or indirectly from a formal type of that generic.
7996 if Ada_Version >= Ada_2005 then
7997 if Present (Enclosing_Generic_Body (Derived_Type)) then
7998 declare
7999 Ancestor_Type : Entity_Id;
8001 begin
8002 -- Check to see if any ancestor of the derived type is a
8003 -- formal type.
8005 Ancestor_Type := Parent_Type;
8006 while not Is_Generic_Type (Ancestor_Type)
8007 and then Etype (Ancestor_Type) /= Ancestor_Type
8008 loop
8009 Ancestor_Type := Etype (Ancestor_Type);
8010 end loop;
8012 -- If the derived type does have a formal type as an
8013 -- ancestor, then it's an error if the derived type is
8014 -- declared within the body of the generic unit that
8015 -- declares the formal type in its generic formal part. It's
8016 -- sufficient to check whether the ancestor type is declared
8017 -- inside the same generic body as the derived type (such as
8018 -- within a nested generic spec), in which case the
8019 -- derivation is legal. If the formal type is declared
8020 -- outside of that generic body, then it's guaranteed that
8021 -- the derived type is declared within the generic body of
8022 -- the generic unit declaring the formal type.
8024 if Is_Generic_Type (Ancestor_Type)
8025 and then Enclosing_Generic_Body (Ancestor_Type) /=
8026 Enclosing_Generic_Body (Derived_Type)
8027 then
8028 Error_Msg_NE
8029 ("parent type of& must not be descendant of formal type"
8030 & " of an enclosing generic body",
8031 Indic, Derived_Type);
8032 end if;
8033 end;
8034 end if;
8036 elsif Type_Access_Level (Derived_Type) /=
8037 Type_Access_Level (Parent_Type)
8038 and then not Is_Generic_Type (Derived_Type)
8039 then
8040 if Is_Controlled (Parent_Type) then
8041 Error_Msg_N
8042 ("controlled type must be declared at the library level",
8043 Indic);
8044 else
8045 Error_Msg_N
8046 ("type extension at deeper accessibility level than parent",
8047 Indic);
8048 end if;
8050 else
8051 declare
8052 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8053 begin
8054 if Present (GB)
8055 and then GB /= Enclosing_Generic_Body (Parent_Base)
8056 then
8057 Error_Msg_NE
8058 ("parent type of& must not be outside generic body"
8059 & " (RM 3.9.1(4))",
8060 Indic, Derived_Type);
8061 end if;
8062 end;
8063 end if;
8064 end if;
8066 -- Ada 2005 (AI-251)
8068 if Ada_Version >= Ada_2005 and then Is_Tagged then
8070 -- "The declaration of a specific descendant of an interface type
8071 -- freezes the interface type" (RM 13.14).
8073 declare
8074 Iface : Node_Id;
8075 begin
8076 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8077 Iface := First (Interface_List (Type_Def));
8078 while Present (Iface) loop
8079 Freeze_Before (N, Etype (Iface));
8080 Next (Iface);
8081 end loop;
8082 end if;
8083 end;
8084 end if;
8086 -- STEP 1b : preliminary cleanup of the full view of private types
8088 -- If the type is already marked as having discriminants, then it's the
8089 -- completion of a private type or private extension and we need to
8090 -- retain the discriminants from the partial view if the current
8091 -- declaration has Discriminant_Specifications so that we can verify
8092 -- conformance. However, we must remove any existing components that
8093 -- were inherited from the parent (and attached in Copy_And_Swap)
8094 -- because the full type inherits all appropriate components anyway, and
8095 -- we do not want the partial view's components interfering.
8097 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8098 Discrim := First_Discriminant (Derived_Type);
8099 loop
8100 Last_Discrim := Discrim;
8101 Next_Discriminant (Discrim);
8102 exit when No (Discrim);
8103 end loop;
8105 Set_Last_Entity (Derived_Type, Last_Discrim);
8107 -- In all other cases wipe out the list of inherited components (even
8108 -- inherited discriminants), it will be properly rebuilt here.
8110 else
8111 Set_First_Entity (Derived_Type, Empty);
8112 Set_Last_Entity (Derived_Type, Empty);
8113 end if;
8115 -- STEP 1c: Initialize some flags for the Derived_Type
8117 -- The following flags must be initialized here so that
8118 -- Process_Discriminants can check that discriminants of tagged types do
8119 -- not have a default initial value and that access discriminants are
8120 -- only specified for limited records. For completeness, these flags are
8121 -- also initialized along with all the other flags below.
8123 -- AI-419: Limitedness is not inherited from an interface parent, so to
8124 -- be limited in that case the type must be explicitly declared as
8125 -- limited. However, task and protected interfaces are always limited.
8127 if Limited_Present (Type_Def) then
8128 Set_Is_Limited_Record (Derived_Type);
8130 elsif Is_Limited_Record (Parent_Type)
8131 or else (Present (Full_View (Parent_Type))
8132 and then Is_Limited_Record (Full_View (Parent_Type)))
8133 then
8134 if not Is_Interface (Parent_Type)
8135 or else Is_Synchronized_Interface (Parent_Type)
8136 or else Is_Protected_Interface (Parent_Type)
8137 or else Is_Task_Interface (Parent_Type)
8138 then
8139 Set_Is_Limited_Record (Derived_Type);
8140 end if;
8141 end if;
8143 -- STEP 2a: process discriminants of derived type if any
8145 Push_Scope (Derived_Type);
8147 if Discriminant_Specs then
8148 Set_Has_Unknown_Discriminants (Derived_Type, False);
8150 -- The following call initializes fields Has_Discriminants and
8151 -- Discriminant_Constraint, unless we are processing the completion
8152 -- of a private type declaration.
8154 Check_Or_Process_Discriminants (N, Derived_Type);
8156 -- For untagged types, the constraint on the Parent_Type must be
8157 -- present and is used to rename the discriminants.
8159 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8160 Error_Msg_N ("untagged parent must have discriminants", Indic);
8162 elsif not Is_Tagged and then not Constraint_Present then
8163 Error_Msg_N
8164 ("discriminant constraint needed for derived untagged records",
8165 Indic);
8167 -- Otherwise the parent subtype must be constrained unless we have a
8168 -- private extension.
8170 elsif not Constraint_Present
8171 and then not Private_Extension
8172 and then not Is_Constrained (Parent_Type)
8173 then
8174 Error_Msg_N
8175 ("unconstrained type not allowed in this context", Indic);
8177 elsif Constraint_Present then
8178 -- The following call sets the field Corresponding_Discriminant
8179 -- for the discriminants in the Derived_Type.
8181 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8183 -- For untagged types all new discriminants must rename
8184 -- discriminants in the parent. For private extensions new
8185 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8187 Discrim := First_Discriminant (Derived_Type);
8188 while Present (Discrim) loop
8189 if not Is_Tagged
8190 and then No (Corresponding_Discriminant (Discrim))
8191 then
8192 Error_Msg_N
8193 ("new discriminants must constrain old ones", Discrim);
8195 elsif Private_Extension
8196 and then Present (Corresponding_Discriminant (Discrim))
8197 then
8198 Error_Msg_N
8199 ("only static constraints allowed for parent"
8200 & " discriminants in the partial view", Indic);
8201 exit;
8202 end if;
8204 -- If a new discriminant is used in the constraint, then its
8205 -- subtype must be statically compatible with the parent
8206 -- discriminant's subtype (3.7(15)).
8208 -- However, if the record contains an array constrained by
8209 -- the discriminant but with some different bound, the compiler
8210 -- attemps to create a smaller range for the discriminant type.
8211 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8212 -- the discriminant type is a scalar type, the check must use
8213 -- the original discriminant type in the parent declaration.
8215 declare
8216 Corr_Disc : constant Entity_Id :=
8217 Corresponding_Discriminant (Discrim);
8218 Disc_Type : constant Entity_Id := Etype (Discrim);
8219 Corr_Type : Entity_Id;
8221 begin
8222 if Present (Corr_Disc) then
8223 if Is_Scalar_Type (Disc_Type) then
8224 Corr_Type :=
8225 Entity (Discriminant_Type (Parent (Corr_Disc)));
8226 else
8227 Corr_Type := Etype (Corr_Disc);
8228 end if;
8230 if not
8231 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8232 then
8233 Error_Msg_N
8234 ("subtype must be compatible "
8235 & "with parent discriminant",
8236 Discrim);
8237 end if;
8238 end if;
8239 end;
8241 Next_Discriminant (Discrim);
8242 end loop;
8244 -- Check whether the constraints of the full view statically
8245 -- match those imposed by the parent subtype [7.3(13)].
8247 if Present (Stored_Constraint (Derived_Type)) then
8248 declare
8249 C1, C2 : Elmt_Id;
8251 begin
8252 C1 := First_Elmt (Discs);
8253 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8254 while Present (C1) and then Present (C2) loop
8255 if not
8256 Fully_Conformant_Expressions (Node (C1), Node (C2))
8257 then
8258 Error_Msg_N
8259 ("not conformant with previous declaration",
8260 Node (C1));
8261 end if;
8263 Next_Elmt (C1);
8264 Next_Elmt (C2);
8265 end loop;
8266 end;
8267 end if;
8268 end if;
8270 -- STEP 2b: No new discriminants, inherit discriminants if any
8272 else
8273 if Private_Extension then
8274 Set_Has_Unknown_Discriminants
8275 (Derived_Type,
8276 Has_Unknown_Discriminants (Parent_Type)
8277 or else Unknown_Discriminants_Present (N));
8279 -- The partial view of the parent may have unknown discriminants,
8280 -- but if the full view has discriminants and the parent type is
8281 -- in scope they must be inherited.
8283 elsif Has_Unknown_Discriminants (Parent_Type)
8284 and then
8285 (not Has_Discriminants (Parent_Type)
8286 or else not In_Open_Scopes (Scope (Parent_Type)))
8287 then
8288 Set_Has_Unknown_Discriminants (Derived_Type);
8289 end if;
8291 if not Has_Unknown_Discriminants (Derived_Type)
8292 and then not Has_Unknown_Discriminants (Parent_Base)
8293 and then Has_Discriminants (Parent_Type)
8294 then
8295 Inherit_Discrims := True;
8296 Set_Has_Discriminants
8297 (Derived_Type, True);
8298 Set_Discriminant_Constraint
8299 (Derived_Type, Discriminant_Constraint (Parent_Base));
8300 end if;
8302 -- The following test is true for private types (remember
8303 -- transformation 5. is not applied to those) and in an error
8304 -- situation.
8306 if Constraint_Present then
8307 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8308 end if;
8310 -- For now mark a new derived type as constrained only if it has no
8311 -- discriminants. At the end of Build_Derived_Record_Type we properly
8312 -- set this flag in the case of private extensions. See comments in
8313 -- point 9. just before body of Build_Derived_Record_Type.
8315 Set_Is_Constrained
8316 (Derived_Type,
8317 not (Inherit_Discrims
8318 or else Has_Unknown_Discriminants (Derived_Type)));
8319 end if;
8321 -- STEP 3: initialize fields of derived type
8323 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8324 Set_Stored_Constraint (Derived_Type, No_Elist);
8326 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8327 -- but cannot be interfaces
8329 if not Private_Extension
8330 and then Ekind (Derived_Type) /= E_Private_Type
8331 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8332 then
8333 if Interface_Present (Type_Def) then
8334 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8335 end if;
8337 Set_Interfaces (Derived_Type, No_Elist);
8338 end if;
8340 -- Fields inherited from the Parent_Type
8342 Set_Has_Specified_Layout
8343 (Derived_Type, Has_Specified_Layout (Parent_Type));
8344 Set_Is_Limited_Composite
8345 (Derived_Type, Is_Limited_Composite (Parent_Type));
8346 Set_Is_Private_Composite
8347 (Derived_Type, Is_Private_Composite (Parent_Type));
8349 if Is_Tagged_Type (Parent_Type) then
8350 Set_No_Tagged_Streams_Pragma
8351 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8352 end if;
8354 -- Fields inherited from the Parent_Base
8356 Set_Has_Controlled_Component
8357 (Derived_Type, Has_Controlled_Component (Parent_Base));
8358 Set_Has_Non_Standard_Rep
8359 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8360 Set_Has_Primitive_Operations
8361 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8363 -- Fields inherited from the Parent_Base in the non-private case
8365 if Ekind (Derived_Type) = E_Record_Type then
8366 Set_Has_Complex_Representation
8367 (Derived_Type, Has_Complex_Representation (Parent_Base));
8368 end if;
8370 -- Fields inherited from the Parent_Base for record types
8372 if Is_Record_Type (Derived_Type) then
8373 declare
8374 Parent_Full : Entity_Id;
8376 begin
8377 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8378 -- Parent_Base can be a private type or private extension. Go
8379 -- to the full view here to get the E_Record_Type specific flags.
8381 if Present (Full_View (Parent_Base)) then
8382 Parent_Full := Full_View (Parent_Base);
8383 else
8384 Parent_Full := Parent_Base;
8385 end if;
8387 Set_OK_To_Reorder_Components
8388 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8389 end;
8390 end if;
8392 -- Set fields for private derived types
8394 if Is_Private_Type (Derived_Type) then
8395 Set_Depends_On_Private (Derived_Type, True);
8396 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8398 -- Inherit fields from non private record types. If this is the
8399 -- completion of a derivation from a private type, the parent itself
8400 -- is private, and the attributes come from its full view, which must
8401 -- be present.
8403 else
8404 if Is_Private_Type (Parent_Base)
8405 and then not Is_Record_Type (Parent_Base)
8406 then
8407 Set_Component_Alignment
8408 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8409 Set_C_Pass_By_Copy
8410 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8411 else
8412 Set_Component_Alignment
8413 (Derived_Type, Component_Alignment (Parent_Base));
8414 Set_C_Pass_By_Copy
8415 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8416 end if;
8417 end if;
8419 -- Set fields for tagged types
8421 if Is_Tagged then
8422 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8424 -- All tagged types defined in Ada.Finalization are controlled
8426 if Chars (Scope (Derived_Type)) = Name_Finalization
8427 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8428 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8429 then
8430 Set_Is_Controlled (Derived_Type);
8431 else
8432 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8433 end if;
8435 -- Minor optimization: there is no need to generate the class-wide
8436 -- entity associated with an underlying record view.
8438 if not Is_Underlying_Record_View (Derived_Type) then
8439 Make_Class_Wide_Type (Derived_Type);
8440 end if;
8442 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8444 if Has_Discriminants (Derived_Type)
8445 and then Constraint_Present
8446 then
8447 Set_Stored_Constraint
8448 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8449 end if;
8451 if Ada_Version >= Ada_2005 then
8452 declare
8453 Ifaces_List : Elist_Id;
8455 begin
8456 -- Checks rules 3.9.4 (13/2 and 14/2)
8458 if Comes_From_Source (Derived_Type)
8459 and then not Is_Private_Type (Derived_Type)
8460 and then Is_Interface (Parent_Type)
8461 and then not Is_Interface (Derived_Type)
8462 then
8463 if Is_Task_Interface (Parent_Type) then
8464 Error_Msg_N
8465 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8466 Derived_Type);
8468 elsif Is_Protected_Interface (Parent_Type) then
8469 Error_Msg_N
8470 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8471 Derived_Type);
8472 end if;
8473 end if;
8475 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8477 Check_Interfaces (N, Type_Def);
8479 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8480 -- not already in the parents.
8482 Collect_Interfaces
8483 (T => Derived_Type,
8484 Ifaces_List => Ifaces_List,
8485 Exclude_Parents => True);
8487 Set_Interfaces (Derived_Type, Ifaces_List);
8489 -- If the derived type is the anonymous type created for
8490 -- a declaration whose parent has a constraint, propagate
8491 -- the interface list to the source type. This must be done
8492 -- prior to the completion of the analysis of the source type
8493 -- because the components in the extension may contain current
8494 -- instances whose legality depends on some ancestor.
8496 if Is_Itype (Derived_Type) then
8497 declare
8498 Def : constant Node_Id :=
8499 Associated_Node_For_Itype (Derived_Type);
8500 begin
8501 if Present (Def)
8502 and then Nkind (Def) = N_Full_Type_Declaration
8503 then
8504 Set_Interfaces
8505 (Defining_Identifier (Def), Ifaces_List);
8506 end if;
8507 end;
8508 end if;
8509 end;
8510 end if;
8512 else
8513 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8514 Set_Has_Non_Standard_Rep
8515 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8516 end if;
8518 -- STEP 4: Inherit components from the parent base and constrain them.
8519 -- Apply the second transformation described in point 6. above.
8521 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8522 or else not Has_Discriminants (Parent_Type)
8523 or else not Is_Constrained (Parent_Type)
8524 then
8525 Constrs := Discs;
8526 else
8527 Constrs := Discriminant_Constraint (Parent_Type);
8528 end if;
8530 Assoc_List :=
8531 Inherit_Components
8532 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8534 -- STEP 5a: Copy the parent record declaration for untagged types
8536 if not Is_Tagged then
8538 -- Discriminant_Constraint (Derived_Type) has been properly
8539 -- constructed. Save it and temporarily set it to Empty because we
8540 -- do not want the call to New_Copy_Tree below to mess this list.
8542 if Has_Discriminants (Derived_Type) then
8543 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8544 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8545 else
8546 Save_Discr_Constr := No_Elist;
8547 end if;
8549 -- Save the Etype field of Derived_Type. It is correctly set now,
8550 -- but the call to New_Copy tree may remap it to point to itself,
8551 -- which is not what we want. Ditto for the Next_Entity field.
8553 Save_Etype := Etype (Derived_Type);
8554 Save_Next_Entity := Next_Entity (Derived_Type);
8556 -- Assoc_List maps all stored discriminants in the Parent_Base to
8557 -- stored discriminants in the Derived_Type. It is fundamental that
8558 -- no types or itypes with discriminants other than the stored
8559 -- discriminants appear in the entities declared inside
8560 -- Derived_Type, since the back end cannot deal with it.
8562 New_Decl :=
8563 New_Copy_Tree
8564 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8566 -- Restore the fields saved prior to the New_Copy_Tree call
8567 -- and compute the stored constraint.
8569 Set_Etype (Derived_Type, Save_Etype);
8570 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8572 if Has_Discriminants (Derived_Type) then
8573 Set_Discriminant_Constraint
8574 (Derived_Type, Save_Discr_Constr);
8575 Set_Stored_Constraint
8576 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8577 Replace_Components (Derived_Type, New_Decl);
8578 Set_Has_Implicit_Dereference
8579 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8580 end if;
8582 -- Insert the new derived type declaration
8584 Rewrite (N, New_Decl);
8586 -- STEP 5b: Complete the processing for record extensions in generics
8588 -- There is no completion for record extensions declared in the
8589 -- parameter part of a generic, so we need to complete processing for
8590 -- these generic record extensions here. The Record_Type_Definition call
8591 -- will change the Ekind of the components from E_Void to E_Component.
8593 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8594 Record_Type_Definition (Empty, Derived_Type);
8596 -- STEP 5c: Process the record extension for non private tagged types
8598 elsif not Private_Extension then
8599 Expand_Record_Extension (Derived_Type, Type_Def);
8601 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8602 -- derived type to propagate some semantic information. This led
8603 -- to other ASIS failures and has been removed.
8605 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8606 -- implemented interfaces if we are in expansion mode
8608 if Expander_Active
8609 and then Has_Interfaces (Derived_Type)
8610 then
8611 Add_Interface_Tag_Components (N, Derived_Type);
8612 end if;
8614 -- Analyze the record extension
8616 Record_Type_Definition
8617 (Record_Extension_Part (Type_Def), Derived_Type);
8618 end if;
8620 End_Scope;
8622 -- Nothing else to do if there is an error in the derivation.
8623 -- An unusual case: the full view may be derived from a type in an
8624 -- instance, when the partial view was used illegally as an actual
8625 -- in that instance, leading to a circular definition.
8627 if Etype (Derived_Type) = Any_Type
8628 or else Etype (Parent_Type) = Derived_Type
8629 then
8630 return;
8631 end if;
8633 -- Set delayed freeze and then derive subprograms, we need to do
8634 -- this in this order so that derived subprograms inherit the
8635 -- derived freeze if necessary.
8637 Set_Has_Delayed_Freeze (Derived_Type);
8639 if Derive_Subps then
8640 Derive_Subprograms (Parent_Type, Derived_Type);
8641 end if;
8643 -- If we have a private extension which defines a constrained derived
8644 -- type mark as constrained here after we have derived subprograms. See
8645 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8647 if Private_Extension and then Inherit_Discrims then
8648 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8649 Set_Is_Constrained (Derived_Type, True);
8650 Set_Discriminant_Constraint (Derived_Type, Discs);
8652 elsif Is_Constrained (Parent_Type) then
8653 Set_Is_Constrained
8654 (Derived_Type, True);
8655 Set_Discriminant_Constraint
8656 (Derived_Type, Discriminant_Constraint (Parent_Type));
8657 end if;
8658 end if;
8660 -- Update the class-wide type, which shares the now-completed entity
8661 -- list with its specific type. In case of underlying record views,
8662 -- we do not generate the corresponding class wide entity.
8664 if Is_Tagged
8665 and then not Is_Underlying_Record_View (Derived_Type)
8666 then
8667 Set_First_Entity
8668 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8669 Set_Last_Entity
8670 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8671 end if;
8673 Check_Function_Writable_Actuals (N);
8674 end Build_Derived_Record_Type;
8676 ------------------------
8677 -- Build_Derived_Type --
8678 ------------------------
8680 procedure Build_Derived_Type
8681 (N : Node_Id;
8682 Parent_Type : Entity_Id;
8683 Derived_Type : Entity_Id;
8684 Is_Completion : Boolean;
8685 Derive_Subps : Boolean := True)
8687 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8689 begin
8690 -- Set common attributes
8692 Set_Scope (Derived_Type, Current_Scope);
8694 Set_Etype (Derived_Type, Parent_Base);
8695 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8696 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8697 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8699 Set_Size_Info (Derived_Type, Parent_Type);
8700 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8701 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8702 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8704 if Is_Tagged_Type (Derived_Type) then
8705 Set_No_Tagged_Streams_Pragma
8706 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8707 end if;
8709 -- If the parent has primitive routines, set the derived type link
8711 if Has_Primitive_Operations (Parent_Type) then
8712 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8713 end if;
8715 -- If the parent type is a private subtype, the convention on the base
8716 -- type may be set in the private part, and not propagated to the
8717 -- subtype until later, so we obtain the convention from the base type.
8719 Set_Convention (Derived_Type, Convention (Parent_Base));
8721 -- Set SSO default for record or array type
8723 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
8724 and then Is_Base_Type (Derived_Type)
8725 then
8726 Set_Default_SSO (Derived_Type);
8727 end if;
8729 -- Propagate invariant information. The new type has invariants if
8730 -- they are inherited from the parent type, and these invariants can
8731 -- be further inherited, so both flags are set.
8733 -- We similarly inherit predicates
8735 if Has_Predicates (Parent_Type) then
8736 Set_Has_Predicates (Derived_Type);
8737 end if;
8739 -- The derived type inherits the representation clauses of the parent
8741 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
8743 -- Propagate the attributes related to pragma Default_Initial_Condition
8744 -- from the parent type to the private extension. A derived type always
8745 -- inherits the default initial condition flag from the parent type. If
8746 -- the derived type carries its own Default_Initial_Condition pragma,
8747 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8748 -- mutually exclusive.
8750 Propagate_Default_Init_Cond_Attributes
8751 (From_Typ => Parent_Type,
8752 To_Typ => Derived_Type,
8753 Parent_To_Derivation => True);
8755 -- If the parent type has delayed rep aspects, then mark the derived
8756 -- type as possibly inheriting a delayed rep aspect.
8758 if Has_Delayed_Rep_Aspects (Parent_Type) then
8759 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8760 end if;
8762 -- Type dependent processing
8764 case Ekind (Parent_Type) is
8765 when Numeric_Kind =>
8766 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8768 when Array_Kind =>
8769 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8771 when E_Record_Type
8772 | E_Record_Subtype
8773 | Class_Wide_Kind =>
8774 Build_Derived_Record_Type
8775 (N, Parent_Type, Derived_Type, Derive_Subps);
8776 return;
8778 when Enumeration_Kind =>
8779 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8781 when Access_Kind =>
8782 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8784 when Incomplete_Or_Private_Kind =>
8785 Build_Derived_Private_Type
8786 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8788 -- For discriminated types, the derivation includes deriving
8789 -- primitive operations. For others it is done below.
8791 if Is_Tagged_Type (Parent_Type)
8792 or else Has_Discriminants (Parent_Type)
8793 or else (Present (Full_View (Parent_Type))
8794 and then Has_Discriminants (Full_View (Parent_Type)))
8795 then
8796 return;
8797 end if;
8799 when Concurrent_Kind =>
8800 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8802 when others =>
8803 raise Program_Error;
8804 end case;
8806 -- Nothing more to do if some error occurred
8808 if Etype (Derived_Type) = Any_Type then
8809 return;
8810 end if;
8812 -- Set delayed freeze and then derive subprograms, we need to do this
8813 -- in this order so that derived subprograms inherit the derived freeze
8814 -- if necessary.
8816 Set_Has_Delayed_Freeze (Derived_Type);
8818 if Derive_Subps then
8819 Derive_Subprograms (Parent_Type, Derived_Type);
8820 end if;
8822 Set_Has_Primitive_Operations
8823 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8824 end Build_Derived_Type;
8826 -----------------------
8827 -- Build_Discriminal --
8828 -----------------------
8830 procedure Build_Discriminal (Discrim : Entity_Id) is
8831 D_Minal : Entity_Id;
8832 CR_Disc : Entity_Id;
8834 begin
8835 -- A discriminal has the same name as the discriminant
8837 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8839 Set_Ekind (D_Minal, E_In_Parameter);
8840 Set_Mechanism (D_Minal, Default_Mechanism);
8841 Set_Etype (D_Minal, Etype (Discrim));
8842 Set_Scope (D_Minal, Current_Scope);
8844 Set_Discriminal (Discrim, D_Minal);
8845 Set_Discriminal_Link (D_Minal, Discrim);
8847 -- For task types, build at once the discriminants of the corresponding
8848 -- record, which are needed if discriminants are used in entry defaults
8849 -- and in family bounds.
8851 if Is_Concurrent_Type (Current_Scope)
8852 or else
8853 Is_Limited_Type (Current_Scope)
8854 then
8855 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8857 Set_Ekind (CR_Disc, E_In_Parameter);
8858 Set_Mechanism (CR_Disc, Default_Mechanism);
8859 Set_Etype (CR_Disc, Etype (Discrim));
8860 Set_Scope (CR_Disc, Current_Scope);
8861 Set_Discriminal_Link (CR_Disc, Discrim);
8862 Set_CR_Discriminant (Discrim, CR_Disc);
8863 end if;
8864 end Build_Discriminal;
8866 ------------------------------------
8867 -- Build_Discriminant_Constraints --
8868 ------------------------------------
8870 function Build_Discriminant_Constraints
8871 (T : Entity_Id;
8872 Def : Node_Id;
8873 Derived_Def : Boolean := False) return Elist_Id
8875 C : constant Node_Id := Constraint (Def);
8876 Nb_Discr : constant Nat := Number_Discriminants (T);
8878 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8879 -- Saves the expression corresponding to a given discriminant in T
8881 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8882 -- Return the Position number within array Discr_Expr of a discriminant
8883 -- D within the discriminant list of the discriminated type T.
8885 procedure Process_Discriminant_Expression
8886 (Expr : Node_Id;
8887 D : Entity_Id);
8888 -- If this is a discriminant constraint on a partial view, do not
8889 -- generate an overflow check on the discriminant expression. The check
8890 -- will be generated when constraining the full view. Otherwise the
8891 -- backend creates duplicate symbols for the temporaries corresponding
8892 -- to the expressions to be checked, causing spurious assembler errors.
8894 ------------------
8895 -- Pos_Of_Discr --
8896 ------------------
8898 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8899 Disc : Entity_Id;
8901 begin
8902 Disc := First_Discriminant (T);
8903 for J in Discr_Expr'Range loop
8904 if Disc = D then
8905 return J;
8906 end if;
8908 Next_Discriminant (Disc);
8909 end loop;
8911 -- Note: Since this function is called on discriminants that are
8912 -- known to belong to the discriminated type, falling through the
8913 -- loop with no match signals an internal compiler error.
8915 raise Program_Error;
8916 end Pos_Of_Discr;
8918 -------------------------------------
8919 -- Process_Discriminant_Expression --
8920 -------------------------------------
8922 procedure Process_Discriminant_Expression
8923 (Expr : Node_Id;
8924 D : Entity_Id)
8926 BDT : constant Entity_Id := Base_Type (Etype (D));
8928 begin
8929 -- If this is a discriminant constraint on a partial view, do
8930 -- not generate an overflow on the discriminant expression. The
8931 -- check will be generated when constraining the full view.
8933 if Is_Private_Type (T)
8934 and then Present (Full_View (T))
8935 then
8936 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
8937 else
8938 Analyze_And_Resolve (Expr, BDT);
8939 end if;
8940 end Process_Discriminant_Expression;
8942 -- Declarations local to Build_Discriminant_Constraints
8944 Discr : Entity_Id;
8945 E : Entity_Id;
8946 Elist : constant Elist_Id := New_Elmt_List;
8948 Constr : Node_Id;
8949 Expr : Node_Id;
8950 Id : Node_Id;
8951 Position : Nat;
8952 Found : Boolean;
8954 Discrim_Present : Boolean := False;
8956 -- Start of processing for Build_Discriminant_Constraints
8958 begin
8959 -- The following loop will process positional associations only.
8960 -- For a positional association, the (single) discriminant is
8961 -- implicitly specified by position, in textual order (RM 3.7.2).
8963 Discr := First_Discriminant (T);
8964 Constr := First (Constraints (C));
8965 for D in Discr_Expr'Range loop
8966 exit when Nkind (Constr) = N_Discriminant_Association;
8968 if No (Constr) then
8969 Error_Msg_N ("too few discriminants given in constraint", C);
8970 return New_Elmt_List;
8972 elsif Nkind (Constr) = N_Range
8973 or else (Nkind (Constr) = N_Attribute_Reference
8974 and then Attribute_Name (Constr) = Name_Range)
8975 then
8976 Error_Msg_N
8977 ("a range is not a valid discriminant constraint", Constr);
8978 Discr_Expr (D) := Error;
8980 else
8981 Process_Discriminant_Expression (Constr, Discr);
8982 Discr_Expr (D) := Constr;
8983 end if;
8985 Next_Discriminant (Discr);
8986 Next (Constr);
8987 end loop;
8989 if No (Discr) and then Present (Constr) then
8990 Error_Msg_N ("too many discriminants given in constraint", Constr);
8991 return New_Elmt_List;
8992 end if;
8994 -- Named associations can be given in any order, but if both positional
8995 -- and named associations are used in the same discriminant constraint,
8996 -- then positional associations must occur first, at their normal
8997 -- position. Hence once a named association is used, the rest of the
8998 -- discriminant constraint must use only named associations.
9000 while Present (Constr) loop
9002 -- Positional association forbidden after a named association
9004 if Nkind (Constr) /= N_Discriminant_Association then
9005 Error_Msg_N ("positional association follows named one", Constr);
9006 return New_Elmt_List;
9008 -- Otherwise it is a named association
9010 else
9011 -- E records the type of the discriminants in the named
9012 -- association. All the discriminants specified in the same name
9013 -- association must have the same type.
9015 E := Empty;
9017 -- Search the list of discriminants in T to see if the simple name
9018 -- given in the constraint matches any of them.
9020 Id := First (Selector_Names (Constr));
9021 while Present (Id) loop
9022 Found := False;
9024 -- If Original_Discriminant is present, we are processing a
9025 -- generic instantiation and this is an instance node. We need
9026 -- to find the name of the corresponding discriminant in the
9027 -- actual record type T and not the name of the discriminant in
9028 -- the generic formal. Example:
9030 -- generic
9031 -- type G (D : int) is private;
9032 -- package P is
9033 -- subtype W is G (D => 1);
9034 -- end package;
9035 -- type Rec (X : int) is record ... end record;
9036 -- package Q is new P (G => Rec);
9038 -- At the point of the instantiation, formal type G is Rec
9039 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9040 -- which really looks like "subtype W is Rec (D => 1);" at
9041 -- the point of instantiation, we want to find the discriminant
9042 -- that corresponds to D in Rec, i.e. X.
9044 if Present (Original_Discriminant (Id))
9045 and then In_Instance
9046 then
9047 Discr := Find_Corresponding_Discriminant (Id, T);
9048 Found := True;
9050 else
9051 Discr := First_Discriminant (T);
9052 while Present (Discr) loop
9053 if Chars (Discr) = Chars (Id) then
9054 Found := True;
9055 exit;
9056 end if;
9058 Next_Discriminant (Discr);
9059 end loop;
9061 if not Found then
9062 Error_Msg_N ("& does not match any discriminant", Id);
9063 return New_Elmt_List;
9065 -- If the parent type is a generic formal, preserve the
9066 -- name of the discriminant for subsequent instances.
9067 -- see comment at the beginning of this if statement.
9069 elsif Is_Generic_Type (Root_Type (T)) then
9070 Set_Original_Discriminant (Id, Discr);
9071 end if;
9072 end if;
9074 Position := Pos_Of_Discr (T, Discr);
9076 if Present (Discr_Expr (Position)) then
9077 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9079 else
9080 -- Each discriminant specified in the same named association
9081 -- must be associated with a separate copy of the
9082 -- corresponding expression.
9084 if Present (Next (Id)) then
9085 Expr := New_Copy_Tree (Expression (Constr));
9086 Set_Parent (Expr, Parent (Expression (Constr)));
9087 else
9088 Expr := Expression (Constr);
9089 end if;
9091 Discr_Expr (Position) := Expr;
9092 Process_Discriminant_Expression (Expr, Discr);
9093 end if;
9095 -- A discriminant association with more than one discriminant
9096 -- name is only allowed if the named discriminants are all of
9097 -- the same type (RM 3.7.1(8)).
9099 if E = Empty then
9100 E := Base_Type (Etype (Discr));
9102 elsif Base_Type (Etype (Discr)) /= E then
9103 Error_Msg_N
9104 ("all discriminants in an association " &
9105 "must have the same type", Id);
9106 end if;
9108 Next (Id);
9109 end loop;
9110 end if;
9112 Next (Constr);
9113 end loop;
9115 -- A discriminant constraint must provide exactly one value for each
9116 -- discriminant of the type (RM 3.7.1(8)).
9118 for J in Discr_Expr'Range loop
9119 if No (Discr_Expr (J)) then
9120 Error_Msg_N ("too few discriminants given in constraint", C);
9121 return New_Elmt_List;
9122 end if;
9123 end loop;
9125 -- Determine if there are discriminant expressions in the constraint
9127 for J in Discr_Expr'Range loop
9128 if Denotes_Discriminant
9129 (Discr_Expr (J), Check_Concurrent => True)
9130 then
9131 Discrim_Present := True;
9132 end if;
9133 end loop;
9135 -- Build an element list consisting of the expressions given in the
9136 -- discriminant constraint and apply the appropriate checks. The list
9137 -- is constructed after resolving any named discriminant associations
9138 -- and therefore the expressions appear in the textual order of the
9139 -- discriminants.
9141 Discr := First_Discriminant (T);
9142 for J in Discr_Expr'Range loop
9143 if Discr_Expr (J) /= Error then
9144 Append_Elmt (Discr_Expr (J), Elist);
9146 -- If any of the discriminant constraints is given by a
9147 -- discriminant and we are in a derived type declaration we
9148 -- have a discriminant renaming. Establish link between new
9149 -- and old discriminant.
9151 if Denotes_Discriminant (Discr_Expr (J)) then
9152 if Derived_Def then
9153 Set_Corresponding_Discriminant
9154 (Entity (Discr_Expr (J)), Discr);
9155 end if;
9157 -- Force the evaluation of non-discriminant expressions.
9158 -- If we have found a discriminant in the constraint 3.4(26)
9159 -- and 3.8(18) demand that no range checks are performed are
9160 -- after evaluation. If the constraint is for a component
9161 -- definition that has a per-object constraint, expressions are
9162 -- evaluated but not checked either. In all other cases perform
9163 -- a range check.
9165 else
9166 if Discrim_Present then
9167 null;
9169 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9170 and then
9171 Has_Per_Object_Constraint
9172 (Defining_Identifier (Parent (Parent (Def))))
9173 then
9174 null;
9176 elsif Is_Access_Type (Etype (Discr)) then
9177 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9179 else
9180 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9181 end if;
9183 Force_Evaluation (Discr_Expr (J));
9184 end if;
9186 -- Check that the designated type of an access discriminant's
9187 -- expression is not a class-wide type unless the discriminant's
9188 -- designated type is also class-wide.
9190 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9191 and then not Is_Class_Wide_Type
9192 (Designated_Type (Etype (Discr)))
9193 and then Etype (Discr_Expr (J)) /= Any_Type
9194 and then Is_Class_Wide_Type
9195 (Designated_Type (Etype (Discr_Expr (J))))
9196 then
9197 Wrong_Type (Discr_Expr (J), Etype (Discr));
9199 elsif Is_Access_Type (Etype (Discr))
9200 and then not Is_Access_Constant (Etype (Discr))
9201 and then Is_Access_Type (Etype (Discr_Expr (J)))
9202 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9203 then
9204 Error_Msg_NE
9205 ("constraint for discriminant& must be access to variable",
9206 Def, Discr);
9207 end if;
9208 end if;
9210 Next_Discriminant (Discr);
9211 end loop;
9213 return Elist;
9214 end Build_Discriminant_Constraints;
9216 ---------------------------------
9217 -- Build_Discriminated_Subtype --
9218 ---------------------------------
9220 procedure Build_Discriminated_Subtype
9221 (T : Entity_Id;
9222 Def_Id : Entity_Id;
9223 Elist : Elist_Id;
9224 Related_Nod : Node_Id;
9225 For_Access : Boolean := False)
9227 Has_Discrs : constant Boolean := Has_Discriminants (T);
9228 Constrained : constant Boolean :=
9229 (Has_Discrs
9230 and then not Is_Empty_Elmt_List (Elist)
9231 and then not Is_Class_Wide_Type (T))
9232 or else Is_Constrained (T);
9234 begin
9235 if Ekind (T) = E_Record_Type then
9236 if For_Access then
9237 Set_Ekind (Def_Id, E_Private_Subtype);
9238 Set_Is_For_Access_Subtype (Def_Id, True);
9239 else
9240 Set_Ekind (Def_Id, E_Record_Subtype);
9241 end if;
9243 -- Inherit preelaboration flag from base, for types for which it
9244 -- may have been set: records, private types, protected types.
9246 Set_Known_To_Have_Preelab_Init
9247 (Def_Id, Known_To_Have_Preelab_Init (T));
9249 elsif Ekind (T) = E_Task_Type then
9250 Set_Ekind (Def_Id, E_Task_Subtype);
9252 elsif Ekind (T) = E_Protected_Type then
9253 Set_Ekind (Def_Id, E_Protected_Subtype);
9254 Set_Known_To_Have_Preelab_Init
9255 (Def_Id, Known_To_Have_Preelab_Init (T));
9257 elsif Is_Private_Type (T) then
9258 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9259 Set_Known_To_Have_Preelab_Init
9260 (Def_Id, Known_To_Have_Preelab_Init (T));
9262 -- Private subtypes may have private dependents
9264 Set_Private_Dependents (Def_Id, New_Elmt_List);
9266 elsif Is_Class_Wide_Type (T) then
9267 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9269 else
9270 -- Incomplete type. Attach subtype to list of dependents, to be
9271 -- completed with full view of parent type, unless is it the
9272 -- designated subtype of a record component within an init_proc.
9273 -- This last case arises for a component of an access type whose
9274 -- designated type is incomplete (e.g. a Taft Amendment type).
9275 -- The designated subtype is within an inner scope, and needs no
9276 -- elaboration, because only the access type is needed in the
9277 -- initialization procedure.
9279 Set_Ekind (Def_Id, Ekind (T));
9281 if For_Access and then Within_Init_Proc then
9282 null;
9283 else
9284 Append_Elmt (Def_Id, Private_Dependents (T));
9285 end if;
9286 end if;
9288 Set_Etype (Def_Id, T);
9289 Init_Size_Align (Def_Id);
9290 Set_Has_Discriminants (Def_Id, Has_Discrs);
9291 Set_Is_Constrained (Def_Id, Constrained);
9293 Set_First_Entity (Def_Id, First_Entity (T));
9294 Set_Last_Entity (Def_Id, Last_Entity (T));
9295 Set_Has_Implicit_Dereference
9296 (Def_Id, Has_Implicit_Dereference (T));
9298 -- If the subtype is the completion of a private declaration, there may
9299 -- have been representation clauses for the partial view, and they must
9300 -- be preserved. Build_Derived_Type chains the inherited clauses with
9301 -- the ones appearing on the extension. If this comes from a subtype
9302 -- declaration, all clauses are inherited.
9304 if No (First_Rep_Item (Def_Id)) then
9305 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9306 end if;
9308 if Is_Tagged_Type (T) then
9309 Set_Is_Tagged_Type (Def_Id);
9310 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
9311 Make_Class_Wide_Type (Def_Id);
9312 end if;
9314 Set_Stored_Constraint (Def_Id, No_Elist);
9316 if Has_Discrs then
9317 Set_Discriminant_Constraint (Def_Id, Elist);
9318 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9319 end if;
9321 if Is_Tagged_Type (T) then
9323 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9324 -- concurrent record type (which has the list of primitive
9325 -- operations).
9327 if Ada_Version >= Ada_2005
9328 and then Is_Concurrent_Type (T)
9329 then
9330 Set_Corresponding_Record_Type (Def_Id,
9331 Corresponding_Record_Type (T));
9332 else
9333 Set_Direct_Primitive_Operations (Def_Id,
9334 Direct_Primitive_Operations (T));
9335 end if;
9337 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9338 end if;
9340 -- Subtypes introduced by component declarations do not need to be
9341 -- marked as delayed, and do not get freeze nodes, because the semantics
9342 -- verifies that the parents of the subtypes are frozen before the
9343 -- enclosing record is frozen.
9345 if not Is_Type (Scope (Def_Id)) then
9346 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9348 if Is_Private_Type (T)
9349 and then Present (Full_View (T))
9350 then
9351 Conditional_Delay (Def_Id, Full_View (T));
9352 else
9353 Conditional_Delay (Def_Id, T);
9354 end if;
9355 end if;
9357 if Is_Record_Type (T) then
9358 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9360 if Has_Discrs
9361 and then not Is_Empty_Elmt_List (Elist)
9362 and then not For_Access
9363 then
9364 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9365 elsif not For_Access then
9366 Set_Cloned_Subtype (Def_Id, T);
9367 end if;
9368 end if;
9369 end Build_Discriminated_Subtype;
9371 ---------------------------
9372 -- Build_Itype_Reference --
9373 ---------------------------
9375 procedure Build_Itype_Reference
9376 (Ityp : Entity_Id;
9377 Nod : Node_Id)
9379 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9380 begin
9382 -- Itype references are only created for use by the back-end
9384 if Inside_A_Generic then
9385 return;
9386 else
9387 Set_Itype (IR, Ityp);
9388 Insert_After (Nod, IR);
9389 end if;
9390 end Build_Itype_Reference;
9392 ------------------------
9393 -- Build_Scalar_Bound --
9394 ------------------------
9396 function Build_Scalar_Bound
9397 (Bound : Node_Id;
9398 Par_T : Entity_Id;
9399 Der_T : Entity_Id) return Node_Id
9401 New_Bound : Entity_Id;
9403 begin
9404 -- Note: not clear why this is needed, how can the original bound
9405 -- be unanalyzed at this point? and if it is, what business do we
9406 -- have messing around with it? and why is the base type of the
9407 -- parent type the right type for the resolution. It probably is
9408 -- not. It is OK for the new bound we are creating, but not for
9409 -- the old one??? Still if it never happens, no problem.
9411 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9413 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9414 New_Bound := New_Copy (Bound);
9415 Set_Etype (New_Bound, Der_T);
9416 Set_Analyzed (New_Bound);
9418 elsif Is_Entity_Name (Bound) then
9419 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9421 -- The following is almost certainly wrong. What business do we have
9422 -- relocating a node (Bound) that is presumably still attached to
9423 -- the tree elsewhere???
9425 else
9426 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9427 end if;
9429 Set_Etype (New_Bound, Der_T);
9430 return New_Bound;
9431 end Build_Scalar_Bound;
9433 --------------------------------
9434 -- Build_Underlying_Full_View --
9435 --------------------------------
9437 procedure Build_Underlying_Full_View
9438 (N : Node_Id;
9439 Typ : Entity_Id;
9440 Par : Entity_Id)
9442 Loc : constant Source_Ptr := Sloc (N);
9443 Subt : constant Entity_Id :=
9444 Make_Defining_Identifier
9445 (Loc, New_External_Name (Chars (Typ), 'S'));
9447 Constr : Node_Id;
9448 Indic : Node_Id;
9449 C : Node_Id;
9450 Id : Node_Id;
9452 procedure Set_Discriminant_Name (Id : Node_Id);
9453 -- If the derived type has discriminants, they may rename discriminants
9454 -- of the parent. When building the full view of the parent, we need to
9455 -- recover the names of the original discriminants if the constraint is
9456 -- given by named associations.
9458 ---------------------------
9459 -- Set_Discriminant_Name --
9460 ---------------------------
9462 procedure Set_Discriminant_Name (Id : Node_Id) is
9463 Disc : Entity_Id;
9465 begin
9466 Set_Original_Discriminant (Id, Empty);
9468 if Has_Discriminants (Typ) then
9469 Disc := First_Discriminant (Typ);
9470 while Present (Disc) loop
9471 if Chars (Disc) = Chars (Id)
9472 and then Present (Corresponding_Discriminant (Disc))
9473 then
9474 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9475 end if;
9476 Next_Discriminant (Disc);
9477 end loop;
9478 end if;
9479 end Set_Discriminant_Name;
9481 -- Start of processing for Build_Underlying_Full_View
9483 begin
9484 if Nkind (N) = N_Full_Type_Declaration then
9485 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9487 elsif Nkind (N) = N_Subtype_Declaration then
9488 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9490 elsif Nkind (N) = N_Component_Declaration then
9491 Constr :=
9492 New_Copy_Tree
9493 (Constraint (Subtype_Indication (Component_Definition (N))));
9495 else
9496 raise Program_Error;
9497 end if;
9499 C := First (Constraints (Constr));
9500 while Present (C) loop
9501 if Nkind (C) = N_Discriminant_Association then
9502 Id := First (Selector_Names (C));
9503 while Present (Id) loop
9504 Set_Discriminant_Name (Id);
9505 Next (Id);
9506 end loop;
9507 end if;
9509 Next (C);
9510 end loop;
9512 Indic :=
9513 Make_Subtype_Declaration (Loc,
9514 Defining_Identifier => Subt,
9515 Subtype_Indication =>
9516 Make_Subtype_Indication (Loc,
9517 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9518 Constraint => New_Copy_Tree (Constr)));
9520 -- If this is a component subtype for an outer itype, it is not
9521 -- a list member, so simply set the parent link for analysis: if
9522 -- the enclosing type does not need to be in a declarative list,
9523 -- neither do the components.
9525 if Is_List_Member (N)
9526 and then Nkind (N) /= N_Component_Declaration
9527 then
9528 Insert_Before (N, Indic);
9529 else
9530 Set_Parent (Indic, Parent (N));
9531 end if;
9533 Analyze (Indic);
9534 Set_Underlying_Full_View (Typ, Full_View (Subt));
9535 end Build_Underlying_Full_View;
9537 -------------------------------
9538 -- Check_Abstract_Overriding --
9539 -------------------------------
9541 procedure Check_Abstract_Overriding (T : Entity_Id) is
9542 Alias_Subp : Entity_Id;
9543 Elmt : Elmt_Id;
9544 Op_List : Elist_Id;
9545 Subp : Entity_Id;
9546 Type_Def : Node_Id;
9548 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9549 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9550 -- which has pragma Implemented already set. Check whether Subp's entity
9551 -- kind conforms to the implementation kind of the overridden routine.
9553 procedure Check_Pragma_Implemented
9554 (Subp : Entity_Id;
9555 Iface_Subp : Entity_Id);
9556 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9557 -- Iface_Subp and both entities have pragma Implemented already set on
9558 -- them. Check whether the two implementation kinds are conforming.
9560 procedure Inherit_Pragma_Implemented
9561 (Subp : Entity_Id;
9562 Iface_Subp : Entity_Id);
9563 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9564 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9565 -- Propagate the implementation kind of Iface_Subp to Subp.
9567 ------------------------------
9568 -- Check_Pragma_Implemented --
9569 ------------------------------
9571 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9572 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9573 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9574 Subp_Alias : constant Entity_Id := Alias (Subp);
9575 Contr_Typ : Entity_Id;
9576 Impl_Subp : Entity_Id;
9578 begin
9579 -- Subp must have an alias since it is a hidden entity used to link
9580 -- an interface subprogram to its overriding counterpart.
9582 pragma Assert (Present (Subp_Alias));
9584 -- Handle aliases to synchronized wrappers
9586 Impl_Subp := Subp_Alias;
9588 if Is_Primitive_Wrapper (Impl_Subp) then
9589 Impl_Subp := Wrapped_Entity (Impl_Subp);
9590 end if;
9592 -- Extract the type of the controlling formal
9594 Contr_Typ := Etype (First_Formal (Subp_Alias));
9596 if Is_Concurrent_Record_Type (Contr_Typ) then
9597 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9598 end if;
9600 -- An interface subprogram whose implementation kind is By_Entry must
9601 -- be implemented by an entry.
9603 if Impl_Kind = Name_By_Entry
9604 and then Ekind (Impl_Subp) /= E_Entry
9605 then
9606 Error_Msg_Node_2 := Iface_Alias;
9607 Error_Msg_NE
9608 ("type & must implement abstract subprogram & with an entry",
9609 Subp_Alias, Contr_Typ);
9611 elsif Impl_Kind = Name_By_Protected_Procedure then
9613 -- An interface subprogram whose implementation kind is By_
9614 -- Protected_Procedure cannot be implemented by a primitive
9615 -- procedure of a task type.
9617 if Ekind (Contr_Typ) /= E_Protected_Type then
9618 Error_Msg_Node_2 := Contr_Typ;
9619 Error_Msg_NE
9620 ("interface subprogram & cannot be implemented by a " &
9621 "primitive procedure of task type &", Subp_Alias,
9622 Iface_Alias);
9624 -- An interface subprogram whose implementation kind is By_
9625 -- Protected_Procedure must be implemented by a procedure.
9627 elsif Ekind (Impl_Subp) /= E_Procedure then
9628 Error_Msg_Node_2 := Iface_Alias;
9629 Error_Msg_NE
9630 ("type & must implement abstract subprogram & with a " &
9631 "procedure", Subp_Alias, Contr_Typ);
9633 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9634 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9635 then
9636 Error_Msg_Name_1 := Impl_Kind;
9637 Error_Msg_N
9638 ("overriding operation& must have synchronization%",
9639 Subp_Alias);
9640 end if;
9642 -- If primitive has Optional synchronization, overriding operation
9643 -- must match if it has an explicit synchronization..
9645 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9646 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9647 then
9648 Error_Msg_Name_1 := Impl_Kind;
9649 Error_Msg_N
9650 ("overriding operation& must have syncrhonization%",
9651 Subp_Alias);
9652 end if;
9653 end Check_Pragma_Implemented;
9655 ------------------------------
9656 -- Check_Pragma_Implemented --
9657 ------------------------------
9659 procedure Check_Pragma_Implemented
9660 (Subp : Entity_Id;
9661 Iface_Subp : Entity_Id)
9663 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9664 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9666 begin
9667 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9668 -- and overriding subprogram are different. In general this is an
9669 -- error except when the implementation kind of the overridden
9670 -- subprograms is By_Any or Optional.
9672 if Iface_Kind /= Subp_Kind
9673 and then Iface_Kind /= Name_By_Any
9674 and then Iface_Kind /= Name_Optional
9675 then
9676 if Iface_Kind = Name_By_Entry then
9677 Error_Msg_N
9678 ("incompatible implementation kind, overridden subprogram " &
9679 "is marked By_Entry", Subp);
9680 else
9681 Error_Msg_N
9682 ("incompatible implementation kind, overridden subprogram " &
9683 "is marked By_Protected_Procedure", Subp);
9684 end if;
9685 end if;
9686 end Check_Pragma_Implemented;
9688 --------------------------------
9689 -- Inherit_Pragma_Implemented --
9690 --------------------------------
9692 procedure Inherit_Pragma_Implemented
9693 (Subp : Entity_Id;
9694 Iface_Subp : Entity_Id)
9696 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9697 Loc : constant Source_Ptr := Sloc (Subp);
9698 Impl_Prag : Node_Id;
9700 begin
9701 -- Since the implementation kind is stored as a representation item
9702 -- rather than a flag, create a pragma node.
9704 Impl_Prag :=
9705 Make_Pragma (Loc,
9706 Chars => Name_Implemented,
9707 Pragma_Argument_Associations => New_List (
9708 Make_Pragma_Argument_Association (Loc,
9709 Expression => New_Occurrence_Of (Subp, Loc)),
9711 Make_Pragma_Argument_Association (Loc,
9712 Expression => Make_Identifier (Loc, Iface_Kind))));
9714 -- The pragma doesn't need to be analyzed because it is internally
9715 -- built. It is safe to directly register it as a rep item since we
9716 -- are only interested in the characters of the implementation kind.
9718 Record_Rep_Item (Subp, Impl_Prag);
9719 end Inherit_Pragma_Implemented;
9721 -- Start of processing for Check_Abstract_Overriding
9723 begin
9724 Op_List := Primitive_Operations (T);
9726 -- Loop to check primitive operations
9728 Elmt := First_Elmt (Op_List);
9729 while Present (Elmt) loop
9730 Subp := Node (Elmt);
9731 Alias_Subp := Alias (Subp);
9733 -- Inherited subprograms are identified by the fact that they do not
9734 -- come from source, and the associated source location is the
9735 -- location of the first subtype of the derived type.
9737 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9738 -- subprograms that "require overriding".
9740 -- Special exception, do not complain about failure to override the
9741 -- stream routines _Input and _Output, as well as the primitive
9742 -- operations used in dispatching selects since we always provide
9743 -- automatic overridings for these subprograms.
9745 -- Also ignore this rule for convention CIL since .NET libraries
9746 -- do bizarre things with interfaces???
9748 -- The partial view of T may have been a private extension, for
9749 -- which inherited functions dispatching on result are abstract.
9750 -- If the full view is a null extension, there is no need for
9751 -- overriding in Ada 2005, but wrappers need to be built for them
9752 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9754 if Is_Null_Extension (T)
9755 and then Has_Controlling_Result (Subp)
9756 and then Ada_Version >= Ada_2005
9757 and then Present (Alias_Subp)
9758 and then not Comes_From_Source (Subp)
9759 and then not Is_Abstract_Subprogram (Alias_Subp)
9760 and then not Is_Access_Type (Etype (Subp))
9761 then
9762 null;
9764 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9765 -- processing because this check is done with the aliased
9766 -- entity
9768 elsif Present (Interface_Alias (Subp)) then
9769 null;
9771 elsif (Is_Abstract_Subprogram (Subp)
9772 or else Requires_Overriding (Subp)
9773 or else
9774 (Has_Controlling_Result (Subp)
9775 and then Present (Alias_Subp)
9776 and then not Comes_From_Source (Subp)
9777 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9778 and then not Is_TSS (Subp, TSS_Stream_Input)
9779 and then not Is_TSS (Subp, TSS_Stream_Output)
9780 and then not Is_Abstract_Type (T)
9781 and then Convention (T) /= Convention_CIL
9782 and then not Is_Predefined_Interface_Primitive (Subp)
9784 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9785 -- with abstract interface types because the check will be done
9786 -- with the aliased entity (otherwise we generate a duplicated
9787 -- error message).
9789 and then not Present (Interface_Alias (Subp))
9790 then
9791 if Present (Alias_Subp) then
9793 -- Only perform the check for a derived subprogram when the
9794 -- type has an explicit record extension. This avoids incorrect
9795 -- flagging of abstract subprograms for the case of a type
9796 -- without an extension that is derived from a formal type
9797 -- with a tagged actual (can occur within a private part).
9799 -- Ada 2005 (AI-391): In the case of an inherited function with
9800 -- a controlling result of the type, the rule does not apply if
9801 -- the type is a null extension (unless the parent function
9802 -- itself is abstract, in which case the function must still be
9803 -- be overridden). The expander will generate an overriding
9804 -- wrapper function calling the parent subprogram (see
9805 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9807 Type_Def := Type_Definition (Parent (T));
9809 if Nkind (Type_Def) = N_Derived_Type_Definition
9810 and then Present (Record_Extension_Part (Type_Def))
9811 and then
9812 (Ada_Version < Ada_2005
9813 or else not Is_Null_Extension (T)
9814 or else Ekind (Subp) = E_Procedure
9815 or else not Has_Controlling_Result (Subp)
9816 or else Is_Abstract_Subprogram (Alias_Subp)
9817 or else Requires_Overriding (Subp)
9818 or else Is_Access_Type (Etype (Subp)))
9819 then
9820 -- Avoid reporting error in case of abstract predefined
9821 -- primitive inherited from interface type because the
9822 -- body of internally generated predefined primitives
9823 -- of tagged types are generated later by Freeze_Type
9825 if Is_Interface (Root_Type (T))
9826 and then Is_Abstract_Subprogram (Subp)
9827 and then Is_Predefined_Dispatching_Operation (Subp)
9828 and then not Comes_From_Source (Ultimate_Alias (Subp))
9829 then
9830 null;
9832 -- A null extension is not obliged to override an inherited
9833 -- procedure subject to pragma Extensions_Visible with value
9834 -- False and at least one controlling OUT parameter
9835 -- (SPARK RM 6.1.7(6)).
9837 elsif Is_Null_Extension (T)
9838 and then Is_EVF_Procedure (Subp)
9839 then
9840 null;
9842 else
9843 Error_Msg_NE
9844 ("type must be declared abstract or & overridden",
9845 T, Subp);
9847 -- Traverse the whole chain of aliased subprograms to
9848 -- complete the error notification. This is especially
9849 -- useful for traceability of the chain of entities when
9850 -- the subprogram corresponds with an interface
9851 -- subprogram (which may be defined in another package).
9853 if Present (Alias_Subp) then
9854 declare
9855 E : Entity_Id;
9857 begin
9858 E := Subp;
9859 while Present (Alias (E)) loop
9861 -- Avoid reporting redundant errors on entities
9862 -- inherited from interfaces
9864 if Sloc (E) /= Sloc (T) then
9865 Error_Msg_Sloc := Sloc (E);
9866 Error_Msg_NE
9867 ("\& has been inherited #", T, Subp);
9868 end if;
9870 E := Alias (E);
9871 end loop;
9873 Error_Msg_Sloc := Sloc (E);
9875 -- AI05-0068: report if there is an overriding
9876 -- non-abstract subprogram that is invisible.
9878 if Is_Hidden (E)
9879 and then not Is_Abstract_Subprogram (E)
9880 then
9881 Error_Msg_NE
9882 ("\& subprogram# is not visible",
9883 T, Subp);
9885 -- Clarify the case where a non-null extension must
9886 -- override inherited procedure subject to pragma
9887 -- Extensions_Visible with value False and at least
9888 -- one controlling OUT param.
9890 elsif Is_EVF_Procedure (E) then
9891 Error_Msg_NE
9892 ("\& # is subject to Extensions_Visible False",
9893 T, Subp);
9895 else
9896 Error_Msg_NE
9897 ("\& has been inherited from subprogram #",
9898 T, Subp);
9899 end if;
9900 end;
9901 end if;
9902 end if;
9904 -- Ada 2005 (AI-345): Protected or task type implementing
9905 -- abstract interfaces.
9907 elsif Is_Concurrent_Record_Type (T)
9908 and then Present (Interfaces (T))
9909 then
9910 -- If an inherited subprogram is implemented by a protected
9911 -- procedure or an entry, then the first parameter of the
9912 -- inherited subprogram shall be of mode OUT or IN OUT, or
9913 -- an access-to-variable parameter (RM 9.4(11.9/3))
9915 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
9916 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9917 and then Ekind (Subp) /= E_Function
9918 and then not Is_Predefined_Dispatching_Operation (Subp)
9919 then
9920 Error_Msg_PT (T, Subp);
9922 -- Some other kind of overriding failure
9924 else
9925 Error_Msg_NE
9926 ("interface subprogram & must be overridden",
9927 T, Subp);
9929 -- Examine primitive operations of synchronized type,
9930 -- to find homonyms that have the wrong profile.
9932 declare
9933 Prim : Entity_Id;
9935 begin
9936 Prim :=
9937 First_Entity (Corresponding_Concurrent_Type (T));
9938 while Present (Prim) loop
9939 if Chars (Prim) = Chars (Subp) then
9940 Error_Msg_NE
9941 ("profile is not type conformant with "
9942 & "prefixed view profile of "
9943 & "inherited operation&", Prim, Subp);
9944 end if;
9946 Next_Entity (Prim);
9947 end loop;
9948 end;
9949 end if;
9950 end if;
9952 else
9953 Error_Msg_Node_2 := T;
9954 Error_Msg_N
9955 ("abstract subprogram& not allowed for type&", Subp);
9957 -- Also post unconditional warning on the type (unconditional
9958 -- so that if there are more than one of these cases, we get
9959 -- them all, and not just the first one).
9961 Error_Msg_Node_2 := Subp;
9962 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9963 end if;
9965 -- A subprogram subject to pragma Extensions_Visible with value
9966 -- "True" cannot override a subprogram subject to the same pragma
9967 -- with value "False" (SPARK RM 6.1.7(5)).
9969 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
9970 and then Present (Overridden_Operation (Subp))
9971 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
9972 Extensions_Visible_False
9973 then
9974 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
9975 Error_Msg_N
9976 ("subprogram & with Extensions_Visible True cannot override "
9977 & "subprogram # with Extensions_Visible False", Subp);
9978 end if;
9980 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
9982 -- Subp is an expander-generated procedure which maps an interface
9983 -- alias to a protected wrapper. The interface alias is flagged by
9984 -- pragma Implemented. Ensure that Subp is a procedure when the
9985 -- implementation kind is By_Protected_Procedure or an entry when
9986 -- By_Entry.
9988 if Ada_Version >= Ada_2012
9989 and then Is_Hidden (Subp)
9990 and then Present (Interface_Alias (Subp))
9991 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9992 then
9993 Check_Pragma_Implemented (Subp);
9994 end if;
9996 -- Subp is an interface primitive which overrides another interface
9997 -- primitive marked with pragma Implemented.
9999 if Ada_Version >= Ada_2012
10000 and then Present (Overridden_Operation (Subp))
10001 and then Has_Rep_Pragma
10002 (Overridden_Operation (Subp), Name_Implemented)
10003 then
10004 -- If the overriding routine is also marked by Implemented, check
10005 -- that the two implementation kinds are conforming.
10007 if Has_Rep_Pragma (Subp, Name_Implemented) then
10008 Check_Pragma_Implemented
10009 (Subp => Subp,
10010 Iface_Subp => Overridden_Operation (Subp));
10012 -- Otherwise the overriding routine inherits the implementation
10013 -- kind from the overridden subprogram.
10015 else
10016 Inherit_Pragma_Implemented
10017 (Subp => Subp,
10018 Iface_Subp => Overridden_Operation (Subp));
10019 end if;
10020 end if;
10022 -- If the operation is a wrapper for a synchronized primitive, it
10023 -- may be called indirectly through a dispatching select. We assume
10024 -- that it will be referenced elsewhere indirectly, and suppress
10025 -- warnings about an unused entity.
10027 if Is_Primitive_Wrapper (Subp)
10028 and then Present (Wrapped_Entity (Subp))
10029 then
10030 Set_Referenced (Wrapped_Entity (Subp));
10031 end if;
10033 Next_Elmt (Elmt);
10034 end loop;
10035 end Check_Abstract_Overriding;
10037 ------------------------------------------------
10038 -- Check_Access_Discriminant_Requires_Limited --
10039 ------------------------------------------------
10041 procedure Check_Access_Discriminant_Requires_Limited
10042 (D : Node_Id;
10043 Loc : Node_Id)
10045 begin
10046 -- A discriminant_specification for an access discriminant shall appear
10047 -- only in the declaration for a task or protected type, or for a type
10048 -- with the reserved word 'limited' in its definition or in one of its
10049 -- ancestors (RM 3.7(10)).
10051 -- AI-0063: The proper condition is that type must be immutably limited,
10052 -- or else be a partial view.
10054 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10055 if Is_Limited_View (Current_Scope)
10056 or else
10057 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10058 and then Limited_Present (Parent (Current_Scope)))
10059 then
10060 null;
10062 else
10063 Error_Msg_N
10064 ("access discriminants allowed only for limited types", Loc);
10065 end if;
10066 end if;
10067 end Check_Access_Discriminant_Requires_Limited;
10069 -----------------------------------
10070 -- Check_Aliased_Component_Types --
10071 -----------------------------------
10073 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10074 C : Entity_Id;
10076 begin
10077 -- ??? Also need to check components of record extensions, but not
10078 -- components of protected types (which are always limited).
10080 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10081 -- types to be unconstrained. This is safe because it is illegal to
10082 -- create access subtypes to such types with explicit discriminant
10083 -- constraints.
10085 if not Is_Limited_Type (T) then
10086 if Ekind (T) = E_Record_Type then
10087 C := First_Component (T);
10088 while Present (C) loop
10089 if Is_Aliased (C)
10090 and then Has_Discriminants (Etype (C))
10091 and then not Is_Constrained (Etype (C))
10092 and then not In_Instance_Body
10093 and then Ada_Version < Ada_2005
10094 then
10095 Error_Msg_N
10096 ("aliased component must be constrained (RM 3.6(11))",
10098 end if;
10100 Next_Component (C);
10101 end loop;
10103 elsif Ekind (T) = E_Array_Type then
10104 if Has_Aliased_Components (T)
10105 and then Has_Discriminants (Component_Type (T))
10106 and then not Is_Constrained (Component_Type (T))
10107 and then not In_Instance_Body
10108 and then Ada_Version < Ada_2005
10109 then
10110 Error_Msg_N
10111 ("aliased component type must be constrained (RM 3.6(11))",
10113 end if;
10114 end if;
10115 end if;
10116 end Check_Aliased_Component_Types;
10118 ---------------------------------------
10119 -- Check_Anonymous_Access_Components --
10120 ---------------------------------------
10122 procedure Check_Anonymous_Access_Components
10123 (Typ_Decl : Node_Id;
10124 Typ : Entity_Id;
10125 Prev : Entity_Id;
10126 Comp_List : Node_Id)
10128 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10129 Anon_Access : Entity_Id;
10130 Acc_Def : Node_Id;
10131 Comp : Node_Id;
10132 Comp_Def : Node_Id;
10133 Decl : Node_Id;
10134 Type_Def : Node_Id;
10136 procedure Build_Incomplete_Type_Declaration;
10137 -- If the record type contains components that include an access to the
10138 -- current record, then create an incomplete type declaration for the
10139 -- record, to be used as the designated type of the anonymous access.
10140 -- This is done only once, and only if there is no previous partial
10141 -- view of the type.
10143 function Designates_T (Subt : Node_Id) return Boolean;
10144 -- Check whether a node designates the enclosing record type, or 'Class
10145 -- of that type
10147 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10148 -- Check whether an access definition includes a reference to
10149 -- the enclosing record type. The reference can be a subtype mark
10150 -- in the access definition itself, a 'Class attribute reference, or
10151 -- recursively a reference appearing in a parameter specification
10152 -- or result definition of an access_to_subprogram definition.
10154 --------------------------------------
10155 -- Build_Incomplete_Type_Declaration --
10156 --------------------------------------
10158 procedure Build_Incomplete_Type_Declaration is
10159 Decl : Node_Id;
10160 Inc_T : Entity_Id;
10161 H : Entity_Id;
10163 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10164 -- it's "is new ... with record" or else "is tagged record ...".
10166 Is_Tagged : constant Boolean :=
10167 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10168 and then
10169 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10170 or else
10171 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10172 and then Tagged_Present (Type_Definition (Typ_Decl)));
10174 begin
10175 -- If there is a previous partial view, no need to create a new one
10176 -- If the partial view, given by Prev, is incomplete, If Prev is
10177 -- a private declaration, full declaration is flagged accordingly.
10179 if Prev /= Typ then
10180 if Is_Tagged then
10181 Make_Class_Wide_Type (Prev);
10182 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10183 Set_Etype (Class_Wide_Type (Typ), Typ);
10184 end if;
10186 return;
10188 elsif Has_Private_Declaration (Typ) then
10190 -- If we refer to T'Class inside T, and T is the completion of a
10191 -- private type, then make sure the class-wide type exists.
10193 if Is_Tagged then
10194 Make_Class_Wide_Type (Typ);
10195 end if;
10197 return;
10199 -- If there was a previous anonymous access type, the incomplete
10200 -- type declaration will have been created already.
10202 elsif Present (Current_Entity (Typ))
10203 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
10204 and then Full_View (Current_Entity (Typ)) = Typ
10205 then
10206 if Is_Tagged
10207 and then Comes_From_Source (Current_Entity (Typ))
10208 and then not Is_Tagged_Type (Current_Entity (Typ))
10209 then
10210 Make_Class_Wide_Type (Typ);
10211 Error_Msg_N
10212 ("incomplete view of tagged type should be declared tagged??",
10213 Parent (Current_Entity (Typ)));
10214 end if;
10215 return;
10217 else
10218 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
10219 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
10221 -- Type has already been inserted into the current scope. Remove
10222 -- it, and add incomplete declaration for type, so that subsequent
10223 -- anonymous access types can use it. The entity is unchained from
10224 -- the homonym list and from immediate visibility. After analysis,
10225 -- the entity in the incomplete declaration becomes immediately
10226 -- visible in the record declaration that follows.
10228 H := Current_Entity (Typ);
10230 if H = Typ then
10231 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
10232 else
10233 while Present (H)
10234 and then Homonym (H) /= Typ
10235 loop
10236 H := Homonym (Typ);
10237 end loop;
10239 Set_Homonym (H, Homonym (Typ));
10240 end if;
10242 Insert_Before (Typ_Decl, Decl);
10243 Analyze (Decl);
10244 Set_Full_View (Inc_T, Typ);
10246 if Is_Tagged then
10248 -- Create a common class-wide type for both views, and set the
10249 -- Etype of the class-wide type to the full view.
10251 Make_Class_Wide_Type (Inc_T);
10252 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
10253 Set_Etype (Class_Wide_Type (Typ), Typ);
10254 end if;
10255 end if;
10256 end Build_Incomplete_Type_Declaration;
10258 ------------------
10259 -- Designates_T --
10260 ------------------
10262 function Designates_T (Subt : Node_Id) return Boolean is
10263 Type_Id : constant Name_Id := Chars (Typ);
10265 function Names_T (Nam : Node_Id) return Boolean;
10266 -- The record type has not been introduced in the current scope
10267 -- yet, so we must examine the name of the type itself, either
10268 -- an identifier T, or an expanded name of the form P.T, where
10269 -- P denotes the current scope.
10271 -------------
10272 -- Names_T --
10273 -------------
10275 function Names_T (Nam : Node_Id) return Boolean is
10276 begin
10277 if Nkind (Nam) = N_Identifier then
10278 return Chars (Nam) = Type_Id;
10280 elsif Nkind (Nam) = N_Selected_Component then
10281 if Chars (Selector_Name (Nam)) = Type_Id then
10282 if Nkind (Prefix (Nam)) = N_Identifier then
10283 return Chars (Prefix (Nam)) = Chars (Current_Scope);
10285 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
10286 return Chars (Selector_Name (Prefix (Nam))) =
10287 Chars (Current_Scope);
10288 else
10289 return False;
10290 end if;
10292 else
10293 return False;
10294 end if;
10296 else
10297 return False;
10298 end if;
10299 end Names_T;
10301 -- Start of processing for Designates_T
10303 begin
10304 if Nkind (Subt) = N_Identifier then
10305 return Chars (Subt) = Type_Id;
10307 -- Reference can be through an expanded name which has not been
10308 -- analyzed yet, and which designates enclosing scopes.
10310 elsif Nkind (Subt) = N_Selected_Component then
10311 if Names_T (Subt) then
10312 return True;
10314 -- Otherwise it must denote an entity that is already visible.
10315 -- The access definition may name a subtype of the enclosing
10316 -- type, if there is a previous incomplete declaration for it.
10318 else
10319 Find_Selected_Component (Subt);
10320 return
10321 Is_Entity_Name (Subt)
10322 and then Scope (Entity (Subt)) = Current_Scope
10323 and then
10324 (Chars (Base_Type (Entity (Subt))) = Type_Id
10325 or else
10326 (Is_Class_Wide_Type (Entity (Subt))
10327 and then
10328 Chars (Etype (Base_Type (Entity (Subt)))) =
10329 Type_Id));
10330 end if;
10332 -- A reference to the current type may appear as the prefix of
10333 -- a 'Class attribute.
10335 elsif Nkind (Subt) = N_Attribute_Reference
10336 and then Attribute_Name (Subt) = Name_Class
10337 then
10338 return Names_T (Prefix (Subt));
10340 else
10341 return False;
10342 end if;
10343 end Designates_T;
10345 ----------------
10346 -- Mentions_T --
10347 ----------------
10349 function Mentions_T (Acc_Def : Node_Id) return Boolean is
10350 Param_Spec : Node_Id;
10352 Acc_Subprg : constant Node_Id :=
10353 Access_To_Subprogram_Definition (Acc_Def);
10355 begin
10356 if No (Acc_Subprg) then
10357 return Designates_T (Subtype_Mark (Acc_Def));
10358 end if;
10360 -- Component is an access_to_subprogram: examine its formals,
10361 -- and result definition in the case of an access_to_function.
10363 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
10364 while Present (Param_Spec) loop
10365 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
10366 and then Mentions_T (Parameter_Type (Param_Spec))
10367 then
10368 return True;
10370 elsif Designates_T (Parameter_Type (Param_Spec)) then
10371 return True;
10372 end if;
10374 Next (Param_Spec);
10375 end loop;
10377 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
10378 if Nkind (Result_Definition (Acc_Subprg)) =
10379 N_Access_Definition
10380 then
10381 return Mentions_T (Result_Definition (Acc_Subprg));
10382 else
10383 return Designates_T (Result_Definition (Acc_Subprg));
10384 end if;
10385 end if;
10387 return False;
10388 end Mentions_T;
10390 -- Start of processing for Check_Anonymous_Access_Components
10392 begin
10393 if No (Comp_List) then
10394 return;
10395 end if;
10397 Comp := First (Component_Items (Comp_List));
10398 while Present (Comp) loop
10399 if Nkind (Comp) = N_Component_Declaration
10400 and then Present
10401 (Access_Definition (Component_Definition (Comp)))
10402 and then
10403 Mentions_T (Access_Definition (Component_Definition (Comp)))
10404 then
10405 Comp_Def := Component_Definition (Comp);
10406 Acc_Def :=
10407 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
10409 Build_Incomplete_Type_Declaration;
10410 Anon_Access := Make_Temporary (Loc, 'S');
10412 -- Create a declaration for the anonymous access type: either
10413 -- an access_to_object or an access_to_subprogram.
10415 if Present (Acc_Def) then
10416 if Nkind (Acc_Def) = N_Access_Function_Definition then
10417 Type_Def :=
10418 Make_Access_Function_Definition (Loc,
10419 Parameter_Specifications =>
10420 Parameter_Specifications (Acc_Def),
10421 Result_Definition => Result_Definition (Acc_Def));
10422 else
10423 Type_Def :=
10424 Make_Access_Procedure_Definition (Loc,
10425 Parameter_Specifications =>
10426 Parameter_Specifications (Acc_Def));
10427 end if;
10429 else
10430 Type_Def :=
10431 Make_Access_To_Object_Definition (Loc,
10432 Subtype_Indication =>
10433 Relocate_Node
10434 (Subtype_Mark (Access_Definition (Comp_Def))));
10436 Set_Constant_Present
10437 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
10438 Set_All_Present
10439 (Type_Def, All_Present (Access_Definition (Comp_Def)));
10440 end if;
10442 Set_Null_Exclusion_Present
10443 (Type_Def,
10444 Null_Exclusion_Present (Access_Definition (Comp_Def)));
10446 Decl :=
10447 Make_Full_Type_Declaration (Loc,
10448 Defining_Identifier => Anon_Access,
10449 Type_Definition => Type_Def);
10451 Insert_Before (Typ_Decl, Decl);
10452 Analyze (Decl);
10454 -- If an access to subprogram, create the extra formals
10456 if Present (Acc_Def) then
10457 Create_Extra_Formals (Designated_Type (Anon_Access));
10459 -- If an access to object, preserve entity of designated type,
10460 -- for ASIS use, before rewriting the component definition.
10462 else
10463 declare
10464 Desig : Entity_Id;
10466 begin
10467 Desig := Entity (Subtype_Indication (Type_Def));
10469 -- If the access definition is to the current record,
10470 -- the visible entity at this point is an incomplete
10471 -- type. Retrieve the full view to simplify ASIS queries
10473 if Ekind (Desig) = E_Incomplete_Type then
10474 Desig := Full_View (Desig);
10475 end if;
10477 Set_Entity
10478 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
10479 end;
10480 end if;
10482 Rewrite (Comp_Def,
10483 Make_Component_Definition (Loc,
10484 Subtype_Indication =>
10485 New_Occurrence_Of (Anon_Access, Loc)));
10487 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
10488 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
10489 else
10490 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
10491 end if;
10493 Set_Is_Local_Anonymous_Access (Anon_Access);
10494 end if;
10496 Next (Comp);
10497 end loop;
10499 if Present (Variant_Part (Comp_List)) then
10500 declare
10501 V : Node_Id;
10502 begin
10503 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
10504 while Present (V) loop
10505 Check_Anonymous_Access_Components
10506 (Typ_Decl, Typ, Prev, Component_List (V));
10507 Next_Non_Pragma (V);
10508 end loop;
10509 end;
10510 end if;
10511 end Check_Anonymous_Access_Components;
10513 ----------------------
10514 -- Check_Completion --
10515 ----------------------
10517 procedure Check_Completion (Body_Id : Node_Id := Empty) is
10518 E : Entity_Id;
10520 procedure Post_Error;
10521 -- Post error message for lack of completion for entity E
10523 ----------------
10524 -- Post_Error --
10525 ----------------
10527 procedure Post_Error is
10529 procedure Missing_Body;
10530 -- Output missing body message
10532 ------------------
10533 -- Missing_Body --
10534 ------------------
10536 procedure Missing_Body is
10537 begin
10538 -- Spec is in same unit, so we can post on spec
10540 if In_Same_Source_Unit (Body_Id, E) then
10541 Error_Msg_N ("missing body for &", E);
10543 -- Spec is in a separate unit, so we have to post on the body
10545 else
10546 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
10547 end if;
10548 end Missing_Body;
10550 -- Start of processing for Post_Error
10552 begin
10553 if not Comes_From_Source (E) then
10555 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10557 -- It may be an anonymous protected type created for a
10558 -- single variable. Post error on variable, if present.
10560 declare
10561 Var : Entity_Id;
10563 begin
10564 Var := First_Entity (Current_Scope);
10565 while Present (Var) loop
10566 exit when Etype (Var) = E
10567 and then Comes_From_Source (Var);
10569 Next_Entity (Var);
10570 end loop;
10572 if Present (Var) then
10573 E := Var;
10574 end if;
10575 end;
10576 end if;
10577 end if;
10579 -- If a generated entity has no completion, then either previous
10580 -- semantic errors have disabled the expansion phase, or else we had
10581 -- missing subunits, or else we are compiling without expansion,
10582 -- or else something is very wrong.
10584 if not Comes_From_Source (E) then
10585 pragma Assert
10586 (Serious_Errors_Detected > 0
10587 or else Configurable_Run_Time_Violations > 0
10588 or else Subunits_Missing
10589 or else not Expander_Active);
10590 return;
10592 -- Here for source entity
10594 else
10595 -- Here if no body to post the error message, so we post the error
10596 -- on the declaration that has no completion. This is not really
10597 -- the right place to post it, think about this later ???
10599 if No (Body_Id) then
10600 if Is_Type (E) then
10601 Error_Msg_NE
10602 ("missing full declaration for }", Parent (E), E);
10603 else
10604 Error_Msg_NE ("missing body for &", Parent (E), E);
10605 end if;
10607 -- Package body has no completion for a declaration that appears
10608 -- in the corresponding spec. Post error on the body, with a
10609 -- reference to the non-completed declaration.
10611 else
10612 Error_Msg_Sloc := Sloc (E);
10614 if Is_Type (E) then
10615 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10617 elsif Is_Overloadable (E)
10618 and then Current_Entity_In_Scope (E) /= E
10619 then
10620 -- It may be that the completion is mistyped and appears as
10621 -- a distinct overloading of the entity.
10623 declare
10624 Candidate : constant Entity_Id :=
10625 Current_Entity_In_Scope (E);
10626 Decl : constant Node_Id :=
10627 Unit_Declaration_Node (Candidate);
10629 begin
10630 if Is_Overloadable (Candidate)
10631 and then Ekind (Candidate) = Ekind (E)
10632 and then Nkind (Decl) = N_Subprogram_Body
10633 and then Acts_As_Spec (Decl)
10634 then
10635 Check_Type_Conformant (Candidate, E);
10637 else
10638 Missing_Body;
10639 end if;
10640 end;
10642 else
10643 Missing_Body;
10644 end if;
10645 end if;
10646 end if;
10647 end Post_Error;
10649 -- Start of processing for Check_Completion
10651 begin
10652 E := First_Entity (Current_Scope);
10653 while Present (E) loop
10654 if Is_Intrinsic_Subprogram (E) then
10655 null;
10657 -- The following situation requires special handling: a child unit
10658 -- that appears in the context clause of the body of its parent:
10660 -- procedure Parent.Child (...);
10662 -- with Parent.Child;
10663 -- package body Parent is
10665 -- Here Parent.Child appears as a local entity, but should not be
10666 -- flagged as requiring completion, because it is a compilation
10667 -- unit.
10669 -- Ignore missing completion for a subprogram that does not come from
10670 -- source (including the _Call primitive operation of RAS types,
10671 -- which has to have the flag Comes_From_Source for other purposes):
10672 -- we assume that the expander will provide the missing completion.
10673 -- In case of previous errors, other expansion actions that provide
10674 -- bodies for null procedures with not be invoked, so inhibit message
10675 -- in those cases.
10677 -- Note that E_Operator is not in the list that follows, because
10678 -- this kind is reserved for predefined operators, that are
10679 -- intrinsic and do not need completion.
10681 elsif Ekind_In (E, E_Function,
10682 E_Procedure,
10683 E_Generic_Function,
10684 E_Generic_Procedure)
10685 then
10686 if Has_Completion (E) then
10687 null;
10689 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10690 null;
10692 elsif Is_Subprogram (E)
10693 and then (not Comes_From_Source (E)
10694 or else Chars (E) = Name_uCall)
10695 then
10696 null;
10698 elsif
10699 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10700 then
10701 null;
10703 elsif Nkind (Parent (E)) = N_Procedure_Specification
10704 and then Null_Present (Parent (E))
10705 and then Serious_Errors_Detected > 0
10706 then
10707 null;
10709 else
10710 Post_Error;
10711 end if;
10713 elsif Is_Entry (E) then
10714 if not Has_Completion (E) and then
10715 (Ekind (Scope (E)) = E_Protected_Object
10716 or else Ekind (Scope (E)) = E_Protected_Type)
10717 then
10718 Post_Error;
10719 end if;
10721 elsif Is_Package_Or_Generic_Package (E) then
10722 if Unit_Requires_Body (E) then
10723 if not Has_Completion (E)
10724 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10725 N_Compilation_Unit
10726 then
10727 Post_Error;
10728 end if;
10730 elsif not Is_Child_Unit (E) then
10731 May_Need_Implicit_Body (E);
10732 end if;
10734 -- A formal incomplete type (Ada 2012) does not require a completion;
10735 -- other incomplete type declarations do.
10737 elsif Ekind (E) = E_Incomplete_Type
10738 and then No (Underlying_Type (E))
10739 and then not Is_Generic_Type (E)
10740 then
10741 Post_Error;
10743 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
10744 and then not Has_Completion (E)
10745 then
10746 Post_Error;
10748 -- A single task declared in the current scope is a constant, verify
10749 -- that the body of its anonymous type is in the same scope. If the
10750 -- task is defined elsewhere, this may be a renaming declaration for
10751 -- which no completion is needed.
10753 elsif Ekind (E) = E_Constant
10754 and then Ekind (Etype (E)) = E_Task_Type
10755 and then not Has_Completion (Etype (E))
10756 and then Scope (Etype (E)) = Current_Scope
10757 then
10758 Post_Error;
10760 elsif Ekind (E) = E_Protected_Object
10761 and then not Has_Completion (Etype (E))
10762 then
10763 Post_Error;
10765 elsif Ekind (E) = E_Record_Type then
10766 if Is_Tagged_Type (E) then
10767 Check_Abstract_Overriding (E);
10768 Check_Conventions (E);
10769 end if;
10771 Check_Aliased_Component_Types (E);
10773 elsif Ekind (E) = E_Array_Type then
10774 Check_Aliased_Component_Types (E);
10776 end if;
10778 Next_Entity (E);
10779 end loop;
10780 end Check_Completion;
10782 ------------------------------------
10783 -- Check_CPP_Type_Has_No_Defaults --
10784 ------------------------------------
10786 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10787 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10788 Clist : Node_Id;
10789 Comp : Node_Id;
10791 begin
10792 -- Obtain the component list
10794 if Nkind (Tdef) = N_Record_Definition then
10795 Clist := Component_List (Tdef);
10796 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10797 Clist := Component_List (Record_Extension_Part (Tdef));
10798 end if;
10800 -- Check all components to ensure no default expressions
10802 if Present (Clist) then
10803 Comp := First (Component_Items (Clist));
10804 while Present (Comp) loop
10805 if Present (Expression (Comp)) then
10806 Error_Msg_N
10807 ("component of imported 'C'P'P type cannot have "
10808 & "default expression", Expression (Comp));
10809 end if;
10811 Next (Comp);
10812 end loop;
10813 end if;
10814 end Check_CPP_Type_Has_No_Defaults;
10816 ----------------------------
10817 -- Check_Delta_Expression --
10818 ----------------------------
10820 procedure Check_Delta_Expression (E : Node_Id) is
10821 begin
10822 if not (Is_Real_Type (Etype (E))) then
10823 Wrong_Type (E, Any_Real);
10825 elsif not Is_OK_Static_Expression (E) then
10826 Flag_Non_Static_Expr
10827 ("non-static expression used for delta value!", E);
10829 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10830 Error_Msg_N ("delta expression must be positive", E);
10832 else
10833 return;
10834 end if;
10836 -- If any of above errors occurred, then replace the incorrect
10837 -- expression by the real 0.1, which should prevent further errors.
10839 Rewrite (E,
10840 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10841 Analyze_And_Resolve (E, Standard_Float);
10842 end Check_Delta_Expression;
10844 -----------------------------
10845 -- Check_Digits_Expression --
10846 -----------------------------
10848 procedure Check_Digits_Expression (E : Node_Id) is
10849 begin
10850 if not (Is_Integer_Type (Etype (E))) then
10851 Wrong_Type (E, Any_Integer);
10853 elsif not Is_OK_Static_Expression (E) then
10854 Flag_Non_Static_Expr
10855 ("non-static expression used for digits value!", E);
10857 elsif Expr_Value (E) <= 0 then
10858 Error_Msg_N ("digits value must be greater than zero", E);
10860 else
10861 return;
10862 end if;
10864 -- If any of above errors occurred, then replace the incorrect
10865 -- expression by the integer 1, which should prevent further errors.
10867 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
10868 Analyze_And_Resolve (E, Standard_Integer);
10870 end Check_Digits_Expression;
10872 --------------------------
10873 -- Check_Initialization --
10874 --------------------------
10876 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
10877 begin
10878 -- Special processing for limited types
10880 if Is_Limited_Type (T)
10881 and then not In_Instance
10882 and then not In_Inlined_Body
10883 then
10884 if not OK_For_Limited_Init (T, Exp) then
10886 -- In GNAT mode, this is just a warning, to allow it to be evilly
10887 -- turned off. Otherwise it is a real error.
10889 if GNAT_Mode then
10890 Error_Msg_N
10891 ("??cannot initialize entities of limited type!", Exp);
10893 elsif Ada_Version < Ada_2005 then
10895 -- The side effect removal machinery may generate illegal Ada
10896 -- code to avoid the usage of access types and 'reference in
10897 -- SPARK mode. Since this is legal code with respect to theorem
10898 -- proving, do not emit the error.
10900 if GNATprove_Mode
10901 and then Nkind (Exp) = N_Function_Call
10902 and then Nkind (Parent (Exp)) = N_Object_Declaration
10903 and then not Comes_From_Source
10904 (Defining_Identifier (Parent (Exp)))
10905 then
10906 null;
10908 else
10909 Error_Msg_N
10910 ("cannot initialize entities of limited type", Exp);
10911 Explain_Limited_Type (T, Exp);
10912 end if;
10914 else
10915 -- Specialize error message according to kind of illegal
10916 -- initial expression.
10918 if Nkind (Exp) = N_Type_Conversion
10919 and then Nkind (Expression (Exp)) = N_Function_Call
10920 then
10921 Error_Msg_N
10922 ("illegal context for call"
10923 & " to function with limited result", Exp);
10925 else
10926 Error_Msg_N
10927 ("initialization of limited object requires aggregate "
10928 & "or function call", Exp);
10929 end if;
10930 end if;
10931 end if;
10932 end if;
10934 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
10935 -- set unless we can be sure that no range check is required.
10937 if (GNATprove_Mode or not Expander_Active)
10938 and then Is_Scalar_Type (T)
10939 and then not Is_In_Range (Exp, T, Assume_Valid => True)
10940 then
10941 Set_Do_Range_Check (Exp);
10942 end if;
10943 end Check_Initialization;
10945 ----------------------
10946 -- Check_Interfaces --
10947 ----------------------
10949 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
10950 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
10952 Iface : Node_Id;
10953 Iface_Def : Node_Id;
10954 Iface_Typ : Entity_Id;
10955 Parent_Node : Node_Id;
10957 Is_Task : Boolean := False;
10958 -- Set True if parent type or any progenitor is a task interface
10960 Is_Protected : Boolean := False;
10961 -- Set True if parent type or any progenitor is a protected interface
10963 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
10964 -- Check that a progenitor is compatible with declaration. If an error
10965 -- message is output, it is posted on Error_Node.
10967 ------------------
10968 -- Check_Ifaces --
10969 ------------------
10971 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
10972 Iface_Id : constant Entity_Id :=
10973 Defining_Identifier (Parent (Iface_Def));
10974 Type_Def : Node_Id;
10976 begin
10977 if Nkind (N) = N_Private_Extension_Declaration then
10978 Type_Def := N;
10979 else
10980 Type_Def := Type_Definition (N);
10981 end if;
10983 if Is_Task_Interface (Iface_Id) then
10984 Is_Task := True;
10986 elsif Is_Protected_Interface (Iface_Id) then
10987 Is_Protected := True;
10988 end if;
10990 if Is_Synchronized_Interface (Iface_Id) then
10992 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10993 -- extension derived from a synchronized interface must explicitly
10994 -- be declared synchronized, because the full view will be a
10995 -- synchronized type.
10997 if Nkind (N) = N_Private_Extension_Declaration then
10998 if not Synchronized_Present (N) then
10999 Error_Msg_NE
11000 ("private extension of& must be explicitly synchronized",
11001 N, Iface_Id);
11002 end if;
11004 -- However, by 3.9.4(16/2), a full type that is a record extension
11005 -- is never allowed to derive from a synchronized interface (note
11006 -- that interfaces must be excluded from this check, because those
11007 -- are represented by derived type definitions in some cases).
11009 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11010 and then not Interface_Present (Type_Definition (N))
11011 then
11012 Error_Msg_N ("record extension cannot derive from synchronized "
11013 & "interface", Error_Node);
11014 end if;
11015 end if;
11017 -- Check that the characteristics of the progenitor are compatible
11018 -- with the explicit qualifier in the declaration.
11019 -- The check only applies to qualifiers that come from source.
11020 -- Limited_Present also appears in the declaration of corresponding
11021 -- records, and the check does not apply to them.
11023 if Limited_Present (Type_Def)
11024 and then not
11025 Is_Concurrent_Record_Type (Defining_Identifier (N))
11026 then
11027 if Is_Limited_Interface (Parent_Type)
11028 and then not Is_Limited_Interface (Iface_Id)
11029 then
11030 Error_Msg_NE
11031 ("progenitor & must be limited interface",
11032 Error_Node, Iface_Id);
11034 elsif
11035 (Task_Present (Iface_Def)
11036 or else Protected_Present (Iface_Def)
11037 or else Synchronized_Present (Iface_Def))
11038 and then Nkind (N) /= N_Private_Extension_Declaration
11039 and then not Error_Posted (N)
11040 then
11041 Error_Msg_NE
11042 ("progenitor & must be limited interface",
11043 Error_Node, Iface_Id);
11044 end if;
11046 -- Protected interfaces can only inherit from limited, synchronized
11047 -- or protected interfaces.
11049 elsif Nkind (N) = N_Full_Type_Declaration
11050 and then Protected_Present (Type_Def)
11051 then
11052 if Limited_Present (Iface_Def)
11053 or else Synchronized_Present (Iface_Def)
11054 or else Protected_Present (Iface_Def)
11055 then
11056 null;
11058 elsif Task_Present (Iface_Def) then
11059 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11060 & "from task interface", Error_Node);
11062 else
11063 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11064 & "from non-limited interface", Error_Node);
11065 end if;
11067 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11068 -- limited and synchronized.
11070 elsif Synchronized_Present (Type_Def) then
11071 if Limited_Present (Iface_Def)
11072 or else Synchronized_Present (Iface_Def)
11073 then
11074 null;
11076 elsif Protected_Present (Iface_Def)
11077 and then Nkind (N) /= N_Private_Extension_Declaration
11078 then
11079 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11080 & "from protected interface", Error_Node);
11082 elsif Task_Present (Iface_Def)
11083 and then Nkind (N) /= N_Private_Extension_Declaration
11084 then
11085 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11086 & "from task interface", Error_Node);
11088 elsif not Is_Limited_Interface (Iface_Id) then
11089 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11090 & "from non-limited interface", Error_Node);
11091 end if;
11093 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11094 -- synchronized or task interfaces.
11096 elsif Nkind (N) = N_Full_Type_Declaration
11097 and then Task_Present (Type_Def)
11098 then
11099 if Limited_Present (Iface_Def)
11100 or else Synchronized_Present (Iface_Def)
11101 or else Task_Present (Iface_Def)
11102 then
11103 null;
11105 elsif Protected_Present (Iface_Def) then
11106 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11107 & "protected interface", Error_Node);
11109 else
11110 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11111 & "non-limited interface", Error_Node);
11112 end if;
11113 end if;
11114 end Check_Ifaces;
11116 -- Start of processing for Check_Interfaces
11118 begin
11119 if Is_Interface (Parent_Type) then
11120 if Is_Task_Interface (Parent_Type) then
11121 Is_Task := True;
11123 elsif Is_Protected_Interface (Parent_Type) then
11124 Is_Protected := True;
11125 end if;
11126 end if;
11128 if Nkind (N) = N_Private_Extension_Declaration then
11130 -- Check that progenitors are compatible with declaration
11132 Iface := First (Interface_List (Def));
11133 while Present (Iface) loop
11134 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11136 Parent_Node := Parent (Base_Type (Iface_Typ));
11137 Iface_Def := Type_Definition (Parent_Node);
11139 if not Is_Interface (Iface_Typ) then
11140 Diagnose_Interface (Iface, Iface_Typ);
11141 else
11142 Check_Ifaces (Iface_Def, Iface);
11143 end if;
11145 Next (Iface);
11146 end loop;
11148 if Is_Task and Is_Protected then
11149 Error_Msg_N
11150 ("type cannot derive from task and protected interface", N);
11151 end if;
11153 return;
11154 end if;
11156 -- Full type declaration of derived type.
11157 -- Check compatibility with parent if it is interface type
11159 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11160 and then Is_Interface (Parent_Type)
11161 then
11162 Parent_Node := Parent (Parent_Type);
11164 -- More detailed checks for interface varieties
11166 Check_Ifaces
11167 (Iface_Def => Type_Definition (Parent_Node),
11168 Error_Node => Subtype_Indication (Type_Definition (N)));
11169 end if;
11171 Iface := First (Interface_List (Def));
11172 while Present (Iface) loop
11173 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11175 Parent_Node := Parent (Base_Type (Iface_Typ));
11176 Iface_Def := Type_Definition (Parent_Node);
11178 if not Is_Interface (Iface_Typ) then
11179 Diagnose_Interface (Iface, Iface_Typ);
11181 else
11182 -- "The declaration of a specific descendant of an interface
11183 -- type freezes the interface type" RM 13.14
11185 Freeze_Before (N, Iface_Typ);
11186 Check_Ifaces (Iface_Def, Error_Node => Iface);
11187 end if;
11189 Next (Iface);
11190 end loop;
11192 if Is_Task and Is_Protected then
11193 Error_Msg_N
11194 ("type cannot derive from task and protected interface", N);
11195 end if;
11196 end Check_Interfaces;
11198 ------------------------------------
11199 -- Check_Or_Process_Discriminants --
11200 ------------------------------------
11202 -- If an incomplete or private type declaration was already given for the
11203 -- type, the discriminants may have already been processed if they were
11204 -- present on the incomplete declaration. In this case a full conformance
11205 -- check has been performed in Find_Type_Name, and we then recheck here
11206 -- some properties that can't be checked on the partial view alone.
11207 -- Otherwise we call Process_Discriminants.
11209 procedure Check_Or_Process_Discriminants
11210 (N : Node_Id;
11211 T : Entity_Id;
11212 Prev : Entity_Id := Empty)
11214 begin
11215 if Has_Discriminants (T) then
11217 -- Discriminants are already set on T if they were already present
11218 -- on the partial view. Make them visible to component declarations.
11220 declare
11221 D : Entity_Id;
11222 -- Discriminant on T (full view) referencing expr on partial view
11224 Prev_D : Entity_Id;
11225 -- Entity of corresponding discriminant on partial view
11227 New_D : Node_Id;
11228 -- Discriminant specification for full view, expression is
11229 -- the syntactic copy on full view (which has been checked for
11230 -- conformance with partial view), only used here to post error
11231 -- message.
11233 begin
11234 D := First_Discriminant (T);
11235 New_D := First (Discriminant_Specifications (N));
11236 while Present (D) loop
11237 Prev_D := Current_Entity (D);
11238 Set_Current_Entity (D);
11239 Set_Is_Immediately_Visible (D);
11240 Set_Homonym (D, Prev_D);
11242 -- Handle the case where there is an untagged partial view and
11243 -- the full view is tagged: must disallow discriminants with
11244 -- defaults, unless compiling for Ada 2012, which allows a
11245 -- limited tagged type to have defaulted discriminants (see
11246 -- AI05-0214). However, suppress error here if it was already
11247 -- reported on the default expression of the partial view.
11249 if Is_Tagged_Type (T)
11250 and then Present (Expression (Parent (D)))
11251 and then (not Is_Limited_Type (Current_Scope)
11252 or else Ada_Version < Ada_2012)
11253 and then not Error_Posted (Expression (Parent (D)))
11254 then
11255 if Ada_Version >= Ada_2012 then
11256 Error_Msg_N
11257 ("discriminants of nonlimited tagged type cannot have "
11258 & "defaults",
11259 Expression (New_D));
11260 else
11261 Error_Msg_N
11262 ("discriminants of tagged type cannot have defaults",
11263 Expression (New_D));
11264 end if;
11265 end if;
11267 -- Ada 2005 (AI-230): Access discriminant allowed in
11268 -- non-limited record types.
11270 if Ada_Version < Ada_2005 then
11272 -- This restriction gets applied to the full type here. It
11273 -- has already been applied earlier to the partial view.
11275 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
11276 end if;
11278 Next_Discriminant (D);
11279 Next (New_D);
11280 end loop;
11281 end;
11283 elsif Present (Discriminant_Specifications (N)) then
11284 Process_Discriminants (N, Prev);
11285 end if;
11286 end Check_Or_Process_Discriminants;
11288 ----------------------
11289 -- Check_Real_Bound --
11290 ----------------------
11292 procedure Check_Real_Bound (Bound : Node_Id) is
11293 begin
11294 if not Is_Real_Type (Etype (Bound)) then
11295 Error_Msg_N
11296 ("bound in real type definition must be of real type", Bound);
11298 elsif not Is_OK_Static_Expression (Bound) then
11299 Flag_Non_Static_Expr
11300 ("non-static expression used for real type bound!", Bound);
11302 else
11303 return;
11304 end if;
11306 Rewrite
11307 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
11308 Analyze (Bound);
11309 Resolve (Bound, Standard_Float);
11310 end Check_Real_Bound;
11312 ------------------------------
11313 -- Complete_Private_Subtype --
11314 ------------------------------
11316 procedure Complete_Private_Subtype
11317 (Priv : Entity_Id;
11318 Full : Entity_Id;
11319 Full_Base : Entity_Id;
11320 Related_Nod : Node_Id)
11322 Save_Next_Entity : Entity_Id;
11323 Save_Homonym : Entity_Id;
11325 begin
11326 -- Set semantic attributes for (implicit) private subtype completion.
11327 -- If the full type has no discriminants, then it is a copy of the
11328 -- full view of the base. Otherwise, it is a subtype of the base with
11329 -- a possible discriminant constraint. Save and restore the original
11330 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11331 -- not corrupt the entity chain.
11333 -- Note that the type of the full view is the same entity as the type
11334 -- of the partial view. In this fashion, the subtype has access to the
11335 -- correct view of the parent.
11337 Save_Next_Entity := Next_Entity (Full);
11338 Save_Homonym := Homonym (Priv);
11340 case Ekind (Full_Base) is
11341 when E_Record_Type |
11342 E_Record_Subtype |
11343 Class_Wide_Kind |
11344 Private_Kind |
11345 Task_Kind |
11346 Protected_Kind =>
11347 Copy_Node (Priv, Full);
11349 Set_Has_Discriminants
11350 (Full, Has_Discriminants (Full_Base));
11351 Set_Has_Unknown_Discriminants
11352 (Full, Has_Unknown_Discriminants (Full_Base));
11353 Set_First_Entity (Full, First_Entity (Full_Base));
11354 Set_Last_Entity (Full, Last_Entity (Full_Base));
11356 -- If the underlying base type is constrained, we know that the
11357 -- full view of the subtype is constrained as well (the converse
11358 -- is not necessarily true).
11360 if Is_Constrained (Full_Base) then
11361 Set_Is_Constrained (Full);
11362 end if;
11364 when others =>
11365 Copy_Node (Full_Base, Full);
11367 Set_Chars (Full, Chars (Priv));
11368 Conditional_Delay (Full, Priv);
11369 Set_Sloc (Full, Sloc (Priv));
11370 end case;
11372 Set_Next_Entity (Full, Save_Next_Entity);
11373 Set_Homonym (Full, Save_Homonym);
11374 Set_Associated_Node_For_Itype (Full, Related_Nod);
11376 -- Set common attributes for all subtypes: kind, convention, etc.
11378 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
11379 Set_Convention (Full, Convention (Full_Base));
11381 -- The Etype of the full view is inconsistent. Gigi needs to see the
11382 -- structural full view, which is what the current scheme gives: the
11383 -- Etype of the full view is the etype of the full base. However, if the
11384 -- full base is a derived type, the full view then looks like a subtype
11385 -- of the parent, not a subtype of the full base. If instead we write:
11387 -- Set_Etype (Full, Full_Base);
11389 -- then we get inconsistencies in the front-end (confusion between
11390 -- views). Several outstanding bugs are related to this ???
11392 Set_Is_First_Subtype (Full, False);
11393 Set_Scope (Full, Scope (Priv));
11394 Set_Size_Info (Full, Full_Base);
11395 Set_RM_Size (Full, RM_Size (Full_Base));
11396 Set_Is_Itype (Full);
11398 -- A subtype of a private-type-without-discriminants, whose full-view
11399 -- has discriminants with default expressions, is not constrained.
11401 if not Has_Discriminants (Priv) then
11402 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
11404 if Has_Discriminants (Full_Base) then
11405 Set_Discriminant_Constraint
11406 (Full, Discriminant_Constraint (Full_Base));
11408 -- The partial view may have been indefinite, the full view
11409 -- might not be.
11411 Set_Has_Unknown_Discriminants
11412 (Full, Has_Unknown_Discriminants (Full_Base));
11413 end if;
11414 end if;
11416 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
11417 Set_Depends_On_Private (Full, Has_Private_Component (Full));
11419 -- Freeze the private subtype entity if its parent is delayed, and not
11420 -- already frozen. We skip this processing if the type is an anonymous
11421 -- subtype of a record component, or is the corresponding record of a
11422 -- protected type, since ???
11424 if not Is_Type (Scope (Full)) then
11425 Set_Has_Delayed_Freeze (Full,
11426 Has_Delayed_Freeze (Full_Base)
11427 and then (not Is_Frozen (Full_Base)));
11428 end if;
11430 Set_Freeze_Node (Full, Empty);
11431 Set_Is_Frozen (Full, False);
11432 Set_Full_View (Priv, Full);
11434 if Has_Discriminants (Full) then
11435 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
11436 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
11438 if Has_Unknown_Discriminants (Full) then
11439 Set_Discriminant_Constraint (Full, No_Elist);
11440 end if;
11441 end if;
11443 if Ekind (Full_Base) = E_Record_Type
11444 and then Has_Discriminants (Full_Base)
11445 and then Has_Discriminants (Priv) -- might not, if errors
11446 and then not Has_Unknown_Discriminants (Priv)
11447 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
11448 then
11449 Create_Constrained_Components
11450 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
11452 -- If the full base is itself derived from private, build a congruent
11453 -- subtype of its underlying type, for use by the back end. For a
11454 -- constrained record component, the declaration cannot be placed on
11455 -- the component list, but it must nevertheless be built an analyzed, to
11456 -- supply enough information for Gigi to compute the size of component.
11458 elsif Ekind (Full_Base) in Private_Kind
11459 and then Is_Derived_Type (Full_Base)
11460 and then Has_Discriminants (Full_Base)
11461 and then (Ekind (Current_Scope) /= E_Record_Subtype)
11462 then
11463 if not Is_Itype (Priv)
11464 and then
11465 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
11466 then
11467 Build_Underlying_Full_View
11468 (Parent (Priv), Full, Etype (Full_Base));
11470 elsif Nkind (Related_Nod) = N_Component_Declaration then
11471 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
11472 end if;
11474 elsif Is_Record_Type (Full_Base) then
11476 -- Show Full is simply a renaming of Full_Base
11478 Set_Cloned_Subtype (Full, Full_Base);
11479 end if;
11481 -- It is unsafe to share the bounds of a scalar type, because the Itype
11482 -- is elaborated on demand, and if a bound is non-static then different
11483 -- orders of elaboration in different units will lead to different
11484 -- external symbols.
11486 if Is_Scalar_Type (Full_Base) then
11487 Set_Scalar_Range (Full,
11488 Make_Range (Sloc (Related_Nod),
11489 Low_Bound =>
11490 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
11491 High_Bound =>
11492 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
11494 -- This completion inherits the bounds of the full parent, but if
11495 -- the parent is an unconstrained floating point type, so is the
11496 -- completion.
11498 if Is_Floating_Point_Type (Full_Base) then
11499 Set_Includes_Infinities
11500 (Scalar_Range (Full), Has_Infinities (Full_Base));
11501 end if;
11502 end if;
11504 -- ??? It seems that a lot of fields are missing that should be copied
11505 -- from Full_Base to Full. Here are some that are introduced in a
11506 -- non-disruptive way but a cleanup is necessary.
11508 if Is_Tagged_Type (Full_Base) then
11509 Set_Is_Tagged_Type (Full);
11510 Set_Direct_Primitive_Operations
11511 (Full, Direct_Primitive_Operations (Full_Base));
11512 Set_No_Tagged_Streams_Pragma
11513 (Full, No_Tagged_Streams_Pragma (Full_Base));
11515 -- Inherit class_wide type of full_base in case the partial view was
11516 -- not tagged. Otherwise it has already been created when the private
11517 -- subtype was analyzed.
11519 if No (Class_Wide_Type (Full)) then
11520 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
11521 end if;
11523 -- If this is a subtype of a protected or task type, constrain its
11524 -- corresponding record, unless this is a subtype without constraints,
11525 -- i.e. a simple renaming as with an actual subtype in an instance.
11527 elsif Is_Concurrent_Type (Full_Base) then
11528 if Has_Discriminants (Full)
11529 and then Present (Corresponding_Record_Type (Full_Base))
11530 and then
11531 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
11532 then
11533 Set_Corresponding_Record_Type (Full,
11534 Constrain_Corresponding_Record
11535 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
11537 else
11538 Set_Corresponding_Record_Type (Full,
11539 Corresponding_Record_Type (Full_Base));
11540 end if;
11541 end if;
11543 -- Link rep item chain, and also setting of Has_Predicates from private
11544 -- subtype to full subtype, since we will need these on the full subtype
11545 -- to create the predicate function. Note that the full subtype may
11546 -- already have rep items, inherited from the full view of the base
11547 -- type, so we must be sure not to overwrite these entries.
11549 declare
11550 Append : Boolean;
11551 Item : Node_Id;
11552 Next_Item : Node_Id;
11554 begin
11555 Item := First_Rep_Item (Full);
11557 -- If no existing rep items on full type, we can just link directly
11558 -- to the list of items on the private type.
11560 if No (Item) then
11561 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11563 -- Otherwise, search to the end of items currently linked to the full
11564 -- subtype and append the private items to the end. However, if Priv
11565 -- and Full already have the same list of rep items, then the append
11566 -- is not done, as that would create a circularity.
11568 elsif Item /= First_Rep_Item (Priv) then
11569 Append := True;
11570 loop
11571 Next_Item := Next_Rep_Item (Item);
11572 exit when No (Next_Item);
11573 Item := Next_Item;
11575 -- If the private view has aspect specifications, the full view
11576 -- inherits them. Since these aspects may already have been
11577 -- attached to the full view during derivation, do not append
11578 -- them if already present.
11580 if Item = First_Rep_Item (Priv) then
11581 Append := False;
11582 exit;
11583 end if;
11584 end loop;
11586 -- And link the private type items at the end of the chain
11588 if Append then
11589 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11590 end if;
11591 end if;
11592 end;
11594 -- Make sure Has_Predicates is set on full type if it is set on the
11595 -- private type. Note that it may already be set on the full type and
11596 -- if so, we don't want to unset it.
11598 if Has_Predicates (Priv) then
11599 Set_Has_Predicates (Full);
11600 end if;
11601 end Complete_Private_Subtype;
11603 ----------------------------
11604 -- Constant_Redeclaration --
11605 ----------------------------
11607 procedure Constant_Redeclaration
11608 (Id : Entity_Id;
11609 N : Node_Id;
11610 T : out Entity_Id)
11612 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11613 Obj_Def : constant Node_Id := Object_Definition (N);
11614 New_T : Entity_Id;
11616 procedure Check_Possible_Deferred_Completion
11617 (Prev_Id : Entity_Id;
11618 Prev_Obj_Def : Node_Id;
11619 Curr_Obj_Def : Node_Id);
11620 -- Determine whether the two object definitions describe the partial
11621 -- and the full view of a constrained deferred constant. Generate
11622 -- a subtype for the full view and verify that it statically matches
11623 -- the subtype of the partial view.
11625 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11626 -- If deferred constant is an access type initialized with an allocator,
11627 -- check whether there is an illegal recursion in the definition,
11628 -- through a default value of some record subcomponent. This is normally
11629 -- detected when generating init procs, but requires this additional
11630 -- mechanism when expansion is disabled.
11632 ----------------------------------------
11633 -- Check_Possible_Deferred_Completion --
11634 ----------------------------------------
11636 procedure Check_Possible_Deferred_Completion
11637 (Prev_Id : Entity_Id;
11638 Prev_Obj_Def : Node_Id;
11639 Curr_Obj_Def : Node_Id)
11641 begin
11642 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11643 and then Present (Constraint (Prev_Obj_Def))
11644 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11645 and then Present (Constraint (Curr_Obj_Def))
11646 then
11647 declare
11648 Loc : constant Source_Ptr := Sloc (N);
11649 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11650 Decl : constant Node_Id :=
11651 Make_Subtype_Declaration (Loc,
11652 Defining_Identifier => Def_Id,
11653 Subtype_Indication =>
11654 Relocate_Node (Curr_Obj_Def));
11656 begin
11657 Insert_Before_And_Analyze (N, Decl);
11658 Set_Etype (Id, Def_Id);
11660 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11661 Error_Msg_Sloc := Sloc (Prev_Id);
11662 Error_Msg_N ("subtype does not statically match deferred "
11663 & "declaration #", N);
11664 end if;
11665 end;
11666 end if;
11667 end Check_Possible_Deferred_Completion;
11669 ---------------------------------
11670 -- Check_Recursive_Declaration --
11671 ---------------------------------
11673 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11674 Comp : Entity_Id;
11676 begin
11677 if Is_Record_Type (Typ) then
11678 Comp := First_Component (Typ);
11679 while Present (Comp) loop
11680 if Comes_From_Source (Comp) then
11681 if Present (Expression (Parent (Comp)))
11682 and then Is_Entity_Name (Expression (Parent (Comp)))
11683 and then Entity (Expression (Parent (Comp))) = Prev
11684 then
11685 Error_Msg_Sloc := Sloc (Parent (Comp));
11686 Error_Msg_NE
11687 ("illegal circularity with declaration for & #",
11688 N, Comp);
11689 return;
11691 elsif Is_Record_Type (Etype (Comp)) then
11692 Check_Recursive_Declaration (Etype (Comp));
11693 end if;
11694 end if;
11696 Next_Component (Comp);
11697 end loop;
11698 end if;
11699 end Check_Recursive_Declaration;
11701 -- Start of processing for Constant_Redeclaration
11703 begin
11704 if Nkind (Parent (Prev)) = N_Object_Declaration then
11705 if Nkind (Object_Definition
11706 (Parent (Prev))) = N_Subtype_Indication
11707 then
11708 -- Find type of new declaration. The constraints of the two
11709 -- views must match statically, but there is no point in
11710 -- creating an itype for the full view.
11712 if Nkind (Obj_Def) = N_Subtype_Indication then
11713 Find_Type (Subtype_Mark (Obj_Def));
11714 New_T := Entity (Subtype_Mark (Obj_Def));
11716 else
11717 Find_Type (Obj_Def);
11718 New_T := Entity (Obj_Def);
11719 end if;
11721 T := Etype (Prev);
11723 else
11724 -- The full view may impose a constraint, even if the partial
11725 -- view does not, so construct the subtype.
11727 New_T := Find_Type_Of_Object (Obj_Def, N);
11728 T := New_T;
11729 end if;
11731 else
11732 -- Current declaration is illegal, diagnosed below in Enter_Name
11734 T := Empty;
11735 New_T := Any_Type;
11736 end if;
11738 -- If previous full declaration or a renaming declaration exists, or if
11739 -- a homograph is present, let Enter_Name handle it, either with an
11740 -- error or with the removal of an overridden implicit subprogram.
11741 -- The previous one is a full declaration if it has an expression
11742 -- (which in the case of an aggregate is indicated by the Init flag).
11744 if Ekind (Prev) /= E_Constant
11745 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11746 or else Present (Expression (Parent (Prev)))
11747 or else Has_Init_Expression (Parent (Prev))
11748 or else Present (Full_View (Prev))
11749 then
11750 Enter_Name (Id);
11752 -- Verify that types of both declarations match, or else that both types
11753 -- are anonymous access types whose designated subtypes statically match
11754 -- (as allowed in Ada 2005 by AI-385).
11756 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11757 and then
11758 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11759 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11760 or else Is_Access_Constant (Etype (New_T)) /=
11761 Is_Access_Constant (Etype (Prev))
11762 or else Can_Never_Be_Null (Etype (New_T)) /=
11763 Can_Never_Be_Null (Etype (Prev))
11764 or else Null_Exclusion_Present (Parent (Prev)) /=
11765 Null_Exclusion_Present (Parent (Id))
11766 or else not Subtypes_Statically_Match
11767 (Designated_Type (Etype (Prev)),
11768 Designated_Type (Etype (New_T))))
11769 then
11770 Error_Msg_Sloc := Sloc (Prev);
11771 Error_Msg_N ("type does not match declaration#", N);
11772 Set_Full_View (Prev, Id);
11773 Set_Etype (Id, Any_Type);
11775 -- A deferred constant whose type is an anonymous array is always
11776 -- illegal (unless imported). A detailed error message might be
11777 -- helpful for Ada beginners.
11779 if Nkind (Object_Definition (Parent (Prev)))
11780 = N_Constrained_Array_Definition
11781 and then Nkind (Object_Definition (N))
11782 = N_Constrained_Array_Definition
11783 then
11784 Error_Msg_N ("\each anonymous array is a distinct type", N);
11785 Error_Msg_N ("a deferred constant must have a named type",
11786 Object_Definition (Parent (Prev)));
11787 end if;
11789 elsif
11790 Null_Exclusion_Present (Parent (Prev))
11791 and then not Null_Exclusion_Present (N)
11792 then
11793 Error_Msg_Sloc := Sloc (Prev);
11794 Error_Msg_N ("null-exclusion does not match declaration#", N);
11795 Set_Full_View (Prev, Id);
11796 Set_Etype (Id, Any_Type);
11798 -- If so, process the full constant declaration
11800 else
11801 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11802 -- the deferred declaration is constrained, then the subtype defined
11803 -- by the subtype_indication in the full declaration shall match it
11804 -- statically.
11806 Check_Possible_Deferred_Completion
11807 (Prev_Id => Prev,
11808 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11809 Curr_Obj_Def => Obj_Def);
11811 Set_Full_View (Prev, Id);
11812 Set_Is_Public (Id, Is_Public (Prev));
11813 Set_Is_Internal (Id);
11814 Append_Entity (Id, Current_Scope);
11816 -- Check ALIASED present if present before (RM 7.4(7))
11818 if Is_Aliased (Prev)
11819 and then not Aliased_Present (N)
11820 then
11821 Error_Msg_Sloc := Sloc (Prev);
11822 Error_Msg_N ("ALIASED required (see declaration #)", N);
11823 end if;
11825 -- Check that placement is in private part and that the incomplete
11826 -- declaration appeared in the visible part.
11828 if Ekind (Current_Scope) = E_Package
11829 and then not In_Private_Part (Current_Scope)
11830 then
11831 Error_Msg_Sloc := Sloc (Prev);
11832 Error_Msg_N
11833 ("full constant for declaration#"
11834 & " must be in private part", N);
11836 elsif Ekind (Current_Scope) = E_Package
11837 and then
11838 List_Containing (Parent (Prev)) /=
11839 Visible_Declarations (Package_Specification (Current_Scope))
11840 then
11841 Error_Msg_N
11842 ("deferred constant must be declared in visible part",
11843 Parent (Prev));
11844 end if;
11846 if Is_Access_Type (T)
11847 and then Nkind (Expression (N)) = N_Allocator
11848 then
11849 Check_Recursive_Declaration (Designated_Type (T));
11850 end if;
11852 -- A deferred constant is a visible entity. If type has invariants,
11853 -- verify that the initial value satisfies them.
11855 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
11856 Insert_After (N,
11857 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
11858 end if;
11859 end if;
11860 end Constant_Redeclaration;
11862 ----------------------
11863 -- Constrain_Access --
11864 ----------------------
11866 procedure Constrain_Access
11867 (Def_Id : in out Entity_Id;
11868 S : Node_Id;
11869 Related_Nod : Node_Id)
11871 T : constant Entity_Id := Entity (Subtype_Mark (S));
11872 Desig_Type : constant Entity_Id := Designated_Type (T);
11873 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
11874 Constraint_OK : Boolean := True;
11876 begin
11877 if Is_Array_Type (Desig_Type) then
11878 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
11880 elsif (Is_Record_Type (Desig_Type)
11881 or else Is_Incomplete_Or_Private_Type (Desig_Type))
11882 and then not Is_Constrained (Desig_Type)
11883 then
11884 -- ??? The following code is a temporary bypass to ignore a
11885 -- discriminant constraint on access type if it is constraining
11886 -- the current record. Avoid creating the implicit subtype of the
11887 -- record we are currently compiling since right now, we cannot
11888 -- handle these. For now, just return the access type itself.
11890 if Desig_Type = Current_Scope
11891 and then No (Def_Id)
11892 then
11893 Set_Ekind (Desig_Subtype, E_Record_Subtype);
11894 Def_Id := Entity (Subtype_Mark (S));
11896 -- This call added to ensure that the constraint is analyzed
11897 -- (needed for a B test). Note that we still return early from
11898 -- this procedure to avoid recursive processing. ???
11900 Constrain_Discriminated_Type
11901 (Desig_Subtype, S, Related_Nod, For_Access => True);
11902 return;
11903 end if;
11905 -- Enforce rule that the constraint is illegal if there is an
11906 -- unconstrained view of the designated type. This means that the
11907 -- partial view (either a private type declaration or a derivation
11908 -- from a private type) has no discriminants. (Defect Report
11909 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11911 -- Rule updated for Ada 2005: The private type is said to have
11912 -- a constrained partial view, given that objects of the type
11913 -- can be declared. Furthermore, the rule applies to all access
11914 -- types, unlike the rule concerning default discriminants (see
11915 -- RM 3.7.1(7/3))
11917 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
11918 and then Has_Private_Declaration (Desig_Type)
11919 and then In_Open_Scopes (Scope (Desig_Type))
11920 and then Has_Discriminants (Desig_Type)
11921 then
11922 declare
11923 Pack : constant Node_Id :=
11924 Unit_Declaration_Node (Scope (Desig_Type));
11925 Decls : List_Id;
11926 Decl : Node_Id;
11928 begin
11929 if Nkind (Pack) = N_Package_Declaration then
11930 Decls := Visible_Declarations (Specification (Pack));
11931 Decl := First (Decls);
11932 while Present (Decl) loop
11933 if (Nkind (Decl) = N_Private_Type_Declaration
11934 and then Chars (Defining_Identifier (Decl)) =
11935 Chars (Desig_Type))
11937 or else
11938 (Nkind (Decl) = N_Full_Type_Declaration
11939 and then
11940 Chars (Defining_Identifier (Decl)) =
11941 Chars (Desig_Type)
11942 and then Is_Derived_Type (Desig_Type)
11943 and then
11944 Has_Private_Declaration (Etype (Desig_Type)))
11945 then
11946 if No (Discriminant_Specifications (Decl)) then
11947 Error_Msg_N
11948 ("cannot constrain access type if designated "
11949 & "type has constrained partial view", S);
11950 end if;
11952 exit;
11953 end if;
11955 Next (Decl);
11956 end loop;
11957 end if;
11958 end;
11959 end if;
11961 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
11962 For_Access => True);
11964 elsif Is_Concurrent_Type (Desig_Type)
11965 and then not Is_Constrained (Desig_Type)
11966 then
11967 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
11969 else
11970 Error_Msg_N ("invalid constraint on access type", S);
11972 -- We simply ignore an invalid constraint
11974 Desig_Subtype := Desig_Type;
11975 Constraint_OK := False;
11976 end if;
11978 if No (Def_Id) then
11979 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
11980 else
11981 Set_Ekind (Def_Id, E_Access_Subtype);
11982 end if;
11984 if Constraint_OK then
11985 Set_Etype (Def_Id, Base_Type (T));
11987 if Is_Private_Type (Desig_Type) then
11988 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
11989 end if;
11990 else
11991 Set_Etype (Def_Id, Any_Type);
11992 end if;
11994 Set_Size_Info (Def_Id, T);
11995 Set_Is_Constrained (Def_Id, Constraint_OK);
11996 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
11997 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11998 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
12000 Conditional_Delay (Def_Id, T);
12002 -- AI-363 : Subtypes of general access types whose designated types have
12003 -- default discriminants are disallowed. In instances, the rule has to
12004 -- be checked against the actual, of which T is the subtype. In a
12005 -- generic body, the rule is checked assuming that the actual type has
12006 -- defaulted discriminants.
12008 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12009 if Ekind (Base_Type (T)) = E_General_Access_Type
12010 and then Has_Defaulted_Discriminants (Desig_Type)
12011 then
12012 if Ada_Version < Ada_2005 then
12013 Error_Msg_N
12014 ("access subtype of general access type would not " &
12015 "be allowed in Ada 2005?y?", S);
12016 else
12017 Error_Msg_N
12018 ("access subtype of general access type not allowed", S);
12019 end if;
12021 Error_Msg_N ("\discriminants have defaults", S);
12023 elsif Is_Access_Type (T)
12024 and then Is_Generic_Type (Desig_Type)
12025 and then Has_Discriminants (Desig_Type)
12026 and then In_Package_Body (Current_Scope)
12027 then
12028 if Ada_Version < Ada_2005 then
12029 Error_Msg_N
12030 ("access subtype would not be allowed in generic body "
12031 & "in Ada 2005?y?", S);
12032 else
12033 Error_Msg_N
12034 ("access subtype not allowed in generic body", S);
12035 end if;
12037 Error_Msg_N
12038 ("\designated type is a discriminated formal", S);
12039 end if;
12040 end if;
12041 end Constrain_Access;
12043 ---------------------
12044 -- Constrain_Array --
12045 ---------------------
12047 procedure Constrain_Array
12048 (Def_Id : in out Entity_Id;
12049 SI : Node_Id;
12050 Related_Nod : Node_Id;
12051 Related_Id : Entity_Id;
12052 Suffix : Character)
12054 C : constant Node_Id := Constraint (SI);
12055 Number_Of_Constraints : Nat := 0;
12056 Index : Node_Id;
12057 S, T : Entity_Id;
12058 Constraint_OK : Boolean := True;
12060 begin
12061 T := Entity (Subtype_Mark (SI));
12063 if Is_Access_Type (T) then
12064 T := Designated_Type (T);
12065 end if;
12067 -- If an index constraint follows a subtype mark in a subtype indication
12068 -- then the type or subtype denoted by the subtype mark must not already
12069 -- impose an index constraint. The subtype mark must denote either an
12070 -- unconstrained array type or an access type whose designated type
12071 -- is such an array type... (RM 3.6.1)
12073 if Is_Constrained (T) then
12074 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12075 Constraint_OK := False;
12077 else
12078 S := First (Constraints (C));
12079 while Present (S) loop
12080 Number_Of_Constraints := Number_Of_Constraints + 1;
12081 Next (S);
12082 end loop;
12084 -- In either case, the index constraint must provide a discrete
12085 -- range for each index of the array type and the type of each
12086 -- discrete range must be the same as that of the corresponding
12087 -- index. (RM 3.6.1)
12089 if Number_Of_Constraints /= Number_Dimensions (T) then
12090 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12091 Constraint_OK := False;
12093 else
12094 S := First (Constraints (C));
12095 Index := First_Index (T);
12096 Analyze (Index);
12098 -- Apply constraints to each index type
12100 for J in 1 .. Number_Of_Constraints loop
12101 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12102 Next (Index);
12103 Next (S);
12104 end loop;
12106 end if;
12107 end if;
12109 if No (Def_Id) then
12110 Def_Id :=
12111 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12112 Set_Parent (Def_Id, Related_Nod);
12114 else
12115 Set_Ekind (Def_Id, E_Array_Subtype);
12116 end if;
12118 Set_Size_Info (Def_Id, (T));
12119 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12120 Set_Etype (Def_Id, Base_Type (T));
12122 if Constraint_OK then
12123 Set_First_Index (Def_Id, First (Constraints (C)));
12124 else
12125 Set_First_Index (Def_Id, First_Index (T));
12126 end if;
12128 Set_Is_Constrained (Def_Id, True);
12129 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12130 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12132 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12133 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12135 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12136 -- We need to initialize the attribute because if Def_Id is previously
12137 -- analyzed through a limited_with clause, it will have the attributes
12138 -- of an incomplete type, one of which is an Elist that overlaps the
12139 -- Packed_Array_Impl_Type field.
12141 Set_Packed_Array_Impl_Type (Def_Id, Empty);
12143 -- Build a freeze node if parent still needs one. Also make sure that
12144 -- the Depends_On_Private status is set because the subtype will need
12145 -- reprocessing at the time the base type does, and also we must set a
12146 -- conditional delay.
12148 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
12149 Conditional_Delay (Def_Id, T);
12150 end Constrain_Array;
12152 ------------------------------
12153 -- Constrain_Component_Type --
12154 ------------------------------
12156 function Constrain_Component_Type
12157 (Comp : Entity_Id;
12158 Constrained_Typ : Entity_Id;
12159 Related_Node : Node_Id;
12160 Typ : Entity_Id;
12161 Constraints : Elist_Id) return Entity_Id
12163 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
12164 Compon_Type : constant Entity_Id := Etype (Comp);
12166 function Build_Constrained_Array_Type
12167 (Old_Type : Entity_Id) return Entity_Id;
12168 -- If Old_Type is an array type, one of whose indexes is constrained
12169 -- by a discriminant, build an Itype whose constraint replaces the
12170 -- discriminant with its value in the constraint.
12172 function Build_Constrained_Discriminated_Type
12173 (Old_Type : Entity_Id) return Entity_Id;
12174 -- Ditto for record components
12176 function Build_Constrained_Access_Type
12177 (Old_Type : Entity_Id) return Entity_Id;
12178 -- Ditto for access types. Makes use of previous two functions, to
12179 -- constrain designated type.
12181 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
12182 -- T is an array or discriminated type, C is a list of constraints
12183 -- that apply to T. This routine builds the constrained subtype.
12185 function Is_Discriminant (Expr : Node_Id) return Boolean;
12186 -- Returns True if Expr is a discriminant
12188 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
12189 -- Find the value of discriminant Discrim in Constraint
12191 -----------------------------------
12192 -- Build_Constrained_Access_Type --
12193 -----------------------------------
12195 function Build_Constrained_Access_Type
12196 (Old_Type : Entity_Id) return Entity_Id
12198 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
12199 Itype : Entity_Id;
12200 Desig_Subtype : Entity_Id;
12201 Scop : Entity_Id;
12203 begin
12204 -- if the original access type was not embedded in the enclosing
12205 -- type definition, there is no need to produce a new access
12206 -- subtype. In fact every access type with an explicit constraint
12207 -- generates an itype whose scope is the enclosing record.
12209 if not Is_Type (Scope (Old_Type)) then
12210 return Old_Type;
12212 elsif Is_Array_Type (Desig_Type) then
12213 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
12215 elsif Has_Discriminants (Desig_Type) then
12217 -- This may be an access type to an enclosing record type for
12218 -- which we are constructing the constrained components. Return
12219 -- the enclosing record subtype. This is not always correct,
12220 -- but avoids infinite recursion. ???
12222 Desig_Subtype := Any_Type;
12224 for J in reverse 0 .. Scope_Stack.Last loop
12225 Scop := Scope_Stack.Table (J).Entity;
12227 if Is_Type (Scop)
12228 and then Base_Type (Scop) = Base_Type (Desig_Type)
12229 then
12230 Desig_Subtype := Scop;
12231 end if;
12233 exit when not Is_Type (Scop);
12234 end loop;
12236 if Desig_Subtype = Any_Type then
12237 Desig_Subtype :=
12238 Build_Constrained_Discriminated_Type (Desig_Type);
12239 end if;
12241 else
12242 return Old_Type;
12243 end if;
12245 if Desig_Subtype /= Desig_Type then
12247 -- The Related_Node better be here or else we won't be able
12248 -- to attach new itypes to a node in the tree.
12250 pragma Assert (Present (Related_Node));
12252 Itype := Create_Itype (E_Access_Subtype, Related_Node);
12254 Set_Etype (Itype, Base_Type (Old_Type));
12255 Set_Size_Info (Itype, (Old_Type));
12256 Set_Directly_Designated_Type (Itype, Desig_Subtype);
12257 Set_Depends_On_Private (Itype, Has_Private_Component
12258 (Old_Type));
12259 Set_Is_Access_Constant (Itype, Is_Access_Constant
12260 (Old_Type));
12262 -- The new itype needs freezing when it depends on a not frozen
12263 -- type and the enclosing subtype needs freezing.
12265 if Has_Delayed_Freeze (Constrained_Typ)
12266 and then not Is_Frozen (Constrained_Typ)
12267 then
12268 Conditional_Delay (Itype, Base_Type (Old_Type));
12269 end if;
12271 return Itype;
12273 else
12274 return Old_Type;
12275 end if;
12276 end Build_Constrained_Access_Type;
12278 ----------------------------------
12279 -- Build_Constrained_Array_Type --
12280 ----------------------------------
12282 function Build_Constrained_Array_Type
12283 (Old_Type : Entity_Id) return Entity_Id
12285 Lo_Expr : Node_Id;
12286 Hi_Expr : Node_Id;
12287 Old_Index : Node_Id;
12288 Range_Node : Node_Id;
12289 Constr_List : List_Id;
12291 Need_To_Create_Itype : Boolean := False;
12293 begin
12294 Old_Index := First_Index (Old_Type);
12295 while Present (Old_Index) loop
12296 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12298 if Is_Discriminant (Lo_Expr)
12299 or else
12300 Is_Discriminant (Hi_Expr)
12301 then
12302 Need_To_Create_Itype := True;
12303 end if;
12305 Next_Index (Old_Index);
12306 end loop;
12308 if Need_To_Create_Itype then
12309 Constr_List := New_List;
12311 Old_Index := First_Index (Old_Type);
12312 while Present (Old_Index) loop
12313 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12315 if Is_Discriminant (Lo_Expr) then
12316 Lo_Expr := Get_Discr_Value (Lo_Expr);
12317 end if;
12319 if Is_Discriminant (Hi_Expr) then
12320 Hi_Expr := Get_Discr_Value (Hi_Expr);
12321 end if;
12323 Range_Node :=
12324 Make_Range
12325 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
12327 Append (Range_Node, To => Constr_List);
12329 Next_Index (Old_Index);
12330 end loop;
12332 return Build_Subtype (Old_Type, Constr_List);
12334 else
12335 return Old_Type;
12336 end if;
12337 end Build_Constrained_Array_Type;
12339 ------------------------------------------
12340 -- Build_Constrained_Discriminated_Type --
12341 ------------------------------------------
12343 function Build_Constrained_Discriminated_Type
12344 (Old_Type : Entity_Id) return Entity_Id
12346 Expr : Node_Id;
12347 Constr_List : List_Id;
12348 Old_Constraint : Elmt_Id;
12350 Need_To_Create_Itype : Boolean := False;
12352 begin
12353 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12354 while Present (Old_Constraint) loop
12355 Expr := Node (Old_Constraint);
12357 if Is_Discriminant (Expr) then
12358 Need_To_Create_Itype := True;
12359 end if;
12361 Next_Elmt (Old_Constraint);
12362 end loop;
12364 if Need_To_Create_Itype then
12365 Constr_List := New_List;
12367 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12368 while Present (Old_Constraint) loop
12369 Expr := Node (Old_Constraint);
12371 if Is_Discriminant (Expr) then
12372 Expr := Get_Discr_Value (Expr);
12373 end if;
12375 Append (New_Copy_Tree (Expr), To => Constr_List);
12377 Next_Elmt (Old_Constraint);
12378 end loop;
12380 return Build_Subtype (Old_Type, Constr_List);
12382 else
12383 return Old_Type;
12384 end if;
12385 end Build_Constrained_Discriminated_Type;
12387 -------------------
12388 -- Build_Subtype --
12389 -------------------
12391 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
12392 Indic : Node_Id;
12393 Subtyp_Decl : Node_Id;
12394 Def_Id : Entity_Id;
12395 Btyp : Entity_Id := Base_Type (T);
12397 begin
12398 -- The Related_Node better be here or else we won't be able to
12399 -- attach new itypes to a node in the tree.
12401 pragma Assert (Present (Related_Node));
12403 -- If the view of the component's type is incomplete or private
12404 -- with unknown discriminants, then the constraint must be applied
12405 -- to the full type.
12407 if Has_Unknown_Discriminants (Btyp)
12408 and then Present (Underlying_Type (Btyp))
12409 then
12410 Btyp := Underlying_Type (Btyp);
12411 end if;
12413 Indic :=
12414 Make_Subtype_Indication (Loc,
12415 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
12416 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
12418 Def_Id := Create_Itype (Ekind (T), Related_Node);
12420 Subtyp_Decl :=
12421 Make_Subtype_Declaration (Loc,
12422 Defining_Identifier => Def_Id,
12423 Subtype_Indication => Indic);
12425 Set_Parent (Subtyp_Decl, Parent (Related_Node));
12427 -- Itypes must be analyzed with checks off (see package Itypes)
12429 Analyze (Subtyp_Decl, Suppress => All_Checks);
12431 return Def_Id;
12432 end Build_Subtype;
12434 ---------------------
12435 -- Get_Discr_Value --
12436 ---------------------
12438 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
12439 D : Entity_Id;
12440 E : Elmt_Id;
12442 begin
12443 -- The discriminant may be declared for the type, in which case we
12444 -- find it by iterating over the list of discriminants. If the
12445 -- discriminant is inherited from a parent type, it appears as the
12446 -- corresponding discriminant of the current type. This will be the
12447 -- case when constraining an inherited component whose constraint is
12448 -- given by a discriminant of the parent.
12450 D := First_Discriminant (Typ);
12451 E := First_Elmt (Constraints);
12453 while Present (D) loop
12454 if D = Entity (Discrim)
12455 or else D = CR_Discriminant (Entity (Discrim))
12456 or else Corresponding_Discriminant (D) = Entity (Discrim)
12457 then
12458 return Node (E);
12459 end if;
12461 Next_Discriminant (D);
12462 Next_Elmt (E);
12463 end loop;
12465 -- The Corresponding_Discriminant mechanism is incomplete, because
12466 -- the correspondence between new and old discriminants is not one
12467 -- to one: one new discriminant can constrain several old ones. In
12468 -- that case, scan sequentially the stored_constraint, the list of
12469 -- discriminants of the parents, and the constraints.
12471 -- Previous code checked for the present of the Stored_Constraint
12472 -- list for the derived type, but did not use it at all. Should it
12473 -- be present when the component is a discriminated task type?
12475 if Is_Derived_Type (Typ)
12476 and then Scope (Entity (Discrim)) = Etype (Typ)
12477 then
12478 D := First_Discriminant (Etype (Typ));
12479 E := First_Elmt (Constraints);
12480 while Present (D) loop
12481 if D = Entity (Discrim) then
12482 return Node (E);
12483 end if;
12485 Next_Discriminant (D);
12486 Next_Elmt (E);
12487 end loop;
12488 end if;
12490 -- Something is wrong if we did not find the value
12492 raise Program_Error;
12493 end Get_Discr_Value;
12495 ---------------------
12496 -- Is_Discriminant --
12497 ---------------------
12499 function Is_Discriminant (Expr : Node_Id) return Boolean is
12500 Discrim_Scope : Entity_Id;
12502 begin
12503 if Denotes_Discriminant (Expr) then
12504 Discrim_Scope := Scope (Entity (Expr));
12506 -- Either we have a reference to one of Typ's discriminants,
12508 pragma Assert (Discrim_Scope = Typ
12510 -- or to the discriminants of the parent type, in the case
12511 -- of a derivation of a tagged type with variants.
12513 or else Discrim_Scope = Etype (Typ)
12514 or else Full_View (Discrim_Scope) = Etype (Typ)
12516 -- or same as above for the case where the discriminants
12517 -- were declared in Typ's private view.
12519 or else (Is_Private_Type (Discrim_Scope)
12520 and then Chars (Discrim_Scope) = Chars (Typ))
12522 -- or else we are deriving from the full view and the
12523 -- discriminant is declared in the private entity.
12525 or else (Is_Private_Type (Typ)
12526 and then Chars (Discrim_Scope) = Chars (Typ))
12528 -- Or we are constrained the corresponding record of a
12529 -- synchronized type that completes a private declaration.
12531 or else (Is_Concurrent_Record_Type (Typ)
12532 and then
12533 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
12535 -- or we have a class-wide type, in which case make sure the
12536 -- discriminant found belongs to the root type.
12538 or else (Is_Class_Wide_Type (Typ)
12539 and then Etype (Typ) = Discrim_Scope));
12541 return True;
12542 end if;
12544 -- In all other cases we have something wrong
12546 return False;
12547 end Is_Discriminant;
12549 -- Start of processing for Constrain_Component_Type
12551 begin
12552 if Nkind (Parent (Comp)) = N_Component_Declaration
12553 and then Comes_From_Source (Parent (Comp))
12554 and then Comes_From_Source
12555 (Subtype_Indication (Component_Definition (Parent (Comp))))
12556 and then
12557 Is_Entity_Name
12558 (Subtype_Indication (Component_Definition (Parent (Comp))))
12559 then
12560 return Compon_Type;
12562 elsif Is_Array_Type (Compon_Type) then
12563 return Build_Constrained_Array_Type (Compon_Type);
12565 elsif Has_Discriminants (Compon_Type) then
12566 return Build_Constrained_Discriminated_Type (Compon_Type);
12568 elsif Is_Access_Type (Compon_Type) then
12569 return Build_Constrained_Access_Type (Compon_Type);
12571 else
12572 return Compon_Type;
12573 end if;
12574 end Constrain_Component_Type;
12576 --------------------------
12577 -- Constrain_Concurrent --
12578 --------------------------
12580 -- For concurrent types, the associated record value type carries the same
12581 -- discriminants, so when we constrain a concurrent type, we must constrain
12582 -- the corresponding record type as well.
12584 procedure Constrain_Concurrent
12585 (Def_Id : in out Entity_Id;
12586 SI : Node_Id;
12587 Related_Nod : Node_Id;
12588 Related_Id : Entity_Id;
12589 Suffix : Character)
12591 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12592 -- case of a private subtype (needed when only doing semantic analysis).
12594 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12595 T_Val : Entity_Id;
12597 begin
12598 if Is_Access_Type (T_Ent) then
12599 T_Ent := Designated_Type (T_Ent);
12600 end if;
12602 T_Val := Corresponding_Record_Type (T_Ent);
12604 if Present (T_Val) then
12606 if No (Def_Id) then
12607 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12608 end if;
12610 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12612 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12613 Set_Corresponding_Record_Type (Def_Id,
12614 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12616 else
12617 -- If there is no associated record, expansion is disabled and this
12618 -- is a generic context. Create a subtype in any case, so that
12619 -- semantic analysis can proceed.
12621 if No (Def_Id) then
12622 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12623 end if;
12625 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12626 end if;
12627 end Constrain_Concurrent;
12629 ------------------------------------
12630 -- Constrain_Corresponding_Record --
12631 ------------------------------------
12633 function Constrain_Corresponding_Record
12634 (Prot_Subt : Entity_Id;
12635 Corr_Rec : Entity_Id;
12636 Related_Nod : Node_Id) return Entity_Id
12638 T_Sub : constant Entity_Id :=
12639 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12641 begin
12642 Set_Etype (T_Sub, Corr_Rec);
12643 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12644 Set_Is_Constrained (T_Sub, True);
12645 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12646 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12648 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12649 Set_Discriminant_Constraint
12650 (T_Sub, Discriminant_Constraint (Prot_Subt));
12651 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12652 Create_Constrained_Components
12653 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12654 end if;
12656 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12658 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12659 Conditional_Delay (T_Sub, Corr_Rec);
12661 else
12662 -- This is a component subtype: it will be frozen in the context of
12663 -- the enclosing record's init_proc, so that discriminant references
12664 -- are resolved to discriminals. (Note: we used to skip freezing
12665 -- altogether in that case, which caused errors downstream for
12666 -- components of a bit packed array type).
12668 Set_Has_Delayed_Freeze (T_Sub);
12669 end if;
12671 return T_Sub;
12672 end Constrain_Corresponding_Record;
12674 -----------------------
12675 -- Constrain_Decimal --
12676 -----------------------
12678 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12679 T : constant Entity_Id := Entity (Subtype_Mark (S));
12680 C : constant Node_Id := Constraint (S);
12681 Loc : constant Source_Ptr := Sloc (C);
12682 Range_Expr : Node_Id;
12683 Digits_Expr : Node_Id;
12684 Digits_Val : Uint;
12685 Bound_Val : Ureal;
12687 begin
12688 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12690 if Nkind (C) = N_Range_Constraint then
12691 Range_Expr := Range_Expression (C);
12692 Digits_Val := Digits_Value (T);
12694 else
12695 pragma Assert (Nkind (C) = N_Digits_Constraint);
12697 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12699 Digits_Expr := Digits_Expression (C);
12700 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12702 Check_Digits_Expression (Digits_Expr);
12703 Digits_Val := Expr_Value (Digits_Expr);
12705 if Digits_Val > Digits_Value (T) then
12706 Error_Msg_N
12707 ("digits expression is incompatible with subtype", C);
12708 Digits_Val := Digits_Value (T);
12709 end if;
12711 if Present (Range_Constraint (C)) then
12712 Range_Expr := Range_Expression (Range_Constraint (C));
12713 else
12714 Range_Expr := Empty;
12715 end if;
12716 end if;
12718 Set_Etype (Def_Id, Base_Type (T));
12719 Set_Size_Info (Def_Id, (T));
12720 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12721 Set_Delta_Value (Def_Id, Delta_Value (T));
12722 Set_Scale_Value (Def_Id, Scale_Value (T));
12723 Set_Small_Value (Def_Id, Small_Value (T));
12724 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12725 Set_Digits_Value (Def_Id, Digits_Val);
12727 -- Manufacture range from given digits value if no range present
12729 if No (Range_Expr) then
12730 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12731 Range_Expr :=
12732 Make_Range (Loc,
12733 Low_Bound =>
12734 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12735 High_Bound =>
12736 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12737 end if;
12739 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12740 Set_Discrete_RM_Size (Def_Id);
12742 -- Unconditionally delay the freeze, since we cannot set size
12743 -- information in all cases correctly until the freeze point.
12745 Set_Has_Delayed_Freeze (Def_Id);
12746 end Constrain_Decimal;
12748 ----------------------------------
12749 -- Constrain_Discriminated_Type --
12750 ----------------------------------
12752 procedure Constrain_Discriminated_Type
12753 (Def_Id : Entity_Id;
12754 S : Node_Id;
12755 Related_Nod : Node_Id;
12756 For_Access : Boolean := False)
12758 E : constant Entity_Id := Entity (Subtype_Mark (S));
12759 T : Entity_Id;
12760 C : Node_Id;
12761 Elist : Elist_Id := New_Elmt_List;
12763 procedure Fixup_Bad_Constraint;
12764 -- This is called after finding a bad constraint, and after having
12765 -- posted an appropriate error message. The mission is to leave the
12766 -- entity T in as reasonable state as possible.
12768 --------------------------
12769 -- Fixup_Bad_Constraint --
12770 --------------------------
12772 procedure Fixup_Bad_Constraint is
12773 begin
12774 -- Set a reasonable Ekind for the entity. For an incomplete type,
12775 -- we can't do much, but for other types, we can set the proper
12776 -- corresponding subtype kind.
12778 if Ekind (T) = E_Incomplete_Type then
12779 Set_Ekind (Def_Id, Ekind (T));
12780 else
12781 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12782 end if;
12784 -- Set Etype to the known type, to reduce chances of cascaded errors
12786 Set_Etype (Def_Id, E);
12787 Set_Error_Posted (Def_Id);
12788 end Fixup_Bad_Constraint;
12790 -- Start of processing for Constrain_Discriminated_Type
12792 begin
12793 C := Constraint (S);
12795 -- A discriminant constraint is only allowed in a subtype indication,
12796 -- after a subtype mark. This subtype mark must denote either a type
12797 -- with discriminants, or an access type whose designated type is a
12798 -- type with discriminants. A discriminant constraint specifies the
12799 -- values of these discriminants (RM 3.7.2(5)).
12801 T := Base_Type (Entity (Subtype_Mark (S)));
12803 if Is_Access_Type (T) then
12804 T := Designated_Type (T);
12805 end if;
12807 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12808 -- Avoid generating an error for access-to-incomplete subtypes.
12810 if Ada_Version >= Ada_2005
12811 and then Ekind (T) = E_Incomplete_Type
12812 and then Nkind (Parent (S)) = N_Subtype_Declaration
12813 and then not Is_Itype (Def_Id)
12814 then
12815 -- A little sanity check, emit an error message if the type
12816 -- has discriminants to begin with. Type T may be a regular
12817 -- incomplete type or imported via a limited with clause.
12819 if Has_Discriminants (T)
12820 or else (From_Limited_With (T)
12821 and then Present (Non_Limited_View (T))
12822 and then Nkind (Parent (Non_Limited_View (T))) =
12823 N_Full_Type_Declaration
12824 and then Present (Discriminant_Specifications
12825 (Parent (Non_Limited_View (T)))))
12826 then
12827 Error_Msg_N
12828 ("(Ada 2005) incomplete subtype may not be constrained", C);
12829 else
12830 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12831 end if;
12833 Fixup_Bad_Constraint;
12834 return;
12836 -- Check that the type has visible discriminants. The type may be
12837 -- a private type with unknown discriminants whose full view has
12838 -- discriminants which are invisible.
12840 elsif not Has_Discriminants (T)
12841 or else
12842 (Has_Unknown_Discriminants (T)
12843 and then Is_Private_Type (T))
12844 then
12845 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12846 Fixup_Bad_Constraint;
12847 return;
12849 elsif Is_Constrained (E)
12850 or else (Ekind (E) = E_Class_Wide_Subtype
12851 and then Present (Discriminant_Constraint (E)))
12852 then
12853 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
12854 Fixup_Bad_Constraint;
12855 return;
12856 end if;
12858 -- T may be an unconstrained subtype (e.g. a generic actual).
12859 -- Constraint applies to the base type.
12861 T := Base_Type (T);
12863 Elist := Build_Discriminant_Constraints (T, S);
12865 -- If the list returned was empty we had an error in building the
12866 -- discriminant constraint. We have also already signalled an error
12867 -- in the incomplete type case
12869 if Is_Empty_Elmt_List (Elist) then
12870 Fixup_Bad_Constraint;
12871 return;
12872 end if;
12874 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
12875 end Constrain_Discriminated_Type;
12877 ---------------------------
12878 -- Constrain_Enumeration --
12879 ---------------------------
12881 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
12882 T : constant Entity_Id := Entity (Subtype_Mark (S));
12883 C : constant Node_Id := Constraint (S);
12885 begin
12886 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12888 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
12890 Set_Etype (Def_Id, Base_Type (T));
12891 Set_Size_Info (Def_Id, (T));
12892 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12893 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12895 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12897 Set_Discrete_RM_Size (Def_Id);
12898 end Constrain_Enumeration;
12900 ----------------------
12901 -- Constrain_Float --
12902 ----------------------
12904 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
12905 T : constant Entity_Id := Entity (Subtype_Mark (S));
12906 C : Node_Id;
12907 D : Node_Id;
12908 Rais : Node_Id;
12910 begin
12911 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
12913 Set_Etype (Def_Id, Base_Type (T));
12914 Set_Size_Info (Def_Id, (T));
12915 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12917 -- Process the constraint
12919 C := Constraint (S);
12921 -- Digits constraint present
12923 if Nkind (C) = N_Digits_Constraint then
12925 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12926 Check_Restriction (No_Obsolescent_Features, C);
12928 if Warn_On_Obsolescent_Feature then
12929 Error_Msg_N
12930 ("subtype digits constraint is an " &
12931 "obsolescent feature (RM J.3(8))?j?", C);
12932 end if;
12934 D := Digits_Expression (C);
12935 Analyze_And_Resolve (D, Any_Integer);
12936 Check_Digits_Expression (D);
12937 Set_Digits_Value (Def_Id, Expr_Value (D));
12939 -- Check that digits value is in range. Obviously we can do this
12940 -- at compile time, but it is strictly a runtime check, and of
12941 -- course there is an ACVC test that checks this.
12943 if Digits_Value (Def_Id) > Digits_Value (T) then
12944 Error_Msg_Uint_1 := Digits_Value (T);
12945 Error_Msg_N ("??digits value is too large, maximum is ^", D);
12946 Rais :=
12947 Make_Raise_Constraint_Error (Sloc (D),
12948 Reason => CE_Range_Check_Failed);
12949 Insert_Action (Declaration_Node (Def_Id), Rais);
12950 end if;
12952 C := Range_Constraint (C);
12954 -- No digits constraint present
12956 else
12957 Set_Digits_Value (Def_Id, Digits_Value (T));
12958 end if;
12960 -- Range constraint present
12962 if Nkind (C) = N_Range_Constraint then
12963 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12965 -- No range constraint present
12967 else
12968 pragma Assert (No (C));
12969 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12970 end if;
12972 Set_Is_Constrained (Def_Id);
12973 end Constrain_Float;
12975 ---------------------
12976 -- Constrain_Index --
12977 ---------------------
12979 procedure Constrain_Index
12980 (Index : Node_Id;
12981 S : Node_Id;
12982 Related_Nod : Node_Id;
12983 Related_Id : Entity_Id;
12984 Suffix : Character;
12985 Suffix_Index : Nat)
12987 Def_Id : Entity_Id;
12988 R : Node_Id := Empty;
12989 T : constant Entity_Id := Etype (Index);
12991 begin
12992 if Nkind (S) = N_Range
12993 or else
12994 (Nkind (S) = N_Attribute_Reference
12995 and then Attribute_Name (S) = Name_Range)
12996 then
12997 -- A Range attribute will be transformed into N_Range by Resolve
12999 Analyze (S);
13000 Set_Etype (S, T);
13001 R := S;
13003 Process_Range_Expr_In_Decl (R, T);
13005 if not Error_Posted (S)
13006 and then
13007 (Nkind (S) /= N_Range
13008 or else not Covers (T, (Etype (Low_Bound (S))))
13009 or else not Covers (T, (Etype (High_Bound (S)))))
13010 then
13011 if Base_Type (T) /= Any_Type
13012 and then Etype (Low_Bound (S)) /= Any_Type
13013 and then Etype (High_Bound (S)) /= Any_Type
13014 then
13015 Error_Msg_N ("range expected", S);
13016 end if;
13017 end if;
13019 elsif Nkind (S) = N_Subtype_Indication then
13021 -- The parser has verified that this is a discrete indication
13023 Resolve_Discrete_Subtype_Indication (S, T);
13024 Bad_Predicated_Subtype_Use
13025 ("subtype& has predicate, not allowed in index constraint",
13026 S, Entity (Subtype_Mark (S)));
13028 R := Range_Expression (Constraint (S));
13030 -- Capture values of bounds and generate temporaries for them if
13031 -- needed, since checks may cause duplication of the expressions
13032 -- which must not be reevaluated.
13034 -- The forced evaluation removes side effects from expressions, which
13035 -- should occur also in GNATprove mode. Otherwise, we end up with
13036 -- unexpected insertions of actions at places where this is not
13037 -- supposed to occur, e.g. on default parameters of a call.
13039 if Expander_Active or GNATprove_Mode then
13040 Force_Evaluation (Low_Bound (R));
13041 Force_Evaluation (High_Bound (R));
13042 end if;
13044 elsif Nkind (S) = N_Discriminant_Association then
13046 -- Syntactically valid in subtype indication
13048 Error_Msg_N ("invalid index constraint", S);
13049 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13050 return;
13052 -- Subtype_Mark case, no anonymous subtypes to construct
13054 else
13055 Analyze (S);
13057 if Is_Entity_Name (S) then
13058 if not Is_Type (Entity (S)) then
13059 Error_Msg_N ("expect subtype mark for index constraint", S);
13061 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13062 Wrong_Type (S, Base_Type (T));
13064 -- Check error of subtype with predicate in index constraint
13066 else
13067 Bad_Predicated_Subtype_Use
13068 ("subtype& has predicate, not allowed in index constraint",
13069 S, Entity (S));
13070 end if;
13072 return;
13074 else
13075 Error_Msg_N ("invalid index constraint", S);
13076 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13077 return;
13078 end if;
13079 end if;
13081 Def_Id :=
13082 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13084 Set_Etype (Def_Id, Base_Type (T));
13086 if Is_Modular_Integer_Type (T) then
13087 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13089 elsif Is_Integer_Type (T) then
13090 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13092 else
13093 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13094 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13095 Set_First_Literal (Def_Id, First_Literal (T));
13096 end if;
13098 Set_Size_Info (Def_Id, (T));
13099 Set_RM_Size (Def_Id, RM_Size (T));
13100 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13102 Set_Scalar_Range (Def_Id, R);
13104 Set_Etype (S, Def_Id);
13105 Set_Discrete_RM_Size (Def_Id);
13106 end Constrain_Index;
13108 -----------------------
13109 -- Constrain_Integer --
13110 -----------------------
13112 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13113 T : constant Entity_Id := Entity (Subtype_Mark (S));
13114 C : constant Node_Id := Constraint (S);
13116 begin
13117 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13119 if Is_Modular_Integer_Type (T) then
13120 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13121 else
13122 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13123 end if;
13125 Set_Etype (Def_Id, Base_Type (T));
13126 Set_Size_Info (Def_Id, (T));
13127 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13128 Set_Discrete_RM_Size (Def_Id);
13129 end Constrain_Integer;
13131 ------------------------------
13132 -- Constrain_Ordinary_Fixed --
13133 ------------------------------
13135 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
13136 T : constant Entity_Id := Entity (Subtype_Mark (S));
13137 C : Node_Id;
13138 D : Node_Id;
13139 Rais : Node_Id;
13141 begin
13142 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
13143 Set_Etype (Def_Id, Base_Type (T));
13144 Set_Size_Info (Def_Id, (T));
13145 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13146 Set_Small_Value (Def_Id, Small_Value (T));
13148 -- Process the constraint
13150 C := Constraint (S);
13152 -- Delta constraint present
13154 if Nkind (C) = N_Delta_Constraint then
13156 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
13157 Check_Restriction (No_Obsolescent_Features, C);
13159 if Warn_On_Obsolescent_Feature then
13160 Error_Msg_S
13161 ("subtype delta constraint is an " &
13162 "obsolescent feature (RM J.3(7))?j?");
13163 end if;
13165 D := Delta_Expression (C);
13166 Analyze_And_Resolve (D, Any_Real);
13167 Check_Delta_Expression (D);
13168 Set_Delta_Value (Def_Id, Expr_Value_R (D));
13170 -- Check that delta value is in range. Obviously we can do this
13171 -- at compile time, but it is strictly a runtime check, and of
13172 -- course there is an ACVC test that checks this.
13174 if Delta_Value (Def_Id) < Delta_Value (T) then
13175 Error_Msg_N ("??delta value is too small", D);
13176 Rais :=
13177 Make_Raise_Constraint_Error (Sloc (D),
13178 Reason => CE_Range_Check_Failed);
13179 Insert_Action (Declaration_Node (Def_Id), Rais);
13180 end if;
13182 C := Range_Constraint (C);
13184 -- No delta constraint present
13186 else
13187 Set_Delta_Value (Def_Id, Delta_Value (T));
13188 end if;
13190 -- Range constraint present
13192 if Nkind (C) = N_Range_Constraint then
13193 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13195 -- No range constraint present
13197 else
13198 pragma Assert (No (C));
13199 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13201 end if;
13203 Set_Discrete_RM_Size (Def_Id);
13205 -- Unconditionally delay the freeze, since we cannot set size
13206 -- information in all cases correctly until the freeze point.
13208 Set_Has_Delayed_Freeze (Def_Id);
13209 end Constrain_Ordinary_Fixed;
13211 -----------------------
13212 -- Contain_Interface --
13213 -----------------------
13215 function Contain_Interface
13216 (Iface : Entity_Id;
13217 Ifaces : Elist_Id) return Boolean
13219 Iface_Elmt : Elmt_Id;
13221 begin
13222 if Present (Ifaces) then
13223 Iface_Elmt := First_Elmt (Ifaces);
13224 while Present (Iface_Elmt) loop
13225 if Node (Iface_Elmt) = Iface then
13226 return True;
13227 end if;
13229 Next_Elmt (Iface_Elmt);
13230 end loop;
13231 end if;
13233 return False;
13234 end Contain_Interface;
13236 ---------------------------
13237 -- Convert_Scalar_Bounds --
13238 ---------------------------
13240 procedure Convert_Scalar_Bounds
13241 (N : Node_Id;
13242 Parent_Type : Entity_Id;
13243 Derived_Type : Entity_Id;
13244 Loc : Source_Ptr)
13246 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
13248 Lo : Node_Id;
13249 Hi : Node_Id;
13250 Rng : Node_Id;
13252 begin
13253 -- Defend against previous errors
13255 if No (Scalar_Range (Derived_Type)) then
13256 Check_Error_Detected;
13257 return;
13258 end if;
13260 Lo := Build_Scalar_Bound
13261 (Type_Low_Bound (Derived_Type),
13262 Parent_Type, Implicit_Base);
13264 Hi := Build_Scalar_Bound
13265 (Type_High_Bound (Derived_Type),
13266 Parent_Type, Implicit_Base);
13268 Rng :=
13269 Make_Range (Loc,
13270 Low_Bound => Lo,
13271 High_Bound => Hi);
13273 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
13275 Set_Parent (Rng, N);
13276 Set_Scalar_Range (Derived_Type, Rng);
13278 -- Analyze the bounds
13280 Analyze_And_Resolve (Lo, Implicit_Base);
13281 Analyze_And_Resolve (Hi, Implicit_Base);
13283 -- Analyze the range itself, except that we do not analyze it if
13284 -- the bounds are real literals, and we have a fixed-point type.
13285 -- The reason for this is that we delay setting the bounds in this
13286 -- case till we know the final Small and Size values (see circuit
13287 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13289 if Is_Fixed_Point_Type (Parent_Type)
13290 and then Nkind (Lo) = N_Real_Literal
13291 and then Nkind (Hi) = N_Real_Literal
13292 then
13293 return;
13295 -- Here we do the analysis of the range
13297 -- Note: we do this manually, since if we do a normal Analyze and
13298 -- Resolve call, there are problems with the conversions used for
13299 -- the derived type range.
13301 else
13302 Set_Etype (Rng, Implicit_Base);
13303 Set_Analyzed (Rng, True);
13304 end if;
13305 end Convert_Scalar_Bounds;
13307 -------------------
13308 -- Copy_And_Swap --
13309 -------------------
13311 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
13312 begin
13313 -- Initialize new full declaration entity by copying the pertinent
13314 -- fields of the corresponding private declaration entity.
13316 -- We temporarily set Ekind to a value appropriate for a type to
13317 -- avoid assert failures in Einfo from checking for setting type
13318 -- attributes on something that is not a type. Ekind (Priv) is an
13319 -- appropriate choice, since it allowed the attributes to be set
13320 -- in the first place. This Ekind value will be modified later.
13322 Set_Ekind (Full, Ekind (Priv));
13324 -- Also set Etype temporarily to Any_Type, again, in the absence
13325 -- of errors, it will be properly reset, and if there are errors,
13326 -- then we want a value of Any_Type to remain.
13328 Set_Etype (Full, Any_Type);
13330 -- Now start copying attributes
13332 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
13334 if Has_Discriminants (Full) then
13335 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
13336 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
13337 end if;
13339 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
13340 Set_Homonym (Full, Homonym (Priv));
13341 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
13342 Set_Is_Public (Full, Is_Public (Priv));
13343 Set_Is_Pure (Full, Is_Pure (Priv));
13344 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
13345 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
13346 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
13347 Set_Has_Pragma_Unreferenced_Objects
13348 (Full, Has_Pragma_Unreferenced_Objects
13349 (Priv));
13351 Conditional_Delay (Full, Priv);
13353 if Is_Tagged_Type (Full) then
13354 Set_Direct_Primitive_Operations
13355 (Full, Direct_Primitive_Operations (Priv));
13356 Set_No_Tagged_Streams_Pragma
13357 (Full, No_Tagged_Streams_Pragma (Priv));
13359 if Is_Base_Type (Priv) then
13360 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
13361 end if;
13362 end if;
13364 Set_Is_Volatile (Full, Is_Volatile (Priv));
13365 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
13366 Set_Scope (Full, Scope (Priv));
13367 Set_Next_Entity (Full, Next_Entity (Priv));
13368 Set_First_Entity (Full, First_Entity (Priv));
13369 Set_Last_Entity (Full, Last_Entity (Priv));
13371 -- If access types have been recorded for later handling, keep them in
13372 -- the full view so that they get handled when the full view freeze
13373 -- node is expanded.
13375 if Present (Freeze_Node (Priv))
13376 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
13377 then
13378 Ensure_Freeze_Node (Full);
13379 Set_Access_Types_To_Process
13380 (Freeze_Node (Full),
13381 Access_Types_To_Process (Freeze_Node (Priv)));
13382 end if;
13384 -- Swap the two entities. Now Private is the full type entity and Full
13385 -- is the private one. They will be swapped back at the end of the
13386 -- private part. This swapping ensures that the entity that is visible
13387 -- in the private part is the full declaration.
13389 Exchange_Entities (Priv, Full);
13390 Append_Entity (Full, Scope (Full));
13391 end Copy_And_Swap;
13393 -------------------------------------
13394 -- Copy_Array_Base_Type_Attributes --
13395 -------------------------------------
13397 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
13398 begin
13399 Set_Component_Alignment (T1, Component_Alignment (T2));
13400 Set_Component_Type (T1, Component_Type (T2));
13401 Set_Component_Size (T1, Component_Size (T2));
13402 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
13403 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
13404 Set_Has_Protected (T1, Has_Protected (T2));
13405 Set_Has_Task (T1, Has_Task (T2));
13406 Set_Is_Packed (T1, Is_Packed (T2));
13407 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
13408 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
13409 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
13410 end Copy_Array_Base_Type_Attributes;
13412 -----------------------------------
13413 -- Copy_Array_Subtype_Attributes --
13414 -----------------------------------
13416 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
13417 begin
13418 Set_Size_Info (T1, T2);
13420 Set_First_Index (T1, First_Index (T2));
13421 Set_Is_Aliased (T1, Is_Aliased (T2));
13422 Set_Is_Volatile (T1, Is_Volatile (T2));
13423 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
13424 Set_Is_Constrained (T1, Is_Constrained (T2));
13425 Set_Depends_On_Private (T1, Has_Private_Component (T2));
13426 Inherit_Rep_Item_Chain (T1, T2);
13427 Set_Convention (T1, Convention (T2));
13428 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
13429 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
13430 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
13431 end Copy_Array_Subtype_Attributes;
13433 -----------------------------------
13434 -- Create_Constrained_Components --
13435 -----------------------------------
13437 procedure Create_Constrained_Components
13438 (Subt : Entity_Id;
13439 Decl_Node : Node_Id;
13440 Typ : Entity_Id;
13441 Constraints : Elist_Id)
13443 Loc : constant Source_Ptr := Sloc (Subt);
13444 Comp_List : constant Elist_Id := New_Elmt_List;
13445 Parent_Type : constant Entity_Id := Etype (Typ);
13446 Assoc_List : constant List_Id := New_List;
13447 Discr_Val : Elmt_Id;
13448 Errors : Boolean;
13449 New_C : Entity_Id;
13450 Old_C : Entity_Id;
13451 Is_Static : Boolean := True;
13453 procedure Collect_Fixed_Components (Typ : Entity_Id);
13454 -- Collect parent type components that do not appear in a variant part
13456 procedure Create_All_Components;
13457 -- Iterate over Comp_List to create the components of the subtype
13459 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
13460 -- Creates a new component from Old_Compon, copying all the fields from
13461 -- it, including its Etype, inserts the new component in the Subt entity
13462 -- chain and returns the new component.
13464 function Is_Variant_Record (T : Entity_Id) return Boolean;
13465 -- If true, and discriminants are static, collect only components from
13466 -- variants selected by discriminant values.
13468 ------------------------------
13469 -- Collect_Fixed_Components --
13470 ------------------------------
13472 procedure Collect_Fixed_Components (Typ : Entity_Id) is
13473 begin
13474 -- Build association list for discriminants, and find components of the
13475 -- variant part selected by the values of the discriminants.
13477 Old_C := First_Discriminant (Typ);
13478 Discr_Val := First_Elmt (Constraints);
13479 while Present (Old_C) loop
13480 Append_To (Assoc_List,
13481 Make_Component_Association (Loc,
13482 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
13483 Expression => New_Copy (Node (Discr_Val))));
13485 Next_Elmt (Discr_Val);
13486 Next_Discriminant (Old_C);
13487 end loop;
13489 -- The tag and the possible parent component are unconditionally in
13490 -- the subtype.
13492 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
13493 Old_C := First_Component (Typ);
13494 while Present (Old_C) loop
13495 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
13496 Append_Elmt (Old_C, Comp_List);
13497 end if;
13499 Next_Component (Old_C);
13500 end loop;
13501 end if;
13502 end Collect_Fixed_Components;
13504 ---------------------------
13505 -- Create_All_Components --
13506 ---------------------------
13508 procedure Create_All_Components is
13509 Comp : Elmt_Id;
13511 begin
13512 Comp := First_Elmt (Comp_List);
13513 while Present (Comp) loop
13514 Old_C := Node (Comp);
13515 New_C := Create_Component (Old_C);
13517 Set_Etype
13518 (New_C,
13519 Constrain_Component_Type
13520 (Old_C, Subt, Decl_Node, Typ, Constraints));
13521 Set_Is_Public (New_C, Is_Public (Subt));
13523 Next_Elmt (Comp);
13524 end loop;
13525 end Create_All_Components;
13527 ----------------------
13528 -- Create_Component --
13529 ----------------------
13531 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
13532 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
13534 begin
13535 if Ekind (Old_Compon) = E_Discriminant
13536 and then Is_Completely_Hidden (Old_Compon)
13537 then
13538 -- This is a shadow discriminant created for a discriminant of
13539 -- the parent type, which needs to be present in the subtype.
13540 -- Give the shadow discriminant an internal name that cannot
13541 -- conflict with that of visible components.
13543 Set_Chars (New_Compon, New_Internal_Name ('C'));
13544 end if;
13546 -- Set the parent so we have a proper link for freezing etc. This is
13547 -- not a real parent pointer, since of course our parent does not own
13548 -- up to us and reference us, we are an illegitimate child of the
13549 -- original parent.
13551 Set_Parent (New_Compon, Parent (Old_Compon));
13553 -- If the old component's Esize was already determined and is a
13554 -- static value, then the new component simply inherits it. Otherwise
13555 -- the old component's size may require run-time determination, but
13556 -- the new component's size still might be statically determinable
13557 -- (if, for example it has a static constraint). In that case we want
13558 -- Layout_Type to recompute the component's size, so we reset its
13559 -- size and positional fields.
13561 if Frontend_Layout_On_Target
13562 and then not Known_Static_Esize (Old_Compon)
13563 then
13564 Set_Esize (New_Compon, Uint_0);
13565 Init_Normalized_First_Bit (New_Compon);
13566 Init_Normalized_Position (New_Compon);
13567 Init_Normalized_Position_Max (New_Compon);
13568 end if;
13570 -- We do not want this node marked as Comes_From_Source, since
13571 -- otherwise it would get first class status and a separate cross-
13572 -- reference line would be generated. Illegitimate children do not
13573 -- rate such recognition.
13575 Set_Comes_From_Source (New_Compon, False);
13577 -- But it is a real entity, and a birth certificate must be properly
13578 -- registered by entering it into the entity list.
13580 Enter_Name (New_Compon);
13582 return New_Compon;
13583 end Create_Component;
13585 -----------------------
13586 -- Is_Variant_Record --
13587 -----------------------
13589 function Is_Variant_Record (T : Entity_Id) return Boolean is
13590 begin
13591 return Nkind (Parent (T)) = N_Full_Type_Declaration
13592 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13593 and then Present (Component_List (Type_Definition (Parent (T))))
13594 and then
13595 Present
13596 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13597 end Is_Variant_Record;
13599 -- Start of processing for Create_Constrained_Components
13601 begin
13602 pragma Assert (Subt /= Base_Type (Subt));
13603 pragma Assert (Typ = Base_Type (Typ));
13605 Set_First_Entity (Subt, Empty);
13606 Set_Last_Entity (Subt, Empty);
13608 -- Check whether constraint is fully static, in which case we can
13609 -- optimize the list of components.
13611 Discr_Val := First_Elmt (Constraints);
13612 while Present (Discr_Val) loop
13613 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13614 Is_Static := False;
13615 exit;
13616 end if;
13618 Next_Elmt (Discr_Val);
13619 end loop;
13621 Set_Has_Static_Discriminants (Subt, Is_Static);
13623 Push_Scope (Subt);
13625 -- Inherit the discriminants of the parent type
13627 Add_Discriminants : declare
13628 Num_Disc : Int;
13629 Num_Gird : Int;
13631 begin
13632 Num_Disc := 0;
13633 Old_C := First_Discriminant (Typ);
13635 while Present (Old_C) loop
13636 Num_Disc := Num_Disc + 1;
13637 New_C := Create_Component (Old_C);
13638 Set_Is_Public (New_C, Is_Public (Subt));
13639 Next_Discriminant (Old_C);
13640 end loop;
13642 -- For an untagged derived subtype, the number of discriminants may
13643 -- be smaller than the number of inherited discriminants, because
13644 -- several of them may be renamed by a single new discriminant or
13645 -- constrained. In this case, add the hidden discriminants back into
13646 -- the subtype, because they need to be present if the optimizer of
13647 -- the GCC 4.x back-end decides to break apart assignments between
13648 -- objects using the parent view into member-wise assignments.
13650 Num_Gird := 0;
13652 if Is_Derived_Type (Typ)
13653 and then not Is_Tagged_Type (Typ)
13654 then
13655 Old_C := First_Stored_Discriminant (Typ);
13657 while Present (Old_C) loop
13658 Num_Gird := Num_Gird + 1;
13659 Next_Stored_Discriminant (Old_C);
13660 end loop;
13661 end if;
13663 if Num_Gird > Num_Disc then
13665 -- Find out multiple uses of new discriminants, and add hidden
13666 -- components for the extra renamed discriminants. We recognize
13667 -- multiple uses through the Corresponding_Discriminant of a
13668 -- new discriminant: if it constrains several old discriminants,
13669 -- this field points to the last one in the parent type. The
13670 -- stored discriminants of the derived type have the same name
13671 -- as those of the parent.
13673 declare
13674 Constr : Elmt_Id;
13675 New_Discr : Entity_Id;
13676 Old_Discr : Entity_Id;
13678 begin
13679 Constr := First_Elmt (Stored_Constraint (Typ));
13680 Old_Discr := First_Stored_Discriminant (Typ);
13681 while Present (Constr) loop
13682 if Is_Entity_Name (Node (Constr))
13683 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13684 then
13685 New_Discr := Entity (Node (Constr));
13687 if Chars (Corresponding_Discriminant (New_Discr)) /=
13688 Chars (Old_Discr)
13689 then
13690 -- The new discriminant has been used to rename a
13691 -- subsequent old discriminant. Introduce a shadow
13692 -- component for the current old discriminant.
13694 New_C := Create_Component (Old_Discr);
13695 Set_Original_Record_Component (New_C, Old_Discr);
13696 end if;
13698 else
13699 -- The constraint has eliminated the old discriminant.
13700 -- Introduce a shadow component.
13702 New_C := Create_Component (Old_Discr);
13703 Set_Original_Record_Component (New_C, Old_Discr);
13704 end if;
13706 Next_Elmt (Constr);
13707 Next_Stored_Discriminant (Old_Discr);
13708 end loop;
13709 end;
13710 end if;
13711 end Add_Discriminants;
13713 if Is_Static
13714 and then Is_Variant_Record (Typ)
13715 then
13716 Collect_Fixed_Components (Typ);
13718 Gather_Components (
13719 Typ,
13720 Component_List (Type_Definition (Parent (Typ))),
13721 Governed_By => Assoc_List,
13722 Into => Comp_List,
13723 Report_Errors => Errors);
13724 pragma Assert (not Errors);
13726 Create_All_Components;
13728 -- If the subtype declaration is created for a tagged type derivation
13729 -- with constraints, we retrieve the record definition of the parent
13730 -- type to select the components of the proper variant.
13732 elsif Is_Static
13733 and then Is_Tagged_Type (Typ)
13734 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13735 and then
13736 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13737 and then Is_Variant_Record (Parent_Type)
13738 then
13739 Collect_Fixed_Components (Typ);
13741 Gather_Components (
13742 Typ,
13743 Component_List (Type_Definition (Parent (Parent_Type))),
13744 Governed_By => Assoc_List,
13745 Into => Comp_List,
13746 Report_Errors => Errors);
13747 pragma Assert (not Errors);
13749 -- If the tagged derivation has a type extension, collect all the
13750 -- new components therein.
13752 if Present
13753 (Record_Extension_Part (Type_Definition (Parent (Typ))))
13754 then
13755 Old_C := First_Component (Typ);
13756 while Present (Old_C) loop
13757 if Original_Record_Component (Old_C) = Old_C
13758 and then Chars (Old_C) /= Name_uTag
13759 and then Chars (Old_C) /= Name_uParent
13760 then
13761 Append_Elmt (Old_C, Comp_List);
13762 end if;
13764 Next_Component (Old_C);
13765 end loop;
13766 end if;
13768 Create_All_Components;
13770 else
13771 -- If discriminants are not static, or if this is a multi-level type
13772 -- extension, we have to include all components of the parent type.
13774 Old_C := First_Component (Typ);
13775 while Present (Old_C) loop
13776 New_C := Create_Component (Old_C);
13778 Set_Etype
13779 (New_C,
13780 Constrain_Component_Type
13781 (Old_C, Subt, Decl_Node, Typ, Constraints));
13782 Set_Is_Public (New_C, Is_Public (Subt));
13784 Next_Component (Old_C);
13785 end loop;
13786 end if;
13788 End_Scope;
13789 end Create_Constrained_Components;
13791 ------------------------------------------
13792 -- Decimal_Fixed_Point_Type_Declaration --
13793 ------------------------------------------
13795 procedure Decimal_Fixed_Point_Type_Declaration
13796 (T : Entity_Id;
13797 Def : Node_Id)
13799 Loc : constant Source_Ptr := Sloc (Def);
13800 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13801 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13802 Implicit_Base : Entity_Id;
13803 Digs_Val : Uint;
13804 Delta_Val : Ureal;
13805 Scale_Val : Uint;
13806 Bound_Val : Ureal;
13808 begin
13809 Check_SPARK_05_Restriction
13810 ("decimal fixed point type is not allowed", Def);
13811 Check_Restriction (No_Fixed_Point, Def);
13813 -- Create implicit base type
13815 Implicit_Base :=
13816 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13817 Set_Etype (Implicit_Base, Implicit_Base);
13819 -- Analyze and process delta expression
13821 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13823 Check_Delta_Expression (Delta_Expr);
13824 Delta_Val := Expr_Value_R (Delta_Expr);
13826 -- Check delta is power of 10, and determine scale value from it
13828 declare
13829 Val : Ureal;
13831 begin
13832 Scale_Val := Uint_0;
13833 Val := Delta_Val;
13835 if Val < Ureal_1 then
13836 while Val < Ureal_1 loop
13837 Val := Val * Ureal_10;
13838 Scale_Val := Scale_Val + 1;
13839 end loop;
13841 if Scale_Val > 18 then
13842 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13843 Scale_Val := UI_From_Int (+18);
13844 end if;
13846 else
13847 while Val > Ureal_1 loop
13848 Val := Val / Ureal_10;
13849 Scale_Val := Scale_Val - 1;
13850 end loop;
13852 if Scale_Val < -18 then
13853 Error_Msg_N ("scale is less than minimum value of -18", Def);
13854 Scale_Val := UI_From_Int (-18);
13855 end if;
13856 end if;
13858 if Val /= Ureal_1 then
13859 Error_Msg_N ("delta expression must be a power of 10", Def);
13860 Delta_Val := Ureal_10 ** (-Scale_Val);
13861 end if;
13862 end;
13864 -- Set delta, scale and small (small = delta for decimal type)
13866 Set_Delta_Value (Implicit_Base, Delta_Val);
13867 Set_Scale_Value (Implicit_Base, Scale_Val);
13868 Set_Small_Value (Implicit_Base, Delta_Val);
13870 -- Analyze and process digits expression
13872 Analyze_And_Resolve (Digs_Expr, Any_Integer);
13873 Check_Digits_Expression (Digs_Expr);
13874 Digs_Val := Expr_Value (Digs_Expr);
13876 if Digs_Val > 18 then
13877 Digs_Val := UI_From_Int (+18);
13878 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
13879 end if;
13881 Set_Digits_Value (Implicit_Base, Digs_Val);
13882 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
13884 -- Set range of base type from digits value for now. This will be
13885 -- expanded to represent the true underlying base range by Freeze.
13887 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
13889 -- Note: We leave size as zero for now, size will be set at freeze
13890 -- time. We have to do this for ordinary fixed-point, because the size
13891 -- depends on the specified small, and we might as well do the same for
13892 -- decimal fixed-point.
13894 pragma Assert (Esize (Implicit_Base) = Uint_0);
13896 -- If there are bounds given in the declaration use them as the
13897 -- bounds of the first named subtype.
13899 if Present (Real_Range_Specification (Def)) then
13900 declare
13901 RRS : constant Node_Id := Real_Range_Specification (Def);
13902 Low : constant Node_Id := Low_Bound (RRS);
13903 High : constant Node_Id := High_Bound (RRS);
13904 Low_Val : Ureal;
13905 High_Val : Ureal;
13907 begin
13908 Analyze_And_Resolve (Low, Any_Real);
13909 Analyze_And_Resolve (High, Any_Real);
13910 Check_Real_Bound (Low);
13911 Check_Real_Bound (High);
13912 Low_Val := Expr_Value_R (Low);
13913 High_Val := Expr_Value_R (High);
13915 if Low_Val < (-Bound_Val) then
13916 Error_Msg_N
13917 ("range low bound too small for digits value", Low);
13918 Low_Val := -Bound_Val;
13919 end if;
13921 if High_Val > Bound_Val then
13922 Error_Msg_N
13923 ("range high bound too large for digits value", High);
13924 High_Val := Bound_Val;
13925 end if;
13927 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13928 end;
13930 -- If no explicit range, use range that corresponds to given
13931 -- digits value. This will end up as the final range for the
13932 -- first subtype.
13934 else
13935 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
13936 end if;
13938 -- Complete entity for first subtype. The inheritance of the rep item
13939 -- chain ensures that SPARK-related pragmas are not clobbered when the
13940 -- decimal fixed point type acts as a full view of a private type.
13942 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
13943 Set_Etype (T, Implicit_Base);
13944 Set_Size_Info (T, Implicit_Base);
13945 Inherit_Rep_Item_Chain (T, Implicit_Base);
13946 Set_Digits_Value (T, Digs_Val);
13947 Set_Delta_Value (T, Delta_Val);
13948 Set_Small_Value (T, Delta_Val);
13949 Set_Scale_Value (T, Scale_Val);
13950 Set_Is_Constrained (T);
13951 end Decimal_Fixed_Point_Type_Declaration;
13953 -----------------------------------
13954 -- Derive_Progenitor_Subprograms --
13955 -----------------------------------
13957 procedure Derive_Progenitor_Subprograms
13958 (Parent_Type : Entity_Id;
13959 Tagged_Type : Entity_Id)
13961 E : Entity_Id;
13962 Elmt : Elmt_Id;
13963 Iface : Entity_Id;
13964 Iface_Elmt : Elmt_Id;
13965 Iface_Subp : Entity_Id;
13966 New_Subp : Entity_Id := Empty;
13967 Prim_Elmt : Elmt_Id;
13968 Subp : Entity_Id;
13969 Typ : Entity_Id;
13971 begin
13972 pragma Assert (Ada_Version >= Ada_2005
13973 and then Is_Record_Type (Tagged_Type)
13974 and then Is_Tagged_Type (Tagged_Type)
13975 and then Has_Interfaces (Tagged_Type));
13977 -- Step 1: Transfer to the full-view primitives associated with the
13978 -- partial-view that cover interface primitives. Conceptually this
13979 -- work should be done later by Process_Full_View; done here to
13980 -- simplify its implementation at later stages. It can be safely
13981 -- done here because interfaces must be visible in the partial and
13982 -- private view (RM 7.3(7.3/2)).
13984 -- Small optimization: This work is only required if the parent may
13985 -- have entities whose Alias attribute reference an interface primitive.
13986 -- Such a situation may occur if the parent is an abstract type and the
13987 -- primitive has not been yet overridden or if the parent is a generic
13988 -- formal type covering interfaces.
13990 -- If the tagged type is not abstract, it cannot have abstract
13991 -- primitives (the only entities in the list of primitives of
13992 -- non-abstract tagged types that can reference abstract primitives
13993 -- through its Alias attribute are the internal entities that have
13994 -- attribute Interface_Alias, and these entities are generated later
13995 -- by Add_Internal_Interface_Entities).
13997 if In_Private_Part (Current_Scope)
13998 and then (Is_Abstract_Type (Parent_Type)
13999 or else
14000 Is_Generic_Type (Parent_Type))
14001 then
14002 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14003 while Present (Elmt) loop
14004 Subp := Node (Elmt);
14006 -- At this stage it is not possible to have entities in the list
14007 -- of primitives that have attribute Interface_Alias.
14009 pragma Assert (No (Interface_Alias (Subp)));
14011 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14013 if Is_Interface (Typ) then
14014 E := Find_Primitive_Covering_Interface
14015 (Tagged_Type => Tagged_Type,
14016 Iface_Prim => Subp);
14018 if Present (E)
14019 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
14020 then
14021 Replace_Elmt (Elmt, E);
14022 Remove_Homonym (Subp);
14023 end if;
14024 end if;
14026 Next_Elmt (Elmt);
14027 end loop;
14028 end if;
14030 -- Step 2: Add primitives of progenitors that are not implemented by
14031 -- parents of Tagged_Type.
14033 if Present (Interfaces (Base_Type (Tagged_Type))) then
14034 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14035 while Present (Iface_Elmt) loop
14036 Iface := Node (Iface_Elmt);
14038 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14039 while Present (Prim_Elmt) loop
14040 Iface_Subp := Node (Prim_Elmt);
14042 -- Exclude derivation of predefined primitives except those
14043 -- that come from source, or are inherited from one that comes
14044 -- from source. Required to catch declarations of equality
14045 -- operators of interfaces. For example:
14047 -- type Iface is interface;
14048 -- function "=" (Left, Right : Iface) return Boolean;
14050 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14051 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14052 then
14053 E := Find_Primitive_Covering_Interface
14054 (Tagged_Type => Tagged_Type,
14055 Iface_Prim => Iface_Subp);
14057 -- If not found we derive a new primitive leaving its alias
14058 -- attribute referencing the interface primitive.
14060 if No (E) then
14061 Derive_Subprogram
14062 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14064 -- Ada 2012 (AI05-0197): If the covering primitive's name
14065 -- differs from the name of the interface primitive then it
14066 -- is a private primitive inherited from a parent type. In
14067 -- such case, given that Tagged_Type covers the interface,
14068 -- the inherited private primitive becomes visible. For such
14069 -- purpose we add a new entity that renames the inherited
14070 -- private primitive.
14072 elsif Chars (E) /= Chars (Iface_Subp) then
14073 pragma Assert (Has_Suffix (E, 'P'));
14074 Derive_Subprogram
14075 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14076 Set_Alias (New_Subp, E);
14077 Set_Is_Abstract_Subprogram (New_Subp,
14078 Is_Abstract_Subprogram (E));
14080 -- Propagate to the full view interface entities associated
14081 -- with the partial view.
14083 elsif In_Private_Part (Current_Scope)
14084 and then Present (Alias (E))
14085 and then Alias (E) = Iface_Subp
14086 and then
14087 List_Containing (Parent (E)) /=
14088 Private_Declarations
14089 (Specification
14090 (Unit_Declaration_Node (Current_Scope)))
14091 then
14092 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14093 end if;
14094 end if;
14096 Next_Elmt (Prim_Elmt);
14097 end loop;
14099 Next_Elmt (Iface_Elmt);
14100 end loop;
14101 end if;
14102 end Derive_Progenitor_Subprograms;
14104 -----------------------
14105 -- Derive_Subprogram --
14106 -----------------------
14108 procedure Derive_Subprogram
14109 (New_Subp : in out Entity_Id;
14110 Parent_Subp : Entity_Id;
14111 Derived_Type : Entity_Id;
14112 Parent_Type : Entity_Id;
14113 Actual_Subp : Entity_Id := Empty)
14115 Formal : Entity_Id;
14116 -- Formal parameter of parent primitive operation
14118 Formal_Of_Actual : Entity_Id;
14119 -- Formal parameter of actual operation, when the derivation is to
14120 -- create a renaming for a primitive operation of an actual in an
14121 -- instantiation.
14123 New_Formal : Entity_Id;
14124 -- Formal of inherited operation
14126 Visible_Subp : Entity_Id := Parent_Subp;
14128 function Is_Private_Overriding return Boolean;
14129 -- If Subp is a private overriding of a visible operation, the inherited
14130 -- operation derives from the overridden op (even though its body is the
14131 -- overriding one) and the inherited operation is visible now. See
14132 -- sem_disp to see the full details of the handling of the overridden
14133 -- subprogram, which is removed from the list of primitive operations of
14134 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14135 -- and used to diagnose abstract operations that need overriding in the
14136 -- derived type.
14138 procedure Replace_Type (Id, New_Id : Entity_Id);
14139 -- When the type is an anonymous access type, create a new access type
14140 -- designating the derived type.
14142 procedure Set_Derived_Name;
14143 -- This procedure sets the appropriate Chars name for New_Subp. This
14144 -- is normally just a copy of the parent name. An exception arises for
14145 -- type support subprograms, where the name is changed to reflect the
14146 -- name of the derived type, e.g. if type foo is derived from type bar,
14147 -- then a procedure barDA is derived with a name fooDA.
14149 ---------------------------
14150 -- Is_Private_Overriding --
14151 ---------------------------
14153 function Is_Private_Overriding return Boolean is
14154 Prev : Entity_Id;
14156 begin
14157 -- If the parent is not a dispatching operation there is no
14158 -- need to investigate overridings
14160 if not Is_Dispatching_Operation (Parent_Subp) then
14161 return False;
14162 end if;
14164 -- The visible operation that is overridden is a homonym of the
14165 -- parent subprogram. We scan the homonym chain to find the one
14166 -- whose alias is the subprogram we are deriving.
14168 Prev := Current_Entity (Parent_Subp);
14169 while Present (Prev) loop
14170 if Ekind (Prev) = Ekind (Parent_Subp)
14171 and then Alias (Prev) = Parent_Subp
14172 and then Scope (Parent_Subp) = Scope (Prev)
14173 and then not Is_Hidden (Prev)
14174 then
14175 Visible_Subp := Prev;
14176 return True;
14177 end if;
14179 Prev := Homonym (Prev);
14180 end loop;
14182 return False;
14183 end Is_Private_Overriding;
14185 ------------------
14186 -- Replace_Type --
14187 ------------------
14189 procedure Replace_Type (Id, New_Id : Entity_Id) is
14190 Id_Type : constant Entity_Id := Etype (Id);
14191 Acc_Type : Entity_Id;
14192 Par : constant Node_Id := Parent (Derived_Type);
14194 begin
14195 -- When the type is an anonymous access type, create a new access
14196 -- type designating the derived type. This itype must be elaborated
14197 -- at the point of the derivation, not on subsequent calls that may
14198 -- be out of the proper scope for Gigi, so we insert a reference to
14199 -- it after the derivation.
14201 if Ekind (Id_Type) = E_Anonymous_Access_Type then
14202 declare
14203 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
14205 begin
14206 if Ekind (Desig_Typ) = E_Record_Type_With_Private
14207 and then Present (Full_View (Desig_Typ))
14208 and then not Is_Private_Type (Parent_Type)
14209 then
14210 Desig_Typ := Full_View (Desig_Typ);
14211 end if;
14213 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
14215 -- Ada 2005 (AI-251): Handle also derivations of abstract
14216 -- interface primitives.
14218 or else (Is_Interface (Desig_Typ)
14219 and then not Is_Class_Wide_Type (Desig_Typ))
14220 then
14221 Acc_Type := New_Copy (Id_Type);
14222 Set_Etype (Acc_Type, Acc_Type);
14223 Set_Scope (Acc_Type, New_Subp);
14225 -- Set size of anonymous access type. If we have an access
14226 -- to an unconstrained array, this is a fat pointer, so it
14227 -- is sizes at twice addtress size.
14229 if Is_Array_Type (Desig_Typ)
14230 and then not Is_Constrained (Desig_Typ)
14231 then
14232 Init_Size (Acc_Type, 2 * System_Address_Size);
14234 -- Other cases use a thin pointer
14236 else
14237 Init_Size (Acc_Type, System_Address_Size);
14238 end if;
14240 -- Set remaining characterstics of anonymous access type
14242 Init_Alignment (Acc_Type);
14243 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
14245 Set_Etype (New_Id, Acc_Type);
14246 Set_Scope (New_Id, New_Subp);
14248 -- Create a reference to it
14250 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
14252 else
14253 Set_Etype (New_Id, Id_Type);
14254 end if;
14255 end;
14257 -- In Ada2012, a formal may have an incomplete type but the type
14258 -- derivation that inherits the primitive follows the full view.
14260 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
14261 or else
14262 (Ekind (Id_Type) = E_Record_Type_With_Private
14263 and then Present (Full_View (Id_Type))
14264 and then
14265 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
14266 or else
14267 (Ada_Version >= Ada_2012
14268 and then Ekind (Id_Type) = E_Incomplete_Type
14269 and then Full_View (Id_Type) = Parent_Type)
14270 then
14271 -- Constraint checks on formals are generated during expansion,
14272 -- based on the signature of the original subprogram. The bounds
14273 -- of the derived type are not relevant, and thus we can use
14274 -- the base type for the formals. However, the return type may be
14275 -- used in a context that requires that the proper static bounds
14276 -- be used (a case statement, for example) and for those cases
14277 -- we must use the derived type (first subtype), not its base.
14279 -- If the derived_type_definition has no constraints, we know that
14280 -- the derived type has the same constraints as the first subtype
14281 -- of the parent, and we can also use it rather than its base,
14282 -- which can lead to more efficient code.
14284 if Etype (Id) = Parent_Type then
14285 if Is_Scalar_Type (Parent_Type)
14286 and then
14287 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
14288 then
14289 Set_Etype (New_Id, Derived_Type);
14291 elsif Nkind (Par) = N_Full_Type_Declaration
14292 and then
14293 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
14294 and then
14295 Is_Entity_Name
14296 (Subtype_Indication (Type_Definition (Par)))
14297 then
14298 Set_Etype (New_Id, Derived_Type);
14300 else
14301 Set_Etype (New_Id, Base_Type (Derived_Type));
14302 end if;
14304 else
14305 Set_Etype (New_Id, Base_Type (Derived_Type));
14306 end if;
14308 else
14309 Set_Etype (New_Id, Etype (Id));
14310 end if;
14311 end Replace_Type;
14313 ----------------------
14314 -- Set_Derived_Name --
14315 ----------------------
14317 procedure Set_Derived_Name is
14318 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
14319 begin
14320 if Nm = TSS_Null then
14321 Set_Chars (New_Subp, Chars (Parent_Subp));
14322 else
14323 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
14324 end if;
14325 end Set_Derived_Name;
14327 -- Start of processing for Derive_Subprogram
14329 begin
14330 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
14331 Set_Ekind (New_Subp, Ekind (Parent_Subp));
14332 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
14334 -- Check whether the inherited subprogram is a private operation that
14335 -- should be inherited but not yet made visible. Such subprograms can
14336 -- become visible at a later point (e.g., the private part of a public
14337 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14338 -- following predicate is true, then this is not such a private
14339 -- operation and the subprogram simply inherits the name of the parent
14340 -- subprogram. Note the special check for the names of controlled
14341 -- operations, which are currently exempted from being inherited with
14342 -- a hidden name because they must be findable for generation of
14343 -- implicit run-time calls.
14345 if not Is_Hidden (Parent_Subp)
14346 or else Is_Internal (Parent_Subp)
14347 or else Is_Private_Overriding
14348 or else Is_Internal_Name (Chars (Parent_Subp))
14349 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
14350 Name_Adjust,
14351 Name_Finalize)
14352 then
14353 Set_Derived_Name;
14355 -- An inherited dispatching equality will be overridden by an internally
14356 -- generated one, or by an explicit one, so preserve its name and thus
14357 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14358 -- private operation it may become invisible if the full view has
14359 -- progenitors, and the dispatch table will be malformed.
14360 -- We check that the type is limited to handle the anomalous declaration
14361 -- of Limited_Controlled, which is derived from a non-limited type, and
14362 -- which is handled specially elsewhere as well.
14364 elsif Chars (Parent_Subp) = Name_Op_Eq
14365 and then Is_Dispatching_Operation (Parent_Subp)
14366 and then Etype (Parent_Subp) = Standard_Boolean
14367 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
14368 and then
14369 Etype (First_Formal (Parent_Subp)) =
14370 Etype (Next_Formal (First_Formal (Parent_Subp)))
14371 then
14372 Set_Derived_Name;
14374 -- If parent is hidden, this can be a regular derivation if the
14375 -- parent is immediately visible in a non-instantiating context,
14376 -- or if we are in the private part of an instance. This test
14377 -- should still be refined ???
14379 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14380 -- operation as a non-visible operation in cases where the parent
14381 -- subprogram might not be visible now, but was visible within the
14382 -- original generic, so it would be wrong to make the inherited
14383 -- subprogram non-visible now. (Not clear if this test is fully
14384 -- correct; are there any cases where we should declare the inherited
14385 -- operation as not visible to avoid it being overridden, e.g., when
14386 -- the parent type is a generic actual with private primitives ???)
14388 -- (they should be treated the same as other private inherited
14389 -- subprograms, but it's not clear how to do this cleanly). ???
14391 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14392 and then Is_Immediately_Visible (Parent_Subp)
14393 and then not In_Instance)
14394 or else In_Instance_Not_Visible
14395 then
14396 Set_Derived_Name;
14398 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14399 -- overrides an interface primitive because interface primitives
14400 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14402 elsif Ada_Version >= Ada_2005
14403 and then Is_Dispatching_Operation (Parent_Subp)
14404 and then Covers_Some_Interface (Parent_Subp)
14405 then
14406 Set_Derived_Name;
14408 -- Otherwise, the type is inheriting a private operation, so enter
14409 -- it with a special name so it can't be overridden.
14411 else
14412 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
14413 end if;
14415 Set_Parent (New_Subp, Parent (Derived_Type));
14417 if Present (Actual_Subp) then
14418 Replace_Type (Actual_Subp, New_Subp);
14419 else
14420 Replace_Type (Parent_Subp, New_Subp);
14421 end if;
14423 Conditional_Delay (New_Subp, Parent_Subp);
14425 -- If we are creating a renaming for a primitive operation of an
14426 -- actual of a generic derived type, we must examine the signature
14427 -- of the actual primitive, not that of the generic formal, which for
14428 -- example may be an interface. However the name and initial value
14429 -- of the inherited operation are those of the formal primitive.
14431 Formal := First_Formal (Parent_Subp);
14433 if Present (Actual_Subp) then
14434 Formal_Of_Actual := First_Formal (Actual_Subp);
14435 else
14436 Formal_Of_Actual := Empty;
14437 end if;
14439 while Present (Formal) loop
14440 New_Formal := New_Copy (Formal);
14442 -- Normally we do not go copying parents, but in the case of
14443 -- formals, we need to link up to the declaration (which is the
14444 -- parameter specification), and it is fine to link up to the
14445 -- original formal's parameter specification in this case.
14447 Set_Parent (New_Formal, Parent (Formal));
14448 Append_Entity (New_Formal, New_Subp);
14450 if Present (Formal_Of_Actual) then
14451 Replace_Type (Formal_Of_Actual, New_Formal);
14452 Next_Formal (Formal_Of_Actual);
14453 else
14454 Replace_Type (Formal, New_Formal);
14455 end if;
14457 Next_Formal (Formal);
14458 end loop;
14460 -- If this derivation corresponds to a tagged generic actual, then
14461 -- primitive operations rename those of the actual. Otherwise the
14462 -- primitive operations rename those of the parent type, If the parent
14463 -- renames an intrinsic operator, so does the new subprogram. We except
14464 -- concatenation, which is always properly typed, and does not get
14465 -- expanded as other intrinsic operations.
14467 if No (Actual_Subp) then
14468 if Is_Intrinsic_Subprogram (Parent_Subp) then
14469 Set_Is_Intrinsic_Subprogram (New_Subp);
14471 if Present (Alias (Parent_Subp))
14472 and then Chars (Parent_Subp) /= Name_Op_Concat
14473 then
14474 Set_Alias (New_Subp, Alias (Parent_Subp));
14475 else
14476 Set_Alias (New_Subp, Parent_Subp);
14477 end if;
14479 else
14480 Set_Alias (New_Subp, Parent_Subp);
14481 end if;
14483 else
14484 Set_Alias (New_Subp, Actual_Subp);
14485 end if;
14487 -- Derived subprograms of a tagged type must inherit the convention
14488 -- of the parent subprogram (a requirement of AI-117). Derived
14489 -- subprograms of untagged types simply get convention Ada by default.
14491 -- If the derived type is a tagged generic formal type with unknown
14492 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14494 -- However, if the type is derived from a generic formal, the further
14495 -- inherited subprogram has the convention of the non-generic ancestor.
14496 -- Otherwise there would be no way to override the operation.
14497 -- (This is subject to forthcoming ARG discussions).
14499 if Is_Tagged_Type (Derived_Type) then
14500 if Is_Generic_Type (Derived_Type)
14501 and then Has_Unknown_Discriminants (Derived_Type)
14502 then
14503 Set_Convention (New_Subp, Convention_Intrinsic);
14505 else
14506 if Is_Generic_Type (Parent_Type)
14507 and then Has_Unknown_Discriminants (Parent_Type)
14508 then
14509 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
14510 else
14511 Set_Convention (New_Subp, Convention (Parent_Subp));
14512 end if;
14513 end if;
14514 end if;
14516 -- Predefined controlled operations retain their name even if the parent
14517 -- is hidden (see above), but they are not primitive operations if the
14518 -- ancestor is not visible, for example if the parent is a private
14519 -- extension completed with a controlled extension. Note that a full
14520 -- type that is controlled can break privacy: the flag Is_Controlled is
14521 -- set on both views of the type.
14523 if Is_Controlled (Parent_Type)
14524 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
14525 Name_Adjust,
14526 Name_Finalize)
14527 and then Is_Hidden (Parent_Subp)
14528 and then not Is_Visibly_Controlled (Parent_Type)
14529 then
14530 Set_Is_Hidden (New_Subp);
14531 end if;
14533 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
14534 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
14536 if Ekind (Parent_Subp) = E_Procedure then
14537 Set_Is_Valued_Procedure
14538 (New_Subp, Is_Valued_Procedure (Parent_Subp));
14539 else
14540 Set_Has_Controlling_Result
14541 (New_Subp, Has_Controlling_Result (Parent_Subp));
14542 end if;
14544 -- No_Return must be inherited properly. If this is overridden in the
14545 -- case of a dispatching operation, then a check is made in Sem_Disp
14546 -- that the overriding operation is also No_Return (no such check is
14547 -- required for the case of non-dispatching operation.
14549 Set_No_Return (New_Subp, No_Return (Parent_Subp));
14551 -- A derived function with a controlling result is abstract. If the
14552 -- Derived_Type is a nonabstract formal generic derived type, then
14553 -- inherited operations are not abstract: the required check is done at
14554 -- instantiation time. If the derivation is for a generic actual, the
14555 -- function is not abstract unless the actual is.
14557 if Is_Generic_Type (Derived_Type)
14558 and then not Is_Abstract_Type (Derived_Type)
14559 then
14560 null;
14562 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14563 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14565 -- A subprogram subject to pragma Extensions_Visible with value False
14566 -- requires overriding if the subprogram has at least one controlling
14567 -- OUT parameter (SPARK RM 6.1.7(6)).
14569 elsif Ada_Version >= Ada_2005
14570 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14571 or else (Is_Tagged_Type (Derived_Type)
14572 and then Etype (New_Subp) = Derived_Type
14573 and then not Is_Null_Extension (Derived_Type))
14574 or else (Is_Tagged_Type (Derived_Type)
14575 and then Ekind (Etype (New_Subp)) =
14576 E_Anonymous_Access_Type
14577 and then Designated_Type (Etype (New_Subp)) =
14578 Derived_Type
14579 and then not Is_Null_Extension (Derived_Type))
14580 or else Is_EVF_Procedure (Alias (New_Subp)))
14581 and then No (Actual_Subp)
14582 then
14583 if not Is_Tagged_Type (Derived_Type)
14584 or else Is_Abstract_Type (Derived_Type)
14585 or else Is_Abstract_Subprogram (Alias (New_Subp))
14586 then
14587 Set_Is_Abstract_Subprogram (New_Subp);
14588 else
14589 Set_Requires_Overriding (New_Subp);
14590 end if;
14592 elsif Ada_Version < Ada_2005
14593 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14594 or else (Is_Tagged_Type (Derived_Type)
14595 and then Etype (New_Subp) = Derived_Type
14596 and then No (Actual_Subp)))
14597 then
14598 Set_Is_Abstract_Subprogram (New_Subp);
14600 -- AI05-0097 : an inherited operation that dispatches on result is
14601 -- abstract if the derived type is abstract, even if the parent type
14602 -- is concrete and the derived type is a null extension.
14604 elsif Has_Controlling_Result (Alias (New_Subp))
14605 and then Is_Abstract_Type (Etype (New_Subp))
14606 then
14607 Set_Is_Abstract_Subprogram (New_Subp);
14609 -- Finally, if the parent type is abstract we must verify that all
14610 -- inherited operations are either non-abstract or overridden, or that
14611 -- the derived type itself is abstract (this check is performed at the
14612 -- end of a package declaration, in Check_Abstract_Overriding). A
14613 -- private overriding in the parent type will not be visible in the
14614 -- derivation if we are not in an inner package or in a child unit of
14615 -- the parent type, in which case the abstractness of the inherited
14616 -- operation is carried to the new subprogram.
14618 elsif Is_Abstract_Type (Parent_Type)
14619 and then not In_Open_Scopes (Scope (Parent_Type))
14620 and then Is_Private_Overriding
14621 and then Is_Abstract_Subprogram (Visible_Subp)
14622 then
14623 if No (Actual_Subp) then
14624 Set_Alias (New_Subp, Visible_Subp);
14625 Set_Is_Abstract_Subprogram (New_Subp, True);
14627 else
14628 -- If this is a derivation for an instance of a formal derived
14629 -- type, abstractness comes from the primitive operation of the
14630 -- actual, not from the operation inherited from the ancestor.
14632 Set_Is_Abstract_Subprogram
14633 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14634 end if;
14635 end if;
14637 New_Overloaded_Entity (New_Subp, Derived_Type);
14639 -- Check for case of a derived subprogram for the instantiation of a
14640 -- formal derived tagged type, if so mark the subprogram as dispatching
14641 -- and inherit the dispatching attributes of the actual subprogram. The
14642 -- derived subprogram is effectively renaming of the actual subprogram,
14643 -- so it needs to have the same attributes as the actual.
14645 if Present (Actual_Subp)
14646 and then Is_Dispatching_Operation (Actual_Subp)
14647 then
14648 Set_Is_Dispatching_Operation (New_Subp);
14650 if Present (DTC_Entity (Actual_Subp)) then
14651 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14652 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
14653 end if;
14654 end if;
14656 -- Indicate that a derived subprogram does not require a body and that
14657 -- it does not require processing of default expressions.
14659 Set_Has_Completion (New_Subp);
14660 Set_Default_Expressions_Processed (New_Subp);
14662 if Ekind (New_Subp) = E_Function then
14663 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14664 end if;
14665 end Derive_Subprogram;
14667 ------------------------
14668 -- Derive_Subprograms --
14669 ------------------------
14671 procedure Derive_Subprograms
14672 (Parent_Type : Entity_Id;
14673 Derived_Type : Entity_Id;
14674 Generic_Actual : Entity_Id := Empty)
14676 Op_List : constant Elist_Id :=
14677 Collect_Primitive_Operations (Parent_Type);
14679 function Check_Derived_Type return Boolean;
14680 -- Check that all the entities derived from Parent_Type are found in
14681 -- the list of primitives of Derived_Type exactly in the same order.
14683 procedure Derive_Interface_Subprogram
14684 (New_Subp : in out Entity_Id;
14685 Subp : Entity_Id;
14686 Actual_Subp : Entity_Id);
14687 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14688 -- (which is an interface primitive). If Generic_Actual is present then
14689 -- Actual_Subp is the actual subprogram corresponding with the generic
14690 -- subprogram Subp.
14692 function Check_Derived_Type return Boolean is
14693 E : Entity_Id;
14694 Elmt : Elmt_Id;
14695 List : Elist_Id;
14696 New_Subp : Entity_Id;
14697 Op_Elmt : Elmt_Id;
14698 Subp : Entity_Id;
14700 begin
14701 -- Traverse list of entities in the current scope searching for
14702 -- an incomplete type whose full-view is derived type
14704 E := First_Entity (Scope (Derived_Type));
14705 while Present (E) and then E /= Derived_Type loop
14706 if Ekind (E) = E_Incomplete_Type
14707 and then Present (Full_View (E))
14708 and then Full_View (E) = Derived_Type
14709 then
14710 -- Disable this test if Derived_Type completes an incomplete
14711 -- type because in such case more primitives can be added
14712 -- later to the list of primitives of Derived_Type by routine
14713 -- Process_Incomplete_Dependents
14715 return True;
14716 end if;
14718 E := Next_Entity (E);
14719 end loop;
14721 List := Collect_Primitive_Operations (Derived_Type);
14722 Elmt := First_Elmt (List);
14724 Op_Elmt := First_Elmt (Op_List);
14725 while Present (Op_Elmt) loop
14726 Subp := Node (Op_Elmt);
14727 New_Subp := Node (Elmt);
14729 -- At this early stage Derived_Type has no entities with attribute
14730 -- Interface_Alias. In addition, such primitives are always
14731 -- located at the end of the list of primitives of Parent_Type.
14732 -- Therefore, if found we can safely stop processing pending
14733 -- entities.
14735 exit when Present (Interface_Alias (Subp));
14737 -- Handle hidden entities
14739 if not Is_Predefined_Dispatching_Operation (Subp)
14740 and then Is_Hidden (Subp)
14741 then
14742 if Present (New_Subp)
14743 and then Primitive_Names_Match (Subp, New_Subp)
14744 then
14745 Next_Elmt (Elmt);
14746 end if;
14748 else
14749 if not Present (New_Subp)
14750 or else Ekind (Subp) /= Ekind (New_Subp)
14751 or else not Primitive_Names_Match (Subp, New_Subp)
14752 then
14753 return False;
14754 end if;
14756 Next_Elmt (Elmt);
14757 end if;
14759 Next_Elmt (Op_Elmt);
14760 end loop;
14762 return True;
14763 end Check_Derived_Type;
14765 ---------------------------------
14766 -- Derive_Interface_Subprogram --
14767 ---------------------------------
14769 procedure Derive_Interface_Subprogram
14770 (New_Subp : in out Entity_Id;
14771 Subp : Entity_Id;
14772 Actual_Subp : Entity_Id)
14774 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14775 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14777 begin
14778 pragma Assert (Is_Interface (Iface_Type));
14780 Derive_Subprogram
14781 (New_Subp => New_Subp,
14782 Parent_Subp => Iface_Subp,
14783 Derived_Type => Derived_Type,
14784 Parent_Type => Iface_Type,
14785 Actual_Subp => Actual_Subp);
14787 -- Given that this new interface entity corresponds with a primitive
14788 -- of the parent that was not overridden we must leave it associated
14789 -- with its parent primitive to ensure that it will share the same
14790 -- dispatch table slot when overridden.
14792 if No (Actual_Subp) then
14793 Set_Alias (New_Subp, Subp);
14795 -- For instantiations this is not needed since the previous call to
14796 -- Derive_Subprogram leaves the entity well decorated.
14798 else
14799 pragma Assert (Alias (New_Subp) = Actual_Subp);
14800 null;
14801 end if;
14802 end Derive_Interface_Subprogram;
14804 -- Local variables
14806 Alias_Subp : Entity_Id;
14807 Act_List : Elist_Id;
14808 Act_Elmt : Elmt_Id;
14809 Act_Subp : Entity_Id := Empty;
14810 Elmt : Elmt_Id;
14811 Need_Search : Boolean := False;
14812 New_Subp : Entity_Id := Empty;
14813 Parent_Base : Entity_Id;
14814 Subp : Entity_Id;
14816 -- Start of processing for Derive_Subprograms
14818 begin
14819 if Ekind (Parent_Type) = E_Record_Type_With_Private
14820 and then Has_Discriminants (Parent_Type)
14821 and then Present (Full_View (Parent_Type))
14822 then
14823 Parent_Base := Full_View (Parent_Type);
14824 else
14825 Parent_Base := Parent_Type;
14826 end if;
14828 if Present (Generic_Actual) then
14829 Act_List := Collect_Primitive_Operations (Generic_Actual);
14830 Act_Elmt := First_Elmt (Act_List);
14831 else
14832 Act_List := No_Elist;
14833 Act_Elmt := No_Elmt;
14834 end if;
14836 -- Derive primitives inherited from the parent. Note that if the generic
14837 -- actual is present, this is not really a type derivation, it is a
14838 -- completion within an instance.
14840 -- Case 1: Derived_Type does not implement interfaces
14842 if not Is_Tagged_Type (Derived_Type)
14843 or else (not Has_Interfaces (Derived_Type)
14844 and then not (Present (Generic_Actual)
14845 and then Has_Interfaces (Generic_Actual)))
14846 then
14847 Elmt := First_Elmt (Op_List);
14848 while Present (Elmt) loop
14849 Subp := Node (Elmt);
14851 -- Literals are derived earlier in the process of building the
14852 -- derived type, and are skipped here.
14854 if Ekind (Subp) = E_Enumeration_Literal then
14855 null;
14857 -- The actual is a direct descendant and the common primitive
14858 -- operations appear in the same order.
14860 -- If the generic parent type is present, the derived type is an
14861 -- instance of a formal derived type, and within the instance its
14862 -- operations are those of the actual. We derive from the formal
14863 -- type but make the inherited operations aliases of the
14864 -- corresponding operations of the actual.
14866 else
14867 pragma Assert (No (Node (Act_Elmt))
14868 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
14869 and then
14870 Type_Conformant
14871 (Subp, Node (Act_Elmt),
14872 Skip_Controlling_Formals => True)));
14874 Derive_Subprogram
14875 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
14877 if Present (Act_Elmt) then
14878 Next_Elmt (Act_Elmt);
14879 end if;
14880 end if;
14882 Next_Elmt (Elmt);
14883 end loop;
14885 -- Case 2: Derived_Type implements interfaces
14887 else
14888 -- If the parent type has no predefined primitives we remove
14889 -- predefined primitives from the list of primitives of generic
14890 -- actual to simplify the complexity of this algorithm.
14892 if Present (Generic_Actual) then
14893 declare
14894 Has_Predefined_Primitives : Boolean := False;
14896 begin
14897 -- Check if the parent type has predefined primitives
14899 Elmt := First_Elmt (Op_List);
14900 while Present (Elmt) loop
14901 Subp := Node (Elmt);
14903 if Is_Predefined_Dispatching_Operation (Subp)
14904 and then not Comes_From_Source (Ultimate_Alias (Subp))
14905 then
14906 Has_Predefined_Primitives := True;
14907 exit;
14908 end if;
14910 Next_Elmt (Elmt);
14911 end loop;
14913 -- Remove predefined primitives of Generic_Actual. We must use
14914 -- an auxiliary list because in case of tagged types the value
14915 -- returned by Collect_Primitive_Operations is the value stored
14916 -- in its Primitive_Operations attribute (and we don't want to
14917 -- modify its current contents).
14919 if not Has_Predefined_Primitives then
14920 declare
14921 Aux_List : constant Elist_Id := New_Elmt_List;
14923 begin
14924 Elmt := First_Elmt (Act_List);
14925 while Present (Elmt) loop
14926 Subp := Node (Elmt);
14928 if not Is_Predefined_Dispatching_Operation (Subp)
14929 or else Comes_From_Source (Subp)
14930 then
14931 Append_Elmt (Subp, Aux_List);
14932 end if;
14934 Next_Elmt (Elmt);
14935 end loop;
14937 Act_List := Aux_List;
14938 end;
14939 end if;
14941 Act_Elmt := First_Elmt (Act_List);
14942 Act_Subp := Node (Act_Elmt);
14943 end;
14944 end if;
14946 -- Stage 1: If the generic actual is not present we derive the
14947 -- primitives inherited from the parent type. If the generic parent
14948 -- type is present, the derived type is an instance of a formal
14949 -- derived type, and within the instance its operations are those of
14950 -- the actual. We derive from the formal type but make the inherited
14951 -- operations aliases of the corresponding operations of the actual.
14953 Elmt := First_Elmt (Op_List);
14954 while Present (Elmt) loop
14955 Subp := Node (Elmt);
14956 Alias_Subp := Ultimate_Alias (Subp);
14958 -- Do not derive internal entities of the parent that link
14959 -- interface primitives with their covering primitive. These
14960 -- entities will be added to this type when frozen.
14962 if Present (Interface_Alias (Subp)) then
14963 goto Continue;
14964 end if;
14966 -- If the generic actual is present find the corresponding
14967 -- operation in the generic actual. If the parent type is a
14968 -- direct ancestor of the derived type then, even if it is an
14969 -- interface, the operations are inherited from the primary
14970 -- dispatch table and are in the proper order. If we detect here
14971 -- that primitives are not in the same order we traverse the list
14972 -- of primitive operations of the actual to find the one that
14973 -- implements the interface primitive.
14975 if Need_Search
14976 or else
14977 (Present (Generic_Actual)
14978 and then Present (Act_Subp)
14979 and then not
14980 (Primitive_Names_Match (Subp, Act_Subp)
14981 and then
14982 Type_Conformant (Subp, Act_Subp,
14983 Skip_Controlling_Formals => True)))
14984 then
14985 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
14986 Use_Full_View => True));
14988 -- Remember that we need searching for all pending primitives
14990 Need_Search := True;
14992 -- Handle entities associated with interface primitives
14994 if Present (Alias_Subp)
14995 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14996 and then not Is_Predefined_Dispatching_Operation (Subp)
14997 then
14998 -- Search for the primitive in the homonym chain
15000 Act_Subp :=
15001 Find_Primitive_Covering_Interface
15002 (Tagged_Type => Generic_Actual,
15003 Iface_Prim => Alias_Subp);
15005 -- Previous search may not locate primitives covering
15006 -- interfaces defined in generics units or instantiations.
15007 -- (it fails if the covering primitive has formals whose
15008 -- type is also defined in generics or instantiations).
15009 -- In such case we search in the list of primitives of the
15010 -- generic actual for the internal entity that links the
15011 -- interface primitive and the covering primitive.
15013 if No (Act_Subp)
15014 and then Is_Generic_Type (Parent_Type)
15015 then
15016 -- This code has been designed to handle only generic
15017 -- formals that implement interfaces that are defined
15018 -- in a generic unit or instantiation. If this code is
15019 -- needed for other cases we must review it because
15020 -- (given that it relies on Original_Location to locate
15021 -- the primitive of Generic_Actual that covers the
15022 -- interface) it could leave linked through attribute
15023 -- Alias entities of unrelated instantiations).
15025 pragma Assert
15026 (Is_Generic_Unit
15027 (Scope (Find_Dispatching_Type (Alias_Subp)))
15028 or else
15029 Instantiation_Depth
15030 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15032 declare
15033 Iface_Prim_Loc : constant Source_Ptr :=
15034 Original_Location (Sloc (Alias_Subp));
15036 Elmt : Elmt_Id;
15037 Prim : Entity_Id;
15039 begin
15040 Elmt :=
15041 First_Elmt (Primitive_Operations (Generic_Actual));
15043 Search : while Present (Elmt) loop
15044 Prim := Node (Elmt);
15046 if Present (Interface_Alias (Prim))
15047 and then Original_Location
15048 (Sloc (Interface_Alias (Prim))) =
15049 Iface_Prim_Loc
15050 then
15051 Act_Subp := Alias (Prim);
15052 exit Search;
15053 end if;
15055 Next_Elmt (Elmt);
15056 end loop Search;
15057 end;
15058 end if;
15060 pragma Assert (Present (Act_Subp)
15061 or else Is_Abstract_Type (Generic_Actual)
15062 or else Serious_Errors_Detected > 0);
15064 -- Handle predefined primitives plus the rest of user-defined
15065 -- primitives
15067 else
15068 Act_Elmt := First_Elmt (Act_List);
15069 while Present (Act_Elmt) loop
15070 Act_Subp := Node (Act_Elmt);
15072 exit when Primitive_Names_Match (Subp, Act_Subp)
15073 and then Type_Conformant
15074 (Subp, Act_Subp,
15075 Skip_Controlling_Formals => True)
15076 and then No (Interface_Alias (Act_Subp));
15078 Next_Elmt (Act_Elmt);
15079 end loop;
15081 if No (Act_Elmt) then
15082 Act_Subp := Empty;
15083 end if;
15084 end if;
15085 end if;
15087 -- Case 1: If the parent is a limited interface then it has the
15088 -- predefined primitives of synchronized interfaces. However, the
15089 -- actual type may be a non-limited type and hence it does not
15090 -- have such primitives.
15092 if Present (Generic_Actual)
15093 and then not Present (Act_Subp)
15094 and then Is_Limited_Interface (Parent_Base)
15095 and then Is_Predefined_Interface_Primitive (Subp)
15096 then
15097 null;
15099 -- Case 2: Inherit entities associated with interfaces that were
15100 -- not covered by the parent type. We exclude here null interface
15101 -- primitives because they do not need special management.
15103 -- We also exclude interface operations that are renamings. If the
15104 -- subprogram is an explicit renaming of an interface primitive,
15105 -- it is a regular primitive operation, and the presence of its
15106 -- alias is not relevant: it has to be derived like any other
15107 -- primitive.
15109 elsif Present (Alias (Subp))
15110 and then Nkind (Unit_Declaration_Node (Subp)) /=
15111 N_Subprogram_Renaming_Declaration
15112 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15113 and then not
15114 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
15115 and then Null_Present (Parent (Alias_Subp)))
15116 then
15117 -- If this is an abstract private type then we transfer the
15118 -- derivation of the interface primitive from the partial view
15119 -- to the full view. This is safe because all the interfaces
15120 -- must be visible in the partial view. Done to avoid adding
15121 -- a new interface derivation to the private part of the
15122 -- enclosing package; otherwise this new derivation would be
15123 -- decorated as hidden when the analysis of the enclosing
15124 -- package completes.
15126 if Is_Abstract_Type (Derived_Type)
15127 and then In_Private_Part (Current_Scope)
15128 and then Has_Private_Declaration (Derived_Type)
15129 then
15130 declare
15131 Partial_View : Entity_Id;
15132 Elmt : Elmt_Id;
15133 Ent : Entity_Id;
15135 begin
15136 Partial_View := First_Entity (Current_Scope);
15137 loop
15138 exit when No (Partial_View)
15139 or else (Has_Private_Declaration (Partial_View)
15140 and then
15141 Full_View (Partial_View) = Derived_Type);
15143 Next_Entity (Partial_View);
15144 end loop;
15146 -- If the partial view was not found then the source code
15147 -- has errors and the derivation is not needed.
15149 if Present (Partial_View) then
15150 Elmt :=
15151 First_Elmt (Primitive_Operations (Partial_View));
15152 while Present (Elmt) loop
15153 Ent := Node (Elmt);
15155 if Present (Alias (Ent))
15156 and then Ultimate_Alias (Ent) = Alias (Subp)
15157 then
15158 Append_Elmt
15159 (Ent, Primitive_Operations (Derived_Type));
15160 exit;
15161 end if;
15163 Next_Elmt (Elmt);
15164 end loop;
15166 -- If the interface primitive was not found in the
15167 -- partial view then this interface primitive was
15168 -- overridden. We add a derivation to activate in
15169 -- Derive_Progenitor_Subprograms the machinery to
15170 -- search for it.
15172 if No (Elmt) then
15173 Derive_Interface_Subprogram
15174 (New_Subp => New_Subp,
15175 Subp => Subp,
15176 Actual_Subp => Act_Subp);
15177 end if;
15178 end if;
15179 end;
15180 else
15181 Derive_Interface_Subprogram
15182 (New_Subp => New_Subp,
15183 Subp => Subp,
15184 Actual_Subp => Act_Subp);
15185 end if;
15187 -- Case 3: Common derivation
15189 else
15190 Derive_Subprogram
15191 (New_Subp => New_Subp,
15192 Parent_Subp => Subp,
15193 Derived_Type => Derived_Type,
15194 Parent_Type => Parent_Base,
15195 Actual_Subp => Act_Subp);
15196 end if;
15198 -- No need to update Act_Elm if we must search for the
15199 -- corresponding operation in the generic actual
15201 if not Need_Search
15202 and then Present (Act_Elmt)
15203 then
15204 Next_Elmt (Act_Elmt);
15205 Act_Subp := Node (Act_Elmt);
15206 end if;
15208 <<Continue>>
15209 Next_Elmt (Elmt);
15210 end loop;
15212 -- Inherit additional operations from progenitors. If the derived
15213 -- type is a generic actual, there are not new primitive operations
15214 -- for the type because it has those of the actual, and therefore
15215 -- nothing needs to be done. The renamings generated above are not
15216 -- primitive operations, and their purpose is simply to make the
15217 -- proper operations visible within an instantiation.
15219 if No (Generic_Actual) then
15220 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
15221 end if;
15222 end if;
15224 -- Final check: Direct descendants must have their primitives in the
15225 -- same order. We exclude from this test untagged types and instances
15226 -- of formal derived types. We skip this test if we have already
15227 -- reported serious errors in the sources.
15229 pragma Assert (not Is_Tagged_Type (Derived_Type)
15230 or else Present (Generic_Actual)
15231 or else Serious_Errors_Detected > 0
15232 or else Check_Derived_Type);
15233 end Derive_Subprograms;
15235 --------------------------------
15236 -- Derived_Standard_Character --
15237 --------------------------------
15239 procedure Derived_Standard_Character
15240 (N : Node_Id;
15241 Parent_Type : Entity_Id;
15242 Derived_Type : Entity_Id)
15244 Loc : constant Source_Ptr := Sloc (N);
15245 Def : constant Node_Id := Type_Definition (N);
15246 Indic : constant Node_Id := Subtype_Indication (Def);
15247 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
15248 Implicit_Base : constant Entity_Id :=
15249 Create_Itype
15250 (E_Enumeration_Type, N, Derived_Type, 'B');
15252 Lo : Node_Id;
15253 Hi : Node_Id;
15255 begin
15256 Discard_Node (Process_Subtype (Indic, N));
15258 Set_Etype (Implicit_Base, Parent_Base);
15259 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
15260 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
15262 Set_Is_Character_Type (Implicit_Base, True);
15263 Set_Has_Delayed_Freeze (Implicit_Base);
15265 -- The bounds of the implicit base are the bounds of the parent base.
15266 -- Note that their type is the parent base.
15268 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
15269 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
15271 Set_Scalar_Range (Implicit_Base,
15272 Make_Range (Loc,
15273 Low_Bound => Lo,
15274 High_Bound => Hi));
15276 Conditional_Delay (Derived_Type, Parent_Type);
15278 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
15279 Set_Etype (Derived_Type, Implicit_Base);
15280 Set_Size_Info (Derived_Type, Parent_Type);
15282 if Unknown_RM_Size (Derived_Type) then
15283 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
15284 end if;
15286 Set_Is_Character_Type (Derived_Type, True);
15288 if Nkind (Indic) /= N_Subtype_Indication then
15290 -- If no explicit constraint, the bounds are those
15291 -- of the parent type.
15293 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
15294 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
15295 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
15296 end if;
15298 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
15300 -- Because the implicit base is used in the conversion of the bounds, we
15301 -- have to freeze it now. This is similar to what is done for numeric
15302 -- types, and it equally suspicious, but otherwise a non-static bound
15303 -- will have a reference to an unfrozen type, which is rejected by Gigi
15304 -- (???). This requires specific care for definition of stream
15305 -- attributes. For details, see comments at the end of
15306 -- Build_Derived_Numeric_Type.
15308 Freeze_Before (N, Implicit_Base);
15309 end Derived_Standard_Character;
15311 ------------------------------
15312 -- Derived_Type_Declaration --
15313 ------------------------------
15315 procedure Derived_Type_Declaration
15316 (T : Entity_Id;
15317 N : Node_Id;
15318 Is_Completion : Boolean)
15320 Parent_Type : Entity_Id;
15322 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
15323 -- Check whether the parent type is a generic formal, or derives
15324 -- directly or indirectly from one.
15326 ------------------------
15327 -- Comes_From_Generic --
15328 ------------------------
15330 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
15331 begin
15332 if Is_Generic_Type (Typ) then
15333 return True;
15335 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
15336 return True;
15338 elsif Is_Private_Type (Typ)
15339 and then Present (Full_View (Typ))
15340 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
15341 then
15342 return True;
15344 elsif Is_Generic_Actual_Type (Typ) then
15345 return True;
15347 else
15348 return False;
15349 end if;
15350 end Comes_From_Generic;
15352 -- Local variables
15354 Def : constant Node_Id := Type_Definition (N);
15355 Iface_Def : Node_Id;
15356 Indic : constant Node_Id := Subtype_Indication (Def);
15357 Extension : constant Node_Id := Record_Extension_Part (Def);
15358 Parent_Node : Node_Id;
15359 Taggd : Boolean;
15361 -- Start of processing for Derived_Type_Declaration
15363 begin
15364 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
15366 -- Ada 2005 (AI-251): In case of interface derivation check that the
15367 -- parent is also an interface.
15369 if Interface_Present (Def) then
15370 Check_SPARK_05_Restriction ("interface is not allowed", Def);
15372 if not Is_Interface (Parent_Type) then
15373 Diagnose_Interface (Indic, Parent_Type);
15375 else
15376 Parent_Node := Parent (Base_Type (Parent_Type));
15377 Iface_Def := Type_Definition (Parent_Node);
15379 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15380 -- other limited interfaces.
15382 if Limited_Present (Def) then
15383 if Limited_Present (Iface_Def) then
15384 null;
15386 elsif Protected_Present (Iface_Def) then
15387 Error_Msg_NE
15388 ("descendant of& must be declared"
15389 & " as a protected interface",
15390 N, Parent_Type);
15392 elsif Synchronized_Present (Iface_Def) then
15393 Error_Msg_NE
15394 ("descendant of& must be declared"
15395 & " as a synchronized interface",
15396 N, Parent_Type);
15398 elsif Task_Present (Iface_Def) then
15399 Error_Msg_NE
15400 ("descendant of& must be declared as a task interface",
15401 N, Parent_Type);
15403 else
15404 Error_Msg_N
15405 ("(Ada 2005) limited interface cannot "
15406 & "inherit from non-limited interface", Indic);
15407 end if;
15409 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15410 -- from non-limited or limited interfaces.
15412 elsif not Protected_Present (Def)
15413 and then not Synchronized_Present (Def)
15414 and then not Task_Present (Def)
15415 then
15416 if Limited_Present (Iface_Def) then
15417 null;
15419 elsif Protected_Present (Iface_Def) then
15420 Error_Msg_NE
15421 ("descendant of& must be declared"
15422 & " as a protected interface",
15423 N, Parent_Type);
15425 elsif Synchronized_Present (Iface_Def) then
15426 Error_Msg_NE
15427 ("descendant of& must be declared"
15428 & " as a synchronized interface",
15429 N, Parent_Type);
15431 elsif Task_Present (Iface_Def) then
15432 Error_Msg_NE
15433 ("descendant of& must be declared as a task interface",
15434 N, Parent_Type);
15435 else
15436 null;
15437 end if;
15438 end if;
15439 end if;
15440 end if;
15442 if Is_Tagged_Type (Parent_Type)
15443 and then Is_Concurrent_Type (Parent_Type)
15444 and then not Is_Interface (Parent_Type)
15445 then
15446 Error_Msg_N
15447 ("parent type of a record extension cannot be "
15448 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
15449 Set_Etype (T, Any_Type);
15450 return;
15451 end if;
15453 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15454 -- interfaces
15456 if Is_Tagged_Type (Parent_Type)
15457 and then Is_Non_Empty_List (Interface_List (Def))
15458 then
15459 declare
15460 Intf : Node_Id;
15461 T : Entity_Id;
15463 begin
15464 Intf := First (Interface_List (Def));
15465 while Present (Intf) loop
15466 T := Find_Type_Of_Subtype_Indic (Intf);
15468 if not Is_Interface (T) then
15469 Diagnose_Interface (Intf, T);
15471 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15472 -- a limited type from having a nonlimited progenitor.
15474 elsif (Limited_Present (Def)
15475 or else (not Is_Interface (Parent_Type)
15476 and then Is_Limited_Type (Parent_Type)))
15477 and then not Is_Limited_Interface (T)
15478 then
15479 Error_Msg_NE
15480 ("progenitor interface& of limited type must be limited",
15481 N, T);
15482 end if;
15484 Next (Intf);
15485 end loop;
15486 end;
15487 end if;
15489 if Parent_Type = Any_Type
15490 or else Etype (Parent_Type) = Any_Type
15491 or else (Is_Class_Wide_Type (Parent_Type)
15492 and then Etype (Parent_Type) = T)
15493 then
15494 -- If Parent_Type is undefined or illegal, make new type into a
15495 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15496 -- errors. If this is a self-definition, emit error now.
15498 if T = Parent_Type or else T = Etype (Parent_Type) then
15499 Error_Msg_N ("type cannot be used in its own definition", Indic);
15500 end if;
15502 Set_Ekind (T, Ekind (Parent_Type));
15503 Set_Etype (T, Any_Type);
15504 Set_Scalar_Range (T, Scalar_Range (Any_Type));
15506 if Is_Tagged_Type (T)
15507 and then Is_Record_Type (T)
15508 then
15509 Set_Direct_Primitive_Operations (T, New_Elmt_List);
15510 end if;
15512 return;
15513 end if;
15515 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15516 -- an interface is special because the list of interfaces in the full
15517 -- view can be given in any order. For example:
15519 -- type A is interface;
15520 -- type B is interface and A;
15521 -- type D is new B with private;
15522 -- private
15523 -- type D is new A and B with null record; -- 1 --
15525 -- In this case we perform the following transformation of -1-:
15527 -- type D is new B and A with null record;
15529 -- If the parent of the full-view covers the parent of the partial-view
15530 -- we have two possible cases:
15532 -- 1) They have the same parent
15533 -- 2) The parent of the full-view implements some further interfaces
15535 -- In both cases we do not need to perform the transformation. In the
15536 -- first case the source program is correct and the transformation is
15537 -- not needed; in the second case the source program does not fulfill
15538 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15539 -- later.
15541 -- This transformation not only simplifies the rest of the analysis of
15542 -- this type declaration but also simplifies the correct generation of
15543 -- the object layout to the expander.
15545 if In_Private_Part (Current_Scope)
15546 and then Is_Interface (Parent_Type)
15547 then
15548 declare
15549 Iface : Node_Id;
15550 Partial_View : Entity_Id;
15551 Partial_View_Parent : Entity_Id;
15552 New_Iface : Node_Id;
15554 begin
15555 -- Look for the associated private type declaration
15557 Partial_View := First_Entity (Current_Scope);
15558 loop
15559 exit when No (Partial_View)
15560 or else (Has_Private_Declaration (Partial_View)
15561 and then Full_View (Partial_View) = T);
15563 Next_Entity (Partial_View);
15564 end loop;
15566 -- If the partial view was not found then the source code has
15567 -- errors and the transformation is not needed.
15569 if Present (Partial_View) then
15570 Partial_View_Parent := Etype (Partial_View);
15572 -- If the parent of the full-view covers the parent of the
15573 -- partial-view we have nothing else to do.
15575 if Interface_Present_In_Ancestor
15576 (Parent_Type, Partial_View_Parent)
15577 then
15578 null;
15580 -- Traverse the list of interfaces of the full-view to look
15581 -- for the parent of the partial-view and perform the tree
15582 -- transformation.
15584 else
15585 Iface := First (Interface_List (Def));
15586 while Present (Iface) loop
15587 if Etype (Iface) = Etype (Partial_View) then
15588 Rewrite (Subtype_Indication (Def),
15589 New_Copy (Subtype_Indication
15590 (Parent (Partial_View))));
15592 New_Iface :=
15593 Make_Identifier (Sloc (N), Chars (Parent_Type));
15594 Append (New_Iface, Interface_List (Def));
15596 -- Analyze the transformed code
15598 Derived_Type_Declaration (T, N, Is_Completion);
15599 return;
15600 end if;
15602 Next (Iface);
15603 end loop;
15604 end if;
15605 end if;
15606 end;
15607 end if;
15609 -- Only composite types other than array types are allowed to have
15610 -- discriminants.
15612 if Present (Discriminant_Specifications (N)) then
15613 if (Is_Elementary_Type (Parent_Type)
15614 or else
15615 Is_Array_Type (Parent_Type))
15616 and then not Error_Posted (N)
15617 then
15618 Error_Msg_N
15619 ("elementary or array type cannot have discriminants",
15620 Defining_Identifier (First (Discriminant_Specifications (N))));
15621 Set_Has_Discriminants (T, False);
15623 -- The type is allowed to have discriminants
15625 else
15626 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
15627 end if;
15628 end if;
15630 -- In Ada 83, a derived type defined in a package specification cannot
15631 -- be used for further derivation until the end of its visible part.
15632 -- Note that derivation in the private part of the package is allowed.
15634 if Ada_Version = Ada_83
15635 and then Is_Derived_Type (Parent_Type)
15636 and then In_Visible_Part (Scope (Parent_Type))
15637 then
15638 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15639 Error_Msg_N
15640 ("(Ada 83): premature use of type for derivation", Indic);
15641 end if;
15642 end if;
15644 -- Check for early use of incomplete or private type
15646 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15647 Error_Msg_N ("premature derivation of incomplete type", Indic);
15648 return;
15650 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15651 and then not Comes_From_Generic (Parent_Type))
15652 or else Has_Private_Component (Parent_Type)
15653 then
15654 -- The ancestor type of a formal type can be incomplete, in which
15655 -- case only the operations of the partial view are available in the
15656 -- generic. Subsequent checks may be required when the full view is
15657 -- analyzed to verify that a derivation from a tagged type has an
15658 -- extension.
15660 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15661 null;
15663 elsif No (Underlying_Type (Parent_Type))
15664 or else Has_Private_Component (Parent_Type)
15665 then
15666 Error_Msg_N
15667 ("premature derivation of derived or private type", Indic);
15669 -- Flag the type itself as being in error, this prevents some
15670 -- nasty problems with subsequent uses of the malformed type.
15672 Set_Error_Posted (T);
15674 -- Check that within the immediate scope of an untagged partial
15675 -- view it's illegal to derive from the partial view if the
15676 -- full view is tagged. (7.3(7))
15678 -- We verify that the Parent_Type is a partial view by checking
15679 -- that it is not a Full_Type_Declaration (i.e. a private type or
15680 -- private extension declaration), to distinguish a partial view
15681 -- from a derivation from a private type which also appears as
15682 -- E_Private_Type. If the parent base type is not declared in an
15683 -- enclosing scope there is no need to check.
15685 elsif Present (Full_View (Parent_Type))
15686 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15687 and then not Is_Tagged_Type (Parent_Type)
15688 and then Is_Tagged_Type (Full_View (Parent_Type))
15689 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15690 then
15691 Error_Msg_N
15692 ("premature derivation from type with tagged full view",
15693 Indic);
15694 end if;
15695 end if;
15697 -- Check that form of derivation is appropriate
15699 Taggd := Is_Tagged_Type (Parent_Type);
15701 -- Perhaps the parent type should be changed to the class-wide type's
15702 -- specific type in this case to prevent cascading errors ???
15704 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15705 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15706 return;
15707 end if;
15709 if Present (Extension) and then not Taggd then
15710 Error_Msg_N
15711 ("type derived from untagged type cannot have extension", Indic);
15713 elsif No (Extension) and then Taggd then
15715 -- If this declaration is within a private part (or body) of a
15716 -- generic instantiation then the derivation is allowed (the parent
15717 -- type can only appear tagged in this case if it's a generic actual
15718 -- type, since it would otherwise have been rejected in the analysis
15719 -- of the generic template).
15721 if not Is_Generic_Actual_Type (Parent_Type)
15722 or else In_Visible_Part (Scope (Parent_Type))
15723 then
15724 if Is_Class_Wide_Type (Parent_Type) then
15725 Error_Msg_N
15726 ("parent type must not be a class-wide type", Indic);
15728 -- Use specific type to prevent cascaded errors.
15730 Parent_Type := Etype (Parent_Type);
15732 else
15733 Error_Msg_N
15734 ("type derived from tagged type must have extension", Indic);
15735 end if;
15736 end if;
15737 end if;
15739 -- AI-443: Synchronized formal derived types require a private
15740 -- extension. There is no point in checking the ancestor type or
15741 -- the progenitors since the construct is wrong to begin with.
15743 if Ada_Version >= Ada_2005
15744 and then Is_Generic_Type (T)
15745 and then Present (Original_Node (N))
15746 then
15747 declare
15748 Decl : constant Node_Id := Original_Node (N);
15750 begin
15751 if Nkind (Decl) = N_Formal_Type_Declaration
15752 and then Nkind (Formal_Type_Definition (Decl)) =
15753 N_Formal_Derived_Type_Definition
15754 and then Synchronized_Present (Formal_Type_Definition (Decl))
15755 and then No (Extension)
15757 -- Avoid emitting a duplicate error message
15759 and then not Error_Posted (Indic)
15760 then
15761 Error_Msg_N
15762 ("synchronized derived type must have extension", N);
15763 end if;
15764 end;
15765 end if;
15767 if Null_Exclusion_Present (Def)
15768 and then not Is_Access_Type (Parent_Type)
15769 then
15770 Error_Msg_N ("null exclusion can only apply to an access type", N);
15771 end if;
15773 -- Avoid deriving parent primitives of underlying record views
15775 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15776 Derive_Subps => not Is_Underlying_Record_View (T));
15778 -- AI-419: The parent type of an explicitly limited derived type must
15779 -- be a limited type or a limited interface.
15781 if Limited_Present (Def) then
15782 Set_Is_Limited_Record (T);
15784 if Is_Interface (T) then
15785 Set_Is_Limited_Interface (T);
15786 end if;
15788 if not Is_Limited_Type (Parent_Type)
15789 and then
15790 (not Is_Interface (Parent_Type)
15791 or else not Is_Limited_Interface (Parent_Type))
15792 then
15793 -- AI05-0096: a derivation in the private part of an instance is
15794 -- legal if the generic formal is untagged limited, and the actual
15795 -- is non-limited.
15797 if Is_Generic_Actual_Type (Parent_Type)
15798 and then In_Private_Part (Current_Scope)
15799 and then
15800 not Is_Tagged_Type
15801 (Generic_Parent_Type (Parent (Parent_Type)))
15802 then
15803 null;
15805 else
15806 Error_Msg_NE
15807 ("parent type& of limited type must be limited",
15808 N, Parent_Type);
15809 end if;
15810 end if;
15811 end if;
15813 -- In SPARK, there are no derived type definitions other than type
15814 -- extensions of tagged record types.
15816 if No (Extension) then
15817 Check_SPARK_05_Restriction
15818 ("derived type is not allowed", Original_Node (N));
15819 end if;
15820 end Derived_Type_Declaration;
15822 ------------------------
15823 -- Diagnose_Interface --
15824 ------------------------
15826 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
15827 begin
15828 if not Is_Interface (E)
15829 and then E /= Any_Type
15830 then
15831 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
15832 end if;
15833 end Diagnose_Interface;
15835 ----------------------------------
15836 -- Enumeration_Type_Declaration --
15837 ----------------------------------
15839 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15840 Ev : Uint;
15841 L : Node_Id;
15842 R_Node : Node_Id;
15843 B_Node : Node_Id;
15845 begin
15846 -- Create identifier node representing lower bound
15848 B_Node := New_Node (N_Identifier, Sloc (Def));
15849 L := First (Literals (Def));
15850 Set_Chars (B_Node, Chars (L));
15851 Set_Entity (B_Node, L);
15852 Set_Etype (B_Node, T);
15853 Set_Is_Static_Expression (B_Node, True);
15855 R_Node := New_Node (N_Range, Sloc (Def));
15856 Set_Low_Bound (R_Node, B_Node);
15858 Set_Ekind (T, E_Enumeration_Type);
15859 Set_First_Literal (T, L);
15860 Set_Etype (T, T);
15861 Set_Is_Constrained (T);
15863 Ev := Uint_0;
15865 -- Loop through literals of enumeration type setting pos and rep values
15866 -- except that if the Ekind is already set, then it means the literal
15867 -- was already constructed (case of a derived type declaration and we
15868 -- should not disturb the Pos and Rep values.
15870 while Present (L) loop
15871 if Ekind (L) /= E_Enumeration_Literal then
15872 Set_Ekind (L, E_Enumeration_Literal);
15873 Set_Enumeration_Pos (L, Ev);
15874 Set_Enumeration_Rep (L, Ev);
15875 Set_Is_Known_Valid (L, True);
15876 end if;
15878 Set_Etype (L, T);
15879 New_Overloaded_Entity (L);
15880 Generate_Definition (L);
15881 Set_Convention (L, Convention_Intrinsic);
15883 -- Case of character literal
15885 if Nkind (L) = N_Defining_Character_Literal then
15886 Set_Is_Character_Type (T, True);
15888 -- Check violation of No_Wide_Characters
15890 if Restriction_Check_Required (No_Wide_Characters) then
15891 Get_Name_String (Chars (L));
15893 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
15894 Check_Restriction (No_Wide_Characters, L);
15895 end if;
15896 end if;
15897 end if;
15899 Ev := Ev + 1;
15900 Next (L);
15901 end loop;
15903 -- Now create a node representing upper bound
15905 B_Node := New_Node (N_Identifier, Sloc (Def));
15906 Set_Chars (B_Node, Chars (Last (Literals (Def))));
15907 Set_Entity (B_Node, Last (Literals (Def)));
15908 Set_Etype (B_Node, T);
15909 Set_Is_Static_Expression (B_Node, True);
15911 Set_High_Bound (R_Node, B_Node);
15913 -- Initialize various fields of the type. Some of this information
15914 -- may be overwritten later through rep.clauses.
15916 Set_Scalar_Range (T, R_Node);
15917 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15918 Set_Enum_Esize (T);
15919 Set_Enum_Pos_To_Rep (T, Empty);
15921 -- Set Discard_Names if configuration pragma set, or if there is
15922 -- a parameterless pragma in the current declarative region
15924 if Global_Discard_Names or else Discard_Names (Scope (T)) then
15925 Set_Discard_Names (T);
15926 end if;
15928 -- Process end label if there is one
15930 if Present (Def) then
15931 Process_End_Label (Def, 'e', T);
15932 end if;
15933 end Enumeration_Type_Declaration;
15935 ---------------------------------
15936 -- Expand_To_Stored_Constraint --
15937 ---------------------------------
15939 function Expand_To_Stored_Constraint
15940 (Typ : Entity_Id;
15941 Constraint : Elist_Id) return Elist_Id
15943 Explicitly_Discriminated_Type : Entity_Id;
15944 Expansion : Elist_Id;
15945 Discriminant : Entity_Id;
15947 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
15948 -- Find the nearest type that actually specifies discriminants
15950 ---------------------------------
15951 -- Type_With_Explicit_Discrims --
15952 ---------------------------------
15954 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
15955 Typ : constant E := Base_Type (Id);
15957 begin
15958 if Ekind (Typ) in Incomplete_Or_Private_Kind then
15959 if Present (Full_View (Typ)) then
15960 return Type_With_Explicit_Discrims (Full_View (Typ));
15961 end if;
15963 else
15964 if Has_Discriminants (Typ) then
15965 return Typ;
15966 end if;
15967 end if;
15969 if Etype (Typ) = Typ then
15970 return Empty;
15971 elsif Has_Discriminants (Typ) then
15972 return Typ;
15973 else
15974 return Type_With_Explicit_Discrims (Etype (Typ));
15975 end if;
15977 end Type_With_Explicit_Discrims;
15979 -- Start of processing for Expand_To_Stored_Constraint
15981 begin
15982 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
15983 return No_Elist;
15984 end if;
15986 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
15988 if No (Explicitly_Discriminated_Type) then
15989 return No_Elist;
15990 end if;
15992 Expansion := New_Elmt_List;
15994 Discriminant :=
15995 First_Stored_Discriminant (Explicitly_Discriminated_Type);
15996 while Present (Discriminant) loop
15997 Append_Elmt
15998 (Get_Discriminant_Value
15999 (Discriminant, Explicitly_Discriminated_Type, Constraint),
16000 To => Expansion);
16001 Next_Stored_Discriminant (Discriminant);
16002 end loop;
16004 return Expansion;
16005 end Expand_To_Stored_Constraint;
16007 ---------------------------
16008 -- Find_Hidden_Interface --
16009 ---------------------------
16011 function Find_Hidden_Interface
16012 (Src : Elist_Id;
16013 Dest : Elist_Id) return Entity_Id
16015 Iface : Entity_Id;
16016 Iface_Elmt : Elmt_Id;
16018 begin
16019 if Present (Src) and then Present (Dest) then
16020 Iface_Elmt := First_Elmt (Src);
16021 while Present (Iface_Elmt) loop
16022 Iface := Node (Iface_Elmt);
16024 if Is_Interface (Iface)
16025 and then not Contain_Interface (Iface, Dest)
16026 then
16027 return Iface;
16028 end if;
16030 Next_Elmt (Iface_Elmt);
16031 end loop;
16032 end if;
16034 return Empty;
16035 end Find_Hidden_Interface;
16037 --------------------
16038 -- Find_Type_Name --
16039 --------------------
16041 function Find_Type_Name (N : Node_Id) return Entity_Id is
16042 Id : constant Entity_Id := Defining_Identifier (N);
16043 Prev : Entity_Id;
16044 New_Id : Entity_Id;
16045 Prev_Par : Node_Id;
16047 procedure Check_Duplicate_Aspects;
16048 -- Check that aspects specified in a completion have not been specified
16049 -- already in the partial view. Type_Invariant and others can be
16050 -- specified on either view but never on both.
16052 procedure Tag_Mismatch;
16053 -- Diagnose a tagged partial view whose full view is untagged.
16054 -- We post the message on the full view, with a reference to
16055 -- the previous partial view. The partial view can be private
16056 -- or incomplete, and these are handled in a different manner,
16057 -- so we determine the position of the error message from the
16058 -- respective slocs of both.
16060 -----------------------------
16061 -- Check_Duplicate_Aspects --
16062 -----------------------------
16063 procedure Check_Duplicate_Aspects is
16064 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
16065 Full_Aspects : constant List_Id := Aspect_Specifications (N);
16066 F_Spec, P_Spec : Node_Id;
16068 begin
16069 if Present (Prev_Aspects) and then Present (Full_Aspects) then
16070 F_Spec := First (Full_Aspects);
16071 while Present (F_Spec) loop
16072 P_Spec := First (Prev_Aspects);
16073 while Present (P_Spec) loop
16075 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
16076 then
16077 Error_Msg_N
16078 ("aspect already specified in private declaration",
16079 F_Spec);
16080 Remove (F_Spec);
16081 return;
16082 end if;
16084 Next (P_Spec);
16085 end loop;
16087 Next (F_Spec);
16088 end loop;
16089 end if;
16090 end Check_Duplicate_Aspects;
16092 ------------------
16093 -- Tag_Mismatch --
16094 ------------------
16096 procedure Tag_Mismatch is
16097 begin
16098 if Sloc (Prev) < Sloc (Id) then
16099 if Ada_Version >= Ada_2012
16100 and then Nkind (N) = N_Private_Type_Declaration
16101 then
16102 Error_Msg_NE
16103 ("declaration of private } must be a tagged type ", Id, Prev);
16104 else
16105 Error_Msg_NE
16106 ("full declaration of } must be a tagged type ", Id, Prev);
16107 end if;
16109 else
16110 if Ada_Version >= Ada_2012
16111 and then Nkind (N) = N_Private_Type_Declaration
16112 then
16113 Error_Msg_NE
16114 ("declaration of private } must be a tagged type ", Prev, Id);
16115 else
16116 Error_Msg_NE
16117 ("full declaration of } must be a tagged type ", Prev, Id);
16118 end if;
16119 end if;
16120 end Tag_Mismatch;
16122 -- Start of processing for Find_Type_Name
16124 begin
16125 -- Find incomplete declaration, if one was given
16127 Prev := Current_Entity_In_Scope (Id);
16129 -- New type declaration
16131 if No (Prev) then
16132 Enter_Name (Id);
16133 return Id;
16135 -- Previous declaration exists
16137 else
16138 Prev_Par := Parent (Prev);
16140 -- Error if not incomplete/private case except if previous
16141 -- declaration is implicit, etc. Enter_Name will emit error if
16142 -- appropriate.
16144 if not Is_Incomplete_Or_Private_Type (Prev) then
16145 Enter_Name (Id);
16146 New_Id := Id;
16148 -- Check invalid completion of private or incomplete type
16150 elsif not Nkind_In (N, N_Full_Type_Declaration,
16151 N_Task_Type_Declaration,
16152 N_Protected_Type_Declaration)
16153 and then
16154 (Ada_Version < Ada_2012
16155 or else not Is_Incomplete_Type (Prev)
16156 or else not Nkind_In (N, N_Private_Type_Declaration,
16157 N_Private_Extension_Declaration))
16158 then
16159 -- Completion must be a full type declarations (RM 7.3(4))
16161 Error_Msg_Sloc := Sloc (Prev);
16162 Error_Msg_NE ("invalid completion of }", Id, Prev);
16164 -- Set scope of Id to avoid cascaded errors. Entity is never
16165 -- examined again, except when saving globals in generics.
16167 Set_Scope (Id, Current_Scope);
16168 New_Id := Id;
16170 -- If this is a repeated incomplete declaration, no further
16171 -- checks are possible.
16173 if Nkind (N) = N_Incomplete_Type_Declaration then
16174 return Prev;
16175 end if;
16177 -- Case of full declaration of incomplete type
16179 elsif Ekind (Prev) = E_Incomplete_Type
16180 and then (Ada_Version < Ada_2012
16181 or else No (Full_View (Prev))
16182 or else not Is_Private_Type (Full_View (Prev)))
16183 then
16184 -- Indicate that the incomplete declaration has a matching full
16185 -- declaration. The defining occurrence of the incomplete
16186 -- declaration remains the visible one, and the procedure
16187 -- Get_Full_View dereferences it whenever the type is used.
16189 if Present (Full_View (Prev)) then
16190 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16191 end if;
16193 Set_Full_View (Prev, Id);
16194 Append_Entity (Id, Current_Scope);
16195 Set_Is_Public (Id, Is_Public (Prev));
16196 Set_Is_Internal (Id);
16197 New_Id := Prev;
16199 -- If the incomplete view is tagged, a class_wide type has been
16200 -- created already. Use it for the private type as well, in order
16201 -- to prevent multiple incompatible class-wide types that may be
16202 -- created for self-referential anonymous access components.
16204 if Is_Tagged_Type (Prev)
16205 and then Present (Class_Wide_Type (Prev))
16206 then
16207 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
16208 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
16210 -- If the incomplete type is completed by a private declaration
16211 -- the class-wide type remains associated with the incomplete
16212 -- type, to prevent order-of-elaboration issues in gigi, else
16213 -- we associate the class-wide type with the known full view.
16215 if Nkind (N) /= N_Private_Type_Declaration then
16216 Set_Etype (Class_Wide_Type (Id), Id);
16217 end if;
16218 end if;
16220 -- Case of full declaration of private type
16222 else
16223 -- If the private type was a completion of an incomplete type then
16224 -- update Prev to reference the private type
16226 if Ada_Version >= Ada_2012
16227 and then Ekind (Prev) = E_Incomplete_Type
16228 and then Present (Full_View (Prev))
16229 and then Is_Private_Type (Full_View (Prev))
16230 then
16231 Prev := Full_View (Prev);
16232 Prev_Par := Parent (Prev);
16233 end if;
16235 if Nkind (N) = N_Full_Type_Declaration
16236 and then Nkind_In
16237 (Type_Definition (N), N_Record_Definition,
16238 N_Derived_Type_Definition)
16239 and then Interface_Present (Type_Definition (N))
16240 then
16241 Error_Msg_N
16242 ("completion of private type cannot be an interface", N);
16243 end if;
16245 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
16246 if Etype (Prev) /= Prev then
16248 -- Prev is a private subtype or a derived type, and needs
16249 -- no completion.
16251 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16252 New_Id := Id;
16254 elsif Ekind (Prev) = E_Private_Type
16255 and then Nkind_In (N, N_Task_Type_Declaration,
16256 N_Protected_Type_Declaration)
16257 then
16258 Error_Msg_N
16259 ("completion of nonlimited type cannot be limited", N);
16261 elsif Ekind (Prev) = E_Record_Type_With_Private
16262 and then Nkind_In (N, N_Task_Type_Declaration,
16263 N_Protected_Type_Declaration)
16264 then
16265 if not Is_Limited_Record (Prev) then
16266 Error_Msg_N
16267 ("completion of nonlimited type cannot be limited", N);
16269 elsif No (Interface_List (N)) then
16270 Error_Msg_N
16271 ("completion of tagged private type must be tagged",
16273 end if;
16274 end if;
16276 -- Ada 2005 (AI-251): Private extension declaration of a task
16277 -- type or a protected type. This case arises when covering
16278 -- interface types.
16280 elsif Nkind_In (N, N_Task_Type_Declaration,
16281 N_Protected_Type_Declaration)
16282 then
16283 null;
16285 elsif Nkind (N) /= N_Full_Type_Declaration
16286 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
16287 then
16288 Error_Msg_N
16289 ("full view of private extension must be an extension", N);
16291 elsif not (Abstract_Present (Parent (Prev)))
16292 and then Abstract_Present (Type_Definition (N))
16293 then
16294 Error_Msg_N
16295 ("full view of non-abstract extension cannot be abstract", N);
16296 end if;
16298 if not In_Private_Part (Current_Scope) then
16299 Error_Msg_N
16300 ("declaration of full view must appear in private part", N);
16301 end if;
16303 if Ada_Version >= Ada_2012 then
16304 Check_Duplicate_Aspects;
16305 end if;
16307 Copy_And_Swap (Prev, Id);
16308 Set_Has_Private_Declaration (Prev);
16309 Set_Has_Private_Declaration (Id);
16311 -- Preserve aspect and iterator flags that may have been set on
16312 -- the partial view.
16314 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
16315 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
16317 -- If no error, propagate freeze_node from private to full view.
16318 -- It may have been generated for an early operational item.
16320 if Present (Freeze_Node (Id))
16321 and then Serious_Errors_Detected = 0
16322 and then No (Full_View (Id))
16323 then
16324 Set_Freeze_Node (Prev, Freeze_Node (Id));
16325 Set_Freeze_Node (Id, Empty);
16326 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
16327 end if;
16329 Set_Full_View (Id, Prev);
16330 New_Id := Prev;
16331 end if;
16333 -- Verify that full declaration conforms to partial one
16335 if Is_Incomplete_Or_Private_Type (Prev)
16336 and then Present (Discriminant_Specifications (Prev_Par))
16337 then
16338 if Present (Discriminant_Specifications (N)) then
16339 if Ekind (Prev) = E_Incomplete_Type then
16340 Check_Discriminant_Conformance (N, Prev, Prev);
16341 else
16342 Check_Discriminant_Conformance (N, Prev, Id);
16343 end if;
16345 else
16346 Error_Msg_N
16347 ("missing discriminants in full type declaration", N);
16349 -- To avoid cascaded errors on subsequent use, share the
16350 -- discriminants of the partial view.
16352 Set_Discriminant_Specifications (N,
16353 Discriminant_Specifications (Prev_Par));
16354 end if;
16355 end if;
16357 -- A prior untagged partial view can have an associated class-wide
16358 -- type due to use of the class attribute, and in this case the full
16359 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16360 -- of incomplete tagged declarations, but we check for it.
16362 if Is_Type (Prev)
16363 and then (Is_Tagged_Type (Prev)
16364 or else Present (Class_Wide_Type (Prev)))
16365 then
16366 -- Ada 2012 (AI05-0162): A private type may be the completion of
16367 -- an incomplete type.
16369 if Ada_Version >= Ada_2012
16370 and then Is_Incomplete_Type (Prev)
16371 and then Nkind_In (N, N_Private_Type_Declaration,
16372 N_Private_Extension_Declaration)
16373 then
16374 -- No need to check private extensions since they are tagged
16376 if Nkind (N) = N_Private_Type_Declaration
16377 and then not Tagged_Present (N)
16378 then
16379 Tag_Mismatch;
16380 end if;
16382 -- The full declaration is either a tagged type (including
16383 -- a synchronized type that implements interfaces) or a
16384 -- type extension, otherwise this is an error.
16386 elsif Nkind_In (N, N_Task_Type_Declaration,
16387 N_Protected_Type_Declaration)
16388 then
16389 if No (Interface_List (N))
16390 and then not Error_Posted (N)
16391 then
16392 Tag_Mismatch;
16393 end if;
16395 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
16397 -- Indicate that the previous declaration (tagged incomplete
16398 -- or private declaration) requires the same on the full one.
16400 if not Tagged_Present (Type_Definition (N)) then
16401 Tag_Mismatch;
16402 Set_Is_Tagged_Type (Id);
16403 end if;
16405 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
16406 if No (Record_Extension_Part (Type_Definition (N))) then
16407 Error_Msg_NE
16408 ("full declaration of } must be a record extension",
16409 Prev, Id);
16411 -- Set some attributes to produce a usable full view
16413 Set_Is_Tagged_Type (Id);
16414 end if;
16416 else
16417 Tag_Mismatch;
16418 end if;
16419 end if;
16421 if Present (Prev)
16422 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
16423 and then Present (Premature_Use (Parent (Prev)))
16424 then
16425 Error_Msg_Sloc := Sloc (N);
16426 Error_Msg_N
16427 ("\full declaration #", Premature_Use (Parent (Prev)));
16428 end if;
16430 return New_Id;
16431 end if;
16432 end Find_Type_Name;
16434 -------------------------
16435 -- Find_Type_Of_Object --
16436 -------------------------
16438 function Find_Type_Of_Object
16439 (Obj_Def : Node_Id;
16440 Related_Nod : Node_Id) return Entity_Id
16442 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
16443 P : Node_Id := Parent (Obj_Def);
16444 T : Entity_Id;
16445 Nam : Name_Id;
16447 begin
16448 -- If the parent is a component_definition node we climb to the
16449 -- component_declaration node
16451 if Nkind (P) = N_Component_Definition then
16452 P := Parent (P);
16453 end if;
16455 -- Case of an anonymous array subtype
16457 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
16458 N_Unconstrained_Array_Definition)
16459 then
16460 T := Empty;
16461 Array_Type_Declaration (T, Obj_Def);
16463 -- Create an explicit subtype whenever possible
16465 elsif Nkind (P) /= N_Component_Declaration
16466 and then Def_Kind = N_Subtype_Indication
16467 then
16468 -- Base name of subtype on object name, which will be unique in
16469 -- the current scope.
16471 -- If this is a duplicate declaration, return base type, to avoid
16472 -- generating duplicate anonymous types.
16474 if Error_Posted (P) then
16475 Analyze (Subtype_Mark (Obj_Def));
16476 return Entity (Subtype_Mark (Obj_Def));
16477 end if;
16479 Nam :=
16480 New_External_Name
16481 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
16483 T := Make_Defining_Identifier (Sloc (P), Nam);
16485 Insert_Action (Obj_Def,
16486 Make_Subtype_Declaration (Sloc (P),
16487 Defining_Identifier => T,
16488 Subtype_Indication => Relocate_Node (Obj_Def)));
16490 -- This subtype may need freezing, and this will not be done
16491 -- automatically if the object declaration is not in declarative
16492 -- part. Since this is an object declaration, the type cannot always
16493 -- be frozen here. Deferred constants do not freeze their type
16494 -- (which often enough will be private).
16496 if Nkind (P) = N_Object_Declaration
16497 and then Constant_Present (P)
16498 and then No (Expression (P))
16499 then
16500 null;
16502 -- Here we freeze the base type of object type to catch premature use
16503 -- of discriminated private type without a full view.
16505 else
16506 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
16507 end if;
16509 -- Ada 2005 AI-406: the object definition in an object declaration
16510 -- can be an access definition.
16512 elsif Def_Kind = N_Access_Definition then
16513 T := Access_Definition (Related_Nod, Obj_Def);
16515 Set_Is_Local_Anonymous_Access
16517 V => (Ada_Version < Ada_2012)
16518 or else (Nkind (P) /= N_Object_Declaration)
16519 or else Is_Library_Level_Entity (Defining_Identifier (P)));
16521 -- Otherwise, the object definition is just a subtype_mark
16523 else
16524 T := Process_Subtype (Obj_Def, Related_Nod);
16526 -- If expansion is disabled an object definition that is an aggregate
16527 -- will not get expanded and may lead to scoping problems in the back
16528 -- end, if the object is referenced in an inner scope. In that case
16529 -- create an itype reference for the object definition now. This
16530 -- may be redundant in some cases, but harmless.
16532 if Is_Itype (T)
16533 and then Nkind (Related_Nod) = N_Object_Declaration
16534 and then ASIS_Mode
16535 then
16536 Build_Itype_Reference (T, Related_Nod);
16537 end if;
16538 end if;
16540 return T;
16541 end Find_Type_Of_Object;
16543 --------------------------------
16544 -- Find_Type_Of_Subtype_Indic --
16545 --------------------------------
16547 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
16548 Typ : Entity_Id;
16550 begin
16551 -- Case of subtype mark with a constraint
16553 if Nkind (S) = N_Subtype_Indication then
16554 Find_Type (Subtype_Mark (S));
16555 Typ := Entity (Subtype_Mark (S));
16557 if not
16558 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
16559 then
16560 Error_Msg_N
16561 ("incorrect constraint for this kind of type", Constraint (S));
16562 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
16563 end if;
16565 -- Otherwise we have a subtype mark without a constraint
16567 elsif Error_Posted (S) then
16568 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
16569 return Any_Type;
16571 else
16572 Find_Type (S);
16573 Typ := Entity (S);
16574 end if;
16576 -- Check No_Wide_Characters restriction
16578 Check_Wide_Character_Restriction (Typ, S);
16580 return Typ;
16581 end Find_Type_Of_Subtype_Indic;
16583 -------------------------------------
16584 -- Floating_Point_Type_Declaration --
16585 -------------------------------------
16587 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16588 Digs : constant Node_Id := Digits_Expression (Def);
16589 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
16590 Digs_Val : Uint;
16591 Base_Typ : Entity_Id;
16592 Implicit_Base : Entity_Id;
16593 Bound : Node_Id;
16595 function Can_Derive_From (E : Entity_Id) return Boolean;
16596 -- Find if given digits value, and possibly a specified range, allows
16597 -- derivation from specified type
16599 function Find_Base_Type return Entity_Id;
16600 -- Find a predefined base type that Def can derive from, or generate
16601 -- an error and substitute Long_Long_Float if none exists.
16603 ---------------------
16604 -- Can_Derive_From --
16605 ---------------------
16607 function Can_Derive_From (E : Entity_Id) return Boolean is
16608 Spec : constant Entity_Id := Real_Range_Specification (Def);
16610 begin
16611 -- Check specified "digits" constraint
16613 if Digs_Val > Digits_Value (E) then
16614 return False;
16615 end if;
16617 -- Check for matching range, if specified
16619 if Present (Spec) then
16620 if Expr_Value_R (Type_Low_Bound (E)) >
16621 Expr_Value_R (Low_Bound (Spec))
16622 then
16623 return False;
16624 end if;
16626 if Expr_Value_R (Type_High_Bound (E)) <
16627 Expr_Value_R (High_Bound (Spec))
16628 then
16629 return False;
16630 end if;
16631 end if;
16633 return True;
16634 end Can_Derive_From;
16636 --------------------
16637 -- Find_Base_Type --
16638 --------------------
16640 function Find_Base_Type return Entity_Id is
16641 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16643 begin
16644 -- Iterate over the predefined types in order, returning the first
16645 -- one that Def can derive from.
16647 while Present (Choice) loop
16648 if Can_Derive_From (Node (Choice)) then
16649 return Node (Choice);
16650 end if;
16652 Next_Elmt (Choice);
16653 end loop;
16655 -- If we can't derive from any existing type, use Long_Long_Float
16656 -- and give appropriate message explaining the problem.
16658 if Digs_Val > Max_Digs_Val then
16659 -- It might be the case that there is a type with the requested
16660 -- range, just not the combination of digits and range.
16662 Error_Msg_N
16663 ("no predefined type has requested range and precision",
16664 Real_Range_Specification (Def));
16666 else
16667 Error_Msg_N
16668 ("range too large for any predefined type",
16669 Real_Range_Specification (Def));
16670 end if;
16672 return Standard_Long_Long_Float;
16673 end Find_Base_Type;
16675 -- Start of processing for Floating_Point_Type_Declaration
16677 begin
16678 Check_Restriction (No_Floating_Point, Def);
16680 -- Create an implicit base type
16682 Implicit_Base :=
16683 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16685 -- Analyze and verify digits value
16687 Analyze_And_Resolve (Digs, Any_Integer);
16688 Check_Digits_Expression (Digs);
16689 Digs_Val := Expr_Value (Digs);
16691 -- Process possible range spec and find correct type to derive from
16693 Process_Real_Range_Specification (Def);
16695 -- Check that requested number of digits is not too high.
16697 if Digs_Val > Max_Digs_Val then
16698 -- The check for Max_Base_Digits may be somewhat expensive, as it
16699 -- requires reading System, so only do it when necessary.
16701 declare
16702 Max_Base_Digits : constant Uint :=
16703 Expr_Value
16704 (Expression
16705 (Parent (RTE (RE_Max_Base_Digits))));
16707 begin
16708 if Digs_Val > Max_Base_Digits then
16709 Error_Msg_Uint_1 := Max_Base_Digits;
16710 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16712 elsif No (Real_Range_Specification (Def)) then
16713 Error_Msg_Uint_1 := Max_Digs_Val;
16714 Error_Msg_N ("types with more than ^ digits need range spec "
16715 & "(RM 3.5.7(6))", Digs);
16716 end if;
16717 end;
16718 end if;
16720 -- Find a suitable type to derive from or complain and use a substitute
16722 Base_Typ := Find_Base_Type;
16724 -- If there are bounds given in the declaration use them as the bounds
16725 -- of the type, otherwise use the bounds of the predefined base type
16726 -- that was chosen based on the Digits value.
16728 if Present (Real_Range_Specification (Def)) then
16729 Set_Scalar_Range (T, Real_Range_Specification (Def));
16730 Set_Is_Constrained (T);
16732 -- The bounds of this range must be converted to machine numbers
16733 -- in accordance with RM 4.9(38).
16735 Bound := Type_Low_Bound (T);
16737 if Nkind (Bound) = N_Real_Literal then
16738 Set_Realval
16739 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16740 Set_Is_Machine_Number (Bound);
16741 end if;
16743 Bound := Type_High_Bound (T);
16745 if Nkind (Bound) = N_Real_Literal then
16746 Set_Realval
16747 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16748 Set_Is_Machine_Number (Bound);
16749 end if;
16751 else
16752 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16753 end if;
16755 -- Complete definition of implicit base and declared first subtype. The
16756 -- inheritance of the rep item chain ensures that SPARK-related pragmas
16757 -- are not clobbered when the floating point type acts as a full view of
16758 -- a private type.
16760 Set_Etype (Implicit_Base, Base_Typ);
16761 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16762 Set_Size_Info (Implicit_Base, Base_Typ);
16763 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16764 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16765 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16766 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16768 Set_Ekind (T, E_Floating_Point_Subtype);
16769 Set_Etype (T, Implicit_Base);
16770 Set_Size_Info (T, Implicit_Base);
16771 Set_RM_Size (T, RM_Size (Implicit_Base));
16772 Inherit_Rep_Item_Chain (T, Implicit_Base);
16773 Set_Digits_Value (T, Digs_Val);
16774 end Floating_Point_Type_Declaration;
16776 ----------------------------
16777 -- Get_Discriminant_Value --
16778 ----------------------------
16780 -- This is the situation:
16782 -- There is a non-derived type
16784 -- type T0 (Dx, Dy, Dz...)
16786 -- There are zero or more levels of derivation, with each derivation
16787 -- either purely inheriting the discriminants, or defining its own.
16789 -- type Ti is new Ti-1
16790 -- or
16791 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16792 -- or
16793 -- subtype Ti is ...
16795 -- The subtype issue is avoided by the use of Original_Record_Component,
16796 -- and the fact that derived subtypes also derive the constraints.
16798 -- This chain leads back from
16800 -- Typ_For_Constraint
16802 -- Typ_For_Constraint has discriminants, and the value for each
16803 -- discriminant is given by its corresponding Elmt of Constraints.
16805 -- Discriminant is some discriminant in this hierarchy
16807 -- We need to return its value
16809 -- We do this by recursively searching each level, and looking for
16810 -- Discriminant. Once we get to the bottom, we start backing up
16811 -- returning the value for it which may in turn be a discriminant
16812 -- further up, so on the backup we continue the substitution.
16814 function Get_Discriminant_Value
16815 (Discriminant : Entity_Id;
16816 Typ_For_Constraint : Entity_Id;
16817 Constraint : Elist_Id) return Node_Id
16819 function Root_Corresponding_Discriminant
16820 (Discr : Entity_Id) return Entity_Id;
16821 -- Given a discriminant, traverse the chain of inherited discriminants
16822 -- and return the topmost discriminant.
16824 function Search_Derivation_Levels
16825 (Ti : Entity_Id;
16826 Discrim_Values : Elist_Id;
16827 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
16828 -- This is the routine that performs the recursive search of levels
16829 -- as described above.
16831 -------------------------------------
16832 -- Root_Corresponding_Discriminant --
16833 -------------------------------------
16835 function Root_Corresponding_Discriminant
16836 (Discr : Entity_Id) return Entity_Id
16838 D : Entity_Id;
16840 begin
16841 D := Discr;
16842 while Present (Corresponding_Discriminant (D)) loop
16843 D := Corresponding_Discriminant (D);
16844 end loop;
16846 return D;
16847 end Root_Corresponding_Discriminant;
16849 ------------------------------
16850 -- Search_Derivation_Levels --
16851 ------------------------------
16853 function Search_Derivation_Levels
16854 (Ti : Entity_Id;
16855 Discrim_Values : Elist_Id;
16856 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
16858 Assoc : Elmt_Id;
16859 Disc : Entity_Id;
16860 Result : Node_Or_Entity_Id;
16861 Result_Entity : Node_Id;
16863 begin
16864 -- If inappropriate type, return Error, this happens only in
16865 -- cascaded error situations, and we want to avoid a blow up.
16867 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
16868 return Error;
16869 end if;
16871 -- Look deeper if possible. Use Stored_Constraints only for
16872 -- untagged types. For tagged types use the given constraint.
16873 -- This asymmetry needs explanation???
16875 if not Stored_Discrim_Values
16876 and then Present (Stored_Constraint (Ti))
16877 and then not Is_Tagged_Type (Ti)
16878 then
16879 Result :=
16880 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
16881 else
16882 declare
16883 Td : constant Entity_Id := Etype (Ti);
16885 begin
16886 if Td = Ti then
16887 Result := Discriminant;
16889 else
16890 if Present (Stored_Constraint (Ti)) then
16891 Result :=
16892 Search_Derivation_Levels
16893 (Td, Stored_Constraint (Ti), True);
16894 else
16895 Result :=
16896 Search_Derivation_Levels
16897 (Td, Discrim_Values, Stored_Discrim_Values);
16898 end if;
16899 end if;
16900 end;
16901 end if;
16903 -- Extra underlying places to search, if not found above. For
16904 -- concurrent types, the relevant discriminant appears in the
16905 -- corresponding record. For a type derived from a private type
16906 -- without discriminant, the full view inherits the discriminants
16907 -- of the full view of the parent.
16909 if Result = Discriminant then
16910 if Is_Concurrent_Type (Ti)
16911 and then Present (Corresponding_Record_Type (Ti))
16912 then
16913 Result :=
16914 Search_Derivation_Levels (
16915 Corresponding_Record_Type (Ti),
16916 Discrim_Values,
16917 Stored_Discrim_Values);
16919 elsif Is_Private_Type (Ti)
16920 and then not Has_Discriminants (Ti)
16921 and then Present (Full_View (Ti))
16922 and then Etype (Full_View (Ti)) /= Ti
16923 then
16924 Result :=
16925 Search_Derivation_Levels (
16926 Full_View (Ti),
16927 Discrim_Values,
16928 Stored_Discrim_Values);
16929 end if;
16930 end if;
16932 -- If Result is not a (reference to a) discriminant, return it,
16933 -- otherwise set Result_Entity to the discriminant.
16935 if Nkind (Result) = N_Defining_Identifier then
16936 pragma Assert (Result = Discriminant);
16937 Result_Entity := Result;
16939 else
16940 if not Denotes_Discriminant (Result) then
16941 return Result;
16942 end if;
16944 Result_Entity := Entity (Result);
16945 end if;
16947 -- See if this level of derivation actually has discriminants
16948 -- because tagged derivations can add them, hence the lower
16949 -- levels need not have any.
16951 if not Has_Discriminants (Ti) then
16952 return Result;
16953 end if;
16955 -- Scan Ti's discriminants for Result_Entity,
16956 -- and return its corresponding value, if any.
16958 Result_Entity := Original_Record_Component (Result_Entity);
16960 Assoc := First_Elmt (Discrim_Values);
16962 if Stored_Discrim_Values then
16963 Disc := First_Stored_Discriminant (Ti);
16964 else
16965 Disc := First_Discriminant (Ti);
16966 end if;
16968 while Present (Disc) loop
16969 pragma Assert (Present (Assoc));
16971 if Original_Record_Component (Disc) = Result_Entity then
16972 return Node (Assoc);
16973 end if;
16975 Next_Elmt (Assoc);
16977 if Stored_Discrim_Values then
16978 Next_Stored_Discriminant (Disc);
16979 else
16980 Next_Discriminant (Disc);
16981 end if;
16982 end loop;
16984 -- Could not find it
16986 return Result;
16987 end Search_Derivation_Levels;
16989 -- Local Variables
16991 Result : Node_Or_Entity_Id;
16993 -- Start of processing for Get_Discriminant_Value
16995 begin
16996 -- ??? This routine is a gigantic mess and will be deleted. For the
16997 -- time being just test for the trivial case before calling recurse.
16999 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
17000 declare
17001 D : Entity_Id;
17002 E : Elmt_Id;
17004 begin
17005 D := First_Discriminant (Typ_For_Constraint);
17006 E := First_Elmt (Constraint);
17007 while Present (D) loop
17008 if Chars (D) = Chars (Discriminant) then
17009 return Node (E);
17010 end if;
17012 Next_Discriminant (D);
17013 Next_Elmt (E);
17014 end loop;
17015 end;
17016 end if;
17018 Result := Search_Derivation_Levels
17019 (Typ_For_Constraint, Constraint, False);
17021 -- ??? hack to disappear when this routine is gone
17023 if Nkind (Result) = N_Defining_Identifier then
17024 declare
17025 D : Entity_Id;
17026 E : Elmt_Id;
17028 begin
17029 D := First_Discriminant (Typ_For_Constraint);
17030 E := First_Elmt (Constraint);
17031 while Present (D) loop
17032 if Root_Corresponding_Discriminant (D) = Discriminant then
17033 return Node (E);
17034 end if;
17036 Next_Discriminant (D);
17037 Next_Elmt (E);
17038 end loop;
17039 end;
17040 end if;
17042 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
17043 return Result;
17044 end Get_Discriminant_Value;
17046 --------------------------
17047 -- Has_Range_Constraint --
17048 --------------------------
17050 function Has_Range_Constraint (N : Node_Id) return Boolean is
17051 C : constant Node_Id := Constraint (N);
17053 begin
17054 if Nkind (C) = N_Range_Constraint then
17055 return True;
17057 elsif Nkind (C) = N_Digits_Constraint then
17058 return
17059 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
17060 or else Present (Range_Constraint (C));
17062 elsif Nkind (C) = N_Delta_Constraint then
17063 return Present (Range_Constraint (C));
17065 else
17066 return False;
17067 end if;
17068 end Has_Range_Constraint;
17070 ------------------------
17071 -- Inherit_Components --
17072 ------------------------
17074 function Inherit_Components
17075 (N : Node_Id;
17076 Parent_Base : Entity_Id;
17077 Derived_Base : Entity_Id;
17078 Is_Tagged : Boolean;
17079 Inherit_Discr : Boolean;
17080 Discs : Elist_Id) return Elist_Id
17082 Assoc_List : constant Elist_Id := New_Elmt_List;
17084 procedure Inherit_Component
17085 (Old_C : Entity_Id;
17086 Plain_Discrim : Boolean := False;
17087 Stored_Discrim : Boolean := False);
17088 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17089 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17090 -- True, Old_C is a stored discriminant. If they are both false then
17091 -- Old_C is a regular component.
17093 -----------------------
17094 -- Inherit_Component --
17095 -----------------------
17097 procedure Inherit_Component
17098 (Old_C : Entity_Id;
17099 Plain_Discrim : Boolean := False;
17100 Stored_Discrim : Boolean := False)
17102 procedure Set_Anonymous_Type (Id : Entity_Id);
17103 -- Id denotes the entity of an access discriminant or anonymous
17104 -- access component. Set the type of Id to either the same type of
17105 -- Old_C or create a new one depending on whether the parent and
17106 -- the child types are in the same scope.
17108 ------------------------
17109 -- Set_Anonymous_Type --
17110 ------------------------
17112 procedure Set_Anonymous_Type (Id : Entity_Id) is
17113 Old_Typ : constant Entity_Id := Etype (Old_C);
17115 begin
17116 if Scope (Parent_Base) = Scope (Derived_Base) then
17117 Set_Etype (Id, Old_Typ);
17119 -- The parent and the derived type are in two different scopes.
17120 -- Reuse the type of the original discriminant / component by
17121 -- copying it in order to preserve all attributes.
17123 else
17124 declare
17125 Typ : constant Entity_Id := New_Copy (Old_Typ);
17127 begin
17128 Set_Etype (Id, Typ);
17130 -- Since we do not generate component declarations for
17131 -- inherited components, associate the itype with the
17132 -- derived type.
17134 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
17135 Set_Scope (Typ, Derived_Base);
17136 end;
17137 end if;
17138 end Set_Anonymous_Type;
17140 -- Local variables and constants
17142 New_C : constant Entity_Id := New_Copy (Old_C);
17144 Corr_Discrim : Entity_Id;
17145 Discrim : Entity_Id;
17147 -- Start of processing for Inherit_Component
17149 begin
17150 pragma Assert (not Is_Tagged or not Stored_Discrim);
17152 Set_Parent (New_C, Parent (Old_C));
17154 -- Regular discriminants and components must be inserted in the scope
17155 -- of the Derived_Base. Do it here.
17157 if not Stored_Discrim then
17158 Enter_Name (New_C);
17159 end if;
17161 -- For tagged types the Original_Record_Component must point to
17162 -- whatever this field was pointing to in the parent type. This has
17163 -- already been achieved by the call to New_Copy above.
17165 if not Is_Tagged then
17166 Set_Original_Record_Component (New_C, New_C);
17167 end if;
17169 -- Set the proper type of an access discriminant
17171 if Ekind (New_C) = E_Discriminant
17172 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
17173 then
17174 Set_Anonymous_Type (New_C);
17175 end if;
17177 -- If we have inherited a component then see if its Etype contains
17178 -- references to Parent_Base discriminants. In this case, replace
17179 -- these references with the constraints given in Discs. We do not
17180 -- do this for the partial view of private types because this is
17181 -- not needed (only the components of the full view will be used
17182 -- for code generation) and cause problem. We also avoid this
17183 -- transformation in some error situations.
17185 if Ekind (New_C) = E_Component then
17187 -- Set the proper type of an anonymous access component
17189 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
17190 Set_Anonymous_Type (New_C);
17192 elsif (Is_Private_Type (Derived_Base)
17193 and then not Is_Generic_Type (Derived_Base))
17194 or else (Is_Empty_Elmt_List (Discs)
17195 and then not Expander_Active)
17196 then
17197 Set_Etype (New_C, Etype (Old_C));
17199 else
17200 -- The current component introduces a circularity of the
17201 -- following kind:
17203 -- limited with Pack_2;
17204 -- package Pack_1 is
17205 -- type T_1 is tagged record
17206 -- Comp : access Pack_2.T_2;
17207 -- ...
17208 -- end record;
17209 -- end Pack_1;
17211 -- with Pack_1;
17212 -- package Pack_2 is
17213 -- type T_2 is new Pack_1.T_1 with ...;
17214 -- end Pack_2;
17216 Set_Etype
17217 (New_C,
17218 Constrain_Component_Type
17219 (Old_C, Derived_Base, N, Parent_Base, Discs));
17220 end if;
17221 end if;
17223 -- In derived tagged types it is illegal to reference a non
17224 -- discriminant component in the parent type. To catch this, mark
17225 -- these components with an Ekind of E_Void. This will be reset in
17226 -- Record_Type_Definition after processing the record extension of
17227 -- the derived type.
17229 -- If the declaration is a private extension, there is no further
17230 -- record extension to process, and the components retain their
17231 -- current kind, because they are visible at this point.
17233 if Is_Tagged and then Ekind (New_C) = E_Component
17234 and then Nkind (N) /= N_Private_Extension_Declaration
17235 then
17236 Set_Ekind (New_C, E_Void);
17237 end if;
17239 if Plain_Discrim then
17240 Set_Corresponding_Discriminant (New_C, Old_C);
17241 Build_Discriminal (New_C);
17243 -- If we are explicitly inheriting a stored discriminant it will be
17244 -- completely hidden.
17246 elsif Stored_Discrim then
17247 Set_Corresponding_Discriminant (New_C, Empty);
17248 Set_Discriminal (New_C, Empty);
17249 Set_Is_Completely_Hidden (New_C);
17251 -- Set the Original_Record_Component of each discriminant in the
17252 -- derived base to point to the corresponding stored that we just
17253 -- created.
17255 Discrim := First_Discriminant (Derived_Base);
17256 while Present (Discrim) loop
17257 Corr_Discrim := Corresponding_Discriminant (Discrim);
17259 -- Corr_Discrim could be missing in an error situation
17261 if Present (Corr_Discrim)
17262 and then Original_Record_Component (Corr_Discrim) = Old_C
17263 then
17264 Set_Original_Record_Component (Discrim, New_C);
17265 end if;
17267 Next_Discriminant (Discrim);
17268 end loop;
17270 Append_Entity (New_C, Derived_Base);
17271 end if;
17273 if not Is_Tagged then
17274 Append_Elmt (Old_C, Assoc_List);
17275 Append_Elmt (New_C, Assoc_List);
17276 end if;
17277 end Inherit_Component;
17279 -- Variables local to Inherit_Component
17281 Loc : constant Source_Ptr := Sloc (N);
17283 Parent_Discrim : Entity_Id;
17284 Stored_Discrim : Entity_Id;
17285 D : Entity_Id;
17286 Component : Entity_Id;
17288 -- Start of processing for Inherit_Components
17290 begin
17291 if not Is_Tagged then
17292 Append_Elmt (Parent_Base, Assoc_List);
17293 Append_Elmt (Derived_Base, Assoc_List);
17294 end if;
17296 -- Inherit parent discriminants if needed
17298 if Inherit_Discr then
17299 Parent_Discrim := First_Discriminant (Parent_Base);
17300 while Present (Parent_Discrim) loop
17301 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
17302 Next_Discriminant (Parent_Discrim);
17303 end loop;
17304 end if;
17306 -- Create explicit stored discrims for untagged types when necessary
17308 if not Has_Unknown_Discriminants (Derived_Base)
17309 and then Has_Discriminants (Parent_Base)
17310 and then not Is_Tagged
17311 and then
17312 (not Inherit_Discr
17313 or else First_Discriminant (Parent_Base) /=
17314 First_Stored_Discriminant (Parent_Base))
17315 then
17316 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
17317 while Present (Stored_Discrim) loop
17318 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
17319 Next_Stored_Discriminant (Stored_Discrim);
17320 end loop;
17321 end if;
17323 -- See if we can apply the second transformation for derived types, as
17324 -- explained in point 6. in the comments above Build_Derived_Record_Type
17325 -- This is achieved by appending Derived_Base discriminants into Discs,
17326 -- which has the side effect of returning a non empty Discs list to the
17327 -- caller of Inherit_Components, which is what we want. This must be
17328 -- done for private derived types if there are explicit stored
17329 -- discriminants, to ensure that we can retrieve the values of the
17330 -- constraints provided in the ancestors.
17332 if Inherit_Discr
17333 and then Is_Empty_Elmt_List (Discs)
17334 and then Present (First_Discriminant (Derived_Base))
17335 and then
17336 (not Is_Private_Type (Derived_Base)
17337 or else Is_Completely_Hidden
17338 (First_Stored_Discriminant (Derived_Base))
17339 or else Is_Generic_Type (Derived_Base))
17340 then
17341 D := First_Discriminant (Derived_Base);
17342 while Present (D) loop
17343 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
17344 Next_Discriminant (D);
17345 end loop;
17346 end if;
17348 -- Finally, inherit non-discriminant components unless they are not
17349 -- visible because defined or inherited from the full view of the
17350 -- parent. Don't inherit the _parent field of the parent type.
17352 Component := First_Entity (Parent_Base);
17353 while Present (Component) loop
17355 -- Ada 2005 (AI-251): Do not inherit components associated with
17356 -- secondary tags of the parent.
17358 if Ekind (Component) = E_Component
17359 and then Present (Related_Type (Component))
17360 then
17361 null;
17363 elsif Ekind (Component) /= E_Component
17364 or else Chars (Component) = Name_uParent
17365 then
17366 null;
17368 -- If the derived type is within the parent type's declarative
17369 -- region, then the components can still be inherited even though
17370 -- they aren't visible at this point. This can occur for cases
17371 -- such as within public child units where the components must
17372 -- become visible upon entering the child unit's private part.
17374 elsif not Is_Visible_Component (Component)
17375 and then not In_Open_Scopes (Scope (Parent_Base))
17376 then
17377 null;
17379 elsif Ekind_In (Derived_Base, E_Private_Type,
17380 E_Limited_Private_Type)
17381 then
17382 null;
17384 else
17385 Inherit_Component (Component);
17386 end if;
17388 Next_Entity (Component);
17389 end loop;
17391 -- For tagged derived types, inherited discriminants cannot be used in
17392 -- component declarations of the record extension part. To achieve this
17393 -- we mark the inherited discriminants as not visible.
17395 if Is_Tagged and then Inherit_Discr then
17396 D := First_Discriminant (Derived_Base);
17397 while Present (D) loop
17398 Set_Is_Immediately_Visible (D, False);
17399 Next_Discriminant (D);
17400 end loop;
17401 end if;
17403 return Assoc_List;
17404 end Inherit_Components;
17406 -----------------------------
17407 -- Inherit_Predicate_Flags --
17408 -----------------------------
17410 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
17411 begin
17412 Set_Has_Predicates (Subt, Has_Predicates (Par));
17413 Set_Has_Static_Predicate_Aspect
17414 (Subt, Has_Static_Predicate_Aspect (Par));
17415 Set_Has_Dynamic_Predicate_Aspect
17416 (Subt, Has_Dynamic_Predicate_Aspect (Par));
17417 end Inherit_Predicate_Flags;
17419 ----------------------
17420 -- Is_EVF_Procedure --
17421 ----------------------
17423 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
17424 Formal : Entity_Id;
17426 begin
17427 -- Examine the formals of an Extensions_Visible False procedure looking
17428 -- for a controlling OUT parameter.
17430 if Ekind (Subp) = E_Procedure
17431 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
17432 then
17433 Formal := First_Formal (Subp);
17434 while Present (Formal) loop
17435 if Ekind (Formal) = E_Out_Parameter
17436 and then Is_Controlling_Formal (Formal)
17437 then
17438 return True;
17439 end if;
17441 Next_Formal (Formal);
17442 end loop;
17443 end if;
17445 return False;
17446 end Is_EVF_Procedure;
17448 -----------------------
17449 -- Is_Null_Extension --
17450 -----------------------
17452 function Is_Null_Extension (T : Entity_Id) return Boolean is
17453 Type_Decl : constant Node_Id := Parent (Base_Type (T));
17454 Comp_List : Node_Id;
17455 Comp : Node_Id;
17457 begin
17458 if Nkind (Type_Decl) /= N_Full_Type_Declaration
17459 or else not Is_Tagged_Type (T)
17460 or else Nkind (Type_Definition (Type_Decl)) /=
17461 N_Derived_Type_Definition
17462 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
17463 then
17464 return False;
17465 end if;
17467 Comp_List :=
17468 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
17470 if Present (Discriminant_Specifications (Type_Decl)) then
17471 return False;
17473 elsif Present (Comp_List)
17474 and then Is_Non_Empty_List (Component_Items (Comp_List))
17475 then
17476 Comp := First (Component_Items (Comp_List));
17478 -- Only user-defined components are relevant. The component list
17479 -- may also contain a parent component and internal components
17480 -- corresponding to secondary tags, but these do not determine
17481 -- whether this is a null extension.
17483 while Present (Comp) loop
17484 if Comes_From_Source (Comp) then
17485 return False;
17486 end if;
17488 Next (Comp);
17489 end loop;
17491 return True;
17492 else
17493 return True;
17494 end if;
17495 end Is_Null_Extension;
17497 ------------------------------
17498 -- Is_Valid_Constraint_Kind --
17499 ------------------------------
17501 function Is_Valid_Constraint_Kind
17502 (T_Kind : Type_Kind;
17503 Constraint_Kind : Node_Kind) return Boolean
17505 begin
17506 case T_Kind is
17507 when Enumeration_Kind |
17508 Integer_Kind =>
17509 return Constraint_Kind = N_Range_Constraint;
17511 when Decimal_Fixed_Point_Kind =>
17512 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17513 N_Range_Constraint);
17515 when Ordinary_Fixed_Point_Kind =>
17516 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
17517 N_Range_Constraint);
17519 when Float_Kind =>
17520 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17521 N_Range_Constraint);
17523 when Access_Kind |
17524 Array_Kind |
17525 E_Record_Type |
17526 E_Record_Subtype |
17527 Class_Wide_Kind |
17528 E_Incomplete_Type |
17529 Private_Kind |
17530 Concurrent_Kind =>
17531 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
17533 when others =>
17534 return True; -- Error will be detected later
17535 end case;
17536 end Is_Valid_Constraint_Kind;
17538 --------------------------
17539 -- Is_Visible_Component --
17540 --------------------------
17542 function Is_Visible_Component
17543 (C : Entity_Id;
17544 N : Node_Id := Empty) return Boolean
17546 Original_Comp : Entity_Id := Empty;
17547 Original_Scope : Entity_Id;
17548 Type_Scope : Entity_Id;
17550 function Is_Local_Type (Typ : Entity_Id) return Boolean;
17551 -- Check whether parent type of inherited component is declared locally,
17552 -- possibly within a nested package or instance. The current scope is
17553 -- the derived record itself.
17555 -------------------
17556 -- Is_Local_Type --
17557 -------------------
17559 function Is_Local_Type (Typ : Entity_Id) return Boolean is
17560 Scop : Entity_Id;
17562 begin
17563 Scop := Scope (Typ);
17564 while Present (Scop)
17565 and then Scop /= Standard_Standard
17566 loop
17567 if Scop = Scope (Current_Scope) then
17568 return True;
17569 end if;
17571 Scop := Scope (Scop);
17572 end loop;
17574 return False;
17575 end Is_Local_Type;
17577 -- Start of processing for Is_Visible_Component
17579 begin
17580 if Ekind_In (C, E_Component, E_Discriminant) then
17581 Original_Comp := Original_Record_Component (C);
17582 end if;
17584 if No (Original_Comp) then
17586 -- Premature usage, or previous error
17588 return False;
17590 else
17591 Original_Scope := Scope (Original_Comp);
17592 Type_Scope := Scope (Base_Type (Scope (C)));
17593 end if;
17595 -- This test only concerns tagged types
17597 if not Is_Tagged_Type (Original_Scope) then
17598 return True;
17600 -- If it is _Parent or _Tag, there is no visibility issue
17602 elsif not Comes_From_Source (Original_Comp) then
17603 return True;
17605 -- Discriminants are visible unless the (private) type has unknown
17606 -- discriminants. If the discriminant reference is inserted for a
17607 -- discriminant check on a full view it is also visible.
17609 elsif Ekind (Original_Comp) = E_Discriminant
17610 and then
17611 (not Has_Unknown_Discriminants (Original_Scope)
17612 or else (Present (N)
17613 and then Nkind (N) = N_Selected_Component
17614 and then Nkind (Prefix (N)) = N_Type_Conversion
17615 and then not Comes_From_Source (Prefix (N))))
17616 then
17617 return True;
17619 -- In the body of an instantiation, no need to check for the visibility
17620 -- of a component.
17622 elsif In_Instance_Body then
17623 return True;
17625 -- If the component has been declared in an ancestor which is currently
17626 -- a private type, then it is not visible. The same applies if the
17627 -- component's containing type is not in an open scope and the original
17628 -- component's enclosing type is a visible full view of a private type
17629 -- (which can occur in cases where an attempt is being made to reference
17630 -- a component in a sibling package that is inherited from a visible
17631 -- component of a type in an ancestor package; the component in the
17632 -- sibling package should not be visible even though the component it
17633 -- inherited from is visible). This does not apply however in the case
17634 -- where the scope of the type is a private child unit, or when the
17635 -- parent comes from a local package in which the ancestor is currently
17636 -- visible. The latter suppression of visibility is needed for cases
17637 -- that are tested in B730006.
17639 elsif Is_Private_Type (Original_Scope)
17640 or else
17641 (not Is_Private_Descendant (Type_Scope)
17642 and then not In_Open_Scopes (Type_Scope)
17643 and then Has_Private_Declaration (Original_Scope))
17644 then
17645 -- If the type derives from an entity in a formal package, there
17646 -- are no additional visible components.
17648 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17649 N_Formal_Package_Declaration
17650 then
17651 return False;
17653 -- if we are not in the private part of the current package, there
17654 -- are no additional visible components.
17656 elsif Ekind (Scope (Current_Scope)) = E_Package
17657 and then not In_Private_Part (Scope (Current_Scope))
17658 then
17659 return False;
17660 else
17661 return
17662 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17663 and then In_Open_Scopes (Scope (Original_Scope))
17664 and then Is_Local_Type (Type_Scope);
17665 end if;
17667 -- There is another weird way in which a component may be invisible when
17668 -- the private and the full view are not derived from the same ancestor.
17669 -- Here is an example :
17671 -- type A1 is tagged record F1 : integer; end record;
17672 -- type A2 is new A1 with record F2 : integer; end record;
17673 -- type T is new A1 with private;
17674 -- private
17675 -- type T is new A2 with null record;
17677 -- In this case, the full view of T inherits F1 and F2 but the private
17678 -- view inherits only F1
17680 else
17681 declare
17682 Ancestor : Entity_Id := Scope (C);
17684 begin
17685 loop
17686 if Ancestor = Original_Scope then
17687 return True;
17688 elsif Ancestor = Etype (Ancestor) then
17689 return False;
17690 end if;
17692 Ancestor := Etype (Ancestor);
17693 end loop;
17694 end;
17695 end if;
17696 end Is_Visible_Component;
17698 --------------------------
17699 -- Make_Class_Wide_Type --
17700 --------------------------
17702 procedure Make_Class_Wide_Type (T : Entity_Id) is
17703 CW_Type : Entity_Id;
17704 CW_Name : Name_Id;
17705 Next_E : Entity_Id;
17707 begin
17708 if Present (Class_Wide_Type (T)) then
17710 -- The class-wide type is a partially decorated entity created for a
17711 -- unanalyzed tagged type referenced through a limited with clause.
17712 -- When the tagged type is analyzed, its class-wide type needs to be
17713 -- redecorated. Note that we reuse the entity created by Decorate_
17714 -- Tagged_Type in order to preserve all links.
17716 if Materialize_Entity (Class_Wide_Type (T)) then
17717 CW_Type := Class_Wide_Type (T);
17718 Set_Materialize_Entity (CW_Type, False);
17720 -- The class wide type can have been defined by the partial view, in
17721 -- which case everything is already done.
17723 else
17724 return;
17725 end if;
17727 -- Default case, we need to create a new class-wide type
17729 else
17730 CW_Type :=
17731 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17732 end if;
17734 -- Inherit root type characteristics
17736 CW_Name := Chars (CW_Type);
17737 Next_E := Next_Entity (CW_Type);
17738 Copy_Node (T, CW_Type);
17739 Set_Comes_From_Source (CW_Type, False);
17740 Set_Chars (CW_Type, CW_Name);
17741 Set_Parent (CW_Type, Parent (T));
17742 Set_Next_Entity (CW_Type, Next_E);
17744 -- Ensure we have a new freeze node for the class-wide type. The partial
17745 -- view may have freeze action of its own, requiring a proper freeze
17746 -- node, and the same freeze node cannot be shared between the two
17747 -- types.
17749 Set_Has_Delayed_Freeze (CW_Type);
17750 Set_Freeze_Node (CW_Type, Empty);
17752 -- Customize the class-wide type: It has no prim. op., it cannot be
17753 -- abstract and its Etype points back to the specific root type.
17755 Set_Ekind (CW_Type, E_Class_Wide_Type);
17756 Set_Is_Tagged_Type (CW_Type, True);
17757 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17758 Set_Is_Abstract_Type (CW_Type, False);
17759 Set_Is_Constrained (CW_Type, False);
17760 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17761 Set_Default_SSO (CW_Type);
17763 if Ekind (T) = E_Class_Wide_Subtype then
17764 Set_Etype (CW_Type, Etype (Base_Type (T)));
17765 else
17766 Set_Etype (CW_Type, T);
17767 end if;
17769 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
17771 -- If this is the class_wide type of a constrained subtype, it does
17772 -- not have discriminants.
17774 Set_Has_Discriminants (CW_Type,
17775 Has_Discriminants (T) and then not Is_Constrained (T));
17777 Set_Has_Unknown_Discriminants (CW_Type, True);
17778 Set_Class_Wide_Type (T, CW_Type);
17779 Set_Equivalent_Type (CW_Type, Empty);
17781 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17783 Set_Class_Wide_Type (CW_Type, CW_Type);
17784 end Make_Class_Wide_Type;
17786 ----------------
17787 -- Make_Index --
17788 ----------------
17790 procedure Make_Index
17791 (N : Node_Id;
17792 Related_Nod : Node_Id;
17793 Related_Id : Entity_Id := Empty;
17794 Suffix_Index : Nat := 1;
17795 In_Iter_Schm : Boolean := False)
17797 R : Node_Id;
17798 T : Entity_Id;
17799 Def_Id : Entity_Id := Empty;
17800 Found : Boolean := False;
17802 begin
17803 -- For a discrete range used in a constrained array definition and
17804 -- defined by a range, an implicit conversion to the predefined type
17805 -- INTEGER is assumed if each bound is either a numeric literal, a named
17806 -- number, or an attribute, and the type of both bounds (prior to the
17807 -- implicit conversion) is the type universal_integer. Otherwise, both
17808 -- bounds must be of the same discrete type, other than universal
17809 -- integer; this type must be determinable independently of the
17810 -- context, but using the fact that the type must be discrete and that
17811 -- both bounds must have the same type.
17813 -- Character literals also have a universal type in the absence of
17814 -- of additional context, and are resolved to Standard_Character.
17816 if Nkind (N) = N_Range then
17818 -- The index is given by a range constraint. The bounds are known
17819 -- to be of a consistent type.
17821 if not Is_Overloaded (N) then
17822 T := Etype (N);
17824 -- For universal bounds, choose the specific predefined type
17826 if T = Universal_Integer then
17827 T := Standard_Integer;
17829 elsif T = Any_Character then
17830 Ambiguous_Character (Low_Bound (N));
17832 T := Standard_Character;
17833 end if;
17835 -- The node may be overloaded because some user-defined operators
17836 -- are available, but if a universal interpretation exists it is
17837 -- also the selected one.
17839 elsif Universal_Interpretation (N) = Universal_Integer then
17840 T := Standard_Integer;
17842 else
17843 T := Any_Type;
17845 declare
17846 Ind : Interp_Index;
17847 It : Interp;
17849 begin
17850 Get_First_Interp (N, Ind, It);
17851 while Present (It.Typ) loop
17852 if Is_Discrete_Type (It.Typ) then
17854 if Found
17855 and then not Covers (It.Typ, T)
17856 and then not Covers (T, It.Typ)
17857 then
17858 Error_Msg_N ("ambiguous bounds in discrete range", N);
17859 exit;
17860 else
17861 T := It.Typ;
17862 Found := True;
17863 end if;
17864 end if;
17866 Get_Next_Interp (Ind, It);
17867 end loop;
17869 if T = Any_Type then
17870 Error_Msg_N ("discrete type required for range", N);
17871 Set_Etype (N, Any_Type);
17872 return;
17874 elsif T = Universal_Integer then
17875 T := Standard_Integer;
17876 end if;
17877 end;
17878 end if;
17880 if not Is_Discrete_Type (T) then
17881 Error_Msg_N ("discrete type required for range", N);
17882 Set_Etype (N, Any_Type);
17883 return;
17884 end if;
17886 if Nkind (Low_Bound (N)) = N_Attribute_Reference
17887 and then Attribute_Name (Low_Bound (N)) = Name_First
17888 and then Is_Entity_Name (Prefix (Low_Bound (N)))
17889 and then Is_Type (Entity (Prefix (Low_Bound (N))))
17890 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
17891 then
17892 -- The type of the index will be the type of the prefix, as long
17893 -- as the upper bound is 'Last of the same type.
17895 Def_Id := Entity (Prefix (Low_Bound (N)));
17897 if Nkind (High_Bound (N)) /= N_Attribute_Reference
17898 or else Attribute_Name (High_Bound (N)) /= Name_Last
17899 or else not Is_Entity_Name (Prefix (High_Bound (N)))
17900 or else Entity (Prefix (High_Bound (N))) /= Def_Id
17901 then
17902 Def_Id := Empty;
17903 end if;
17904 end if;
17906 R := N;
17907 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
17909 elsif Nkind (N) = N_Subtype_Indication then
17911 -- The index is given by a subtype with a range constraint
17913 T := Base_Type (Entity (Subtype_Mark (N)));
17915 if not Is_Discrete_Type (T) then
17916 Error_Msg_N ("discrete type required for range", N);
17917 Set_Etype (N, Any_Type);
17918 return;
17919 end if;
17921 R := Range_Expression (Constraint (N));
17923 Resolve (R, T);
17924 Process_Range_Expr_In_Decl
17925 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
17927 elsif Nkind (N) = N_Attribute_Reference then
17929 -- Catch beginner's error (use of attribute other than 'Range)
17931 if Attribute_Name (N) /= Name_Range then
17932 Error_Msg_N ("expect attribute ''Range", N);
17933 Set_Etype (N, Any_Type);
17934 return;
17935 end if;
17937 -- If the node denotes the range of a type mark, that is also the
17938 -- resulting type, and we do not need to create an Itype for it.
17940 if Is_Entity_Name (Prefix (N))
17941 and then Comes_From_Source (N)
17942 and then Is_Type (Entity (Prefix (N)))
17943 and then Is_Discrete_Type (Entity (Prefix (N)))
17944 then
17945 Def_Id := Entity (Prefix (N));
17946 end if;
17948 Analyze_And_Resolve (N);
17949 T := Etype (N);
17950 R := N;
17952 -- If none of the above, must be a subtype. We convert this to a
17953 -- range attribute reference because in the case of declared first
17954 -- named subtypes, the types in the range reference can be different
17955 -- from the type of the entity. A range attribute normalizes the
17956 -- reference and obtains the correct types for the bounds.
17958 -- This transformation is in the nature of an expansion, is only
17959 -- done if expansion is active. In particular, it is not done on
17960 -- formal generic types, because we need to retain the name of the
17961 -- original index for instantiation purposes.
17963 else
17964 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
17965 Error_Msg_N ("invalid subtype mark in discrete range ", N);
17966 Set_Etype (N, Any_Integer);
17967 return;
17969 else
17970 -- The type mark may be that of an incomplete type. It is only
17971 -- now that we can get the full view, previous analysis does
17972 -- not look specifically for a type mark.
17974 Set_Entity (N, Get_Full_View (Entity (N)));
17975 Set_Etype (N, Entity (N));
17976 Def_Id := Entity (N);
17978 if not Is_Discrete_Type (Def_Id) then
17979 Error_Msg_N ("discrete type required for index", N);
17980 Set_Etype (N, Any_Type);
17981 return;
17982 end if;
17983 end if;
17985 if Expander_Active then
17986 Rewrite (N,
17987 Make_Attribute_Reference (Sloc (N),
17988 Attribute_Name => Name_Range,
17989 Prefix => Relocate_Node (N)));
17991 -- The original was a subtype mark that does not freeze. This
17992 -- means that the rewritten version must not freeze either.
17994 Set_Must_Not_Freeze (N);
17995 Set_Must_Not_Freeze (Prefix (N));
17996 Analyze_And_Resolve (N);
17997 T := Etype (N);
17998 R := N;
18000 -- If expander is inactive, type is legal, nothing else to construct
18002 else
18003 return;
18004 end if;
18005 end if;
18007 if not Is_Discrete_Type (T) then
18008 Error_Msg_N ("discrete type required for range", N);
18009 Set_Etype (N, Any_Type);
18010 return;
18012 elsif T = Any_Type then
18013 Set_Etype (N, Any_Type);
18014 return;
18015 end if;
18017 -- We will now create the appropriate Itype to describe the range, but
18018 -- first a check. If we originally had a subtype, then we just label
18019 -- the range with this subtype. Not only is there no need to construct
18020 -- a new subtype, but it is wrong to do so for two reasons:
18022 -- 1. A legality concern, if we have a subtype, it must not freeze,
18023 -- and the Itype would cause freezing incorrectly
18025 -- 2. An efficiency concern, if we created an Itype, it would not be
18026 -- recognized as the same type for the purposes of eliminating
18027 -- checks in some circumstances.
18029 -- We signal this case by setting the subtype entity in Def_Id
18031 if No (Def_Id) then
18032 Def_Id :=
18033 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
18034 Set_Etype (Def_Id, Base_Type (T));
18036 if Is_Signed_Integer_Type (T) then
18037 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
18039 elsif Is_Modular_Integer_Type (T) then
18040 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
18042 else
18043 Set_Ekind (Def_Id, E_Enumeration_Subtype);
18044 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
18045 Set_First_Literal (Def_Id, First_Literal (T));
18046 end if;
18048 Set_Size_Info (Def_Id, (T));
18049 Set_RM_Size (Def_Id, RM_Size (T));
18050 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
18052 Set_Scalar_Range (Def_Id, R);
18053 Conditional_Delay (Def_Id, T);
18055 if Nkind (N) = N_Subtype_Indication then
18056 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
18057 end if;
18059 -- In the subtype indication case, if the immediate parent of the
18060 -- new subtype is non-static, then the subtype we create is non-
18061 -- static, even if its bounds are static.
18063 if Nkind (N) = N_Subtype_Indication
18064 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
18065 then
18066 Set_Is_Non_Static_Subtype (Def_Id);
18067 end if;
18068 end if;
18070 -- Final step is to label the index with this constructed type
18072 Set_Etype (N, Def_Id);
18073 end Make_Index;
18075 ------------------------------
18076 -- Modular_Type_Declaration --
18077 ------------------------------
18079 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18080 Mod_Expr : constant Node_Id := Expression (Def);
18081 M_Val : Uint;
18083 procedure Set_Modular_Size (Bits : Int);
18084 -- Sets RM_Size to Bits, and Esize to normal word size above this
18086 ----------------------
18087 -- Set_Modular_Size --
18088 ----------------------
18090 procedure Set_Modular_Size (Bits : Int) is
18091 begin
18092 Set_RM_Size (T, UI_From_Int (Bits));
18094 if Bits <= 8 then
18095 Init_Esize (T, 8);
18097 elsif Bits <= 16 then
18098 Init_Esize (T, 16);
18100 elsif Bits <= 32 then
18101 Init_Esize (T, 32);
18103 else
18104 Init_Esize (T, System_Max_Binary_Modulus_Power);
18105 end if;
18107 if not Non_Binary_Modulus (T)
18108 and then Esize (T) = RM_Size (T)
18109 then
18110 Set_Is_Known_Valid (T);
18111 end if;
18112 end Set_Modular_Size;
18114 -- Start of processing for Modular_Type_Declaration
18116 begin
18117 -- If the mod expression is (exactly) 2 * literal, where literal is
18118 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18120 if Warn_On_Suspicious_Modulus_Value
18121 and then Nkind (Mod_Expr) = N_Op_Multiply
18122 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
18123 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
18124 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
18125 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
18126 then
18127 Error_Msg_N
18128 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
18129 end if;
18131 -- Proceed with analysis of mod expression
18133 Analyze_And_Resolve (Mod_Expr, Any_Integer);
18134 Set_Etype (T, T);
18135 Set_Ekind (T, E_Modular_Integer_Type);
18136 Init_Alignment (T);
18137 Set_Is_Constrained (T);
18139 if not Is_OK_Static_Expression (Mod_Expr) then
18140 Flag_Non_Static_Expr
18141 ("non-static expression used for modular type bound!", Mod_Expr);
18142 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18143 else
18144 M_Val := Expr_Value (Mod_Expr);
18145 end if;
18147 if M_Val < 1 then
18148 Error_Msg_N ("modulus value must be positive", Mod_Expr);
18149 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18150 end if;
18152 if M_Val > 2 ** Standard_Long_Integer_Size then
18153 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
18154 end if;
18156 Set_Modulus (T, M_Val);
18158 -- Create bounds for the modular type based on the modulus given in
18159 -- the type declaration and then analyze and resolve those bounds.
18161 Set_Scalar_Range (T,
18162 Make_Range (Sloc (Mod_Expr),
18163 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
18164 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
18166 -- Properly analyze the literals for the range. We do this manually
18167 -- because we can't go calling Resolve, since we are resolving these
18168 -- bounds with the type, and this type is certainly not complete yet.
18170 Set_Etype (Low_Bound (Scalar_Range (T)), T);
18171 Set_Etype (High_Bound (Scalar_Range (T)), T);
18172 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
18173 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
18175 -- Loop through powers of two to find number of bits required
18177 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
18179 -- Binary case
18181 if M_Val = 2 ** Bits then
18182 Set_Modular_Size (Bits);
18183 return;
18185 -- Non-binary case
18187 elsif M_Val < 2 ** Bits then
18188 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
18189 Set_Non_Binary_Modulus (T);
18191 if Bits > System_Max_Nonbinary_Modulus_Power then
18192 Error_Msg_Uint_1 :=
18193 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
18194 Error_Msg_F
18195 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
18196 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18197 return;
18199 else
18200 -- In the non-binary case, set size as per RM 13.3(55)
18202 Set_Modular_Size (Bits);
18203 return;
18204 end if;
18205 end if;
18207 end loop;
18209 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18210 -- so we just signal an error and set the maximum size.
18212 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
18213 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
18215 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18216 Init_Alignment (T);
18218 end Modular_Type_Declaration;
18220 --------------------------
18221 -- New_Concatenation_Op --
18222 --------------------------
18224 procedure New_Concatenation_Op (Typ : Entity_Id) is
18225 Loc : constant Source_Ptr := Sloc (Typ);
18226 Op : Entity_Id;
18228 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
18229 -- Create abbreviated declaration for the formal of a predefined
18230 -- Operator 'Op' of type 'Typ'
18232 --------------------
18233 -- Make_Op_Formal --
18234 --------------------
18236 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
18237 Formal : Entity_Id;
18238 begin
18239 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
18240 Set_Etype (Formal, Typ);
18241 Set_Mechanism (Formal, Default_Mechanism);
18242 return Formal;
18243 end Make_Op_Formal;
18245 -- Start of processing for New_Concatenation_Op
18247 begin
18248 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
18250 Set_Ekind (Op, E_Operator);
18251 Set_Scope (Op, Current_Scope);
18252 Set_Etype (Op, Typ);
18253 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
18254 Set_Is_Immediately_Visible (Op);
18255 Set_Is_Intrinsic_Subprogram (Op);
18256 Set_Has_Completion (Op);
18257 Append_Entity (Op, Current_Scope);
18259 Set_Name_Entity_Id (Name_Op_Concat, Op);
18261 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18262 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18263 end New_Concatenation_Op;
18265 -------------------------
18266 -- OK_For_Limited_Init --
18267 -------------------------
18269 -- ???Check all calls of this, and compare the conditions under which it's
18270 -- called.
18272 function OK_For_Limited_Init
18273 (Typ : Entity_Id;
18274 Exp : Node_Id) return Boolean
18276 begin
18277 return Is_CPP_Constructor_Call (Exp)
18278 or else (Ada_Version >= Ada_2005
18279 and then not Debug_Flag_Dot_L
18280 and then OK_For_Limited_Init_In_05 (Typ, Exp));
18281 end OK_For_Limited_Init;
18283 -------------------------------
18284 -- OK_For_Limited_Init_In_05 --
18285 -------------------------------
18287 function OK_For_Limited_Init_In_05
18288 (Typ : Entity_Id;
18289 Exp : Node_Id) return Boolean
18291 begin
18292 -- An object of a limited interface type can be initialized with any
18293 -- expression of a nonlimited descendant type.
18295 if Is_Class_Wide_Type (Typ)
18296 and then Is_Limited_Interface (Typ)
18297 and then not Is_Limited_Type (Etype (Exp))
18298 then
18299 return True;
18300 end if;
18302 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18303 -- case of limited aggregates (including extension aggregates), and
18304 -- function calls. The function call may have been given in prefixed
18305 -- notation, in which case the original node is an indexed component.
18306 -- If the function is parameterless, the original node was an explicit
18307 -- dereference. The function may also be parameterless, in which case
18308 -- the source node is just an identifier.
18310 case Nkind (Original_Node (Exp)) is
18311 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
18312 return True;
18314 when N_Identifier =>
18315 return Present (Entity (Original_Node (Exp)))
18316 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
18318 when N_Qualified_Expression =>
18319 return
18320 OK_For_Limited_Init_In_05
18321 (Typ, Expression (Original_Node (Exp)));
18323 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18324 -- with a function call, the expander has rewritten the call into an
18325 -- N_Type_Conversion node to force displacement of the pointer to
18326 -- reference the component containing the secondary dispatch table.
18327 -- Otherwise a type conversion is not a legal context.
18328 -- A return statement for a build-in-place function returning a
18329 -- synchronized type also introduces an unchecked conversion.
18331 when N_Type_Conversion |
18332 N_Unchecked_Type_Conversion =>
18333 return not Comes_From_Source (Exp)
18334 and then
18335 OK_For_Limited_Init_In_05
18336 (Typ, Expression (Original_Node (Exp)));
18338 when N_Indexed_Component |
18339 N_Selected_Component |
18340 N_Explicit_Dereference =>
18341 return Nkind (Exp) = N_Function_Call;
18343 -- A use of 'Input is a function call, hence allowed. Normally the
18344 -- attribute will be changed to a call, but the attribute by itself
18345 -- can occur with -gnatc.
18347 when N_Attribute_Reference =>
18348 return Attribute_Name (Original_Node (Exp)) = Name_Input;
18350 -- For a case expression, all dependent expressions must be legal
18352 when N_Case_Expression =>
18353 declare
18354 Alt : Node_Id;
18356 begin
18357 Alt := First (Alternatives (Original_Node (Exp)));
18358 while Present (Alt) loop
18359 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
18360 return False;
18361 end if;
18363 Next (Alt);
18364 end loop;
18366 return True;
18367 end;
18369 -- For an if expression, all dependent expressions must be legal
18371 when N_If_Expression =>
18372 declare
18373 Then_Expr : constant Node_Id :=
18374 Next (First (Expressions (Original_Node (Exp))));
18375 Else_Expr : constant Node_Id := Next (Then_Expr);
18376 begin
18377 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
18378 and then
18379 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
18380 end;
18382 when others =>
18383 return False;
18384 end case;
18385 end OK_For_Limited_Init_In_05;
18387 -------------------------------------------
18388 -- Ordinary_Fixed_Point_Type_Declaration --
18389 -------------------------------------------
18391 procedure Ordinary_Fixed_Point_Type_Declaration
18392 (T : Entity_Id;
18393 Def : Node_Id)
18395 Loc : constant Source_Ptr := Sloc (Def);
18396 Delta_Expr : constant Node_Id := Delta_Expression (Def);
18397 RRS : constant Node_Id := Real_Range_Specification (Def);
18398 Implicit_Base : Entity_Id;
18399 Delta_Val : Ureal;
18400 Small_Val : Ureal;
18401 Low_Val : Ureal;
18402 High_Val : Ureal;
18404 begin
18405 Check_Restriction (No_Fixed_Point, Def);
18407 -- Create implicit base type
18409 Implicit_Base :=
18410 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
18411 Set_Etype (Implicit_Base, Implicit_Base);
18413 -- Analyze and process delta expression
18415 Analyze_And_Resolve (Delta_Expr, Any_Real);
18417 Check_Delta_Expression (Delta_Expr);
18418 Delta_Val := Expr_Value_R (Delta_Expr);
18420 Set_Delta_Value (Implicit_Base, Delta_Val);
18422 -- Compute default small from given delta, which is the largest power
18423 -- of two that does not exceed the given delta value.
18425 declare
18426 Tmp : Ureal;
18427 Scale : Int;
18429 begin
18430 Tmp := Ureal_1;
18431 Scale := 0;
18433 if Delta_Val < Ureal_1 then
18434 while Delta_Val < Tmp loop
18435 Tmp := Tmp / Ureal_2;
18436 Scale := Scale + 1;
18437 end loop;
18439 else
18440 loop
18441 Tmp := Tmp * Ureal_2;
18442 exit when Tmp > Delta_Val;
18443 Scale := Scale - 1;
18444 end loop;
18445 end if;
18447 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
18448 end;
18450 Set_Small_Value (Implicit_Base, Small_Val);
18452 -- If no range was given, set a dummy range
18454 if RRS <= Empty_Or_Error then
18455 Low_Val := -Small_Val;
18456 High_Val := Small_Val;
18458 -- Otherwise analyze and process given range
18460 else
18461 declare
18462 Low : constant Node_Id := Low_Bound (RRS);
18463 High : constant Node_Id := High_Bound (RRS);
18465 begin
18466 Analyze_And_Resolve (Low, Any_Real);
18467 Analyze_And_Resolve (High, Any_Real);
18468 Check_Real_Bound (Low);
18469 Check_Real_Bound (High);
18471 -- Obtain and set the range
18473 Low_Val := Expr_Value_R (Low);
18474 High_Val := Expr_Value_R (High);
18476 if Low_Val > High_Val then
18477 Error_Msg_NE ("??fixed point type& has null range", Def, T);
18478 end if;
18479 end;
18480 end if;
18482 -- The range for both the implicit base and the declared first subtype
18483 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18484 -- set a temporary range in place. Note that the bounds of the base
18485 -- type will be widened to be symmetrical and to fill the available
18486 -- bits when the type is frozen.
18488 -- We could do this with all discrete types, and probably should, but
18489 -- we absolutely have to do it for fixed-point, since the end-points
18490 -- of the range and the size are determined by the small value, which
18491 -- could be reset before the freeze point.
18493 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
18494 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
18496 -- Complete definition of first subtype. The inheritance of the rep item
18497 -- chain ensures that SPARK-related pragmas are not clobbered when the
18498 -- ordinary fixed point type acts as a full view of a private type.
18500 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
18501 Set_Etype (T, Implicit_Base);
18502 Init_Size_Align (T);
18503 Inherit_Rep_Item_Chain (T, Implicit_Base);
18504 Set_Small_Value (T, Small_Val);
18505 Set_Delta_Value (T, Delta_Val);
18506 Set_Is_Constrained (T);
18507 end Ordinary_Fixed_Point_Type_Declaration;
18509 ----------------------------------
18510 -- Preanalyze_Assert_Expression --
18511 ----------------------------------
18513 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
18514 begin
18515 In_Assertion_Expr := In_Assertion_Expr + 1;
18516 Preanalyze_Spec_Expression (N, T);
18517 In_Assertion_Expr := In_Assertion_Expr - 1;
18518 end Preanalyze_Assert_Expression;
18520 -----------------------------------
18521 -- Preanalyze_Default_Expression --
18522 -----------------------------------
18524 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
18525 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
18526 begin
18527 In_Default_Expr := True;
18528 Preanalyze_Spec_Expression (N, T);
18529 In_Default_Expr := Save_In_Default_Expr;
18530 end Preanalyze_Default_Expression;
18532 --------------------------------
18533 -- Preanalyze_Spec_Expression --
18534 --------------------------------
18536 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
18537 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
18538 begin
18539 In_Spec_Expression := True;
18540 Preanalyze_And_Resolve (N, T);
18541 In_Spec_Expression := Save_In_Spec_Expression;
18542 end Preanalyze_Spec_Expression;
18544 ----------------------------------------
18545 -- Prepare_Private_Subtype_Completion --
18546 ----------------------------------------
18548 procedure Prepare_Private_Subtype_Completion
18549 (Id : Entity_Id;
18550 Related_Nod : Node_Id)
18552 Id_B : constant Entity_Id := Base_Type (Id);
18553 Full_B : Entity_Id := Full_View (Id_B);
18554 Full : Entity_Id;
18556 begin
18557 if Present (Full_B) then
18559 -- Get to the underlying full view if necessary
18561 if Is_Private_Type (Full_B)
18562 and then Present (Underlying_Full_View (Full_B))
18563 then
18564 Full_B := Underlying_Full_View (Full_B);
18565 end if;
18567 -- The Base_Type is already completed, we can complete the subtype
18568 -- now. We have to create a new entity with the same name, Thus we
18569 -- can't use Create_Itype.
18571 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
18572 Set_Is_Itype (Full);
18573 Set_Associated_Node_For_Itype (Full, Related_Nod);
18574 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
18575 end if;
18577 -- The parent subtype may be private, but the base might not, in some
18578 -- nested instances. In that case, the subtype does not need to be
18579 -- exchanged. It would still be nice to make private subtypes and their
18580 -- bases consistent at all times ???
18582 if Is_Private_Type (Id_B) then
18583 Append_Elmt (Id, Private_Dependents (Id_B));
18584 end if;
18585 end Prepare_Private_Subtype_Completion;
18587 ---------------------------
18588 -- Process_Discriminants --
18589 ---------------------------
18591 procedure Process_Discriminants
18592 (N : Node_Id;
18593 Prev : Entity_Id := Empty)
18595 Elist : constant Elist_Id := New_Elmt_List;
18596 Id : Node_Id;
18597 Discr : Node_Id;
18598 Discr_Number : Uint;
18599 Discr_Type : Entity_Id;
18600 Default_Present : Boolean := False;
18601 Default_Not_Present : Boolean := False;
18603 begin
18604 -- A composite type other than an array type can have discriminants.
18605 -- On entry, the current scope is the composite type.
18607 -- The discriminants are initially entered into the scope of the type
18608 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18609 -- use, as explained at the end of this procedure.
18611 Discr := First (Discriminant_Specifications (N));
18612 while Present (Discr) loop
18613 Enter_Name (Defining_Identifier (Discr));
18615 -- For navigation purposes we add a reference to the discriminant
18616 -- in the entity for the type. If the current declaration is a
18617 -- completion, place references on the partial view. Otherwise the
18618 -- type is the current scope.
18620 if Present (Prev) then
18622 -- The references go on the partial view, if present. If the
18623 -- partial view has discriminants, the references have been
18624 -- generated already.
18626 if not Has_Discriminants (Prev) then
18627 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
18628 end if;
18629 else
18630 Generate_Reference
18631 (Current_Scope, Defining_Identifier (Discr), 'd');
18632 end if;
18634 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
18635 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
18637 -- Ada 2005 (AI-254)
18639 if Present (Access_To_Subprogram_Definition
18640 (Discriminant_Type (Discr)))
18641 and then Protected_Present (Access_To_Subprogram_Definition
18642 (Discriminant_Type (Discr)))
18643 then
18644 Discr_Type :=
18645 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
18646 end if;
18648 else
18649 Find_Type (Discriminant_Type (Discr));
18650 Discr_Type := Etype (Discriminant_Type (Discr));
18652 if Error_Posted (Discriminant_Type (Discr)) then
18653 Discr_Type := Any_Type;
18654 end if;
18655 end if;
18657 -- Handling of discriminants that are access types
18659 if Is_Access_Type (Discr_Type) then
18661 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18662 -- limited record types
18664 if Ada_Version < Ada_2005 then
18665 Check_Access_Discriminant_Requires_Limited
18666 (Discr, Discriminant_Type (Discr));
18667 end if;
18669 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18670 Error_Msg_N
18671 ("(Ada 83) access discriminant not allowed", Discr);
18672 end if;
18674 -- If not access type, must be a discrete type
18676 elsif not Is_Discrete_Type (Discr_Type) then
18677 Error_Msg_N
18678 ("discriminants must have a discrete or access type",
18679 Discriminant_Type (Discr));
18680 end if;
18682 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18684 -- If a discriminant specification includes the assignment compound
18685 -- delimiter followed by an expression, the expression is the default
18686 -- expression of the discriminant; the default expression must be of
18687 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18688 -- a default expression, we do the special preanalysis, since this
18689 -- expression does not freeze (see section "Handling of Default and
18690 -- Per-Object Expressions" in spec of package Sem).
18692 if Present (Expression (Discr)) then
18693 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
18695 -- Legaity checks
18697 if Nkind (N) = N_Formal_Type_Declaration then
18698 Error_Msg_N
18699 ("discriminant defaults not allowed for formal type",
18700 Expression (Discr));
18702 -- Flag an error for a tagged type with defaulted discriminants,
18703 -- excluding limited tagged types when compiling for Ada 2012
18704 -- (see AI05-0214).
18706 elsif Is_Tagged_Type (Current_Scope)
18707 and then (not Is_Limited_Type (Current_Scope)
18708 or else Ada_Version < Ada_2012)
18709 and then Comes_From_Source (N)
18710 then
18711 -- Note: see similar test in Check_Or_Process_Discriminants, to
18712 -- handle the (illegal) case of the completion of an untagged
18713 -- view with discriminants with defaults by a tagged full view.
18714 -- We skip the check if Discr does not come from source, to
18715 -- account for the case of an untagged derived type providing
18716 -- defaults for a renamed discriminant from a private untagged
18717 -- ancestor with a tagged full view (ACATS B460006).
18719 if Ada_Version >= Ada_2012 then
18720 Error_Msg_N
18721 ("discriminants of nonlimited tagged type cannot have"
18722 & " defaults",
18723 Expression (Discr));
18724 else
18725 Error_Msg_N
18726 ("discriminants of tagged type cannot have defaults",
18727 Expression (Discr));
18728 end if;
18730 else
18731 Default_Present := True;
18732 Append_Elmt (Expression (Discr), Elist);
18734 -- Tag the defining identifiers for the discriminants with
18735 -- their corresponding default expressions from the tree.
18737 Set_Discriminant_Default_Value
18738 (Defining_Identifier (Discr), Expression (Discr));
18739 end if;
18741 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
18742 -- gets set unless we can be sure that no range check is required.
18744 if (GNATprove_Mode or not Expander_Active)
18745 and then not
18746 Is_In_Range
18747 (Expression (Discr), Discr_Type, Assume_Valid => True)
18748 then
18749 Set_Do_Range_Check (Expression (Discr));
18750 end if;
18752 -- No default discriminant value given
18754 else
18755 Default_Not_Present := True;
18756 end if;
18758 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18759 -- Discr_Type but with the null-exclusion attribute
18761 if Ada_Version >= Ada_2005 then
18763 -- Ada 2005 (AI-231): Static checks
18765 if Can_Never_Be_Null (Discr_Type) then
18766 Null_Exclusion_Static_Checks (Discr);
18768 elsif Is_Access_Type (Discr_Type)
18769 and then Null_Exclusion_Present (Discr)
18771 -- No need to check itypes because in their case this check
18772 -- was done at their point of creation
18774 and then not Is_Itype (Discr_Type)
18775 then
18776 if Can_Never_Be_Null (Discr_Type) then
18777 Error_Msg_NE
18778 ("`NOT NULL` not allowed (& already excludes null)",
18779 Discr,
18780 Discr_Type);
18781 end if;
18783 Set_Etype (Defining_Identifier (Discr),
18784 Create_Null_Excluding_Itype
18785 (T => Discr_Type,
18786 Related_Nod => Discr));
18788 -- Check for improper null exclusion if the type is otherwise
18789 -- legal for a discriminant.
18791 elsif Null_Exclusion_Present (Discr)
18792 and then Is_Discrete_Type (Discr_Type)
18793 then
18794 Error_Msg_N
18795 ("null exclusion can only apply to an access type", Discr);
18796 end if;
18798 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18799 -- can't have defaults. Synchronized types, or types that are
18800 -- explicitly limited are fine, but special tests apply to derived
18801 -- types in generics: in a generic body we have to assume the
18802 -- worst, and therefore defaults are not allowed if the parent is
18803 -- a generic formal private type (see ACATS B370001).
18805 if Is_Access_Type (Discr_Type) and then Default_Present then
18806 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
18807 or else Is_Limited_Record (Current_Scope)
18808 or else Is_Concurrent_Type (Current_Scope)
18809 or else Is_Concurrent_Record_Type (Current_Scope)
18810 or else Ekind (Current_Scope) = E_Limited_Private_Type
18811 then
18812 if not Is_Derived_Type (Current_Scope)
18813 or else not Is_Generic_Type (Etype (Current_Scope))
18814 or else not In_Package_Body (Scope (Etype (Current_Scope)))
18815 or else Limited_Present
18816 (Type_Definition (Parent (Current_Scope)))
18817 then
18818 null;
18820 else
18821 Error_Msg_N ("access discriminants of nonlimited types",
18822 Expression (Discr));
18823 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18824 end if;
18826 elsif Present (Expression (Discr)) then
18827 Error_Msg_N
18828 ("(Ada 2005) access discriminants of nonlimited types",
18829 Expression (Discr));
18830 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18831 end if;
18832 end if;
18833 end if;
18835 -- A discriminant cannot be effectively volatile. This check is only
18836 -- relevant when SPARK_Mode is on as it is not standard Ada legality
18837 -- rule (SPARK RM 7.1.3(6)).
18839 if SPARK_Mode = On
18840 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
18841 then
18842 Error_Msg_N ("discriminant cannot be volatile", Discr);
18843 end if;
18845 Next (Discr);
18846 end loop;
18848 -- An element list consisting of the default expressions of the
18849 -- discriminants is constructed in the above loop and used to set
18850 -- the Discriminant_Constraint attribute for the type. If an object
18851 -- is declared of this (record or task) type without any explicit
18852 -- discriminant constraint given, this element list will form the
18853 -- actual parameters for the corresponding initialization procedure
18854 -- for the type.
18856 Set_Discriminant_Constraint (Current_Scope, Elist);
18857 Set_Stored_Constraint (Current_Scope, No_Elist);
18859 -- Default expressions must be provided either for all or for none
18860 -- of the discriminants of a discriminant part. (RM 3.7.1)
18862 if Default_Present and then Default_Not_Present then
18863 Error_Msg_N
18864 ("incomplete specification of defaults for discriminants", N);
18865 end if;
18867 -- The use of the name of a discriminant is not allowed in default
18868 -- expressions of a discriminant part if the specification of the
18869 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
18871 -- To detect this, the discriminant names are entered initially with an
18872 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
18873 -- attempt to use a void entity (for example in an expression that is
18874 -- type-checked) produces the error message: premature usage. Now after
18875 -- completing the semantic analysis of the discriminant part, we can set
18876 -- the Ekind of all the discriminants appropriately.
18878 Discr := First (Discriminant_Specifications (N));
18879 Discr_Number := Uint_1;
18880 while Present (Discr) loop
18881 Id := Defining_Identifier (Discr);
18882 Set_Ekind (Id, E_Discriminant);
18883 Init_Component_Location (Id);
18884 Init_Esize (Id);
18885 Set_Discriminant_Number (Id, Discr_Number);
18887 -- Make sure this is always set, even in illegal programs
18889 Set_Corresponding_Discriminant (Id, Empty);
18891 -- Initialize the Original_Record_Component to the entity itself.
18892 -- Inherit_Components will propagate the right value to
18893 -- discriminants in derived record types.
18895 Set_Original_Record_Component (Id, Id);
18897 -- Create the discriminal for the discriminant
18899 Build_Discriminal (Id);
18901 Next (Discr);
18902 Discr_Number := Discr_Number + 1;
18903 end loop;
18905 Set_Has_Discriminants (Current_Scope);
18906 end Process_Discriminants;
18908 -----------------------
18909 -- Process_Full_View --
18910 -----------------------
18912 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
18913 procedure Collect_Implemented_Interfaces
18914 (Typ : Entity_Id;
18915 Ifaces : Elist_Id);
18916 -- Ada 2005: Gather all the interfaces that Typ directly or
18917 -- inherently implements. Duplicate entries are not added to
18918 -- the list Ifaces.
18920 ------------------------------------
18921 -- Collect_Implemented_Interfaces --
18922 ------------------------------------
18924 procedure Collect_Implemented_Interfaces
18925 (Typ : Entity_Id;
18926 Ifaces : Elist_Id)
18928 Iface : Entity_Id;
18929 Iface_Elmt : Elmt_Id;
18931 begin
18932 -- Abstract interfaces are only associated with tagged record types
18934 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
18935 return;
18936 end if;
18938 -- Recursively climb to the ancestors
18940 if Etype (Typ) /= Typ
18942 -- Protect the frontend against wrong cyclic declarations like:
18944 -- type B is new A with private;
18945 -- type C is new A with private;
18946 -- private
18947 -- type B is new C with null record;
18948 -- type C is new B with null record;
18950 and then Etype (Typ) /= Priv_T
18951 and then Etype (Typ) /= Full_T
18952 then
18953 -- Keep separate the management of private type declarations
18955 if Ekind (Typ) = E_Record_Type_With_Private then
18957 -- Handle the following illegal usage:
18958 -- type Private_Type is tagged private;
18959 -- private
18960 -- type Private_Type is new Type_Implementing_Iface;
18962 if Present (Full_View (Typ))
18963 and then Etype (Typ) /= Full_View (Typ)
18964 then
18965 if Is_Interface (Etype (Typ)) then
18966 Append_Unique_Elmt (Etype (Typ), Ifaces);
18967 end if;
18969 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18970 end if;
18972 -- Non-private types
18974 else
18975 if Is_Interface (Etype (Typ)) then
18976 Append_Unique_Elmt (Etype (Typ), Ifaces);
18977 end if;
18979 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18980 end if;
18981 end if;
18983 -- Handle entities in the list of abstract interfaces
18985 if Present (Interfaces (Typ)) then
18986 Iface_Elmt := First_Elmt (Interfaces (Typ));
18987 while Present (Iface_Elmt) loop
18988 Iface := Node (Iface_Elmt);
18990 pragma Assert (Is_Interface (Iface));
18992 if not Contain_Interface (Iface, Ifaces) then
18993 Append_Elmt (Iface, Ifaces);
18994 Collect_Implemented_Interfaces (Iface, Ifaces);
18995 end if;
18997 Next_Elmt (Iface_Elmt);
18998 end loop;
18999 end if;
19000 end Collect_Implemented_Interfaces;
19002 -- Local variables
19004 Full_Indic : Node_Id;
19005 Full_Parent : Entity_Id;
19006 Priv_Parent : Entity_Id;
19008 -- Start of processing for Process_Full_View
19010 begin
19011 -- First some sanity checks that must be done after semantic
19012 -- decoration of the full view and thus cannot be placed with other
19013 -- similar checks in Find_Type_Name
19015 if not Is_Limited_Type (Priv_T)
19016 and then (Is_Limited_Type (Full_T)
19017 or else Is_Limited_Composite (Full_T))
19018 then
19019 if In_Instance then
19020 null;
19021 else
19022 Error_Msg_N
19023 ("completion of nonlimited type cannot be limited", Full_T);
19024 Explain_Limited_Type (Full_T, Full_T);
19025 end if;
19027 elsif Is_Abstract_Type (Full_T)
19028 and then not Is_Abstract_Type (Priv_T)
19029 then
19030 Error_Msg_N
19031 ("completion of nonabstract type cannot be abstract", Full_T);
19033 elsif Is_Tagged_Type (Priv_T)
19034 and then Is_Limited_Type (Priv_T)
19035 and then not Is_Limited_Type (Full_T)
19036 then
19037 -- If pragma CPP_Class was applied to the private declaration
19038 -- propagate the limitedness to the full-view
19040 if Is_CPP_Class (Priv_T) then
19041 Set_Is_Limited_Record (Full_T);
19043 -- GNAT allow its own definition of Limited_Controlled to disobey
19044 -- this rule in order in ease the implementation. This test is safe
19045 -- because Root_Controlled is defined in a child of System that
19046 -- normal programs are not supposed to use.
19048 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
19049 Set_Is_Limited_Composite (Full_T);
19050 else
19051 Error_Msg_N
19052 ("completion of limited tagged type must be limited", Full_T);
19053 end if;
19055 elsif Is_Generic_Type (Priv_T) then
19056 Error_Msg_N ("generic type cannot have a completion", Full_T);
19057 end if;
19059 -- Check that ancestor interfaces of private and full views are
19060 -- consistent. We omit this check for synchronized types because
19061 -- they are performed on the corresponding record type when frozen.
19063 if Ada_Version >= Ada_2005
19064 and then Is_Tagged_Type (Priv_T)
19065 and then Is_Tagged_Type (Full_T)
19066 and then not Is_Concurrent_Type (Full_T)
19067 then
19068 declare
19069 Iface : Entity_Id;
19070 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
19071 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
19073 begin
19074 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
19075 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
19077 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19078 -- an interface type if and only if the full type is descendant
19079 -- of the interface type (AARM 7.3 (7.3/2)).
19081 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
19083 if Present (Iface) then
19084 Error_Msg_NE
19085 ("interface in partial view& not implemented by full type "
19086 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19087 end if;
19089 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
19091 if Present (Iface) then
19092 Error_Msg_NE
19093 ("interface & not implemented by partial view "
19094 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19095 end if;
19096 end;
19097 end if;
19099 if Is_Tagged_Type (Priv_T)
19100 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19101 and then Is_Derived_Type (Full_T)
19102 then
19103 Priv_Parent := Etype (Priv_T);
19105 -- The full view of a private extension may have been transformed
19106 -- into an unconstrained derived type declaration and a subtype
19107 -- declaration (see build_derived_record_type for details).
19109 if Nkind (N) = N_Subtype_Declaration then
19110 Full_Indic := Subtype_Indication (N);
19111 Full_Parent := Etype (Base_Type (Full_T));
19112 else
19113 Full_Indic := Subtype_Indication (Type_Definition (N));
19114 Full_Parent := Etype (Full_T);
19115 end if;
19117 -- Check that the parent type of the full type is a descendant of
19118 -- the ancestor subtype given in the private extension. If either
19119 -- entity has an Etype equal to Any_Type then we had some previous
19120 -- error situation [7.3(8)].
19122 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
19123 return;
19125 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19126 -- any order. Therefore we don't have to check that its parent must
19127 -- be a descendant of the parent of the private type declaration.
19129 elsif Is_Interface (Priv_Parent)
19130 and then Is_Interface (Full_Parent)
19131 then
19132 null;
19134 -- Ada 2005 (AI-251): If the parent of the private type declaration
19135 -- is an interface there is no need to check that it is an ancestor
19136 -- of the associated full type declaration. The required tests for
19137 -- this case are performed by Build_Derived_Record_Type.
19139 elsif not Is_Interface (Base_Type (Priv_Parent))
19140 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
19141 then
19142 Error_Msg_N
19143 ("parent of full type must descend from parent"
19144 & " of private extension", Full_Indic);
19146 -- First check a formal restriction, and then proceed with checking
19147 -- Ada rules. Since the formal restriction is not a serious error, we
19148 -- don't prevent further error detection for this check, hence the
19149 -- ELSE.
19151 else
19152 -- In formal mode, when completing a private extension the type
19153 -- named in the private part must be exactly the same as that
19154 -- named in the visible part.
19156 if Priv_Parent /= Full_Parent then
19157 Error_Msg_Name_1 := Chars (Priv_Parent);
19158 Check_SPARK_05_Restriction ("% expected", Full_Indic);
19159 end if;
19161 -- Check the rules of 7.3(10): if the private extension inherits
19162 -- known discriminants, then the full type must also inherit those
19163 -- discriminants from the same (ancestor) type, and the parent
19164 -- subtype of the full type must be constrained if and only if
19165 -- the ancestor subtype of the private extension is constrained.
19167 if No (Discriminant_Specifications (Parent (Priv_T)))
19168 and then not Has_Unknown_Discriminants (Priv_T)
19169 and then Has_Discriminants (Base_Type (Priv_Parent))
19170 then
19171 declare
19172 Priv_Indic : constant Node_Id :=
19173 Subtype_Indication (Parent (Priv_T));
19175 Priv_Constr : constant Boolean :=
19176 Is_Constrained (Priv_Parent)
19177 or else
19178 Nkind (Priv_Indic) = N_Subtype_Indication
19179 or else
19180 Is_Constrained (Entity (Priv_Indic));
19182 Full_Constr : constant Boolean :=
19183 Is_Constrained (Full_Parent)
19184 or else
19185 Nkind (Full_Indic) = N_Subtype_Indication
19186 or else
19187 Is_Constrained (Entity (Full_Indic));
19189 Priv_Discr : Entity_Id;
19190 Full_Discr : Entity_Id;
19192 begin
19193 Priv_Discr := First_Discriminant (Priv_Parent);
19194 Full_Discr := First_Discriminant (Full_Parent);
19195 while Present (Priv_Discr) and then Present (Full_Discr) loop
19196 if Original_Record_Component (Priv_Discr) =
19197 Original_Record_Component (Full_Discr)
19198 or else
19199 Corresponding_Discriminant (Priv_Discr) =
19200 Corresponding_Discriminant (Full_Discr)
19201 then
19202 null;
19203 else
19204 exit;
19205 end if;
19207 Next_Discriminant (Priv_Discr);
19208 Next_Discriminant (Full_Discr);
19209 end loop;
19211 if Present (Priv_Discr) or else Present (Full_Discr) then
19212 Error_Msg_N
19213 ("full view must inherit discriminants of the parent"
19214 & " type used in the private extension", Full_Indic);
19216 elsif Priv_Constr and then not Full_Constr then
19217 Error_Msg_N
19218 ("parent subtype of full type must be constrained",
19219 Full_Indic);
19221 elsif Full_Constr and then not Priv_Constr then
19222 Error_Msg_N
19223 ("parent subtype of full type must be unconstrained",
19224 Full_Indic);
19225 end if;
19226 end;
19228 -- Check the rules of 7.3(12): if a partial view has neither
19229 -- known or unknown discriminants, then the full type
19230 -- declaration shall define a definite subtype.
19232 elsif not Has_Unknown_Discriminants (Priv_T)
19233 and then not Has_Discriminants (Priv_T)
19234 and then not Is_Constrained (Full_T)
19235 then
19236 Error_Msg_N
19237 ("full view must define a constrained type if partial view"
19238 & " has no discriminants", Full_T);
19239 end if;
19241 -- ??????? Do we implement the following properly ?????
19242 -- If the ancestor subtype of a private extension has constrained
19243 -- discriminants, then the parent subtype of the full view shall
19244 -- impose a statically matching constraint on those discriminants
19245 -- [7.3(13)].
19246 end if;
19248 else
19249 -- For untagged types, verify that a type without discriminants is
19250 -- not completed with an unconstrained type. A separate error message
19251 -- is produced if the full type has defaulted discriminants.
19253 if not Is_Indefinite_Subtype (Priv_T)
19254 and then Is_Indefinite_Subtype (Full_T)
19255 then
19256 Error_Msg_Sloc := Sloc (Parent (Priv_T));
19257 Error_Msg_NE
19258 ("full view of& not compatible with declaration#",
19259 Full_T, Priv_T);
19261 if not Is_Tagged_Type (Full_T) then
19262 Error_Msg_N
19263 ("\one is constrained, the other unconstrained", Full_T);
19264 end if;
19265 end if;
19266 end if;
19268 -- AI-419: verify that the use of "limited" is consistent
19270 declare
19271 Orig_Decl : constant Node_Id := Original_Node (N);
19273 begin
19274 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19275 and then not Limited_Present (Parent (Priv_T))
19276 and then not Synchronized_Present (Parent (Priv_T))
19277 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
19278 and then Nkind
19279 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
19280 and then Limited_Present (Type_Definition (Orig_Decl))
19281 then
19282 Error_Msg_N
19283 ("full view of non-limited extension cannot be limited", N);
19284 end if;
19285 end;
19287 -- Ada 2005 (AI-443): A synchronized private extension must be
19288 -- completed by a task or protected type.
19290 if Ada_Version >= Ada_2005
19291 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19292 and then Synchronized_Present (Parent (Priv_T))
19293 and then not Is_Concurrent_Type (Full_T)
19294 then
19295 Error_Msg_N ("full view of synchronized extension must " &
19296 "be synchronized type", N);
19297 end if;
19299 -- Ada 2005 AI-363: if the full view has discriminants with
19300 -- defaults, it is illegal to declare constrained access subtypes
19301 -- whose designated type is the current type. This allows objects
19302 -- of the type that are declared in the heap to be unconstrained.
19304 if not Has_Unknown_Discriminants (Priv_T)
19305 and then not Has_Discriminants (Priv_T)
19306 and then Has_Discriminants (Full_T)
19307 and then
19308 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
19309 then
19310 Set_Has_Constrained_Partial_View (Full_T);
19311 Set_Has_Constrained_Partial_View (Priv_T);
19312 end if;
19314 -- Create a full declaration for all its subtypes recorded in
19315 -- Private_Dependents and swap them similarly to the base type. These
19316 -- are subtypes that have been define before the full declaration of
19317 -- the private type. We also swap the entry in Private_Dependents list
19318 -- so we can properly restore the private view on exit from the scope.
19320 declare
19321 Priv_Elmt : Elmt_Id;
19322 Priv_Scop : Entity_Id;
19323 Priv : Entity_Id;
19324 Full : Entity_Id;
19326 begin
19327 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
19328 while Present (Priv_Elmt) loop
19329 Priv := Node (Priv_Elmt);
19330 Priv_Scop := Scope (Priv);
19332 if Ekind_In (Priv, E_Private_Subtype,
19333 E_Limited_Private_Subtype,
19334 E_Record_Subtype_With_Private)
19335 then
19336 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
19337 Set_Is_Itype (Full);
19338 Set_Parent (Full, Parent (Priv));
19339 Set_Associated_Node_For_Itype (Full, N);
19341 -- Now we need to complete the private subtype, but since the
19342 -- base type has already been swapped, we must also swap the
19343 -- subtypes (and thus, reverse the arguments in the call to
19344 -- Complete_Private_Subtype). Also note that we may need to
19345 -- re-establish the scope of the private subtype.
19347 Copy_And_Swap (Priv, Full);
19349 if not In_Open_Scopes (Priv_Scop) then
19350 Push_Scope (Priv_Scop);
19352 else
19353 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19355 Priv_Scop := Empty;
19356 end if;
19358 Complete_Private_Subtype (Full, Priv, Full_T, N);
19360 if Present (Priv_Scop) then
19361 Pop_Scope;
19362 end if;
19364 Replace_Elmt (Priv_Elmt, Full);
19365 end if;
19367 Next_Elmt (Priv_Elmt);
19368 end loop;
19369 end;
19371 -- If the private view was tagged, copy the new primitive operations
19372 -- from the private view to the full view.
19374 if Is_Tagged_Type (Full_T) then
19375 declare
19376 Disp_Typ : Entity_Id;
19377 Full_List : Elist_Id;
19378 Prim : Entity_Id;
19379 Prim_Elmt : Elmt_Id;
19380 Priv_List : Elist_Id;
19382 function Contains
19383 (E : Entity_Id;
19384 L : Elist_Id) return Boolean;
19385 -- Determine whether list L contains element E
19387 --------------
19388 -- Contains --
19389 --------------
19391 function Contains
19392 (E : Entity_Id;
19393 L : Elist_Id) return Boolean
19395 List_Elmt : Elmt_Id;
19397 begin
19398 List_Elmt := First_Elmt (L);
19399 while Present (List_Elmt) loop
19400 if Node (List_Elmt) = E then
19401 return True;
19402 end if;
19404 Next_Elmt (List_Elmt);
19405 end loop;
19407 return False;
19408 end Contains;
19410 -- Start of processing
19412 begin
19413 if Is_Tagged_Type (Priv_T) then
19414 Priv_List := Primitive_Operations (Priv_T);
19415 Prim_Elmt := First_Elmt (Priv_List);
19417 -- In the case of a concurrent type completing a private tagged
19418 -- type, primitives may have been declared in between the two
19419 -- views. These subprograms need to be wrapped the same way
19420 -- entries and protected procedures are handled because they
19421 -- cannot be directly shared by the two views.
19423 if Is_Concurrent_Type (Full_T) then
19424 declare
19425 Conc_Typ : constant Entity_Id :=
19426 Corresponding_Record_Type (Full_T);
19427 Curr_Nod : Node_Id := Parent (Conc_Typ);
19428 Wrap_Spec : Node_Id;
19430 begin
19431 while Present (Prim_Elmt) loop
19432 Prim := Node (Prim_Elmt);
19434 if Comes_From_Source (Prim)
19435 and then not Is_Abstract_Subprogram (Prim)
19436 then
19437 Wrap_Spec :=
19438 Make_Subprogram_Declaration (Sloc (Prim),
19439 Specification =>
19440 Build_Wrapper_Spec
19441 (Subp_Id => Prim,
19442 Obj_Typ => Conc_Typ,
19443 Formals =>
19444 Parameter_Specifications (
19445 Parent (Prim))));
19447 Insert_After (Curr_Nod, Wrap_Spec);
19448 Curr_Nod := Wrap_Spec;
19450 Analyze (Wrap_Spec);
19451 end if;
19453 Next_Elmt (Prim_Elmt);
19454 end loop;
19456 return;
19457 end;
19459 -- For non-concurrent types, transfer explicit primitives, but
19460 -- omit those inherited from the parent of the private view
19461 -- since they will be re-inherited later on.
19463 else
19464 Full_List := Primitive_Operations (Full_T);
19466 while Present (Prim_Elmt) loop
19467 Prim := Node (Prim_Elmt);
19469 if Comes_From_Source (Prim)
19470 and then not Contains (Prim, Full_List)
19471 then
19472 Append_Elmt (Prim, Full_List);
19473 end if;
19475 Next_Elmt (Prim_Elmt);
19476 end loop;
19477 end if;
19479 -- Untagged private view
19481 else
19482 Full_List := Primitive_Operations (Full_T);
19484 -- In this case the partial view is untagged, so here we locate
19485 -- all of the earlier primitives that need to be treated as
19486 -- dispatching (those that appear between the two views). Note
19487 -- that these additional operations must all be new operations
19488 -- (any earlier operations that override inherited operations
19489 -- of the full view will already have been inserted in the
19490 -- primitives list, marked by Check_Operation_From_Private_View
19491 -- as dispatching. Note that implicit "/=" operators are
19492 -- excluded from being added to the primitives list since they
19493 -- shouldn't be treated as dispatching (tagged "/=" is handled
19494 -- specially).
19496 Prim := Next_Entity (Full_T);
19497 while Present (Prim) and then Prim /= Priv_T loop
19498 if Ekind_In (Prim, E_Procedure, E_Function) then
19499 Disp_Typ := Find_Dispatching_Type (Prim);
19501 if Disp_Typ = Full_T
19502 and then (Chars (Prim) /= Name_Op_Ne
19503 or else Comes_From_Source (Prim))
19504 then
19505 Check_Controlling_Formals (Full_T, Prim);
19507 if not Is_Dispatching_Operation (Prim) then
19508 Append_Elmt (Prim, Full_List);
19509 Set_Is_Dispatching_Operation (Prim, True);
19510 Set_DT_Position (Prim, No_Uint);
19511 end if;
19513 elsif Is_Dispatching_Operation (Prim)
19514 and then Disp_Typ /= Full_T
19515 then
19517 -- Verify that it is not otherwise controlled by a
19518 -- formal or a return value of type T.
19520 Check_Controlling_Formals (Disp_Typ, Prim);
19521 end if;
19522 end if;
19524 Next_Entity (Prim);
19525 end loop;
19526 end if;
19528 -- For the tagged case, the two views can share the same primitive
19529 -- operations list and the same class-wide type. Update attributes
19530 -- of the class-wide type which depend on the full declaration.
19532 if Is_Tagged_Type (Priv_T) then
19533 Set_Direct_Primitive_Operations (Priv_T, Full_List);
19534 Set_Class_Wide_Type
19535 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
19537 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
19538 Set_Has_Protected
19539 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
19540 end if;
19541 end;
19542 end if;
19544 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19546 if Known_To_Have_Preelab_Init (Priv_T) then
19548 -- Case where there is a pragma Preelaborable_Initialization. We
19549 -- always allow this in predefined units, which is cheating a bit,
19550 -- but it means we don't have to struggle to meet the requirements in
19551 -- the RM for having Preelaborable Initialization. Otherwise we
19552 -- require that the type meets the RM rules. But we can't check that
19553 -- yet, because of the rule about overriding Initialize, so we simply
19554 -- set a flag that will be checked at freeze time.
19556 if not In_Predefined_Unit (Full_T) then
19557 Set_Must_Have_Preelab_Init (Full_T);
19558 end if;
19559 end if;
19561 -- If pragma CPP_Class was applied to the private type declaration,
19562 -- propagate it now to the full type declaration.
19564 if Is_CPP_Class (Priv_T) then
19565 Set_Is_CPP_Class (Full_T);
19566 Set_Convention (Full_T, Convention_CPP);
19568 -- Check that components of imported CPP types do not have default
19569 -- expressions.
19571 Check_CPP_Type_Has_No_Defaults (Full_T);
19572 end if;
19574 -- If the private view has user specified stream attributes, then so has
19575 -- the full view.
19577 -- Why the test, how could these flags be already set in Full_T ???
19579 if Has_Specified_Stream_Read (Priv_T) then
19580 Set_Has_Specified_Stream_Read (Full_T);
19581 end if;
19583 if Has_Specified_Stream_Write (Priv_T) then
19584 Set_Has_Specified_Stream_Write (Full_T);
19585 end if;
19587 if Has_Specified_Stream_Input (Priv_T) then
19588 Set_Has_Specified_Stream_Input (Full_T);
19589 end if;
19591 if Has_Specified_Stream_Output (Priv_T) then
19592 Set_Has_Specified_Stream_Output (Full_T);
19593 end if;
19595 -- Propagate the attributes related to pragma Default_Initial_Condition
19596 -- from the private to the full view. Note that both flags are mutually
19597 -- exclusive.
19599 if Has_Default_Init_Cond (Priv_T)
19600 or else Has_Inherited_Default_Init_Cond (Priv_T)
19601 then
19602 Propagate_Default_Init_Cond_Attributes
19603 (From_Typ => Priv_T,
19604 To_Typ => Full_T,
19605 Private_To_Full_View => True);
19607 -- In the case where the full view is derived from another private type,
19608 -- the attributes related to pragma Default_Initial_Condition must be
19609 -- propagated from the full to the private view to maintain consistency
19610 -- of views.
19612 -- package Pack is
19613 -- type Parent_Typ is private
19614 -- with Default_Initial_Condition ...;
19615 -- private
19616 -- type Parent_Typ is ...;
19617 -- end Pack;
19619 -- with Pack; use Pack;
19620 -- package Pack_2 is
19621 -- type Deriv_Typ is private; -- must inherit
19622 -- private
19623 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19624 -- end Pack_2;
19626 elsif Has_Default_Init_Cond (Full_T)
19627 or else Has_Inherited_Default_Init_Cond (Full_T)
19628 then
19629 Propagate_Default_Init_Cond_Attributes
19630 (From_Typ => Full_T,
19631 To_Typ => Priv_T,
19632 Private_To_Full_View => True);
19633 end if;
19635 -- Propagate invariants to full type
19637 if Has_Invariants (Priv_T) then
19638 Set_Has_Invariants (Full_T);
19639 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
19640 end if;
19642 if Has_Inheritable_Invariants (Priv_T) then
19643 Set_Has_Inheritable_Invariants (Full_T);
19644 end if;
19646 -- Propagate predicates to full type, and predicate function if already
19647 -- defined. It is not clear that this can actually happen? the partial
19648 -- view cannot be frozen yet, and the predicate function has not been
19649 -- built. Still it is a cheap check and seems safer to make it.
19651 if Has_Predicates (Priv_T) then
19652 if Present (Predicate_Function (Priv_T)) then
19653 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
19654 end if;
19656 Set_Has_Predicates (Full_T);
19657 end if;
19658 end Process_Full_View;
19660 -----------------------------------
19661 -- Process_Incomplete_Dependents --
19662 -----------------------------------
19664 procedure Process_Incomplete_Dependents
19665 (N : Node_Id;
19666 Full_T : Entity_Id;
19667 Inc_T : Entity_Id)
19669 Inc_Elmt : Elmt_Id;
19670 Priv_Dep : Entity_Id;
19671 New_Subt : Entity_Id;
19673 Disc_Constraint : Elist_Id;
19675 begin
19676 if No (Private_Dependents (Inc_T)) then
19677 return;
19678 end if;
19680 -- Itypes that may be generated by the completion of an incomplete
19681 -- subtype are not used by the back-end and not attached to the tree.
19682 -- They are created only for constraint-checking purposes.
19684 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
19685 while Present (Inc_Elmt) loop
19686 Priv_Dep := Node (Inc_Elmt);
19688 if Ekind (Priv_Dep) = E_Subprogram_Type then
19690 -- An Access_To_Subprogram type may have a return type or a
19691 -- parameter type that is incomplete. Replace with the full view.
19693 if Etype (Priv_Dep) = Inc_T then
19694 Set_Etype (Priv_Dep, Full_T);
19695 end if;
19697 declare
19698 Formal : Entity_Id;
19700 begin
19701 Formal := First_Formal (Priv_Dep);
19702 while Present (Formal) loop
19703 if Etype (Formal) = Inc_T then
19704 Set_Etype (Formal, Full_T);
19705 end if;
19707 Next_Formal (Formal);
19708 end loop;
19709 end;
19711 elsif Is_Overloadable (Priv_Dep) then
19713 -- If a subprogram in the incomplete dependents list is primitive
19714 -- for a tagged full type then mark it as a dispatching operation,
19715 -- check whether it overrides an inherited subprogram, and check
19716 -- restrictions on its controlling formals. Note that a protected
19717 -- operation is never dispatching: only its wrapper operation
19718 -- (which has convention Ada) is.
19720 if Is_Tagged_Type (Full_T)
19721 and then Is_Primitive (Priv_Dep)
19722 and then Convention (Priv_Dep) /= Convention_Protected
19723 then
19724 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
19725 Set_Is_Dispatching_Operation (Priv_Dep);
19726 Check_Controlling_Formals (Full_T, Priv_Dep);
19727 end if;
19729 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
19731 -- Can happen during processing of a body before the completion
19732 -- of a TA type. Ignore, because spec is also on dependent list.
19734 return;
19736 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
19737 -- corresponding subtype of the full view.
19739 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
19740 Set_Subtype_Indication
19741 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
19742 Set_Etype (Priv_Dep, Full_T);
19743 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
19744 Set_Analyzed (Parent (Priv_Dep), False);
19746 -- Reanalyze the declaration, suppressing the call to
19747 -- Enter_Name to avoid duplicate names.
19749 Analyze_Subtype_Declaration
19750 (N => Parent (Priv_Dep),
19751 Skip => True);
19753 -- Dependent is a subtype
19755 else
19756 -- We build a new subtype indication using the full view of the
19757 -- incomplete parent. The discriminant constraints have been
19758 -- elaborated already at the point of the subtype declaration.
19760 New_Subt := Create_Itype (E_Void, N);
19762 if Has_Discriminants (Full_T) then
19763 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
19764 else
19765 Disc_Constraint := No_Elist;
19766 end if;
19768 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
19769 Set_Full_View (Priv_Dep, New_Subt);
19770 end if;
19772 Next_Elmt (Inc_Elmt);
19773 end loop;
19774 end Process_Incomplete_Dependents;
19776 --------------------------------
19777 -- Process_Range_Expr_In_Decl --
19778 --------------------------------
19780 procedure Process_Range_Expr_In_Decl
19781 (R : Node_Id;
19782 T : Entity_Id;
19783 Subtyp : Entity_Id := Empty;
19784 Check_List : List_Id := Empty_List;
19785 R_Check_Off : Boolean := False;
19786 In_Iter_Schm : Boolean := False)
19788 Lo, Hi : Node_Id;
19789 R_Checks : Check_Result;
19790 Insert_Node : Node_Id;
19791 Def_Id : Entity_Id;
19793 begin
19794 Analyze_And_Resolve (R, Base_Type (T));
19796 if Nkind (R) = N_Range then
19798 -- In SPARK, all ranges should be static, with the exception of the
19799 -- discrete type definition of a loop parameter specification.
19801 if not In_Iter_Schm
19802 and then not Is_OK_Static_Range (R)
19803 then
19804 Check_SPARK_05_Restriction ("range should be static", R);
19805 end if;
19807 Lo := Low_Bound (R);
19808 Hi := High_Bound (R);
19810 -- Validity checks on the range of a quantified expression are
19811 -- delayed until the construct is transformed into a loop.
19813 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
19814 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
19815 then
19816 null;
19818 -- We need to ensure validity of the bounds here, because if we
19819 -- go ahead and do the expansion, then the expanded code will get
19820 -- analyzed with range checks suppressed and we miss the check.
19822 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
19823 -- the temporaries generated by routine Remove_Side_Effects by means
19824 -- of validity checks must use the same names. When a range appears
19825 -- in the parent of a generic, the range is processed with checks
19826 -- disabled as part of the generic context and with checks enabled
19827 -- for code generation purposes. This leads to link issues as the
19828 -- generic contains references to xxx_FIRST/_LAST, but the inlined
19829 -- template sees the temporaries generated by Remove_Side_Effects.
19831 else
19832 Validity_Check_Range (R, Subtyp);
19833 end if;
19835 -- If there were errors in the declaration, try and patch up some
19836 -- common mistakes in the bounds. The cases handled are literals
19837 -- which are Integer where the expected type is Real and vice versa.
19838 -- These corrections allow the compilation process to proceed further
19839 -- along since some basic assumptions of the format of the bounds
19840 -- are guaranteed.
19842 if Etype (R) = Any_Type then
19843 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
19844 Rewrite (Lo,
19845 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
19847 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
19848 Rewrite (Hi,
19849 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
19851 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
19852 Rewrite (Lo,
19853 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
19855 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
19856 Rewrite (Hi,
19857 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
19858 end if;
19860 Set_Etype (Lo, T);
19861 Set_Etype (Hi, T);
19862 end if;
19864 -- If the bounds of the range have been mistakenly given as string
19865 -- literals (perhaps in place of character literals), then an error
19866 -- has already been reported, but we rewrite the string literal as a
19867 -- bound of the range's type to avoid blowups in later processing
19868 -- that looks at static values.
19870 if Nkind (Lo) = N_String_Literal then
19871 Rewrite (Lo,
19872 Make_Attribute_Reference (Sloc (Lo),
19873 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
19874 Attribute_Name => Name_First));
19875 Analyze_And_Resolve (Lo);
19876 end if;
19878 if Nkind (Hi) = N_String_Literal then
19879 Rewrite (Hi,
19880 Make_Attribute_Reference (Sloc (Hi),
19881 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
19882 Attribute_Name => Name_First));
19883 Analyze_And_Resolve (Hi);
19884 end if;
19886 -- If bounds aren't scalar at this point then exit, avoiding
19887 -- problems with further processing of the range in this procedure.
19889 if not Is_Scalar_Type (Etype (Lo)) then
19890 return;
19891 end if;
19893 -- Resolve (actually Sem_Eval) has checked that the bounds are in
19894 -- then range of the base type. Here we check whether the bounds
19895 -- are in the range of the subtype itself. Note that if the bounds
19896 -- represent the null range the Constraint_Error exception should
19897 -- not be raised.
19899 -- ??? The following code should be cleaned up as follows
19901 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
19902 -- is done in the call to Range_Check (R, T); below
19904 -- 2. The use of R_Check_Off should be investigated and possibly
19905 -- removed, this would clean up things a bit.
19907 if Is_Null_Range (Lo, Hi) then
19908 null;
19910 else
19911 -- Capture values of bounds and generate temporaries for them
19912 -- if needed, before applying checks, since checks may cause
19913 -- duplication of the expression without forcing evaluation.
19915 -- The forced evaluation removes side effects from expressions,
19916 -- which should occur also in GNATprove mode. Otherwise, we end up
19917 -- with unexpected insertions of actions at places where this is
19918 -- not supposed to occur, e.g. on default parameters of a call.
19920 if Expander_Active or GNATprove_Mode then
19922 -- If no subtype name, then just call Force_Evaluation to
19923 -- create declarations as needed to deal with side effects.
19924 -- Also ignore calls from within a record type, where we
19925 -- have possible scoping issues.
19927 if No (Subtyp) or else Is_Record_Type (Current_Scope) then
19928 Force_Evaluation (Lo);
19929 Force_Evaluation (Hi);
19931 -- If a subtype is given, then we capture the bounds if they
19932 -- are not known at compile time, using constant identifiers
19933 -- xxx_FIRST and xxx_LAST where xxx is the name of the subtype.
19935 -- Note: we do this transformation even if expansion is not
19936 -- active, and in particular we do it in GNATprove_Mode since
19937 -- the transformation is in general required to ensure that the
19938 -- resulting tree has proper Ada semantics.
19940 -- Historical note: We used to just do Force_Evaluation calls
19941 -- in all cases, but it is better to capture the bounds with
19942 -- proper non-serialized names, since these will be accessed
19943 -- from other units, and hence may be public, and also we can
19944 -- then expand 'First and 'Last references to be references to
19945 -- these special names.
19947 else
19948 if not Compile_Time_Known_Value (Lo)
19950 -- No need to capture bounds if they already are
19951 -- references to constants.
19953 and then not (Is_Entity_Name (Lo)
19954 and then Is_Constant_Object (Entity (Lo)))
19955 then
19956 declare
19957 Loc : constant Source_Ptr := Sloc (Lo);
19958 Lov : constant Entity_Id :=
19959 Make_Defining_Identifier (Loc,
19960 Chars =>
19961 New_External_Name (Chars (Subtyp), "_FIRST"));
19962 begin
19963 Insert_Action (R,
19964 Make_Object_Declaration (Loc,
19965 Defining_Identifier => Lov,
19966 Object_Definition =>
19967 New_Occurrence_Of (Base_Type (T), Loc),
19968 Constant_Present => True,
19969 Expression => Relocate_Node (Lo)));
19970 Rewrite (Lo, New_Occurrence_Of (Lov, Loc));
19971 end;
19972 end if;
19974 if not Compile_Time_Known_Value (Hi)
19975 and then not (Is_Entity_Name (Hi)
19976 and then Is_Constant_Object (Entity (Hi)))
19977 then
19978 declare
19979 Loc : constant Source_Ptr := Sloc (Hi);
19980 Hiv : constant Entity_Id :=
19981 Make_Defining_Identifier (Loc,
19982 Chars =>
19983 New_External_Name (Chars (Subtyp), "_LAST"));
19984 begin
19985 Insert_Action (R,
19986 Make_Object_Declaration (Loc,
19987 Defining_Identifier => Hiv,
19988 Object_Definition =>
19989 New_Occurrence_Of (Base_Type (T), Loc),
19990 Constant_Present => True,
19991 Expression => Relocate_Node (Hi)));
19992 Rewrite (Hi, New_Occurrence_Of (Hiv, Loc));
19993 end;
19994 end if;
19995 end if;
19996 end if;
19998 -- We use a flag here instead of suppressing checks on the
19999 -- type because the type we check against isn't necessarily
20000 -- the place where we put the check.
20002 if not R_Check_Off then
20003 R_Checks := Get_Range_Checks (R, T);
20005 -- Look up tree to find an appropriate insertion point. We
20006 -- can't just use insert_actions because later processing
20007 -- depends on the insertion node. Prior to Ada 2012 the
20008 -- insertion point could only be a declaration or a loop, but
20009 -- quantified expressions can appear within any context in an
20010 -- expression, and the insertion point can be any statement,
20011 -- pragma, or declaration.
20013 Insert_Node := Parent (R);
20014 while Present (Insert_Node) loop
20015 exit when
20016 Nkind (Insert_Node) in N_Declaration
20017 and then
20018 not Nkind_In
20019 (Insert_Node, N_Component_Declaration,
20020 N_Loop_Parameter_Specification,
20021 N_Function_Specification,
20022 N_Procedure_Specification);
20024 exit when Nkind (Insert_Node) in N_Later_Decl_Item
20025 or else Nkind (Insert_Node) in
20026 N_Statement_Other_Than_Procedure_Call
20027 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
20028 N_Pragma);
20030 Insert_Node := Parent (Insert_Node);
20031 end loop;
20033 -- Why would Type_Decl not be present??? Without this test,
20034 -- short regression tests fail.
20036 if Present (Insert_Node) then
20038 -- Case of loop statement. Verify that the range is part
20039 -- of the subtype indication of the iteration scheme.
20041 if Nkind (Insert_Node) = N_Loop_Statement then
20042 declare
20043 Indic : Node_Id;
20045 begin
20046 Indic := Parent (R);
20047 while Present (Indic)
20048 and then Nkind (Indic) /= N_Subtype_Indication
20049 loop
20050 Indic := Parent (Indic);
20051 end loop;
20053 if Present (Indic) then
20054 Def_Id := Etype (Subtype_Mark (Indic));
20056 Insert_Range_Checks
20057 (R_Checks,
20058 Insert_Node,
20059 Def_Id,
20060 Sloc (Insert_Node),
20062 Do_Before => True);
20063 end if;
20064 end;
20066 -- Insertion before a declaration. If the declaration
20067 -- includes discriminants, the list of applicable checks
20068 -- is given by the caller.
20070 elsif Nkind (Insert_Node) in N_Declaration then
20071 Def_Id := Defining_Identifier (Insert_Node);
20073 if (Ekind (Def_Id) = E_Record_Type
20074 and then Depends_On_Discriminant (R))
20075 or else
20076 (Ekind (Def_Id) = E_Protected_Type
20077 and then Has_Discriminants (Def_Id))
20078 then
20079 Append_Range_Checks
20080 (R_Checks,
20081 Check_List, Def_Id, Sloc (Insert_Node), R);
20083 else
20084 Insert_Range_Checks
20085 (R_Checks,
20086 Insert_Node, Def_Id, Sloc (Insert_Node), R);
20088 end if;
20090 -- Insertion before a statement. Range appears in the
20091 -- context of a quantified expression. Insertion will
20092 -- take place when expression is expanded.
20094 else
20095 null;
20096 end if;
20097 end if;
20098 end if;
20099 end if;
20101 -- Case of other than an explicit N_Range node
20103 -- The forced evaluation removes side effects from expressions, which
20104 -- should occur also in GNATprove mode. Otherwise, we end up with
20105 -- unexpected insertions of actions at places where this is not
20106 -- supposed to occur, e.g. on default parameters of a call.
20108 elsif Expander_Active or GNATprove_Mode then
20109 Get_Index_Bounds (R, Lo, Hi);
20110 Force_Evaluation (Lo);
20111 Force_Evaluation (Hi);
20112 end if;
20113 end Process_Range_Expr_In_Decl;
20115 --------------------------------------
20116 -- Process_Real_Range_Specification --
20117 --------------------------------------
20119 procedure Process_Real_Range_Specification (Def : Node_Id) is
20120 Spec : constant Node_Id := Real_Range_Specification (Def);
20121 Lo : Node_Id;
20122 Hi : Node_Id;
20123 Err : Boolean := False;
20125 procedure Analyze_Bound (N : Node_Id);
20126 -- Analyze and check one bound
20128 -------------------
20129 -- Analyze_Bound --
20130 -------------------
20132 procedure Analyze_Bound (N : Node_Id) is
20133 begin
20134 Analyze_And_Resolve (N, Any_Real);
20136 if not Is_OK_Static_Expression (N) then
20137 Flag_Non_Static_Expr
20138 ("bound in real type definition is not static!", N);
20139 Err := True;
20140 end if;
20141 end Analyze_Bound;
20143 -- Start of processing for Process_Real_Range_Specification
20145 begin
20146 if Present (Spec) then
20147 Lo := Low_Bound (Spec);
20148 Hi := High_Bound (Spec);
20149 Analyze_Bound (Lo);
20150 Analyze_Bound (Hi);
20152 -- If error, clear away junk range specification
20154 if Err then
20155 Set_Real_Range_Specification (Def, Empty);
20156 end if;
20157 end if;
20158 end Process_Real_Range_Specification;
20160 ---------------------
20161 -- Process_Subtype --
20162 ---------------------
20164 function Process_Subtype
20165 (S : Node_Id;
20166 Related_Nod : Node_Id;
20167 Related_Id : Entity_Id := Empty;
20168 Suffix : Character := ' ') return Entity_Id
20170 P : Node_Id;
20171 Def_Id : Entity_Id;
20172 Error_Node : Node_Id;
20173 Full_View_Id : Entity_Id;
20174 Subtype_Mark_Id : Entity_Id;
20176 May_Have_Null_Exclusion : Boolean;
20178 procedure Check_Incomplete (T : Entity_Id);
20179 -- Called to verify that an incomplete type is not used prematurely
20181 ----------------------
20182 -- Check_Incomplete --
20183 ----------------------
20185 procedure Check_Incomplete (T : Entity_Id) is
20186 begin
20187 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20189 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
20190 and then
20191 not (Ada_Version >= Ada_2005
20192 and then
20193 (Nkind (Parent (T)) = N_Subtype_Declaration
20194 or else (Nkind (Parent (T)) = N_Subtype_Indication
20195 and then Nkind (Parent (Parent (T))) =
20196 N_Subtype_Declaration)))
20197 then
20198 Error_Msg_N ("invalid use of type before its full declaration", T);
20199 end if;
20200 end Check_Incomplete;
20202 -- Start of processing for Process_Subtype
20204 begin
20205 -- Case of no constraints present
20207 if Nkind (S) /= N_Subtype_Indication then
20208 Find_Type (S);
20209 Check_Incomplete (S);
20210 P := Parent (S);
20212 -- Ada 2005 (AI-231): Static check
20214 if Ada_Version >= Ada_2005
20215 and then Present (P)
20216 and then Null_Exclusion_Present (P)
20217 and then Nkind (P) /= N_Access_To_Object_Definition
20218 and then not Is_Access_Type (Entity (S))
20219 then
20220 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
20221 end if;
20223 -- The following is ugly, can't we have a range or even a flag???
20225 May_Have_Null_Exclusion :=
20226 Nkind_In (P, N_Access_Definition,
20227 N_Access_Function_Definition,
20228 N_Access_Procedure_Definition,
20229 N_Access_To_Object_Definition,
20230 N_Allocator,
20231 N_Component_Definition)
20232 or else
20233 Nkind_In (P, N_Derived_Type_Definition,
20234 N_Discriminant_Specification,
20235 N_Formal_Object_Declaration,
20236 N_Object_Declaration,
20237 N_Object_Renaming_Declaration,
20238 N_Parameter_Specification,
20239 N_Subtype_Declaration);
20241 -- Create an Itype that is a duplicate of Entity (S) but with the
20242 -- null-exclusion attribute.
20244 if May_Have_Null_Exclusion
20245 and then Is_Access_Type (Entity (S))
20246 and then Null_Exclusion_Present (P)
20248 -- No need to check the case of an access to object definition.
20249 -- It is correct to define double not-null pointers.
20251 -- Example:
20252 -- type Not_Null_Int_Ptr is not null access Integer;
20253 -- type Acc is not null access Not_Null_Int_Ptr;
20255 and then Nkind (P) /= N_Access_To_Object_Definition
20256 then
20257 if Can_Never_Be_Null (Entity (S)) then
20258 case Nkind (Related_Nod) is
20259 when N_Full_Type_Declaration =>
20260 if Nkind (Type_Definition (Related_Nod))
20261 in N_Array_Type_Definition
20262 then
20263 Error_Node :=
20264 Subtype_Indication
20265 (Component_Definition
20266 (Type_Definition (Related_Nod)));
20267 else
20268 Error_Node :=
20269 Subtype_Indication (Type_Definition (Related_Nod));
20270 end if;
20272 when N_Subtype_Declaration =>
20273 Error_Node := Subtype_Indication (Related_Nod);
20275 when N_Object_Declaration =>
20276 Error_Node := Object_Definition (Related_Nod);
20278 when N_Component_Declaration =>
20279 Error_Node :=
20280 Subtype_Indication (Component_Definition (Related_Nod));
20282 when N_Allocator =>
20283 Error_Node := Expression (Related_Nod);
20285 when others =>
20286 pragma Assert (False);
20287 Error_Node := Related_Nod;
20288 end case;
20290 Error_Msg_NE
20291 ("`NOT NULL` not allowed (& already excludes null)",
20292 Error_Node,
20293 Entity (S));
20294 end if;
20296 Set_Etype (S,
20297 Create_Null_Excluding_Itype
20298 (T => Entity (S),
20299 Related_Nod => P));
20300 Set_Entity (S, Etype (S));
20301 end if;
20303 return Entity (S);
20305 -- Case of constraint present, so that we have an N_Subtype_Indication
20306 -- node (this node is created only if constraints are present).
20308 else
20309 Find_Type (Subtype_Mark (S));
20311 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
20312 and then not
20313 (Nkind (Parent (S)) = N_Subtype_Declaration
20314 and then Is_Itype (Defining_Identifier (Parent (S))))
20315 then
20316 Check_Incomplete (Subtype_Mark (S));
20317 end if;
20319 P := Parent (S);
20320 Subtype_Mark_Id := Entity (Subtype_Mark (S));
20322 -- Explicit subtype declaration case
20324 if Nkind (P) = N_Subtype_Declaration then
20325 Def_Id := Defining_Identifier (P);
20327 -- Explicit derived type definition case
20329 elsif Nkind (P) = N_Derived_Type_Definition then
20330 Def_Id := Defining_Identifier (Parent (P));
20332 -- Implicit case, the Def_Id must be created as an implicit type.
20333 -- The one exception arises in the case of concurrent types, array
20334 -- and access types, where other subsidiary implicit types may be
20335 -- created and must appear before the main implicit type. In these
20336 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20337 -- has not yet been called to create Def_Id.
20339 else
20340 if Is_Array_Type (Subtype_Mark_Id)
20341 or else Is_Concurrent_Type (Subtype_Mark_Id)
20342 or else Is_Access_Type (Subtype_Mark_Id)
20343 then
20344 Def_Id := Empty;
20346 -- For the other cases, we create a new unattached Itype,
20347 -- and set the indication to ensure it gets attached later.
20349 else
20350 Def_Id :=
20351 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20352 end if;
20353 end if;
20355 -- If the kind of constraint is invalid for this kind of type,
20356 -- then give an error, and then pretend no constraint was given.
20358 if not Is_Valid_Constraint_Kind
20359 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
20360 then
20361 Error_Msg_N
20362 ("incorrect constraint for this kind of type", Constraint (S));
20364 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
20366 -- Set Ekind of orphan itype, to prevent cascaded errors
20368 if Present (Def_Id) then
20369 Set_Ekind (Def_Id, Ekind (Any_Type));
20370 end if;
20372 -- Make recursive call, having got rid of the bogus constraint
20374 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
20375 end if;
20377 -- Remaining processing depends on type. Select on Base_Type kind to
20378 -- ensure getting to the concrete type kind in the case of a private
20379 -- subtype (needed when only doing semantic analysis).
20381 case Ekind (Base_Type (Subtype_Mark_Id)) is
20382 when Access_Kind =>
20384 -- If this is a constraint on a class-wide type, discard it.
20385 -- There is currently no way to express a partial discriminant
20386 -- constraint on a type with unknown discriminants. This is
20387 -- a pathology that the ACATS wisely decides not to test.
20389 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
20390 if Comes_From_Source (S) then
20391 Error_Msg_N
20392 ("constraint on class-wide type ignored??",
20393 Constraint (S));
20394 end if;
20396 if Nkind (P) = N_Subtype_Declaration then
20397 Set_Subtype_Indication (P,
20398 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
20399 end if;
20401 return Subtype_Mark_Id;
20402 end if;
20404 Constrain_Access (Def_Id, S, Related_Nod);
20406 if Expander_Active
20407 and then Is_Itype (Designated_Type (Def_Id))
20408 and then Nkind (Related_Nod) = N_Subtype_Declaration
20409 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
20410 then
20411 Build_Itype_Reference
20412 (Designated_Type (Def_Id), Related_Nod);
20413 end if;
20415 when Array_Kind =>
20416 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
20418 when Decimal_Fixed_Point_Kind =>
20419 Constrain_Decimal (Def_Id, S);
20421 when Enumeration_Kind =>
20422 Constrain_Enumeration (Def_Id, S);
20423 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20425 when Ordinary_Fixed_Point_Kind =>
20426 Constrain_Ordinary_Fixed (Def_Id, S);
20428 when Float_Kind =>
20429 Constrain_Float (Def_Id, S);
20431 when Integer_Kind =>
20432 Constrain_Integer (Def_Id, S);
20433 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20435 when E_Record_Type |
20436 E_Record_Subtype |
20437 Class_Wide_Kind |
20438 E_Incomplete_Type =>
20439 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20441 if Ekind (Def_Id) = E_Incomplete_Type then
20442 Set_Private_Dependents (Def_Id, New_Elmt_List);
20443 end if;
20445 when Private_Kind =>
20446 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20447 Set_Private_Dependents (Def_Id, New_Elmt_List);
20449 -- In case of an invalid constraint prevent further processing
20450 -- since the type constructed is missing expected fields.
20452 if Etype (Def_Id) = Any_Type then
20453 return Def_Id;
20454 end if;
20456 -- If the full view is that of a task with discriminants,
20457 -- we must constrain both the concurrent type and its
20458 -- corresponding record type. Otherwise we will just propagate
20459 -- the constraint to the full view, if available.
20461 if Present (Full_View (Subtype_Mark_Id))
20462 and then Has_Discriminants (Subtype_Mark_Id)
20463 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
20464 then
20465 Full_View_Id :=
20466 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20468 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
20469 Constrain_Concurrent (Full_View_Id, S,
20470 Related_Nod, Related_Id, Suffix);
20471 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
20472 Set_Full_View (Def_Id, Full_View_Id);
20474 -- Introduce an explicit reference to the private subtype,
20475 -- to prevent scope anomalies in gigi if first use appears
20476 -- in a nested context, e.g. a later function body.
20477 -- Should this be generated in other contexts than a full
20478 -- type declaration?
20480 if Is_Itype (Def_Id)
20481 and then
20482 Nkind (Parent (P)) = N_Full_Type_Declaration
20483 then
20484 Build_Itype_Reference (Def_Id, Parent (P));
20485 end if;
20487 else
20488 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
20489 end if;
20491 when Concurrent_Kind =>
20492 Constrain_Concurrent (Def_Id, S,
20493 Related_Nod, Related_Id, Suffix);
20495 when others =>
20496 Error_Msg_N ("invalid subtype mark in subtype indication", S);
20497 end case;
20499 -- Size and Convention are always inherited from the base type
20501 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
20502 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
20504 return Def_Id;
20505 end if;
20506 end Process_Subtype;
20508 --------------------------------------------
20509 -- Propagate_Default_Init_Cond_Attributes --
20510 --------------------------------------------
20512 procedure Propagate_Default_Init_Cond_Attributes
20513 (From_Typ : Entity_Id;
20514 To_Typ : Entity_Id;
20515 Parent_To_Derivation : Boolean := False;
20516 Private_To_Full_View : Boolean := False)
20518 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id);
20519 -- Remove the default initial procedure (if any) from the rep chain of
20520 -- type Typ.
20522 ----------------------------------------
20523 -- Remove_Default_Init_Cond_Procedure --
20524 ----------------------------------------
20526 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id) is
20527 Found : Boolean := False;
20528 Prev : Entity_Id;
20529 Subp : Entity_Id;
20531 begin
20532 Prev := Typ;
20533 Subp := Subprograms_For_Type (Typ);
20534 while Present (Subp) loop
20535 if Is_Default_Init_Cond_Procedure (Subp) then
20536 Found := True;
20537 exit;
20538 end if;
20540 Prev := Subp;
20541 Subp := Subprograms_For_Type (Subp);
20542 end loop;
20544 if Found then
20545 Set_Subprograms_For_Type (Prev, Subprograms_For_Type (Subp));
20546 Set_Subprograms_For_Type (Subp, Empty);
20547 end if;
20548 end Remove_Default_Init_Cond_Procedure;
20550 -- Local variables
20552 Inherit_Procedure : Boolean := False;
20554 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20556 begin
20557 if Has_Default_Init_Cond (From_Typ) then
20559 -- A derived type inherits the attributes from its parent type
20561 if Parent_To_Derivation then
20562 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20564 -- A full view shares the attributes with its private view
20566 else
20567 Set_Has_Default_Init_Cond (To_Typ);
20568 end if;
20570 Inherit_Procedure := True;
20572 -- Due to the order of expansion, a derived private type is processed
20573 -- by two routines which both attempt to set the attributes related
20574 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20575 -- Process_Full_View.
20577 -- package Pack is
20578 -- type Parent_Typ is private
20579 -- with Default_Initial_Condition ...;
20580 -- private
20581 -- type Parent_Typ is ...;
20582 -- end Pack;
20584 -- with Pack; use Pack;
20585 -- package Pack_2 is
20586 -- type Deriv_Typ is private
20587 -- with Default_Initial_Condition ...;
20588 -- private
20589 -- type Deriv_Typ is new Parent_Typ;
20590 -- end Pack_2;
20592 -- When Build_Derived_Type operates, it sets the attributes on the
20593 -- full view without taking into account that the private view may
20594 -- define its own default initial condition procedure. This becomes
20595 -- apparent in Process_Full_View which must undo some of the work by
20596 -- Build_Derived_Type and propagate the attributes from the private
20597 -- to the full view.
20599 if Private_To_Full_View then
20600 Set_Has_Inherited_Default_Init_Cond (To_Typ, False);
20601 Remove_Default_Init_Cond_Procedure (To_Typ);
20602 end if;
20604 -- A type must inherit the default initial condition procedure from a
20605 -- parent type when the parent itself is inheriting the procedure or
20606 -- when it is defining one. This circuitry is also used when dealing
20607 -- with the private / full view of a type.
20609 elsif Has_Inherited_Default_Init_Cond (From_Typ)
20610 or (Parent_To_Derivation
20611 and Present (Get_Pragma
20612 (From_Typ, Pragma_Default_Initial_Condition)))
20613 then
20614 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20615 Inherit_Procedure := True;
20616 end if;
20618 if Inherit_Procedure
20619 and then No (Default_Init_Cond_Procedure (To_Typ))
20620 then
20621 Set_Default_Init_Cond_Procedure
20622 (To_Typ, Default_Init_Cond_Procedure (From_Typ));
20623 end if;
20624 end Propagate_Default_Init_Cond_Attributes;
20626 -----------------------------
20627 -- Record_Type_Declaration --
20628 -----------------------------
20630 procedure Record_Type_Declaration
20631 (T : Entity_Id;
20632 N : Node_Id;
20633 Prev : Entity_Id)
20635 Def : constant Node_Id := Type_Definition (N);
20636 Is_Tagged : Boolean;
20637 Tag_Comp : Entity_Id;
20639 begin
20640 -- These flags must be initialized before calling Process_Discriminants
20641 -- because this routine makes use of them.
20643 Set_Ekind (T, E_Record_Type);
20644 Set_Etype (T, T);
20645 Init_Size_Align (T);
20646 Set_Interfaces (T, No_Elist);
20647 Set_Stored_Constraint (T, No_Elist);
20648 Set_Default_SSO (T);
20650 -- Normal case
20652 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
20653 if Limited_Present (Def) then
20654 Check_SPARK_05_Restriction ("limited is not allowed", N);
20655 end if;
20657 if Abstract_Present (Def) then
20658 Check_SPARK_05_Restriction ("abstract is not allowed", N);
20659 end if;
20661 -- The flag Is_Tagged_Type might have already been set by
20662 -- Find_Type_Name if it detected an error for declaration T. This
20663 -- arises in the case of private tagged types where the full view
20664 -- omits the word tagged.
20666 Is_Tagged :=
20667 Tagged_Present (Def)
20668 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20670 Set_Is_Limited_Record (T, Limited_Present (Def));
20672 if Is_Tagged then
20673 Set_Is_Tagged_Type (T, True);
20674 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
20675 end if;
20677 -- Type is abstract if full declaration carries keyword, or if
20678 -- previous partial view did.
20680 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20681 or else Abstract_Present (Def));
20683 else
20684 Check_SPARK_05_Restriction ("interface is not allowed", N);
20686 Is_Tagged := True;
20687 Analyze_Interface_Declaration (T, Def);
20689 if Present (Discriminant_Specifications (N)) then
20690 Error_Msg_N
20691 ("interface types cannot have discriminants",
20692 Defining_Identifier
20693 (First (Discriminant_Specifications (N))));
20694 end if;
20695 end if;
20697 -- First pass: if there are self-referential access components,
20698 -- create the required anonymous access type declarations, and if
20699 -- need be an incomplete type declaration for T itself.
20701 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20703 if Ada_Version >= Ada_2005
20704 and then Present (Interface_List (Def))
20705 then
20706 Check_Interfaces (N, Def);
20708 declare
20709 Ifaces_List : Elist_Id;
20711 begin
20712 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20713 -- already in the parents.
20715 Collect_Interfaces
20716 (T => T,
20717 Ifaces_List => Ifaces_List,
20718 Exclude_Parents => True);
20720 Set_Interfaces (T, Ifaces_List);
20721 end;
20722 end if;
20724 -- Records constitute a scope for the component declarations within.
20725 -- The scope is created prior to the processing of these declarations.
20726 -- Discriminants are processed first, so that they are visible when
20727 -- processing the other components. The Ekind of the record type itself
20728 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20730 -- Enter record scope
20732 Push_Scope (T);
20734 -- If an incomplete or private type declaration was already given for
20735 -- the type, then this scope already exists, and the discriminants have
20736 -- been declared within. We must verify that the full declaration
20737 -- matches the incomplete one.
20739 Check_Or_Process_Discriminants (N, T, Prev);
20741 Set_Is_Constrained (T, not Has_Discriminants (T));
20742 Set_Has_Delayed_Freeze (T, True);
20744 -- For tagged types add a manually analyzed component corresponding
20745 -- to the component _tag, the corresponding piece of tree will be
20746 -- expanded as part of the freezing actions if it is not a CPP_Class.
20748 if Is_Tagged then
20750 -- Do not add the tag unless we are in expansion mode
20752 if Expander_Active then
20753 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20754 Enter_Name (Tag_Comp);
20756 Set_Ekind (Tag_Comp, E_Component);
20757 Set_Is_Tag (Tag_Comp);
20758 Set_Is_Aliased (Tag_Comp);
20759 Set_Etype (Tag_Comp, RTE (RE_Tag));
20760 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20761 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20762 Init_Component_Location (Tag_Comp);
20764 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20765 -- implemented interfaces.
20767 if Has_Interfaces (T) then
20768 Add_Interface_Tag_Components (N, T);
20769 end if;
20770 end if;
20772 Make_Class_Wide_Type (T);
20773 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20774 end if;
20776 -- We must suppress range checks when processing record components in
20777 -- the presence of discriminants, since we don't want spurious checks to
20778 -- be generated during their analysis, but Suppress_Range_Checks flags
20779 -- must be reset the after processing the record definition.
20781 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20782 -- couldn't we just use the normal range check suppression method here.
20783 -- That would seem cleaner ???
20785 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20786 Set_Kill_Range_Checks (T, True);
20787 Record_Type_Definition (Def, Prev);
20788 Set_Kill_Range_Checks (T, False);
20789 else
20790 Record_Type_Definition (Def, Prev);
20791 end if;
20793 -- Exit from record scope
20795 End_Scope;
20797 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20798 -- the implemented interfaces and associate them an aliased entity.
20800 if Is_Tagged
20801 and then not Is_Empty_List (Interface_List (Def))
20802 then
20803 Derive_Progenitor_Subprograms (T, T);
20804 end if;
20806 Check_Function_Writable_Actuals (N);
20807 end Record_Type_Declaration;
20809 ----------------------------
20810 -- Record_Type_Definition --
20811 ----------------------------
20813 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
20814 Component : Entity_Id;
20815 Ctrl_Components : Boolean := False;
20816 Final_Storage_Only : Boolean;
20817 T : Entity_Id;
20819 begin
20820 if Ekind (Prev_T) = E_Incomplete_Type then
20821 T := Full_View (Prev_T);
20822 else
20823 T := Prev_T;
20824 end if;
20826 -- In SPARK, tagged types and type extensions may only be declared in
20827 -- the specification of library unit packages.
20829 if Present (Def) and then Is_Tagged_Type (T) then
20830 declare
20831 Typ : Node_Id;
20832 Ctxt : Node_Id;
20834 begin
20835 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
20836 Typ := Parent (Def);
20837 else
20838 pragma Assert
20839 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
20840 Typ := Parent (Parent (Def));
20841 end if;
20843 Ctxt := Parent (Typ);
20845 if Nkind (Ctxt) = N_Package_Body
20846 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
20847 then
20848 Check_SPARK_05_Restriction
20849 ("type should be defined in package specification", Typ);
20851 elsif Nkind (Ctxt) /= N_Package_Specification
20852 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
20853 then
20854 Check_SPARK_05_Restriction
20855 ("type should be defined in library unit package", Typ);
20856 end if;
20857 end;
20858 end if;
20860 Final_Storage_Only := not Is_Controlled (T);
20862 -- Ada 2005: Check whether an explicit Limited is present in a derived
20863 -- type declaration.
20865 if Nkind (Parent (Def)) = N_Derived_Type_Definition
20866 and then Limited_Present (Parent (Def))
20867 then
20868 Set_Is_Limited_Record (T);
20869 end if;
20871 -- If the component list of a record type is defined by the reserved
20872 -- word null and there is no discriminant part, then the record type has
20873 -- no components and all records of the type are null records (RM 3.7)
20874 -- This procedure is also called to process the extension part of a
20875 -- record extension, in which case the current scope may have inherited
20876 -- components.
20878 if No (Def)
20879 or else No (Component_List (Def))
20880 or else Null_Present (Component_List (Def))
20881 then
20882 if not Is_Tagged_Type (T) then
20883 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
20884 end if;
20886 else
20887 Analyze_Declarations (Component_Items (Component_List (Def)));
20889 if Present (Variant_Part (Component_List (Def))) then
20890 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
20891 Analyze (Variant_Part (Component_List (Def)));
20892 end if;
20893 end if;
20895 -- After completing the semantic analysis of the record definition,
20896 -- record components, both new and inherited, are accessible. Set their
20897 -- kind accordingly. Exclude malformed itypes from illegal declarations,
20898 -- whose Ekind may be void.
20900 Component := First_Entity (Current_Scope);
20901 while Present (Component) loop
20902 if Ekind (Component) = E_Void
20903 and then not Is_Itype (Component)
20904 then
20905 Set_Ekind (Component, E_Component);
20906 Init_Component_Location (Component);
20907 end if;
20909 if Has_Task (Etype (Component)) then
20910 Set_Has_Task (T);
20911 end if;
20913 if Has_Protected (Etype (Component)) then
20914 Set_Has_Protected (T);
20915 end if;
20917 if Ekind (Component) /= E_Component then
20918 null;
20920 -- Do not set Has_Controlled_Component on a class-wide equivalent
20921 -- type. See Make_CW_Equivalent_Type.
20923 elsif not Is_Class_Wide_Equivalent_Type (T)
20924 and then (Has_Controlled_Component (Etype (Component))
20925 or else (Chars (Component) /= Name_uParent
20926 and then Is_Controlled (Etype (Component))))
20927 then
20928 Set_Has_Controlled_Component (T, True);
20929 Final_Storage_Only :=
20930 Final_Storage_Only
20931 and then Finalize_Storage_Only (Etype (Component));
20932 Ctrl_Components := True;
20933 end if;
20935 Next_Entity (Component);
20936 end loop;
20938 -- A Type is Finalize_Storage_Only only if all its controlled components
20939 -- are also.
20941 if Ctrl_Components then
20942 Set_Finalize_Storage_Only (T, Final_Storage_Only);
20943 end if;
20945 -- Place reference to end record on the proper entity, which may
20946 -- be a partial view.
20948 if Present (Def) then
20949 Process_End_Label (Def, 'e', Prev_T);
20950 end if;
20951 end Record_Type_Definition;
20953 ------------------------
20954 -- Replace_Components --
20955 ------------------------
20957 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
20958 function Process (N : Node_Id) return Traverse_Result;
20960 -------------
20961 -- Process --
20962 -------------
20964 function Process (N : Node_Id) return Traverse_Result is
20965 Comp : Entity_Id;
20967 begin
20968 if Nkind (N) = N_Discriminant_Specification then
20969 Comp := First_Discriminant (Typ);
20970 while Present (Comp) loop
20971 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20972 Set_Defining_Identifier (N, Comp);
20973 exit;
20974 end if;
20976 Next_Discriminant (Comp);
20977 end loop;
20979 elsif Nkind (N) = N_Component_Declaration then
20980 Comp := First_Component (Typ);
20981 while Present (Comp) loop
20982 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20983 Set_Defining_Identifier (N, Comp);
20984 exit;
20985 end if;
20987 Next_Component (Comp);
20988 end loop;
20989 end if;
20991 return OK;
20992 end Process;
20994 procedure Replace is new Traverse_Proc (Process);
20996 -- Start of processing for Replace_Components
20998 begin
20999 Replace (Decl);
21000 end Replace_Components;
21002 -------------------------------
21003 -- Set_Completion_Referenced --
21004 -------------------------------
21006 procedure Set_Completion_Referenced (E : Entity_Id) is
21007 begin
21008 -- If in main unit, mark entity that is a completion as referenced,
21009 -- warnings go on the partial view when needed.
21011 if In_Extended_Main_Source_Unit (E) then
21012 Set_Referenced (E);
21013 end if;
21014 end Set_Completion_Referenced;
21016 ---------------------
21017 -- Set_Default_SSO --
21018 ---------------------
21020 procedure Set_Default_SSO (T : Entity_Id) is
21021 begin
21022 case Opt.Default_SSO is
21023 when ' ' =>
21024 null;
21025 when 'L' =>
21026 Set_SSO_Set_Low_By_Default (T, True);
21027 when 'H' =>
21028 Set_SSO_Set_High_By_Default (T, True);
21029 when others =>
21030 raise Program_Error;
21031 end case;
21032 end Set_Default_SSO;
21034 ---------------------
21035 -- Set_Fixed_Range --
21036 ---------------------
21038 -- The range for fixed-point types is complicated by the fact that we
21039 -- do not know the exact end points at the time of the declaration. This
21040 -- is true for three reasons:
21042 -- A size clause may affect the fudging of the end-points.
21043 -- A small clause may affect the values of the end-points.
21044 -- We try to include the end-points if it does not affect the size.
21046 -- This means that the actual end-points must be established at the
21047 -- point when the type is frozen. Meanwhile, we first narrow the range
21048 -- as permitted (so that it will fit if necessary in a small specified
21049 -- size), and then build a range subtree with these narrowed bounds.
21050 -- Set_Fixed_Range constructs the range from real literal values, and
21051 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21053 -- The parent of this range is set to point to the entity so that it is
21054 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21055 -- other scalar types, which are just pointers to the range in the
21056 -- original tree, this would otherwise be an orphan).
21058 -- The tree is left unanalyzed. When the type is frozen, the processing
21059 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21060 -- analyzed, and uses this as an indication that it should complete
21061 -- work on the range (it will know the final small and size values).
21063 procedure Set_Fixed_Range
21064 (E : Entity_Id;
21065 Loc : Source_Ptr;
21066 Lo : Ureal;
21067 Hi : Ureal)
21069 S : constant Node_Id :=
21070 Make_Range (Loc,
21071 Low_Bound => Make_Real_Literal (Loc, Lo),
21072 High_Bound => Make_Real_Literal (Loc, Hi));
21073 begin
21074 Set_Scalar_Range (E, S);
21075 Set_Parent (S, E);
21077 -- Before the freeze point, the bounds of a fixed point are universal
21078 -- and carry the corresponding type.
21080 Set_Etype (Low_Bound (S), Universal_Real);
21081 Set_Etype (High_Bound (S), Universal_Real);
21082 end Set_Fixed_Range;
21084 ----------------------------------
21085 -- Set_Scalar_Range_For_Subtype --
21086 ----------------------------------
21088 procedure Set_Scalar_Range_For_Subtype
21089 (Def_Id : Entity_Id;
21090 R : Node_Id;
21091 Subt : Entity_Id)
21093 Kind : constant Entity_Kind := Ekind (Def_Id);
21095 begin
21096 -- Defend against previous error
21098 if Nkind (R) = N_Error then
21099 return;
21100 end if;
21102 Set_Scalar_Range (Def_Id, R);
21104 -- We need to link the range into the tree before resolving it so
21105 -- that types that are referenced, including importantly the subtype
21106 -- itself, are properly frozen (Freeze_Expression requires that the
21107 -- expression be properly linked into the tree). Of course if it is
21108 -- already linked in, then we do not disturb the current link.
21110 if No (Parent (R)) then
21111 Set_Parent (R, Def_Id);
21112 end if;
21114 -- Reset the kind of the subtype during analysis of the range, to
21115 -- catch possible premature use in the bounds themselves.
21117 Set_Ekind (Def_Id, E_Void);
21118 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
21119 Set_Ekind (Def_Id, Kind);
21120 end Set_Scalar_Range_For_Subtype;
21122 --------------------------------------------------------
21123 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21124 --------------------------------------------------------
21126 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21127 (E : Entity_Id)
21129 begin
21130 -- Make sure set if encountered during Expand_To_Stored_Constraint
21132 Set_Stored_Constraint (E, No_Elist);
21134 -- Give it the right value
21136 if Is_Constrained (E) and then Has_Discriminants (E) then
21137 Set_Stored_Constraint (E,
21138 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
21139 end if;
21140 end Set_Stored_Constraint_From_Discriminant_Constraint;
21142 -------------------------------------
21143 -- Signed_Integer_Type_Declaration --
21144 -------------------------------------
21146 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
21147 Implicit_Base : Entity_Id;
21148 Base_Typ : Entity_Id;
21149 Lo_Val : Uint;
21150 Hi_Val : Uint;
21151 Errs : Boolean := False;
21152 Lo : Node_Id;
21153 Hi : Node_Id;
21155 function Can_Derive_From (E : Entity_Id) return Boolean;
21156 -- Determine whether given bounds allow derivation from specified type
21158 procedure Check_Bound (Expr : Node_Id);
21159 -- Check bound to make sure it is integral and static. If not, post
21160 -- appropriate error message and set Errs flag
21162 ---------------------
21163 -- Can_Derive_From --
21164 ---------------------
21166 -- Note we check both bounds against both end values, to deal with
21167 -- strange types like ones with a range of 0 .. -12341234.
21169 function Can_Derive_From (E : Entity_Id) return Boolean is
21170 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
21171 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
21172 begin
21173 return Lo <= Lo_Val and then Lo_Val <= Hi
21174 and then
21175 Lo <= Hi_Val and then Hi_Val <= Hi;
21176 end Can_Derive_From;
21178 -----------------
21179 -- Check_Bound --
21180 -----------------
21182 procedure Check_Bound (Expr : Node_Id) is
21183 begin
21184 -- If a range constraint is used as an integer type definition, each
21185 -- bound of the range must be defined by a static expression of some
21186 -- integer type, but the two bounds need not have the same integer
21187 -- type (Negative bounds are allowed.) (RM 3.5.4)
21189 if not Is_Integer_Type (Etype (Expr)) then
21190 Error_Msg_N
21191 ("integer type definition bounds must be of integer type", Expr);
21192 Errs := True;
21194 elsif not Is_OK_Static_Expression (Expr) then
21195 Flag_Non_Static_Expr
21196 ("non-static expression used for integer type bound!", Expr);
21197 Errs := True;
21199 -- The bounds are folded into literals, and we set their type to be
21200 -- universal, to avoid typing difficulties: we cannot set the type
21201 -- of the literal to the new type, because this would be a forward
21202 -- reference for the back end, and if the original type is user-
21203 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21205 else
21206 if Is_Entity_Name (Expr) then
21207 Fold_Uint (Expr, Expr_Value (Expr), True);
21208 end if;
21210 Set_Etype (Expr, Universal_Integer);
21211 end if;
21212 end Check_Bound;
21214 -- Start of processing for Signed_Integer_Type_Declaration
21216 begin
21217 -- Create an anonymous base type
21219 Implicit_Base :=
21220 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
21222 -- Analyze and check the bounds, they can be of any integer type
21224 Lo := Low_Bound (Def);
21225 Hi := High_Bound (Def);
21227 -- Arbitrarily use Integer as the type if either bound had an error
21229 if Hi = Error or else Lo = Error then
21230 Base_Typ := Any_Integer;
21231 Set_Error_Posted (T, True);
21233 -- Here both bounds are OK expressions
21235 else
21236 Analyze_And_Resolve (Lo, Any_Integer);
21237 Analyze_And_Resolve (Hi, Any_Integer);
21239 Check_Bound (Lo);
21240 Check_Bound (Hi);
21242 if Errs then
21243 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21244 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21245 end if;
21247 -- Find type to derive from
21249 Lo_Val := Expr_Value (Lo);
21250 Hi_Val := Expr_Value (Hi);
21252 if Can_Derive_From (Standard_Short_Short_Integer) then
21253 Base_Typ := Base_Type (Standard_Short_Short_Integer);
21255 elsif Can_Derive_From (Standard_Short_Integer) then
21256 Base_Typ := Base_Type (Standard_Short_Integer);
21258 elsif Can_Derive_From (Standard_Integer) then
21259 Base_Typ := Base_Type (Standard_Integer);
21261 elsif Can_Derive_From (Standard_Long_Integer) then
21262 Base_Typ := Base_Type (Standard_Long_Integer);
21264 elsif Can_Derive_From (Standard_Long_Long_Integer) then
21265 Check_Restriction (No_Long_Long_Integers, Def);
21266 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21268 else
21269 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21270 Error_Msg_N ("integer type definition bounds out of range", Def);
21271 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21272 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21273 end if;
21274 end if;
21276 -- Complete both implicit base and declared first subtype entities. The
21277 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21278 -- are not clobbered when the signed integer type acts as a full view of
21279 -- a private type.
21281 Set_Etype (Implicit_Base, Base_Typ);
21282 Set_Size_Info (Implicit_Base, Base_Typ);
21283 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
21284 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
21285 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
21287 Set_Ekind (T, E_Signed_Integer_Subtype);
21288 Set_Etype (T, Implicit_Base);
21289 Set_Size_Info (T, Implicit_Base);
21290 Inherit_Rep_Item_Chain (T, Implicit_Base);
21291 Set_Scalar_Range (T, Def);
21292 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
21293 Set_Is_Constrained (T);
21294 end Signed_Integer_Type_Declaration;
21296 end Sem_Ch3;