[multiple changes]
[official-gcc.git] / gcc / ada / s-tassta.adb
blobda76c6559e5063d66840f8935b46d0bbedbc4e60
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K I N G . S T A G E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 pragma Polling (Off);
33 -- Turn off polling, we do not want ATC polling to take place during tasking
34 -- operations. It causes infinite loops and other problems.
36 pragma Partition_Elaboration_Policy (Concurrent);
37 -- This package only implements the concurrent elaboration policy. This pragma
38 -- will enforce it (and detect conflicts with user specified policy).
40 with Ada.Exceptions;
41 with Ada.Unchecked_Deallocation;
43 with System.Interrupt_Management;
44 with System.Tasking.Debug;
45 with System.Address_Image;
46 with System.Task_Primitives;
47 with System.Task_Primitives.Operations;
48 with System.Tasking.Utilities;
49 with System.Tasking.Queuing;
50 with System.Tasking.Rendezvous;
51 with System.OS_Primitives;
52 with System.Secondary_Stack;
53 with System.Storage_Elements;
54 with System.Restrictions;
55 with System.Standard_Library;
56 with System.Traces.Tasking;
57 with System.Stack_Usage;
59 with System.Soft_Links;
60 -- These are procedure pointers to non-tasking routines that use task
61 -- specific data. In the absence of tasking, these routines refer to global
62 -- data. In the presence of tasking, they must be replaced with pointers to
63 -- task-specific versions. Also used for Create_TSD, Destroy_TSD, Get_Current
64 -- _Excep, Finalize_Library_Objects, Task_Termination, Handler.
66 with System.Tasking.Initialization;
67 pragma Elaborate_All (System.Tasking.Initialization);
68 -- This insures that tasking is initialized if any tasks are created
70 package body System.Tasking.Stages is
72 package STPO renames System.Task_Primitives.Operations;
73 package SSL renames System.Soft_Links;
74 package SSE renames System.Storage_Elements;
75 package SST renames System.Secondary_Stack;
77 use Ada.Exceptions;
79 use Parameters;
80 use Task_Primitives;
81 use Task_Primitives.Operations;
82 use Task_Info;
84 use System.Traces;
85 use System.Traces.Tasking;
87 -----------------------
88 -- Local Subprograms --
89 -----------------------
91 procedure Free is new
92 Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
94 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id);
95 -- This procedure outputs the task specific message for exception
96 -- tracing purposes.
98 procedure Task_Wrapper (Self_ID : Task_Id);
99 pragma Convention (C, Task_Wrapper);
100 -- This is the procedure that is called by the GNULL from the new context
101 -- when a task is created. It waits for activation and then calls the task
102 -- body procedure. When the task body procedure completes, it terminates
103 -- the task.
105 -- The Task_Wrapper's address will be provided to the underlying threads
106 -- library as the task entry point. Convention C is what makes most sense
107 -- for that purpose (Export C would make the function globally visible,
108 -- and affect the link name on which GDB depends). This will in addition
109 -- trigger an automatic stack alignment suitable for GCC's assumptions if
110 -- need be.
112 -- "Vulnerable_..." in the procedure names below means they must be called
113 -- with abort deferred.
115 procedure Vulnerable_Complete_Task (Self_ID : Task_Id);
116 -- Complete the calling task. This procedure must be called with
117 -- abort deferred. It should only be called by Complete_Task and
118 -- Finalize_Global_Tasks (for the environment task).
120 procedure Vulnerable_Complete_Master (Self_ID : Task_Id);
121 -- Complete the current master of the calling task. This procedure
122 -- must be called with abort deferred. It should only be called by
123 -- Vulnerable_Complete_Task and Complete_Master.
125 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id);
126 -- Signal to Self_ID's activator that Self_ID has completed activation.
127 -- This procedure must be called with abort deferred.
129 procedure Abort_Dependents (Self_ID : Task_Id);
130 -- Abort all the direct dependents of Self at its current master nesting
131 -- level, plus all of their dependents, transitively. RTS_Lock should be
132 -- locked by the caller.
134 procedure Vulnerable_Free_Task (T : Task_Id);
135 -- Recover all runtime system storage associated with the task T. This
136 -- should only be called after T has terminated and will no longer be
137 -- referenced.
139 -- For tasks created by an allocator that fails, due to an exception, it is
140 -- called from Expunge_Unactivated_Tasks.
142 -- Different code is used at master completion, in Terminate_Dependents,
143 -- due to a need for tighter synchronization with the master.
145 ----------------------
146 -- Abort_Dependents --
147 ----------------------
149 procedure Abort_Dependents (Self_ID : Task_Id) is
150 C : Task_Id;
151 P : Task_Id;
153 -- Each task C will take care of its own dependents, so there is no
154 -- need to worry about them here. In fact, it would be wrong to abort
155 -- indirect dependents here, because we can't distinguish between
156 -- duplicate master ids. For example, suppose we have three nested
157 -- task bodies T1,T2,T3. And suppose T1 also calls P which calls Q (and
158 -- both P and Q are task masters). Q will have the same master id as
159 -- Master_of_Task of T3. Previous versions of this would abort T3 when
160 -- Q calls Complete_Master, which was completely wrong.
162 begin
163 C := All_Tasks_List;
164 while C /= null loop
165 P := C.Common.Parent;
167 if P = Self_ID then
168 if C.Master_of_Task = Self_ID.Master_Within then
169 pragma Debug
170 (Debug.Trace (Self_ID, "Aborting", 'X', C));
171 Utilities.Abort_One_Task (Self_ID, C);
172 C.Dependents_Aborted := True;
173 end if;
174 end if;
176 C := C.Common.All_Tasks_Link;
177 end loop;
179 Self_ID.Dependents_Aborted := True;
180 end Abort_Dependents;
182 -----------------
183 -- Abort_Tasks --
184 -----------------
186 procedure Abort_Tasks (Tasks : Task_List) is
187 begin
188 Utilities.Abort_Tasks (Tasks);
189 end Abort_Tasks;
191 --------------------
192 -- Activate_Tasks --
193 --------------------
195 -- Note that locks of activator and activated task are both locked here.
196 -- This is necessary because C.Common.State and Self.Common.Wait_Count have
197 -- to be synchronized. This is safe from deadlock because the activator is
198 -- always created before the activated task. That satisfies our
199 -- in-order-of-creation ATCB locking policy.
201 -- At one point, we may also lock the parent, if the parent is different
202 -- from the activator. That is also consistent with the lock ordering
203 -- policy, since the activator cannot be created before the parent.
205 -- Since we are holding both the activator's lock, and Task_Wrapper locks
206 -- that before it does anything more than initialize the low-level ATCB
207 -- components, it should be safe to wait to update the counts until we see
208 -- that the thread creation is successful.
210 -- If the thread creation fails, we do need to close the entries of the
211 -- task. The first phase, of dequeuing calls, only requires locking the
212 -- acceptor's ATCB, but the waking up of the callers requires locking the
213 -- caller's ATCB. We cannot safely do this while we are holding other
214 -- locks. Therefore, the queue-clearing operation is done in a separate
215 -- pass over the activation chain.
217 procedure Activate_Tasks (Chain_Access : Activation_Chain_Access) is
218 Self_ID : constant Task_Id := STPO.Self;
219 P : Task_Id;
220 C : Task_Id;
221 Next_C, Last_C : Task_Id;
222 Activate_Prio : System.Any_Priority;
223 Success : Boolean;
224 All_Elaborated : Boolean := True;
226 begin
227 -- If pragma Detect_Blocking is active, then we must check whether this
228 -- potentially blocking operation is called from a protected action.
230 if System.Tasking.Detect_Blocking
231 and then Self_ID.Common.Protected_Action_Nesting > 0
232 then
233 raise Program_Error with "potentially blocking operation";
234 end if;
236 pragma Debug
237 (Debug.Trace (Self_ID, "Activate_Tasks", 'C'));
239 Initialization.Defer_Abort_Nestable (Self_ID);
241 pragma Assert (Self_ID.Common.Wait_Count = 0);
243 -- Lock RTS_Lock, to prevent activated tasks from racing ahead before
244 -- we finish activating the chain.
246 Lock_RTS;
248 -- Check that all task bodies have been elaborated
250 C := Chain_Access.T_ID;
251 Last_C := null;
252 while C /= null loop
253 if C.Common.Elaborated /= null
254 and then not C.Common.Elaborated.all
255 then
256 All_Elaborated := False;
257 end if;
259 -- Reverse the activation chain so that tasks are activated in the
260 -- same order they're declared.
262 Next_C := C.Common.Activation_Link;
263 C.Common.Activation_Link := Last_C;
264 Last_C := C;
265 C := Next_C;
266 end loop;
268 Chain_Access.T_ID := Last_C;
270 if not All_Elaborated then
271 Unlock_RTS;
272 Initialization.Undefer_Abort_Nestable (Self_ID);
273 raise Program_Error with "Some tasks have not been elaborated";
274 end if;
276 -- Activate all the tasks in the chain. Creation of the thread of
277 -- control was deferred until activation. So create it now.
279 C := Chain_Access.T_ID;
280 while C /= null loop
281 if C.Common.State /= Terminated then
282 pragma Assert (C.Common.State = Unactivated);
284 P := C.Common.Parent;
285 Write_Lock (P);
286 Write_Lock (C);
288 Activate_Prio :=
289 (if C.Common.Base_Priority < Get_Priority (Self_ID)
290 then Get_Priority (Self_ID)
291 else C.Common.Base_Priority);
293 System.Task_Primitives.Operations.Create_Task
294 (C, Task_Wrapper'Address,
295 Parameters.Size_Type
296 (C.Common.Compiler_Data.Pri_Stack_Info.Size),
297 Activate_Prio, Success);
299 -- There would be a race between the created task and the creator
300 -- to do the following initialization, if we did not have a
301 -- Lock/Unlock_RTS pair in the task wrapper to prevent it from
302 -- racing ahead.
304 if Success then
305 C.Common.State := Activating;
306 C.Awake_Count := 1;
307 C.Alive_Count := 1;
308 P.Awake_Count := P.Awake_Count + 1;
309 P.Alive_Count := P.Alive_Count + 1;
311 if P.Common.State = Master_Completion_Sleep and then
312 C.Master_of_Task = P.Master_Within
313 then
314 pragma Assert (Self_ID /= P);
315 P.Common.Wait_Count := P.Common.Wait_Count + 1;
316 end if;
318 for J in System.Tasking.Debug.Known_Tasks'Range loop
319 if System.Tasking.Debug.Known_Tasks (J) = null then
320 System.Tasking.Debug.Known_Tasks (J) := C;
321 C.Known_Tasks_Index := J;
322 exit;
323 end if;
324 end loop;
326 if Global_Task_Debug_Event_Set then
327 Debug.Signal_Debug_Event
328 (Debug.Debug_Event_Activating, C);
329 end if;
331 C.Common.State := Runnable;
333 Unlock (C);
334 Unlock (P);
336 else
337 -- No need to set Awake_Count, State, etc. here since the loop
338 -- below will do that for any Unactivated tasks.
340 Unlock (C);
341 Unlock (P);
342 Self_ID.Common.Activation_Failed := True;
343 end if;
344 end if;
346 C := C.Common.Activation_Link;
347 end loop;
349 if not Single_Lock then
350 Unlock_RTS;
351 end if;
353 -- Close the entries of any tasks that failed thread creation, and count
354 -- those that have not finished activation.
356 Write_Lock (Self_ID);
357 Self_ID.Common.State := Activator_Sleep;
359 C := Chain_Access.T_ID;
360 while C /= null loop
361 Write_Lock (C);
363 if C.Common.State = Unactivated then
364 C.Common.Activator := null;
365 C.Common.State := Terminated;
366 C.Callable := False;
367 Utilities.Cancel_Queued_Entry_Calls (C);
369 elsif C.Common.Activator /= null then
370 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
371 end if;
373 Unlock (C);
374 P := C.Common.Activation_Link;
375 C.Common.Activation_Link := null;
376 C := P;
377 end loop;
379 -- Wait for the activated tasks to complete activation. It is
380 -- unsafe to abort any of these tasks until the count goes to zero.
382 loop
383 exit when Self_ID.Common.Wait_Count = 0;
384 Sleep (Self_ID, Activator_Sleep);
385 end loop;
387 Self_ID.Common.State := Runnable;
388 Unlock (Self_ID);
390 if Single_Lock then
391 Unlock_RTS;
392 end if;
394 -- Remove the tasks from the chain
396 Chain_Access.T_ID := null;
397 Initialization.Undefer_Abort_Nestable (Self_ID);
399 if Self_ID.Common.Activation_Failed then
400 Self_ID.Common.Activation_Failed := False;
401 raise Tasking_Error with "Failure during activation";
402 end if;
403 end Activate_Tasks;
405 -------------------------
406 -- Complete_Activation --
407 -------------------------
409 procedure Complete_Activation is
410 Self_ID : constant Task_Id := STPO.Self;
412 begin
413 Initialization.Defer_Abort_Nestable (Self_ID);
415 if Single_Lock then
416 Lock_RTS;
417 end if;
419 Vulnerable_Complete_Activation (Self_ID);
421 if Single_Lock then
422 Unlock_RTS;
423 end if;
425 Initialization.Undefer_Abort_Nestable (Self_ID);
427 -- ??? Why do we need to allow for nested deferral here?
429 if Runtime_Traces then
430 Send_Trace_Info (T_Activate);
431 end if;
432 end Complete_Activation;
434 ---------------------
435 -- Complete_Master --
436 ---------------------
438 procedure Complete_Master is
439 Self_ID : constant Task_Id := STPO.Self;
440 begin
441 pragma Assert
442 (Self_ID.Deferral_Level > 0
443 or else not System.Restrictions.Abort_Allowed);
444 Vulnerable_Complete_Master (Self_ID);
445 end Complete_Master;
447 -------------------
448 -- Complete_Task --
449 -------------------
451 -- See comments on Vulnerable_Complete_Task for details
453 procedure Complete_Task is
454 Self_ID : constant Task_Id := STPO.Self;
456 begin
457 pragma Assert
458 (Self_ID.Deferral_Level > 0
459 or else not System.Restrictions.Abort_Allowed);
461 Vulnerable_Complete_Task (Self_ID);
463 -- All of our dependents have terminated, never undefer abort again
465 end Complete_Task;
467 -----------------
468 -- Create_Task --
469 -----------------
471 -- Compiler interface only. Do not call from within the RTS. This must be
472 -- called to create a new task.
474 procedure Create_Task
475 (Priority : Integer;
476 Size : System.Parameters.Size_Type;
477 Task_Info : System.Task_Info.Task_Info_Type;
478 CPU : Integer;
479 Relative_Deadline : Ada.Real_Time.Time_Span;
480 Domain : Dispatching_Domain_Access;
481 Num_Entries : Task_Entry_Index;
482 Master : Master_Level;
483 State : Task_Procedure_Access;
484 Discriminants : System.Address;
485 Elaborated : Access_Boolean;
486 Chain : in out Activation_Chain;
487 Task_Image : String;
488 Created_Task : out Task_Id)
490 T, P : Task_Id;
491 Self_ID : constant Task_Id := STPO.Self;
492 Success : Boolean;
493 Base_Priority : System.Any_Priority;
494 Len : Natural;
495 Base_CPU : System.Multiprocessors.CPU_Range;
497 use type System.Multiprocessors.CPU_Range;
499 pragma Unreferenced (Relative_Deadline);
500 -- EDF scheduling is not supported by any of the target platforms so
501 -- this parameter is not passed any further.
503 begin
504 -- If Master is greater than the current master, it means that Master
505 -- has already awaited its dependent tasks. This raises Program_Error,
506 -- by 4.8(10.3/2). See AI-280. Ignore this check for foreign threads.
508 if Self_ID.Master_of_Task /= Foreign_Task_Level
509 and then Master > Self_ID.Master_Within
510 then
511 raise Program_Error with
512 "create task after awaiting termination";
513 end if;
515 -- If pragma Detect_Blocking is active must be checked whether this
516 -- potentially blocking operation is called from a protected action.
518 if System.Tasking.Detect_Blocking
519 and then Self_ID.Common.Protected_Action_Nesting > 0
520 then
521 raise Program_Error with "potentially blocking operation";
522 end if;
524 pragma Debug (Debug.Trace (Self_ID, "Create_Task", 'C'));
526 Base_Priority :=
527 (if Priority = Unspecified_Priority
528 then Self_ID.Common.Base_Priority
529 else System.Any_Priority (Priority));
531 -- Legal values of CPU are the special Unspecified_CPU value which is
532 -- inserted by the compiler for tasks without CPU aspect, and those in
533 -- the range of CPU_Range but no greater than Number_Of_CPUs. Otherwise
534 -- the task is defined to have failed, and it becomes a completed task
535 -- (RM D.16(14/3)).
537 if CPU /= Unspecified_CPU
538 and then (CPU < Integer (System.Multiprocessors.CPU_Range'First)
539 or else
540 CPU > Integer (System.Multiprocessors.Number_Of_CPUs))
541 then
542 raise Tasking_Error with "CPU not in range";
544 -- Normal CPU affinity
546 else
547 -- When the application code says nothing about the task affinity
548 -- (task without CPU aspect) then the compiler inserts the value
549 -- Unspecified_CPU which indicates to the run-time library that
550 -- the task will activate and execute on the same processor as its
551 -- activating task if the activating task is assigned a processor
552 -- (RM D.16(14/3)).
554 Base_CPU :=
555 (if CPU = Unspecified_CPU
556 then Self_ID.Common.Base_CPU
557 else System.Multiprocessors.CPU_Range (CPU));
558 end if;
560 -- Find parent P of new Task, via master level number. Independent
561 -- tasks should have Parent = Environment_Task, and all tasks created
562 -- by independent tasks are also independent. See, for example,
563 -- s-interr.adb, where Interrupt_Manager does "new Server_Task". The
564 -- access type is at library level, so the parent of the Server_Task
565 -- is Environment_Task.
567 P := Self_ID;
569 if P.Master_of_Task <= Independent_Task_Level then
570 P := Environment_Task;
571 else
572 while P /= null and then P.Master_of_Task >= Master loop
573 P := P.Common.Parent;
574 end loop;
575 end if;
577 Initialization.Defer_Abort_Nestable (Self_ID);
579 begin
580 T := New_ATCB (Num_Entries);
581 exception
582 when others =>
583 Initialization.Undefer_Abort_Nestable (Self_ID);
584 raise Storage_Error with "Cannot allocate task";
585 end;
587 -- RTS_Lock is used by Abort_Dependents and Abort_Tasks. Up to this
588 -- point, it is possible that we may be part of a family of tasks that
589 -- is being aborted.
591 Lock_RTS;
592 Write_Lock (Self_ID);
594 -- Now, we must check that we have not been aborted. If so, we should
595 -- give up on creating this task, and simply return.
597 if not Self_ID.Callable then
598 pragma Assert (Self_ID.Pending_ATC_Level = 0);
599 pragma Assert (Self_ID.Pending_Action);
600 pragma Assert
601 (Chain.T_ID = null or else Chain.T_ID.Common.State = Unactivated);
603 Unlock (Self_ID);
604 Unlock_RTS;
605 Initialization.Undefer_Abort_Nestable (Self_ID);
607 -- ??? Should never get here
609 pragma Assert (False);
610 raise Standard'Abort_Signal;
611 end if;
613 Initialize_ATCB (Self_ID, State, Discriminants, P, Elaborated,
614 Base_Priority, Base_CPU, Domain, Task_Info, Size, T, Success);
616 if not Success then
617 Free (T);
618 Unlock (Self_ID);
619 Unlock_RTS;
620 Initialization.Undefer_Abort_Nestable (Self_ID);
621 raise Storage_Error with "Failed to initialize task";
622 end if;
624 if Master = Foreign_Task_Level + 2 then
626 -- This should not happen, except when a foreign task creates non
627 -- library-level Ada tasks. In this case, we pretend the master is
628 -- a regular library level task, otherwise the run-time will get
629 -- confused when waiting for these tasks to terminate.
631 T.Master_of_Task := Library_Task_Level;
633 else
634 T.Master_of_Task := Master;
635 end if;
637 T.Master_Within := T.Master_of_Task + 1;
639 for L in T.Entry_Calls'Range loop
640 T.Entry_Calls (L).Self := T;
641 T.Entry_Calls (L).Level := L;
642 end loop;
644 if Task_Image'Length = 0 then
645 T.Common.Task_Image_Len := 0;
646 else
647 Len := 1;
648 T.Common.Task_Image (1) := Task_Image (Task_Image'First);
650 -- Remove unwanted blank space generated by 'Image
652 for J in Task_Image'First + 1 .. Task_Image'Last loop
653 if Task_Image (J) /= ' '
654 or else Task_Image (J - 1) /= '('
655 then
656 Len := Len + 1;
657 T.Common.Task_Image (Len) := Task_Image (J);
658 exit when Len = T.Common.Task_Image'Last;
659 end if;
660 end loop;
662 T.Common.Task_Image_Len := Len;
663 end if;
665 -- The task inherits the dispatching domain of the parent only if no
666 -- specific domain has been defined in the spec of the task (using the
667 -- dispatching domain pragma or aspect).
669 if T.Common.Domain /= null then
670 null;
671 elsif T.Common.Activator /= null then
672 T.Common.Domain := T.Common.Activator.Common.Domain;
673 else
674 T.Common.Domain := System.Tasking.System_Domain;
675 end if;
677 Unlock (Self_ID);
678 Unlock_RTS;
680 -- The CPU associated to the task (if any) must belong to the
681 -- dispatching domain.
683 if Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
684 and then
685 (Base_CPU not in T.Common.Domain'Range
686 or else not T.Common.Domain (Base_CPU))
687 then
688 Initialization.Undefer_Abort_Nestable (Self_ID);
689 raise Tasking_Error with "CPU not in dispatching domain";
690 end if;
692 -- To handle the interaction between pragma CPU and dispatching domains
693 -- we need to signal that this task is being allocated to a processor.
694 -- This is needed only for tasks belonging to the system domain (the
695 -- creation of new dispatching domains can only take processors from the
696 -- system domain) and only before the environment task calls the main
697 -- procedure (dispatching domains cannot be created after this).
699 if Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
700 and then T.Common.Domain = System.Tasking.System_Domain
701 and then not System.Tasking.Dispatching_Domains_Frozen
702 then
703 -- Increase the number of tasks attached to the CPU to which this
704 -- task is being moved.
706 Dispatching_Domain_Tasks (Base_CPU) :=
707 Dispatching_Domain_Tasks (Base_CPU) + 1;
708 end if;
710 -- Create TSD as early as possible in the creation of a task, since it
711 -- may be used by the operation of Ada code within the task.
713 SSL.Create_TSD (T.Common.Compiler_Data);
714 T.Common.Activation_Link := Chain.T_ID;
715 Chain.T_ID := T;
716 Created_Task := T;
717 Initialization.Undefer_Abort_Nestable (Self_ID);
719 if Runtime_Traces then
720 Send_Trace_Info (T_Create, T);
721 end if;
723 pragma Debug
724 (Debug.Trace
725 (Self_ID, "Created task in " & T.Master_of_Task'Img, 'C', T));
726 end Create_Task;
728 --------------------
729 -- Current_Master --
730 --------------------
732 function Current_Master return Master_Level is
733 begin
734 return STPO.Self.Master_Within;
735 end Current_Master;
737 ------------------
738 -- Enter_Master --
739 ------------------
741 procedure Enter_Master is
742 Self_ID : constant Task_Id := STPO.Self;
743 begin
744 Self_ID.Master_Within := Self_ID.Master_Within + 1;
745 pragma Debug
746 (Debug.Trace
747 (Self_ID, "Enter_Master ->" & Self_ID.Master_Within'Img, 'M'));
748 end Enter_Master;
750 -------------------------------
751 -- Expunge_Unactivated_Tasks --
752 -------------------------------
754 -- See procedure Close_Entries for the general case
756 procedure Expunge_Unactivated_Tasks (Chain : in out Activation_Chain) is
757 Self_ID : constant Task_Id := STPO.Self;
758 C : Task_Id;
759 Call : Entry_Call_Link;
760 Temp : Task_Id;
762 begin
763 pragma Debug
764 (Debug.Trace (Self_ID, "Expunge_Unactivated_Tasks", 'C'));
766 Initialization.Defer_Abort_Nestable (Self_ID);
768 -- ???
769 -- Experimentation has shown that abort is sometimes (but not always)
770 -- already deferred when this is called.
772 -- That may indicate an error. Find out what is going on
774 C := Chain.T_ID;
775 while C /= null loop
776 pragma Assert (C.Common.State = Unactivated);
778 Temp := C.Common.Activation_Link;
780 if C.Common.State = Unactivated then
781 Lock_RTS;
782 Write_Lock (C);
784 for J in 1 .. C.Entry_Num loop
785 Queuing.Dequeue_Head (C.Entry_Queues (J), Call);
786 pragma Assert (Call = null);
787 end loop;
789 Unlock (C);
791 Initialization.Remove_From_All_Tasks_List (C);
792 Unlock_RTS;
794 Vulnerable_Free_Task (C);
795 C := Temp;
796 end if;
797 end loop;
799 Chain.T_ID := null;
800 Initialization.Undefer_Abort_Nestable (Self_ID);
801 end Expunge_Unactivated_Tasks;
803 ---------------------------
804 -- Finalize_Global_Tasks --
805 ---------------------------
807 -- ???
808 -- We have a potential problem here if finalization of global objects does
809 -- anything with signals or the timer server, since by that time those
810 -- servers have terminated.
812 -- It is hard to see how that would occur
814 -- However, a better solution might be to do all this finalization
815 -- using the global finalization chain.
817 procedure Finalize_Global_Tasks is
818 Self_ID : constant Task_Id := STPO.Self;
820 Ignore_1 : Boolean;
821 Ignore_2 : Boolean;
823 function State
824 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
825 pragma Import (C, State, "__gnat_get_interrupt_state");
826 -- Get interrupt state for interrupt number Int. Defined in init.c
828 Default : constant Character := 's';
829 -- 's' Interrupt_State pragma set state to System (use "default"
830 -- system handler)
832 begin
833 if Self_ID.Deferral_Level = 0 then
834 -- ???
835 -- In principle, we should be able to predict whether abort is
836 -- already deferred here (and it should not be deferred yet but in
837 -- practice it seems Finalize_Global_Tasks is being called sometimes,
838 -- from RTS code for exceptions, with abort already deferred.
840 Initialization.Defer_Abort_Nestable (Self_ID);
842 -- Never undefer again
843 end if;
845 -- This code is only executed by the environment task
847 pragma Assert (Self_ID = Environment_Task);
849 -- Set Environment_Task'Callable to false to notify library-level tasks
850 -- that it is waiting for them.
852 Self_ID.Callable := False;
854 -- Exit level 2 master, for normal tasks in library-level packages
856 Complete_Master;
858 -- Force termination of "independent" library-level server tasks
860 Lock_RTS;
862 Abort_Dependents (Self_ID);
864 if not Single_Lock then
865 Unlock_RTS;
866 end if;
868 -- We need to explicitly wait for the task to be terminated here
869 -- because on true concurrent system, we may end this procedure before
870 -- the tasks are really terminated.
872 Write_Lock (Self_ID);
874 -- If the Abort_Task signal is set to system, it means that we may
875 -- not have been able to abort all independent tasks (in particular,
876 -- Server_Task may be blocked, waiting for a signal), in which case, do
877 -- not wait for Independent_Task_Count to go down to 0. We arbitrarily
878 -- limit the number of loop iterations; if an independent task does not
879 -- terminate, we do not want to hang here. In that case, the thread will
880 -- be terminated when the process exits.
882 if State (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
883 then
884 for J in 1 .. 10 loop
885 exit when Utilities.Independent_Task_Count = 0;
887 -- We used to yield here, but this did not take into account low
888 -- priority tasks that would cause dead lock in some cases (true
889 -- FIFO scheduling).
891 Timed_Sleep
892 (Self_ID, 0.01, System.OS_Primitives.Relative,
893 Self_ID.Common.State, Ignore_1, Ignore_2);
894 end loop;
895 end if;
897 -- ??? On multi-processor environments, it seems that the above loop
898 -- isn't sufficient, so we need to add an additional delay.
900 Timed_Sleep
901 (Self_ID, 0.01, System.OS_Primitives.Relative,
902 Self_ID.Common.State, Ignore_1, Ignore_2);
904 Unlock (Self_ID);
906 if Single_Lock then
907 Unlock_RTS;
908 end if;
910 -- Complete the environment task
912 Vulnerable_Complete_Task (Self_ID);
914 -- Handle normal task termination by the environment task, but only
915 -- for the normal task termination. In the case of Abnormal and
916 -- Unhandled_Exception they must have been handled before, and the
917 -- task termination soft link must have been changed so the task
918 -- termination routine is not executed twice.
920 SSL.Task_Termination_Handler.all (Ada.Exceptions.Null_Occurrence);
922 -- Finalize all library-level controlled objects
924 if not SSL."=" (SSL.Finalize_Library_Objects, null) then
925 SSL.Finalize_Library_Objects.all;
926 end if;
928 -- Reset the soft links to non-tasking
930 SSL.Abort_Defer := SSL.Abort_Defer_NT'Access;
931 SSL.Abort_Undefer := SSL.Abort_Undefer_NT'Access;
932 SSL.Lock_Task := SSL.Task_Lock_NT'Access;
933 SSL.Unlock_Task := SSL.Task_Unlock_NT'Access;
934 SSL.Get_Jmpbuf_Address := SSL.Get_Jmpbuf_Address_NT'Access;
935 SSL.Set_Jmpbuf_Address := SSL.Set_Jmpbuf_Address_NT'Access;
936 SSL.Get_Sec_Stack_Addr := SSL.Get_Sec_Stack_Addr_NT'Access;
937 SSL.Set_Sec_Stack_Addr := SSL.Set_Sec_Stack_Addr_NT'Access;
938 SSL.Check_Abort_Status := SSL.Check_Abort_Status_NT'Access;
939 SSL.Get_Stack_Info := SSL.Get_Stack_Info_NT'Access;
941 -- Don't bother trying to finalize Initialization.Global_Task_Lock
942 -- and System.Task_Primitives.RTS_Lock.
944 end Finalize_Global_Tasks;
946 ---------------
947 -- Free_Task --
948 ---------------
950 procedure Free_Task (T : Task_Id) is
951 Self_Id : constant Task_Id := Self;
953 begin
954 if T.Common.State = Terminated then
956 -- It is not safe to call Abort_Defer or Write_Lock at this stage
958 Initialization.Task_Lock (Self_Id);
960 Lock_RTS;
961 Initialization.Finalize_Attributes (T);
962 Initialization.Remove_From_All_Tasks_List (T);
963 Unlock_RTS;
965 Initialization.Task_Unlock (Self_Id);
967 System.Task_Primitives.Operations.Finalize_TCB (T);
969 else
970 -- If the task is not terminated, then mark the task as to be freed
971 -- upon termination.
973 T.Free_On_Termination := True;
974 end if;
975 end Free_Task;
977 ---------------------------
978 -- Move_Activation_Chain --
979 ---------------------------
981 procedure Move_Activation_Chain
982 (From, To : Activation_Chain_Access;
983 New_Master : Master_ID)
985 Self_ID : constant Task_Id := STPO.Self;
986 C : Task_Id;
988 begin
989 pragma Debug
990 (Debug.Trace (Self_ID, "Move_Activation_Chain", 'C'));
992 -- Nothing to do if From is empty, and we can check that without
993 -- deferring aborts.
995 C := From.all.T_ID;
997 if C = null then
998 return;
999 end if;
1001 Initialization.Defer_Abort (Self_ID);
1003 -- Loop through the From chain, changing their Master_of_Task fields,
1004 -- and to find the end of the chain.
1006 loop
1007 C.Master_of_Task := New_Master;
1008 exit when C.Common.Activation_Link = null;
1009 C := C.Common.Activation_Link;
1010 end loop;
1012 -- Hook From in at the start of To
1014 C.Common.Activation_Link := To.all.T_ID;
1015 To.all.T_ID := From.all.T_ID;
1017 -- Set From to empty
1019 From.all.T_ID := null;
1021 Initialization.Undefer_Abort (Self_ID);
1022 end Move_Activation_Chain;
1024 ------------------
1025 -- Task_Wrapper --
1026 ------------------
1028 -- The task wrapper is a procedure that is called first for each task body
1029 -- and which in turn calls the compiler-generated task body procedure.
1030 -- The wrapper's main job is to do initialization for the task. It also
1031 -- has some locally declared objects that serve as per-task local data.
1032 -- Task finalization is done by Complete_Task, which is called from an
1033 -- at-end handler that the compiler generates.
1035 procedure Task_Wrapper (Self_ID : Task_Id) is
1036 use type SSE.Storage_Offset;
1037 use System.Standard_Library;
1038 use System.Stack_Usage;
1040 Bottom_Of_Stack : aliased Integer;
1042 Task_Alternate_Stack :
1043 aliased SSE.Storage_Array (1 .. Alternate_Stack_Size);
1044 -- The alternate signal stack for this task, if any
1046 Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0;
1047 -- Whether to use above alternate signal stack for stack overflows
1049 Secondary_Stack_Size :
1050 constant SSE.Storage_Offset :=
1051 Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size *
1052 SSE.Storage_Offset (Parameters.Sec_Stack_Percentage) / 100;
1054 Secondary_Stack : aliased SSE.Storage_Array (1 .. Secondary_Stack_Size);
1055 for Secondary_Stack'Alignment use Standard'Maximum_Alignment;
1056 -- Actual area allocated for secondary stack. Note that it is critical
1057 -- that this have maximum alignment, since any kind of data can be
1058 -- allocated here.
1060 Secondary_Stack_Address : System.Address := Secondary_Stack'Address;
1061 -- Address of secondary stack. In the fixed secondary stack case, this
1062 -- value is not modified, causing a warning, hence the bracketing with
1063 -- Warnings (Off/On). But why is so much *more* bracketed???
1065 SEH_Table : aliased SSE.Storage_Array (1 .. 8);
1066 -- Structured Exception Registration table (2 words)
1068 procedure Install_SEH_Handler (Addr : System.Address);
1069 pragma Import (C, Install_SEH_Handler, "__gnat_install_SEH_handler");
1070 -- Install the SEH (Structured Exception Handling) handler
1072 Cause : Cause_Of_Termination := Normal;
1073 -- Indicates the reason why this task terminates. Normal corresponds to
1074 -- a task terminating due to completing the last statement of its body,
1075 -- or as a result of waiting on a terminate alternative. If the task
1076 -- terminates because it is being aborted then Cause will be set
1077 -- to Abnormal. If the task terminates because of an exception
1078 -- raised by the execution of its task body, then Cause is set
1079 -- to Unhandled_Exception.
1081 EO : Exception_Occurrence;
1082 -- If the task terminates because of an exception raised by the
1083 -- execution of its task body, then EO will contain the associated
1084 -- exception occurrence. Otherwise, it will contain Null_Occurrence.
1086 TH : Termination_Handler := null;
1087 -- Pointer to the protected procedure to be executed upon task
1088 -- termination.
1090 procedure Search_Fall_Back_Handler (ID : Task_Id);
1091 -- Procedure that searches recursively a fall-back handler through the
1092 -- master relationship. If the handler is found, its pointer is stored
1093 -- in TH. It stops when the handler is found or when the ID is null.
1095 ------------------------------
1096 -- Search_Fall_Back_Handler --
1097 ------------------------------
1099 procedure Search_Fall_Back_Handler (ID : Task_Id) is
1100 begin
1101 -- A null Task_Id indicates that we have reached the root of the
1102 -- task hierarchy and no handler has been found.
1104 if ID = null then
1105 return;
1107 -- If there is a fall back handler, store its pointer for later
1108 -- execution.
1110 elsif ID.Common.Fall_Back_Handler /= null then
1111 TH := ID.Common.Fall_Back_Handler;
1113 -- Otherwise look for a fall back handler in the parent
1115 else
1116 Search_Fall_Back_Handler (ID.Common.Parent);
1117 end if;
1118 end Search_Fall_Back_Handler;
1120 -- Start of processing for Task_Wrapper
1122 begin
1123 pragma Assert (Self_ID.Deferral_Level = 1);
1125 Debug.Master_Hook
1126 (Self_ID, Self_ID.Common.Parent, Self_ID.Master_of_Task);
1128 -- Assume a size of the stack taken at this stage
1130 if not Parameters.Sec_Stack_Dynamic then
1131 Self_ID.Common.Compiler_Data.Sec_Stack_Addr :=
1132 Secondary_Stack'Address;
1133 SST.SS_Init (Secondary_Stack_Address, Integer (Secondary_Stack'Last));
1134 end if;
1136 if Use_Alternate_Stack then
1137 Self_ID.Common.Task_Alternate_Stack := Task_Alternate_Stack'Address;
1138 end if;
1140 -- Set the guard page at the bottom of the stack. The call to unprotect
1141 -- the page is done in Terminate_Task
1143 Stack_Guard (Self_ID, True);
1145 -- Initialize low-level TCB components, that cannot be initialized by
1146 -- the creator. Enter_Task sets Self_ID.LL.Thread.
1148 Enter_Task (Self_ID);
1150 -- Initialize dynamic stack usage
1152 if System.Stack_Usage.Is_Enabled then
1153 declare
1154 Guard_Page_Size : constant := 16 * 1024;
1155 -- Part of the stack used as a guard page. This is an OS dependent
1156 -- value, so we need to use the maximum. This value is only used
1157 -- when the stack address is known, that is currently Windows.
1159 Small_Overflow_Guard : constant := 12 * 1024;
1160 -- Note: this used to be 4K, but was changed to 12K, since
1161 -- smaller values resulted in segmentation faults from dynamic
1162 -- stack analysis.
1164 Big_Overflow_Guard : constant := 64 * 1024 + 8 * 1024;
1165 Small_Stack_Limit : constant := 64 * 1024;
1166 -- ??? These three values are experimental, and seem to work on
1167 -- most platforms. They still need to be analyzed further. They
1168 -- also need documentation, what are they and why does the logic
1169 -- differ depending on whether the stack is large or small???
1171 Pattern_Size : Natural :=
1172 Natural (Self_ID.Common.
1173 Compiler_Data.Pri_Stack_Info.Size);
1174 -- Size of the pattern
1176 Stack_Base : Address;
1177 -- Address of the base of the stack
1179 begin
1180 Stack_Base := Self_ID.Common.Compiler_Data.Pri_Stack_Info.Base;
1182 if Stack_Base = Null_Address then
1184 -- On many platforms, we don't know the real stack base
1185 -- address. Estimate it using an address in the frame.
1187 Stack_Base := Bottom_Of_Stack'Address;
1189 -- Also reduce the size of the stack to take into account the
1190 -- secondary stack array declared in this frame. This is for
1191 -- sure very conservative.
1193 if not Parameters.Sec_Stack_Dynamic then
1194 Pattern_Size :=
1195 Pattern_Size - Natural (Secondary_Stack_Size);
1196 end if;
1198 -- Adjustments for inner frames
1200 Pattern_Size := Pattern_Size -
1201 (if Pattern_Size < Small_Stack_Limit
1202 then Small_Overflow_Guard
1203 else Big_Overflow_Guard);
1204 else
1205 -- Reduce by the size of the final guard page
1207 Pattern_Size := Pattern_Size - Guard_Page_Size;
1208 end if;
1210 STPO.Lock_RTS;
1211 Initialize_Analyzer
1212 (Self_ID.Common.Analyzer,
1213 Self_ID.Common.Task_Image (1 .. Self_ID.Common.Task_Image_Len),
1214 Natural (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size),
1215 SSE.To_Integer (Stack_Base),
1216 Pattern_Size);
1217 STPO.Unlock_RTS;
1218 Fill_Stack (Self_ID.Common.Analyzer);
1219 end;
1220 end if;
1222 -- We setup the SEH (Structured Exception Handling) handler if supported
1223 -- on the target.
1225 Install_SEH_Handler (SEH_Table'Address);
1227 -- Initialize exception occurrence
1229 Save_Occurrence (EO, Ada.Exceptions.Null_Occurrence);
1231 -- We lock RTS_Lock to wait for activator to finish activating the rest
1232 -- of the chain, so that everyone in the chain comes out in priority
1233 -- order.
1235 -- This also protects the value of
1236 -- Self_ID.Common.Activator.Common.Wait_Count.
1238 Lock_RTS;
1239 Unlock_RTS;
1241 if not System.Restrictions.Abort_Allowed then
1243 -- If Abort is not allowed, reset the deferral level since it will
1244 -- not get changed by the generated code. Keeping a default value
1245 -- of one would prevent some operations (e.g. select or delay) to
1246 -- proceed successfully.
1248 Self_ID.Deferral_Level := 0;
1249 end if;
1251 if Global_Task_Debug_Event_Set then
1252 Debug.Signal_Debug_Event (Debug.Debug_Event_Run, Self_ID);
1253 end if;
1255 begin
1256 -- We are separating the following portion of the code in order to
1257 -- place the exception handlers in a different block. In this way,
1258 -- we do not call Set_Jmpbuf_Address (which needs Self) before we
1259 -- set Self in Enter_Task
1261 -- Call the task body procedure
1263 -- The task body is called with abort still deferred. That
1264 -- eliminates a dangerous window, for which we had to patch-up in
1265 -- Terminate_Task.
1267 -- During the expansion of the task body, we insert an RTS-call
1268 -- to Abort_Undefer, at the first point where abort should be
1269 -- allowed.
1271 Self_ID.Common.Task_Entry_Point (Self_ID.Common.Task_Arg);
1272 Initialization.Defer_Abort_Nestable (Self_ID);
1274 exception
1275 -- We can't call Terminate_Task in the exception handlers below,
1276 -- since there may be (e.g. in the case of GCC exception handling)
1277 -- clean ups associated with the exception handler that need to
1278 -- access task specific data.
1280 -- Defer abort so that this task can't be aborted while exiting
1282 when Standard'Abort_Signal =>
1283 Initialization.Defer_Abort_Nestable (Self_ID);
1285 -- Update the cause that motivated the task termination so that
1286 -- the appropriate information is passed to the task termination
1287 -- procedure. Task termination as a result of waiting on a
1288 -- terminate alternative is a normal termination, although it is
1289 -- implemented using the abort mechanisms.
1291 if Self_ID.Terminate_Alternative then
1292 Cause := Normal;
1294 if Global_Task_Debug_Event_Set then
1295 Debug.Signal_Debug_Event
1296 (Debug.Debug_Event_Terminated, Self_ID);
1297 end if;
1298 else
1299 Cause := Abnormal;
1301 if Global_Task_Debug_Event_Set then
1302 Debug.Signal_Debug_Event
1303 (Debug.Debug_Event_Abort_Terminated, Self_ID);
1304 end if;
1305 end if;
1307 when others =>
1308 -- ??? Using an E : others here causes CD2C11A to fail on Tru64
1310 Initialization.Defer_Abort_Nestable (Self_ID);
1312 -- Perform the task specific exception tracing duty. We handle
1313 -- these outputs here and not in the common notification routine
1314 -- because we need access to tasking related data and we don't
1315 -- want to drag dependencies against tasking related units in the
1316 -- the common notification units. Additionally, no trace is ever
1317 -- triggered from the common routine for the Unhandled_Raise case
1318 -- in tasks, since an exception never appears unhandled in this
1319 -- context because of this handler.
1321 if Exception_Trace = Unhandled_Raise then
1322 Trace_Unhandled_Exception_In_Task (Self_ID);
1323 end if;
1325 -- Update the cause that motivated the task termination so that
1326 -- the appropriate information is passed to the task termination
1327 -- procedure, as well as the associated Exception_Occurrence.
1329 Cause := Unhandled_Exception;
1331 Save_Occurrence (EO, SSL.Get_Current_Excep.all.all);
1333 if Global_Task_Debug_Event_Set then
1334 Debug.Signal_Debug_Event
1335 (Debug.Debug_Event_Exception_Terminated, Self_ID);
1336 end if;
1337 end;
1339 -- Look for a task termination handler. This code is for all tasks but
1340 -- the environment task. The task termination code for the environment
1341 -- task is executed by SSL.Task_Termination_Handler.
1343 if Single_Lock then
1344 Lock_RTS;
1345 end if;
1347 Write_Lock (Self_ID);
1349 if Self_ID.Common.Specific_Handler /= null then
1350 TH := Self_ID.Common.Specific_Handler;
1351 else
1352 -- Look for a fall-back handler following the master relationship
1353 -- for the task. As specified in ARM C.7.3 par. 9/2, "the fall-back
1354 -- handler applies only to the dependent tasks of the task". Hence,
1355 -- if the terminating tasks (Self_ID) had a fall-back handler, it
1356 -- would not apply to itself, so we start the search with the parent.
1358 Search_Fall_Back_Handler (Self_ID.Common.Parent);
1359 end if;
1361 Unlock (Self_ID);
1363 if Single_Lock then
1364 Unlock_RTS;
1365 end if;
1367 -- Execute the task termination handler if we found it
1369 if TH /= null then
1370 begin
1371 TH.all (Cause, Self_ID, EO);
1373 exception
1375 -- RM-C.7.3 requires all exceptions raised here to be ignored
1377 when others =>
1378 null;
1379 end;
1380 end if;
1382 if System.Stack_Usage.Is_Enabled then
1383 Compute_Result (Self_ID.Common.Analyzer);
1384 Report_Result (Self_ID.Common.Analyzer);
1385 end if;
1387 Terminate_Task (Self_ID);
1388 end Task_Wrapper;
1390 --------------------
1391 -- Terminate_Task --
1392 --------------------
1394 -- Before we allow the thread to exit, we must clean up. This is a delicate
1395 -- job. We must wake up the task's master, who may immediately try to
1396 -- deallocate the ATCB from the current task WHILE IT IS STILL EXECUTING.
1398 -- To avoid this, the parent task must be blocked up to the latest
1399 -- statement executed. The trouble is that we have another step that we
1400 -- also want to postpone to the very end, i.e., calling SSL.Destroy_TSD.
1401 -- We have to postpone that until the end because compiler-generated code
1402 -- is likely to try to access that data at just about any point.
1404 -- We can't call Destroy_TSD while we are holding any other locks, because
1405 -- it locks Global_Task_Lock, and our deadlock prevention rules require
1406 -- that to be the outermost lock. Our first "solution" was to just lock
1407 -- Global_Task_Lock in addition to the other locks, and force the parent to
1408 -- also lock this lock between its wakeup and its freeing of the ATCB. See
1409 -- Complete_Task for the parent-side of the code that has the matching
1410 -- calls to Task_Lock and Task_Unlock. That was not really a solution,
1411 -- since the operation Task_Unlock continued to access the ATCB after
1412 -- unlocking, after which the parent was observed to race ahead, deallocate
1413 -- the ATCB, and then reallocate it to another task. The call to
1414 -- Undefer_Abort in Task_Unlock by the "terminated" task was overwriting
1415 -- the data of the new task that reused the ATCB. To solve this problem, we
1416 -- introduced the new operation Final_Task_Unlock.
1418 procedure Terminate_Task (Self_ID : Task_Id) is
1419 Environment_Task : constant Task_Id := STPO.Environment_Task;
1420 Master_of_Task : Integer;
1421 Deallocate : Boolean;
1423 begin
1424 Debug.Task_Termination_Hook;
1426 if Runtime_Traces then
1427 Send_Trace_Info (T_Terminate);
1428 end if;
1430 -- Since GCC cannot allocate stack chunks efficiently without reordering
1431 -- some of the allocations, we have to handle this unexpected situation
1432 -- here. Normally we never have to call Vulnerable_Complete_Task here.
1434 if Self_ID.Common.Activator /= null then
1435 Vulnerable_Complete_Task (Self_ID);
1436 end if;
1438 Initialization.Task_Lock (Self_ID);
1440 if Single_Lock then
1441 Lock_RTS;
1442 end if;
1444 Master_of_Task := Self_ID.Master_of_Task;
1446 -- Check if the current task is an independent task If so, decrement
1447 -- the Independent_Task_Count value.
1449 if Master_of_Task = Independent_Task_Level then
1450 if Single_Lock then
1451 Utilities.Independent_Task_Count :=
1452 Utilities.Independent_Task_Count - 1;
1454 else
1455 Write_Lock (Environment_Task);
1456 Utilities.Independent_Task_Count :=
1457 Utilities.Independent_Task_Count - 1;
1458 Unlock (Environment_Task);
1459 end if;
1460 end if;
1462 -- Unprotect the guard page if needed
1464 Stack_Guard (Self_ID, False);
1466 Utilities.Make_Passive (Self_ID, Task_Completed => True);
1467 Deallocate := Self_ID.Free_On_Termination;
1469 if Single_Lock then
1470 Unlock_RTS;
1471 end if;
1473 pragma Assert (Check_Exit (Self_ID));
1475 SSL.Destroy_TSD (Self_ID.Common.Compiler_Data);
1476 Initialization.Final_Task_Unlock (Self_ID);
1478 -- WARNING: past this point, this thread must assume that the ATCB has
1479 -- been deallocated, and can't access it anymore (which is why we have
1480 -- saved the Free_On_Termination flag in a temporary variable).
1482 if Deallocate then
1483 Free_Task (Self_ID);
1484 end if;
1486 if Master_of_Task > 0 then
1487 STPO.Exit_Task;
1488 end if;
1489 end Terminate_Task;
1491 ----------------
1492 -- Terminated --
1493 ----------------
1495 function Terminated (T : Task_Id) return Boolean is
1496 Self_ID : constant Task_Id := STPO.Self;
1497 Result : Boolean;
1499 begin
1500 Initialization.Defer_Abort_Nestable (Self_ID);
1502 if Single_Lock then
1503 Lock_RTS;
1504 end if;
1506 Write_Lock (T);
1507 Result := T.Common.State = Terminated;
1508 Unlock (T);
1510 if Single_Lock then
1511 Unlock_RTS;
1512 end if;
1514 Initialization.Undefer_Abort_Nestable (Self_ID);
1515 return Result;
1516 end Terminated;
1518 ----------------------------------------
1519 -- Trace_Unhandled_Exception_In_Task --
1520 ----------------------------------------
1522 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id) is
1523 procedure To_Stderr (S : String);
1524 pragma Import (Ada, To_Stderr, "__gnat_to_stderr");
1526 use System.Soft_Links;
1527 use System.Standard_Library;
1529 function To_Address is new
1530 Ada.Unchecked_Conversion
1531 (Task_Id, System.Task_Primitives.Task_Address);
1533 Excep : constant Exception_Occurrence_Access :=
1534 SSL.Get_Current_Excep.all;
1536 begin
1537 -- This procedure is called by the task outermost handler in
1538 -- Task_Wrapper below, so only once the task stack has been fully
1539 -- unwound. The common notification routine has been called at the
1540 -- raise point already.
1542 -- Lock to prevent unsynchronized output
1544 Initialization.Task_Lock (Self_Id);
1545 To_Stderr ("task ");
1547 if Self_Id.Common.Task_Image_Len /= 0 then
1548 To_Stderr
1549 (Self_Id.Common.Task_Image (1 .. Self_Id.Common.Task_Image_Len));
1550 To_Stderr ("_");
1551 end if;
1553 To_Stderr (System.Address_Image (To_Address (Self_Id)));
1554 To_Stderr (" terminated by unhandled exception");
1555 To_Stderr ((1 => ASCII.LF));
1556 To_Stderr (Exception_Information (Excep.all));
1557 Initialization.Task_Unlock (Self_Id);
1558 end Trace_Unhandled_Exception_In_Task;
1560 ------------------------------------
1561 -- Vulnerable_Complete_Activation --
1562 ------------------------------------
1564 -- As in several other places, the locks of the activator and activated
1565 -- task are both locked here. This follows our deadlock prevention lock
1566 -- ordering policy, since the activated task must be created after the
1567 -- activator.
1569 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id) is
1570 Activator : constant Task_Id := Self_ID.Common.Activator;
1572 begin
1573 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Activation", 'C'));
1575 Write_Lock (Activator);
1576 Write_Lock (Self_ID);
1578 pragma Assert (Self_ID.Common.Activator /= null);
1580 -- Remove dangling reference to Activator, since a task may outlive its
1581 -- activator.
1583 Self_ID.Common.Activator := null;
1585 -- Wake up the activator, if it is waiting for a chain of tasks to
1586 -- activate, and we are the last in the chain to complete activation.
1588 if Activator.Common.State = Activator_Sleep then
1589 Activator.Common.Wait_Count := Activator.Common.Wait_Count - 1;
1591 if Activator.Common.Wait_Count = 0 then
1592 Wakeup (Activator, Activator_Sleep);
1593 end if;
1594 end if;
1596 -- The activator raises a Tasking_Error if any task it is activating
1597 -- is completed before the activation is done. However, if the reason
1598 -- for the task completion is an abort, we do not raise an exception.
1599 -- See RM 9.2(5).
1601 if not Self_ID.Callable and then Self_ID.Pending_ATC_Level /= 0 then
1602 Activator.Common.Activation_Failed := True;
1603 end if;
1605 Unlock (Self_ID);
1606 Unlock (Activator);
1608 -- After the activation, active priority should be the same as base
1609 -- priority. We must unlock the Activator first, though, since it
1610 -- should not wait if we have lower priority.
1612 if Get_Priority (Self_ID) /= Self_ID.Common.Base_Priority then
1613 Write_Lock (Self_ID);
1614 Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
1615 Unlock (Self_ID);
1616 end if;
1617 end Vulnerable_Complete_Activation;
1619 --------------------------------
1620 -- Vulnerable_Complete_Master --
1621 --------------------------------
1623 procedure Vulnerable_Complete_Master (Self_ID : Task_Id) is
1624 C : Task_Id;
1625 P : Task_Id;
1626 CM : constant Master_Level := Self_ID.Master_Within;
1627 T : aliased Task_Id;
1629 To_Be_Freed : Task_Id;
1630 -- This is a list of ATCBs to be freed, after we have released all RTS
1631 -- locks. This is necessary because of the locking order rules, since
1632 -- the storage manager uses Global_Task_Lock.
1634 pragma Warnings (Off);
1635 function Check_Unactivated_Tasks return Boolean;
1636 pragma Warnings (On);
1637 -- Temporary error-checking code below. This is part of the checks
1638 -- added in the new run time. Call it only inside a pragma Assert.
1640 -----------------------------
1641 -- Check_Unactivated_Tasks --
1642 -----------------------------
1644 function Check_Unactivated_Tasks return Boolean is
1645 begin
1646 if not Single_Lock then
1647 Lock_RTS;
1648 end if;
1650 Write_Lock (Self_ID);
1652 C := All_Tasks_List;
1653 while C /= null loop
1654 if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then
1655 return False;
1656 end if;
1658 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1659 Write_Lock (C);
1661 if C.Common.State = Unactivated then
1662 return False;
1663 end if;
1665 Unlock (C);
1666 end if;
1668 C := C.Common.All_Tasks_Link;
1669 end loop;
1671 Unlock (Self_ID);
1673 if not Single_Lock then
1674 Unlock_RTS;
1675 end if;
1677 return True;
1678 end Check_Unactivated_Tasks;
1680 -- Start of processing for Vulnerable_Complete_Master
1682 begin
1683 pragma Debug
1684 (Debug.Trace (Self_ID, "V_Complete_Master(" & CM'Img & ")", 'C'));
1686 pragma Assert (Self_ID.Common.Wait_Count = 0);
1687 pragma Assert
1688 (Self_ID.Deferral_Level > 0
1689 or else not System.Restrictions.Abort_Allowed);
1691 -- Count how many active dependent tasks this master currently has, and
1692 -- record this in Wait_Count.
1694 -- This count should start at zero, since it is initialized to zero for
1695 -- new tasks, and the task should not exit the sleep-loops that use this
1696 -- count until the count reaches zero.
1698 -- While we're counting, if we run across any unactivated tasks that
1699 -- belong to this master, we summarily terminate them as required by
1700 -- RM-9.2(6).
1702 Lock_RTS;
1703 Write_Lock (Self_ID);
1705 C := All_Tasks_List;
1706 while C /= null loop
1708 -- Terminate unactivated (never-to-be activated) tasks
1710 if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then
1712 -- Usually, C.Common.Activator = Self_ID implies C.Master_of_Task
1713 -- = CM. The only case where C is pending activation by this
1714 -- task, but the master of C is not CM is in Ada 2005, when C is
1715 -- part of a return object of a build-in-place function.
1717 pragma Assert (C.Common.State = Unactivated);
1719 Write_Lock (C);
1720 C.Common.Activator := null;
1721 C.Common.State := Terminated;
1722 C.Callable := False;
1723 Utilities.Cancel_Queued_Entry_Calls (C);
1724 Unlock (C);
1725 end if;
1727 -- Count it if directly dependent on this master
1729 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1730 Write_Lock (C);
1732 if C.Awake_Count /= 0 then
1733 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1734 end if;
1736 Unlock (C);
1737 end if;
1739 C := C.Common.All_Tasks_Link;
1740 end loop;
1742 Self_ID.Common.State := Master_Completion_Sleep;
1743 Unlock (Self_ID);
1745 if not Single_Lock then
1746 Unlock_RTS;
1747 end if;
1749 -- Wait until dependent tasks are all terminated or ready to terminate.
1750 -- While waiting, the task may be awakened if the task's priority needs
1751 -- changing, or this master is aborted. In the latter case, we abort the
1752 -- dependents, and resume waiting until Wait_Count goes to zero.
1754 Write_Lock (Self_ID);
1756 loop
1757 exit when Self_ID.Common.Wait_Count = 0;
1759 -- Here is a difference as compared to Complete_Master
1761 if Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
1762 and then not Self_ID.Dependents_Aborted
1763 then
1764 if Single_Lock then
1765 Abort_Dependents (Self_ID);
1766 else
1767 Unlock (Self_ID);
1768 Lock_RTS;
1769 Abort_Dependents (Self_ID);
1770 Unlock_RTS;
1771 Write_Lock (Self_ID);
1772 end if;
1773 else
1774 pragma Debug
1775 (Debug.Trace (Self_ID, "master_completion_sleep", 'C'));
1776 Sleep (Self_ID, Master_Completion_Sleep);
1777 end if;
1778 end loop;
1780 Self_ID.Common.State := Runnable;
1781 Unlock (Self_ID);
1783 -- Dependents are all terminated or on terminate alternatives. Now,
1784 -- force those on terminate alternatives to terminate, by aborting them.
1786 pragma Assert (Check_Unactivated_Tasks);
1788 if Self_ID.Alive_Count > 1 then
1789 -- ???
1790 -- Consider finding a way to skip the following extra steps if there
1791 -- are no dependents with terminate alternatives. This could be done
1792 -- by adding another count to the ATCB, similar to Awake_Count, but
1793 -- keeping track of tasks that are on terminate alternatives.
1795 pragma Assert (Self_ID.Common.Wait_Count = 0);
1797 -- Force any remaining dependents to terminate by aborting them
1799 if not Single_Lock then
1800 Lock_RTS;
1801 end if;
1803 Abort_Dependents (Self_ID);
1805 -- Above, when we "abort" the dependents we are simply using this
1806 -- operation for convenience. We are not required to support the full
1807 -- abort-statement semantics; in particular, we are not required to
1808 -- immediately cancel any queued or in-service entry calls. That is
1809 -- good, because if we tried to cancel a call we would need to lock
1810 -- the caller, in order to wake the caller up. Our anti-deadlock
1811 -- rules prevent us from doing that without releasing the locks on C
1812 -- and Self_ID. Releasing and retaking those locks would be wasteful
1813 -- at best, and should not be considered further without more
1814 -- detailed analysis of potential concurrent accesses to the ATCBs
1815 -- of C and Self_ID.
1817 -- Count how many "alive" dependent tasks this master currently has,
1818 -- and record this in Wait_Count. This count should start at zero,
1819 -- since it is initialized to zero for new tasks, and the task should
1820 -- not exit the sleep-loops that use this count until the count
1821 -- reaches zero.
1823 pragma Assert (Self_ID.Common.Wait_Count = 0);
1825 Write_Lock (Self_ID);
1827 C := All_Tasks_List;
1828 while C /= null loop
1829 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1830 Write_Lock (C);
1832 pragma Assert (C.Awake_Count = 0);
1834 if C.Alive_Count > 0 then
1835 pragma Assert (C.Terminate_Alternative);
1836 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1837 end if;
1839 Unlock (C);
1840 end if;
1842 C := C.Common.All_Tasks_Link;
1843 end loop;
1845 Self_ID.Common.State := Master_Phase_2_Sleep;
1846 Unlock (Self_ID);
1848 if not Single_Lock then
1849 Unlock_RTS;
1850 end if;
1852 -- Wait for all counted tasks to finish terminating themselves
1854 Write_Lock (Self_ID);
1856 loop
1857 exit when Self_ID.Common.Wait_Count = 0;
1858 Sleep (Self_ID, Master_Phase_2_Sleep);
1859 end loop;
1861 Self_ID.Common.State := Runnable;
1862 Unlock (Self_ID);
1863 end if;
1865 -- We don't wake up for abort here. We are already terminating just as
1866 -- fast as we can, so there is no point.
1868 -- Remove terminated tasks from the list of Self_ID's dependents, but
1869 -- don't free their ATCBs yet, because of lock order restrictions, which
1870 -- don't allow us to call "free" or "malloc" while holding any other
1871 -- locks. Instead, we put those ATCBs to be freed onto a temporary list,
1872 -- called To_Be_Freed.
1874 if not Single_Lock then
1875 Lock_RTS;
1876 end if;
1878 C := All_Tasks_List;
1879 P := null;
1880 while C /= null loop
1882 -- If Free_On_Termination is set, do nothing here, and let the
1883 -- task free itself if not already done, otherwise we risk a race
1884 -- condition where Vulnerable_Free_Task is called in the loop below,
1885 -- while the task calls Free_Task itself, in Terminate_Task.
1887 if C.Common.Parent = Self_ID
1888 and then C.Master_of_Task >= CM
1889 and then not C.Free_On_Termination
1890 then
1891 if P /= null then
1892 P.Common.All_Tasks_Link := C.Common.All_Tasks_Link;
1893 else
1894 All_Tasks_List := C.Common.All_Tasks_Link;
1895 end if;
1897 T := C.Common.All_Tasks_Link;
1898 C.Common.All_Tasks_Link := To_Be_Freed;
1899 To_Be_Freed := C;
1900 C := T;
1902 else
1903 P := C;
1904 C := C.Common.All_Tasks_Link;
1905 end if;
1906 end loop;
1908 Unlock_RTS;
1910 -- Free all the ATCBs on the list To_Be_Freed
1912 -- The ATCBs in the list are no longer in All_Tasks_List, and after
1913 -- any interrupt entries are detached from them they should no longer
1914 -- be referenced.
1916 -- Global_Task_Lock (Task_Lock/Unlock) is locked in the loop below to
1917 -- avoid a race between a terminating task and its parent. The parent
1918 -- might try to deallocate the ACTB out from underneath the exiting
1919 -- task. Note that Free will also lock Global_Task_Lock, but that is
1920 -- OK, since this is the *one* lock for which we have a mechanism to
1921 -- support nested locking. See Task_Wrapper and its finalizer for more
1922 -- explanation.
1924 -- ???
1925 -- The check "T.Common.Parent /= null ..." below is to prevent dangling
1926 -- references to terminated library-level tasks, which could otherwise
1927 -- occur during finalization of library-level objects. A better solution
1928 -- might be to hook task objects into the finalization chain and
1929 -- deallocate the ATCB when the task object is deallocated. However,
1930 -- this change is not likely to gain anything significant, since all
1931 -- this storage should be recovered en-masse when the process exits.
1933 while To_Be_Freed /= null loop
1934 T := To_Be_Freed;
1935 To_Be_Freed := T.Common.All_Tasks_Link;
1937 -- ??? On SGI there is currently no Interrupt_Manager, that's why we
1938 -- need to check if the Interrupt_Manager_ID is null.
1940 if T.Interrupt_Entry and then Interrupt_Manager_ID /= null then
1941 declare
1942 Detach_Interrupt_Entries_Index : constant Task_Entry_Index := 1;
1943 -- Corresponds to the entry index of System.Interrupts.
1944 -- Interrupt_Manager.Detach_Interrupt_Entries. Be sure
1945 -- to update this value when changing Interrupt_Manager specs.
1947 type Param_Type is access all Task_Id;
1949 Param : aliased Param_Type := T'Access;
1951 begin
1952 System.Tasking.Rendezvous.Call_Simple
1953 (Interrupt_Manager_ID, Detach_Interrupt_Entries_Index,
1954 Param'Address);
1955 end;
1956 end if;
1958 if (T.Common.Parent /= null
1959 and then T.Common.Parent.Common.Parent /= null)
1960 or else T.Master_of_Task > Library_Task_Level
1961 then
1962 Initialization.Task_Lock (Self_ID);
1964 -- If Sec_Stack_Addr is not null, it means that Destroy_TSD
1965 -- has not been called yet (case of an unactivated task).
1967 if T.Common.Compiler_Data.Sec_Stack_Addr /= Null_Address then
1968 SSL.Destroy_TSD (T.Common.Compiler_Data);
1969 end if;
1971 Vulnerable_Free_Task (T);
1972 Initialization.Task_Unlock (Self_ID);
1973 end if;
1974 end loop;
1976 -- It might seem nice to let the terminated task deallocate its own
1977 -- ATCB. That would not cover the case of unactivated tasks. It also
1978 -- would force us to keep the underlying thread around past termination,
1979 -- since references to the ATCB are possible past termination.
1981 -- Currently, we get rid of the thread as soon as the task terminates,
1982 -- and let the parent recover the ATCB later.
1984 -- Some day, if we want to recover the ATCB earlier, at task
1985 -- termination, we could consider using "fat task IDs", that include the
1986 -- serial number with the ATCB pointer, to catch references to tasks
1987 -- that no longer have ATCBs. It is not clear how much this would gain,
1988 -- since the user-level task object would still be occupying storage.
1990 -- Make next master level up active. We don't need to lock the ATCB,
1991 -- since the value is only updated by each task for itself.
1993 Self_ID.Master_Within := CM - 1;
1995 Debug.Master_Completed_Hook (Self_ID, CM);
1996 end Vulnerable_Complete_Master;
1998 ------------------------------
1999 -- Vulnerable_Complete_Task --
2000 ------------------------------
2002 -- Complete the calling task
2004 -- This procedure must be called with abort deferred. It should only be
2005 -- called by Complete_Task and Finalize_Global_Tasks (for the environment
2006 -- task).
2008 -- The effect is similar to that of Complete_Master. Differences include
2009 -- the closing of entries here, and computation of the number of active
2010 -- dependent tasks in Complete_Master.
2012 -- We don't lock Self_ID before the call to Vulnerable_Complete_Activation,
2013 -- because that does its own locking, and because we do not need the lock
2014 -- to test Self_ID.Common.Activator. That value should only be read and
2015 -- modified by Self.
2017 procedure Vulnerable_Complete_Task (Self_ID : Task_Id) is
2018 begin
2019 pragma Assert
2020 (Self_ID.Deferral_Level > 0
2021 or else not System.Restrictions.Abort_Allowed);
2022 pragma Assert (Self_ID = Self);
2023 pragma Assert (Self_ID.Master_Within = Self_ID.Master_of_Task + 1
2024 or else
2025 Self_ID.Master_Within = Self_ID.Master_of_Task + 2);
2026 pragma Assert (Self_ID.Common.Wait_Count = 0);
2027 pragma Assert (Self_ID.Open_Accepts = null);
2028 pragma Assert (Self_ID.ATC_Nesting_Level = 1);
2030 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Task", 'C'));
2032 if Single_Lock then
2033 Lock_RTS;
2034 end if;
2036 Write_Lock (Self_ID);
2037 Self_ID.Callable := False;
2039 -- In theory, Self should have no pending entry calls left on its
2040 -- call-stack. Each async. select statement should clean its own call,
2041 -- and blocking entry calls should defer abort until the calls are
2042 -- cancelled, then clean up.
2044 Utilities.Cancel_Queued_Entry_Calls (Self_ID);
2045 Unlock (Self_ID);
2047 if Self_ID.Common.Activator /= null then
2048 Vulnerable_Complete_Activation (Self_ID);
2049 end if;
2051 if Single_Lock then
2052 Unlock_RTS;
2053 end if;
2055 -- If Self_ID.Master_Within = Self_ID.Master_of_Task + 2 we may have
2056 -- dependent tasks for which we need to wait. Otherwise we just exit.
2058 if Self_ID.Master_Within = Self_ID.Master_of_Task + 2 then
2059 Vulnerable_Complete_Master (Self_ID);
2060 end if;
2061 end Vulnerable_Complete_Task;
2063 --------------------------
2064 -- Vulnerable_Free_Task --
2065 --------------------------
2067 -- Recover all runtime system storage associated with the task T. This
2068 -- should only be called after T has terminated and will no longer be
2069 -- referenced.
2071 -- For tasks created by an allocator that fails, due to an exception, it
2072 -- is called from Expunge_Unactivated_Tasks.
2074 -- For tasks created by elaboration of task object declarations it is
2075 -- called from the finalization code of the Task_Wrapper procedure.
2077 procedure Vulnerable_Free_Task (T : Task_Id) is
2078 begin
2079 pragma Debug (Debug.Trace (Self, "Vulnerable_Free_Task", 'C', T));
2081 if Single_Lock then
2082 Lock_RTS;
2083 end if;
2085 Write_Lock (T);
2086 Initialization.Finalize_Attributes (T);
2087 Unlock (T);
2089 if Single_Lock then
2090 Unlock_RTS;
2091 end if;
2093 System.Task_Primitives.Operations.Finalize_TCB (T);
2094 end Vulnerable_Free_Task;
2096 -- Package elaboration code
2098 begin
2099 -- Establish the Adafinal softlink
2101 -- This is not done inside the central RTS initialization routine
2102 -- to avoid with'ing this package from System.Tasking.Initialization.
2104 SSL.Adafinal := Finalize_Global_Tasks'Access;
2106 -- Establish soft links for subprograms that manipulate master_id's.
2107 -- This cannot be done when the RTS is initialized, because of various
2108 -- elaboration constraints.
2110 SSL.Current_Master := Stages.Current_Master'Access;
2111 SSL.Enter_Master := Stages.Enter_Master'Access;
2112 SSL.Complete_Master := Stages.Complete_Master'Access;
2113 end System.Tasking.Stages;