1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
29 #include "double-int.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
40 #include "hard-reg-set.h"
42 #include "dominance.h"
45 #include "basic-block.h"
46 #include "tree-ssa-alias.h"
47 #include "internal-fn.h"
48 #include "gimple-fold.h"
50 #include "gimple-expr.h"
53 #include "gimple-iterator.h"
54 #include "gimple-walk.h"
55 #include "gimple-ssa.h"
57 #include "tree-phinodes.h"
58 #include "ssa-iterators.h"
59 #include "stringpool.h"
60 #include "tree-ssanames.h"
61 #include "tree-ssa-loop-manip.h"
62 #include "tree-ssa-loop-niter.h"
63 #include "tree-ssa-loop.h"
64 #include "tree-into-ssa.h"
66 #include "tree-pass.h"
67 #include "tree-dump.h"
68 #include "gimple-pretty-print.h"
69 #include "diagnostic-core.h"
72 #include "tree-scalar-evolution.h"
73 #include "tree-ssa-propagate.h"
74 #include "tree-chrec.h"
75 #include "tree-ssa-threadupdate.h"
78 #include "statistics.h"
80 #include "fixed-value.h"
81 #include "insn-config.h"
89 #include "insn-codes.h"
91 #include "tree-ssa-threadedge.h"
95 /* Range of values that can be associated with an SSA_NAME after VRP
99 /* Lattice value represented by this range. */
100 enum value_range_type type
;
102 /* Minimum and maximum values represented by this range. These
103 values should be interpreted as follows:
105 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
108 - If TYPE == VR_RANGE then MIN holds the minimum value and
109 MAX holds the maximum value of the range [MIN, MAX].
111 - If TYPE == ANTI_RANGE the variable is known to NOT
112 take any values in the range [MIN, MAX]. */
116 /* Set of SSA names whose value ranges are equivalent to this one.
117 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
121 typedef struct value_range_d value_range_t
;
123 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
125 /* Set of SSA names found live during the RPO traversal of the function
126 for still active basic-blocks. */
127 static sbitmap
*live
;
129 /* Return true if the SSA name NAME is live on the edge E. */
132 live_on_edge (edge e
, tree name
)
134 return (live
[e
->dest
->index
]
135 && bitmap_bit_p (live
[e
->dest
->index
], SSA_NAME_VERSION (name
)));
138 /* Local functions. */
139 static int compare_values (tree val1
, tree val2
);
140 static int compare_values_warnv (tree val1
, tree val2
, bool *);
141 static void vrp_meet (value_range_t
*, value_range_t
*);
142 static void vrp_intersect_ranges (value_range_t
*, value_range_t
*);
143 static tree
vrp_evaluate_conditional_warnv_with_ops (enum tree_code
,
144 tree
, tree
, bool, bool *,
147 /* Location information for ASSERT_EXPRs. Each instance of this
148 structure describes an ASSERT_EXPR for an SSA name. Since a single
149 SSA name may have more than one assertion associated with it, these
150 locations are kept in a linked list attached to the corresponding
152 struct assert_locus_d
154 /* Basic block where the assertion would be inserted. */
157 /* Some assertions need to be inserted on an edge (e.g., assertions
158 generated by COND_EXPRs). In those cases, BB will be NULL. */
161 /* Pointer to the statement that generated this assertion. */
162 gimple_stmt_iterator si
;
164 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
165 enum tree_code comp_code
;
167 /* Value being compared against. */
170 /* Expression to compare. */
173 /* Next node in the linked list. */
174 struct assert_locus_d
*next
;
177 typedef struct assert_locus_d
*assert_locus_t
;
179 /* If bit I is present, it means that SSA name N_i has a list of
180 assertions that should be inserted in the IL. */
181 static bitmap need_assert_for
;
183 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
184 holds a list of ASSERT_LOCUS_T nodes that describe where
185 ASSERT_EXPRs for SSA name N_I should be inserted. */
186 static assert_locus_t
*asserts_for
;
188 /* Value range array. After propagation, VR_VALUE[I] holds the range
189 of values that SSA name N_I may take. */
190 static unsigned num_vr_values
;
191 static value_range_t
**vr_value
;
192 static bool values_propagated
;
194 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
195 number of executable edges we saw the last time we visited the
197 static int *vr_phi_edge_counts
;
204 static vec
<edge
> to_remove_edges
;
205 static vec
<switch_update
> to_update_switch_stmts
;
208 /* Return the maximum value for TYPE. */
211 vrp_val_max (const_tree type
)
213 if (!INTEGRAL_TYPE_P (type
))
216 return TYPE_MAX_VALUE (type
);
219 /* Return the minimum value for TYPE. */
222 vrp_val_min (const_tree type
)
224 if (!INTEGRAL_TYPE_P (type
))
227 return TYPE_MIN_VALUE (type
);
230 /* Return whether VAL is equal to the maximum value of its type. This
231 will be true for a positive overflow infinity. We can't do a
232 simple equality comparison with TYPE_MAX_VALUE because C typedefs
233 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
234 to the integer constant with the same value in the type. */
237 vrp_val_is_max (const_tree val
)
239 tree type_max
= vrp_val_max (TREE_TYPE (val
));
240 return (val
== type_max
241 || (type_max
!= NULL_TREE
242 && operand_equal_p (val
, type_max
, 0)));
245 /* Return whether VAL is equal to the minimum value of its type. This
246 will be true for a negative overflow infinity. */
249 vrp_val_is_min (const_tree val
)
251 tree type_min
= vrp_val_min (TREE_TYPE (val
));
252 return (val
== type_min
253 || (type_min
!= NULL_TREE
254 && operand_equal_p (val
, type_min
, 0)));
258 /* Return whether TYPE should use an overflow infinity distinct from
259 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
260 represent a signed overflow during VRP computations. An infinity
261 is distinct from a half-range, which will go from some number to
262 TYPE_{MIN,MAX}_VALUE. */
265 needs_overflow_infinity (const_tree type
)
267 return INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
);
270 /* Return whether TYPE can support our overflow infinity
271 representation: we use the TREE_OVERFLOW flag, which only exists
272 for constants. If TYPE doesn't support this, we don't optimize
273 cases which would require signed overflow--we drop them to
277 supports_overflow_infinity (const_tree type
)
279 tree min
= vrp_val_min (type
), max
= vrp_val_max (type
);
280 #ifdef ENABLE_CHECKING
281 gcc_assert (needs_overflow_infinity (type
));
283 return (min
!= NULL_TREE
284 && CONSTANT_CLASS_P (min
)
286 && CONSTANT_CLASS_P (max
));
289 /* VAL is the maximum or minimum value of a type. Return a
290 corresponding overflow infinity. */
293 make_overflow_infinity (tree val
)
295 gcc_checking_assert (val
!= NULL_TREE
&& CONSTANT_CLASS_P (val
));
296 val
= copy_node (val
);
297 TREE_OVERFLOW (val
) = 1;
301 /* Return a negative overflow infinity for TYPE. */
304 negative_overflow_infinity (tree type
)
306 gcc_checking_assert (supports_overflow_infinity (type
));
307 return make_overflow_infinity (vrp_val_min (type
));
310 /* Return a positive overflow infinity for TYPE. */
313 positive_overflow_infinity (tree type
)
315 gcc_checking_assert (supports_overflow_infinity (type
));
316 return make_overflow_infinity (vrp_val_max (type
));
319 /* Return whether VAL is a negative overflow infinity. */
322 is_negative_overflow_infinity (const_tree val
)
324 return (TREE_OVERFLOW_P (val
)
325 && needs_overflow_infinity (TREE_TYPE (val
))
326 && vrp_val_is_min (val
));
329 /* Return whether VAL is a positive overflow infinity. */
332 is_positive_overflow_infinity (const_tree val
)
334 return (TREE_OVERFLOW_P (val
)
335 && needs_overflow_infinity (TREE_TYPE (val
))
336 && vrp_val_is_max (val
));
339 /* Return whether VAL is a positive or negative overflow infinity. */
342 is_overflow_infinity (const_tree val
)
344 return (TREE_OVERFLOW_P (val
)
345 && needs_overflow_infinity (TREE_TYPE (val
))
346 && (vrp_val_is_min (val
) || vrp_val_is_max (val
)));
349 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
352 stmt_overflow_infinity (gimple stmt
)
354 if (is_gimple_assign (stmt
)
355 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)) ==
357 return is_overflow_infinity (gimple_assign_rhs1 (stmt
));
361 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
362 the same value with TREE_OVERFLOW clear. This can be used to avoid
363 confusing a regular value with an overflow value. */
366 avoid_overflow_infinity (tree val
)
368 if (!is_overflow_infinity (val
))
371 if (vrp_val_is_max (val
))
372 return vrp_val_max (TREE_TYPE (val
));
375 gcc_checking_assert (vrp_val_is_min (val
));
376 return vrp_val_min (TREE_TYPE (val
));
381 /* Return true if ARG is marked with the nonnull attribute in the
382 current function signature. */
385 nonnull_arg_p (const_tree arg
)
387 tree t
, attrs
, fntype
;
388 unsigned HOST_WIDE_INT arg_num
;
390 gcc_assert (TREE_CODE (arg
) == PARM_DECL
&& POINTER_TYPE_P (TREE_TYPE (arg
)));
392 /* The static chain decl is always non null. */
393 if (arg
== cfun
->static_chain_decl
)
396 fntype
= TREE_TYPE (current_function_decl
);
397 for (attrs
= TYPE_ATTRIBUTES (fntype
); attrs
; attrs
= TREE_CHAIN (attrs
))
399 attrs
= lookup_attribute ("nonnull", attrs
);
401 /* If "nonnull" wasn't specified, we know nothing about the argument. */
402 if (attrs
== NULL_TREE
)
405 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
406 if (TREE_VALUE (attrs
) == NULL_TREE
)
409 /* Get the position number for ARG in the function signature. */
410 for (arg_num
= 1, t
= DECL_ARGUMENTS (current_function_decl
);
412 t
= DECL_CHAIN (t
), arg_num
++)
418 gcc_assert (t
== arg
);
420 /* Now see if ARG_NUM is mentioned in the nonnull list. */
421 for (t
= TREE_VALUE (attrs
); t
; t
= TREE_CHAIN (t
))
423 if (compare_tree_int (TREE_VALUE (t
), arg_num
) == 0)
432 /* Set value range VR to VR_UNDEFINED. */
435 set_value_range_to_undefined (value_range_t
*vr
)
437 vr
->type
= VR_UNDEFINED
;
438 vr
->min
= vr
->max
= NULL_TREE
;
440 bitmap_clear (vr
->equiv
);
444 /* Set value range VR to VR_VARYING. */
447 set_value_range_to_varying (value_range_t
*vr
)
449 vr
->type
= VR_VARYING
;
450 vr
->min
= vr
->max
= NULL_TREE
;
452 bitmap_clear (vr
->equiv
);
456 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
459 set_value_range (value_range_t
*vr
, enum value_range_type t
, tree min
,
460 tree max
, bitmap equiv
)
462 #if defined ENABLE_CHECKING
463 /* Check the validity of the range. */
464 if (t
== VR_RANGE
|| t
== VR_ANTI_RANGE
)
468 gcc_assert (min
&& max
);
470 gcc_assert ((!TREE_OVERFLOW_P (min
) || is_overflow_infinity (min
))
471 && (!TREE_OVERFLOW_P (max
) || is_overflow_infinity (max
)));
473 if (INTEGRAL_TYPE_P (TREE_TYPE (min
)) && t
== VR_ANTI_RANGE
)
474 gcc_assert (!vrp_val_is_min (min
) || !vrp_val_is_max (max
));
476 cmp
= compare_values (min
, max
);
477 gcc_assert (cmp
== 0 || cmp
== -1 || cmp
== -2);
479 if (needs_overflow_infinity (TREE_TYPE (min
)))
480 gcc_assert (!is_overflow_infinity (min
)
481 || !is_overflow_infinity (max
));
484 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
485 gcc_assert (min
== NULL_TREE
&& max
== NULL_TREE
);
487 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
488 gcc_assert (equiv
== NULL
|| bitmap_empty_p (equiv
));
495 /* Since updating the equivalence set involves deep copying the
496 bitmaps, only do it if absolutely necessary. */
497 if (vr
->equiv
== NULL
499 vr
->equiv
= BITMAP_ALLOC (NULL
);
501 if (equiv
!= vr
->equiv
)
503 if (equiv
&& !bitmap_empty_p (equiv
))
504 bitmap_copy (vr
->equiv
, equiv
);
506 bitmap_clear (vr
->equiv
);
511 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
512 This means adjusting T, MIN and MAX representing the case of a
513 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
514 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
515 In corner cases where MAX+1 or MIN-1 wraps this will fall back
517 This routine exists to ease canonicalization in the case where we
518 extract ranges from var + CST op limit. */
521 set_and_canonicalize_value_range (value_range_t
*vr
, enum value_range_type t
,
522 tree min
, tree max
, bitmap equiv
)
524 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
525 if (t
== VR_UNDEFINED
)
527 set_value_range_to_undefined (vr
);
530 else if (t
== VR_VARYING
)
532 set_value_range_to_varying (vr
);
536 /* Nothing to canonicalize for symbolic ranges. */
537 if (TREE_CODE (min
) != INTEGER_CST
538 || TREE_CODE (max
) != INTEGER_CST
)
540 set_value_range (vr
, t
, min
, max
, equiv
);
544 /* Wrong order for min and max, to swap them and the VR type we need
546 if (tree_int_cst_lt (max
, min
))
550 /* For one bit precision if max < min, then the swapped
551 range covers all values, so for VR_RANGE it is varying and
552 for VR_ANTI_RANGE empty range, so drop to varying as well. */
553 if (TYPE_PRECISION (TREE_TYPE (min
)) == 1)
555 set_value_range_to_varying (vr
);
559 one
= build_int_cst (TREE_TYPE (min
), 1);
560 tmp
= int_const_binop (PLUS_EXPR
, max
, one
);
561 max
= int_const_binop (MINUS_EXPR
, min
, one
);
564 /* There's one corner case, if we had [C+1, C] before we now have
565 that again. But this represents an empty value range, so drop
566 to varying in this case. */
567 if (tree_int_cst_lt (max
, min
))
569 set_value_range_to_varying (vr
);
573 t
= t
== VR_RANGE
? VR_ANTI_RANGE
: VR_RANGE
;
576 /* Anti-ranges that can be represented as ranges should be so. */
577 if (t
== VR_ANTI_RANGE
)
579 bool is_min
= vrp_val_is_min (min
);
580 bool is_max
= vrp_val_is_max (max
);
582 if (is_min
&& is_max
)
584 /* We cannot deal with empty ranges, drop to varying.
585 ??? This could be VR_UNDEFINED instead. */
586 set_value_range_to_varying (vr
);
589 else if (TYPE_PRECISION (TREE_TYPE (min
)) == 1
590 && (is_min
|| is_max
))
592 /* Non-empty boolean ranges can always be represented
593 as a singleton range. */
595 min
= max
= vrp_val_max (TREE_TYPE (min
));
597 min
= max
= vrp_val_min (TREE_TYPE (min
));
601 /* As a special exception preserve non-null ranges. */
602 && !(TYPE_UNSIGNED (TREE_TYPE (min
))
603 && integer_zerop (max
)))
605 tree one
= build_int_cst (TREE_TYPE (max
), 1);
606 min
= int_const_binop (PLUS_EXPR
, max
, one
);
607 max
= vrp_val_max (TREE_TYPE (max
));
612 tree one
= build_int_cst (TREE_TYPE (min
), 1);
613 max
= int_const_binop (MINUS_EXPR
, min
, one
);
614 min
= vrp_val_min (TREE_TYPE (min
));
619 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
620 if (needs_overflow_infinity (TREE_TYPE (min
))
621 && is_overflow_infinity (min
)
622 && is_overflow_infinity (max
))
624 set_value_range_to_varying (vr
);
628 set_value_range (vr
, t
, min
, max
, equiv
);
631 /* Copy value range FROM into value range TO. */
634 copy_value_range (value_range_t
*to
, value_range_t
*from
)
636 set_value_range (to
, from
->type
, from
->min
, from
->max
, from
->equiv
);
639 /* Set value range VR to a single value. This function is only called
640 with values we get from statements, and exists to clear the
641 TREE_OVERFLOW flag so that we don't think we have an overflow
642 infinity when we shouldn't. */
645 set_value_range_to_value (value_range_t
*vr
, tree val
, bitmap equiv
)
647 gcc_assert (is_gimple_min_invariant (val
));
648 if (TREE_OVERFLOW_P (val
))
649 val
= drop_tree_overflow (val
);
650 set_value_range (vr
, VR_RANGE
, val
, val
, equiv
);
653 /* Set value range VR to a non-negative range of type TYPE.
654 OVERFLOW_INFINITY indicates whether to use an overflow infinity
655 rather than TYPE_MAX_VALUE; this should be true if we determine
656 that the range is nonnegative based on the assumption that signed
657 overflow does not occur. */
660 set_value_range_to_nonnegative (value_range_t
*vr
, tree type
,
661 bool overflow_infinity
)
665 if (overflow_infinity
&& !supports_overflow_infinity (type
))
667 set_value_range_to_varying (vr
);
671 zero
= build_int_cst (type
, 0);
672 set_value_range (vr
, VR_RANGE
, zero
,
674 ? positive_overflow_infinity (type
)
675 : TYPE_MAX_VALUE (type
)),
679 /* Set value range VR to a non-NULL range of type TYPE. */
682 set_value_range_to_nonnull (value_range_t
*vr
, tree type
)
684 tree zero
= build_int_cst (type
, 0);
685 set_value_range (vr
, VR_ANTI_RANGE
, zero
, zero
, vr
->equiv
);
689 /* Set value range VR to a NULL range of type TYPE. */
692 set_value_range_to_null (value_range_t
*vr
, tree type
)
694 set_value_range_to_value (vr
, build_int_cst (type
, 0), vr
->equiv
);
698 /* Set value range VR to a range of a truthvalue of type TYPE. */
701 set_value_range_to_truthvalue (value_range_t
*vr
, tree type
)
703 if (TYPE_PRECISION (type
) == 1)
704 set_value_range_to_varying (vr
);
706 set_value_range (vr
, VR_RANGE
,
707 build_int_cst (type
, 0), build_int_cst (type
, 1),
712 /* If abs (min) < abs (max), set VR to [-max, max], if
713 abs (min) >= abs (max), set VR to [-min, min]. */
716 abs_extent_range (value_range_t
*vr
, tree min
, tree max
)
720 gcc_assert (TREE_CODE (min
) == INTEGER_CST
);
721 gcc_assert (TREE_CODE (max
) == INTEGER_CST
);
722 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min
)));
723 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min
)));
724 min
= fold_unary (ABS_EXPR
, TREE_TYPE (min
), min
);
725 max
= fold_unary (ABS_EXPR
, TREE_TYPE (max
), max
);
726 if (TREE_OVERFLOW (min
) || TREE_OVERFLOW (max
))
728 set_value_range_to_varying (vr
);
731 cmp
= compare_values (min
, max
);
733 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), max
);
734 else if (cmp
== 0 || cmp
== 1)
737 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), min
);
741 set_value_range_to_varying (vr
);
744 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
748 /* Return value range information for VAR.
750 If we have no values ranges recorded (ie, VRP is not running), then
751 return NULL. Otherwise create an empty range if none existed for VAR. */
753 static value_range_t
*
754 get_value_range (const_tree var
)
756 static const struct value_range_d vr_const_varying
757 = { VR_VARYING
, NULL_TREE
, NULL_TREE
, NULL
};
760 unsigned ver
= SSA_NAME_VERSION (var
);
762 /* If we have no recorded ranges, then return NULL. */
766 /* If we query the range for a new SSA name return an unmodifiable VARYING.
767 We should get here at most from the substitute-and-fold stage which
768 will never try to change values. */
769 if (ver
>= num_vr_values
)
770 return CONST_CAST (value_range_t
*, &vr_const_varying
);
776 /* After propagation finished do not allocate new value-ranges. */
777 if (values_propagated
)
778 return CONST_CAST (value_range_t
*, &vr_const_varying
);
780 /* Create a default value range. */
781 vr_value
[ver
] = vr
= XCNEW (value_range_t
);
783 /* Defer allocating the equivalence set. */
786 /* If VAR is a default definition of a parameter, the variable can
787 take any value in VAR's type. */
788 if (SSA_NAME_IS_DEFAULT_DEF (var
))
790 sym
= SSA_NAME_VAR (var
);
791 if (TREE_CODE (sym
) == PARM_DECL
)
793 /* Try to use the "nonnull" attribute to create ~[0, 0]
794 anti-ranges for pointers. Note that this is only valid with
795 default definitions of PARM_DECLs. */
796 if (POINTER_TYPE_P (TREE_TYPE (sym
))
797 && nonnull_arg_p (sym
))
798 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
800 set_value_range_to_varying (vr
);
802 else if (TREE_CODE (sym
) == RESULT_DECL
803 && DECL_BY_REFERENCE (sym
))
804 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
810 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
813 vrp_operand_equal_p (const_tree val1
, const_tree val2
)
817 if (!val1
|| !val2
|| !operand_equal_p (val1
, val2
, 0))
819 return is_overflow_infinity (val1
) == is_overflow_infinity (val2
);
822 /* Return true, if the bitmaps B1 and B2 are equal. */
825 vrp_bitmap_equal_p (const_bitmap b1
, const_bitmap b2
)
828 || ((!b1
|| bitmap_empty_p (b1
))
829 && (!b2
|| bitmap_empty_p (b2
)))
831 && bitmap_equal_p (b1
, b2
)));
834 /* Update the value range and equivalence set for variable VAR to
835 NEW_VR. Return true if NEW_VR is different from VAR's previous
838 NOTE: This function assumes that NEW_VR is a temporary value range
839 object created for the sole purpose of updating VAR's range. The
840 storage used by the equivalence set from NEW_VR will be freed by
841 this function. Do not call update_value_range when NEW_VR
842 is the range object associated with another SSA name. */
845 update_value_range (const_tree var
, value_range_t
*new_vr
)
847 value_range_t
*old_vr
;
850 /* If there is a value-range on the SSA name from earlier analysis
852 if (INTEGRAL_TYPE_P (TREE_TYPE (var
)))
855 value_range_type rtype
= get_range_info (var
, &min
, &max
);
856 if (rtype
== VR_RANGE
|| rtype
== VR_ANTI_RANGE
)
860 nr
.min
= wide_int_to_tree (TREE_TYPE (var
), min
);
861 nr
.max
= wide_int_to_tree (TREE_TYPE (var
), max
);
863 vrp_intersect_ranges (new_vr
, &nr
);
867 /* Update the value range, if necessary. */
868 old_vr
= get_value_range (var
);
869 is_new
= old_vr
->type
!= new_vr
->type
870 || !vrp_operand_equal_p (old_vr
->min
, new_vr
->min
)
871 || !vrp_operand_equal_p (old_vr
->max
, new_vr
->max
)
872 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
->equiv
);
876 /* Do not allow transitions up the lattice. The following
877 is slightly more awkward than just new_vr->type < old_vr->type
878 because VR_RANGE and VR_ANTI_RANGE need to be considered
879 the same. We may not have is_new when transitioning to
880 UNDEFINED or from VARYING. */
881 if (new_vr
->type
== VR_UNDEFINED
882 || old_vr
->type
== VR_VARYING
)
883 set_value_range_to_varying (old_vr
);
885 set_value_range (old_vr
, new_vr
->type
, new_vr
->min
, new_vr
->max
,
889 BITMAP_FREE (new_vr
->equiv
);
895 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
896 point where equivalence processing can be turned on/off. */
899 add_equivalence (bitmap
*equiv
, const_tree var
)
901 unsigned ver
= SSA_NAME_VERSION (var
);
902 value_range_t
*vr
= vr_value
[ver
];
905 *equiv
= BITMAP_ALLOC (NULL
);
906 bitmap_set_bit (*equiv
, ver
);
908 bitmap_ior_into (*equiv
, vr
->equiv
);
912 /* Return true if VR is ~[0, 0]. */
915 range_is_nonnull (value_range_t
*vr
)
917 return vr
->type
== VR_ANTI_RANGE
918 && integer_zerop (vr
->min
)
919 && integer_zerop (vr
->max
);
923 /* Return true if VR is [0, 0]. */
926 range_is_null (value_range_t
*vr
)
928 return vr
->type
== VR_RANGE
929 && integer_zerop (vr
->min
)
930 && integer_zerop (vr
->max
);
933 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
937 range_int_cst_p (value_range_t
*vr
)
939 return (vr
->type
== VR_RANGE
940 && TREE_CODE (vr
->max
) == INTEGER_CST
941 && TREE_CODE (vr
->min
) == INTEGER_CST
);
944 /* Return true if VR is a INTEGER_CST singleton. */
947 range_int_cst_singleton_p (value_range_t
*vr
)
949 return (range_int_cst_p (vr
)
950 && !is_overflow_infinity (vr
->min
)
951 && !is_overflow_infinity (vr
->max
)
952 && tree_int_cst_equal (vr
->min
, vr
->max
));
955 /* Return true if value range VR involves at least one symbol. */
958 symbolic_range_p (value_range_t
*vr
)
960 return (!is_gimple_min_invariant (vr
->min
)
961 || !is_gimple_min_invariant (vr
->max
));
964 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
965 otherwise. We only handle additive operations and set NEG to true if the
966 symbol is negated and INV to the invariant part, if any. */
969 get_single_symbol (tree t
, bool *neg
, tree
*inv
)
974 if (TREE_CODE (t
) == PLUS_EXPR
975 || TREE_CODE (t
) == POINTER_PLUS_EXPR
976 || TREE_CODE (t
) == MINUS_EXPR
)
978 if (is_gimple_min_invariant (TREE_OPERAND (t
, 0)))
980 neg_
= (TREE_CODE (t
) == MINUS_EXPR
);
981 inv_
= TREE_OPERAND (t
, 0);
982 t
= TREE_OPERAND (t
, 1);
984 else if (is_gimple_min_invariant (TREE_OPERAND (t
, 1)))
987 inv_
= TREE_OPERAND (t
, 1);
988 t
= TREE_OPERAND (t
, 0);
999 if (TREE_CODE (t
) == NEGATE_EXPR
)
1001 t
= TREE_OPERAND (t
, 0);
1005 if (TREE_CODE (t
) != SSA_NAME
)
1013 /* The reverse operation: build a symbolic expression with TYPE
1014 from symbol SYM, negated according to NEG, and invariant INV. */
1017 build_symbolic_expr (tree type
, tree sym
, bool neg
, tree inv
)
1019 const bool pointer_p
= POINTER_TYPE_P (type
);
1023 t
= build1 (NEGATE_EXPR
, type
, t
);
1025 if (integer_zerop (inv
))
1028 return build2 (pointer_p
? POINTER_PLUS_EXPR
: PLUS_EXPR
, type
, t
, inv
);
1031 /* Return true if value range VR involves exactly one symbol SYM. */
1034 symbolic_range_based_on_p (value_range_t
*vr
, const_tree sym
)
1036 bool neg
, min_has_symbol
, max_has_symbol
;
1039 if (is_gimple_min_invariant (vr
->min
))
1040 min_has_symbol
= false;
1041 else if (get_single_symbol (vr
->min
, &neg
, &inv
) == sym
)
1042 min_has_symbol
= true;
1046 if (is_gimple_min_invariant (vr
->max
))
1047 max_has_symbol
= false;
1048 else if (get_single_symbol (vr
->max
, &neg
, &inv
) == sym
)
1049 max_has_symbol
= true;
1053 return (min_has_symbol
|| max_has_symbol
);
1056 /* Return true if value range VR uses an overflow infinity. */
1059 overflow_infinity_range_p (value_range_t
*vr
)
1061 return (vr
->type
== VR_RANGE
1062 && (is_overflow_infinity (vr
->min
)
1063 || is_overflow_infinity (vr
->max
)));
1066 /* Return false if we can not make a valid comparison based on VR;
1067 this will be the case if it uses an overflow infinity and overflow
1068 is not undefined (i.e., -fno-strict-overflow is in effect).
1069 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
1070 uses an overflow infinity. */
1073 usable_range_p (value_range_t
*vr
, bool *strict_overflow_p
)
1075 gcc_assert (vr
->type
== VR_RANGE
);
1076 if (is_overflow_infinity (vr
->min
))
1078 *strict_overflow_p
= true;
1079 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->min
)))
1082 if (is_overflow_infinity (vr
->max
))
1084 *strict_overflow_p
= true;
1085 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->max
)))
1092 /* Return true if the result of assignment STMT is know to be non-negative.
1093 If the return value is based on the assumption that signed overflow is
1094 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1095 *STRICT_OVERFLOW_P.*/
1098 gimple_assign_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1100 enum tree_code code
= gimple_assign_rhs_code (stmt
);
1101 switch (get_gimple_rhs_class (code
))
1103 case GIMPLE_UNARY_RHS
:
1104 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
1105 gimple_expr_type (stmt
),
1106 gimple_assign_rhs1 (stmt
),
1108 case GIMPLE_BINARY_RHS
:
1109 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
1110 gimple_expr_type (stmt
),
1111 gimple_assign_rhs1 (stmt
),
1112 gimple_assign_rhs2 (stmt
),
1114 case GIMPLE_TERNARY_RHS
:
1116 case GIMPLE_SINGLE_RHS
:
1117 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt
),
1119 case GIMPLE_INVALID_RHS
:
1126 /* Return true if return value of call STMT is know to be non-negative.
1127 If the return value is based on the assumption that signed overflow is
1128 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1129 *STRICT_OVERFLOW_P.*/
1132 gimple_call_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1134 tree arg0
= gimple_call_num_args (stmt
) > 0 ?
1135 gimple_call_arg (stmt
, 0) : NULL_TREE
;
1136 tree arg1
= gimple_call_num_args (stmt
) > 1 ?
1137 gimple_call_arg (stmt
, 1) : NULL_TREE
;
1139 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt
),
1140 gimple_call_fndecl (stmt
),
1146 /* Return true if STMT is know to to compute a non-negative value.
1147 If the return value is based on the assumption that signed overflow is
1148 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1149 *STRICT_OVERFLOW_P.*/
1152 gimple_stmt_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1154 switch (gimple_code (stmt
))
1157 return gimple_assign_nonnegative_warnv_p (stmt
, strict_overflow_p
);
1159 return gimple_call_nonnegative_warnv_p (stmt
, strict_overflow_p
);
1165 /* Return true if the result of assignment STMT is know to be non-zero.
1166 If the return value is based on the assumption that signed overflow is
1167 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1168 *STRICT_OVERFLOW_P.*/
1171 gimple_assign_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1173 enum tree_code code
= gimple_assign_rhs_code (stmt
);
1174 switch (get_gimple_rhs_class (code
))
1176 case GIMPLE_UNARY_RHS
:
1177 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
1178 gimple_expr_type (stmt
),
1179 gimple_assign_rhs1 (stmt
),
1181 case GIMPLE_BINARY_RHS
:
1182 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
1183 gimple_expr_type (stmt
),
1184 gimple_assign_rhs1 (stmt
),
1185 gimple_assign_rhs2 (stmt
),
1187 case GIMPLE_TERNARY_RHS
:
1189 case GIMPLE_SINGLE_RHS
:
1190 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt
),
1192 case GIMPLE_INVALID_RHS
:
1199 /* Return true if STMT is known to compute a non-zero value.
1200 If the return value is based on the assumption that signed overflow is
1201 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1202 *STRICT_OVERFLOW_P.*/
1205 gimple_stmt_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1207 switch (gimple_code (stmt
))
1210 return gimple_assign_nonzero_warnv_p (stmt
, strict_overflow_p
);
1213 tree fndecl
= gimple_call_fndecl (stmt
);
1214 if (!fndecl
) return false;
1215 if (flag_delete_null_pointer_checks
&& !flag_check_new
1216 && DECL_IS_OPERATOR_NEW (fndecl
)
1217 && !TREE_NOTHROW (fndecl
))
1219 if (flag_delete_null_pointer_checks
&&
1220 lookup_attribute ("returns_nonnull",
1221 TYPE_ATTRIBUTES (gimple_call_fntype (stmt
))))
1223 return gimple_alloca_call_p (stmt
);
1230 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1234 vrp_stmt_computes_nonzero (gimple stmt
, bool *strict_overflow_p
)
1236 if (gimple_stmt_nonzero_warnv_p (stmt
, strict_overflow_p
))
1239 /* If we have an expression of the form &X->a, then the expression
1240 is nonnull if X is nonnull. */
1241 if (is_gimple_assign (stmt
)
1242 && gimple_assign_rhs_code (stmt
) == ADDR_EXPR
)
1244 tree expr
= gimple_assign_rhs1 (stmt
);
1245 tree base
= get_base_address (TREE_OPERAND (expr
, 0));
1247 if (base
!= NULL_TREE
1248 && TREE_CODE (base
) == MEM_REF
1249 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
1251 value_range_t
*vr
= get_value_range (TREE_OPERAND (base
, 0));
1252 if (range_is_nonnull (vr
))
1260 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1261 a gimple invariant, or SSA_NAME +- CST. */
1264 valid_value_p (tree expr
)
1266 if (TREE_CODE (expr
) == SSA_NAME
)
1269 if (TREE_CODE (expr
) == PLUS_EXPR
1270 || TREE_CODE (expr
) == MINUS_EXPR
)
1271 return (TREE_CODE (TREE_OPERAND (expr
, 0)) == SSA_NAME
1272 && TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
);
1274 return is_gimple_min_invariant (expr
);
1280 -2 if those are incomparable. */
1282 operand_less_p (tree val
, tree val2
)
1284 /* LT is folded faster than GE and others. Inline the common case. */
1285 if (TREE_CODE (val
) == INTEGER_CST
&& TREE_CODE (val2
) == INTEGER_CST
)
1286 return tree_int_cst_lt (val
, val2
);
1291 fold_defer_overflow_warnings ();
1293 tcmp
= fold_binary_to_constant (LT_EXPR
, boolean_type_node
, val
, val2
);
1295 fold_undefer_and_ignore_overflow_warnings ();
1298 || TREE_CODE (tcmp
) != INTEGER_CST
)
1301 if (!integer_zerop (tcmp
))
1305 /* val >= val2, not considering overflow infinity. */
1306 if (is_negative_overflow_infinity (val
))
1307 return is_negative_overflow_infinity (val2
) ? 0 : 1;
1308 else if (is_positive_overflow_infinity (val2
))
1309 return is_positive_overflow_infinity (val
) ? 0 : 1;
1314 /* Compare two values VAL1 and VAL2. Return
1316 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1319 +1 if VAL1 > VAL2, and
1322 This is similar to tree_int_cst_compare but supports pointer values
1323 and values that cannot be compared at compile time.
1325 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1326 true if the return value is only valid if we assume that signed
1327 overflow is undefined. */
1330 compare_values_warnv (tree val1
, tree val2
, bool *strict_overflow_p
)
1335 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1337 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
1338 == POINTER_TYPE_P (TREE_TYPE (val2
)));
1340 /* Convert the two values into the same type. This is needed because
1341 sizetype causes sign extension even for unsigned types. */
1342 val2
= fold_convert (TREE_TYPE (val1
), val2
);
1343 STRIP_USELESS_TYPE_CONVERSION (val2
);
1345 if ((TREE_CODE (val1
) == SSA_NAME
1346 || (TREE_CODE (val1
) == NEGATE_EXPR
1347 && TREE_CODE (TREE_OPERAND (val1
, 0)) == SSA_NAME
)
1348 || TREE_CODE (val1
) == PLUS_EXPR
1349 || TREE_CODE (val1
) == MINUS_EXPR
)
1350 && (TREE_CODE (val2
) == SSA_NAME
1351 || (TREE_CODE (val2
) == NEGATE_EXPR
1352 && TREE_CODE (TREE_OPERAND (val2
, 0)) == SSA_NAME
)
1353 || TREE_CODE (val2
) == PLUS_EXPR
1354 || TREE_CODE (val2
) == MINUS_EXPR
))
1356 tree n1
, c1
, n2
, c2
;
1357 enum tree_code code1
, code2
;
1359 /* If VAL1 and VAL2 are of the form '[-]NAME [+-] CST' or 'NAME',
1360 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1361 same name, return -2. */
1362 if (TREE_CODE (val1
) == SSA_NAME
|| TREE_CODE (val1
) == NEGATE_EXPR
)
1370 code1
= TREE_CODE (val1
);
1371 n1
= TREE_OPERAND (val1
, 0);
1372 c1
= TREE_OPERAND (val1
, 1);
1373 if (tree_int_cst_sgn (c1
) == -1)
1375 if (is_negative_overflow_infinity (c1
))
1377 c1
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c1
), c1
);
1380 code1
= code1
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1384 if (TREE_CODE (val2
) == SSA_NAME
|| TREE_CODE (val2
) == NEGATE_EXPR
)
1392 code2
= TREE_CODE (val2
);
1393 n2
= TREE_OPERAND (val2
, 0);
1394 c2
= TREE_OPERAND (val2
, 1);
1395 if (tree_int_cst_sgn (c2
) == -1)
1397 if (is_negative_overflow_infinity (c2
))
1399 c2
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c2
), c2
);
1402 code2
= code2
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1406 /* Both values must use the same name. */
1407 if (TREE_CODE (n1
) == NEGATE_EXPR
&& TREE_CODE (n2
) == NEGATE_EXPR
)
1409 n1
= TREE_OPERAND (n1
, 0);
1410 n2
= TREE_OPERAND (n2
, 0);
1415 if (code1
== SSA_NAME
&& code2
== SSA_NAME
)
1419 /* If overflow is defined we cannot simplify more. */
1420 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1
)))
1423 if (strict_overflow_p
!= NULL
1424 && (code1
== SSA_NAME
|| !TREE_NO_WARNING (val1
))
1425 && (code2
== SSA_NAME
|| !TREE_NO_WARNING (val2
)))
1426 *strict_overflow_p
= true;
1428 if (code1
== SSA_NAME
)
1430 if (code2
== PLUS_EXPR
)
1431 /* NAME < NAME + CST */
1433 else if (code2
== MINUS_EXPR
)
1434 /* NAME > NAME - CST */
1437 else if (code1
== PLUS_EXPR
)
1439 if (code2
== SSA_NAME
)
1440 /* NAME + CST > NAME */
1442 else if (code2
== PLUS_EXPR
)
1443 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1444 return compare_values_warnv (c1
, c2
, strict_overflow_p
);
1445 else if (code2
== MINUS_EXPR
)
1446 /* NAME + CST1 > NAME - CST2 */
1449 else if (code1
== MINUS_EXPR
)
1451 if (code2
== SSA_NAME
)
1452 /* NAME - CST < NAME */
1454 else if (code2
== PLUS_EXPR
)
1455 /* NAME - CST1 < NAME + CST2 */
1457 else if (code2
== MINUS_EXPR
)
1458 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1459 C1 and C2 are swapped in the call to compare_values. */
1460 return compare_values_warnv (c2
, c1
, strict_overflow_p
);
1466 /* We cannot compare non-constants. */
1467 if (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
))
1470 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
1472 /* We cannot compare overflowed values, except for overflow
1474 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
1476 if (strict_overflow_p
!= NULL
)
1477 *strict_overflow_p
= true;
1478 if (is_negative_overflow_infinity (val1
))
1479 return is_negative_overflow_infinity (val2
) ? 0 : -1;
1480 else if (is_negative_overflow_infinity (val2
))
1482 else if (is_positive_overflow_infinity (val1
))
1483 return is_positive_overflow_infinity (val2
) ? 0 : 1;
1484 else if (is_positive_overflow_infinity (val2
))
1489 return tree_int_cst_compare (val1
, val2
);
1495 /* First see if VAL1 and VAL2 are not the same. */
1496 if (val1
== val2
|| operand_equal_p (val1
, val2
, 0))
1499 /* If VAL1 is a lower address than VAL2, return -1. */
1500 if (operand_less_p (val1
, val2
) == 1)
1503 /* If VAL1 is a higher address than VAL2, return +1. */
1504 if (operand_less_p (val2
, val1
) == 1)
1507 /* If VAL1 is different than VAL2, return +2.
1508 For integer constants we either have already returned -1 or 1
1509 or they are equivalent. We still might succeed in proving
1510 something about non-trivial operands. */
1511 if (TREE_CODE (val1
) != INTEGER_CST
1512 || TREE_CODE (val2
) != INTEGER_CST
)
1514 t
= fold_binary_to_constant (NE_EXPR
, boolean_type_node
, val1
, val2
);
1515 if (t
&& integer_onep (t
))
1523 /* Compare values like compare_values_warnv, but treat comparisons of
1524 nonconstants which rely on undefined overflow as incomparable. */
1527 compare_values (tree val1
, tree val2
)
1533 ret
= compare_values_warnv (val1
, val2
, &sop
);
1535 && (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
)))
1541 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1542 0 if VAL is not inside [MIN, MAX],
1543 -2 if we cannot tell either way.
1545 Benchmark compile/20001226-1.c compilation time after changing this
1549 value_inside_range (tree val
, tree min
, tree max
)
1553 cmp1
= operand_less_p (val
, min
);
1559 cmp2
= operand_less_p (max
, val
);
1567 /* Return true if value ranges VR0 and VR1 have a non-empty
1570 Benchmark compile/20001226-1.c compilation time after changing this
1575 value_ranges_intersect_p (value_range_t
*vr0
, value_range_t
*vr1
)
1577 /* The value ranges do not intersect if the maximum of the first range is
1578 less than the minimum of the second range or vice versa.
1579 When those relations are unknown, we can't do any better. */
1580 if (operand_less_p (vr0
->max
, vr1
->min
) != 0)
1582 if (operand_less_p (vr1
->max
, vr0
->min
) != 0)
1588 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1589 include the value zero, -2 if we cannot tell. */
1592 range_includes_zero_p (tree min
, tree max
)
1594 tree zero
= build_int_cst (TREE_TYPE (min
), 0);
1595 return value_inside_range (zero
, min
, max
);
1598 /* Return true if *VR is know to only contain nonnegative values. */
1601 value_range_nonnegative_p (value_range_t
*vr
)
1603 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1604 which would return a useful value should be encoded as a
1606 if (vr
->type
== VR_RANGE
)
1608 int result
= compare_values (vr
->min
, integer_zero_node
);
1609 return (result
== 0 || result
== 1);
1615 /* If *VR has a value rante that is a single constant value return that,
1616 otherwise return NULL_TREE. */
1619 value_range_constant_singleton (value_range_t
*vr
)
1621 if (vr
->type
== VR_RANGE
1622 && operand_equal_p (vr
->min
, vr
->max
, 0)
1623 && is_gimple_min_invariant (vr
->min
))
1629 /* If OP has a value range with a single constant value return that,
1630 otherwise return NULL_TREE. This returns OP itself if OP is a
1634 op_with_constant_singleton_value_range (tree op
)
1636 if (is_gimple_min_invariant (op
))
1639 if (TREE_CODE (op
) != SSA_NAME
)
1642 return value_range_constant_singleton (get_value_range (op
));
1645 /* Return true if op is in a boolean [0, 1] value-range. */
1648 op_with_boolean_value_range_p (tree op
)
1652 if (TYPE_PRECISION (TREE_TYPE (op
)) == 1)
1655 if (integer_zerop (op
)
1656 || integer_onep (op
))
1659 if (TREE_CODE (op
) != SSA_NAME
)
1662 vr
= get_value_range (op
);
1663 return (vr
->type
== VR_RANGE
1664 && integer_zerop (vr
->min
)
1665 && integer_onep (vr
->max
));
1668 /* Extract value range information from an ASSERT_EXPR EXPR and store
1672 extract_range_from_assert (value_range_t
*vr_p
, tree expr
)
1674 tree var
, cond
, limit
, min
, max
, type
;
1675 value_range_t
*limit_vr
;
1676 enum tree_code cond_code
;
1678 var
= ASSERT_EXPR_VAR (expr
);
1679 cond
= ASSERT_EXPR_COND (expr
);
1681 gcc_assert (COMPARISON_CLASS_P (cond
));
1683 /* Find VAR in the ASSERT_EXPR conditional. */
1684 if (var
== TREE_OPERAND (cond
, 0)
1685 || TREE_CODE (TREE_OPERAND (cond
, 0)) == PLUS_EXPR
1686 || TREE_CODE (TREE_OPERAND (cond
, 0)) == NOP_EXPR
)
1688 /* If the predicate is of the form VAR COMP LIMIT, then we just
1689 take LIMIT from the RHS and use the same comparison code. */
1690 cond_code
= TREE_CODE (cond
);
1691 limit
= TREE_OPERAND (cond
, 1);
1692 cond
= TREE_OPERAND (cond
, 0);
1696 /* If the predicate is of the form LIMIT COMP VAR, then we need
1697 to flip around the comparison code to create the proper range
1699 cond_code
= swap_tree_comparison (TREE_CODE (cond
));
1700 limit
= TREE_OPERAND (cond
, 0);
1701 cond
= TREE_OPERAND (cond
, 1);
1704 limit
= avoid_overflow_infinity (limit
);
1706 type
= TREE_TYPE (var
);
1707 gcc_assert (limit
!= var
);
1709 /* For pointer arithmetic, we only keep track of pointer equality
1711 if (POINTER_TYPE_P (type
) && cond_code
!= NE_EXPR
&& cond_code
!= EQ_EXPR
)
1713 set_value_range_to_varying (vr_p
);
1717 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1718 try to use LIMIT's range to avoid creating symbolic ranges
1720 limit_vr
= (TREE_CODE (limit
) == SSA_NAME
) ? get_value_range (limit
) : NULL
;
1722 /* LIMIT's range is only interesting if it has any useful information. */
1724 && (limit_vr
->type
== VR_UNDEFINED
1725 || limit_vr
->type
== VR_VARYING
1726 || symbolic_range_p (limit_vr
)))
1729 /* Initially, the new range has the same set of equivalences of
1730 VAR's range. This will be revised before returning the final
1731 value. Since assertions may be chained via mutually exclusive
1732 predicates, we will need to trim the set of equivalences before
1734 gcc_assert (vr_p
->equiv
== NULL
);
1735 add_equivalence (&vr_p
->equiv
, var
);
1737 /* Extract a new range based on the asserted comparison for VAR and
1738 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1739 will only use it for equality comparisons (EQ_EXPR). For any
1740 other kind of assertion, we cannot derive a range from LIMIT's
1741 anti-range that can be used to describe the new range. For
1742 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1743 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1744 no single range for x_2 that could describe LE_EXPR, so we might
1745 as well build the range [b_4, +INF] for it.
1746 One special case we handle is extracting a range from a
1747 range test encoded as (unsigned)var + CST <= limit. */
1748 if (TREE_CODE (cond
) == NOP_EXPR
1749 || TREE_CODE (cond
) == PLUS_EXPR
)
1751 if (TREE_CODE (cond
) == PLUS_EXPR
)
1753 min
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (TREE_OPERAND (cond
, 1)),
1754 TREE_OPERAND (cond
, 1));
1755 max
= int_const_binop (PLUS_EXPR
, limit
, min
);
1756 cond
= TREE_OPERAND (cond
, 0);
1760 min
= build_int_cst (TREE_TYPE (var
), 0);
1764 /* Make sure to not set TREE_OVERFLOW on the final type
1765 conversion. We are willingly interpreting large positive
1766 unsigned values as negative signed values here. */
1767 min
= force_fit_type (TREE_TYPE (var
), wi::to_widest (min
), 0, false);
1768 max
= force_fit_type (TREE_TYPE (var
), wi::to_widest (max
), 0, false);
1770 /* We can transform a max, min range to an anti-range or
1771 vice-versa. Use set_and_canonicalize_value_range which does
1773 if (cond_code
== LE_EXPR
)
1774 set_and_canonicalize_value_range (vr_p
, VR_RANGE
,
1775 min
, max
, vr_p
->equiv
);
1776 else if (cond_code
== GT_EXPR
)
1777 set_and_canonicalize_value_range (vr_p
, VR_ANTI_RANGE
,
1778 min
, max
, vr_p
->equiv
);
1782 else if (cond_code
== EQ_EXPR
)
1784 enum value_range_type range_type
;
1788 range_type
= limit_vr
->type
;
1789 min
= limit_vr
->min
;
1790 max
= limit_vr
->max
;
1794 range_type
= VR_RANGE
;
1799 set_value_range (vr_p
, range_type
, min
, max
, vr_p
->equiv
);
1801 /* When asserting the equality VAR == LIMIT and LIMIT is another
1802 SSA name, the new range will also inherit the equivalence set
1804 if (TREE_CODE (limit
) == SSA_NAME
)
1805 add_equivalence (&vr_p
->equiv
, limit
);
1807 else if (cond_code
== NE_EXPR
)
1809 /* As described above, when LIMIT's range is an anti-range and
1810 this assertion is an inequality (NE_EXPR), then we cannot
1811 derive anything from the anti-range. For instance, if
1812 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1813 not imply that VAR's range is [0, 0]. So, in the case of
1814 anti-ranges, we just assert the inequality using LIMIT and
1817 If LIMIT_VR is a range, we can only use it to build a new
1818 anti-range if LIMIT_VR is a single-valued range. For
1819 instance, if LIMIT_VR is [0, 1], the predicate
1820 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1821 Rather, it means that for value 0 VAR should be ~[0, 0]
1822 and for value 1, VAR should be ~[1, 1]. We cannot
1823 represent these ranges.
1825 The only situation in which we can build a valid
1826 anti-range is when LIMIT_VR is a single-valued range
1827 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1828 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1830 && limit_vr
->type
== VR_RANGE
1831 && compare_values (limit_vr
->min
, limit_vr
->max
) == 0)
1833 min
= limit_vr
->min
;
1834 max
= limit_vr
->max
;
1838 /* In any other case, we cannot use LIMIT's range to build a
1839 valid anti-range. */
1843 /* If MIN and MAX cover the whole range for their type, then
1844 just use the original LIMIT. */
1845 if (INTEGRAL_TYPE_P (type
)
1846 && vrp_val_is_min (min
)
1847 && vrp_val_is_max (max
))
1850 set_and_canonicalize_value_range (vr_p
, VR_ANTI_RANGE
,
1851 min
, max
, vr_p
->equiv
);
1853 else if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
1855 min
= TYPE_MIN_VALUE (type
);
1857 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1861 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1862 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1864 max
= limit_vr
->max
;
1867 /* If the maximum value forces us to be out of bounds, simply punt.
1868 It would be pointless to try and do anything more since this
1869 all should be optimized away above us. */
1870 if ((cond_code
== LT_EXPR
1871 && compare_values (max
, min
) == 0)
1872 || is_overflow_infinity (max
))
1873 set_value_range_to_varying (vr_p
);
1876 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1877 if (cond_code
== LT_EXPR
)
1879 if (TYPE_PRECISION (TREE_TYPE (max
)) == 1
1880 && !TYPE_UNSIGNED (TREE_TYPE (max
)))
1881 max
= fold_build2 (PLUS_EXPR
, TREE_TYPE (max
), max
,
1882 build_int_cst (TREE_TYPE (max
), -1));
1884 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (max
), max
,
1885 build_int_cst (TREE_TYPE (max
), 1));
1887 TREE_NO_WARNING (max
) = 1;
1890 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1893 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
1895 max
= TYPE_MAX_VALUE (type
);
1897 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1901 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1902 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1904 min
= limit_vr
->min
;
1907 /* If the minimum value forces us to be out of bounds, simply punt.
1908 It would be pointless to try and do anything more since this
1909 all should be optimized away above us. */
1910 if ((cond_code
== GT_EXPR
1911 && compare_values (min
, max
) == 0)
1912 || is_overflow_infinity (min
))
1913 set_value_range_to_varying (vr_p
);
1916 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1917 if (cond_code
== GT_EXPR
)
1919 if (TYPE_PRECISION (TREE_TYPE (min
)) == 1
1920 && !TYPE_UNSIGNED (TREE_TYPE (min
)))
1921 min
= fold_build2 (MINUS_EXPR
, TREE_TYPE (min
), min
,
1922 build_int_cst (TREE_TYPE (min
), -1));
1924 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (min
), min
,
1925 build_int_cst (TREE_TYPE (min
), 1));
1927 TREE_NO_WARNING (min
) = 1;
1930 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1936 /* Finally intersect the new range with what we already know about var. */
1937 vrp_intersect_ranges (vr_p
, get_value_range (var
));
1941 /* Extract range information from SSA name VAR and store it in VR. If
1942 VAR has an interesting range, use it. Otherwise, create the
1943 range [VAR, VAR] and return it. This is useful in situations where
1944 we may have conditionals testing values of VARYING names. For
1951 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1955 extract_range_from_ssa_name (value_range_t
*vr
, tree var
)
1957 value_range_t
*var_vr
= get_value_range (var
);
1959 if (var_vr
->type
!= VR_VARYING
)
1960 copy_value_range (vr
, var_vr
);
1962 set_value_range (vr
, VR_RANGE
, var
, var
, NULL
);
1964 add_equivalence (&vr
->equiv
, var
);
1968 /* Wrapper around int_const_binop. If the operation overflows and we
1969 are not using wrapping arithmetic, then adjust the result to be
1970 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1971 NULL_TREE if we need to use an overflow infinity representation but
1972 the type does not support it. */
1975 vrp_int_const_binop (enum tree_code code
, tree val1
, tree val2
)
1979 res
= int_const_binop (code
, val1
, val2
);
1981 /* If we are using unsigned arithmetic, operate symbolically
1982 on -INF and +INF as int_const_binop only handles signed overflow. */
1983 if (TYPE_UNSIGNED (TREE_TYPE (val1
)))
1985 int checkz
= compare_values (res
, val1
);
1986 bool overflow
= false;
1988 /* Ensure that res = val1 [+*] val2 >= val1
1989 or that res = val1 - val2 <= val1. */
1990 if ((code
== PLUS_EXPR
1991 && !(checkz
== 1 || checkz
== 0))
1992 || (code
== MINUS_EXPR
1993 && !(checkz
== 0 || checkz
== -1)))
1997 /* Checking for multiplication overflow is done by dividing the
1998 output of the multiplication by the first input of the
1999 multiplication. If the result of that division operation is
2000 not equal to the second input of the multiplication, then the
2001 multiplication overflowed. */
2002 else if (code
== MULT_EXPR
&& !integer_zerop (val1
))
2004 tree tmp
= int_const_binop (TRUNC_DIV_EXPR
,
2007 int check
= compare_values (tmp
, val2
);
2015 res
= copy_node (res
);
2016 TREE_OVERFLOW (res
) = 1;
2020 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1
)))
2021 /* If the singed operation wraps then int_const_binop has done
2022 everything we want. */
2024 /* Signed division of -1/0 overflows and by the time it gets here
2025 returns NULL_TREE. */
2028 else if ((TREE_OVERFLOW (res
)
2029 && !TREE_OVERFLOW (val1
)
2030 && !TREE_OVERFLOW (val2
))
2031 || is_overflow_infinity (val1
)
2032 || is_overflow_infinity (val2
))
2034 /* If the operation overflowed but neither VAL1 nor VAL2 are
2035 overflown, return -INF or +INF depending on the operation
2036 and the combination of signs of the operands. */
2037 int sgn1
= tree_int_cst_sgn (val1
);
2038 int sgn2
= tree_int_cst_sgn (val2
);
2040 if (needs_overflow_infinity (TREE_TYPE (res
))
2041 && !supports_overflow_infinity (TREE_TYPE (res
)))
2044 /* We have to punt on adding infinities of different signs,
2045 since we can't tell what the sign of the result should be.
2046 Likewise for subtracting infinities of the same sign. */
2047 if (((code
== PLUS_EXPR
&& sgn1
!= sgn2
)
2048 || (code
== MINUS_EXPR
&& sgn1
== sgn2
))
2049 && is_overflow_infinity (val1
)
2050 && is_overflow_infinity (val2
))
2053 /* Don't try to handle division or shifting of infinities. */
2054 if ((code
== TRUNC_DIV_EXPR
2055 || code
== FLOOR_DIV_EXPR
2056 || code
== CEIL_DIV_EXPR
2057 || code
== EXACT_DIV_EXPR
2058 || code
== ROUND_DIV_EXPR
2059 || code
== RSHIFT_EXPR
)
2060 && (is_overflow_infinity (val1
)
2061 || is_overflow_infinity (val2
)))
2064 /* Notice that we only need to handle the restricted set of
2065 operations handled by extract_range_from_binary_expr.
2066 Among them, only multiplication, addition and subtraction
2067 can yield overflow without overflown operands because we
2068 are working with integral types only... except in the
2069 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2070 for division too. */
2072 /* For multiplication, the sign of the overflow is given
2073 by the comparison of the signs of the operands. */
2074 if ((code
== MULT_EXPR
&& sgn1
== sgn2
)
2075 /* For addition, the operands must be of the same sign
2076 to yield an overflow. Its sign is therefore that
2077 of one of the operands, for example the first. For
2078 infinite operands X + -INF is negative, not positive. */
2079 || (code
== PLUS_EXPR
2081 ? !is_negative_overflow_infinity (val2
)
2082 : is_positive_overflow_infinity (val2
)))
2083 /* For subtraction, non-infinite operands must be of
2084 different signs to yield an overflow. Its sign is
2085 therefore that of the first operand or the opposite of
2086 that of the second operand. A first operand of 0 counts
2087 as positive here, for the corner case 0 - (-INF), which
2088 overflows, but must yield +INF. For infinite operands 0
2089 - INF is negative, not positive. */
2090 || (code
== MINUS_EXPR
2092 ? !is_positive_overflow_infinity (val2
)
2093 : is_negative_overflow_infinity (val2
)))
2094 /* We only get in here with positive shift count, so the
2095 overflow direction is the same as the sign of val1.
2096 Actually rshift does not overflow at all, but we only
2097 handle the case of shifting overflowed -INF and +INF. */
2098 || (code
== RSHIFT_EXPR
2100 /* For division, the only case is -INF / -1 = +INF. */
2101 || code
== TRUNC_DIV_EXPR
2102 || code
== FLOOR_DIV_EXPR
2103 || code
== CEIL_DIV_EXPR
2104 || code
== EXACT_DIV_EXPR
2105 || code
== ROUND_DIV_EXPR
)
2106 return (needs_overflow_infinity (TREE_TYPE (res
))
2107 ? positive_overflow_infinity (TREE_TYPE (res
))
2108 : TYPE_MAX_VALUE (TREE_TYPE (res
)));
2110 return (needs_overflow_infinity (TREE_TYPE (res
))
2111 ? negative_overflow_infinity (TREE_TYPE (res
))
2112 : TYPE_MIN_VALUE (TREE_TYPE (res
)));
2119 /* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO
2120 bitmask if some bit is unset, it means for all numbers in the range
2121 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2122 bitmask if some bit is set, it means for all numbers in the range
2123 the bit is 1, otherwise it might be 0 or 1. */
2126 zero_nonzero_bits_from_vr (const tree expr_type
,
2128 wide_int
*may_be_nonzero
,
2129 wide_int
*must_be_nonzero
)
2131 *may_be_nonzero
= wi::minus_one (TYPE_PRECISION (expr_type
));
2132 *must_be_nonzero
= wi::zero (TYPE_PRECISION (expr_type
));
2133 if (!range_int_cst_p (vr
)
2134 || is_overflow_infinity (vr
->min
)
2135 || is_overflow_infinity (vr
->max
))
2138 if (range_int_cst_singleton_p (vr
))
2140 *may_be_nonzero
= vr
->min
;
2141 *must_be_nonzero
= *may_be_nonzero
;
2143 else if (tree_int_cst_sgn (vr
->min
) >= 0
2144 || tree_int_cst_sgn (vr
->max
) < 0)
2146 wide_int xor_mask
= wi::bit_xor (vr
->min
, vr
->max
);
2147 *may_be_nonzero
= wi::bit_or (vr
->min
, vr
->max
);
2148 *must_be_nonzero
= wi::bit_and (vr
->min
, vr
->max
);
2151 wide_int mask
= wi::mask (wi::floor_log2 (xor_mask
), false,
2152 may_be_nonzero
->get_precision ());
2153 *may_be_nonzero
= *may_be_nonzero
| mask
;
2154 *must_be_nonzero
= must_be_nonzero
->and_not (mask
);
2161 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2162 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2163 false otherwise. If *AR can be represented with a single range
2164 *VR1 will be VR_UNDEFINED. */
2167 ranges_from_anti_range (value_range_t
*ar
,
2168 value_range_t
*vr0
, value_range_t
*vr1
)
2170 tree type
= TREE_TYPE (ar
->min
);
2172 vr0
->type
= VR_UNDEFINED
;
2173 vr1
->type
= VR_UNDEFINED
;
2175 if (ar
->type
!= VR_ANTI_RANGE
2176 || TREE_CODE (ar
->min
) != INTEGER_CST
2177 || TREE_CODE (ar
->max
) != INTEGER_CST
2178 || !vrp_val_min (type
)
2179 || !vrp_val_max (type
))
2182 if (!vrp_val_is_min (ar
->min
))
2184 vr0
->type
= VR_RANGE
;
2185 vr0
->min
= vrp_val_min (type
);
2186 vr0
->max
= wide_int_to_tree (type
, wi::sub (ar
->min
, 1));
2188 if (!vrp_val_is_max (ar
->max
))
2190 vr1
->type
= VR_RANGE
;
2191 vr1
->min
= wide_int_to_tree (type
, wi::add (ar
->max
, 1));
2192 vr1
->max
= vrp_val_max (type
);
2194 if (vr0
->type
== VR_UNDEFINED
)
2197 vr1
->type
= VR_UNDEFINED
;
2200 return vr0
->type
!= VR_UNDEFINED
;
2203 /* Helper to extract a value-range *VR for a multiplicative operation
2207 extract_range_from_multiplicative_op_1 (value_range_t
*vr
,
2208 enum tree_code code
,
2209 value_range_t
*vr0
, value_range_t
*vr1
)
2211 enum value_range_type type
;
2218 /* Multiplications, divisions and shifts are a bit tricky to handle,
2219 depending on the mix of signs we have in the two ranges, we
2220 need to operate on different values to get the minimum and
2221 maximum values for the new range. One approach is to figure
2222 out all the variations of range combinations and do the
2225 However, this involves several calls to compare_values and it
2226 is pretty convoluted. It's simpler to do the 4 operations
2227 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2228 MAX1) and then figure the smallest and largest values to form
2230 gcc_assert (code
== MULT_EXPR
2231 || code
== TRUNC_DIV_EXPR
2232 || code
== FLOOR_DIV_EXPR
2233 || code
== CEIL_DIV_EXPR
2234 || code
== EXACT_DIV_EXPR
2235 || code
== ROUND_DIV_EXPR
2236 || code
== RSHIFT_EXPR
2237 || code
== LSHIFT_EXPR
);
2238 gcc_assert ((vr0
->type
== VR_RANGE
2239 || (code
== MULT_EXPR
&& vr0
->type
== VR_ANTI_RANGE
))
2240 && vr0
->type
== vr1
->type
);
2244 /* Compute the 4 cross operations. */
2246 val
[0] = vrp_int_const_binop (code
, vr0
->min
, vr1
->min
);
2247 if (val
[0] == NULL_TREE
)
2250 if (vr1
->max
== vr1
->min
)
2254 val
[1] = vrp_int_const_binop (code
, vr0
->min
, vr1
->max
);
2255 if (val
[1] == NULL_TREE
)
2259 if (vr0
->max
== vr0
->min
)
2263 val
[2] = vrp_int_const_binop (code
, vr0
->max
, vr1
->min
);
2264 if (val
[2] == NULL_TREE
)
2268 if (vr0
->min
== vr0
->max
|| vr1
->min
== vr1
->max
)
2272 val
[3] = vrp_int_const_binop (code
, vr0
->max
, vr1
->max
);
2273 if (val
[3] == NULL_TREE
)
2279 set_value_range_to_varying (vr
);
2283 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2287 for (i
= 1; i
< 4; i
++)
2289 if (!is_gimple_min_invariant (min
)
2290 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2291 || !is_gimple_min_invariant (max
)
2292 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2297 if (!is_gimple_min_invariant (val
[i
])
2298 || (TREE_OVERFLOW (val
[i
])
2299 && !is_overflow_infinity (val
[i
])))
2301 /* If we found an overflowed value, set MIN and MAX
2302 to it so that we set the resulting range to
2308 if (compare_values (val
[i
], min
) == -1)
2311 if (compare_values (val
[i
], max
) == 1)
2316 /* If either MIN or MAX overflowed, then set the resulting range to
2317 VARYING. But we do accept an overflow infinity
2319 if (min
== NULL_TREE
2320 || !is_gimple_min_invariant (min
)
2321 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2323 || !is_gimple_min_invariant (max
)
2324 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2326 set_value_range_to_varying (vr
);
2332 2) [-INF, +-INF(OVF)]
2333 3) [+-INF(OVF), +INF]
2334 4) [+-INF(OVF), +-INF(OVF)]
2335 We learn nothing when we have INF and INF(OVF) on both sides.
2336 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2338 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
2339 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
2341 set_value_range_to_varying (vr
);
2345 cmp
= compare_values (min
, max
);
2346 if (cmp
== -2 || cmp
== 1)
2348 /* If the new range has its limits swapped around (MIN > MAX),
2349 then the operation caused one of them to wrap around, mark
2350 the new range VARYING. */
2351 set_value_range_to_varying (vr
);
2354 set_value_range (vr
, type
, min
, max
, NULL
);
2357 /* Extract range information from a binary operation CODE based on
2358 the ranges of each of its operands *VR0 and *VR1 with resulting
2359 type EXPR_TYPE. The resulting range is stored in *VR. */
2362 extract_range_from_binary_expr_1 (value_range_t
*vr
,
2363 enum tree_code code
, tree expr_type
,
2364 value_range_t
*vr0_
, value_range_t
*vr1_
)
2366 value_range_t vr0
= *vr0_
, vr1
= *vr1_
;
2367 value_range_t vrtem0
= VR_INITIALIZER
, vrtem1
= VR_INITIALIZER
;
2368 enum value_range_type type
;
2369 tree min
= NULL_TREE
, max
= NULL_TREE
;
2372 if (!INTEGRAL_TYPE_P (expr_type
)
2373 && !POINTER_TYPE_P (expr_type
))
2375 set_value_range_to_varying (vr
);
2379 /* Not all binary expressions can be applied to ranges in a
2380 meaningful way. Handle only arithmetic operations. */
2381 if (code
!= PLUS_EXPR
2382 && code
!= MINUS_EXPR
2383 && code
!= POINTER_PLUS_EXPR
2384 && code
!= MULT_EXPR
2385 && code
!= TRUNC_DIV_EXPR
2386 && code
!= FLOOR_DIV_EXPR
2387 && code
!= CEIL_DIV_EXPR
2388 && code
!= EXACT_DIV_EXPR
2389 && code
!= ROUND_DIV_EXPR
2390 && code
!= TRUNC_MOD_EXPR
2391 && code
!= RSHIFT_EXPR
2392 && code
!= LSHIFT_EXPR
2395 && code
!= BIT_AND_EXPR
2396 && code
!= BIT_IOR_EXPR
2397 && code
!= BIT_XOR_EXPR
)
2399 set_value_range_to_varying (vr
);
2403 /* If both ranges are UNDEFINED, so is the result. */
2404 if (vr0
.type
== VR_UNDEFINED
&& vr1
.type
== VR_UNDEFINED
)
2406 set_value_range_to_undefined (vr
);
2409 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2410 code. At some point we may want to special-case operations that
2411 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2413 else if (vr0
.type
== VR_UNDEFINED
)
2414 set_value_range_to_varying (&vr0
);
2415 else if (vr1
.type
== VR_UNDEFINED
)
2416 set_value_range_to_varying (&vr1
);
2418 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2419 and express ~[] op X as ([]' op X) U ([]'' op X). */
2420 if (vr0
.type
== VR_ANTI_RANGE
2421 && ranges_from_anti_range (&vr0
, &vrtem0
, &vrtem1
))
2423 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vrtem0
, vr1_
);
2424 if (vrtem1
.type
!= VR_UNDEFINED
)
2426 value_range_t vrres
= VR_INITIALIZER
;
2427 extract_range_from_binary_expr_1 (&vrres
, code
, expr_type
,
2429 vrp_meet (vr
, &vrres
);
2433 /* Likewise for X op ~[]. */
2434 if (vr1
.type
== VR_ANTI_RANGE
2435 && ranges_from_anti_range (&vr1
, &vrtem0
, &vrtem1
))
2437 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, vr0_
, &vrtem0
);
2438 if (vrtem1
.type
!= VR_UNDEFINED
)
2440 value_range_t vrres
= VR_INITIALIZER
;
2441 extract_range_from_binary_expr_1 (&vrres
, code
, expr_type
,
2443 vrp_meet (vr
, &vrres
);
2448 /* The type of the resulting value range defaults to VR0.TYPE. */
2451 /* Refuse to operate on VARYING ranges, ranges of different kinds
2452 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
2453 because we may be able to derive a useful range even if one of
2454 the operands is VR_VARYING or symbolic range. Similarly for
2455 divisions, MIN/MAX and PLUS/MINUS.
2457 TODO, we may be able to derive anti-ranges in some cases. */
2458 if (code
!= BIT_AND_EXPR
2459 && code
!= BIT_IOR_EXPR
2460 && code
!= TRUNC_DIV_EXPR
2461 && code
!= FLOOR_DIV_EXPR
2462 && code
!= CEIL_DIV_EXPR
2463 && code
!= EXACT_DIV_EXPR
2464 && code
!= ROUND_DIV_EXPR
2465 && code
!= TRUNC_MOD_EXPR
2468 && code
!= PLUS_EXPR
2469 && code
!= MINUS_EXPR
2470 && code
!= RSHIFT_EXPR
2471 && (vr0
.type
== VR_VARYING
2472 || vr1
.type
== VR_VARYING
2473 || vr0
.type
!= vr1
.type
2474 || symbolic_range_p (&vr0
)
2475 || symbolic_range_p (&vr1
)))
2477 set_value_range_to_varying (vr
);
2481 /* Now evaluate the expression to determine the new range. */
2482 if (POINTER_TYPE_P (expr_type
))
2484 if (code
== MIN_EXPR
|| code
== MAX_EXPR
)
2486 /* For MIN/MAX expressions with pointers, we only care about
2487 nullness, if both are non null, then the result is nonnull.
2488 If both are null, then the result is null. Otherwise they
2490 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2491 set_value_range_to_nonnull (vr
, expr_type
);
2492 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2493 set_value_range_to_null (vr
, expr_type
);
2495 set_value_range_to_varying (vr
);
2497 else if (code
== POINTER_PLUS_EXPR
)
2499 /* For pointer types, we are really only interested in asserting
2500 whether the expression evaluates to non-NULL. */
2501 if (range_is_nonnull (&vr0
) || range_is_nonnull (&vr1
))
2502 set_value_range_to_nonnull (vr
, expr_type
);
2503 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2504 set_value_range_to_null (vr
, expr_type
);
2506 set_value_range_to_varying (vr
);
2508 else if (code
== BIT_AND_EXPR
)
2510 /* For pointer types, we are really only interested in asserting
2511 whether the expression evaluates to non-NULL. */
2512 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2513 set_value_range_to_nonnull (vr
, expr_type
);
2514 else if (range_is_null (&vr0
) || range_is_null (&vr1
))
2515 set_value_range_to_null (vr
, expr_type
);
2517 set_value_range_to_varying (vr
);
2520 set_value_range_to_varying (vr
);
2525 /* For integer ranges, apply the operation to each end of the
2526 range and see what we end up with. */
2527 if (code
== PLUS_EXPR
|| code
== MINUS_EXPR
)
2529 const bool minus_p
= (code
== MINUS_EXPR
);
2530 tree min_op0
= vr0
.min
;
2531 tree min_op1
= minus_p
? vr1
.max
: vr1
.min
;
2532 tree max_op0
= vr0
.max
;
2533 tree max_op1
= minus_p
? vr1
.min
: vr1
.max
;
2534 tree sym_min_op0
= NULL_TREE
;
2535 tree sym_min_op1
= NULL_TREE
;
2536 tree sym_max_op0
= NULL_TREE
;
2537 tree sym_max_op1
= NULL_TREE
;
2538 bool neg_min_op0
, neg_min_op1
, neg_max_op0
, neg_max_op1
;
2540 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
2541 single-symbolic ranges, try to compute the precise resulting range,
2542 but only if we know that this resulting range will also be constant
2543 or single-symbolic. */
2544 if (vr0
.type
== VR_RANGE
&& vr1
.type
== VR_RANGE
2545 && (TREE_CODE (min_op0
) == INTEGER_CST
2547 = get_single_symbol (min_op0
, &neg_min_op0
, &min_op0
)))
2548 && (TREE_CODE (min_op1
) == INTEGER_CST
2550 = get_single_symbol (min_op1
, &neg_min_op1
, &min_op1
)))
2551 && (!(sym_min_op0
&& sym_min_op1
)
2552 || (sym_min_op0
== sym_min_op1
2553 && neg_min_op0
== (minus_p
? neg_min_op1
: !neg_min_op1
)))
2554 && (TREE_CODE (max_op0
) == INTEGER_CST
2556 = get_single_symbol (max_op0
, &neg_max_op0
, &max_op0
)))
2557 && (TREE_CODE (max_op1
) == INTEGER_CST
2559 = get_single_symbol (max_op1
, &neg_max_op1
, &max_op1
)))
2560 && (!(sym_max_op0
&& sym_max_op1
)
2561 || (sym_max_op0
== sym_max_op1
2562 && neg_max_op0
== (minus_p
? neg_max_op1
: !neg_max_op1
))))
2564 const signop sgn
= TYPE_SIGN (expr_type
);
2565 const unsigned int prec
= TYPE_PRECISION (expr_type
);
2566 wide_int type_min
, type_max
, wmin
, wmax
;
2570 /* Get the lower and upper bounds of the type. */
2571 if (TYPE_OVERFLOW_WRAPS (expr_type
))
2573 type_min
= wi::min_value (prec
, sgn
);
2574 type_max
= wi::max_value (prec
, sgn
);
2578 type_min
= vrp_val_min (expr_type
);
2579 type_max
= vrp_val_max (expr_type
);
2582 /* Combine the lower bounds, if any. */
2583 if (min_op0
&& min_op1
)
2587 wmin
= wi::sub (min_op0
, min_op1
);
2589 /* Check for overflow. */
2590 if (wi::cmp (0, min_op1
, sgn
)
2591 != wi::cmp (wmin
, min_op0
, sgn
))
2592 min_ovf
= wi::cmp (min_op0
, min_op1
, sgn
);
2596 wmin
= wi::add (min_op0
, min_op1
);
2598 /* Check for overflow. */
2599 if (wi::cmp (min_op1
, 0, sgn
)
2600 != wi::cmp (wmin
, min_op0
, sgn
))
2601 min_ovf
= wi::cmp (min_op0
, wmin
, sgn
);
2607 wmin
= minus_p
? wi::neg (min_op1
) : min_op1
;
2609 wmin
= wi::shwi (0, prec
);
2611 /* Combine the upper bounds, if any. */
2612 if (max_op0
&& max_op1
)
2616 wmax
= wi::sub (max_op0
, max_op1
);
2618 /* Check for overflow. */
2619 if (wi::cmp (0, max_op1
, sgn
)
2620 != wi::cmp (wmax
, max_op0
, sgn
))
2621 max_ovf
= wi::cmp (max_op0
, max_op1
, sgn
);
2625 wmax
= wi::add (max_op0
, max_op1
);
2627 if (wi::cmp (max_op1
, 0, sgn
)
2628 != wi::cmp (wmax
, max_op0
, sgn
))
2629 max_ovf
= wi::cmp (max_op0
, wmax
, sgn
);
2635 wmax
= minus_p
? wi::neg (max_op1
) : max_op1
;
2637 wmax
= wi::shwi (0, prec
);
2639 /* Check for type overflow. */
2642 if (wi::cmp (wmin
, type_min
, sgn
) == -1)
2644 else if (wi::cmp (wmin
, type_max
, sgn
) == 1)
2649 if (wi::cmp (wmax
, type_min
, sgn
) == -1)
2651 else if (wi::cmp (wmax
, type_max
, sgn
) == 1)
2655 /* If we have overflow for the constant part and the resulting
2656 range will be symbolic, drop to VR_VARYING. */
2657 if ((min_ovf
&& sym_min_op0
!= sym_min_op1
)
2658 || (max_ovf
&& sym_max_op0
!= sym_max_op1
))
2660 set_value_range_to_varying (vr
);
2664 if (TYPE_OVERFLOW_WRAPS (expr_type
))
2666 /* If overflow wraps, truncate the values and adjust the
2667 range kind and bounds appropriately. */
2668 wide_int tmin
= wide_int::from (wmin
, prec
, sgn
);
2669 wide_int tmax
= wide_int::from (wmax
, prec
, sgn
);
2670 if (min_ovf
== max_ovf
)
2672 /* No overflow or both overflow or underflow. The
2673 range kind stays VR_RANGE. */
2674 min
= wide_int_to_tree (expr_type
, tmin
);
2675 max
= wide_int_to_tree (expr_type
, tmax
);
2677 else if (min_ovf
== -1 && max_ovf
== 1)
2679 /* Underflow and overflow, drop to VR_VARYING. */
2680 set_value_range_to_varying (vr
);
2685 /* Min underflow or max overflow. The range kind
2686 changes to VR_ANTI_RANGE. */
2687 bool covers
= false;
2688 wide_int tem
= tmin
;
2689 gcc_assert ((min_ovf
== -1 && max_ovf
== 0)
2690 || (max_ovf
== 1 && min_ovf
== 0));
2691 type
= VR_ANTI_RANGE
;
2693 if (wi::cmp (tmin
, tmax
, sgn
) < 0)
2696 if (wi::cmp (tmax
, tem
, sgn
) > 0)
2698 /* If the anti-range would cover nothing, drop to varying.
2699 Likewise if the anti-range bounds are outside of the
2701 if (covers
|| wi::cmp (tmin
, tmax
, sgn
) > 0)
2703 set_value_range_to_varying (vr
);
2706 min
= wide_int_to_tree (expr_type
, tmin
);
2707 max
= wide_int_to_tree (expr_type
, tmax
);
2712 /* If overflow does not wrap, saturate to the types min/max
2716 if (needs_overflow_infinity (expr_type
)
2717 && supports_overflow_infinity (expr_type
))
2718 min
= negative_overflow_infinity (expr_type
);
2720 min
= wide_int_to_tree (expr_type
, type_min
);
2722 else if (min_ovf
== 1)
2724 if (needs_overflow_infinity (expr_type
)
2725 && supports_overflow_infinity (expr_type
))
2726 min
= positive_overflow_infinity (expr_type
);
2728 min
= wide_int_to_tree (expr_type
, type_max
);
2731 min
= wide_int_to_tree (expr_type
, wmin
);
2735 if (needs_overflow_infinity (expr_type
)
2736 && supports_overflow_infinity (expr_type
))
2737 max
= negative_overflow_infinity (expr_type
);
2739 max
= wide_int_to_tree (expr_type
, type_min
);
2741 else if (max_ovf
== 1)
2743 if (needs_overflow_infinity (expr_type
)
2744 && supports_overflow_infinity (expr_type
))
2745 max
= positive_overflow_infinity (expr_type
);
2747 max
= wide_int_to_tree (expr_type
, type_max
);
2750 max
= wide_int_to_tree (expr_type
, wmax
);
2753 if (needs_overflow_infinity (expr_type
)
2754 && supports_overflow_infinity (expr_type
))
2756 if ((min_op0
&& is_negative_overflow_infinity (min_op0
))
2759 ? is_positive_overflow_infinity (min_op1
)
2760 : is_negative_overflow_infinity (min_op1
))))
2761 min
= negative_overflow_infinity (expr_type
);
2762 if ((max_op0
&& is_positive_overflow_infinity (max_op0
))
2765 ? is_negative_overflow_infinity (max_op1
)
2766 : is_positive_overflow_infinity (max_op1
))))
2767 max
= positive_overflow_infinity (expr_type
);
2770 /* If the result lower bound is constant, we're done;
2771 otherwise, build the symbolic lower bound. */
2772 if (sym_min_op0
== sym_min_op1
)
2774 else if (sym_min_op0
)
2775 min
= build_symbolic_expr (expr_type
, sym_min_op0
,
2777 else if (sym_min_op1
)
2778 min
= build_symbolic_expr (expr_type
, sym_min_op1
,
2779 neg_min_op1
^ minus_p
, min
);
2781 /* Likewise for the upper bound. */
2782 if (sym_max_op0
== sym_max_op1
)
2784 else if (sym_max_op0
)
2785 max
= build_symbolic_expr (expr_type
, sym_max_op0
,
2787 else if (sym_max_op1
)
2788 max
= build_symbolic_expr (expr_type
, sym_max_op1
,
2789 neg_max_op1
^ minus_p
, max
);
2793 /* For other cases, for example if we have a PLUS_EXPR with two
2794 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2795 to compute a precise range for such a case.
2796 ??? General even mixed range kind operations can be expressed
2797 by for example transforming ~[3, 5] + [1, 2] to range-only
2798 operations and a union primitive:
2799 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2800 [-INF+1, 4] U [6, +INF(OVF)]
2801 though usually the union is not exactly representable with
2802 a single range or anti-range as the above is
2803 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2804 but one could use a scheme similar to equivalences for this. */
2805 set_value_range_to_varying (vr
);
2809 else if (code
== MIN_EXPR
2810 || code
== MAX_EXPR
)
2812 if (vr0
.type
== VR_RANGE
2813 && !symbolic_range_p (&vr0
))
2816 if (vr1
.type
== VR_RANGE
2817 && !symbolic_range_p (&vr1
))
2819 /* For operations that make the resulting range directly
2820 proportional to the original ranges, apply the operation to
2821 the same end of each range. */
2822 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
2823 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
2825 else if (code
== MIN_EXPR
)
2827 min
= vrp_val_min (expr_type
);
2830 else if (code
== MAX_EXPR
)
2833 max
= vrp_val_max (expr_type
);
2836 else if (vr1
.type
== VR_RANGE
2837 && !symbolic_range_p (&vr1
))
2840 if (code
== MIN_EXPR
)
2842 min
= vrp_val_min (expr_type
);
2845 else if (code
== MAX_EXPR
)
2848 max
= vrp_val_max (expr_type
);
2853 set_value_range_to_varying (vr
);
2857 else if (code
== MULT_EXPR
)
2859 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2860 drop to varying. This test requires 2*prec bits if both
2861 operands are signed and 2*prec + 2 bits if either is not. */
2863 signop sign
= TYPE_SIGN (expr_type
);
2864 unsigned int prec
= TYPE_PRECISION (expr_type
);
2866 if (range_int_cst_p (&vr0
)
2867 && range_int_cst_p (&vr1
)
2868 && TYPE_OVERFLOW_WRAPS (expr_type
))
2870 typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION
* 2) vrp_int
;
2871 typedef generic_wide_int
2872 <wi::extended_tree
<WIDE_INT_MAX_PRECISION
* 2> > vrp_int_cst
;
2873 vrp_int sizem1
= wi::mask
<vrp_int
> (prec
, false);
2874 vrp_int size
= sizem1
+ 1;
2876 /* Extend the values using the sign of the result to PREC2.
2877 From here on out, everthing is just signed math no matter
2878 what the input types were. */
2879 vrp_int min0
= vrp_int_cst (vr0
.min
);
2880 vrp_int max0
= vrp_int_cst (vr0
.max
);
2881 vrp_int min1
= vrp_int_cst (vr1
.min
);
2882 vrp_int max1
= vrp_int_cst (vr1
.max
);
2883 /* Canonicalize the intervals. */
2884 if (sign
== UNSIGNED
)
2886 if (wi::ltu_p (size
, min0
+ max0
))
2892 if (wi::ltu_p (size
, min1
+ max1
))
2899 vrp_int prod0
= min0
* min1
;
2900 vrp_int prod1
= min0
* max1
;
2901 vrp_int prod2
= max0
* min1
;
2902 vrp_int prod3
= max0
* max1
;
2904 /* Sort the 4 products so that min is in prod0 and max is in
2906 /* min0min1 > max0max1 */
2907 if (wi::gts_p (prod0
, prod3
))
2909 vrp_int tmp
= prod3
;
2914 /* min0max1 > max0min1 */
2915 if (wi::gts_p (prod1
, prod2
))
2917 vrp_int tmp
= prod2
;
2922 if (wi::gts_p (prod0
, prod1
))
2924 vrp_int tmp
= prod1
;
2929 if (wi::gts_p (prod2
, prod3
))
2931 vrp_int tmp
= prod3
;
2936 /* diff = max - min. */
2937 prod2
= prod3
- prod0
;
2938 if (wi::geu_p (prod2
, sizem1
))
2940 /* the range covers all values. */
2941 set_value_range_to_varying (vr
);
2945 /* The following should handle the wrapping and selecting
2946 VR_ANTI_RANGE for us. */
2947 min
= wide_int_to_tree (expr_type
, prod0
);
2948 max
= wide_int_to_tree (expr_type
, prod3
);
2949 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
2953 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2954 drop to VR_VARYING. It would take more effort to compute a
2955 precise range for such a case. For example, if we have
2956 op0 == 65536 and op1 == 65536 with their ranges both being
2957 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2958 we cannot claim that the product is in ~[0,0]. Note that we
2959 are guaranteed to have vr0.type == vr1.type at this
2961 if (vr0
.type
== VR_ANTI_RANGE
2962 && !TYPE_OVERFLOW_UNDEFINED (expr_type
))
2964 set_value_range_to_varying (vr
);
2968 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2971 else if (code
== RSHIFT_EXPR
2972 || code
== LSHIFT_EXPR
)
2974 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2975 then drop to VR_VARYING. Outside of this range we get undefined
2976 behavior from the shift operation. We cannot even trust
2977 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2978 shifts, and the operation at the tree level may be widened. */
2979 if (range_int_cst_p (&vr1
)
2980 && compare_tree_int (vr1
.min
, 0) >= 0
2981 && compare_tree_int (vr1
.max
, TYPE_PRECISION (expr_type
)) == -1)
2983 if (code
== RSHIFT_EXPR
)
2985 /* Even if vr0 is VARYING or otherwise not usable, we can derive
2986 useful ranges just from the shift count. E.g.
2987 x >> 63 for signed 64-bit x is always [-1, 0]. */
2988 if (vr0
.type
!= VR_RANGE
|| symbolic_range_p (&vr0
))
2990 vr0
.type
= type
= VR_RANGE
;
2991 vr0
.min
= vrp_val_min (expr_type
);
2992 vr0
.max
= vrp_val_max (expr_type
);
2994 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2997 /* We can map lshifts by constants to MULT_EXPR handling. */
2998 else if (code
== LSHIFT_EXPR
2999 && range_int_cst_singleton_p (&vr1
))
3001 bool saved_flag_wrapv
;
3002 value_range_t vr1p
= VR_INITIALIZER
;
3003 vr1p
.type
= VR_RANGE
;
3004 vr1p
.min
= (wide_int_to_tree
3006 wi::set_bit_in_zero (tree_to_shwi (vr1
.min
),
3007 TYPE_PRECISION (expr_type
))));
3008 vr1p
.max
= vr1p
.min
;
3009 /* We have to use a wrapping multiply though as signed overflow
3010 on lshifts is implementation defined in C89. */
3011 saved_flag_wrapv
= flag_wrapv
;
3013 extract_range_from_binary_expr_1 (vr
, MULT_EXPR
, expr_type
,
3015 flag_wrapv
= saved_flag_wrapv
;
3018 else if (code
== LSHIFT_EXPR
3019 && range_int_cst_p (&vr0
))
3021 int prec
= TYPE_PRECISION (expr_type
);
3022 int overflow_pos
= prec
;
3024 wide_int low_bound
, high_bound
;
3025 bool uns
= TYPE_UNSIGNED (expr_type
);
3026 bool in_bounds
= false;
3031 bound_shift
= overflow_pos
- tree_to_shwi (vr1
.max
);
3032 /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
3033 overflow. However, for that to happen, vr1.max needs to be
3034 zero, which means vr1 is a singleton range of zero, which
3035 means it should be handled by the previous LSHIFT_EXPR
3037 wide_int bound
= wi::set_bit_in_zero (bound_shift
, prec
);
3038 wide_int complement
= ~(bound
- 1);
3043 high_bound
= complement
;
3044 if (wi::ltu_p (vr0
.max
, low_bound
))
3046 /* [5, 6] << [1, 2] == [10, 24]. */
3047 /* We're shifting out only zeroes, the value increases
3051 else if (wi::ltu_p (high_bound
, vr0
.min
))
3053 /* [0xffffff00, 0xffffffff] << [1, 2]
3054 == [0xfffffc00, 0xfffffffe]. */
3055 /* We're shifting out only ones, the value decreases
3062 /* [-1, 1] << [1, 2] == [-4, 4]. */
3063 low_bound
= complement
;
3065 if (wi::lts_p (vr0
.max
, high_bound
)
3066 && wi::lts_p (low_bound
, vr0
.min
))
3068 /* For non-negative numbers, we're shifting out only
3069 zeroes, the value increases monotonically.
3070 For negative numbers, we're shifting out only ones, the
3071 value decreases monotomically. */
3078 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
3083 set_value_range_to_varying (vr
);
3086 else if (code
== TRUNC_DIV_EXPR
3087 || code
== FLOOR_DIV_EXPR
3088 || code
== CEIL_DIV_EXPR
3089 || code
== EXACT_DIV_EXPR
3090 || code
== ROUND_DIV_EXPR
)
3092 if (vr0
.type
!= VR_RANGE
|| symbolic_range_p (&vr0
))
3094 /* For division, if op1 has VR_RANGE but op0 does not, something
3095 can be deduced just from that range. Say [min, max] / [4, max]
3096 gives [min / 4, max / 4] range. */
3097 if (vr1
.type
== VR_RANGE
3098 && !symbolic_range_p (&vr1
)
3099 && range_includes_zero_p (vr1
.min
, vr1
.max
) == 0)
3101 vr0
.type
= type
= VR_RANGE
;
3102 vr0
.min
= vrp_val_min (expr_type
);
3103 vr0
.max
= vrp_val_max (expr_type
);
3107 set_value_range_to_varying (vr
);
3112 /* For divisions, if flag_non_call_exceptions is true, we must
3113 not eliminate a division by zero. */
3114 if (cfun
->can_throw_non_call_exceptions
3115 && (vr1
.type
!= VR_RANGE
3116 || range_includes_zero_p (vr1
.min
, vr1
.max
) != 0))
3118 set_value_range_to_varying (vr
);
3122 /* For divisions, if op0 is VR_RANGE, we can deduce a range
3123 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
3125 if (vr0
.type
== VR_RANGE
3126 && (vr1
.type
!= VR_RANGE
3127 || range_includes_zero_p (vr1
.min
, vr1
.max
) != 0))
3129 tree zero
= build_int_cst (TREE_TYPE (vr0
.min
), 0);
3134 if (TYPE_UNSIGNED (expr_type
)
3135 || value_range_nonnegative_p (&vr1
))
3137 /* For unsigned division or when divisor is known
3138 to be non-negative, the range has to cover
3139 all numbers from 0 to max for positive max
3140 and all numbers from min to 0 for negative min. */
3141 cmp
= compare_values (vr0
.max
, zero
);
3144 else if (cmp
== 0 || cmp
== 1)
3148 cmp
= compare_values (vr0
.min
, zero
);
3151 else if (cmp
== 0 || cmp
== -1)
3158 /* Otherwise the range is -max .. max or min .. -min
3159 depending on which bound is bigger in absolute value,
3160 as the division can change the sign. */
3161 abs_extent_range (vr
, vr0
.min
, vr0
.max
);
3164 if (type
== VR_VARYING
)
3166 set_value_range_to_varying (vr
);
3172 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
3176 else if (code
== TRUNC_MOD_EXPR
)
3178 if (vr1
.type
!= VR_RANGE
3179 || range_includes_zero_p (vr1
.min
, vr1
.max
) != 0
3180 || vrp_val_is_min (vr1
.min
))
3182 set_value_range_to_varying (vr
);
3186 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
3187 max
= fold_unary_to_constant (ABS_EXPR
, expr_type
, vr1
.min
);
3188 if (tree_int_cst_lt (max
, vr1
.max
))
3190 max
= int_const_binop (MINUS_EXPR
, max
, build_int_cst (TREE_TYPE (max
), 1));
3191 /* If the dividend is non-negative the modulus will be
3192 non-negative as well. */
3193 if (TYPE_UNSIGNED (expr_type
)
3194 || value_range_nonnegative_p (&vr0
))
3195 min
= build_int_cst (TREE_TYPE (max
), 0);
3197 min
= fold_unary_to_constant (NEGATE_EXPR
, expr_type
, max
);
3199 else if (code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
|| code
== BIT_XOR_EXPR
)
3201 bool int_cst_range0
, int_cst_range1
;
3202 wide_int may_be_nonzero0
, may_be_nonzero1
;
3203 wide_int must_be_nonzero0
, must_be_nonzero1
;
3205 int_cst_range0
= zero_nonzero_bits_from_vr (expr_type
, &vr0
,
3208 int_cst_range1
= zero_nonzero_bits_from_vr (expr_type
, &vr1
,
3213 if (code
== BIT_AND_EXPR
)
3215 min
= wide_int_to_tree (expr_type
,
3216 must_be_nonzero0
& must_be_nonzero1
);
3217 wide_int wmax
= may_be_nonzero0
& may_be_nonzero1
;
3218 /* If both input ranges contain only negative values we can
3219 truncate the result range maximum to the minimum of the
3220 input range maxima. */
3221 if (int_cst_range0
&& int_cst_range1
3222 && tree_int_cst_sgn (vr0
.max
) < 0
3223 && tree_int_cst_sgn (vr1
.max
) < 0)
3225 wmax
= wi::min (wmax
, vr0
.max
, TYPE_SIGN (expr_type
));
3226 wmax
= wi::min (wmax
, vr1
.max
, TYPE_SIGN (expr_type
));
3228 /* If either input range contains only non-negative values
3229 we can truncate the result range maximum to the respective
3230 maximum of the input range. */
3231 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.min
) >= 0)
3232 wmax
= wi::min (wmax
, vr0
.max
, TYPE_SIGN (expr_type
));
3233 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.min
) >= 0)
3234 wmax
= wi::min (wmax
, vr1
.max
, TYPE_SIGN (expr_type
));
3235 max
= wide_int_to_tree (expr_type
, wmax
);
3237 else if (code
== BIT_IOR_EXPR
)
3239 max
= wide_int_to_tree (expr_type
,
3240 may_be_nonzero0
| may_be_nonzero1
);
3241 wide_int wmin
= must_be_nonzero0
| must_be_nonzero1
;
3242 /* If the input ranges contain only positive values we can
3243 truncate the minimum of the result range to the maximum
3244 of the input range minima. */
3245 if (int_cst_range0
&& int_cst_range1
3246 && tree_int_cst_sgn (vr0
.min
) >= 0
3247 && tree_int_cst_sgn (vr1
.min
) >= 0)
3249 wmin
= wi::max (wmin
, vr0
.min
, TYPE_SIGN (expr_type
));
3250 wmin
= wi::max (wmin
, vr1
.min
, TYPE_SIGN (expr_type
));
3252 /* If either input range contains only negative values
3253 we can truncate the minimum of the result range to the
3254 respective minimum range. */
3255 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.max
) < 0)
3256 wmin
= wi::max (wmin
, vr0
.min
, TYPE_SIGN (expr_type
));
3257 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.max
) < 0)
3258 wmin
= wi::max (wmin
, vr1
.min
, TYPE_SIGN (expr_type
));
3259 min
= wide_int_to_tree (expr_type
, wmin
);
3261 else if (code
== BIT_XOR_EXPR
)
3263 wide_int result_zero_bits
= ((must_be_nonzero0
& must_be_nonzero1
)
3264 | ~(may_be_nonzero0
| may_be_nonzero1
));
3265 wide_int result_one_bits
3266 = (must_be_nonzero0
.and_not (may_be_nonzero1
)
3267 | must_be_nonzero1
.and_not (may_be_nonzero0
));
3268 max
= wide_int_to_tree (expr_type
, ~result_zero_bits
);
3269 min
= wide_int_to_tree (expr_type
, result_one_bits
);
3270 /* If the range has all positive or all negative values the
3271 result is better than VARYING. */
3272 if (tree_int_cst_sgn (min
) < 0
3273 || tree_int_cst_sgn (max
) >= 0)
3276 max
= min
= NULL_TREE
;
3282 /* If either MIN or MAX overflowed, then set the resulting range to
3283 VARYING. But we do accept an overflow infinity representation. */
3284 if (min
== NULL_TREE
3285 || (TREE_OVERFLOW_P (min
) && !is_overflow_infinity (min
))
3287 || (TREE_OVERFLOW_P (max
) && !is_overflow_infinity (max
)))
3289 set_value_range_to_varying (vr
);
3295 2) [-INF, +-INF(OVF)]
3296 3) [+-INF(OVF), +INF]
3297 4) [+-INF(OVF), +-INF(OVF)]
3298 We learn nothing when we have INF and INF(OVF) on both sides.
3299 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3301 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
3302 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
3304 set_value_range_to_varying (vr
);
3308 cmp
= compare_values (min
, max
);
3309 if (cmp
== -2 || cmp
== 1)
3311 /* If the new range has its limits swapped around (MIN > MAX),
3312 then the operation caused one of them to wrap around, mark
3313 the new range VARYING. */
3314 set_value_range_to_varying (vr
);
3317 set_value_range (vr
, type
, min
, max
, NULL
);
3320 /* Extract range information from a binary expression OP0 CODE OP1 based on
3321 the ranges of each of its operands with resulting type EXPR_TYPE.
3322 The resulting range is stored in *VR. */
3325 extract_range_from_binary_expr (value_range_t
*vr
,
3326 enum tree_code code
,
3327 tree expr_type
, tree op0
, tree op1
)
3329 value_range_t vr0
= VR_INITIALIZER
;
3330 value_range_t vr1
= VR_INITIALIZER
;
3332 /* Get value ranges for each operand. For constant operands, create
3333 a new value range with the operand to simplify processing. */
3334 if (TREE_CODE (op0
) == SSA_NAME
)
3335 vr0
= *(get_value_range (op0
));
3336 else if (is_gimple_min_invariant (op0
))
3337 set_value_range_to_value (&vr0
, op0
, NULL
);
3339 set_value_range_to_varying (&vr0
);
3341 if (TREE_CODE (op1
) == SSA_NAME
)
3342 vr1
= *(get_value_range (op1
));
3343 else if (is_gimple_min_invariant (op1
))
3344 set_value_range_to_value (&vr1
, op1
, NULL
);
3346 set_value_range_to_varying (&vr1
);
3348 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vr0
, &vr1
);
3350 /* Try harder for PLUS and MINUS if the range of one operand is symbolic
3351 and based on the other operand, for example if it was deduced from a
3352 symbolic comparison. When a bound of the range of the first operand
3353 is invariant, we set the corresponding bound of the new range to INF
3354 in order to avoid recursing on the range of the second operand. */
3355 if (vr
->type
== VR_VARYING
3356 && (code
== PLUS_EXPR
|| code
== MINUS_EXPR
)
3357 && TREE_CODE (op1
) == SSA_NAME
3358 && vr0
.type
== VR_RANGE
3359 && symbolic_range_based_on_p (&vr0
, op1
))
3361 const bool minus_p
= (code
== MINUS_EXPR
);
3362 value_range_t n_vr1
= VR_INITIALIZER
;
3364 /* Try with VR0 and [-INF, OP1]. */
3365 if (is_gimple_min_invariant (minus_p
? vr0
.max
: vr0
.min
))
3366 set_value_range (&n_vr1
, VR_RANGE
, vrp_val_min (expr_type
), op1
, NULL
);
3368 /* Try with VR0 and [OP1, +INF]. */
3369 else if (is_gimple_min_invariant (minus_p
? vr0
.min
: vr0
.max
))
3370 set_value_range (&n_vr1
, VR_RANGE
, op1
, vrp_val_max (expr_type
), NULL
);
3372 /* Try with VR0 and [OP1, OP1]. */
3374 set_value_range (&n_vr1
, VR_RANGE
, op1
, op1
, NULL
);
3376 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vr0
, &n_vr1
);
3379 if (vr
->type
== VR_VARYING
3380 && (code
== PLUS_EXPR
|| code
== MINUS_EXPR
)
3381 && TREE_CODE (op0
) == SSA_NAME
3382 && vr1
.type
== VR_RANGE
3383 && symbolic_range_based_on_p (&vr1
, op0
))
3385 const bool minus_p
= (code
== MINUS_EXPR
);
3386 value_range_t n_vr0
= VR_INITIALIZER
;
3388 /* Try with [-INF, OP0] and VR1. */
3389 if (is_gimple_min_invariant (minus_p
? vr1
.max
: vr1
.min
))
3390 set_value_range (&n_vr0
, VR_RANGE
, vrp_val_min (expr_type
), op0
, NULL
);
3392 /* Try with [OP0, +INF] and VR1. */
3393 else if (is_gimple_min_invariant (minus_p
? vr1
.min
: vr1
.max
))
3394 set_value_range (&n_vr0
, VR_RANGE
, op0
, vrp_val_max (expr_type
), NULL
);
3396 /* Try with [OP0, OP0] and VR1. */
3398 set_value_range (&n_vr0
, VR_RANGE
, op0
, op0
, NULL
);
3400 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &n_vr0
, &vr1
);
3404 /* Extract range information from a unary operation CODE based on
3405 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3406 The The resulting range is stored in *VR. */
3409 extract_range_from_unary_expr_1 (value_range_t
*vr
,
3410 enum tree_code code
, tree type
,
3411 value_range_t
*vr0_
, tree op0_type
)
3413 value_range_t vr0
= *vr0_
, vrtem0
= VR_INITIALIZER
, vrtem1
= VR_INITIALIZER
;
3415 /* VRP only operates on integral and pointer types. */
3416 if (!(INTEGRAL_TYPE_P (op0_type
)
3417 || POINTER_TYPE_P (op0_type
))
3418 || !(INTEGRAL_TYPE_P (type
)
3419 || POINTER_TYPE_P (type
)))
3421 set_value_range_to_varying (vr
);
3425 /* If VR0 is UNDEFINED, so is the result. */
3426 if (vr0
.type
== VR_UNDEFINED
)
3428 set_value_range_to_undefined (vr
);
3432 /* Handle operations that we express in terms of others. */
3433 if (code
== PAREN_EXPR
|| code
== OBJ_TYPE_REF
)
3435 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
3436 copy_value_range (vr
, &vr0
);
3439 else if (code
== NEGATE_EXPR
)
3441 /* -X is simply 0 - X, so re-use existing code that also handles
3442 anti-ranges fine. */
3443 value_range_t zero
= VR_INITIALIZER
;
3444 set_value_range_to_value (&zero
, build_int_cst (type
, 0), NULL
);
3445 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
, type
, &zero
, &vr0
);
3448 else if (code
== BIT_NOT_EXPR
)
3450 /* ~X is simply -1 - X, so re-use existing code that also handles
3451 anti-ranges fine. */
3452 value_range_t minusone
= VR_INITIALIZER
;
3453 set_value_range_to_value (&minusone
, build_int_cst (type
, -1), NULL
);
3454 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
,
3455 type
, &minusone
, &vr0
);
3459 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3460 and express op ~[] as (op []') U (op []''). */
3461 if (vr0
.type
== VR_ANTI_RANGE
3462 && ranges_from_anti_range (&vr0
, &vrtem0
, &vrtem1
))
3464 extract_range_from_unary_expr_1 (vr
, code
, type
, &vrtem0
, op0_type
);
3465 if (vrtem1
.type
!= VR_UNDEFINED
)
3467 value_range_t vrres
= VR_INITIALIZER
;
3468 extract_range_from_unary_expr_1 (&vrres
, code
, type
,
3470 vrp_meet (vr
, &vrres
);
3475 if (CONVERT_EXPR_CODE_P (code
))
3477 tree inner_type
= op0_type
;
3478 tree outer_type
= type
;
3480 /* If the expression evaluates to a pointer, we are only interested in
3481 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3482 if (POINTER_TYPE_P (type
))
3484 if (range_is_nonnull (&vr0
))
3485 set_value_range_to_nonnull (vr
, type
);
3486 else if (range_is_null (&vr0
))
3487 set_value_range_to_null (vr
, type
);
3489 set_value_range_to_varying (vr
);
3493 /* If VR0 is varying and we increase the type precision, assume
3494 a full range for the following transformation. */
3495 if (vr0
.type
== VR_VARYING
3496 && INTEGRAL_TYPE_P (inner_type
)
3497 && TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
))
3499 vr0
.type
= VR_RANGE
;
3500 vr0
.min
= TYPE_MIN_VALUE (inner_type
);
3501 vr0
.max
= TYPE_MAX_VALUE (inner_type
);
3504 /* If VR0 is a constant range or anti-range and the conversion is
3505 not truncating we can convert the min and max values and
3506 canonicalize the resulting range. Otherwise we can do the
3507 conversion if the size of the range is less than what the
3508 precision of the target type can represent and the range is
3509 not an anti-range. */
3510 if ((vr0
.type
== VR_RANGE
3511 || vr0
.type
== VR_ANTI_RANGE
)
3512 && TREE_CODE (vr0
.min
) == INTEGER_CST
3513 && TREE_CODE (vr0
.max
) == INTEGER_CST
3514 && (!is_overflow_infinity (vr0
.min
)
3515 || (vr0
.type
== VR_RANGE
3516 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
3517 && needs_overflow_infinity (outer_type
)
3518 && supports_overflow_infinity (outer_type
)))
3519 && (!is_overflow_infinity (vr0
.max
)
3520 || (vr0
.type
== VR_RANGE
3521 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
3522 && needs_overflow_infinity (outer_type
)
3523 && supports_overflow_infinity (outer_type
)))
3524 && (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
3525 || (vr0
.type
== VR_RANGE
3526 && integer_zerop (int_const_binop (RSHIFT_EXPR
,
3527 int_const_binop (MINUS_EXPR
, vr0
.max
, vr0
.min
),
3528 size_int (TYPE_PRECISION (outer_type
)))))))
3530 tree new_min
, new_max
;
3531 if (is_overflow_infinity (vr0
.min
))
3532 new_min
= negative_overflow_infinity (outer_type
);
3534 new_min
= force_fit_type (outer_type
, wi::to_widest (vr0
.min
),
3536 if (is_overflow_infinity (vr0
.max
))
3537 new_max
= positive_overflow_infinity (outer_type
);
3539 new_max
= force_fit_type (outer_type
, wi::to_widest (vr0
.max
),
3541 set_and_canonicalize_value_range (vr
, vr0
.type
,
3542 new_min
, new_max
, NULL
);
3546 set_value_range_to_varying (vr
);
3549 else if (code
== ABS_EXPR
)
3554 /* Pass through vr0 in the easy cases. */
3555 if (TYPE_UNSIGNED (type
)
3556 || value_range_nonnegative_p (&vr0
))
3558 copy_value_range (vr
, &vr0
);
3562 /* For the remaining varying or symbolic ranges we can't do anything
3564 if (vr0
.type
== VR_VARYING
3565 || symbolic_range_p (&vr0
))
3567 set_value_range_to_varying (vr
);
3571 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3573 if (!TYPE_OVERFLOW_UNDEFINED (type
)
3574 && ((vr0
.type
== VR_RANGE
3575 && vrp_val_is_min (vr0
.min
))
3576 || (vr0
.type
== VR_ANTI_RANGE
3577 && !vrp_val_is_min (vr0
.min
))))
3579 set_value_range_to_varying (vr
);
3583 /* ABS_EXPR may flip the range around, if the original range
3584 included negative values. */
3585 if (is_overflow_infinity (vr0
.min
))
3586 min
= positive_overflow_infinity (type
);
3587 else if (!vrp_val_is_min (vr0
.min
))
3588 min
= fold_unary_to_constant (code
, type
, vr0
.min
);
3589 else if (!needs_overflow_infinity (type
))
3590 min
= TYPE_MAX_VALUE (type
);
3591 else if (supports_overflow_infinity (type
))
3592 min
= positive_overflow_infinity (type
);
3595 set_value_range_to_varying (vr
);
3599 if (is_overflow_infinity (vr0
.max
))
3600 max
= positive_overflow_infinity (type
);
3601 else if (!vrp_val_is_min (vr0
.max
))
3602 max
= fold_unary_to_constant (code
, type
, vr0
.max
);
3603 else if (!needs_overflow_infinity (type
))
3604 max
= TYPE_MAX_VALUE (type
);
3605 else if (supports_overflow_infinity (type
)
3606 /* We shouldn't generate [+INF, +INF] as set_value_range
3607 doesn't like this and ICEs. */
3608 && !is_positive_overflow_infinity (min
))
3609 max
= positive_overflow_infinity (type
);
3612 set_value_range_to_varying (vr
);
3616 cmp
= compare_values (min
, max
);
3618 /* If a VR_ANTI_RANGEs contains zero, then we have
3619 ~[-INF, min(MIN, MAX)]. */
3620 if (vr0
.type
== VR_ANTI_RANGE
)
3622 if (range_includes_zero_p (vr0
.min
, vr0
.max
) == 1)
3624 /* Take the lower of the two values. */
3628 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3629 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3630 flag_wrapv is set and the original anti-range doesn't include
3631 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3632 if (TYPE_OVERFLOW_WRAPS (type
))
3634 tree type_min_value
= TYPE_MIN_VALUE (type
);
3636 min
= (vr0
.min
!= type_min_value
3637 ? int_const_binop (PLUS_EXPR
, type_min_value
,
3638 build_int_cst (TREE_TYPE (type_min_value
), 1))
3643 if (overflow_infinity_range_p (&vr0
))
3644 min
= negative_overflow_infinity (type
);
3646 min
= TYPE_MIN_VALUE (type
);
3651 /* All else has failed, so create the range [0, INF], even for
3652 flag_wrapv since TYPE_MIN_VALUE is in the original
3654 vr0
.type
= VR_RANGE
;
3655 min
= build_int_cst (type
, 0);
3656 if (needs_overflow_infinity (type
))
3658 if (supports_overflow_infinity (type
))
3659 max
= positive_overflow_infinity (type
);
3662 set_value_range_to_varying (vr
);
3667 max
= TYPE_MAX_VALUE (type
);
3671 /* If the range contains zero then we know that the minimum value in the
3672 range will be zero. */
3673 else if (range_includes_zero_p (vr0
.min
, vr0
.max
) == 1)
3677 min
= build_int_cst (type
, 0);
3681 /* If the range was reversed, swap MIN and MAX. */
3690 cmp
= compare_values (min
, max
);
3691 if (cmp
== -2 || cmp
== 1)
3693 /* If the new range has its limits swapped around (MIN > MAX),
3694 then the operation caused one of them to wrap around, mark
3695 the new range VARYING. */
3696 set_value_range_to_varying (vr
);
3699 set_value_range (vr
, vr0
.type
, min
, max
, NULL
);
3703 /* For unhandled operations fall back to varying. */
3704 set_value_range_to_varying (vr
);
3709 /* Extract range information from a unary expression CODE OP0 based on
3710 the range of its operand with resulting type TYPE.
3711 The resulting range is stored in *VR. */
3714 extract_range_from_unary_expr (value_range_t
*vr
, enum tree_code code
,
3715 tree type
, tree op0
)
3717 value_range_t vr0
= VR_INITIALIZER
;
3719 /* Get value ranges for the operand. For constant operands, create
3720 a new value range with the operand to simplify processing. */
3721 if (TREE_CODE (op0
) == SSA_NAME
)
3722 vr0
= *(get_value_range (op0
));
3723 else if (is_gimple_min_invariant (op0
))
3724 set_value_range_to_value (&vr0
, op0
, NULL
);
3726 set_value_range_to_varying (&vr0
);
3728 extract_range_from_unary_expr_1 (vr
, code
, type
, &vr0
, TREE_TYPE (op0
));
3732 /* Extract range information from a conditional expression STMT based on
3733 the ranges of each of its operands and the expression code. */
3736 extract_range_from_cond_expr (value_range_t
*vr
, gassign
*stmt
)
3739 value_range_t vr0
= VR_INITIALIZER
;
3740 value_range_t vr1
= VR_INITIALIZER
;
3742 /* Get value ranges for each operand. For constant operands, create
3743 a new value range with the operand to simplify processing. */
3744 op0
= gimple_assign_rhs2 (stmt
);
3745 if (TREE_CODE (op0
) == SSA_NAME
)
3746 vr0
= *(get_value_range (op0
));
3747 else if (is_gimple_min_invariant (op0
))
3748 set_value_range_to_value (&vr0
, op0
, NULL
);
3750 set_value_range_to_varying (&vr0
);
3752 op1
= gimple_assign_rhs3 (stmt
);
3753 if (TREE_CODE (op1
) == SSA_NAME
)
3754 vr1
= *(get_value_range (op1
));
3755 else if (is_gimple_min_invariant (op1
))
3756 set_value_range_to_value (&vr1
, op1
, NULL
);
3758 set_value_range_to_varying (&vr1
);
3760 /* The resulting value range is the union of the operand ranges */
3761 copy_value_range (vr
, &vr0
);
3762 vrp_meet (vr
, &vr1
);
3766 /* Extract range information from a comparison expression EXPR based
3767 on the range of its operand and the expression code. */
3770 extract_range_from_comparison (value_range_t
*vr
, enum tree_code code
,
3771 tree type
, tree op0
, tree op1
)
3776 val
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, false, &sop
,
3779 /* A disadvantage of using a special infinity as an overflow
3780 representation is that we lose the ability to record overflow
3781 when we don't have an infinity. So we have to ignore a result
3782 which relies on overflow. */
3784 if (val
&& !is_overflow_infinity (val
) && !sop
)
3786 /* Since this expression was found on the RHS of an assignment,
3787 its type may be different from _Bool. Convert VAL to EXPR's
3789 val
= fold_convert (type
, val
);
3790 if (is_gimple_min_invariant (val
))
3791 set_value_range_to_value (vr
, val
, vr
->equiv
);
3793 set_value_range (vr
, VR_RANGE
, val
, val
, vr
->equiv
);
3796 /* The result of a comparison is always true or false. */
3797 set_value_range_to_truthvalue (vr
, type
);
3800 /* Helper function for simplify_internal_call_using_ranges and
3801 extract_range_basic. Return true if OP0 SUBCODE OP1 for
3802 SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
3803 always overflow. Set *OVF to true if it is known to always
3807 check_for_binary_op_overflow (enum tree_code subcode
, tree type
,
3808 tree op0
, tree op1
, bool *ovf
)
3810 value_range_t vr0
= VR_INITIALIZER
;
3811 value_range_t vr1
= VR_INITIALIZER
;
3812 if (TREE_CODE (op0
) == SSA_NAME
)
3813 vr0
= *get_value_range (op0
);
3814 else if (TREE_CODE (op0
) == INTEGER_CST
)
3815 set_value_range_to_value (&vr0
, op0
, NULL
);
3817 set_value_range_to_varying (&vr0
);
3819 if (TREE_CODE (op1
) == SSA_NAME
)
3820 vr1
= *get_value_range (op1
);
3821 else if (TREE_CODE (op1
) == INTEGER_CST
)
3822 set_value_range_to_value (&vr1
, op1
, NULL
);
3824 set_value_range_to_varying (&vr1
);
3826 if (!range_int_cst_p (&vr0
)
3827 || TREE_OVERFLOW (vr0
.min
)
3828 || TREE_OVERFLOW (vr0
.max
))
3830 vr0
.min
= vrp_val_min (TREE_TYPE (op0
));
3831 vr0
.max
= vrp_val_max (TREE_TYPE (op0
));
3833 if (!range_int_cst_p (&vr1
)
3834 || TREE_OVERFLOW (vr1
.min
)
3835 || TREE_OVERFLOW (vr1
.max
))
3837 vr1
.min
= vrp_val_min (TREE_TYPE (op1
));
3838 vr1
.max
= vrp_val_max (TREE_TYPE (op1
));
3840 *ovf
= arith_overflowed_p (subcode
, type
, vr0
.min
,
3841 subcode
== MINUS_EXPR
? vr1
.max
: vr1
.min
);
3842 if (arith_overflowed_p (subcode
, type
, vr0
.max
,
3843 subcode
== MINUS_EXPR
? vr1
.min
: vr1
.max
) != *ovf
)
3845 if (subcode
== MULT_EXPR
)
3847 if (arith_overflowed_p (subcode
, type
, vr0
.min
, vr1
.max
) != *ovf
3848 || arith_overflowed_p (subcode
, type
, vr0
.max
, vr1
.min
) != *ovf
)
3853 /* So far we found that there is an overflow on the boundaries.
3854 That doesn't prove that there is an overflow even for all values
3855 in between the boundaries. For that compute widest_int range
3856 of the result and see if it doesn't overlap the range of
3858 widest_int wmin
, wmax
;
3861 w
[0] = wi::to_widest (vr0
.min
);
3862 w
[1] = wi::to_widest (vr0
.max
);
3863 w
[2] = wi::to_widest (vr1
.min
);
3864 w
[3] = wi::to_widest (vr1
.max
);
3865 for (i
= 0; i
< 4; i
++)
3871 wt
= wi::add (w
[i
& 1], w
[2 + (i
& 2) / 2]);
3874 wt
= wi::sub (w
[i
& 1], w
[2 + (i
& 2) / 2]);
3877 wt
= wi::mul (w
[i
& 1], w
[2 + (i
& 2) / 2]);
3889 wmin
= wi::smin (wmin
, wt
);
3890 wmax
= wi::smax (wmax
, wt
);
3893 /* The result of op0 CODE op1 is known to be in range
3895 widest_int wtmin
= wi::to_widest (vrp_val_min (type
));
3896 widest_int wtmax
= wi::to_widest (vrp_val_max (type
));
3897 /* If all values in [wmin, wmax] are smaller than
3898 [wtmin, wtmax] or all are larger than [wtmin, wtmax],
3899 the arithmetic operation will always overflow. */
3900 if (wi::lts_p (wmax
, wtmin
) || wi::gts_p (wmin
, wtmax
))
3907 /* Try to derive a nonnegative or nonzero range out of STMT relying
3908 primarily on generic routines in fold in conjunction with range data.
3909 Store the result in *VR */
3912 extract_range_basic (value_range_t
*vr
, gimple stmt
)
3915 tree type
= gimple_expr_type (stmt
);
3917 if (gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
))
3919 tree fndecl
= gimple_call_fndecl (stmt
), arg
;
3920 int mini
, maxi
, zerov
= 0, prec
;
3922 switch (DECL_FUNCTION_CODE (fndecl
))
3924 case BUILT_IN_CONSTANT_P
:
3925 /* If the call is __builtin_constant_p and the argument is a
3926 function parameter resolve it to false. This avoids bogus
3927 array bound warnings.
3928 ??? We could do this as early as inlining is finished. */
3929 arg
= gimple_call_arg (stmt
, 0);
3930 if (TREE_CODE (arg
) == SSA_NAME
3931 && SSA_NAME_IS_DEFAULT_DEF (arg
)
3932 && TREE_CODE (SSA_NAME_VAR (arg
)) == PARM_DECL
)
3934 set_value_range_to_null (vr
, type
);
3938 /* Both __builtin_ffs* and __builtin_popcount return
3940 CASE_INT_FN (BUILT_IN_FFS
):
3941 CASE_INT_FN (BUILT_IN_POPCOUNT
):
3942 arg
= gimple_call_arg (stmt
, 0);
3943 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
3946 if (TREE_CODE (arg
) == SSA_NAME
)
3948 value_range_t
*vr0
= get_value_range (arg
);
3949 /* If arg is non-zero, then ffs or popcount
3951 if (((vr0
->type
== VR_RANGE
3952 && range_includes_zero_p (vr0
->min
, vr0
->max
) == 0)
3953 || (vr0
->type
== VR_ANTI_RANGE
3954 && range_includes_zero_p (vr0
->min
, vr0
->max
) == 1))
3955 && !is_overflow_infinity (vr0
->min
)
3956 && !is_overflow_infinity (vr0
->max
))
3958 /* If some high bits are known to be zero,
3959 we can decrease the maximum. */
3960 if (vr0
->type
== VR_RANGE
3961 && TREE_CODE (vr0
->max
) == INTEGER_CST
3962 && !operand_less_p (vr0
->min
,
3963 build_zero_cst (TREE_TYPE (vr0
->min
)))
3964 && !is_overflow_infinity (vr0
->max
))
3965 maxi
= tree_floor_log2 (vr0
->max
) + 1;
3968 /* __builtin_parity* returns [0, 1]. */
3969 CASE_INT_FN (BUILT_IN_PARITY
):
3973 /* __builtin_c[lt]z* return [0, prec-1], except for
3974 when the argument is 0, but that is undefined behavior.
3975 On many targets where the CLZ RTL or optab value is defined
3976 for 0 the value is prec, so include that in the range
3978 CASE_INT_FN (BUILT_IN_CLZ
):
3979 arg
= gimple_call_arg (stmt
, 0);
3980 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
3983 if (optab_handler (clz_optab
, TYPE_MODE (TREE_TYPE (arg
)))
3985 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg
)),
3987 /* Handle only the single common value. */
3989 /* Magic value to give up, unless vr0 proves
3992 if (TREE_CODE (arg
) == SSA_NAME
)
3994 value_range_t
*vr0
= get_value_range (arg
);
3995 /* From clz of VR_RANGE minimum we can compute
3997 if (vr0
->type
== VR_RANGE
3998 && TREE_CODE (vr0
->min
) == INTEGER_CST
3999 && !is_overflow_infinity (vr0
->min
))
4001 maxi
= prec
- 1 - tree_floor_log2 (vr0
->min
);
4005 else if (vr0
->type
== VR_ANTI_RANGE
4006 && integer_zerop (vr0
->min
)
4007 && !is_overflow_infinity (vr0
->min
))
4014 /* From clz of VR_RANGE maximum we can compute
4016 if (vr0
->type
== VR_RANGE
4017 && TREE_CODE (vr0
->max
) == INTEGER_CST
4018 && !is_overflow_infinity (vr0
->max
))
4020 mini
= prec
- 1 - tree_floor_log2 (vr0
->max
);
4028 /* __builtin_ctz* return [0, prec-1], except for
4029 when the argument is 0, but that is undefined behavior.
4030 If there is a ctz optab for this mode and
4031 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
4032 otherwise just assume 0 won't be seen. */
4033 CASE_INT_FN (BUILT_IN_CTZ
):
4034 arg
= gimple_call_arg (stmt
, 0);
4035 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
4038 if (optab_handler (ctz_optab
, TYPE_MODE (TREE_TYPE (arg
)))
4040 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg
)),
4043 /* Handle only the two common values. */
4046 else if (zerov
== prec
)
4049 /* Magic value to give up, unless vr0 proves
4053 if (TREE_CODE (arg
) == SSA_NAME
)
4055 value_range_t
*vr0
= get_value_range (arg
);
4056 /* If arg is non-zero, then use [0, prec - 1]. */
4057 if (((vr0
->type
== VR_RANGE
4058 && integer_nonzerop (vr0
->min
))
4059 || (vr0
->type
== VR_ANTI_RANGE
4060 && integer_zerop (vr0
->min
)))
4061 && !is_overflow_infinity (vr0
->min
))
4066 /* If some high bits are known to be zero,
4067 we can decrease the result maximum. */
4068 if (vr0
->type
== VR_RANGE
4069 && TREE_CODE (vr0
->max
) == INTEGER_CST
4070 && !is_overflow_infinity (vr0
->max
))
4072 maxi
= tree_floor_log2 (vr0
->max
);
4073 /* For vr0 [0, 0] give up. */
4081 /* __builtin_clrsb* returns [0, prec-1]. */
4082 CASE_INT_FN (BUILT_IN_CLRSB
):
4083 arg
= gimple_call_arg (stmt
, 0);
4084 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
4089 set_value_range (vr
, VR_RANGE
, build_int_cst (type
, mini
),
4090 build_int_cst (type
, maxi
), NULL
);
4096 else if (is_gimple_call (stmt
) && gimple_call_internal_p (stmt
))
4098 enum tree_code subcode
= ERROR_MARK
;
4099 switch (gimple_call_internal_fn (stmt
))
4101 case IFN_UBSAN_CHECK_ADD
:
4102 subcode
= PLUS_EXPR
;
4104 case IFN_UBSAN_CHECK_SUB
:
4105 subcode
= MINUS_EXPR
;
4107 case IFN_UBSAN_CHECK_MUL
:
4108 subcode
= MULT_EXPR
;
4113 if (subcode
!= ERROR_MARK
)
4115 bool saved_flag_wrapv
= flag_wrapv
;
4116 /* Pretend the arithmetics is wrapping. If there is
4117 any overflow, we'll complain, but will actually do
4118 wrapping operation. */
4120 extract_range_from_binary_expr (vr
, subcode
, type
,
4121 gimple_call_arg (stmt
, 0),
4122 gimple_call_arg (stmt
, 1));
4123 flag_wrapv
= saved_flag_wrapv
;
4125 /* If for both arguments vrp_valueize returned non-NULL,
4126 this should have been already folded and if not, it
4127 wasn't folded because of overflow. Avoid removing the
4128 UBSAN_CHECK_* calls in that case. */
4129 if (vr
->type
== VR_RANGE
4130 && (vr
->min
== vr
->max
4131 || operand_equal_p (vr
->min
, vr
->max
, 0)))
4132 set_value_range_to_varying (vr
);
4136 /* Handle extraction of the two results (result of arithmetics and
4137 a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
4138 internal function. */
4139 else if (is_gimple_assign (stmt
)
4140 && (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
4141 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
4142 && INTEGRAL_TYPE_P (type
))
4144 enum tree_code code
= gimple_assign_rhs_code (stmt
);
4145 tree op
= gimple_assign_rhs1 (stmt
);
4146 if (TREE_CODE (op
) == code
&& TREE_CODE (TREE_OPERAND (op
, 0)) == SSA_NAME
)
4148 gimple g
= SSA_NAME_DEF_STMT (TREE_OPERAND (op
, 0));
4149 if (is_gimple_call (g
) && gimple_call_internal_p (g
))
4151 enum tree_code subcode
= ERROR_MARK
;
4152 switch (gimple_call_internal_fn (g
))
4154 case IFN_ADD_OVERFLOW
:
4155 subcode
= PLUS_EXPR
;
4157 case IFN_SUB_OVERFLOW
:
4158 subcode
= MINUS_EXPR
;
4160 case IFN_MUL_OVERFLOW
:
4161 subcode
= MULT_EXPR
;
4166 if (subcode
!= ERROR_MARK
)
4168 tree op0
= gimple_call_arg (g
, 0);
4169 tree op1
= gimple_call_arg (g
, 1);
4170 if (code
== IMAGPART_EXPR
)
4173 if (check_for_binary_op_overflow (subcode
, type
,
4175 set_value_range_to_value (vr
,
4176 build_int_cst (type
, ovf
),
4179 set_value_range (vr
, VR_RANGE
, build_int_cst (type
, 0),
4180 build_int_cst (type
, 1), NULL
);
4182 else if (types_compatible_p (type
, TREE_TYPE (op0
))
4183 && types_compatible_p (type
, TREE_TYPE (op1
)))
4185 bool saved_flag_wrapv
= flag_wrapv
;
4186 /* Pretend the arithmetics is wrapping. If there is
4187 any overflow, IMAGPART_EXPR will be set. */
4189 extract_range_from_binary_expr (vr
, subcode
, type
,
4191 flag_wrapv
= saved_flag_wrapv
;
4195 value_range_t vr0
= VR_INITIALIZER
;
4196 value_range_t vr1
= VR_INITIALIZER
;
4197 bool saved_flag_wrapv
= flag_wrapv
;
4198 /* Pretend the arithmetics is wrapping. If there is
4199 any overflow, IMAGPART_EXPR will be set. */
4201 extract_range_from_unary_expr (&vr0
, NOP_EXPR
,
4203 extract_range_from_unary_expr (&vr1
, NOP_EXPR
,
4205 extract_range_from_binary_expr_1 (vr
, subcode
, type
,
4207 flag_wrapv
= saved_flag_wrapv
;
4214 if (INTEGRAL_TYPE_P (type
)
4215 && gimple_stmt_nonnegative_warnv_p (stmt
, &sop
))
4216 set_value_range_to_nonnegative (vr
, type
,
4217 sop
|| stmt_overflow_infinity (stmt
));
4218 else if (vrp_stmt_computes_nonzero (stmt
, &sop
)
4220 set_value_range_to_nonnull (vr
, type
);
4222 set_value_range_to_varying (vr
);
4226 /* Try to compute a useful range out of assignment STMT and store it
4230 extract_range_from_assignment (value_range_t
*vr
, gassign
*stmt
)
4232 enum tree_code code
= gimple_assign_rhs_code (stmt
);
4234 if (code
== ASSERT_EXPR
)
4235 extract_range_from_assert (vr
, gimple_assign_rhs1 (stmt
));
4236 else if (code
== SSA_NAME
)
4237 extract_range_from_ssa_name (vr
, gimple_assign_rhs1 (stmt
));
4238 else if (TREE_CODE_CLASS (code
) == tcc_binary
)
4239 extract_range_from_binary_expr (vr
, gimple_assign_rhs_code (stmt
),
4240 gimple_expr_type (stmt
),
4241 gimple_assign_rhs1 (stmt
),
4242 gimple_assign_rhs2 (stmt
));
4243 else if (TREE_CODE_CLASS (code
) == tcc_unary
)
4244 extract_range_from_unary_expr (vr
, gimple_assign_rhs_code (stmt
),
4245 gimple_expr_type (stmt
),
4246 gimple_assign_rhs1 (stmt
));
4247 else if (code
== COND_EXPR
)
4248 extract_range_from_cond_expr (vr
, stmt
);
4249 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
4250 extract_range_from_comparison (vr
, gimple_assign_rhs_code (stmt
),
4251 gimple_expr_type (stmt
),
4252 gimple_assign_rhs1 (stmt
),
4253 gimple_assign_rhs2 (stmt
));
4254 else if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
4255 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
4256 set_value_range_to_value (vr
, gimple_assign_rhs1 (stmt
), NULL
);
4258 set_value_range_to_varying (vr
);
4260 if (vr
->type
== VR_VARYING
)
4261 extract_range_basic (vr
, stmt
);
4264 /* Given a range VR, a LOOP and a variable VAR, determine whether it
4265 would be profitable to adjust VR using scalar evolution information
4266 for VAR. If so, update VR with the new limits. */
4269 adjust_range_with_scev (value_range_t
*vr
, struct loop
*loop
,
4270 gimple stmt
, tree var
)
4272 tree init
, step
, chrec
, tmin
, tmax
, min
, max
, type
, tem
;
4273 enum ev_direction dir
;
4275 /* TODO. Don't adjust anti-ranges. An anti-range may provide
4276 better opportunities than a regular range, but I'm not sure. */
4277 if (vr
->type
== VR_ANTI_RANGE
)
4280 chrec
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, var
));
4282 /* Like in PR19590, scev can return a constant function. */
4283 if (is_gimple_min_invariant (chrec
))
4285 set_value_range_to_value (vr
, chrec
, vr
->equiv
);
4289 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
4292 init
= initial_condition_in_loop_num (chrec
, loop
->num
);
4293 tem
= op_with_constant_singleton_value_range (init
);
4296 step
= evolution_part_in_loop_num (chrec
, loop
->num
);
4297 tem
= op_with_constant_singleton_value_range (step
);
4301 /* If STEP is symbolic, we can't know whether INIT will be the
4302 minimum or maximum value in the range. Also, unless INIT is
4303 a simple expression, compare_values and possibly other functions
4304 in tree-vrp won't be able to handle it. */
4305 if (step
== NULL_TREE
4306 || !is_gimple_min_invariant (step
)
4307 || !valid_value_p (init
))
4310 dir
= scev_direction (chrec
);
4311 if (/* Do not adjust ranges if we do not know whether the iv increases
4312 or decreases, ... */
4313 dir
== EV_DIR_UNKNOWN
4314 /* ... or if it may wrap. */
4315 || scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
4319 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
4320 negative_overflow_infinity and positive_overflow_infinity,
4321 because we have concluded that the loop probably does not
4324 type
= TREE_TYPE (var
);
4325 if (POINTER_TYPE_P (type
) || !TYPE_MIN_VALUE (type
))
4326 tmin
= lower_bound_in_type (type
, type
);
4328 tmin
= TYPE_MIN_VALUE (type
);
4329 if (POINTER_TYPE_P (type
) || !TYPE_MAX_VALUE (type
))
4330 tmax
= upper_bound_in_type (type
, type
);
4332 tmax
= TYPE_MAX_VALUE (type
);
4334 /* Try to use estimated number of iterations for the loop to constrain the
4335 final value in the evolution. */
4336 if (TREE_CODE (step
) == INTEGER_CST
4337 && is_gimple_val (init
)
4338 && (TREE_CODE (init
) != SSA_NAME
4339 || get_value_range (init
)->type
== VR_RANGE
))
4343 /* We are only entering here for loop header PHI nodes, so using
4344 the number of latch executions is the correct thing to use. */
4345 if (max_loop_iterations (loop
, &nit
))
4347 value_range_t maxvr
= VR_INITIALIZER
;
4348 signop sgn
= TYPE_SIGN (TREE_TYPE (step
));
4351 widest_int wtmp
= wi::mul (wi::to_widest (step
), nit
, sgn
,
4353 /* If the multiplication overflowed we can't do a meaningful
4354 adjustment. Likewise if the result doesn't fit in the type
4355 of the induction variable. For a signed type we have to
4356 check whether the result has the expected signedness which
4357 is that of the step as number of iterations is unsigned. */
4359 && wi::fits_to_tree_p (wtmp
, TREE_TYPE (init
))
4361 || wi::gts_p (wtmp
, 0) == wi::gts_p (step
, 0)))
4363 tem
= wide_int_to_tree (TREE_TYPE (init
), wtmp
);
4364 extract_range_from_binary_expr (&maxvr
, PLUS_EXPR
,
4365 TREE_TYPE (init
), init
, tem
);
4366 /* Likewise if the addition did. */
4367 if (maxvr
.type
== VR_RANGE
)
4376 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
4381 /* For VARYING or UNDEFINED ranges, just about anything we get
4382 from scalar evolutions should be better. */
4384 if (dir
== EV_DIR_DECREASES
)
4389 else if (vr
->type
== VR_RANGE
)
4394 if (dir
== EV_DIR_DECREASES
)
4396 /* INIT is the maximum value. If INIT is lower than VR->MAX
4397 but no smaller than VR->MIN, set VR->MAX to INIT. */
4398 if (compare_values (init
, max
) == -1)
4401 /* According to the loop information, the variable does not
4402 overflow. If we think it does, probably because of an
4403 overflow due to arithmetic on a different INF value,
4405 if (is_negative_overflow_infinity (min
)
4406 || compare_values (min
, tmin
) == -1)
4412 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
4413 if (compare_values (init
, min
) == 1)
4416 if (is_positive_overflow_infinity (max
)
4417 || compare_values (tmax
, max
) == -1)
4424 /* If we just created an invalid range with the minimum
4425 greater than the maximum, we fail conservatively.
4426 This should happen only in unreachable
4427 parts of code, or for invalid programs. */
4428 if (compare_values (min
, max
) == 1
4429 || (is_negative_overflow_infinity (min
)
4430 && is_positive_overflow_infinity (max
)))
4433 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
4437 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4439 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4440 all the values in the ranges.
4442 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4444 - Return NULL_TREE if it is not always possible to determine the
4445 value of the comparison.
4447 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4448 overflow infinity was used in the test. */
4452 compare_ranges (enum tree_code comp
, value_range_t
*vr0
, value_range_t
*vr1
,
4453 bool *strict_overflow_p
)
4455 /* VARYING or UNDEFINED ranges cannot be compared. */
4456 if (vr0
->type
== VR_VARYING
4457 || vr0
->type
== VR_UNDEFINED
4458 || vr1
->type
== VR_VARYING
4459 || vr1
->type
== VR_UNDEFINED
)
4462 /* Anti-ranges need to be handled separately. */
4463 if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
4465 /* If both are anti-ranges, then we cannot compute any
4467 if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
4470 /* These comparisons are never statically computable. */
4477 /* Equality can be computed only between a range and an
4478 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4479 if (vr0
->type
== VR_RANGE
)
4481 /* To simplify processing, make VR0 the anti-range. */
4482 value_range_t
*tmp
= vr0
;
4487 gcc_assert (comp
== NE_EXPR
|| comp
== EQ_EXPR
);
4489 if (compare_values_warnv (vr0
->min
, vr1
->min
, strict_overflow_p
) == 0
4490 && compare_values_warnv (vr0
->max
, vr1
->max
, strict_overflow_p
) == 0)
4491 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
4496 if (!usable_range_p (vr0
, strict_overflow_p
)
4497 || !usable_range_p (vr1
, strict_overflow_p
))
4500 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4501 operands around and change the comparison code. */
4502 if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
4505 comp
= (comp
== GT_EXPR
) ? LT_EXPR
: LE_EXPR
;
4511 if (comp
== EQ_EXPR
)
4513 /* Equality may only be computed if both ranges represent
4514 exactly one value. */
4515 if (compare_values_warnv (vr0
->min
, vr0
->max
, strict_overflow_p
) == 0
4516 && compare_values_warnv (vr1
->min
, vr1
->max
, strict_overflow_p
) == 0)
4518 int cmp_min
= compare_values_warnv (vr0
->min
, vr1
->min
,
4520 int cmp_max
= compare_values_warnv (vr0
->max
, vr1
->max
,
4522 if (cmp_min
== 0 && cmp_max
== 0)
4523 return boolean_true_node
;
4524 else if (cmp_min
!= -2 && cmp_max
!= -2)
4525 return boolean_false_node
;
4527 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4528 else if (compare_values_warnv (vr0
->min
, vr1
->max
,
4529 strict_overflow_p
) == 1
4530 || compare_values_warnv (vr1
->min
, vr0
->max
,
4531 strict_overflow_p
) == 1)
4532 return boolean_false_node
;
4536 else if (comp
== NE_EXPR
)
4540 /* If VR0 is completely to the left or completely to the right
4541 of VR1, they are always different. Notice that we need to
4542 make sure that both comparisons yield similar results to
4543 avoid comparing values that cannot be compared at
4545 cmp1
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
4546 cmp2
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
4547 if ((cmp1
== -1 && cmp2
== -1) || (cmp1
== 1 && cmp2
== 1))
4548 return boolean_true_node
;
4550 /* If VR0 and VR1 represent a single value and are identical,
4552 else if (compare_values_warnv (vr0
->min
, vr0
->max
,
4553 strict_overflow_p
) == 0
4554 && compare_values_warnv (vr1
->min
, vr1
->max
,
4555 strict_overflow_p
) == 0
4556 && compare_values_warnv (vr0
->min
, vr1
->min
,
4557 strict_overflow_p
) == 0
4558 && compare_values_warnv (vr0
->max
, vr1
->max
,
4559 strict_overflow_p
) == 0)
4560 return boolean_false_node
;
4562 /* Otherwise, they may or may not be different. */
4566 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
4570 /* If VR0 is to the left of VR1, return true. */
4571 tst
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
4572 if ((comp
== LT_EXPR
&& tst
== -1)
4573 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
4575 if (overflow_infinity_range_p (vr0
)
4576 || overflow_infinity_range_p (vr1
))
4577 *strict_overflow_p
= true;
4578 return boolean_true_node
;
4581 /* If VR0 is to the right of VR1, return false. */
4582 tst
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
4583 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
4584 || (comp
== LE_EXPR
&& tst
== 1))
4586 if (overflow_infinity_range_p (vr0
)
4587 || overflow_infinity_range_p (vr1
))
4588 *strict_overflow_p
= true;
4589 return boolean_false_node
;
4592 /* Otherwise, we don't know. */
4600 /* Given a value range VR, a value VAL and a comparison code COMP, return
4601 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4602 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4603 always returns false. Return NULL_TREE if it is not always
4604 possible to determine the value of the comparison. Also set
4605 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4606 infinity was used in the test. */
4609 compare_range_with_value (enum tree_code comp
, value_range_t
*vr
, tree val
,
4610 bool *strict_overflow_p
)
4612 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
4615 /* Anti-ranges need to be handled separately. */
4616 if (vr
->type
== VR_ANTI_RANGE
)
4618 /* For anti-ranges, the only predicates that we can compute at
4619 compile time are equality and inequality. */
4626 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4627 if (value_inside_range (val
, vr
->min
, vr
->max
) == 1)
4628 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
4633 if (!usable_range_p (vr
, strict_overflow_p
))
4636 if (comp
== EQ_EXPR
)
4638 /* EQ_EXPR may only be computed if VR represents exactly
4640 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0)
4642 int cmp
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4644 return boolean_true_node
;
4645 else if (cmp
== -1 || cmp
== 1 || cmp
== 2)
4646 return boolean_false_node
;
4648 else if (compare_values_warnv (val
, vr
->min
, strict_overflow_p
) == -1
4649 || compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1)
4650 return boolean_false_node
;
4654 else if (comp
== NE_EXPR
)
4656 /* If VAL is not inside VR, then they are always different. */
4657 if (compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1
4658 || compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 1)
4659 return boolean_true_node
;
4661 /* If VR represents exactly one value equal to VAL, then return
4663 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0
4664 && compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 0)
4665 return boolean_false_node
;
4667 /* Otherwise, they may or may not be different. */
4670 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
4674 /* If VR is to the left of VAL, return true. */
4675 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
4676 if ((comp
== LT_EXPR
&& tst
== -1)
4677 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
4679 if (overflow_infinity_range_p (vr
))
4680 *strict_overflow_p
= true;
4681 return boolean_true_node
;
4684 /* If VR is to the right of VAL, return false. */
4685 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4686 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
4687 || (comp
== LE_EXPR
&& tst
== 1))
4689 if (overflow_infinity_range_p (vr
))
4690 *strict_overflow_p
= true;
4691 return boolean_false_node
;
4694 /* Otherwise, we don't know. */
4697 else if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
4701 /* If VR is to the right of VAL, return true. */
4702 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4703 if ((comp
== GT_EXPR
&& tst
== 1)
4704 || (comp
== GE_EXPR
&& (tst
== 0 || tst
== 1)))
4706 if (overflow_infinity_range_p (vr
))
4707 *strict_overflow_p
= true;
4708 return boolean_true_node
;
4711 /* If VR is to the left of VAL, return false. */
4712 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
4713 if ((comp
== GT_EXPR
&& (tst
== -1 || tst
== 0))
4714 || (comp
== GE_EXPR
&& tst
== -1))
4716 if (overflow_infinity_range_p (vr
))
4717 *strict_overflow_p
= true;
4718 return boolean_false_node
;
4721 /* Otherwise, we don't know. */
4729 /* Debugging dumps. */
4731 void dump_value_range (FILE *, value_range_t
*);
4732 void debug_value_range (value_range_t
*);
4733 void dump_all_value_ranges (FILE *);
4734 void debug_all_value_ranges (void);
4735 void dump_vr_equiv (FILE *, bitmap
);
4736 void debug_vr_equiv (bitmap
);
4739 /* Dump value range VR to FILE. */
4742 dump_value_range (FILE *file
, value_range_t
*vr
)
4745 fprintf (file
, "[]");
4746 else if (vr
->type
== VR_UNDEFINED
)
4747 fprintf (file
, "UNDEFINED");
4748 else if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
4750 tree type
= TREE_TYPE (vr
->min
);
4752 fprintf (file
, "%s[", (vr
->type
== VR_ANTI_RANGE
) ? "~" : "");
4754 if (is_negative_overflow_infinity (vr
->min
))
4755 fprintf (file
, "-INF(OVF)");
4756 else if (INTEGRAL_TYPE_P (type
)
4757 && !TYPE_UNSIGNED (type
)
4758 && vrp_val_is_min (vr
->min
))
4759 fprintf (file
, "-INF");
4761 print_generic_expr (file
, vr
->min
, 0);
4763 fprintf (file
, ", ");
4765 if (is_positive_overflow_infinity (vr
->max
))
4766 fprintf (file
, "+INF(OVF)");
4767 else if (INTEGRAL_TYPE_P (type
)
4768 && vrp_val_is_max (vr
->max
))
4769 fprintf (file
, "+INF");
4771 print_generic_expr (file
, vr
->max
, 0);
4773 fprintf (file
, "]");
4780 fprintf (file
, " EQUIVALENCES: { ");
4782 EXECUTE_IF_SET_IN_BITMAP (vr
->equiv
, 0, i
, bi
)
4784 print_generic_expr (file
, ssa_name (i
), 0);
4785 fprintf (file
, " ");
4789 fprintf (file
, "} (%u elements)", c
);
4792 else if (vr
->type
== VR_VARYING
)
4793 fprintf (file
, "VARYING");
4795 fprintf (file
, "INVALID RANGE");
4799 /* Dump value range VR to stderr. */
4802 debug_value_range (value_range_t
*vr
)
4804 dump_value_range (stderr
, vr
);
4805 fprintf (stderr
, "\n");
4809 /* Dump value ranges of all SSA_NAMEs to FILE. */
4812 dump_all_value_ranges (FILE *file
)
4816 for (i
= 0; i
< num_vr_values
; i
++)
4820 print_generic_expr (file
, ssa_name (i
), 0);
4821 fprintf (file
, ": ");
4822 dump_value_range (file
, vr_value
[i
]);
4823 fprintf (file
, "\n");
4827 fprintf (file
, "\n");
4831 /* Dump all value ranges to stderr. */
4834 debug_all_value_ranges (void)
4836 dump_all_value_ranges (stderr
);
4840 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4841 create a new SSA name N and return the assertion assignment
4842 'N = ASSERT_EXPR <V, V OP W>'. */
4845 build_assert_expr_for (tree cond
, tree v
)
4850 gcc_assert (TREE_CODE (v
) == SSA_NAME
4851 && COMPARISON_CLASS_P (cond
));
4853 a
= build2 (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
4854 assertion
= gimple_build_assign (NULL_TREE
, a
);
4856 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4857 operand of the ASSERT_EXPR. Create it so the new name and the old one
4858 are registered in the replacement table so that we can fix the SSA web
4859 after adding all the ASSERT_EXPRs. */
4860 create_new_def_for (v
, assertion
, NULL
);
4866 /* Return false if EXPR is a predicate expression involving floating
4870 fp_predicate (gimple stmt
)
4872 GIMPLE_CHECK (stmt
, GIMPLE_COND
);
4874 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt
)));
4877 /* If the range of values taken by OP can be inferred after STMT executes,
4878 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4879 describes the inferred range. Return true if a range could be
4883 infer_value_range (gimple stmt
, tree op
, enum tree_code
*comp_code_p
, tree
*val_p
)
4886 *comp_code_p
= ERROR_MARK
;
4888 /* Do not attempt to infer anything in names that flow through
4890 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
4893 /* Similarly, don't infer anything from statements that may throw
4894 exceptions. ??? Relax this requirement? */
4895 if (stmt_could_throw_p (stmt
))
4898 /* If STMT is the last statement of a basic block with no normal
4899 successors, there is no point inferring anything about any of its
4900 operands. We would not be able to find a proper insertion point
4901 for the assertion, anyway. */
4902 if (stmt_ends_bb_p (stmt
))
4907 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
4908 if (!(e
->flags
& EDGE_ABNORMAL
))
4914 if (infer_nonnull_range (stmt
, op
, true, true))
4916 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
4917 *comp_code_p
= NE_EXPR
;
4925 void dump_asserts_for (FILE *, tree
);
4926 void debug_asserts_for (tree
);
4927 void dump_all_asserts (FILE *);
4928 void debug_all_asserts (void);
4930 /* Dump all the registered assertions for NAME to FILE. */
4933 dump_asserts_for (FILE *file
, tree name
)
4937 fprintf (file
, "Assertions to be inserted for ");
4938 print_generic_expr (file
, name
, 0);
4939 fprintf (file
, "\n");
4941 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
4944 fprintf (file
, "\t");
4945 print_gimple_stmt (file
, gsi_stmt (loc
->si
), 0, 0);
4946 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
4949 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
4950 loc
->e
->dest
->index
);
4951 dump_edge_info (file
, loc
->e
, dump_flags
, 0);
4953 fprintf (file
, "\n\tPREDICATE: ");
4954 print_generic_expr (file
, name
, 0);
4955 fprintf (file
, " %s ", get_tree_code_name (loc
->comp_code
));
4956 print_generic_expr (file
, loc
->val
, 0);
4957 fprintf (file
, "\n\n");
4961 fprintf (file
, "\n");
4965 /* Dump all the registered assertions for NAME to stderr. */
4968 debug_asserts_for (tree name
)
4970 dump_asserts_for (stderr
, name
);
4974 /* Dump all the registered assertions for all the names to FILE. */
4977 dump_all_asserts (FILE *file
)
4982 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
4983 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
4984 dump_asserts_for (file
, ssa_name (i
));
4985 fprintf (file
, "\n");
4989 /* Dump all the registered assertions for all the names to stderr. */
4992 debug_all_asserts (void)
4994 dump_all_asserts (stderr
);
4998 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4999 'EXPR COMP_CODE VAL' at a location that dominates block BB or
5000 E->DEST, then register this location as a possible insertion point
5001 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
5003 BB, E and SI provide the exact insertion point for the new
5004 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
5005 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
5006 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
5007 must not be NULL. */
5010 register_new_assert_for (tree name
, tree expr
,
5011 enum tree_code comp_code
,
5015 gimple_stmt_iterator si
)
5017 assert_locus_t n
, loc
, last_loc
;
5018 basic_block dest_bb
;
5020 gcc_checking_assert (bb
== NULL
|| e
== NULL
);
5023 gcc_checking_assert (gimple_code (gsi_stmt (si
)) != GIMPLE_COND
5024 && gimple_code (gsi_stmt (si
)) != GIMPLE_SWITCH
);
5026 /* Never build an assert comparing against an integer constant with
5027 TREE_OVERFLOW set. This confuses our undefined overflow warning
5029 if (TREE_OVERFLOW_P (val
))
5030 val
= drop_tree_overflow (val
);
5032 /* The new assertion A will be inserted at BB or E. We need to
5033 determine if the new location is dominated by a previously
5034 registered location for A. If we are doing an edge insertion,
5035 assume that A will be inserted at E->DEST. Note that this is not
5038 If E is a critical edge, it will be split. But even if E is
5039 split, the new block will dominate the same set of blocks that
5042 The reverse, however, is not true, blocks dominated by E->DEST
5043 will not be dominated by the new block created to split E. So,
5044 if the insertion location is on a critical edge, we will not use
5045 the new location to move another assertion previously registered
5046 at a block dominated by E->DEST. */
5047 dest_bb
= (bb
) ? bb
: e
->dest
;
5049 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
5050 VAL at a block dominating DEST_BB, then we don't need to insert a new
5051 one. Similarly, if the same assertion already exists at a block
5052 dominated by DEST_BB and the new location is not on a critical
5053 edge, then update the existing location for the assertion (i.e.,
5054 move the assertion up in the dominance tree).
5056 Note, this is implemented as a simple linked list because there
5057 should not be more than a handful of assertions registered per
5058 name. If this becomes a performance problem, a table hashed by
5059 COMP_CODE and VAL could be implemented. */
5060 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
5064 if (loc
->comp_code
== comp_code
5066 || operand_equal_p (loc
->val
, val
, 0))
5067 && (loc
->expr
== expr
5068 || operand_equal_p (loc
->expr
, expr
, 0)))
5070 /* If E is not a critical edge and DEST_BB
5071 dominates the existing location for the assertion, move
5072 the assertion up in the dominance tree by updating its
5073 location information. */
5074 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
5075 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
5084 /* Update the last node of the list and move to the next one. */
5089 /* If we didn't find an assertion already registered for
5090 NAME COMP_CODE VAL, add a new one at the end of the list of
5091 assertions associated with NAME. */
5092 n
= XNEW (struct assert_locus_d
);
5096 n
->comp_code
= comp_code
;
5104 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
5106 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
5109 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
5110 Extract a suitable test code and value and store them into *CODE_P and
5111 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
5113 If no extraction was possible, return FALSE, otherwise return TRUE.
5115 If INVERT is true, then we invert the result stored into *CODE_P. */
5118 extract_code_and_val_from_cond_with_ops (tree name
, enum tree_code cond_code
,
5119 tree cond_op0
, tree cond_op1
,
5120 bool invert
, enum tree_code
*code_p
,
5123 enum tree_code comp_code
;
5126 /* Otherwise, we have a comparison of the form NAME COMP VAL
5127 or VAL COMP NAME. */
5128 if (name
== cond_op1
)
5130 /* If the predicate is of the form VAL COMP NAME, flip
5131 COMP around because we need to register NAME as the
5132 first operand in the predicate. */
5133 comp_code
= swap_tree_comparison (cond_code
);
5138 /* The comparison is of the form NAME COMP VAL, so the
5139 comparison code remains unchanged. */
5140 comp_code
= cond_code
;
5144 /* Invert the comparison code as necessary. */
5146 comp_code
= invert_tree_comparison (comp_code
, 0);
5148 /* VRP does not handle float types. */
5149 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val
)))
5152 /* Do not register always-false predicates.
5153 FIXME: this works around a limitation in fold() when dealing with
5154 enumerations. Given 'enum { N1, N2 } x;', fold will not
5155 fold 'if (x > N2)' to 'if (0)'. */
5156 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
5157 && INTEGRAL_TYPE_P (TREE_TYPE (val
)))
5159 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
5160 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
5162 if (comp_code
== GT_EXPR
5164 || compare_values (val
, max
) == 0))
5167 if (comp_code
== LT_EXPR
5169 || compare_values (val
, min
) == 0))
5172 *code_p
= comp_code
;
5177 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
5178 (otherwise return VAL). VAL and MASK must be zero-extended for
5179 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
5180 (to transform signed values into unsigned) and at the end xor
5184 masked_increment (const wide_int
&val_in
, const wide_int
&mask
,
5185 const wide_int
&sgnbit
, unsigned int prec
)
5187 wide_int bit
= wi::one (prec
), res
;
5190 wide_int val
= val_in
^ sgnbit
;
5191 for (i
= 0; i
< prec
; i
++, bit
+= bit
)
5194 if ((res
& bit
) == 0)
5197 res
= (val
+ bit
).and_not (res
);
5199 if (wi::gtu_p (res
, val
))
5200 return res
^ sgnbit
;
5202 return val
^ sgnbit
;
5205 /* Try to register an edge assertion for SSA name NAME on edge E for
5206 the condition COND contributing to the conditional jump pointed to by BSI.
5207 Invert the condition COND if INVERT is true. */
5210 register_edge_assert_for_2 (tree name
, edge e
, gimple_stmt_iterator bsi
,
5211 enum tree_code cond_code
,
5212 tree cond_op0
, tree cond_op1
, bool invert
)
5215 enum tree_code comp_code
;
5217 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
5220 invert
, &comp_code
, &val
))
5223 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
5224 reachable from E. */
5225 if (live_on_edge (e
, name
)
5226 && !has_single_use (name
))
5227 register_new_assert_for (name
, name
, comp_code
, val
, NULL
, e
, bsi
);
5229 /* In the case of NAME <= CST and NAME being defined as
5230 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
5231 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
5232 This catches range and anti-range tests. */
5233 if ((comp_code
== LE_EXPR
5234 || comp_code
== GT_EXPR
)
5235 && TREE_CODE (val
) == INTEGER_CST
5236 && TYPE_UNSIGNED (TREE_TYPE (val
)))
5238 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
5239 tree cst2
= NULL_TREE
, name2
= NULL_TREE
, name3
= NULL_TREE
;
5241 /* Extract CST2 from the (optional) addition. */
5242 if (is_gimple_assign (def_stmt
)
5243 && gimple_assign_rhs_code (def_stmt
) == PLUS_EXPR
)
5245 name2
= gimple_assign_rhs1 (def_stmt
);
5246 cst2
= gimple_assign_rhs2 (def_stmt
);
5247 if (TREE_CODE (name2
) == SSA_NAME
5248 && TREE_CODE (cst2
) == INTEGER_CST
)
5249 def_stmt
= SSA_NAME_DEF_STMT (name2
);
5252 /* Extract NAME2 from the (optional) sign-changing cast. */
5253 if (gimple_assign_cast_p (def_stmt
))
5255 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
))
5256 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
5257 && (TYPE_PRECISION (gimple_expr_type (def_stmt
))
5258 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))))
5259 name3
= gimple_assign_rhs1 (def_stmt
);
5262 /* If name3 is used later, create an ASSERT_EXPR for it. */
5263 if (name3
!= NULL_TREE
5264 && TREE_CODE (name3
) == SSA_NAME
5265 && (cst2
== NULL_TREE
5266 || TREE_CODE (cst2
) == INTEGER_CST
)
5267 && INTEGRAL_TYPE_P (TREE_TYPE (name3
))
5268 && live_on_edge (e
, name3
)
5269 && !has_single_use (name3
))
5273 /* Build an expression for the range test. */
5274 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), name3
);
5275 if (cst2
!= NULL_TREE
)
5276 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
5280 fprintf (dump_file
, "Adding assert for ");
5281 print_generic_expr (dump_file
, name3
, 0);
5282 fprintf (dump_file
, " from ");
5283 print_generic_expr (dump_file
, tmp
, 0);
5284 fprintf (dump_file
, "\n");
5287 register_new_assert_for (name3
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
5290 /* If name2 is used later, create an ASSERT_EXPR for it. */
5291 if (name2
!= NULL_TREE
5292 && TREE_CODE (name2
) == SSA_NAME
5293 && TREE_CODE (cst2
) == INTEGER_CST
5294 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
5295 && live_on_edge (e
, name2
)
5296 && !has_single_use (name2
))
5300 /* Build an expression for the range test. */
5302 if (TREE_TYPE (name
) != TREE_TYPE (name2
))
5303 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), tmp
);
5304 if (cst2
!= NULL_TREE
)
5305 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
5309 fprintf (dump_file
, "Adding assert for ");
5310 print_generic_expr (dump_file
, name2
, 0);
5311 fprintf (dump_file
, " from ");
5312 print_generic_expr (dump_file
, tmp
, 0);
5313 fprintf (dump_file
, "\n");
5316 register_new_assert_for (name2
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
5320 /* In the case of post-in/decrement tests like if (i++) ... and uses
5321 of the in/decremented value on the edge the extra name we want to
5322 assert for is not on the def chain of the name compared. Instead
5323 it is in the set of use stmts. */
5324 if ((comp_code
== NE_EXPR
5325 || comp_code
== EQ_EXPR
)
5326 && TREE_CODE (val
) == INTEGER_CST
)
5328 imm_use_iterator ui
;
5330 FOR_EACH_IMM_USE_STMT (use_stmt
, ui
, name
)
5332 /* Cut off to use-stmts that are in the predecessor. */
5333 if (gimple_bb (use_stmt
) != e
->src
)
5336 if (!is_gimple_assign (use_stmt
))
5339 enum tree_code code
= gimple_assign_rhs_code (use_stmt
);
5340 if (code
!= PLUS_EXPR
5341 && code
!= MINUS_EXPR
)
5344 tree cst
= gimple_assign_rhs2 (use_stmt
);
5345 if (TREE_CODE (cst
) != INTEGER_CST
)
5348 tree name2
= gimple_assign_lhs (use_stmt
);
5349 if (live_on_edge (e
, name2
))
5351 cst
= int_const_binop (code
, val
, cst
);
5352 register_new_assert_for (name2
, name2
, comp_code
, cst
,
5358 if (TREE_CODE_CLASS (comp_code
) == tcc_comparison
5359 && TREE_CODE (val
) == INTEGER_CST
)
5361 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
5362 tree name2
= NULL_TREE
, names
[2], cst2
= NULL_TREE
;
5363 tree val2
= NULL_TREE
;
5364 unsigned int prec
= TYPE_PRECISION (TREE_TYPE (val
));
5365 wide_int mask
= wi::zero (prec
);
5366 unsigned int nprec
= prec
;
5367 enum tree_code rhs_code
= ERROR_MARK
;
5369 if (is_gimple_assign (def_stmt
))
5370 rhs_code
= gimple_assign_rhs_code (def_stmt
);
5372 /* Add asserts for NAME cmp CST and NAME being defined
5373 as NAME = (int) NAME2. */
5374 if (!TYPE_UNSIGNED (TREE_TYPE (val
))
5375 && (comp_code
== LE_EXPR
|| comp_code
== LT_EXPR
5376 || comp_code
== GT_EXPR
|| comp_code
== GE_EXPR
)
5377 && gimple_assign_cast_p (def_stmt
))
5379 name2
= gimple_assign_rhs1 (def_stmt
);
5380 if (CONVERT_EXPR_CODE_P (rhs_code
)
5381 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
5382 && TYPE_UNSIGNED (TREE_TYPE (name2
))
5383 && prec
== TYPE_PRECISION (TREE_TYPE (name2
))
5384 && (comp_code
== LE_EXPR
|| comp_code
== GT_EXPR
5385 || !tree_int_cst_equal (val
,
5386 TYPE_MIN_VALUE (TREE_TYPE (val
))))
5387 && live_on_edge (e
, name2
)
5388 && !has_single_use (name2
))
5391 enum tree_code new_comp_code
= comp_code
;
5393 cst
= fold_convert (TREE_TYPE (name2
),
5394 TYPE_MIN_VALUE (TREE_TYPE (val
)));
5395 /* Build an expression for the range test. */
5396 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name2
), name2
, cst
);
5397 cst
= fold_build2 (PLUS_EXPR
, TREE_TYPE (name2
), cst
,
5398 fold_convert (TREE_TYPE (name2
), val
));
5399 if (comp_code
== LT_EXPR
|| comp_code
== GE_EXPR
)
5401 new_comp_code
= comp_code
== LT_EXPR
? LE_EXPR
: GT_EXPR
;
5402 cst
= fold_build2 (MINUS_EXPR
, TREE_TYPE (name2
), cst
,
5403 build_int_cst (TREE_TYPE (name2
), 1));
5408 fprintf (dump_file
, "Adding assert for ");
5409 print_generic_expr (dump_file
, name2
, 0);
5410 fprintf (dump_file
, " from ");
5411 print_generic_expr (dump_file
, tmp
, 0);
5412 fprintf (dump_file
, "\n");
5415 register_new_assert_for (name2
, tmp
, new_comp_code
, cst
, NULL
,
5420 /* Add asserts for NAME cmp CST and NAME being defined as
5421 NAME = NAME2 >> CST2.
5423 Extract CST2 from the right shift. */
5424 if (rhs_code
== RSHIFT_EXPR
)
5426 name2
= gimple_assign_rhs1 (def_stmt
);
5427 cst2
= gimple_assign_rhs2 (def_stmt
);
5428 if (TREE_CODE (name2
) == SSA_NAME
5429 && tree_fits_uhwi_p (cst2
)
5430 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
5431 && IN_RANGE (tree_to_uhwi (cst2
), 1, prec
- 1)
5432 && prec
== GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val
)))
5433 && live_on_edge (e
, name2
)
5434 && !has_single_use (name2
))
5436 mask
= wi::mask (tree_to_uhwi (cst2
), false, prec
);
5437 val2
= fold_binary (LSHIFT_EXPR
, TREE_TYPE (val
), val
, cst2
);
5440 if (val2
!= NULL_TREE
5441 && TREE_CODE (val2
) == INTEGER_CST
5442 && simple_cst_equal (fold_build2 (RSHIFT_EXPR
,
5446 enum tree_code new_comp_code
= comp_code
;
5450 if (comp_code
== EQ_EXPR
|| comp_code
== NE_EXPR
)
5452 if (!TYPE_UNSIGNED (TREE_TYPE (val
)))
5454 tree type
= build_nonstandard_integer_type (prec
, 1);
5455 tmp
= build1 (NOP_EXPR
, type
, name2
);
5456 val2
= fold_convert (type
, val2
);
5458 tmp
= fold_build2 (MINUS_EXPR
, TREE_TYPE (tmp
), tmp
, val2
);
5459 new_val
= wide_int_to_tree (TREE_TYPE (tmp
), mask
);
5460 new_comp_code
= comp_code
== EQ_EXPR
? LE_EXPR
: GT_EXPR
;
5462 else if (comp_code
== LT_EXPR
|| comp_code
== GE_EXPR
)
5465 = wi::min_value (prec
, TYPE_SIGN (TREE_TYPE (val
)));
5467 if (minval
== new_val
)
5468 new_val
= NULL_TREE
;
5473 = wi::max_value (prec
, TYPE_SIGN (TREE_TYPE (val
)));
5476 new_val
= NULL_TREE
;
5478 new_val
= wide_int_to_tree (TREE_TYPE (val2
), mask
);
5485 fprintf (dump_file
, "Adding assert for ");
5486 print_generic_expr (dump_file
, name2
, 0);
5487 fprintf (dump_file
, " from ");
5488 print_generic_expr (dump_file
, tmp
, 0);
5489 fprintf (dump_file
, "\n");
5492 register_new_assert_for (name2
, tmp
, new_comp_code
, new_val
,
5497 /* Add asserts for NAME cmp CST and NAME being defined as
5498 NAME = NAME2 & CST2.
5500 Extract CST2 from the and.
5503 NAME = (unsigned) NAME2;
5504 casts where NAME's type is unsigned and has smaller precision
5505 than NAME2's type as if it was NAME = NAME2 & MASK. */
5506 names
[0] = NULL_TREE
;
5507 names
[1] = NULL_TREE
;
5509 if (rhs_code
== BIT_AND_EXPR
5510 || (CONVERT_EXPR_CODE_P (rhs_code
)
5511 && TREE_CODE (TREE_TYPE (val
)) == INTEGER_TYPE
5512 && TYPE_UNSIGNED (TREE_TYPE (val
))
5513 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
5516 name2
= gimple_assign_rhs1 (def_stmt
);
5517 if (rhs_code
== BIT_AND_EXPR
)
5518 cst2
= gimple_assign_rhs2 (def_stmt
);
5521 cst2
= TYPE_MAX_VALUE (TREE_TYPE (val
));
5522 nprec
= TYPE_PRECISION (TREE_TYPE (name2
));
5524 if (TREE_CODE (name2
) == SSA_NAME
5525 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
5526 && TREE_CODE (cst2
) == INTEGER_CST
5527 && !integer_zerop (cst2
)
5529 || TYPE_UNSIGNED (TREE_TYPE (val
))))
5531 gimple def_stmt2
= SSA_NAME_DEF_STMT (name2
);
5532 if (gimple_assign_cast_p (def_stmt2
))
5534 names
[1] = gimple_assign_rhs1 (def_stmt2
);
5535 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2
))
5536 || !INTEGRAL_TYPE_P (TREE_TYPE (names
[1]))
5537 || (TYPE_PRECISION (TREE_TYPE (name2
))
5538 != TYPE_PRECISION (TREE_TYPE (names
[1])))
5539 || !live_on_edge (e
, names
[1])
5540 || has_single_use (names
[1]))
5541 names
[1] = NULL_TREE
;
5543 if (live_on_edge (e
, name2
)
5544 && !has_single_use (name2
))
5548 if (names
[0] || names
[1])
5550 wide_int minv
, maxv
, valv
, cst2v
;
5551 wide_int tem
, sgnbit
;
5552 bool valid_p
= false, valn
, cst2n
;
5553 enum tree_code ccode
= comp_code
;
5555 valv
= wide_int::from (val
, nprec
, UNSIGNED
);
5556 cst2v
= wide_int::from (cst2
, nprec
, UNSIGNED
);
5557 valn
= wi::neg_p (valv
, TYPE_SIGN (TREE_TYPE (val
)));
5558 cst2n
= wi::neg_p (cst2v
, TYPE_SIGN (TREE_TYPE (val
)));
5559 /* If CST2 doesn't have most significant bit set,
5560 but VAL is negative, we have comparison like
5561 if ((x & 0x123) > -4) (always true). Just give up. */
5565 sgnbit
= wi::set_bit_in_zero (nprec
- 1, nprec
);
5567 sgnbit
= wi::zero (nprec
);
5568 minv
= valv
& cst2v
;
5572 /* Minimum unsigned value for equality is VAL & CST2
5573 (should be equal to VAL, otherwise we probably should
5574 have folded the comparison into false) and
5575 maximum unsigned value is VAL | ~CST2. */
5576 maxv
= valv
| ~cst2v
;
5581 tem
= valv
| ~cst2v
;
5582 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5586 sgnbit
= wi::zero (nprec
);
5589 /* If (VAL | ~CST2) is all ones, handle it as
5590 (X & CST2) < VAL. */
5595 sgnbit
= wi::zero (nprec
);
5598 if (!cst2n
&& wi::neg_p (cst2v
))
5599 sgnbit
= wi::set_bit_in_zero (nprec
- 1, nprec
);
5608 if (tem
== wi::mask (nprec
- 1, false, nprec
))
5614 sgnbit
= wi::zero (nprec
);
5619 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5620 is VAL and maximum unsigned value is ~0. For signed
5621 comparison, if CST2 doesn't have most significant bit
5622 set, handle it similarly. If CST2 has MSB set,
5623 the minimum is the same, and maximum is ~0U/2. */
5626 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5628 minv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5632 maxv
= wi::mask (nprec
- (cst2n
? 1 : 0), false, nprec
);
5638 /* Find out smallest MINV where MINV > VAL
5639 && (MINV & CST2) == MINV, if any. If VAL is signed and
5640 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5641 minv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5644 maxv
= wi::mask (nprec
- (cst2n
? 1 : 0), false, nprec
);
5649 /* Minimum unsigned value for <= is 0 and maximum
5650 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5651 Otherwise, find smallest VAL2 where VAL2 > VAL
5652 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5654 For signed comparison, if CST2 doesn't have most
5655 significant bit set, handle it similarly. If CST2 has
5656 MSB set, the maximum is the same and minimum is INT_MIN. */
5661 maxv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5673 /* Minimum unsigned value for < is 0 and maximum
5674 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5675 Otherwise, find smallest VAL2 where VAL2 > VAL
5676 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5678 For signed comparison, if CST2 doesn't have most
5679 significant bit set, handle it similarly. If CST2 has
5680 MSB set, the maximum is the same and minimum is INT_MIN. */
5689 maxv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5703 && (maxv
- minv
) != -1)
5705 tree tmp
, new_val
, type
;
5708 for (i
= 0; i
< 2; i
++)
5711 wide_int maxv2
= maxv
;
5713 type
= TREE_TYPE (names
[i
]);
5714 if (!TYPE_UNSIGNED (type
))
5716 type
= build_nonstandard_integer_type (nprec
, 1);
5717 tmp
= build1 (NOP_EXPR
, type
, names
[i
]);
5721 tmp
= build2 (PLUS_EXPR
, type
, tmp
,
5722 wide_int_to_tree (type
, -minv
));
5723 maxv2
= maxv
- minv
;
5725 new_val
= wide_int_to_tree (type
, maxv2
);
5729 fprintf (dump_file
, "Adding assert for ");
5730 print_generic_expr (dump_file
, names
[i
], 0);
5731 fprintf (dump_file
, " from ");
5732 print_generic_expr (dump_file
, tmp
, 0);
5733 fprintf (dump_file
, "\n");
5736 register_new_assert_for (names
[i
], tmp
, LE_EXPR
,
5737 new_val
, NULL
, e
, bsi
);
5744 /* OP is an operand of a truth value expression which is known to have
5745 a particular value. Register any asserts for OP and for any
5746 operands in OP's defining statement.
5748 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5749 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5752 register_edge_assert_for_1 (tree op
, enum tree_code code
,
5753 edge e
, gimple_stmt_iterator bsi
)
5757 enum tree_code rhs_code
;
5759 /* We only care about SSA_NAMEs. */
5760 if (TREE_CODE (op
) != SSA_NAME
)
5763 /* We know that OP will have a zero or nonzero value. If OP is used
5764 more than once go ahead and register an assert for OP. */
5765 if (live_on_edge (e
, op
)
5766 && !has_single_use (op
))
5768 val
= build_int_cst (TREE_TYPE (op
), 0);
5769 register_new_assert_for (op
, op
, code
, val
, NULL
, e
, bsi
);
5772 /* Now look at how OP is set. If it's set from a comparison,
5773 a truth operation or some bit operations, then we may be able
5774 to register information about the operands of that assignment. */
5775 op_def
= SSA_NAME_DEF_STMT (op
);
5776 if (gimple_code (op_def
) != GIMPLE_ASSIGN
)
5779 rhs_code
= gimple_assign_rhs_code (op_def
);
5781 if (TREE_CODE_CLASS (rhs_code
) == tcc_comparison
)
5783 bool invert
= (code
== EQ_EXPR
? true : false);
5784 tree op0
= gimple_assign_rhs1 (op_def
);
5785 tree op1
= gimple_assign_rhs2 (op_def
);
5787 if (TREE_CODE (op0
) == SSA_NAME
)
5788 register_edge_assert_for_2 (op0
, e
, bsi
, rhs_code
, op0
, op1
, invert
);
5789 if (TREE_CODE (op1
) == SSA_NAME
)
5790 register_edge_assert_for_2 (op1
, e
, bsi
, rhs_code
, op0
, op1
, invert
);
5792 else if ((code
== NE_EXPR
5793 && gimple_assign_rhs_code (op_def
) == BIT_AND_EXPR
)
5795 && gimple_assign_rhs_code (op_def
) == BIT_IOR_EXPR
))
5797 /* Recurse on each operand. */
5798 tree op0
= gimple_assign_rhs1 (op_def
);
5799 tree op1
= gimple_assign_rhs2 (op_def
);
5800 if (TREE_CODE (op0
) == SSA_NAME
5801 && has_single_use (op0
))
5802 register_edge_assert_for_1 (op0
, code
, e
, bsi
);
5803 if (TREE_CODE (op1
) == SSA_NAME
5804 && has_single_use (op1
))
5805 register_edge_assert_for_1 (op1
, code
, e
, bsi
);
5807 else if (gimple_assign_rhs_code (op_def
) == BIT_NOT_EXPR
5808 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def
))) == 1)
5810 /* Recurse, flipping CODE. */
5811 code
= invert_tree_comparison (code
, false);
5812 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
), code
, e
, bsi
);
5814 else if (gimple_assign_rhs_code (op_def
) == SSA_NAME
)
5816 /* Recurse through the copy. */
5817 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
), code
, e
, bsi
);
5819 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def
)))
5821 /* Recurse through the type conversion, unless it is a narrowing
5822 conversion or conversion from non-integral type. */
5823 tree rhs
= gimple_assign_rhs1 (op_def
);
5824 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs
))
5825 && (TYPE_PRECISION (TREE_TYPE (rhs
))
5826 <= TYPE_PRECISION (TREE_TYPE (op
))))
5827 register_edge_assert_for_1 (rhs
, code
, e
, bsi
);
5831 /* Try to register an edge assertion for SSA name NAME on edge E for
5832 the condition COND contributing to the conditional jump pointed to by
5836 register_edge_assert_for (tree name
, edge e
, gimple_stmt_iterator si
,
5837 enum tree_code cond_code
, tree cond_op0
,
5841 enum tree_code comp_code
;
5842 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
5844 /* Do not attempt to infer anything in names that flow through
5846 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
5849 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
5855 /* Register ASSERT_EXPRs for name. */
5856 register_edge_assert_for_2 (name
, e
, si
, cond_code
, cond_op0
,
5857 cond_op1
, is_else_edge
);
5860 /* If COND is effectively an equality test of an SSA_NAME against
5861 the value zero or one, then we may be able to assert values
5862 for SSA_NAMEs which flow into COND. */
5864 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5865 statement of NAME we can assert both operands of the BIT_AND_EXPR
5866 have nonzero value. */
5867 if (((comp_code
== EQ_EXPR
&& integer_onep (val
))
5868 || (comp_code
== NE_EXPR
&& integer_zerop (val
))))
5870 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
5872 if (is_gimple_assign (def_stmt
)
5873 && gimple_assign_rhs_code (def_stmt
) == BIT_AND_EXPR
)
5875 tree op0
= gimple_assign_rhs1 (def_stmt
);
5876 tree op1
= gimple_assign_rhs2 (def_stmt
);
5877 register_edge_assert_for_1 (op0
, NE_EXPR
, e
, si
);
5878 register_edge_assert_for_1 (op1
, NE_EXPR
, e
, si
);
5882 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5883 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5885 if (((comp_code
== EQ_EXPR
&& integer_zerop (val
))
5886 || (comp_code
== NE_EXPR
&& integer_onep (val
))))
5888 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
5890 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5891 necessarily zero value, or if type-precision is one. */
5892 if (is_gimple_assign (def_stmt
)
5893 && (gimple_assign_rhs_code (def_stmt
) == BIT_IOR_EXPR
5894 && (TYPE_PRECISION (TREE_TYPE (name
)) == 1
5895 || comp_code
== EQ_EXPR
)))
5897 tree op0
= gimple_assign_rhs1 (def_stmt
);
5898 tree op1
= gimple_assign_rhs2 (def_stmt
);
5899 register_edge_assert_for_1 (op0
, EQ_EXPR
, e
, si
);
5900 register_edge_assert_for_1 (op1
, EQ_EXPR
, e
, si
);
5906 /* Determine whether the outgoing edges of BB should receive an
5907 ASSERT_EXPR for each of the operands of BB's LAST statement.
5908 The last statement of BB must be a COND_EXPR.
5910 If any of the sub-graphs rooted at BB have an interesting use of
5911 the predicate operands, an assert location node is added to the
5912 list of assertions for the corresponding operands. */
5915 find_conditional_asserts (basic_block bb
, gcond
*last
)
5917 gimple_stmt_iterator bsi
;
5923 bsi
= gsi_for_stmt (last
);
5925 /* Look for uses of the operands in each of the sub-graphs
5926 rooted at BB. We need to check each of the outgoing edges
5927 separately, so that we know what kind of ASSERT_EXPR to
5929 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5934 /* Register the necessary assertions for each operand in the
5935 conditional predicate. */
5936 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
5937 register_edge_assert_for (op
, e
, bsi
,
5938 gimple_cond_code (last
),
5939 gimple_cond_lhs (last
),
5940 gimple_cond_rhs (last
));
5950 /* Compare two case labels sorting first by the destination bb index
5951 and then by the case value. */
5954 compare_case_labels (const void *p1
, const void *p2
)
5956 const struct case_info
*ci1
= (const struct case_info
*) p1
;
5957 const struct case_info
*ci2
= (const struct case_info
*) p2
;
5958 int idx1
= ci1
->bb
->index
;
5959 int idx2
= ci2
->bb
->index
;
5963 else if (idx1
== idx2
)
5965 /* Make sure the default label is first in a group. */
5966 if (!CASE_LOW (ci1
->expr
))
5968 else if (!CASE_LOW (ci2
->expr
))
5971 return tree_int_cst_compare (CASE_LOW (ci1
->expr
),
5972 CASE_LOW (ci2
->expr
));
5978 /* Determine whether the outgoing edges of BB should receive an
5979 ASSERT_EXPR for each of the operands of BB's LAST statement.
5980 The last statement of BB must be a SWITCH_EXPR.
5982 If any of the sub-graphs rooted at BB have an interesting use of
5983 the predicate operands, an assert location node is added to the
5984 list of assertions for the corresponding operands. */
5987 find_switch_asserts (basic_block bb
, gswitch
*last
)
5989 gimple_stmt_iterator bsi
;
5992 struct case_info
*ci
;
5993 size_t n
= gimple_switch_num_labels (last
);
5994 #if GCC_VERSION >= 4000
5997 /* Work around GCC 3.4 bug (PR 37086). */
5998 volatile unsigned int idx
;
6001 bsi
= gsi_for_stmt (last
);
6002 op
= gimple_switch_index (last
);
6003 if (TREE_CODE (op
) != SSA_NAME
)
6006 /* Build a vector of case labels sorted by destination label. */
6007 ci
= XNEWVEC (struct case_info
, n
);
6008 for (idx
= 0; idx
< n
; ++idx
)
6010 ci
[idx
].expr
= gimple_switch_label (last
, idx
);
6011 ci
[idx
].bb
= label_to_block (CASE_LABEL (ci
[idx
].expr
));
6013 qsort (ci
, n
, sizeof (struct case_info
), compare_case_labels
);
6015 for (idx
= 0; idx
< n
; ++idx
)
6018 tree cl
= ci
[idx
].expr
;
6019 basic_block cbb
= ci
[idx
].bb
;
6021 min
= CASE_LOW (cl
);
6022 max
= CASE_HIGH (cl
);
6024 /* If there are multiple case labels with the same destination
6025 we need to combine them to a single value range for the edge. */
6026 if (idx
+ 1 < n
&& cbb
== ci
[idx
+ 1].bb
)
6028 /* Skip labels until the last of the group. */
6031 } while (idx
< n
&& cbb
== ci
[idx
].bb
);
6034 /* Pick up the maximum of the case label range. */
6035 if (CASE_HIGH (ci
[idx
].expr
))
6036 max
= CASE_HIGH (ci
[idx
].expr
);
6038 max
= CASE_LOW (ci
[idx
].expr
);
6041 /* Nothing to do if the range includes the default label until we
6042 can register anti-ranges. */
6043 if (min
== NULL_TREE
)
6046 /* Find the edge to register the assert expr on. */
6047 e
= find_edge (bb
, cbb
);
6049 /* Register the necessary assertions for the operand in the
6051 register_edge_assert_for (op
, e
, bsi
,
6052 max
? GE_EXPR
: EQ_EXPR
,
6053 op
, fold_convert (TREE_TYPE (op
), min
));
6055 register_edge_assert_for (op
, e
, bsi
, LE_EXPR
, op
,
6056 fold_convert (TREE_TYPE (op
), max
));
6063 /* Traverse all the statements in block BB looking for statements that
6064 may generate useful assertions for the SSA names in their operand.
6065 If a statement produces a useful assertion A for name N_i, then the
6066 list of assertions already generated for N_i is scanned to
6067 determine if A is actually needed.
6069 If N_i already had the assertion A at a location dominating the
6070 current location, then nothing needs to be done. Otherwise, the
6071 new location for A is recorded instead.
6073 1- For every statement S in BB, all the variables used by S are
6074 added to bitmap FOUND_IN_SUBGRAPH.
6076 2- If statement S uses an operand N in a way that exposes a known
6077 value range for N, then if N was not already generated by an
6078 ASSERT_EXPR, create a new assert location for N. For instance,
6079 if N is a pointer and the statement dereferences it, we can
6080 assume that N is not NULL.
6082 3- COND_EXPRs are a special case of #2. We can derive range
6083 information from the predicate but need to insert different
6084 ASSERT_EXPRs for each of the sub-graphs rooted at the
6085 conditional block. If the last statement of BB is a conditional
6086 expression of the form 'X op Y', then
6088 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
6090 b) If the conditional is the only entry point to the sub-graph
6091 corresponding to the THEN_CLAUSE, recurse into it. On
6092 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
6093 an ASSERT_EXPR is added for the corresponding variable.
6095 c) Repeat step (b) on the ELSE_CLAUSE.
6097 d) Mark X and Y in FOUND_IN_SUBGRAPH.
6106 In this case, an assertion on the THEN clause is useful to
6107 determine that 'a' is always 9 on that edge. However, an assertion
6108 on the ELSE clause would be unnecessary.
6110 4- If BB does not end in a conditional expression, then we recurse
6111 into BB's dominator children.
6113 At the end of the recursive traversal, every SSA name will have a
6114 list of locations where ASSERT_EXPRs should be added. When a new
6115 location for name N is found, it is registered by calling
6116 register_new_assert_for. That function keeps track of all the
6117 registered assertions to prevent adding unnecessary assertions.
6118 For instance, if a pointer P_4 is dereferenced more than once in a
6119 dominator tree, only the location dominating all the dereference of
6120 P_4 will receive an ASSERT_EXPR. */
6123 find_assert_locations_1 (basic_block bb
, sbitmap live
)
6127 last
= last_stmt (bb
);
6129 /* If BB's last statement is a conditional statement involving integer
6130 operands, determine if we need to add ASSERT_EXPRs. */
6132 && gimple_code (last
) == GIMPLE_COND
6133 && !fp_predicate (last
)
6134 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
6135 find_conditional_asserts (bb
, as_a
<gcond
*> (last
));
6137 /* If BB's last statement is a switch statement involving integer
6138 operands, determine if we need to add ASSERT_EXPRs. */
6140 && gimple_code (last
) == GIMPLE_SWITCH
6141 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
6142 find_switch_asserts (bb
, as_a
<gswitch
*> (last
));
6144 /* Traverse all the statements in BB marking used names and looking
6145 for statements that may infer assertions for their used operands. */
6146 for (gimple_stmt_iterator si
= gsi_last_bb (bb
); !gsi_end_p (si
);
6153 stmt
= gsi_stmt (si
);
6155 if (is_gimple_debug (stmt
))
6158 /* See if we can derive an assertion for any of STMT's operands. */
6159 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
6162 enum tree_code comp_code
;
6164 /* If op is not live beyond this stmt, do not bother to insert
6166 if (!bitmap_bit_p (live
, SSA_NAME_VERSION (op
)))
6169 /* If OP is used in such a way that we can infer a value
6170 range for it, and we don't find a previous assertion for
6171 it, create a new assertion location node for OP. */
6172 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
6174 /* If we are able to infer a nonzero value range for OP,
6175 then walk backwards through the use-def chain to see if OP
6176 was set via a typecast.
6178 If so, then we can also infer a nonzero value range
6179 for the operand of the NOP_EXPR. */
6180 if (comp_code
== NE_EXPR
&& integer_zerop (value
))
6183 gimple def_stmt
= SSA_NAME_DEF_STMT (t
);
6185 while (is_gimple_assign (def_stmt
)
6186 && CONVERT_EXPR_CODE_P
6187 (gimple_assign_rhs_code (def_stmt
))
6189 (gimple_assign_rhs1 (def_stmt
)) == SSA_NAME
6191 (TREE_TYPE (gimple_assign_rhs1 (def_stmt
))))
6193 t
= gimple_assign_rhs1 (def_stmt
);
6194 def_stmt
= SSA_NAME_DEF_STMT (t
);
6196 /* Note we want to register the assert for the
6197 operand of the NOP_EXPR after SI, not after the
6199 if (! has_single_use (t
))
6200 register_new_assert_for (t
, t
, comp_code
, value
,
6205 register_new_assert_for (op
, op
, comp_code
, value
, bb
, NULL
, si
);
6210 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
6211 bitmap_set_bit (live
, SSA_NAME_VERSION (op
));
6212 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_DEF
)
6213 bitmap_clear_bit (live
, SSA_NAME_VERSION (op
));
6216 /* Traverse all PHI nodes in BB, updating live. */
6217 for (gphi_iterator si
= gsi_start_phis (bb
); !gsi_end_p (si
);
6220 use_operand_p arg_p
;
6222 gphi
*phi
= si
.phi ();
6223 tree res
= gimple_phi_result (phi
);
6225 if (virtual_operand_p (res
))
6228 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
6230 tree arg
= USE_FROM_PTR (arg_p
);
6231 if (TREE_CODE (arg
) == SSA_NAME
)
6232 bitmap_set_bit (live
, SSA_NAME_VERSION (arg
));
6235 bitmap_clear_bit (live
, SSA_NAME_VERSION (res
));
6239 /* Do an RPO walk over the function computing SSA name liveness
6240 on-the-fly and deciding on assert expressions to insert. */
6243 find_assert_locations (void)
6245 int *rpo
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
6246 int *bb_rpo
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
6247 int *last_rpo
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
6250 live
= XCNEWVEC (sbitmap
, last_basic_block_for_fn (cfun
));
6251 rpo_cnt
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
6252 for (i
= 0; i
< rpo_cnt
; ++i
)
6255 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
6256 the order we compute liveness and insert asserts we otherwise
6257 fail to insert asserts into the loop latch. */
6259 FOR_EACH_LOOP (loop
, 0)
6261 i
= loop
->latch
->index
;
6262 unsigned int j
= single_succ_edge (loop
->latch
)->dest_idx
;
6263 for (gphi_iterator gsi
= gsi_start_phis (loop
->header
);
6264 !gsi_end_p (gsi
); gsi_next (&gsi
))
6266 gphi
*phi
= gsi
.phi ();
6267 if (virtual_operand_p (gimple_phi_result (phi
)))
6269 tree arg
= gimple_phi_arg_def (phi
, j
);
6270 if (TREE_CODE (arg
) == SSA_NAME
)
6272 if (live
[i
] == NULL
)
6274 live
[i
] = sbitmap_alloc (num_ssa_names
);
6275 bitmap_clear (live
[i
]);
6277 bitmap_set_bit (live
[i
], SSA_NAME_VERSION (arg
));
6282 for (i
= rpo_cnt
- 1; i
>= 0; --i
)
6284 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, rpo
[i
]);
6290 live
[rpo
[i
]] = sbitmap_alloc (num_ssa_names
);
6291 bitmap_clear (live
[rpo
[i
]]);
6294 /* Process BB and update the live information with uses in
6296 find_assert_locations_1 (bb
, live
[rpo
[i
]]);
6298 /* Merge liveness into the predecessor blocks and free it. */
6299 if (!bitmap_empty_p (live
[rpo
[i
]]))
6302 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6304 int pred
= e
->src
->index
;
6305 if ((e
->flags
& EDGE_DFS_BACK
) || pred
== ENTRY_BLOCK
)
6310 live
[pred
] = sbitmap_alloc (num_ssa_names
);
6311 bitmap_clear (live
[pred
]);
6313 bitmap_ior (live
[pred
], live
[pred
], live
[rpo
[i
]]);
6315 if (bb_rpo
[pred
] < pred_rpo
)
6316 pred_rpo
= bb_rpo
[pred
];
6319 /* Record the RPO number of the last visited block that needs
6320 live information from this block. */
6321 last_rpo
[rpo
[i
]] = pred_rpo
;
6325 sbitmap_free (live
[rpo
[i
]]);
6326 live
[rpo
[i
]] = NULL
;
6329 /* We can free all successors live bitmaps if all their
6330 predecessors have been visited already. */
6331 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6332 if (last_rpo
[e
->dest
->index
] == i
6333 && live
[e
->dest
->index
])
6335 sbitmap_free (live
[e
->dest
->index
]);
6336 live
[e
->dest
->index
] = NULL
;
6341 XDELETEVEC (bb_rpo
);
6342 XDELETEVEC (last_rpo
);
6343 for (i
= 0; i
< last_basic_block_for_fn (cfun
); ++i
)
6345 sbitmap_free (live
[i
]);
6349 /* Create an ASSERT_EXPR for NAME and insert it in the location
6350 indicated by LOC. Return true if we made any edge insertions. */
6353 process_assert_insertions_for (tree name
, assert_locus_t loc
)
6355 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6362 /* If we have X <=> X do not insert an assert expr for that. */
6363 if (loc
->expr
== loc
->val
)
6366 cond
= build2 (loc
->comp_code
, boolean_type_node
, loc
->expr
, loc
->val
);
6367 assert_stmt
= build_assert_expr_for (cond
, name
);
6370 /* We have been asked to insert the assertion on an edge. This
6371 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6372 gcc_checking_assert (gimple_code (gsi_stmt (loc
->si
)) == GIMPLE_COND
6373 || (gimple_code (gsi_stmt (loc
->si
))
6376 gsi_insert_on_edge (loc
->e
, assert_stmt
);
6380 /* Otherwise, we can insert right after LOC->SI iff the
6381 statement must not be the last statement in the block. */
6382 stmt
= gsi_stmt (loc
->si
);
6383 if (!stmt_ends_bb_p (stmt
))
6385 gsi_insert_after (&loc
->si
, assert_stmt
, GSI_SAME_STMT
);
6389 /* If STMT must be the last statement in BB, we can only insert new
6390 assertions on the non-abnormal edge out of BB. Note that since
6391 STMT is not control flow, there may only be one non-abnormal edge
6393 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
6394 if (!(e
->flags
& EDGE_ABNORMAL
))
6396 gsi_insert_on_edge (e
, assert_stmt
);
6404 /* Process all the insertions registered for every name N_i registered
6405 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6406 found in ASSERTS_FOR[i]. */
6409 process_assert_insertions (void)
6413 bool update_edges_p
= false;
6414 int num_asserts
= 0;
6416 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6417 dump_all_asserts (dump_file
);
6419 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
6421 assert_locus_t loc
= asserts_for
[i
];
6426 assert_locus_t next
= loc
->next
;
6427 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
6435 gsi_commit_edge_inserts ();
6437 statistics_counter_event (cfun
, "Number of ASSERT_EXPR expressions inserted",
6442 /* Traverse the flowgraph looking for conditional jumps to insert range
6443 expressions. These range expressions are meant to provide information
6444 to optimizations that need to reason in terms of value ranges. They
6445 will not be expanded into RTL. For instance, given:
6454 this pass will transform the code into:
6460 x = ASSERT_EXPR <x, x < y>
6465 y = ASSERT_EXPR <y, x >= y>
6469 The idea is that once copy and constant propagation have run, other
6470 optimizations will be able to determine what ranges of values can 'x'
6471 take in different paths of the code, simply by checking the reaching
6472 definition of 'x'. */
6475 insert_range_assertions (void)
6477 need_assert_for
= BITMAP_ALLOC (NULL
);
6478 asserts_for
= XCNEWVEC (assert_locus_t
, num_ssa_names
);
6480 calculate_dominance_info (CDI_DOMINATORS
);
6482 find_assert_locations ();
6483 if (!bitmap_empty_p (need_assert_for
))
6485 process_assert_insertions ();
6486 update_ssa (TODO_update_ssa_no_phi
);
6489 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6491 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
6492 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
6496 BITMAP_FREE (need_assert_for
);
6499 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6500 and "struct" hacks. If VRP can determine that the
6501 array subscript is a constant, check if it is outside valid
6502 range. If the array subscript is a RANGE, warn if it is
6503 non-overlapping with valid range.
6504 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6507 check_array_ref (location_t location
, tree ref
, bool ignore_off_by_one
)
6509 value_range_t
* vr
= NULL
;
6510 tree low_sub
, up_sub
;
6511 tree low_bound
, up_bound
, up_bound_p1
;
6514 if (TREE_NO_WARNING (ref
))
6517 low_sub
= up_sub
= TREE_OPERAND (ref
, 1);
6518 up_bound
= array_ref_up_bound (ref
);
6520 /* Can not check flexible arrays. */
6522 || TREE_CODE (up_bound
) != INTEGER_CST
)
6525 /* Accesses to trailing arrays via pointers may access storage
6526 beyond the types array bounds. */
6527 base
= get_base_address (ref
);
6528 if ((warn_array_bounds
< 2)
6529 && base
&& TREE_CODE (base
) == MEM_REF
)
6531 tree cref
, next
= NULL_TREE
;
6533 if (TREE_CODE (TREE_OPERAND (ref
, 0)) != COMPONENT_REF
)
6536 cref
= TREE_OPERAND (ref
, 0);
6537 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref
, 0))) == RECORD_TYPE
)
6538 for (next
= DECL_CHAIN (TREE_OPERAND (cref
, 1));
6539 next
&& TREE_CODE (next
) != FIELD_DECL
;
6540 next
= DECL_CHAIN (next
))
6543 /* If this is the last field in a struct type or a field in a
6544 union type do not warn. */
6549 low_bound
= array_ref_low_bound (ref
);
6550 up_bound_p1
= int_const_binop (PLUS_EXPR
, up_bound
,
6551 build_int_cst (TREE_TYPE (up_bound
), 1));
6553 if (TREE_CODE (low_sub
) == SSA_NAME
)
6555 vr
= get_value_range (low_sub
);
6556 if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
6558 low_sub
= vr
->type
== VR_RANGE
? vr
->max
: vr
->min
;
6559 up_sub
= vr
->type
== VR_RANGE
? vr
->min
: vr
->max
;
6563 if (vr
&& vr
->type
== VR_ANTI_RANGE
)
6565 if (TREE_CODE (up_sub
) == INTEGER_CST
6566 && tree_int_cst_lt (up_bound
, up_sub
)
6567 && TREE_CODE (low_sub
) == INTEGER_CST
6568 && tree_int_cst_lt (low_sub
, low_bound
))
6570 warning_at (location
, OPT_Warray_bounds
,
6571 "array subscript is outside array bounds");
6572 TREE_NO_WARNING (ref
) = 1;
6575 else if (TREE_CODE (up_sub
) == INTEGER_CST
6576 && (ignore_off_by_one
6577 ? (tree_int_cst_lt (up_bound
, up_sub
)
6578 && !tree_int_cst_equal (up_bound_p1
, up_sub
))
6579 : (tree_int_cst_lt (up_bound
, up_sub
)
6580 || tree_int_cst_equal (up_bound_p1
, up_sub
))))
6582 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6584 fprintf (dump_file
, "Array bound warning for ");
6585 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, ref
);
6586 fprintf (dump_file
, "\n");
6588 warning_at (location
, OPT_Warray_bounds
,
6589 "array subscript is above array bounds");
6590 TREE_NO_WARNING (ref
) = 1;
6592 else if (TREE_CODE (low_sub
) == INTEGER_CST
6593 && tree_int_cst_lt (low_sub
, low_bound
))
6595 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6597 fprintf (dump_file
, "Array bound warning for ");
6598 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, ref
);
6599 fprintf (dump_file
, "\n");
6601 warning_at (location
, OPT_Warray_bounds
,
6602 "array subscript is below array bounds");
6603 TREE_NO_WARNING (ref
) = 1;
6607 /* Searches if the expr T, located at LOCATION computes
6608 address of an ARRAY_REF, and call check_array_ref on it. */
6611 search_for_addr_array (tree t
, location_t location
)
6613 while (TREE_CODE (t
) == SSA_NAME
)
6615 gimple g
= SSA_NAME_DEF_STMT (t
);
6617 if (gimple_code (g
) != GIMPLE_ASSIGN
)
6620 if (get_gimple_rhs_class (gimple_assign_rhs_code (g
))
6621 != GIMPLE_SINGLE_RHS
)
6624 t
= gimple_assign_rhs1 (g
);
6628 /* We are only interested in addresses of ARRAY_REF's. */
6629 if (TREE_CODE (t
) != ADDR_EXPR
)
6632 /* Check each ARRAY_REFs in the reference chain. */
6635 if (TREE_CODE (t
) == ARRAY_REF
)
6636 check_array_ref (location
, t
, true /*ignore_off_by_one*/);
6638 t
= TREE_OPERAND (t
, 0);
6640 while (handled_component_p (t
));
6642 if (TREE_CODE (t
) == MEM_REF
6643 && TREE_CODE (TREE_OPERAND (t
, 0)) == ADDR_EXPR
6644 && !TREE_NO_WARNING (t
))
6646 tree tem
= TREE_OPERAND (TREE_OPERAND (t
, 0), 0);
6647 tree low_bound
, up_bound
, el_sz
;
6649 if (TREE_CODE (TREE_TYPE (tem
)) != ARRAY_TYPE
6650 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem
))) == ARRAY_TYPE
6651 || !TYPE_DOMAIN (TREE_TYPE (tem
)))
6654 low_bound
= TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
6655 up_bound
= TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
6656 el_sz
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem
)));
6658 || TREE_CODE (low_bound
) != INTEGER_CST
6660 || TREE_CODE (up_bound
) != INTEGER_CST
6662 || TREE_CODE (el_sz
) != INTEGER_CST
)
6665 idx
= mem_ref_offset (t
);
6666 idx
= wi::sdiv_trunc (idx
, wi::to_offset (el_sz
));
6667 if (wi::lts_p (idx
, 0))
6669 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6671 fprintf (dump_file
, "Array bound warning for ");
6672 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, t
);
6673 fprintf (dump_file
, "\n");
6675 warning_at (location
, OPT_Warray_bounds
,
6676 "array subscript is below array bounds");
6677 TREE_NO_WARNING (t
) = 1;
6679 else if (wi::gts_p (idx
, (wi::to_offset (up_bound
)
6680 - wi::to_offset (low_bound
) + 1)))
6682 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6684 fprintf (dump_file
, "Array bound warning for ");
6685 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, t
);
6686 fprintf (dump_file
, "\n");
6688 warning_at (location
, OPT_Warray_bounds
,
6689 "array subscript is above array bounds");
6690 TREE_NO_WARNING (t
) = 1;
6695 /* walk_tree() callback that checks if *TP is
6696 an ARRAY_REF inside an ADDR_EXPR (in which an array
6697 subscript one outside the valid range is allowed). Call
6698 check_array_ref for each ARRAY_REF found. The location is
6702 check_array_bounds (tree
*tp
, int *walk_subtree
, void *data
)
6705 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6706 location_t location
;
6708 if (EXPR_HAS_LOCATION (t
))
6709 location
= EXPR_LOCATION (t
);
6712 location_t
*locp
= (location_t
*) wi
->info
;
6716 *walk_subtree
= TRUE
;
6718 if (TREE_CODE (t
) == ARRAY_REF
)
6719 check_array_ref (location
, t
, false /*ignore_off_by_one*/);
6721 if (TREE_CODE (t
) == MEM_REF
6722 || (TREE_CODE (t
) == RETURN_EXPR
&& TREE_OPERAND (t
, 0)))
6723 search_for_addr_array (TREE_OPERAND (t
, 0), location
);
6725 if (TREE_CODE (t
) == ADDR_EXPR
)
6726 *walk_subtree
= FALSE
;
6731 /* Walk over all statements of all reachable BBs and call check_array_bounds
6735 check_all_array_refs (void)
6738 gimple_stmt_iterator si
;
6740 FOR_EACH_BB_FN (bb
, cfun
)
6744 bool executable
= false;
6746 /* Skip blocks that were found to be unreachable. */
6747 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6748 executable
|= !!(e
->flags
& EDGE_EXECUTABLE
);
6752 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6754 gimple stmt
= gsi_stmt (si
);
6755 struct walk_stmt_info wi
;
6756 if (!gimple_has_location (stmt
))
6759 if (is_gimple_call (stmt
))
6762 size_t n
= gimple_call_num_args (stmt
);
6763 for (i
= 0; i
< n
; i
++)
6765 tree arg
= gimple_call_arg (stmt
, i
);
6766 search_for_addr_array (arg
, gimple_location (stmt
));
6771 memset (&wi
, 0, sizeof (wi
));
6772 wi
.info
= CONST_CAST (void *, (const void *)
6773 gimple_location_ptr (stmt
));
6775 walk_gimple_op (gsi_stmt (si
),
6783 /* Return true if all imm uses of VAR are either in STMT, or
6784 feed (optionally through a chain of single imm uses) GIMPLE_COND
6785 in basic block COND_BB. */
6788 all_imm_uses_in_stmt_or_feed_cond (tree var
, gimple stmt
, basic_block cond_bb
)
6790 use_operand_p use_p
, use2_p
;
6791 imm_use_iterator iter
;
6793 FOR_EACH_IMM_USE_FAST (use_p
, iter
, var
)
6794 if (USE_STMT (use_p
) != stmt
)
6796 gimple use_stmt
= USE_STMT (use_p
), use_stmt2
;
6797 if (is_gimple_debug (use_stmt
))
6799 while (is_gimple_assign (use_stmt
)
6800 && TREE_CODE (gimple_assign_lhs (use_stmt
)) == SSA_NAME
6801 && single_imm_use (gimple_assign_lhs (use_stmt
),
6802 &use2_p
, &use_stmt2
))
6803 use_stmt
= use_stmt2
;
6804 if (gimple_code (use_stmt
) != GIMPLE_COND
6805 || gimple_bb (use_stmt
) != cond_bb
)
6818 __builtin_unreachable ();
6820 x_5 = ASSERT_EXPR <x_3, ...>;
6821 If x_3 has no other immediate uses (checked by caller),
6822 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6823 from the non-zero bitmask. */
6826 maybe_set_nonzero_bits (basic_block bb
, tree var
)
6828 edge e
= single_pred_edge (bb
);
6829 basic_block cond_bb
= e
->src
;
6830 gimple stmt
= last_stmt (cond_bb
);
6834 || gimple_code (stmt
) != GIMPLE_COND
6835 || gimple_cond_code (stmt
) != ((e
->flags
& EDGE_TRUE_VALUE
)
6836 ? EQ_EXPR
: NE_EXPR
)
6837 || TREE_CODE (gimple_cond_lhs (stmt
)) != SSA_NAME
6838 || !integer_zerop (gimple_cond_rhs (stmt
)))
6841 stmt
= SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt
));
6842 if (!is_gimple_assign (stmt
)
6843 || gimple_assign_rhs_code (stmt
) != BIT_AND_EXPR
6844 || TREE_CODE (gimple_assign_rhs2 (stmt
)) != INTEGER_CST
)
6846 if (gimple_assign_rhs1 (stmt
) != var
)
6850 if (TREE_CODE (gimple_assign_rhs1 (stmt
)) != SSA_NAME
)
6852 stmt2
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
6853 if (!gimple_assign_cast_p (stmt2
)
6854 || gimple_assign_rhs1 (stmt2
) != var
6855 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2
))
6856 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt
)))
6857 != TYPE_PRECISION (TREE_TYPE (var
))))
6860 cst
= gimple_assign_rhs2 (stmt
);
6861 set_nonzero_bits (var
, wi::bit_and_not (get_nonzero_bits (var
), cst
));
6864 /* Convert range assertion expressions into the implied copies and
6865 copy propagate away the copies. Doing the trivial copy propagation
6866 here avoids the need to run the full copy propagation pass after
6869 FIXME, this will eventually lead to copy propagation removing the
6870 names that had useful range information attached to them. For
6871 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6872 then N_i will have the range [3, +INF].
6874 However, by converting the assertion into the implied copy
6875 operation N_i = N_j, we will then copy-propagate N_j into the uses
6876 of N_i and lose the range information. We may want to hold on to
6877 ASSERT_EXPRs a little while longer as the ranges could be used in
6878 things like jump threading.
6880 The problem with keeping ASSERT_EXPRs around is that passes after
6881 VRP need to handle them appropriately.
6883 Another approach would be to make the range information a first
6884 class property of the SSA_NAME so that it can be queried from
6885 any pass. This is made somewhat more complex by the need for
6886 multiple ranges to be associated with one SSA_NAME. */
6889 remove_range_assertions (void)
6892 gimple_stmt_iterator si
;
6893 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6894 a basic block preceeded by GIMPLE_COND branching to it and
6895 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6898 /* Note that the BSI iterator bump happens at the bottom of the
6899 loop and no bump is necessary if we're removing the statement
6900 referenced by the current BSI. */
6901 FOR_EACH_BB_FN (bb
, cfun
)
6902 for (si
= gsi_after_labels (bb
), is_unreachable
= -1; !gsi_end_p (si
);)
6904 gimple stmt
= gsi_stmt (si
);
6907 if (is_gimple_assign (stmt
)
6908 && gimple_assign_rhs_code (stmt
) == ASSERT_EXPR
)
6910 tree lhs
= gimple_assign_lhs (stmt
);
6911 tree rhs
= gimple_assign_rhs1 (stmt
);
6913 tree cond
= fold (ASSERT_EXPR_COND (rhs
));
6914 use_operand_p use_p
;
6915 imm_use_iterator iter
;
6917 gcc_assert (cond
!= boolean_false_node
);
6919 var
= ASSERT_EXPR_VAR (rhs
);
6920 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
6922 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
6923 && SSA_NAME_RANGE_INFO (lhs
))
6925 if (is_unreachable
== -1)
6928 if (single_pred_p (bb
)
6929 && assert_unreachable_fallthru_edge_p
6930 (single_pred_edge (bb
)))
6934 if (x_7 >= 10 && x_7 < 20)
6935 __builtin_unreachable ();
6936 x_8 = ASSERT_EXPR <x_7, ...>;
6937 if the only uses of x_7 are in the ASSERT_EXPR and
6938 in the condition. In that case, we can copy the
6939 range info from x_8 computed in this pass also
6942 && all_imm_uses_in_stmt_or_feed_cond (var
, stmt
,
6945 set_range_info (var
, SSA_NAME_RANGE_TYPE (lhs
),
6946 SSA_NAME_RANGE_INFO (lhs
)->get_min (),
6947 SSA_NAME_RANGE_INFO (lhs
)->get_max ());
6948 maybe_set_nonzero_bits (bb
, var
);
6952 /* Propagate the RHS into every use of the LHS. */
6953 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
6954 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
6955 SET_USE (use_p
, var
);
6957 /* And finally, remove the copy, it is not needed. */
6958 gsi_remove (&si
, true);
6959 release_defs (stmt
);
6963 if (!is_gimple_debug (gsi_stmt (si
)))
6971 /* Return true if STMT is interesting for VRP. */
6974 stmt_interesting_for_vrp (gimple stmt
)
6976 if (gimple_code (stmt
) == GIMPLE_PHI
)
6978 tree res
= gimple_phi_result (stmt
);
6979 return (!virtual_operand_p (res
)
6980 && (INTEGRAL_TYPE_P (TREE_TYPE (res
))
6981 || POINTER_TYPE_P (TREE_TYPE (res
))));
6983 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
6985 tree lhs
= gimple_get_lhs (stmt
);
6987 /* In general, assignments with virtual operands are not useful
6988 for deriving ranges, with the obvious exception of calls to
6989 builtin functions. */
6990 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
6991 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
6992 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
6993 && (is_gimple_call (stmt
)
6994 || !gimple_vuse (stmt
)))
6996 else if (is_gimple_call (stmt
) && gimple_call_internal_p (stmt
))
6997 switch (gimple_call_internal_fn (stmt
))
6999 case IFN_ADD_OVERFLOW
:
7000 case IFN_SUB_OVERFLOW
:
7001 case IFN_MUL_OVERFLOW
:
7002 /* These internal calls return _Complex integer type,
7003 but are interesting to VRP nevertheless. */
7004 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
)
7011 else if (gimple_code (stmt
) == GIMPLE_COND
7012 || gimple_code (stmt
) == GIMPLE_SWITCH
)
7019 /* Initialize local data structures for VRP. */
7022 vrp_initialize (void)
7026 values_propagated
= false;
7027 num_vr_values
= num_ssa_names
;
7028 vr_value
= XCNEWVEC (value_range_t
*, num_vr_values
);
7029 vr_phi_edge_counts
= XCNEWVEC (int, num_ssa_names
);
7031 FOR_EACH_BB_FN (bb
, cfun
)
7033 for (gphi_iterator si
= gsi_start_phis (bb
); !gsi_end_p (si
);
7036 gphi
*phi
= si
.phi ();
7037 if (!stmt_interesting_for_vrp (phi
))
7039 tree lhs
= PHI_RESULT (phi
);
7040 set_value_range_to_varying (get_value_range (lhs
));
7041 prop_set_simulate_again (phi
, false);
7044 prop_set_simulate_again (phi
, true);
7047 for (gimple_stmt_iterator si
= gsi_start_bb (bb
); !gsi_end_p (si
);
7050 gimple stmt
= gsi_stmt (si
);
7052 /* If the statement is a control insn, then we do not
7053 want to avoid simulating the statement once. Failure
7054 to do so means that those edges will never get added. */
7055 if (stmt_ends_bb_p (stmt
))
7056 prop_set_simulate_again (stmt
, true);
7057 else if (!stmt_interesting_for_vrp (stmt
))
7061 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, i
, SSA_OP_DEF
)
7062 set_value_range_to_varying (get_value_range (def
));
7063 prop_set_simulate_again (stmt
, false);
7066 prop_set_simulate_again (stmt
, true);
7071 /* Return the singleton value-range for NAME or NAME. */
7074 vrp_valueize (tree name
)
7076 if (TREE_CODE (name
) == SSA_NAME
)
7078 value_range_t
*vr
= get_value_range (name
);
7079 if (vr
->type
== VR_RANGE
7080 && (vr
->min
== vr
->max
7081 || operand_equal_p (vr
->min
, vr
->max
, 0)))
7087 /* Return the singleton value-range for NAME if that is a constant
7088 but signal to not follow SSA edges. */
7091 vrp_valueize_1 (tree name
)
7093 if (TREE_CODE (name
) == SSA_NAME
)
7095 /* If the definition may be simulated again we cannot follow
7096 this SSA edge as the SSA propagator does not necessarily
7097 re-visit the use. */
7098 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
7099 if (!gimple_nop_p (def_stmt
)
7100 && prop_simulate_again_p (def_stmt
))
7102 value_range_t
*vr
= get_value_range (name
);
7103 if (range_int_cst_singleton_p (vr
))
7109 /* Visit assignment STMT. If it produces an interesting range, record
7110 the SSA name in *OUTPUT_P. */
7112 static enum ssa_prop_result
7113 vrp_visit_assignment_or_call (gimple stmt
, tree
*output_p
)
7117 enum gimple_code code
= gimple_code (stmt
);
7118 lhs
= gimple_get_lhs (stmt
);
7120 /* We only keep track of ranges in integral and pointer types. */
7121 if (TREE_CODE (lhs
) == SSA_NAME
7122 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
7123 /* It is valid to have NULL MIN/MAX values on a type. See
7124 build_range_type. */
7125 && TYPE_MIN_VALUE (TREE_TYPE (lhs
))
7126 && TYPE_MAX_VALUE (TREE_TYPE (lhs
)))
7127 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
7129 value_range_t new_vr
= VR_INITIALIZER
;
7131 /* Try folding the statement to a constant first. */
7132 tree tem
= gimple_fold_stmt_to_constant_1 (stmt
, vrp_valueize
,
7134 if (tem
&& is_gimple_min_invariant (tem
))
7135 set_value_range_to_value (&new_vr
, tem
, NULL
);
7136 /* Then dispatch to value-range extracting functions. */
7137 else if (code
== GIMPLE_CALL
)
7138 extract_range_basic (&new_vr
, stmt
);
7140 extract_range_from_assignment (&new_vr
, as_a
<gassign
*> (stmt
));
7142 if (update_value_range (lhs
, &new_vr
))
7146 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7148 fprintf (dump_file
, "Found new range for ");
7149 print_generic_expr (dump_file
, lhs
, 0);
7150 fprintf (dump_file
, ": ");
7151 dump_value_range (dump_file
, &new_vr
);
7152 fprintf (dump_file
, "\n");
7155 if (new_vr
.type
== VR_VARYING
)
7156 return SSA_PROP_VARYING
;
7158 return SSA_PROP_INTERESTING
;
7161 return SSA_PROP_NOT_INTERESTING
;
7163 else if (is_gimple_call (stmt
) && gimple_call_internal_p (stmt
))
7164 switch (gimple_call_internal_fn (stmt
))
7166 case IFN_ADD_OVERFLOW
:
7167 case IFN_SUB_OVERFLOW
:
7168 case IFN_MUL_OVERFLOW
:
7169 /* These internal calls return _Complex integer type,
7170 which VRP does not track, but the immediate uses
7171 thereof might be interesting. */
7172 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
)
7174 imm_use_iterator iter
;
7175 use_operand_p use_p
;
7176 enum ssa_prop_result res
= SSA_PROP_VARYING
;
7178 set_value_range_to_varying (get_value_range (lhs
));
7180 FOR_EACH_IMM_USE_FAST (use_p
, iter
, lhs
)
7182 gimple use_stmt
= USE_STMT (use_p
);
7183 if (!is_gimple_assign (use_stmt
))
7185 enum tree_code rhs_code
= gimple_assign_rhs_code (use_stmt
);
7186 if (rhs_code
!= REALPART_EXPR
&& rhs_code
!= IMAGPART_EXPR
)
7188 tree rhs1
= gimple_assign_rhs1 (use_stmt
);
7189 tree use_lhs
= gimple_assign_lhs (use_stmt
);
7190 if (TREE_CODE (rhs1
) != rhs_code
7191 || TREE_OPERAND (rhs1
, 0) != lhs
7192 || TREE_CODE (use_lhs
) != SSA_NAME
7193 || !stmt_interesting_for_vrp (use_stmt
)
7194 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs
))
7195 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs
))
7196 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs
))))
7199 /* If there is a change in the value range for any of the
7200 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
7201 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
7202 or IMAGPART_EXPR immediate uses, but none of them have
7203 a change in their value ranges, return
7204 SSA_PROP_NOT_INTERESTING. If there are no
7205 {REAL,IMAG}PART_EXPR uses at all,
7206 return SSA_PROP_VARYING. */
7207 value_range_t new_vr
= VR_INITIALIZER
;
7208 extract_range_basic (&new_vr
, use_stmt
);
7209 value_range_t
*old_vr
= get_value_range (use_lhs
);
7210 if (old_vr
->type
!= new_vr
.type
7211 || !vrp_operand_equal_p (old_vr
->min
, new_vr
.min
)
7212 || !vrp_operand_equal_p (old_vr
->max
, new_vr
.max
)
7213 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
.equiv
))
7214 res
= SSA_PROP_INTERESTING
;
7216 res
= SSA_PROP_NOT_INTERESTING
;
7217 BITMAP_FREE (new_vr
.equiv
);
7218 if (res
== SSA_PROP_INTERESTING
)
7232 /* Every other statement produces no useful ranges. */
7233 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
7234 set_value_range_to_varying (get_value_range (def
));
7236 return SSA_PROP_VARYING
;
7239 /* Helper that gets the value range of the SSA_NAME with version I
7240 or a symbolic range containing the SSA_NAME only if the value range
7241 is varying or undefined. */
7243 static inline value_range_t
7244 get_vr_for_comparison (int i
)
7246 value_range_t vr
= *get_value_range (ssa_name (i
));
7248 /* If name N_i does not have a valid range, use N_i as its own
7249 range. This allows us to compare against names that may
7250 have N_i in their ranges. */
7251 if (vr
.type
== VR_VARYING
|| vr
.type
== VR_UNDEFINED
)
7254 vr
.min
= ssa_name (i
);
7255 vr
.max
= ssa_name (i
);
7261 /* Compare all the value ranges for names equivalent to VAR with VAL
7262 using comparison code COMP. Return the same value returned by
7263 compare_range_with_value, including the setting of
7264 *STRICT_OVERFLOW_P. */
7267 compare_name_with_value (enum tree_code comp
, tree var
, tree val
,
7268 bool *strict_overflow_p
)
7274 int used_strict_overflow
;
7276 value_range_t equiv_vr
;
7278 /* Get the set of equivalences for VAR. */
7279 e
= get_value_range (var
)->equiv
;
7281 /* Start at -1. Set it to 0 if we do a comparison without relying
7282 on overflow, or 1 if all comparisons rely on overflow. */
7283 used_strict_overflow
= -1;
7285 /* Compare vars' value range with val. */
7286 equiv_vr
= get_vr_for_comparison (SSA_NAME_VERSION (var
));
7288 retval
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
7290 used_strict_overflow
= sop
? 1 : 0;
7292 /* If the equiv set is empty we have done all work we need to do. */
7296 && used_strict_overflow
> 0)
7297 *strict_overflow_p
= true;
7301 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
7303 equiv_vr
= get_vr_for_comparison (i
);
7305 t
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
7308 /* If we get different answers from different members
7309 of the equivalence set this check must be in a dead
7310 code region. Folding it to a trap representation
7311 would be correct here. For now just return don't-know. */
7321 used_strict_overflow
= 0;
7322 else if (used_strict_overflow
< 0)
7323 used_strict_overflow
= 1;
7328 && used_strict_overflow
> 0)
7329 *strict_overflow_p
= true;
7335 /* Given a comparison code COMP and names N1 and N2, compare all the
7336 ranges equivalent to N1 against all the ranges equivalent to N2
7337 to determine the value of N1 COMP N2. Return the same value
7338 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
7339 whether we relied on an overflow infinity in the comparison. */
7343 compare_names (enum tree_code comp
, tree n1
, tree n2
,
7344 bool *strict_overflow_p
)
7348 bitmap_iterator bi1
, bi2
;
7350 int used_strict_overflow
;
7351 static bitmap_obstack
*s_obstack
= NULL
;
7352 static bitmap s_e1
= NULL
, s_e2
= NULL
;
7354 /* Compare the ranges of every name equivalent to N1 against the
7355 ranges of every name equivalent to N2. */
7356 e1
= get_value_range (n1
)->equiv
;
7357 e2
= get_value_range (n2
)->equiv
;
7359 /* Use the fake bitmaps if e1 or e2 are not available. */
7360 if (s_obstack
== NULL
)
7362 s_obstack
= XNEW (bitmap_obstack
);
7363 bitmap_obstack_initialize (s_obstack
);
7364 s_e1
= BITMAP_ALLOC (s_obstack
);
7365 s_e2
= BITMAP_ALLOC (s_obstack
);
7372 /* Add N1 and N2 to their own set of equivalences to avoid
7373 duplicating the body of the loop just to check N1 and N2
7375 bitmap_set_bit (e1
, SSA_NAME_VERSION (n1
));
7376 bitmap_set_bit (e2
, SSA_NAME_VERSION (n2
));
7378 /* If the equivalence sets have a common intersection, then the two
7379 names can be compared without checking their ranges. */
7380 if (bitmap_intersect_p (e1
, e2
))
7382 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
7383 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
7385 return (comp
== EQ_EXPR
|| comp
== GE_EXPR
|| comp
== LE_EXPR
)
7387 : boolean_false_node
;
7390 /* Start at -1. Set it to 0 if we do a comparison without relying
7391 on overflow, or 1 if all comparisons rely on overflow. */
7392 used_strict_overflow
= -1;
7394 /* Otherwise, compare all the equivalent ranges. First, add N1 and
7395 N2 to their own set of equivalences to avoid duplicating the body
7396 of the loop just to check N1 and N2 ranges. */
7397 EXECUTE_IF_SET_IN_BITMAP (e1
, 0, i1
, bi1
)
7399 value_range_t vr1
= get_vr_for_comparison (i1
);
7401 t
= retval
= NULL_TREE
;
7402 EXECUTE_IF_SET_IN_BITMAP (e2
, 0, i2
, bi2
)
7406 value_range_t vr2
= get_vr_for_comparison (i2
);
7408 t
= compare_ranges (comp
, &vr1
, &vr2
, &sop
);
7411 /* If we get different answers from different members
7412 of the equivalence set this check must be in a dead
7413 code region. Folding it to a trap representation
7414 would be correct here. For now just return don't-know. */
7418 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
7419 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
7425 used_strict_overflow
= 0;
7426 else if (used_strict_overflow
< 0)
7427 used_strict_overflow
= 1;
7433 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
7434 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
7435 if (used_strict_overflow
> 0)
7436 *strict_overflow_p
= true;
7441 /* None of the equivalent ranges are useful in computing this
7443 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
7444 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
7448 /* Helper function for vrp_evaluate_conditional_warnv. */
7451 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code
,
7453 bool * strict_overflow_p
)
7455 value_range_t
*vr0
, *vr1
;
7457 vr0
= (TREE_CODE (op0
) == SSA_NAME
) ? get_value_range (op0
) : NULL
;
7458 vr1
= (TREE_CODE (op1
) == SSA_NAME
) ? get_value_range (op1
) : NULL
;
7460 tree res
= NULL_TREE
;
7462 res
= compare_ranges (code
, vr0
, vr1
, strict_overflow_p
);
7464 res
= compare_range_with_value (code
, vr0
, op1
, strict_overflow_p
);
7466 res
= (compare_range_with_value
7467 (swap_tree_comparison (code
), vr1
, op0
, strict_overflow_p
));
7471 /* Helper function for vrp_evaluate_conditional_warnv. */
7474 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code
, tree op0
,
7475 tree op1
, bool use_equiv_p
,
7476 bool *strict_overflow_p
, bool *only_ranges
)
7480 *only_ranges
= true;
7482 /* We only deal with integral and pointer types. */
7483 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
7484 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
7490 && (ret
= vrp_evaluate_conditional_warnv_with_ops_using_ranges
7491 (code
, op0
, op1
, strict_overflow_p
)))
7493 *only_ranges
= false;
7494 if (TREE_CODE (op0
) == SSA_NAME
&& TREE_CODE (op1
) == SSA_NAME
)
7495 return compare_names (code
, op0
, op1
, strict_overflow_p
);
7496 else if (TREE_CODE (op0
) == SSA_NAME
)
7497 return compare_name_with_value (code
, op0
, op1
, strict_overflow_p
);
7498 else if (TREE_CODE (op1
) == SSA_NAME
)
7499 return (compare_name_with_value
7500 (swap_tree_comparison (code
), op1
, op0
, strict_overflow_p
));
7503 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code
, op0
, op1
,
7508 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7509 information. Return NULL if the conditional can not be evaluated.
7510 The ranges of all the names equivalent with the operands in COND
7511 will be used when trying to compute the value. If the result is
7512 based on undefined signed overflow, issue a warning if
7516 vrp_evaluate_conditional (enum tree_code code
, tree op0
, tree op1
, gimple stmt
)
7522 /* Some passes and foldings leak constants with overflow flag set
7523 into the IL. Avoid doing wrong things with these and bail out. */
7524 if ((TREE_CODE (op0
) == INTEGER_CST
7525 && TREE_OVERFLOW (op0
))
7526 || (TREE_CODE (op1
) == INTEGER_CST
7527 && TREE_OVERFLOW (op1
)))
7531 ret
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, true, &sop
,
7536 enum warn_strict_overflow_code wc
;
7537 const char* warnmsg
;
7539 if (is_gimple_min_invariant (ret
))
7541 wc
= WARN_STRICT_OVERFLOW_CONDITIONAL
;
7542 warnmsg
= G_("assuming signed overflow does not occur when "
7543 "simplifying conditional to constant");
7547 wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
7548 warnmsg
= G_("assuming signed overflow does not occur when "
7549 "simplifying conditional");
7552 if (issue_strict_overflow_warning (wc
))
7554 location_t location
;
7556 if (!gimple_has_location (stmt
))
7557 location
= input_location
;
7559 location
= gimple_location (stmt
);
7560 warning_at (location
, OPT_Wstrict_overflow
, "%s", warnmsg
);
7564 if (warn_type_limits
7565 && ret
&& only_ranges
7566 && TREE_CODE_CLASS (code
) == tcc_comparison
7567 && TREE_CODE (op0
) == SSA_NAME
)
7569 /* If the comparison is being folded and the operand on the LHS
7570 is being compared against a constant value that is outside of
7571 the natural range of OP0's type, then the predicate will
7572 always fold regardless of the value of OP0. If -Wtype-limits
7573 was specified, emit a warning. */
7574 tree type
= TREE_TYPE (op0
);
7575 value_range_t
*vr0
= get_value_range (op0
);
7577 if (vr0
->type
== VR_RANGE
7578 && INTEGRAL_TYPE_P (type
)
7579 && vrp_val_is_min (vr0
->min
)
7580 && vrp_val_is_max (vr0
->max
)
7581 && is_gimple_min_invariant (op1
))
7583 location_t location
;
7585 if (!gimple_has_location (stmt
))
7586 location
= input_location
;
7588 location
= gimple_location (stmt
);
7590 warning_at (location
, OPT_Wtype_limits
,
7592 ? G_("comparison always false "
7593 "due to limited range of data type")
7594 : G_("comparison always true "
7595 "due to limited range of data type"));
7603 /* Visit conditional statement STMT. If we can determine which edge
7604 will be taken out of STMT's basic block, record it in
7605 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7606 SSA_PROP_VARYING. */
7608 static enum ssa_prop_result
7609 vrp_visit_cond_stmt (gcond
*stmt
, edge
*taken_edge_p
)
7614 *taken_edge_p
= NULL
;
7616 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7621 fprintf (dump_file
, "\nVisiting conditional with predicate: ");
7622 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7623 fprintf (dump_file
, "\nWith known ranges\n");
7625 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
7627 fprintf (dump_file
, "\t");
7628 print_generic_expr (dump_file
, use
, 0);
7629 fprintf (dump_file
, ": ");
7630 dump_value_range (dump_file
, vr_value
[SSA_NAME_VERSION (use
)]);
7633 fprintf (dump_file
, "\n");
7636 /* Compute the value of the predicate COND by checking the known
7637 ranges of each of its operands.
7639 Note that we cannot evaluate all the equivalent ranges here
7640 because those ranges may not yet be final and with the current
7641 propagation strategy, we cannot determine when the value ranges
7642 of the names in the equivalence set have changed.
7644 For instance, given the following code fragment
7648 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7652 Assume that on the first visit to i_14, i_5 has the temporary
7653 range [8, 8] because the second argument to the PHI function is
7654 not yet executable. We derive the range ~[0, 0] for i_14 and the
7655 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7656 the first time, since i_14 is equivalent to the range [8, 8], we
7657 determine that the predicate is always false.
7659 On the next round of propagation, i_13 is determined to be
7660 VARYING, which causes i_5 to drop down to VARYING. So, another
7661 visit to i_14 is scheduled. In this second visit, we compute the
7662 exact same range and equivalence set for i_14, namely ~[0, 0] and
7663 { i_5 }. But we did not have the previous range for i_5
7664 registered, so vrp_visit_assignment thinks that the range for
7665 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7666 is not visited again, which stops propagation from visiting
7667 statements in the THEN clause of that if().
7669 To properly fix this we would need to keep the previous range
7670 value for the names in the equivalence set. This way we would've
7671 discovered that from one visit to the other i_5 changed from
7672 range [8, 8] to VR_VARYING.
7674 However, fixing this apparent limitation may not be worth the
7675 additional checking. Testing on several code bases (GCC, DLV,
7676 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7677 4 more predicates folded in SPEC. */
7680 val
= vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt
),
7681 gimple_cond_lhs (stmt
),
7682 gimple_cond_rhs (stmt
),
7687 *taken_edge_p
= find_taken_edge (gimple_bb (stmt
), val
);
7690 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7692 "\nIgnoring predicate evaluation because "
7693 "it assumes that signed overflow is undefined");
7698 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7700 fprintf (dump_file
, "\nPredicate evaluates to: ");
7701 if (val
== NULL_TREE
)
7702 fprintf (dump_file
, "DON'T KNOW\n");
7704 print_generic_stmt (dump_file
, val
, 0);
7707 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
7710 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7711 that includes the value VAL. The search is restricted to the range
7712 [START_IDX, n - 1] where n is the size of VEC.
7714 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7717 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7718 it is placed in IDX and false is returned.
7720 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7724 find_case_label_index (gswitch
*stmt
, size_t start_idx
, tree val
, size_t *idx
)
7726 size_t n
= gimple_switch_num_labels (stmt
);
7729 /* Find case label for minimum of the value range or the next one.
7730 At each iteration we are searching in [low, high - 1]. */
7732 for (low
= start_idx
, high
= n
; high
!= low
; )
7736 /* Note that i != high, so we never ask for n. */
7737 size_t i
= (high
+ low
) / 2;
7738 t
= gimple_switch_label (stmt
, i
);
7740 /* Cache the result of comparing CASE_LOW and val. */
7741 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
7745 /* Ranges cannot be empty. */
7754 if (CASE_HIGH (t
) != NULL
7755 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
7767 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7768 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7769 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7770 then MAX_IDX < MIN_IDX.
7771 Returns true if the default label is not needed. */
7774 find_case_label_range (gswitch
*stmt
, tree min
, tree max
, size_t *min_idx
,
7778 bool min_take_default
= !find_case_label_index (stmt
, 1, min
, &i
);
7779 bool max_take_default
= !find_case_label_index (stmt
, i
, max
, &j
);
7783 && max_take_default
)
7785 /* Only the default case label reached.
7786 Return an empty range. */
7793 bool take_default
= min_take_default
|| max_take_default
;
7797 if (max_take_default
)
7800 /* If the case label range is continuous, we do not need
7801 the default case label. Verify that. */
7802 high
= CASE_LOW (gimple_switch_label (stmt
, i
));
7803 if (CASE_HIGH (gimple_switch_label (stmt
, i
)))
7804 high
= CASE_HIGH (gimple_switch_label (stmt
, i
));
7805 for (k
= i
+ 1; k
<= j
; ++k
)
7807 low
= CASE_LOW (gimple_switch_label (stmt
, k
));
7808 if (!integer_onep (int_const_binop (MINUS_EXPR
, low
, high
)))
7810 take_default
= true;
7814 if (CASE_HIGH (gimple_switch_label (stmt
, k
)))
7815 high
= CASE_HIGH (gimple_switch_label (stmt
, k
));
7820 return !take_default
;
7824 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7825 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7826 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7827 Returns true if the default label is not needed. */
7830 find_case_label_ranges (gswitch
*stmt
, value_range_t
*vr
, size_t *min_idx1
,
7831 size_t *max_idx1
, size_t *min_idx2
,
7835 unsigned int n
= gimple_switch_num_labels (stmt
);
7837 tree case_low
, case_high
;
7838 tree min
= vr
->min
, max
= vr
->max
;
7840 gcc_checking_assert (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
);
7842 take_default
= !find_case_label_range (stmt
, min
, max
, &i
, &j
);
7844 /* Set second range to emtpy. */
7848 if (vr
->type
== VR_RANGE
)
7852 return !take_default
;
7855 /* Set first range to all case labels. */
7862 /* Make sure all the values of case labels [i , j] are contained in
7863 range [MIN, MAX]. */
7864 case_low
= CASE_LOW (gimple_switch_label (stmt
, i
));
7865 case_high
= CASE_HIGH (gimple_switch_label (stmt
, j
));
7866 if (tree_int_cst_compare (case_low
, min
) < 0)
7868 if (case_high
!= NULL_TREE
7869 && tree_int_cst_compare (max
, case_high
) < 0)
7875 /* If the range spans case labels [i, j], the corresponding anti-range spans
7876 the labels [1, i - 1] and [j + 1, n - 1]. */
7902 /* Visit switch statement STMT. If we can determine which edge
7903 will be taken out of STMT's basic block, record it in
7904 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7905 SSA_PROP_VARYING. */
7907 static enum ssa_prop_result
7908 vrp_visit_switch_stmt (gswitch
*stmt
, edge
*taken_edge_p
)
7912 size_t i
= 0, j
= 0, k
, l
;
7915 *taken_edge_p
= NULL
;
7916 op
= gimple_switch_index (stmt
);
7917 if (TREE_CODE (op
) != SSA_NAME
)
7918 return SSA_PROP_VARYING
;
7920 vr
= get_value_range (op
);
7921 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7923 fprintf (dump_file
, "\nVisiting switch expression with operand ");
7924 print_generic_expr (dump_file
, op
, 0);
7925 fprintf (dump_file
, " with known range ");
7926 dump_value_range (dump_file
, vr
);
7927 fprintf (dump_file
, "\n");
7930 if ((vr
->type
!= VR_RANGE
7931 && vr
->type
!= VR_ANTI_RANGE
)
7932 || symbolic_range_p (vr
))
7933 return SSA_PROP_VARYING
;
7935 /* Find the single edge that is taken from the switch expression. */
7936 take_default
= !find_case_label_ranges (stmt
, vr
, &i
, &j
, &k
, &l
);
7938 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7942 gcc_assert (take_default
);
7943 val
= gimple_switch_default_label (stmt
);
7947 /* Check if labels with index i to j and maybe the default label
7948 are all reaching the same label. */
7950 val
= gimple_switch_label (stmt
, i
);
7952 && CASE_LABEL (gimple_switch_default_label (stmt
))
7953 != CASE_LABEL (val
))
7955 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7956 fprintf (dump_file
, " not a single destination for this "
7958 return SSA_PROP_VARYING
;
7960 for (++i
; i
<= j
; ++i
)
7962 if (CASE_LABEL (gimple_switch_label (stmt
, i
)) != CASE_LABEL (val
))
7964 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7965 fprintf (dump_file
, " not a single destination for this "
7967 return SSA_PROP_VARYING
;
7972 if (CASE_LABEL (gimple_switch_label (stmt
, k
)) != CASE_LABEL (val
))
7974 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7975 fprintf (dump_file
, " not a single destination for this "
7977 return SSA_PROP_VARYING
;
7982 *taken_edge_p
= find_edge (gimple_bb (stmt
),
7983 label_to_block (CASE_LABEL (val
)));
7985 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7987 fprintf (dump_file
, " will take edge to ");
7988 print_generic_stmt (dump_file
, CASE_LABEL (val
), 0);
7991 return SSA_PROP_INTERESTING
;
7995 /* Evaluate statement STMT. If the statement produces a useful range,
7996 return SSA_PROP_INTERESTING and record the SSA name with the
7997 interesting range into *OUTPUT_P.
7999 If STMT is a conditional branch and we can determine its truth
8000 value, the taken edge is recorded in *TAKEN_EDGE_P.
8002 If STMT produces a varying value, return SSA_PROP_VARYING. */
8004 static enum ssa_prop_result
8005 vrp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
8010 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8012 fprintf (dump_file
, "\nVisiting statement:\n");
8013 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
8016 if (!stmt_interesting_for_vrp (stmt
))
8017 gcc_assert (stmt_ends_bb_p (stmt
));
8018 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
8019 return vrp_visit_assignment_or_call (stmt
, output_p
);
8020 else if (gimple_code (stmt
) == GIMPLE_COND
)
8021 return vrp_visit_cond_stmt (as_a
<gcond
*> (stmt
), taken_edge_p
);
8022 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
8023 return vrp_visit_switch_stmt (as_a
<gswitch
*> (stmt
), taken_edge_p
);
8025 /* All other statements produce nothing of interest for VRP, so mark
8026 their outputs varying and prevent further simulation. */
8027 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
8028 set_value_range_to_varying (get_value_range (def
));
8030 return SSA_PROP_VARYING
;
8033 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8034 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8035 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8036 possible such range. The resulting range is not canonicalized. */
8039 union_ranges (enum value_range_type
*vr0type
,
8040 tree
*vr0min
, tree
*vr0max
,
8041 enum value_range_type vr1type
,
8042 tree vr1min
, tree vr1max
)
8044 bool mineq
= operand_equal_p (*vr0min
, vr1min
, 0);
8045 bool maxeq
= operand_equal_p (*vr0max
, vr1max
, 0);
8047 /* [] is vr0, () is vr1 in the following classification comments. */
8051 if (*vr0type
== vr1type
)
8052 /* Nothing to do for equal ranges. */
8054 else if ((*vr0type
== VR_RANGE
8055 && vr1type
== VR_ANTI_RANGE
)
8056 || (*vr0type
== VR_ANTI_RANGE
8057 && vr1type
== VR_RANGE
))
8059 /* For anti-range with range union the result is varying. */
8065 else if (operand_less_p (*vr0max
, vr1min
) == 1
8066 || operand_less_p (vr1max
, *vr0min
) == 1)
8068 /* [ ] ( ) or ( ) [ ]
8069 If the ranges have an empty intersection, result of the union
8070 operation is the anti-range or if both are anti-ranges
8072 if (*vr0type
== VR_ANTI_RANGE
8073 && vr1type
== VR_ANTI_RANGE
)
8075 else if (*vr0type
== VR_ANTI_RANGE
8076 && vr1type
== VR_RANGE
)
8078 else if (*vr0type
== VR_RANGE
8079 && vr1type
== VR_ANTI_RANGE
)
8085 else if (*vr0type
== VR_RANGE
8086 && vr1type
== VR_RANGE
)
8088 /* The result is the convex hull of both ranges. */
8089 if (operand_less_p (*vr0max
, vr1min
) == 1)
8091 /* If the result can be an anti-range, create one. */
8092 if (TREE_CODE (*vr0max
) == INTEGER_CST
8093 && TREE_CODE (vr1min
) == INTEGER_CST
8094 && vrp_val_is_min (*vr0min
)
8095 && vrp_val_is_max (vr1max
))
8097 tree min
= int_const_binop (PLUS_EXPR
,
8099 build_int_cst (TREE_TYPE (*vr0max
), 1));
8100 tree max
= int_const_binop (MINUS_EXPR
,
8102 build_int_cst (TREE_TYPE (vr1min
), 1));
8103 if (!operand_less_p (max
, min
))
8105 *vr0type
= VR_ANTI_RANGE
;
8117 /* If the result can be an anti-range, create one. */
8118 if (TREE_CODE (vr1max
) == INTEGER_CST
8119 && TREE_CODE (*vr0min
) == INTEGER_CST
8120 && vrp_val_is_min (vr1min
)
8121 && vrp_val_is_max (*vr0max
))
8123 tree min
= int_const_binop (PLUS_EXPR
,
8125 build_int_cst (TREE_TYPE (vr1max
), 1));
8126 tree max
= int_const_binop (MINUS_EXPR
,
8128 build_int_cst (TREE_TYPE (*vr0min
), 1));
8129 if (!operand_less_p (max
, min
))
8131 *vr0type
= VR_ANTI_RANGE
;
8145 else if ((maxeq
|| operand_less_p (vr1max
, *vr0max
) == 1)
8146 && (mineq
|| operand_less_p (*vr0min
, vr1min
) == 1))
8148 /* [ ( ) ] or [( ) ] or [ ( )] */
8149 if (*vr0type
== VR_RANGE
8150 && vr1type
== VR_RANGE
)
8152 else if (*vr0type
== VR_ANTI_RANGE
8153 && vr1type
== VR_ANTI_RANGE
)
8159 else if (*vr0type
== VR_ANTI_RANGE
8160 && vr1type
== VR_RANGE
)
8162 /* Arbitrarily choose the right or left gap. */
8163 if (!mineq
&& TREE_CODE (vr1min
) == INTEGER_CST
)
8164 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
8165 build_int_cst (TREE_TYPE (vr1min
), 1));
8166 else if (!maxeq
&& TREE_CODE (vr1max
) == INTEGER_CST
)
8167 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
8168 build_int_cst (TREE_TYPE (vr1max
), 1));
8172 else if (*vr0type
== VR_RANGE
8173 && vr1type
== VR_ANTI_RANGE
)
8174 /* The result covers everything. */
8179 else if ((maxeq
|| operand_less_p (*vr0max
, vr1max
) == 1)
8180 && (mineq
|| operand_less_p (vr1min
, *vr0min
) == 1))
8182 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8183 if (*vr0type
== VR_RANGE
8184 && vr1type
== VR_RANGE
)
8190 else if (*vr0type
== VR_ANTI_RANGE
8191 && vr1type
== VR_ANTI_RANGE
)
8193 else if (*vr0type
== VR_RANGE
8194 && vr1type
== VR_ANTI_RANGE
)
8196 *vr0type
= VR_ANTI_RANGE
;
8197 if (!mineq
&& TREE_CODE (*vr0min
) == INTEGER_CST
)
8199 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
8200 build_int_cst (TREE_TYPE (*vr0min
), 1));
8203 else if (!maxeq
&& TREE_CODE (*vr0max
) == INTEGER_CST
)
8205 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
8206 build_int_cst (TREE_TYPE (*vr0max
), 1));
8212 else if (*vr0type
== VR_ANTI_RANGE
8213 && vr1type
== VR_RANGE
)
8214 /* The result covers everything. */
8219 else if ((operand_less_p (vr1min
, *vr0max
) == 1
8220 || operand_equal_p (vr1min
, *vr0max
, 0))
8221 && operand_less_p (*vr0min
, vr1min
) == 1
8222 && operand_less_p (*vr0max
, vr1max
) == 1)
8224 /* [ ( ] ) or [ ]( ) */
8225 if (*vr0type
== VR_RANGE
8226 && vr1type
== VR_RANGE
)
8228 else if (*vr0type
== VR_ANTI_RANGE
8229 && vr1type
== VR_ANTI_RANGE
)
8231 else if (*vr0type
== VR_ANTI_RANGE
8232 && vr1type
== VR_RANGE
)
8234 if (TREE_CODE (vr1min
) == INTEGER_CST
)
8235 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
8236 build_int_cst (TREE_TYPE (vr1min
), 1));
8240 else if (*vr0type
== VR_RANGE
8241 && vr1type
== VR_ANTI_RANGE
)
8243 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
8246 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
8247 build_int_cst (TREE_TYPE (*vr0max
), 1));
8256 else if ((operand_less_p (*vr0min
, vr1max
) == 1
8257 || operand_equal_p (*vr0min
, vr1max
, 0))
8258 && operand_less_p (vr1min
, *vr0min
) == 1
8259 && operand_less_p (vr1max
, *vr0max
) == 1)
8261 /* ( [ ) ] or ( )[ ] */
8262 if (*vr0type
== VR_RANGE
8263 && vr1type
== VR_RANGE
)
8265 else if (*vr0type
== VR_ANTI_RANGE
8266 && vr1type
== VR_ANTI_RANGE
)
8268 else if (*vr0type
== VR_ANTI_RANGE
8269 && vr1type
== VR_RANGE
)
8271 if (TREE_CODE (vr1max
) == INTEGER_CST
)
8272 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
8273 build_int_cst (TREE_TYPE (vr1max
), 1));
8277 else if (*vr0type
== VR_RANGE
8278 && vr1type
== VR_ANTI_RANGE
)
8280 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
8284 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
8285 build_int_cst (TREE_TYPE (*vr0min
), 1));
8299 *vr0type
= VR_VARYING
;
8300 *vr0min
= NULL_TREE
;
8301 *vr0max
= NULL_TREE
;
8304 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8305 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8306 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8307 possible such range. The resulting range is not canonicalized. */
8310 intersect_ranges (enum value_range_type
*vr0type
,
8311 tree
*vr0min
, tree
*vr0max
,
8312 enum value_range_type vr1type
,
8313 tree vr1min
, tree vr1max
)
8315 bool mineq
= operand_equal_p (*vr0min
, vr1min
, 0);
8316 bool maxeq
= operand_equal_p (*vr0max
, vr1max
, 0);
8318 /* [] is vr0, () is vr1 in the following classification comments. */
8322 if (*vr0type
== vr1type
)
8323 /* Nothing to do for equal ranges. */
8325 else if ((*vr0type
== VR_RANGE
8326 && vr1type
== VR_ANTI_RANGE
)
8327 || (*vr0type
== VR_ANTI_RANGE
8328 && vr1type
== VR_RANGE
))
8330 /* For anti-range with range intersection the result is empty. */
8331 *vr0type
= VR_UNDEFINED
;
8332 *vr0min
= NULL_TREE
;
8333 *vr0max
= NULL_TREE
;
8338 else if (operand_less_p (*vr0max
, vr1min
) == 1
8339 || operand_less_p (vr1max
, *vr0min
) == 1)
8341 /* [ ] ( ) or ( ) [ ]
8342 If the ranges have an empty intersection, the result of the
8343 intersect operation is the range for intersecting an
8344 anti-range with a range or empty when intersecting two ranges. */
8345 if (*vr0type
== VR_RANGE
8346 && vr1type
== VR_ANTI_RANGE
)
8348 else if (*vr0type
== VR_ANTI_RANGE
8349 && vr1type
== VR_RANGE
)
8355 else if (*vr0type
== VR_RANGE
8356 && vr1type
== VR_RANGE
)
8358 *vr0type
= VR_UNDEFINED
;
8359 *vr0min
= NULL_TREE
;
8360 *vr0max
= NULL_TREE
;
8362 else if (*vr0type
== VR_ANTI_RANGE
8363 && vr1type
== VR_ANTI_RANGE
)
8365 /* If the anti-ranges are adjacent to each other merge them. */
8366 if (TREE_CODE (*vr0max
) == INTEGER_CST
8367 && TREE_CODE (vr1min
) == INTEGER_CST
8368 && operand_less_p (*vr0max
, vr1min
) == 1
8369 && integer_onep (int_const_binop (MINUS_EXPR
,
8372 else if (TREE_CODE (vr1max
) == INTEGER_CST
8373 && TREE_CODE (*vr0min
) == INTEGER_CST
8374 && operand_less_p (vr1max
, *vr0min
) == 1
8375 && integer_onep (int_const_binop (MINUS_EXPR
,
8378 /* Else arbitrarily take VR0. */
8381 else if ((maxeq
|| operand_less_p (vr1max
, *vr0max
) == 1)
8382 && (mineq
|| operand_less_p (*vr0min
, vr1min
) == 1))
8384 /* [ ( ) ] or [( ) ] or [ ( )] */
8385 if (*vr0type
== VR_RANGE
8386 && vr1type
== VR_RANGE
)
8388 /* If both are ranges the result is the inner one. */
8393 else if (*vr0type
== VR_RANGE
8394 && vr1type
== VR_ANTI_RANGE
)
8396 /* Choose the right gap if the left one is empty. */
8399 if (TREE_CODE (vr1max
) == INTEGER_CST
)
8400 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
8401 build_int_cst (TREE_TYPE (vr1max
), 1));
8405 /* Choose the left gap if the right one is empty. */
8408 if (TREE_CODE (vr1min
) == INTEGER_CST
)
8409 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
8410 build_int_cst (TREE_TYPE (vr1min
), 1));
8414 /* Choose the anti-range if the range is effectively varying. */
8415 else if (vrp_val_is_min (*vr0min
)
8416 && vrp_val_is_max (*vr0max
))
8422 /* Else choose the range. */
8424 else if (*vr0type
== VR_ANTI_RANGE
8425 && vr1type
== VR_ANTI_RANGE
)
8426 /* If both are anti-ranges the result is the outer one. */
8428 else if (*vr0type
== VR_ANTI_RANGE
8429 && vr1type
== VR_RANGE
)
8431 /* The intersection is empty. */
8432 *vr0type
= VR_UNDEFINED
;
8433 *vr0min
= NULL_TREE
;
8434 *vr0max
= NULL_TREE
;
8439 else if ((maxeq
|| operand_less_p (*vr0max
, vr1max
) == 1)
8440 && (mineq
|| operand_less_p (vr1min
, *vr0min
) == 1))
8442 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8443 if (*vr0type
== VR_RANGE
8444 && vr1type
== VR_RANGE
)
8445 /* Choose the inner range. */
8447 else if (*vr0type
== VR_ANTI_RANGE
8448 && vr1type
== VR_RANGE
)
8450 /* Choose the right gap if the left is empty. */
8453 *vr0type
= VR_RANGE
;
8454 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
8455 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
8456 build_int_cst (TREE_TYPE (*vr0max
), 1));
8461 /* Choose the left gap if the right is empty. */
8464 *vr0type
= VR_RANGE
;
8465 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
8466 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
8467 build_int_cst (TREE_TYPE (*vr0min
), 1));
8472 /* Choose the anti-range if the range is effectively varying. */
8473 else if (vrp_val_is_min (vr1min
)
8474 && vrp_val_is_max (vr1max
))
8476 /* Else choose the range. */
8484 else if (*vr0type
== VR_ANTI_RANGE
8485 && vr1type
== VR_ANTI_RANGE
)
8487 /* If both are anti-ranges the result is the outer one. */
8492 else if (vr1type
== VR_ANTI_RANGE
8493 && *vr0type
== VR_RANGE
)
8495 /* The intersection is empty. */
8496 *vr0type
= VR_UNDEFINED
;
8497 *vr0min
= NULL_TREE
;
8498 *vr0max
= NULL_TREE
;
8503 else if ((operand_less_p (vr1min
, *vr0max
) == 1
8504 || operand_equal_p (vr1min
, *vr0max
, 0))
8505 && operand_less_p (*vr0min
, vr1min
) == 1)
8507 /* [ ( ] ) or [ ]( ) */
8508 if (*vr0type
== VR_ANTI_RANGE
8509 && vr1type
== VR_ANTI_RANGE
)
8511 else if (*vr0type
== VR_RANGE
8512 && vr1type
== VR_RANGE
)
8514 else if (*vr0type
== VR_RANGE
8515 && vr1type
== VR_ANTI_RANGE
)
8517 if (TREE_CODE (vr1min
) == INTEGER_CST
)
8518 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
8519 build_int_cst (TREE_TYPE (vr1min
), 1));
8523 else if (*vr0type
== VR_ANTI_RANGE
8524 && vr1type
== VR_RANGE
)
8526 *vr0type
= VR_RANGE
;
8527 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
8528 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
8529 build_int_cst (TREE_TYPE (*vr0max
), 1));
8537 else if ((operand_less_p (*vr0min
, vr1max
) == 1
8538 || operand_equal_p (*vr0min
, vr1max
, 0))
8539 && operand_less_p (vr1min
, *vr0min
) == 1)
8541 /* ( [ ) ] or ( )[ ] */
8542 if (*vr0type
== VR_ANTI_RANGE
8543 && vr1type
== VR_ANTI_RANGE
)
8545 else if (*vr0type
== VR_RANGE
8546 && vr1type
== VR_RANGE
)
8548 else if (*vr0type
== VR_RANGE
8549 && vr1type
== VR_ANTI_RANGE
)
8551 if (TREE_CODE (vr1max
) == INTEGER_CST
)
8552 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
8553 build_int_cst (TREE_TYPE (vr1max
), 1));
8557 else if (*vr0type
== VR_ANTI_RANGE
8558 && vr1type
== VR_RANGE
)
8560 *vr0type
= VR_RANGE
;
8561 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
8562 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
8563 build_int_cst (TREE_TYPE (*vr0min
), 1));
8572 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8573 result for the intersection. That's always a conservative
8574 correct estimate. */
8580 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8581 in *VR0. This may not be the smallest possible such range. */
8584 vrp_intersect_ranges_1 (value_range_t
*vr0
, value_range_t
*vr1
)
8586 value_range_t saved
;
8588 /* If either range is VR_VARYING the other one wins. */
8589 if (vr1
->type
== VR_VARYING
)
8591 if (vr0
->type
== VR_VARYING
)
8593 copy_value_range (vr0
, vr1
);
8597 /* When either range is VR_UNDEFINED the resulting range is
8598 VR_UNDEFINED, too. */
8599 if (vr0
->type
== VR_UNDEFINED
)
8601 if (vr1
->type
== VR_UNDEFINED
)
8603 set_value_range_to_undefined (vr0
);
8607 /* Save the original vr0 so we can return it as conservative intersection
8608 result when our worker turns things to varying. */
8610 intersect_ranges (&vr0
->type
, &vr0
->min
, &vr0
->max
,
8611 vr1
->type
, vr1
->min
, vr1
->max
);
8612 /* Make sure to canonicalize the result though as the inversion of a
8613 VR_RANGE can still be a VR_RANGE. */
8614 set_and_canonicalize_value_range (vr0
, vr0
->type
,
8615 vr0
->min
, vr0
->max
, vr0
->equiv
);
8616 /* If that failed, use the saved original VR0. */
8617 if (vr0
->type
== VR_VARYING
)
8622 /* If the result is VR_UNDEFINED there is no need to mess with
8623 the equivalencies. */
8624 if (vr0
->type
== VR_UNDEFINED
)
8627 /* The resulting set of equivalences for range intersection is the union of
8629 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
8630 bitmap_ior_into (vr0
->equiv
, vr1
->equiv
);
8631 else if (vr1
->equiv
&& !vr0
->equiv
)
8632 bitmap_copy (vr0
->equiv
, vr1
->equiv
);
8636 vrp_intersect_ranges (value_range_t
*vr0
, value_range_t
*vr1
)
8638 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8640 fprintf (dump_file
, "Intersecting\n ");
8641 dump_value_range (dump_file
, vr0
);
8642 fprintf (dump_file
, "\nand\n ");
8643 dump_value_range (dump_file
, vr1
);
8644 fprintf (dump_file
, "\n");
8646 vrp_intersect_ranges_1 (vr0
, vr1
);
8647 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8649 fprintf (dump_file
, "to\n ");
8650 dump_value_range (dump_file
, vr0
);
8651 fprintf (dump_file
, "\n");
8655 /* Meet operation for value ranges. Given two value ranges VR0 and
8656 VR1, store in VR0 a range that contains both VR0 and VR1. This
8657 may not be the smallest possible such range. */
8660 vrp_meet_1 (value_range_t
*vr0
, value_range_t
*vr1
)
8662 value_range_t saved
;
8664 if (vr0
->type
== VR_UNDEFINED
)
8666 set_value_range (vr0
, vr1
->type
, vr1
->min
, vr1
->max
, vr1
->equiv
);
8670 if (vr1
->type
== VR_UNDEFINED
)
8672 /* VR0 already has the resulting range. */
8676 if (vr0
->type
== VR_VARYING
)
8678 /* Nothing to do. VR0 already has the resulting range. */
8682 if (vr1
->type
== VR_VARYING
)
8684 set_value_range_to_varying (vr0
);
8689 union_ranges (&vr0
->type
, &vr0
->min
, &vr0
->max
,
8690 vr1
->type
, vr1
->min
, vr1
->max
);
8691 if (vr0
->type
== VR_VARYING
)
8693 /* Failed to find an efficient meet. Before giving up and setting
8694 the result to VARYING, see if we can at least derive a useful
8695 anti-range. FIXME, all this nonsense about distinguishing
8696 anti-ranges from ranges is necessary because of the odd
8697 semantics of range_includes_zero_p and friends. */
8698 if (((saved
.type
== VR_RANGE
8699 && range_includes_zero_p (saved
.min
, saved
.max
) == 0)
8700 || (saved
.type
== VR_ANTI_RANGE
8701 && range_includes_zero_p (saved
.min
, saved
.max
) == 1))
8702 && ((vr1
->type
== VR_RANGE
8703 && range_includes_zero_p (vr1
->min
, vr1
->max
) == 0)
8704 || (vr1
->type
== VR_ANTI_RANGE
8705 && range_includes_zero_p (vr1
->min
, vr1
->max
) == 1)))
8707 set_value_range_to_nonnull (vr0
, TREE_TYPE (saved
.min
));
8709 /* Since this meet operation did not result from the meeting of
8710 two equivalent names, VR0 cannot have any equivalences. */
8712 bitmap_clear (vr0
->equiv
);
8716 set_value_range_to_varying (vr0
);
8719 set_and_canonicalize_value_range (vr0
, vr0
->type
, vr0
->min
, vr0
->max
,
8721 if (vr0
->type
== VR_VARYING
)
8724 /* The resulting set of equivalences is always the intersection of
8726 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
8727 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
8728 else if (vr0
->equiv
&& !vr1
->equiv
)
8729 bitmap_clear (vr0
->equiv
);
8733 vrp_meet (value_range_t
*vr0
, value_range_t
*vr1
)
8735 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8737 fprintf (dump_file
, "Meeting\n ");
8738 dump_value_range (dump_file
, vr0
);
8739 fprintf (dump_file
, "\nand\n ");
8740 dump_value_range (dump_file
, vr1
);
8741 fprintf (dump_file
, "\n");
8743 vrp_meet_1 (vr0
, vr1
);
8744 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8746 fprintf (dump_file
, "to\n ");
8747 dump_value_range (dump_file
, vr0
);
8748 fprintf (dump_file
, "\n");
8753 /* Visit all arguments for PHI node PHI that flow through executable
8754 edges. If a valid value range can be derived from all the incoming
8755 value ranges, set a new range for the LHS of PHI. */
8757 static enum ssa_prop_result
8758 vrp_visit_phi_node (gphi
*phi
)
8761 tree lhs
= PHI_RESULT (phi
);
8762 value_range_t
*lhs_vr
= get_value_range (lhs
);
8763 value_range_t vr_result
= VR_INITIALIZER
;
8765 int edges
, old_edges
;
8768 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8770 fprintf (dump_file
, "\nVisiting PHI node: ");
8771 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
8775 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
8777 edge e
= gimple_phi_arg_edge (phi
, i
);
8779 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8782 " Argument #%d (%d -> %d %sexecutable)\n",
8783 (int) i
, e
->src
->index
, e
->dest
->index
,
8784 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
8787 if (e
->flags
& EDGE_EXECUTABLE
)
8789 tree arg
= PHI_ARG_DEF (phi
, i
);
8790 value_range_t vr_arg
;
8794 if (TREE_CODE (arg
) == SSA_NAME
)
8796 vr_arg
= *(get_value_range (arg
));
8797 /* Do not allow equivalences or symbolic ranges to leak in from
8798 backedges. That creates invalid equivalencies.
8799 See PR53465 and PR54767. */
8800 if (e
->flags
& EDGE_DFS_BACK
)
8802 if (vr_arg
.type
== VR_RANGE
8803 || vr_arg
.type
== VR_ANTI_RANGE
)
8805 vr_arg
.equiv
= NULL
;
8806 if (symbolic_range_p (&vr_arg
))
8808 vr_arg
.type
= VR_VARYING
;
8809 vr_arg
.min
= NULL_TREE
;
8810 vr_arg
.max
= NULL_TREE
;
8816 /* If the non-backedge arguments range is VR_VARYING then
8817 we can still try recording a simple equivalence. */
8818 if (vr_arg
.type
== VR_VARYING
)
8820 vr_arg
.type
= VR_RANGE
;
8823 vr_arg
.equiv
= NULL
;
8829 if (TREE_OVERFLOW_P (arg
))
8830 arg
= drop_tree_overflow (arg
);
8832 vr_arg
.type
= VR_RANGE
;
8835 vr_arg
.equiv
= NULL
;
8838 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8840 fprintf (dump_file
, "\t");
8841 print_generic_expr (dump_file
, arg
, dump_flags
);
8842 fprintf (dump_file
, ": ");
8843 dump_value_range (dump_file
, &vr_arg
);
8844 fprintf (dump_file
, "\n");
8848 copy_value_range (&vr_result
, &vr_arg
);
8850 vrp_meet (&vr_result
, &vr_arg
);
8853 if (vr_result
.type
== VR_VARYING
)
8858 if (vr_result
.type
== VR_VARYING
)
8860 else if (vr_result
.type
== VR_UNDEFINED
)
8863 old_edges
= vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)];
8864 vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)] = edges
;
8866 /* To prevent infinite iterations in the algorithm, derive ranges
8867 when the new value is slightly bigger or smaller than the
8868 previous one. We don't do this if we have seen a new executable
8869 edge; this helps us avoid an overflow infinity for conditionals
8870 which are not in a loop. If the old value-range was VR_UNDEFINED
8871 use the updated range and iterate one more time. */
8873 && gimple_phi_num_args (phi
) > 1
8874 && edges
== old_edges
8875 && lhs_vr
->type
!= VR_UNDEFINED
)
8877 /* Compare old and new ranges, fall back to varying if the
8878 values are not comparable. */
8879 int cmp_min
= compare_values (lhs_vr
->min
, vr_result
.min
);
8882 int cmp_max
= compare_values (lhs_vr
->max
, vr_result
.max
);
8886 /* For non VR_RANGE or for pointers fall back to varying if
8887 the range changed. */
8888 if ((lhs_vr
->type
!= VR_RANGE
|| vr_result
.type
!= VR_RANGE
8889 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
8890 && (cmp_min
!= 0 || cmp_max
!= 0))
8893 /* If the new minimum is larger than than the previous one
8894 retain the old value. If the new minimum value is smaller
8895 than the previous one and not -INF go all the way to -INF + 1.
8896 In the first case, to avoid infinite bouncing between different
8897 minimums, and in the other case to avoid iterating millions of
8898 times to reach -INF. Going to -INF + 1 also lets the following
8899 iteration compute whether there will be any overflow, at the
8900 expense of one additional iteration. */
8902 vr_result
.min
= lhs_vr
->min
;
8903 else if (cmp_min
> 0
8904 && !vrp_val_is_min (vr_result
.min
))
8906 = int_const_binop (PLUS_EXPR
,
8907 vrp_val_min (TREE_TYPE (vr_result
.min
)),
8908 build_int_cst (TREE_TYPE (vr_result
.min
), 1));
8910 /* Similarly for the maximum value. */
8912 vr_result
.max
= lhs_vr
->max
;
8913 else if (cmp_max
< 0
8914 && !vrp_val_is_max (vr_result
.max
))
8916 = int_const_binop (MINUS_EXPR
,
8917 vrp_val_max (TREE_TYPE (vr_result
.min
)),
8918 build_int_cst (TREE_TYPE (vr_result
.min
), 1));
8920 /* If we dropped either bound to +-INF then if this is a loop
8921 PHI node SCEV may known more about its value-range. */
8922 if ((cmp_min
> 0 || cmp_min
< 0
8923 || cmp_max
< 0 || cmp_max
> 0)
8924 && (l
= loop_containing_stmt (phi
))
8925 && l
->header
== gimple_bb (phi
))
8926 adjust_range_with_scev (&vr_result
, l
, phi
, lhs
);
8928 /* If we will end up with a (-INF, +INF) range, set it to
8929 VARYING. Same if the previous max value was invalid for
8930 the type and we end up with vr_result.min > vr_result.max. */
8931 if ((vrp_val_is_max (vr_result
.max
)
8932 && vrp_val_is_min (vr_result
.min
))
8933 || compare_values (vr_result
.min
,
8938 /* If the new range is different than the previous value, keep
8941 if (update_value_range (lhs
, &vr_result
))
8943 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8945 fprintf (dump_file
, "Found new range for ");
8946 print_generic_expr (dump_file
, lhs
, 0);
8947 fprintf (dump_file
, ": ");
8948 dump_value_range (dump_file
, &vr_result
);
8949 fprintf (dump_file
, "\n");
8952 return SSA_PROP_INTERESTING
;
8955 /* Nothing changed, don't add outgoing edges. */
8956 return SSA_PROP_NOT_INTERESTING
;
8958 /* No match found. Set the LHS to VARYING. */
8960 set_value_range_to_varying (lhs_vr
);
8961 return SSA_PROP_VARYING
;
8964 /* Simplify boolean operations if the source is known
8965 to be already a boolean. */
8967 simplify_truth_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
8969 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
8971 bool need_conversion
;
8973 /* We handle only !=/== case here. */
8974 gcc_assert (rhs_code
== EQ_EXPR
|| rhs_code
== NE_EXPR
);
8976 op0
= gimple_assign_rhs1 (stmt
);
8977 if (!op_with_boolean_value_range_p (op0
))
8980 op1
= gimple_assign_rhs2 (stmt
);
8981 if (!op_with_boolean_value_range_p (op1
))
8984 /* Reduce number of cases to handle to NE_EXPR. As there is no
8985 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8986 if (rhs_code
== EQ_EXPR
)
8988 if (TREE_CODE (op1
) == INTEGER_CST
)
8989 op1
= int_const_binop (BIT_XOR_EXPR
, op1
,
8990 build_int_cst (TREE_TYPE (op1
), 1));
8995 lhs
= gimple_assign_lhs (stmt
);
8997 = !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (op0
));
8999 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
9001 && !TYPE_UNSIGNED (TREE_TYPE (op0
))
9002 && TYPE_PRECISION (TREE_TYPE (op0
)) == 1
9003 && TYPE_PRECISION (TREE_TYPE (lhs
)) > 1)
9006 /* For A != 0 we can substitute A itself. */
9007 if (integer_zerop (op1
))
9008 gimple_assign_set_rhs_with_ops (gsi
,
9010 ? NOP_EXPR
: TREE_CODE (op0
), op0
);
9011 /* For A != B we substitute A ^ B. Either with conversion. */
9012 else if (need_conversion
)
9014 tree tem
= make_ssa_name (TREE_TYPE (op0
));
9016 = gimple_build_assign (tem
, BIT_XOR_EXPR
, op0
, op1
);
9017 gsi_insert_before (gsi
, newop
, GSI_SAME_STMT
);
9018 gimple_assign_set_rhs_with_ops (gsi
, NOP_EXPR
, tem
);
9022 gimple_assign_set_rhs_with_ops (gsi
, BIT_XOR_EXPR
, op0
, op1
);
9023 update_stmt (gsi_stmt (*gsi
));
9028 /* Simplify a division or modulo operator to a right shift or
9029 bitwise and if the first operand is unsigned or is greater
9030 than zero and the second operand is an exact power of two.
9031 For TRUNC_MOD_EXPR op0 % op1 with constant op1, optimize it
9032 into just op0 if op0's range is known to be a subset of
9033 [-op1 + 1, op1 - 1] for signed and [0, op1 - 1] for unsigned
9037 simplify_div_or_mod_using_ranges (gimple stmt
)
9039 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
9041 tree op0
= gimple_assign_rhs1 (stmt
);
9042 tree op1
= gimple_assign_rhs2 (stmt
);
9043 value_range_t
*vr
= get_value_range (op0
);
9045 if (rhs_code
== TRUNC_MOD_EXPR
9046 && TREE_CODE (op1
) == INTEGER_CST
9047 && tree_int_cst_sgn (op1
) == 1
9048 && range_int_cst_p (vr
)
9049 && tree_int_cst_lt (vr
->max
, op1
))
9051 if (TYPE_UNSIGNED (TREE_TYPE (op0
))
9052 || tree_int_cst_sgn (vr
->min
) >= 0
9053 || tree_int_cst_lt (fold_unary (NEGATE_EXPR
, TREE_TYPE (op1
), op1
),
9056 /* If op0 already has the range op0 % op1 has,
9057 then TRUNC_MOD_EXPR won't change anything. */
9058 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
9059 gimple_assign_set_rhs_from_tree (&gsi
, op0
);
9065 if (!integer_pow2p (op1
))
9068 if (TYPE_UNSIGNED (TREE_TYPE (op0
)))
9070 val
= integer_one_node
;
9076 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
9080 && integer_onep (val
)
9081 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
9083 location_t location
;
9085 if (!gimple_has_location (stmt
))
9086 location
= input_location
;
9088 location
= gimple_location (stmt
);
9089 warning_at (location
, OPT_Wstrict_overflow
,
9090 "assuming signed overflow does not occur when "
9091 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
9095 if (val
&& integer_onep (val
))
9099 if (rhs_code
== TRUNC_DIV_EXPR
)
9101 t
= build_int_cst (integer_type_node
, tree_log2 (op1
));
9102 gimple_assign_set_rhs_code (stmt
, RSHIFT_EXPR
);
9103 gimple_assign_set_rhs1 (stmt
, op0
);
9104 gimple_assign_set_rhs2 (stmt
, t
);
9108 t
= build_int_cst (TREE_TYPE (op1
), 1);
9109 t
= int_const_binop (MINUS_EXPR
, op1
, t
);
9110 t
= fold_convert (TREE_TYPE (op0
), t
);
9112 gimple_assign_set_rhs_code (stmt
, BIT_AND_EXPR
);
9113 gimple_assign_set_rhs1 (stmt
, op0
);
9114 gimple_assign_set_rhs2 (stmt
, t
);
9124 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
9125 ABS_EXPR. If the operand is <= 0, then simplify the
9126 ABS_EXPR into a NEGATE_EXPR. */
9129 simplify_abs_using_ranges (gimple stmt
)
9132 tree op
= gimple_assign_rhs1 (stmt
);
9133 tree type
= TREE_TYPE (op
);
9134 value_range_t
*vr
= get_value_range (op
);
9136 if (TYPE_UNSIGNED (type
))
9138 val
= integer_zero_node
;
9144 val
= compare_range_with_value (LE_EXPR
, vr
, integer_zero_node
, &sop
);
9148 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
,
9153 if (integer_zerop (val
))
9154 val
= integer_one_node
;
9155 else if (integer_onep (val
))
9156 val
= integer_zero_node
;
9161 && (integer_onep (val
) || integer_zerop (val
)))
9163 if (sop
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
9165 location_t location
;
9167 if (!gimple_has_location (stmt
))
9168 location
= input_location
;
9170 location
= gimple_location (stmt
);
9171 warning_at (location
, OPT_Wstrict_overflow
,
9172 "assuming signed overflow does not occur when "
9173 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
9176 gimple_assign_set_rhs1 (stmt
, op
);
9177 if (integer_onep (val
))
9178 gimple_assign_set_rhs_code (stmt
, NEGATE_EXPR
);
9180 gimple_assign_set_rhs_code (stmt
, SSA_NAME
);
9189 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
9190 If all the bits that are being cleared by & are already
9191 known to be zero from VR, or all the bits that are being
9192 set by | are already known to be one from VR, the bit
9193 operation is redundant. */
9196 simplify_bit_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
9198 tree op0
= gimple_assign_rhs1 (stmt
);
9199 tree op1
= gimple_assign_rhs2 (stmt
);
9200 tree op
= NULL_TREE
;
9201 value_range_t vr0
= VR_INITIALIZER
;
9202 value_range_t vr1
= VR_INITIALIZER
;
9203 wide_int may_be_nonzero0
, may_be_nonzero1
;
9204 wide_int must_be_nonzero0
, must_be_nonzero1
;
9207 if (TREE_CODE (op0
) == SSA_NAME
)
9208 vr0
= *(get_value_range (op0
));
9209 else if (is_gimple_min_invariant (op0
))
9210 set_value_range_to_value (&vr0
, op0
, NULL
);
9214 if (TREE_CODE (op1
) == SSA_NAME
)
9215 vr1
= *(get_value_range (op1
));
9216 else if (is_gimple_min_invariant (op1
))
9217 set_value_range_to_value (&vr1
, op1
, NULL
);
9221 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0
), &vr0
, &may_be_nonzero0
,
9224 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1
), &vr1
, &may_be_nonzero1
,
9228 switch (gimple_assign_rhs_code (stmt
))
9231 mask
= may_be_nonzero0
.and_not (must_be_nonzero1
);
9237 mask
= may_be_nonzero1
.and_not (must_be_nonzero0
);
9245 mask
= may_be_nonzero0
.and_not (must_be_nonzero1
);
9251 mask
= may_be_nonzero1
.and_not (must_be_nonzero0
);
9262 if (op
== NULL_TREE
)
9265 gimple_assign_set_rhs_with_ops (gsi
, TREE_CODE (op
), op
);
9266 update_stmt (gsi_stmt (*gsi
));
9270 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
9271 a known value range VR.
9273 If there is one and only one value which will satisfy the
9274 conditional, then return that value. Else return NULL.
9276 If signed overflow must be undefined for the value to satisfy
9277 the conditional, then set *STRICT_OVERFLOW_P to true. */
9280 test_for_singularity (enum tree_code cond_code
, tree op0
,
9281 tree op1
, value_range_t
*vr
,
9282 bool *strict_overflow_p
)
9287 /* Extract minimum/maximum values which satisfy the
9288 the conditional as it was written. */
9289 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
9291 /* This should not be negative infinity; there is no overflow
9293 min
= TYPE_MIN_VALUE (TREE_TYPE (op0
));
9296 if (cond_code
== LT_EXPR
&& !is_overflow_infinity (max
))
9298 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
9299 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (op0
), max
, one
);
9301 TREE_NO_WARNING (max
) = 1;
9304 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
9306 /* This should not be positive infinity; there is no overflow
9308 max
= TYPE_MAX_VALUE (TREE_TYPE (op0
));
9311 if (cond_code
== GT_EXPR
&& !is_overflow_infinity (min
))
9313 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
9314 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (op0
), min
, one
);
9316 TREE_NO_WARNING (min
) = 1;
9320 /* Now refine the minimum and maximum values using any
9321 value range information we have for op0. */
9324 if (compare_values (vr
->min
, min
) == 1)
9326 if (compare_values (vr
->max
, max
) == -1)
9329 /* If the new min/max values have converged to a single value,
9330 then there is only one value which can satisfy the condition,
9331 return that value. */
9332 if (operand_equal_p (min
, max
, 0) && is_gimple_min_invariant (min
))
9334 if ((cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
9335 && is_overflow_infinity (vr
->max
))
9336 *strict_overflow_p
= true;
9337 if ((cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
9338 && is_overflow_infinity (vr
->min
))
9339 *strict_overflow_p
= true;
9347 /* Return whether the value range *VR fits in an integer type specified
9348 by PRECISION and UNSIGNED_P. */
9351 range_fits_type_p (value_range_t
*vr
, unsigned dest_precision
, signop dest_sgn
)
9354 unsigned src_precision
;
9358 /* We can only handle integral and pointer types. */
9359 src_type
= TREE_TYPE (vr
->min
);
9360 if (!INTEGRAL_TYPE_P (src_type
)
9361 && !POINTER_TYPE_P (src_type
))
9364 /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
9365 and so is an identity transform. */
9366 src_precision
= TYPE_PRECISION (TREE_TYPE (vr
->min
));
9367 src_sgn
= TYPE_SIGN (src_type
);
9368 if ((src_precision
< dest_precision
9369 && !(dest_sgn
== UNSIGNED
&& src_sgn
== SIGNED
))
9370 || (src_precision
== dest_precision
&& src_sgn
== dest_sgn
))
9373 /* Now we can only handle ranges with constant bounds. */
9374 if (vr
->type
!= VR_RANGE
9375 || TREE_CODE (vr
->min
) != INTEGER_CST
9376 || TREE_CODE (vr
->max
) != INTEGER_CST
)
9379 /* For sign changes, the MSB of the wide_int has to be clear.
9380 An unsigned value with its MSB set cannot be represented by
9381 a signed wide_int, while a negative value cannot be represented
9382 by an unsigned wide_int. */
9383 if (src_sgn
!= dest_sgn
9384 && (wi::lts_p (vr
->min
, 0) || wi::lts_p (vr
->max
, 0)))
9387 /* Then we can perform the conversion on both ends and compare
9388 the result for equality. */
9389 tem
= wi::ext (wi::to_widest (vr
->min
), dest_precision
, dest_sgn
);
9390 if (tem
!= wi::to_widest (vr
->min
))
9392 tem
= wi::ext (wi::to_widest (vr
->max
), dest_precision
, dest_sgn
);
9393 if (tem
!= wi::to_widest (vr
->max
))
9399 /* Simplify a conditional using a relational operator to an equality
9400 test if the range information indicates only one value can satisfy
9401 the original conditional. */
9404 simplify_cond_using_ranges (gcond
*stmt
)
9406 tree op0
= gimple_cond_lhs (stmt
);
9407 tree op1
= gimple_cond_rhs (stmt
);
9408 enum tree_code cond_code
= gimple_cond_code (stmt
);
9410 if (cond_code
!= NE_EXPR
9411 && cond_code
!= EQ_EXPR
9412 && TREE_CODE (op0
) == SSA_NAME
9413 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
9414 && is_gimple_min_invariant (op1
))
9416 value_range_t
*vr
= get_value_range (op0
);
9418 /* If we have range information for OP0, then we might be
9419 able to simplify this conditional. */
9420 if (vr
->type
== VR_RANGE
)
9422 enum warn_strict_overflow_code wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
9424 tree new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
, &sop
);
9427 && (!sop
|| TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
))))
9431 fprintf (dump_file
, "Simplified relational ");
9432 print_gimple_stmt (dump_file
, stmt
, 0, 0);
9433 fprintf (dump_file
, " into ");
9436 gimple_cond_set_code (stmt
, EQ_EXPR
);
9437 gimple_cond_set_lhs (stmt
, op0
);
9438 gimple_cond_set_rhs (stmt
, new_tree
);
9444 print_gimple_stmt (dump_file
, stmt
, 0, 0);
9445 fprintf (dump_file
, "\n");
9448 if (sop
&& issue_strict_overflow_warning (wc
))
9450 location_t location
= input_location
;
9451 if (gimple_has_location (stmt
))
9452 location
= gimple_location (stmt
);
9454 warning_at (location
, OPT_Wstrict_overflow
,
9455 "assuming signed overflow does not occur when "
9456 "simplifying conditional");
9462 /* Try again after inverting the condition. We only deal
9463 with integral types here, so no need to worry about
9464 issues with inverting FP comparisons. */
9466 new_tree
= test_for_singularity
9467 (invert_tree_comparison (cond_code
, false),
9468 op0
, op1
, vr
, &sop
);
9471 && (!sop
|| TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
))))
9475 fprintf (dump_file
, "Simplified relational ");
9476 print_gimple_stmt (dump_file
, stmt
, 0, 0);
9477 fprintf (dump_file
, " into ");
9480 gimple_cond_set_code (stmt
, NE_EXPR
);
9481 gimple_cond_set_lhs (stmt
, op0
);
9482 gimple_cond_set_rhs (stmt
, new_tree
);
9488 print_gimple_stmt (dump_file
, stmt
, 0, 0);
9489 fprintf (dump_file
, "\n");
9492 if (sop
&& issue_strict_overflow_warning (wc
))
9494 location_t location
= input_location
;
9495 if (gimple_has_location (stmt
))
9496 location
= gimple_location (stmt
);
9498 warning_at (location
, OPT_Wstrict_overflow
,
9499 "assuming signed overflow does not occur when "
9500 "simplifying conditional");
9508 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
9509 see if OP0 was set by a type conversion where the source of
9510 the conversion is another SSA_NAME with a range that fits
9511 into the range of OP0's type.
9513 If so, the conversion is redundant as the earlier SSA_NAME can be
9514 used for the comparison directly if we just massage the constant in the
9516 if (TREE_CODE (op0
) == SSA_NAME
9517 && TREE_CODE (op1
) == INTEGER_CST
)
9519 gimple def_stmt
= SSA_NAME_DEF_STMT (op0
);
9522 if (!is_gimple_assign (def_stmt
)
9523 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
)))
9526 innerop
= gimple_assign_rhs1 (def_stmt
);
9528 if (TREE_CODE (innerop
) == SSA_NAME
9529 && !POINTER_TYPE_P (TREE_TYPE (innerop
)))
9531 value_range_t
*vr
= get_value_range (innerop
);
9533 if (range_int_cst_p (vr
)
9534 && range_fits_type_p (vr
,
9535 TYPE_PRECISION (TREE_TYPE (op0
)),
9536 TYPE_SIGN (TREE_TYPE (op0
)))
9537 && int_fits_type_p (op1
, TREE_TYPE (innerop
))
9538 /* The range must not have overflowed, or if it did overflow
9539 we must not be wrapping/trapping overflow and optimizing
9540 with strict overflow semantics. */
9541 && ((!is_negative_overflow_infinity (vr
->min
)
9542 && !is_positive_overflow_infinity (vr
->max
))
9543 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop
))))
9545 /* If the range overflowed and the user has asked for warnings
9546 when strict overflow semantics were used to optimize code,
9547 issue an appropriate warning. */
9548 if (cond_code
!= EQ_EXPR
&& cond_code
!= NE_EXPR
9549 && (is_negative_overflow_infinity (vr
->min
)
9550 || is_positive_overflow_infinity (vr
->max
))
9551 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL
))
9553 location_t location
;
9555 if (!gimple_has_location (stmt
))
9556 location
= input_location
;
9558 location
= gimple_location (stmt
);
9559 warning_at (location
, OPT_Wstrict_overflow
,
9560 "assuming signed overflow does not occur when "
9561 "simplifying conditional");
9564 tree newconst
= fold_convert (TREE_TYPE (innerop
), op1
);
9565 gimple_cond_set_lhs (stmt
, innerop
);
9566 gimple_cond_set_rhs (stmt
, newconst
);
9575 /* Simplify a switch statement using the value range of the switch
9579 simplify_switch_using_ranges (gswitch
*stmt
)
9581 tree op
= gimple_switch_index (stmt
);
9586 size_t i
= 0, j
= 0, n
, n2
;
9589 size_t k
= 1, l
= 0;
9591 if (TREE_CODE (op
) == SSA_NAME
)
9593 vr
= get_value_range (op
);
9595 /* We can only handle integer ranges. */
9596 if ((vr
->type
!= VR_RANGE
9597 && vr
->type
!= VR_ANTI_RANGE
)
9598 || symbolic_range_p (vr
))
9601 /* Find case label for min/max of the value range. */
9602 take_default
= !find_case_label_ranges (stmt
, vr
, &i
, &j
, &k
, &l
);
9604 else if (TREE_CODE (op
) == INTEGER_CST
)
9606 take_default
= !find_case_label_index (stmt
, 1, op
, &i
);
9620 n
= gimple_switch_num_labels (stmt
);
9622 /* Bail out if this is just all edges taken. */
9628 /* Build a new vector of taken case labels. */
9629 vec2
= make_tree_vec (j
- i
+ 1 + l
- k
+ 1 + (int)take_default
);
9632 /* Add the default edge, if necessary. */
9634 TREE_VEC_ELT (vec2
, n2
++) = gimple_switch_default_label (stmt
);
9636 for (; i
<= j
; ++i
, ++n2
)
9637 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, i
);
9639 for (; k
<= l
; ++k
, ++n2
)
9640 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, k
);
9642 /* Mark needed edges. */
9643 for (i
= 0; i
< n2
; ++i
)
9645 e
= find_edge (gimple_bb (stmt
),
9646 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2
, i
))));
9647 e
->aux
= (void *)-1;
9650 /* Queue not needed edges for later removal. */
9651 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
9653 if (e
->aux
== (void *)-1)
9659 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
9661 fprintf (dump_file
, "removing unreachable case label\n");
9663 to_remove_edges
.safe_push (e
);
9664 e
->flags
&= ~EDGE_EXECUTABLE
;
9667 /* And queue an update for the stmt. */
9670 to_update_switch_stmts
.safe_push (su
);
9674 /* Simplify an integral conversion from an SSA name in STMT. */
9677 simplify_conversion_using_ranges (gimple stmt
)
9679 tree innerop
, middleop
, finaltype
;
9681 value_range_t
*innervr
;
9682 signop inner_sgn
, middle_sgn
, final_sgn
;
9683 unsigned inner_prec
, middle_prec
, final_prec
;
9684 widest_int innermin
, innermed
, innermax
, middlemin
, middlemed
, middlemax
;
9686 finaltype
= TREE_TYPE (gimple_assign_lhs (stmt
));
9687 if (!INTEGRAL_TYPE_P (finaltype
))
9689 middleop
= gimple_assign_rhs1 (stmt
);
9690 def_stmt
= SSA_NAME_DEF_STMT (middleop
);
9691 if (!is_gimple_assign (def_stmt
)
9692 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
)))
9694 innerop
= gimple_assign_rhs1 (def_stmt
);
9695 if (TREE_CODE (innerop
) != SSA_NAME
9696 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop
))
9699 /* Get the value-range of the inner operand. */
9700 innervr
= get_value_range (innerop
);
9701 if (innervr
->type
!= VR_RANGE
9702 || TREE_CODE (innervr
->min
) != INTEGER_CST
9703 || TREE_CODE (innervr
->max
) != INTEGER_CST
)
9706 /* Simulate the conversion chain to check if the result is equal if
9707 the middle conversion is removed. */
9708 innermin
= wi::to_widest (innervr
->min
);
9709 innermax
= wi::to_widest (innervr
->max
);
9711 inner_prec
= TYPE_PRECISION (TREE_TYPE (innerop
));
9712 middle_prec
= TYPE_PRECISION (TREE_TYPE (middleop
));
9713 final_prec
= TYPE_PRECISION (finaltype
);
9715 /* If the first conversion is not injective, the second must not
9717 if (wi::gtu_p (innermax
- innermin
,
9718 wi::mask
<widest_int
> (middle_prec
, false))
9719 && middle_prec
< final_prec
)
9721 /* We also want a medium value so that we can track the effect that
9722 narrowing conversions with sign change have. */
9723 inner_sgn
= TYPE_SIGN (TREE_TYPE (innerop
));
9724 if (inner_sgn
== UNSIGNED
)
9725 innermed
= wi::shifted_mask
<widest_int
> (1, inner_prec
- 1, false);
9728 if (wi::cmp (innermin
, innermed
, inner_sgn
) >= 0
9729 || wi::cmp (innermed
, innermax
, inner_sgn
) >= 0)
9730 innermed
= innermin
;
9732 middle_sgn
= TYPE_SIGN (TREE_TYPE (middleop
));
9733 middlemin
= wi::ext (innermin
, middle_prec
, middle_sgn
);
9734 middlemed
= wi::ext (innermed
, middle_prec
, middle_sgn
);
9735 middlemax
= wi::ext (innermax
, middle_prec
, middle_sgn
);
9737 /* Require that the final conversion applied to both the original
9738 and the intermediate range produces the same result. */
9739 final_sgn
= TYPE_SIGN (finaltype
);
9740 if (wi::ext (middlemin
, final_prec
, final_sgn
)
9741 != wi::ext (innermin
, final_prec
, final_sgn
)
9742 || wi::ext (middlemed
, final_prec
, final_sgn
)
9743 != wi::ext (innermed
, final_prec
, final_sgn
)
9744 || wi::ext (middlemax
, final_prec
, final_sgn
)
9745 != wi::ext (innermax
, final_prec
, final_sgn
))
9748 gimple_assign_set_rhs1 (stmt
, innerop
);
9753 /* Simplify a conversion from integral SSA name to float in STMT. */
9756 simplify_float_conversion_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
9758 tree rhs1
= gimple_assign_rhs1 (stmt
);
9759 value_range_t
*vr
= get_value_range (rhs1
);
9760 machine_mode fltmode
= TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt
)));
9765 /* We can only handle constant ranges. */
9766 if (vr
->type
!= VR_RANGE
9767 || TREE_CODE (vr
->min
) != INTEGER_CST
9768 || TREE_CODE (vr
->max
) != INTEGER_CST
)
9771 /* First check if we can use a signed type in place of an unsigned. */
9772 if (TYPE_UNSIGNED (TREE_TYPE (rhs1
))
9773 && (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)), 0)
9774 != CODE_FOR_nothing
)
9775 && range_fits_type_p (vr
, TYPE_PRECISION (TREE_TYPE (rhs1
)), SIGNED
))
9776 mode
= TYPE_MODE (TREE_TYPE (rhs1
));
9777 /* If we can do the conversion in the current input mode do nothing. */
9778 else if (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)),
9779 TYPE_UNSIGNED (TREE_TYPE (rhs1
))) != CODE_FOR_nothing
)
9781 /* Otherwise search for a mode we can use, starting from the narrowest
9782 integer mode available. */
9785 mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
9788 /* If we cannot do a signed conversion to float from mode
9789 or if the value-range does not fit in the signed type
9790 try with a wider mode. */
9791 if (can_float_p (fltmode
, mode
, 0) != CODE_FOR_nothing
9792 && range_fits_type_p (vr
, GET_MODE_PRECISION (mode
), SIGNED
))
9795 mode
= GET_MODE_WIDER_MODE (mode
);
9796 /* But do not widen the input. Instead leave that to the
9797 optabs expansion code. */
9798 if (GET_MODE_PRECISION (mode
) > TYPE_PRECISION (TREE_TYPE (rhs1
)))
9801 while (mode
!= VOIDmode
);
9802 if (mode
== VOIDmode
)
9806 /* It works, insert a truncation or sign-change before the
9807 float conversion. */
9808 tem
= make_ssa_name (build_nonstandard_integer_type
9809 (GET_MODE_PRECISION (mode
), 0));
9810 conv
= gimple_build_assign (tem
, NOP_EXPR
, rhs1
);
9811 gsi_insert_before (gsi
, conv
, GSI_SAME_STMT
);
9812 gimple_assign_set_rhs1 (stmt
, tem
);
9818 /* Simplify an internal fn call using ranges if possible. */
9821 simplify_internal_call_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
9823 enum tree_code subcode
;
9824 bool is_ubsan
= false;
9826 switch (gimple_call_internal_fn (stmt
))
9828 case IFN_UBSAN_CHECK_ADD
:
9829 subcode
= PLUS_EXPR
;
9832 case IFN_UBSAN_CHECK_SUB
:
9833 subcode
= MINUS_EXPR
;
9836 case IFN_UBSAN_CHECK_MUL
:
9837 subcode
= MULT_EXPR
;
9840 case IFN_ADD_OVERFLOW
:
9841 subcode
= PLUS_EXPR
;
9843 case IFN_SUB_OVERFLOW
:
9844 subcode
= MINUS_EXPR
;
9846 case IFN_MUL_OVERFLOW
:
9847 subcode
= MULT_EXPR
;
9853 tree op0
= gimple_call_arg (stmt
, 0);
9854 tree op1
= gimple_call_arg (stmt
, 1);
9857 type
= TREE_TYPE (op0
);
9858 else if (gimple_call_lhs (stmt
) == NULL_TREE
)
9861 type
= TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt
)));
9862 if (!check_for_binary_op_overflow (subcode
, type
, op0
, op1
, &ovf
)
9863 || (is_ubsan
&& ovf
))
9867 location_t loc
= gimple_location (stmt
);
9869 g
= gimple_build_assign (gimple_call_lhs (stmt
), subcode
, op0
, op1
);
9872 int prec
= TYPE_PRECISION (type
);
9875 || !useless_type_conversion_p (type
, TREE_TYPE (op0
))
9876 || !useless_type_conversion_p (type
, TREE_TYPE (op1
)))
9877 utype
= build_nonstandard_integer_type (prec
, 1);
9878 if (TREE_CODE (op0
) == INTEGER_CST
)
9879 op0
= fold_convert (utype
, op0
);
9880 else if (!useless_type_conversion_p (utype
, TREE_TYPE (op0
)))
9882 g
= gimple_build_assign (make_ssa_name (utype
), NOP_EXPR
, op0
);
9883 gimple_set_location (g
, loc
);
9884 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
9885 op0
= gimple_assign_lhs (g
);
9887 if (TREE_CODE (op1
) == INTEGER_CST
)
9888 op1
= fold_convert (utype
, op1
);
9889 else if (!useless_type_conversion_p (utype
, TREE_TYPE (op1
)))
9891 g
= gimple_build_assign (make_ssa_name (utype
), NOP_EXPR
, op1
);
9892 gimple_set_location (g
, loc
);
9893 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
9894 op1
= gimple_assign_lhs (g
);
9896 g
= gimple_build_assign (make_ssa_name (utype
), subcode
, op0
, op1
);
9897 gimple_set_location (g
, loc
);
9898 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
9901 g
= gimple_build_assign (make_ssa_name (type
), NOP_EXPR
,
9902 gimple_assign_lhs (g
));
9903 gimple_set_location (g
, loc
);
9904 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
9906 g
= gimple_build_assign (gimple_call_lhs (stmt
), COMPLEX_EXPR
,
9907 gimple_assign_lhs (g
),
9908 build_int_cst (type
, ovf
));
9910 gimple_set_location (g
, loc
);
9911 gsi_replace (gsi
, g
, false);
9915 /* Simplify STMT using ranges if possible. */
9918 simplify_stmt_using_ranges (gimple_stmt_iterator
*gsi
)
9920 gimple stmt
= gsi_stmt (*gsi
);
9921 if (is_gimple_assign (stmt
))
9923 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
9924 tree rhs1
= gimple_assign_rhs1 (stmt
);
9930 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
9931 if the RHS is zero or one, and the LHS are known to be boolean
9933 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9934 return simplify_truth_ops_using_ranges (gsi
, stmt
);
9937 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
9938 and BIT_AND_EXPR respectively if the first operand is greater
9939 than zero and the second operand is an exact power of two.
9940 Also optimize TRUNC_MOD_EXPR away if the second operand is
9941 constant and the first operand already has the right value
9943 case TRUNC_DIV_EXPR
:
9944 case TRUNC_MOD_EXPR
:
9945 if (TREE_CODE (rhs1
) == SSA_NAME
9946 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9947 return simplify_div_or_mod_using_ranges (stmt
);
9950 /* Transform ABS (X) into X or -X as appropriate. */
9952 if (TREE_CODE (rhs1
) == SSA_NAME
9953 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9954 return simplify_abs_using_ranges (stmt
);
9959 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
9960 if all the bits being cleared are already cleared or
9961 all the bits being set are already set. */
9962 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9963 return simplify_bit_ops_using_ranges (gsi
, stmt
);
9967 if (TREE_CODE (rhs1
) == SSA_NAME
9968 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9969 return simplify_conversion_using_ranges (stmt
);
9973 if (TREE_CODE (rhs1
) == SSA_NAME
9974 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9975 return simplify_float_conversion_using_ranges (gsi
, stmt
);
9982 else if (gimple_code (stmt
) == GIMPLE_COND
)
9983 return simplify_cond_using_ranges (as_a
<gcond
*> (stmt
));
9984 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
9985 return simplify_switch_using_ranges (as_a
<gswitch
*> (stmt
));
9986 else if (is_gimple_call (stmt
)
9987 && gimple_call_internal_p (stmt
))
9988 return simplify_internal_call_using_ranges (gsi
, stmt
);
9993 /* If the statement pointed by SI has a predicate whose value can be
9994 computed using the value range information computed by VRP, compute
9995 its value and return true. Otherwise, return false. */
9998 fold_predicate_in (gimple_stmt_iterator
*si
)
10000 bool assignment_p
= false;
10002 gimple stmt
= gsi_stmt (*si
);
10004 if (is_gimple_assign (stmt
)
10005 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)) == tcc_comparison
)
10007 assignment_p
= true;
10008 val
= vrp_evaluate_conditional (gimple_assign_rhs_code (stmt
),
10009 gimple_assign_rhs1 (stmt
),
10010 gimple_assign_rhs2 (stmt
),
10013 else if (gcond
*cond_stmt
= dyn_cast
<gcond
*> (stmt
))
10014 val
= vrp_evaluate_conditional (gimple_cond_code (cond_stmt
),
10015 gimple_cond_lhs (cond_stmt
),
10016 gimple_cond_rhs (cond_stmt
),
10024 val
= fold_convert (gimple_expr_type (stmt
), val
);
10028 fprintf (dump_file
, "Folding predicate ");
10029 print_gimple_expr (dump_file
, stmt
, 0, 0);
10030 fprintf (dump_file
, " to ");
10031 print_generic_expr (dump_file
, val
, 0);
10032 fprintf (dump_file
, "\n");
10035 if (is_gimple_assign (stmt
))
10036 gimple_assign_set_rhs_from_tree (si
, val
);
10039 gcc_assert (gimple_code (stmt
) == GIMPLE_COND
);
10040 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
10041 if (integer_zerop (val
))
10042 gimple_cond_make_false (cond_stmt
);
10043 else if (integer_onep (val
))
10044 gimple_cond_make_true (cond_stmt
);
10046 gcc_unreachable ();
10055 /* Callback for substitute_and_fold folding the stmt at *SI. */
10058 vrp_fold_stmt (gimple_stmt_iterator
*si
)
10060 if (fold_predicate_in (si
))
10063 return simplify_stmt_using_ranges (si
);
10066 /* Stack of dest,src equivalency pairs that need to be restored after
10067 each attempt to thread a block's incoming edge to an outgoing edge.
10069 A NULL entry is used to mark the end of pairs which need to be
10071 static vec
<tree
> equiv_stack
;
10073 /* A trivial wrapper so that we can present the generic jump threading
10074 code with a simple API for simplifying statements. STMT is the
10075 statement we want to simplify, WITHIN_STMT provides the location
10076 for any overflow warnings. */
10079 simplify_stmt_for_jump_threading (gimple stmt
, gimple within_stmt
)
10081 if (gcond
*cond_stmt
= dyn_cast
<gcond
*> (stmt
))
10082 return vrp_evaluate_conditional (gimple_cond_code (cond_stmt
),
10083 gimple_cond_lhs (cond_stmt
),
10084 gimple_cond_rhs (cond_stmt
),
10087 if (gassign
*assign_stmt
= dyn_cast
<gassign
*> (stmt
))
10089 value_range_t new_vr
= VR_INITIALIZER
;
10090 tree lhs
= gimple_assign_lhs (assign_stmt
);
10092 if (TREE_CODE (lhs
) == SSA_NAME
10093 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
10094 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
10096 extract_range_from_assignment (&new_vr
, assign_stmt
);
10097 if (range_int_cst_singleton_p (&new_vr
))
10105 /* Blocks which have more than one predecessor and more than
10106 one successor present jump threading opportunities, i.e.,
10107 when the block is reached from a specific predecessor, we
10108 may be able to determine which of the outgoing edges will
10109 be traversed. When this optimization applies, we are able
10110 to avoid conditionals at runtime and we may expose secondary
10111 optimization opportunities.
10113 This routine is effectively a driver for the generic jump
10114 threading code. It basically just presents the generic code
10115 with edges that may be suitable for jump threading.
10117 Unlike DOM, we do not iterate VRP if jump threading was successful.
10118 While iterating may expose new opportunities for VRP, it is expected
10119 those opportunities would be very limited and the compile time cost
10120 to expose those opportunities would be significant.
10122 As jump threading opportunities are discovered, they are registered
10123 for later realization. */
10126 identify_jump_threads (void)
10133 /* Ugh. When substituting values earlier in this pass we can
10134 wipe the dominance information. So rebuild the dominator
10135 information as we need it within the jump threading code. */
10136 calculate_dominance_info (CDI_DOMINATORS
);
10138 /* We do not allow VRP information to be used for jump threading
10139 across a back edge in the CFG. Otherwise it becomes too
10140 difficult to avoid eliminating loop exit tests. Of course
10141 EDGE_DFS_BACK is not accurate at this time so we have to
10143 mark_dfs_back_edges ();
10145 /* Do not thread across edges we are about to remove. Just marking
10146 them as EDGE_DFS_BACK will do. */
10147 FOR_EACH_VEC_ELT (to_remove_edges
, i
, e
)
10148 e
->flags
|= EDGE_DFS_BACK
;
10150 /* Allocate our unwinder stack to unwind any temporary equivalences
10151 that might be recorded. */
10152 equiv_stack
.create (20);
10154 /* To avoid lots of silly node creation, we create a single
10155 conditional and just modify it in-place when attempting to
10157 dummy
= gimple_build_cond (EQ_EXPR
,
10158 integer_zero_node
, integer_zero_node
,
10161 /* Walk through all the blocks finding those which present a
10162 potential jump threading opportunity. We could set this up
10163 as a dominator walker and record data during the walk, but
10164 I doubt it's worth the effort for the classes of jump
10165 threading opportunities we are trying to identify at this
10166 point in compilation. */
10167 FOR_EACH_BB_FN (bb
, cfun
)
10171 /* If the generic jump threading code does not find this block
10172 interesting, then there is nothing to do. */
10173 if (! potentially_threadable_block (bb
))
10176 last
= last_stmt (bb
);
10178 /* We're basically looking for a switch or any kind of conditional with
10179 integral or pointer type arguments. Note the type of the second
10180 argument will be the same as the first argument, so no need to
10181 check it explicitly.
10183 We also handle the case where there are no statements in the
10184 block. This come up with forwarder blocks that are not
10185 optimized away because they lead to a loop header. But we do
10186 want to thread through them as we can sometimes thread to the
10187 loop exit which is obviously profitable. */
10189 || gimple_code (last
) == GIMPLE_SWITCH
10190 || (gimple_code (last
) == GIMPLE_COND
10191 && TREE_CODE (gimple_cond_lhs (last
)) == SSA_NAME
10192 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
)))
10193 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
))))
10194 && (TREE_CODE (gimple_cond_rhs (last
)) == SSA_NAME
10195 || is_gimple_min_invariant (gimple_cond_rhs (last
)))))
10199 /* We've got a block with multiple predecessors and multiple
10200 successors which also ends in a suitable conditional or
10201 switch statement. For each predecessor, see if we can thread
10202 it to a specific successor. */
10203 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
10205 /* Do not thread across back edges or abnormal edges
10207 if (e
->flags
& (EDGE_DFS_BACK
| EDGE_COMPLEX
))
10210 thread_across_edge (dummy
, e
, true, &equiv_stack
,
10211 simplify_stmt_for_jump_threading
);
10216 /* We do not actually update the CFG or SSA graphs at this point as
10217 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
10218 handle ASSERT_EXPRs gracefully. */
10221 /* We identified all the jump threading opportunities earlier, but could
10222 not transform the CFG at that time. This routine transforms the
10223 CFG and arranges for the dominator tree to be rebuilt if necessary.
10225 Note the SSA graph update will occur during the normal TODO
10226 processing by the pass manager. */
10228 finalize_jump_threads (void)
10230 thread_through_all_blocks (false);
10231 equiv_stack
.release ();
10235 /* Traverse all the blocks folding conditionals with known ranges. */
10238 vrp_finalize (void)
10242 values_propagated
= true;
10246 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
10247 dump_all_value_ranges (dump_file
);
10248 fprintf (dump_file
, "\n");
10251 substitute_and_fold (op_with_constant_singleton_value_range
,
10252 vrp_fold_stmt
, false);
10254 if (warn_array_bounds
&& first_pass_instance
)
10255 check_all_array_refs ();
10257 /* We must identify jump threading opportunities before we release
10258 the datastructures built by VRP. */
10259 identify_jump_threads ();
10261 /* Set value range to non pointer SSA_NAMEs. */
10262 for (i
= 0; i
< num_vr_values
; i
++)
10265 tree name
= ssa_name (i
);
10268 || POINTER_TYPE_P (TREE_TYPE (name
))
10269 || (vr_value
[i
]->type
== VR_VARYING
)
10270 || (vr_value
[i
]->type
== VR_UNDEFINED
))
10273 if ((TREE_CODE (vr_value
[i
]->min
) == INTEGER_CST
)
10274 && (TREE_CODE (vr_value
[i
]->max
) == INTEGER_CST
)
10275 && (vr_value
[i
]->type
== VR_RANGE
10276 || vr_value
[i
]->type
== VR_ANTI_RANGE
))
10277 set_range_info (name
, vr_value
[i
]->type
, vr_value
[i
]->min
,
10281 /* Free allocated memory. */
10282 for (i
= 0; i
< num_vr_values
; i
++)
10285 BITMAP_FREE (vr_value
[i
]->equiv
);
10286 free (vr_value
[i
]);
10290 free (vr_phi_edge_counts
);
10292 /* So that we can distinguish between VRP data being available
10293 and not available. */
10295 vr_phi_edge_counts
= NULL
;
10299 /* Main entry point to VRP (Value Range Propagation). This pass is
10300 loosely based on J. R. C. Patterson, ``Accurate Static Branch
10301 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
10302 Programming Language Design and Implementation, pp. 67-78, 1995.
10303 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
10305 This is essentially an SSA-CCP pass modified to deal with ranges
10306 instead of constants.
10308 While propagating ranges, we may find that two or more SSA name
10309 have equivalent, though distinct ranges. For instance,
10312 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
10314 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
10318 In the code above, pointer p_5 has range [q_2, q_2], but from the
10319 code we can also determine that p_5 cannot be NULL and, if q_2 had
10320 a non-varying range, p_5's range should also be compatible with it.
10322 These equivalences are created by two expressions: ASSERT_EXPR and
10323 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
10324 result of another assertion, then we can use the fact that p_5 and
10325 p_4 are equivalent when evaluating p_5's range.
10327 Together with value ranges, we also propagate these equivalences
10328 between names so that we can take advantage of information from
10329 multiple ranges when doing final replacement. Note that this
10330 equivalency relation is transitive but not symmetric.
10332 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
10333 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
10334 in contexts where that assertion does not hold (e.g., in line 6).
10336 TODO, the main difference between this pass and Patterson's is that
10337 we do not propagate edge probabilities. We only compute whether
10338 edges can be taken or not. That is, instead of having a spectrum
10339 of jump probabilities between 0 and 1, we only deal with 0, 1 and
10340 DON'T KNOW. In the future, it may be worthwhile to propagate
10341 probabilities to aid branch prediction. */
10343 static unsigned int
10350 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
10351 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
10352 scev_initialize ();
10354 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
10355 Inserting assertions may split edges which will invalidate
10357 insert_range_assertions ();
10359 to_remove_edges
.create (10);
10360 to_update_switch_stmts
.create (5);
10361 threadedge_initialize_values ();
10363 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
10364 mark_dfs_back_edges ();
10367 ssa_propagate (vrp_visit_stmt
, vrp_visit_phi_node
);
10370 free_numbers_of_iterations_estimates ();
10372 /* ASSERT_EXPRs must be removed before finalizing jump threads
10373 as finalizing jump threads calls the CFG cleanup code which
10374 does not properly handle ASSERT_EXPRs. */
10375 remove_range_assertions ();
10377 /* If we exposed any new variables, go ahead and put them into
10378 SSA form now, before we handle jump threading. This simplifies
10379 interactions between rewriting of _DECL nodes into SSA form
10380 and rewriting SSA_NAME nodes into SSA form after block
10381 duplication and CFG manipulation. */
10382 update_ssa (TODO_update_ssa
);
10384 finalize_jump_threads ();
10386 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
10387 CFG in a broken state and requires a cfg_cleanup run. */
10388 FOR_EACH_VEC_ELT (to_remove_edges
, i
, e
)
10390 /* Update SWITCH_EXPR case label vector. */
10391 FOR_EACH_VEC_ELT (to_update_switch_stmts
, i
, su
)
10394 size_t n
= TREE_VEC_LENGTH (su
->vec
);
10396 gimple_switch_set_num_labels (su
->stmt
, n
);
10397 for (j
= 0; j
< n
; j
++)
10398 gimple_switch_set_label (su
->stmt
, j
, TREE_VEC_ELT (su
->vec
, j
));
10399 /* As we may have replaced the default label with a regular one
10400 make sure to make it a real default label again. This ensures
10401 optimal expansion. */
10402 label
= gimple_switch_label (su
->stmt
, 0);
10403 CASE_LOW (label
) = NULL_TREE
;
10404 CASE_HIGH (label
) = NULL_TREE
;
10407 if (to_remove_edges
.length () > 0)
10409 free_dominance_info (CDI_DOMINATORS
);
10410 loops_state_set (LOOPS_NEED_FIXUP
);
10413 to_remove_edges
.release ();
10414 to_update_switch_stmts
.release ();
10415 threadedge_finalize_values ();
10418 loop_optimizer_finalize ();
10424 const pass_data pass_data_vrp
=
10426 GIMPLE_PASS
, /* type */
10428 OPTGROUP_NONE
, /* optinfo_flags */
10429 TV_TREE_VRP
, /* tv_id */
10430 PROP_ssa
, /* properties_required */
10431 0, /* properties_provided */
10432 0, /* properties_destroyed */
10433 0, /* todo_flags_start */
10434 ( TODO_cleanup_cfg
| TODO_update_ssa
), /* todo_flags_finish */
10437 class pass_vrp
: public gimple_opt_pass
10440 pass_vrp (gcc::context
*ctxt
)
10441 : gimple_opt_pass (pass_data_vrp
, ctxt
)
10444 /* opt_pass methods: */
10445 opt_pass
* clone () { return new pass_vrp (m_ctxt
); }
10446 virtual bool gate (function
*) { return flag_tree_vrp
!= 0; }
10447 virtual unsigned int execute (function
*) { return execute_vrp (); }
10449 }; // class pass_vrp
10451 } // anon namespace
10454 make_pass_vrp (gcc::context
*ctxt
)
10456 return new pass_vrp (ctxt
);