1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
28 #include "basic-block.h"
29 #include "tree-flow.h"
30 #include "tree-pass.h"
31 #include "tree-dump.h"
33 #include "diagnostic.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-propagate.h"
39 #include "tree-chrec.h"
41 /* Set of SSA names found during the dominator traversal of a
42 sub-graph in find_assert_locations. */
43 static sbitmap found_in_subgraph
;
45 /* Local functions. */
46 static int compare_values (tree val1
, tree val2
);
47 static int compare_values_warnv (tree val1
, tree val2
, bool *);
48 static void vrp_meet (value_range_t
*, value_range_t
*);
49 static tree
vrp_evaluate_conditional_warnv (tree
, bool, bool *);
51 /* Location information for ASSERT_EXPRs. Each instance of this
52 structure describes an ASSERT_EXPR for an SSA name. Since a single
53 SSA name may have more than one assertion associated with it, these
54 locations are kept in a linked list attached to the corresponding
58 /* Basic block where the assertion would be inserted. */
61 /* Some assertions need to be inserted on an edge (e.g., assertions
62 generated by COND_EXPRs). In those cases, BB will be NULL. */
65 /* Pointer to the statement that generated this assertion. */
66 block_stmt_iterator si
;
68 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
69 enum tree_code comp_code
;
71 /* Value being compared against. */
74 /* Next node in the linked list. */
75 struct assert_locus_d
*next
;
78 typedef struct assert_locus_d
*assert_locus_t
;
80 /* If bit I is present, it means that SSA name N_i has a list of
81 assertions that should be inserted in the IL. */
82 static bitmap need_assert_for
;
84 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
85 holds a list of ASSERT_LOCUS_T nodes that describe where
86 ASSERT_EXPRs for SSA name N_I should be inserted. */
87 static assert_locus_t
*asserts_for
;
89 /* Set of blocks visited in find_assert_locations. Used to avoid
90 visiting the same block more than once. */
91 static sbitmap blocks_visited
;
93 /* Value range array. After propagation, VR_VALUE[I] holds the range
94 of values that SSA name N_I may take. */
95 static value_range_t
**vr_value
;
97 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
98 number of executable edges we saw the last time we visited the
100 static int *vr_phi_edge_counts
;
103 /* Return whether TYPE should use an overflow infinity distinct from
104 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
105 represent a signed overflow during VRP computations. An infinity
106 is distinct from a half-range, which will go from some number to
107 TYPE_{MIN,MAX}_VALUE. */
110 needs_overflow_infinity (const_tree type
)
112 return INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
);
115 /* Return whether TYPE can support our overflow infinity
116 representation: we use the TREE_OVERFLOW flag, which only exists
117 for constants. If TYPE doesn't support this, we don't optimize
118 cases which would require signed overflow--we drop them to
122 supports_overflow_infinity (const_tree type
)
124 #ifdef ENABLE_CHECKING
125 gcc_assert (needs_overflow_infinity (type
));
127 return (TYPE_MIN_VALUE (type
) != NULL_TREE
128 && CONSTANT_CLASS_P (TYPE_MIN_VALUE (type
))
129 && TYPE_MAX_VALUE (type
) != NULL_TREE
130 && CONSTANT_CLASS_P (TYPE_MAX_VALUE (type
)));
133 /* VAL is the maximum or minimum value of a type. Return a
134 corresponding overflow infinity. */
137 make_overflow_infinity (tree val
)
139 #ifdef ENABLE_CHECKING
140 gcc_assert (val
!= NULL_TREE
&& CONSTANT_CLASS_P (val
));
142 val
= copy_node (val
);
143 TREE_OVERFLOW (val
) = 1;
147 /* Return a negative overflow infinity for TYPE. */
150 negative_overflow_infinity (tree type
)
152 #ifdef ENABLE_CHECKING
153 gcc_assert (supports_overflow_infinity (type
));
155 return make_overflow_infinity (TYPE_MIN_VALUE (type
));
158 /* Return a positive overflow infinity for TYPE. */
161 positive_overflow_infinity (tree type
)
163 #ifdef ENABLE_CHECKING
164 gcc_assert (supports_overflow_infinity (type
));
166 return make_overflow_infinity (TYPE_MAX_VALUE (type
));
169 /* Return whether VAL is a negative overflow infinity. */
172 is_negative_overflow_infinity (const_tree val
)
174 return (needs_overflow_infinity (TREE_TYPE (val
))
175 && CONSTANT_CLASS_P (val
)
176 && TREE_OVERFLOW (val
)
177 && operand_equal_p (val
, TYPE_MIN_VALUE (TREE_TYPE (val
)), 0));
180 /* Return whether VAL is a positive overflow infinity. */
183 is_positive_overflow_infinity (const_tree val
)
185 return (needs_overflow_infinity (TREE_TYPE (val
))
186 && CONSTANT_CLASS_P (val
)
187 && TREE_OVERFLOW (val
)
188 && operand_equal_p (val
, TYPE_MAX_VALUE (TREE_TYPE (val
)), 0));
191 /* Return whether VAL is a positive or negative overflow infinity. */
194 is_overflow_infinity (const_tree val
)
196 return (needs_overflow_infinity (TREE_TYPE (val
))
197 && CONSTANT_CLASS_P (val
)
198 && TREE_OVERFLOW (val
)
199 && (operand_equal_p (val
, TYPE_MAX_VALUE (TREE_TYPE (val
)), 0)
200 || operand_equal_p (val
, TYPE_MIN_VALUE (TREE_TYPE (val
)), 0)));
203 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
204 the same value with TREE_OVERFLOW clear. This can be used to avoid
205 confusing a regular value with an overflow value. */
208 avoid_overflow_infinity (tree val
)
210 if (!is_overflow_infinity (val
))
213 if (operand_equal_p (val
, TYPE_MAX_VALUE (TREE_TYPE (val
)), 0))
214 return TYPE_MAX_VALUE (TREE_TYPE (val
));
217 #ifdef ENABLE_CHECKING
218 gcc_assert (operand_equal_p (val
, TYPE_MIN_VALUE (TREE_TYPE (val
)), 0));
220 return TYPE_MIN_VALUE (TREE_TYPE (val
));
225 /* Return whether VAL is equal to the maximum value of its type. This
226 will be true for a positive overflow infinity. We can't do a
227 simple equality comparison with TYPE_MAX_VALUE because C typedefs
228 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
229 to the integer constant with the same value in the type. */
232 vrp_val_is_max (const_tree val
)
234 tree type_max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
236 return (val
== type_max
237 || (type_max
!= NULL_TREE
238 && operand_equal_p (val
, type_max
, 0)));
241 /* Return whether VAL is equal to the minimum value of its type. This
242 will be true for a negative overflow infinity. */
245 vrp_val_is_min (const_tree val
)
247 tree type_min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
249 return (val
== type_min
250 || (type_min
!= NULL_TREE
251 && operand_equal_p (val
, type_min
, 0)));
255 /* Return true if ARG is marked with the nonnull attribute in the
256 current function signature. */
259 nonnull_arg_p (const_tree arg
)
261 tree t
, attrs
, fntype
;
262 unsigned HOST_WIDE_INT arg_num
;
264 gcc_assert (TREE_CODE (arg
) == PARM_DECL
&& POINTER_TYPE_P (TREE_TYPE (arg
)));
266 /* The static chain decl is always non null. */
267 if (arg
== cfun
->static_chain_decl
)
270 fntype
= TREE_TYPE (current_function_decl
);
271 attrs
= lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype
));
273 /* If "nonnull" wasn't specified, we know nothing about the argument. */
274 if (attrs
== NULL_TREE
)
277 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
278 if (TREE_VALUE (attrs
) == NULL_TREE
)
281 /* Get the position number for ARG in the function signature. */
282 for (arg_num
= 1, t
= DECL_ARGUMENTS (current_function_decl
);
284 t
= TREE_CHAIN (t
), arg_num
++)
290 gcc_assert (t
== arg
);
292 /* Now see if ARG_NUM is mentioned in the nonnull list. */
293 for (t
= TREE_VALUE (attrs
); t
; t
= TREE_CHAIN (t
))
295 if (compare_tree_int (TREE_VALUE (t
), arg_num
) == 0)
303 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
306 set_value_range (value_range_t
*vr
, enum value_range_type t
, tree min
,
307 tree max
, bitmap equiv
)
309 #if defined ENABLE_CHECKING
310 /* Check the validity of the range. */
311 if (t
== VR_RANGE
|| t
== VR_ANTI_RANGE
)
315 gcc_assert (min
&& max
);
317 if (INTEGRAL_TYPE_P (TREE_TYPE (min
)) && t
== VR_ANTI_RANGE
)
318 gcc_assert (!vrp_val_is_min (min
) || !vrp_val_is_max (max
));
320 cmp
= compare_values (min
, max
);
321 gcc_assert (cmp
== 0 || cmp
== -1 || cmp
== -2);
323 if (needs_overflow_infinity (TREE_TYPE (min
)))
324 gcc_assert (!is_overflow_infinity (min
)
325 || !is_overflow_infinity (max
));
328 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
329 gcc_assert (min
== NULL_TREE
&& max
== NULL_TREE
);
331 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
332 gcc_assert (equiv
== NULL
|| bitmap_empty_p (equiv
));
339 /* Since updating the equivalence set involves deep copying the
340 bitmaps, only do it if absolutely necessary. */
341 if (vr
->equiv
== NULL
343 vr
->equiv
= BITMAP_ALLOC (NULL
);
345 if (equiv
!= vr
->equiv
)
347 if (equiv
&& !bitmap_empty_p (equiv
))
348 bitmap_copy (vr
->equiv
, equiv
);
350 bitmap_clear (vr
->equiv
);
355 /* Copy value range FROM into value range TO. */
358 copy_value_range (value_range_t
*to
, value_range_t
*from
)
360 set_value_range (to
, from
->type
, from
->min
, from
->max
, from
->equiv
);
364 /* Set value range VR to VR_VARYING. */
367 set_value_range_to_varying (value_range_t
*vr
)
369 vr
->type
= VR_VARYING
;
370 vr
->min
= vr
->max
= NULL_TREE
;
372 bitmap_clear (vr
->equiv
);
375 /* Set value range VR to a single value. This function is only called
376 with values we get from statements, and exists to clear the
377 TREE_OVERFLOW flag so that we don't think we have an overflow
378 infinity when we shouldn't. */
381 set_value_range_to_value (value_range_t
*vr
, tree val
, bitmap equiv
)
383 gcc_assert (is_gimple_min_invariant (val
));
384 val
= avoid_overflow_infinity (val
);
385 set_value_range (vr
, VR_RANGE
, val
, val
, equiv
);
388 /* Set value range VR to a non-negative range of type TYPE.
389 OVERFLOW_INFINITY indicates whether to use an overflow infinity
390 rather than TYPE_MAX_VALUE; this should be true if we determine
391 that the range is nonnegative based on the assumption that signed
392 overflow does not occur. */
395 set_value_range_to_nonnegative (value_range_t
*vr
, tree type
,
396 bool overflow_infinity
)
400 if (overflow_infinity
&& !supports_overflow_infinity (type
))
402 set_value_range_to_varying (vr
);
406 zero
= build_int_cst (type
, 0);
407 set_value_range (vr
, VR_RANGE
, zero
,
409 ? positive_overflow_infinity (type
)
410 : TYPE_MAX_VALUE (type
)),
414 /* Set value range VR to a non-NULL range of type TYPE. */
417 set_value_range_to_nonnull (value_range_t
*vr
, tree type
)
419 tree zero
= build_int_cst (type
, 0);
420 set_value_range (vr
, VR_ANTI_RANGE
, zero
, zero
, vr
->equiv
);
424 /* Set value range VR to a NULL range of type TYPE. */
427 set_value_range_to_null (value_range_t
*vr
, tree type
)
429 set_value_range_to_value (vr
, build_int_cst (type
, 0), vr
->equiv
);
433 /* Set value range VR to a range of a truthvalue of type TYPE. */
436 set_value_range_to_truthvalue (value_range_t
*vr
, tree type
)
438 if (TYPE_PRECISION (type
) == 1)
439 set_value_range_to_varying (vr
);
441 set_value_range (vr
, VR_RANGE
,
442 build_int_cst (type
, 0), build_int_cst (type
, 1),
447 /* Set value range VR to VR_UNDEFINED. */
450 set_value_range_to_undefined (value_range_t
*vr
)
452 vr
->type
= VR_UNDEFINED
;
453 vr
->min
= vr
->max
= NULL_TREE
;
455 bitmap_clear (vr
->equiv
);
459 /* Return value range information for VAR.
461 If we have no values ranges recorded (ie, VRP is not running), then
462 return NULL. Otherwise create an empty range if none existed for VAR. */
464 static value_range_t
*
465 get_value_range (const_tree var
)
469 unsigned ver
= SSA_NAME_VERSION (var
);
471 /* If we have no recorded ranges, then return NULL. */
479 /* Create a default value range. */
480 vr_value
[ver
] = vr
= XCNEW (value_range_t
);
482 /* Defer allocating the equivalence set. */
485 /* If VAR is a default definition, the variable can take any value
487 sym
= SSA_NAME_VAR (var
);
488 if (SSA_NAME_IS_DEFAULT_DEF (var
))
490 /* Try to use the "nonnull" attribute to create ~[0, 0]
491 anti-ranges for pointers. Note that this is only valid with
492 default definitions of PARM_DECLs. */
493 if (TREE_CODE (sym
) == PARM_DECL
494 && POINTER_TYPE_P (TREE_TYPE (sym
))
495 && nonnull_arg_p (sym
))
496 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
498 set_value_range_to_varying (vr
);
504 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
507 vrp_operand_equal_p (const_tree val1
, const_tree val2
)
511 if (!val1
|| !val2
|| !operand_equal_p (val1
, val2
, 0))
513 if (is_overflow_infinity (val1
))
514 return is_overflow_infinity (val2
);
518 /* Return true, if the bitmaps B1 and B2 are equal. */
521 vrp_bitmap_equal_p (const_bitmap b1
, const_bitmap b2
)
525 && bitmap_equal_p (b1
, b2
)));
528 /* Update the value range and equivalence set for variable VAR to
529 NEW_VR. Return true if NEW_VR is different from VAR's previous
532 NOTE: This function assumes that NEW_VR is a temporary value range
533 object created for the sole purpose of updating VAR's range. The
534 storage used by the equivalence set from NEW_VR will be freed by
535 this function. Do not call update_value_range when NEW_VR
536 is the range object associated with another SSA name. */
539 update_value_range (const_tree var
, value_range_t
*new_vr
)
541 value_range_t
*old_vr
;
544 /* Update the value range, if necessary. */
545 old_vr
= get_value_range (var
);
546 is_new
= old_vr
->type
!= new_vr
->type
547 || !vrp_operand_equal_p (old_vr
->min
, new_vr
->min
)
548 || !vrp_operand_equal_p (old_vr
->max
, new_vr
->max
)
549 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
->equiv
);
552 set_value_range (old_vr
, new_vr
->type
, new_vr
->min
, new_vr
->max
,
555 BITMAP_FREE (new_vr
->equiv
);
561 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
562 point where equivalence processing can be turned on/off. */
565 add_equivalence (bitmap
*equiv
, const_tree var
)
567 unsigned ver
= SSA_NAME_VERSION (var
);
568 value_range_t
*vr
= vr_value
[ver
];
571 *equiv
= BITMAP_ALLOC (NULL
);
572 bitmap_set_bit (*equiv
, ver
);
574 bitmap_ior_into (*equiv
, vr
->equiv
);
578 /* Return true if VR is ~[0, 0]. */
581 range_is_nonnull (value_range_t
*vr
)
583 return vr
->type
== VR_ANTI_RANGE
584 && integer_zerop (vr
->min
)
585 && integer_zerop (vr
->max
);
589 /* Return true if VR is [0, 0]. */
592 range_is_null (value_range_t
*vr
)
594 return vr
->type
== VR_RANGE
595 && integer_zerop (vr
->min
)
596 && integer_zerop (vr
->max
);
600 /* Return true if value range VR involves at least one symbol. */
603 symbolic_range_p (value_range_t
*vr
)
605 return (!is_gimple_min_invariant (vr
->min
)
606 || !is_gimple_min_invariant (vr
->max
));
609 /* Return true if value range VR uses an overflow infinity. */
612 overflow_infinity_range_p (value_range_t
*vr
)
614 return (vr
->type
== VR_RANGE
615 && (is_overflow_infinity (vr
->min
)
616 || is_overflow_infinity (vr
->max
)));
619 /* Return false if we can not make a valid comparison based on VR;
620 this will be the case if it uses an overflow infinity and overflow
621 is not undefined (i.e., -fno-strict-overflow is in effect).
622 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
623 uses an overflow infinity. */
626 usable_range_p (value_range_t
*vr
, bool *strict_overflow_p
)
628 gcc_assert (vr
->type
== VR_RANGE
);
629 if (is_overflow_infinity (vr
->min
))
631 *strict_overflow_p
= true;
632 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->min
)))
635 if (is_overflow_infinity (vr
->max
))
637 *strict_overflow_p
= true;
638 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->max
)))
645 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
646 ranges obtained so far. */
649 vrp_expr_computes_nonnegative (tree expr
, bool *strict_overflow_p
)
651 return tree_expr_nonnegative_warnv_p (expr
, strict_overflow_p
);
654 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
658 vrp_expr_computes_nonzero (tree expr
, bool *strict_overflow_p
)
660 if (tree_expr_nonzero_warnv_p (expr
, strict_overflow_p
))
663 /* If we have an expression of the form &X->a, then the expression
664 is nonnull if X is nonnull. */
665 if (TREE_CODE (expr
) == ADDR_EXPR
)
667 tree base
= get_base_address (TREE_OPERAND (expr
, 0));
669 if (base
!= NULL_TREE
670 && TREE_CODE (base
) == INDIRECT_REF
671 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
673 value_range_t
*vr
= get_value_range (TREE_OPERAND (base
, 0));
674 if (range_is_nonnull (vr
))
682 /* Returns true if EXPR is a valid value (as expected by compare_values) --
683 a gimple invariant, or SSA_NAME +- CST. */
686 valid_value_p (tree expr
)
688 if (TREE_CODE (expr
) == SSA_NAME
)
691 if (TREE_CODE (expr
) == PLUS_EXPR
692 || TREE_CODE (expr
) == MINUS_EXPR
)
693 return (TREE_CODE (TREE_OPERAND (expr
, 0)) == SSA_NAME
694 && TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
);
696 return is_gimple_min_invariant (expr
);
702 -2 if those are incomparable. */
704 operand_less_p (tree val
, tree val2
)
706 /* LT is folded faster than GE and others. Inline the common case. */
707 if (TREE_CODE (val
) == INTEGER_CST
&& TREE_CODE (val2
) == INTEGER_CST
)
709 if (TYPE_UNSIGNED (TREE_TYPE (val
)))
710 return INT_CST_LT_UNSIGNED (val
, val2
);
713 if (INT_CST_LT (val
, val2
))
721 fold_defer_overflow_warnings ();
723 tcmp
= fold_binary_to_constant (LT_EXPR
, boolean_type_node
, val
, val2
);
725 fold_undefer_and_ignore_overflow_warnings ();
730 if (!integer_zerop (tcmp
))
734 /* val >= val2, not considering overflow infinity. */
735 if (is_negative_overflow_infinity (val
))
736 return is_negative_overflow_infinity (val2
) ? 0 : 1;
737 else if (is_positive_overflow_infinity (val2
))
738 return is_positive_overflow_infinity (val
) ? 0 : 1;
743 /* Compare two values VAL1 and VAL2. Return
745 -2 if VAL1 and VAL2 cannot be compared at compile-time,
748 +1 if VAL1 > VAL2, and
751 This is similar to tree_int_cst_compare but supports pointer values
752 and values that cannot be compared at compile time.
754 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
755 true if the return value is only valid if we assume that signed
756 overflow is undefined. */
759 compare_values_warnv (tree val1
, tree val2
, bool *strict_overflow_p
)
764 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
766 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
767 == POINTER_TYPE_P (TREE_TYPE (val2
)));
768 /* Convert the two values into the same type. This is needed because
769 sizetype causes sign extension even for unsigned types. */
770 val2
= fold_convert (TREE_TYPE (val1
), val2
);
771 STRIP_USELESS_TYPE_CONVERSION (val2
);
773 if ((TREE_CODE (val1
) == SSA_NAME
774 || TREE_CODE (val1
) == PLUS_EXPR
775 || TREE_CODE (val1
) == MINUS_EXPR
)
776 && (TREE_CODE (val2
) == SSA_NAME
777 || TREE_CODE (val2
) == PLUS_EXPR
778 || TREE_CODE (val2
) == MINUS_EXPR
))
781 enum tree_code code1
, code2
;
783 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
784 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
785 same name, return -2. */
786 if (TREE_CODE (val1
) == SSA_NAME
)
794 code1
= TREE_CODE (val1
);
795 n1
= TREE_OPERAND (val1
, 0);
796 c1
= TREE_OPERAND (val1
, 1);
797 if (tree_int_cst_sgn (c1
) == -1)
799 if (is_negative_overflow_infinity (c1
))
801 c1
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c1
), c1
);
804 code1
= code1
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
808 if (TREE_CODE (val2
) == SSA_NAME
)
816 code2
= TREE_CODE (val2
);
817 n2
= TREE_OPERAND (val2
, 0);
818 c2
= TREE_OPERAND (val2
, 1);
819 if (tree_int_cst_sgn (c2
) == -1)
821 if (is_negative_overflow_infinity (c2
))
823 c2
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c2
), c2
);
826 code2
= code2
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
830 /* Both values must use the same name. */
834 if (code1
== SSA_NAME
835 && code2
== SSA_NAME
)
839 /* If overflow is defined we cannot simplify more. */
840 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1
)))
843 if (strict_overflow_p
!= NULL
844 && (code1
== SSA_NAME
|| !TREE_NO_WARNING (val1
))
845 && (code2
== SSA_NAME
|| !TREE_NO_WARNING (val2
)))
846 *strict_overflow_p
= true;
848 if (code1
== SSA_NAME
)
850 if (code2
== PLUS_EXPR
)
851 /* NAME < NAME + CST */
853 else if (code2
== MINUS_EXPR
)
854 /* NAME > NAME - CST */
857 else if (code1
== PLUS_EXPR
)
859 if (code2
== SSA_NAME
)
860 /* NAME + CST > NAME */
862 else if (code2
== PLUS_EXPR
)
863 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
864 return compare_values_warnv (c1
, c2
, strict_overflow_p
);
865 else if (code2
== MINUS_EXPR
)
866 /* NAME + CST1 > NAME - CST2 */
869 else if (code1
== MINUS_EXPR
)
871 if (code2
== SSA_NAME
)
872 /* NAME - CST < NAME */
874 else if (code2
== PLUS_EXPR
)
875 /* NAME - CST1 < NAME + CST2 */
877 else if (code2
== MINUS_EXPR
)
878 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
879 C1 and C2 are swapped in the call to compare_values. */
880 return compare_values_warnv (c2
, c1
, strict_overflow_p
);
886 /* We cannot compare non-constants. */
887 if (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
))
890 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
892 /* We cannot compare overflowed values, except for overflow
894 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
896 if (strict_overflow_p
!= NULL
)
897 *strict_overflow_p
= true;
898 if (is_negative_overflow_infinity (val1
))
899 return is_negative_overflow_infinity (val2
) ? 0 : -1;
900 else if (is_negative_overflow_infinity (val2
))
902 else if (is_positive_overflow_infinity (val1
))
903 return is_positive_overflow_infinity (val2
) ? 0 : 1;
904 else if (is_positive_overflow_infinity (val2
))
909 return tree_int_cst_compare (val1
, val2
);
915 /* First see if VAL1 and VAL2 are not the same. */
916 if (val1
== val2
|| operand_equal_p (val1
, val2
, 0))
919 /* If VAL1 is a lower address than VAL2, return -1. */
920 if (operand_less_p (val1
, val2
) == 1)
923 /* If VAL1 is a higher address than VAL2, return +1. */
924 if (operand_less_p (val2
, val1
) == 1)
927 /* If VAL1 is different than VAL2, return +2.
928 For integer constants we either have already returned -1 or 1
929 or they are equivalent. We still might succeed in proving
930 something about non-trivial operands. */
931 if (TREE_CODE (val1
) != INTEGER_CST
932 || TREE_CODE (val2
) != INTEGER_CST
)
934 t
= fold_binary_to_constant (NE_EXPR
, boolean_type_node
, val1
, val2
);
935 if (t
&& tree_expr_nonzero_p (t
))
943 /* Compare values like compare_values_warnv, but treat comparisons of
944 nonconstants which rely on undefined overflow as incomparable. */
947 compare_values (tree val1
, tree val2
)
953 ret
= compare_values_warnv (val1
, val2
, &sop
);
955 && (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
)))
961 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
962 0 if VAL is not inside VR,
963 -2 if we cannot tell either way.
965 FIXME, the current semantics of this functions are a bit quirky
966 when taken in the context of VRP. In here we do not care
967 about VR's type. If VR is the anti-range ~[3, 5] the call
968 value_inside_range (4, VR) will return 1.
970 This is counter-intuitive in a strict sense, but the callers
971 currently expect this. They are calling the function
972 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
973 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
976 This also applies to value_ranges_intersect_p and
977 range_includes_zero_p. The semantics of VR_RANGE and
978 VR_ANTI_RANGE should be encoded here, but that also means
979 adapting the users of these functions to the new semantics.
981 Benchmark compile/20001226-1.c compilation time after changing this
985 value_inside_range (tree val
, value_range_t
* vr
)
989 cmp1
= operand_less_p (val
, vr
->min
);
995 cmp2
= operand_less_p (vr
->max
, val
);
1003 /* Return true if value ranges VR0 and VR1 have a non-empty
1006 Benchmark compile/20001226-1.c compilation time after changing this
1011 value_ranges_intersect_p (value_range_t
*vr0
, value_range_t
*vr1
)
1013 /* The value ranges do not intersect if the maximum of the first range is
1014 less than the minimum of the second range or vice versa.
1015 When those relations are unknown, we can't do any better. */
1016 if (operand_less_p (vr0
->max
, vr1
->min
) != 0)
1018 if (operand_less_p (vr1
->max
, vr0
->min
) != 0)
1024 /* Return true if VR includes the value zero, false otherwise. FIXME,
1025 currently this will return false for an anti-range like ~[-4, 3].
1026 This will be wrong when the semantics of value_inside_range are
1027 modified (currently the users of this function expect these
1031 range_includes_zero_p (value_range_t
*vr
)
1035 gcc_assert (vr
->type
!= VR_UNDEFINED
1036 && vr
->type
!= VR_VARYING
1037 && !symbolic_range_p (vr
));
1039 zero
= build_int_cst (TREE_TYPE (vr
->min
), 0);
1040 return (value_inside_range (zero
, vr
) == 1);
1043 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1044 false otherwise or if no value range information is available. */
1047 ssa_name_nonnegative_p (const_tree t
)
1049 value_range_t
*vr
= get_value_range (t
);
1054 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1055 which would return a useful value should be encoded as a VR_RANGE. */
1056 if (vr
->type
== VR_RANGE
)
1058 int result
= compare_values (vr
->min
, integer_zero_node
);
1060 return (result
== 0 || result
== 1);
1065 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
1066 false otherwise or if no value range information is available. */
1069 ssa_name_nonzero_p (const_tree t
)
1071 value_range_t
*vr
= get_value_range (t
);
1076 /* A VR_RANGE which does not include zero is a nonzero value. */
1077 if (vr
->type
== VR_RANGE
&& !symbolic_range_p (vr
))
1078 return ! range_includes_zero_p (vr
);
1080 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
1081 if (vr
->type
== VR_ANTI_RANGE
&& !symbolic_range_p (vr
))
1082 return range_includes_zero_p (vr
);
1088 /* Extract value range information from an ASSERT_EXPR EXPR and store
1092 extract_range_from_assert (value_range_t
*vr_p
, tree expr
)
1094 tree var
, cond
, limit
, min
, max
, type
;
1095 value_range_t
*var_vr
, *limit_vr
;
1096 enum tree_code cond_code
;
1098 var
= ASSERT_EXPR_VAR (expr
);
1099 cond
= ASSERT_EXPR_COND (expr
);
1101 gcc_assert (COMPARISON_CLASS_P (cond
));
1103 /* Find VAR in the ASSERT_EXPR conditional. */
1104 if (var
== TREE_OPERAND (cond
, 0))
1106 /* If the predicate is of the form VAR COMP LIMIT, then we just
1107 take LIMIT from the RHS and use the same comparison code. */
1108 limit
= TREE_OPERAND (cond
, 1);
1109 cond_code
= TREE_CODE (cond
);
1113 /* If the predicate is of the form LIMIT COMP VAR, then we need
1114 to flip around the comparison code to create the proper range
1116 limit
= TREE_OPERAND (cond
, 0);
1117 cond_code
= swap_tree_comparison (TREE_CODE (cond
));
1120 limit
= avoid_overflow_infinity (limit
);
1122 type
= TREE_TYPE (limit
);
1123 gcc_assert (limit
!= var
);
1125 /* For pointer arithmetic, we only keep track of pointer equality
1127 if (POINTER_TYPE_P (type
) && cond_code
!= NE_EXPR
&& cond_code
!= EQ_EXPR
)
1129 set_value_range_to_varying (vr_p
);
1133 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1134 try to use LIMIT's range to avoid creating symbolic ranges
1136 limit_vr
= (TREE_CODE (limit
) == SSA_NAME
) ? get_value_range (limit
) : NULL
;
1138 /* LIMIT's range is only interesting if it has any useful information. */
1140 && (limit_vr
->type
== VR_UNDEFINED
1141 || limit_vr
->type
== VR_VARYING
1142 || symbolic_range_p (limit_vr
)))
1145 /* Initially, the new range has the same set of equivalences of
1146 VAR's range. This will be revised before returning the final
1147 value. Since assertions may be chained via mutually exclusive
1148 predicates, we will need to trim the set of equivalences before
1150 gcc_assert (vr_p
->equiv
== NULL
);
1151 add_equivalence (&vr_p
->equiv
, var
);
1153 /* Extract a new range based on the asserted comparison for VAR and
1154 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1155 will only use it for equality comparisons (EQ_EXPR). For any
1156 other kind of assertion, we cannot derive a range from LIMIT's
1157 anti-range that can be used to describe the new range. For
1158 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1159 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1160 no single range for x_2 that could describe LE_EXPR, so we might
1161 as well build the range [b_4, +INF] for it. */
1162 if (cond_code
== EQ_EXPR
)
1164 enum value_range_type range_type
;
1168 range_type
= limit_vr
->type
;
1169 min
= limit_vr
->min
;
1170 max
= limit_vr
->max
;
1174 range_type
= VR_RANGE
;
1179 set_value_range (vr_p
, range_type
, min
, max
, vr_p
->equiv
);
1181 /* When asserting the equality VAR == LIMIT and LIMIT is another
1182 SSA name, the new range will also inherit the equivalence set
1184 if (TREE_CODE (limit
) == SSA_NAME
)
1185 add_equivalence (&vr_p
->equiv
, limit
);
1187 else if (cond_code
== NE_EXPR
)
1189 /* As described above, when LIMIT's range is an anti-range and
1190 this assertion is an inequality (NE_EXPR), then we cannot
1191 derive anything from the anti-range. For instance, if
1192 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1193 not imply that VAR's range is [0, 0]. So, in the case of
1194 anti-ranges, we just assert the inequality using LIMIT and
1197 If LIMIT_VR is a range, we can only use it to build a new
1198 anti-range if LIMIT_VR is a single-valued range. For
1199 instance, if LIMIT_VR is [0, 1], the predicate
1200 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1201 Rather, it means that for value 0 VAR should be ~[0, 0]
1202 and for value 1, VAR should be ~[1, 1]. We cannot
1203 represent these ranges.
1205 The only situation in which we can build a valid
1206 anti-range is when LIMIT_VR is a single-valued range
1207 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1208 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1210 && limit_vr
->type
== VR_RANGE
1211 && compare_values (limit_vr
->min
, limit_vr
->max
) == 0)
1213 min
= limit_vr
->min
;
1214 max
= limit_vr
->max
;
1218 /* In any other case, we cannot use LIMIT's range to build a
1219 valid anti-range. */
1223 /* If MIN and MAX cover the whole range for their type, then
1224 just use the original LIMIT. */
1225 if (INTEGRAL_TYPE_P (type
)
1226 && vrp_val_is_min (min
)
1227 && vrp_val_is_max (max
))
1230 set_value_range (vr_p
, VR_ANTI_RANGE
, min
, max
, vr_p
->equiv
);
1232 else if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
1234 min
= TYPE_MIN_VALUE (type
);
1236 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1240 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1241 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1243 max
= limit_vr
->max
;
1246 /* If the maximum value forces us to be out of bounds, simply punt.
1247 It would be pointless to try and do anything more since this
1248 all should be optimized away above us. */
1249 if ((cond_code
== LT_EXPR
1250 && compare_values (max
, min
) == 0)
1251 || is_overflow_infinity (max
))
1252 set_value_range_to_varying (vr_p
);
1255 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1256 if (cond_code
== LT_EXPR
)
1258 tree one
= build_int_cst (type
, 1);
1259 max
= fold_build2 (MINUS_EXPR
, type
, max
, one
);
1261 TREE_NO_WARNING (max
) = 1;
1264 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1267 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
1269 max
= TYPE_MAX_VALUE (type
);
1271 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1275 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1276 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1278 min
= limit_vr
->min
;
1281 /* If the minimum value forces us to be out of bounds, simply punt.
1282 It would be pointless to try and do anything more since this
1283 all should be optimized away above us. */
1284 if ((cond_code
== GT_EXPR
1285 && compare_values (min
, max
) == 0)
1286 || is_overflow_infinity (min
))
1287 set_value_range_to_varying (vr_p
);
1290 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1291 if (cond_code
== GT_EXPR
)
1293 tree one
= build_int_cst (type
, 1);
1294 min
= fold_build2 (PLUS_EXPR
, type
, min
, one
);
1296 TREE_NO_WARNING (min
) = 1;
1299 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1305 /* If VAR already had a known range, it may happen that the new
1306 range we have computed and VAR's range are not compatible. For
1310 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1312 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1314 While the above comes from a faulty program, it will cause an ICE
1315 later because p_8 and p_6 will have incompatible ranges and at
1316 the same time will be considered equivalent. A similar situation
1320 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1322 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1324 Again i_6 and i_7 will have incompatible ranges. It would be
1325 pointless to try and do anything with i_7's range because
1326 anything dominated by 'if (i_5 < 5)' will be optimized away.
1327 Note, due to the wa in which simulation proceeds, the statement
1328 i_7 = ASSERT_EXPR <...> we would never be visited because the
1329 conditional 'if (i_5 < 5)' always evaluates to false. However,
1330 this extra check does not hurt and may protect against future
1331 changes to VRP that may get into a situation similar to the
1332 NULL pointer dereference example.
1334 Note that these compatibility tests are only needed when dealing
1335 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1336 are both anti-ranges, they will always be compatible, because two
1337 anti-ranges will always have a non-empty intersection. */
1339 var_vr
= get_value_range (var
);
1341 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1342 ranges or anti-ranges. */
1343 if (vr_p
->type
== VR_VARYING
1344 || vr_p
->type
== VR_UNDEFINED
1345 || var_vr
->type
== VR_VARYING
1346 || var_vr
->type
== VR_UNDEFINED
1347 || symbolic_range_p (vr_p
)
1348 || symbolic_range_p (var_vr
))
1351 if (var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_RANGE
)
1353 /* If the two ranges have a non-empty intersection, we can
1354 refine the resulting range. Since the assert expression
1355 creates an equivalency and at the same time it asserts a
1356 predicate, we can take the intersection of the two ranges to
1357 get better precision. */
1358 if (value_ranges_intersect_p (var_vr
, vr_p
))
1360 /* Use the larger of the two minimums. */
1361 if (compare_values (vr_p
->min
, var_vr
->min
) == -1)
1366 /* Use the smaller of the two maximums. */
1367 if (compare_values (vr_p
->max
, var_vr
->max
) == 1)
1372 set_value_range (vr_p
, vr_p
->type
, min
, max
, vr_p
->equiv
);
1376 /* The two ranges do not intersect, set the new range to
1377 VARYING, because we will not be able to do anything
1378 meaningful with it. */
1379 set_value_range_to_varying (vr_p
);
1382 else if ((var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_ANTI_RANGE
)
1383 || (var_vr
->type
== VR_ANTI_RANGE
&& vr_p
->type
== VR_RANGE
))
1385 /* A range and an anti-range will cancel each other only if
1386 their ends are the same. For instance, in the example above,
1387 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1388 so VR_P should be set to VR_VARYING. */
1389 if (compare_values (var_vr
->min
, vr_p
->min
) == 0
1390 && compare_values (var_vr
->max
, vr_p
->max
) == 0)
1391 set_value_range_to_varying (vr_p
);
1394 tree min
, max
, anti_min
, anti_max
, real_min
, real_max
;
1397 /* We want to compute the logical AND of the two ranges;
1398 there are three cases to consider.
1401 1. The VR_ANTI_RANGE range is completely within the
1402 VR_RANGE and the endpoints of the ranges are
1403 different. In that case the resulting range
1404 should be whichever range is more precise.
1405 Typically that will be the VR_RANGE.
1407 2. The VR_ANTI_RANGE is completely disjoint from
1408 the VR_RANGE. In this case the resulting range
1409 should be the VR_RANGE.
1411 3. There is some overlap between the VR_ANTI_RANGE
1414 3a. If the high limit of the VR_ANTI_RANGE resides
1415 within the VR_RANGE, then the result is a new
1416 VR_RANGE starting at the high limit of the
1417 the VR_ANTI_RANGE + 1 and extending to the
1418 high limit of the original VR_RANGE.
1420 3b. If the low limit of the VR_ANTI_RANGE resides
1421 within the VR_RANGE, then the result is a new
1422 VR_RANGE starting at the low limit of the original
1423 VR_RANGE and extending to the low limit of the
1424 VR_ANTI_RANGE - 1. */
1425 if (vr_p
->type
== VR_ANTI_RANGE
)
1427 anti_min
= vr_p
->min
;
1428 anti_max
= vr_p
->max
;
1429 real_min
= var_vr
->min
;
1430 real_max
= var_vr
->max
;
1434 anti_min
= var_vr
->min
;
1435 anti_max
= var_vr
->max
;
1436 real_min
= vr_p
->min
;
1437 real_max
= vr_p
->max
;
1441 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1442 not including any endpoints. */
1443 if (compare_values (anti_max
, real_max
) == -1
1444 && compare_values (anti_min
, real_min
) == 1)
1446 set_value_range (vr_p
, VR_RANGE
, real_min
,
1447 real_max
, vr_p
->equiv
);
1449 /* Case 2, VR_ANTI_RANGE completely disjoint from
1451 else if (compare_values (anti_min
, real_max
) == 1
1452 || compare_values (anti_max
, real_min
) == -1)
1454 set_value_range (vr_p
, VR_RANGE
, real_min
,
1455 real_max
, vr_p
->equiv
);
1457 /* Case 3a, the anti-range extends into the low
1458 part of the real range. Thus creating a new
1459 low for the real range. */
1460 else if (((cmp
= compare_values (anti_max
, real_min
)) == 1
1462 && compare_values (anti_max
, real_max
) == -1)
1464 gcc_assert (!is_positive_overflow_infinity (anti_max
));
1465 if (needs_overflow_infinity (TREE_TYPE (anti_max
))
1466 && vrp_val_is_max (anti_max
))
1468 if (!supports_overflow_infinity (TREE_TYPE (var_vr
->min
)))
1470 set_value_range_to_varying (vr_p
);
1473 min
= positive_overflow_infinity (TREE_TYPE (var_vr
->min
));
1475 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr
->min
)))
1476 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (var_vr
->min
),
1478 build_int_cst (TREE_TYPE (var_vr
->min
), 1));
1480 min
= fold_build2 (POINTER_PLUS_EXPR
, TREE_TYPE (var_vr
->min
),
1481 anti_max
, size_int (1));
1483 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1485 /* Case 3b, the anti-range extends into the high
1486 part of the real range. Thus creating a new
1487 higher for the real range. */
1488 else if (compare_values (anti_min
, real_min
) == 1
1489 && ((cmp
= compare_values (anti_min
, real_max
)) == -1
1492 gcc_assert (!is_negative_overflow_infinity (anti_min
));
1493 if (needs_overflow_infinity (TREE_TYPE (anti_min
))
1494 && vrp_val_is_min (anti_min
))
1496 if (!supports_overflow_infinity (TREE_TYPE (var_vr
->min
)))
1498 set_value_range_to_varying (vr_p
);
1501 max
= negative_overflow_infinity (TREE_TYPE (var_vr
->min
));
1503 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr
->min
)))
1504 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (var_vr
->min
),
1506 build_int_cst (TREE_TYPE (var_vr
->min
), 1));
1508 max
= fold_build2 (POINTER_PLUS_EXPR
, TREE_TYPE (var_vr
->min
),
1512 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1519 /* Extract range information from SSA name VAR and store it in VR. If
1520 VAR has an interesting range, use it. Otherwise, create the
1521 range [VAR, VAR] and return it. This is useful in situations where
1522 we may have conditionals testing values of VARYING names. For
1529 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1533 extract_range_from_ssa_name (value_range_t
*vr
, tree var
)
1535 value_range_t
*var_vr
= get_value_range (var
);
1537 if (var_vr
->type
!= VR_UNDEFINED
&& var_vr
->type
!= VR_VARYING
)
1538 copy_value_range (vr
, var_vr
);
1540 set_value_range (vr
, VR_RANGE
, var
, var
, NULL
);
1542 add_equivalence (&vr
->equiv
, var
);
1546 /* Wrapper around int_const_binop. If the operation overflows and we
1547 are not using wrapping arithmetic, then adjust the result to be
1548 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1549 NULL_TREE if we need to use an overflow infinity representation but
1550 the type does not support it. */
1553 vrp_int_const_binop (enum tree_code code
, tree val1
, tree val2
)
1557 res
= int_const_binop (code
, val1
, val2
, 0);
1559 /* If we are not using wrapping arithmetic, operate symbolically
1560 on -INF and +INF. */
1561 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1
)))
1563 int checkz
= compare_values (res
, val1
);
1564 bool overflow
= false;
1566 /* Ensure that res = val1 [+*] val2 >= val1
1567 or that res = val1 - val2 <= val1. */
1568 if ((code
== PLUS_EXPR
1569 && !(checkz
== 1 || checkz
== 0))
1570 || (code
== MINUS_EXPR
1571 && !(checkz
== 0 || checkz
== -1)))
1575 /* Checking for multiplication overflow is done by dividing the
1576 output of the multiplication by the first input of the
1577 multiplication. If the result of that division operation is
1578 not equal to the second input of the multiplication, then the
1579 multiplication overflowed. */
1580 else if (code
== MULT_EXPR
&& !integer_zerop (val1
))
1582 tree tmp
= int_const_binop (TRUNC_DIV_EXPR
,
1585 int check
= compare_values (tmp
, val2
);
1593 res
= copy_node (res
);
1594 TREE_OVERFLOW (res
) = 1;
1598 else if ((TREE_OVERFLOW (res
)
1599 && !TREE_OVERFLOW (val1
)
1600 && !TREE_OVERFLOW (val2
))
1601 || is_overflow_infinity (val1
)
1602 || is_overflow_infinity (val2
))
1604 /* If the operation overflowed but neither VAL1 nor VAL2 are
1605 overflown, return -INF or +INF depending on the operation
1606 and the combination of signs of the operands. */
1607 int sgn1
= tree_int_cst_sgn (val1
);
1608 int sgn2
= tree_int_cst_sgn (val2
);
1610 if (needs_overflow_infinity (TREE_TYPE (res
))
1611 && !supports_overflow_infinity (TREE_TYPE (res
)))
1614 /* We have to punt on adding infinities of different signs,
1615 since we can't tell what the sign of the result should be.
1616 Likewise for subtracting infinities of the same sign. */
1617 if (((code
== PLUS_EXPR
&& sgn1
!= sgn2
)
1618 || (code
== MINUS_EXPR
&& sgn1
== sgn2
))
1619 && is_overflow_infinity (val1
)
1620 && is_overflow_infinity (val2
))
1623 /* Don't try to handle division or shifting of infinities. */
1624 if ((code
== TRUNC_DIV_EXPR
1625 || code
== FLOOR_DIV_EXPR
1626 || code
== CEIL_DIV_EXPR
1627 || code
== EXACT_DIV_EXPR
1628 || code
== ROUND_DIV_EXPR
1629 || code
== RSHIFT_EXPR
)
1630 && (is_overflow_infinity (val1
)
1631 || is_overflow_infinity (val2
)))
1634 /* Notice that we only need to handle the restricted set of
1635 operations handled by extract_range_from_binary_expr.
1636 Among them, only multiplication, addition and subtraction
1637 can yield overflow without overflown operands because we
1638 are working with integral types only... except in the
1639 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1640 for division too. */
1642 /* For multiplication, the sign of the overflow is given
1643 by the comparison of the signs of the operands. */
1644 if ((code
== MULT_EXPR
&& sgn1
== sgn2
)
1645 /* For addition, the operands must be of the same sign
1646 to yield an overflow. Its sign is therefore that
1647 of one of the operands, for example the first. For
1648 infinite operands X + -INF is negative, not positive. */
1649 || (code
== PLUS_EXPR
1651 ? !is_negative_overflow_infinity (val2
)
1652 : is_positive_overflow_infinity (val2
)))
1653 /* For subtraction, non-infinite operands must be of
1654 different signs to yield an overflow. Its sign is
1655 therefore that of the first operand or the opposite of
1656 that of the second operand. A first operand of 0 counts
1657 as positive here, for the corner case 0 - (-INF), which
1658 overflows, but must yield +INF. For infinite operands 0
1659 - INF is negative, not positive. */
1660 || (code
== MINUS_EXPR
1662 ? !is_positive_overflow_infinity (val2
)
1663 : is_negative_overflow_infinity (val2
)))
1664 /* We only get in here with positive shift count, so the
1665 overflow direction is the same as the sign of val1.
1666 Actually rshift does not overflow at all, but we only
1667 handle the case of shifting overflowed -INF and +INF. */
1668 || (code
== RSHIFT_EXPR
1670 /* For division, the only case is -INF / -1 = +INF. */
1671 || code
== TRUNC_DIV_EXPR
1672 || code
== FLOOR_DIV_EXPR
1673 || code
== CEIL_DIV_EXPR
1674 || code
== EXACT_DIV_EXPR
1675 || code
== ROUND_DIV_EXPR
)
1676 return (needs_overflow_infinity (TREE_TYPE (res
))
1677 ? positive_overflow_infinity (TREE_TYPE (res
))
1678 : TYPE_MAX_VALUE (TREE_TYPE (res
)));
1680 return (needs_overflow_infinity (TREE_TYPE (res
))
1681 ? negative_overflow_infinity (TREE_TYPE (res
))
1682 : TYPE_MIN_VALUE (TREE_TYPE (res
)));
1689 /* Extract range information from a binary expression EXPR based on
1690 the ranges of each of its operands and the expression code. */
1693 extract_range_from_binary_expr (value_range_t
*vr
, tree expr
)
1695 enum tree_code code
= TREE_CODE (expr
);
1696 enum value_range_type type
;
1697 tree op0
, op1
, min
, max
;
1699 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
1700 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
1702 /* Not all binary expressions can be applied to ranges in a
1703 meaningful way. Handle only arithmetic operations. */
1704 if (code
!= PLUS_EXPR
1705 && code
!= MINUS_EXPR
1706 && code
!= POINTER_PLUS_EXPR
1707 && code
!= MULT_EXPR
1708 && code
!= TRUNC_DIV_EXPR
1709 && code
!= FLOOR_DIV_EXPR
1710 && code
!= CEIL_DIV_EXPR
1711 && code
!= EXACT_DIV_EXPR
1712 && code
!= ROUND_DIV_EXPR
1713 && code
!= RSHIFT_EXPR
1716 && code
!= BIT_AND_EXPR
1717 && code
!= TRUTH_ANDIF_EXPR
1718 && code
!= TRUTH_ORIF_EXPR
1719 && code
!= TRUTH_AND_EXPR
1720 && code
!= TRUTH_OR_EXPR
)
1722 set_value_range_to_varying (vr
);
1726 /* Get value ranges for each operand. For constant operands, create
1727 a new value range with the operand to simplify processing. */
1728 op0
= TREE_OPERAND (expr
, 0);
1729 if (TREE_CODE (op0
) == SSA_NAME
)
1730 vr0
= *(get_value_range (op0
));
1731 else if (is_gimple_min_invariant (op0
))
1732 set_value_range_to_value (&vr0
, op0
, NULL
);
1734 set_value_range_to_varying (&vr0
);
1736 op1
= TREE_OPERAND (expr
, 1);
1737 if (TREE_CODE (op1
) == SSA_NAME
)
1738 vr1
= *(get_value_range (op1
));
1739 else if (is_gimple_min_invariant (op1
))
1740 set_value_range_to_value (&vr1
, op1
, NULL
);
1742 set_value_range_to_varying (&vr1
);
1744 /* If either range is UNDEFINED, so is the result. */
1745 if (vr0
.type
== VR_UNDEFINED
|| vr1
.type
== VR_UNDEFINED
)
1747 set_value_range_to_undefined (vr
);
1751 /* The type of the resulting value range defaults to VR0.TYPE. */
1754 /* Refuse to operate on VARYING ranges, ranges of different kinds
1755 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1756 because we may be able to derive a useful range even if one of
1757 the operands is VR_VARYING or symbolic range. TODO, we may be
1758 able to derive anti-ranges in some cases. */
1759 if (code
!= BIT_AND_EXPR
1760 && code
!= TRUTH_AND_EXPR
1761 && code
!= TRUTH_OR_EXPR
1762 && (vr0
.type
== VR_VARYING
1763 || vr1
.type
== VR_VARYING
1764 || vr0
.type
!= vr1
.type
1765 || symbolic_range_p (&vr0
)
1766 || symbolic_range_p (&vr1
)))
1768 set_value_range_to_varying (vr
);
1772 /* Now evaluate the expression to determine the new range. */
1773 if (POINTER_TYPE_P (TREE_TYPE (expr
))
1774 || POINTER_TYPE_P (TREE_TYPE (op0
))
1775 || POINTER_TYPE_P (TREE_TYPE (op1
)))
1777 if (code
== MIN_EXPR
|| code
== MAX_EXPR
)
1779 /* For MIN/MAX expressions with pointers, we only care about
1780 nullness, if both are non null, then the result is nonnull.
1781 If both are null, then the result is null. Otherwise they
1783 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
1784 set_value_range_to_nonnull (vr
, TREE_TYPE (expr
));
1785 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
1786 set_value_range_to_null (vr
, TREE_TYPE (expr
));
1788 set_value_range_to_varying (vr
);
1792 gcc_assert (code
== POINTER_PLUS_EXPR
);
1793 /* For pointer types, we are really only interested in asserting
1794 whether the expression evaluates to non-NULL. */
1795 if (range_is_nonnull (&vr0
) || range_is_nonnull (&vr1
))
1796 set_value_range_to_nonnull (vr
, TREE_TYPE (expr
));
1797 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
1798 set_value_range_to_null (vr
, TREE_TYPE (expr
));
1800 set_value_range_to_varying (vr
);
1805 /* For integer ranges, apply the operation to each end of the
1806 range and see what we end up with. */
1807 if (code
== TRUTH_ANDIF_EXPR
1808 || code
== TRUTH_ORIF_EXPR
1809 || code
== TRUTH_AND_EXPR
1810 || code
== TRUTH_OR_EXPR
)
1812 /* If one of the operands is zero, we know that the whole
1813 expression evaluates zero. */
1814 if (code
== TRUTH_AND_EXPR
1815 && ((vr0
.type
== VR_RANGE
1816 && integer_zerop (vr0
.min
)
1817 && integer_zerop (vr0
.max
))
1818 || (vr1
.type
== VR_RANGE
1819 && integer_zerop (vr1
.min
)
1820 && integer_zerop (vr1
.max
))))
1823 min
= max
= build_int_cst (TREE_TYPE (expr
), 0);
1825 /* If one of the operands is one, we know that the whole
1826 expression evaluates one. */
1827 else if (code
== TRUTH_OR_EXPR
1828 && ((vr0
.type
== VR_RANGE
1829 && integer_onep (vr0
.min
)
1830 && integer_onep (vr0
.max
))
1831 || (vr1
.type
== VR_RANGE
1832 && integer_onep (vr1
.min
)
1833 && integer_onep (vr1
.max
))))
1836 min
= max
= build_int_cst (TREE_TYPE (expr
), 1);
1838 else if (vr0
.type
!= VR_VARYING
1839 && vr1
.type
!= VR_VARYING
1840 && vr0
.type
== vr1
.type
1841 && !symbolic_range_p (&vr0
)
1842 && !overflow_infinity_range_p (&vr0
)
1843 && !symbolic_range_p (&vr1
)
1844 && !overflow_infinity_range_p (&vr1
))
1846 /* Boolean expressions cannot be folded with int_const_binop. */
1847 min
= fold_binary (code
, TREE_TYPE (expr
), vr0
.min
, vr1
.min
);
1848 max
= fold_binary (code
, TREE_TYPE (expr
), vr0
.max
, vr1
.max
);
1852 /* The result of a TRUTH_*_EXPR is always true or false. */
1853 set_value_range_to_truthvalue (vr
, TREE_TYPE (expr
));
1857 else if (code
== PLUS_EXPR
1859 || code
== MAX_EXPR
)
1861 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1862 VR_VARYING. It would take more effort to compute a precise
1863 range for such a case. For example, if we have op0 == 1 and
1864 op1 == -1 with their ranges both being ~[0,0], we would have
1865 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1866 Note that we are guaranteed to have vr0.type == vr1.type at
1868 if (code
== PLUS_EXPR
&& vr0
.type
== VR_ANTI_RANGE
)
1870 set_value_range_to_varying (vr
);
1874 /* For operations that make the resulting range directly
1875 proportional to the original ranges, apply the operation to
1876 the same end of each range. */
1877 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
1878 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
1880 else if (code
== MULT_EXPR
1881 || code
== TRUNC_DIV_EXPR
1882 || code
== FLOOR_DIV_EXPR
1883 || code
== CEIL_DIV_EXPR
1884 || code
== EXACT_DIV_EXPR
1885 || code
== ROUND_DIV_EXPR
1886 || code
== RSHIFT_EXPR
)
1892 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1893 drop to VR_VARYING. It would take more effort to compute a
1894 precise range for such a case. For example, if we have
1895 op0 == 65536 and op1 == 65536 with their ranges both being
1896 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1897 we cannot claim that the product is in ~[0,0]. Note that we
1898 are guaranteed to have vr0.type == vr1.type at this
1900 if (code
== MULT_EXPR
1901 && vr0
.type
== VR_ANTI_RANGE
1902 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
)))
1904 set_value_range_to_varying (vr
);
1908 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
1909 then drop to VR_VARYING. Outside of this range we get undefined
1910 behavior from the shift operation. We cannot even trust
1911 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
1912 shifts, and the operation at the tree level may be widened. */
1913 if (code
== RSHIFT_EXPR
)
1915 if (vr1
.type
== VR_ANTI_RANGE
1916 || !vrp_expr_computes_nonnegative (op1
, &sop
)
1918 (build_int_cst (TREE_TYPE (vr1
.max
),
1919 TYPE_PRECISION (TREE_TYPE (expr
)) - 1),
1922 set_value_range_to_varying (vr
);
1927 /* Multiplications and divisions are a bit tricky to handle,
1928 depending on the mix of signs we have in the two ranges, we
1929 need to operate on different values to get the minimum and
1930 maximum values for the new range. One approach is to figure
1931 out all the variations of range combinations and do the
1934 However, this involves several calls to compare_values and it
1935 is pretty convoluted. It's simpler to do the 4 operations
1936 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1937 MAX1) and then figure the smallest and largest values to form
1940 /* Divisions by zero result in a VARYING value. */
1941 else if (code
!= MULT_EXPR
1942 && (vr0
.type
== VR_ANTI_RANGE
|| range_includes_zero_p (&vr1
)))
1944 set_value_range_to_varying (vr
);
1948 /* Compute the 4 cross operations. */
1950 val
[0] = vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
1951 if (val
[0] == NULL_TREE
)
1954 if (vr1
.max
== vr1
.min
)
1958 val
[1] = vrp_int_const_binop (code
, vr0
.min
, vr1
.max
);
1959 if (val
[1] == NULL_TREE
)
1963 if (vr0
.max
== vr0
.min
)
1967 val
[2] = vrp_int_const_binop (code
, vr0
.max
, vr1
.min
);
1968 if (val
[2] == NULL_TREE
)
1972 if (vr0
.min
== vr0
.max
|| vr1
.min
== vr1
.max
)
1976 val
[3] = vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
1977 if (val
[3] == NULL_TREE
)
1983 set_value_range_to_varying (vr
);
1987 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1991 for (i
= 1; i
< 4; i
++)
1993 if (!is_gimple_min_invariant (min
)
1994 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
1995 || !is_gimple_min_invariant (max
)
1996 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2001 if (!is_gimple_min_invariant (val
[i
])
2002 || (TREE_OVERFLOW (val
[i
])
2003 && !is_overflow_infinity (val
[i
])))
2005 /* If we found an overflowed value, set MIN and MAX
2006 to it so that we set the resulting range to
2012 if (compare_values (val
[i
], min
) == -1)
2015 if (compare_values (val
[i
], max
) == 1)
2020 else if (code
== MINUS_EXPR
)
2022 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2023 VR_VARYING. It would take more effort to compute a precise
2024 range for such a case. For example, if we have op0 == 1 and
2025 op1 == 1 with their ranges both being ~[0,0], we would have
2026 op0 - op1 == 0, so we cannot claim that the difference is in
2027 ~[0,0]. Note that we are guaranteed to have
2028 vr0.type == vr1.type at this point. */
2029 if (vr0
.type
== VR_ANTI_RANGE
)
2031 set_value_range_to_varying (vr
);
2035 /* For MINUS_EXPR, apply the operation to the opposite ends of
2037 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.max
);
2038 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.min
);
2040 else if (code
== BIT_AND_EXPR
)
2042 if (vr0
.type
== VR_RANGE
2043 && vr0
.min
== vr0
.max
2044 && TREE_CODE (vr0
.max
) == INTEGER_CST
2045 && !TREE_OVERFLOW (vr0
.max
)
2046 && tree_int_cst_sgn (vr0
.max
) >= 0)
2048 min
= build_int_cst (TREE_TYPE (expr
), 0);
2051 else if (vr1
.type
== VR_RANGE
2052 && vr1
.min
== vr1
.max
2053 && TREE_CODE (vr1
.max
) == INTEGER_CST
2054 && !TREE_OVERFLOW (vr1
.max
)
2055 && tree_int_cst_sgn (vr1
.max
) >= 0)
2058 min
= build_int_cst (TREE_TYPE (expr
), 0);
2063 set_value_range_to_varying (vr
);
2070 /* If either MIN or MAX overflowed, then set the resulting range to
2071 VARYING. But we do accept an overflow infinity
2073 if (min
== NULL_TREE
2074 || !is_gimple_min_invariant (min
)
2075 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2077 || !is_gimple_min_invariant (max
)
2078 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2080 set_value_range_to_varying (vr
);
2086 2) [-INF, +-INF(OVF)]
2087 3) [+-INF(OVF), +INF]
2088 4) [+-INF(OVF), +-INF(OVF)]
2089 We learn nothing when we have INF and INF(OVF) on both sides.
2090 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2092 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
2093 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
2095 set_value_range_to_varying (vr
);
2099 cmp
= compare_values (min
, max
);
2100 if (cmp
== -2 || cmp
== 1)
2102 /* If the new range has its limits swapped around (MIN > MAX),
2103 then the operation caused one of them to wrap around, mark
2104 the new range VARYING. */
2105 set_value_range_to_varying (vr
);
2108 set_value_range (vr
, type
, min
, max
, NULL
);
2112 /* Extract range information from a unary expression EXPR based on
2113 the range of its operand and the expression code. */
2116 extract_range_from_unary_expr (value_range_t
*vr
, tree expr
)
2118 enum tree_code code
= TREE_CODE (expr
);
2121 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
2123 /* Refuse to operate on certain unary expressions for which we
2124 cannot easily determine a resulting range. */
2125 if (code
== FIX_TRUNC_EXPR
2126 || code
== FLOAT_EXPR
2127 || code
== BIT_NOT_EXPR
2128 || code
== NON_LVALUE_EXPR
2129 || code
== CONJ_EXPR
)
2131 set_value_range_to_varying (vr
);
2135 /* Get value ranges for the operand. For constant operands, create
2136 a new value range with the operand to simplify processing. */
2137 op0
= TREE_OPERAND (expr
, 0);
2138 if (TREE_CODE (op0
) == SSA_NAME
)
2139 vr0
= *(get_value_range (op0
));
2140 else if (is_gimple_min_invariant (op0
))
2141 set_value_range_to_value (&vr0
, op0
, NULL
);
2143 set_value_range_to_varying (&vr0
);
2145 /* If VR0 is UNDEFINED, so is the result. */
2146 if (vr0
.type
== VR_UNDEFINED
)
2148 set_value_range_to_undefined (vr
);
2152 /* Refuse to operate on symbolic ranges, or if neither operand is
2153 a pointer or integral type. */
2154 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
2155 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
2156 || (vr0
.type
!= VR_VARYING
2157 && symbolic_range_p (&vr0
)))
2159 set_value_range_to_varying (vr
);
2163 /* If the expression involves pointers, we are only interested in
2164 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2165 if (POINTER_TYPE_P (TREE_TYPE (expr
)) || POINTER_TYPE_P (TREE_TYPE (op0
)))
2170 if (range_is_nonnull (&vr0
)
2171 || (tree_expr_nonzero_warnv_p (expr
, &sop
)
2173 set_value_range_to_nonnull (vr
, TREE_TYPE (expr
));
2174 else if (range_is_null (&vr0
))
2175 set_value_range_to_null (vr
, TREE_TYPE (expr
));
2177 set_value_range_to_varying (vr
);
2182 /* Handle unary expressions on integer ranges. */
2183 if (code
== NOP_EXPR
|| code
== CONVERT_EXPR
)
2185 tree inner_type
= TREE_TYPE (op0
);
2186 tree outer_type
= TREE_TYPE (expr
);
2188 /* If VR0 represents a simple range, then try to convert
2189 the min and max values for the range to the same type
2190 as OUTER_TYPE. If the results compare equal to VR0's
2191 min and max values and the new min is still less than
2192 or equal to the new max, then we can safely use the newly
2193 computed range for EXPR. This allows us to compute
2194 accurate ranges through many casts. */
2195 if ((vr0
.type
== VR_RANGE
2196 && !overflow_infinity_range_p (&vr0
))
2197 || (vr0
.type
== VR_VARYING
2198 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)))
2200 tree new_min
, new_max
, orig_min
, orig_max
;
2202 /* Convert the input operand min/max to OUTER_TYPE. If
2203 the input has no range information, then use the min/max
2204 for the input's type. */
2205 if (vr0
.type
== VR_RANGE
)
2212 orig_min
= TYPE_MIN_VALUE (inner_type
);
2213 orig_max
= TYPE_MAX_VALUE (inner_type
);
2216 new_min
= fold_convert (outer_type
, orig_min
);
2217 new_max
= fold_convert (outer_type
, orig_max
);
2219 /* Verify the new min/max values are gimple values and
2220 that they compare equal to the original input's
2222 if (is_gimple_val (new_min
)
2223 && is_gimple_val (new_max
)
2224 && tree_int_cst_equal (new_min
, orig_min
)
2225 && tree_int_cst_equal (new_max
, orig_max
)
2226 && (!is_overflow_infinity (new_min
)
2227 || !is_overflow_infinity (new_max
))
2228 && (cmp
= compare_values (new_min
, new_max
)) <= 0
2231 set_value_range (vr
, VR_RANGE
, new_min
, new_max
, vr
->equiv
);
2236 /* When converting types of different sizes, set the result to
2237 VARYING. Things like sign extensions and precision loss may
2238 change the range. For instance, if x_3 is of type 'long long
2239 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
2240 is impossible to know at compile time whether y_5 will be
2242 if (TYPE_SIZE (inner_type
) != TYPE_SIZE (outer_type
)
2243 || TYPE_PRECISION (inner_type
) != TYPE_PRECISION (outer_type
))
2245 set_value_range_to_varying (vr
);
2250 /* Conversion of a VR_VARYING value to a wider type can result
2251 in a usable range. So wait until after we've handled conversions
2252 before dropping the result to VR_VARYING if we had a source
2253 operand that is VR_VARYING. */
2254 if (vr0
.type
== VR_VARYING
)
2256 set_value_range_to_varying (vr
);
2260 /* Apply the operation to each end of the range and see what we end
2262 if (code
== NEGATE_EXPR
2263 && !TYPE_UNSIGNED (TREE_TYPE (expr
)))
2265 /* NEGATE_EXPR flips the range around. We need to treat
2266 TYPE_MIN_VALUE specially. */
2267 if (is_positive_overflow_infinity (vr0
.max
))
2268 min
= negative_overflow_infinity (TREE_TYPE (expr
));
2269 else if (is_negative_overflow_infinity (vr0
.max
))
2270 min
= positive_overflow_infinity (TREE_TYPE (expr
));
2271 else if (!vrp_val_is_min (vr0
.max
))
2272 min
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.max
);
2273 else if (needs_overflow_infinity (TREE_TYPE (expr
)))
2275 if (supports_overflow_infinity (TREE_TYPE (expr
))
2276 && !is_overflow_infinity (vr0
.min
)
2277 && !vrp_val_is_min (vr0
.min
))
2278 min
= positive_overflow_infinity (TREE_TYPE (expr
));
2281 set_value_range_to_varying (vr
);
2286 min
= TYPE_MIN_VALUE (TREE_TYPE (expr
));
2288 if (is_positive_overflow_infinity (vr0
.min
))
2289 max
= negative_overflow_infinity (TREE_TYPE (expr
));
2290 else if (is_negative_overflow_infinity (vr0
.min
))
2291 max
= positive_overflow_infinity (TREE_TYPE (expr
));
2292 else if (!vrp_val_is_min (vr0
.min
))
2293 max
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.min
);
2294 else if (needs_overflow_infinity (TREE_TYPE (expr
)))
2296 if (supports_overflow_infinity (TREE_TYPE (expr
)))
2297 max
= positive_overflow_infinity (TREE_TYPE (expr
));
2300 set_value_range_to_varying (vr
);
2305 max
= TYPE_MIN_VALUE (TREE_TYPE (expr
));
2307 else if (code
== NEGATE_EXPR
2308 && TYPE_UNSIGNED (TREE_TYPE (expr
)))
2310 if (!range_includes_zero_p (&vr0
))
2312 max
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.min
);
2313 min
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.max
);
2317 if (range_is_null (&vr0
))
2318 set_value_range_to_null (vr
, TREE_TYPE (expr
));
2320 set_value_range_to_varying (vr
);
2324 else if (code
== ABS_EXPR
2325 && !TYPE_UNSIGNED (TREE_TYPE (expr
)))
2327 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2329 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (expr
))
2330 && ((vr0
.type
== VR_RANGE
2331 && vrp_val_is_min (vr0
.min
))
2332 || (vr0
.type
== VR_ANTI_RANGE
2333 && !vrp_val_is_min (vr0
.min
)
2334 && !range_includes_zero_p (&vr0
))))
2336 set_value_range_to_varying (vr
);
2340 /* ABS_EXPR may flip the range around, if the original range
2341 included negative values. */
2342 if (is_overflow_infinity (vr0
.min
))
2343 min
= positive_overflow_infinity (TREE_TYPE (expr
));
2344 else if (!vrp_val_is_min (vr0
.min
))
2345 min
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.min
);
2346 else if (!needs_overflow_infinity (TREE_TYPE (expr
)))
2347 min
= TYPE_MAX_VALUE (TREE_TYPE (expr
));
2348 else if (supports_overflow_infinity (TREE_TYPE (expr
)))
2349 min
= positive_overflow_infinity (TREE_TYPE (expr
));
2352 set_value_range_to_varying (vr
);
2356 if (is_overflow_infinity (vr0
.max
))
2357 max
= positive_overflow_infinity (TREE_TYPE (expr
));
2358 else if (!vrp_val_is_min (vr0
.max
))
2359 max
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.max
);
2360 else if (!needs_overflow_infinity (TREE_TYPE (expr
)))
2361 max
= TYPE_MAX_VALUE (TREE_TYPE (expr
));
2362 else if (supports_overflow_infinity (TREE_TYPE (expr
)))
2363 max
= positive_overflow_infinity (TREE_TYPE (expr
));
2366 set_value_range_to_varying (vr
);
2370 cmp
= compare_values (min
, max
);
2372 /* If a VR_ANTI_RANGEs contains zero, then we have
2373 ~[-INF, min(MIN, MAX)]. */
2374 if (vr0
.type
== VR_ANTI_RANGE
)
2376 if (range_includes_zero_p (&vr0
))
2378 /* Take the lower of the two values. */
2382 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2383 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2384 flag_wrapv is set and the original anti-range doesn't include
2385 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2386 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr
)))
2388 tree type_min_value
= TYPE_MIN_VALUE (TREE_TYPE (expr
));
2390 min
= (vr0
.min
!= type_min_value
2391 ? int_const_binop (PLUS_EXPR
, type_min_value
,
2392 integer_one_node
, 0)
2397 if (overflow_infinity_range_p (&vr0
))
2398 min
= negative_overflow_infinity (TREE_TYPE (expr
));
2400 min
= TYPE_MIN_VALUE (TREE_TYPE (expr
));
2405 /* All else has failed, so create the range [0, INF], even for
2406 flag_wrapv since TYPE_MIN_VALUE is in the original
2408 vr0
.type
= VR_RANGE
;
2409 min
= build_int_cst (TREE_TYPE (expr
), 0);
2410 if (needs_overflow_infinity (TREE_TYPE (expr
)))
2412 if (supports_overflow_infinity (TREE_TYPE (expr
)))
2413 max
= positive_overflow_infinity (TREE_TYPE (expr
));
2416 set_value_range_to_varying (vr
);
2421 max
= TYPE_MAX_VALUE (TREE_TYPE (expr
));
2425 /* If the range contains zero then we know that the minimum value in the
2426 range will be zero. */
2427 else if (range_includes_zero_p (&vr0
))
2431 min
= build_int_cst (TREE_TYPE (expr
), 0);
2435 /* If the range was reversed, swap MIN and MAX. */
2446 /* Otherwise, operate on each end of the range. */
2447 min
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.min
);
2448 max
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.max
);
2450 if (needs_overflow_infinity (TREE_TYPE (expr
)))
2452 gcc_assert (code
!= NEGATE_EXPR
&& code
!= ABS_EXPR
);
2454 /* If both sides have overflowed, we don't know
2456 if ((is_overflow_infinity (vr0
.min
)
2457 || TREE_OVERFLOW (min
))
2458 && (is_overflow_infinity (vr0
.max
)
2459 || TREE_OVERFLOW (max
)))
2461 set_value_range_to_varying (vr
);
2465 if (is_overflow_infinity (vr0
.min
))
2467 else if (TREE_OVERFLOW (min
))
2469 if (supports_overflow_infinity (TREE_TYPE (expr
)))
2470 min
= (tree_int_cst_sgn (min
) >= 0
2471 ? positive_overflow_infinity (TREE_TYPE (min
))
2472 : negative_overflow_infinity (TREE_TYPE (min
)));
2475 set_value_range_to_varying (vr
);
2480 if (is_overflow_infinity (vr0
.max
))
2482 else if (TREE_OVERFLOW (max
))
2484 if (supports_overflow_infinity (TREE_TYPE (expr
)))
2485 max
= (tree_int_cst_sgn (max
) >= 0
2486 ? positive_overflow_infinity (TREE_TYPE (max
))
2487 : negative_overflow_infinity (TREE_TYPE (max
)));
2490 set_value_range_to_varying (vr
);
2497 cmp
= compare_values (min
, max
);
2498 if (cmp
== -2 || cmp
== 1)
2500 /* If the new range has its limits swapped around (MIN > MAX),
2501 then the operation caused one of them to wrap around, mark
2502 the new range VARYING. */
2503 set_value_range_to_varying (vr
);
2506 set_value_range (vr
, vr0
.type
, min
, max
, NULL
);
2510 /* Extract range information from a conditional expression EXPR based on
2511 the ranges of each of its operands and the expression code. */
2514 extract_range_from_cond_expr (value_range_t
*vr
, tree expr
)
2517 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
2518 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
2520 /* Get value ranges for each operand. For constant operands, create
2521 a new value range with the operand to simplify processing. */
2522 op0
= COND_EXPR_THEN (expr
);
2523 if (TREE_CODE (op0
) == SSA_NAME
)
2524 vr0
= *(get_value_range (op0
));
2525 else if (is_gimple_min_invariant (op0
))
2526 set_value_range_to_value (&vr0
, op0
, NULL
);
2528 set_value_range_to_varying (&vr0
);
2530 op1
= COND_EXPR_ELSE (expr
);
2531 if (TREE_CODE (op1
) == SSA_NAME
)
2532 vr1
= *(get_value_range (op1
));
2533 else if (is_gimple_min_invariant (op1
))
2534 set_value_range_to_value (&vr1
, op1
, NULL
);
2536 set_value_range_to_varying (&vr1
);
2538 /* The resulting value range is the union of the operand ranges */
2539 vrp_meet (&vr0
, &vr1
);
2540 copy_value_range (vr
, &vr0
);
2544 /* Extract range information from a comparison expression EXPR based
2545 on the range of its operand and the expression code. */
2548 extract_range_from_comparison (value_range_t
*vr
, tree expr
)
2551 tree val
= vrp_evaluate_conditional_warnv (expr
, false, &sop
);
2553 /* A disadvantage of using a special infinity as an overflow
2554 representation is that we lose the ability to record overflow
2555 when we don't have an infinity. So we have to ignore a result
2556 which relies on overflow. */
2558 if (val
&& !is_overflow_infinity (val
) && !sop
)
2560 /* Since this expression was found on the RHS of an assignment,
2561 its type may be different from _Bool. Convert VAL to EXPR's
2563 val
= fold_convert (TREE_TYPE (expr
), val
);
2564 if (is_gimple_min_invariant (val
))
2565 set_value_range_to_value (vr
, val
, vr
->equiv
);
2567 set_value_range (vr
, VR_RANGE
, val
, val
, vr
->equiv
);
2570 /* The result of a comparison is always true or false. */
2571 set_value_range_to_truthvalue (vr
, TREE_TYPE (expr
));
2575 /* Try to compute a useful range out of expression EXPR and store it
2579 extract_range_from_expr (value_range_t
*vr
, tree expr
)
2581 enum tree_code code
= TREE_CODE (expr
);
2583 if (code
== ASSERT_EXPR
)
2584 extract_range_from_assert (vr
, expr
);
2585 else if (code
== SSA_NAME
)
2586 extract_range_from_ssa_name (vr
, expr
);
2587 else if (TREE_CODE_CLASS (code
) == tcc_binary
2588 || code
== TRUTH_ANDIF_EXPR
2589 || code
== TRUTH_ORIF_EXPR
2590 || code
== TRUTH_AND_EXPR
2591 || code
== TRUTH_OR_EXPR
2592 || code
== TRUTH_XOR_EXPR
)
2593 extract_range_from_binary_expr (vr
, expr
);
2594 else if (TREE_CODE_CLASS (code
) == tcc_unary
)
2595 extract_range_from_unary_expr (vr
, expr
);
2596 else if (code
== COND_EXPR
)
2597 extract_range_from_cond_expr (vr
, expr
);
2598 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
2599 extract_range_from_comparison (vr
, expr
);
2600 else if (is_gimple_min_invariant (expr
))
2601 set_value_range_to_value (vr
, expr
, NULL
);
2603 set_value_range_to_varying (vr
);
2605 /* If we got a varying range from the tests above, try a final
2606 time to derive a nonnegative or nonzero range. This time
2607 relying primarily on generic routines in fold in conjunction
2609 if (vr
->type
== VR_VARYING
)
2613 if (INTEGRAL_TYPE_P (TREE_TYPE (expr
))
2614 && vrp_expr_computes_nonnegative (expr
, &sop
))
2615 set_value_range_to_nonnegative (vr
, TREE_TYPE (expr
),
2616 sop
|| is_overflow_infinity (expr
));
2617 else if (vrp_expr_computes_nonzero (expr
, &sop
)
2619 set_value_range_to_nonnull (vr
, TREE_TYPE (expr
));
2623 /* Given a range VR, a LOOP and a variable VAR, determine whether it
2624 would be profitable to adjust VR using scalar evolution information
2625 for VAR. If so, update VR with the new limits. */
2628 adjust_range_with_scev (value_range_t
*vr
, struct loop
*loop
, tree stmt
,
2631 tree init
, step
, chrec
, tmin
, tmax
, min
, max
, type
;
2632 enum ev_direction dir
;
2634 /* TODO. Don't adjust anti-ranges. An anti-range may provide
2635 better opportunities than a regular range, but I'm not sure. */
2636 if (vr
->type
== VR_ANTI_RANGE
)
2639 chrec
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, var
));
2641 /* Like in PR19590, scev can return a constant function. */
2642 if (is_gimple_min_invariant (chrec
))
2644 set_value_range_to_value (vr
, chrec
, vr
->equiv
);
2648 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
2651 init
= initial_condition_in_loop_num (chrec
, loop
->num
);
2652 step
= evolution_part_in_loop_num (chrec
, loop
->num
);
2654 /* If STEP is symbolic, we can't know whether INIT will be the
2655 minimum or maximum value in the range. Also, unless INIT is
2656 a simple expression, compare_values and possibly other functions
2657 in tree-vrp won't be able to handle it. */
2658 if (step
== NULL_TREE
2659 || !is_gimple_min_invariant (step
)
2660 || !valid_value_p (init
))
2663 dir
= scev_direction (chrec
);
2664 if (/* Do not adjust ranges if we do not know whether the iv increases
2665 or decreases, ... */
2666 dir
== EV_DIR_UNKNOWN
2667 /* ... or if it may wrap. */
2668 || scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
2672 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
2673 negative_overflow_infinity and positive_overflow_infinity,
2674 because we have concluded that the loop probably does not
2677 type
= TREE_TYPE (var
);
2678 if (POINTER_TYPE_P (type
) || !TYPE_MIN_VALUE (type
))
2679 tmin
= lower_bound_in_type (type
, type
);
2681 tmin
= TYPE_MIN_VALUE (type
);
2682 if (POINTER_TYPE_P (type
) || !TYPE_MAX_VALUE (type
))
2683 tmax
= upper_bound_in_type (type
, type
);
2685 tmax
= TYPE_MAX_VALUE (type
);
2687 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
2692 /* For VARYING or UNDEFINED ranges, just about anything we get
2693 from scalar evolutions should be better. */
2695 if (dir
== EV_DIR_DECREASES
)
2700 /* If we would create an invalid range, then just assume we
2701 know absolutely nothing. This may be over-conservative,
2702 but it's clearly safe, and should happen only in unreachable
2703 parts of code, or for invalid programs. */
2704 if (compare_values (min
, max
) == 1)
2707 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
2709 else if (vr
->type
== VR_RANGE
)
2714 if (dir
== EV_DIR_DECREASES
)
2716 /* INIT is the maximum value. If INIT is lower than VR->MAX
2717 but no smaller than VR->MIN, set VR->MAX to INIT. */
2718 if (compare_values (init
, max
) == -1)
2722 /* If we just created an invalid range with the minimum
2723 greater than the maximum, we fail conservatively.
2724 This should happen only in unreachable
2725 parts of code, or for invalid programs. */
2726 if (compare_values (min
, max
) == 1)
2730 /* According to the loop information, the variable does not
2731 overflow. If we think it does, probably because of an
2732 overflow due to arithmetic on a different INF value,
2734 if (is_negative_overflow_infinity (min
))
2739 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2740 if (compare_values (init
, min
) == 1)
2744 /* Again, avoid creating invalid range by failing. */
2745 if (compare_values (min
, max
) == 1)
2749 if (is_positive_overflow_infinity (max
))
2753 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
2757 /* Return true if VAR may overflow at STMT. This checks any available
2758 loop information to see if we can determine that VAR does not
2762 vrp_var_may_overflow (tree var
, tree stmt
)
2765 tree chrec
, init
, step
;
2767 if (current_loops
== NULL
)
2770 l
= loop_containing_stmt (stmt
);
2774 chrec
= instantiate_parameters (l
, analyze_scalar_evolution (l
, var
));
2775 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
2778 init
= initial_condition_in_loop_num (chrec
, l
->num
);
2779 step
= evolution_part_in_loop_num (chrec
, l
->num
);
2781 if (step
== NULL_TREE
2782 || !is_gimple_min_invariant (step
)
2783 || !valid_value_p (init
))
2786 /* If we get here, we know something useful about VAR based on the
2787 loop information. If it wraps, it may overflow. */
2789 if (scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
2793 if (dump_file
&& (dump_flags
& TDF_DETAILS
) != 0)
2795 print_generic_expr (dump_file
, var
, 0);
2796 fprintf (dump_file
, ": loop information indicates does not overflow\n");
2803 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2805 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2806 all the values in the ranges.
2808 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2810 - Return NULL_TREE if it is not always possible to determine the
2811 value of the comparison.
2813 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
2814 overflow infinity was used in the test. */
2818 compare_ranges (enum tree_code comp
, value_range_t
*vr0
, value_range_t
*vr1
,
2819 bool *strict_overflow_p
)
2821 /* VARYING or UNDEFINED ranges cannot be compared. */
2822 if (vr0
->type
== VR_VARYING
2823 || vr0
->type
== VR_UNDEFINED
2824 || vr1
->type
== VR_VARYING
2825 || vr1
->type
== VR_UNDEFINED
)
2828 /* Anti-ranges need to be handled separately. */
2829 if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
2831 /* If both are anti-ranges, then we cannot compute any
2833 if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
2836 /* These comparisons are never statically computable. */
2843 /* Equality can be computed only between a range and an
2844 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2845 if (vr0
->type
== VR_RANGE
)
2847 /* To simplify processing, make VR0 the anti-range. */
2848 value_range_t
*tmp
= vr0
;
2853 gcc_assert (comp
== NE_EXPR
|| comp
== EQ_EXPR
);
2855 if (compare_values_warnv (vr0
->min
, vr1
->min
, strict_overflow_p
) == 0
2856 && compare_values_warnv (vr0
->max
, vr1
->max
, strict_overflow_p
) == 0)
2857 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
2862 if (!usable_range_p (vr0
, strict_overflow_p
)
2863 || !usable_range_p (vr1
, strict_overflow_p
))
2866 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2867 operands around and change the comparison code. */
2868 if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
2871 comp
= (comp
== GT_EXPR
) ? LT_EXPR
: LE_EXPR
;
2877 if (comp
== EQ_EXPR
)
2879 /* Equality may only be computed if both ranges represent
2880 exactly one value. */
2881 if (compare_values_warnv (vr0
->min
, vr0
->max
, strict_overflow_p
) == 0
2882 && compare_values_warnv (vr1
->min
, vr1
->max
, strict_overflow_p
) == 0)
2884 int cmp_min
= compare_values_warnv (vr0
->min
, vr1
->min
,
2886 int cmp_max
= compare_values_warnv (vr0
->max
, vr1
->max
,
2888 if (cmp_min
== 0 && cmp_max
== 0)
2889 return boolean_true_node
;
2890 else if (cmp_min
!= -2 && cmp_max
!= -2)
2891 return boolean_false_node
;
2893 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2894 else if (compare_values_warnv (vr0
->min
, vr1
->max
,
2895 strict_overflow_p
) == 1
2896 || compare_values_warnv (vr1
->min
, vr0
->max
,
2897 strict_overflow_p
) == 1)
2898 return boolean_false_node
;
2902 else if (comp
== NE_EXPR
)
2906 /* If VR0 is completely to the left or completely to the right
2907 of VR1, they are always different. Notice that we need to
2908 make sure that both comparisons yield similar results to
2909 avoid comparing values that cannot be compared at
2911 cmp1
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
2912 cmp2
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
2913 if ((cmp1
== -1 && cmp2
== -1) || (cmp1
== 1 && cmp2
== 1))
2914 return boolean_true_node
;
2916 /* If VR0 and VR1 represent a single value and are identical,
2918 else if (compare_values_warnv (vr0
->min
, vr0
->max
,
2919 strict_overflow_p
) == 0
2920 && compare_values_warnv (vr1
->min
, vr1
->max
,
2921 strict_overflow_p
) == 0
2922 && compare_values_warnv (vr0
->min
, vr1
->min
,
2923 strict_overflow_p
) == 0
2924 && compare_values_warnv (vr0
->max
, vr1
->max
,
2925 strict_overflow_p
) == 0)
2926 return boolean_false_node
;
2928 /* Otherwise, they may or may not be different. */
2932 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
2936 /* If VR0 is to the left of VR1, return true. */
2937 tst
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
2938 if ((comp
== LT_EXPR
&& tst
== -1)
2939 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
2941 if (overflow_infinity_range_p (vr0
)
2942 || overflow_infinity_range_p (vr1
))
2943 *strict_overflow_p
= true;
2944 return boolean_true_node
;
2947 /* If VR0 is to the right of VR1, return false. */
2948 tst
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
2949 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
2950 || (comp
== LE_EXPR
&& tst
== 1))
2952 if (overflow_infinity_range_p (vr0
)
2953 || overflow_infinity_range_p (vr1
))
2954 *strict_overflow_p
= true;
2955 return boolean_false_node
;
2958 /* Otherwise, we don't know. */
2966 /* Given a value range VR, a value VAL and a comparison code COMP, return
2967 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2968 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2969 always returns false. Return NULL_TREE if it is not always
2970 possible to determine the value of the comparison. Also set
2971 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
2972 infinity was used in the test. */
2975 compare_range_with_value (enum tree_code comp
, value_range_t
*vr
, tree val
,
2976 bool *strict_overflow_p
)
2978 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
2981 /* Anti-ranges need to be handled separately. */
2982 if (vr
->type
== VR_ANTI_RANGE
)
2984 /* For anti-ranges, the only predicates that we can compute at
2985 compile time are equality and inequality. */
2992 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2993 if (value_inside_range (val
, vr
) == 1)
2994 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
2999 if (!usable_range_p (vr
, strict_overflow_p
))
3002 if (comp
== EQ_EXPR
)
3004 /* EQ_EXPR may only be computed if VR represents exactly
3006 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0)
3008 int cmp
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3010 return boolean_true_node
;
3011 else if (cmp
== -1 || cmp
== 1 || cmp
== 2)
3012 return boolean_false_node
;
3014 else if (compare_values_warnv (val
, vr
->min
, strict_overflow_p
) == -1
3015 || compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1)
3016 return boolean_false_node
;
3020 else if (comp
== NE_EXPR
)
3022 /* If VAL is not inside VR, then they are always different. */
3023 if (compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1
3024 || compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 1)
3025 return boolean_true_node
;
3027 /* If VR represents exactly one value equal to VAL, then return
3029 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0
3030 && compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 0)
3031 return boolean_false_node
;
3033 /* Otherwise, they may or may not be different. */
3036 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
3040 /* If VR is to the left of VAL, return true. */
3041 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
3042 if ((comp
== LT_EXPR
&& tst
== -1)
3043 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
3045 if (overflow_infinity_range_p (vr
))
3046 *strict_overflow_p
= true;
3047 return boolean_true_node
;
3050 /* If VR is to the right of VAL, return false. */
3051 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3052 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
3053 || (comp
== LE_EXPR
&& tst
== 1))
3055 if (overflow_infinity_range_p (vr
))
3056 *strict_overflow_p
= true;
3057 return boolean_false_node
;
3060 /* Otherwise, we don't know. */
3063 else if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
3067 /* If VR is to the right of VAL, return true. */
3068 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3069 if ((comp
== GT_EXPR
&& tst
== 1)
3070 || (comp
== GE_EXPR
&& (tst
== 0 || tst
== 1)))
3072 if (overflow_infinity_range_p (vr
))
3073 *strict_overflow_p
= true;
3074 return boolean_true_node
;
3077 /* If VR is to the left of VAL, return false. */
3078 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
3079 if ((comp
== GT_EXPR
&& (tst
== -1 || tst
== 0))
3080 || (comp
== GE_EXPR
&& tst
== -1))
3082 if (overflow_infinity_range_p (vr
))
3083 *strict_overflow_p
= true;
3084 return boolean_false_node
;
3087 /* Otherwise, we don't know. */
3095 /* Debugging dumps. */
3097 void dump_value_range (FILE *, value_range_t
*);
3098 void debug_value_range (value_range_t
*);
3099 void dump_all_value_ranges (FILE *);
3100 void debug_all_value_ranges (void);
3101 void dump_vr_equiv (FILE *, bitmap
);
3102 void debug_vr_equiv (bitmap
);
3105 /* Dump value range VR to FILE. */
3108 dump_value_range (FILE *file
, value_range_t
*vr
)
3111 fprintf (file
, "[]");
3112 else if (vr
->type
== VR_UNDEFINED
)
3113 fprintf (file
, "UNDEFINED");
3114 else if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
3116 tree type
= TREE_TYPE (vr
->min
);
3118 fprintf (file
, "%s[", (vr
->type
== VR_ANTI_RANGE
) ? "~" : "");
3120 if (is_negative_overflow_infinity (vr
->min
))
3121 fprintf (file
, "-INF(OVF)");
3122 else if (INTEGRAL_TYPE_P (type
)
3123 && !TYPE_UNSIGNED (type
)
3124 && vrp_val_is_min (vr
->min
))
3125 fprintf (file
, "-INF");
3127 print_generic_expr (file
, vr
->min
, 0);
3129 fprintf (file
, ", ");
3131 if (is_positive_overflow_infinity (vr
->max
))
3132 fprintf (file
, "+INF(OVF)");
3133 else if (INTEGRAL_TYPE_P (type
)
3134 && vrp_val_is_max (vr
->max
))
3135 fprintf (file
, "+INF");
3137 print_generic_expr (file
, vr
->max
, 0);
3139 fprintf (file
, "]");
3146 fprintf (file
, " EQUIVALENCES: { ");
3148 EXECUTE_IF_SET_IN_BITMAP (vr
->equiv
, 0, i
, bi
)
3150 print_generic_expr (file
, ssa_name (i
), 0);
3151 fprintf (file
, " ");
3155 fprintf (file
, "} (%u elements)", c
);
3158 else if (vr
->type
== VR_VARYING
)
3159 fprintf (file
, "VARYING");
3161 fprintf (file
, "INVALID RANGE");
3165 /* Dump value range VR to stderr. */
3168 debug_value_range (value_range_t
*vr
)
3170 dump_value_range (stderr
, vr
);
3171 fprintf (stderr
, "\n");
3175 /* Dump value ranges of all SSA_NAMEs to FILE. */
3178 dump_all_value_ranges (FILE *file
)
3182 for (i
= 0; i
< num_ssa_names
; i
++)
3186 print_generic_expr (file
, ssa_name (i
), 0);
3187 fprintf (file
, ": ");
3188 dump_value_range (file
, vr_value
[i
]);
3189 fprintf (file
, "\n");
3193 fprintf (file
, "\n");
3197 /* Dump all value ranges to stderr. */
3200 debug_all_value_ranges (void)
3202 dump_all_value_ranges (stderr
);
3206 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3207 create a new SSA name N and return the assertion assignment
3208 'V = ASSERT_EXPR <V, V OP W>'. */
3211 build_assert_expr_for (tree cond
, tree v
)
3215 gcc_assert (TREE_CODE (v
) == SSA_NAME
);
3216 n
= duplicate_ssa_name (v
, NULL_TREE
);
3218 if (COMPARISON_CLASS_P (cond
))
3220 tree a
= build2 (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
3221 assertion
= build_gimple_modify_stmt (n
, a
);
3223 else if (TREE_CODE (cond
) == TRUTH_NOT_EXPR
)
3225 /* Given !V, build the assignment N = false. */
3226 tree op0
= TREE_OPERAND (cond
, 0);
3227 gcc_assert (op0
== v
);
3228 assertion
= build_gimple_modify_stmt (n
, boolean_false_node
);
3230 else if (TREE_CODE (cond
) == SSA_NAME
)
3232 /* Given V, build the assignment N = true. */
3233 gcc_assert (v
== cond
);
3234 assertion
= build_gimple_modify_stmt (n
, boolean_true_node
);
3239 SSA_NAME_DEF_STMT (n
) = assertion
;
3241 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3242 operand of the ASSERT_EXPR. Register the new name and the old one
3243 in the replacement table so that we can fix the SSA web after
3244 adding all the ASSERT_EXPRs. */
3245 register_new_name_mapping (n
, v
);
3251 /* Return false if EXPR is a predicate expression involving floating
3255 fp_predicate (const_tree expr
)
3257 return (COMPARISON_CLASS_P (expr
)
3258 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 0))));
3262 /* If the range of values taken by OP can be inferred after STMT executes,
3263 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3264 describes the inferred range. Return true if a range could be
3268 infer_value_range (tree stmt
, tree op
, enum tree_code
*comp_code_p
, tree
*val_p
)
3271 *comp_code_p
= ERROR_MARK
;
3273 /* Do not attempt to infer anything in names that flow through
3275 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
3278 /* Similarly, don't infer anything from statements that may throw
3280 if (tree_could_throw_p (stmt
))
3283 /* If STMT is the last statement of a basic block with no
3284 successors, there is no point inferring anything about any of its
3285 operands. We would not be able to find a proper insertion point
3286 for the assertion, anyway. */
3287 if (stmt_ends_bb_p (stmt
) && EDGE_COUNT (bb_for_stmt (stmt
)->succs
) == 0)
3290 /* We can only assume that a pointer dereference will yield
3291 non-NULL if -fdelete-null-pointer-checks is enabled. */
3292 if (flag_delete_null_pointer_checks
&& POINTER_TYPE_P (TREE_TYPE (op
)))
3294 unsigned num_uses
, num_loads
, num_stores
;
3296 count_uses_and_derefs (op
, stmt
, &num_uses
, &num_loads
, &num_stores
);
3297 if (num_loads
+ num_stores
> 0)
3299 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
3300 *comp_code_p
= NE_EXPR
;
3309 void dump_asserts_for (FILE *, tree
);
3310 void debug_asserts_for (tree
);
3311 void dump_all_asserts (FILE *);
3312 void debug_all_asserts (void);
3314 /* Dump all the registered assertions for NAME to FILE. */
3317 dump_asserts_for (FILE *file
, tree name
)
3321 fprintf (file
, "Assertions to be inserted for ");
3322 print_generic_expr (file
, name
, 0);
3323 fprintf (file
, "\n");
3325 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
3328 fprintf (file
, "\t");
3329 print_generic_expr (file
, bsi_stmt (loc
->si
), 0);
3330 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
3333 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
3334 loc
->e
->dest
->index
);
3335 dump_edge_info (file
, loc
->e
, 0);
3337 fprintf (file
, "\n\tPREDICATE: ");
3338 print_generic_expr (file
, name
, 0);
3339 fprintf (file
, " %s ", tree_code_name
[(int)loc
->comp_code
]);
3340 print_generic_expr (file
, loc
->val
, 0);
3341 fprintf (file
, "\n\n");
3345 fprintf (file
, "\n");
3349 /* Dump all the registered assertions for NAME to stderr. */
3352 debug_asserts_for (tree name
)
3354 dump_asserts_for (stderr
, name
);
3358 /* Dump all the registered assertions for all the names to FILE. */
3361 dump_all_asserts (FILE *file
)
3366 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
3367 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
3368 dump_asserts_for (file
, ssa_name (i
));
3369 fprintf (file
, "\n");
3373 /* Dump all the registered assertions for all the names to stderr. */
3376 debug_all_asserts (void)
3378 dump_all_asserts (stderr
);
3382 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3383 'NAME COMP_CODE VAL' at a location that dominates block BB or
3384 E->DEST, then register this location as a possible insertion point
3385 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
3387 BB, E and SI provide the exact insertion point for the new
3388 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3389 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3390 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3391 must not be NULL. */
3394 register_new_assert_for (tree name
,
3395 enum tree_code comp_code
,
3399 block_stmt_iterator si
)
3401 assert_locus_t n
, loc
, last_loc
;
3403 basic_block dest_bb
;
3405 #if defined ENABLE_CHECKING
3406 gcc_assert (bb
== NULL
|| e
== NULL
);
3409 gcc_assert (TREE_CODE (bsi_stmt (si
)) != COND_EXPR
3410 && TREE_CODE (bsi_stmt (si
)) != SWITCH_EXPR
);
3413 /* The new assertion A will be inserted at BB or E. We need to
3414 determine if the new location is dominated by a previously
3415 registered location for A. If we are doing an edge insertion,
3416 assume that A will be inserted at E->DEST. Note that this is not
3419 If E is a critical edge, it will be split. But even if E is
3420 split, the new block will dominate the same set of blocks that
3423 The reverse, however, is not true, blocks dominated by E->DEST
3424 will not be dominated by the new block created to split E. So,
3425 if the insertion location is on a critical edge, we will not use
3426 the new location to move another assertion previously registered
3427 at a block dominated by E->DEST. */
3428 dest_bb
= (bb
) ? bb
: e
->dest
;
3430 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3431 VAL at a block dominating DEST_BB, then we don't need to insert a new
3432 one. Similarly, if the same assertion already exists at a block
3433 dominated by DEST_BB and the new location is not on a critical
3434 edge, then update the existing location for the assertion (i.e.,
3435 move the assertion up in the dominance tree).
3437 Note, this is implemented as a simple linked list because there
3438 should not be more than a handful of assertions registered per
3439 name. If this becomes a performance problem, a table hashed by
3440 COMP_CODE and VAL could be implemented. */
3441 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
3446 if (loc
->comp_code
== comp_code
3448 || operand_equal_p (loc
->val
, val
, 0)))
3450 /* If the assertion NAME COMP_CODE VAL has already been
3451 registered at a basic block that dominates DEST_BB, then
3452 we don't need to insert the same assertion again. Note
3453 that we don't check strict dominance here to avoid
3454 replicating the same assertion inside the same basic
3455 block more than once (e.g., when a pointer is
3456 dereferenced several times inside a block).
3458 An exception to this rule are edge insertions. If the
3459 new assertion is to be inserted on edge E, then it will
3460 dominate all the other insertions that we may want to
3461 insert in DEST_BB. So, if we are doing an edge
3462 insertion, don't do this dominance check. */
3464 && dominated_by_p (CDI_DOMINATORS
, dest_bb
, loc
->bb
))
3467 /* Otherwise, if E is not a critical edge and DEST_BB
3468 dominates the existing location for the assertion, move
3469 the assertion up in the dominance tree by updating its
3470 location information. */
3471 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
3472 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
3481 /* Update the last node of the list and move to the next one. */
3486 /* If we didn't find an assertion already registered for
3487 NAME COMP_CODE VAL, add a new one at the end of the list of
3488 assertions associated with NAME. */
3489 n
= XNEW (struct assert_locus_d
);
3493 n
->comp_code
= comp_code
;
3500 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
3502 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
3505 /* COND is a predicate which uses NAME. Extract a suitable test code
3506 and value and store them into *CODE_P and *VAL_P so the predicate
3507 is normalized to NAME *CODE_P *VAL_P.
3509 If no extraction was possible, return FALSE, otherwise return TRUE.
3511 If INVERT is true, then we invert the result stored into *CODE_P. */
3514 extract_code_and_val_from_cond (tree name
, tree cond
, bool invert
,
3515 enum tree_code
*code_p
, tree
*val_p
)
3517 enum tree_code comp_code
;
3520 /* Predicates may be a single SSA name or NAME OP VAL. */
3523 /* If the predicate is a name, it must be NAME, in which
3524 case we create the predicate NAME == true or
3525 NAME == false accordingly. */
3526 comp_code
= EQ_EXPR
;
3527 val
= invert
? boolean_false_node
: boolean_true_node
;
3531 /* Otherwise, we have a comparison of the form NAME COMP VAL
3532 or VAL COMP NAME. */
3533 if (name
== TREE_OPERAND (cond
, 1))
3535 /* If the predicate is of the form VAL COMP NAME, flip
3536 COMP around because we need to register NAME as the
3537 first operand in the predicate. */
3538 comp_code
= swap_tree_comparison (TREE_CODE (cond
));
3539 val
= TREE_OPERAND (cond
, 0);
3543 /* The comparison is of the form NAME COMP VAL, so the
3544 comparison code remains unchanged. */
3545 comp_code
= TREE_CODE (cond
);
3546 val
= TREE_OPERAND (cond
, 1);
3549 /* Invert the comparison code as necessary. */
3551 comp_code
= invert_tree_comparison (comp_code
, 0);
3553 /* VRP does not handle float types. */
3554 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val
)))
3557 /* Do not register always-false predicates.
3558 FIXME: this works around a limitation in fold() when dealing with
3559 enumerations. Given 'enum { N1, N2 } x;', fold will not
3560 fold 'if (x > N2)' to 'if (0)'. */
3561 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
3562 && INTEGRAL_TYPE_P (TREE_TYPE (val
)))
3564 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
3565 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
3567 if (comp_code
== GT_EXPR
3569 || compare_values (val
, max
) == 0))
3572 if (comp_code
== LT_EXPR
3574 || compare_values (val
, min
) == 0))
3578 *code_p
= comp_code
;
3583 /* OP is an operand of a truth value expression which is known to have
3584 a particular value. Register any asserts for OP and for any
3585 operands in OP's defining statement.
3587 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3588 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3591 register_edge_assert_for_1 (tree op
, enum tree_code code
,
3592 edge e
, block_stmt_iterator bsi
)
3594 bool retval
= false;
3595 tree op_def
, rhs
, val
;
3597 /* We only care about SSA_NAMEs. */
3598 if (TREE_CODE (op
) != SSA_NAME
)
3601 /* We know that OP will have a zero or nonzero value. If OP is used
3602 more than once go ahead and register an assert for OP.
3604 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
3605 it will always be set for OP (because OP is used in a COND_EXPR in
3607 if (!has_single_use (op
))
3609 val
= build_int_cst (TREE_TYPE (op
), 0);
3610 register_new_assert_for (op
, code
, val
, NULL
, e
, bsi
);
3614 /* Now look at how OP is set. If it's set from a comparison,
3615 a truth operation or some bit operations, then we may be able
3616 to register information about the operands of that assignment. */
3617 op_def
= SSA_NAME_DEF_STMT (op
);
3618 if (TREE_CODE (op_def
) != GIMPLE_MODIFY_STMT
)
3621 rhs
= GIMPLE_STMT_OPERAND (op_def
, 1);
3623 if (COMPARISON_CLASS_P (rhs
))
3625 bool invert
= (code
== EQ_EXPR
? true : false);
3626 tree op0
= TREE_OPERAND (rhs
, 0);
3627 tree op1
= TREE_OPERAND (rhs
, 1);
3629 /* Conditionally register an assert for each SSA_NAME in the
3631 if (TREE_CODE (op0
) == SSA_NAME
3632 && !has_single_use (op0
)
3633 && extract_code_and_val_from_cond (op0
, rhs
,
3634 invert
, &code
, &val
))
3636 register_new_assert_for (op0
, code
, val
, NULL
, e
, bsi
);
3640 /* Similarly for the second operand of the comparison. */
3641 if (TREE_CODE (op1
) == SSA_NAME
3642 && !has_single_use (op1
)
3643 && extract_code_and_val_from_cond (op1
, rhs
,
3644 invert
, &code
, &val
))
3646 register_new_assert_for (op1
, code
, val
, NULL
, e
, bsi
);
3650 else if ((code
== NE_EXPR
3651 && (TREE_CODE (rhs
) == TRUTH_AND_EXPR
3652 || TREE_CODE (rhs
) == BIT_AND_EXPR
))
3654 && (TREE_CODE (rhs
) == TRUTH_OR_EXPR
3655 || TREE_CODE (rhs
) == BIT_IOR_EXPR
)))
3657 /* Recurse on each operand. */
3658 retval
|= register_edge_assert_for_1 (TREE_OPERAND (rhs
, 0),
3660 retval
|= register_edge_assert_for_1 (TREE_OPERAND (rhs
, 1),
3663 else if (TREE_CODE (rhs
) == TRUTH_NOT_EXPR
)
3665 /* Recurse, flipping CODE. */
3666 code
= invert_tree_comparison (code
, false);
3667 retval
|= register_edge_assert_for_1 (TREE_OPERAND (rhs
, 0),
3670 else if (TREE_CODE (rhs
) == SSA_NAME
)
3672 /* Recurse through the copy. */
3673 retval
|= register_edge_assert_for_1 (rhs
, code
, e
, bsi
);
3675 else if (TREE_CODE (rhs
) == NOP_EXPR
3676 || TREE_CODE (rhs
) == CONVERT_EXPR
3677 || TREE_CODE (rhs
) == NON_LVALUE_EXPR
)
3679 /* Recurse through the type conversion. */
3680 retval
|= register_edge_assert_for_1 (TREE_OPERAND (rhs
, 0),
3687 /* Try to register an edge assertion for SSA name NAME on edge E for
3688 the condition COND contributing to the conditional jump pointed to by SI.
3689 Return true if an assertion for NAME could be registered. */
3692 register_edge_assert_for (tree name
, edge e
, block_stmt_iterator si
, tree cond
)
3695 enum tree_code comp_code
;
3696 bool retval
= false;
3697 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
3699 /* Do not attempt to infer anything in names that flow through
3701 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
3704 if (!extract_code_and_val_from_cond (name
, cond
, is_else_edge
,
3708 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3709 reachable from E. */
3710 if (TEST_BIT (found_in_subgraph
, SSA_NAME_VERSION (name
)))
3712 register_new_assert_for (name
, comp_code
, val
, NULL
, e
, si
);
3716 /* If COND is effectively an equality test of an SSA_NAME against
3717 the value zero or one, then we may be able to assert values
3718 for SSA_NAMEs which flow into COND. */
3720 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
3721 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
3722 have nonzero value. */
3723 if (((comp_code
== EQ_EXPR
&& integer_onep (val
))
3724 || (comp_code
== NE_EXPR
&& integer_zerop (val
))))
3726 tree def_stmt
= SSA_NAME_DEF_STMT (name
);
3728 if (TREE_CODE (def_stmt
) == GIMPLE_MODIFY_STMT
3729 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt
, 1)) == TRUTH_AND_EXPR
3730 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt
, 1)) == BIT_AND_EXPR
))
3732 tree op0
= TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt
, 1), 0);
3733 tree op1
= TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt
, 1), 1);
3734 retval
|= register_edge_assert_for_1 (op0
, NE_EXPR
, e
, si
);
3735 retval
|= register_edge_assert_for_1 (op1
, NE_EXPR
, e
, si
);
3739 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
3740 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
3742 if (((comp_code
== EQ_EXPR
&& integer_zerop (val
))
3743 || (comp_code
== NE_EXPR
&& integer_onep (val
))))
3745 tree def_stmt
= SSA_NAME_DEF_STMT (name
);
3747 if (TREE_CODE (def_stmt
) == GIMPLE_MODIFY_STMT
3748 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt
, 1)) == TRUTH_OR_EXPR
3749 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt
, 1)) == BIT_IOR_EXPR
))
3751 tree op0
= TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt
, 1), 0);
3752 tree op1
= TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt
, 1), 1);
3753 retval
|= register_edge_assert_for_1 (op0
, EQ_EXPR
, e
, si
);
3754 retval
|= register_edge_assert_for_1 (op1
, EQ_EXPR
, e
, si
);
3762 static bool find_assert_locations (basic_block bb
);
3764 /* Determine whether the outgoing edges of BB should receive an
3765 ASSERT_EXPR for each of the operands of BB's LAST statement.
3766 The last statement of BB must be a COND_EXPR.
3768 If any of the sub-graphs rooted at BB have an interesting use of
3769 the predicate operands, an assert location node is added to the
3770 list of assertions for the corresponding operands. */
3773 find_conditional_asserts (basic_block bb
, tree last
)
3776 block_stmt_iterator bsi
;
3782 need_assert
= false;
3783 bsi
= bsi_for_stmt (last
);
3785 /* Look for uses of the operands in each of the sub-graphs
3786 rooted at BB. We need to check each of the outgoing edges
3787 separately, so that we know what kind of ASSERT_EXPR to
3789 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3794 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
3795 Otherwise, when we finish traversing each of the sub-graphs, we
3796 won't know whether the variables were found in the sub-graphs or
3797 if they had been found in a block upstream from BB.
3799 This is actually a bad idea is some cases, particularly jump
3800 threading. Consider a CFG like the following:
3810 Assume that one or more operands in the conditional at the
3811 end of block 0 are used in a conditional in block 2, but not
3812 anywhere in block 1. In this case we will not insert any
3813 assert statements in block 1, which may cause us to miss
3814 opportunities to optimize, particularly for jump threading. */
3815 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
3816 RESET_BIT (found_in_subgraph
, SSA_NAME_VERSION (op
));
3818 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3819 to determine if any of the operands in the conditional
3820 predicate are used. */
3822 need_assert
|= find_assert_locations (e
->dest
);
3824 /* Register the necessary assertions for each operand in the
3825 conditional predicate. */
3826 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
3827 need_assert
|= register_edge_assert_for (op
, e
, bsi
,
3828 COND_EXPR_COND (last
));
3831 /* Finally, indicate that we have found the operands in the
3833 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
3834 SET_BIT (found_in_subgraph
, SSA_NAME_VERSION (op
));
3839 /* Compare two case labels sorting first by the destination label uid
3840 and then by the case value. */
3843 compare_case_labels (const void *p1
, const void *p2
)
3845 const_tree
const case1
= *(const_tree
const*)p1
;
3846 const_tree
const case2
= *(const_tree
const*)p2
;
3847 unsigned int uid1
= DECL_UID (CASE_LABEL (case1
));
3848 unsigned int uid2
= DECL_UID (CASE_LABEL (case2
));
3852 else if (uid1
== uid2
)
3854 /* Make sure the default label is first in a group. */
3855 if (!CASE_LOW (case1
))
3857 else if (!CASE_LOW (case2
))
3860 return tree_int_cst_compare (CASE_LOW (case1
), CASE_LOW (case2
));
3866 /* Determine whether the outgoing edges of BB should receive an
3867 ASSERT_EXPR for each of the operands of BB's LAST statement.
3868 The last statement of BB must be a SWITCH_EXPR.
3870 If any of the sub-graphs rooted at BB have an interesting use of
3871 the predicate operands, an assert location node is added to the
3872 list of assertions for the corresponding operands. */
3875 find_switch_asserts (basic_block bb
, tree last
)
3878 block_stmt_iterator bsi
;
3881 tree vec
= SWITCH_LABELS (last
), vec2
;
3882 size_t n
= TREE_VEC_LENGTH (vec
);
3885 need_assert
= false;
3886 bsi
= bsi_for_stmt (last
);
3887 op
= TREE_OPERAND (last
, 0);
3888 if (TREE_CODE (op
) != SSA_NAME
)
3891 /* Build a vector of case labels sorted by destination label. */
3892 vec2
= make_tree_vec (n
);
3893 for (idx
= 0; idx
< n
; ++idx
)
3894 TREE_VEC_ELT (vec2
, idx
) = TREE_VEC_ELT (vec
, idx
);
3895 qsort (&TREE_VEC_ELT (vec2
, 0), n
, sizeof (tree
), compare_case_labels
);
3897 for (idx
= 0; idx
< n
; ++idx
)
3900 tree cl
= TREE_VEC_ELT (vec2
, idx
);
3902 min
= CASE_LOW (cl
);
3903 max
= CASE_HIGH (cl
);
3905 /* If there are multiple case labels with the same destination
3906 we need to combine them to a single value range for the edge. */
3908 && CASE_LABEL (cl
) == CASE_LABEL (TREE_VEC_ELT (vec2
, idx
+ 1)))
3910 /* Skip labels until the last of the group. */
3914 && CASE_LABEL (cl
) == CASE_LABEL (TREE_VEC_ELT (vec2
, idx
)));
3917 /* Pick up the maximum of the case label range. */
3918 if (CASE_HIGH (TREE_VEC_ELT (vec2
, idx
)))
3919 max
= CASE_HIGH (TREE_VEC_ELT (vec2
, idx
));
3921 max
= CASE_LOW (TREE_VEC_ELT (vec2
, idx
));
3924 /* Nothing to do if the range includes the default label until we
3925 can register anti-ranges. */
3926 if (min
== NULL_TREE
)
3929 /* Find the edge to register the assert expr on. */
3930 e
= find_edge (bb
, label_to_block (CASE_LABEL (cl
)));
3932 /* Remove the SWITCH_EXPR operand from the FOUND_IN_SUBGRAPH bitmap.
3933 Otherwise, when we finish traversing each of the sub-graphs, we
3934 won't know whether the variables were found in the sub-graphs or
3935 if they had been found in a block upstream from BB. */
3936 RESET_BIT (found_in_subgraph
, SSA_NAME_VERSION (op
));
3938 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3939 to determine if any of the operands in the conditional
3940 predicate are used. */
3942 need_assert
|= find_assert_locations (e
->dest
);
3944 /* Register the necessary assertions for the operand in the
3946 cond
= build2 (max
? GE_EXPR
: EQ_EXPR
, boolean_type_node
,
3947 op
, fold_convert (TREE_TYPE (op
), min
));
3948 need_assert
|= register_edge_assert_for (op
, e
, bsi
, cond
);
3951 cond
= build2 (LE_EXPR
, boolean_type_node
,
3952 op
, fold_convert (TREE_TYPE (op
), max
));
3953 need_assert
|= register_edge_assert_for (op
, e
, bsi
, cond
);
3957 /* Finally, indicate that we have found the operand in the
3959 SET_BIT (found_in_subgraph
, SSA_NAME_VERSION (op
));
3965 /* Traverse all the statements in block BB looking for statements that
3966 may generate useful assertions for the SSA names in their operand.
3967 If a statement produces a useful assertion A for name N_i, then the
3968 list of assertions already generated for N_i is scanned to
3969 determine if A is actually needed.
3971 If N_i already had the assertion A at a location dominating the
3972 current location, then nothing needs to be done. Otherwise, the
3973 new location for A is recorded instead.
3975 1- For every statement S in BB, all the variables used by S are
3976 added to bitmap FOUND_IN_SUBGRAPH.
3978 2- If statement S uses an operand N in a way that exposes a known
3979 value range for N, then if N was not already generated by an
3980 ASSERT_EXPR, create a new assert location for N. For instance,
3981 if N is a pointer and the statement dereferences it, we can
3982 assume that N is not NULL.
3984 3- COND_EXPRs are a special case of #2. We can derive range
3985 information from the predicate but need to insert different
3986 ASSERT_EXPRs for each of the sub-graphs rooted at the
3987 conditional block. If the last statement of BB is a conditional
3988 expression of the form 'X op Y', then
3990 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3992 b) If the conditional is the only entry point to the sub-graph
3993 corresponding to the THEN_CLAUSE, recurse into it. On
3994 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3995 an ASSERT_EXPR is added for the corresponding variable.
3997 c) Repeat step (b) on the ELSE_CLAUSE.
3999 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4008 In this case, an assertion on the THEN clause is useful to
4009 determine that 'a' is always 9 on that edge. However, an assertion
4010 on the ELSE clause would be unnecessary.
4012 4- If BB does not end in a conditional expression, then we recurse
4013 into BB's dominator children.
4015 At the end of the recursive traversal, every SSA name will have a
4016 list of locations where ASSERT_EXPRs should be added. When a new
4017 location for name N is found, it is registered by calling
4018 register_new_assert_for. That function keeps track of all the
4019 registered assertions to prevent adding unnecessary assertions.
4020 For instance, if a pointer P_4 is dereferenced more than once in a
4021 dominator tree, only the location dominating all the dereference of
4022 P_4 will receive an ASSERT_EXPR.
4024 If this function returns true, then it means that there are names
4025 for which we need to generate ASSERT_EXPRs. Those assertions are
4026 inserted by process_assert_insertions. */
4029 find_assert_locations (basic_block bb
)
4031 block_stmt_iterator si
;
4036 if (TEST_BIT (blocks_visited
, bb
->index
))
4039 SET_BIT (blocks_visited
, bb
->index
);
4041 need_assert
= false;
4043 /* Traverse all PHI nodes in BB marking used operands. */
4044 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
4046 use_operand_p arg_p
;
4049 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
4051 tree arg
= USE_FROM_PTR (arg_p
);
4052 if (TREE_CODE (arg
) == SSA_NAME
)
4054 gcc_assert (is_gimple_reg (PHI_RESULT (phi
)));
4055 SET_BIT (found_in_subgraph
, SSA_NAME_VERSION (arg
));
4060 /* Traverse all the statements in BB marking used names and looking
4061 for statements that may infer assertions for their used operands. */
4063 for (si
= bsi_start (bb
); !bsi_end_p (si
); bsi_next (&si
))
4068 stmt
= bsi_stmt (si
);
4070 /* See if we can derive an assertion for any of STMT's operands. */
4071 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
4074 enum tree_code comp_code
;
4076 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
4077 the sub-graph of a conditional block, when we return from
4078 this recursive walk, our parent will use the
4079 FOUND_IN_SUBGRAPH bitset to determine if one of the
4080 operands it was looking for was present in the sub-graph. */
4081 SET_BIT (found_in_subgraph
, SSA_NAME_VERSION (op
));
4083 /* If OP is used in such a way that we can infer a value
4084 range for it, and we don't find a previous assertion for
4085 it, create a new assertion location node for OP. */
4086 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
4088 /* If we are able to infer a nonzero value range for OP,
4089 then walk backwards through the use-def chain to see if OP
4090 was set via a typecast.
4092 If so, then we can also infer a nonzero value range
4093 for the operand of the NOP_EXPR. */
4094 if (comp_code
== NE_EXPR
&& integer_zerop (value
))
4097 tree def_stmt
= SSA_NAME_DEF_STMT (t
);
4099 while (TREE_CODE (def_stmt
) == GIMPLE_MODIFY_STMT
4101 (GIMPLE_STMT_OPERAND (def_stmt
, 1)) == NOP_EXPR
4103 (TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt
, 1),
4106 (TREE_TYPE (TREE_OPERAND
4107 (GIMPLE_STMT_OPERAND (def_stmt
,
4110 t
= TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt
, 1), 0);
4111 def_stmt
= SSA_NAME_DEF_STMT (t
);
4113 /* Note we want to register the assert for the
4114 operand of the NOP_EXPR after SI, not after the
4116 if (! has_single_use (t
))
4118 register_new_assert_for (t
, comp_code
, value
,
4125 /* If OP is used only once, namely in this STMT, don't
4126 bother creating an ASSERT_EXPR for it. Such an
4127 ASSERT_EXPR would do nothing but increase compile time. */
4128 if (!has_single_use (op
))
4130 register_new_assert_for (op
, comp_code
, value
, bb
, NULL
, si
);
4136 /* Remember the last statement of the block. */
4140 /* If BB's last statement is a conditional expression
4141 involving integer operands, recurse into each of the sub-graphs
4142 rooted at BB to determine if we need to add ASSERT_EXPRs. */
4144 && TREE_CODE (last
) == COND_EXPR
4145 && !fp_predicate (COND_EXPR_COND (last
))
4146 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
4147 need_assert
|= find_conditional_asserts (bb
, last
);
4150 && TREE_CODE (last
) == SWITCH_EXPR
4151 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
4152 need_assert
|= find_switch_asserts (bb
, last
);
4154 /* Recurse into the dominator children of BB. */
4155 for (son
= first_dom_son (CDI_DOMINATORS
, bb
);
4157 son
= next_dom_son (CDI_DOMINATORS
, son
))
4158 need_assert
|= find_assert_locations (son
);
4164 /* Create an ASSERT_EXPR for NAME and insert it in the location
4165 indicated by LOC. Return true if we made any edge insertions. */
4168 process_assert_insertions_for (tree name
, assert_locus_t loc
)
4170 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4171 tree stmt
, cond
, assert_expr
;
4175 cond
= build2 (loc
->comp_code
, boolean_type_node
, name
, loc
->val
);
4176 assert_expr
= build_assert_expr_for (cond
, name
);
4180 /* We have been asked to insert the assertion on an edge. This
4181 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4182 #if defined ENABLE_CHECKING
4183 gcc_assert (TREE_CODE (bsi_stmt (loc
->si
)) == COND_EXPR
4184 || TREE_CODE (bsi_stmt (loc
->si
)) == SWITCH_EXPR
);
4187 bsi_insert_on_edge (loc
->e
, assert_expr
);
4191 /* Otherwise, we can insert right after LOC->SI iff the
4192 statement must not be the last statement in the block. */
4193 stmt
= bsi_stmt (loc
->si
);
4194 if (!stmt_ends_bb_p (stmt
))
4196 bsi_insert_after (&loc
->si
, assert_expr
, BSI_SAME_STMT
);
4200 /* If STMT must be the last statement in BB, we can only insert new
4201 assertions on the non-abnormal edge out of BB. Note that since
4202 STMT is not control flow, there may only be one non-abnormal edge
4204 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
4205 if (!(e
->flags
& EDGE_ABNORMAL
))
4207 bsi_insert_on_edge (e
, assert_expr
);
4215 /* Process all the insertions registered for every name N_i registered
4216 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4217 found in ASSERTS_FOR[i]. */
4220 process_assert_insertions (void)
4224 bool update_edges_p
= false;
4225 int num_asserts
= 0;
4227 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4228 dump_all_asserts (dump_file
);
4230 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
4232 assert_locus_t loc
= asserts_for
[i
];
4237 assert_locus_t next
= loc
->next
;
4238 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
4246 bsi_commit_edge_inserts ();
4248 if (dump_file
&& (dump_flags
& TDF_STATS
))
4249 fprintf (dump_file
, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
4254 /* Traverse the flowgraph looking for conditional jumps to insert range
4255 expressions. These range expressions are meant to provide information
4256 to optimizations that need to reason in terms of value ranges. They
4257 will not be expanded into RTL. For instance, given:
4266 this pass will transform the code into:
4272 x = ASSERT_EXPR <x, x < y>
4277 y = ASSERT_EXPR <y, x <= y>
4281 The idea is that once copy and constant propagation have run, other
4282 optimizations will be able to determine what ranges of values can 'x'
4283 take in different paths of the code, simply by checking the reaching
4284 definition of 'x'. */
4287 insert_range_assertions (void)
4293 found_in_subgraph
= sbitmap_alloc (num_ssa_names
);
4294 sbitmap_zero (found_in_subgraph
);
4296 blocks_visited
= sbitmap_alloc (last_basic_block
);
4297 sbitmap_zero (blocks_visited
);
4299 need_assert_for
= BITMAP_ALLOC (NULL
);
4300 asserts_for
= XCNEWVEC (assert_locus_t
, num_ssa_names
);
4302 calculate_dominance_info (CDI_DOMINATORS
);
4304 update_ssa_p
= false;
4305 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
4306 if (find_assert_locations (e
->dest
))
4307 update_ssa_p
= true;
4311 process_assert_insertions ();
4312 update_ssa (TODO_update_ssa_no_phi
);
4315 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4317 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
4318 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
4321 sbitmap_free (found_in_subgraph
);
4323 BITMAP_FREE (need_assert_for
);
4326 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4327 and "struct" hacks. If VRP can determine that the
4328 array subscript is a constant, check if it is outside valid
4329 range. If the array subscript is a RANGE, warn if it is
4330 non-overlapping with valid range.
4331 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4334 check_array_ref (tree ref
, location_t
* locus
, bool ignore_off_by_one
)
4336 value_range_t
* vr
= NULL
;
4337 tree low_sub
, up_sub
;
4338 tree low_bound
, up_bound
= array_ref_up_bound (ref
);
4340 low_sub
= up_sub
= TREE_OPERAND (ref
, 1);
4342 if (!up_bound
|| !locus
|| TREE_NO_WARNING (ref
)
4343 || TREE_CODE (up_bound
) != INTEGER_CST
4344 /* Can not check flexible arrays. */
4345 || (TYPE_SIZE (TREE_TYPE (ref
)) == NULL_TREE
4346 && TYPE_DOMAIN (TREE_TYPE (ref
)) != NULL_TREE
4347 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref
))) == NULL_TREE
)
4348 /* Accesses after the end of arrays of size 0 (gcc
4349 extension) and 1 are likely intentional ("struct
4351 || compare_tree_int (up_bound
, 1) <= 0)
4354 low_bound
= array_ref_low_bound (ref
);
4356 if (TREE_CODE (low_sub
) == SSA_NAME
)
4358 vr
= get_value_range (low_sub
);
4359 if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
4361 low_sub
= vr
->type
== VR_RANGE
? vr
->max
: vr
->min
;
4362 up_sub
= vr
->type
== VR_RANGE
? vr
->min
: vr
->max
;
4366 if (vr
&& vr
->type
== VR_ANTI_RANGE
)
4368 if (TREE_CODE (up_sub
) == INTEGER_CST
4369 && tree_int_cst_lt (up_bound
, up_sub
)
4370 && TREE_CODE (low_sub
) == INTEGER_CST
4371 && tree_int_cst_lt (low_sub
, low_bound
))
4373 warning (OPT_Warray_bounds
,
4374 "%Harray subscript is outside array bounds", locus
);
4375 TREE_NO_WARNING (ref
) = 1;
4378 else if (TREE_CODE (up_sub
) == INTEGER_CST
4379 && tree_int_cst_lt (up_bound
, up_sub
)
4380 && !tree_int_cst_equal (up_bound
, up_sub
)
4381 && (!ignore_off_by_one
4382 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR
,
4388 warning (OPT_Warray_bounds
, "%Harray subscript is above array bounds",
4390 TREE_NO_WARNING (ref
) = 1;
4392 else if (TREE_CODE (low_sub
) == INTEGER_CST
4393 && tree_int_cst_lt (low_sub
, low_bound
))
4395 warning (OPT_Warray_bounds
, "%Harray subscript is below array bounds",
4397 TREE_NO_WARNING (ref
) = 1;
4401 /* Searches if the expr T, located at LOCATION computes
4402 address of an ARRAY_REF, and call check_array_ref on it. */
4405 search_for_addr_array(tree t
, location_t
* location
)
4407 while (TREE_CODE (t
) == SSA_NAME
)
4409 t
= SSA_NAME_DEF_STMT (t
);
4410 if (TREE_CODE (t
) != GIMPLE_MODIFY_STMT
)
4412 t
= GIMPLE_STMT_OPERAND (t
, 1);
4416 /* We are only interested in addresses of ARRAY_REF's. */
4417 if (TREE_CODE (t
) != ADDR_EXPR
)
4420 /* Check each ARRAY_REFs in the reference chain. */
4423 if (TREE_CODE (t
) == ARRAY_REF
)
4424 check_array_ref (t
, location
, true /*ignore_off_by_one*/);
4426 t
= TREE_OPERAND(t
,0);
4428 while (handled_component_p (t
));
4431 /* walk_tree() callback that checks if *TP is
4432 an ARRAY_REF inside an ADDR_EXPR (in which an array
4433 subscript one outside the valid range is allowed). Call
4434 check_array_ref for each ARRAY_REF found. The location is
4438 check_array_bounds (tree
*tp
, int *walk_subtree
, void *data
)
4441 tree stmt
= (tree
)data
;
4442 location_t
*location
= EXPR_LOCUS (stmt
);
4444 *walk_subtree
= TRUE
;
4446 if (TREE_CODE (t
) == ARRAY_REF
)
4447 check_array_ref (t
, location
, false /*ignore_off_by_one*/);
4449 if (TREE_CODE (t
) == INDIRECT_REF
4450 || (TREE_CODE (t
) == RETURN_EXPR
&& TREE_OPERAND (t
, 0)))
4451 search_for_addr_array (TREE_OPERAND (t
, 0), location
);
4452 else if (TREE_CODE (t
) == CALL_EXPR
)
4455 call_expr_arg_iterator iter
;
4457 FOR_EACH_CALL_EXPR_ARG (arg
, iter
, t
)
4458 search_for_addr_array (arg
, location
);
4461 if (TREE_CODE (t
) == ADDR_EXPR
)
4462 *walk_subtree
= FALSE
;
4467 /* Walk over all statements of all reachable BBs and call check_array_bounds
4471 check_all_array_refs (void)
4474 block_stmt_iterator si
;
4478 /* Skip bb's that are clearly unreachable. */
4479 if (single_pred_p (bb
))
4481 basic_block pred_bb
= EDGE_PRED (bb
, 0)->src
;
4482 tree ls
= NULL_TREE
;
4484 if (!bsi_end_p (bsi_last (pred_bb
)))
4485 ls
= bsi_stmt (bsi_last (pred_bb
));
4487 if (ls
&& TREE_CODE (ls
) == COND_EXPR
4488 && ((COND_EXPR_COND (ls
) == boolean_false_node
4489 && (EDGE_PRED (bb
, 0)->flags
& EDGE_TRUE_VALUE
))
4490 || (COND_EXPR_COND (ls
) == boolean_true_node
4491 && (EDGE_PRED (bb
, 0)->flags
& EDGE_FALSE_VALUE
))))
4494 for (si
= bsi_start (bb
); !bsi_end_p (si
); bsi_next (&si
))
4495 walk_tree (bsi_stmt_ptr (si
), check_array_bounds
,
4496 bsi_stmt (si
), NULL
);
4500 /* Convert range assertion expressions into the implied copies and
4501 copy propagate away the copies. Doing the trivial copy propagation
4502 here avoids the need to run the full copy propagation pass after
4505 FIXME, this will eventually lead to copy propagation removing the
4506 names that had useful range information attached to them. For
4507 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
4508 then N_i will have the range [3, +INF].
4510 However, by converting the assertion into the implied copy
4511 operation N_i = N_j, we will then copy-propagate N_j into the uses
4512 of N_i and lose the range information. We may want to hold on to
4513 ASSERT_EXPRs a little while longer as the ranges could be used in
4514 things like jump threading.
4516 The problem with keeping ASSERT_EXPRs around is that passes after
4517 VRP need to handle them appropriately.
4519 Another approach would be to make the range information a first
4520 class property of the SSA_NAME so that it can be queried from
4521 any pass. This is made somewhat more complex by the need for
4522 multiple ranges to be associated with one SSA_NAME. */
4525 remove_range_assertions (void)
4528 block_stmt_iterator si
;
4530 /* Note that the BSI iterator bump happens at the bottom of the
4531 loop and no bump is necessary if we're removing the statement
4532 referenced by the current BSI. */
4534 for (si
= bsi_start (bb
); !bsi_end_p (si
);)
4536 tree stmt
= bsi_stmt (si
);
4539 if (TREE_CODE (stmt
) == GIMPLE_MODIFY_STMT
4540 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt
, 1)) == ASSERT_EXPR
)
4542 tree rhs
= GIMPLE_STMT_OPERAND (stmt
, 1), var
;
4543 tree cond
= fold (ASSERT_EXPR_COND (rhs
));
4544 use_operand_p use_p
;
4545 imm_use_iterator iter
;
4547 gcc_assert (cond
!= boolean_false_node
);
4549 /* Propagate the RHS into every use of the LHS. */
4550 var
= ASSERT_EXPR_VAR (rhs
);
4551 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
,
4552 GIMPLE_STMT_OPERAND (stmt
, 0))
4553 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
4555 SET_USE (use_p
, var
);
4556 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
4559 /* And finally, remove the copy, it is not needed. */
4560 bsi_remove (&si
, true);
4561 release_defs (stmt
);
4567 sbitmap_free (blocks_visited
);
4571 /* Return true if STMT is interesting for VRP. */
4574 stmt_interesting_for_vrp (tree stmt
)
4576 if (TREE_CODE (stmt
) == PHI_NODE
4577 && is_gimple_reg (PHI_RESULT (stmt
))
4578 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt
)))
4579 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt
)))))
4581 else if (TREE_CODE (stmt
) == GIMPLE_MODIFY_STMT
)
4583 tree lhs
= GIMPLE_STMT_OPERAND (stmt
, 0);
4584 tree rhs
= GIMPLE_STMT_OPERAND (stmt
, 1);
4586 /* In general, assignments with virtual operands are not useful
4587 for deriving ranges, with the obvious exception of calls to
4588 builtin functions. */
4589 if (TREE_CODE (lhs
) == SSA_NAME
4590 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
4591 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
4592 && ((TREE_CODE (rhs
) == CALL_EXPR
4593 && TREE_CODE (CALL_EXPR_FN (rhs
)) == ADDR_EXPR
4594 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs
), 0))
4595 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs
), 0)))
4596 || ZERO_SSA_OPERANDS (stmt
, SSA_OP_ALL_VIRTUALS
)))
4599 else if (TREE_CODE (stmt
) == COND_EXPR
|| TREE_CODE (stmt
) == SWITCH_EXPR
)
4606 /* Initialize local data structures for VRP. */
4609 vrp_initialize (void)
4613 vr_value
= XCNEWVEC (value_range_t
*, num_ssa_names
);
4614 vr_phi_edge_counts
= XCNEWVEC (int, num_ssa_names
);
4618 block_stmt_iterator si
;
4621 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
4623 if (!stmt_interesting_for_vrp (phi
))
4625 tree lhs
= PHI_RESULT (phi
);
4626 set_value_range_to_varying (get_value_range (lhs
));
4627 DONT_SIMULATE_AGAIN (phi
) = true;
4630 DONT_SIMULATE_AGAIN (phi
) = false;
4633 for (si
= bsi_start (bb
); !bsi_end_p (si
); bsi_next (&si
))
4635 tree stmt
= bsi_stmt (si
);
4637 if (!stmt_interesting_for_vrp (stmt
))
4641 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, i
, SSA_OP_DEF
)
4642 set_value_range_to_varying (get_value_range (def
));
4643 DONT_SIMULATE_AGAIN (stmt
) = true;
4647 DONT_SIMULATE_AGAIN (stmt
) = false;
4654 /* Visit assignment STMT. If it produces an interesting range, record
4655 the SSA name in *OUTPUT_P. */
4657 static enum ssa_prop_result
4658 vrp_visit_assignment (tree stmt
, tree
*output_p
)
4663 lhs
= GIMPLE_STMT_OPERAND (stmt
, 0);
4664 rhs
= GIMPLE_STMT_OPERAND (stmt
, 1);
4666 /* We only keep track of ranges in integral and pointer types. */
4667 if (TREE_CODE (lhs
) == SSA_NAME
4668 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
4669 /* It is valid to have NULL MIN/MAX values on a type. See
4670 build_range_type. */
4671 && TYPE_MIN_VALUE (TREE_TYPE (lhs
))
4672 && TYPE_MAX_VALUE (TREE_TYPE (lhs
)))
4673 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
4676 value_range_t new_vr
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
4678 extract_range_from_expr (&new_vr
, rhs
);
4680 /* If STMT is inside a loop, we may be able to know something
4681 else about the range of LHS by examining scalar evolution
4683 if (current_loops
&& (l
= loop_containing_stmt (stmt
)))
4684 adjust_range_with_scev (&new_vr
, l
, stmt
, lhs
);
4686 if (update_value_range (lhs
, &new_vr
))
4690 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4692 fprintf (dump_file
, "Found new range for ");
4693 print_generic_expr (dump_file
, lhs
, 0);
4694 fprintf (dump_file
, ": ");
4695 dump_value_range (dump_file
, &new_vr
);
4696 fprintf (dump_file
, "\n\n");
4699 if (new_vr
.type
== VR_VARYING
)
4700 return SSA_PROP_VARYING
;
4702 return SSA_PROP_INTERESTING
;
4705 return SSA_PROP_NOT_INTERESTING
;
4708 /* Every other statement produces no useful ranges. */
4709 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
4710 set_value_range_to_varying (get_value_range (def
));
4712 return SSA_PROP_VARYING
;
4715 /* Helper that gets the value range of the SSA_NAME with version I
4716 or a symbolic range containing the SSA_NAME only if the value range
4717 is varying or undefined. */
4719 static inline value_range_t
4720 get_vr_for_comparison (int i
)
4722 value_range_t vr
= *(vr_value
[i
]);
4724 /* If name N_i does not have a valid range, use N_i as its own
4725 range. This allows us to compare against names that may
4726 have N_i in their ranges. */
4727 if (vr
.type
== VR_VARYING
|| vr
.type
== VR_UNDEFINED
)
4730 vr
.min
= ssa_name (i
);
4731 vr
.max
= ssa_name (i
);
4737 /* Compare all the value ranges for names equivalent to VAR with VAL
4738 using comparison code COMP. Return the same value returned by
4739 compare_range_with_value, including the setting of
4740 *STRICT_OVERFLOW_P. */
4743 compare_name_with_value (enum tree_code comp
, tree var
, tree val
,
4744 bool *strict_overflow_p
)
4750 int used_strict_overflow
;
4752 value_range_t equiv_vr
;
4754 /* Get the set of equivalences for VAR. */
4755 e
= get_value_range (var
)->equiv
;
4757 /* Start at -1. Set it to 0 if we do a comparison without relying
4758 on overflow, or 1 if all comparisons rely on overflow. */
4759 used_strict_overflow
= -1;
4761 /* Compare vars' value range with val. */
4762 equiv_vr
= get_vr_for_comparison (SSA_NAME_VERSION (var
));
4764 retval
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
4766 used_strict_overflow
= sop
? 1 : 0;
4768 /* If the equiv set is empty we have done all work we need to do. */
4772 && used_strict_overflow
> 0)
4773 *strict_overflow_p
= true;
4777 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
4779 equiv_vr
= get_vr_for_comparison (i
);
4781 t
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
4784 /* If we get different answers from different members
4785 of the equivalence set this check must be in a dead
4786 code region. Folding it to a trap representation
4787 would be correct here. For now just return don't-know. */
4797 used_strict_overflow
= 0;
4798 else if (used_strict_overflow
< 0)
4799 used_strict_overflow
= 1;
4804 && used_strict_overflow
> 0)
4805 *strict_overflow_p
= true;
4811 /* Given a comparison code COMP and names N1 and N2, compare all the
4812 ranges equivalent to N1 against all the ranges equivalent to N2
4813 to determine the value of N1 COMP N2. Return the same value
4814 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
4815 whether we relied on an overflow infinity in the comparison. */
4819 compare_names (enum tree_code comp
, tree n1
, tree n2
,
4820 bool *strict_overflow_p
)
4824 bitmap_iterator bi1
, bi2
;
4826 int used_strict_overflow
;
4827 static bitmap_obstack
*s_obstack
= NULL
;
4828 static bitmap s_e1
= NULL
, s_e2
= NULL
;
4830 /* Compare the ranges of every name equivalent to N1 against the
4831 ranges of every name equivalent to N2. */
4832 e1
= get_value_range (n1
)->equiv
;
4833 e2
= get_value_range (n2
)->equiv
;
4835 /* Use the fake bitmaps if e1 or e2 are not available. */
4836 if (s_obstack
== NULL
)
4838 s_obstack
= XNEW (bitmap_obstack
);
4839 bitmap_obstack_initialize (s_obstack
);
4840 s_e1
= BITMAP_ALLOC (s_obstack
);
4841 s_e2
= BITMAP_ALLOC (s_obstack
);
4848 /* Add N1 and N2 to their own set of equivalences to avoid
4849 duplicating the body of the loop just to check N1 and N2
4851 bitmap_set_bit (e1
, SSA_NAME_VERSION (n1
));
4852 bitmap_set_bit (e2
, SSA_NAME_VERSION (n2
));
4854 /* If the equivalence sets have a common intersection, then the two
4855 names can be compared without checking their ranges. */
4856 if (bitmap_intersect_p (e1
, e2
))
4858 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
4859 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
4861 return (comp
== EQ_EXPR
|| comp
== GE_EXPR
|| comp
== LE_EXPR
)
4863 : boolean_false_node
;
4866 /* Start at -1. Set it to 0 if we do a comparison without relying
4867 on overflow, or 1 if all comparisons rely on overflow. */
4868 used_strict_overflow
= -1;
4870 /* Otherwise, compare all the equivalent ranges. First, add N1 and
4871 N2 to their own set of equivalences to avoid duplicating the body
4872 of the loop just to check N1 and N2 ranges. */
4873 EXECUTE_IF_SET_IN_BITMAP (e1
, 0, i1
, bi1
)
4875 value_range_t vr1
= get_vr_for_comparison (i1
);
4877 t
= retval
= NULL_TREE
;
4878 EXECUTE_IF_SET_IN_BITMAP (e2
, 0, i2
, bi2
)
4882 value_range_t vr2
= get_vr_for_comparison (i2
);
4884 t
= compare_ranges (comp
, &vr1
, &vr2
, &sop
);
4887 /* If we get different answers from different members
4888 of the equivalence set this check must be in a dead
4889 code region. Folding it to a trap representation
4890 would be correct here. For now just return don't-know. */
4894 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
4895 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
4901 used_strict_overflow
= 0;
4902 else if (used_strict_overflow
< 0)
4903 used_strict_overflow
= 1;
4909 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
4910 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
4911 if (used_strict_overflow
> 0)
4912 *strict_overflow_p
= true;
4917 /* None of the equivalent ranges are useful in computing this
4919 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
4920 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
4925 /* Given a conditional predicate COND, try to determine if COND yields
4926 true or false based on the value ranges of its operands. Return
4927 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
4928 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
4929 NULL if the conditional cannot be evaluated at compile time.
4931 If USE_EQUIV_P is true, the ranges of all the names equivalent with
4932 the operands in COND are used when trying to compute its value.
4933 This is only used during final substitution. During propagation,
4934 we only check the range of each variable and not its equivalents.
4936 Set *STRICT_OVERFLOW_P to indicate whether we relied on an overflow
4937 infinity to produce the result. */
4940 vrp_evaluate_conditional_warnv (tree cond
, bool use_equiv_p
,
4941 bool *strict_overflow_p
)
4943 gcc_assert (TREE_CODE (cond
) == SSA_NAME
4944 || TREE_CODE_CLASS (TREE_CODE (cond
)) == tcc_comparison
);
4946 if (TREE_CODE (cond
) == SSA_NAME
)
4952 retval
= compare_name_with_value (NE_EXPR
, cond
, boolean_false_node
,
4956 value_range_t
*vr
= get_value_range (cond
);
4957 retval
= compare_range_with_value (NE_EXPR
, vr
, boolean_false_node
,
4961 /* If COND has a known boolean range, return it. */
4965 /* Otherwise, if COND has a symbolic range of exactly one value,
4967 vr
= get_value_range (cond
);
4968 if (vr
->type
== VR_RANGE
&& vr
->min
== vr
->max
)
4973 tree op0
= TREE_OPERAND (cond
, 0);
4974 tree op1
= TREE_OPERAND (cond
, 1);
4976 /* We only deal with integral and pointer types. */
4977 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
4978 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
4983 if (TREE_CODE (op0
) == SSA_NAME
&& TREE_CODE (op1
) == SSA_NAME
)
4984 return compare_names (TREE_CODE (cond
), op0
, op1
,
4986 else if (TREE_CODE (op0
) == SSA_NAME
)
4987 return compare_name_with_value (TREE_CODE (cond
), op0
, op1
,
4989 else if (TREE_CODE (op1
) == SSA_NAME
)
4990 return (compare_name_with_value
4991 (swap_tree_comparison (TREE_CODE (cond
)), op1
, op0
,
4992 strict_overflow_p
));
4996 value_range_t
*vr0
, *vr1
;
4998 vr0
= (TREE_CODE (op0
) == SSA_NAME
) ? get_value_range (op0
) : NULL
;
4999 vr1
= (TREE_CODE (op1
) == SSA_NAME
) ? get_value_range (op1
) : NULL
;
5002 return compare_ranges (TREE_CODE (cond
), vr0
, vr1
,
5004 else if (vr0
&& vr1
== NULL
)
5005 return compare_range_with_value (TREE_CODE (cond
), vr0
, op1
,
5007 else if (vr0
== NULL
&& vr1
)
5008 return (compare_range_with_value
5009 (swap_tree_comparison (TREE_CODE (cond
)), vr1
, op0
,
5010 strict_overflow_p
));
5014 /* Anything else cannot be computed statically. */
5018 /* Given COND within STMT, try to simplify it based on value range
5019 information. Return NULL if the conditional can not be evaluated.
5020 The ranges of all the names equivalent with the operands in COND
5021 will be used when trying to compute the value. If the result is
5022 based on undefined signed overflow, issue a warning if
5026 vrp_evaluate_conditional (tree cond
, tree stmt
)
5032 ret
= vrp_evaluate_conditional_warnv (cond
, true, &sop
);
5036 enum warn_strict_overflow_code wc
;
5037 const char* warnmsg
;
5039 if (is_gimple_min_invariant (ret
))
5041 wc
= WARN_STRICT_OVERFLOW_CONDITIONAL
;
5042 warnmsg
= G_("assuming signed overflow does not occur when "
5043 "simplifying conditional to constant");
5047 wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
5048 warnmsg
= G_("assuming signed overflow does not occur when "
5049 "simplifying conditional");
5052 if (issue_strict_overflow_warning (wc
))
5056 if (!EXPR_HAS_LOCATION (stmt
))
5057 locus
= input_location
;
5059 locus
= EXPR_LOCATION (stmt
);
5060 warning (OPT_Wstrict_overflow
, "%H%s", &locus
, warnmsg
);
5068 /* Visit conditional statement STMT. If we can determine which edge
5069 will be taken out of STMT's basic block, record it in
5070 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5071 SSA_PROP_VARYING. */
5073 static enum ssa_prop_result
5074 vrp_visit_cond_stmt (tree stmt
, edge
*taken_edge_p
)
5079 *taken_edge_p
= NULL
;
5081 /* FIXME. Handle SWITCH_EXPRs. */
5082 if (TREE_CODE (stmt
) == SWITCH_EXPR
)
5083 return SSA_PROP_VARYING
;
5085 cond
= COND_EXPR_COND (stmt
);
5087 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5092 fprintf (dump_file
, "\nVisiting conditional with predicate: ");
5093 print_generic_expr (dump_file
, cond
, 0);
5094 fprintf (dump_file
, "\nWith known ranges\n");
5096 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
5098 fprintf (dump_file
, "\t");
5099 print_generic_expr (dump_file
, use
, 0);
5100 fprintf (dump_file
, ": ");
5101 dump_value_range (dump_file
, vr_value
[SSA_NAME_VERSION (use
)]);
5104 fprintf (dump_file
, "\n");
5107 /* Compute the value of the predicate COND by checking the known
5108 ranges of each of its operands.
5110 Note that we cannot evaluate all the equivalent ranges here
5111 because those ranges may not yet be final and with the current
5112 propagation strategy, we cannot determine when the value ranges
5113 of the names in the equivalence set have changed.
5115 For instance, given the following code fragment
5119 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
5123 Assume that on the first visit to i_14, i_5 has the temporary
5124 range [8, 8] because the second argument to the PHI function is
5125 not yet executable. We derive the range ~[0, 0] for i_14 and the
5126 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
5127 the first time, since i_14 is equivalent to the range [8, 8], we
5128 determine that the predicate is always false.
5130 On the next round of propagation, i_13 is determined to be
5131 VARYING, which causes i_5 to drop down to VARYING. So, another
5132 visit to i_14 is scheduled. In this second visit, we compute the
5133 exact same range and equivalence set for i_14, namely ~[0, 0] and
5134 { i_5 }. But we did not have the previous range for i_5
5135 registered, so vrp_visit_assignment thinks that the range for
5136 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
5137 is not visited again, which stops propagation from visiting
5138 statements in the THEN clause of that if().
5140 To properly fix this we would need to keep the previous range
5141 value for the names in the equivalence set. This way we would've
5142 discovered that from one visit to the other i_5 changed from
5143 range [8, 8] to VR_VARYING.
5145 However, fixing this apparent limitation may not be worth the
5146 additional checking. Testing on several code bases (GCC, DLV,
5147 MICO, TRAMP3D and SPEC2000) showed that doing this results in
5148 4 more predicates folded in SPEC. */
5150 val
= vrp_evaluate_conditional_warnv (cond
, false, &sop
);
5154 *taken_edge_p
= find_taken_edge (bb_for_stmt (stmt
), val
);
5157 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5159 "\nIgnoring predicate evaluation because "
5160 "it assumes that signed overflow is undefined");
5165 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5167 fprintf (dump_file
, "\nPredicate evaluates to: ");
5168 if (val
== NULL_TREE
)
5169 fprintf (dump_file
, "DON'T KNOW\n");
5171 print_generic_stmt (dump_file
, val
, 0);
5174 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
5178 /* Evaluate statement STMT. If the statement produces a useful range,
5179 return SSA_PROP_INTERESTING and record the SSA name with the
5180 interesting range into *OUTPUT_P.
5182 If STMT is a conditional branch and we can determine its truth
5183 value, the taken edge is recorded in *TAKEN_EDGE_P.
5185 If STMT produces a varying value, return SSA_PROP_VARYING. */
5187 static enum ssa_prop_result
5188 vrp_visit_stmt (tree stmt
, edge
*taken_edge_p
, tree
*output_p
)
5194 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5196 fprintf (dump_file
, "\nVisiting statement:\n");
5197 print_generic_stmt (dump_file
, stmt
, dump_flags
);
5198 fprintf (dump_file
, "\n");
5201 ann
= stmt_ann (stmt
);
5202 if (TREE_CODE (stmt
) == GIMPLE_MODIFY_STMT
)
5204 tree rhs
= GIMPLE_STMT_OPERAND (stmt
, 1);
5206 /* In general, assignments with virtual operands are not useful
5207 for deriving ranges, with the obvious exception of calls to
5208 builtin functions. */
5209 if ((TREE_CODE (rhs
) == CALL_EXPR
5210 && TREE_CODE (CALL_EXPR_FN (rhs
)) == ADDR_EXPR
5211 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs
), 0))
5212 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs
), 0)))
5213 || ZERO_SSA_OPERANDS (stmt
, SSA_OP_ALL_VIRTUALS
))
5214 return vrp_visit_assignment (stmt
, output_p
);
5216 else if (TREE_CODE (stmt
) == COND_EXPR
|| TREE_CODE (stmt
) == SWITCH_EXPR
)
5217 return vrp_visit_cond_stmt (stmt
, taken_edge_p
);
5219 /* All other statements produce nothing of interest for VRP, so mark
5220 their outputs varying and prevent further simulation. */
5221 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
5222 set_value_range_to_varying (get_value_range (def
));
5224 return SSA_PROP_VARYING
;
5228 /* Meet operation for value ranges. Given two value ranges VR0 and
5229 VR1, store in VR0 a range that contains both VR0 and VR1. This
5230 may not be the smallest possible such range. */
5233 vrp_meet (value_range_t
*vr0
, value_range_t
*vr1
)
5235 if (vr0
->type
== VR_UNDEFINED
)
5237 copy_value_range (vr0
, vr1
);
5241 if (vr1
->type
== VR_UNDEFINED
)
5243 /* Nothing to do. VR0 already has the resulting range. */
5247 if (vr0
->type
== VR_VARYING
)
5249 /* Nothing to do. VR0 already has the resulting range. */
5253 if (vr1
->type
== VR_VARYING
)
5255 set_value_range_to_varying (vr0
);
5259 if (vr0
->type
== VR_RANGE
&& vr1
->type
== VR_RANGE
)
5264 /* Compute the convex hull of the ranges. The lower limit of
5265 the new range is the minimum of the two ranges. If they
5266 cannot be compared, then give up. */
5267 cmp
= compare_values (vr0
->min
, vr1
->min
);
5268 if (cmp
== 0 || cmp
== 1)
5275 /* Similarly, the upper limit of the new range is the maximum
5276 of the two ranges. If they cannot be compared, then
5278 cmp
= compare_values (vr0
->max
, vr1
->max
);
5279 if (cmp
== 0 || cmp
== -1)
5286 /* Check for useless ranges. */
5287 if (INTEGRAL_TYPE_P (TREE_TYPE (min
))
5288 && ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
5289 && (vrp_val_is_max (max
) || is_overflow_infinity (max
))))
5292 /* The resulting set of equivalences is the intersection of
5294 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
5295 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
5296 else if (vr0
->equiv
&& !vr1
->equiv
)
5297 bitmap_clear (vr0
->equiv
);
5299 set_value_range (vr0
, vr0
->type
, min
, max
, vr0
->equiv
);
5301 else if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
5303 /* Two anti-ranges meet only if their complements intersect.
5304 Only handle the case of identical ranges. */
5305 if (compare_values (vr0
->min
, vr1
->min
) == 0
5306 && compare_values (vr0
->max
, vr1
->max
) == 0
5307 && compare_values (vr0
->min
, vr0
->max
) == 0)
5309 /* The resulting set of equivalences is the intersection of
5311 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
5312 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
5313 else if (vr0
->equiv
&& !vr1
->equiv
)
5314 bitmap_clear (vr0
->equiv
);
5319 else if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
5321 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
5322 only handle the case where the ranges have an empty intersection.
5323 The result of the meet operation is the anti-range. */
5324 if (!symbolic_range_p (vr0
)
5325 && !symbolic_range_p (vr1
)
5326 && !value_ranges_intersect_p (vr0
, vr1
))
5328 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
5329 set. We need to compute the intersection of the two
5330 equivalence sets. */
5331 if (vr1
->type
== VR_ANTI_RANGE
)
5332 set_value_range (vr0
, vr1
->type
, vr1
->min
, vr1
->max
, vr0
->equiv
);
5334 /* The resulting set of equivalences is the intersection of
5336 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
5337 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
5338 else if (vr0
->equiv
&& !vr1
->equiv
)
5339 bitmap_clear (vr0
->equiv
);
5350 /* Failed to find an efficient meet. Before giving up and setting
5351 the result to VARYING, see if we can at least derive a useful
5352 anti-range. FIXME, all this nonsense about distinguishing
5353 anti-ranges from ranges is necessary because of the odd
5354 semantics of range_includes_zero_p and friends. */
5355 if (!symbolic_range_p (vr0
)
5356 && ((vr0
->type
== VR_RANGE
&& !range_includes_zero_p (vr0
))
5357 || (vr0
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr0
)))
5358 && !symbolic_range_p (vr1
)
5359 && ((vr1
->type
== VR_RANGE
&& !range_includes_zero_p (vr1
))
5360 || (vr1
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr1
))))
5362 set_value_range_to_nonnull (vr0
, TREE_TYPE (vr0
->min
));
5364 /* Since this meet operation did not result from the meeting of
5365 two equivalent names, VR0 cannot have any equivalences. */
5367 bitmap_clear (vr0
->equiv
);
5370 set_value_range_to_varying (vr0
);
5374 /* Visit all arguments for PHI node PHI that flow through executable
5375 edges. If a valid value range can be derived from all the incoming
5376 value ranges, set a new range for the LHS of PHI. */
5378 static enum ssa_prop_result
5379 vrp_visit_phi_node (tree phi
)
5382 tree lhs
= PHI_RESULT (phi
);
5383 value_range_t
*lhs_vr
= get_value_range (lhs
);
5384 value_range_t vr_result
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
5385 int edges
, old_edges
;
5387 copy_value_range (&vr_result
, lhs_vr
);
5389 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5391 fprintf (dump_file
, "\nVisiting PHI node: ");
5392 print_generic_expr (dump_file
, phi
, dump_flags
);
5396 for (i
= 0; i
< PHI_NUM_ARGS (phi
); i
++)
5398 edge e
= PHI_ARG_EDGE (phi
, i
);
5400 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5403 "\n Argument #%d (%d -> %d %sexecutable)\n",
5404 i
, e
->src
->index
, e
->dest
->index
,
5405 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
5408 if (e
->flags
& EDGE_EXECUTABLE
)
5410 tree arg
= PHI_ARG_DEF (phi
, i
);
5411 value_range_t vr_arg
;
5415 if (TREE_CODE (arg
) == SSA_NAME
)
5417 vr_arg
= *(get_value_range (arg
));
5421 if (is_overflow_infinity (arg
))
5423 arg
= copy_node (arg
);
5424 TREE_OVERFLOW (arg
) = 0;
5427 vr_arg
.type
= VR_RANGE
;
5430 vr_arg
.equiv
= NULL
;
5433 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5435 fprintf (dump_file
, "\t");
5436 print_generic_expr (dump_file
, arg
, dump_flags
);
5437 fprintf (dump_file
, "\n\tValue: ");
5438 dump_value_range (dump_file
, &vr_arg
);
5439 fprintf (dump_file
, "\n");
5442 vrp_meet (&vr_result
, &vr_arg
);
5444 if (vr_result
.type
== VR_VARYING
)
5449 if (vr_result
.type
== VR_VARYING
)
5452 old_edges
= vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)];
5453 vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)] = edges
;
5455 /* To prevent infinite iterations in the algorithm, derive ranges
5456 when the new value is slightly bigger or smaller than the
5457 previous one. We don't do this if we have seen a new executable
5458 edge; this helps us avoid an overflow infinity for conditionals
5459 which are not in a loop. */
5460 if (lhs_vr
->type
== VR_RANGE
&& vr_result
.type
== VR_RANGE
5461 && edges
<= old_edges
)
5463 if (!POINTER_TYPE_P (TREE_TYPE (lhs
)))
5465 int cmp_min
= compare_values (lhs_vr
->min
, vr_result
.min
);
5466 int cmp_max
= compare_values (lhs_vr
->max
, vr_result
.max
);
5468 /* If the new minimum is smaller or larger than the previous
5469 one, go all the way to -INF. In the first case, to avoid
5470 iterating millions of times to reach -INF, and in the
5471 other case to avoid infinite bouncing between different
5473 if (cmp_min
> 0 || cmp_min
< 0)
5475 /* If we will end up with a (-INF, +INF) range, set it
5477 if (vrp_val_is_max (vr_result
.max
))
5480 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.min
))
5481 || !vrp_var_may_overflow (lhs
, phi
))
5482 vr_result
.min
= TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
));
5483 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.min
)))
5485 negative_overflow_infinity (TREE_TYPE (vr_result
.min
));
5490 /* Similarly, if the new maximum is smaller or larger than
5491 the previous one, go all the way to +INF. */
5492 if (cmp_max
< 0 || cmp_max
> 0)
5494 /* If we will end up with a (-INF, +INF) range, set it
5496 if (vrp_val_is_min (vr_result
.min
))
5499 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.max
))
5500 || !vrp_var_may_overflow (lhs
, phi
))
5501 vr_result
.max
= TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
));
5502 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.max
)))
5504 positive_overflow_infinity (TREE_TYPE (vr_result
.max
));
5511 /* If the new range is different than the previous value, keep
5513 if (update_value_range (lhs
, &vr_result
))
5514 return SSA_PROP_INTERESTING
;
5516 /* Nothing changed, don't add outgoing edges. */
5517 return SSA_PROP_NOT_INTERESTING
;
5519 /* No match found. Set the LHS to VARYING. */
5521 set_value_range_to_varying (lhs_vr
);
5522 return SSA_PROP_VARYING
;
5525 /* Simplify a division or modulo operator to a right shift or
5526 bitwise and if the first operand is unsigned or is greater
5527 than zero and the second operand is an exact power of two. */
5530 simplify_div_or_mod_using_ranges (tree stmt
, tree rhs
, enum tree_code rhs_code
)
5533 tree op
= TREE_OPERAND (rhs
, 0);
5534 value_range_t
*vr
= get_value_range (TREE_OPERAND (rhs
, 0));
5536 if (TYPE_UNSIGNED (TREE_TYPE (op
)))
5538 val
= integer_one_node
;
5544 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
5548 && integer_onep (val
)
5549 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
5553 if (!EXPR_HAS_LOCATION (stmt
))
5554 locus
= input_location
;
5556 locus
= EXPR_LOCATION (stmt
);
5557 warning (OPT_Wstrict_overflow
,
5558 ("%Hassuming signed overflow does not occur when "
5559 "simplifying / or %% to >> or &"),
5564 if (val
&& integer_onep (val
))
5567 tree op0
= TREE_OPERAND (rhs
, 0);
5568 tree op1
= TREE_OPERAND (rhs
, 1);
5570 if (rhs_code
== TRUNC_DIV_EXPR
)
5572 t
= build_int_cst (NULL_TREE
, tree_log2 (op1
));
5573 t
= build2 (RSHIFT_EXPR
, TREE_TYPE (op0
), op0
, t
);
5577 t
= build_int_cst (TREE_TYPE (op1
), 1);
5578 t
= int_const_binop (MINUS_EXPR
, op1
, t
, 0);
5579 t
= fold_convert (TREE_TYPE (op0
), t
);
5580 t
= build2 (BIT_AND_EXPR
, TREE_TYPE (op0
), op0
, t
);
5583 GIMPLE_STMT_OPERAND (stmt
, 1) = t
;
5588 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
5589 ABS_EXPR. If the operand is <= 0, then simplify the
5590 ABS_EXPR into a NEGATE_EXPR. */
5593 simplify_abs_using_ranges (tree stmt
, tree rhs
)
5596 tree op
= TREE_OPERAND (rhs
, 0);
5597 tree type
= TREE_TYPE (op
);
5598 value_range_t
*vr
= get_value_range (TREE_OPERAND (rhs
, 0));
5600 if (TYPE_UNSIGNED (type
))
5602 val
= integer_zero_node
;
5608 val
= compare_range_with_value (LE_EXPR
, vr
, integer_zero_node
, &sop
);
5612 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
,
5617 if (integer_zerop (val
))
5618 val
= integer_one_node
;
5619 else if (integer_onep (val
))
5620 val
= integer_zero_node
;
5625 && (integer_onep (val
) || integer_zerop (val
)))
5629 if (sop
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
5633 if (!EXPR_HAS_LOCATION (stmt
))
5634 locus
= input_location
;
5636 locus
= EXPR_LOCATION (stmt
);
5637 warning (OPT_Wstrict_overflow
,
5638 ("%Hassuming signed overflow does not occur when "
5639 "simplifying abs (X) to X or -X"),
5643 if (integer_onep (val
))
5644 t
= build1 (NEGATE_EXPR
, TREE_TYPE (op
), op
);
5648 GIMPLE_STMT_OPERAND (stmt
, 1) = t
;
5654 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
5655 a known value range VR.
5657 If there is one and only one value which will satisfy the
5658 conditional, then return that value. Else return NULL. */
5661 test_for_singularity (enum tree_code cond_code
, tree op0
,
5662 tree op1
, value_range_t
*vr
)
5667 /* Extract minimum/maximum values which satisfy the
5668 the conditional as it was written. */
5669 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
5671 /* This should not be negative infinity; there is no overflow
5673 min
= TYPE_MIN_VALUE (TREE_TYPE (op0
));
5676 if (cond_code
== LT_EXPR
&& !is_overflow_infinity (max
))
5678 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
5679 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (op0
), max
, one
);
5681 TREE_NO_WARNING (max
) = 1;
5684 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
5686 /* This should not be positive infinity; there is no overflow
5688 max
= TYPE_MAX_VALUE (TREE_TYPE (op0
));
5691 if (cond_code
== GT_EXPR
&& !is_overflow_infinity (min
))
5693 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
5694 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (op0
), min
, one
);
5696 TREE_NO_WARNING (min
) = 1;
5700 /* Now refine the minimum and maximum values using any
5701 value range information we have for op0. */
5704 if (compare_values (vr
->min
, min
) == -1)
5708 if (compare_values (vr
->max
, max
) == 1)
5713 /* If the new min/max values have converged to a single value,
5714 then there is only one value which can satisfy the condition,
5715 return that value. */
5716 if (operand_equal_p (min
, max
, 0) && is_gimple_min_invariant (min
))
5722 /* Simplify a conditional using a relational operator to an equality
5723 test if the range information indicates only one value can satisfy
5724 the original conditional. */
5727 simplify_cond_using_ranges (tree stmt
)
5729 tree cond
= COND_EXPR_COND (stmt
);
5730 tree op0
= TREE_OPERAND (cond
, 0);
5731 tree op1
= TREE_OPERAND (cond
, 1);
5732 enum tree_code cond_code
= TREE_CODE (cond
);
5734 if (cond_code
!= NE_EXPR
5735 && cond_code
!= EQ_EXPR
5736 && TREE_CODE (op0
) == SSA_NAME
5737 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
5738 && is_gimple_min_invariant (op1
))
5740 value_range_t
*vr
= get_value_range (op0
);
5742 /* If we have range information for OP0, then we might be
5743 able to simplify this conditional. */
5744 if (vr
->type
== VR_RANGE
)
5746 tree
new = test_for_singularity (cond_code
, op0
, op1
, vr
);
5752 fprintf (dump_file
, "Simplified relational ");
5753 print_generic_expr (dump_file
, cond
, 0);
5754 fprintf (dump_file
, " into ");
5757 COND_EXPR_COND (stmt
)
5758 = build2 (EQ_EXPR
, boolean_type_node
, op0
, new);
5763 print_generic_expr (dump_file
, COND_EXPR_COND (stmt
), 0);
5764 fprintf (dump_file
, "\n");
5770 /* Try again after inverting the condition. We only deal
5771 with integral types here, so no need to worry about
5772 issues with inverting FP comparisons. */
5773 cond_code
= invert_tree_comparison (cond_code
, false);
5774 new = test_for_singularity (cond_code
, op0
, op1
, vr
);
5780 fprintf (dump_file
, "Simplified relational ");
5781 print_generic_expr (dump_file
, cond
, 0);
5782 fprintf (dump_file
, " into ");
5785 COND_EXPR_COND (stmt
)
5786 = build2 (NE_EXPR
, boolean_type_node
, op0
, new);
5791 print_generic_expr (dump_file
, COND_EXPR_COND (stmt
), 0);
5792 fprintf (dump_file
, "\n");
5801 /* Simplify STMT using ranges if possible. */
5804 simplify_stmt_using_ranges (tree stmt
)
5806 if (TREE_CODE (stmt
) == GIMPLE_MODIFY_STMT
)
5808 tree rhs
= GIMPLE_STMT_OPERAND (stmt
, 1);
5809 enum tree_code rhs_code
= TREE_CODE (rhs
);
5811 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
5812 and BIT_AND_EXPR respectively if the first operand is greater
5813 than zero and the second operand is an exact power of two. */
5814 if ((rhs_code
== TRUNC_DIV_EXPR
|| rhs_code
== TRUNC_MOD_EXPR
)
5815 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs
, 0)))
5816 && integer_pow2p (TREE_OPERAND (rhs
, 1)))
5817 simplify_div_or_mod_using_ranges (stmt
, rhs
, rhs_code
);
5819 /* Transform ABS (X) into X or -X as appropriate. */
5820 if (rhs_code
== ABS_EXPR
5821 && TREE_CODE (TREE_OPERAND (rhs
, 0)) == SSA_NAME
5822 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs
, 0))))
5823 simplify_abs_using_ranges (stmt
, rhs
);
5825 else if (TREE_CODE (stmt
) == COND_EXPR
5826 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt
)))
5828 simplify_cond_using_ranges (stmt
);
5832 /* Stack of dest,src equivalency pairs that need to be restored after
5833 each attempt to thread a block's incoming edge to an outgoing edge.
5835 A NULL entry is used to mark the end of pairs which need to be
5837 static VEC(tree
,heap
) *stack
;
5839 /* A trivial wrapper so that we can present the generic jump threading
5840 code with a simple API for simplifying statements. STMT is the
5841 statement we want to simplify, WITHIN_STMT provides the location
5842 for any overflow warnings. */
5845 simplify_stmt_for_jump_threading (tree stmt
, tree within_stmt
)
5847 /* We only use VRP information to simplify conditionals. This is
5848 overly conservative, but it's unclear if doing more would be
5849 worth the compile time cost. */
5850 if (TREE_CODE (stmt
) != COND_EXPR
)
5853 return vrp_evaluate_conditional (COND_EXPR_COND (stmt
), within_stmt
);
5856 /* Blocks which have more than one predecessor and more than
5857 one successor present jump threading opportunities. ie,
5858 when the block is reached from a specific predecessor, we
5859 may be able to determine which of the outgoing edges will
5860 be traversed. When this optimization applies, we are able
5861 to avoid conditionals at runtime and we may expose secondary
5862 optimization opportunities.
5864 This routine is effectively a driver for the generic jump
5865 threading code. It basically just presents the generic code
5866 with edges that may be suitable for jump threading.
5868 Unlike DOM, we do not iterate VRP if jump threading was successful.
5869 While iterating may expose new opportunities for VRP, it is expected
5870 those opportunities would be very limited and the compile time cost
5871 to expose those opportunities would be significant.
5873 As jump threading opportunities are discovered, they are registered
5874 for later realization. */
5877 identify_jump_threads (void)
5882 /* Ugh. When substituting values earlier in this pass we can
5883 wipe the dominance information. So rebuild the dominator
5884 information as we need it within the jump threading code. */
5885 calculate_dominance_info (CDI_DOMINATORS
);
5887 /* We do not allow VRP information to be used for jump threading
5888 across a back edge in the CFG. Otherwise it becomes too
5889 difficult to avoid eliminating loop exit tests. Of course
5890 EDGE_DFS_BACK is not accurate at this time so we have to
5892 mark_dfs_back_edges ();
5894 /* Allocate our unwinder stack to unwind any temporary equivalences
5895 that might be recorded. */
5896 stack
= VEC_alloc (tree
, heap
, 20);
5898 /* To avoid lots of silly node creation, we create a single
5899 conditional and just modify it in-place when attempting to
5901 dummy
= build2 (EQ_EXPR
, boolean_type_node
, NULL
, NULL
);
5902 dummy
= build3 (COND_EXPR
, void_type_node
, dummy
, NULL
, NULL
);
5904 /* Walk through all the blocks finding those which present a
5905 potential jump threading opportunity. We could set this up
5906 as a dominator walker and record data during the walk, but
5907 I doubt it's worth the effort for the classes of jump
5908 threading opportunities we are trying to identify at this
5909 point in compilation. */
5914 /* If the generic jump threading code does not find this block
5915 interesting, then there is nothing to do. */
5916 if (! potentially_threadable_block (bb
))
5919 /* We only care about blocks ending in a COND_EXPR. While there
5920 may be some value in handling SWITCH_EXPR here, I doubt it's
5921 terribly important. */
5922 last
= bsi_stmt (bsi_last (bb
));
5923 if (TREE_CODE (last
) != COND_EXPR
)
5926 /* We're basically looking for any kind of conditional with
5927 integral type arguments. */
5928 cond
= COND_EXPR_COND (last
);
5929 if ((TREE_CODE (cond
) == SSA_NAME
5930 && INTEGRAL_TYPE_P (TREE_TYPE (cond
)))
5931 || (COMPARISON_CLASS_P (cond
)
5932 && TREE_CODE (TREE_OPERAND (cond
, 0)) == SSA_NAME
5933 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond
, 0)))
5934 && (TREE_CODE (TREE_OPERAND (cond
, 1)) == SSA_NAME
5935 || is_gimple_min_invariant (TREE_OPERAND (cond
, 1)))
5936 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond
, 1)))))
5941 /* We've got a block with multiple predecessors and multiple
5942 successors which also ends in a suitable conditional. For
5943 each predecessor, see if we can thread it to a specific
5945 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5947 /* Do not thread across back edges or abnormal edges
5949 if (e
->flags
& (EDGE_DFS_BACK
| EDGE_COMPLEX
))
5952 thread_across_edge (dummy
, e
, true,
5954 simplify_stmt_for_jump_threading
);
5959 /* We do not actually update the CFG or SSA graphs at this point as
5960 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
5961 handle ASSERT_EXPRs gracefully. */
5964 /* We identified all the jump threading opportunities earlier, but could
5965 not transform the CFG at that time. This routine transforms the
5966 CFG and arranges for the dominator tree to be rebuilt if necessary.
5968 Note the SSA graph update will occur during the normal TODO
5969 processing by the pass manager. */
5971 finalize_jump_threads (void)
5973 thread_through_all_blocks (false);
5974 VEC_free (tree
, heap
, stack
);
5978 /* Traverse all the blocks folding conditionals with known ranges. */
5984 prop_value_t
*single_val_range
;
5985 bool do_value_subst_p
;
5989 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
5990 dump_all_value_ranges (dump_file
);
5991 fprintf (dump_file
, "\n");
5994 /* We may have ended with ranges that have exactly one value. Those
5995 values can be substituted as any other copy/const propagated
5996 value using substitute_and_fold. */
5997 single_val_range
= XCNEWVEC (prop_value_t
, num_ssa_names
);
5999 do_value_subst_p
= false;
6000 for (i
= 0; i
< num_ssa_names
; i
++)
6002 && vr_value
[i
]->type
== VR_RANGE
6003 && vr_value
[i
]->min
== vr_value
[i
]->max
)
6005 single_val_range
[i
].value
= vr_value
[i
]->min
;
6006 do_value_subst_p
= true;
6009 if (!do_value_subst_p
)
6011 /* We found no single-valued ranges, don't waste time trying to
6012 do single value substitution in substitute_and_fold. */
6013 free (single_val_range
);
6014 single_val_range
= NULL
;
6017 substitute_and_fold (single_val_range
, true);
6019 if (warn_array_bounds
)
6020 check_all_array_refs ();
6022 /* We must identify jump threading opportunities before we release
6023 the datastructures built by VRP. */
6024 identify_jump_threads ();
6026 /* Free allocated memory. */
6027 for (i
= 0; i
< num_ssa_names
; i
++)
6030 BITMAP_FREE (vr_value
[i
]->equiv
);
6034 free (single_val_range
);
6036 free (vr_phi_edge_counts
);
6038 /* So that we can distinguish between VRP data being available
6039 and not available. */
6041 vr_phi_edge_counts
= NULL
;
6045 /* Main entry point to VRP (Value Range Propagation). This pass is
6046 loosely based on J. R. C. Patterson, ``Accurate Static Branch
6047 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
6048 Programming Language Design and Implementation, pp. 67-78, 1995.
6049 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
6051 This is essentially an SSA-CCP pass modified to deal with ranges
6052 instead of constants.
6054 While propagating ranges, we may find that two or more SSA name
6055 have equivalent, though distinct ranges. For instance,
6058 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
6060 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
6064 In the code above, pointer p_5 has range [q_2, q_2], but from the
6065 code we can also determine that p_5 cannot be NULL and, if q_2 had
6066 a non-varying range, p_5's range should also be compatible with it.
6068 These equivalences are created by two expressions: ASSERT_EXPR and
6069 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
6070 result of another assertion, then we can use the fact that p_5 and
6071 p_4 are equivalent when evaluating p_5's range.
6073 Together with value ranges, we also propagate these equivalences
6074 between names so that we can take advantage of information from
6075 multiple ranges when doing final replacement. Note that this
6076 equivalency relation is transitive but not symmetric.
6078 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
6079 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
6080 in contexts where that assertion does not hold (e.g., in line 6).
6082 TODO, the main difference between this pass and Patterson's is that
6083 we do not propagate edge probabilities. We only compute whether
6084 edges can be taken or not. That is, instead of having a spectrum
6085 of jump probabilities between 0 and 1, we only deal with 0, 1 and
6086 DON'T KNOW. In the future, it may be worthwhile to propagate
6087 probabilities to aid branch prediction. */
6092 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
6093 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
6096 insert_range_assertions ();
6099 ssa_propagate (vrp_visit_stmt
, vrp_visit_phi_node
);
6102 /* ASSERT_EXPRs must be removed before finalizing jump threads
6103 as finalizing jump threads calls the CFG cleanup code which
6104 does not properly handle ASSERT_EXPRs. */
6105 remove_range_assertions ();
6107 /* If we exposed any new variables, go ahead and put them into
6108 SSA form now, before we handle jump threading. This simplifies
6109 interactions between rewriting of _DECL nodes into SSA form
6110 and rewriting SSA_NAME nodes into SSA form after block
6111 duplication and CFG manipulation. */
6112 update_ssa (TODO_update_ssa
);
6114 finalize_jump_threads ();
6116 loop_optimizer_finalize ();
6124 return flag_tree_vrp
!= 0;
6127 struct tree_opt_pass pass_vrp
=
6130 gate_vrp
, /* gate */
6131 execute_vrp
, /* execute */
6134 0, /* static_pass_number */
6135 TV_TREE_VRP
, /* tv_id */
6136 PROP_ssa
| PROP_alias
, /* properties_required */
6137 0, /* properties_provided */
6138 0, /* properties_destroyed */
6139 0, /* todo_flags_start */
6144 | TODO_update_ssa
, /* todo_flags_finish */