1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
90 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
95 #include "coretypes.h"
99 #include "insn-config.h"
105 #include "addresses.h"
106 #include "hard-reg-set.h"
110 #include "function.h"
116 /* True if X is a constant that can be forced into the constant pool. */
117 #define CONST_POOL_OK_P(X) \
119 && GET_CODE (X) != HIGH \
120 && !targetm.cannot_force_const_mem (X))
122 /* True if C is a non-empty register class that has too few registers
123 to be safely used as a reload target class. */
124 #define SMALL_REGISTER_CLASS_P(C) \
125 (reg_class_size [(C)] == 1 \
126 || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
129 /* All reloads of the current insn are recorded here. See reload.h for
132 struct reload rld
[MAX_RELOADS
];
134 /* All the "earlyclobber" operands of the current insn
135 are recorded here. */
137 rtx reload_earlyclobbers
[MAX_RECOG_OPERANDS
];
139 int reload_n_operands
;
141 /* Replacing reloads.
143 If `replace_reloads' is nonzero, then as each reload is recorded
144 an entry is made for it in the table `replacements'.
145 Then later `subst_reloads' can look through that table and
146 perform all the replacements needed. */
148 /* Nonzero means record the places to replace. */
149 static int replace_reloads
;
151 /* Each replacement is recorded with a structure like this. */
154 rtx
*where
; /* Location to store in */
155 rtx
*subreg_loc
; /* Location of SUBREG if WHERE is inside
156 a SUBREG; 0 otherwise. */
157 int what
; /* which reload this is for */
158 enum machine_mode mode
; /* mode it must have */
161 static struct replacement replacements
[MAX_RECOG_OPERANDS
* ((MAX_REGS_PER_ADDRESS
* 2) + 1)];
163 /* Number of replacements currently recorded. */
164 static int n_replacements
;
166 /* Used to track what is modified by an operand. */
169 int reg_flag
; /* Nonzero if referencing a register. */
170 int safe
; /* Nonzero if this can't conflict with anything. */
171 rtx base
; /* Base address for MEM. */
172 HOST_WIDE_INT start
; /* Starting offset or register number. */
173 HOST_WIDE_INT end
; /* Ending offset or register number. */
176 #ifdef SECONDARY_MEMORY_NEEDED
178 /* Save MEMs needed to copy from one class of registers to another. One MEM
179 is used per mode, but normally only one or two modes are ever used.
181 We keep two versions, before and after register elimination. The one
182 after register elimination is record separately for each operand. This
183 is done in case the address is not valid to be sure that we separately
186 static rtx secondary_memlocs
[NUM_MACHINE_MODES
];
187 static rtx secondary_memlocs_elim
[NUM_MACHINE_MODES
][MAX_RECOG_OPERANDS
];
188 static int secondary_memlocs_elim_used
= 0;
191 /* The instruction we are doing reloads for;
192 so we can test whether a register dies in it. */
193 static rtx this_insn
;
195 /* Nonzero if this instruction is a user-specified asm with operands. */
196 static int this_insn_is_asm
;
198 /* If hard_regs_live_known is nonzero,
199 we can tell which hard regs are currently live,
200 at least enough to succeed in choosing dummy reloads. */
201 static int hard_regs_live_known
;
203 /* Indexed by hard reg number,
204 element is nonnegative if hard reg has been spilled.
205 This vector is passed to `find_reloads' as an argument
206 and is not changed here. */
207 static short *static_reload_reg_p
;
209 /* Set to 1 in subst_reg_equivs if it changes anything. */
210 static int subst_reg_equivs_changed
;
212 /* On return from push_reload, holds the reload-number for the OUT
213 operand, which can be different for that from the input operand. */
214 static int output_reloadnum
;
216 /* Compare two RTX's. */
217 #define MATCHES(x, y) \
218 (x == y || (x != 0 && (REG_P (x) \
219 ? REG_P (y) && REGNO (x) == REGNO (y) \
220 : rtx_equal_p (x, y) && ! side_effects_p (x))))
222 /* Indicates if two reloads purposes are for similar enough things that we
223 can merge their reloads. */
224 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
225 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
226 || ((when1) == (when2) && (op1) == (op2)) \
227 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
228 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
229 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
230 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
231 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
233 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
234 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
235 ((when1) != (when2) \
236 || ! ((op1) == (op2) \
237 || (when1) == RELOAD_FOR_INPUT \
238 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
239 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
241 /* If we are going to reload an address, compute the reload type to
243 #define ADDR_TYPE(type) \
244 ((type) == RELOAD_FOR_INPUT_ADDRESS \
245 ? RELOAD_FOR_INPADDR_ADDRESS \
246 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
247 ? RELOAD_FOR_OUTADDR_ADDRESS \
250 static int push_secondary_reload (int, rtx
, int, int, enum reg_class
,
251 enum machine_mode
, enum reload_type
,
252 enum insn_code
*, secondary_reload_info
*);
253 static enum reg_class
find_valid_class (enum machine_mode
, enum machine_mode
,
255 static int reload_inner_reg_of_subreg (rtx
, enum machine_mode
, int);
256 static void push_replacement (rtx
*, int, enum machine_mode
);
257 static void dup_replacements (rtx
*, rtx
*);
258 static void combine_reloads (void);
259 static int find_reusable_reload (rtx
*, rtx
, enum reg_class
,
260 enum reload_type
, int, int);
261 static rtx
find_dummy_reload (rtx
, rtx
, rtx
*, rtx
*, enum machine_mode
,
262 enum machine_mode
, enum reg_class
, int, int);
263 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx
);
264 static struct decomposition
decompose (rtx
);
265 static int immune_p (rtx
, rtx
, struct decomposition
);
266 static int alternative_allows_memconst (const char *, int);
267 static rtx
find_reloads_toplev (rtx
, int, enum reload_type
, int, int, rtx
,
269 static rtx
make_memloc (rtx
, int);
270 static int maybe_memory_address_p (enum machine_mode
, rtx
, rtx
*);
271 static int find_reloads_address (enum machine_mode
, rtx
*, rtx
, rtx
*,
272 int, enum reload_type
, int, rtx
);
273 static rtx
subst_reg_equivs (rtx
, rtx
);
274 static rtx
subst_indexed_address (rtx
);
275 static void update_auto_inc_notes (rtx
, int, int);
276 static int find_reloads_address_1 (enum machine_mode
, rtx
, int,
277 enum rtx_code
, enum rtx_code
, rtx
*,
278 int, enum reload_type
,int, rtx
);
279 static void find_reloads_address_part (rtx
, rtx
*, enum reg_class
,
280 enum machine_mode
, int,
281 enum reload_type
, int);
282 static rtx
find_reloads_subreg_address (rtx
, int, int, enum reload_type
,
284 static void copy_replacements_1 (rtx
*, rtx
*, int);
285 static int find_inc_amount (rtx
, rtx
);
286 static int refers_to_mem_for_reload_p (rtx
);
287 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
290 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
294 push_reg_equiv_alt_mem (int regno
, rtx mem
)
298 for (it
= reg_equiv_alt_mem_list
[regno
]; it
; it
= XEXP (it
, 1))
299 if (rtx_equal_p (XEXP (it
, 0), mem
))
302 reg_equiv_alt_mem_list
[regno
]
303 = alloc_EXPR_LIST (REG_EQUIV
, mem
,
304 reg_equiv_alt_mem_list
[regno
]);
307 /* Determine if any secondary reloads are needed for loading (if IN_P is
308 nonzero) or storing (if IN_P is zero) X to or from a reload register of
309 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
310 are needed, push them.
312 Return the reload number of the secondary reload we made, or -1 if
313 we didn't need one. *PICODE is set to the insn_code to use if we do
314 need a secondary reload. */
317 push_secondary_reload (int in_p
, rtx x
, int opnum
, int optional
,
318 enum reg_class reload_class
,
319 enum machine_mode reload_mode
, enum reload_type type
,
320 enum insn_code
*picode
, secondary_reload_info
*prev_sri
)
322 enum reg_class
class = NO_REGS
;
323 enum reg_class scratch_class
;
324 enum machine_mode mode
= reload_mode
;
325 enum insn_code icode
= CODE_FOR_nothing
;
326 enum insn_code t_icode
= CODE_FOR_nothing
;
327 enum reload_type secondary_type
;
328 int s_reload
, t_reload
= -1;
329 const char *scratch_constraint
;
331 secondary_reload_info sri
;
333 if (type
== RELOAD_FOR_INPUT_ADDRESS
334 || type
== RELOAD_FOR_OUTPUT_ADDRESS
335 || type
== RELOAD_FOR_INPADDR_ADDRESS
336 || type
== RELOAD_FOR_OUTADDR_ADDRESS
)
337 secondary_type
= type
;
339 secondary_type
= in_p
? RELOAD_FOR_INPUT_ADDRESS
: RELOAD_FOR_OUTPUT_ADDRESS
;
341 *picode
= CODE_FOR_nothing
;
343 /* If X is a paradoxical SUBREG, use the inner value to determine both the
344 mode and object being reloaded. */
345 if (GET_CODE (x
) == SUBREG
346 && (GET_MODE_SIZE (GET_MODE (x
))
347 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))))
350 reload_mode
= GET_MODE (x
);
353 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
354 is still a pseudo-register by now, it *must* have an equivalent MEM
355 but we don't want to assume that), use that equivalent when seeing if
356 a secondary reload is needed since whether or not a reload is needed
357 might be sensitive to the form of the MEM. */
359 if (REG_P (x
) && REGNO (x
) >= FIRST_PSEUDO_REGISTER
360 && reg_equiv_mem
[REGNO (x
)] != 0)
361 x
= reg_equiv_mem
[REGNO (x
)];
363 sri
.icode
= CODE_FOR_nothing
;
364 sri
.prev_sri
= prev_sri
;
365 class = targetm
.secondary_reload (in_p
, x
, reload_class
, reload_mode
, &sri
);
368 /* If we don't need any secondary registers, done. */
369 if (class == NO_REGS
&& icode
== CODE_FOR_nothing
)
372 if (class != NO_REGS
)
373 t_reload
= push_secondary_reload (in_p
, x
, opnum
, optional
, class,
374 reload_mode
, type
, &t_icode
, &sri
);
376 /* If we will be using an insn, the secondary reload is for a
379 if (icode
!= CODE_FOR_nothing
)
381 /* If IN_P is nonzero, the reload register will be the output in
382 operand 0. If IN_P is zero, the reload register will be the input
383 in operand 1. Outputs should have an initial "=", which we must
386 /* ??? It would be useful to be able to handle only two, or more than
387 three, operands, but for now we can only handle the case of having
388 exactly three: output, input and one temp/scratch. */
389 gcc_assert (insn_data
[(int) icode
].n_operands
== 3);
391 /* ??? We currently have no way to represent a reload that needs
392 an icode to reload from an intermediate tertiary reload register.
393 We should probably have a new field in struct reload to tag a
394 chain of scratch operand reloads onto. */
395 gcc_assert (class == NO_REGS
);
397 scratch_constraint
= insn_data
[(int) icode
].operand
[2].constraint
;
398 gcc_assert (*scratch_constraint
== '=');
399 scratch_constraint
++;
400 if (*scratch_constraint
== '&')
401 scratch_constraint
++;
402 letter
= *scratch_constraint
;
403 scratch_class
= (letter
== 'r' ? GENERAL_REGS
404 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter
,
405 scratch_constraint
));
407 class = scratch_class
;
408 mode
= insn_data
[(int) icode
].operand
[2].mode
;
411 /* This case isn't valid, so fail. Reload is allowed to use the same
412 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
413 in the case of a secondary register, we actually need two different
414 registers for correct code. We fail here to prevent the possibility of
415 silently generating incorrect code later.
417 The convention is that secondary input reloads are valid only if the
418 secondary_class is different from class. If you have such a case, you
419 can not use secondary reloads, you must work around the problem some
422 Allow this when a reload_in/out pattern is being used. I.e. assume
423 that the generated code handles this case. */
425 gcc_assert (!in_p
|| class != reload_class
|| icode
!= CODE_FOR_nothing
426 || t_icode
!= CODE_FOR_nothing
);
428 /* See if we can reuse an existing secondary reload. */
429 for (s_reload
= 0; s_reload
< n_reloads
; s_reload
++)
430 if (rld
[s_reload
].secondary_p
431 && (reg_class_subset_p (class, rld
[s_reload
].class)
432 || reg_class_subset_p (rld
[s_reload
].class, class))
433 && ((in_p
&& rld
[s_reload
].inmode
== mode
)
434 || (! in_p
&& rld
[s_reload
].outmode
== mode
))
435 && ((in_p
&& rld
[s_reload
].secondary_in_reload
== t_reload
)
436 || (! in_p
&& rld
[s_reload
].secondary_out_reload
== t_reload
))
437 && ((in_p
&& rld
[s_reload
].secondary_in_icode
== t_icode
)
438 || (! in_p
&& rld
[s_reload
].secondary_out_icode
== t_icode
))
439 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES
)
440 && MERGABLE_RELOADS (secondary_type
, rld
[s_reload
].when_needed
,
441 opnum
, rld
[s_reload
].opnum
))
444 rld
[s_reload
].inmode
= mode
;
446 rld
[s_reload
].outmode
= mode
;
448 if (reg_class_subset_p (class, rld
[s_reload
].class))
449 rld
[s_reload
].class = class;
451 rld
[s_reload
].opnum
= MIN (rld
[s_reload
].opnum
, opnum
);
452 rld
[s_reload
].optional
&= optional
;
453 rld
[s_reload
].secondary_p
= 1;
454 if (MERGE_TO_OTHER (secondary_type
, rld
[s_reload
].when_needed
,
455 opnum
, rld
[s_reload
].opnum
))
456 rld
[s_reload
].when_needed
= RELOAD_OTHER
;
459 if (s_reload
== n_reloads
)
461 #ifdef SECONDARY_MEMORY_NEEDED
462 /* If we need a memory location to copy between the two reload regs,
463 set it up now. Note that we do the input case before making
464 the reload and the output case after. This is due to the
465 way reloads are output. */
467 if (in_p
&& icode
== CODE_FOR_nothing
468 && SECONDARY_MEMORY_NEEDED (class, reload_class
, mode
))
470 get_secondary_mem (x
, reload_mode
, opnum
, type
);
472 /* We may have just added new reloads. Make sure we add
473 the new reload at the end. */
474 s_reload
= n_reloads
;
478 /* We need to make a new secondary reload for this register class. */
479 rld
[s_reload
].in
= rld
[s_reload
].out
= 0;
480 rld
[s_reload
].class = class;
482 rld
[s_reload
].inmode
= in_p
? mode
: VOIDmode
;
483 rld
[s_reload
].outmode
= ! in_p
? mode
: VOIDmode
;
484 rld
[s_reload
].reg_rtx
= 0;
485 rld
[s_reload
].optional
= optional
;
486 rld
[s_reload
].inc
= 0;
487 /* Maybe we could combine these, but it seems too tricky. */
488 rld
[s_reload
].nocombine
= 1;
489 rld
[s_reload
].in_reg
= 0;
490 rld
[s_reload
].out_reg
= 0;
491 rld
[s_reload
].opnum
= opnum
;
492 rld
[s_reload
].when_needed
= secondary_type
;
493 rld
[s_reload
].secondary_in_reload
= in_p
? t_reload
: -1;
494 rld
[s_reload
].secondary_out_reload
= ! in_p
? t_reload
: -1;
495 rld
[s_reload
].secondary_in_icode
= in_p
? t_icode
: CODE_FOR_nothing
;
496 rld
[s_reload
].secondary_out_icode
497 = ! in_p
? t_icode
: CODE_FOR_nothing
;
498 rld
[s_reload
].secondary_p
= 1;
502 #ifdef SECONDARY_MEMORY_NEEDED
503 if (! in_p
&& icode
== CODE_FOR_nothing
504 && SECONDARY_MEMORY_NEEDED (reload_class
, class, mode
))
505 get_secondary_mem (x
, mode
, opnum
, type
);
513 /* If a secondary reload is needed, return its class. If both an intermediate
514 register and a scratch register is needed, we return the class of the
515 intermediate register. */
517 secondary_reload_class (bool in_p
, enum reg_class
class,
518 enum machine_mode mode
, rtx x
)
520 enum insn_code icode
;
521 secondary_reload_info sri
;
523 sri
.icode
= CODE_FOR_nothing
;
525 class = targetm
.secondary_reload (in_p
, x
, class, mode
, &sri
);
528 /* If there are no secondary reloads at all, we return NO_REGS.
529 If an intermediate register is needed, we return its class. */
530 if (icode
== CODE_FOR_nothing
|| class != NO_REGS
)
533 /* No intermediate register is needed, but we have a special reload
534 pattern, which we assume for now needs a scratch register. */
535 return scratch_reload_class (icode
);
538 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
539 three operands, verify that operand 2 is an output operand, and return
541 ??? We'd like to be able to handle any pattern with at least 2 operands,
542 for zero or more scratch registers, but that needs more infrastructure. */
544 scratch_reload_class (enum insn_code icode
)
546 const char *scratch_constraint
;
548 enum reg_class
class;
550 gcc_assert (insn_data
[(int) icode
].n_operands
== 3);
551 scratch_constraint
= insn_data
[(int) icode
].operand
[2].constraint
;
552 gcc_assert (*scratch_constraint
== '=');
553 scratch_constraint
++;
554 if (*scratch_constraint
== '&')
555 scratch_constraint
++;
556 scratch_letter
= *scratch_constraint
;
557 if (scratch_letter
== 'r')
559 class = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter
,
561 gcc_assert (class != NO_REGS
);
565 #ifdef SECONDARY_MEMORY_NEEDED
567 /* Return a memory location that will be used to copy X in mode MODE.
568 If we haven't already made a location for this mode in this insn,
569 call find_reloads_address on the location being returned. */
572 get_secondary_mem (rtx x ATTRIBUTE_UNUSED
, enum machine_mode mode
,
573 int opnum
, enum reload_type type
)
578 /* By default, if MODE is narrower than a word, widen it to a word.
579 This is required because most machines that require these memory
580 locations do not support short load and stores from all registers
581 (e.g., FP registers). */
583 #ifdef SECONDARY_MEMORY_NEEDED_MODE
584 mode
= SECONDARY_MEMORY_NEEDED_MODE (mode
);
586 if (GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
&& INTEGRAL_MODE_P (mode
))
587 mode
= mode_for_size (BITS_PER_WORD
, GET_MODE_CLASS (mode
), 0);
590 /* If we already have made a MEM for this operand in MODE, return it. */
591 if (secondary_memlocs_elim
[(int) mode
][opnum
] != 0)
592 return secondary_memlocs_elim
[(int) mode
][opnum
];
594 /* If this is the first time we've tried to get a MEM for this mode,
595 allocate a new one. `something_changed' in reload will get set
596 by noticing that the frame size has changed. */
598 if (secondary_memlocs
[(int) mode
] == 0)
600 #ifdef SECONDARY_MEMORY_NEEDED_RTX
601 secondary_memlocs
[(int) mode
] = SECONDARY_MEMORY_NEEDED_RTX (mode
);
603 secondary_memlocs
[(int) mode
]
604 = assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
608 /* Get a version of the address doing any eliminations needed. If that
609 didn't give us a new MEM, make a new one if it isn't valid. */
611 loc
= eliminate_regs (secondary_memlocs
[(int) mode
], VOIDmode
, NULL_RTX
);
612 mem_valid
= strict_memory_address_p (mode
, XEXP (loc
, 0));
614 if (! mem_valid
&& loc
== secondary_memlocs
[(int) mode
])
615 loc
= copy_rtx (loc
);
617 /* The only time the call below will do anything is if the stack
618 offset is too large. In that case IND_LEVELS doesn't matter, so we
619 can just pass a zero. Adjust the type to be the address of the
620 corresponding object. If the address was valid, save the eliminated
621 address. If it wasn't valid, we need to make a reload each time, so
626 type
= (type
== RELOAD_FOR_INPUT
? RELOAD_FOR_INPUT_ADDRESS
627 : type
== RELOAD_FOR_OUTPUT
? RELOAD_FOR_OUTPUT_ADDRESS
630 find_reloads_address (mode
, &loc
, XEXP (loc
, 0), &XEXP (loc
, 0),
634 secondary_memlocs_elim
[(int) mode
][opnum
] = loc
;
635 if (secondary_memlocs_elim_used
<= (int)mode
)
636 secondary_memlocs_elim_used
= (int)mode
+ 1;
640 /* Clear any secondary memory locations we've made. */
643 clear_secondary_mem (void)
645 memset (secondary_memlocs
, 0, sizeof secondary_memlocs
);
647 #endif /* SECONDARY_MEMORY_NEEDED */
650 /* Find the largest class which has at least one register valid in
651 mode INNER, and which for every such register, that register number
652 plus N is also valid in OUTER (if in range) and is cheap to move
653 into REGNO. Such a class must exist. */
655 static enum reg_class
656 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED
,
657 enum machine_mode inner ATTRIBUTE_UNUSED
, int n
,
658 unsigned int dest_regno ATTRIBUTE_UNUSED
)
663 enum reg_class best_class
= NO_REGS
;
664 enum reg_class dest_class ATTRIBUTE_UNUSED
= REGNO_REG_CLASS (dest_regno
);
665 unsigned int best_size
= 0;
668 for (class = 1; class < N_REG_CLASSES
; class++)
672 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
- n
&& ! bad
; regno
++)
673 if (TEST_HARD_REG_BIT (reg_class_contents
[class], regno
))
675 if (HARD_REGNO_MODE_OK (regno
, inner
))
678 if (! TEST_HARD_REG_BIT (reg_class_contents
[class], regno
+ n
)
679 || ! HARD_REGNO_MODE_OK (regno
+ n
, outer
))
686 cost
= REGISTER_MOVE_COST (outer
, class, dest_class
);
688 if ((reg_class_size
[class] > best_size
689 && (best_cost
< 0 || best_cost
>= cost
))
693 best_size
= reg_class_size
[class];
694 best_cost
= REGISTER_MOVE_COST (outer
, class, dest_class
);
698 gcc_assert (best_size
!= 0);
703 /* Return the number of a previously made reload that can be combined with
704 a new one, or n_reloads if none of the existing reloads can be used.
705 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
706 push_reload, they determine the kind of the new reload that we try to
707 combine. P_IN points to the corresponding value of IN, which can be
708 modified by this function.
709 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
712 find_reusable_reload (rtx
*p_in
, rtx out
, enum reg_class
class,
713 enum reload_type type
, int opnum
, int dont_share
)
717 /* We can't merge two reloads if the output of either one is
720 if (earlyclobber_operand_p (out
))
723 /* We can use an existing reload if the class is right
724 and at least one of IN and OUT is a match
725 and the other is at worst neutral.
726 (A zero compared against anything is neutral.)
728 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
729 for the same thing since that can cause us to need more reload registers
730 than we otherwise would. */
732 for (i
= 0; i
< n_reloads
; i
++)
733 if ((reg_class_subset_p (class, rld
[i
].class)
734 || reg_class_subset_p (rld
[i
].class, class))
735 /* If the existing reload has a register, it must fit our class. */
736 && (rld
[i
].reg_rtx
== 0
737 || TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
738 true_regnum (rld
[i
].reg_rtx
)))
739 && ((in
!= 0 && MATCHES (rld
[i
].in
, in
) && ! dont_share
740 && (out
== 0 || rld
[i
].out
== 0 || MATCHES (rld
[i
].out
, out
)))
741 || (out
!= 0 && MATCHES (rld
[i
].out
, out
)
742 && (in
== 0 || rld
[i
].in
== 0 || MATCHES (rld
[i
].in
, in
))))
743 && (rld
[i
].out
== 0 || ! earlyclobber_operand_p (rld
[i
].out
))
744 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES
)
745 && MERGABLE_RELOADS (type
, rld
[i
].when_needed
, opnum
, rld
[i
].opnum
))
748 /* Reloading a plain reg for input can match a reload to postincrement
749 that reg, since the postincrement's value is the right value.
750 Likewise, it can match a preincrement reload, since we regard
751 the preincrementation as happening before any ref in this insn
753 for (i
= 0; i
< n_reloads
; i
++)
754 if ((reg_class_subset_p (class, rld
[i
].class)
755 || reg_class_subset_p (rld
[i
].class, class))
756 /* If the existing reload has a register, it must fit our
758 && (rld
[i
].reg_rtx
== 0
759 || TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
760 true_regnum (rld
[i
].reg_rtx
)))
761 && out
== 0 && rld
[i
].out
== 0 && rld
[i
].in
!= 0
763 && GET_RTX_CLASS (GET_CODE (rld
[i
].in
)) == RTX_AUTOINC
764 && MATCHES (XEXP (rld
[i
].in
, 0), in
))
765 || (REG_P (rld
[i
].in
)
766 && GET_RTX_CLASS (GET_CODE (in
)) == RTX_AUTOINC
767 && MATCHES (XEXP (in
, 0), rld
[i
].in
)))
768 && (rld
[i
].out
== 0 || ! earlyclobber_operand_p (rld
[i
].out
))
769 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES
)
770 && MERGABLE_RELOADS (type
, rld
[i
].when_needed
,
771 opnum
, rld
[i
].opnum
))
773 /* Make sure reload_in ultimately has the increment,
774 not the plain register. */
782 /* Return nonzero if X is a SUBREG which will require reloading of its
783 SUBREG_REG expression. */
786 reload_inner_reg_of_subreg (rtx x
, enum machine_mode mode
, int output
)
790 /* Only SUBREGs are problematical. */
791 if (GET_CODE (x
) != SUBREG
)
794 inner
= SUBREG_REG (x
);
796 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
797 if (CONSTANT_P (inner
) || GET_CODE (inner
) == PLUS
)
800 /* If INNER is not a hard register, then INNER will not need to
803 || REGNO (inner
) >= FIRST_PSEUDO_REGISTER
)
806 /* If INNER is not ok for MODE, then INNER will need reloading. */
807 if (! HARD_REGNO_MODE_OK (subreg_regno (x
), mode
))
810 /* If the outer part is a word or smaller, INNER larger than a
811 word and the number of regs for INNER is not the same as the
812 number of words in INNER, then INNER will need reloading. */
813 return (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
815 && GET_MODE_SIZE (GET_MODE (inner
)) > UNITS_PER_WORD
816 && ((GET_MODE_SIZE (GET_MODE (inner
)) / UNITS_PER_WORD
)
817 != (int) hard_regno_nregs
[REGNO (inner
)][GET_MODE (inner
)]));
820 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
821 requiring an extra reload register. The caller has already found that
822 IN contains some reference to REGNO, so check that we can produce the
823 new value in a single step. E.g. if we have
824 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
825 instruction that adds one to a register, this should succeed.
826 However, if we have something like
827 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
828 needs to be loaded into a register first, we need a separate reload
830 Such PLUS reloads are generated by find_reload_address_part.
831 The out-of-range PLUS expressions are usually introduced in the instruction
832 patterns by register elimination and substituting pseudos without a home
833 by their function-invariant equivalences. */
835 can_reload_into (rtx in
, int regno
, enum machine_mode mode
)
839 struct recog_data save_recog_data
;
841 /* For matching constraints, we often get notional input reloads where
842 we want to use the original register as the reload register. I.e.
843 technically this is a non-optional input-output reload, but IN is
844 already a valid register, and has been chosen as the reload register.
845 Speed this up, since it trivially works. */
849 /* To test MEMs properly, we'd have to take into account all the reloads
850 that are already scheduled, which can become quite complicated.
851 And since we've already handled address reloads for this MEM, it
852 should always succeed anyway. */
856 /* If we can make a simple SET insn that does the job, everything should
858 dst
= gen_rtx_REG (mode
, regno
);
859 test_insn
= make_insn_raw (gen_rtx_SET (VOIDmode
, dst
, in
));
860 save_recog_data
= recog_data
;
861 if (recog_memoized (test_insn
) >= 0)
863 extract_insn (test_insn
);
864 r
= constrain_operands (1);
866 recog_data
= save_recog_data
;
870 /* Record one reload that needs to be performed.
871 IN is an rtx saying where the data are to be found before this instruction.
872 OUT says where they must be stored after the instruction.
873 (IN is zero for data not read, and OUT is zero for data not written.)
874 INLOC and OUTLOC point to the places in the instructions where
875 IN and OUT were found.
876 If IN and OUT are both nonzero, it means the same register must be used
877 to reload both IN and OUT.
879 CLASS is a register class required for the reloaded data.
880 INMODE is the machine mode that the instruction requires
881 for the reg that replaces IN and OUTMODE is likewise for OUT.
883 If IN is zero, then OUT's location and mode should be passed as
886 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
888 OPTIONAL nonzero means this reload does not need to be performed:
889 it can be discarded if that is more convenient.
891 OPNUM and TYPE say what the purpose of this reload is.
893 The return value is the reload-number for this reload.
895 If both IN and OUT are nonzero, in some rare cases we might
896 want to make two separate reloads. (Actually we never do this now.)
897 Therefore, the reload-number for OUT is stored in
898 output_reloadnum when we return; the return value applies to IN.
899 Usually (presently always), when IN and OUT are nonzero,
900 the two reload-numbers are equal, but the caller should be careful to
904 push_reload (rtx in
, rtx out
, rtx
*inloc
, rtx
*outloc
,
905 enum reg_class
class, enum machine_mode inmode
,
906 enum machine_mode outmode
, int strict_low
, int optional
,
907 int opnum
, enum reload_type type
)
911 int dont_remove_subreg
= 0;
912 rtx
*in_subreg_loc
= 0, *out_subreg_loc
= 0;
913 int secondary_in_reload
= -1, secondary_out_reload
= -1;
914 enum insn_code secondary_in_icode
= CODE_FOR_nothing
;
915 enum insn_code secondary_out_icode
= CODE_FOR_nothing
;
917 /* INMODE and/or OUTMODE could be VOIDmode if no mode
918 has been specified for the operand. In that case,
919 use the operand's mode as the mode to reload. */
920 if (inmode
== VOIDmode
&& in
!= 0)
921 inmode
= GET_MODE (in
);
922 if (outmode
== VOIDmode
&& out
!= 0)
923 outmode
= GET_MODE (out
);
925 /* If IN is a pseudo register everywhere-equivalent to a constant, and
926 it is not in a hard register, reload straight from the constant,
927 since we want to get rid of such pseudo registers.
928 Often this is done earlier, but not always in find_reloads_address. */
929 if (in
!= 0 && REG_P (in
))
931 int regno
= REGNO (in
);
933 if (regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] < 0
934 && reg_equiv_constant
[regno
] != 0)
935 in
= reg_equiv_constant
[regno
];
938 /* Likewise for OUT. Of course, OUT will never be equivalent to
939 an actual constant, but it might be equivalent to a memory location
940 (in the case of a parameter). */
941 if (out
!= 0 && REG_P (out
))
943 int regno
= REGNO (out
);
945 if (regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] < 0
946 && reg_equiv_constant
[regno
] != 0)
947 out
= reg_equiv_constant
[regno
];
950 /* If we have a read-write operand with an address side-effect,
951 change either IN or OUT so the side-effect happens only once. */
952 if (in
!= 0 && out
!= 0 && MEM_P (in
) && rtx_equal_p (in
, out
))
953 switch (GET_CODE (XEXP (in
, 0)))
955 case POST_INC
: case POST_DEC
: case POST_MODIFY
:
956 in
= replace_equiv_address_nv (in
, XEXP (XEXP (in
, 0), 0));
959 case PRE_INC
: case PRE_DEC
: case PRE_MODIFY
:
960 out
= replace_equiv_address_nv (out
, XEXP (XEXP (out
, 0), 0));
967 /* If we are reloading a (SUBREG constant ...), really reload just the
968 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
969 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
970 a pseudo and hence will become a MEM) with M1 wider than M2 and the
971 register is a pseudo, also reload the inside expression.
972 For machines that extend byte loads, do this for any SUBREG of a pseudo
973 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
974 M2 is an integral mode that gets extended when loaded.
975 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
976 either M1 is not valid for R or M2 is wider than a word but we only
977 need one word to store an M2-sized quantity in R.
978 (However, if OUT is nonzero, we need to reload the reg *and*
979 the subreg, so do nothing here, and let following statement handle it.)
981 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
982 we can't handle it here because CONST_INT does not indicate a mode.
984 Similarly, we must reload the inside expression if we have a
985 STRICT_LOW_PART (presumably, in == out in the cas).
987 Also reload the inner expression if it does not require a secondary
988 reload but the SUBREG does.
990 Finally, reload the inner expression if it is a register that is in
991 the class whose registers cannot be referenced in a different size
992 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
993 cannot reload just the inside since we might end up with the wrong
994 register class. But if it is inside a STRICT_LOW_PART, we have
995 no choice, so we hope we do get the right register class there. */
997 if (in
!= 0 && GET_CODE (in
) == SUBREG
998 && (subreg_lowpart_p (in
) || strict_low
)
999 #ifdef CANNOT_CHANGE_MODE_CLASS
1000 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in
)), inmode
, class)
1002 && (CONSTANT_P (SUBREG_REG (in
))
1003 || GET_CODE (SUBREG_REG (in
)) == PLUS
1005 || (((REG_P (SUBREG_REG (in
))
1006 && REGNO (SUBREG_REG (in
)) >= FIRST_PSEUDO_REGISTER
)
1007 || MEM_P (SUBREG_REG (in
)))
1008 && ((GET_MODE_SIZE (inmode
)
1009 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
))))
1010 #ifdef LOAD_EXTEND_OP
1011 || (GET_MODE_SIZE (inmode
) <= UNITS_PER_WORD
1012 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
1014 && (GET_MODE_SIZE (inmode
)
1015 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
))))
1016 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in
)))
1017 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in
))) != UNKNOWN
)
1019 #ifdef WORD_REGISTER_OPERATIONS
1020 || ((GET_MODE_SIZE (inmode
)
1021 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
))))
1022 && ((GET_MODE_SIZE (inmode
) - 1) / UNITS_PER_WORD
==
1023 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
))) - 1)
1027 || (REG_P (SUBREG_REG (in
))
1028 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
1029 /* The case where out is nonzero
1030 is handled differently in the following statement. */
1031 && (out
== 0 || subreg_lowpart_p (in
))
1032 && ((GET_MODE_SIZE (inmode
) <= UNITS_PER_WORD
1033 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
1035 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
1037 != (int) hard_regno_nregs
[REGNO (SUBREG_REG (in
))]
1038 [GET_MODE (SUBREG_REG (in
))]))
1039 || ! HARD_REGNO_MODE_OK (subreg_regno (in
), inmode
)))
1040 || (secondary_reload_class (1, class, inmode
, in
) != NO_REGS
1041 && (secondary_reload_class (1, class, GET_MODE (SUBREG_REG (in
)),
1044 #ifdef CANNOT_CHANGE_MODE_CLASS
1045 || (REG_P (SUBREG_REG (in
))
1046 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
1047 && REG_CANNOT_CHANGE_MODE_P
1048 (REGNO (SUBREG_REG (in
)), GET_MODE (SUBREG_REG (in
)), inmode
))
1052 in_subreg_loc
= inloc
;
1053 inloc
= &SUBREG_REG (in
);
1055 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1057 /* This is supposed to happen only for paradoxical subregs made by
1058 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1059 gcc_assert (GET_MODE_SIZE (GET_MODE (in
)) <= GET_MODE_SIZE (inmode
));
1061 inmode
= GET_MODE (in
);
1064 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1065 either M1 is not valid for R or M2 is wider than a word but we only
1066 need one word to store an M2-sized quantity in R.
1068 However, we must reload the inner reg *as well as* the subreg in
1071 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1072 code above. This can happen if SUBREG_BYTE != 0. */
1074 if (in
!= 0 && reload_inner_reg_of_subreg (in
, inmode
, 0))
1076 enum reg_class in_class
= class;
1078 if (REG_P (SUBREG_REG (in
)))
1080 = find_valid_class (inmode
, GET_MODE (SUBREG_REG (in
)),
1081 subreg_regno_offset (REGNO (SUBREG_REG (in
)),
1082 GET_MODE (SUBREG_REG (in
)),
1085 REGNO (SUBREG_REG (in
)));
1087 /* This relies on the fact that emit_reload_insns outputs the
1088 instructions for input reloads of type RELOAD_OTHER in the same
1089 order as the reloads. Thus if the outer reload is also of type
1090 RELOAD_OTHER, we are guaranteed that this inner reload will be
1091 output before the outer reload. */
1092 push_reload (SUBREG_REG (in
), NULL_RTX
, &SUBREG_REG (in
), (rtx
*) 0,
1093 in_class
, VOIDmode
, VOIDmode
, 0, 0, opnum
, type
);
1094 dont_remove_subreg
= 1;
1097 /* Similarly for paradoxical and problematical SUBREGs on the output.
1098 Note that there is no reason we need worry about the previous value
1099 of SUBREG_REG (out); even if wider than out,
1100 storing in a subreg is entitled to clobber it all
1101 (except in the case of STRICT_LOW_PART,
1102 and in that case the constraint should label it input-output.) */
1103 if (out
!= 0 && GET_CODE (out
) == SUBREG
1104 && (subreg_lowpart_p (out
) || strict_low
)
1105 #ifdef CANNOT_CHANGE_MODE_CLASS
1106 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out
)), outmode
, class)
1108 && (CONSTANT_P (SUBREG_REG (out
))
1110 || (((REG_P (SUBREG_REG (out
))
1111 && REGNO (SUBREG_REG (out
)) >= FIRST_PSEUDO_REGISTER
)
1112 || MEM_P (SUBREG_REG (out
)))
1113 && ((GET_MODE_SIZE (outmode
)
1114 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
))))
1115 #ifdef WORD_REGISTER_OPERATIONS
1116 || ((GET_MODE_SIZE (outmode
)
1117 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
))))
1118 && ((GET_MODE_SIZE (outmode
) - 1) / UNITS_PER_WORD
==
1119 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
))) - 1)
1123 || (REG_P (SUBREG_REG (out
))
1124 && REGNO (SUBREG_REG (out
)) < FIRST_PSEUDO_REGISTER
1125 && ((GET_MODE_SIZE (outmode
) <= UNITS_PER_WORD
1126 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
)))
1128 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
)))
1130 != (int) hard_regno_nregs
[REGNO (SUBREG_REG (out
))]
1131 [GET_MODE (SUBREG_REG (out
))]))
1132 || ! HARD_REGNO_MODE_OK (subreg_regno (out
), outmode
)))
1133 || (secondary_reload_class (0, class, outmode
, out
) != NO_REGS
1134 && (secondary_reload_class (0, class, GET_MODE (SUBREG_REG (out
)),
1137 #ifdef CANNOT_CHANGE_MODE_CLASS
1138 || (REG_P (SUBREG_REG (out
))
1139 && REGNO (SUBREG_REG (out
)) < FIRST_PSEUDO_REGISTER
1140 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out
)),
1141 GET_MODE (SUBREG_REG (out
)),
1146 out_subreg_loc
= outloc
;
1147 outloc
= &SUBREG_REG (out
);
1149 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1150 gcc_assert (!MEM_P (out
)
1151 || GET_MODE_SIZE (GET_MODE (out
))
1152 <= GET_MODE_SIZE (outmode
));
1154 outmode
= GET_MODE (out
);
1157 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1158 either M1 is not valid for R or M2 is wider than a word but we only
1159 need one word to store an M2-sized quantity in R.
1161 However, we must reload the inner reg *as well as* the subreg in
1162 that case. In this case, the inner reg is an in-out reload. */
1164 if (out
!= 0 && reload_inner_reg_of_subreg (out
, outmode
, 1))
1166 /* This relies on the fact that emit_reload_insns outputs the
1167 instructions for output reloads of type RELOAD_OTHER in reverse
1168 order of the reloads. Thus if the outer reload is also of type
1169 RELOAD_OTHER, we are guaranteed that this inner reload will be
1170 output after the outer reload. */
1171 dont_remove_subreg
= 1;
1172 push_reload (SUBREG_REG (out
), SUBREG_REG (out
), &SUBREG_REG (out
),
1174 find_valid_class (outmode
, GET_MODE (SUBREG_REG (out
)),
1175 subreg_regno_offset (REGNO (SUBREG_REG (out
)),
1176 GET_MODE (SUBREG_REG (out
)),
1179 REGNO (SUBREG_REG (out
))),
1180 VOIDmode
, VOIDmode
, 0, 0,
1181 opnum
, RELOAD_OTHER
);
1184 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1185 if (in
!= 0 && out
!= 0 && MEM_P (out
)
1186 && (REG_P (in
) || MEM_P (in
) || GET_CODE (in
) == PLUS
)
1187 && reg_overlap_mentioned_for_reload_p (in
, XEXP (out
, 0)))
1190 /* If IN is a SUBREG of a hard register, make a new REG. This
1191 simplifies some of the cases below. */
1193 if (in
!= 0 && GET_CODE (in
) == SUBREG
&& REG_P (SUBREG_REG (in
))
1194 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
1195 && ! dont_remove_subreg
)
1196 in
= gen_rtx_REG (GET_MODE (in
), subreg_regno (in
));
1198 /* Similarly for OUT. */
1199 if (out
!= 0 && GET_CODE (out
) == SUBREG
1200 && REG_P (SUBREG_REG (out
))
1201 && REGNO (SUBREG_REG (out
)) < FIRST_PSEUDO_REGISTER
1202 && ! dont_remove_subreg
)
1203 out
= gen_rtx_REG (GET_MODE (out
), subreg_regno (out
));
1205 /* Narrow down the class of register wanted if that is
1206 desirable on this machine for efficiency. */
1208 enum reg_class preferred_class
= class;
1211 preferred_class
= PREFERRED_RELOAD_CLASS (in
, class);
1213 /* Output reloads may need analogous treatment, different in detail. */
1214 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1216 preferred_class
= PREFERRED_OUTPUT_RELOAD_CLASS (out
, preferred_class
);
1219 /* Discard what the target said if we cannot do it. */
1220 if (preferred_class
!= NO_REGS
1221 || (optional
&& type
== RELOAD_FOR_OUTPUT
))
1222 class = preferred_class
;
1225 /* Make sure we use a class that can handle the actual pseudo
1226 inside any subreg. For example, on the 386, QImode regs
1227 can appear within SImode subregs. Although GENERAL_REGS
1228 can handle SImode, QImode needs a smaller class. */
1229 #ifdef LIMIT_RELOAD_CLASS
1231 class = LIMIT_RELOAD_CLASS (inmode
, class);
1232 else if (in
!= 0 && GET_CODE (in
) == SUBREG
)
1233 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in
)), class);
1236 class = LIMIT_RELOAD_CLASS (outmode
, class);
1237 if (out
!= 0 && GET_CODE (out
) == SUBREG
)
1238 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out
)), class);
1241 /* Verify that this class is at least possible for the mode that
1243 if (this_insn_is_asm
)
1245 enum machine_mode mode
;
1246 if (GET_MODE_SIZE (inmode
) > GET_MODE_SIZE (outmode
))
1250 if (mode
== VOIDmode
)
1252 error_for_asm (this_insn
, "cannot reload integer constant "
1253 "operand in %<asm%>");
1258 outmode
= word_mode
;
1260 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1261 if (HARD_REGNO_MODE_OK (i
, mode
)
1262 && in_hard_reg_set_p (reg_class_contents
[(int) class], mode
, i
))
1264 if (i
== FIRST_PSEUDO_REGISTER
)
1266 error_for_asm (this_insn
, "impossible register constraint "
1268 /* Avoid further trouble with this insn. */
1269 PATTERN (this_insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
1270 /* We used to continue here setting class to ALL_REGS, but it triggers
1271 sanity check on i386 for:
1272 void foo(long double d)
1276 Returning zero here ought to be safe as we take care in
1277 find_reloads to not process the reloads when instruction was
1284 /* Optional output reloads are always OK even if we have no register class,
1285 since the function of these reloads is only to have spill_reg_store etc.
1286 set, so that the storing insn can be deleted later. */
1287 gcc_assert (class != NO_REGS
1288 || (optional
!= 0 && type
== RELOAD_FOR_OUTPUT
));
1290 i
= find_reusable_reload (&in
, out
, class, type
, opnum
, dont_share
);
1294 /* See if we need a secondary reload register to move between CLASS
1295 and IN or CLASS and OUT. Get the icode and push any required reloads
1296 needed for each of them if so. */
1300 = push_secondary_reload (1, in
, opnum
, optional
, class, inmode
, type
,
1301 &secondary_in_icode
, NULL
);
1302 if (out
!= 0 && GET_CODE (out
) != SCRATCH
)
1303 secondary_out_reload
1304 = push_secondary_reload (0, out
, opnum
, optional
, class, outmode
,
1305 type
, &secondary_out_icode
, NULL
);
1307 /* We found no existing reload suitable for re-use.
1308 So add an additional reload. */
1310 #ifdef SECONDARY_MEMORY_NEEDED
1311 /* If a memory location is needed for the copy, make one. */
1314 || (GET_CODE (in
) == SUBREG
&& REG_P (SUBREG_REG (in
))))
1315 && reg_or_subregno (in
) < FIRST_PSEUDO_REGISTER
1316 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in
)),
1318 get_secondary_mem (in
, inmode
, opnum
, type
);
1324 rld
[i
].class = class;
1325 rld
[i
].inmode
= inmode
;
1326 rld
[i
].outmode
= outmode
;
1328 rld
[i
].optional
= optional
;
1330 rld
[i
].nocombine
= 0;
1331 rld
[i
].in_reg
= inloc
? *inloc
: 0;
1332 rld
[i
].out_reg
= outloc
? *outloc
: 0;
1333 rld
[i
].opnum
= opnum
;
1334 rld
[i
].when_needed
= type
;
1335 rld
[i
].secondary_in_reload
= secondary_in_reload
;
1336 rld
[i
].secondary_out_reload
= secondary_out_reload
;
1337 rld
[i
].secondary_in_icode
= secondary_in_icode
;
1338 rld
[i
].secondary_out_icode
= secondary_out_icode
;
1339 rld
[i
].secondary_p
= 0;
1343 #ifdef SECONDARY_MEMORY_NEEDED
1346 || (GET_CODE (out
) == SUBREG
&& REG_P (SUBREG_REG (out
))))
1347 && reg_or_subregno (out
) < FIRST_PSEUDO_REGISTER
1348 && SECONDARY_MEMORY_NEEDED (class,
1349 REGNO_REG_CLASS (reg_or_subregno (out
)),
1351 get_secondary_mem (out
, outmode
, opnum
, type
);
1356 /* We are reusing an existing reload,
1357 but we may have additional information for it.
1358 For example, we may now have both IN and OUT
1359 while the old one may have just one of them. */
1361 /* The modes can be different. If they are, we want to reload in
1362 the larger mode, so that the value is valid for both modes. */
1363 if (inmode
!= VOIDmode
1364 && GET_MODE_SIZE (inmode
) > GET_MODE_SIZE (rld
[i
].inmode
))
1365 rld
[i
].inmode
= inmode
;
1366 if (outmode
!= VOIDmode
1367 && GET_MODE_SIZE (outmode
) > GET_MODE_SIZE (rld
[i
].outmode
))
1368 rld
[i
].outmode
= outmode
;
1371 rtx in_reg
= inloc
? *inloc
: 0;
1372 /* If we merge reloads for two distinct rtl expressions that
1373 are identical in content, there might be duplicate address
1374 reloads. Remove the extra set now, so that if we later find
1375 that we can inherit this reload, we can get rid of the
1376 address reloads altogether.
1378 Do not do this if both reloads are optional since the result
1379 would be an optional reload which could potentially leave
1380 unresolved address replacements.
1382 It is not sufficient to call transfer_replacements since
1383 choose_reload_regs will remove the replacements for address
1384 reloads of inherited reloads which results in the same
1386 if (rld
[i
].in
!= in
&& rtx_equal_p (in
, rld
[i
].in
)
1387 && ! (rld
[i
].optional
&& optional
))
1389 /* We must keep the address reload with the lower operand
1391 if (opnum
> rld
[i
].opnum
)
1393 remove_address_replacements (in
);
1395 in_reg
= rld
[i
].in_reg
;
1398 remove_address_replacements (rld
[i
].in
);
1401 rld
[i
].in_reg
= in_reg
;
1406 rld
[i
].out_reg
= outloc
? *outloc
: 0;
1408 if (reg_class_subset_p (class, rld
[i
].class))
1409 rld
[i
].class = class;
1410 rld
[i
].optional
&= optional
;
1411 if (MERGE_TO_OTHER (type
, rld
[i
].when_needed
,
1412 opnum
, rld
[i
].opnum
))
1413 rld
[i
].when_needed
= RELOAD_OTHER
;
1414 rld
[i
].opnum
= MIN (rld
[i
].opnum
, opnum
);
1417 /* If the ostensible rtx being reloaded differs from the rtx found
1418 in the location to substitute, this reload is not safe to combine
1419 because we cannot reliably tell whether it appears in the insn. */
1421 if (in
!= 0 && in
!= *inloc
)
1422 rld
[i
].nocombine
= 1;
1425 /* This was replaced by changes in find_reloads_address_1 and the new
1426 function inc_for_reload, which go with a new meaning of reload_inc. */
1428 /* If this is an IN/OUT reload in an insn that sets the CC,
1429 it must be for an autoincrement. It doesn't work to store
1430 the incremented value after the insn because that would clobber the CC.
1431 So we must do the increment of the value reloaded from,
1432 increment it, store it back, then decrement again. */
1433 if (out
!= 0 && sets_cc0_p (PATTERN (this_insn
)))
1437 rld
[i
].inc
= find_inc_amount (PATTERN (this_insn
), in
);
1438 /* If we did not find a nonzero amount-to-increment-by,
1439 that contradicts the belief that IN is being incremented
1440 in an address in this insn. */
1441 gcc_assert (rld
[i
].inc
!= 0);
1445 /* If we will replace IN and OUT with the reload-reg,
1446 record where they are located so that substitution need
1447 not do a tree walk. */
1449 if (replace_reloads
)
1453 struct replacement
*r
= &replacements
[n_replacements
++];
1455 r
->subreg_loc
= in_subreg_loc
;
1459 if (outloc
!= 0 && outloc
!= inloc
)
1461 struct replacement
*r
= &replacements
[n_replacements
++];
1464 r
->subreg_loc
= out_subreg_loc
;
1469 /* If this reload is just being introduced and it has both
1470 an incoming quantity and an outgoing quantity that are
1471 supposed to be made to match, see if either one of the two
1472 can serve as the place to reload into.
1474 If one of them is acceptable, set rld[i].reg_rtx
1477 if (in
!= 0 && out
!= 0 && in
!= out
&& rld
[i
].reg_rtx
== 0)
1479 rld
[i
].reg_rtx
= find_dummy_reload (in
, out
, inloc
, outloc
,
1482 earlyclobber_operand_p (out
));
1484 /* If the outgoing register already contains the same value
1485 as the incoming one, we can dispense with loading it.
1486 The easiest way to tell the caller that is to give a phony
1487 value for the incoming operand (same as outgoing one). */
1488 if (rld
[i
].reg_rtx
== out
1489 && (REG_P (in
) || CONSTANT_P (in
))
1490 && 0 != find_equiv_reg (in
, this_insn
, 0, REGNO (out
),
1491 static_reload_reg_p
, i
, inmode
))
1495 /* If this is an input reload and the operand contains a register that
1496 dies in this insn and is used nowhere else, see if it is the right class
1497 to be used for this reload. Use it if so. (This occurs most commonly
1498 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1499 this if it is also an output reload that mentions the register unless
1500 the output is a SUBREG that clobbers an entire register.
1502 Note that the operand might be one of the spill regs, if it is a
1503 pseudo reg and we are in a block where spilling has not taken place.
1504 But if there is no spilling in this block, that is OK.
1505 An explicitly used hard reg cannot be a spill reg. */
1507 if (rld
[i
].reg_rtx
== 0 && in
!= 0 && hard_regs_live_known
)
1511 enum machine_mode rel_mode
= inmode
;
1513 if (out
&& GET_MODE_SIZE (outmode
) > GET_MODE_SIZE (inmode
))
1516 for (note
= REG_NOTES (this_insn
); note
; note
= XEXP (note
, 1))
1517 if (REG_NOTE_KIND (note
) == REG_DEAD
1518 && REG_P (XEXP (note
, 0))
1519 && (regno
= REGNO (XEXP (note
, 0))) < FIRST_PSEUDO_REGISTER
1520 && reg_mentioned_p (XEXP (note
, 0), in
)
1521 /* Check that we don't use a hardreg for an uninitialized
1522 pseudo. See also find_dummy_reload(). */
1523 && (ORIGINAL_REGNO (XEXP (note
, 0)) < FIRST_PSEUDO_REGISTER
1524 || ! bitmap_bit_p (flag_ira
1525 ? DF_LR_OUT (ENTRY_BLOCK_PTR
)
1526 : DF_RA_LIVE_OUT (ENTRY_BLOCK_PTR
),
1527 ORIGINAL_REGNO (XEXP (note
, 0))))
1528 && ! refers_to_regno_for_reload_p (regno
,
1529 end_hard_regno (rel_mode
,
1531 PATTERN (this_insn
), inloc
)
1532 /* If this is also an output reload, IN cannot be used as
1533 the reload register if it is set in this insn unless IN
1535 && (out
== 0 || in
== out
1536 || ! hard_reg_set_here_p (regno
,
1537 end_hard_regno (rel_mode
, regno
),
1538 PATTERN (this_insn
)))
1539 /* ??? Why is this code so different from the previous?
1540 Is there any simple coherent way to describe the two together?
1541 What's going on here. */
1543 || (GET_CODE (in
) == SUBREG
1544 && (((GET_MODE_SIZE (GET_MODE (in
)) + (UNITS_PER_WORD
- 1))
1546 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
1547 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
1548 /* Make sure the operand fits in the reg that dies. */
1549 && (GET_MODE_SIZE (rel_mode
)
1550 <= GET_MODE_SIZE (GET_MODE (XEXP (note
, 0))))
1551 && HARD_REGNO_MODE_OK (regno
, inmode
)
1552 && HARD_REGNO_MODE_OK (regno
, outmode
))
1555 unsigned int nregs
= MAX (hard_regno_nregs
[regno
][inmode
],
1556 hard_regno_nregs
[regno
][outmode
]);
1558 for (offs
= 0; offs
< nregs
; offs
++)
1559 if (fixed_regs
[regno
+ offs
]
1560 || ! TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
1565 && (! (refers_to_regno_for_reload_p
1566 (regno
, end_hard_regno (inmode
, regno
), in
, (rtx
*) 0))
1567 || can_reload_into (in
, regno
, inmode
)))
1569 rld
[i
].reg_rtx
= gen_rtx_REG (rel_mode
, regno
);
1576 output_reloadnum
= i
;
1581 /* Record an additional place we must replace a value
1582 for which we have already recorded a reload.
1583 RELOADNUM is the value returned by push_reload
1584 when the reload was recorded.
1585 This is used in insn patterns that use match_dup. */
1588 push_replacement (rtx
*loc
, int reloadnum
, enum machine_mode mode
)
1590 if (replace_reloads
)
1592 struct replacement
*r
= &replacements
[n_replacements
++];
1593 r
->what
= reloadnum
;
1600 /* Duplicate any replacement we have recorded to apply at
1601 location ORIG_LOC to also be performed at DUP_LOC.
1602 This is used in insn patterns that use match_dup. */
1605 dup_replacements (rtx
*dup_loc
, rtx
*orig_loc
)
1607 int i
, n
= n_replacements
;
1609 for (i
= 0; i
< n
; i
++)
1611 struct replacement
*r
= &replacements
[i
];
1612 if (r
->where
== orig_loc
)
1613 push_replacement (dup_loc
, r
->what
, r
->mode
);
1617 /* Transfer all replacements that used to be in reload FROM to be in
1621 transfer_replacements (int to
, int from
)
1625 for (i
= 0; i
< n_replacements
; i
++)
1626 if (replacements
[i
].what
== from
)
1627 replacements
[i
].what
= to
;
1630 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1631 or a subpart of it. If we have any replacements registered for IN_RTX,
1632 cancel the reloads that were supposed to load them.
1633 Return nonzero if we canceled any reloads. */
1635 remove_address_replacements (rtx in_rtx
)
1638 char reload_flags
[MAX_RELOADS
];
1639 int something_changed
= 0;
1641 memset (reload_flags
, 0, sizeof reload_flags
);
1642 for (i
= 0, j
= 0; i
< n_replacements
; i
++)
1644 if (loc_mentioned_in_p (replacements
[i
].where
, in_rtx
))
1645 reload_flags
[replacements
[i
].what
] |= 1;
1648 replacements
[j
++] = replacements
[i
];
1649 reload_flags
[replacements
[i
].what
] |= 2;
1652 /* Note that the following store must be done before the recursive calls. */
1655 for (i
= n_reloads
- 1; i
>= 0; i
--)
1657 if (reload_flags
[i
] == 1)
1659 deallocate_reload_reg (i
);
1660 remove_address_replacements (rld
[i
].in
);
1662 something_changed
= 1;
1665 return something_changed
;
1668 /* If there is only one output reload, and it is not for an earlyclobber
1669 operand, try to combine it with a (logically unrelated) input reload
1670 to reduce the number of reload registers needed.
1672 This is safe if the input reload does not appear in
1673 the value being output-reloaded, because this implies
1674 it is not needed any more once the original insn completes.
1676 If that doesn't work, see we can use any of the registers that
1677 die in this insn as a reload register. We can if it is of the right
1678 class and does not appear in the value being output-reloaded. */
1681 combine_reloads (void)
1684 int output_reload
= -1;
1685 int secondary_out
= -1;
1688 /* Find the output reload; return unless there is exactly one
1689 and that one is mandatory. */
1691 for (i
= 0; i
< n_reloads
; i
++)
1692 if (rld
[i
].out
!= 0)
1694 if (output_reload
>= 0)
1699 if (output_reload
< 0 || rld
[output_reload
].optional
)
1702 /* An input-output reload isn't combinable. */
1704 if (rld
[output_reload
].in
!= 0)
1707 /* If this reload is for an earlyclobber operand, we can't do anything. */
1708 if (earlyclobber_operand_p (rld
[output_reload
].out
))
1711 /* If there is a reload for part of the address of this operand, we would
1712 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1713 its life to the point where doing this combine would not lower the
1714 number of spill registers needed. */
1715 for (i
= 0; i
< n_reloads
; i
++)
1716 if ((rld
[i
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
1717 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
1718 && rld
[i
].opnum
== rld
[output_reload
].opnum
)
1721 /* Check each input reload; can we combine it? */
1723 for (i
= 0; i
< n_reloads
; i
++)
1724 if (rld
[i
].in
&& ! rld
[i
].optional
&& ! rld
[i
].nocombine
1725 /* Life span of this reload must not extend past main insn. */
1726 && rld
[i
].when_needed
!= RELOAD_FOR_OUTPUT_ADDRESS
1727 && rld
[i
].when_needed
!= RELOAD_FOR_OUTADDR_ADDRESS
1728 && rld
[i
].when_needed
!= RELOAD_OTHER
1729 && (CLASS_MAX_NREGS (rld
[i
].class, rld
[i
].inmode
)
1730 == CLASS_MAX_NREGS (rld
[output_reload
].class,
1731 rld
[output_reload
].outmode
))
1733 && rld
[i
].reg_rtx
== 0
1734 #ifdef SECONDARY_MEMORY_NEEDED
1735 /* Don't combine two reloads with different secondary
1736 memory locations. */
1737 && (secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[i
].opnum
] == 0
1738 || secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[output_reload
].opnum
] == 0
1739 || rtx_equal_p (secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[i
].opnum
],
1740 secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[output_reload
].opnum
]))
1742 && (SMALL_REGISTER_CLASSES
1743 ? (rld
[i
].class == rld
[output_reload
].class)
1744 : (reg_class_subset_p (rld
[i
].class,
1745 rld
[output_reload
].class)
1746 || reg_class_subset_p (rld
[output_reload
].class,
1748 && (MATCHES (rld
[i
].in
, rld
[output_reload
].out
)
1749 /* Args reversed because the first arg seems to be
1750 the one that we imagine being modified
1751 while the second is the one that might be affected. */
1752 || (! reg_overlap_mentioned_for_reload_p (rld
[output_reload
].out
,
1754 /* However, if the input is a register that appears inside
1755 the output, then we also can't share.
1756 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1757 If the same reload reg is used for both reg 69 and the
1758 result to be stored in memory, then that result
1759 will clobber the address of the memory ref. */
1760 && ! (REG_P (rld
[i
].in
)
1761 && reg_overlap_mentioned_for_reload_p (rld
[i
].in
,
1762 rld
[output_reload
].out
))))
1763 && ! reload_inner_reg_of_subreg (rld
[i
].in
, rld
[i
].inmode
,
1764 rld
[i
].when_needed
!= RELOAD_FOR_INPUT
)
1765 && (reg_class_size
[(int) rld
[i
].class]
1766 || SMALL_REGISTER_CLASSES
)
1767 /* We will allow making things slightly worse by combining an
1768 input and an output, but no worse than that. */
1769 && (rld
[i
].when_needed
== RELOAD_FOR_INPUT
1770 || rld
[i
].when_needed
== RELOAD_FOR_OUTPUT
))
1774 /* We have found a reload to combine with! */
1775 rld
[i
].out
= rld
[output_reload
].out
;
1776 rld
[i
].out_reg
= rld
[output_reload
].out_reg
;
1777 rld
[i
].outmode
= rld
[output_reload
].outmode
;
1778 /* Mark the old output reload as inoperative. */
1779 rld
[output_reload
].out
= 0;
1780 /* The combined reload is needed for the entire insn. */
1781 rld
[i
].when_needed
= RELOAD_OTHER
;
1782 /* If the output reload had a secondary reload, copy it. */
1783 if (rld
[output_reload
].secondary_out_reload
!= -1)
1785 rld
[i
].secondary_out_reload
1786 = rld
[output_reload
].secondary_out_reload
;
1787 rld
[i
].secondary_out_icode
1788 = rld
[output_reload
].secondary_out_icode
;
1791 #ifdef SECONDARY_MEMORY_NEEDED
1792 /* Copy any secondary MEM. */
1793 if (secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[output_reload
].opnum
] != 0)
1794 secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[i
].opnum
]
1795 = secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[output_reload
].opnum
];
1797 /* If required, minimize the register class. */
1798 if (reg_class_subset_p (rld
[output_reload
].class,
1800 rld
[i
].class = rld
[output_reload
].class;
1802 /* Transfer all replacements from the old reload to the combined. */
1803 for (j
= 0; j
< n_replacements
; j
++)
1804 if (replacements
[j
].what
== output_reload
)
1805 replacements
[j
].what
= i
;
1810 /* If this insn has only one operand that is modified or written (assumed
1811 to be the first), it must be the one corresponding to this reload. It
1812 is safe to use anything that dies in this insn for that output provided
1813 that it does not occur in the output (we already know it isn't an
1814 earlyclobber. If this is an asm insn, give up. */
1816 if (INSN_CODE (this_insn
) == -1)
1819 for (i
= 1; i
< insn_data
[INSN_CODE (this_insn
)].n_operands
; i
++)
1820 if (insn_data
[INSN_CODE (this_insn
)].operand
[i
].constraint
[0] == '='
1821 || insn_data
[INSN_CODE (this_insn
)].operand
[i
].constraint
[0] == '+')
1824 /* See if some hard register that dies in this insn and is not used in
1825 the output is the right class. Only works if the register we pick
1826 up can fully hold our output reload. */
1827 for (note
= REG_NOTES (this_insn
); note
; note
= XEXP (note
, 1))
1828 if (REG_NOTE_KIND (note
) == REG_DEAD
1829 && REG_P (XEXP (note
, 0))
1830 && ! reg_overlap_mentioned_for_reload_p (XEXP (note
, 0),
1831 rld
[output_reload
].out
)
1832 && REGNO (XEXP (note
, 0)) < FIRST_PSEUDO_REGISTER
1833 && HARD_REGNO_MODE_OK (REGNO (XEXP (note
, 0)), rld
[output_reload
].outmode
)
1834 && TEST_HARD_REG_BIT (reg_class_contents
[(int) rld
[output_reload
].class],
1835 REGNO (XEXP (note
, 0)))
1836 && (hard_regno_nregs
[REGNO (XEXP (note
, 0))][rld
[output_reload
].outmode
]
1837 <= hard_regno_nregs
[REGNO (XEXP (note
, 0))][GET_MODE (XEXP (note
, 0))])
1838 /* Ensure that a secondary or tertiary reload for this output
1839 won't want this register. */
1840 && ((secondary_out
= rld
[output_reload
].secondary_out_reload
) == -1
1841 || (! (TEST_HARD_REG_BIT
1842 (reg_class_contents
[(int) rld
[secondary_out
].class],
1843 REGNO (XEXP (note
, 0))))
1844 && ((secondary_out
= rld
[secondary_out
].secondary_out_reload
) == -1
1845 || ! (TEST_HARD_REG_BIT
1846 (reg_class_contents
[(int) rld
[secondary_out
].class],
1847 REGNO (XEXP (note
, 0)))))))
1848 && ! fixed_regs
[REGNO (XEXP (note
, 0))]
1849 /* Check that we don't use a hardreg for an uninitialized
1850 pseudo. See also find_dummy_reload(). */
1851 && (ORIGINAL_REGNO (XEXP (note
, 0)) < FIRST_PSEUDO_REGISTER
1852 || ! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR
),
1853 ORIGINAL_REGNO (XEXP (note
, 0)))))
1855 rld
[output_reload
].reg_rtx
1856 = gen_rtx_REG (rld
[output_reload
].outmode
,
1857 REGNO (XEXP (note
, 0)));
1862 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1863 See if one of IN and OUT is a register that may be used;
1864 this is desirable since a spill-register won't be needed.
1865 If so, return the register rtx that proves acceptable.
1867 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1868 CLASS is the register class required for the reload.
1870 If FOR_REAL is >= 0, it is the number of the reload,
1871 and in some cases when it can be discovered that OUT doesn't need
1872 to be computed, clear out rld[FOR_REAL].out.
1874 If FOR_REAL is -1, this should not be done, because this call
1875 is just to see if a register can be found, not to find and install it.
1877 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1878 puts an additional constraint on being able to use IN for OUT since
1879 IN must not appear elsewhere in the insn (it is assumed that IN itself
1880 is safe from the earlyclobber). */
1883 find_dummy_reload (rtx real_in
, rtx real_out
, rtx
*inloc
, rtx
*outloc
,
1884 enum machine_mode inmode
, enum machine_mode outmode
,
1885 enum reg_class
class, int for_real
, int earlyclobber
)
1893 /* If operands exceed a word, we can't use either of them
1894 unless they have the same size. */
1895 if (GET_MODE_SIZE (outmode
) != GET_MODE_SIZE (inmode
)
1896 && (GET_MODE_SIZE (outmode
) > UNITS_PER_WORD
1897 || GET_MODE_SIZE (inmode
) > UNITS_PER_WORD
))
1900 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1901 respectively refers to a hard register. */
1903 /* Find the inside of any subregs. */
1904 while (GET_CODE (out
) == SUBREG
)
1906 if (REG_P (SUBREG_REG (out
))
1907 && REGNO (SUBREG_REG (out
)) < FIRST_PSEUDO_REGISTER
)
1908 out_offset
+= subreg_regno_offset (REGNO (SUBREG_REG (out
)),
1909 GET_MODE (SUBREG_REG (out
)),
1912 out
= SUBREG_REG (out
);
1914 while (GET_CODE (in
) == SUBREG
)
1916 if (REG_P (SUBREG_REG (in
))
1917 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
)
1918 in_offset
+= subreg_regno_offset (REGNO (SUBREG_REG (in
)),
1919 GET_MODE (SUBREG_REG (in
)),
1922 in
= SUBREG_REG (in
);
1925 /* Narrow down the reg class, the same way push_reload will;
1926 otherwise we might find a dummy now, but push_reload won't. */
1928 enum reg_class preferred_class
= PREFERRED_RELOAD_CLASS (in
, class);
1929 if (preferred_class
!= NO_REGS
)
1930 class = preferred_class
;
1933 /* See if OUT will do. */
1935 && REGNO (out
) < FIRST_PSEUDO_REGISTER
)
1937 unsigned int regno
= REGNO (out
) + out_offset
;
1938 unsigned int nwords
= hard_regno_nregs
[regno
][outmode
];
1941 /* When we consider whether the insn uses OUT,
1942 ignore references within IN. They don't prevent us
1943 from copying IN into OUT, because those refs would
1944 move into the insn that reloads IN.
1946 However, we only ignore IN in its role as this reload.
1947 If the insn uses IN elsewhere and it contains OUT,
1948 that counts. We can't be sure it's the "same" operand
1949 so it might not go through this reload. */
1951 *inloc
= const0_rtx
;
1953 if (regno
< FIRST_PSEUDO_REGISTER
1954 && HARD_REGNO_MODE_OK (regno
, outmode
)
1955 && ! refers_to_regno_for_reload_p (regno
, regno
+ nwords
,
1956 PATTERN (this_insn
), outloc
))
1960 for (i
= 0; i
< nwords
; i
++)
1961 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
1967 if (REG_P (real_out
))
1970 value
= gen_rtx_REG (outmode
, regno
);
1977 /* Consider using IN if OUT was not acceptable
1978 or if OUT dies in this insn (like the quotient in a divmod insn).
1979 We can't use IN unless it is dies in this insn,
1980 which means we must know accurately which hard regs are live.
1981 Also, the result can't go in IN if IN is used within OUT,
1982 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1983 if (hard_regs_live_known
1985 && REGNO (in
) < FIRST_PSEUDO_REGISTER
1987 || find_reg_note (this_insn
, REG_UNUSED
, real_out
))
1988 && find_reg_note (this_insn
, REG_DEAD
, real_in
)
1989 && !fixed_regs
[REGNO (in
)]
1990 && HARD_REGNO_MODE_OK (REGNO (in
),
1991 /* The only case where out and real_out might
1992 have different modes is where real_out
1993 is a subreg, and in that case, out
1995 (GET_MODE (out
) != VOIDmode
1996 ? GET_MODE (out
) : outmode
))
1997 /* But only do all this if we can be sure, that this input
1998 operand doesn't correspond with an uninitialized pseudoreg.
1999 global can assign some hardreg to it, which is the same as
2000 a different pseudo also currently live (as it can ignore the
2001 conflict). So we never must introduce writes to such hardregs,
2002 as they would clobber the other live pseudo using the same.
2003 See also PR20973. */
2004 && (ORIGINAL_REGNO (in
) < FIRST_PSEUDO_REGISTER
2005 || ! bitmap_bit_p (flag_ira
2006 ? DF_LR_OUT (ENTRY_BLOCK_PTR
)
2007 : DF_RA_LIVE_OUT (ENTRY_BLOCK_PTR
),
2008 ORIGINAL_REGNO (in
))))
2010 unsigned int regno
= REGNO (in
) + in_offset
;
2011 unsigned int nwords
= hard_regno_nregs
[regno
][inmode
];
2013 if (! refers_to_regno_for_reload_p (regno
, regno
+ nwords
, out
, (rtx
*) 0)
2014 && ! hard_reg_set_here_p (regno
, regno
+ nwords
,
2015 PATTERN (this_insn
))
2017 || ! refers_to_regno_for_reload_p (regno
, regno
+ nwords
,
2018 PATTERN (this_insn
), inloc
)))
2022 for (i
= 0; i
< nwords
; i
++)
2023 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
2029 /* If we were going to use OUT as the reload reg
2030 and changed our mind, it means OUT is a dummy that
2031 dies here. So don't bother copying value to it. */
2032 if (for_real
>= 0 && value
== real_out
)
2033 rld
[for_real
].out
= 0;
2034 if (REG_P (real_in
))
2037 value
= gen_rtx_REG (inmode
, regno
);
2045 /* This page contains subroutines used mainly for determining
2046 whether the IN or an OUT of a reload can serve as the
2049 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2052 earlyclobber_operand_p (rtx x
)
2056 for (i
= 0; i
< n_earlyclobbers
; i
++)
2057 if (reload_earlyclobbers
[i
] == x
)
2063 /* Return 1 if expression X alters a hard reg in the range
2064 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2065 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2066 X should be the body of an instruction. */
2069 hard_reg_set_here_p (unsigned int beg_regno
, unsigned int end_regno
, rtx x
)
2071 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
2073 rtx op0
= SET_DEST (x
);
2075 while (GET_CODE (op0
) == SUBREG
)
2076 op0
= SUBREG_REG (op0
);
2079 unsigned int r
= REGNO (op0
);
2081 /* See if this reg overlaps range under consideration. */
2083 && end_hard_regno (GET_MODE (op0
), r
) > beg_regno
)
2087 else if (GET_CODE (x
) == PARALLEL
)
2089 int i
= XVECLEN (x
, 0) - 1;
2092 if (hard_reg_set_here_p (beg_regno
, end_regno
, XVECEXP (x
, 0, i
)))
2099 /* Return 1 if ADDR is a valid memory address for mode MODE,
2100 and check that each pseudo reg has the proper kind of
2104 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED
, rtx addr
)
2106 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
2113 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2114 if they are the same hard reg, and has special hacks for
2115 autoincrement and autodecrement.
2116 This is specifically intended for find_reloads to use
2117 in determining whether two operands match.
2118 X is the operand whose number is the lower of the two.
2120 The value is 2 if Y contains a pre-increment that matches
2121 a non-incrementing address in X. */
2123 /* ??? To be completely correct, we should arrange to pass
2124 for X the output operand and for Y the input operand.
2125 For now, we assume that the output operand has the lower number
2126 because that is natural in (SET output (... input ...)). */
2129 operands_match_p (rtx x
, rtx y
)
2132 RTX_CODE code
= GET_CODE (x
);
2138 if ((code
== REG
|| (code
== SUBREG
&& REG_P (SUBREG_REG (x
))))
2139 && (REG_P (y
) || (GET_CODE (y
) == SUBREG
2140 && REG_P (SUBREG_REG (y
)))))
2146 i
= REGNO (SUBREG_REG (x
));
2147 if (i
>= FIRST_PSEUDO_REGISTER
)
2149 i
+= subreg_regno_offset (REGNO (SUBREG_REG (x
)),
2150 GET_MODE (SUBREG_REG (x
)),
2157 if (GET_CODE (y
) == SUBREG
)
2159 j
= REGNO (SUBREG_REG (y
));
2160 if (j
>= FIRST_PSEUDO_REGISTER
)
2162 j
+= subreg_regno_offset (REGNO (SUBREG_REG (y
)),
2163 GET_MODE (SUBREG_REG (y
)),
2170 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2171 multiple hard register group of scalar integer registers, so that
2172 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2174 if (WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (GET_MODE (x
)) > UNITS_PER_WORD
2175 && SCALAR_INT_MODE_P (GET_MODE (x
))
2176 && i
< FIRST_PSEUDO_REGISTER
)
2177 i
+= hard_regno_nregs
[i
][GET_MODE (x
)] - 1;
2178 if (WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (GET_MODE (y
)) > UNITS_PER_WORD
2179 && SCALAR_INT_MODE_P (GET_MODE (y
))
2180 && j
< FIRST_PSEUDO_REGISTER
)
2181 j
+= hard_regno_nregs
[j
][GET_MODE (y
)] - 1;
2185 /* If two operands must match, because they are really a single
2186 operand of an assembler insn, then two postincrements are invalid
2187 because the assembler insn would increment only once.
2188 On the other hand, a postincrement matches ordinary indexing
2189 if the postincrement is the output operand. */
2190 if (code
== POST_DEC
|| code
== POST_INC
|| code
== POST_MODIFY
)
2191 return operands_match_p (XEXP (x
, 0), y
);
2192 /* Two preincrements are invalid
2193 because the assembler insn would increment only once.
2194 On the other hand, a preincrement matches ordinary indexing
2195 if the preincrement is the input operand.
2196 In this case, return 2, since some callers need to do special
2197 things when this happens. */
2198 if (GET_CODE (y
) == PRE_DEC
|| GET_CODE (y
) == PRE_INC
2199 || GET_CODE (y
) == PRE_MODIFY
)
2200 return operands_match_p (x
, XEXP (y
, 0)) ? 2 : 0;
2204 /* Now we have disposed of all the cases in which different rtx codes
2206 if (code
!= GET_CODE (y
))
2209 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2210 if (GET_MODE (x
) != GET_MODE (y
))
2221 return XEXP (x
, 0) == XEXP (y
, 0);
2223 return XSTR (x
, 0) == XSTR (y
, 0);
2229 /* Compare the elements. If any pair of corresponding elements
2230 fail to match, return 0 for the whole things. */
2233 fmt
= GET_RTX_FORMAT (code
);
2234 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2240 if (XWINT (x
, i
) != XWINT (y
, i
))
2245 if (XINT (x
, i
) != XINT (y
, i
))
2250 val
= operands_match_p (XEXP (x
, i
), XEXP (y
, i
));
2253 /* If any subexpression returns 2,
2254 we should return 2 if we are successful. */
2263 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
2265 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; --j
)
2267 val
= operands_match_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
));
2275 /* It is believed that rtx's at this level will never
2276 contain anything but integers and other rtx's,
2277 except for within LABEL_REFs and SYMBOL_REFs. */
2282 return 1 + success_2
;
2285 /* Describe the range of registers or memory referenced by X.
2286 If X is a register, set REG_FLAG and put the first register
2287 number into START and the last plus one into END.
2288 If X is a memory reference, put a base address into BASE
2289 and a range of integer offsets into START and END.
2290 If X is pushing on the stack, we can assume it causes no trouble,
2291 so we set the SAFE field. */
2293 static struct decomposition
2296 struct decomposition val
;
2299 memset (&val
, 0, sizeof (val
));
2301 switch (GET_CODE (x
))
2305 rtx base
= NULL_RTX
, offset
= 0;
2306 rtx addr
= XEXP (x
, 0);
2308 if (GET_CODE (addr
) == PRE_DEC
|| GET_CODE (addr
) == PRE_INC
2309 || GET_CODE (addr
) == POST_DEC
|| GET_CODE (addr
) == POST_INC
)
2311 val
.base
= XEXP (addr
, 0);
2312 val
.start
= -GET_MODE_SIZE (GET_MODE (x
));
2313 val
.end
= GET_MODE_SIZE (GET_MODE (x
));
2314 val
.safe
= REGNO (val
.base
) == STACK_POINTER_REGNUM
;
2318 if (GET_CODE (addr
) == PRE_MODIFY
|| GET_CODE (addr
) == POST_MODIFY
)
2320 if (GET_CODE (XEXP (addr
, 1)) == PLUS
2321 && XEXP (addr
, 0) == XEXP (XEXP (addr
, 1), 0)
2322 && CONSTANT_P (XEXP (XEXP (addr
, 1), 1)))
2324 val
.base
= XEXP (addr
, 0);
2325 val
.start
= -INTVAL (XEXP (XEXP (addr
, 1), 1));
2326 val
.end
= INTVAL (XEXP (XEXP (addr
, 1), 1));
2327 val
.safe
= REGNO (val
.base
) == STACK_POINTER_REGNUM
;
2332 if (GET_CODE (addr
) == CONST
)
2334 addr
= XEXP (addr
, 0);
2337 if (GET_CODE (addr
) == PLUS
)
2339 if (CONSTANT_P (XEXP (addr
, 0)))
2341 base
= XEXP (addr
, 1);
2342 offset
= XEXP (addr
, 0);
2344 else if (CONSTANT_P (XEXP (addr
, 1)))
2346 base
= XEXP (addr
, 0);
2347 offset
= XEXP (addr
, 1);
2354 offset
= const0_rtx
;
2356 if (GET_CODE (offset
) == CONST
)
2357 offset
= XEXP (offset
, 0);
2358 if (GET_CODE (offset
) == PLUS
)
2360 if (GET_CODE (XEXP (offset
, 0)) == CONST_INT
)
2362 base
= gen_rtx_PLUS (GET_MODE (base
), base
, XEXP (offset
, 1));
2363 offset
= XEXP (offset
, 0);
2365 else if (GET_CODE (XEXP (offset
, 1)) == CONST_INT
)
2367 base
= gen_rtx_PLUS (GET_MODE (base
), base
, XEXP (offset
, 0));
2368 offset
= XEXP (offset
, 1);
2372 base
= gen_rtx_PLUS (GET_MODE (base
), base
, offset
);
2373 offset
= const0_rtx
;
2376 else if (GET_CODE (offset
) != CONST_INT
)
2378 base
= gen_rtx_PLUS (GET_MODE (base
), base
, offset
);
2379 offset
= const0_rtx
;
2382 if (all_const
&& GET_CODE (base
) == PLUS
)
2383 base
= gen_rtx_CONST (GET_MODE (base
), base
);
2385 gcc_assert (GET_CODE (offset
) == CONST_INT
);
2387 val
.start
= INTVAL (offset
);
2388 val
.end
= val
.start
+ GET_MODE_SIZE (GET_MODE (x
));
2395 val
.start
= true_regnum (x
);
2396 if (val
.start
< 0 || val
.start
>= FIRST_PSEUDO_REGISTER
)
2398 /* A pseudo with no hard reg. */
2399 val
.start
= REGNO (x
);
2400 val
.end
= val
.start
+ 1;
2404 val
.end
= end_hard_regno (GET_MODE (x
), val
.start
);
2408 if (!REG_P (SUBREG_REG (x
)))
2409 /* This could be more precise, but it's good enough. */
2410 return decompose (SUBREG_REG (x
));
2412 val
.start
= true_regnum (x
);
2413 if (val
.start
< 0 || val
.start
>= FIRST_PSEUDO_REGISTER
)
2414 return decompose (SUBREG_REG (x
));
2417 val
.end
= val
.start
+ subreg_nregs (x
);
2421 /* This hasn't been assigned yet, so it can't conflict yet. */
2426 gcc_assert (CONSTANT_P (x
));
2433 /* Return 1 if altering Y will not modify the value of X.
2434 Y is also described by YDATA, which should be decompose (Y). */
2437 immune_p (rtx x
, rtx y
, struct decomposition ydata
)
2439 struct decomposition xdata
;
2442 return !refers_to_regno_for_reload_p (ydata
.start
, ydata
.end
, x
, (rtx
*) 0);
2446 gcc_assert (MEM_P (y
));
2447 /* If Y is memory and X is not, Y can't affect X. */
2451 xdata
= decompose (x
);
2453 if (! rtx_equal_p (xdata
.base
, ydata
.base
))
2455 /* If bases are distinct symbolic constants, there is no overlap. */
2456 if (CONSTANT_P (xdata
.base
) && CONSTANT_P (ydata
.base
))
2458 /* Constants and stack slots never overlap. */
2459 if (CONSTANT_P (xdata
.base
)
2460 && (ydata
.base
== frame_pointer_rtx
2461 || ydata
.base
== hard_frame_pointer_rtx
2462 || ydata
.base
== stack_pointer_rtx
))
2464 if (CONSTANT_P (ydata
.base
)
2465 && (xdata
.base
== frame_pointer_rtx
2466 || xdata
.base
== hard_frame_pointer_rtx
2467 || xdata
.base
== stack_pointer_rtx
))
2469 /* If either base is variable, we don't know anything. */
2473 return (xdata
.start
>= ydata
.end
|| ydata
.start
>= xdata
.end
);
2476 /* Similar, but calls decompose. */
2479 safe_from_earlyclobber (rtx op
, rtx clobber
)
2481 struct decomposition early_data
;
2483 early_data
= decompose (clobber
);
2484 return immune_p (op
, clobber
, early_data
);
2487 /* Main entry point of this file: search the body of INSN
2488 for values that need reloading and record them with push_reload.
2489 REPLACE nonzero means record also where the values occur
2490 so that subst_reloads can be used.
2492 IND_LEVELS says how many levels of indirection are supported by this
2493 machine; a value of zero means that a memory reference is not a valid
2496 LIVE_KNOWN says we have valid information about which hard
2497 regs are live at each point in the program; this is true when
2498 we are called from global_alloc but false when stupid register
2499 allocation has been done.
2501 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2502 which is nonnegative if the reg has been commandeered for reloading into.
2503 It is copied into STATIC_RELOAD_REG_P and referenced from there
2504 by various subroutines.
2506 Return TRUE if some operands need to be changed, because of swapping
2507 commutative operands, reg_equiv_address substitution, or whatever. */
2510 find_reloads (rtx insn
, int replace
, int ind_levels
, int live_known
,
2511 short *reload_reg_p
)
2513 int insn_code_number
;
2516 /* These start out as the constraints for the insn
2517 and they are chewed up as we consider alternatives. */
2518 char *constraints
[MAX_RECOG_OPERANDS
];
2519 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2521 enum reg_class preferred_class
[MAX_RECOG_OPERANDS
];
2522 char pref_or_nothing
[MAX_RECOG_OPERANDS
];
2523 /* Nonzero for a MEM operand whose entire address needs a reload.
2524 May be -1 to indicate the entire address may or may not need a reload. */
2525 int address_reloaded
[MAX_RECOG_OPERANDS
];
2526 /* Nonzero for an address operand that needs to be completely reloaded.
2527 May be -1 to indicate the entire operand may or may not need a reload. */
2528 int address_operand_reloaded
[MAX_RECOG_OPERANDS
];
2529 /* Value of enum reload_type to use for operand. */
2530 enum reload_type operand_type
[MAX_RECOG_OPERANDS
];
2531 /* Value of enum reload_type to use within address of operand. */
2532 enum reload_type address_type
[MAX_RECOG_OPERANDS
];
2533 /* Save the usage of each operand. */
2534 enum reload_usage
{ RELOAD_READ
, RELOAD_READ_WRITE
, RELOAD_WRITE
} modified
[MAX_RECOG_OPERANDS
];
2535 int no_input_reloads
= 0, no_output_reloads
= 0;
2537 int this_alternative
[MAX_RECOG_OPERANDS
];
2538 char this_alternative_match_win
[MAX_RECOG_OPERANDS
];
2539 char this_alternative_win
[MAX_RECOG_OPERANDS
];
2540 char this_alternative_offmemok
[MAX_RECOG_OPERANDS
];
2541 char this_alternative_earlyclobber
[MAX_RECOG_OPERANDS
];
2542 int this_alternative_matches
[MAX_RECOG_OPERANDS
];
2544 int goal_alternative
[MAX_RECOG_OPERANDS
];
2545 int this_alternative_number
;
2546 int goal_alternative_number
= 0;
2547 int operand_reloadnum
[MAX_RECOG_OPERANDS
];
2548 int goal_alternative_matches
[MAX_RECOG_OPERANDS
];
2549 int goal_alternative_matched
[MAX_RECOG_OPERANDS
];
2550 char goal_alternative_match_win
[MAX_RECOG_OPERANDS
];
2551 char goal_alternative_win
[MAX_RECOG_OPERANDS
];
2552 char goal_alternative_offmemok
[MAX_RECOG_OPERANDS
];
2553 char goal_alternative_earlyclobber
[MAX_RECOG_OPERANDS
];
2554 int goal_alternative_swapped
;
2557 char operands_match
[MAX_RECOG_OPERANDS
][MAX_RECOG_OPERANDS
];
2558 rtx substed_operand
[MAX_RECOG_OPERANDS
];
2559 rtx body
= PATTERN (insn
);
2560 rtx set
= single_set (insn
);
2561 int goal_earlyclobber
= 0, this_earlyclobber
;
2562 enum machine_mode operand_mode
[MAX_RECOG_OPERANDS
];
2568 n_earlyclobbers
= 0;
2569 replace_reloads
= replace
;
2570 hard_regs_live_known
= live_known
;
2571 static_reload_reg_p
= reload_reg_p
;
2573 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2574 neither are insns that SET cc0. Insns that use CC0 are not allowed
2575 to have any input reloads. */
2576 if (JUMP_P (insn
) || CALL_P (insn
))
2577 no_output_reloads
= 1;
2580 if (reg_referenced_p (cc0_rtx
, PATTERN (insn
)))
2581 no_input_reloads
= 1;
2582 if (reg_set_p (cc0_rtx
, PATTERN (insn
)))
2583 no_output_reloads
= 1;
2586 #ifdef SECONDARY_MEMORY_NEEDED
2587 /* The eliminated forms of any secondary memory locations are per-insn, so
2588 clear them out here. */
2590 if (secondary_memlocs_elim_used
)
2592 memset (secondary_memlocs_elim
, 0,
2593 sizeof (secondary_memlocs_elim
[0]) * secondary_memlocs_elim_used
);
2594 secondary_memlocs_elim_used
= 0;
2598 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2599 is cheap to move between them. If it is not, there may not be an insn
2600 to do the copy, so we may need a reload. */
2601 if (GET_CODE (body
) == SET
2602 && REG_P (SET_DEST (body
))
2603 && REGNO (SET_DEST (body
)) < FIRST_PSEUDO_REGISTER
2604 && REG_P (SET_SRC (body
))
2605 && REGNO (SET_SRC (body
)) < FIRST_PSEUDO_REGISTER
2606 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body
)),
2607 REGNO_REG_CLASS (REGNO (SET_SRC (body
))),
2608 REGNO_REG_CLASS (REGNO (SET_DEST (body
)))) == 2)
2611 extract_insn (insn
);
2613 noperands
= reload_n_operands
= recog_data
.n_operands
;
2614 n_alternatives
= recog_data
.n_alternatives
;
2616 /* Just return "no reloads" if insn has no operands with constraints. */
2617 if (noperands
== 0 || n_alternatives
== 0)
2620 insn_code_number
= INSN_CODE (insn
);
2621 this_insn_is_asm
= insn_code_number
< 0;
2623 memcpy (operand_mode
, recog_data
.operand_mode
,
2624 noperands
* sizeof (enum machine_mode
));
2625 memcpy (constraints
, recog_data
.constraints
, noperands
* sizeof (char *));
2629 /* If we will need to know, later, whether some pair of operands
2630 are the same, we must compare them now and save the result.
2631 Reloading the base and index registers will clobber them
2632 and afterward they will fail to match. */
2634 for (i
= 0; i
< noperands
; i
++)
2639 substed_operand
[i
] = recog_data
.operand
[i
];
2642 modified
[i
] = RELOAD_READ
;
2644 /* Scan this operand's constraint to see if it is an output operand,
2645 an in-out operand, is commutative, or should match another. */
2649 p
+= CONSTRAINT_LEN (c
, p
);
2653 modified
[i
] = RELOAD_WRITE
;
2656 modified
[i
] = RELOAD_READ_WRITE
;
2660 /* The last operand should not be marked commutative. */
2661 gcc_assert (i
!= noperands
- 1);
2663 /* We currently only support one commutative pair of
2664 operands. Some existing asm code currently uses more
2665 than one pair. Previously, that would usually work,
2666 but sometimes it would crash the compiler. We
2667 continue supporting that case as well as we can by
2668 silently ignoring all but the first pair. In the
2669 future we may handle it correctly. */
2670 if (commutative
< 0)
2673 gcc_assert (this_insn_is_asm
);
2676 /* Use of ISDIGIT is tempting here, but it may get expensive because
2677 of locale support we don't want. */
2678 case '0': case '1': case '2': case '3': case '4':
2679 case '5': case '6': case '7': case '8': case '9':
2681 c
= strtoul (p
- 1, &p
, 10);
2683 operands_match
[c
][i
]
2684 = operands_match_p (recog_data
.operand
[c
],
2685 recog_data
.operand
[i
]);
2687 /* An operand may not match itself. */
2688 gcc_assert (c
!= i
);
2690 /* If C can be commuted with C+1, and C might need to match I,
2691 then C+1 might also need to match I. */
2692 if (commutative
>= 0)
2694 if (c
== commutative
|| c
== commutative
+ 1)
2696 int other
= c
+ (c
== commutative
? 1 : -1);
2697 operands_match
[other
][i
]
2698 = operands_match_p (recog_data
.operand
[other
],
2699 recog_data
.operand
[i
]);
2701 if (i
== commutative
|| i
== commutative
+ 1)
2703 int other
= i
+ (i
== commutative
? 1 : -1);
2704 operands_match
[c
][other
]
2705 = operands_match_p (recog_data
.operand
[c
],
2706 recog_data
.operand
[other
]);
2708 /* Note that C is supposed to be less than I.
2709 No need to consider altering both C and I because in
2710 that case we would alter one into the other. */
2717 /* Examine each operand that is a memory reference or memory address
2718 and reload parts of the addresses into index registers.
2719 Also here any references to pseudo regs that didn't get hard regs
2720 but are equivalent to constants get replaced in the insn itself
2721 with those constants. Nobody will ever see them again.
2723 Finally, set up the preferred classes of each operand. */
2725 for (i
= 0; i
< noperands
; i
++)
2727 RTX_CODE code
= GET_CODE (recog_data
.operand
[i
]);
2729 address_reloaded
[i
] = 0;
2730 address_operand_reloaded
[i
] = 0;
2731 operand_type
[i
] = (modified
[i
] == RELOAD_READ
? RELOAD_FOR_INPUT
2732 : modified
[i
] == RELOAD_WRITE
? RELOAD_FOR_OUTPUT
2735 = (modified
[i
] == RELOAD_READ
? RELOAD_FOR_INPUT_ADDRESS
2736 : modified
[i
] == RELOAD_WRITE
? RELOAD_FOR_OUTPUT_ADDRESS
2739 if (*constraints
[i
] == 0)
2740 /* Ignore things like match_operator operands. */
2742 else if (constraints
[i
][0] == 'p'
2743 || EXTRA_ADDRESS_CONSTRAINT (constraints
[i
][0], constraints
[i
]))
2745 address_operand_reloaded
[i
]
2746 = find_reloads_address (recog_data
.operand_mode
[i
], (rtx
*) 0,
2747 recog_data
.operand
[i
],
2748 recog_data
.operand_loc
[i
],
2749 i
, operand_type
[i
], ind_levels
, insn
);
2751 /* If we now have a simple operand where we used to have a
2752 PLUS or MULT, re-recognize and try again. */
2753 if ((OBJECT_P (*recog_data
.operand_loc
[i
])
2754 || GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
2755 && (GET_CODE (recog_data
.operand
[i
]) == MULT
2756 || GET_CODE (recog_data
.operand
[i
]) == PLUS
))
2758 INSN_CODE (insn
) = -1;
2759 retval
= find_reloads (insn
, replace
, ind_levels
, live_known
,
2764 recog_data
.operand
[i
] = *recog_data
.operand_loc
[i
];
2765 substed_operand
[i
] = recog_data
.operand
[i
];
2767 /* Address operands are reloaded in their existing mode,
2768 no matter what is specified in the machine description. */
2769 operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2771 else if (code
== MEM
)
2774 = find_reloads_address (GET_MODE (recog_data
.operand
[i
]),
2775 recog_data
.operand_loc
[i
],
2776 XEXP (recog_data
.operand
[i
], 0),
2777 &XEXP (recog_data
.operand
[i
], 0),
2778 i
, address_type
[i
], ind_levels
, insn
);
2779 recog_data
.operand
[i
] = *recog_data
.operand_loc
[i
];
2780 substed_operand
[i
] = recog_data
.operand
[i
];
2782 else if (code
== SUBREG
)
2784 rtx reg
= SUBREG_REG (recog_data
.operand
[i
]);
2786 = find_reloads_toplev (recog_data
.operand
[i
], i
, address_type
[i
],
2789 && &SET_DEST (set
) == recog_data
.operand_loc
[i
],
2791 &address_reloaded
[i
]);
2793 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2794 that didn't get a hard register, emit a USE with a REG_EQUAL
2795 note in front so that we might inherit a previous, possibly
2801 && (GET_MODE_SIZE (GET_MODE (reg
))
2802 >= GET_MODE_SIZE (GET_MODE (op
)))
2803 && reg_equiv_constant
[REGNO (reg
)] == 0)
2804 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode
, reg
),
2806 REG_EQUAL
, reg_equiv_memory_loc
[REGNO (reg
)]);
2808 substed_operand
[i
] = recog_data
.operand
[i
] = op
;
2810 else if (code
== PLUS
|| GET_RTX_CLASS (code
) == RTX_UNARY
)
2811 /* We can get a PLUS as an "operand" as a result of register
2812 elimination. See eliminate_regs and gen_reload. We handle
2813 a unary operator by reloading the operand. */
2814 substed_operand
[i
] = recog_data
.operand
[i
]
2815 = find_reloads_toplev (recog_data
.operand
[i
], i
, address_type
[i
],
2816 ind_levels
, 0, insn
,
2817 &address_reloaded
[i
]);
2818 else if (code
== REG
)
2820 /* This is equivalent to calling find_reloads_toplev.
2821 The code is duplicated for speed.
2822 When we find a pseudo always equivalent to a constant,
2823 we replace it by the constant. We must be sure, however,
2824 that we don't try to replace it in the insn in which it
2826 int regno
= REGNO (recog_data
.operand
[i
]);
2827 if (reg_equiv_constant
[regno
] != 0
2828 && (set
== 0 || &SET_DEST (set
) != recog_data
.operand_loc
[i
]))
2830 /* Record the existing mode so that the check if constants are
2831 allowed will work when operand_mode isn't specified. */
2833 if (operand_mode
[i
] == VOIDmode
)
2834 operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2836 substed_operand
[i
] = recog_data
.operand
[i
]
2837 = reg_equiv_constant
[regno
];
2839 if (reg_equiv_memory_loc
[regno
] != 0
2840 && (reg_equiv_address
[regno
] != 0 || num_not_at_initial_offset
))
2841 /* We need not give a valid is_set_dest argument since the case
2842 of a constant equivalence was checked above. */
2843 substed_operand
[i
] = recog_data
.operand
[i
]
2844 = find_reloads_toplev (recog_data
.operand
[i
], i
, address_type
[i
],
2845 ind_levels
, 0, insn
,
2846 &address_reloaded
[i
]);
2848 /* If the operand is still a register (we didn't replace it with an
2849 equivalent), get the preferred class to reload it into. */
2850 code
= GET_CODE (recog_data
.operand
[i
]);
2852 = ((code
== REG
&& REGNO (recog_data
.operand
[i
])
2853 >= FIRST_PSEUDO_REGISTER
)
2854 ? reg_preferred_class (REGNO (recog_data
.operand
[i
]))
2858 && REGNO (recog_data
.operand
[i
]) >= FIRST_PSEUDO_REGISTER
2859 && reg_alternate_class (REGNO (recog_data
.operand
[i
])) == NO_REGS
);
2862 /* If this is simply a copy from operand 1 to operand 0, merge the
2863 preferred classes for the operands. */
2864 if (set
!= 0 && noperands
>= 2 && recog_data
.operand
[0] == SET_DEST (set
)
2865 && recog_data
.operand
[1] == SET_SRC (set
))
2867 preferred_class
[0] = preferred_class
[1]
2868 = reg_class_subunion
[(int) preferred_class
[0]][(int) preferred_class
[1]];
2869 pref_or_nothing
[0] |= pref_or_nothing
[1];
2870 pref_or_nothing
[1] |= pref_or_nothing
[0];
2873 /* Now see what we need for pseudo-regs that didn't get hard regs
2874 or got the wrong kind of hard reg. For this, we must consider
2875 all the operands together against the register constraints. */
2877 best
= MAX_RECOG_OPERANDS
* 2 + 600;
2880 goal_alternative_swapped
= 0;
2883 /* The constraints are made of several alternatives.
2884 Each operand's constraint looks like foo,bar,... with commas
2885 separating the alternatives. The first alternatives for all
2886 operands go together, the second alternatives go together, etc.
2888 First loop over alternatives. */
2890 for (this_alternative_number
= 0;
2891 this_alternative_number
< n_alternatives
;
2892 this_alternative_number
++)
2894 /* Loop over operands for one constraint alternative. */
2895 /* LOSERS counts those that don't fit this alternative
2896 and would require loading. */
2898 /* BAD is set to 1 if it some operand can't fit this alternative
2899 even after reloading. */
2901 /* REJECT is a count of how undesirable this alternative says it is
2902 if any reloading is required. If the alternative matches exactly
2903 then REJECT is ignored, but otherwise it gets this much
2904 counted against it in addition to the reloading needed. Each
2905 ? counts three times here since we want the disparaging caused by
2906 a bad register class to only count 1/3 as much. */
2909 this_earlyclobber
= 0;
2911 for (i
= 0; i
< noperands
; i
++)
2913 char *p
= constraints
[i
];
2918 /* 0 => this operand can be reloaded somehow for this alternative. */
2920 /* 0 => this operand can be reloaded if the alternative allows regs. */
2924 rtx operand
= recog_data
.operand
[i
];
2926 /* Nonzero means this is a MEM that must be reloaded into a reg
2927 regardless of what the constraint says. */
2928 int force_reload
= 0;
2930 /* Nonzero if a constant forced into memory would be OK for this
2933 int earlyclobber
= 0;
2935 /* If the predicate accepts a unary operator, it means that
2936 we need to reload the operand, but do not do this for
2937 match_operator and friends. */
2938 if (UNARY_P (operand
) && *p
!= 0)
2939 operand
= XEXP (operand
, 0);
2941 /* If the operand is a SUBREG, extract
2942 the REG or MEM (or maybe even a constant) within.
2943 (Constants can occur as a result of reg_equiv_constant.) */
2945 while (GET_CODE (operand
) == SUBREG
)
2947 /* Offset only matters when operand is a REG and
2948 it is a hard reg. This is because it is passed
2949 to reg_fits_class_p if it is a REG and all pseudos
2950 return 0 from that function. */
2951 if (REG_P (SUBREG_REG (operand
))
2952 && REGNO (SUBREG_REG (operand
)) < FIRST_PSEUDO_REGISTER
)
2954 if (!subreg_offset_representable_p
2955 (REGNO (SUBREG_REG (operand
)),
2956 GET_MODE (SUBREG_REG (operand
)),
2957 SUBREG_BYTE (operand
),
2958 GET_MODE (operand
)))
2960 offset
+= subreg_regno_offset (REGNO (SUBREG_REG (operand
)),
2961 GET_MODE (SUBREG_REG (operand
)),
2962 SUBREG_BYTE (operand
),
2963 GET_MODE (operand
));
2965 operand
= SUBREG_REG (operand
);
2966 /* Force reload if this is a constant or PLUS or if there may
2967 be a problem accessing OPERAND in the outer mode. */
2968 if (CONSTANT_P (operand
)
2969 || GET_CODE (operand
) == PLUS
2970 /* We must force a reload of paradoxical SUBREGs
2971 of a MEM because the alignment of the inner value
2972 may not be enough to do the outer reference. On
2973 big-endian machines, it may also reference outside
2976 On machines that extend byte operations and we have a
2977 SUBREG where both the inner and outer modes are no wider
2978 than a word and the inner mode is narrower, is integral,
2979 and gets extended when loaded from memory, combine.c has
2980 made assumptions about the behavior of the machine in such
2981 register access. If the data is, in fact, in memory we
2982 must always load using the size assumed to be in the
2983 register and let the insn do the different-sized
2986 This is doubly true if WORD_REGISTER_OPERATIONS. In
2987 this case eliminate_regs has left non-paradoxical
2988 subregs for push_reload to see. Make sure it does
2989 by forcing the reload.
2991 ??? When is it right at this stage to have a subreg
2992 of a mem that is _not_ to be handled specially? IMO
2993 those should have been reduced to just a mem. */
2994 || ((MEM_P (operand
)
2996 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
))
2997 #ifndef WORD_REGISTER_OPERATIONS
2998 && (((GET_MODE_BITSIZE (GET_MODE (operand
))
2999 < BIGGEST_ALIGNMENT
)
3000 && (GET_MODE_SIZE (operand_mode
[i
])
3001 > GET_MODE_SIZE (GET_MODE (operand
))))
3003 #ifdef LOAD_EXTEND_OP
3004 || (GET_MODE_SIZE (operand_mode
[i
]) <= UNITS_PER_WORD
3005 && (GET_MODE_SIZE (GET_MODE (operand
))
3007 && (GET_MODE_SIZE (operand_mode
[i
])
3008 > GET_MODE_SIZE (GET_MODE (operand
)))
3009 && INTEGRAL_MODE_P (GET_MODE (operand
))
3010 && LOAD_EXTEND_OP (GET_MODE (operand
)) != UNKNOWN
)
3019 this_alternative
[i
] = (int) NO_REGS
;
3020 this_alternative_win
[i
] = 0;
3021 this_alternative_match_win
[i
] = 0;
3022 this_alternative_offmemok
[i
] = 0;
3023 this_alternative_earlyclobber
[i
] = 0;
3024 this_alternative_matches
[i
] = -1;
3026 /* An empty constraint or empty alternative
3027 allows anything which matched the pattern. */
3028 if (*p
== 0 || *p
== ',')
3031 /* Scan this alternative's specs for this operand;
3032 set WIN if the operand fits any letter in this alternative.
3033 Otherwise, clear BADOP if this operand could
3034 fit some letter after reloads,
3035 or set WINREG if this operand could fit after reloads
3036 provided the constraint allows some registers. */
3039 switch ((c
= *p
, len
= CONSTRAINT_LEN (c
, p
)), c
)
3048 case '=': case '+': case '*':
3052 /* We only support one commutative marker, the first
3053 one. We already set commutative above. */
3065 /* Ignore rest of this alternative as far as
3066 reloading is concerned. */
3069 while (*p
&& *p
!= ',');
3073 case '0': case '1': case '2': case '3': case '4':
3074 case '5': case '6': case '7': case '8': case '9':
3075 m
= strtoul (p
, &end
, 10);
3079 this_alternative_matches
[i
] = m
;
3080 /* We are supposed to match a previous operand.
3081 If we do, we win if that one did.
3082 If we do not, count both of the operands as losers.
3083 (This is too conservative, since most of the time
3084 only a single reload insn will be needed to make
3085 the two operands win. As a result, this alternative
3086 may be rejected when it is actually desirable.) */
3087 if ((swapped
&& (m
!= commutative
|| i
!= commutative
+ 1))
3088 /* If we are matching as if two operands were swapped,
3089 also pretend that operands_match had been computed
3091 But if I is the second of those and C is the first,
3092 don't exchange them, because operands_match is valid
3093 only on one side of its diagonal. */
3095 [(m
== commutative
|| m
== commutative
+ 1)
3096 ? 2 * commutative
+ 1 - m
: m
]
3097 [(i
== commutative
|| i
== commutative
+ 1)
3098 ? 2 * commutative
+ 1 - i
: i
])
3099 : operands_match
[m
][i
])
3101 /* If we are matching a non-offsettable address where an
3102 offsettable address was expected, then we must reject
3103 this combination, because we can't reload it. */
3104 if (this_alternative_offmemok
[m
]
3105 && MEM_P (recog_data
.operand
[m
])
3106 && this_alternative
[m
] == (int) NO_REGS
3107 && ! this_alternative_win
[m
])
3110 did_match
= this_alternative_win
[m
];
3114 /* Operands don't match. */
3117 /* Retroactively mark the operand we had to match
3118 as a loser, if it wasn't already. */
3119 if (this_alternative_win
[m
])
3121 this_alternative_win
[m
] = 0;
3122 if (this_alternative
[m
] == (int) NO_REGS
)
3124 /* But count the pair only once in the total badness of
3125 this alternative, if the pair can be a dummy reload.
3126 The pointers in operand_loc are not swapped; swap
3127 them by hand if necessary. */
3128 if (swapped
&& i
== commutative
)
3129 loc1
= commutative
+ 1;
3130 else if (swapped
&& i
== commutative
+ 1)
3134 if (swapped
&& m
== commutative
)
3135 loc2
= commutative
+ 1;
3136 else if (swapped
&& m
== commutative
+ 1)
3141 = find_dummy_reload (recog_data
.operand
[i
],
3142 recog_data
.operand
[m
],
3143 recog_data
.operand_loc
[loc1
],
3144 recog_data
.operand_loc
[loc2
],
3145 operand_mode
[i
], operand_mode
[m
],
3146 this_alternative
[m
], -1,
3147 this_alternative_earlyclobber
[m
]);
3152 /* This can be fixed with reloads if the operand
3153 we are supposed to match can be fixed with reloads. */
3155 this_alternative
[i
] = this_alternative
[m
];
3157 /* If we have to reload this operand and some previous
3158 operand also had to match the same thing as this
3159 operand, we don't know how to do that. So reject this
3161 if (! did_match
|| force_reload
)
3162 for (j
= 0; j
< i
; j
++)
3163 if (this_alternative_matches
[j
]
3164 == this_alternative_matches
[i
])
3169 /* All necessary reloads for an address_operand
3170 were handled in find_reloads_address. */
3172 = (int) base_reg_class (VOIDmode
, ADDRESS
, SCRATCH
);
3182 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
3183 && reg_renumber
[REGNO (operand
)] < 0))
3185 if (CONST_POOL_OK_P (operand
))
3192 && ! address_reloaded
[i
]
3193 && (GET_CODE (XEXP (operand
, 0)) == PRE_DEC
3194 || GET_CODE (XEXP (operand
, 0)) == POST_DEC
))
3200 && ! address_reloaded
[i
]
3201 && (GET_CODE (XEXP (operand
, 0)) == PRE_INC
3202 || GET_CODE (XEXP (operand
, 0)) == POST_INC
))
3206 /* Memory operand whose address is not offsettable. */
3211 && ! (ind_levels
? offsettable_memref_p (operand
)
3212 : offsettable_nonstrict_memref_p (operand
))
3213 /* Certain mem addresses will become offsettable
3214 after they themselves are reloaded. This is important;
3215 we don't want our own handling of unoffsettables
3216 to override the handling of reg_equiv_address. */
3217 && !(REG_P (XEXP (operand
, 0))
3219 || reg_equiv_address
[REGNO (XEXP (operand
, 0))] != 0)))
3223 /* Memory operand whose address is offsettable. */
3227 if ((MEM_P (operand
)
3228 /* If IND_LEVELS, find_reloads_address won't reload a
3229 pseudo that didn't get a hard reg, so we have to
3230 reject that case. */
3231 && ((ind_levels
? offsettable_memref_p (operand
)
3232 : offsettable_nonstrict_memref_p (operand
))
3233 /* A reloaded address is offsettable because it is now
3234 just a simple register indirect. */
3235 || address_reloaded
[i
] == 1))
3237 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
3238 && reg_renumber
[REGNO (operand
)] < 0
3239 /* If reg_equiv_address is nonzero, we will be
3240 loading it into a register; hence it will be
3241 offsettable, but we cannot say that reg_equiv_mem
3242 is offsettable without checking. */
3243 && ((reg_equiv_mem
[REGNO (operand
)] != 0
3244 && offsettable_memref_p (reg_equiv_mem
[REGNO (operand
)]))
3245 || (reg_equiv_address
[REGNO (operand
)] != 0))))
3247 if (CONST_POOL_OK_P (operand
)
3255 /* Output operand that is stored before the need for the
3256 input operands (and their index registers) is over. */
3257 earlyclobber
= 1, this_earlyclobber
= 1;
3262 if (GET_CODE (operand
) == CONST_DOUBLE
3263 || (GET_CODE (operand
) == CONST_VECTOR
3264 && (GET_MODE_CLASS (GET_MODE (operand
))
3265 == MODE_VECTOR_FLOAT
)))
3271 if (GET_CODE (operand
) == CONST_DOUBLE
3272 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand
, c
, p
))
3277 if (GET_CODE (operand
) == CONST_INT
3278 || (GET_CODE (operand
) == CONST_DOUBLE
3279 && GET_MODE (operand
) == VOIDmode
))
3282 if (CONSTANT_P (operand
)
3283 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (operand
)))
3288 if (GET_CODE (operand
) == CONST_INT
3289 || (GET_CODE (operand
) == CONST_DOUBLE
3290 && GET_MODE (operand
) == VOIDmode
))
3302 if (GET_CODE (operand
) == CONST_INT
3303 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand
), c
, p
))
3314 /* A PLUS is never a valid operand, but reload can make
3315 it from a register when eliminating registers. */
3316 && GET_CODE (operand
) != PLUS
3317 /* A SCRATCH is not a valid operand. */
3318 && GET_CODE (operand
) != SCRATCH
3319 && (! CONSTANT_P (operand
)
3321 || LEGITIMATE_PIC_OPERAND_P (operand
))
3322 && (GENERAL_REGS
== ALL_REGS
3324 || (REGNO (operand
) >= FIRST_PSEUDO_REGISTER
3325 && reg_renumber
[REGNO (operand
)] < 0)))
3327 /* Drop through into 'r' case. */
3331 = (int) reg_class_subunion
[this_alternative
[i
]][(int) GENERAL_REGS
];
3335 if (REG_CLASS_FROM_CONSTRAINT (c
, p
) == NO_REGS
)
3337 #ifdef EXTRA_CONSTRAINT_STR
3338 if (EXTRA_MEMORY_CONSTRAINT (c
, p
))
3342 if (EXTRA_CONSTRAINT_STR (operand
, c
, p
))
3344 /* If the address was already reloaded,
3346 else if (MEM_P (operand
)
3347 && address_reloaded
[i
] == 1)
3349 /* Likewise if the address will be reloaded because
3350 reg_equiv_address is nonzero. For reg_equiv_mem
3351 we have to check. */
3352 else if (REG_P (operand
)
3353 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
3354 && reg_renumber
[REGNO (operand
)] < 0
3355 && ((reg_equiv_mem
[REGNO (operand
)] != 0
3356 && EXTRA_CONSTRAINT_STR (reg_equiv_mem
[REGNO (operand
)], c
, p
))
3357 || (reg_equiv_address
[REGNO (operand
)] != 0)))
3360 /* If we didn't already win, we can reload
3361 constants via force_const_mem, and other
3362 MEMs by reloading the address like for 'o'. */
3363 if (CONST_POOL_OK_P (operand
)
3370 if (EXTRA_ADDRESS_CONSTRAINT (c
, p
))
3372 if (EXTRA_CONSTRAINT_STR (operand
, c
, p
))
3375 /* If we didn't already win, we can reload
3376 the address into a base register. */
3378 = (int) base_reg_class (VOIDmode
, ADDRESS
, SCRATCH
);
3383 if (EXTRA_CONSTRAINT_STR (operand
, c
, p
))
3390 = (int) (reg_class_subunion
3391 [this_alternative
[i
]]
3392 [(int) REG_CLASS_FROM_CONSTRAINT (c
, p
)]);
3394 if (GET_MODE (operand
) == BLKmode
)
3398 && reg_fits_class_p (operand
, this_alternative
[i
],
3399 offset
, GET_MODE (recog_data
.operand
[i
])))
3403 while ((p
+= len
), c
);
3407 /* If this operand could be handled with a reg,
3408 and some reg is allowed, then this operand can be handled. */
3409 if (winreg
&& this_alternative
[i
] != (int) NO_REGS
)
3412 /* Record which operands fit this alternative. */
3413 this_alternative_earlyclobber
[i
] = earlyclobber
;
3414 if (win
&& ! force_reload
)
3415 this_alternative_win
[i
] = 1;
3416 else if (did_match
&& ! force_reload
)
3417 this_alternative_match_win
[i
] = 1;
3420 int const_to_mem
= 0;
3422 this_alternative_offmemok
[i
] = offmemok
;
3426 /* Alternative loses if it has no regs for a reg operand. */
3428 && this_alternative
[i
] == (int) NO_REGS
3429 && this_alternative_matches
[i
] < 0)
3432 /* If this is a constant that is reloaded into the desired
3433 class by copying it to memory first, count that as another
3434 reload. This is consistent with other code and is
3435 required to avoid choosing another alternative when
3436 the constant is moved into memory by this function on
3437 an early reload pass. Note that the test here is
3438 precisely the same as in the code below that calls
3440 if (CONST_POOL_OK_P (operand
)
3441 && ((PREFERRED_RELOAD_CLASS (operand
,
3442 (enum reg_class
) this_alternative
[i
])
3444 || no_input_reloads
)
3445 && operand_mode
[i
] != VOIDmode
)
3448 if (this_alternative
[i
] != (int) NO_REGS
)
3452 /* Alternative loses if it requires a type of reload not
3453 permitted for this insn. We can always reload SCRATCH
3454 and objects with a REG_UNUSED note. */
3455 if (GET_CODE (operand
) != SCRATCH
3456 && modified
[i
] != RELOAD_READ
&& no_output_reloads
3457 && ! find_reg_note (insn
, REG_UNUSED
, operand
))
3459 else if (modified
[i
] != RELOAD_WRITE
&& no_input_reloads
3463 /* If we can't reload this value at all, reject this
3464 alternative. Note that we could also lose due to
3465 LIMIT_RELOAD_CLASS, but we don't check that
3468 if (! CONSTANT_P (operand
)
3469 && (enum reg_class
) this_alternative
[i
] != NO_REGS
)
3471 if (PREFERRED_RELOAD_CLASS
3472 (operand
, (enum reg_class
) this_alternative
[i
])
3476 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
3477 if (operand_type
[i
] == RELOAD_FOR_OUTPUT
3478 && PREFERRED_OUTPUT_RELOAD_CLASS
3479 (operand
, (enum reg_class
) this_alternative
[i
])
3485 /* We prefer to reload pseudos over reloading other things,
3486 since such reloads may be able to be eliminated later.
3487 If we are reloading a SCRATCH, we won't be generating any
3488 insns, just using a register, so it is also preferred.
3489 So bump REJECT in other cases. Don't do this in the
3490 case where we are forcing a constant into memory and
3491 it will then win since we don't want to have a different
3492 alternative match then. */
3493 if (! (REG_P (operand
)
3494 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
)
3495 && GET_CODE (operand
) != SCRATCH
3496 && ! (const_to_mem
&& constmemok
))
3499 /* Input reloads can be inherited more often than output
3500 reloads can be removed, so penalize output reloads. */
3501 if (operand_type
[i
] != RELOAD_FOR_INPUT
3502 && GET_CODE (operand
) != SCRATCH
)
3506 /* If this operand is a pseudo register that didn't get a hard
3507 reg and this alternative accepts some register, see if the
3508 class that we want is a subset of the preferred class for this
3509 register. If not, but it intersects that class, use the
3510 preferred class instead. If it does not intersect the preferred
3511 class, show that usage of this alternative should be discouraged;
3512 it will be discouraged more still if the register is `preferred
3513 or nothing'. We do this because it increases the chance of
3514 reusing our spill register in a later insn and avoiding a pair
3515 of memory stores and loads.
3517 Don't bother with this if this alternative will accept this
3520 Don't do this for a multiword operand, since it is only a
3521 small win and has the risk of requiring more spill registers,
3522 which could cause a large loss.
3524 Don't do this if the preferred class has only one register
3525 because we might otherwise exhaust the class. */
3527 if (! win
&& ! did_match
3528 && this_alternative
[i
] != (int) NO_REGS
3529 && GET_MODE_SIZE (operand_mode
[i
]) <= UNITS_PER_WORD
3530 && reg_class_size
[(int) preferred_class
[i
]] > 0
3531 && ! SMALL_REGISTER_CLASS_P (preferred_class
[i
]))
3533 if (! reg_class_subset_p (this_alternative
[i
],
3534 preferred_class
[i
]))
3536 /* Since we don't have a way of forming the intersection,
3537 we just do something special if the preferred class
3538 is a subset of the class we have; that's the most
3539 common case anyway. */
3540 if (reg_class_subset_p (preferred_class
[i
],
3541 this_alternative
[i
]))
3542 this_alternative
[i
] = (int) preferred_class
[i
];
3544 reject
+= (2 + 2 * pref_or_nothing
[i
]);
3549 /* Now see if any output operands that are marked "earlyclobber"
3550 in this alternative conflict with any input operands
3551 or any memory addresses. */
3553 for (i
= 0; i
< noperands
; i
++)
3554 if (this_alternative_earlyclobber
[i
]
3555 && (this_alternative_win
[i
] || this_alternative_match_win
[i
]))
3557 struct decomposition early_data
;
3559 early_data
= decompose (recog_data
.operand
[i
]);
3561 gcc_assert (modified
[i
] != RELOAD_READ
);
3563 if (this_alternative
[i
] == NO_REGS
)
3565 this_alternative_earlyclobber
[i
] = 0;
3566 gcc_assert (this_insn_is_asm
);
3567 error_for_asm (this_insn
,
3568 "%<&%> constraint used with no register class");
3571 for (j
= 0; j
< noperands
; j
++)
3572 /* Is this an input operand or a memory ref? */
3573 if ((MEM_P (recog_data
.operand
[j
])
3574 || modified
[j
] != RELOAD_WRITE
)
3576 /* Ignore things like match_operator operands. */
3577 && *recog_data
.constraints
[j
] != 0
3578 /* Don't count an input operand that is constrained to match
3579 the early clobber operand. */
3580 && ! (this_alternative_matches
[j
] == i
3581 && rtx_equal_p (recog_data
.operand
[i
],
3582 recog_data
.operand
[j
]))
3583 /* Is it altered by storing the earlyclobber operand? */
3584 && !immune_p (recog_data
.operand
[j
], recog_data
.operand
[i
],
3587 /* If the output is in a non-empty few-regs class,
3588 it's costly to reload it, so reload the input instead. */
3589 if (SMALL_REGISTER_CLASS_P (this_alternative
[i
])
3590 && (REG_P (recog_data
.operand
[j
])
3591 || GET_CODE (recog_data
.operand
[j
]) == SUBREG
))
3594 this_alternative_win
[j
] = 0;
3595 this_alternative_match_win
[j
] = 0;
3600 /* If an earlyclobber operand conflicts with something,
3601 it must be reloaded, so request this and count the cost. */
3605 this_alternative_win
[i
] = 0;
3606 this_alternative_match_win
[j
] = 0;
3607 for (j
= 0; j
< noperands
; j
++)
3608 if (this_alternative_matches
[j
] == i
3609 && this_alternative_match_win
[j
])
3611 this_alternative_win
[j
] = 0;
3612 this_alternative_match_win
[j
] = 0;
3618 /* If one alternative accepts all the operands, no reload required,
3619 choose that alternative; don't consider the remaining ones. */
3622 /* Unswap these so that they are never swapped at `finish'. */
3623 if (commutative
>= 0)
3625 recog_data
.operand
[commutative
] = substed_operand
[commutative
];
3626 recog_data
.operand
[commutative
+ 1]
3627 = substed_operand
[commutative
+ 1];
3629 for (i
= 0; i
< noperands
; i
++)
3631 goal_alternative_win
[i
] = this_alternative_win
[i
];
3632 goal_alternative_match_win
[i
] = this_alternative_match_win
[i
];
3633 goal_alternative
[i
] = this_alternative
[i
];
3634 goal_alternative_offmemok
[i
] = this_alternative_offmemok
[i
];
3635 goal_alternative_matches
[i
] = this_alternative_matches
[i
];
3636 goal_alternative_earlyclobber
[i
]
3637 = this_alternative_earlyclobber
[i
];
3639 goal_alternative_number
= this_alternative_number
;
3640 goal_alternative_swapped
= swapped
;
3641 goal_earlyclobber
= this_earlyclobber
;
3645 /* REJECT, set by the ! and ? constraint characters and when a register
3646 would be reloaded into a non-preferred class, discourages the use of
3647 this alternative for a reload goal. REJECT is incremented by six
3648 for each ? and two for each non-preferred class. */
3649 losers
= losers
* 6 + reject
;
3651 /* If this alternative can be made to work by reloading,
3652 and it needs less reloading than the others checked so far,
3653 record it as the chosen goal for reloading. */
3654 if (! bad
&& best
> losers
)
3656 for (i
= 0; i
< noperands
; i
++)
3658 goal_alternative
[i
] = this_alternative
[i
];
3659 goal_alternative_win
[i
] = this_alternative_win
[i
];
3660 goal_alternative_match_win
[i
] = this_alternative_match_win
[i
];
3661 goal_alternative_offmemok
[i
] = this_alternative_offmemok
[i
];
3662 goal_alternative_matches
[i
] = this_alternative_matches
[i
];
3663 goal_alternative_earlyclobber
[i
]
3664 = this_alternative_earlyclobber
[i
];
3666 goal_alternative_swapped
= swapped
;
3668 goal_alternative_number
= this_alternative_number
;
3669 goal_earlyclobber
= this_earlyclobber
;
3673 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3674 then we need to try each alternative twice,
3675 the second time matching those two operands
3676 as if we had exchanged them.
3677 To do this, really exchange them in operands.
3679 If we have just tried the alternatives the second time,
3680 return operands to normal and drop through. */
3682 if (commutative
>= 0)
3687 enum reg_class tclass
;
3690 recog_data
.operand
[commutative
] = substed_operand
[commutative
+ 1];
3691 recog_data
.operand
[commutative
+ 1] = substed_operand
[commutative
];
3692 /* Swap the duplicates too. */
3693 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3694 if (recog_data
.dup_num
[i
] == commutative
3695 || recog_data
.dup_num
[i
] == commutative
+ 1)
3696 *recog_data
.dup_loc
[i
]
3697 = recog_data
.operand
[(int) recog_data
.dup_num
[i
]];
3699 tclass
= preferred_class
[commutative
];
3700 preferred_class
[commutative
] = preferred_class
[commutative
+ 1];
3701 preferred_class
[commutative
+ 1] = tclass
;
3703 t
= pref_or_nothing
[commutative
];
3704 pref_or_nothing
[commutative
] = pref_or_nothing
[commutative
+ 1];
3705 pref_or_nothing
[commutative
+ 1] = t
;
3707 t
= address_reloaded
[commutative
];
3708 address_reloaded
[commutative
] = address_reloaded
[commutative
+ 1];
3709 address_reloaded
[commutative
+ 1] = t
;
3711 memcpy (constraints
, recog_data
.constraints
,
3712 noperands
* sizeof (char *));
3717 recog_data
.operand
[commutative
] = substed_operand
[commutative
];
3718 recog_data
.operand
[commutative
+ 1]
3719 = substed_operand
[commutative
+ 1];
3720 /* Unswap the duplicates too. */
3721 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3722 if (recog_data
.dup_num
[i
] == commutative
3723 || recog_data
.dup_num
[i
] == commutative
+ 1)
3724 *recog_data
.dup_loc
[i
]
3725 = recog_data
.operand
[(int) recog_data
.dup_num
[i
]];
3729 /* The operands don't meet the constraints.
3730 goal_alternative describes the alternative
3731 that we could reach by reloading the fewest operands.
3732 Reload so as to fit it. */
3734 if (best
== MAX_RECOG_OPERANDS
* 2 + 600)
3736 /* No alternative works with reloads?? */
3737 if (insn_code_number
>= 0)
3738 fatal_insn ("unable to generate reloads for:", insn
);
3739 error_for_asm (insn
, "inconsistent operand constraints in an %<asm%>");
3740 /* Avoid further trouble with this insn. */
3741 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
3746 /* Jump to `finish' from above if all operands are valid already.
3747 In that case, goal_alternative_win is all 1. */
3750 /* Right now, for any pair of operands I and J that are required to match,
3752 goal_alternative_matches[J] is I.
3753 Set up goal_alternative_matched as the inverse function:
3754 goal_alternative_matched[I] = J. */
3756 for (i
= 0; i
< noperands
; i
++)
3757 goal_alternative_matched
[i
] = -1;
3759 for (i
= 0; i
< noperands
; i
++)
3760 if (! goal_alternative_win
[i
]
3761 && goal_alternative_matches
[i
] >= 0)
3762 goal_alternative_matched
[goal_alternative_matches
[i
]] = i
;
3764 for (i
= 0; i
< noperands
; i
++)
3765 goal_alternative_win
[i
] |= goal_alternative_match_win
[i
];
3767 /* If the best alternative is with operands 1 and 2 swapped,
3768 consider them swapped before reporting the reloads. Update the
3769 operand numbers of any reloads already pushed. */
3771 if (goal_alternative_swapped
)
3775 tem
= substed_operand
[commutative
];
3776 substed_operand
[commutative
] = substed_operand
[commutative
+ 1];
3777 substed_operand
[commutative
+ 1] = tem
;
3778 tem
= recog_data
.operand
[commutative
];
3779 recog_data
.operand
[commutative
] = recog_data
.operand
[commutative
+ 1];
3780 recog_data
.operand
[commutative
+ 1] = tem
;
3781 tem
= *recog_data
.operand_loc
[commutative
];
3782 *recog_data
.operand_loc
[commutative
]
3783 = *recog_data
.operand_loc
[commutative
+ 1];
3784 *recog_data
.operand_loc
[commutative
+ 1] = tem
;
3786 for (i
= 0; i
< n_reloads
; i
++)
3788 if (rld
[i
].opnum
== commutative
)
3789 rld
[i
].opnum
= commutative
+ 1;
3790 else if (rld
[i
].opnum
== commutative
+ 1)
3791 rld
[i
].opnum
= commutative
;
3795 for (i
= 0; i
< noperands
; i
++)
3797 operand_reloadnum
[i
] = -1;
3799 /* If this is an earlyclobber operand, we need to widen the scope.
3800 The reload must remain valid from the start of the insn being
3801 reloaded until after the operand is stored into its destination.
3802 We approximate this with RELOAD_OTHER even though we know that we
3803 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3805 One special case that is worth checking is when we have an
3806 output that is earlyclobber but isn't used past the insn (typically
3807 a SCRATCH). In this case, we only need have the reload live
3808 through the insn itself, but not for any of our input or output
3810 But we must not accidentally narrow the scope of an existing
3811 RELOAD_OTHER reload - leave these alone.
3813 In any case, anything needed to address this operand can remain
3814 however they were previously categorized. */
3816 if (goal_alternative_earlyclobber
[i
] && operand_type
[i
] != RELOAD_OTHER
)
3818 = (find_reg_note (insn
, REG_UNUSED
, recog_data
.operand
[i
])
3819 ? RELOAD_FOR_INSN
: RELOAD_OTHER
);
3822 /* Any constants that aren't allowed and can't be reloaded
3823 into registers are here changed into memory references. */
3824 for (i
= 0; i
< noperands
; i
++)
3825 if (! goal_alternative_win
[i
]
3826 && CONST_POOL_OK_P (recog_data
.operand
[i
])
3827 && ((PREFERRED_RELOAD_CLASS (recog_data
.operand
[i
],
3828 (enum reg_class
) goal_alternative
[i
])
3830 || no_input_reloads
)
3831 && operand_mode
[i
] != VOIDmode
)
3833 substed_operand
[i
] = recog_data
.operand
[i
]
3834 = find_reloads_toplev (force_const_mem (operand_mode
[i
],
3835 recog_data
.operand
[i
]),
3836 i
, address_type
[i
], ind_levels
, 0, insn
,
3838 if (alternative_allows_memconst (recog_data
.constraints
[i
],
3839 goal_alternative_number
))
3840 goal_alternative_win
[i
] = 1;
3843 /* Likewise any invalid constants appearing as operand of a PLUS
3844 that is to be reloaded. */
3845 for (i
= 0; i
< noperands
; i
++)
3846 if (! goal_alternative_win
[i
]
3847 && GET_CODE (recog_data
.operand
[i
]) == PLUS
3848 && CONST_POOL_OK_P (XEXP (recog_data
.operand
[i
], 1))
3849 && (PREFERRED_RELOAD_CLASS (XEXP (recog_data
.operand
[i
], 1),
3850 (enum reg_class
) goal_alternative
[i
])
3852 && operand_mode
[i
] != VOIDmode
)
3854 rtx tem
= force_const_mem (operand_mode
[i
],
3855 XEXP (recog_data
.operand
[i
], 1));
3856 tem
= gen_rtx_PLUS (operand_mode
[i
],
3857 XEXP (recog_data
.operand
[i
], 0), tem
);
3859 substed_operand
[i
] = recog_data
.operand
[i
]
3860 = find_reloads_toplev (tem
, i
, address_type
[i
],
3861 ind_levels
, 0, insn
, NULL
);
3864 /* Record the values of the earlyclobber operands for the caller. */
3865 if (goal_earlyclobber
)
3866 for (i
= 0; i
< noperands
; i
++)
3867 if (goal_alternative_earlyclobber
[i
])
3868 reload_earlyclobbers
[n_earlyclobbers
++] = recog_data
.operand
[i
];
3870 /* Now record reloads for all the operands that need them. */
3871 for (i
= 0; i
< noperands
; i
++)
3872 if (! goal_alternative_win
[i
])
3874 /* Operands that match previous ones have already been handled. */
3875 if (goal_alternative_matches
[i
] >= 0)
3877 /* Handle an operand with a nonoffsettable address
3878 appearing where an offsettable address will do
3879 by reloading the address into a base register.
3881 ??? We can also do this when the operand is a register and
3882 reg_equiv_mem is not offsettable, but this is a bit tricky,
3883 so we don't bother with it. It may not be worth doing. */
3884 else if (goal_alternative_matched
[i
] == -1
3885 && goal_alternative_offmemok
[i
]
3886 && MEM_P (recog_data
.operand
[i
]))
3888 /* If the address to be reloaded is a VOIDmode constant,
3889 use Pmode as mode of the reload register, as would have
3890 been done by find_reloads_address. */
3891 enum machine_mode address_mode
;
3892 address_mode
= GET_MODE (XEXP (recog_data
.operand
[i
], 0));
3893 if (address_mode
== VOIDmode
)
3894 address_mode
= Pmode
;
3896 operand_reloadnum
[i
]
3897 = push_reload (XEXP (recog_data
.operand
[i
], 0), NULL_RTX
,
3898 &XEXP (recog_data
.operand
[i
], 0), (rtx
*) 0,
3899 base_reg_class (VOIDmode
, MEM
, SCRATCH
),
3901 VOIDmode
, 0, 0, i
, RELOAD_FOR_INPUT
);
3902 rld
[operand_reloadnum
[i
]].inc
3903 = GET_MODE_SIZE (GET_MODE (recog_data
.operand
[i
]));
3905 /* If this operand is an output, we will have made any
3906 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3907 now we are treating part of the operand as an input, so
3908 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3910 if (modified
[i
] == RELOAD_WRITE
)
3912 for (j
= 0; j
< n_reloads
; j
++)
3914 if (rld
[j
].opnum
== i
)
3916 if (rld
[j
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
)
3917 rld
[j
].when_needed
= RELOAD_FOR_INPUT_ADDRESS
;
3918 else if (rld
[j
].when_needed
3919 == RELOAD_FOR_OUTADDR_ADDRESS
)
3920 rld
[j
].when_needed
= RELOAD_FOR_INPADDR_ADDRESS
;
3925 else if (goal_alternative_matched
[i
] == -1)
3927 operand_reloadnum
[i
]
3928 = push_reload ((modified
[i
] != RELOAD_WRITE
3929 ? recog_data
.operand
[i
] : 0),
3930 (modified
[i
] != RELOAD_READ
3931 ? recog_data
.operand
[i
] : 0),
3932 (modified
[i
] != RELOAD_WRITE
3933 ? recog_data
.operand_loc
[i
] : 0),
3934 (modified
[i
] != RELOAD_READ
3935 ? recog_data
.operand_loc
[i
] : 0),
3936 (enum reg_class
) goal_alternative
[i
],
3937 (modified
[i
] == RELOAD_WRITE
3938 ? VOIDmode
: operand_mode
[i
]),
3939 (modified
[i
] == RELOAD_READ
3940 ? VOIDmode
: operand_mode
[i
]),
3941 (insn_code_number
< 0 ? 0
3942 : insn_data
[insn_code_number
].operand
[i
].strict_low
),
3943 0, i
, operand_type
[i
]);
3945 /* In a matching pair of operands, one must be input only
3946 and the other must be output only.
3947 Pass the input operand as IN and the other as OUT. */
3948 else if (modified
[i
] == RELOAD_READ
3949 && modified
[goal_alternative_matched
[i
]] == RELOAD_WRITE
)
3951 operand_reloadnum
[i
]
3952 = push_reload (recog_data
.operand
[i
],
3953 recog_data
.operand
[goal_alternative_matched
[i
]],
3954 recog_data
.operand_loc
[i
],
3955 recog_data
.operand_loc
[goal_alternative_matched
[i
]],
3956 (enum reg_class
) goal_alternative
[i
],
3958 operand_mode
[goal_alternative_matched
[i
]],
3959 0, 0, i
, RELOAD_OTHER
);
3960 operand_reloadnum
[goal_alternative_matched
[i
]] = output_reloadnum
;
3962 else if (modified
[i
] == RELOAD_WRITE
3963 && modified
[goal_alternative_matched
[i
]] == RELOAD_READ
)
3965 operand_reloadnum
[goal_alternative_matched
[i
]]
3966 = push_reload (recog_data
.operand
[goal_alternative_matched
[i
]],
3967 recog_data
.operand
[i
],
3968 recog_data
.operand_loc
[goal_alternative_matched
[i
]],
3969 recog_data
.operand_loc
[i
],
3970 (enum reg_class
) goal_alternative
[i
],
3971 operand_mode
[goal_alternative_matched
[i
]],
3973 0, 0, i
, RELOAD_OTHER
);
3974 operand_reloadnum
[i
] = output_reloadnum
;
3978 gcc_assert (insn_code_number
< 0);
3979 error_for_asm (insn
, "inconsistent operand constraints "
3981 /* Avoid further trouble with this insn. */
3982 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
3987 else if (goal_alternative_matched
[i
] < 0
3988 && goal_alternative_matches
[i
] < 0
3989 && address_operand_reloaded
[i
] != 1
3992 /* For each non-matching operand that's a MEM or a pseudo-register
3993 that didn't get a hard register, make an optional reload.
3994 This may get done even if the insn needs no reloads otherwise. */
3996 rtx operand
= recog_data
.operand
[i
];
3998 while (GET_CODE (operand
) == SUBREG
)
3999 operand
= SUBREG_REG (operand
);
4000 if ((MEM_P (operand
)
4002 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
))
4003 /* If this is only for an output, the optional reload would not
4004 actually cause us to use a register now, just note that
4005 something is stored here. */
4006 && ((enum reg_class
) goal_alternative
[i
] != NO_REGS
4007 || modified
[i
] == RELOAD_WRITE
)
4008 && ! no_input_reloads
4009 /* An optional output reload might allow to delete INSN later.
4010 We mustn't make in-out reloads on insns that are not permitted
4012 If this is an asm, we can't delete it; we must not even call
4013 push_reload for an optional output reload in this case,
4014 because we can't be sure that the constraint allows a register,
4015 and push_reload verifies the constraints for asms. */
4016 && (modified
[i
] == RELOAD_READ
4017 || (! no_output_reloads
&& ! this_insn_is_asm
)))
4018 operand_reloadnum
[i
]
4019 = push_reload ((modified
[i
] != RELOAD_WRITE
4020 ? recog_data
.operand
[i
] : 0),
4021 (modified
[i
] != RELOAD_READ
4022 ? recog_data
.operand
[i
] : 0),
4023 (modified
[i
] != RELOAD_WRITE
4024 ? recog_data
.operand_loc
[i
] : 0),
4025 (modified
[i
] != RELOAD_READ
4026 ? recog_data
.operand_loc
[i
] : 0),
4027 (enum reg_class
) goal_alternative
[i
],
4028 (modified
[i
] == RELOAD_WRITE
4029 ? VOIDmode
: operand_mode
[i
]),
4030 (modified
[i
] == RELOAD_READ
4031 ? VOIDmode
: operand_mode
[i
]),
4032 (insn_code_number
< 0 ? 0
4033 : insn_data
[insn_code_number
].operand
[i
].strict_low
),
4034 1, i
, operand_type
[i
]);
4035 /* If a memory reference remains (either as a MEM or a pseudo that
4036 did not get a hard register), yet we can't make an optional
4037 reload, check if this is actually a pseudo register reference;
4038 we then need to emit a USE and/or a CLOBBER so that reload
4039 inheritance will do the right thing. */
4043 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
4044 && reg_renumber
[REGNO (operand
)] < 0)))
4046 operand
= *recog_data
.operand_loc
[i
];
4048 while (GET_CODE (operand
) == SUBREG
)
4049 operand
= SUBREG_REG (operand
);
4050 if (REG_P (operand
))
4052 if (modified
[i
] != RELOAD_WRITE
)
4053 /* We mark the USE with QImode so that we recognize
4054 it as one that can be safely deleted at the end
4056 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode
, operand
),
4058 if (modified
[i
] != RELOAD_READ
)
4059 emit_insn_after (gen_rtx_CLOBBER (VOIDmode
, operand
), insn
);
4063 else if (goal_alternative_matches
[i
] >= 0
4064 && goal_alternative_win
[goal_alternative_matches
[i
]]
4065 && modified
[i
] == RELOAD_READ
4066 && modified
[goal_alternative_matches
[i
]] == RELOAD_WRITE
4067 && ! no_input_reloads
&& ! no_output_reloads
4070 /* Similarly, make an optional reload for a pair of matching
4071 objects that are in MEM or a pseudo that didn't get a hard reg. */
4073 rtx operand
= recog_data
.operand
[i
];
4075 while (GET_CODE (operand
) == SUBREG
)
4076 operand
= SUBREG_REG (operand
);
4077 if ((MEM_P (operand
)
4079 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
))
4080 && ((enum reg_class
) goal_alternative
[goal_alternative_matches
[i
]]
4082 operand_reloadnum
[i
] = operand_reloadnum
[goal_alternative_matches
[i
]]
4083 = push_reload (recog_data
.operand
[goal_alternative_matches
[i
]],
4084 recog_data
.operand
[i
],
4085 recog_data
.operand_loc
[goal_alternative_matches
[i
]],
4086 recog_data
.operand_loc
[i
],
4087 (enum reg_class
) goal_alternative
[goal_alternative_matches
[i
]],
4088 operand_mode
[goal_alternative_matches
[i
]],
4090 0, 1, goal_alternative_matches
[i
], RELOAD_OTHER
);
4093 /* Perform whatever substitutions on the operands we are supposed
4094 to make due to commutativity or replacement of registers
4095 with equivalent constants or memory slots. */
4097 for (i
= 0; i
< noperands
; i
++)
4099 /* We only do this on the last pass through reload, because it is
4100 possible for some data (like reg_equiv_address) to be changed during
4101 later passes. Moreover, we lose the opportunity to get a useful
4102 reload_{in,out}_reg when we do these replacements. */
4106 rtx substitution
= substed_operand
[i
];
4108 *recog_data
.operand_loc
[i
] = substitution
;
4110 /* If we're replacing an operand with a LABEL_REF, we need
4111 to make sure that there's a REG_LABEL note attached to
4112 this instruction. */
4114 && GET_CODE (substitution
) == LABEL_REF
4115 && !find_reg_note (insn
, REG_LABEL
, XEXP (substitution
, 0)))
4116 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_LABEL
,
4117 XEXP (substitution
, 0),
4121 retval
|= (substed_operand
[i
] != *recog_data
.operand_loc
[i
]);
4124 /* If this insn pattern contains any MATCH_DUP's, make sure that
4125 they will be substituted if the operands they match are substituted.
4126 Also do now any substitutions we already did on the operands.
4128 Don't do this if we aren't making replacements because we might be
4129 propagating things allocated by frame pointer elimination into places
4130 it doesn't expect. */
4132 if (insn_code_number
>= 0 && replace
)
4133 for (i
= insn_data
[insn_code_number
].n_dups
- 1; i
>= 0; i
--)
4135 int opno
= recog_data
.dup_num
[i
];
4136 *recog_data
.dup_loc
[i
] = *recog_data
.operand_loc
[opno
];
4137 dup_replacements (recog_data
.dup_loc
[i
], recog_data
.operand_loc
[opno
]);
4141 /* This loses because reloading of prior insns can invalidate the equivalence
4142 (or at least find_equiv_reg isn't smart enough to find it any more),
4143 causing this insn to need more reload regs than it needed before.
4144 It may be too late to make the reload regs available.
4145 Now this optimization is done safely in choose_reload_regs. */
4147 /* For each reload of a reg into some other class of reg,
4148 search for an existing equivalent reg (same value now) in the right class.
4149 We can use it as long as we don't need to change its contents. */
4150 for (i
= 0; i
< n_reloads
; i
++)
4151 if (rld
[i
].reg_rtx
== 0
4153 && REG_P (rld
[i
].in
)
4157 = find_equiv_reg (rld
[i
].in
, insn
, rld
[i
].class, -1,
4158 static_reload_reg_p
, 0, rld
[i
].inmode
);
4159 /* Prevent generation of insn to load the value
4160 because the one we found already has the value. */
4162 rld
[i
].in
= rld
[i
].reg_rtx
;
4166 /* If we detected error and replaced asm instruction by USE, forget about the
4168 if (GET_CODE (PATTERN (insn
)) == USE
4169 && GET_CODE (XEXP (PATTERN (insn
), 0)) == CONST_INT
)
4172 /* Perhaps an output reload can be combined with another
4173 to reduce needs by one. */
4174 if (!goal_earlyclobber
)
4177 /* If we have a pair of reloads for parts of an address, they are reloading
4178 the same object, the operands themselves were not reloaded, and they
4179 are for two operands that are supposed to match, merge the reloads and
4180 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4182 for (i
= 0; i
< n_reloads
; i
++)
4186 for (j
= i
+ 1; j
< n_reloads
; j
++)
4187 if ((rld
[i
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
4188 || rld
[i
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
4189 || rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
4190 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
4191 && (rld
[j
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
4192 || rld
[j
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
4193 || rld
[j
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
4194 || rld
[j
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
4195 && rtx_equal_p (rld
[i
].in
, rld
[j
].in
)
4196 && (operand_reloadnum
[rld
[i
].opnum
] < 0
4197 || rld
[operand_reloadnum
[rld
[i
].opnum
]].optional
)
4198 && (operand_reloadnum
[rld
[j
].opnum
] < 0
4199 || rld
[operand_reloadnum
[rld
[j
].opnum
]].optional
)
4200 && (goal_alternative_matches
[rld
[i
].opnum
] == rld
[j
].opnum
4201 || (goal_alternative_matches
[rld
[j
].opnum
]
4204 for (k
= 0; k
< n_replacements
; k
++)
4205 if (replacements
[k
].what
== j
)
4206 replacements
[k
].what
= i
;
4208 if (rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
4209 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
4210 rld
[i
].when_needed
= RELOAD_FOR_OPADDR_ADDR
;
4212 rld
[i
].when_needed
= RELOAD_FOR_OPERAND_ADDRESS
;
4217 /* Scan all the reloads and update their type.
4218 If a reload is for the address of an operand and we didn't reload
4219 that operand, change the type. Similarly, change the operand number
4220 of a reload when two operands match. If a reload is optional, treat it
4221 as though the operand isn't reloaded.
4223 ??? This latter case is somewhat odd because if we do the optional
4224 reload, it means the object is hanging around. Thus we need only
4225 do the address reload if the optional reload was NOT done.
4227 Change secondary reloads to be the address type of their operand, not
4230 If an operand's reload is now RELOAD_OTHER, change any
4231 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4232 RELOAD_FOR_OTHER_ADDRESS. */
4234 for (i
= 0; i
< n_reloads
; i
++)
4236 if (rld
[i
].secondary_p
4237 && rld
[i
].when_needed
== operand_type
[rld
[i
].opnum
])
4238 rld
[i
].when_needed
= address_type
[rld
[i
].opnum
];
4240 if ((rld
[i
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
4241 || rld
[i
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
4242 || rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
4243 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
4244 && (operand_reloadnum
[rld
[i
].opnum
] < 0
4245 || rld
[operand_reloadnum
[rld
[i
].opnum
]].optional
))
4247 /* If we have a secondary reload to go along with this reload,
4248 change its type to RELOAD_FOR_OPADDR_ADDR. */
4250 if ((rld
[i
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
4251 || rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
)
4252 && rld
[i
].secondary_in_reload
!= -1)
4254 int secondary_in_reload
= rld
[i
].secondary_in_reload
;
4256 rld
[secondary_in_reload
].when_needed
= RELOAD_FOR_OPADDR_ADDR
;
4258 /* If there's a tertiary reload we have to change it also. */
4259 if (secondary_in_reload
> 0
4260 && rld
[secondary_in_reload
].secondary_in_reload
!= -1)
4261 rld
[rld
[secondary_in_reload
].secondary_in_reload
].when_needed
4262 = RELOAD_FOR_OPADDR_ADDR
;
4265 if ((rld
[i
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
4266 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
4267 && rld
[i
].secondary_out_reload
!= -1)
4269 int secondary_out_reload
= rld
[i
].secondary_out_reload
;
4271 rld
[secondary_out_reload
].when_needed
= RELOAD_FOR_OPADDR_ADDR
;
4273 /* If there's a tertiary reload we have to change it also. */
4274 if (secondary_out_reload
4275 && rld
[secondary_out_reload
].secondary_out_reload
!= -1)
4276 rld
[rld
[secondary_out_reload
].secondary_out_reload
].when_needed
4277 = RELOAD_FOR_OPADDR_ADDR
;
4280 if (rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
4281 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
4282 rld
[i
].when_needed
= RELOAD_FOR_OPADDR_ADDR
;
4284 rld
[i
].when_needed
= RELOAD_FOR_OPERAND_ADDRESS
;
4287 if ((rld
[i
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
4288 || rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
)
4289 && operand_reloadnum
[rld
[i
].opnum
] >= 0
4290 && (rld
[operand_reloadnum
[rld
[i
].opnum
]].when_needed
4292 rld
[i
].when_needed
= RELOAD_FOR_OTHER_ADDRESS
;
4294 if (goal_alternative_matches
[rld
[i
].opnum
] >= 0)
4295 rld
[i
].opnum
= goal_alternative_matches
[rld
[i
].opnum
];
4298 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4299 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4300 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4302 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4303 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4304 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4305 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4306 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4307 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4308 This is complicated by the fact that a single operand can have more
4309 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4310 choose_reload_regs without affecting code quality, and cases that
4311 actually fail are extremely rare, so it turns out to be better to fix
4312 the problem here by not generating cases that choose_reload_regs will
4314 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4315 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4317 We can reduce the register pressure by exploiting that a
4318 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4319 does not conflict with any of them, if it is only used for the first of
4320 the RELOAD_FOR_X_ADDRESS reloads. */
4322 int first_op_addr_num
= -2;
4323 int first_inpaddr_num
[MAX_RECOG_OPERANDS
];
4324 int first_outpaddr_num
[MAX_RECOG_OPERANDS
];
4325 int need_change
= 0;
4326 /* We use last_op_addr_reload and the contents of the above arrays
4327 first as flags - -2 means no instance encountered, -1 means exactly
4328 one instance encountered.
4329 If more than one instance has been encountered, we store the reload
4330 number of the first reload of the kind in question; reload numbers
4331 are known to be non-negative. */
4332 for (i
= 0; i
< noperands
; i
++)
4333 first_inpaddr_num
[i
] = first_outpaddr_num
[i
] = -2;
4334 for (i
= n_reloads
- 1; i
>= 0; i
--)
4336 switch (rld
[i
].when_needed
)
4338 case RELOAD_FOR_OPERAND_ADDRESS
:
4339 if (++first_op_addr_num
>= 0)
4341 first_op_addr_num
= i
;
4345 case RELOAD_FOR_INPUT_ADDRESS
:
4346 if (++first_inpaddr_num
[rld
[i
].opnum
] >= 0)
4348 first_inpaddr_num
[rld
[i
].opnum
] = i
;
4352 case RELOAD_FOR_OUTPUT_ADDRESS
:
4353 if (++first_outpaddr_num
[rld
[i
].opnum
] >= 0)
4355 first_outpaddr_num
[rld
[i
].opnum
] = i
;
4366 for (i
= 0; i
< n_reloads
; i
++)
4369 enum reload_type type
;
4371 switch (rld
[i
].when_needed
)
4373 case RELOAD_FOR_OPADDR_ADDR
:
4374 first_num
= first_op_addr_num
;
4375 type
= RELOAD_FOR_OPERAND_ADDRESS
;
4377 case RELOAD_FOR_INPADDR_ADDRESS
:
4378 first_num
= first_inpaddr_num
[rld
[i
].opnum
];
4379 type
= RELOAD_FOR_INPUT_ADDRESS
;
4381 case RELOAD_FOR_OUTADDR_ADDRESS
:
4382 first_num
= first_outpaddr_num
[rld
[i
].opnum
];
4383 type
= RELOAD_FOR_OUTPUT_ADDRESS
;
4390 else if (i
> first_num
)
4391 rld
[i
].when_needed
= type
;
4394 /* Check if the only TYPE reload that uses reload I is
4395 reload FIRST_NUM. */
4396 for (j
= n_reloads
- 1; j
> first_num
; j
--)
4398 if (rld
[j
].when_needed
== type
4399 && (rld
[i
].secondary_p
4400 ? rld
[j
].secondary_in_reload
== i
4401 : reg_mentioned_p (rld
[i
].in
, rld
[j
].in
)))
4403 rld
[i
].when_needed
= type
;
4412 /* See if we have any reloads that are now allowed to be merged
4413 because we've changed when the reload is needed to
4414 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4415 check for the most common cases. */
4417 for (i
= 0; i
< n_reloads
; i
++)
4418 if (rld
[i
].in
!= 0 && rld
[i
].out
== 0
4419 && (rld
[i
].when_needed
== RELOAD_FOR_OPERAND_ADDRESS
4420 || rld
[i
].when_needed
== RELOAD_FOR_OPADDR_ADDR
4421 || rld
[i
].when_needed
== RELOAD_FOR_OTHER_ADDRESS
))
4422 for (j
= 0; j
< n_reloads
; j
++)
4423 if (i
!= j
&& rld
[j
].in
!= 0 && rld
[j
].out
== 0
4424 && rld
[j
].when_needed
== rld
[i
].when_needed
4425 && MATCHES (rld
[i
].in
, rld
[j
].in
)
4426 && rld
[i
].class == rld
[j
].class
4427 && !rld
[i
].nocombine
&& !rld
[j
].nocombine
4428 && rld
[i
].reg_rtx
== rld
[j
].reg_rtx
)
4430 rld
[i
].opnum
= MIN (rld
[i
].opnum
, rld
[j
].opnum
);
4431 transfer_replacements (i
, j
);
4436 /* If we made any reloads for addresses, see if they violate a
4437 "no input reloads" requirement for this insn. But loads that we
4438 do after the insn (such as for output addresses) are fine. */
4439 if (no_input_reloads
)
4440 for (i
= 0; i
< n_reloads
; i
++)
4441 gcc_assert (rld
[i
].in
== 0
4442 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
4443 || rld
[i
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
);
4446 /* Compute reload_mode and reload_nregs. */
4447 for (i
= 0; i
< n_reloads
; i
++)
4450 = (rld
[i
].inmode
== VOIDmode
4451 || (GET_MODE_SIZE (rld
[i
].outmode
)
4452 > GET_MODE_SIZE (rld
[i
].inmode
)))
4453 ? rld
[i
].outmode
: rld
[i
].inmode
;
4455 rld
[i
].nregs
= CLASS_MAX_NREGS (rld
[i
].class, rld
[i
].mode
);
4458 /* Special case a simple move with an input reload and a
4459 destination of a hard reg, if the hard reg is ok, use it. */
4460 for (i
= 0; i
< n_reloads
; i
++)
4461 if (rld
[i
].when_needed
== RELOAD_FOR_INPUT
4462 && GET_CODE (PATTERN (insn
)) == SET
4463 && REG_P (SET_DEST (PATTERN (insn
)))
4464 && SET_SRC (PATTERN (insn
)) == rld
[i
].in
4465 && !elimination_target_reg_p (SET_DEST (PATTERN (insn
))))
4467 rtx dest
= SET_DEST (PATTERN (insn
));
4468 unsigned int regno
= REGNO (dest
);
4470 if (regno
< FIRST_PSEUDO_REGISTER
4471 && TEST_HARD_REG_BIT (reg_class_contents
[rld
[i
].class], regno
)
4472 && HARD_REGNO_MODE_OK (regno
, rld
[i
].mode
))
4474 int nr
= hard_regno_nregs
[regno
][rld
[i
].mode
];
4477 for (nri
= 1; nri
< nr
; nri
++)
4478 if (! TEST_HARD_REG_BIT (reg_class_contents
[rld
[i
].class], regno
+ nri
))
4482 rld
[i
].reg_rtx
= dest
;
4489 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4490 accepts a memory operand with constant address. */
4493 alternative_allows_memconst (const char *constraint
, int altnum
)
4496 /* Skip alternatives before the one requested. */
4499 while (*constraint
++ != ',');
4502 /* Scan the requested alternative for 'm' or 'o'.
4503 If one of them is present, this alternative accepts memory constants. */
4504 for (; (c
= *constraint
) && c
!= ',' && c
!= '#';
4505 constraint
+= CONSTRAINT_LEN (c
, constraint
))
4506 if (c
== 'm' || c
== 'o' || EXTRA_MEMORY_CONSTRAINT (c
, constraint
))
4511 /* Scan X for memory references and scan the addresses for reloading.
4512 Also checks for references to "constant" regs that we want to eliminate
4513 and replaces them with the values they stand for.
4514 We may alter X destructively if it contains a reference to such.
4515 If X is just a constant reg, we return the equivalent value
4518 IND_LEVELS says how many levels of indirect addressing this machine
4521 OPNUM and TYPE identify the purpose of the reload.
4523 IS_SET_DEST is true if X is the destination of a SET, which is not
4524 appropriate to be replaced by a constant.
4526 INSN, if nonzero, is the insn in which we do the reload. It is used
4527 to determine if we may generate output reloads, and where to put USEs
4528 for pseudos that we have to replace with stack slots.
4530 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4531 result of find_reloads_address. */
4534 find_reloads_toplev (rtx x
, int opnum
, enum reload_type type
,
4535 int ind_levels
, int is_set_dest
, rtx insn
,
4536 int *address_reloaded
)
4538 RTX_CODE code
= GET_CODE (x
);
4540 const char *fmt
= GET_RTX_FORMAT (code
);
4546 /* This code is duplicated for speed in find_reloads. */
4547 int regno
= REGNO (x
);
4548 if (reg_equiv_constant
[regno
] != 0 && !is_set_dest
)
4549 x
= reg_equiv_constant
[regno
];
4551 /* This creates (subreg (mem...)) which would cause an unnecessary
4552 reload of the mem. */
4553 else if (reg_equiv_mem
[regno
] != 0)
4554 x
= reg_equiv_mem
[regno
];
4556 else if (reg_equiv_memory_loc
[regno
]
4557 && (reg_equiv_address
[regno
] != 0 || num_not_at_initial_offset
))
4559 rtx mem
= make_memloc (x
, regno
);
4560 if (reg_equiv_address
[regno
]
4561 || ! rtx_equal_p (mem
, reg_equiv_mem
[regno
]))
4563 /* If this is not a toplevel operand, find_reloads doesn't see
4564 this substitution. We have to emit a USE of the pseudo so
4565 that delete_output_reload can see it. */
4566 if (replace_reloads
&& recog_data
.operand
[opnum
] != x
)
4567 /* We mark the USE with QImode so that we recognize it
4568 as one that can be safely deleted at the end of
4570 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode
, x
), insn
),
4573 i
= find_reloads_address (GET_MODE (x
), &x
, XEXP (x
, 0), &XEXP (x
, 0),
4574 opnum
, type
, ind_levels
, insn
);
4575 if (!rtx_equal_p (x
, mem
))
4576 push_reg_equiv_alt_mem (regno
, x
);
4577 if (address_reloaded
)
4578 *address_reloaded
= i
;
4587 i
= find_reloads_address (GET_MODE (x
), &tem
, XEXP (x
, 0), &XEXP (x
, 0),
4588 opnum
, type
, ind_levels
, insn
);
4589 if (address_reloaded
)
4590 *address_reloaded
= i
;
4595 if (code
== SUBREG
&& REG_P (SUBREG_REG (x
)))
4597 /* Check for SUBREG containing a REG that's equivalent to a
4598 constant. If the constant has a known value, truncate it
4599 right now. Similarly if we are extracting a single-word of a
4600 multi-word constant. If the constant is symbolic, allow it
4601 to be substituted normally. push_reload will strip the
4602 subreg later. The constant must not be VOIDmode, because we
4603 will lose the mode of the register (this should never happen
4604 because one of the cases above should handle it). */
4606 int regno
= REGNO (SUBREG_REG (x
));
4609 if (regno
>= FIRST_PSEUDO_REGISTER
4610 && reg_renumber
[regno
] < 0
4611 && reg_equiv_constant
[regno
] != 0)
4614 simplify_gen_subreg (GET_MODE (x
), reg_equiv_constant
[regno
],
4615 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
4617 if (CONSTANT_P (tem
) && !LEGITIMATE_CONSTANT_P (tem
))
4619 tem
= force_const_mem (GET_MODE (x
), tem
);
4620 i
= find_reloads_address (GET_MODE (tem
), &tem
, XEXP (tem
, 0),
4621 &XEXP (tem
, 0), opnum
, type
,
4623 if (address_reloaded
)
4624 *address_reloaded
= i
;
4629 /* If the subreg contains a reg that will be converted to a mem,
4630 convert the subreg to a narrower memref now.
4631 Otherwise, we would get (subreg (mem ...) ...),
4632 which would force reload of the mem.
4634 We also need to do this if there is an equivalent MEM that is
4635 not offsettable. In that case, alter_subreg would produce an
4636 invalid address on big-endian machines.
4638 For machines that extend byte loads, we must not reload using
4639 a wider mode if we have a paradoxical SUBREG. find_reloads will
4640 force a reload in that case. So we should not do anything here. */
4642 if (regno
>= FIRST_PSEUDO_REGISTER
4643 #ifdef LOAD_EXTEND_OP
4644 && (GET_MODE_SIZE (GET_MODE (x
))
4645 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
4647 && (reg_equiv_address
[regno
] != 0
4648 || (reg_equiv_mem
[regno
] != 0
4649 && (! strict_memory_address_p (GET_MODE (x
),
4650 XEXP (reg_equiv_mem
[regno
], 0))
4651 || ! offsettable_memref_p (reg_equiv_mem
[regno
])
4652 || num_not_at_initial_offset
))))
4653 x
= find_reloads_subreg_address (x
, 1, opnum
, type
, ind_levels
,
4657 for (copied
= 0, i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4661 rtx new_part
= find_reloads_toplev (XEXP (x
, i
), opnum
, type
,
4662 ind_levels
, is_set_dest
, insn
,
4664 /* If we have replaced a reg with it's equivalent memory loc -
4665 that can still be handled here e.g. if it's in a paradoxical
4666 subreg - we must make the change in a copy, rather than using
4667 a destructive change. This way, find_reloads can still elect
4668 not to do the change. */
4669 if (new_part
!= XEXP (x
, i
) && ! CONSTANT_P (new_part
) && ! copied
)
4671 x
= shallow_copy_rtx (x
);
4674 XEXP (x
, i
) = new_part
;
4680 /* Return a mem ref for the memory equivalent of reg REGNO.
4681 This mem ref is not shared with anything. */
4684 make_memloc (rtx ad
, int regno
)
4686 /* We must rerun eliminate_regs, in case the elimination
4687 offsets have changed. */
4689 = XEXP (eliminate_regs (reg_equiv_memory_loc
[regno
], 0, NULL_RTX
), 0);
4691 /* If TEM might contain a pseudo, we must copy it to avoid
4692 modifying it when we do the substitution for the reload. */
4693 if (rtx_varies_p (tem
, 0))
4694 tem
= copy_rtx (tem
);
4696 tem
= replace_equiv_address_nv (reg_equiv_memory_loc
[regno
], tem
);
4697 tem
= adjust_address_nv (tem
, GET_MODE (ad
), 0);
4699 /* Copy the result if it's still the same as the equivalence, to avoid
4700 modifying it when we do the substitution for the reload. */
4701 if (tem
== reg_equiv_memory_loc
[regno
])
4702 tem
= copy_rtx (tem
);
4706 /* Returns true if AD could be turned into a valid memory reference
4707 to mode MODE by reloading the part pointed to by PART into a
4711 maybe_memory_address_p (enum machine_mode mode
, rtx ad
, rtx
*part
)
4715 rtx reg
= gen_rtx_REG (GET_MODE (tem
), max_reg_num ());
4718 retv
= memory_address_p (mode
, ad
);
4724 /* Record all reloads needed for handling memory address AD
4725 which appears in *LOC in a memory reference to mode MODE
4726 which itself is found in location *MEMREFLOC.
4727 Note that we take shortcuts assuming that no multi-reg machine mode
4728 occurs as part of an address.
4730 OPNUM and TYPE specify the purpose of this reload.
4732 IND_LEVELS says how many levels of indirect addressing this machine
4735 INSN, if nonzero, is the insn in which we do the reload. It is used
4736 to determine if we may generate output reloads, and where to put USEs
4737 for pseudos that we have to replace with stack slots.
4739 Value is one if this address is reloaded or replaced as a whole; it is
4740 zero if the top level of this address was not reloaded or replaced, and
4741 it is -1 if it may or may not have been reloaded or replaced.
4743 Note that there is no verification that the address will be valid after
4744 this routine does its work. Instead, we rely on the fact that the address
4745 was valid when reload started. So we need only undo things that reload
4746 could have broken. These are wrong register types, pseudos not allocated
4747 to a hard register, and frame pointer elimination. */
4750 find_reloads_address (enum machine_mode mode
, rtx
*memrefloc
, rtx ad
,
4751 rtx
*loc
, int opnum
, enum reload_type type
,
4752 int ind_levels
, rtx insn
)
4755 int removed_and
= 0;
4759 /* If the address is a register, see if it is a legitimate address and
4760 reload if not. We first handle the cases where we need not reload
4761 or where we must reload in a non-standard way. */
4767 /* If the register is equivalent to an invariant expression, substitute
4768 the invariant, and eliminate any eliminable register references. */
4769 tem
= reg_equiv_constant
[regno
];
4771 && (tem
= eliminate_regs (tem
, mode
, insn
))
4772 && strict_memory_address_p (mode
, tem
))
4778 tem
= reg_equiv_memory_loc
[regno
];
4781 if (reg_equiv_address
[regno
] != 0 || num_not_at_initial_offset
)
4783 tem
= make_memloc (ad
, regno
);
4784 if (! strict_memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
4788 find_reloads_address (GET_MODE (tem
), &tem
, XEXP (tem
, 0),
4789 &XEXP (tem
, 0), opnum
,
4790 ADDR_TYPE (type
), ind_levels
, insn
);
4791 if (!rtx_equal_p (tem
, orig
))
4792 push_reg_equiv_alt_mem (regno
, tem
);
4794 /* We can avoid a reload if the register's equivalent memory
4795 expression is valid as an indirect memory address.
4796 But not all addresses are valid in a mem used as an indirect
4797 address: only reg or reg+constant. */
4800 && strict_memory_address_p (mode
, tem
)
4801 && (REG_P (XEXP (tem
, 0))
4802 || (GET_CODE (XEXP (tem
, 0)) == PLUS
4803 && REG_P (XEXP (XEXP (tem
, 0), 0))
4804 && CONSTANT_P (XEXP (XEXP (tem
, 0), 1)))))
4806 /* TEM is not the same as what we'll be replacing the
4807 pseudo with after reload, put a USE in front of INSN
4808 in the final reload pass. */
4810 && num_not_at_initial_offset
4811 && ! rtx_equal_p (tem
, reg_equiv_mem
[regno
]))
4814 /* We mark the USE with QImode so that we
4815 recognize it as one that can be safely
4816 deleted at the end of reload. */
4817 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode
, ad
),
4820 /* This doesn't really count as replacing the address
4821 as a whole, since it is still a memory access. */
4829 /* The only remaining case where we can avoid a reload is if this is a
4830 hard register that is valid as a base register and which is not the
4831 subject of a CLOBBER in this insn. */
4833 else if (regno
< FIRST_PSEUDO_REGISTER
4834 && regno_ok_for_base_p (regno
, mode
, MEM
, SCRATCH
)
4835 && ! regno_clobbered_p (regno
, this_insn
, mode
, 0))
4838 /* If we do not have one of the cases above, we must do the reload. */
4839 push_reload (ad
, NULL_RTX
, loc
, (rtx
*) 0, base_reg_class (mode
, MEM
, SCRATCH
),
4840 GET_MODE (ad
), VOIDmode
, 0, 0, opnum
, type
);
4844 if (strict_memory_address_p (mode
, ad
))
4846 /* The address appears valid, so reloads are not needed.
4847 But the address may contain an eliminable register.
4848 This can happen because a machine with indirect addressing
4849 may consider a pseudo register by itself a valid address even when
4850 it has failed to get a hard reg.
4851 So do a tree-walk to find and eliminate all such regs. */
4853 /* But first quickly dispose of a common case. */
4854 if (GET_CODE (ad
) == PLUS
4855 && GET_CODE (XEXP (ad
, 1)) == CONST_INT
4856 && REG_P (XEXP (ad
, 0))
4857 && reg_equiv_constant
[REGNO (XEXP (ad
, 0))] == 0)
4860 subst_reg_equivs_changed
= 0;
4861 *loc
= subst_reg_equivs (ad
, insn
);
4863 if (! subst_reg_equivs_changed
)
4866 /* Check result for validity after substitution. */
4867 if (strict_memory_address_p (mode
, ad
))
4871 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4876 LEGITIMIZE_RELOAD_ADDRESS (ad
, GET_MODE (*memrefloc
), opnum
, type
,
4881 *memrefloc
= copy_rtx (*memrefloc
);
4882 XEXP (*memrefloc
, 0) = ad
;
4883 move_replacements (&ad
, &XEXP (*memrefloc
, 0));
4889 /* The address is not valid. We have to figure out why. First see if
4890 we have an outer AND and remove it if so. Then analyze what's inside. */
4892 if (GET_CODE (ad
) == AND
)
4895 loc
= &XEXP (ad
, 0);
4899 /* One possibility for why the address is invalid is that it is itself
4900 a MEM. This can happen when the frame pointer is being eliminated, a
4901 pseudo is not allocated to a hard register, and the offset between the
4902 frame and stack pointers is not its initial value. In that case the
4903 pseudo will have been replaced by a MEM referring to the
4907 /* First ensure that the address in this MEM is valid. Then, unless
4908 indirect addresses are valid, reload the MEM into a register. */
4910 find_reloads_address (GET_MODE (ad
), &tem
, XEXP (ad
, 0), &XEXP (ad
, 0),
4911 opnum
, ADDR_TYPE (type
),
4912 ind_levels
== 0 ? 0 : ind_levels
- 1, insn
);
4914 /* If tem was changed, then we must create a new memory reference to
4915 hold it and store it back into memrefloc. */
4916 if (tem
!= ad
&& memrefloc
)
4918 *memrefloc
= copy_rtx (*memrefloc
);
4919 copy_replacements (tem
, XEXP (*memrefloc
, 0));
4920 loc
= &XEXP (*memrefloc
, 0);
4922 loc
= &XEXP (*loc
, 0);
4925 /* Check similar cases as for indirect addresses as above except
4926 that we can allow pseudos and a MEM since they should have been
4927 taken care of above. */
4930 || (GET_CODE (XEXP (tem
, 0)) == SYMBOL_REF
&& ! indirect_symref_ok
)
4931 || MEM_P (XEXP (tem
, 0))
4932 || ! (REG_P (XEXP (tem
, 0))
4933 || (GET_CODE (XEXP (tem
, 0)) == PLUS
4934 && REG_P (XEXP (XEXP (tem
, 0), 0))
4935 && GET_CODE (XEXP (XEXP (tem
, 0), 1)) == CONST_INT
)))
4937 /* Must use TEM here, not AD, since it is the one that will
4938 have any subexpressions reloaded, if needed. */
4939 push_reload (tem
, NULL_RTX
, loc
, (rtx
*) 0,
4940 base_reg_class (mode
, MEM
, SCRATCH
), GET_MODE (tem
),
4943 return ! removed_and
;
4949 /* If we have address of a stack slot but it's not valid because the
4950 displacement is too large, compute the sum in a register.
4951 Handle all base registers here, not just fp/ap/sp, because on some
4952 targets (namely SH) we can also get too large displacements from
4953 big-endian corrections. */
4954 else if (GET_CODE (ad
) == PLUS
4955 && REG_P (XEXP (ad
, 0))
4956 && REGNO (XEXP (ad
, 0)) < FIRST_PSEUDO_REGISTER
4957 && GET_CODE (XEXP (ad
, 1)) == CONST_INT
4958 && regno_ok_for_base_p (REGNO (XEXP (ad
, 0)), mode
, PLUS
,
4962 /* Unshare the MEM rtx so we can safely alter it. */
4965 *memrefloc
= copy_rtx (*memrefloc
);
4966 loc
= &XEXP (*memrefloc
, 0);
4968 loc
= &XEXP (*loc
, 0);
4971 if (double_reg_address_ok
)
4973 /* Unshare the sum as well. */
4974 *loc
= ad
= copy_rtx (ad
);
4976 /* Reload the displacement into an index reg.
4977 We assume the frame pointer or arg pointer is a base reg. */
4978 find_reloads_address_part (XEXP (ad
, 1), &XEXP (ad
, 1),
4979 INDEX_REG_CLASS
, GET_MODE (ad
), opnum
,
4985 /* If the sum of two regs is not necessarily valid,
4986 reload the sum into a base reg.
4987 That will at least work. */
4988 find_reloads_address_part (ad
, loc
,
4989 base_reg_class (mode
, MEM
, SCRATCH
),
4990 Pmode
, opnum
, type
, ind_levels
);
4992 return ! removed_and
;
4995 /* If we have an indexed stack slot, there are three possible reasons why
4996 it might be invalid: The index might need to be reloaded, the address
4997 might have been made by frame pointer elimination and hence have a
4998 constant out of range, or both reasons might apply.
5000 We can easily check for an index needing reload, but even if that is the
5001 case, we might also have an invalid constant. To avoid making the
5002 conservative assumption and requiring two reloads, we see if this address
5003 is valid when not interpreted strictly. If it is, the only problem is
5004 that the index needs a reload and find_reloads_address_1 will take care
5007 Handle all base registers here, not just fp/ap/sp, because on some
5008 targets (namely SPARC) we can also get invalid addresses from preventive
5009 subreg big-endian corrections made by find_reloads_toplev. We
5010 can also get expressions involving LO_SUM (rather than PLUS) from
5011 find_reloads_subreg_address.
5013 If we decide to do something, it must be that `double_reg_address_ok'
5014 is true. We generate a reload of the base register + constant and
5015 rework the sum so that the reload register will be added to the index.
5016 This is safe because we know the address isn't shared.
5018 We check for the base register as both the first and second operand of
5019 the innermost PLUS and/or LO_SUM. */
5021 for (op_index
= 0; op_index
< 2; ++op_index
)
5023 rtx operand
, addend
;
5024 enum rtx_code inner_code
;
5026 if (GET_CODE (ad
) != PLUS
)
5029 inner_code
= GET_CODE (XEXP (ad
, 0));
5030 if (!(GET_CODE (ad
) == PLUS
5031 && GET_CODE (XEXP (ad
, 1)) == CONST_INT
5032 && (inner_code
== PLUS
|| inner_code
== LO_SUM
)))
5035 operand
= XEXP (XEXP (ad
, 0), op_index
);
5036 if (!REG_P (operand
) || REGNO (operand
) >= FIRST_PSEUDO_REGISTER
)
5039 addend
= XEXP (XEXP (ad
, 0), 1 - op_index
);
5041 if ((regno_ok_for_base_p (REGNO (operand
), mode
, inner_code
,
5043 || operand
== frame_pointer_rtx
5044 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5045 || operand
== hard_frame_pointer_rtx
5047 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5048 || operand
== arg_pointer_rtx
5050 || operand
== stack_pointer_rtx
)
5051 && ! maybe_memory_address_p (mode
, ad
,
5052 &XEXP (XEXP (ad
, 0), 1 - op_index
)))
5057 offset_reg
= plus_constant (operand
, INTVAL (XEXP (ad
, 1)));
5059 /* Form the adjusted address. */
5060 if (GET_CODE (XEXP (ad
, 0)) == PLUS
)
5061 ad
= gen_rtx_PLUS (GET_MODE (ad
),
5062 op_index
== 0 ? offset_reg
: addend
,
5063 op_index
== 0 ? addend
: offset_reg
);
5065 ad
= gen_rtx_LO_SUM (GET_MODE (ad
),
5066 op_index
== 0 ? offset_reg
: addend
,
5067 op_index
== 0 ? addend
: offset_reg
);
5070 cls
= base_reg_class (mode
, MEM
, GET_CODE (addend
));
5071 find_reloads_address_part (XEXP (ad
, op_index
),
5072 &XEXP (ad
, op_index
), cls
,
5073 GET_MODE (ad
), opnum
, type
, ind_levels
);
5074 find_reloads_address_1 (mode
,
5075 XEXP (ad
, 1 - op_index
), 1, GET_CODE (ad
),
5076 GET_CODE (XEXP (ad
, op_index
)),
5077 &XEXP (ad
, 1 - op_index
), opnum
,
5084 /* See if address becomes valid when an eliminable register
5085 in a sum is replaced. */
5088 if (GET_CODE (ad
) == PLUS
)
5089 tem
= subst_indexed_address (ad
);
5090 if (tem
!= ad
&& strict_memory_address_p (mode
, tem
))
5092 /* Ok, we win that way. Replace any additional eliminable
5095 subst_reg_equivs_changed
= 0;
5096 tem
= subst_reg_equivs (tem
, insn
);
5098 /* Make sure that didn't make the address invalid again. */
5100 if (! subst_reg_equivs_changed
|| strict_memory_address_p (mode
, tem
))
5107 /* If constants aren't valid addresses, reload the constant address
5109 if (CONSTANT_P (ad
) && ! strict_memory_address_p (mode
, ad
))
5111 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5112 Unshare it so we can safely alter it. */
5113 if (memrefloc
&& GET_CODE (ad
) == SYMBOL_REF
5114 && CONSTANT_POOL_ADDRESS_P (ad
))
5116 *memrefloc
= copy_rtx (*memrefloc
);
5117 loc
= &XEXP (*memrefloc
, 0);
5119 loc
= &XEXP (*loc
, 0);
5122 find_reloads_address_part (ad
, loc
, base_reg_class (mode
, MEM
, SCRATCH
),
5123 Pmode
, opnum
, type
, ind_levels
);
5124 return ! removed_and
;
5127 return find_reloads_address_1 (mode
, ad
, 0, MEM
, SCRATCH
, loc
, opnum
, type
,
5131 /* Find all pseudo regs appearing in AD
5132 that are eliminable in favor of equivalent values
5133 and do not have hard regs; replace them by their equivalents.
5134 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5135 front of it for pseudos that we have to replace with stack slots. */
5138 subst_reg_equivs (rtx ad
, rtx insn
)
5140 RTX_CODE code
= GET_CODE (ad
);
5160 int regno
= REGNO (ad
);
5162 if (reg_equiv_constant
[regno
] != 0)
5164 subst_reg_equivs_changed
= 1;
5165 return reg_equiv_constant
[regno
];
5167 if (reg_equiv_memory_loc
[regno
] && num_not_at_initial_offset
)
5169 rtx mem
= make_memloc (ad
, regno
);
5170 if (! rtx_equal_p (mem
, reg_equiv_mem
[regno
]))
5172 subst_reg_equivs_changed
= 1;
5173 /* We mark the USE with QImode so that we recognize it
5174 as one that can be safely deleted at the end of
5176 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode
, ad
), insn
),
5185 /* Quickly dispose of a common case. */
5186 if (XEXP (ad
, 0) == frame_pointer_rtx
5187 && GET_CODE (XEXP (ad
, 1)) == CONST_INT
)
5195 fmt
= GET_RTX_FORMAT (code
);
5196 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5198 XEXP (ad
, i
) = subst_reg_equivs (XEXP (ad
, i
), insn
);
5202 /* Compute the sum of X and Y, making canonicalizations assumed in an
5203 address, namely: sum constant integers, surround the sum of two
5204 constants with a CONST, put the constant as the second operand, and
5205 group the constant on the outermost sum.
5207 This routine assumes both inputs are already in canonical form. */
5210 form_sum (rtx x
, rtx y
)
5213 enum machine_mode mode
= GET_MODE (x
);
5215 if (mode
== VOIDmode
)
5216 mode
= GET_MODE (y
);
5218 if (mode
== VOIDmode
)
5221 if (GET_CODE (x
) == CONST_INT
)
5222 return plus_constant (y
, INTVAL (x
));
5223 else if (GET_CODE (y
) == CONST_INT
)
5224 return plus_constant (x
, INTVAL (y
));
5225 else if (CONSTANT_P (x
))
5226 tem
= x
, x
= y
, y
= tem
;
5228 if (GET_CODE (x
) == PLUS
&& CONSTANT_P (XEXP (x
, 1)))
5229 return form_sum (XEXP (x
, 0), form_sum (XEXP (x
, 1), y
));
5231 /* Note that if the operands of Y are specified in the opposite
5232 order in the recursive calls below, infinite recursion will occur. */
5233 if (GET_CODE (y
) == PLUS
&& CONSTANT_P (XEXP (y
, 1)))
5234 return form_sum (form_sum (x
, XEXP (y
, 0)), XEXP (y
, 1));
5236 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5237 constant will have been placed second. */
5238 if (CONSTANT_P (x
) && CONSTANT_P (y
))
5240 if (GET_CODE (x
) == CONST
)
5242 if (GET_CODE (y
) == CONST
)
5245 return gen_rtx_CONST (VOIDmode
, gen_rtx_PLUS (mode
, x
, y
));
5248 return gen_rtx_PLUS (mode
, x
, y
);
5251 /* If ADDR is a sum containing a pseudo register that should be
5252 replaced with a constant (from reg_equiv_constant),
5253 return the result of doing so, and also apply the associative
5254 law so that the result is more likely to be a valid address.
5255 (But it is not guaranteed to be one.)
5257 Note that at most one register is replaced, even if more are
5258 replaceable. Also, we try to put the result into a canonical form
5259 so it is more likely to be a valid address.
5261 In all other cases, return ADDR. */
5264 subst_indexed_address (rtx addr
)
5266 rtx op0
= 0, op1
= 0, op2
= 0;
5270 if (GET_CODE (addr
) == PLUS
)
5272 /* Try to find a register to replace. */
5273 op0
= XEXP (addr
, 0), op1
= XEXP (addr
, 1), op2
= 0;
5275 && (regno
= REGNO (op0
)) >= FIRST_PSEUDO_REGISTER
5276 && reg_renumber
[regno
] < 0
5277 && reg_equiv_constant
[regno
] != 0)
5278 op0
= reg_equiv_constant
[regno
];
5279 else if (REG_P (op1
)
5280 && (regno
= REGNO (op1
)) >= FIRST_PSEUDO_REGISTER
5281 && reg_renumber
[regno
] < 0
5282 && reg_equiv_constant
[regno
] != 0)
5283 op1
= reg_equiv_constant
[regno
];
5284 else if (GET_CODE (op0
) == PLUS
5285 && (tem
= subst_indexed_address (op0
)) != op0
)
5287 else if (GET_CODE (op1
) == PLUS
5288 && (tem
= subst_indexed_address (op1
)) != op1
)
5293 /* Pick out up to three things to add. */
5294 if (GET_CODE (op1
) == PLUS
)
5295 op2
= XEXP (op1
, 1), op1
= XEXP (op1
, 0);
5296 else if (GET_CODE (op0
) == PLUS
)
5297 op2
= op1
, op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
5299 /* Compute the sum. */
5301 op1
= form_sum (op1
, op2
);
5303 op0
= form_sum (op0
, op1
);
5310 /* Update the REG_INC notes for an insn. It updates all REG_INC
5311 notes for the instruction which refer to REGNO the to refer
5312 to the reload number.
5314 INSN is the insn for which any REG_INC notes need updating.
5316 REGNO is the register number which has been reloaded.
5318 RELOADNUM is the reload number. */
5321 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED
, int regno ATTRIBUTE_UNUSED
,
5322 int reloadnum ATTRIBUTE_UNUSED
)
5327 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5328 if (REG_NOTE_KIND (link
) == REG_INC
5329 && (int) REGNO (XEXP (link
, 0)) == regno
)
5330 push_replacement (&XEXP (link
, 0), reloadnum
, VOIDmode
);
5334 /* Record the pseudo registers we must reload into hard registers in a
5335 subexpression of a would-be memory address, X referring to a value
5336 in mode MODE. (This function is not called if the address we find
5339 CONTEXT = 1 means we are considering regs as index regs,
5340 = 0 means we are considering them as base regs.
5341 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5343 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5344 is the code of the index part of the address. Otherwise, pass SCRATCH
5346 OPNUM and TYPE specify the purpose of any reloads made.
5348 IND_LEVELS says how many levels of indirect addressing are
5349 supported at this point in the address.
5351 INSN, if nonzero, is the insn in which we do the reload. It is used
5352 to determine if we may generate output reloads.
5354 We return nonzero if X, as a whole, is reloaded or replaced. */
5356 /* Note that we take shortcuts assuming that no multi-reg machine mode
5357 occurs as part of an address.
5358 Also, this is not fully machine-customizable; it works for machines
5359 such as VAXen and 68000's and 32000's, but other possible machines
5360 could have addressing modes that this does not handle right.
5361 If you add push_reload calls here, you need to make sure gen_reload
5362 handles those cases gracefully. */
5365 find_reloads_address_1 (enum machine_mode mode
, rtx x
, int context
,
5366 enum rtx_code outer_code
, enum rtx_code index_code
,
5367 rtx
*loc
, int opnum
, enum reload_type type
,
5368 int ind_levels
, rtx insn
)
5370 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
5372 ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
5373 : REGNO_OK_FOR_INDEX_P (REGNO))
5375 enum reg_class context_reg_class
;
5376 RTX_CODE code
= GET_CODE (x
);
5379 context_reg_class
= INDEX_REG_CLASS
;
5381 context_reg_class
= base_reg_class (mode
, outer_code
, index_code
);
5387 rtx orig_op0
= XEXP (x
, 0);
5388 rtx orig_op1
= XEXP (x
, 1);
5389 RTX_CODE code0
= GET_CODE (orig_op0
);
5390 RTX_CODE code1
= GET_CODE (orig_op1
);
5394 if (GET_CODE (op0
) == SUBREG
)
5396 op0
= SUBREG_REG (op0
);
5397 code0
= GET_CODE (op0
);
5398 if (code0
== REG
&& REGNO (op0
) < FIRST_PSEUDO_REGISTER
)
5399 op0
= gen_rtx_REG (word_mode
,
5401 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0
)),
5402 GET_MODE (SUBREG_REG (orig_op0
)),
5403 SUBREG_BYTE (orig_op0
),
5404 GET_MODE (orig_op0
))));
5407 if (GET_CODE (op1
) == SUBREG
)
5409 op1
= SUBREG_REG (op1
);
5410 code1
= GET_CODE (op1
);
5411 if (code1
== REG
&& REGNO (op1
) < FIRST_PSEUDO_REGISTER
)
5412 /* ??? Why is this given op1's mode and above for
5413 ??? op0 SUBREGs we use word_mode? */
5414 op1
= gen_rtx_REG (GET_MODE (op1
),
5416 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1
)),
5417 GET_MODE (SUBREG_REG (orig_op1
)),
5418 SUBREG_BYTE (orig_op1
),
5419 GET_MODE (orig_op1
))));
5421 /* Plus in the index register may be created only as a result of
5422 register rematerialization for expression like &localvar*4. Reload it.
5423 It may be possible to combine the displacement on the outer level,
5424 but it is probably not worthwhile to do so. */
5427 find_reloads_address (GET_MODE (x
), loc
, XEXP (x
, 0), &XEXP (x
, 0),
5428 opnum
, ADDR_TYPE (type
), ind_levels
, insn
);
5429 push_reload (*loc
, NULL_RTX
, loc
, (rtx
*) 0,
5431 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5435 if (code0
== MULT
|| code0
== SIGN_EXTEND
|| code0
== TRUNCATE
5436 || code0
== ZERO_EXTEND
|| code1
== MEM
)
5438 find_reloads_address_1 (mode
, orig_op0
, 1, PLUS
, SCRATCH
,
5439 &XEXP (x
, 0), opnum
, type
, ind_levels
,
5441 find_reloads_address_1 (mode
, orig_op1
, 0, PLUS
, code0
,
5442 &XEXP (x
, 1), opnum
, type
, ind_levels
,
5446 else if (code1
== MULT
|| code1
== SIGN_EXTEND
|| code1
== TRUNCATE
5447 || code1
== ZERO_EXTEND
|| code0
== MEM
)
5449 find_reloads_address_1 (mode
, orig_op0
, 0, PLUS
, code1
,
5450 &XEXP (x
, 0), opnum
, type
, ind_levels
,
5452 find_reloads_address_1 (mode
, orig_op1
, 1, PLUS
, SCRATCH
,
5453 &XEXP (x
, 1), opnum
, type
, ind_levels
,
5457 else if (code0
== CONST_INT
|| code0
== CONST
5458 || code0
== SYMBOL_REF
|| code0
== LABEL_REF
)
5459 find_reloads_address_1 (mode
, orig_op1
, 0, PLUS
, code0
,
5460 &XEXP (x
, 1), opnum
, type
, ind_levels
,
5463 else if (code1
== CONST_INT
|| code1
== CONST
5464 || code1
== SYMBOL_REF
|| code1
== LABEL_REF
)
5465 find_reloads_address_1 (mode
, orig_op0
, 0, PLUS
, code1
,
5466 &XEXP (x
, 0), opnum
, type
, ind_levels
,
5469 else if (code0
== REG
&& code1
== REG
)
5471 if (REGNO_OK_FOR_INDEX_P (REGNO (op0
))
5472 && regno_ok_for_base_p (REGNO (op1
), mode
, PLUS
, REG
))
5474 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1
))
5475 && regno_ok_for_base_p (REGNO (op0
), mode
, PLUS
, REG
))
5477 else if (regno_ok_for_base_p (REGNO (op1
), mode
, PLUS
, REG
))
5478 find_reloads_address_1 (mode
, orig_op0
, 1, PLUS
, SCRATCH
,
5479 &XEXP (x
, 0), opnum
, type
, ind_levels
,
5481 else if (regno_ok_for_base_p (REGNO (op0
), mode
, PLUS
, REG
))
5482 find_reloads_address_1 (mode
, orig_op1
, 1, PLUS
, SCRATCH
,
5483 &XEXP (x
, 1), opnum
, type
, ind_levels
,
5485 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1
)))
5486 find_reloads_address_1 (mode
, orig_op0
, 0, PLUS
, REG
,
5487 &XEXP (x
, 0), opnum
, type
, ind_levels
,
5489 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0
)))
5490 find_reloads_address_1 (mode
, orig_op1
, 0, PLUS
, REG
,
5491 &XEXP (x
, 1), opnum
, type
, ind_levels
,
5495 find_reloads_address_1 (mode
, orig_op0
, 1, PLUS
, SCRATCH
,
5496 &XEXP (x
, 0), opnum
, type
, ind_levels
,
5498 find_reloads_address_1 (mode
, orig_op1
, 0, PLUS
, REG
,
5499 &XEXP (x
, 1), opnum
, type
, ind_levels
,
5504 else if (code0
== REG
)
5506 find_reloads_address_1 (mode
, orig_op0
, 1, PLUS
, SCRATCH
,
5507 &XEXP (x
, 0), opnum
, type
, ind_levels
,
5509 find_reloads_address_1 (mode
, orig_op1
, 0, PLUS
, REG
,
5510 &XEXP (x
, 1), opnum
, type
, ind_levels
,
5514 else if (code1
== REG
)
5516 find_reloads_address_1 (mode
, orig_op1
, 1, PLUS
, SCRATCH
,
5517 &XEXP (x
, 1), opnum
, type
, ind_levels
,
5519 find_reloads_address_1 (mode
, orig_op0
, 0, PLUS
, REG
,
5520 &XEXP (x
, 0), opnum
, type
, ind_levels
,
5530 rtx op0
= XEXP (x
, 0);
5531 rtx op1
= XEXP (x
, 1);
5532 enum rtx_code index_code
;
5536 if (GET_CODE (op1
) != PLUS
&& GET_CODE (op1
) != MINUS
)
5539 /* Currently, we only support {PRE,POST}_MODIFY constructs
5540 where a base register is {inc,dec}remented by the contents
5541 of another register or by a constant value. Thus, these
5542 operands must match. */
5543 gcc_assert (op0
== XEXP (op1
, 0));
5545 /* Require index register (or constant). Let's just handle the
5546 register case in the meantime... If the target allows
5547 auto-modify by a constant then we could try replacing a pseudo
5548 register with its equivalent constant where applicable.
5550 We also handle the case where the register was eliminated
5551 resulting in a PLUS subexpression.
5553 If we later decide to reload the whole PRE_MODIFY or
5554 POST_MODIFY, inc_for_reload might clobber the reload register
5555 before reading the index. The index register might therefore
5556 need to live longer than a TYPE reload normally would, so be
5557 conservative and class it as RELOAD_OTHER. */
5558 if ((REG_P (XEXP (op1
, 1))
5559 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1
, 1))))
5560 || GET_CODE (XEXP (op1
, 1)) == PLUS
)
5561 find_reloads_address_1 (mode
, XEXP (op1
, 1), 1, code
, SCRATCH
,
5562 &XEXP (op1
, 1), opnum
, RELOAD_OTHER
,
5565 gcc_assert (REG_P (XEXP (op1
, 0)));
5567 regno
= REGNO (XEXP (op1
, 0));
5568 index_code
= GET_CODE (XEXP (op1
, 1));
5570 /* A register that is incremented cannot be constant! */
5571 gcc_assert (regno
< FIRST_PSEUDO_REGISTER
5572 || reg_equiv_constant
[regno
] == 0);
5574 /* Handle a register that is equivalent to a memory location
5575 which cannot be addressed directly. */
5576 if (reg_equiv_memory_loc
[regno
] != 0
5577 && (reg_equiv_address
[regno
] != 0
5578 || num_not_at_initial_offset
))
5580 rtx tem
= make_memloc (XEXP (x
, 0), regno
);
5582 if (reg_equiv_address
[regno
]
5583 || ! rtx_equal_p (tem
, reg_equiv_mem
[regno
]))
5587 /* First reload the memory location's address.
5588 We can't use ADDR_TYPE (type) here, because we need to
5589 write back the value after reading it, hence we actually
5590 need two registers. */
5591 find_reloads_address (GET_MODE (tem
), &tem
, XEXP (tem
, 0),
5592 &XEXP (tem
, 0), opnum
,
5596 if (!rtx_equal_p (tem
, orig
))
5597 push_reg_equiv_alt_mem (regno
, tem
);
5599 /* Then reload the memory location into a base
5601 reloadnum
= push_reload (tem
, tem
, &XEXP (x
, 0),
5603 base_reg_class (mode
, code
,
5605 GET_MODE (x
), GET_MODE (x
), 0,
5606 0, opnum
, RELOAD_OTHER
);
5608 update_auto_inc_notes (this_insn
, regno
, reloadnum
);
5613 if (reg_renumber
[regno
] >= 0)
5614 regno
= reg_renumber
[regno
];
5616 /* We require a base register here... */
5617 if (!regno_ok_for_base_p (regno
, GET_MODE (x
), code
, index_code
))
5619 reloadnum
= push_reload (XEXP (op1
, 0), XEXP (x
, 0),
5620 &XEXP (op1
, 0), &XEXP (x
, 0),
5621 base_reg_class (mode
, code
, index_code
),
5622 GET_MODE (x
), GET_MODE (x
), 0, 0,
5623 opnum
, RELOAD_OTHER
);
5625 update_auto_inc_notes (this_insn
, regno
, reloadnum
);
5635 if (REG_P (XEXP (x
, 0)))
5637 int regno
= REGNO (XEXP (x
, 0));
5641 /* A register that is incremented cannot be constant! */
5642 gcc_assert (regno
< FIRST_PSEUDO_REGISTER
5643 || reg_equiv_constant
[regno
] == 0);
5645 /* Handle a register that is equivalent to a memory location
5646 which cannot be addressed directly. */
5647 if (reg_equiv_memory_loc
[regno
] != 0
5648 && (reg_equiv_address
[regno
] != 0 || num_not_at_initial_offset
))
5650 rtx tem
= make_memloc (XEXP (x
, 0), regno
);
5651 if (reg_equiv_address
[regno
]
5652 || ! rtx_equal_p (tem
, reg_equiv_mem
[regno
]))
5656 /* First reload the memory location's address.
5657 We can't use ADDR_TYPE (type) here, because we need to
5658 write back the value after reading it, hence we actually
5659 need two registers. */
5660 find_reloads_address (GET_MODE (tem
), &tem
, XEXP (tem
, 0),
5661 &XEXP (tem
, 0), opnum
, type
,
5663 if (!rtx_equal_p (tem
, orig
))
5664 push_reg_equiv_alt_mem (regno
, tem
);
5665 /* Put this inside a new increment-expression. */
5666 x
= gen_rtx_fmt_e (GET_CODE (x
), GET_MODE (x
), tem
);
5667 /* Proceed to reload that, as if it contained a register. */
5671 /* If we have a hard register that is ok as an index,
5672 don't make a reload. If an autoincrement of a nice register
5673 isn't "valid", it must be that no autoincrement is "valid".
5674 If that is true and something made an autoincrement anyway,
5675 this must be a special context where one is allowed.
5676 (For example, a "push" instruction.)
5677 We can't improve this address, so leave it alone. */
5679 /* Otherwise, reload the autoincrement into a suitable hard reg
5680 and record how much to increment by. */
5682 if (reg_renumber
[regno
] >= 0)
5683 regno
= reg_renumber
[regno
];
5684 if (regno
>= FIRST_PSEUDO_REGISTER
5685 || !REG_OK_FOR_CONTEXT (context
, regno
, mode
, outer_code
,
5690 /* If we can output the register afterwards, do so, this
5691 saves the extra update.
5692 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5693 CALL_INSN - and it does not set CC0.
5694 But don't do this if we cannot directly address the
5695 memory location, since this will make it harder to
5696 reuse address reloads, and increases register pressure.
5697 Also don't do this if we can probably update x directly. */
5698 rtx equiv
= (MEM_P (XEXP (x
, 0))
5700 : reg_equiv_mem
[regno
]);
5701 int icode
= (int) optab_handler (add_optab
, Pmode
)->insn_code
;
5702 if (insn
&& NONJUMP_INSN_P (insn
) && equiv
5703 && memory_operand (equiv
, GET_MODE (equiv
))
5705 && ! sets_cc0_p (PATTERN (insn
))
5707 && ! (icode
!= CODE_FOR_nothing
5708 && ((*insn_data
[icode
].operand
[0].predicate
)
5710 && ((*insn_data
[icode
].operand
[1].predicate
)
5713 /* We use the original pseudo for loc, so that
5714 emit_reload_insns() knows which pseudo this
5715 reload refers to and updates the pseudo rtx, not
5716 its equivalent memory location, as well as the
5717 corresponding entry in reg_last_reload_reg. */
5718 loc
= &XEXP (x_orig
, 0);
5721 = push_reload (x
, x
, loc
, loc
,
5723 GET_MODE (x
), GET_MODE (x
), 0, 0,
5724 opnum
, RELOAD_OTHER
);
5729 = push_reload (x
, NULL_RTX
, loc
, (rtx
*) 0,
5731 GET_MODE (x
), GET_MODE (x
), 0, 0,
5734 = find_inc_amount (PATTERN (this_insn
), XEXP (x_orig
, 0));
5739 update_auto_inc_notes (this_insn
, REGNO (XEXP (x_orig
, 0)),
5749 /* Look for parts to reload in the inner expression and reload them
5750 too, in addition to this operation. Reloading all inner parts in
5751 addition to this one shouldn't be necessary, but at this point,
5752 we don't know if we can possibly omit any part that *can* be
5753 reloaded. Targets that are better off reloading just either part
5754 (or perhaps even a different part of an outer expression), should
5755 define LEGITIMIZE_RELOAD_ADDRESS. */
5756 find_reloads_address_1 (GET_MODE (XEXP (x
, 0)), XEXP (x
, 0),
5757 context
, code
, SCRATCH
, &XEXP (x
, 0), opnum
,
5758 type
, ind_levels
, insn
);
5759 push_reload (x
, NULL_RTX
, loc
, (rtx
*) 0,
5761 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5765 /* This is probably the result of a substitution, by eliminate_regs, of
5766 an equivalent address for a pseudo that was not allocated to a hard
5767 register. Verify that the specified address is valid and reload it
5770 Since we know we are going to reload this item, don't decrement for
5771 the indirection level.
5773 Note that this is actually conservative: it would be slightly more
5774 efficient to use the value of SPILL_INDIRECT_LEVELS from
5777 find_reloads_address (GET_MODE (x
), loc
, XEXP (x
, 0), &XEXP (x
, 0),
5778 opnum
, ADDR_TYPE (type
), ind_levels
, insn
);
5779 push_reload (*loc
, NULL_RTX
, loc
, (rtx
*) 0,
5781 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5786 int regno
= REGNO (x
);
5788 if (reg_equiv_constant
[regno
] != 0)
5790 find_reloads_address_part (reg_equiv_constant
[regno
], loc
,
5792 GET_MODE (x
), opnum
, type
, ind_levels
);
5796 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5797 that feeds this insn. */
5798 if (reg_equiv_mem
[regno
] != 0)
5800 push_reload (reg_equiv_mem
[regno
], NULL_RTX
, loc
, (rtx
*) 0,
5802 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5807 if (reg_equiv_memory_loc
[regno
]
5808 && (reg_equiv_address
[regno
] != 0 || num_not_at_initial_offset
))
5810 rtx tem
= make_memloc (x
, regno
);
5811 if (reg_equiv_address
[regno
] != 0
5812 || ! rtx_equal_p (tem
, reg_equiv_mem
[regno
]))
5815 find_reloads_address (GET_MODE (x
), &x
, XEXP (x
, 0),
5816 &XEXP (x
, 0), opnum
, ADDR_TYPE (type
),
5818 if (!rtx_equal_p (x
, tem
))
5819 push_reg_equiv_alt_mem (regno
, x
);
5823 if (reg_renumber
[regno
] >= 0)
5824 regno
= reg_renumber
[regno
];
5826 if (regno
>= FIRST_PSEUDO_REGISTER
5827 || !REG_OK_FOR_CONTEXT (context
, regno
, mode
, outer_code
,
5830 push_reload (x
, NULL_RTX
, loc
, (rtx
*) 0,
5832 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5836 /* If a register appearing in an address is the subject of a CLOBBER
5837 in this insn, reload it into some other register to be safe.
5838 The CLOBBER is supposed to make the register unavailable
5839 from before this insn to after it. */
5840 if (regno_clobbered_p (regno
, this_insn
, GET_MODE (x
), 0))
5842 push_reload (x
, NULL_RTX
, loc
, (rtx
*) 0,
5844 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5851 if (REG_P (SUBREG_REG (x
)))
5853 /* If this is a SUBREG of a hard register and the resulting register
5854 is of the wrong class, reload the whole SUBREG. This avoids
5855 needless copies if SUBREG_REG is multi-word. */
5856 if (REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
5858 int regno ATTRIBUTE_UNUSED
= subreg_regno (x
);
5860 if (!REG_OK_FOR_CONTEXT (context
, regno
, mode
, outer_code
,
5863 push_reload (x
, NULL_RTX
, loc
, (rtx
*) 0,
5865 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5869 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5870 is larger than the class size, then reload the whole SUBREG. */
5873 enum reg_class
class = context_reg_class
;
5874 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x
)))
5875 > reg_class_size
[class])
5877 x
= find_reloads_subreg_address (x
, 0, opnum
,
5880 push_reload (x
, NULL_RTX
, loc
, (rtx
*) 0, class,
5881 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5893 const char *fmt
= GET_RTX_FORMAT (code
);
5896 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5899 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
5901 find_reloads_address_1 (mode
, XEXP (x
, i
), context
, code
, SCRATCH
,
5902 &XEXP (x
, i
), opnum
, type
, ind_levels
, insn
);
5906 #undef REG_OK_FOR_CONTEXT
5910 /* X, which is found at *LOC, is a part of an address that needs to be
5911 reloaded into a register of class CLASS. If X is a constant, or if
5912 X is a PLUS that contains a constant, check that the constant is a
5913 legitimate operand and that we are supposed to be able to load
5914 it into the register.
5916 If not, force the constant into memory and reload the MEM instead.
5918 MODE is the mode to use, in case X is an integer constant.
5920 OPNUM and TYPE describe the purpose of any reloads made.
5922 IND_LEVELS says how many levels of indirect addressing this machine
5926 find_reloads_address_part (rtx x
, rtx
*loc
, enum reg_class
class,
5927 enum machine_mode mode
, int opnum
,
5928 enum reload_type type
, int ind_levels
)
5931 && (! LEGITIMATE_CONSTANT_P (x
)
5932 || PREFERRED_RELOAD_CLASS (x
, class) == NO_REGS
))
5934 x
= force_const_mem (mode
, x
);
5935 find_reloads_address (mode
, &x
, XEXP (x
, 0), &XEXP (x
, 0),
5936 opnum
, type
, ind_levels
, 0);
5939 else if (GET_CODE (x
) == PLUS
5940 && CONSTANT_P (XEXP (x
, 1))
5941 && (! LEGITIMATE_CONSTANT_P (XEXP (x
, 1))
5942 || PREFERRED_RELOAD_CLASS (XEXP (x
, 1), class) == NO_REGS
))
5946 tem
= force_const_mem (GET_MODE (x
), XEXP (x
, 1));
5947 x
= gen_rtx_PLUS (GET_MODE (x
), XEXP (x
, 0), tem
);
5948 find_reloads_address (mode
, &XEXP (x
, 1), XEXP (tem
, 0), &XEXP (tem
, 0),
5949 opnum
, type
, ind_levels
, 0);
5952 push_reload (x
, NULL_RTX
, loc
, (rtx
*) 0, class,
5953 mode
, VOIDmode
, 0, 0, opnum
, type
);
5956 /* X, a subreg of a pseudo, is a part of an address that needs to be
5959 If the pseudo is equivalent to a memory location that cannot be directly
5960 addressed, make the necessary address reloads.
5962 If address reloads have been necessary, or if the address is changed
5963 by register elimination, return the rtx of the memory location;
5964 otherwise, return X.
5966 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5969 OPNUM and TYPE identify the purpose of the reload.
5971 IND_LEVELS says how many levels of indirect addressing are
5972 supported at this point in the address.
5974 INSN, if nonzero, is the insn in which we do the reload. It is used
5975 to determine where to put USEs for pseudos that we have to replace with
5979 find_reloads_subreg_address (rtx x
, int force_replace
, int opnum
,
5980 enum reload_type type
, int ind_levels
, rtx insn
)
5982 int regno
= REGNO (SUBREG_REG (x
));
5984 if (reg_equiv_memory_loc
[regno
])
5986 /* If the address is not directly addressable, or if the address is not
5987 offsettable, then it must be replaced. */
5989 && (reg_equiv_address
[regno
]
5990 || ! offsettable_memref_p (reg_equiv_mem
[regno
])))
5993 if (force_replace
|| num_not_at_initial_offset
)
5995 rtx tem
= make_memloc (SUBREG_REG (x
), regno
);
5997 /* If the address changes because of register elimination, then
5998 it must be replaced. */
6000 || ! rtx_equal_p (tem
, reg_equiv_mem
[regno
]))
6002 unsigned outer_size
= GET_MODE_SIZE (GET_MODE (x
));
6003 unsigned inner_size
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)));
6006 enum machine_mode orig_mode
= GET_MODE (orig
);
6009 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6010 hold the correct (negative) byte offset. */
6011 if (BYTES_BIG_ENDIAN
&& outer_size
> inner_size
)
6012 offset
= inner_size
- outer_size
;
6014 offset
= SUBREG_BYTE (x
);
6016 XEXP (tem
, 0) = plus_constant (XEXP (tem
, 0), offset
);
6017 PUT_MODE (tem
, GET_MODE (x
));
6019 /* If this was a paradoxical subreg that we replaced, the
6020 resulting memory must be sufficiently aligned to allow
6021 us to widen the mode of the memory. */
6022 if (outer_size
> inner_size
)
6026 base
= XEXP (tem
, 0);
6027 if (GET_CODE (base
) == PLUS
)
6029 if (GET_CODE (XEXP (base
, 1)) == CONST_INT
6030 && INTVAL (XEXP (base
, 1)) % outer_size
!= 0)
6032 base
= XEXP (base
, 0);
6035 || (REGNO_POINTER_ALIGN (REGNO (base
))
6036 < outer_size
* BITS_PER_UNIT
))
6040 reloaded
= find_reloads_address (GET_MODE (tem
), &tem
,
6041 XEXP (tem
, 0), &XEXP (tem
, 0),
6042 opnum
, type
, ind_levels
, insn
);
6043 /* ??? Do we need to handle nonzero offsets somehow? */
6044 if (!offset
&& !rtx_equal_p (tem
, orig
))
6045 push_reg_equiv_alt_mem (regno
, tem
);
6047 /* For some processors an address may be valid in the
6048 original mode but not in a smaller mode. For
6049 example, ARM accepts a scaled index register in
6050 SImode but not in HImode. find_reloads_address
6051 assumes that we pass it a valid address, and doesn't
6052 force a reload. This will probably be fine if
6053 find_reloads_address finds some reloads. But if it
6054 doesn't find any, then we may have just converted a
6055 valid address into an invalid one. Check for that
6058 && strict_memory_address_p (orig_mode
, XEXP (tem
, 0))
6059 && !strict_memory_address_p (GET_MODE (tem
),
6061 push_reload (XEXP (tem
, 0), NULL_RTX
, &XEXP (tem
, 0), (rtx
*) 0,
6062 base_reg_class (GET_MODE (tem
), MEM
, SCRATCH
),
6063 GET_MODE (XEXP (tem
, 0)), VOIDmode
, 0, 0,
6066 /* If this is not a toplevel operand, find_reloads doesn't see
6067 this substitution. We have to emit a USE of the pseudo so
6068 that delete_output_reload can see it. */
6069 if (replace_reloads
&& recog_data
.operand
[opnum
] != x
)
6070 /* We mark the USE with QImode so that we recognize it
6071 as one that can be safely deleted at the end of
6073 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode
,
6083 /* Substitute into the current INSN the registers into which we have reloaded
6084 the things that need reloading. The array `replacements'
6085 contains the locations of all pointers that must be changed
6086 and says what to replace them with.
6088 Return the rtx that X translates into; usually X, but modified. */
6091 subst_reloads (rtx insn
)
6095 for (i
= 0; i
< n_replacements
; i
++)
6097 struct replacement
*r
= &replacements
[i
];
6098 rtx reloadreg
= rld
[r
->what
].reg_rtx
;
6102 /* This checking takes a very long time on some platforms
6103 causing the gcc.c-torture/compile/limits-fnargs.c test
6104 to time out during testing. See PR 31850.
6106 Internal consistency test. Check that we don't modify
6107 anything in the equivalence arrays. Whenever something from
6108 those arrays needs to be reloaded, it must be unshared before
6109 being substituted into; the equivalence must not be modified.
6110 Otherwise, if the equivalence is used after that, it will
6111 have been modified, and the thing substituted (probably a
6112 register) is likely overwritten and not a usable equivalence. */
6115 for (check_regno
= 0; check_regno
< max_regno
; check_regno
++)
6117 #define CHECK_MODF(ARRAY) \
6118 gcc_assert (!ARRAY[check_regno] \
6119 || !loc_mentioned_in_p (r->where, \
6120 ARRAY[check_regno]))
6122 CHECK_MODF (reg_equiv_constant
);
6123 CHECK_MODF (reg_equiv_memory_loc
);
6124 CHECK_MODF (reg_equiv_address
);
6125 CHECK_MODF (reg_equiv_mem
);
6128 #endif /* DEBUG_RELOAD */
6130 /* If we're replacing a LABEL_REF with a register, add a
6131 REG_LABEL note to indicate to flow which label this
6132 register refers to. */
6133 if (GET_CODE (*r
->where
) == LABEL_REF
6136 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_LABEL
,
6137 XEXP (*r
->where
, 0),
6139 JUMP_LABEL (insn
) = XEXP (*r
->where
, 0);
6142 /* Encapsulate RELOADREG so its machine mode matches what
6143 used to be there. Note that gen_lowpart_common will
6144 do the wrong thing if RELOADREG is multi-word. RELOADREG
6145 will always be a REG here. */
6146 if (GET_MODE (reloadreg
) != r
->mode
&& r
->mode
!= VOIDmode
)
6147 reloadreg
= reload_adjust_reg_for_mode (reloadreg
, r
->mode
);
6149 /* If we are putting this into a SUBREG and RELOADREG is a
6150 SUBREG, we would be making nested SUBREGs, so we have to fix
6151 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6153 if (r
->subreg_loc
!= 0 && GET_CODE (reloadreg
) == SUBREG
)
6155 if (GET_MODE (*r
->subreg_loc
)
6156 == GET_MODE (SUBREG_REG (reloadreg
)))
6157 *r
->subreg_loc
= SUBREG_REG (reloadreg
);
6161 SUBREG_BYTE (*r
->subreg_loc
) + SUBREG_BYTE (reloadreg
);
6163 /* When working with SUBREGs the rule is that the byte
6164 offset must be a multiple of the SUBREG's mode. */
6165 final_offset
= (final_offset
/
6166 GET_MODE_SIZE (GET_MODE (*r
->subreg_loc
)));
6167 final_offset
= (final_offset
*
6168 GET_MODE_SIZE (GET_MODE (*r
->subreg_loc
)));
6170 *r
->where
= SUBREG_REG (reloadreg
);
6171 SUBREG_BYTE (*r
->subreg_loc
) = final_offset
;
6175 *r
->where
= reloadreg
;
6177 /* If reload got no reg and isn't optional, something's wrong. */
6179 gcc_assert (rld
[r
->what
].optional
);
6183 /* Make a copy of any replacements being done into X and move those
6184 copies to locations in Y, a copy of X. */
6187 copy_replacements (rtx x
, rtx y
)
6189 /* We can't support X being a SUBREG because we might then need to know its
6190 location if something inside it was replaced. */
6191 gcc_assert (GET_CODE (x
) != SUBREG
);
6193 copy_replacements_1 (&x
, &y
, n_replacements
);
6197 copy_replacements_1 (rtx
*px
, rtx
*py
, int orig_replacements
)
6201 struct replacement
*r
;
6205 for (j
= 0; j
< orig_replacements
; j
++)
6207 if (replacements
[j
].subreg_loc
== px
)
6209 r
= &replacements
[n_replacements
++];
6210 r
->where
= replacements
[j
].where
;
6212 r
->what
= replacements
[j
].what
;
6213 r
->mode
= replacements
[j
].mode
;
6215 else if (replacements
[j
].where
== px
)
6217 r
= &replacements
[n_replacements
++];
6220 r
->what
= replacements
[j
].what
;
6221 r
->mode
= replacements
[j
].mode
;
6227 code
= GET_CODE (x
);
6228 fmt
= GET_RTX_FORMAT (code
);
6230 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
6233 copy_replacements_1 (&XEXP (x
, i
), &XEXP (y
, i
), orig_replacements
);
6234 else if (fmt
[i
] == 'E')
6235 for (j
= XVECLEN (x
, i
); --j
>= 0; )
6236 copy_replacements_1 (&XVECEXP (x
, i
, j
), &XVECEXP (y
, i
, j
),
6241 /* Change any replacements being done to *X to be done to *Y. */
6244 move_replacements (rtx
*x
, rtx
*y
)
6248 for (i
= 0; i
< n_replacements
; i
++)
6249 if (replacements
[i
].subreg_loc
== x
)
6250 replacements
[i
].subreg_loc
= y
;
6251 else if (replacements
[i
].where
== x
)
6253 replacements
[i
].where
= y
;
6254 replacements
[i
].subreg_loc
= 0;
6258 /* If LOC was scheduled to be replaced by something, return the replacement.
6259 Otherwise, return *LOC. */
6262 find_replacement (rtx
*loc
)
6264 struct replacement
*r
;
6266 for (r
= &replacements
[0]; r
< &replacements
[n_replacements
]; r
++)
6268 rtx reloadreg
= rld
[r
->what
].reg_rtx
;
6270 if (reloadreg
&& r
->where
== loc
)
6272 if (r
->mode
!= VOIDmode
&& GET_MODE (reloadreg
) != r
->mode
)
6273 reloadreg
= gen_rtx_REG (r
->mode
, REGNO (reloadreg
));
6277 else if (reloadreg
&& r
->subreg_loc
== loc
)
6279 /* RELOADREG must be either a REG or a SUBREG.
6281 ??? Is it actually still ever a SUBREG? If so, why? */
6283 if (REG_P (reloadreg
))
6284 return gen_rtx_REG (GET_MODE (*loc
),
6285 (REGNO (reloadreg
) +
6286 subreg_regno_offset (REGNO (SUBREG_REG (*loc
)),
6287 GET_MODE (SUBREG_REG (*loc
)),
6290 else if (GET_MODE (reloadreg
) == GET_MODE (*loc
))
6294 int final_offset
= SUBREG_BYTE (reloadreg
) + SUBREG_BYTE (*loc
);
6296 /* When working with SUBREGs the rule is that the byte
6297 offset must be a multiple of the SUBREG's mode. */
6298 final_offset
= (final_offset
/ GET_MODE_SIZE (GET_MODE (*loc
)));
6299 final_offset
= (final_offset
* GET_MODE_SIZE (GET_MODE (*loc
)));
6300 return gen_rtx_SUBREG (GET_MODE (*loc
), SUBREG_REG (reloadreg
),
6306 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6307 what's inside and make a new rtl if so. */
6308 if (GET_CODE (*loc
) == PLUS
|| GET_CODE (*loc
) == MINUS
6309 || GET_CODE (*loc
) == MULT
)
6311 rtx x
= find_replacement (&XEXP (*loc
, 0));
6312 rtx y
= find_replacement (&XEXP (*loc
, 1));
6314 if (x
!= XEXP (*loc
, 0) || y
!= XEXP (*loc
, 1))
6315 return gen_rtx_fmt_ee (GET_CODE (*loc
), GET_MODE (*loc
), x
, y
);
6321 /* Return nonzero if register in range [REGNO, ENDREGNO)
6322 appears either explicitly or implicitly in X
6323 other than being stored into (except for earlyclobber operands).
6325 References contained within the substructure at LOC do not count.
6326 LOC may be zero, meaning don't ignore anything.
6328 This is similar to refers_to_regno_p in rtlanal.c except that we
6329 look at equivalences for pseudos that didn't get hard registers. */
6332 refers_to_regno_for_reload_p (unsigned int regno
, unsigned int endregno
,
6344 code
= GET_CODE (x
);
6351 /* If this is a pseudo, a hard register must not have been allocated.
6352 X must therefore either be a constant or be in memory. */
6353 if (r
>= FIRST_PSEUDO_REGISTER
)
6355 if (reg_equiv_memory_loc
[r
])
6356 return refers_to_regno_for_reload_p (regno
, endregno
,
6357 reg_equiv_memory_loc
[r
],
6360 gcc_assert (reg_equiv_constant
[r
] || reg_equiv_invariant
[r
]);
6364 return (endregno
> r
6365 && regno
< r
+ (r
< FIRST_PSEUDO_REGISTER
6366 ? hard_regno_nregs
[r
][GET_MODE (x
)]
6370 /* If this is a SUBREG of a hard reg, we can see exactly which
6371 registers are being modified. Otherwise, handle normally. */
6372 if (REG_P (SUBREG_REG (x
))
6373 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
6375 unsigned int inner_regno
= subreg_regno (x
);
6376 unsigned int inner_endregno
6377 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
6378 ? subreg_nregs (x
) : 1);
6380 return endregno
> inner_regno
&& regno
< inner_endregno
;
6386 if (&SET_DEST (x
) != loc
6387 /* Note setting a SUBREG counts as referring to the REG it is in for
6388 a pseudo but not for hard registers since we can
6389 treat each word individually. */
6390 && ((GET_CODE (SET_DEST (x
)) == SUBREG
6391 && loc
!= &SUBREG_REG (SET_DEST (x
))
6392 && REG_P (SUBREG_REG (SET_DEST (x
)))
6393 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
6394 && refers_to_regno_for_reload_p (regno
, endregno
,
6395 SUBREG_REG (SET_DEST (x
)),
6397 /* If the output is an earlyclobber operand, this is
6399 || ((!REG_P (SET_DEST (x
))
6400 || earlyclobber_operand_p (SET_DEST (x
)))
6401 && refers_to_regno_for_reload_p (regno
, endregno
,
6402 SET_DEST (x
), loc
))))
6405 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
6414 /* X does not match, so try its subexpressions. */
6416 fmt
= GET_RTX_FORMAT (code
);
6417 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
6419 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
6427 if (refers_to_regno_for_reload_p (regno
, endregno
,
6431 else if (fmt
[i
] == 'E')
6434 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
6435 if (loc
!= &XVECEXP (x
, i
, j
)
6436 && refers_to_regno_for_reload_p (regno
, endregno
,
6437 XVECEXP (x
, i
, j
), loc
))
6444 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6445 we check if any register number in X conflicts with the relevant register
6446 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6447 contains a MEM (we don't bother checking for memory addresses that can't
6448 conflict because we expect this to be a rare case.
6450 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6451 that we look at equivalences for pseudos that didn't get hard registers. */
6454 reg_overlap_mentioned_for_reload_p (rtx x
, rtx in
)
6456 int regno
, endregno
;
6458 /* Overly conservative. */
6459 if (GET_CODE (x
) == STRICT_LOW_PART
6460 || GET_RTX_CLASS (GET_CODE (x
)) == RTX_AUTOINC
)
6463 /* If either argument is a constant, then modifying X can not affect IN. */
6464 if (CONSTANT_P (x
) || CONSTANT_P (in
))
6466 else if (GET_CODE (x
) == SUBREG
&& GET_CODE (SUBREG_REG (x
)) == MEM
)
6467 return refers_to_mem_for_reload_p (in
);
6468 else if (GET_CODE (x
) == SUBREG
)
6470 regno
= REGNO (SUBREG_REG (x
));
6471 if (regno
< FIRST_PSEUDO_REGISTER
)
6472 regno
+= subreg_regno_offset (REGNO (SUBREG_REG (x
)),
6473 GET_MODE (SUBREG_REG (x
)),
6476 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
6477 ? subreg_nregs (x
) : 1);
6479 return refers_to_regno_for_reload_p (regno
, endregno
, in
, (rtx
*) 0);
6485 /* If this is a pseudo, it must not have been assigned a hard register.
6486 Therefore, it must either be in memory or be a constant. */
6488 if (regno
>= FIRST_PSEUDO_REGISTER
)
6490 if (reg_equiv_memory_loc
[regno
])
6491 return refers_to_mem_for_reload_p (in
);
6492 gcc_assert (reg_equiv_constant
[regno
]);
6496 endregno
= END_HARD_REGNO (x
);
6498 return refers_to_regno_for_reload_p (regno
, endregno
, in
, (rtx
*) 0);
6501 return refers_to_mem_for_reload_p (in
);
6502 else if (GET_CODE (x
) == SCRATCH
|| GET_CODE (x
) == PC
6503 || GET_CODE (x
) == CC0
)
6504 return reg_mentioned_p (x
, in
);
6507 gcc_assert (GET_CODE (x
) == PLUS
);
6509 /* We actually want to know if X is mentioned somewhere inside IN.
6510 We must not say that (plus (sp) (const_int 124)) is in
6511 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6512 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6513 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6518 else if (GET_CODE (in
) == PLUS
)
6519 return (rtx_equal_p (x
, in
)
6520 || reg_overlap_mentioned_for_reload_p (x
, XEXP (in
, 0))
6521 || reg_overlap_mentioned_for_reload_p (x
, XEXP (in
, 1)));
6522 else return (reg_overlap_mentioned_for_reload_p (XEXP (x
, 0), in
)
6523 || reg_overlap_mentioned_for_reload_p (XEXP (x
, 1), in
));
6529 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6533 refers_to_mem_for_reload_p (rtx x
)
6542 return (REGNO (x
) >= FIRST_PSEUDO_REGISTER
6543 && reg_equiv_memory_loc
[REGNO (x
)]);
6545 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
6546 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
6548 && (MEM_P (XEXP (x
, i
))
6549 || refers_to_mem_for_reload_p (XEXP (x
, i
))))
6555 /* Check the insns before INSN to see if there is a suitable register
6556 containing the same value as GOAL.
6557 If OTHER is -1, look for a register in class CLASS.
6558 Otherwise, just see if register number OTHER shares GOAL's value.
6560 Return an rtx for the register found, or zero if none is found.
6562 If RELOAD_REG_P is (short *)1,
6563 we reject any hard reg that appears in reload_reg_rtx
6564 because such a hard reg is also needed coming into this insn.
6566 If RELOAD_REG_P is any other nonzero value,
6567 it is a vector indexed by hard reg number
6568 and we reject any hard reg whose element in the vector is nonnegative
6569 as well as any that appears in reload_reg_rtx.
6571 If GOAL is zero, then GOALREG is a register number; we look
6572 for an equivalent for that register.
6574 MODE is the machine mode of the value we want an equivalence for.
6575 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6577 This function is used by jump.c as well as in the reload pass.
6579 If GOAL is the sum of the stack pointer and a constant, we treat it
6580 as if it were a constant except that sp is required to be unchanging. */
6583 find_equiv_reg (rtx goal
, rtx insn
, enum reg_class
class, int other
,
6584 short *reload_reg_p
, int goalreg
, enum machine_mode mode
)
6587 rtx goaltry
, valtry
, value
, where
;
6593 int goal_mem_addr_varies
= 0;
6594 int need_stable_sp
= 0;
6601 else if (REG_P (goal
))
6602 regno
= REGNO (goal
);
6603 else if (MEM_P (goal
))
6605 enum rtx_code code
= GET_CODE (XEXP (goal
, 0));
6606 if (MEM_VOLATILE_P (goal
))
6608 if (flag_float_store
&& SCALAR_FLOAT_MODE_P (GET_MODE (goal
)))
6610 /* An address with side effects must be reexecuted. */
6625 else if (CONSTANT_P (goal
))
6627 else if (GET_CODE (goal
) == PLUS
6628 && XEXP (goal
, 0) == stack_pointer_rtx
6629 && CONSTANT_P (XEXP (goal
, 1)))
6630 goal_const
= need_stable_sp
= 1;
6631 else if (GET_CODE (goal
) == PLUS
6632 && XEXP (goal
, 0) == frame_pointer_rtx
6633 && CONSTANT_P (XEXP (goal
, 1)))
6639 /* Scan insns back from INSN, looking for one that copies
6640 a value into or out of GOAL.
6641 Stop and give up if we reach a label. */
6647 if (p
== 0 || LABEL_P (p
)
6648 || num
> PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS
))
6651 if (NONJUMP_INSN_P (p
)
6652 /* If we don't want spill regs ... */
6653 && (! (reload_reg_p
!= 0
6654 && reload_reg_p
!= (short *) (HOST_WIDE_INT
) 1)
6655 /* ... then ignore insns introduced by reload; they aren't
6656 useful and can cause results in reload_as_needed to be
6657 different from what they were when calculating the need for
6658 spills. If we notice an input-reload insn here, we will
6659 reject it below, but it might hide a usable equivalent.
6660 That makes bad code. It may even fail: perhaps no reg was
6661 spilled for this insn because it was assumed we would find
6663 || INSN_UID (p
) < reload_first_uid
))
6666 pat
= single_set (p
);
6668 /* First check for something that sets some reg equal to GOAL. */
6671 && true_regnum (SET_SRC (pat
)) == regno
6672 && (valueno
= true_regnum (valtry
= SET_DEST (pat
))) >= 0)
6675 && true_regnum (SET_DEST (pat
)) == regno
6676 && (valueno
= true_regnum (valtry
= SET_SRC (pat
))) >= 0)
6678 (goal_const
&& rtx_equal_p (SET_SRC (pat
), goal
)
6679 /* When looking for stack pointer + const,
6680 make sure we don't use a stack adjust. */
6681 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat
), goal
)
6682 && (valueno
= true_regnum (valtry
= SET_DEST (pat
))) >= 0)
6684 && (valueno
= true_regnum (valtry
= SET_DEST (pat
))) >= 0
6685 && rtx_renumbered_equal_p (goal
, SET_SRC (pat
)))
6687 && (valueno
= true_regnum (valtry
= SET_SRC (pat
))) >= 0
6688 && rtx_renumbered_equal_p (goal
, SET_DEST (pat
)))
6689 /* If we are looking for a constant,
6690 and something equivalent to that constant was copied
6691 into a reg, we can use that reg. */
6692 || (goal_const
&& REG_NOTES (p
) != 0
6693 && (tem
= find_reg_note (p
, REG_EQUIV
, NULL_RTX
))
6694 && ((rtx_equal_p (XEXP (tem
, 0), goal
)
6696 = true_regnum (valtry
= SET_DEST (pat
))) >= 0)
6697 || (REG_P (SET_DEST (pat
))
6698 && GET_CODE (XEXP (tem
, 0)) == CONST_DOUBLE
6699 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem
, 0)))
6700 && GET_CODE (goal
) == CONST_INT
6702 = operand_subword (XEXP (tem
, 0), 0, 0,
6704 && rtx_equal_p (goal
, goaltry
)
6706 = operand_subword (SET_DEST (pat
), 0, 0,
6708 && (valueno
= true_regnum (valtry
)) >= 0)))
6709 || (goal_const
&& (tem
= find_reg_note (p
, REG_EQUIV
,
6711 && REG_P (SET_DEST (pat
))
6712 && GET_CODE (XEXP (tem
, 0)) == CONST_DOUBLE
6713 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem
, 0)))
6714 && GET_CODE (goal
) == CONST_INT
6715 && 0 != (goaltry
= operand_subword (XEXP (tem
, 0), 1, 0,
6717 && rtx_equal_p (goal
, goaltry
)
6719 = operand_subword (SET_DEST (pat
), 1, 0, VOIDmode
))
6720 && (valueno
= true_regnum (valtry
)) >= 0)))
6724 if (valueno
!= other
)
6727 else if ((unsigned) valueno
>= FIRST_PSEUDO_REGISTER
)
6729 else if (!in_hard_reg_set_p (reg_class_contents
[(int) class],
6739 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6740 (or copying VALUE into GOAL, if GOAL is also a register).
6741 Now verify that VALUE is really valid. */
6743 /* VALUENO is the register number of VALUE; a hard register. */
6745 /* Don't try to re-use something that is killed in this insn. We want
6746 to be able to trust REG_UNUSED notes. */
6747 if (REG_NOTES (where
) != 0 && find_reg_note (where
, REG_UNUSED
, value
))
6750 /* If we propose to get the value from the stack pointer or if GOAL is
6751 a MEM based on the stack pointer, we need a stable SP. */
6752 if (valueno
== STACK_POINTER_REGNUM
|| regno
== STACK_POINTER_REGNUM
6753 || (goal_mem
&& reg_overlap_mentioned_for_reload_p (stack_pointer_rtx
,
6757 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6758 if (GET_MODE (value
) != mode
)
6761 /* Reject VALUE if it was loaded from GOAL
6762 and is also a register that appears in the address of GOAL. */
6764 if (goal_mem
&& value
== SET_DEST (single_set (where
))
6765 && refers_to_regno_for_reload_p (valueno
, end_hard_regno (mode
, valueno
),
6769 /* Reject registers that overlap GOAL. */
6771 if (regno
>= 0 && regno
< FIRST_PSEUDO_REGISTER
)
6772 nregs
= hard_regno_nregs
[regno
][mode
];
6775 valuenregs
= hard_regno_nregs
[valueno
][mode
];
6777 if (!goal_mem
&& !goal_const
6778 && regno
+ nregs
> valueno
&& regno
< valueno
+ valuenregs
)
6781 /* Reject VALUE if it is one of the regs reserved for reloads.
6782 Reload1 knows how to reuse them anyway, and it would get
6783 confused if we allocated one without its knowledge.
6784 (Now that insns introduced by reload are ignored above,
6785 this case shouldn't happen, but I'm not positive.) */
6787 if (reload_reg_p
!= 0 && reload_reg_p
!= (short *) (HOST_WIDE_INT
) 1)
6790 for (i
= 0; i
< valuenregs
; ++i
)
6791 if (reload_reg_p
[valueno
+ i
] >= 0)
6795 /* Reject VALUE if it is a register being used for an input reload
6796 even if it is not one of those reserved. */
6798 if (reload_reg_p
!= 0)
6801 for (i
= 0; i
< n_reloads
; i
++)
6802 if (rld
[i
].reg_rtx
!= 0 && rld
[i
].in
)
6804 int regno1
= REGNO (rld
[i
].reg_rtx
);
6805 int nregs1
= hard_regno_nregs
[regno1
]
6806 [GET_MODE (rld
[i
].reg_rtx
)];
6807 if (regno1
< valueno
+ valuenregs
6808 && regno1
+ nregs1
> valueno
)
6814 /* We must treat frame pointer as varying here,
6815 since it can vary--in a nonlocal goto as generated by expand_goto. */
6816 goal_mem_addr_varies
= !CONSTANT_ADDRESS_P (XEXP (goal
, 0));
6818 /* Now verify that the values of GOAL and VALUE remain unaltered
6819 until INSN is reached. */
6828 /* Don't trust the conversion past a function call
6829 if either of the two is in a call-clobbered register, or memory. */
6834 if (goal_mem
|| need_stable_sp
)
6837 if (regno
>= 0 && regno
< FIRST_PSEUDO_REGISTER
)
6838 for (i
= 0; i
< nregs
; ++i
)
6839 if (call_used_regs
[regno
+ i
]
6840 || HARD_REGNO_CALL_PART_CLOBBERED (regno
+ i
, mode
))
6843 if (valueno
>= 0 && valueno
< FIRST_PSEUDO_REGISTER
)
6844 for (i
= 0; i
< valuenregs
; ++i
)
6845 if (call_used_regs
[valueno
+ i
]
6846 || HARD_REGNO_CALL_PART_CLOBBERED (valueno
+ i
, mode
))
6854 /* Watch out for unspec_volatile, and volatile asms. */
6855 if (volatile_insn_p (pat
))
6858 /* If this insn P stores in either GOAL or VALUE, return 0.
6859 If GOAL is a memory ref and this insn writes memory, return 0.
6860 If GOAL is a memory ref and its address is not constant,
6861 and this insn P changes a register used in GOAL, return 0. */
6863 if (GET_CODE (pat
) == COND_EXEC
)
6864 pat
= COND_EXEC_CODE (pat
);
6865 if (GET_CODE (pat
) == SET
|| GET_CODE (pat
) == CLOBBER
)
6867 rtx dest
= SET_DEST (pat
);
6868 while (GET_CODE (dest
) == SUBREG
6869 || GET_CODE (dest
) == ZERO_EXTRACT
6870 || GET_CODE (dest
) == STRICT_LOW_PART
)
6871 dest
= XEXP (dest
, 0);
6874 int xregno
= REGNO (dest
);
6876 if (REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
6877 xnregs
= hard_regno_nregs
[xregno
][GET_MODE (dest
)];
6880 if (xregno
< regno
+ nregs
&& xregno
+ xnregs
> regno
)
6882 if (xregno
< valueno
+ valuenregs
6883 && xregno
+ xnregs
> valueno
)
6885 if (goal_mem_addr_varies
6886 && reg_overlap_mentioned_for_reload_p (dest
, goal
))
6888 if (xregno
== STACK_POINTER_REGNUM
&& need_stable_sp
)
6891 else if (goal_mem
&& MEM_P (dest
)
6892 && ! push_operand (dest
, GET_MODE (dest
)))
6894 else if (MEM_P (dest
) && regno
>= FIRST_PSEUDO_REGISTER
6895 && reg_equiv_memory_loc
[regno
] != 0)
6897 else if (need_stable_sp
&& push_operand (dest
, GET_MODE (dest
)))
6900 else if (GET_CODE (pat
) == PARALLEL
)
6903 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
6905 rtx v1
= XVECEXP (pat
, 0, i
);
6906 if (GET_CODE (v1
) == COND_EXEC
)
6907 v1
= COND_EXEC_CODE (v1
);
6908 if (GET_CODE (v1
) == SET
|| GET_CODE (v1
) == CLOBBER
)
6910 rtx dest
= SET_DEST (v1
);
6911 while (GET_CODE (dest
) == SUBREG
6912 || GET_CODE (dest
) == ZERO_EXTRACT
6913 || GET_CODE (dest
) == STRICT_LOW_PART
)
6914 dest
= XEXP (dest
, 0);
6917 int xregno
= REGNO (dest
);
6919 if (REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
6920 xnregs
= hard_regno_nregs
[xregno
][GET_MODE (dest
)];
6923 if (xregno
< regno
+ nregs
6924 && xregno
+ xnregs
> regno
)
6926 if (xregno
< valueno
+ valuenregs
6927 && xregno
+ xnregs
> valueno
)
6929 if (goal_mem_addr_varies
6930 && reg_overlap_mentioned_for_reload_p (dest
,
6933 if (xregno
== STACK_POINTER_REGNUM
&& need_stable_sp
)
6936 else if (goal_mem
&& MEM_P (dest
)
6937 && ! push_operand (dest
, GET_MODE (dest
)))
6939 else if (MEM_P (dest
) && regno
>= FIRST_PSEUDO_REGISTER
6940 && reg_equiv_memory_loc
[regno
] != 0)
6942 else if (need_stable_sp
6943 && push_operand (dest
, GET_MODE (dest
)))
6949 if (CALL_P (p
) && CALL_INSN_FUNCTION_USAGE (p
))
6953 for (link
= CALL_INSN_FUNCTION_USAGE (p
); XEXP (link
, 1) != 0;
6954 link
= XEXP (link
, 1))
6956 pat
= XEXP (link
, 0);
6957 if (GET_CODE (pat
) == CLOBBER
)
6959 rtx dest
= SET_DEST (pat
);
6963 int xregno
= REGNO (dest
);
6965 = hard_regno_nregs
[xregno
][GET_MODE (dest
)];
6967 if (xregno
< regno
+ nregs
6968 && xregno
+ xnregs
> regno
)
6970 else if (xregno
< valueno
+ valuenregs
6971 && xregno
+ xnregs
> valueno
)
6973 else if (goal_mem_addr_varies
6974 && reg_overlap_mentioned_for_reload_p (dest
,
6979 else if (goal_mem
&& MEM_P (dest
)
6980 && ! push_operand (dest
, GET_MODE (dest
)))
6982 else if (need_stable_sp
6983 && push_operand (dest
, GET_MODE (dest
)))
6990 /* If this insn auto-increments or auto-decrements
6991 either regno or valueno, return 0 now.
6992 If GOAL is a memory ref and its address is not constant,
6993 and this insn P increments a register used in GOAL, return 0. */
6997 for (link
= REG_NOTES (p
); link
; link
= XEXP (link
, 1))
6998 if (REG_NOTE_KIND (link
) == REG_INC
6999 && REG_P (XEXP (link
, 0)))
7001 int incno
= REGNO (XEXP (link
, 0));
7002 if (incno
< regno
+ nregs
&& incno
>= regno
)
7004 if (incno
< valueno
+ valuenregs
&& incno
>= valueno
)
7006 if (goal_mem_addr_varies
7007 && reg_overlap_mentioned_for_reload_p (XEXP (link
, 0),
7017 /* Find a place where INCED appears in an increment or decrement operator
7018 within X, and return the amount INCED is incremented or decremented by.
7019 The value is always positive. */
7022 find_inc_amount (rtx x
, rtx inced
)
7024 enum rtx_code code
= GET_CODE (x
);
7030 rtx addr
= XEXP (x
, 0);
7031 if ((GET_CODE (addr
) == PRE_DEC
7032 || GET_CODE (addr
) == POST_DEC
7033 || GET_CODE (addr
) == PRE_INC
7034 || GET_CODE (addr
) == POST_INC
)
7035 && XEXP (addr
, 0) == inced
)
7036 return GET_MODE_SIZE (GET_MODE (x
));
7037 else if ((GET_CODE (addr
) == PRE_MODIFY
7038 || GET_CODE (addr
) == POST_MODIFY
)
7039 && GET_CODE (XEXP (addr
, 1)) == PLUS
7040 && XEXP (addr
, 0) == XEXP (XEXP (addr
, 1), 0)
7041 && XEXP (addr
, 0) == inced
7042 && GET_CODE (XEXP (XEXP (addr
, 1), 1)) == CONST_INT
)
7044 i
= INTVAL (XEXP (XEXP (addr
, 1), 1));
7045 return i
< 0 ? -i
: i
;
7049 fmt
= GET_RTX_FORMAT (code
);
7050 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
7054 int tem
= find_inc_amount (XEXP (x
, i
), inced
);
7061 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
7063 int tem
= find_inc_amount (XVECEXP (x
, i
, j
), inced
);
7073 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7074 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7078 reg_inc_found_and_valid_p (unsigned int regno
, unsigned int endregno
,
7085 if (! INSN_P (insn
))
7088 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
7089 if (REG_NOTE_KIND (link
) == REG_INC
)
7091 unsigned int test
= (int) REGNO (XEXP (link
, 0));
7092 if (test
>= regno
&& test
< endregno
)
7099 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7103 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7104 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7105 REG_INC. REGNO must refer to a hard register. */
7108 regno_clobbered_p (unsigned int regno
, rtx insn
, enum machine_mode mode
,
7111 unsigned int nregs
, endregno
;
7113 /* regno must be a hard register. */
7114 gcc_assert (regno
< FIRST_PSEUDO_REGISTER
);
7116 nregs
= hard_regno_nregs
[regno
][mode
];
7117 endregno
= regno
+ nregs
;
7119 if ((GET_CODE (PATTERN (insn
)) == CLOBBER
7120 || (sets
== 1 && GET_CODE (PATTERN (insn
)) == SET
))
7121 && REG_P (XEXP (PATTERN (insn
), 0)))
7123 unsigned int test
= REGNO (XEXP (PATTERN (insn
), 0));
7125 return test
>= regno
&& test
< endregno
;
7128 if (sets
== 2 && reg_inc_found_and_valid_p (regno
, endregno
, insn
))
7131 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
7133 int i
= XVECLEN (PATTERN (insn
), 0) - 1;
7137 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
7138 if ((GET_CODE (elt
) == CLOBBER
7139 || (sets
== 1 && GET_CODE (PATTERN (insn
)) == SET
))
7140 && REG_P (XEXP (elt
, 0)))
7142 unsigned int test
= REGNO (XEXP (elt
, 0));
7144 if (test
>= regno
&& test
< endregno
)
7148 && reg_inc_found_and_valid_p (regno
, endregno
, elt
))
7156 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7158 reload_adjust_reg_for_mode (rtx reloadreg
, enum machine_mode mode
)
7162 if (GET_MODE (reloadreg
) == mode
)
7165 regno
= REGNO (reloadreg
);
7167 if (WORDS_BIG_ENDIAN
)
7168 regno
+= (int) hard_regno_nregs
[regno
][GET_MODE (reloadreg
)]
7169 - (int) hard_regno_nregs
[regno
][mode
];
7171 return gen_rtx_REG (mode
, regno
);
7174 static const char *const reload_when_needed_name
[] =
7177 "RELOAD_FOR_OUTPUT",
7179 "RELOAD_FOR_INPUT_ADDRESS",
7180 "RELOAD_FOR_INPADDR_ADDRESS",
7181 "RELOAD_FOR_OUTPUT_ADDRESS",
7182 "RELOAD_FOR_OUTADDR_ADDRESS",
7183 "RELOAD_FOR_OPERAND_ADDRESS",
7184 "RELOAD_FOR_OPADDR_ADDR",
7186 "RELOAD_FOR_OTHER_ADDRESS"
7189 /* These functions are used to print the variables set by 'find_reloads' */
7192 debug_reload_to_stream (FILE *f
)
7199 for (r
= 0; r
< n_reloads
; r
++)
7201 fprintf (f
, "Reload %d: ", r
);
7205 fprintf (f
, "reload_in (%s) = ",
7206 GET_MODE_NAME (rld
[r
].inmode
));
7207 print_inline_rtx (f
, rld
[r
].in
, 24);
7208 fprintf (f
, "\n\t");
7211 if (rld
[r
].out
!= 0)
7213 fprintf (f
, "reload_out (%s) = ",
7214 GET_MODE_NAME (rld
[r
].outmode
));
7215 print_inline_rtx (f
, rld
[r
].out
, 24);
7216 fprintf (f
, "\n\t");
7219 fprintf (f
, "%s, ", reg_class_names
[(int) rld
[r
].class]);
7221 fprintf (f
, "%s (opnum = %d)",
7222 reload_when_needed_name
[(int) rld
[r
].when_needed
],
7225 if (rld
[r
].optional
)
7226 fprintf (f
, ", optional");
7228 if (rld
[r
].nongroup
)
7229 fprintf (f
, ", nongroup");
7231 if (rld
[r
].inc
!= 0)
7232 fprintf (f
, ", inc by %d", rld
[r
].inc
);
7234 if (rld
[r
].nocombine
)
7235 fprintf (f
, ", can't combine");
7237 if (rld
[r
].secondary_p
)
7238 fprintf (f
, ", secondary_reload_p");
7240 if (rld
[r
].in_reg
!= 0)
7242 fprintf (f
, "\n\treload_in_reg: ");
7243 print_inline_rtx (f
, rld
[r
].in_reg
, 24);
7246 if (rld
[r
].out_reg
!= 0)
7248 fprintf (f
, "\n\treload_out_reg: ");
7249 print_inline_rtx (f
, rld
[r
].out_reg
, 24);
7252 if (rld
[r
].reg_rtx
!= 0)
7254 fprintf (f
, "\n\treload_reg_rtx: ");
7255 print_inline_rtx (f
, rld
[r
].reg_rtx
, 24);
7259 if (rld
[r
].secondary_in_reload
!= -1)
7261 fprintf (f
, "%ssecondary_in_reload = %d",
7262 prefix
, rld
[r
].secondary_in_reload
);
7266 if (rld
[r
].secondary_out_reload
!= -1)
7267 fprintf (f
, "%ssecondary_out_reload = %d\n",
7268 prefix
, rld
[r
].secondary_out_reload
);
7271 if (rld
[r
].secondary_in_icode
!= CODE_FOR_nothing
)
7273 fprintf (f
, "%ssecondary_in_icode = %s", prefix
,
7274 insn_data
[rld
[r
].secondary_in_icode
].name
);
7278 if (rld
[r
].secondary_out_icode
!= CODE_FOR_nothing
)
7279 fprintf (f
, "%ssecondary_out_icode = %s", prefix
,
7280 insn_data
[rld
[r
].secondary_out_icode
].name
);
7289 debug_reload_to_stream (stderr
);