* config/rs6000/aix61.h (PROCESSOR_DEFAULT): Change to
[official-gcc.git] / gcc / tree-vrp.c
blobb07f121f77d65aee5acc960618a817e36990b4a8
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "diagnostic-core.h"
37 #include "intl.h"
38 #include "cfgloop.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-chrec.h"
44 /* Type of value ranges. See value_range_d for a description of these
45 types. */
46 enum value_range_type { VR_UNDEFINED, VR_RANGE, VR_ANTI_RANGE, VR_VARYING };
48 /* Range of values that can be associated with an SSA_NAME after VRP
49 has executed. */
50 struct value_range_d
52 /* Lattice value represented by this range. */
53 enum value_range_type type;
55 /* Minimum and maximum values represented by this range. These
56 values should be interpreted as follows:
58 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
59 be NULL.
61 - If TYPE == VR_RANGE then MIN holds the minimum value and
62 MAX holds the maximum value of the range [MIN, MAX].
64 - If TYPE == ANTI_RANGE the variable is known to NOT
65 take any values in the range [MIN, MAX]. */
66 tree min;
67 tree max;
69 /* Set of SSA names whose value ranges are equivalent to this one.
70 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
71 bitmap equiv;
74 typedef struct value_range_d value_range_t;
76 /* Set of SSA names found live during the RPO traversal of the function
77 for still active basic-blocks. */
78 static sbitmap *live;
80 /* Return true if the SSA name NAME is live on the edge E. */
82 static bool
83 live_on_edge (edge e, tree name)
85 return (live[e->dest->index]
86 && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
89 /* Local functions. */
90 static int compare_values (tree val1, tree val2);
91 static int compare_values_warnv (tree val1, tree val2, bool *);
92 static void vrp_meet (value_range_t *, value_range_t *);
93 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
94 tree, tree, bool, bool *,
95 bool *);
97 /* Location information for ASSERT_EXPRs. Each instance of this
98 structure describes an ASSERT_EXPR for an SSA name. Since a single
99 SSA name may have more than one assertion associated with it, these
100 locations are kept in a linked list attached to the corresponding
101 SSA name. */
102 struct assert_locus_d
104 /* Basic block where the assertion would be inserted. */
105 basic_block bb;
107 /* Some assertions need to be inserted on an edge (e.g., assertions
108 generated by COND_EXPRs). In those cases, BB will be NULL. */
109 edge e;
111 /* Pointer to the statement that generated this assertion. */
112 gimple_stmt_iterator si;
114 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
115 enum tree_code comp_code;
117 /* Value being compared against. */
118 tree val;
120 /* Expression to compare. */
121 tree expr;
123 /* Next node in the linked list. */
124 struct assert_locus_d *next;
127 typedef struct assert_locus_d *assert_locus_t;
129 /* If bit I is present, it means that SSA name N_i has a list of
130 assertions that should be inserted in the IL. */
131 static bitmap need_assert_for;
133 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
134 holds a list of ASSERT_LOCUS_T nodes that describe where
135 ASSERT_EXPRs for SSA name N_I should be inserted. */
136 static assert_locus_t *asserts_for;
138 /* Value range array. After propagation, VR_VALUE[I] holds the range
139 of values that SSA name N_I may take. */
140 static value_range_t **vr_value;
142 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
143 number of executable edges we saw the last time we visited the
144 node. */
145 static int *vr_phi_edge_counts;
147 typedef struct {
148 gimple stmt;
149 tree vec;
150 } switch_update;
152 static VEC (edge, heap) *to_remove_edges;
153 DEF_VEC_O(switch_update);
154 DEF_VEC_ALLOC_O(switch_update, heap);
155 static VEC (switch_update, heap) *to_update_switch_stmts;
158 /* Return the maximum value for TYPE. */
160 static inline tree
161 vrp_val_max (const_tree type)
163 if (!INTEGRAL_TYPE_P (type))
164 return NULL_TREE;
166 return TYPE_MAX_VALUE (type);
169 /* Return the minimum value for TYPE. */
171 static inline tree
172 vrp_val_min (const_tree type)
174 if (!INTEGRAL_TYPE_P (type))
175 return NULL_TREE;
177 return TYPE_MIN_VALUE (type);
180 /* Return whether VAL is equal to the maximum value of its type. This
181 will be true for a positive overflow infinity. We can't do a
182 simple equality comparison with TYPE_MAX_VALUE because C typedefs
183 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
184 to the integer constant with the same value in the type. */
186 static inline bool
187 vrp_val_is_max (const_tree val)
189 tree type_max = vrp_val_max (TREE_TYPE (val));
190 return (val == type_max
191 || (type_max != NULL_TREE
192 && operand_equal_p (val, type_max, 0)));
195 /* Return whether VAL is equal to the minimum value of its type. This
196 will be true for a negative overflow infinity. */
198 static inline bool
199 vrp_val_is_min (const_tree val)
201 tree type_min = vrp_val_min (TREE_TYPE (val));
202 return (val == type_min
203 || (type_min != NULL_TREE
204 && operand_equal_p (val, type_min, 0)));
208 /* Return whether TYPE should use an overflow infinity distinct from
209 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
210 represent a signed overflow during VRP computations. An infinity
211 is distinct from a half-range, which will go from some number to
212 TYPE_{MIN,MAX}_VALUE. */
214 static inline bool
215 needs_overflow_infinity (const_tree type)
217 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
220 /* Return whether TYPE can support our overflow infinity
221 representation: we use the TREE_OVERFLOW flag, which only exists
222 for constants. If TYPE doesn't support this, we don't optimize
223 cases which would require signed overflow--we drop them to
224 VARYING. */
226 static inline bool
227 supports_overflow_infinity (const_tree type)
229 tree min = vrp_val_min (type), max = vrp_val_max (type);
230 #ifdef ENABLE_CHECKING
231 gcc_assert (needs_overflow_infinity (type));
232 #endif
233 return (min != NULL_TREE
234 && CONSTANT_CLASS_P (min)
235 && max != NULL_TREE
236 && CONSTANT_CLASS_P (max));
239 /* VAL is the maximum or minimum value of a type. Return a
240 corresponding overflow infinity. */
242 static inline tree
243 make_overflow_infinity (tree val)
245 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
246 val = copy_node (val);
247 TREE_OVERFLOW (val) = 1;
248 return val;
251 /* Return a negative overflow infinity for TYPE. */
253 static inline tree
254 negative_overflow_infinity (tree type)
256 gcc_checking_assert (supports_overflow_infinity (type));
257 return make_overflow_infinity (vrp_val_min (type));
260 /* Return a positive overflow infinity for TYPE. */
262 static inline tree
263 positive_overflow_infinity (tree type)
265 gcc_checking_assert (supports_overflow_infinity (type));
266 return make_overflow_infinity (vrp_val_max (type));
269 /* Return whether VAL is a negative overflow infinity. */
271 static inline bool
272 is_negative_overflow_infinity (const_tree val)
274 return (needs_overflow_infinity (TREE_TYPE (val))
275 && CONSTANT_CLASS_P (val)
276 && TREE_OVERFLOW (val)
277 && vrp_val_is_min (val));
280 /* Return whether VAL is a positive overflow infinity. */
282 static inline bool
283 is_positive_overflow_infinity (const_tree val)
285 return (needs_overflow_infinity (TREE_TYPE (val))
286 && CONSTANT_CLASS_P (val)
287 && TREE_OVERFLOW (val)
288 && vrp_val_is_max (val));
291 /* Return whether VAL is a positive or negative overflow infinity. */
293 static inline bool
294 is_overflow_infinity (const_tree val)
296 return (needs_overflow_infinity (TREE_TYPE (val))
297 && CONSTANT_CLASS_P (val)
298 && TREE_OVERFLOW (val)
299 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
302 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
304 static inline bool
305 stmt_overflow_infinity (gimple stmt)
307 if (is_gimple_assign (stmt)
308 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
309 GIMPLE_SINGLE_RHS)
310 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
311 return false;
314 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
315 the same value with TREE_OVERFLOW clear. This can be used to avoid
316 confusing a regular value with an overflow value. */
318 static inline tree
319 avoid_overflow_infinity (tree val)
321 if (!is_overflow_infinity (val))
322 return val;
324 if (vrp_val_is_max (val))
325 return vrp_val_max (TREE_TYPE (val));
326 else
328 gcc_checking_assert (vrp_val_is_min (val));
329 return vrp_val_min (TREE_TYPE (val));
334 /* Return true if ARG is marked with the nonnull attribute in the
335 current function signature. */
337 static bool
338 nonnull_arg_p (const_tree arg)
340 tree t, attrs, fntype;
341 unsigned HOST_WIDE_INT arg_num;
343 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
345 /* The static chain decl is always non null. */
346 if (arg == cfun->static_chain_decl)
347 return true;
349 fntype = TREE_TYPE (current_function_decl);
350 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
352 /* If "nonnull" wasn't specified, we know nothing about the argument. */
353 if (attrs == NULL_TREE)
354 return false;
356 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
357 if (TREE_VALUE (attrs) == NULL_TREE)
358 return true;
360 /* Get the position number for ARG in the function signature. */
361 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
363 t = DECL_CHAIN (t), arg_num++)
365 if (t == arg)
366 break;
369 gcc_assert (t == arg);
371 /* Now see if ARG_NUM is mentioned in the nonnull list. */
372 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
374 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
375 return true;
378 return false;
382 /* Set value range VR to VR_VARYING. */
384 static inline void
385 set_value_range_to_varying (value_range_t *vr)
387 vr->type = VR_VARYING;
388 vr->min = vr->max = NULL_TREE;
389 if (vr->equiv)
390 bitmap_clear (vr->equiv);
394 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
396 static void
397 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
398 tree max, bitmap equiv)
400 #if defined ENABLE_CHECKING
401 /* Check the validity of the range. */
402 if (t == VR_RANGE || t == VR_ANTI_RANGE)
404 int cmp;
406 gcc_assert (min && max);
408 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
409 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
411 cmp = compare_values (min, max);
412 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
414 if (needs_overflow_infinity (TREE_TYPE (min)))
415 gcc_assert (!is_overflow_infinity (min)
416 || !is_overflow_infinity (max));
419 if (t == VR_UNDEFINED || t == VR_VARYING)
420 gcc_assert (min == NULL_TREE && max == NULL_TREE);
422 if (t == VR_UNDEFINED || t == VR_VARYING)
423 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
424 #endif
426 vr->type = t;
427 vr->min = min;
428 vr->max = max;
430 /* Since updating the equivalence set involves deep copying the
431 bitmaps, only do it if absolutely necessary. */
432 if (vr->equiv == NULL
433 && equiv != NULL)
434 vr->equiv = BITMAP_ALLOC (NULL);
436 if (equiv != vr->equiv)
438 if (equiv && !bitmap_empty_p (equiv))
439 bitmap_copy (vr->equiv, equiv);
440 else
441 bitmap_clear (vr->equiv);
446 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
447 This means adjusting T, MIN and MAX representing the case of a
448 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
449 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
450 In corner cases where MAX+1 or MIN-1 wraps this will fall back
451 to varying.
452 This routine exists to ease canonicalization in the case where we
453 extract ranges from var + CST op limit. */
455 static void
456 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
457 tree min, tree max, bitmap equiv)
459 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
460 if ((t != VR_RANGE
461 && t != VR_ANTI_RANGE)
462 || TREE_CODE (min) != INTEGER_CST
463 || TREE_CODE (max) != INTEGER_CST)
465 set_value_range (vr, t, min, max, equiv);
466 return;
469 /* Wrong order for min and max, to swap them and the VR type we need
470 to adjust them. */
471 if (tree_int_cst_lt (max, min))
473 tree one = build_int_cst (TREE_TYPE (min), 1);
474 tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
475 max = int_const_binop (MINUS_EXPR, min, one, 0);
476 min = tmp;
478 /* There's one corner case, if we had [C+1, C] before we now have
479 that again. But this represents an empty value range, so drop
480 to varying in this case. */
481 if (tree_int_cst_lt (max, min))
483 set_value_range_to_varying (vr);
484 return;
487 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
490 /* Anti-ranges that can be represented as ranges should be so. */
491 if (t == VR_ANTI_RANGE)
493 bool is_min = vrp_val_is_min (min);
494 bool is_max = vrp_val_is_max (max);
496 if (is_min && is_max)
498 /* We cannot deal with empty ranges, drop to varying. */
499 set_value_range_to_varying (vr);
500 return;
502 else if (is_min
503 /* As a special exception preserve non-null ranges. */
504 && !(TYPE_UNSIGNED (TREE_TYPE (min))
505 && integer_zerop (max)))
507 tree one = build_int_cst (TREE_TYPE (max), 1);
508 min = int_const_binop (PLUS_EXPR, max, one, 0);
509 max = vrp_val_max (TREE_TYPE (max));
510 t = VR_RANGE;
512 else if (is_max)
514 tree one = build_int_cst (TREE_TYPE (min), 1);
515 max = int_const_binop (MINUS_EXPR, min, one, 0);
516 min = vrp_val_min (TREE_TYPE (min));
517 t = VR_RANGE;
521 set_value_range (vr, t, min, max, equiv);
524 /* Copy value range FROM into value range TO. */
526 static inline void
527 copy_value_range (value_range_t *to, value_range_t *from)
529 set_value_range (to, from->type, from->min, from->max, from->equiv);
532 /* Set value range VR to a single value. This function is only called
533 with values we get from statements, and exists to clear the
534 TREE_OVERFLOW flag so that we don't think we have an overflow
535 infinity when we shouldn't. */
537 static inline void
538 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
540 gcc_assert (is_gimple_min_invariant (val));
541 val = avoid_overflow_infinity (val);
542 set_value_range (vr, VR_RANGE, val, val, equiv);
545 /* Set value range VR to a non-negative range of type TYPE.
546 OVERFLOW_INFINITY indicates whether to use an overflow infinity
547 rather than TYPE_MAX_VALUE; this should be true if we determine
548 that the range is nonnegative based on the assumption that signed
549 overflow does not occur. */
551 static inline void
552 set_value_range_to_nonnegative (value_range_t *vr, tree type,
553 bool overflow_infinity)
555 tree zero;
557 if (overflow_infinity && !supports_overflow_infinity (type))
559 set_value_range_to_varying (vr);
560 return;
563 zero = build_int_cst (type, 0);
564 set_value_range (vr, VR_RANGE, zero,
565 (overflow_infinity
566 ? positive_overflow_infinity (type)
567 : TYPE_MAX_VALUE (type)),
568 vr->equiv);
571 /* Set value range VR to a non-NULL range of type TYPE. */
573 static inline void
574 set_value_range_to_nonnull (value_range_t *vr, tree type)
576 tree zero = build_int_cst (type, 0);
577 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
581 /* Set value range VR to a NULL range of type TYPE. */
583 static inline void
584 set_value_range_to_null (value_range_t *vr, tree type)
586 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
590 /* Set value range VR to a range of a truthvalue of type TYPE. */
592 static inline void
593 set_value_range_to_truthvalue (value_range_t *vr, tree type)
595 if (TYPE_PRECISION (type) == 1)
596 set_value_range_to_varying (vr);
597 else
598 set_value_range (vr, VR_RANGE,
599 build_int_cst (type, 0), build_int_cst (type, 1),
600 vr->equiv);
604 /* Set value range VR to VR_UNDEFINED. */
606 static inline void
607 set_value_range_to_undefined (value_range_t *vr)
609 vr->type = VR_UNDEFINED;
610 vr->min = vr->max = NULL_TREE;
611 if (vr->equiv)
612 bitmap_clear (vr->equiv);
616 /* If abs (min) < abs (max), set VR to [-max, max], if
617 abs (min) >= abs (max), set VR to [-min, min]. */
619 static void
620 abs_extent_range (value_range_t *vr, tree min, tree max)
622 int cmp;
624 gcc_assert (TREE_CODE (min) == INTEGER_CST);
625 gcc_assert (TREE_CODE (max) == INTEGER_CST);
626 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
627 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
628 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
629 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
630 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
632 set_value_range_to_varying (vr);
633 return;
635 cmp = compare_values (min, max);
636 if (cmp == -1)
637 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
638 else if (cmp == 0 || cmp == 1)
640 max = min;
641 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
643 else
645 set_value_range_to_varying (vr);
646 return;
648 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
652 /* Return value range information for VAR.
654 If we have no values ranges recorded (ie, VRP is not running), then
655 return NULL. Otherwise create an empty range if none existed for VAR. */
657 static value_range_t *
658 get_value_range (const_tree var)
660 value_range_t *vr;
661 tree sym;
662 unsigned ver = SSA_NAME_VERSION (var);
664 /* If we have no recorded ranges, then return NULL. */
665 if (! vr_value)
666 return NULL;
668 vr = vr_value[ver];
669 if (vr)
670 return vr;
672 /* Create a default value range. */
673 vr_value[ver] = vr = XCNEW (value_range_t);
675 /* Defer allocating the equivalence set. */
676 vr->equiv = NULL;
678 /* If VAR is a default definition, the variable can take any value
679 in VAR's type. */
680 sym = SSA_NAME_VAR (var);
681 if (SSA_NAME_IS_DEFAULT_DEF (var))
683 /* Try to use the "nonnull" attribute to create ~[0, 0]
684 anti-ranges for pointers. Note that this is only valid with
685 default definitions of PARM_DECLs. */
686 if (TREE_CODE (sym) == PARM_DECL
687 && POINTER_TYPE_P (TREE_TYPE (sym))
688 && nonnull_arg_p (sym))
689 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
690 else
691 set_value_range_to_varying (vr);
694 return vr;
697 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
699 static inline bool
700 vrp_operand_equal_p (const_tree val1, const_tree val2)
702 if (val1 == val2)
703 return true;
704 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
705 return false;
706 if (is_overflow_infinity (val1))
707 return is_overflow_infinity (val2);
708 return true;
711 /* Return true, if the bitmaps B1 and B2 are equal. */
713 static inline bool
714 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
716 return (b1 == b2
717 || (b1 && b2
718 && bitmap_equal_p (b1, b2)));
721 /* Update the value range and equivalence set for variable VAR to
722 NEW_VR. Return true if NEW_VR is different from VAR's previous
723 value.
725 NOTE: This function assumes that NEW_VR is a temporary value range
726 object created for the sole purpose of updating VAR's range. The
727 storage used by the equivalence set from NEW_VR will be freed by
728 this function. Do not call update_value_range when NEW_VR
729 is the range object associated with another SSA name. */
731 static inline bool
732 update_value_range (const_tree var, value_range_t *new_vr)
734 value_range_t *old_vr;
735 bool is_new;
737 /* Update the value range, if necessary. */
738 old_vr = get_value_range (var);
739 is_new = old_vr->type != new_vr->type
740 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
741 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
742 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
744 if (is_new)
745 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
746 new_vr->equiv);
748 BITMAP_FREE (new_vr->equiv);
750 return is_new;
754 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
755 point where equivalence processing can be turned on/off. */
757 static void
758 add_equivalence (bitmap *equiv, const_tree var)
760 unsigned ver = SSA_NAME_VERSION (var);
761 value_range_t *vr = vr_value[ver];
763 if (*equiv == NULL)
764 *equiv = BITMAP_ALLOC (NULL);
765 bitmap_set_bit (*equiv, ver);
766 if (vr && vr->equiv)
767 bitmap_ior_into (*equiv, vr->equiv);
771 /* Return true if VR is ~[0, 0]. */
773 static inline bool
774 range_is_nonnull (value_range_t *vr)
776 return vr->type == VR_ANTI_RANGE
777 && integer_zerop (vr->min)
778 && integer_zerop (vr->max);
782 /* Return true if VR is [0, 0]. */
784 static inline bool
785 range_is_null (value_range_t *vr)
787 return vr->type == VR_RANGE
788 && integer_zerop (vr->min)
789 && integer_zerop (vr->max);
792 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
793 a singleton. */
795 static inline bool
796 range_int_cst_p (value_range_t *vr)
798 return (vr->type == VR_RANGE
799 && TREE_CODE (vr->max) == INTEGER_CST
800 && TREE_CODE (vr->min) == INTEGER_CST
801 && !TREE_OVERFLOW (vr->max)
802 && !TREE_OVERFLOW (vr->min));
805 /* Return true if VR is a INTEGER_CST singleton. */
807 static inline bool
808 range_int_cst_singleton_p (value_range_t *vr)
810 return (range_int_cst_p (vr)
811 && tree_int_cst_equal (vr->min, vr->max));
814 /* Return true if value range VR involves at least one symbol. */
816 static inline bool
817 symbolic_range_p (value_range_t *vr)
819 return (!is_gimple_min_invariant (vr->min)
820 || !is_gimple_min_invariant (vr->max));
823 /* Return true if value range VR uses an overflow infinity. */
825 static inline bool
826 overflow_infinity_range_p (value_range_t *vr)
828 return (vr->type == VR_RANGE
829 && (is_overflow_infinity (vr->min)
830 || is_overflow_infinity (vr->max)));
833 /* Return false if we can not make a valid comparison based on VR;
834 this will be the case if it uses an overflow infinity and overflow
835 is not undefined (i.e., -fno-strict-overflow is in effect).
836 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
837 uses an overflow infinity. */
839 static bool
840 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
842 gcc_assert (vr->type == VR_RANGE);
843 if (is_overflow_infinity (vr->min))
845 *strict_overflow_p = true;
846 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
847 return false;
849 if (is_overflow_infinity (vr->max))
851 *strict_overflow_p = true;
852 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
853 return false;
855 return true;
859 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
860 ranges obtained so far. */
862 static bool
863 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
865 return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
866 || (TREE_CODE (expr) == SSA_NAME
867 && ssa_name_nonnegative_p (expr)));
870 /* Return true if the result of assignment STMT is know to be non-negative.
871 If the return value is based on the assumption that signed overflow is
872 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
873 *STRICT_OVERFLOW_P.*/
875 static bool
876 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
878 enum tree_code code = gimple_assign_rhs_code (stmt);
879 switch (get_gimple_rhs_class (code))
881 case GIMPLE_UNARY_RHS:
882 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
883 gimple_expr_type (stmt),
884 gimple_assign_rhs1 (stmt),
885 strict_overflow_p);
886 case GIMPLE_BINARY_RHS:
887 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
888 gimple_expr_type (stmt),
889 gimple_assign_rhs1 (stmt),
890 gimple_assign_rhs2 (stmt),
891 strict_overflow_p);
892 case GIMPLE_TERNARY_RHS:
893 return false;
894 case GIMPLE_SINGLE_RHS:
895 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
896 strict_overflow_p);
897 case GIMPLE_INVALID_RHS:
898 gcc_unreachable ();
899 default:
900 gcc_unreachable ();
904 /* Return true if return value of call STMT is know to be non-negative.
905 If the return value is based on the assumption that signed overflow is
906 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
907 *STRICT_OVERFLOW_P.*/
909 static bool
910 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
912 tree arg0 = gimple_call_num_args (stmt) > 0 ?
913 gimple_call_arg (stmt, 0) : NULL_TREE;
914 tree arg1 = gimple_call_num_args (stmt) > 1 ?
915 gimple_call_arg (stmt, 1) : NULL_TREE;
917 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
918 gimple_call_fndecl (stmt),
919 arg0,
920 arg1,
921 strict_overflow_p);
924 /* Return true if STMT is know to to compute a non-negative value.
925 If the return value is based on the assumption that signed overflow is
926 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
927 *STRICT_OVERFLOW_P.*/
929 static bool
930 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
932 switch (gimple_code (stmt))
934 case GIMPLE_ASSIGN:
935 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
936 case GIMPLE_CALL:
937 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
938 default:
939 gcc_unreachable ();
943 /* Return true if the result of assignment STMT is know to be non-zero.
944 If the return value is based on the assumption that signed overflow is
945 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
946 *STRICT_OVERFLOW_P.*/
948 static bool
949 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
951 enum tree_code code = gimple_assign_rhs_code (stmt);
952 switch (get_gimple_rhs_class (code))
954 case GIMPLE_UNARY_RHS:
955 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
956 gimple_expr_type (stmt),
957 gimple_assign_rhs1 (stmt),
958 strict_overflow_p);
959 case GIMPLE_BINARY_RHS:
960 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
961 gimple_expr_type (stmt),
962 gimple_assign_rhs1 (stmt),
963 gimple_assign_rhs2 (stmt),
964 strict_overflow_p);
965 case GIMPLE_TERNARY_RHS:
966 return false;
967 case GIMPLE_SINGLE_RHS:
968 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
969 strict_overflow_p);
970 case GIMPLE_INVALID_RHS:
971 gcc_unreachable ();
972 default:
973 gcc_unreachable ();
977 /* Return true if STMT is know to to compute a non-zero value.
978 If the return value is based on the assumption that signed overflow is
979 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
980 *STRICT_OVERFLOW_P.*/
982 static bool
983 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
985 switch (gimple_code (stmt))
987 case GIMPLE_ASSIGN:
988 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
989 case GIMPLE_CALL:
990 return gimple_alloca_call_p (stmt);
991 default:
992 gcc_unreachable ();
996 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
997 obtained so far. */
999 static bool
1000 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1002 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1003 return true;
1005 /* If we have an expression of the form &X->a, then the expression
1006 is nonnull if X is nonnull. */
1007 if (is_gimple_assign (stmt)
1008 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1010 tree expr = gimple_assign_rhs1 (stmt);
1011 tree base = get_base_address (TREE_OPERAND (expr, 0));
1013 if (base != NULL_TREE
1014 && TREE_CODE (base) == MEM_REF
1015 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1017 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1018 if (range_is_nonnull (vr))
1019 return true;
1023 return false;
1026 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1027 a gimple invariant, or SSA_NAME +- CST. */
1029 static bool
1030 valid_value_p (tree expr)
1032 if (TREE_CODE (expr) == SSA_NAME)
1033 return true;
1035 if (TREE_CODE (expr) == PLUS_EXPR
1036 || TREE_CODE (expr) == MINUS_EXPR)
1037 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1038 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1040 return is_gimple_min_invariant (expr);
1043 /* Return
1044 1 if VAL < VAL2
1045 0 if !(VAL < VAL2)
1046 -2 if those are incomparable. */
1047 static inline int
1048 operand_less_p (tree val, tree val2)
1050 /* LT is folded faster than GE and others. Inline the common case. */
1051 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1053 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1054 return INT_CST_LT_UNSIGNED (val, val2);
1055 else
1057 if (INT_CST_LT (val, val2))
1058 return 1;
1061 else
1063 tree tcmp;
1065 fold_defer_overflow_warnings ();
1067 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1069 fold_undefer_and_ignore_overflow_warnings ();
1071 if (!tcmp
1072 || TREE_CODE (tcmp) != INTEGER_CST)
1073 return -2;
1075 if (!integer_zerop (tcmp))
1076 return 1;
1079 /* val >= val2, not considering overflow infinity. */
1080 if (is_negative_overflow_infinity (val))
1081 return is_negative_overflow_infinity (val2) ? 0 : 1;
1082 else if (is_positive_overflow_infinity (val2))
1083 return is_positive_overflow_infinity (val) ? 0 : 1;
1085 return 0;
1088 /* Compare two values VAL1 and VAL2. Return
1090 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1091 -1 if VAL1 < VAL2,
1092 0 if VAL1 == VAL2,
1093 +1 if VAL1 > VAL2, and
1094 +2 if VAL1 != VAL2
1096 This is similar to tree_int_cst_compare but supports pointer values
1097 and values that cannot be compared at compile time.
1099 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1100 true if the return value is only valid if we assume that signed
1101 overflow is undefined. */
1103 static int
1104 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1106 if (val1 == val2)
1107 return 0;
1109 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1110 both integers. */
1111 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1112 == POINTER_TYPE_P (TREE_TYPE (val2)));
1113 /* Convert the two values into the same type. This is needed because
1114 sizetype causes sign extension even for unsigned types. */
1115 val2 = fold_convert (TREE_TYPE (val1), val2);
1116 STRIP_USELESS_TYPE_CONVERSION (val2);
1118 if ((TREE_CODE (val1) == SSA_NAME
1119 || TREE_CODE (val1) == PLUS_EXPR
1120 || TREE_CODE (val1) == MINUS_EXPR)
1121 && (TREE_CODE (val2) == SSA_NAME
1122 || TREE_CODE (val2) == PLUS_EXPR
1123 || TREE_CODE (val2) == MINUS_EXPR))
1125 tree n1, c1, n2, c2;
1126 enum tree_code code1, code2;
1128 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1129 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1130 same name, return -2. */
1131 if (TREE_CODE (val1) == SSA_NAME)
1133 code1 = SSA_NAME;
1134 n1 = val1;
1135 c1 = NULL_TREE;
1137 else
1139 code1 = TREE_CODE (val1);
1140 n1 = TREE_OPERAND (val1, 0);
1141 c1 = TREE_OPERAND (val1, 1);
1142 if (tree_int_cst_sgn (c1) == -1)
1144 if (is_negative_overflow_infinity (c1))
1145 return -2;
1146 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1147 if (!c1)
1148 return -2;
1149 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1153 if (TREE_CODE (val2) == SSA_NAME)
1155 code2 = SSA_NAME;
1156 n2 = val2;
1157 c2 = NULL_TREE;
1159 else
1161 code2 = TREE_CODE (val2);
1162 n2 = TREE_OPERAND (val2, 0);
1163 c2 = TREE_OPERAND (val2, 1);
1164 if (tree_int_cst_sgn (c2) == -1)
1166 if (is_negative_overflow_infinity (c2))
1167 return -2;
1168 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1169 if (!c2)
1170 return -2;
1171 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1175 /* Both values must use the same name. */
1176 if (n1 != n2)
1177 return -2;
1179 if (code1 == SSA_NAME
1180 && code2 == SSA_NAME)
1181 /* NAME == NAME */
1182 return 0;
1184 /* If overflow is defined we cannot simplify more. */
1185 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1186 return -2;
1188 if (strict_overflow_p != NULL
1189 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1190 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1191 *strict_overflow_p = true;
1193 if (code1 == SSA_NAME)
1195 if (code2 == PLUS_EXPR)
1196 /* NAME < NAME + CST */
1197 return -1;
1198 else if (code2 == MINUS_EXPR)
1199 /* NAME > NAME - CST */
1200 return 1;
1202 else if (code1 == PLUS_EXPR)
1204 if (code2 == SSA_NAME)
1205 /* NAME + CST > NAME */
1206 return 1;
1207 else if (code2 == PLUS_EXPR)
1208 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1209 return compare_values_warnv (c1, c2, strict_overflow_p);
1210 else if (code2 == MINUS_EXPR)
1211 /* NAME + CST1 > NAME - CST2 */
1212 return 1;
1214 else if (code1 == MINUS_EXPR)
1216 if (code2 == SSA_NAME)
1217 /* NAME - CST < NAME */
1218 return -1;
1219 else if (code2 == PLUS_EXPR)
1220 /* NAME - CST1 < NAME + CST2 */
1221 return -1;
1222 else if (code2 == MINUS_EXPR)
1223 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1224 C1 and C2 are swapped in the call to compare_values. */
1225 return compare_values_warnv (c2, c1, strict_overflow_p);
1228 gcc_unreachable ();
1231 /* We cannot compare non-constants. */
1232 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1233 return -2;
1235 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1237 /* We cannot compare overflowed values, except for overflow
1238 infinities. */
1239 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1241 if (strict_overflow_p != NULL)
1242 *strict_overflow_p = true;
1243 if (is_negative_overflow_infinity (val1))
1244 return is_negative_overflow_infinity (val2) ? 0 : -1;
1245 else if (is_negative_overflow_infinity (val2))
1246 return 1;
1247 else if (is_positive_overflow_infinity (val1))
1248 return is_positive_overflow_infinity (val2) ? 0 : 1;
1249 else if (is_positive_overflow_infinity (val2))
1250 return -1;
1251 return -2;
1254 return tree_int_cst_compare (val1, val2);
1256 else
1258 tree t;
1260 /* First see if VAL1 and VAL2 are not the same. */
1261 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1262 return 0;
1264 /* If VAL1 is a lower address than VAL2, return -1. */
1265 if (operand_less_p (val1, val2) == 1)
1266 return -1;
1268 /* If VAL1 is a higher address than VAL2, return +1. */
1269 if (operand_less_p (val2, val1) == 1)
1270 return 1;
1272 /* If VAL1 is different than VAL2, return +2.
1273 For integer constants we either have already returned -1 or 1
1274 or they are equivalent. We still might succeed in proving
1275 something about non-trivial operands. */
1276 if (TREE_CODE (val1) != INTEGER_CST
1277 || TREE_CODE (val2) != INTEGER_CST)
1279 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1280 if (t && integer_onep (t))
1281 return 2;
1284 return -2;
1288 /* Compare values like compare_values_warnv, but treat comparisons of
1289 nonconstants which rely on undefined overflow as incomparable. */
1291 static int
1292 compare_values (tree val1, tree val2)
1294 bool sop;
1295 int ret;
1297 sop = false;
1298 ret = compare_values_warnv (val1, val2, &sop);
1299 if (sop
1300 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1301 ret = -2;
1302 return ret;
1306 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1307 0 if VAL is not inside VR,
1308 -2 if we cannot tell either way.
1310 FIXME, the current semantics of this functions are a bit quirky
1311 when taken in the context of VRP. In here we do not care
1312 about VR's type. If VR is the anti-range ~[3, 5] the call
1313 value_inside_range (4, VR) will return 1.
1315 This is counter-intuitive in a strict sense, but the callers
1316 currently expect this. They are calling the function
1317 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1318 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1319 themselves.
1321 This also applies to value_ranges_intersect_p and
1322 range_includes_zero_p. The semantics of VR_RANGE and
1323 VR_ANTI_RANGE should be encoded here, but that also means
1324 adapting the users of these functions to the new semantics.
1326 Benchmark compile/20001226-1.c compilation time after changing this
1327 function. */
1329 static inline int
1330 value_inside_range (tree val, value_range_t * vr)
1332 int cmp1, cmp2;
1334 cmp1 = operand_less_p (val, vr->min);
1335 if (cmp1 == -2)
1336 return -2;
1337 if (cmp1 == 1)
1338 return 0;
1340 cmp2 = operand_less_p (vr->max, val);
1341 if (cmp2 == -2)
1342 return -2;
1344 return !cmp2;
1348 /* Return true if value ranges VR0 and VR1 have a non-empty
1349 intersection.
1351 Benchmark compile/20001226-1.c compilation time after changing this
1352 function.
1355 static inline bool
1356 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1358 /* The value ranges do not intersect if the maximum of the first range is
1359 less than the minimum of the second range or vice versa.
1360 When those relations are unknown, we can't do any better. */
1361 if (operand_less_p (vr0->max, vr1->min) != 0)
1362 return false;
1363 if (operand_less_p (vr1->max, vr0->min) != 0)
1364 return false;
1365 return true;
1369 /* Return true if VR includes the value zero, false otherwise. FIXME,
1370 currently this will return false for an anti-range like ~[-4, 3].
1371 This will be wrong when the semantics of value_inside_range are
1372 modified (currently the users of this function expect these
1373 semantics). */
1375 static inline bool
1376 range_includes_zero_p (value_range_t *vr)
1378 tree zero;
1380 gcc_assert (vr->type != VR_UNDEFINED
1381 && vr->type != VR_VARYING
1382 && !symbolic_range_p (vr));
1384 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1385 return (value_inside_range (zero, vr) == 1);
1388 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1389 false otherwise or if no value range information is available. */
1391 bool
1392 ssa_name_nonnegative_p (const_tree t)
1394 value_range_t *vr = get_value_range (t);
1396 if (INTEGRAL_TYPE_P (t)
1397 && TYPE_UNSIGNED (t))
1398 return true;
1400 if (!vr)
1401 return false;
1403 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1404 which would return a useful value should be encoded as a VR_RANGE. */
1405 if (vr->type == VR_RANGE)
1407 int result = compare_values (vr->min, integer_zero_node);
1409 return (result == 0 || result == 1);
1411 return false;
1414 /* If OP has a value range with a single constant value return that,
1415 otherwise return NULL_TREE. This returns OP itself if OP is a
1416 constant. */
1418 static tree
1419 op_with_constant_singleton_value_range (tree op)
1421 value_range_t *vr;
1423 if (is_gimple_min_invariant (op))
1424 return op;
1426 if (TREE_CODE (op) != SSA_NAME)
1427 return NULL_TREE;
1429 vr = get_value_range (op);
1430 if (vr->type == VR_RANGE
1431 && operand_equal_p (vr->min, vr->max, 0)
1432 && is_gimple_min_invariant (vr->min))
1433 return vr->min;
1435 return NULL_TREE;
1439 /* Extract value range information from an ASSERT_EXPR EXPR and store
1440 it in *VR_P. */
1442 static void
1443 extract_range_from_assert (value_range_t *vr_p, tree expr)
1445 tree var, cond, limit, min, max, type;
1446 value_range_t *var_vr, *limit_vr;
1447 enum tree_code cond_code;
1449 var = ASSERT_EXPR_VAR (expr);
1450 cond = ASSERT_EXPR_COND (expr);
1452 gcc_assert (COMPARISON_CLASS_P (cond));
1454 /* Find VAR in the ASSERT_EXPR conditional. */
1455 if (var == TREE_OPERAND (cond, 0)
1456 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1457 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1459 /* If the predicate is of the form VAR COMP LIMIT, then we just
1460 take LIMIT from the RHS and use the same comparison code. */
1461 cond_code = TREE_CODE (cond);
1462 limit = TREE_OPERAND (cond, 1);
1463 cond = TREE_OPERAND (cond, 0);
1465 else
1467 /* If the predicate is of the form LIMIT COMP VAR, then we need
1468 to flip around the comparison code to create the proper range
1469 for VAR. */
1470 cond_code = swap_tree_comparison (TREE_CODE (cond));
1471 limit = TREE_OPERAND (cond, 0);
1472 cond = TREE_OPERAND (cond, 1);
1475 limit = avoid_overflow_infinity (limit);
1477 type = TREE_TYPE (limit);
1478 gcc_assert (limit != var);
1480 /* For pointer arithmetic, we only keep track of pointer equality
1481 and inequality. */
1482 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1484 set_value_range_to_varying (vr_p);
1485 return;
1488 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1489 try to use LIMIT's range to avoid creating symbolic ranges
1490 unnecessarily. */
1491 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1493 /* LIMIT's range is only interesting if it has any useful information. */
1494 if (limit_vr
1495 && (limit_vr->type == VR_UNDEFINED
1496 || limit_vr->type == VR_VARYING
1497 || symbolic_range_p (limit_vr)))
1498 limit_vr = NULL;
1500 /* Initially, the new range has the same set of equivalences of
1501 VAR's range. This will be revised before returning the final
1502 value. Since assertions may be chained via mutually exclusive
1503 predicates, we will need to trim the set of equivalences before
1504 we are done. */
1505 gcc_assert (vr_p->equiv == NULL);
1506 add_equivalence (&vr_p->equiv, var);
1508 /* Extract a new range based on the asserted comparison for VAR and
1509 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1510 will only use it for equality comparisons (EQ_EXPR). For any
1511 other kind of assertion, we cannot derive a range from LIMIT's
1512 anti-range that can be used to describe the new range. For
1513 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1514 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1515 no single range for x_2 that could describe LE_EXPR, so we might
1516 as well build the range [b_4, +INF] for it.
1517 One special case we handle is extracting a range from a
1518 range test encoded as (unsigned)var + CST <= limit. */
1519 if (TREE_CODE (cond) == NOP_EXPR
1520 || TREE_CODE (cond) == PLUS_EXPR)
1522 if (TREE_CODE (cond) == PLUS_EXPR)
1524 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1525 TREE_OPERAND (cond, 1));
1526 max = int_const_binop (PLUS_EXPR, limit, min, 0);
1527 cond = TREE_OPERAND (cond, 0);
1529 else
1531 min = build_int_cst (TREE_TYPE (var), 0);
1532 max = limit;
1535 /* Make sure to not set TREE_OVERFLOW on the final type
1536 conversion. We are willingly interpreting large positive
1537 unsigned values as negative singed values here. */
1538 min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
1539 0, false);
1540 max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
1541 0, false);
1543 /* We can transform a max, min range to an anti-range or
1544 vice-versa. Use set_and_canonicalize_value_range which does
1545 this for us. */
1546 if (cond_code == LE_EXPR)
1547 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1548 min, max, vr_p->equiv);
1549 else if (cond_code == GT_EXPR)
1550 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1551 min, max, vr_p->equiv);
1552 else
1553 gcc_unreachable ();
1555 else if (cond_code == EQ_EXPR)
1557 enum value_range_type range_type;
1559 if (limit_vr)
1561 range_type = limit_vr->type;
1562 min = limit_vr->min;
1563 max = limit_vr->max;
1565 else
1567 range_type = VR_RANGE;
1568 min = limit;
1569 max = limit;
1572 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1574 /* When asserting the equality VAR == LIMIT and LIMIT is another
1575 SSA name, the new range will also inherit the equivalence set
1576 from LIMIT. */
1577 if (TREE_CODE (limit) == SSA_NAME)
1578 add_equivalence (&vr_p->equiv, limit);
1580 else if (cond_code == NE_EXPR)
1582 /* As described above, when LIMIT's range is an anti-range and
1583 this assertion is an inequality (NE_EXPR), then we cannot
1584 derive anything from the anti-range. For instance, if
1585 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1586 not imply that VAR's range is [0, 0]. So, in the case of
1587 anti-ranges, we just assert the inequality using LIMIT and
1588 not its anti-range.
1590 If LIMIT_VR is a range, we can only use it to build a new
1591 anti-range if LIMIT_VR is a single-valued range. For
1592 instance, if LIMIT_VR is [0, 1], the predicate
1593 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1594 Rather, it means that for value 0 VAR should be ~[0, 0]
1595 and for value 1, VAR should be ~[1, 1]. We cannot
1596 represent these ranges.
1598 The only situation in which we can build a valid
1599 anti-range is when LIMIT_VR is a single-valued range
1600 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1601 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1602 if (limit_vr
1603 && limit_vr->type == VR_RANGE
1604 && compare_values (limit_vr->min, limit_vr->max) == 0)
1606 min = limit_vr->min;
1607 max = limit_vr->max;
1609 else
1611 /* In any other case, we cannot use LIMIT's range to build a
1612 valid anti-range. */
1613 min = max = limit;
1616 /* If MIN and MAX cover the whole range for their type, then
1617 just use the original LIMIT. */
1618 if (INTEGRAL_TYPE_P (type)
1619 && vrp_val_is_min (min)
1620 && vrp_val_is_max (max))
1621 min = max = limit;
1623 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1625 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1627 min = TYPE_MIN_VALUE (type);
1629 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1630 max = limit;
1631 else
1633 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1634 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1635 LT_EXPR. */
1636 max = limit_vr->max;
1639 /* If the maximum value forces us to be out of bounds, simply punt.
1640 It would be pointless to try and do anything more since this
1641 all should be optimized away above us. */
1642 if ((cond_code == LT_EXPR
1643 && compare_values (max, min) == 0)
1644 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1645 set_value_range_to_varying (vr_p);
1646 else
1648 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1649 if (cond_code == LT_EXPR)
1651 tree one = build_int_cst (type, 1);
1652 max = fold_build2 (MINUS_EXPR, type, max, one);
1653 if (EXPR_P (max))
1654 TREE_NO_WARNING (max) = 1;
1657 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1660 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1662 max = TYPE_MAX_VALUE (type);
1664 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1665 min = limit;
1666 else
1668 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1669 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1670 GT_EXPR. */
1671 min = limit_vr->min;
1674 /* If the minimum value forces us to be out of bounds, simply punt.
1675 It would be pointless to try and do anything more since this
1676 all should be optimized away above us. */
1677 if ((cond_code == GT_EXPR
1678 && compare_values (min, max) == 0)
1679 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1680 set_value_range_to_varying (vr_p);
1681 else
1683 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1684 if (cond_code == GT_EXPR)
1686 tree one = build_int_cst (type, 1);
1687 min = fold_build2 (PLUS_EXPR, type, min, one);
1688 if (EXPR_P (min))
1689 TREE_NO_WARNING (min) = 1;
1692 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1695 else
1696 gcc_unreachable ();
1698 /* If VAR already had a known range, it may happen that the new
1699 range we have computed and VAR's range are not compatible. For
1700 instance,
1702 if (p_5 == NULL)
1703 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1704 x_7 = p_6->fld;
1705 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1707 While the above comes from a faulty program, it will cause an ICE
1708 later because p_8 and p_6 will have incompatible ranges and at
1709 the same time will be considered equivalent. A similar situation
1710 would arise from
1712 if (i_5 > 10)
1713 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1714 if (i_5 < 5)
1715 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1717 Again i_6 and i_7 will have incompatible ranges. It would be
1718 pointless to try and do anything with i_7's range because
1719 anything dominated by 'if (i_5 < 5)' will be optimized away.
1720 Note, due to the wa in which simulation proceeds, the statement
1721 i_7 = ASSERT_EXPR <...> we would never be visited because the
1722 conditional 'if (i_5 < 5)' always evaluates to false. However,
1723 this extra check does not hurt and may protect against future
1724 changes to VRP that may get into a situation similar to the
1725 NULL pointer dereference example.
1727 Note that these compatibility tests are only needed when dealing
1728 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1729 are both anti-ranges, they will always be compatible, because two
1730 anti-ranges will always have a non-empty intersection. */
1732 var_vr = get_value_range (var);
1734 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1735 ranges or anti-ranges. */
1736 if (vr_p->type == VR_VARYING
1737 || vr_p->type == VR_UNDEFINED
1738 || var_vr->type == VR_VARYING
1739 || var_vr->type == VR_UNDEFINED
1740 || symbolic_range_p (vr_p)
1741 || symbolic_range_p (var_vr))
1742 return;
1744 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1746 /* If the two ranges have a non-empty intersection, we can
1747 refine the resulting range. Since the assert expression
1748 creates an equivalency and at the same time it asserts a
1749 predicate, we can take the intersection of the two ranges to
1750 get better precision. */
1751 if (value_ranges_intersect_p (var_vr, vr_p))
1753 /* Use the larger of the two minimums. */
1754 if (compare_values (vr_p->min, var_vr->min) == -1)
1755 min = var_vr->min;
1756 else
1757 min = vr_p->min;
1759 /* Use the smaller of the two maximums. */
1760 if (compare_values (vr_p->max, var_vr->max) == 1)
1761 max = var_vr->max;
1762 else
1763 max = vr_p->max;
1765 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1767 else
1769 /* The two ranges do not intersect, set the new range to
1770 VARYING, because we will not be able to do anything
1771 meaningful with it. */
1772 set_value_range_to_varying (vr_p);
1775 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1776 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1778 /* A range and an anti-range will cancel each other only if
1779 their ends are the same. For instance, in the example above,
1780 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1781 so VR_P should be set to VR_VARYING. */
1782 if (compare_values (var_vr->min, vr_p->min) == 0
1783 && compare_values (var_vr->max, vr_p->max) == 0)
1784 set_value_range_to_varying (vr_p);
1785 else
1787 tree min, max, anti_min, anti_max, real_min, real_max;
1788 int cmp;
1790 /* We want to compute the logical AND of the two ranges;
1791 there are three cases to consider.
1794 1. The VR_ANTI_RANGE range is completely within the
1795 VR_RANGE and the endpoints of the ranges are
1796 different. In that case the resulting range
1797 should be whichever range is more precise.
1798 Typically that will be the VR_RANGE.
1800 2. The VR_ANTI_RANGE is completely disjoint from
1801 the VR_RANGE. In this case the resulting range
1802 should be the VR_RANGE.
1804 3. There is some overlap between the VR_ANTI_RANGE
1805 and the VR_RANGE.
1807 3a. If the high limit of the VR_ANTI_RANGE resides
1808 within the VR_RANGE, then the result is a new
1809 VR_RANGE starting at the high limit of the
1810 VR_ANTI_RANGE + 1 and extending to the
1811 high limit of the original VR_RANGE.
1813 3b. If the low limit of the VR_ANTI_RANGE resides
1814 within the VR_RANGE, then the result is a new
1815 VR_RANGE starting at the low limit of the original
1816 VR_RANGE and extending to the low limit of the
1817 VR_ANTI_RANGE - 1. */
1818 if (vr_p->type == VR_ANTI_RANGE)
1820 anti_min = vr_p->min;
1821 anti_max = vr_p->max;
1822 real_min = var_vr->min;
1823 real_max = var_vr->max;
1825 else
1827 anti_min = var_vr->min;
1828 anti_max = var_vr->max;
1829 real_min = vr_p->min;
1830 real_max = vr_p->max;
1834 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1835 not including any endpoints. */
1836 if (compare_values (anti_max, real_max) == -1
1837 && compare_values (anti_min, real_min) == 1)
1839 /* If the range is covering the whole valid range of
1840 the type keep the anti-range. */
1841 if (!vrp_val_is_min (real_min)
1842 || !vrp_val_is_max (real_max))
1843 set_value_range (vr_p, VR_RANGE, real_min,
1844 real_max, vr_p->equiv);
1846 /* Case 2, VR_ANTI_RANGE completely disjoint from
1847 VR_RANGE. */
1848 else if (compare_values (anti_min, real_max) == 1
1849 || compare_values (anti_max, real_min) == -1)
1851 set_value_range (vr_p, VR_RANGE, real_min,
1852 real_max, vr_p->equiv);
1854 /* Case 3a, the anti-range extends into the low
1855 part of the real range. Thus creating a new
1856 low for the real range. */
1857 else if (((cmp = compare_values (anti_max, real_min)) == 1
1858 || cmp == 0)
1859 && compare_values (anti_max, real_max) == -1)
1861 gcc_assert (!is_positive_overflow_infinity (anti_max));
1862 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1863 && vrp_val_is_max (anti_max))
1865 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1867 set_value_range_to_varying (vr_p);
1868 return;
1870 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1872 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1873 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1874 anti_max,
1875 build_int_cst (TREE_TYPE (var_vr->min), 1));
1876 else
1877 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1878 anti_max, size_int (1));
1879 max = real_max;
1880 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1882 /* Case 3b, the anti-range extends into the high
1883 part of the real range. Thus creating a new
1884 higher for the real range. */
1885 else if (compare_values (anti_min, real_min) == 1
1886 && ((cmp = compare_values (anti_min, real_max)) == -1
1887 || cmp == 0))
1889 gcc_assert (!is_negative_overflow_infinity (anti_min));
1890 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1891 && vrp_val_is_min (anti_min))
1893 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1895 set_value_range_to_varying (vr_p);
1896 return;
1898 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1900 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1901 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1902 anti_min,
1903 build_int_cst (TREE_TYPE (var_vr->min), 1));
1904 else
1905 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1906 anti_min,
1907 size_int (-1));
1908 min = real_min;
1909 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1916 /* Extract range information from SSA name VAR and store it in VR. If
1917 VAR has an interesting range, use it. Otherwise, create the
1918 range [VAR, VAR] and return it. This is useful in situations where
1919 we may have conditionals testing values of VARYING names. For
1920 instance,
1922 x_3 = y_5;
1923 if (x_3 > y_5)
1926 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1927 always false. */
1929 static void
1930 extract_range_from_ssa_name (value_range_t *vr, tree var)
1932 value_range_t *var_vr = get_value_range (var);
1934 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1935 copy_value_range (vr, var_vr);
1936 else
1937 set_value_range (vr, VR_RANGE, var, var, NULL);
1939 add_equivalence (&vr->equiv, var);
1943 /* Wrapper around int_const_binop. If the operation overflows and we
1944 are not using wrapping arithmetic, then adjust the result to be
1945 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1946 NULL_TREE if we need to use an overflow infinity representation but
1947 the type does not support it. */
1949 static tree
1950 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1952 tree res;
1954 res = int_const_binop (code, val1, val2, 0);
1956 /* If we are using unsigned arithmetic, operate symbolically
1957 on -INF and +INF as int_const_binop only handles signed overflow. */
1958 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1960 int checkz = compare_values (res, val1);
1961 bool overflow = false;
1963 /* Ensure that res = val1 [+*] val2 >= val1
1964 or that res = val1 - val2 <= val1. */
1965 if ((code == PLUS_EXPR
1966 && !(checkz == 1 || checkz == 0))
1967 || (code == MINUS_EXPR
1968 && !(checkz == 0 || checkz == -1)))
1970 overflow = true;
1972 /* Checking for multiplication overflow is done by dividing the
1973 output of the multiplication by the first input of the
1974 multiplication. If the result of that division operation is
1975 not equal to the second input of the multiplication, then the
1976 multiplication overflowed. */
1977 else if (code == MULT_EXPR && !integer_zerop (val1))
1979 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1980 res,
1981 val1, 0);
1982 int check = compare_values (tmp, val2);
1984 if (check != 0)
1985 overflow = true;
1988 if (overflow)
1990 res = copy_node (res);
1991 TREE_OVERFLOW (res) = 1;
1995 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1996 /* If the singed operation wraps then int_const_binop has done
1997 everything we want. */
1999 else if ((TREE_OVERFLOW (res)
2000 && !TREE_OVERFLOW (val1)
2001 && !TREE_OVERFLOW (val2))
2002 || is_overflow_infinity (val1)
2003 || is_overflow_infinity (val2))
2005 /* If the operation overflowed but neither VAL1 nor VAL2 are
2006 overflown, return -INF or +INF depending on the operation
2007 and the combination of signs of the operands. */
2008 int sgn1 = tree_int_cst_sgn (val1);
2009 int sgn2 = tree_int_cst_sgn (val2);
2011 if (needs_overflow_infinity (TREE_TYPE (res))
2012 && !supports_overflow_infinity (TREE_TYPE (res)))
2013 return NULL_TREE;
2015 /* We have to punt on adding infinities of different signs,
2016 since we can't tell what the sign of the result should be.
2017 Likewise for subtracting infinities of the same sign. */
2018 if (((code == PLUS_EXPR && sgn1 != sgn2)
2019 || (code == MINUS_EXPR && sgn1 == sgn2))
2020 && is_overflow_infinity (val1)
2021 && is_overflow_infinity (val2))
2022 return NULL_TREE;
2024 /* Don't try to handle division or shifting of infinities. */
2025 if ((code == TRUNC_DIV_EXPR
2026 || code == FLOOR_DIV_EXPR
2027 || code == CEIL_DIV_EXPR
2028 || code == EXACT_DIV_EXPR
2029 || code == ROUND_DIV_EXPR
2030 || code == RSHIFT_EXPR)
2031 && (is_overflow_infinity (val1)
2032 || is_overflow_infinity (val2)))
2033 return NULL_TREE;
2035 /* Notice that we only need to handle the restricted set of
2036 operations handled by extract_range_from_binary_expr.
2037 Among them, only multiplication, addition and subtraction
2038 can yield overflow without overflown operands because we
2039 are working with integral types only... except in the
2040 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2041 for division too. */
2043 /* For multiplication, the sign of the overflow is given
2044 by the comparison of the signs of the operands. */
2045 if ((code == MULT_EXPR && sgn1 == sgn2)
2046 /* For addition, the operands must be of the same sign
2047 to yield an overflow. Its sign is therefore that
2048 of one of the operands, for example the first. For
2049 infinite operands X + -INF is negative, not positive. */
2050 || (code == PLUS_EXPR
2051 && (sgn1 >= 0
2052 ? !is_negative_overflow_infinity (val2)
2053 : is_positive_overflow_infinity (val2)))
2054 /* For subtraction, non-infinite operands must be of
2055 different signs to yield an overflow. Its sign is
2056 therefore that of the first operand or the opposite of
2057 that of the second operand. A first operand of 0 counts
2058 as positive here, for the corner case 0 - (-INF), which
2059 overflows, but must yield +INF. For infinite operands 0
2060 - INF is negative, not positive. */
2061 || (code == MINUS_EXPR
2062 && (sgn1 >= 0
2063 ? !is_positive_overflow_infinity (val2)
2064 : is_negative_overflow_infinity (val2)))
2065 /* We only get in here with positive shift count, so the
2066 overflow direction is the same as the sign of val1.
2067 Actually rshift does not overflow at all, but we only
2068 handle the case of shifting overflowed -INF and +INF. */
2069 || (code == RSHIFT_EXPR
2070 && sgn1 >= 0)
2071 /* For division, the only case is -INF / -1 = +INF. */
2072 || code == TRUNC_DIV_EXPR
2073 || code == FLOOR_DIV_EXPR
2074 || code == CEIL_DIV_EXPR
2075 || code == EXACT_DIV_EXPR
2076 || code == ROUND_DIV_EXPR)
2077 return (needs_overflow_infinity (TREE_TYPE (res))
2078 ? positive_overflow_infinity (TREE_TYPE (res))
2079 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2080 else
2081 return (needs_overflow_infinity (TREE_TYPE (res))
2082 ? negative_overflow_infinity (TREE_TYPE (res))
2083 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2086 return res;
2090 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
2091 bitmask if some bit is unset, it means for all numbers in the range
2092 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2093 bitmask if some bit is set, it means for all numbers in the range
2094 the bit is 1, otherwise it might be 0 or 1. */
2096 static bool
2097 zero_nonzero_bits_from_vr (value_range_t *vr, double_int *may_be_nonzero,
2098 double_int *must_be_nonzero)
2100 if (range_int_cst_p (vr))
2102 if (range_int_cst_singleton_p (vr))
2104 *may_be_nonzero = tree_to_double_int (vr->min);
2105 *must_be_nonzero = *may_be_nonzero;
2106 return true;
2108 if (tree_int_cst_sgn (vr->min) >= 0)
2110 double_int dmin = tree_to_double_int (vr->min);
2111 double_int dmax = tree_to_double_int (vr->max);
2112 double_int xor_mask = double_int_xor (dmin, dmax);
2113 *may_be_nonzero = double_int_ior (dmin, dmax);
2114 *must_be_nonzero = double_int_and (dmin, dmax);
2115 if (xor_mask.high != 0)
2117 unsigned HOST_WIDE_INT mask
2118 = ((unsigned HOST_WIDE_INT) 1
2119 << floor_log2 (xor_mask.high)) - 1;
2120 may_be_nonzero->low = ALL_ONES;
2121 may_be_nonzero->high |= mask;
2122 must_be_nonzero->low = 0;
2123 must_be_nonzero->high &= ~mask;
2125 else if (xor_mask.low != 0)
2127 unsigned HOST_WIDE_INT mask
2128 = ((unsigned HOST_WIDE_INT) 1
2129 << floor_log2 (xor_mask.low)) - 1;
2130 may_be_nonzero->low |= mask;
2131 must_be_nonzero->low &= ~mask;
2133 return true;
2136 may_be_nonzero->low = ALL_ONES;
2137 may_be_nonzero->high = ALL_ONES;
2138 must_be_nonzero->low = 0;
2139 must_be_nonzero->high = 0;
2140 return false;
2144 /* Extract range information from a binary expression EXPR based on
2145 the ranges of each of its operands and the expression code. */
2147 static void
2148 extract_range_from_binary_expr (value_range_t *vr,
2149 enum tree_code code,
2150 tree expr_type, tree op0, tree op1)
2152 enum value_range_type type;
2153 tree min, max;
2154 int cmp;
2155 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2156 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2158 /* Not all binary expressions can be applied to ranges in a
2159 meaningful way. Handle only arithmetic operations. */
2160 if (code != PLUS_EXPR
2161 && code != MINUS_EXPR
2162 && code != POINTER_PLUS_EXPR
2163 && code != MULT_EXPR
2164 && code != TRUNC_DIV_EXPR
2165 && code != FLOOR_DIV_EXPR
2166 && code != CEIL_DIV_EXPR
2167 && code != EXACT_DIV_EXPR
2168 && code != ROUND_DIV_EXPR
2169 && code != TRUNC_MOD_EXPR
2170 && code != RSHIFT_EXPR
2171 && code != MIN_EXPR
2172 && code != MAX_EXPR
2173 && code != BIT_AND_EXPR
2174 && code != BIT_IOR_EXPR
2175 && code != TRUTH_AND_EXPR
2176 && code != TRUTH_OR_EXPR)
2178 /* We can still do constant propagation here. */
2179 tree const_op0 = op_with_constant_singleton_value_range (op0);
2180 tree const_op1 = op_with_constant_singleton_value_range (op1);
2181 if (const_op0 || const_op1)
2183 tree tem = fold_binary (code, expr_type,
2184 const_op0 ? const_op0 : op0,
2185 const_op1 ? const_op1 : op1);
2186 if (tem
2187 && is_gimple_min_invariant (tem)
2188 && !is_overflow_infinity (tem))
2190 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2191 return;
2194 set_value_range_to_varying (vr);
2195 return;
2198 /* Get value ranges for each operand. For constant operands, create
2199 a new value range with the operand to simplify processing. */
2200 if (TREE_CODE (op0) == SSA_NAME)
2201 vr0 = *(get_value_range (op0));
2202 else if (is_gimple_min_invariant (op0))
2203 set_value_range_to_value (&vr0, op0, NULL);
2204 else
2205 set_value_range_to_varying (&vr0);
2207 if (TREE_CODE (op1) == SSA_NAME)
2208 vr1 = *(get_value_range (op1));
2209 else if (is_gimple_min_invariant (op1))
2210 set_value_range_to_value (&vr1, op1, NULL);
2211 else
2212 set_value_range_to_varying (&vr1);
2214 /* If either range is UNDEFINED, so is the result. */
2215 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
2217 set_value_range_to_undefined (vr);
2218 return;
2221 /* The type of the resulting value range defaults to VR0.TYPE. */
2222 type = vr0.type;
2224 /* Refuse to operate on VARYING ranges, ranges of different kinds
2225 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2226 because we may be able to derive a useful range even if one of
2227 the operands is VR_VARYING or symbolic range. Similarly for
2228 divisions. TODO, we may be able to derive anti-ranges in
2229 some cases. */
2230 if (code != BIT_AND_EXPR
2231 && code != TRUTH_AND_EXPR
2232 && code != TRUTH_OR_EXPR
2233 && code != TRUNC_DIV_EXPR
2234 && code != FLOOR_DIV_EXPR
2235 && code != CEIL_DIV_EXPR
2236 && code != EXACT_DIV_EXPR
2237 && code != ROUND_DIV_EXPR
2238 && code != TRUNC_MOD_EXPR
2239 && (vr0.type == VR_VARYING
2240 || vr1.type == VR_VARYING
2241 || vr0.type != vr1.type
2242 || symbolic_range_p (&vr0)
2243 || symbolic_range_p (&vr1)))
2245 set_value_range_to_varying (vr);
2246 return;
2249 /* Now evaluate the expression to determine the new range. */
2250 if (POINTER_TYPE_P (expr_type)
2251 || POINTER_TYPE_P (TREE_TYPE (op0))
2252 || POINTER_TYPE_P (TREE_TYPE (op1)))
2254 if (code == MIN_EXPR || code == MAX_EXPR)
2256 /* For MIN/MAX expressions with pointers, we only care about
2257 nullness, if both are non null, then the result is nonnull.
2258 If both are null, then the result is null. Otherwise they
2259 are varying. */
2260 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2261 set_value_range_to_nonnull (vr, expr_type);
2262 else if (range_is_null (&vr0) && range_is_null (&vr1))
2263 set_value_range_to_null (vr, expr_type);
2264 else
2265 set_value_range_to_varying (vr);
2267 return;
2269 if (code == POINTER_PLUS_EXPR)
2271 /* For pointer types, we are really only interested in asserting
2272 whether the expression evaluates to non-NULL. */
2273 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2274 set_value_range_to_nonnull (vr, expr_type);
2275 else if (range_is_null (&vr0) && range_is_null (&vr1))
2276 set_value_range_to_null (vr, expr_type);
2277 else
2278 set_value_range_to_varying (vr);
2280 else if (code == BIT_AND_EXPR)
2282 /* For pointer types, we are really only interested in asserting
2283 whether the expression evaluates to non-NULL. */
2284 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2285 set_value_range_to_nonnull (vr, expr_type);
2286 else if (range_is_null (&vr0) || range_is_null (&vr1))
2287 set_value_range_to_null (vr, expr_type);
2288 else
2289 set_value_range_to_varying (vr);
2291 else
2292 gcc_unreachable ();
2294 return;
2297 /* For integer ranges, apply the operation to each end of the
2298 range and see what we end up with. */
2299 if (code == TRUTH_AND_EXPR
2300 || code == TRUTH_OR_EXPR)
2302 /* If one of the operands is zero, we know that the whole
2303 expression evaluates zero. */
2304 if (code == TRUTH_AND_EXPR
2305 && ((vr0.type == VR_RANGE
2306 && integer_zerop (vr0.min)
2307 && integer_zerop (vr0.max))
2308 || (vr1.type == VR_RANGE
2309 && integer_zerop (vr1.min)
2310 && integer_zerop (vr1.max))))
2312 type = VR_RANGE;
2313 min = max = build_int_cst (expr_type, 0);
2315 /* If one of the operands is one, we know that the whole
2316 expression evaluates one. */
2317 else if (code == TRUTH_OR_EXPR
2318 && ((vr0.type == VR_RANGE
2319 && integer_onep (vr0.min)
2320 && integer_onep (vr0.max))
2321 || (vr1.type == VR_RANGE
2322 && integer_onep (vr1.min)
2323 && integer_onep (vr1.max))))
2325 type = VR_RANGE;
2326 min = max = build_int_cst (expr_type, 1);
2328 else if (vr0.type != VR_VARYING
2329 && vr1.type != VR_VARYING
2330 && vr0.type == vr1.type
2331 && !symbolic_range_p (&vr0)
2332 && !overflow_infinity_range_p (&vr0)
2333 && !symbolic_range_p (&vr1)
2334 && !overflow_infinity_range_p (&vr1))
2336 /* Boolean expressions cannot be folded with int_const_binop. */
2337 min = fold_binary (code, expr_type, vr0.min, vr1.min);
2338 max = fold_binary (code, expr_type, vr0.max, vr1.max);
2340 else
2342 /* The result of a TRUTH_*_EXPR is always true or false. */
2343 set_value_range_to_truthvalue (vr, expr_type);
2344 return;
2347 else if (code == PLUS_EXPR
2348 || code == MIN_EXPR
2349 || code == MAX_EXPR)
2351 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2352 VR_VARYING. It would take more effort to compute a precise
2353 range for such a case. For example, if we have op0 == 1 and
2354 op1 == -1 with their ranges both being ~[0,0], we would have
2355 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2356 Note that we are guaranteed to have vr0.type == vr1.type at
2357 this point. */
2358 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
2360 set_value_range_to_varying (vr);
2361 return;
2364 /* For operations that make the resulting range directly
2365 proportional to the original ranges, apply the operation to
2366 the same end of each range. */
2367 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2368 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2370 /* If both additions overflowed the range kind is still correct.
2371 This happens regularly with subtracting something in unsigned
2372 arithmetic.
2373 ??? See PR30318 for all the cases we do not handle. */
2374 if (code == PLUS_EXPR
2375 && (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2376 && (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2378 min = build_int_cst_wide (TREE_TYPE (min),
2379 TREE_INT_CST_LOW (min),
2380 TREE_INT_CST_HIGH (min));
2381 max = build_int_cst_wide (TREE_TYPE (max),
2382 TREE_INT_CST_LOW (max),
2383 TREE_INT_CST_HIGH (max));
2386 else if (code == MULT_EXPR
2387 || code == TRUNC_DIV_EXPR
2388 || code == FLOOR_DIV_EXPR
2389 || code == CEIL_DIV_EXPR
2390 || code == EXACT_DIV_EXPR
2391 || code == ROUND_DIV_EXPR
2392 || code == RSHIFT_EXPR)
2394 tree val[4];
2395 size_t i;
2396 bool sop;
2398 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2399 drop to VR_VARYING. It would take more effort to compute a
2400 precise range for such a case. For example, if we have
2401 op0 == 65536 and op1 == 65536 with their ranges both being
2402 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2403 we cannot claim that the product is in ~[0,0]. Note that we
2404 are guaranteed to have vr0.type == vr1.type at this
2405 point. */
2406 if (code == MULT_EXPR
2407 && vr0.type == VR_ANTI_RANGE
2408 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
2410 set_value_range_to_varying (vr);
2411 return;
2414 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2415 then drop to VR_VARYING. Outside of this range we get undefined
2416 behavior from the shift operation. We cannot even trust
2417 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2418 shifts, and the operation at the tree level may be widened. */
2419 if (code == RSHIFT_EXPR)
2421 if (vr1.type == VR_ANTI_RANGE
2422 || !vrp_expr_computes_nonnegative (op1, &sop)
2423 || (operand_less_p
2424 (build_int_cst (TREE_TYPE (vr1.max),
2425 TYPE_PRECISION (expr_type) - 1),
2426 vr1.max) != 0))
2428 set_value_range_to_varying (vr);
2429 return;
2433 else if ((code == TRUNC_DIV_EXPR
2434 || code == FLOOR_DIV_EXPR
2435 || code == CEIL_DIV_EXPR
2436 || code == EXACT_DIV_EXPR
2437 || code == ROUND_DIV_EXPR)
2438 && (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
2440 /* For division, if op1 has VR_RANGE but op0 does not, something
2441 can be deduced just from that range. Say [min, max] / [4, max]
2442 gives [min / 4, max / 4] range. */
2443 if (vr1.type == VR_RANGE
2444 && !symbolic_range_p (&vr1)
2445 && !range_includes_zero_p (&vr1))
2447 vr0.type = type = VR_RANGE;
2448 vr0.min = vrp_val_min (TREE_TYPE (op0));
2449 vr0.max = vrp_val_max (TREE_TYPE (op1));
2451 else
2453 set_value_range_to_varying (vr);
2454 return;
2458 /* For divisions, if flag_non_call_exceptions is true, we must
2459 not eliminate a division by zero. */
2460 if ((code == TRUNC_DIV_EXPR
2461 || code == FLOOR_DIV_EXPR
2462 || code == CEIL_DIV_EXPR
2463 || code == EXACT_DIV_EXPR
2464 || code == ROUND_DIV_EXPR)
2465 && cfun->can_throw_non_call_exceptions
2466 && (vr1.type != VR_RANGE
2467 || symbolic_range_p (&vr1)
2468 || range_includes_zero_p (&vr1)))
2470 set_value_range_to_varying (vr);
2471 return;
2474 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2475 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2476 include 0. */
2477 if ((code == TRUNC_DIV_EXPR
2478 || code == FLOOR_DIV_EXPR
2479 || code == CEIL_DIV_EXPR
2480 || code == EXACT_DIV_EXPR
2481 || code == ROUND_DIV_EXPR)
2482 && vr0.type == VR_RANGE
2483 && (vr1.type != VR_RANGE
2484 || symbolic_range_p (&vr1)
2485 || range_includes_zero_p (&vr1)))
2487 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2488 int cmp;
2490 sop = false;
2491 min = NULL_TREE;
2492 max = NULL_TREE;
2493 if (vrp_expr_computes_nonnegative (op1, &sop) && !sop)
2495 /* For unsigned division or when divisor is known
2496 to be non-negative, the range has to cover
2497 all numbers from 0 to max for positive max
2498 and all numbers from min to 0 for negative min. */
2499 cmp = compare_values (vr0.max, zero);
2500 if (cmp == -1)
2501 max = zero;
2502 else if (cmp == 0 || cmp == 1)
2503 max = vr0.max;
2504 else
2505 type = VR_VARYING;
2506 cmp = compare_values (vr0.min, zero);
2507 if (cmp == 1)
2508 min = zero;
2509 else if (cmp == 0 || cmp == -1)
2510 min = vr0.min;
2511 else
2512 type = VR_VARYING;
2514 else
2516 /* Otherwise the range is -max .. max or min .. -min
2517 depending on which bound is bigger in absolute value,
2518 as the division can change the sign. */
2519 abs_extent_range (vr, vr0.min, vr0.max);
2520 return;
2522 if (type == VR_VARYING)
2524 set_value_range_to_varying (vr);
2525 return;
2529 /* Multiplications and divisions are a bit tricky to handle,
2530 depending on the mix of signs we have in the two ranges, we
2531 need to operate on different values to get the minimum and
2532 maximum values for the new range. One approach is to figure
2533 out all the variations of range combinations and do the
2534 operations.
2536 However, this involves several calls to compare_values and it
2537 is pretty convoluted. It's simpler to do the 4 operations
2538 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2539 MAX1) and then figure the smallest and largest values to form
2540 the new range. */
2541 else
2543 gcc_assert ((vr0.type == VR_RANGE
2544 || (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
2545 && vr0.type == vr1.type);
2547 /* Compute the 4 cross operations. */
2548 sop = false;
2549 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
2550 if (val[0] == NULL_TREE)
2551 sop = true;
2553 if (vr1.max == vr1.min)
2554 val[1] = NULL_TREE;
2555 else
2557 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2558 if (val[1] == NULL_TREE)
2559 sop = true;
2562 if (vr0.max == vr0.min)
2563 val[2] = NULL_TREE;
2564 else
2566 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2567 if (val[2] == NULL_TREE)
2568 sop = true;
2571 if (vr0.min == vr0.max || vr1.min == vr1.max)
2572 val[3] = NULL_TREE;
2573 else
2575 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2576 if (val[3] == NULL_TREE)
2577 sop = true;
2580 if (sop)
2582 set_value_range_to_varying (vr);
2583 return;
2586 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2587 of VAL[i]. */
2588 min = val[0];
2589 max = val[0];
2590 for (i = 1; i < 4; i++)
2592 if (!is_gimple_min_invariant (min)
2593 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2594 || !is_gimple_min_invariant (max)
2595 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2596 break;
2598 if (val[i])
2600 if (!is_gimple_min_invariant (val[i])
2601 || (TREE_OVERFLOW (val[i])
2602 && !is_overflow_infinity (val[i])))
2604 /* If we found an overflowed value, set MIN and MAX
2605 to it so that we set the resulting range to
2606 VARYING. */
2607 min = max = val[i];
2608 break;
2611 if (compare_values (val[i], min) == -1)
2612 min = val[i];
2614 if (compare_values (val[i], max) == 1)
2615 max = val[i];
2620 else if (code == TRUNC_MOD_EXPR)
2622 bool sop = false;
2623 if (vr1.type != VR_RANGE
2624 || symbolic_range_p (&vr1)
2625 || range_includes_zero_p (&vr1)
2626 || vrp_val_is_min (vr1.min))
2628 set_value_range_to_varying (vr);
2629 return;
2631 type = VR_RANGE;
2632 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2633 max = fold_unary_to_constant (ABS_EXPR, TREE_TYPE (vr1.min), vr1.min);
2634 if (tree_int_cst_lt (max, vr1.max))
2635 max = vr1.max;
2636 max = int_const_binop (MINUS_EXPR, max, integer_one_node, 0);
2637 /* If the dividend is non-negative the modulus will be
2638 non-negative as well. */
2639 if (TYPE_UNSIGNED (TREE_TYPE (max))
2640 || (vrp_expr_computes_nonnegative (op0, &sop) && !sop))
2641 min = build_int_cst (TREE_TYPE (max), 0);
2642 else
2643 min = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (max), max);
2645 else if (code == MINUS_EXPR)
2647 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2648 VR_VARYING. It would take more effort to compute a precise
2649 range for such a case. For example, if we have op0 == 1 and
2650 op1 == 1 with their ranges both being ~[0,0], we would have
2651 op0 - op1 == 0, so we cannot claim that the difference is in
2652 ~[0,0]. Note that we are guaranteed to have
2653 vr0.type == vr1.type at this point. */
2654 if (vr0.type == VR_ANTI_RANGE)
2656 set_value_range_to_varying (vr);
2657 return;
2660 /* For MINUS_EXPR, apply the operation to the opposite ends of
2661 each range. */
2662 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2663 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2665 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR)
2667 bool vr0_int_cst_singleton_p, vr1_int_cst_singleton_p;
2668 bool int_cst_range0, int_cst_range1;
2669 double_int may_be_nonzero0, may_be_nonzero1;
2670 double_int must_be_nonzero0, must_be_nonzero1;
2672 vr0_int_cst_singleton_p = range_int_cst_singleton_p (&vr0);
2673 vr1_int_cst_singleton_p = range_int_cst_singleton_p (&vr1);
2674 int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
2675 &must_be_nonzero0);
2676 int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
2677 &must_be_nonzero1);
2679 type = VR_RANGE;
2680 if (vr0_int_cst_singleton_p && vr1_int_cst_singleton_p)
2681 min = max = int_const_binop (code, vr0.max, vr1.max, 0);
2682 else if (!int_cst_range0 && !int_cst_range1)
2684 set_value_range_to_varying (vr);
2685 return;
2687 else if (code == BIT_AND_EXPR)
2689 min = double_int_to_tree (expr_type,
2690 double_int_and (must_be_nonzero0,
2691 must_be_nonzero1));
2692 max = double_int_to_tree (expr_type,
2693 double_int_and (may_be_nonzero0,
2694 may_be_nonzero1));
2695 if (TREE_OVERFLOW (min) || tree_int_cst_sgn (min) < 0)
2696 min = NULL_TREE;
2697 if (TREE_OVERFLOW (max) || tree_int_cst_sgn (max) < 0)
2698 max = NULL_TREE;
2699 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
2701 if (min == NULL_TREE)
2702 min = build_int_cst (expr_type, 0);
2703 if (max == NULL_TREE || tree_int_cst_lt (vr0.max, max))
2704 max = vr0.max;
2706 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
2708 if (min == NULL_TREE)
2709 min = build_int_cst (expr_type, 0);
2710 if (max == NULL_TREE || tree_int_cst_lt (vr1.max, max))
2711 max = vr1.max;
2714 else if (!int_cst_range0
2715 || !int_cst_range1
2716 || tree_int_cst_sgn (vr0.min) < 0
2717 || tree_int_cst_sgn (vr1.min) < 0)
2719 set_value_range_to_varying (vr);
2720 return;
2722 else
2724 min = double_int_to_tree (expr_type,
2725 double_int_ior (must_be_nonzero0,
2726 must_be_nonzero1));
2727 max = double_int_to_tree (expr_type,
2728 double_int_ior (may_be_nonzero0,
2729 may_be_nonzero1));
2730 if (TREE_OVERFLOW (min) || tree_int_cst_sgn (min) < 0)
2731 min = vr0.min;
2732 else
2733 min = vrp_int_const_binop (MAX_EXPR, min, vr0.min);
2734 if (TREE_OVERFLOW (max) || tree_int_cst_sgn (max) < 0)
2735 max = NULL_TREE;
2736 min = vrp_int_const_binop (MAX_EXPR, min, vr1.min);
2739 else
2740 gcc_unreachable ();
2742 /* If either MIN or MAX overflowed, then set the resulting range to
2743 VARYING. But we do accept an overflow infinity
2744 representation. */
2745 if (min == NULL_TREE
2746 || !is_gimple_min_invariant (min)
2747 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2748 || max == NULL_TREE
2749 || !is_gimple_min_invariant (max)
2750 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2752 set_value_range_to_varying (vr);
2753 return;
2756 /* We punt if:
2757 1) [-INF, +INF]
2758 2) [-INF, +-INF(OVF)]
2759 3) [+-INF(OVF), +INF]
2760 4) [+-INF(OVF), +-INF(OVF)]
2761 We learn nothing when we have INF and INF(OVF) on both sides.
2762 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2763 overflow. */
2764 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2765 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2767 set_value_range_to_varying (vr);
2768 return;
2771 cmp = compare_values (min, max);
2772 if (cmp == -2 || cmp == 1)
2774 /* If the new range has its limits swapped around (MIN > MAX),
2775 then the operation caused one of them to wrap around, mark
2776 the new range VARYING. */
2777 set_value_range_to_varying (vr);
2779 else
2780 set_value_range (vr, type, min, max, NULL);
2784 /* Extract range information from a unary expression EXPR based on
2785 the range of its operand and the expression code. */
2787 static void
2788 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
2789 tree type, tree op0)
2791 tree min, max;
2792 int cmp;
2793 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2795 /* Refuse to operate on certain unary expressions for which we
2796 cannot easily determine a resulting range. */
2797 if (code == FIX_TRUNC_EXPR
2798 || code == FLOAT_EXPR
2799 || code == BIT_NOT_EXPR
2800 || code == CONJ_EXPR)
2802 /* We can still do constant propagation here. */
2803 if ((op0 = op_with_constant_singleton_value_range (op0)) != NULL_TREE)
2805 tree tem = fold_unary (code, type, op0);
2806 if (tem
2807 && is_gimple_min_invariant (tem)
2808 && !is_overflow_infinity (tem))
2810 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2811 return;
2814 set_value_range_to_varying (vr);
2815 return;
2818 /* Get value ranges for the operand. For constant operands, create
2819 a new value range with the operand to simplify processing. */
2820 if (TREE_CODE (op0) == SSA_NAME)
2821 vr0 = *(get_value_range (op0));
2822 else if (is_gimple_min_invariant (op0))
2823 set_value_range_to_value (&vr0, op0, NULL);
2824 else
2825 set_value_range_to_varying (&vr0);
2827 /* If VR0 is UNDEFINED, so is the result. */
2828 if (vr0.type == VR_UNDEFINED)
2830 set_value_range_to_undefined (vr);
2831 return;
2834 /* Refuse to operate on symbolic ranges, or if neither operand is
2835 a pointer or integral type. */
2836 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2837 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2838 || (vr0.type != VR_VARYING
2839 && symbolic_range_p (&vr0)))
2841 set_value_range_to_varying (vr);
2842 return;
2845 /* If the expression involves pointers, we are only interested in
2846 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2847 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
2849 bool sop;
2851 sop = false;
2852 if (range_is_nonnull (&vr0)
2853 || (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
2854 && !sop))
2855 set_value_range_to_nonnull (vr, type);
2856 else if (range_is_null (&vr0))
2857 set_value_range_to_null (vr, type);
2858 else
2859 set_value_range_to_varying (vr);
2861 return;
2864 /* Handle unary expressions on integer ranges. */
2865 if (CONVERT_EXPR_CODE_P (code)
2866 && INTEGRAL_TYPE_P (type)
2867 && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2869 tree inner_type = TREE_TYPE (op0);
2870 tree outer_type = type;
2872 /* If VR0 is varying and we increase the type precision, assume
2873 a full range for the following transformation. */
2874 if (vr0.type == VR_VARYING
2875 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2877 vr0.type = VR_RANGE;
2878 vr0.min = TYPE_MIN_VALUE (inner_type);
2879 vr0.max = TYPE_MAX_VALUE (inner_type);
2882 /* If VR0 is a constant range or anti-range and the conversion is
2883 not truncating we can convert the min and max values and
2884 canonicalize the resulting range. Otherwise we can do the
2885 conversion if the size of the range is less than what the
2886 precision of the target type can represent and the range is
2887 not an anti-range. */
2888 if ((vr0.type == VR_RANGE
2889 || vr0.type == VR_ANTI_RANGE)
2890 && TREE_CODE (vr0.min) == INTEGER_CST
2891 && TREE_CODE (vr0.max) == INTEGER_CST
2892 && (!is_overflow_infinity (vr0.min)
2893 || (vr0.type == VR_RANGE
2894 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2895 && needs_overflow_infinity (outer_type)
2896 && supports_overflow_infinity (outer_type)))
2897 && (!is_overflow_infinity (vr0.max)
2898 || (vr0.type == VR_RANGE
2899 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2900 && needs_overflow_infinity (outer_type)
2901 && supports_overflow_infinity (outer_type)))
2902 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2903 || (vr0.type == VR_RANGE
2904 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2905 int_const_binop (MINUS_EXPR, vr0.max, vr0.min, 0),
2906 size_int (TYPE_PRECISION (outer_type)), 0)))))
2908 tree new_min, new_max;
2909 new_min = force_fit_type_double (outer_type,
2910 tree_to_double_int (vr0.min),
2911 0, false);
2912 new_max = force_fit_type_double (outer_type,
2913 tree_to_double_int (vr0.max),
2914 0, false);
2915 if (is_overflow_infinity (vr0.min))
2916 new_min = negative_overflow_infinity (outer_type);
2917 if (is_overflow_infinity (vr0.max))
2918 new_max = positive_overflow_infinity (outer_type);
2919 set_and_canonicalize_value_range (vr, vr0.type,
2920 new_min, new_max, NULL);
2921 return;
2924 set_value_range_to_varying (vr);
2925 return;
2928 /* Conversion of a VR_VARYING value to a wider type can result
2929 in a usable range. So wait until after we've handled conversions
2930 before dropping the result to VR_VARYING if we had a source
2931 operand that is VR_VARYING. */
2932 if (vr0.type == VR_VARYING)
2934 set_value_range_to_varying (vr);
2935 return;
2938 /* Apply the operation to each end of the range and see what we end
2939 up with. */
2940 if (code == NEGATE_EXPR
2941 && !TYPE_UNSIGNED (type))
2943 /* NEGATE_EXPR flips the range around. We need to treat
2944 TYPE_MIN_VALUE specially. */
2945 if (is_positive_overflow_infinity (vr0.max))
2946 min = negative_overflow_infinity (type);
2947 else if (is_negative_overflow_infinity (vr0.max))
2948 min = positive_overflow_infinity (type);
2949 else if (!vrp_val_is_min (vr0.max))
2950 min = fold_unary_to_constant (code, type, vr0.max);
2951 else if (needs_overflow_infinity (type))
2953 if (supports_overflow_infinity (type)
2954 && !is_overflow_infinity (vr0.min)
2955 && !vrp_val_is_min (vr0.min))
2956 min = positive_overflow_infinity (type);
2957 else
2959 set_value_range_to_varying (vr);
2960 return;
2963 else
2964 min = TYPE_MIN_VALUE (type);
2966 if (is_positive_overflow_infinity (vr0.min))
2967 max = negative_overflow_infinity (type);
2968 else if (is_negative_overflow_infinity (vr0.min))
2969 max = positive_overflow_infinity (type);
2970 else if (!vrp_val_is_min (vr0.min))
2971 max = fold_unary_to_constant (code, type, vr0.min);
2972 else if (needs_overflow_infinity (type))
2974 if (supports_overflow_infinity (type))
2975 max = positive_overflow_infinity (type);
2976 else
2978 set_value_range_to_varying (vr);
2979 return;
2982 else
2983 max = TYPE_MIN_VALUE (type);
2985 else if (code == NEGATE_EXPR
2986 && TYPE_UNSIGNED (type))
2988 if (!range_includes_zero_p (&vr0))
2990 max = fold_unary_to_constant (code, type, vr0.min);
2991 min = fold_unary_to_constant (code, type, vr0.max);
2993 else
2995 if (range_is_null (&vr0))
2996 set_value_range_to_null (vr, type);
2997 else
2998 set_value_range_to_varying (vr);
2999 return;
3002 else if (code == ABS_EXPR
3003 && !TYPE_UNSIGNED (type))
3005 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3006 useful range. */
3007 if (!TYPE_OVERFLOW_UNDEFINED (type)
3008 && ((vr0.type == VR_RANGE
3009 && vrp_val_is_min (vr0.min))
3010 || (vr0.type == VR_ANTI_RANGE
3011 && !vrp_val_is_min (vr0.min)
3012 && !range_includes_zero_p (&vr0))))
3014 set_value_range_to_varying (vr);
3015 return;
3018 /* ABS_EXPR may flip the range around, if the original range
3019 included negative values. */
3020 if (is_overflow_infinity (vr0.min))
3021 min = positive_overflow_infinity (type);
3022 else if (!vrp_val_is_min (vr0.min))
3023 min = fold_unary_to_constant (code, type, vr0.min);
3024 else if (!needs_overflow_infinity (type))
3025 min = TYPE_MAX_VALUE (type);
3026 else if (supports_overflow_infinity (type))
3027 min = positive_overflow_infinity (type);
3028 else
3030 set_value_range_to_varying (vr);
3031 return;
3034 if (is_overflow_infinity (vr0.max))
3035 max = positive_overflow_infinity (type);
3036 else if (!vrp_val_is_min (vr0.max))
3037 max = fold_unary_to_constant (code, type, vr0.max);
3038 else if (!needs_overflow_infinity (type))
3039 max = TYPE_MAX_VALUE (type);
3040 else if (supports_overflow_infinity (type)
3041 /* We shouldn't generate [+INF, +INF] as set_value_range
3042 doesn't like this and ICEs. */
3043 && !is_positive_overflow_infinity (min))
3044 max = positive_overflow_infinity (type);
3045 else
3047 set_value_range_to_varying (vr);
3048 return;
3051 cmp = compare_values (min, max);
3053 /* If a VR_ANTI_RANGEs contains zero, then we have
3054 ~[-INF, min(MIN, MAX)]. */
3055 if (vr0.type == VR_ANTI_RANGE)
3057 if (range_includes_zero_p (&vr0))
3059 /* Take the lower of the two values. */
3060 if (cmp != 1)
3061 max = min;
3063 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3064 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3065 flag_wrapv is set and the original anti-range doesn't include
3066 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3067 if (TYPE_OVERFLOW_WRAPS (type))
3069 tree type_min_value = TYPE_MIN_VALUE (type);
3071 min = (vr0.min != type_min_value
3072 ? int_const_binop (PLUS_EXPR, type_min_value,
3073 integer_one_node, 0)
3074 : type_min_value);
3076 else
3078 if (overflow_infinity_range_p (&vr0))
3079 min = negative_overflow_infinity (type);
3080 else
3081 min = TYPE_MIN_VALUE (type);
3084 else
3086 /* All else has failed, so create the range [0, INF], even for
3087 flag_wrapv since TYPE_MIN_VALUE is in the original
3088 anti-range. */
3089 vr0.type = VR_RANGE;
3090 min = build_int_cst (type, 0);
3091 if (needs_overflow_infinity (type))
3093 if (supports_overflow_infinity (type))
3094 max = positive_overflow_infinity (type);
3095 else
3097 set_value_range_to_varying (vr);
3098 return;
3101 else
3102 max = TYPE_MAX_VALUE (type);
3106 /* If the range contains zero then we know that the minimum value in the
3107 range will be zero. */
3108 else if (range_includes_zero_p (&vr0))
3110 if (cmp == 1)
3111 max = min;
3112 min = build_int_cst (type, 0);
3114 else
3116 /* If the range was reversed, swap MIN and MAX. */
3117 if (cmp == 1)
3119 tree t = min;
3120 min = max;
3121 max = t;
3125 else
3127 /* Otherwise, operate on each end of the range. */
3128 min = fold_unary_to_constant (code, type, vr0.min);
3129 max = fold_unary_to_constant (code, type, vr0.max);
3131 if (needs_overflow_infinity (type))
3133 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
3135 /* If both sides have overflowed, we don't know
3136 anything. */
3137 if ((is_overflow_infinity (vr0.min)
3138 || TREE_OVERFLOW (min))
3139 && (is_overflow_infinity (vr0.max)
3140 || TREE_OVERFLOW (max)))
3142 set_value_range_to_varying (vr);
3143 return;
3146 if (is_overflow_infinity (vr0.min))
3147 min = vr0.min;
3148 else if (TREE_OVERFLOW (min))
3150 if (supports_overflow_infinity (type))
3151 min = (tree_int_cst_sgn (min) >= 0
3152 ? positive_overflow_infinity (TREE_TYPE (min))
3153 : negative_overflow_infinity (TREE_TYPE (min)));
3154 else
3156 set_value_range_to_varying (vr);
3157 return;
3161 if (is_overflow_infinity (vr0.max))
3162 max = vr0.max;
3163 else if (TREE_OVERFLOW (max))
3165 if (supports_overflow_infinity (type))
3166 max = (tree_int_cst_sgn (max) >= 0
3167 ? positive_overflow_infinity (TREE_TYPE (max))
3168 : negative_overflow_infinity (TREE_TYPE (max)));
3169 else
3171 set_value_range_to_varying (vr);
3172 return;
3178 cmp = compare_values (min, max);
3179 if (cmp == -2 || cmp == 1)
3181 /* If the new range has its limits swapped around (MIN > MAX),
3182 then the operation caused one of them to wrap around, mark
3183 the new range VARYING. */
3184 set_value_range_to_varying (vr);
3186 else
3187 set_value_range (vr, vr0.type, min, max, NULL);
3191 /* Extract range information from a conditional expression EXPR based on
3192 the ranges of each of its operands and the expression code. */
3194 static void
3195 extract_range_from_cond_expr (value_range_t *vr, tree expr)
3197 tree op0, op1;
3198 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3199 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3201 /* Get value ranges for each operand. For constant operands, create
3202 a new value range with the operand to simplify processing. */
3203 op0 = COND_EXPR_THEN (expr);
3204 if (TREE_CODE (op0) == SSA_NAME)
3205 vr0 = *(get_value_range (op0));
3206 else if (is_gimple_min_invariant (op0))
3207 set_value_range_to_value (&vr0, op0, NULL);
3208 else
3209 set_value_range_to_varying (&vr0);
3211 op1 = COND_EXPR_ELSE (expr);
3212 if (TREE_CODE (op1) == SSA_NAME)
3213 vr1 = *(get_value_range (op1));
3214 else if (is_gimple_min_invariant (op1))
3215 set_value_range_to_value (&vr1, op1, NULL);
3216 else
3217 set_value_range_to_varying (&vr1);
3219 /* The resulting value range is the union of the operand ranges */
3220 vrp_meet (&vr0, &vr1);
3221 copy_value_range (vr, &vr0);
3225 /* Extract range information from a comparison expression EXPR based
3226 on the range of its operand and the expression code. */
3228 static void
3229 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3230 tree type, tree op0, tree op1)
3232 bool sop = false;
3233 tree val;
3235 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3236 NULL);
3238 /* A disadvantage of using a special infinity as an overflow
3239 representation is that we lose the ability to record overflow
3240 when we don't have an infinity. So we have to ignore a result
3241 which relies on overflow. */
3243 if (val && !is_overflow_infinity (val) && !sop)
3245 /* Since this expression was found on the RHS of an assignment,
3246 its type may be different from _Bool. Convert VAL to EXPR's
3247 type. */
3248 val = fold_convert (type, val);
3249 if (is_gimple_min_invariant (val))
3250 set_value_range_to_value (vr, val, vr->equiv);
3251 else
3252 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3254 else
3255 /* The result of a comparison is always true or false. */
3256 set_value_range_to_truthvalue (vr, type);
3259 /* Try to derive a nonnegative or nonzero range out of STMT relying
3260 primarily on generic routines in fold in conjunction with range data.
3261 Store the result in *VR */
3263 static void
3264 extract_range_basic (value_range_t *vr, gimple stmt)
3266 bool sop = false;
3267 tree type = gimple_expr_type (stmt);
3269 if (INTEGRAL_TYPE_P (type)
3270 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3271 set_value_range_to_nonnegative (vr, type,
3272 sop || stmt_overflow_infinity (stmt));
3273 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3274 && !sop)
3275 set_value_range_to_nonnull (vr, type);
3276 else
3277 set_value_range_to_varying (vr);
3281 /* Try to compute a useful range out of assignment STMT and store it
3282 in *VR. */
3284 static void
3285 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3287 enum tree_code code = gimple_assign_rhs_code (stmt);
3289 if (code == ASSERT_EXPR)
3290 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3291 else if (code == SSA_NAME)
3292 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3293 else if (TREE_CODE_CLASS (code) == tcc_binary
3294 || code == TRUTH_AND_EXPR
3295 || code == TRUTH_OR_EXPR
3296 || code == TRUTH_XOR_EXPR)
3297 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3298 gimple_expr_type (stmt),
3299 gimple_assign_rhs1 (stmt),
3300 gimple_assign_rhs2 (stmt));
3301 else if (TREE_CODE_CLASS (code) == tcc_unary)
3302 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3303 gimple_expr_type (stmt),
3304 gimple_assign_rhs1 (stmt));
3305 else if (code == COND_EXPR)
3306 extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
3307 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3308 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3309 gimple_expr_type (stmt),
3310 gimple_assign_rhs1 (stmt),
3311 gimple_assign_rhs2 (stmt));
3312 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3313 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3314 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3315 else
3316 set_value_range_to_varying (vr);
3318 if (vr->type == VR_VARYING)
3319 extract_range_basic (vr, stmt);
3322 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3323 would be profitable to adjust VR using scalar evolution information
3324 for VAR. If so, update VR with the new limits. */
3326 static void
3327 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3328 gimple stmt, tree var)
3330 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3331 enum ev_direction dir;
3333 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3334 better opportunities than a regular range, but I'm not sure. */
3335 if (vr->type == VR_ANTI_RANGE)
3336 return;
3338 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3340 /* Like in PR19590, scev can return a constant function. */
3341 if (is_gimple_min_invariant (chrec))
3343 set_value_range_to_value (vr, chrec, vr->equiv);
3344 return;
3347 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3348 return;
3350 init = initial_condition_in_loop_num (chrec, loop->num);
3351 tem = op_with_constant_singleton_value_range (init);
3352 if (tem)
3353 init = tem;
3354 step = evolution_part_in_loop_num (chrec, loop->num);
3355 tem = op_with_constant_singleton_value_range (step);
3356 if (tem)
3357 step = tem;
3359 /* If STEP is symbolic, we can't know whether INIT will be the
3360 minimum or maximum value in the range. Also, unless INIT is
3361 a simple expression, compare_values and possibly other functions
3362 in tree-vrp won't be able to handle it. */
3363 if (step == NULL_TREE
3364 || !is_gimple_min_invariant (step)
3365 || !valid_value_p (init))
3366 return;
3368 dir = scev_direction (chrec);
3369 if (/* Do not adjust ranges if we do not know whether the iv increases
3370 or decreases, ... */
3371 dir == EV_DIR_UNKNOWN
3372 /* ... or if it may wrap. */
3373 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3374 true))
3375 return;
3377 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3378 negative_overflow_infinity and positive_overflow_infinity,
3379 because we have concluded that the loop probably does not
3380 wrap. */
3382 type = TREE_TYPE (var);
3383 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3384 tmin = lower_bound_in_type (type, type);
3385 else
3386 tmin = TYPE_MIN_VALUE (type);
3387 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3388 tmax = upper_bound_in_type (type, type);
3389 else
3390 tmax = TYPE_MAX_VALUE (type);
3392 /* Try to use estimated number of iterations for the loop to constrain the
3393 final value in the evolution.
3394 We are interested in the number of executions of the latch, while
3395 nb_iterations_upper_bound includes the last execution of the exit test. */
3396 if (TREE_CODE (step) == INTEGER_CST
3397 && loop->any_upper_bound
3398 && !double_int_zero_p (loop->nb_iterations_upper_bound)
3399 && is_gimple_val (init)
3400 && (TREE_CODE (init) != SSA_NAME
3401 || get_value_range (init)->type == VR_RANGE))
3403 value_range_t maxvr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3404 double_int dtmp;
3405 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
3406 int overflow = 0;
3408 dtmp = double_int_mul_with_sign (tree_to_double_int (step),
3409 double_int_sub (
3410 loop->nb_iterations_upper_bound,
3411 double_int_one),
3412 unsigned_p, &overflow);
3413 tem = double_int_to_tree (TREE_TYPE (init), dtmp);
3414 /* If the multiplication overflowed we can't do a meaningful
3415 adjustment. */
3416 if (!overflow && double_int_equal_p (dtmp, tree_to_double_int (tem)))
3418 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3419 TREE_TYPE (init), init, tem);
3420 /* Likewise if the addition did. */
3421 if (maxvr.type == VR_RANGE)
3423 tmin = maxvr.min;
3424 tmax = maxvr.max;
3429 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3431 min = tmin;
3432 max = tmax;
3434 /* For VARYING or UNDEFINED ranges, just about anything we get
3435 from scalar evolutions should be better. */
3437 if (dir == EV_DIR_DECREASES)
3438 max = init;
3439 else
3440 min = init;
3442 /* If we would create an invalid range, then just assume we
3443 know absolutely nothing. This may be over-conservative,
3444 but it's clearly safe, and should happen only in unreachable
3445 parts of code, or for invalid programs. */
3446 if (compare_values (min, max) == 1)
3447 return;
3449 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3451 else if (vr->type == VR_RANGE)
3453 min = vr->min;
3454 max = vr->max;
3456 if (dir == EV_DIR_DECREASES)
3458 /* INIT is the maximum value. If INIT is lower than VR->MAX
3459 but no smaller than VR->MIN, set VR->MAX to INIT. */
3460 if (compare_values (init, max) == -1)
3461 max = init;
3463 /* According to the loop information, the variable does not
3464 overflow. If we think it does, probably because of an
3465 overflow due to arithmetic on a different INF value,
3466 reset now. */
3467 if (is_negative_overflow_infinity (min)
3468 || compare_values (min, tmin) == -1)
3469 min = tmin;
3472 else
3474 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3475 if (compare_values (init, min) == 1)
3476 min = init;
3478 if (is_positive_overflow_infinity (max)
3479 || compare_values (tmax, max) == -1)
3480 max = tmax;
3483 /* If we just created an invalid range with the minimum
3484 greater than the maximum, we fail conservatively.
3485 This should happen only in unreachable
3486 parts of code, or for invalid programs. */
3487 if (compare_values (min, max) == 1)
3488 return;
3490 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3494 /* Return true if VAR may overflow at STMT. This checks any available
3495 loop information to see if we can determine that VAR does not
3496 overflow. */
3498 static bool
3499 vrp_var_may_overflow (tree var, gimple stmt)
3501 struct loop *l;
3502 tree chrec, init, step;
3504 if (current_loops == NULL)
3505 return true;
3507 l = loop_containing_stmt (stmt);
3508 if (l == NULL
3509 || !loop_outer (l))
3510 return true;
3512 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3513 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3514 return true;
3516 init = initial_condition_in_loop_num (chrec, l->num);
3517 step = evolution_part_in_loop_num (chrec, l->num);
3519 if (step == NULL_TREE
3520 || !is_gimple_min_invariant (step)
3521 || !valid_value_p (init))
3522 return true;
3524 /* If we get here, we know something useful about VAR based on the
3525 loop information. If it wraps, it may overflow. */
3527 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3528 true))
3529 return true;
3531 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3533 print_generic_expr (dump_file, var, 0);
3534 fprintf (dump_file, ": loop information indicates does not overflow\n");
3537 return false;
3541 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3543 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3544 all the values in the ranges.
3546 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3548 - Return NULL_TREE if it is not always possible to determine the
3549 value of the comparison.
3551 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3552 overflow infinity was used in the test. */
3555 static tree
3556 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3557 bool *strict_overflow_p)
3559 /* VARYING or UNDEFINED ranges cannot be compared. */
3560 if (vr0->type == VR_VARYING
3561 || vr0->type == VR_UNDEFINED
3562 || vr1->type == VR_VARYING
3563 || vr1->type == VR_UNDEFINED)
3564 return NULL_TREE;
3566 /* Anti-ranges need to be handled separately. */
3567 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3569 /* If both are anti-ranges, then we cannot compute any
3570 comparison. */
3571 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3572 return NULL_TREE;
3574 /* These comparisons are never statically computable. */
3575 if (comp == GT_EXPR
3576 || comp == GE_EXPR
3577 || comp == LT_EXPR
3578 || comp == LE_EXPR)
3579 return NULL_TREE;
3581 /* Equality can be computed only between a range and an
3582 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3583 if (vr0->type == VR_RANGE)
3585 /* To simplify processing, make VR0 the anti-range. */
3586 value_range_t *tmp = vr0;
3587 vr0 = vr1;
3588 vr1 = tmp;
3591 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3593 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3594 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3595 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3597 return NULL_TREE;
3600 if (!usable_range_p (vr0, strict_overflow_p)
3601 || !usable_range_p (vr1, strict_overflow_p))
3602 return NULL_TREE;
3604 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3605 operands around and change the comparison code. */
3606 if (comp == GT_EXPR || comp == GE_EXPR)
3608 value_range_t *tmp;
3609 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3610 tmp = vr0;
3611 vr0 = vr1;
3612 vr1 = tmp;
3615 if (comp == EQ_EXPR)
3617 /* Equality may only be computed if both ranges represent
3618 exactly one value. */
3619 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3620 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3622 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3623 strict_overflow_p);
3624 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3625 strict_overflow_p);
3626 if (cmp_min == 0 && cmp_max == 0)
3627 return boolean_true_node;
3628 else if (cmp_min != -2 && cmp_max != -2)
3629 return boolean_false_node;
3631 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3632 else if (compare_values_warnv (vr0->min, vr1->max,
3633 strict_overflow_p) == 1
3634 || compare_values_warnv (vr1->min, vr0->max,
3635 strict_overflow_p) == 1)
3636 return boolean_false_node;
3638 return NULL_TREE;
3640 else if (comp == NE_EXPR)
3642 int cmp1, cmp2;
3644 /* If VR0 is completely to the left or completely to the right
3645 of VR1, they are always different. Notice that we need to
3646 make sure that both comparisons yield similar results to
3647 avoid comparing values that cannot be compared at
3648 compile-time. */
3649 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3650 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3651 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3652 return boolean_true_node;
3654 /* If VR0 and VR1 represent a single value and are identical,
3655 return false. */
3656 else if (compare_values_warnv (vr0->min, vr0->max,
3657 strict_overflow_p) == 0
3658 && compare_values_warnv (vr1->min, vr1->max,
3659 strict_overflow_p) == 0
3660 && compare_values_warnv (vr0->min, vr1->min,
3661 strict_overflow_p) == 0
3662 && compare_values_warnv (vr0->max, vr1->max,
3663 strict_overflow_p) == 0)
3664 return boolean_false_node;
3666 /* Otherwise, they may or may not be different. */
3667 else
3668 return NULL_TREE;
3670 else if (comp == LT_EXPR || comp == LE_EXPR)
3672 int tst;
3674 /* If VR0 is to the left of VR1, return true. */
3675 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3676 if ((comp == LT_EXPR && tst == -1)
3677 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3679 if (overflow_infinity_range_p (vr0)
3680 || overflow_infinity_range_p (vr1))
3681 *strict_overflow_p = true;
3682 return boolean_true_node;
3685 /* If VR0 is to the right of VR1, return false. */
3686 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3687 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3688 || (comp == LE_EXPR && tst == 1))
3690 if (overflow_infinity_range_p (vr0)
3691 || overflow_infinity_range_p (vr1))
3692 *strict_overflow_p = true;
3693 return boolean_false_node;
3696 /* Otherwise, we don't know. */
3697 return NULL_TREE;
3700 gcc_unreachable ();
3704 /* Given a value range VR, a value VAL and a comparison code COMP, return
3705 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3706 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3707 always returns false. Return NULL_TREE if it is not always
3708 possible to determine the value of the comparison. Also set
3709 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3710 infinity was used in the test. */
3712 static tree
3713 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3714 bool *strict_overflow_p)
3716 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3717 return NULL_TREE;
3719 /* Anti-ranges need to be handled separately. */
3720 if (vr->type == VR_ANTI_RANGE)
3722 /* For anti-ranges, the only predicates that we can compute at
3723 compile time are equality and inequality. */
3724 if (comp == GT_EXPR
3725 || comp == GE_EXPR
3726 || comp == LT_EXPR
3727 || comp == LE_EXPR)
3728 return NULL_TREE;
3730 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3731 if (value_inside_range (val, vr) == 1)
3732 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3734 return NULL_TREE;
3737 if (!usable_range_p (vr, strict_overflow_p))
3738 return NULL_TREE;
3740 if (comp == EQ_EXPR)
3742 /* EQ_EXPR may only be computed if VR represents exactly
3743 one value. */
3744 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3746 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3747 if (cmp == 0)
3748 return boolean_true_node;
3749 else if (cmp == -1 || cmp == 1 || cmp == 2)
3750 return boolean_false_node;
3752 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3753 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3754 return boolean_false_node;
3756 return NULL_TREE;
3758 else if (comp == NE_EXPR)
3760 /* If VAL is not inside VR, then they are always different. */
3761 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3762 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3763 return boolean_true_node;
3765 /* If VR represents exactly one value equal to VAL, then return
3766 false. */
3767 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3768 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3769 return boolean_false_node;
3771 /* Otherwise, they may or may not be different. */
3772 return NULL_TREE;
3774 else if (comp == LT_EXPR || comp == LE_EXPR)
3776 int tst;
3778 /* If VR is to the left of VAL, return true. */
3779 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3780 if ((comp == LT_EXPR && tst == -1)
3781 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3783 if (overflow_infinity_range_p (vr))
3784 *strict_overflow_p = true;
3785 return boolean_true_node;
3788 /* If VR is to the right of VAL, return false. */
3789 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3790 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3791 || (comp == LE_EXPR && tst == 1))
3793 if (overflow_infinity_range_p (vr))
3794 *strict_overflow_p = true;
3795 return boolean_false_node;
3798 /* Otherwise, we don't know. */
3799 return NULL_TREE;
3801 else if (comp == GT_EXPR || comp == GE_EXPR)
3803 int tst;
3805 /* If VR is to the right of VAL, return true. */
3806 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3807 if ((comp == GT_EXPR && tst == 1)
3808 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3810 if (overflow_infinity_range_p (vr))
3811 *strict_overflow_p = true;
3812 return boolean_true_node;
3815 /* If VR is to the left of VAL, return false. */
3816 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3817 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3818 || (comp == GE_EXPR && tst == -1))
3820 if (overflow_infinity_range_p (vr))
3821 *strict_overflow_p = true;
3822 return boolean_false_node;
3825 /* Otherwise, we don't know. */
3826 return NULL_TREE;
3829 gcc_unreachable ();
3833 /* Debugging dumps. */
3835 void dump_value_range (FILE *, value_range_t *);
3836 void debug_value_range (value_range_t *);
3837 void dump_all_value_ranges (FILE *);
3838 void debug_all_value_ranges (void);
3839 void dump_vr_equiv (FILE *, bitmap);
3840 void debug_vr_equiv (bitmap);
3843 /* Dump value range VR to FILE. */
3845 void
3846 dump_value_range (FILE *file, value_range_t *vr)
3848 if (vr == NULL)
3849 fprintf (file, "[]");
3850 else if (vr->type == VR_UNDEFINED)
3851 fprintf (file, "UNDEFINED");
3852 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3854 tree type = TREE_TYPE (vr->min);
3856 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3858 if (is_negative_overflow_infinity (vr->min))
3859 fprintf (file, "-INF(OVF)");
3860 else if (INTEGRAL_TYPE_P (type)
3861 && !TYPE_UNSIGNED (type)
3862 && vrp_val_is_min (vr->min))
3863 fprintf (file, "-INF");
3864 else
3865 print_generic_expr (file, vr->min, 0);
3867 fprintf (file, ", ");
3869 if (is_positive_overflow_infinity (vr->max))
3870 fprintf (file, "+INF(OVF)");
3871 else if (INTEGRAL_TYPE_P (type)
3872 && vrp_val_is_max (vr->max))
3873 fprintf (file, "+INF");
3874 else
3875 print_generic_expr (file, vr->max, 0);
3877 fprintf (file, "]");
3879 if (vr->equiv)
3881 bitmap_iterator bi;
3882 unsigned i, c = 0;
3884 fprintf (file, " EQUIVALENCES: { ");
3886 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3888 print_generic_expr (file, ssa_name (i), 0);
3889 fprintf (file, " ");
3890 c++;
3893 fprintf (file, "} (%u elements)", c);
3896 else if (vr->type == VR_VARYING)
3897 fprintf (file, "VARYING");
3898 else
3899 fprintf (file, "INVALID RANGE");
3903 /* Dump value range VR to stderr. */
3905 DEBUG_FUNCTION void
3906 debug_value_range (value_range_t *vr)
3908 dump_value_range (stderr, vr);
3909 fprintf (stderr, "\n");
3913 /* Dump value ranges of all SSA_NAMEs to FILE. */
3915 void
3916 dump_all_value_ranges (FILE *file)
3918 size_t i;
3920 for (i = 0; i < num_ssa_names; i++)
3922 if (vr_value[i])
3924 print_generic_expr (file, ssa_name (i), 0);
3925 fprintf (file, ": ");
3926 dump_value_range (file, vr_value[i]);
3927 fprintf (file, "\n");
3931 fprintf (file, "\n");
3935 /* Dump all value ranges to stderr. */
3937 DEBUG_FUNCTION void
3938 debug_all_value_ranges (void)
3940 dump_all_value_ranges (stderr);
3944 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3945 create a new SSA name N and return the assertion assignment
3946 'V = ASSERT_EXPR <V, V OP W>'. */
3948 static gimple
3949 build_assert_expr_for (tree cond, tree v)
3951 tree n;
3952 gimple assertion;
3954 gcc_assert (TREE_CODE (v) == SSA_NAME);
3955 n = duplicate_ssa_name (v, NULL);
3957 if (COMPARISON_CLASS_P (cond))
3959 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3960 assertion = gimple_build_assign (n, a);
3962 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3964 /* Given !V, build the assignment N = false. */
3965 tree op0 = TREE_OPERAND (cond, 0);
3966 gcc_assert (op0 == v);
3967 assertion = gimple_build_assign (n, boolean_false_node);
3969 else if (TREE_CODE (cond) == SSA_NAME)
3971 /* Given V, build the assignment N = true. */
3972 gcc_assert (v == cond);
3973 assertion = gimple_build_assign (n, boolean_true_node);
3975 else
3976 gcc_unreachable ();
3978 SSA_NAME_DEF_STMT (n) = assertion;
3980 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3981 operand of the ASSERT_EXPR. Register the new name and the old one
3982 in the replacement table so that we can fix the SSA web after
3983 adding all the ASSERT_EXPRs. */
3984 register_new_name_mapping (n, v);
3986 return assertion;
3990 /* Return false if EXPR is a predicate expression involving floating
3991 point values. */
3993 static inline bool
3994 fp_predicate (gimple stmt)
3996 GIMPLE_CHECK (stmt, GIMPLE_COND);
3998 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4002 /* If the range of values taken by OP can be inferred after STMT executes,
4003 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4004 describes the inferred range. Return true if a range could be
4005 inferred. */
4007 static bool
4008 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4010 *val_p = NULL_TREE;
4011 *comp_code_p = ERROR_MARK;
4013 /* Do not attempt to infer anything in names that flow through
4014 abnormal edges. */
4015 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4016 return false;
4018 /* Similarly, don't infer anything from statements that may throw
4019 exceptions. */
4020 if (stmt_could_throw_p (stmt))
4021 return false;
4023 /* If STMT is the last statement of a basic block with no
4024 successors, there is no point inferring anything about any of its
4025 operands. We would not be able to find a proper insertion point
4026 for the assertion, anyway. */
4027 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
4028 return false;
4030 /* We can only assume that a pointer dereference will yield
4031 non-NULL if -fdelete-null-pointer-checks is enabled. */
4032 if (flag_delete_null_pointer_checks
4033 && POINTER_TYPE_P (TREE_TYPE (op))
4034 && gimple_code (stmt) != GIMPLE_ASM)
4036 unsigned num_uses, num_loads, num_stores;
4038 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
4039 if (num_loads + num_stores > 0)
4041 *val_p = build_int_cst (TREE_TYPE (op), 0);
4042 *comp_code_p = NE_EXPR;
4043 return true;
4047 return false;
4051 void dump_asserts_for (FILE *, tree);
4052 void debug_asserts_for (tree);
4053 void dump_all_asserts (FILE *);
4054 void debug_all_asserts (void);
4056 /* Dump all the registered assertions for NAME to FILE. */
4058 void
4059 dump_asserts_for (FILE *file, tree name)
4061 assert_locus_t loc;
4063 fprintf (file, "Assertions to be inserted for ");
4064 print_generic_expr (file, name, 0);
4065 fprintf (file, "\n");
4067 loc = asserts_for[SSA_NAME_VERSION (name)];
4068 while (loc)
4070 fprintf (file, "\t");
4071 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4072 fprintf (file, "\n\tBB #%d", loc->bb->index);
4073 if (loc->e)
4075 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4076 loc->e->dest->index);
4077 dump_edge_info (file, loc->e, 0);
4079 fprintf (file, "\n\tPREDICATE: ");
4080 print_generic_expr (file, name, 0);
4081 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
4082 print_generic_expr (file, loc->val, 0);
4083 fprintf (file, "\n\n");
4084 loc = loc->next;
4087 fprintf (file, "\n");
4091 /* Dump all the registered assertions for NAME to stderr. */
4093 DEBUG_FUNCTION void
4094 debug_asserts_for (tree name)
4096 dump_asserts_for (stderr, name);
4100 /* Dump all the registered assertions for all the names to FILE. */
4102 void
4103 dump_all_asserts (FILE *file)
4105 unsigned i;
4106 bitmap_iterator bi;
4108 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4109 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4110 dump_asserts_for (file, ssa_name (i));
4111 fprintf (file, "\n");
4115 /* Dump all the registered assertions for all the names to stderr. */
4117 DEBUG_FUNCTION void
4118 debug_all_asserts (void)
4120 dump_all_asserts (stderr);
4124 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4125 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4126 E->DEST, then register this location as a possible insertion point
4127 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4129 BB, E and SI provide the exact insertion point for the new
4130 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4131 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4132 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4133 must not be NULL. */
4135 static void
4136 register_new_assert_for (tree name, tree expr,
4137 enum tree_code comp_code,
4138 tree val,
4139 basic_block bb,
4140 edge e,
4141 gimple_stmt_iterator si)
4143 assert_locus_t n, loc, last_loc;
4144 basic_block dest_bb;
4146 gcc_checking_assert (bb == NULL || e == NULL);
4148 if (e == NULL)
4149 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4150 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4152 /* Never build an assert comparing against an integer constant with
4153 TREE_OVERFLOW set. This confuses our undefined overflow warning
4154 machinery. */
4155 if (TREE_CODE (val) == INTEGER_CST
4156 && TREE_OVERFLOW (val))
4157 val = build_int_cst_wide (TREE_TYPE (val),
4158 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
4160 /* The new assertion A will be inserted at BB or E. We need to
4161 determine if the new location is dominated by a previously
4162 registered location for A. If we are doing an edge insertion,
4163 assume that A will be inserted at E->DEST. Note that this is not
4164 necessarily true.
4166 If E is a critical edge, it will be split. But even if E is
4167 split, the new block will dominate the same set of blocks that
4168 E->DEST dominates.
4170 The reverse, however, is not true, blocks dominated by E->DEST
4171 will not be dominated by the new block created to split E. So,
4172 if the insertion location is on a critical edge, we will not use
4173 the new location to move another assertion previously registered
4174 at a block dominated by E->DEST. */
4175 dest_bb = (bb) ? bb : e->dest;
4177 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4178 VAL at a block dominating DEST_BB, then we don't need to insert a new
4179 one. Similarly, if the same assertion already exists at a block
4180 dominated by DEST_BB and the new location is not on a critical
4181 edge, then update the existing location for the assertion (i.e.,
4182 move the assertion up in the dominance tree).
4184 Note, this is implemented as a simple linked list because there
4185 should not be more than a handful of assertions registered per
4186 name. If this becomes a performance problem, a table hashed by
4187 COMP_CODE and VAL could be implemented. */
4188 loc = asserts_for[SSA_NAME_VERSION (name)];
4189 last_loc = loc;
4190 while (loc)
4192 if (loc->comp_code == comp_code
4193 && (loc->val == val
4194 || operand_equal_p (loc->val, val, 0))
4195 && (loc->expr == expr
4196 || operand_equal_p (loc->expr, expr, 0)))
4198 /* If the assertion NAME COMP_CODE VAL has already been
4199 registered at a basic block that dominates DEST_BB, then
4200 we don't need to insert the same assertion again. Note
4201 that we don't check strict dominance here to avoid
4202 replicating the same assertion inside the same basic
4203 block more than once (e.g., when a pointer is
4204 dereferenced several times inside a block).
4206 An exception to this rule are edge insertions. If the
4207 new assertion is to be inserted on edge E, then it will
4208 dominate all the other insertions that we may want to
4209 insert in DEST_BB. So, if we are doing an edge
4210 insertion, don't do this dominance check. */
4211 if (e == NULL
4212 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
4213 return;
4215 /* Otherwise, if E is not a critical edge and DEST_BB
4216 dominates the existing location for the assertion, move
4217 the assertion up in the dominance tree by updating its
4218 location information. */
4219 if ((e == NULL || !EDGE_CRITICAL_P (e))
4220 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4222 loc->bb = dest_bb;
4223 loc->e = e;
4224 loc->si = si;
4225 return;
4229 /* Update the last node of the list and move to the next one. */
4230 last_loc = loc;
4231 loc = loc->next;
4234 /* If we didn't find an assertion already registered for
4235 NAME COMP_CODE VAL, add a new one at the end of the list of
4236 assertions associated with NAME. */
4237 n = XNEW (struct assert_locus_d);
4238 n->bb = dest_bb;
4239 n->e = e;
4240 n->si = si;
4241 n->comp_code = comp_code;
4242 n->val = val;
4243 n->expr = expr;
4244 n->next = NULL;
4246 if (last_loc)
4247 last_loc->next = n;
4248 else
4249 asserts_for[SSA_NAME_VERSION (name)] = n;
4251 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4254 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4255 Extract a suitable test code and value and store them into *CODE_P and
4256 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4258 If no extraction was possible, return FALSE, otherwise return TRUE.
4260 If INVERT is true, then we invert the result stored into *CODE_P. */
4262 static bool
4263 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4264 tree cond_op0, tree cond_op1,
4265 bool invert, enum tree_code *code_p,
4266 tree *val_p)
4268 enum tree_code comp_code;
4269 tree val;
4271 /* Otherwise, we have a comparison of the form NAME COMP VAL
4272 or VAL COMP NAME. */
4273 if (name == cond_op1)
4275 /* If the predicate is of the form VAL COMP NAME, flip
4276 COMP around because we need to register NAME as the
4277 first operand in the predicate. */
4278 comp_code = swap_tree_comparison (cond_code);
4279 val = cond_op0;
4281 else
4283 /* The comparison is of the form NAME COMP VAL, so the
4284 comparison code remains unchanged. */
4285 comp_code = cond_code;
4286 val = cond_op1;
4289 /* Invert the comparison code as necessary. */
4290 if (invert)
4291 comp_code = invert_tree_comparison (comp_code, 0);
4293 /* VRP does not handle float types. */
4294 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4295 return false;
4297 /* Do not register always-false predicates.
4298 FIXME: this works around a limitation in fold() when dealing with
4299 enumerations. Given 'enum { N1, N2 } x;', fold will not
4300 fold 'if (x > N2)' to 'if (0)'. */
4301 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4302 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4304 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4305 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4307 if (comp_code == GT_EXPR
4308 && (!max
4309 || compare_values (val, max) == 0))
4310 return false;
4312 if (comp_code == LT_EXPR
4313 && (!min
4314 || compare_values (val, min) == 0))
4315 return false;
4317 *code_p = comp_code;
4318 *val_p = val;
4319 return true;
4322 /* Try to register an edge assertion for SSA name NAME on edge E for
4323 the condition COND contributing to the conditional jump pointed to by BSI.
4324 Invert the condition COND if INVERT is true.
4325 Return true if an assertion for NAME could be registered. */
4327 static bool
4328 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4329 enum tree_code cond_code,
4330 tree cond_op0, tree cond_op1, bool invert)
4332 tree val;
4333 enum tree_code comp_code;
4334 bool retval = false;
4336 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4337 cond_op0,
4338 cond_op1,
4339 invert, &comp_code, &val))
4340 return false;
4342 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4343 reachable from E. */
4344 if (live_on_edge (e, name)
4345 && !has_single_use (name))
4347 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4348 retval = true;
4351 /* In the case of NAME <= CST and NAME being defined as
4352 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4353 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4354 This catches range and anti-range tests. */
4355 if ((comp_code == LE_EXPR
4356 || comp_code == GT_EXPR)
4357 && TREE_CODE (val) == INTEGER_CST
4358 && TYPE_UNSIGNED (TREE_TYPE (val)))
4360 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4361 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4363 /* Extract CST2 from the (optional) addition. */
4364 if (is_gimple_assign (def_stmt)
4365 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4367 name2 = gimple_assign_rhs1 (def_stmt);
4368 cst2 = gimple_assign_rhs2 (def_stmt);
4369 if (TREE_CODE (name2) == SSA_NAME
4370 && TREE_CODE (cst2) == INTEGER_CST)
4371 def_stmt = SSA_NAME_DEF_STMT (name2);
4374 /* Extract NAME2 from the (optional) sign-changing cast. */
4375 if (gimple_assign_cast_p (def_stmt))
4377 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4378 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4379 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4380 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4381 name3 = gimple_assign_rhs1 (def_stmt);
4384 /* If name3 is used later, create an ASSERT_EXPR for it. */
4385 if (name3 != NULL_TREE
4386 && TREE_CODE (name3) == SSA_NAME
4387 && (cst2 == NULL_TREE
4388 || TREE_CODE (cst2) == INTEGER_CST)
4389 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4390 && live_on_edge (e, name3)
4391 && !has_single_use (name3))
4393 tree tmp;
4395 /* Build an expression for the range test. */
4396 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4397 if (cst2 != NULL_TREE)
4398 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4400 if (dump_file)
4402 fprintf (dump_file, "Adding assert for ");
4403 print_generic_expr (dump_file, name3, 0);
4404 fprintf (dump_file, " from ");
4405 print_generic_expr (dump_file, tmp, 0);
4406 fprintf (dump_file, "\n");
4409 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4411 retval = true;
4414 /* If name2 is used later, create an ASSERT_EXPR for it. */
4415 if (name2 != NULL_TREE
4416 && TREE_CODE (name2) == SSA_NAME
4417 && TREE_CODE (cst2) == INTEGER_CST
4418 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4419 && live_on_edge (e, name2)
4420 && !has_single_use (name2))
4422 tree tmp;
4424 /* Build an expression for the range test. */
4425 tmp = name2;
4426 if (TREE_TYPE (name) != TREE_TYPE (name2))
4427 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4428 if (cst2 != NULL_TREE)
4429 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4431 if (dump_file)
4433 fprintf (dump_file, "Adding assert for ");
4434 print_generic_expr (dump_file, name2, 0);
4435 fprintf (dump_file, " from ");
4436 print_generic_expr (dump_file, tmp, 0);
4437 fprintf (dump_file, "\n");
4440 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4442 retval = true;
4446 return retval;
4449 /* OP is an operand of a truth value expression which is known to have
4450 a particular value. Register any asserts for OP and for any
4451 operands in OP's defining statement.
4453 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4454 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4456 static bool
4457 register_edge_assert_for_1 (tree op, enum tree_code code,
4458 edge e, gimple_stmt_iterator bsi)
4460 bool retval = false;
4461 gimple op_def;
4462 tree val;
4463 enum tree_code rhs_code;
4465 /* We only care about SSA_NAMEs. */
4466 if (TREE_CODE (op) != SSA_NAME)
4467 return false;
4469 /* We know that OP will have a zero or nonzero value. If OP is used
4470 more than once go ahead and register an assert for OP.
4472 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4473 it will always be set for OP (because OP is used in a COND_EXPR in
4474 the subgraph). */
4475 if (!has_single_use (op))
4477 val = build_int_cst (TREE_TYPE (op), 0);
4478 register_new_assert_for (op, op, code, val, NULL, e, bsi);
4479 retval = true;
4482 /* Now look at how OP is set. If it's set from a comparison,
4483 a truth operation or some bit operations, then we may be able
4484 to register information about the operands of that assignment. */
4485 op_def = SSA_NAME_DEF_STMT (op);
4486 if (gimple_code (op_def) != GIMPLE_ASSIGN)
4487 return retval;
4489 rhs_code = gimple_assign_rhs_code (op_def);
4491 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
4493 bool invert = (code == EQ_EXPR ? true : false);
4494 tree op0 = gimple_assign_rhs1 (op_def);
4495 tree op1 = gimple_assign_rhs2 (op_def);
4497 if (TREE_CODE (op0) == SSA_NAME)
4498 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
4499 invert);
4500 if (TREE_CODE (op1) == SSA_NAME)
4501 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
4502 invert);
4504 else if ((code == NE_EXPR
4505 && (gimple_assign_rhs_code (op_def) == TRUTH_AND_EXPR
4506 || gimple_assign_rhs_code (op_def) == BIT_AND_EXPR))
4507 || (code == EQ_EXPR
4508 && (gimple_assign_rhs_code (op_def) == TRUTH_OR_EXPR
4509 || gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)))
4511 /* Recurse on each operand. */
4512 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4513 code, e, bsi);
4514 retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
4515 code, e, bsi);
4517 else if (gimple_assign_rhs_code (op_def) == TRUTH_NOT_EXPR)
4519 /* Recurse, flipping CODE. */
4520 code = invert_tree_comparison (code, false);
4521 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4522 code, e, bsi);
4524 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
4526 /* Recurse through the copy. */
4527 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4528 code, e, bsi);
4530 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
4532 /* Recurse through the type conversion. */
4533 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4534 code, e, bsi);
4537 return retval;
4540 /* Try to register an edge assertion for SSA name NAME on edge E for
4541 the condition COND contributing to the conditional jump pointed to by SI.
4542 Return true if an assertion for NAME could be registered. */
4544 static bool
4545 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
4546 enum tree_code cond_code, tree cond_op0,
4547 tree cond_op1)
4549 tree val;
4550 enum tree_code comp_code;
4551 bool retval = false;
4552 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
4554 /* Do not attempt to infer anything in names that flow through
4555 abnormal edges. */
4556 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
4557 return false;
4559 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4560 cond_op0, cond_op1,
4561 is_else_edge,
4562 &comp_code, &val))
4563 return false;
4565 /* Register ASSERT_EXPRs for name. */
4566 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
4567 cond_op1, is_else_edge);
4570 /* If COND is effectively an equality test of an SSA_NAME against
4571 the value zero or one, then we may be able to assert values
4572 for SSA_NAMEs which flow into COND. */
4574 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
4575 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
4576 have nonzero value. */
4577 if (((comp_code == EQ_EXPR && integer_onep (val))
4578 || (comp_code == NE_EXPR && integer_zerop (val))))
4580 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4582 if (is_gimple_assign (def_stmt)
4583 && (gimple_assign_rhs_code (def_stmt) == TRUTH_AND_EXPR
4584 || gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR))
4586 tree op0 = gimple_assign_rhs1 (def_stmt);
4587 tree op1 = gimple_assign_rhs2 (def_stmt);
4588 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4589 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
4593 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
4594 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
4595 have zero value. */
4596 if (((comp_code == EQ_EXPR && integer_zerop (val))
4597 || (comp_code == NE_EXPR && integer_onep (val))))
4599 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4601 if (is_gimple_assign (def_stmt)
4602 && (gimple_assign_rhs_code (def_stmt) == TRUTH_OR_EXPR
4603 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4604 necessarily zero value. */
4605 || (comp_code == EQ_EXPR
4606 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR))))
4608 tree op0 = gimple_assign_rhs1 (def_stmt);
4609 tree op1 = gimple_assign_rhs2 (def_stmt);
4610 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4611 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4615 return retval;
4619 /* Determine whether the outgoing edges of BB should receive an
4620 ASSERT_EXPR for each of the operands of BB's LAST statement.
4621 The last statement of BB must be a COND_EXPR.
4623 If any of the sub-graphs rooted at BB have an interesting use of
4624 the predicate operands, an assert location node is added to the
4625 list of assertions for the corresponding operands. */
4627 static bool
4628 find_conditional_asserts (basic_block bb, gimple last)
4630 bool need_assert;
4631 gimple_stmt_iterator bsi;
4632 tree op;
4633 edge_iterator ei;
4634 edge e;
4635 ssa_op_iter iter;
4637 need_assert = false;
4638 bsi = gsi_for_stmt (last);
4640 /* Look for uses of the operands in each of the sub-graphs
4641 rooted at BB. We need to check each of the outgoing edges
4642 separately, so that we know what kind of ASSERT_EXPR to
4643 insert. */
4644 FOR_EACH_EDGE (e, ei, bb->succs)
4646 if (e->dest == bb)
4647 continue;
4649 /* Register the necessary assertions for each operand in the
4650 conditional predicate. */
4651 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4653 need_assert |= register_edge_assert_for (op, e, bsi,
4654 gimple_cond_code (last),
4655 gimple_cond_lhs (last),
4656 gimple_cond_rhs (last));
4660 return need_assert;
4663 /* Compare two case labels sorting first by the destination label uid
4664 and then by the case value. */
4666 static int
4667 compare_case_labels (const void *p1, const void *p2)
4669 const_tree const case1 = *(const_tree const*)p1;
4670 const_tree const case2 = *(const_tree const*)p2;
4671 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
4672 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
4674 if (uid1 < uid2)
4675 return -1;
4676 else if (uid1 == uid2)
4678 /* Make sure the default label is first in a group. */
4679 if (!CASE_LOW (case1))
4680 return -1;
4681 else if (!CASE_LOW (case2))
4682 return 1;
4683 else
4684 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
4686 else
4687 return 1;
4690 /* Determine whether the outgoing edges of BB should receive an
4691 ASSERT_EXPR for each of the operands of BB's LAST statement.
4692 The last statement of BB must be a SWITCH_EXPR.
4694 If any of the sub-graphs rooted at BB have an interesting use of
4695 the predicate operands, an assert location node is added to the
4696 list of assertions for the corresponding operands. */
4698 static bool
4699 find_switch_asserts (basic_block bb, gimple last)
4701 bool need_assert;
4702 gimple_stmt_iterator bsi;
4703 tree op;
4704 edge e;
4705 tree vec2;
4706 size_t n = gimple_switch_num_labels(last);
4707 #if GCC_VERSION >= 4000
4708 unsigned int idx;
4709 #else
4710 /* Work around GCC 3.4 bug (PR 37086). */
4711 volatile unsigned int idx;
4712 #endif
4714 need_assert = false;
4715 bsi = gsi_for_stmt (last);
4716 op = gimple_switch_index (last);
4717 if (TREE_CODE (op) != SSA_NAME)
4718 return false;
4720 /* Build a vector of case labels sorted by destination label. */
4721 vec2 = make_tree_vec (n);
4722 for (idx = 0; idx < n; ++idx)
4723 TREE_VEC_ELT (vec2, idx) = gimple_switch_label (last, idx);
4724 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
4726 for (idx = 0; idx < n; ++idx)
4728 tree min, max;
4729 tree cl = TREE_VEC_ELT (vec2, idx);
4731 min = CASE_LOW (cl);
4732 max = CASE_HIGH (cl);
4734 /* If there are multiple case labels with the same destination
4735 we need to combine them to a single value range for the edge. */
4736 if (idx + 1 < n
4737 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
4739 /* Skip labels until the last of the group. */
4740 do {
4741 ++idx;
4742 } while (idx < n
4743 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
4744 --idx;
4746 /* Pick up the maximum of the case label range. */
4747 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
4748 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
4749 else
4750 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
4753 /* Nothing to do if the range includes the default label until we
4754 can register anti-ranges. */
4755 if (min == NULL_TREE)
4756 continue;
4758 /* Find the edge to register the assert expr on. */
4759 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
4761 /* Register the necessary assertions for the operand in the
4762 SWITCH_EXPR. */
4763 need_assert |= register_edge_assert_for (op, e, bsi,
4764 max ? GE_EXPR : EQ_EXPR,
4766 fold_convert (TREE_TYPE (op),
4767 min));
4768 if (max)
4770 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4772 fold_convert (TREE_TYPE (op),
4773 max));
4777 return need_assert;
4781 /* Traverse all the statements in block BB looking for statements that
4782 may generate useful assertions for the SSA names in their operand.
4783 If a statement produces a useful assertion A for name N_i, then the
4784 list of assertions already generated for N_i is scanned to
4785 determine if A is actually needed.
4787 If N_i already had the assertion A at a location dominating the
4788 current location, then nothing needs to be done. Otherwise, the
4789 new location for A is recorded instead.
4791 1- For every statement S in BB, all the variables used by S are
4792 added to bitmap FOUND_IN_SUBGRAPH.
4794 2- If statement S uses an operand N in a way that exposes a known
4795 value range for N, then if N was not already generated by an
4796 ASSERT_EXPR, create a new assert location for N. For instance,
4797 if N is a pointer and the statement dereferences it, we can
4798 assume that N is not NULL.
4800 3- COND_EXPRs are a special case of #2. We can derive range
4801 information from the predicate but need to insert different
4802 ASSERT_EXPRs for each of the sub-graphs rooted at the
4803 conditional block. If the last statement of BB is a conditional
4804 expression of the form 'X op Y', then
4806 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4808 b) If the conditional is the only entry point to the sub-graph
4809 corresponding to the THEN_CLAUSE, recurse into it. On
4810 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4811 an ASSERT_EXPR is added for the corresponding variable.
4813 c) Repeat step (b) on the ELSE_CLAUSE.
4815 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4817 For instance,
4819 if (a == 9)
4820 b = a;
4821 else
4822 b = c + 1;
4824 In this case, an assertion on the THEN clause is useful to
4825 determine that 'a' is always 9 on that edge. However, an assertion
4826 on the ELSE clause would be unnecessary.
4828 4- If BB does not end in a conditional expression, then we recurse
4829 into BB's dominator children.
4831 At the end of the recursive traversal, every SSA name will have a
4832 list of locations where ASSERT_EXPRs should be added. When a new
4833 location for name N is found, it is registered by calling
4834 register_new_assert_for. That function keeps track of all the
4835 registered assertions to prevent adding unnecessary assertions.
4836 For instance, if a pointer P_4 is dereferenced more than once in a
4837 dominator tree, only the location dominating all the dereference of
4838 P_4 will receive an ASSERT_EXPR.
4840 If this function returns true, then it means that there are names
4841 for which we need to generate ASSERT_EXPRs. Those assertions are
4842 inserted by process_assert_insertions. */
4844 static bool
4845 find_assert_locations_1 (basic_block bb, sbitmap live)
4847 gimple_stmt_iterator si;
4848 gimple last;
4849 gimple phi;
4850 bool need_assert;
4852 need_assert = false;
4853 last = last_stmt (bb);
4855 /* If BB's last statement is a conditional statement involving integer
4856 operands, determine if we need to add ASSERT_EXPRs. */
4857 if (last
4858 && gimple_code (last) == GIMPLE_COND
4859 && !fp_predicate (last)
4860 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4861 need_assert |= find_conditional_asserts (bb, last);
4863 /* If BB's last statement is a switch statement involving integer
4864 operands, determine if we need to add ASSERT_EXPRs. */
4865 if (last
4866 && gimple_code (last) == GIMPLE_SWITCH
4867 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4868 need_assert |= find_switch_asserts (bb, last);
4870 /* Traverse all the statements in BB marking used names and looking
4871 for statements that may infer assertions for their used operands. */
4872 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4874 gimple stmt;
4875 tree op;
4876 ssa_op_iter i;
4878 stmt = gsi_stmt (si);
4880 if (is_gimple_debug (stmt))
4881 continue;
4883 /* See if we can derive an assertion for any of STMT's operands. */
4884 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4886 tree value;
4887 enum tree_code comp_code;
4889 /* Mark OP in our live bitmap. */
4890 SET_BIT (live, SSA_NAME_VERSION (op));
4892 /* If OP is used in such a way that we can infer a value
4893 range for it, and we don't find a previous assertion for
4894 it, create a new assertion location node for OP. */
4895 if (infer_value_range (stmt, op, &comp_code, &value))
4897 /* If we are able to infer a nonzero value range for OP,
4898 then walk backwards through the use-def chain to see if OP
4899 was set via a typecast.
4901 If so, then we can also infer a nonzero value range
4902 for the operand of the NOP_EXPR. */
4903 if (comp_code == NE_EXPR && integer_zerop (value))
4905 tree t = op;
4906 gimple def_stmt = SSA_NAME_DEF_STMT (t);
4908 while (is_gimple_assign (def_stmt)
4909 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
4910 && TREE_CODE
4911 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
4912 && POINTER_TYPE_P
4913 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
4915 t = gimple_assign_rhs1 (def_stmt);
4916 def_stmt = SSA_NAME_DEF_STMT (t);
4918 /* Note we want to register the assert for the
4919 operand of the NOP_EXPR after SI, not after the
4920 conversion. */
4921 if (! has_single_use (t))
4923 register_new_assert_for (t, t, comp_code, value,
4924 bb, NULL, si);
4925 need_assert = true;
4930 /* If OP is used only once, namely in this STMT, don't
4931 bother creating an ASSERT_EXPR for it. Such an
4932 ASSERT_EXPR would do nothing but increase compile time. */
4933 if (!has_single_use (op))
4935 register_new_assert_for (op, op, comp_code, value,
4936 bb, NULL, si);
4937 need_assert = true;
4943 /* Traverse all PHI nodes in BB marking used operands. */
4944 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
4946 use_operand_p arg_p;
4947 ssa_op_iter i;
4948 phi = gsi_stmt (si);
4950 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4952 tree arg = USE_FROM_PTR (arg_p);
4953 if (TREE_CODE (arg) == SSA_NAME)
4954 SET_BIT (live, SSA_NAME_VERSION (arg));
4958 return need_assert;
4961 /* Do an RPO walk over the function computing SSA name liveness
4962 on-the-fly and deciding on assert expressions to insert.
4963 Returns true if there are assert expressions to be inserted. */
4965 static bool
4966 find_assert_locations (void)
4968 int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4969 int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4970 int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4971 int rpo_cnt, i;
4972 bool need_asserts;
4974 live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
4975 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
4976 for (i = 0; i < rpo_cnt; ++i)
4977 bb_rpo[rpo[i]] = i;
4979 need_asserts = false;
4980 for (i = rpo_cnt-1; i >= 0; --i)
4982 basic_block bb = BASIC_BLOCK (rpo[i]);
4983 edge e;
4984 edge_iterator ei;
4986 if (!live[rpo[i]])
4988 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
4989 sbitmap_zero (live[rpo[i]]);
4992 /* Process BB and update the live information with uses in
4993 this block. */
4994 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
4996 /* Merge liveness into the predecessor blocks and free it. */
4997 if (!sbitmap_empty_p (live[rpo[i]]))
4999 int pred_rpo = i;
5000 FOR_EACH_EDGE (e, ei, bb->preds)
5002 int pred = e->src->index;
5003 if (e->flags & EDGE_DFS_BACK)
5004 continue;
5006 if (!live[pred])
5008 live[pred] = sbitmap_alloc (num_ssa_names);
5009 sbitmap_zero (live[pred]);
5011 sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
5013 if (bb_rpo[pred] < pred_rpo)
5014 pred_rpo = bb_rpo[pred];
5017 /* Record the RPO number of the last visited block that needs
5018 live information from this block. */
5019 last_rpo[rpo[i]] = pred_rpo;
5021 else
5023 sbitmap_free (live[rpo[i]]);
5024 live[rpo[i]] = NULL;
5027 /* We can free all successors live bitmaps if all their
5028 predecessors have been visited already. */
5029 FOR_EACH_EDGE (e, ei, bb->succs)
5030 if (last_rpo[e->dest->index] == i
5031 && live[e->dest->index])
5033 sbitmap_free (live[e->dest->index]);
5034 live[e->dest->index] = NULL;
5038 XDELETEVEC (rpo);
5039 XDELETEVEC (bb_rpo);
5040 XDELETEVEC (last_rpo);
5041 for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
5042 if (live[i])
5043 sbitmap_free (live[i]);
5044 XDELETEVEC (live);
5046 return need_asserts;
5049 /* Create an ASSERT_EXPR for NAME and insert it in the location
5050 indicated by LOC. Return true if we made any edge insertions. */
5052 static bool
5053 process_assert_insertions_for (tree name, assert_locus_t loc)
5055 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5056 gimple stmt;
5057 tree cond;
5058 gimple assert_stmt;
5059 edge_iterator ei;
5060 edge e;
5062 /* If we have X <=> X do not insert an assert expr for that. */
5063 if (loc->expr == loc->val)
5064 return false;
5066 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
5067 assert_stmt = build_assert_expr_for (cond, name);
5068 if (loc->e)
5070 /* We have been asked to insert the assertion on an edge. This
5071 is used only by COND_EXPR and SWITCH_EXPR assertions. */
5072 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
5073 || (gimple_code (gsi_stmt (loc->si))
5074 == GIMPLE_SWITCH));
5076 gsi_insert_on_edge (loc->e, assert_stmt);
5077 return true;
5080 /* Otherwise, we can insert right after LOC->SI iff the
5081 statement must not be the last statement in the block. */
5082 stmt = gsi_stmt (loc->si);
5083 if (!stmt_ends_bb_p (stmt))
5085 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
5086 return false;
5089 /* If STMT must be the last statement in BB, we can only insert new
5090 assertions on the non-abnormal edge out of BB. Note that since
5091 STMT is not control flow, there may only be one non-abnormal edge
5092 out of BB. */
5093 FOR_EACH_EDGE (e, ei, loc->bb->succs)
5094 if (!(e->flags & EDGE_ABNORMAL))
5096 gsi_insert_on_edge (e, assert_stmt);
5097 return true;
5100 gcc_unreachable ();
5104 /* Process all the insertions registered for every name N_i registered
5105 in NEED_ASSERT_FOR. The list of assertions to be inserted are
5106 found in ASSERTS_FOR[i]. */
5108 static void
5109 process_assert_insertions (void)
5111 unsigned i;
5112 bitmap_iterator bi;
5113 bool update_edges_p = false;
5114 int num_asserts = 0;
5116 if (dump_file && (dump_flags & TDF_DETAILS))
5117 dump_all_asserts (dump_file);
5119 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
5121 assert_locus_t loc = asserts_for[i];
5122 gcc_assert (loc);
5124 while (loc)
5126 assert_locus_t next = loc->next;
5127 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
5128 free (loc);
5129 loc = next;
5130 num_asserts++;
5134 if (update_edges_p)
5135 gsi_commit_edge_inserts ();
5137 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
5138 num_asserts);
5142 /* Traverse the flowgraph looking for conditional jumps to insert range
5143 expressions. These range expressions are meant to provide information
5144 to optimizations that need to reason in terms of value ranges. They
5145 will not be expanded into RTL. For instance, given:
5147 x = ...
5148 y = ...
5149 if (x < y)
5150 y = x - 2;
5151 else
5152 x = y + 3;
5154 this pass will transform the code into:
5156 x = ...
5157 y = ...
5158 if (x < y)
5160 x = ASSERT_EXPR <x, x < y>
5161 y = x - 2
5163 else
5165 y = ASSERT_EXPR <y, x <= y>
5166 x = y + 3
5169 The idea is that once copy and constant propagation have run, other
5170 optimizations will be able to determine what ranges of values can 'x'
5171 take in different paths of the code, simply by checking the reaching
5172 definition of 'x'. */
5174 static void
5175 insert_range_assertions (void)
5177 need_assert_for = BITMAP_ALLOC (NULL);
5178 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
5180 calculate_dominance_info (CDI_DOMINATORS);
5182 if (find_assert_locations ())
5184 process_assert_insertions ();
5185 update_ssa (TODO_update_ssa_no_phi);
5188 if (dump_file && (dump_flags & TDF_DETAILS))
5190 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
5191 dump_function_to_file (current_function_decl, dump_file, dump_flags);
5194 free (asserts_for);
5195 BITMAP_FREE (need_assert_for);
5198 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
5199 and "struct" hacks. If VRP can determine that the
5200 array subscript is a constant, check if it is outside valid
5201 range. If the array subscript is a RANGE, warn if it is
5202 non-overlapping with valid range.
5203 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
5205 static void
5206 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
5208 value_range_t* vr = NULL;
5209 tree low_sub, up_sub;
5210 tree low_bound, up_bound, up_bound_p1;
5211 tree base;
5213 if (TREE_NO_WARNING (ref))
5214 return;
5216 low_sub = up_sub = TREE_OPERAND (ref, 1);
5217 up_bound = array_ref_up_bound (ref);
5219 /* Can not check flexible arrays. */
5220 if (!up_bound
5221 || TREE_CODE (up_bound) != INTEGER_CST)
5222 return;
5224 /* Accesses to trailing arrays via pointers may access storage
5225 beyond the types array bounds. */
5226 base = get_base_address (ref);
5227 if (base && TREE_CODE (base) == MEM_REF)
5229 tree cref, next = NULL_TREE;
5231 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
5232 return;
5234 cref = TREE_OPERAND (ref, 0);
5235 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
5236 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
5237 next && TREE_CODE (next) != FIELD_DECL;
5238 next = DECL_CHAIN (next))
5241 /* If this is the last field in a struct type or a field in a
5242 union type do not warn. */
5243 if (!next)
5244 return;
5247 low_bound = array_ref_low_bound (ref);
5248 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node, 0);
5250 if (TREE_CODE (low_sub) == SSA_NAME)
5252 vr = get_value_range (low_sub);
5253 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
5255 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
5256 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
5260 if (vr && vr->type == VR_ANTI_RANGE)
5262 if (TREE_CODE (up_sub) == INTEGER_CST
5263 && tree_int_cst_lt (up_bound, up_sub)
5264 && TREE_CODE (low_sub) == INTEGER_CST
5265 && tree_int_cst_lt (low_sub, low_bound))
5267 warning_at (location, OPT_Warray_bounds,
5268 "array subscript is outside array bounds");
5269 TREE_NO_WARNING (ref) = 1;
5272 else if (TREE_CODE (up_sub) == INTEGER_CST
5273 && (ignore_off_by_one
5274 ? (tree_int_cst_lt (up_bound, up_sub)
5275 && !tree_int_cst_equal (up_bound_p1, up_sub))
5276 : (tree_int_cst_lt (up_bound, up_sub)
5277 || tree_int_cst_equal (up_bound_p1, up_sub))))
5279 warning_at (location, OPT_Warray_bounds,
5280 "array subscript is above array bounds");
5281 TREE_NO_WARNING (ref) = 1;
5283 else if (TREE_CODE (low_sub) == INTEGER_CST
5284 && tree_int_cst_lt (low_sub, low_bound))
5286 warning_at (location, OPT_Warray_bounds,
5287 "array subscript is below array bounds");
5288 TREE_NO_WARNING (ref) = 1;
5292 /* Searches if the expr T, located at LOCATION computes
5293 address of an ARRAY_REF, and call check_array_ref on it. */
5295 static void
5296 search_for_addr_array (tree t, location_t location)
5298 while (TREE_CODE (t) == SSA_NAME)
5300 gimple g = SSA_NAME_DEF_STMT (t);
5302 if (gimple_code (g) != GIMPLE_ASSIGN)
5303 return;
5305 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
5306 != GIMPLE_SINGLE_RHS)
5307 return;
5309 t = gimple_assign_rhs1 (g);
5313 /* We are only interested in addresses of ARRAY_REF's. */
5314 if (TREE_CODE (t) != ADDR_EXPR)
5315 return;
5317 /* Check each ARRAY_REFs in the reference chain. */
5320 if (TREE_CODE (t) == ARRAY_REF)
5321 check_array_ref (location, t, true /*ignore_off_by_one*/);
5323 t = TREE_OPERAND (t, 0);
5325 while (handled_component_p (t));
5327 if (TREE_CODE (t) == MEM_REF
5328 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
5329 && !TREE_NO_WARNING (t))
5331 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
5332 tree low_bound, up_bound, el_sz;
5333 double_int idx;
5334 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
5335 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
5336 || !TYPE_DOMAIN (TREE_TYPE (tem)))
5337 return;
5339 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5340 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5341 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
5342 if (!low_bound
5343 || TREE_CODE (low_bound) != INTEGER_CST
5344 || !up_bound
5345 || TREE_CODE (up_bound) != INTEGER_CST
5346 || !el_sz
5347 || TREE_CODE (el_sz) != INTEGER_CST)
5348 return;
5350 idx = mem_ref_offset (t);
5351 idx = double_int_sdiv (idx, tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
5352 if (double_int_scmp (idx, double_int_zero) < 0)
5354 warning_at (location, OPT_Warray_bounds,
5355 "array subscript is below array bounds");
5356 TREE_NO_WARNING (t) = 1;
5358 else if (double_int_scmp (idx,
5359 double_int_add
5360 (double_int_add
5361 (tree_to_double_int (up_bound),
5362 double_int_neg
5363 (tree_to_double_int (low_bound))),
5364 double_int_one)) > 0)
5366 warning_at (location, OPT_Warray_bounds,
5367 "array subscript is above array bounds");
5368 TREE_NO_WARNING (t) = 1;
5373 /* walk_tree() callback that checks if *TP is
5374 an ARRAY_REF inside an ADDR_EXPR (in which an array
5375 subscript one outside the valid range is allowed). Call
5376 check_array_ref for each ARRAY_REF found. The location is
5377 passed in DATA. */
5379 static tree
5380 check_array_bounds (tree *tp, int *walk_subtree, void *data)
5382 tree t = *tp;
5383 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5384 location_t location;
5386 if (EXPR_HAS_LOCATION (t))
5387 location = EXPR_LOCATION (t);
5388 else
5390 location_t *locp = (location_t *) wi->info;
5391 location = *locp;
5394 *walk_subtree = TRUE;
5396 if (TREE_CODE (t) == ARRAY_REF)
5397 check_array_ref (location, t, false /*ignore_off_by_one*/);
5399 if (TREE_CODE (t) == MEM_REF
5400 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
5401 search_for_addr_array (TREE_OPERAND (t, 0), location);
5403 if (TREE_CODE (t) == ADDR_EXPR)
5404 *walk_subtree = FALSE;
5406 return NULL_TREE;
5409 /* Walk over all statements of all reachable BBs and call check_array_bounds
5410 on them. */
5412 static void
5413 check_all_array_refs (void)
5415 basic_block bb;
5416 gimple_stmt_iterator si;
5418 FOR_EACH_BB (bb)
5420 edge_iterator ei;
5421 edge e;
5422 bool executable = false;
5424 /* Skip blocks that were found to be unreachable. */
5425 FOR_EACH_EDGE (e, ei, bb->preds)
5426 executable |= !!(e->flags & EDGE_EXECUTABLE);
5427 if (!executable)
5428 continue;
5430 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5432 gimple stmt = gsi_stmt (si);
5433 struct walk_stmt_info wi;
5434 if (!gimple_has_location (stmt))
5435 continue;
5437 if (is_gimple_call (stmt))
5439 size_t i;
5440 size_t n = gimple_call_num_args (stmt);
5441 for (i = 0; i < n; i++)
5443 tree arg = gimple_call_arg (stmt, i);
5444 search_for_addr_array (arg, gimple_location (stmt));
5447 else
5449 memset (&wi, 0, sizeof (wi));
5450 wi.info = CONST_CAST (void *, (const void *)
5451 gimple_location_ptr (stmt));
5453 walk_gimple_op (gsi_stmt (si),
5454 check_array_bounds,
5455 &wi);
5461 /* Convert range assertion expressions into the implied copies and
5462 copy propagate away the copies. Doing the trivial copy propagation
5463 here avoids the need to run the full copy propagation pass after
5464 VRP.
5466 FIXME, this will eventually lead to copy propagation removing the
5467 names that had useful range information attached to them. For
5468 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5469 then N_i will have the range [3, +INF].
5471 However, by converting the assertion into the implied copy
5472 operation N_i = N_j, we will then copy-propagate N_j into the uses
5473 of N_i and lose the range information. We may want to hold on to
5474 ASSERT_EXPRs a little while longer as the ranges could be used in
5475 things like jump threading.
5477 The problem with keeping ASSERT_EXPRs around is that passes after
5478 VRP need to handle them appropriately.
5480 Another approach would be to make the range information a first
5481 class property of the SSA_NAME so that it can be queried from
5482 any pass. This is made somewhat more complex by the need for
5483 multiple ranges to be associated with one SSA_NAME. */
5485 static void
5486 remove_range_assertions (void)
5488 basic_block bb;
5489 gimple_stmt_iterator si;
5491 /* Note that the BSI iterator bump happens at the bottom of the
5492 loop and no bump is necessary if we're removing the statement
5493 referenced by the current BSI. */
5494 FOR_EACH_BB (bb)
5495 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
5497 gimple stmt = gsi_stmt (si);
5498 gimple use_stmt;
5500 if (is_gimple_assign (stmt)
5501 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5503 tree rhs = gimple_assign_rhs1 (stmt);
5504 tree var;
5505 tree cond = fold (ASSERT_EXPR_COND (rhs));
5506 use_operand_p use_p;
5507 imm_use_iterator iter;
5509 gcc_assert (cond != boolean_false_node);
5511 /* Propagate the RHS into every use of the LHS. */
5512 var = ASSERT_EXPR_VAR (rhs);
5513 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
5514 gimple_assign_lhs (stmt))
5515 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5517 SET_USE (use_p, var);
5518 gcc_assert (TREE_CODE (var) == SSA_NAME);
5521 /* And finally, remove the copy, it is not needed. */
5522 gsi_remove (&si, true);
5523 release_defs (stmt);
5525 else
5526 gsi_next (&si);
5531 /* Return true if STMT is interesting for VRP. */
5533 static bool
5534 stmt_interesting_for_vrp (gimple stmt)
5536 if (gimple_code (stmt) == GIMPLE_PHI
5537 && is_gimple_reg (gimple_phi_result (stmt))
5538 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
5539 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
5540 return true;
5541 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5543 tree lhs = gimple_get_lhs (stmt);
5545 /* In general, assignments with virtual operands are not useful
5546 for deriving ranges, with the obvious exception of calls to
5547 builtin functions. */
5548 if (lhs && TREE_CODE (lhs) == SSA_NAME
5549 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5550 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5551 && ((is_gimple_call (stmt)
5552 && gimple_call_fndecl (stmt) != NULL_TREE
5553 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
5554 || !gimple_vuse (stmt)))
5555 return true;
5557 else if (gimple_code (stmt) == GIMPLE_COND
5558 || gimple_code (stmt) == GIMPLE_SWITCH)
5559 return true;
5561 return false;
5565 /* Initialize local data structures for VRP. */
5567 static void
5568 vrp_initialize (void)
5570 basic_block bb;
5572 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
5573 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
5575 FOR_EACH_BB (bb)
5577 gimple_stmt_iterator si;
5579 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5581 gimple phi = gsi_stmt (si);
5582 if (!stmt_interesting_for_vrp (phi))
5584 tree lhs = PHI_RESULT (phi);
5585 set_value_range_to_varying (get_value_range (lhs));
5586 prop_set_simulate_again (phi, false);
5588 else
5589 prop_set_simulate_again (phi, true);
5592 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5594 gimple stmt = gsi_stmt (si);
5596 /* If the statement is a control insn, then we do not
5597 want to avoid simulating the statement once. Failure
5598 to do so means that those edges will never get added. */
5599 if (stmt_ends_bb_p (stmt))
5600 prop_set_simulate_again (stmt, true);
5601 else if (!stmt_interesting_for_vrp (stmt))
5603 ssa_op_iter i;
5604 tree def;
5605 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
5606 set_value_range_to_varying (get_value_range (def));
5607 prop_set_simulate_again (stmt, false);
5609 else
5610 prop_set_simulate_again (stmt, true);
5616 /* Visit assignment STMT. If it produces an interesting range, record
5617 the SSA name in *OUTPUT_P. */
5619 static enum ssa_prop_result
5620 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
5622 tree def, lhs;
5623 ssa_op_iter iter;
5624 enum gimple_code code = gimple_code (stmt);
5625 lhs = gimple_get_lhs (stmt);
5627 /* We only keep track of ranges in integral and pointer types. */
5628 if (TREE_CODE (lhs) == SSA_NAME
5629 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5630 /* It is valid to have NULL MIN/MAX values on a type. See
5631 build_range_type. */
5632 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
5633 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
5634 || POINTER_TYPE_P (TREE_TYPE (lhs))))
5636 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5638 if (code == GIMPLE_CALL)
5639 extract_range_basic (&new_vr, stmt);
5640 else
5641 extract_range_from_assignment (&new_vr, stmt);
5643 if (update_value_range (lhs, &new_vr))
5645 *output_p = lhs;
5647 if (dump_file && (dump_flags & TDF_DETAILS))
5649 fprintf (dump_file, "Found new range for ");
5650 print_generic_expr (dump_file, lhs, 0);
5651 fprintf (dump_file, ": ");
5652 dump_value_range (dump_file, &new_vr);
5653 fprintf (dump_file, "\n\n");
5656 if (new_vr.type == VR_VARYING)
5657 return SSA_PROP_VARYING;
5659 return SSA_PROP_INTERESTING;
5662 return SSA_PROP_NOT_INTERESTING;
5665 /* Every other statement produces no useful ranges. */
5666 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5667 set_value_range_to_varying (get_value_range (def));
5669 return SSA_PROP_VARYING;
5672 /* Helper that gets the value range of the SSA_NAME with version I
5673 or a symbolic range containing the SSA_NAME only if the value range
5674 is varying or undefined. */
5676 static inline value_range_t
5677 get_vr_for_comparison (int i)
5679 value_range_t vr = *(vr_value[i]);
5681 /* If name N_i does not have a valid range, use N_i as its own
5682 range. This allows us to compare against names that may
5683 have N_i in their ranges. */
5684 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5686 vr.type = VR_RANGE;
5687 vr.min = ssa_name (i);
5688 vr.max = ssa_name (i);
5691 return vr;
5694 /* Compare all the value ranges for names equivalent to VAR with VAL
5695 using comparison code COMP. Return the same value returned by
5696 compare_range_with_value, including the setting of
5697 *STRICT_OVERFLOW_P. */
5699 static tree
5700 compare_name_with_value (enum tree_code comp, tree var, tree val,
5701 bool *strict_overflow_p)
5703 bitmap_iterator bi;
5704 unsigned i;
5705 bitmap e;
5706 tree retval, t;
5707 int used_strict_overflow;
5708 bool sop;
5709 value_range_t equiv_vr;
5711 /* Get the set of equivalences for VAR. */
5712 e = get_value_range (var)->equiv;
5714 /* Start at -1. Set it to 0 if we do a comparison without relying
5715 on overflow, or 1 if all comparisons rely on overflow. */
5716 used_strict_overflow = -1;
5718 /* Compare vars' value range with val. */
5719 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5720 sop = false;
5721 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
5722 if (retval)
5723 used_strict_overflow = sop ? 1 : 0;
5725 /* If the equiv set is empty we have done all work we need to do. */
5726 if (e == NULL)
5728 if (retval
5729 && used_strict_overflow > 0)
5730 *strict_overflow_p = true;
5731 return retval;
5734 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5736 equiv_vr = get_vr_for_comparison (i);
5737 sop = false;
5738 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
5739 if (t)
5741 /* If we get different answers from different members
5742 of the equivalence set this check must be in a dead
5743 code region. Folding it to a trap representation
5744 would be correct here. For now just return don't-know. */
5745 if (retval != NULL
5746 && t != retval)
5748 retval = NULL_TREE;
5749 break;
5751 retval = t;
5753 if (!sop)
5754 used_strict_overflow = 0;
5755 else if (used_strict_overflow < 0)
5756 used_strict_overflow = 1;
5760 if (retval
5761 && used_strict_overflow > 0)
5762 *strict_overflow_p = true;
5764 return retval;
5768 /* Given a comparison code COMP and names N1 and N2, compare all the
5769 ranges equivalent to N1 against all the ranges equivalent to N2
5770 to determine the value of N1 COMP N2. Return the same value
5771 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5772 whether we relied on an overflow infinity in the comparison. */
5775 static tree
5776 compare_names (enum tree_code comp, tree n1, tree n2,
5777 bool *strict_overflow_p)
5779 tree t, retval;
5780 bitmap e1, e2;
5781 bitmap_iterator bi1, bi2;
5782 unsigned i1, i2;
5783 int used_strict_overflow;
5784 static bitmap_obstack *s_obstack = NULL;
5785 static bitmap s_e1 = NULL, s_e2 = NULL;
5787 /* Compare the ranges of every name equivalent to N1 against the
5788 ranges of every name equivalent to N2. */
5789 e1 = get_value_range (n1)->equiv;
5790 e2 = get_value_range (n2)->equiv;
5792 /* Use the fake bitmaps if e1 or e2 are not available. */
5793 if (s_obstack == NULL)
5795 s_obstack = XNEW (bitmap_obstack);
5796 bitmap_obstack_initialize (s_obstack);
5797 s_e1 = BITMAP_ALLOC (s_obstack);
5798 s_e2 = BITMAP_ALLOC (s_obstack);
5800 if (e1 == NULL)
5801 e1 = s_e1;
5802 if (e2 == NULL)
5803 e2 = s_e2;
5805 /* Add N1 and N2 to their own set of equivalences to avoid
5806 duplicating the body of the loop just to check N1 and N2
5807 ranges. */
5808 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5809 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5811 /* If the equivalence sets have a common intersection, then the two
5812 names can be compared without checking their ranges. */
5813 if (bitmap_intersect_p (e1, e2))
5815 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5816 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5818 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5819 ? boolean_true_node
5820 : boolean_false_node;
5823 /* Start at -1. Set it to 0 if we do a comparison without relying
5824 on overflow, or 1 if all comparisons rely on overflow. */
5825 used_strict_overflow = -1;
5827 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5828 N2 to their own set of equivalences to avoid duplicating the body
5829 of the loop just to check N1 and N2 ranges. */
5830 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5832 value_range_t vr1 = get_vr_for_comparison (i1);
5834 t = retval = NULL_TREE;
5835 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5837 bool sop = false;
5839 value_range_t vr2 = get_vr_for_comparison (i2);
5841 t = compare_ranges (comp, &vr1, &vr2, &sop);
5842 if (t)
5844 /* If we get different answers from different members
5845 of the equivalence set this check must be in a dead
5846 code region. Folding it to a trap representation
5847 would be correct here. For now just return don't-know. */
5848 if (retval != NULL
5849 && t != retval)
5851 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5852 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5853 return NULL_TREE;
5855 retval = t;
5857 if (!sop)
5858 used_strict_overflow = 0;
5859 else if (used_strict_overflow < 0)
5860 used_strict_overflow = 1;
5864 if (retval)
5866 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5867 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5868 if (used_strict_overflow > 0)
5869 *strict_overflow_p = true;
5870 return retval;
5874 /* None of the equivalent ranges are useful in computing this
5875 comparison. */
5876 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5877 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5878 return NULL_TREE;
5881 /* Helper function for vrp_evaluate_conditional_warnv. */
5883 static tree
5884 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
5885 tree op0, tree op1,
5886 bool * strict_overflow_p)
5888 value_range_t *vr0, *vr1;
5890 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5891 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5893 if (vr0 && vr1)
5894 return compare_ranges (code, vr0, vr1, strict_overflow_p);
5895 else if (vr0 && vr1 == NULL)
5896 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
5897 else if (vr0 == NULL && vr1)
5898 return (compare_range_with_value
5899 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
5900 return NULL;
5903 /* Helper function for vrp_evaluate_conditional_warnv. */
5905 static tree
5906 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5907 tree op1, bool use_equiv_p,
5908 bool *strict_overflow_p, bool *only_ranges)
5910 tree ret;
5911 if (only_ranges)
5912 *only_ranges = true;
5914 /* We only deal with integral and pointer types. */
5915 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5916 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5917 return NULL_TREE;
5919 if (use_equiv_p)
5921 if (only_ranges
5922 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
5923 (code, op0, op1, strict_overflow_p)))
5924 return ret;
5925 *only_ranges = false;
5926 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
5927 return compare_names (code, op0, op1, strict_overflow_p);
5928 else if (TREE_CODE (op0) == SSA_NAME)
5929 return compare_name_with_value (code, op0, op1, strict_overflow_p);
5930 else if (TREE_CODE (op1) == SSA_NAME)
5931 return (compare_name_with_value
5932 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
5934 else
5935 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
5936 strict_overflow_p);
5937 return NULL_TREE;
5940 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5941 information. Return NULL if the conditional can not be evaluated.
5942 The ranges of all the names equivalent with the operands in COND
5943 will be used when trying to compute the value. If the result is
5944 based on undefined signed overflow, issue a warning if
5945 appropriate. */
5947 static tree
5948 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
5950 bool sop;
5951 tree ret;
5952 bool only_ranges;
5954 /* Some passes and foldings leak constants with overflow flag set
5955 into the IL. Avoid doing wrong things with these and bail out. */
5956 if ((TREE_CODE (op0) == INTEGER_CST
5957 && TREE_OVERFLOW (op0))
5958 || (TREE_CODE (op1) == INTEGER_CST
5959 && TREE_OVERFLOW (op1)))
5960 return NULL_TREE;
5962 sop = false;
5963 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
5964 &only_ranges);
5966 if (ret && sop)
5968 enum warn_strict_overflow_code wc;
5969 const char* warnmsg;
5971 if (is_gimple_min_invariant (ret))
5973 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
5974 warnmsg = G_("assuming signed overflow does not occur when "
5975 "simplifying conditional to constant");
5977 else
5979 wc = WARN_STRICT_OVERFLOW_COMPARISON;
5980 warnmsg = G_("assuming signed overflow does not occur when "
5981 "simplifying conditional");
5984 if (issue_strict_overflow_warning (wc))
5986 location_t location;
5988 if (!gimple_has_location (stmt))
5989 location = input_location;
5990 else
5991 location = gimple_location (stmt);
5992 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
5996 if (warn_type_limits
5997 && ret && only_ranges
5998 && TREE_CODE_CLASS (code) == tcc_comparison
5999 && TREE_CODE (op0) == SSA_NAME)
6001 /* If the comparison is being folded and the operand on the LHS
6002 is being compared against a constant value that is outside of
6003 the natural range of OP0's type, then the predicate will
6004 always fold regardless of the value of OP0. If -Wtype-limits
6005 was specified, emit a warning. */
6006 tree type = TREE_TYPE (op0);
6007 value_range_t *vr0 = get_value_range (op0);
6009 if (vr0->type != VR_VARYING
6010 && INTEGRAL_TYPE_P (type)
6011 && vrp_val_is_min (vr0->min)
6012 && vrp_val_is_max (vr0->max)
6013 && is_gimple_min_invariant (op1))
6015 location_t location;
6017 if (!gimple_has_location (stmt))
6018 location = input_location;
6019 else
6020 location = gimple_location (stmt);
6022 warning_at (location, OPT_Wtype_limits,
6023 integer_zerop (ret)
6024 ? G_("comparison always false "
6025 "due to limited range of data type")
6026 : G_("comparison always true "
6027 "due to limited range of data type"));
6031 return ret;
6035 /* Visit conditional statement STMT. If we can determine which edge
6036 will be taken out of STMT's basic block, record it in
6037 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6038 SSA_PROP_VARYING. */
6040 static enum ssa_prop_result
6041 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
6043 tree val;
6044 bool sop;
6046 *taken_edge_p = NULL;
6048 if (dump_file && (dump_flags & TDF_DETAILS))
6050 tree use;
6051 ssa_op_iter i;
6053 fprintf (dump_file, "\nVisiting conditional with predicate: ");
6054 print_gimple_stmt (dump_file, stmt, 0, 0);
6055 fprintf (dump_file, "\nWith known ranges\n");
6057 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
6059 fprintf (dump_file, "\t");
6060 print_generic_expr (dump_file, use, 0);
6061 fprintf (dump_file, ": ");
6062 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
6065 fprintf (dump_file, "\n");
6068 /* Compute the value of the predicate COND by checking the known
6069 ranges of each of its operands.
6071 Note that we cannot evaluate all the equivalent ranges here
6072 because those ranges may not yet be final and with the current
6073 propagation strategy, we cannot determine when the value ranges
6074 of the names in the equivalence set have changed.
6076 For instance, given the following code fragment
6078 i_5 = PHI <8, i_13>
6080 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
6081 if (i_14 == 1)
6084 Assume that on the first visit to i_14, i_5 has the temporary
6085 range [8, 8] because the second argument to the PHI function is
6086 not yet executable. We derive the range ~[0, 0] for i_14 and the
6087 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
6088 the first time, since i_14 is equivalent to the range [8, 8], we
6089 determine that the predicate is always false.
6091 On the next round of propagation, i_13 is determined to be
6092 VARYING, which causes i_5 to drop down to VARYING. So, another
6093 visit to i_14 is scheduled. In this second visit, we compute the
6094 exact same range and equivalence set for i_14, namely ~[0, 0] and
6095 { i_5 }. But we did not have the previous range for i_5
6096 registered, so vrp_visit_assignment thinks that the range for
6097 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
6098 is not visited again, which stops propagation from visiting
6099 statements in the THEN clause of that if().
6101 To properly fix this we would need to keep the previous range
6102 value for the names in the equivalence set. This way we would've
6103 discovered that from one visit to the other i_5 changed from
6104 range [8, 8] to VR_VARYING.
6106 However, fixing this apparent limitation may not be worth the
6107 additional checking. Testing on several code bases (GCC, DLV,
6108 MICO, TRAMP3D and SPEC2000) showed that doing this results in
6109 4 more predicates folded in SPEC. */
6110 sop = false;
6112 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
6113 gimple_cond_lhs (stmt),
6114 gimple_cond_rhs (stmt),
6115 false, &sop, NULL);
6116 if (val)
6118 if (!sop)
6119 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
6120 else
6122 if (dump_file && (dump_flags & TDF_DETAILS))
6123 fprintf (dump_file,
6124 "\nIgnoring predicate evaluation because "
6125 "it assumes that signed overflow is undefined");
6126 val = NULL_TREE;
6130 if (dump_file && (dump_flags & TDF_DETAILS))
6132 fprintf (dump_file, "\nPredicate evaluates to: ");
6133 if (val == NULL_TREE)
6134 fprintf (dump_file, "DON'T KNOW\n");
6135 else
6136 print_generic_stmt (dump_file, val, 0);
6139 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
6142 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
6143 that includes the value VAL. The search is restricted to the range
6144 [START_IDX, n - 1] where n is the size of VEC.
6146 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
6147 returned.
6149 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
6150 it is placed in IDX and false is returned.
6152 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
6153 returned. */
6155 static bool
6156 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
6158 size_t n = gimple_switch_num_labels (stmt);
6159 size_t low, high;
6161 /* Find case label for minimum of the value range or the next one.
6162 At each iteration we are searching in [low, high - 1]. */
6164 for (low = start_idx, high = n; high != low; )
6166 tree t;
6167 int cmp;
6168 /* Note that i != high, so we never ask for n. */
6169 size_t i = (high + low) / 2;
6170 t = gimple_switch_label (stmt, i);
6172 /* Cache the result of comparing CASE_LOW and val. */
6173 cmp = tree_int_cst_compare (CASE_LOW (t), val);
6175 if (cmp == 0)
6177 /* Ranges cannot be empty. */
6178 *idx = i;
6179 return true;
6181 else if (cmp > 0)
6182 high = i;
6183 else
6185 low = i + 1;
6186 if (CASE_HIGH (t) != NULL
6187 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
6189 *idx = i;
6190 return true;
6195 *idx = high;
6196 return false;
6199 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
6200 for values between MIN and MAX. The first index is placed in MIN_IDX. The
6201 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
6202 then MAX_IDX < MIN_IDX.
6203 Returns true if the default label is not needed. */
6205 static bool
6206 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
6207 size_t *max_idx)
6209 size_t i, j;
6210 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
6211 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
6213 if (i == j
6214 && min_take_default
6215 && max_take_default)
6217 /* Only the default case label reached.
6218 Return an empty range. */
6219 *min_idx = 1;
6220 *max_idx = 0;
6221 return false;
6223 else
6225 bool take_default = min_take_default || max_take_default;
6226 tree low, high;
6227 size_t k;
6229 if (max_take_default)
6230 j--;
6232 /* If the case label range is continuous, we do not need
6233 the default case label. Verify that. */
6234 high = CASE_LOW (gimple_switch_label (stmt, i));
6235 if (CASE_HIGH (gimple_switch_label (stmt, i)))
6236 high = CASE_HIGH (gimple_switch_label (stmt, i));
6237 for (k = i + 1; k <= j; ++k)
6239 low = CASE_LOW (gimple_switch_label (stmt, k));
6240 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high, 0)))
6242 take_default = true;
6243 break;
6245 high = low;
6246 if (CASE_HIGH (gimple_switch_label (stmt, k)))
6247 high = CASE_HIGH (gimple_switch_label (stmt, k));
6250 *min_idx = i;
6251 *max_idx = j;
6252 return !take_default;
6256 /* Visit switch statement STMT. If we can determine which edge
6257 will be taken out of STMT's basic block, record it in
6258 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6259 SSA_PROP_VARYING. */
6261 static enum ssa_prop_result
6262 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
6264 tree op, val;
6265 value_range_t *vr;
6266 size_t i = 0, j = 0;
6267 bool take_default;
6269 *taken_edge_p = NULL;
6270 op = gimple_switch_index (stmt);
6271 if (TREE_CODE (op) != SSA_NAME)
6272 return SSA_PROP_VARYING;
6274 vr = get_value_range (op);
6275 if (dump_file && (dump_flags & TDF_DETAILS))
6277 fprintf (dump_file, "\nVisiting switch expression with operand ");
6278 print_generic_expr (dump_file, op, 0);
6279 fprintf (dump_file, " with known range ");
6280 dump_value_range (dump_file, vr);
6281 fprintf (dump_file, "\n");
6284 if (vr->type != VR_RANGE
6285 || symbolic_range_p (vr))
6286 return SSA_PROP_VARYING;
6288 /* Find the single edge that is taken from the switch expression. */
6289 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6291 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6292 label */
6293 if (j < i)
6295 gcc_assert (take_default);
6296 val = gimple_switch_default_label (stmt);
6298 else
6300 /* Check if labels with index i to j and maybe the default label
6301 are all reaching the same label. */
6303 val = gimple_switch_label (stmt, i);
6304 if (take_default
6305 && CASE_LABEL (gimple_switch_default_label (stmt))
6306 != CASE_LABEL (val))
6308 if (dump_file && (dump_flags & TDF_DETAILS))
6309 fprintf (dump_file, " not a single destination for this "
6310 "range\n");
6311 return SSA_PROP_VARYING;
6313 for (++i; i <= j; ++i)
6315 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
6317 if (dump_file && (dump_flags & TDF_DETAILS))
6318 fprintf (dump_file, " not a single destination for this "
6319 "range\n");
6320 return SSA_PROP_VARYING;
6325 *taken_edge_p = find_edge (gimple_bb (stmt),
6326 label_to_block (CASE_LABEL (val)));
6328 if (dump_file && (dump_flags & TDF_DETAILS))
6330 fprintf (dump_file, " will take edge to ");
6331 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
6334 return SSA_PROP_INTERESTING;
6338 /* Evaluate statement STMT. If the statement produces a useful range,
6339 return SSA_PROP_INTERESTING and record the SSA name with the
6340 interesting range into *OUTPUT_P.
6342 If STMT is a conditional branch and we can determine its truth
6343 value, the taken edge is recorded in *TAKEN_EDGE_P.
6345 If STMT produces a varying value, return SSA_PROP_VARYING. */
6347 static enum ssa_prop_result
6348 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
6350 tree def;
6351 ssa_op_iter iter;
6353 if (dump_file && (dump_flags & TDF_DETAILS))
6355 fprintf (dump_file, "\nVisiting statement:\n");
6356 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
6357 fprintf (dump_file, "\n");
6360 if (!stmt_interesting_for_vrp (stmt))
6361 gcc_assert (stmt_ends_bb_p (stmt));
6362 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6364 /* In general, assignments with virtual operands are not useful
6365 for deriving ranges, with the obvious exception of calls to
6366 builtin functions. */
6368 if ((is_gimple_call (stmt)
6369 && gimple_call_fndecl (stmt) != NULL_TREE
6370 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
6371 || !gimple_vuse (stmt))
6372 return vrp_visit_assignment_or_call (stmt, output_p);
6374 else if (gimple_code (stmt) == GIMPLE_COND)
6375 return vrp_visit_cond_stmt (stmt, taken_edge_p);
6376 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6377 return vrp_visit_switch_stmt (stmt, taken_edge_p);
6379 /* All other statements produce nothing of interest for VRP, so mark
6380 their outputs varying and prevent further simulation. */
6381 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6382 set_value_range_to_varying (get_value_range (def));
6384 return SSA_PROP_VARYING;
6388 /* Meet operation for value ranges. Given two value ranges VR0 and
6389 VR1, store in VR0 a range that contains both VR0 and VR1. This
6390 may not be the smallest possible such range. */
6392 static void
6393 vrp_meet (value_range_t *vr0, value_range_t *vr1)
6395 if (vr0->type == VR_UNDEFINED)
6397 copy_value_range (vr0, vr1);
6398 return;
6401 if (vr1->type == VR_UNDEFINED)
6403 /* Nothing to do. VR0 already has the resulting range. */
6404 return;
6407 if (vr0->type == VR_VARYING)
6409 /* Nothing to do. VR0 already has the resulting range. */
6410 return;
6413 if (vr1->type == VR_VARYING)
6415 set_value_range_to_varying (vr0);
6416 return;
6419 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
6421 int cmp;
6422 tree min, max;
6424 /* Compute the convex hull of the ranges. The lower limit of
6425 the new range is the minimum of the two ranges. If they
6426 cannot be compared, then give up. */
6427 cmp = compare_values (vr0->min, vr1->min);
6428 if (cmp == 0 || cmp == 1)
6429 min = vr1->min;
6430 else if (cmp == -1)
6431 min = vr0->min;
6432 else
6433 goto give_up;
6435 /* Similarly, the upper limit of the new range is the maximum
6436 of the two ranges. If they cannot be compared, then
6437 give up. */
6438 cmp = compare_values (vr0->max, vr1->max);
6439 if (cmp == 0 || cmp == -1)
6440 max = vr1->max;
6441 else if (cmp == 1)
6442 max = vr0->max;
6443 else
6444 goto give_up;
6446 /* Check for useless ranges. */
6447 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
6448 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
6449 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
6450 goto give_up;
6452 /* The resulting set of equivalences is the intersection of
6453 the two sets. */
6454 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6455 bitmap_and_into (vr0->equiv, vr1->equiv);
6456 else if (vr0->equiv && !vr1->equiv)
6457 bitmap_clear (vr0->equiv);
6459 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
6461 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
6463 /* Two anti-ranges meet only if their complements intersect.
6464 Only handle the case of identical ranges. */
6465 if (compare_values (vr0->min, vr1->min) == 0
6466 && compare_values (vr0->max, vr1->max) == 0
6467 && compare_values (vr0->min, vr0->max) == 0)
6469 /* The resulting set of equivalences is the intersection of
6470 the two sets. */
6471 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6472 bitmap_and_into (vr0->equiv, vr1->equiv);
6473 else if (vr0->equiv && !vr1->equiv)
6474 bitmap_clear (vr0->equiv);
6476 else
6477 goto give_up;
6479 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
6481 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6482 only handle the case where the ranges have an empty intersection.
6483 The result of the meet operation is the anti-range. */
6484 if (!symbolic_range_p (vr0)
6485 && !symbolic_range_p (vr1)
6486 && !value_ranges_intersect_p (vr0, vr1))
6488 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6489 set. We need to compute the intersection of the two
6490 equivalence sets. */
6491 if (vr1->type == VR_ANTI_RANGE)
6492 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
6494 /* The resulting set of equivalences is the intersection of
6495 the two sets. */
6496 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6497 bitmap_and_into (vr0->equiv, vr1->equiv);
6498 else if (vr0->equiv && !vr1->equiv)
6499 bitmap_clear (vr0->equiv);
6501 else
6502 goto give_up;
6504 else
6505 gcc_unreachable ();
6507 return;
6509 give_up:
6510 /* Failed to find an efficient meet. Before giving up and setting
6511 the result to VARYING, see if we can at least derive a useful
6512 anti-range. FIXME, all this nonsense about distinguishing
6513 anti-ranges from ranges is necessary because of the odd
6514 semantics of range_includes_zero_p and friends. */
6515 if (!symbolic_range_p (vr0)
6516 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
6517 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
6518 && !symbolic_range_p (vr1)
6519 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
6520 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
6522 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
6524 /* Since this meet operation did not result from the meeting of
6525 two equivalent names, VR0 cannot have any equivalences. */
6526 if (vr0->equiv)
6527 bitmap_clear (vr0->equiv);
6529 else
6530 set_value_range_to_varying (vr0);
6534 /* Visit all arguments for PHI node PHI that flow through executable
6535 edges. If a valid value range can be derived from all the incoming
6536 value ranges, set a new range for the LHS of PHI. */
6538 static enum ssa_prop_result
6539 vrp_visit_phi_node (gimple phi)
6541 size_t i;
6542 tree lhs = PHI_RESULT (phi);
6543 value_range_t *lhs_vr = get_value_range (lhs);
6544 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6545 int edges, old_edges;
6546 struct loop *l;
6548 if (dump_file && (dump_flags & TDF_DETAILS))
6550 fprintf (dump_file, "\nVisiting PHI node: ");
6551 print_gimple_stmt (dump_file, phi, 0, dump_flags);
6554 edges = 0;
6555 for (i = 0; i < gimple_phi_num_args (phi); i++)
6557 edge e = gimple_phi_arg_edge (phi, i);
6559 if (dump_file && (dump_flags & TDF_DETAILS))
6561 fprintf (dump_file,
6562 "\n Argument #%d (%d -> %d %sexecutable)\n",
6563 (int) i, e->src->index, e->dest->index,
6564 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
6567 if (e->flags & EDGE_EXECUTABLE)
6569 tree arg = PHI_ARG_DEF (phi, i);
6570 value_range_t vr_arg;
6572 ++edges;
6574 if (TREE_CODE (arg) == SSA_NAME)
6576 vr_arg = *(get_value_range (arg));
6578 else
6580 if (is_overflow_infinity (arg))
6582 arg = copy_node (arg);
6583 TREE_OVERFLOW (arg) = 0;
6586 vr_arg.type = VR_RANGE;
6587 vr_arg.min = arg;
6588 vr_arg.max = arg;
6589 vr_arg.equiv = NULL;
6592 if (dump_file && (dump_flags & TDF_DETAILS))
6594 fprintf (dump_file, "\t");
6595 print_generic_expr (dump_file, arg, dump_flags);
6596 fprintf (dump_file, "\n\tValue: ");
6597 dump_value_range (dump_file, &vr_arg);
6598 fprintf (dump_file, "\n");
6601 vrp_meet (&vr_result, &vr_arg);
6603 if (vr_result.type == VR_VARYING)
6604 break;
6608 if (vr_result.type == VR_VARYING)
6609 goto varying;
6611 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
6612 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
6614 /* To prevent infinite iterations in the algorithm, derive ranges
6615 when the new value is slightly bigger or smaller than the
6616 previous one. We don't do this if we have seen a new executable
6617 edge; this helps us avoid an overflow infinity for conditionals
6618 which are not in a loop. */
6619 if (edges > 0
6620 && edges == old_edges)
6622 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
6623 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
6625 /* For non VR_RANGE or for pointers fall back to varying if
6626 the range changed. */
6627 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
6628 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6629 && (cmp_min != 0 || cmp_max != 0))
6630 goto varying;
6632 /* If the new minimum is smaller or larger than the previous
6633 one, go all the way to -INF. In the first case, to avoid
6634 iterating millions of times to reach -INF, and in the
6635 other case to avoid infinite bouncing between different
6636 minimums. */
6637 if (cmp_min > 0 || cmp_min < 0)
6639 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
6640 || !vrp_var_may_overflow (lhs, phi))
6641 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
6642 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
6643 vr_result.min =
6644 negative_overflow_infinity (TREE_TYPE (vr_result.min));
6647 /* Similarly, if the new maximum is smaller or larger than
6648 the previous one, go all the way to +INF. */
6649 if (cmp_max < 0 || cmp_max > 0)
6651 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6652 || !vrp_var_may_overflow (lhs, phi))
6653 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6654 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6655 vr_result.max =
6656 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6659 /* If we dropped either bound to +-INF then if this is a loop
6660 PHI node SCEV may known more about its value-range. */
6661 if ((cmp_min > 0 || cmp_min < 0
6662 || cmp_max < 0 || cmp_max > 0)
6663 && current_loops
6664 && (l = loop_containing_stmt (phi))
6665 && l->header == gimple_bb (phi))
6666 adjust_range_with_scev (&vr_result, l, phi, lhs);
6668 /* If we will end up with a (-INF, +INF) range, set it to
6669 VARYING. Same if the previous max value was invalid for
6670 the type and we end up with vr_result.min > vr_result.max. */
6671 if ((vrp_val_is_max (vr_result.max)
6672 && vrp_val_is_min (vr_result.min))
6673 || compare_values (vr_result.min,
6674 vr_result.max) > 0)
6675 goto varying;
6678 /* If the new range is different than the previous value, keep
6679 iterating. */
6680 if (update_value_range (lhs, &vr_result))
6682 if (dump_file && (dump_flags & TDF_DETAILS))
6684 fprintf (dump_file, "Found new range for ");
6685 print_generic_expr (dump_file, lhs, 0);
6686 fprintf (dump_file, ": ");
6687 dump_value_range (dump_file, &vr_result);
6688 fprintf (dump_file, "\n\n");
6691 return SSA_PROP_INTERESTING;
6694 /* Nothing changed, don't add outgoing edges. */
6695 return SSA_PROP_NOT_INTERESTING;
6697 /* No match found. Set the LHS to VARYING. */
6698 varying:
6699 set_value_range_to_varying (lhs_vr);
6700 return SSA_PROP_VARYING;
6703 /* Simplify boolean operations if the source is known
6704 to be already a boolean. */
6705 static bool
6706 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6708 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6709 tree val = NULL;
6710 tree op0, op1;
6711 value_range_t *vr;
6712 bool sop = false;
6713 bool need_conversion;
6715 op0 = gimple_assign_rhs1 (stmt);
6716 if (TYPE_PRECISION (TREE_TYPE (op0)) != 1)
6718 if (TREE_CODE (op0) != SSA_NAME)
6719 return false;
6720 vr = get_value_range (op0);
6722 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6723 if (!val || !integer_onep (val))
6724 return false;
6726 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6727 if (!val || !integer_onep (val))
6728 return false;
6731 if (rhs_code == TRUTH_NOT_EXPR)
6733 rhs_code = NE_EXPR;
6734 op1 = build_int_cst (TREE_TYPE (op0), 1);
6736 else
6738 op1 = gimple_assign_rhs2 (stmt);
6740 /* Reduce number of cases to handle. */
6741 if (is_gimple_min_invariant (op1))
6743 /* Exclude anything that should have been already folded. */
6744 if (rhs_code != EQ_EXPR
6745 && rhs_code != NE_EXPR
6746 && rhs_code != TRUTH_XOR_EXPR)
6747 return false;
6749 if (!integer_zerop (op1)
6750 && !integer_onep (op1)
6751 && !integer_all_onesp (op1))
6752 return false;
6754 /* Limit the number of cases we have to consider. */
6755 if (rhs_code == EQ_EXPR)
6757 rhs_code = NE_EXPR;
6758 op1 = fold_unary (TRUTH_NOT_EXPR, TREE_TYPE (op1), op1);
6761 else
6763 /* Punt on A == B as there is no BIT_XNOR_EXPR. */
6764 if (rhs_code == EQ_EXPR)
6765 return false;
6767 if (TYPE_PRECISION (TREE_TYPE (op1)) != 1)
6769 vr = get_value_range (op1);
6770 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6771 if (!val || !integer_onep (val))
6772 return false;
6774 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6775 if (!val || !integer_onep (val))
6776 return false;
6781 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6783 location_t location;
6785 if (!gimple_has_location (stmt))
6786 location = input_location;
6787 else
6788 location = gimple_location (stmt);
6790 if (rhs_code == TRUTH_AND_EXPR || rhs_code == TRUTH_OR_EXPR)
6791 warning_at (location, OPT_Wstrict_overflow,
6792 _("assuming signed overflow does not occur when "
6793 "simplifying && or || to & or |"));
6794 else
6795 warning_at (location, OPT_Wstrict_overflow,
6796 _("assuming signed overflow does not occur when "
6797 "simplifying ==, != or ! to identity or ^"));
6800 need_conversion =
6801 !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)),
6802 TREE_TYPE (op0));
6804 /* Make sure to not sign-extend -1 as a boolean value. */
6805 if (need_conversion
6806 && !TYPE_UNSIGNED (TREE_TYPE (op0))
6807 && TYPE_PRECISION (TREE_TYPE (op0)) == 1)
6808 return false;
6810 switch (rhs_code)
6812 case TRUTH_AND_EXPR:
6813 rhs_code = BIT_AND_EXPR;
6814 break;
6815 case TRUTH_OR_EXPR:
6816 rhs_code = BIT_IOR_EXPR;
6817 break;
6818 case TRUTH_XOR_EXPR:
6819 case NE_EXPR:
6820 if (integer_zerop (op1))
6822 gimple_assign_set_rhs_with_ops (gsi,
6823 need_conversion ? NOP_EXPR : SSA_NAME,
6824 op0, NULL);
6825 update_stmt (gsi_stmt (*gsi));
6826 return true;
6829 rhs_code = BIT_XOR_EXPR;
6830 break;
6831 default:
6832 gcc_unreachable ();
6835 if (need_conversion)
6836 return false;
6838 gimple_assign_set_rhs_with_ops (gsi, rhs_code, op0, op1);
6839 update_stmt (gsi_stmt (*gsi));
6840 return true;
6843 /* Simplify a division or modulo operator to a right shift or
6844 bitwise and if the first operand is unsigned or is greater
6845 than zero and the second operand is an exact power of two. */
6847 static bool
6848 simplify_div_or_mod_using_ranges (gimple stmt)
6850 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6851 tree val = NULL;
6852 tree op0 = gimple_assign_rhs1 (stmt);
6853 tree op1 = gimple_assign_rhs2 (stmt);
6854 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
6856 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
6858 val = integer_one_node;
6860 else
6862 bool sop = false;
6864 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6866 if (val
6867 && sop
6868 && integer_onep (val)
6869 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6871 location_t location;
6873 if (!gimple_has_location (stmt))
6874 location = input_location;
6875 else
6876 location = gimple_location (stmt);
6877 warning_at (location, OPT_Wstrict_overflow,
6878 "assuming signed overflow does not occur when "
6879 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
6883 if (val && integer_onep (val))
6885 tree t;
6887 if (rhs_code == TRUNC_DIV_EXPR)
6889 t = build_int_cst (NULL_TREE, tree_log2 (op1));
6890 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
6891 gimple_assign_set_rhs1 (stmt, op0);
6892 gimple_assign_set_rhs2 (stmt, t);
6894 else
6896 t = build_int_cst (TREE_TYPE (op1), 1);
6897 t = int_const_binop (MINUS_EXPR, op1, t, 0);
6898 t = fold_convert (TREE_TYPE (op0), t);
6900 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
6901 gimple_assign_set_rhs1 (stmt, op0);
6902 gimple_assign_set_rhs2 (stmt, t);
6905 update_stmt (stmt);
6906 return true;
6909 return false;
6912 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6913 ABS_EXPR. If the operand is <= 0, then simplify the
6914 ABS_EXPR into a NEGATE_EXPR. */
6916 static bool
6917 simplify_abs_using_ranges (gimple stmt)
6919 tree val = NULL;
6920 tree op = gimple_assign_rhs1 (stmt);
6921 tree type = TREE_TYPE (op);
6922 value_range_t *vr = get_value_range (op);
6924 if (TYPE_UNSIGNED (type))
6926 val = integer_zero_node;
6928 else if (vr)
6930 bool sop = false;
6932 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
6933 if (!val)
6935 sop = false;
6936 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6937 &sop);
6939 if (val)
6941 if (integer_zerop (val))
6942 val = integer_one_node;
6943 else if (integer_onep (val))
6944 val = integer_zero_node;
6948 if (val
6949 && (integer_onep (val) || integer_zerop (val)))
6951 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6953 location_t location;
6955 if (!gimple_has_location (stmt))
6956 location = input_location;
6957 else
6958 location = gimple_location (stmt);
6959 warning_at (location, OPT_Wstrict_overflow,
6960 "assuming signed overflow does not occur when "
6961 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
6964 gimple_assign_set_rhs1 (stmt, op);
6965 if (integer_onep (val))
6966 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
6967 else
6968 gimple_assign_set_rhs_code (stmt, SSA_NAME);
6969 update_stmt (stmt);
6970 return true;
6974 return false;
6977 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
6978 If all the bits that are being cleared by & are already
6979 known to be zero from VR, or all the bits that are being
6980 set by | are already known to be one from VR, the bit
6981 operation is redundant. */
6983 static bool
6984 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6986 tree op0 = gimple_assign_rhs1 (stmt);
6987 tree op1 = gimple_assign_rhs2 (stmt);
6988 tree op = NULL_TREE;
6989 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6990 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6991 double_int may_be_nonzero0, may_be_nonzero1;
6992 double_int must_be_nonzero0, must_be_nonzero1;
6993 double_int mask;
6995 if (TREE_CODE (op0) == SSA_NAME)
6996 vr0 = *(get_value_range (op0));
6997 else if (is_gimple_min_invariant (op0))
6998 set_value_range_to_value (&vr0, op0, NULL);
6999 else
7000 return false;
7002 if (TREE_CODE (op1) == SSA_NAME)
7003 vr1 = *(get_value_range (op1));
7004 else if (is_gimple_min_invariant (op1))
7005 set_value_range_to_value (&vr1, op1, NULL);
7006 else
7007 return false;
7009 if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
7010 return false;
7011 if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
7012 return false;
7014 switch (gimple_assign_rhs_code (stmt))
7016 case BIT_AND_EXPR:
7017 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
7018 if (double_int_zero_p (mask))
7020 op = op0;
7021 break;
7023 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
7024 if (double_int_zero_p (mask))
7026 op = op1;
7027 break;
7029 break;
7030 case BIT_IOR_EXPR:
7031 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
7032 if (double_int_zero_p (mask))
7034 op = op1;
7035 break;
7037 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
7038 if (double_int_zero_p (mask))
7040 op = op0;
7041 break;
7043 break;
7044 default:
7045 gcc_unreachable ();
7048 if (op == NULL_TREE)
7049 return false;
7051 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
7052 update_stmt (gsi_stmt (*gsi));
7053 return true;
7056 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
7057 a known value range VR.
7059 If there is one and only one value which will satisfy the
7060 conditional, then return that value. Else return NULL. */
7062 static tree
7063 test_for_singularity (enum tree_code cond_code, tree op0,
7064 tree op1, value_range_t *vr)
7066 tree min = NULL;
7067 tree max = NULL;
7069 /* Extract minimum/maximum values which satisfy the
7070 the conditional as it was written. */
7071 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
7073 /* This should not be negative infinity; there is no overflow
7074 here. */
7075 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
7077 max = op1;
7078 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
7080 tree one = build_int_cst (TREE_TYPE (op0), 1);
7081 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
7082 if (EXPR_P (max))
7083 TREE_NO_WARNING (max) = 1;
7086 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
7088 /* This should not be positive infinity; there is no overflow
7089 here. */
7090 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
7092 min = op1;
7093 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
7095 tree one = build_int_cst (TREE_TYPE (op0), 1);
7096 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
7097 if (EXPR_P (min))
7098 TREE_NO_WARNING (min) = 1;
7102 /* Now refine the minimum and maximum values using any
7103 value range information we have for op0. */
7104 if (min && max)
7106 if (compare_values (vr->min, min) == 1)
7107 min = vr->min;
7108 if (compare_values (vr->max, max) == -1)
7109 max = vr->max;
7111 /* If the new min/max values have converged to a single value,
7112 then there is only one value which can satisfy the condition,
7113 return that value. */
7114 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
7115 return min;
7117 return NULL;
7120 /* Simplify a conditional using a relational operator to an equality
7121 test if the range information indicates only one value can satisfy
7122 the original conditional. */
7124 static bool
7125 simplify_cond_using_ranges (gimple stmt)
7127 tree op0 = gimple_cond_lhs (stmt);
7128 tree op1 = gimple_cond_rhs (stmt);
7129 enum tree_code cond_code = gimple_cond_code (stmt);
7131 if (cond_code != NE_EXPR
7132 && cond_code != EQ_EXPR
7133 && TREE_CODE (op0) == SSA_NAME
7134 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7135 && is_gimple_min_invariant (op1))
7137 value_range_t *vr = get_value_range (op0);
7139 /* If we have range information for OP0, then we might be
7140 able to simplify this conditional. */
7141 if (vr->type == VR_RANGE)
7143 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
7145 if (new_tree)
7147 if (dump_file)
7149 fprintf (dump_file, "Simplified relational ");
7150 print_gimple_stmt (dump_file, stmt, 0, 0);
7151 fprintf (dump_file, " into ");
7154 gimple_cond_set_code (stmt, EQ_EXPR);
7155 gimple_cond_set_lhs (stmt, op0);
7156 gimple_cond_set_rhs (stmt, new_tree);
7158 update_stmt (stmt);
7160 if (dump_file)
7162 print_gimple_stmt (dump_file, stmt, 0, 0);
7163 fprintf (dump_file, "\n");
7166 return true;
7169 /* Try again after inverting the condition. We only deal
7170 with integral types here, so no need to worry about
7171 issues with inverting FP comparisons. */
7172 cond_code = invert_tree_comparison (cond_code, false);
7173 new_tree = test_for_singularity (cond_code, op0, op1, vr);
7175 if (new_tree)
7177 if (dump_file)
7179 fprintf (dump_file, "Simplified relational ");
7180 print_gimple_stmt (dump_file, stmt, 0, 0);
7181 fprintf (dump_file, " into ");
7184 gimple_cond_set_code (stmt, NE_EXPR);
7185 gimple_cond_set_lhs (stmt, op0);
7186 gimple_cond_set_rhs (stmt, new_tree);
7188 update_stmt (stmt);
7190 if (dump_file)
7192 print_gimple_stmt (dump_file, stmt, 0, 0);
7193 fprintf (dump_file, "\n");
7196 return true;
7201 return false;
7204 /* Simplify a switch statement using the value range of the switch
7205 argument. */
7207 static bool
7208 simplify_switch_using_ranges (gimple stmt)
7210 tree op = gimple_switch_index (stmt);
7211 value_range_t *vr;
7212 bool take_default;
7213 edge e;
7214 edge_iterator ei;
7215 size_t i = 0, j = 0, n, n2;
7216 tree vec2;
7217 switch_update su;
7219 if (TREE_CODE (op) == SSA_NAME)
7221 vr = get_value_range (op);
7223 /* We can only handle integer ranges. */
7224 if (vr->type != VR_RANGE
7225 || symbolic_range_p (vr))
7226 return false;
7228 /* Find case label for min/max of the value range. */
7229 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
7231 else if (TREE_CODE (op) == INTEGER_CST)
7233 take_default = !find_case_label_index (stmt, 1, op, &i);
7234 if (take_default)
7236 i = 1;
7237 j = 0;
7239 else
7241 j = i;
7244 else
7245 return false;
7247 n = gimple_switch_num_labels (stmt);
7249 /* Bail out if this is just all edges taken. */
7250 if (i == 1
7251 && j == n - 1
7252 && take_default)
7253 return false;
7255 /* Build a new vector of taken case labels. */
7256 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
7257 n2 = 0;
7259 /* Add the default edge, if necessary. */
7260 if (take_default)
7261 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
7263 for (; i <= j; ++i, ++n2)
7264 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
7266 /* Mark needed edges. */
7267 for (i = 0; i < n2; ++i)
7269 e = find_edge (gimple_bb (stmt),
7270 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
7271 e->aux = (void *)-1;
7274 /* Queue not needed edges for later removal. */
7275 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
7277 if (e->aux == (void *)-1)
7279 e->aux = NULL;
7280 continue;
7283 if (dump_file && (dump_flags & TDF_DETAILS))
7285 fprintf (dump_file, "removing unreachable case label\n");
7287 VEC_safe_push (edge, heap, to_remove_edges, e);
7288 e->flags &= ~EDGE_EXECUTABLE;
7291 /* And queue an update for the stmt. */
7292 su.stmt = stmt;
7293 su.vec = vec2;
7294 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
7295 return false;
7298 /* Simplify STMT using ranges if possible. */
7300 static bool
7301 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
7303 gimple stmt = gsi_stmt (*gsi);
7304 if (is_gimple_assign (stmt))
7306 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
7308 switch (rhs_code)
7310 case EQ_EXPR:
7311 case NE_EXPR:
7312 case TRUTH_NOT_EXPR:
7313 case TRUTH_AND_EXPR:
7314 case TRUTH_OR_EXPR:
7315 case TRUTH_XOR_EXPR:
7316 /* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
7317 or identity if the RHS is zero or one, and the LHS are known
7318 to be boolean values. Transform all TRUTH_*_EXPR into
7319 BIT_*_EXPR if both arguments are known to be boolean values. */
7320 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
7321 return simplify_truth_ops_using_ranges (gsi, stmt);
7322 break;
7324 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
7325 and BIT_AND_EXPR respectively if the first operand is greater
7326 than zero and the second operand is an exact power of two. */
7327 case TRUNC_DIV_EXPR:
7328 case TRUNC_MOD_EXPR:
7329 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt)))
7330 && integer_pow2p (gimple_assign_rhs2 (stmt)))
7331 return simplify_div_or_mod_using_ranges (stmt);
7332 break;
7334 /* Transform ABS (X) into X or -X as appropriate. */
7335 case ABS_EXPR:
7336 if (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
7337 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
7338 return simplify_abs_using_ranges (stmt);
7339 break;
7341 case BIT_AND_EXPR:
7342 case BIT_IOR_EXPR:
7343 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
7344 if all the bits being cleared are already cleared or
7345 all the bits being set are already set. */
7346 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
7347 return simplify_bit_ops_using_ranges (gsi, stmt);
7348 break;
7350 default:
7351 break;
7354 else if (gimple_code (stmt) == GIMPLE_COND)
7355 return simplify_cond_using_ranges (stmt);
7356 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7357 return simplify_switch_using_ranges (stmt);
7359 return false;
7362 /* If the statement pointed by SI has a predicate whose value can be
7363 computed using the value range information computed by VRP, compute
7364 its value and return true. Otherwise, return false. */
7366 static bool
7367 fold_predicate_in (gimple_stmt_iterator *si)
7369 bool assignment_p = false;
7370 tree val;
7371 gimple stmt = gsi_stmt (*si);
7373 if (is_gimple_assign (stmt)
7374 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
7376 assignment_p = true;
7377 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
7378 gimple_assign_rhs1 (stmt),
7379 gimple_assign_rhs2 (stmt),
7380 stmt);
7382 else if (gimple_code (stmt) == GIMPLE_COND)
7383 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
7384 gimple_cond_lhs (stmt),
7385 gimple_cond_rhs (stmt),
7386 stmt);
7387 else
7388 return false;
7390 if (val)
7392 if (assignment_p)
7393 val = fold_convert (gimple_expr_type (stmt), val);
7395 if (dump_file)
7397 fprintf (dump_file, "Folding predicate ");
7398 print_gimple_expr (dump_file, stmt, 0, 0);
7399 fprintf (dump_file, " to ");
7400 print_generic_expr (dump_file, val, 0);
7401 fprintf (dump_file, "\n");
7404 if (is_gimple_assign (stmt))
7405 gimple_assign_set_rhs_from_tree (si, val);
7406 else
7408 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
7409 if (integer_zerop (val))
7410 gimple_cond_make_false (stmt);
7411 else if (integer_onep (val))
7412 gimple_cond_make_true (stmt);
7413 else
7414 gcc_unreachable ();
7417 return true;
7420 return false;
7423 /* Callback for substitute_and_fold folding the stmt at *SI. */
7425 static bool
7426 vrp_fold_stmt (gimple_stmt_iterator *si)
7428 if (fold_predicate_in (si))
7429 return true;
7431 return simplify_stmt_using_ranges (si);
7434 /* Stack of dest,src equivalency pairs that need to be restored after
7435 each attempt to thread a block's incoming edge to an outgoing edge.
7437 A NULL entry is used to mark the end of pairs which need to be
7438 restored. */
7439 static VEC(tree,heap) *stack;
7441 /* A trivial wrapper so that we can present the generic jump threading
7442 code with a simple API for simplifying statements. STMT is the
7443 statement we want to simplify, WITHIN_STMT provides the location
7444 for any overflow warnings. */
7446 static tree
7447 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
7449 /* We only use VRP information to simplify conditionals. This is
7450 overly conservative, but it's unclear if doing more would be
7451 worth the compile time cost. */
7452 if (gimple_code (stmt) != GIMPLE_COND)
7453 return NULL;
7455 return vrp_evaluate_conditional (gimple_cond_code (stmt),
7456 gimple_cond_lhs (stmt),
7457 gimple_cond_rhs (stmt), within_stmt);
7460 /* Blocks which have more than one predecessor and more than
7461 one successor present jump threading opportunities, i.e.,
7462 when the block is reached from a specific predecessor, we
7463 may be able to determine which of the outgoing edges will
7464 be traversed. When this optimization applies, we are able
7465 to avoid conditionals at runtime and we may expose secondary
7466 optimization opportunities.
7468 This routine is effectively a driver for the generic jump
7469 threading code. It basically just presents the generic code
7470 with edges that may be suitable for jump threading.
7472 Unlike DOM, we do not iterate VRP if jump threading was successful.
7473 While iterating may expose new opportunities for VRP, it is expected
7474 those opportunities would be very limited and the compile time cost
7475 to expose those opportunities would be significant.
7477 As jump threading opportunities are discovered, they are registered
7478 for later realization. */
7480 static void
7481 identify_jump_threads (void)
7483 basic_block bb;
7484 gimple dummy;
7485 int i;
7486 edge e;
7488 /* Ugh. When substituting values earlier in this pass we can
7489 wipe the dominance information. So rebuild the dominator
7490 information as we need it within the jump threading code. */
7491 calculate_dominance_info (CDI_DOMINATORS);
7493 /* We do not allow VRP information to be used for jump threading
7494 across a back edge in the CFG. Otherwise it becomes too
7495 difficult to avoid eliminating loop exit tests. Of course
7496 EDGE_DFS_BACK is not accurate at this time so we have to
7497 recompute it. */
7498 mark_dfs_back_edges ();
7500 /* Do not thread across edges we are about to remove. Just marking
7501 them as EDGE_DFS_BACK will do. */
7502 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7503 e->flags |= EDGE_DFS_BACK;
7505 /* Allocate our unwinder stack to unwind any temporary equivalences
7506 that might be recorded. */
7507 stack = VEC_alloc (tree, heap, 20);
7509 /* To avoid lots of silly node creation, we create a single
7510 conditional and just modify it in-place when attempting to
7511 thread jumps. */
7512 dummy = gimple_build_cond (EQ_EXPR,
7513 integer_zero_node, integer_zero_node,
7514 NULL, NULL);
7516 /* Walk through all the blocks finding those which present a
7517 potential jump threading opportunity. We could set this up
7518 as a dominator walker and record data during the walk, but
7519 I doubt it's worth the effort for the classes of jump
7520 threading opportunities we are trying to identify at this
7521 point in compilation. */
7522 FOR_EACH_BB (bb)
7524 gimple last;
7526 /* If the generic jump threading code does not find this block
7527 interesting, then there is nothing to do. */
7528 if (! potentially_threadable_block (bb))
7529 continue;
7531 /* We only care about blocks ending in a COND_EXPR. While there
7532 may be some value in handling SWITCH_EXPR here, I doubt it's
7533 terribly important. */
7534 last = gsi_stmt (gsi_last_bb (bb));
7535 if (gimple_code (last) != GIMPLE_COND)
7536 continue;
7538 /* We're basically looking for any kind of conditional with
7539 integral type arguments. */
7540 if (TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
7541 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
7542 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
7543 || is_gimple_min_invariant (gimple_cond_rhs (last)))
7544 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_rhs (last))))
7546 edge_iterator ei;
7548 /* We've got a block with multiple predecessors and multiple
7549 successors which also ends in a suitable conditional. For
7550 each predecessor, see if we can thread it to a specific
7551 successor. */
7552 FOR_EACH_EDGE (e, ei, bb->preds)
7554 /* Do not thread across back edges or abnormal edges
7555 in the CFG. */
7556 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
7557 continue;
7559 thread_across_edge (dummy, e, true, &stack,
7560 simplify_stmt_for_jump_threading);
7565 /* We do not actually update the CFG or SSA graphs at this point as
7566 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7567 handle ASSERT_EXPRs gracefully. */
7570 /* We identified all the jump threading opportunities earlier, but could
7571 not transform the CFG at that time. This routine transforms the
7572 CFG and arranges for the dominator tree to be rebuilt if necessary.
7574 Note the SSA graph update will occur during the normal TODO
7575 processing by the pass manager. */
7576 static void
7577 finalize_jump_threads (void)
7579 thread_through_all_blocks (false);
7580 VEC_free (tree, heap, stack);
7584 /* Traverse all the blocks folding conditionals with known ranges. */
7586 static void
7587 vrp_finalize (void)
7589 size_t i;
7590 unsigned num = num_ssa_names;
7592 if (dump_file)
7594 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
7595 dump_all_value_ranges (dump_file);
7596 fprintf (dump_file, "\n");
7599 substitute_and_fold (op_with_constant_singleton_value_range,
7600 vrp_fold_stmt, false);
7602 if (warn_array_bounds)
7603 check_all_array_refs ();
7605 /* We must identify jump threading opportunities before we release
7606 the datastructures built by VRP. */
7607 identify_jump_threads ();
7609 /* Free allocated memory. */
7610 for (i = 0; i < num; i++)
7611 if (vr_value[i])
7613 BITMAP_FREE (vr_value[i]->equiv);
7614 free (vr_value[i]);
7617 free (vr_value);
7618 free (vr_phi_edge_counts);
7620 /* So that we can distinguish between VRP data being available
7621 and not available. */
7622 vr_value = NULL;
7623 vr_phi_edge_counts = NULL;
7627 /* Main entry point to VRP (Value Range Propagation). This pass is
7628 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7629 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7630 Programming Language Design and Implementation, pp. 67-78, 1995.
7631 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7633 This is essentially an SSA-CCP pass modified to deal with ranges
7634 instead of constants.
7636 While propagating ranges, we may find that two or more SSA name
7637 have equivalent, though distinct ranges. For instance,
7639 1 x_9 = p_3->a;
7640 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7641 3 if (p_4 == q_2)
7642 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7643 5 endif
7644 6 if (q_2)
7646 In the code above, pointer p_5 has range [q_2, q_2], but from the
7647 code we can also determine that p_5 cannot be NULL and, if q_2 had
7648 a non-varying range, p_5's range should also be compatible with it.
7650 These equivalences are created by two expressions: ASSERT_EXPR and
7651 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7652 result of another assertion, then we can use the fact that p_5 and
7653 p_4 are equivalent when evaluating p_5's range.
7655 Together with value ranges, we also propagate these equivalences
7656 between names so that we can take advantage of information from
7657 multiple ranges when doing final replacement. Note that this
7658 equivalency relation is transitive but not symmetric.
7660 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7661 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7662 in contexts where that assertion does not hold (e.g., in line 6).
7664 TODO, the main difference between this pass and Patterson's is that
7665 we do not propagate edge probabilities. We only compute whether
7666 edges can be taken or not. That is, instead of having a spectrum
7667 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7668 DON'T KNOW. In the future, it may be worthwhile to propagate
7669 probabilities to aid branch prediction. */
7671 static unsigned int
7672 execute_vrp (void)
7674 int i;
7675 edge e;
7676 switch_update *su;
7678 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
7679 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
7680 scev_initialize ();
7682 /* Estimate number of iterations - but do not use undefined behavior
7683 for this. We can't do this lazily as other functions may compute
7684 this using undefined behavior. */
7685 free_numbers_of_iterations_estimates ();
7686 estimate_numbers_of_iterations (false);
7688 insert_range_assertions ();
7690 to_remove_edges = VEC_alloc (edge, heap, 10);
7691 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
7692 threadedge_initialize_values ();
7694 vrp_initialize ();
7695 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
7696 vrp_finalize ();
7698 /* ASSERT_EXPRs must be removed before finalizing jump threads
7699 as finalizing jump threads calls the CFG cleanup code which
7700 does not properly handle ASSERT_EXPRs. */
7701 remove_range_assertions ();
7703 /* If we exposed any new variables, go ahead and put them into
7704 SSA form now, before we handle jump threading. This simplifies
7705 interactions between rewriting of _DECL nodes into SSA form
7706 and rewriting SSA_NAME nodes into SSA form after block
7707 duplication and CFG manipulation. */
7708 update_ssa (TODO_update_ssa);
7710 finalize_jump_threads ();
7712 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7713 CFG in a broken state and requires a cfg_cleanup run. */
7714 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7715 remove_edge (e);
7716 /* Update SWITCH_EXPR case label vector. */
7717 FOR_EACH_VEC_ELT (switch_update, to_update_switch_stmts, i, su)
7719 size_t j;
7720 size_t n = TREE_VEC_LENGTH (su->vec);
7721 tree label;
7722 gimple_switch_set_num_labels (su->stmt, n);
7723 for (j = 0; j < n; j++)
7724 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
7725 /* As we may have replaced the default label with a regular one
7726 make sure to make it a real default label again. This ensures
7727 optimal expansion. */
7728 label = gimple_switch_default_label (su->stmt);
7729 CASE_LOW (label) = NULL_TREE;
7730 CASE_HIGH (label) = NULL_TREE;
7733 if (VEC_length (edge, to_remove_edges) > 0)
7734 free_dominance_info (CDI_DOMINATORS);
7736 VEC_free (edge, heap, to_remove_edges);
7737 VEC_free (switch_update, heap, to_update_switch_stmts);
7738 threadedge_finalize_values ();
7740 scev_finalize ();
7741 loop_optimizer_finalize ();
7742 return 0;
7745 static bool
7746 gate_vrp (void)
7748 return flag_tree_vrp != 0;
7751 struct gimple_opt_pass pass_vrp =
7754 GIMPLE_PASS,
7755 "vrp", /* name */
7756 gate_vrp, /* gate */
7757 execute_vrp, /* execute */
7758 NULL, /* sub */
7759 NULL, /* next */
7760 0, /* static_pass_number */
7761 TV_TREE_VRP, /* tv_id */
7762 PROP_ssa, /* properties_required */
7763 0, /* properties_provided */
7764 0, /* properties_destroyed */
7765 0, /* todo_flags_start */
7766 TODO_cleanup_cfg
7767 | TODO_ggc_collect
7768 | TODO_verify_ssa
7769 | TODO_dump_func
7770 | TODO_update_ssa /* todo_flags_finish */