* config/i386/i386.c (ix86_print_operand): Support z-masking.
[official-gcc.git] / libgcc / libgcc2.c
blobbec411be0b53e418c67c3ecae993a66c29890094
1 /* More subroutines needed by GCC output code on some machines. */
2 /* Compile this one with gcc. */
3 /* Copyright (C) 1989-2013 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 #include "tconfig.h"
27 #include "tsystem.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "libgcc_tm.h"
32 #ifdef HAVE_GAS_HIDDEN
33 #define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden")))
34 #else
35 #define ATTRIBUTE_HIDDEN
36 #endif
38 /* Work out the largest "word" size that we can deal with on this target. */
39 #if MIN_UNITS_PER_WORD > 4
40 # define LIBGCC2_MAX_UNITS_PER_WORD 8
41 #elif (MIN_UNITS_PER_WORD > 2 \
42 || (MIN_UNITS_PER_WORD > 1 && __SIZEOF_LONG_LONG__ > 4))
43 # define LIBGCC2_MAX_UNITS_PER_WORD 4
44 #else
45 # define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
46 #endif
48 /* Work out what word size we are using for this compilation.
49 The value can be set on the command line. */
50 #ifndef LIBGCC2_UNITS_PER_WORD
51 #define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
52 #endif
54 #if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
56 #include "libgcc2.h"
58 #ifdef DECLARE_LIBRARY_RENAMES
59 DECLARE_LIBRARY_RENAMES
60 #endif
62 #if defined (L_negdi2)
63 DWtype
64 __negdi2 (DWtype u)
66 const DWunion uu = {.ll = u};
67 const DWunion w = { {.low = -uu.s.low,
68 .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };
70 return w.ll;
72 #endif
74 #ifdef L_addvsi3
75 Wtype
76 __addvSI3 (Wtype a, Wtype b)
78 const Wtype w = (UWtype) a + (UWtype) b;
80 if (b >= 0 ? w < a : w > a)
81 abort ();
83 return w;
85 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
86 SItype
87 __addvsi3 (SItype a, SItype b)
89 const SItype w = (USItype) a + (USItype) b;
91 if (b >= 0 ? w < a : w > a)
92 abort ();
94 return w;
96 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
97 #endif
99 #ifdef L_addvdi3
100 DWtype
101 __addvDI3 (DWtype a, DWtype b)
103 const DWtype w = (UDWtype) a + (UDWtype) b;
105 if (b >= 0 ? w < a : w > a)
106 abort ();
108 return w;
110 #endif
112 #ifdef L_subvsi3
113 Wtype
114 __subvSI3 (Wtype a, Wtype b)
116 const Wtype w = (UWtype) a - (UWtype) b;
118 if (b >= 0 ? w > a : w < a)
119 abort ();
121 return w;
123 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
124 SItype
125 __subvsi3 (SItype a, SItype b)
127 const SItype w = (USItype) a - (USItype) b;
129 if (b >= 0 ? w > a : w < a)
130 abort ();
132 return w;
134 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
135 #endif
137 #ifdef L_subvdi3
138 DWtype
139 __subvDI3 (DWtype a, DWtype b)
141 const DWtype w = (UDWtype) a - (UDWtype) b;
143 if (b >= 0 ? w > a : w < a)
144 abort ();
146 return w;
148 #endif
150 #ifdef L_mulvsi3
151 Wtype
152 __mulvSI3 (Wtype a, Wtype b)
154 const DWtype w = (DWtype) a * (DWtype) b;
156 if ((Wtype) (w >> W_TYPE_SIZE) != (Wtype) w >> (W_TYPE_SIZE - 1))
157 abort ();
159 return w;
161 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
162 #undef WORD_SIZE
163 #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT)
164 SItype
165 __mulvsi3 (SItype a, SItype b)
167 const DItype w = (DItype) a * (DItype) b;
169 if ((SItype) (w >> WORD_SIZE) != (SItype) w >> (WORD_SIZE-1))
170 abort ();
172 return w;
174 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
175 #endif
177 #ifdef L_negvsi2
178 Wtype
179 __negvSI2 (Wtype a)
181 const Wtype w = -(UWtype) a;
183 if (a >= 0 ? w > 0 : w < 0)
184 abort ();
186 return w;
188 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
189 SItype
190 __negvsi2 (SItype a)
192 const SItype w = -(USItype) a;
194 if (a >= 0 ? w > 0 : w < 0)
195 abort ();
197 return w;
199 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
200 #endif
202 #ifdef L_negvdi2
203 DWtype
204 __negvDI2 (DWtype a)
206 const DWtype w = -(UDWtype) a;
208 if (a >= 0 ? w > 0 : w < 0)
209 abort ();
211 return w;
213 #endif
215 #ifdef L_absvsi2
216 Wtype
217 __absvSI2 (Wtype a)
219 Wtype w = a;
221 if (a < 0)
222 #ifdef L_negvsi2
223 w = __negvSI2 (a);
224 #else
225 w = -(UWtype) a;
227 if (w < 0)
228 abort ();
229 #endif
231 return w;
233 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
234 SItype
235 __absvsi2 (SItype a)
237 SItype w = a;
239 if (a < 0)
240 #ifdef L_negvsi2
241 w = __negvsi2 (a);
242 #else
243 w = -(USItype) a;
245 if (w < 0)
246 abort ();
247 #endif
249 return w;
251 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
252 #endif
254 #ifdef L_absvdi2
255 DWtype
256 __absvDI2 (DWtype a)
258 DWtype w = a;
260 if (a < 0)
261 #ifdef L_negvdi2
262 w = __negvDI2 (a);
263 #else
264 w = -(UDWtype) a;
266 if (w < 0)
267 abort ();
268 #endif
270 return w;
272 #endif
274 #ifdef L_mulvdi3
275 DWtype
276 __mulvDI3 (DWtype u, DWtype v)
278 /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
279 but the checked multiplication needs only two. */
280 const DWunion uu = {.ll = u};
281 const DWunion vv = {.ll = v};
283 if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
285 /* u fits in a single Wtype. */
286 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
288 /* v fits in a single Wtype as well. */
289 /* A single multiplication. No overflow risk. */
290 return (DWtype) uu.s.low * (DWtype) vv.s.low;
292 else
294 /* Two multiplications. */
295 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
296 * (UDWtype) (UWtype) vv.s.low};
297 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
298 * (UDWtype) (UWtype) vv.s.high};
300 if (vv.s.high < 0)
301 w1.s.high -= uu.s.low;
302 if (uu.s.low < 0)
303 w1.ll -= vv.ll;
304 w1.ll += (UWtype) w0.s.high;
305 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
307 w0.s.high = w1.s.low;
308 return w0.ll;
312 else
314 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
316 /* v fits into a single Wtype. */
317 /* Two multiplications. */
318 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
319 * (UDWtype) (UWtype) vv.s.low};
320 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
321 * (UDWtype) (UWtype) vv.s.low};
323 if (uu.s.high < 0)
324 w1.s.high -= vv.s.low;
325 if (vv.s.low < 0)
326 w1.ll -= uu.ll;
327 w1.ll += (UWtype) w0.s.high;
328 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
330 w0.s.high = w1.s.low;
331 return w0.ll;
334 else
336 /* A few sign checks and a single multiplication. */
337 if (uu.s.high >= 0)
339 if (vv.s.high >= 0)
341 if (uu.s.high == 0 && vv.s.high == 0)
343 const DWtype w = (UDWtype) (UWtype) uu.s.low
344 * (UDWtype) (UWtype) vv.s.low;
345 if (__builtin_expect (w >= 0, 1))
346 return w;
349 else
351 if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
353 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
354 * (UDWtype) (UWtype) vv.s.low};
356 ww.s.high -= uu.s.low;
357 if (__builtin_expect (ww.s.high < 0, 1))
358 return ww.ll;
362 else
364 if (vv.s.high >= 0)
366 if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
368 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
369 * (UDWtype) (UWtype) vv.s.low};
371 ww.s.high -= vv.s.low;
372 if (__builtin_expect (ww.s.high < 0, 1))
373 return ww.ll;
376 else
378 if (uu.s.high == (Wtype) -1 && vv.s.high == (Wtype) - 1)
380 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
381 * (UDWtype) (UWtype) vv.s.low};
383 ww.s.high -= uu.s.low;
384 ww.s.high -= vv.s.low;
385 if (__builtin_expect (ww.s.high >= 0, 1))
386 return ww.ll;
393 /* Overflow. */
394 abort ();
396 #endif
399 /* Unless shift functions are defined with full ANSI prototypes,
400 parameter b will be promoted to int if shift_count_type is smaller than an int. */
401 #ifdef L_lshrdi3
402 DWtype
403 __lshrdi3 (DWtype u, shift_count_type b)
405 if (b == 0)
406 return u;
408 const DWunion uu = {.ll = u};
409 const shift_count_type bm = W_TYPE_SIZE - b;
410 DWunion w;
412 if (bm <= 0)
414 w.s.high = 0;
415 w.s.low = (UWtype) uu.s.high >> -bm;
417 else
419 const UWtype carries = (UWtype) uu.s.high << bm;
421 w.s.high = (UWtype) uu.s.high >> b;
422 w.s.low = ((UWtype) uu.s.low >> b) | carries;
425 return w.ll;
427 #endif
429 #ifdef L_ashldi3
430 DWtype
431 __ashldi3 (DWtype u, shift_count_type b)
433 if (b == 0)
434 return u;
436 const DWunion uu = {.ll = u};
437 const shift_count_type bm = W_TYPE_SIZE - b;
438 DWunion w;
440 if (bm <= 0)
442 w.s.low = 0;
443 w.s.high = (UWtype) uu.s.low << -bm;
445 else
447 const UWtype carries = (UWtype) uu.s.low >> bm;
449 w.s.low = (UWtype) uu.s.low << b;
450 w.s.high = ((UWtype) uu.s.high << b) | carries;
453 return w.ll;
455 #endif
457 #ifdef L_ashrdi3
458 DWtype
459 __ashrdi3 (DWtype u, shift_count_type b)
461 if (b == 0)
462 return u;
464 const DWunion uu = {.ll = u};
465 const shift_count_type bm = W_TYPE_SIZE - b;
466 DWunion w;
468 if (bm <= 0)
470 /* w.s.high = 1..1 or 0..0 */
471 w.s.high = uu.s.high >> (W_TYPE_SIZE - 1);
472 w.s.low = uu.s.high >> -bm;
474 else
476 const UWtype carries = (UWtype) uu.s.high << bm;
478 w.s.high = uu.s.high >> b;
479 w.s.low = ((UWtype) uu.s.low >> b) | carries;
482 return w.ll;
484 #endif
486 #ifdef L_bswapsi2
487 SItype
488 __bswapsi2 (SItype u)
490 return ((((u) & 0xff000000) >> 24)
491 | (((u) & 0x00ff0000) >> 8)
492 | (((u) & 0x0000ff00) << 8)
493 | (((u) & 0x000000ff) << 24));
495 #endif
496 #ifdef L_bswapdi2
497 DItype
498 __bswapdi2 (DItype u)
500 return ((((u) & 0xff00000000000000ull) >> 56)
501 | (((u) & 0x00ff000000000000ull) >> 40)
502 | (((u) & 0x0000ff0000000000ull) >> 24)
503 | (((u) & 0x000000ff00000000ull) >> 8)
504 | (((u) & 0x00000000ff000000ull) << 8)
505 | (((u) & 0x0000000000ff0000ull) << 24)
506 | (((u) & 0x000000000000ff00ull) << 40)
507 | (((u) & 0x00000000000000ffull) << 56));
509 #endif
510 #ifdef L_ffssi2
511 #undef int
513 __ffsSI2 (UWtype u)
515 UWtype count;
517 if (u == 0)
518 return 0;
520 count_trailing_zeros (count, u);
521 return count + 1;
523 #endif
525 #ifdef L_ffsdi2
526 #undef int
528 __ffsDI2 (DWtype u)
530 const DWunion uu = {.ll = u};
531 UWtype word, count, add;
533 if (uu.s.low != 0)
534 word = uu.s.low, add = 0;
535 else if (uu.s.high != 0)
536 word = uu.s.high, add = W_TYPE_SIZE;
537 else
538 return 0;
540 count_trailing_zeros (count, word);
541 return count + add + 1;
543 #endif
545 #ifdef L_muldi3
546 DWtype
547 __muldi3 (DWtype u, DWtype v)
549 const DWunion uu = {.ll = u};
550 const DWunion vv = {.ll = v};
551 DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};
553 w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
554 + (UWtype) uu.s.high * (UWtype) vv.s.low);
556 return w.ll;
558 #endif
560 #if (defined (L_udivdi3) || defined (L_divdi3) || \
561 defined (L_umoddi3) || defined (L_moddi3))
562 #if defined (sdiv_qrnnd)
563 #define L_udiv_w_sdiv
564 #endif
565 #endif
567 #ifdef L_udiv_w_sdiv
568 #if defined (sdiv_qrnnd)
569 #if (defined (L_udivdi3) || defined (L_divdi3) || \
570 defined (L_umoddi3) || defined (L_moddi3))
571 static inline __attribute__ ((__always_inline__))
572 #endif
573 UWtype
574 __udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
576 UWtype q, r;
577 UWtype c0, c1, b1;
579 if ((Wtype) d >= 0)
581 if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
583 /* Dividend, divisor, and quotient are nonnegative. */
584 sdiv_qrnnd (q, r, a1, a0, d);
586 else
588 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */
589 sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
590 /* Divide (c1*2^32 + c0) by d. */
591 sdiv_qrnnd (q, r, c1, c0, d);
592 /* Add 2^31 to quotient. */
593 q += (UWtype) 1 << (W_TYPE_SIZE - 1);
596 else
598 b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */
599 c1 = a1 >> 1; /* A/2 */
600 c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
602 if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */
604 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
606 r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */
607 if ((d & 1) != 0)
609 if (r >= q)
610 r = r - q;
611 else if (q - r <= d)
613 r = r - q + d;
614 q--;
616 else
618 r = r - q + 2*d;
619 q -= 2;
623 else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */
625 c1 = (b1 - 1) - c1;
626 c0 = ~c0; /* logical NOT */
628 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
630 q = ~q; /* (A/2)/b1 */
631 r = (b1 - 1) - r;
633 r = 2*r + (a0 & 1); /* A/(2*b1) */
635 if ((d & 1) != 0)
637 if (r >= q)
638 r = r - q;
639 else if (q - r <= d)
641 r = r - q + d;
642 q--;
644 else
646 r = r - q + 2*d;
647 q -= 2;
651 else /* Implies c1 = b1 */
652 { /* Hence a1 = d - 1 = 2*b1 - 1 */
653 if (a0 >= -d)
655 q = -1;
656 r = a0 + d;
658 else
660 q = -2;
661 r = a0 + 2*d;
666 *rp = r;
667 return q;
669 #else
670 /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
671 UWtype
672 __udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
673 UWtype a1 __attribute__ ((__unused__)),
674 UWtype a0 __attribute__ ((__unused__)),
675 UWtype d __attribute__ ((__unused__)))
677 return 0;
679 #endif
680 #endif
682 #if (defined (L_udivdi3) || defined (L_divdi3) || \
683 defined (L_umoddi3) || defined (L_moddi3))
684 #define L_udivmoddi4
685 #endif
687 #ifdef L_clz
688 const UQItype __clz_tab[256] =
690 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
691 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
692 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
693 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
694 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
695 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
696 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
697 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
699 #endif
701 #ifdef L_clzsi2
702 #undef int
704 __clzSI2 (UWtype x)
706 Wtype ret;
708 count_leading_zeros (ret, x);
710 return ret;
712 #endif
714 #ifdef L_clzdi2
715 #undef int
717 __clzDI2 (UDWtype x)
719 const DWunion uu = {.ll = x};
720 UWtype word;
721 Wtype ret, add;
723 if (uu.s.high)
724 word = uu.s.high, add = 0;
725 else
726 word = uu.s.low, add = W_TYPE_SIZE;
728 count_leading_zeros (ret, word);
729 return ret + add;
731 #endif
733 #ifdef L_ctzsi2
734 #undef int
736 __ctzSI2 (UWtype x)
738 Wtype ret;
740 count_trailing_zeros (ret, x);
742 return ret;
744 #endif
746 #ifdef L_ctzdi2
747 #undef int
749 __ctzDI2 (UDWtype x)
751 const DWunion uu = {.ll = x};
752 UWtype word;
753 Wtype ret, add;
755 if (uu.s.low)
756 word = uu.s.low, add = 0;
757 else
758 word = uu.s.high, add = W_TYPE_SIZE;
760 count_trailing_zeros (ret, word);
761 return ret + add;
763 #endif
765 #ifdef L_clrsbsi2
766 #undef int
768 __clrsbSI2 (Wtype x)
770 Wtype ret;
772 if (x < 0)
773 x = ~x;
774 if (x == 0)
775 return W_TYPE_SIZE - 1;
776 count_leading_zeros (ret, x);
777 return ret - 1;
779 #endif
781 #ifdef L_clrsbdi2
782 #undef int
784 __clrsbDI2 (DWtype x)
786 const DWunion uu = {.ll = x};
787 UWtype word;
788 Wtype ret, add;
790 if (uu.s.high == 0)
791 word = uu.s.low, add = W_TYPE_SIZE;
792 else if (uu.s.high == -1)
793 word = ~uu.s.low, add = W_TYPE_SIZE;
794 else if (uu.s.high >= 0)
795 word = uu.s.high, add = 0;
796 else
797 word = ~uu.s.high, add = 0;
799 if (word == 0)
800 ret = W_TYPE_SIZE;
801 else
802 count_leading_zeros (ret, word);
804 return ret + add - 1;
806 #endif
808 #ifdef L_popcount_tab
809 const UQItype __popcount_tab[256] =
811 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
812 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
813 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
814 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
815 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
816 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
817 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
818 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
820 #endif
822 #if defined(L_popcountsi2) || defined(L_popcountdi2)
823 #define POPCOUNTCST2(x) (((UWtype) x << BITS_PER_UNIT) | x)
824 #define POPCOUNTCST4(x) (((UWtype) x << (2 * BITS_PER_UNIT)) | x)
825 #define POPCOUNTCST8(x) (((UWtype) x << (4 * BITS_PER_UNIT)) | x)
826 #if W_TYPE_SIZE == BITS_PER_UNIT
827 #define POPCOUNTCST(x) x
828 #elif W_TYPE_SIZE == 2 * BITS_PER_UNIT
829 #define POPCOUNTCST(x) POPCOUNTCST2 (x)
830 #elif W_TYPE_SIZE == 4 * BITS_PER_UNIT
831 #define POPCOUNTCST(x) POPCOUNTCST4 (POPCOUNTCST2 (x))
832 #elif W_TYPE_SIZE == 8 * BITS_PER_UNIT
833 #define POPCOUNTCST(x) POPCOUNTCST8 (POPCOUNTCST4 (POPCOUNTCST2 (x)))
834 #endif
835 #endif
837 #ifdef L_popcountsi2
838 #undef int
840 __popcountSI2 (UWtype x)
842 /* Force table lookup on targets like AVR and RL78 which only
843 pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
844 have 1, and other small word targets. */
845 #if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && BITS_PER_UNIT == 8
846 x = x - ((x >> 1) & POPCOUNTCST (0x55));
847 x = (x & POPCOUNTCST (0x33)) + ((x >> 2) & POPCOUNTCST (0x33));
848 x = (x + (x >> 4)) & POPCOUNTCST (0x0F);
849 return (x * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - BITS_PER_UNIT);
850 #else
851 int i, ret = 0;
853 for (i = 0; i < W_TYPE_SIZE; i += 8)
854 ret += __popcount_tab[(x >> i) & 0xff];
856 return ret;
857 #endif
859 #endif
861 #ifdef L_popcountdi2
862 #undef int
864 __popcountDI2 (UDWtype x)
866 /* Force table lookup on targets like AVR and RL78 which only
867 pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
868 have 1, and other small word targets. */
869 #if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && BITS_PER_UNIT == 8
870 const DWunion uu = {.ll = x};
871 UWtype x1 = uu.s.low, x2 = uu.s.high;
872 x1 = x1 - ((x1 >> 1) & POPCOUNTCST (0x55));
873 x2 = x2 - ((x2 >> 1) & POPCOUNTCST (0x55));
874 x1 = (x1 & POPCOUNTCST (0x33)) + ((x1 >> 2) & POPCOUNTCST (0x33));
875 x2 = (x2 & POPCOUNTCST (0x33)) + ((x2 >> 2) & POPCOUNTCST (0x33));
876 x1 = (x1 + (x1 >> 4)) & POPCOUNTCST (0x0F);
877 x2 = (x2 + (x2 >> 4)) & POPCOUNTCST (0x0F);
878 x1 += x2;
879 return (x1 * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - BITS_PER_UNIT);
880 #else
881 int i, ret = 0;
883 for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
884 ret += __popcount_tab[(x >> i) & 0xff];
886 return ret;
887 #endif
889 #endif
891 #ifdef L_paritysi2
892 #undef int
894 __paritySI2 (UWtype x)
896 #if W_TYPE_SIZE > 64
897 # error "fill out the table"
898 #endif
899 #if W_TYPE_SIZE > 32
900 x ^= x >> 32;
901 #endif
902 #if W_TYPE_SIZE > 16
903 x ^= x >> 16;
904 #endif
905 x ^= x >> 8;
906 x ^= x >> 4;
907 x &= 0xf;
908 return (0x6996 >> x) & 1;
910 #endif
912 #ifdef L_paritydi2
913 #undef int
915 __parityDI2 (UDWtype x)
917 const DWunion uu = {.ll = x};
918 UWtype nx = uu.s.low ^ uu.s.high;
920 #if W_TYPE_SIZE > 64
921 # error "fill out the table"
922 #endif
923 #if W_TYPE_SIZE > 32
924 nx ^= nx >> 32;
925 #endif
926 #if W_TYPE_SIZE > 16
927 nx ^= nx >> 16;
928 #endif
929 nx ^= nx >> 8;
930 nx ^= nx >> 4;
931 nx &= 0xf;
932 return (0x6996 >> nx) & 1;
934 #endif
936 #ifdef L_udivmoddi4
938 #if (defined (L_udivdi3) || defined (L_divdi3) || \
939 defined (L_umoddi3) || defined (L_moddi3))
940 static inline __attribute__ ((__always_inline__))
941 #endif
942 UDWtype
943 __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
945 const DWunion nn = {.ll = n};
946 const DWunion dd = {.ll = d};
947 DWunion rr;
948 UWtype d0, d1, n0, n1, n2;
949 UWtype q0, q1;
950 UWtype b, bm;
952 d0 = dd.s.low;
953 d1 = dd.s.high;
954 n0 = nn.s.low;
955 n1 = nn.s.high;
957 #if !UDIV_NEEDS_NORMALIZATION
958 if (d1 == 0)
960 if (d0 > n1)
962 /* 0q = nn / 0D */
964 udiv_qrnnd (q0, n0, n1, n0, d0);
965 q1 = 0;
967 /* Remainder in n0. */
969 else
971 /* qq = NN / 0d */
973 if (d0 == 0)
974 d0 = 1 / d0; /* Divide intentionally by zero. */
976 udiv_qrnnd (q1, n1, 0, n1, d0);
977 udiv_qrnnd (q0, n0, n1, n0, d0);
979 /* Remainder in n0. */
982 if (rp != 0)
984 rr.s.low = n0;
985 rr.s.high = 0;
986 *rp = rr.ll;
990 #else /* UDIV_NEEDS_NORMALIZATION */
992 if (d1 == 0)
994 if (d0 > n1)
996 /* 0q = nn / 0D */
998 count_leading_zeros (bm, d0);
1000 if (bm != 0)
1002 /* Normalize, i.e. make the most significant bit of the
1003 denominator set. */
1005 d0 = d0 << bm;
1006 n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
1007 n0 = n0 << bm;
1010 udiv_qrnnd (q0, n0, n1, n0, d0);
1011 q1 = 0;
1013 /* Remainder in n0 >> bm. */
1015 else
1017 /* qq = NN / 0d */
1019 if (d0 == 0)
1020 d0 = 1 / d0; /* Divide intentionally by zero. */
1022 count_leading_zeros (bm, d0);
1024 if (bm == 0)
1026 /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
1027 conclude (the most significant bit of n1 is set) /\ (the
1028 leading quotient digit q1 = 1).
1030 This special case is necessary, not an optimization.
1031 (Shifts counts of W_TYPE_SIZE are undefined.) */
1033 n1 -= d0;
1034 q1 = 1;
1036 else
1038 /* Normalize. */
1040 b = W_TYPE_SIZE - bm;
1042 d0 = d0 << bm;
1043 n2 = n1 >> b;
1044 n1 = (n1 << bm) | (n0 >> b);
1045 n0 = n0 << bm;
1047 udiv_qrnnd (q1, n1, n2, n1, d0);
1050 /* n1 != d0... */
1052 udiv_qrnnd (q0, n0, n1, n0, d0);
1054 /* Remainder in n0 >> bm. */
1057 if (rp != 0)
1059 rr.s.low = n0 >> bm;
1060 rr.s.high = 0;
1061 *rp = rr.ll;
1064 #endif /* UDIV_NEEDS_NORMALIZATION */
1066 else
1068 if (d1 > n1)
1070 /* 00 = nn / DD */
1072 q0 = 0;
1073 q1 = 0;
1075 /* Remainder in n1n0. */
1076 if (rp != 0)
1078 rr.s.low = n0;
1079 rr.s.high = n1;
1080 *rp = rr.ll;
1083 else
1085 /* 0q = NN / dd */
1087 count_leading_zeros (bm, d1);
1088 if (bm == 0)
1090 /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
1091 conclude (the most significant bit of n1 is set) /\ (the
1092 quotient digit q0 = 0 or 1).
1094 This special case is necessary, not an optimization. */
1096 /* The condition on the next line takes advantage of that
1097 n1 >= d1 (true due to program flow). */
1098 if (n1 > d1 || n0 >= d0)
1100 q0 = 1;
1101 sub_ddmmss (n1, n0, n1, n0, d1, d0);
1103 else
1104 q0 = 0;
1106 q1 = 0;
1108 if (rp != 0)
1110 rr.s.low = n0;
1111 rr.s.high = n1;
1112 *rp = rr.ll;
1115 else
1117 UWtype m1, m0;
1118 /* Normalize. */
1120 b = W_TYPE_SIZE - bm;
1122 d1 = (d1 << bm) | (d0 >> b);
1123 d0 = d0 << bm;
1124 n2 = n1 >> b;
1125 n1 = (n1 << bm) | (n0 >> b);
1126 n0 = n0 << bm;
1128 udiv_qrnnd (q0, n1, n2, n1, d1);
1129 umul_ppmm (m1, m0, q0, d0);
1131 if (m1 > n1 || (m1 == n1 && m0 > n0))
1133 q0--;
1134 sub_ddmmss (m1, m0, m1, m0, d1, d0);
1137 q1 = 0;
1139 /* Remainder in (n1n0 - m1m0) >> bm. */
1140 if (rp != 0)
1142 sub_ddmmss (n1, n0, n1, n0, m1, m0);
1143 rr.s.low = (n1 << b) | (n0 >> bm);
1144 rr.s.high = n1 >> bm;
1145 *rp = rr.ll;
1151 const DWunion ww = {{.low = q0, .high = q1}};
1152 return ww.ll;
1154 #endif
1156 #ifdef L_divdi3
1157 DWtype
1158 __divdi3 (DWtype u, DWtype v)
1160 Wtype c = 0;
1161 DWunion uu = {.ll = u};
1162 DWunion vv = {.ll = v};
1163 DWtype w;
1165 if (uu.s.high < 0)
1166 c = ~c,
1167 uu.ll = -uu.ll;
1168 if (vv.s.high < 0)
1169 c = ~c,
1170 vv.ll = -vv.ll;
1172 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
1173 if (c)
1174 w = -w;
1176 return w;
1178 #endif
1180 #ifdef L_moddi3
1181 DWtype
1182 __moddi3 (DWtype u, DWtype v)
1184 Wtype c = 0;
1185 DWunion uu = {.ll = u};
1186 DWunion vv = {.ll = v};
1187 DWtype w;
1189 if (uu.s.high < 0)
1190 c = ~c,
1191 uu.ll = -uu.ll;
1192 if (vv.s.high < 0)
1193 vv.ll = -vv.ll;
1195 (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
1196 if (c)
1197 w = -w;
1199 return w;
1201 #endif
1203 #ifdef L_umoddi3
1204 UDWtype
1205 __umoddi3 (UDWtype u, UDWtype v)
1207 UDWtype w;
1209 (void) __udivmoddi4 (u, v, &w);
1211 return w;
1213 #endif
1215 #ifdef L_udivdi3
1216 UDWtype
1217 __udivdi3 (UDWtype n, UDWtype d)
1219 return __udivmoddi4 (n, d, (UDWtype *) 0);
1221 #endif
1223 #ifdef L_cmpdi2
1224 cmp_return_type
1225 __cmpdi2 (DWtype a, DWtype b)
1227 const DWunion au = {.ll = a};
1228 const DWunion bu = {.ll = b};
1230 if (au.s.high < bu.s.high)
1231 return 0;
1232 else if (au.s.high > bu.s.high)
1233 return 2;
1234 if ((UWtype) au.s.low < (UWtype) bu.s.low)
1235 return 0;
1236 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1237 return 2;
1238 return 1;
1240 #endif
1242 #ifdef L_ucmpdi2
1243 cmp_return_type
1244 __ucmpdi2 (DWtype a, DWtype b)
1246 const DWunion au = {.ll = a};
1247 const DWunion bu = {.ll = b};
1249 if ((UWtype) au.s.high < (UWtype) bu.s.high)
1250 return 0;
1251 else if ((UWtype) au.s.high > (UWtype) bu.s.high)
1252 return 2;
1253 if ((UWtype) au.s.low < (UWtype) bu.s.low)
1254 return 0;
1255 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1256 return 2;
1257 return 1;
1259 #endif
1261 #if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
1262 UDWtype
1263 __fixunstfDI (TFtype a)
1265 if (a < 0)
1266 return 0;
1268 /* Compute high word of result, as a flonum. */
1269 const TFtype b = (a / Wtype_MAXp1_F);
1270 /* Convert that to fixed (but not to DWtype!),
1271 and shift it into the high word. */
1272 UDWtype v = (UWtype) b;
1273 v <<= W_TYPE_SIZE;
1274 /* Remove high part from the TFtype, leaving the low part as flonum. */
1275 a -= (TFtype)v;
1276 /* Convert that to fixed (but not to DWtype!) and add it in.
1277 Sometimes A comes out negative. This is significant, since
1278 A has more bits than a long int does. */
1279 if (a < 0)
1280 v -= (UWtype) (- a);
1281 else
1282 v += (UWtype) a;
1283 return v;
1285 #endif
1287 #if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
1288 DWtype
1289 __fixtfdi (TFtype a)
1291 if (a < 0)
1292 return - __fixunstfDI (-a);
1293 return __fixunstfDI (a);
1295 #endif
1297 #if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
1298 UDWtype
1299 __fixunsxfDI (XFtype a)
1301 if (a < 0)
1302 return 0;
1304 /* Compute high word of result, as a flonum. */
1305 const XFtype b = (a / Wtype_MAXp1_F);
1306 /* Convert that to fixed (but not to DWtype!),
1307 and shift it into the high word. */
1308 UDWtype v = (UWtype) b;
1309 v <<= W_TYPE_SIZE;
1310 /* Remove high part from the XFtype, leaving the low part as flonum. */
1311 a -= (XFtype)v;
1312 /* Convert that to fixed (but not to DWtype!) and add it in.
1313 Sometimes A comes out negative. This is significant, since
1314 A has more bits than a long int does. */
1315 if (a < 0)
1316 v -= (UWtype) (- a);
1317 else
1318 v += (UWtype) a;
1319 return v;
1321 #endif
1323 #if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
1324 DWtype
1325 __fixxfdi (XFtype a)
1327 if (a < 0)
1328 return - __fixunsxfDI (-a);
1329 return __fixunsxfDI (a);
1331 #endif
1333 #if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
1334 UDWtype
1335 __fixunsdfDI (DFtype a)
1337 /* Get high part of result. The division here will just moves the radix
1338 point and will not cause any rounding. Then the conversion to integral
1339 type chops result as desired. */
1340 const UWtype hi = a / Wtype_MAXp1_F;
1342 /* Get low part of result. Convert `hi' to floating type and scale it back,
1343 then subtract this from the number being converted. This leaves the low
1344 part. Convert that to integral type. */
1345 const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;
1347 /* Assemble result from the two parts. */
1348 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1350 #endif
1352 #if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
1353 DWtype
1354 __fixdfdi (DFtype a)
1356 if (a < 0)
1357 return - __fixunsdfDI (-a);
1358 return __fixunsdfDI (a);
1360 #endif
1362 #if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
1363 UDWtype
1364 __fixunssfDI (SFtype a)
1366 #if LIBGCC2_HAS_DF_MODE
1367 /* Convert the SFtype to a DFtype, because that is surely not going
1368 to lose any bits. Some day someone else can write a faster version
1369 that avoids converting to DFtype, and verify it really works right. */
1370 const DFtype dfa = a;
1372 /* Get high part of result. The division here will just moves the radix
1373 point and will not cause any rounding. Then the conversion to integral
1374 type chops result as desired. */
1375 const UWtype hi = dfa / Wtype_MAXp1_F;
1377 /* Get low part of result. Convert `hi' to floating type and scale it back,
1378 then subtract this from the number being converted. This leaves the low
1379 part. Convert that to integral type. */
1380 const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;
1382 /* Assemble result from the two parts. */
1383 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1384 #elif FLT_MANT_DIG < W_TYPE_SIZE
1385 if (a < 1)
1386 return 0;
1387 if (a < Wtype_MAXp1_F)
1388 return (UWtype)a;
1389 if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
1391 /* Since we know that there are fewer significant bits in the SFmode
1392 quantity than in a word, we know that we can convert out all the
1393 significant bits in one step, and thus avoid losing bits. */
1395 /* ??? This following loop essentially performs frexpf. If we could
1396 use the real libm function, or poke at the actual bits of the fp
1397 format, it would be significantly faster. */
1399 UWtype shift = 0, counter;
1400 SFtype msb;
1402 a /= Wtype_MAXp1_F;
1403 for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
1405 SFtype counterf = (UWtype)1 << counter;
1406 if (a >= counterf)
1408 shift |= counter;
1409 a /= counterf;
1413 /* Rescale into the range of one word, extract the bits of that
1414 one word, and shift the result into position. */
1415 a *= Wtype_MAXp1_F;
1416 counter = a;
1417 return (DWtype)counter << shift;
1419 return -1;
1420 #else
1421 # error
1422 #endif
1424 #endif
1426 #if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
1427 DWtype
1428 __fixsfdi (SFtype a)
1430 if (a < 0)
1431 return - __fixunssfDI (-a);
1432 return __fixunssfDI (a);
1434 #endif
1436 #if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
1437 XFtype
1438 __floatdixf (DWtype u)
1440 #if W_TYPE_SIZE > XF_SIZE
1441 # error
1442 #endif
1443 XFtype d = (Wtype) (u >> W_TYPE_SIZE);
1444 d *= Wtype_MAXp1_F;
1445 d += (UWtype)u;
1446 return d;
1448 #endif
1450 #if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
1451 XFtype
1452 __floatundixf (UDWtype u)
1454 #if W_TYPE_SIZE > XF_SIZE
1455 # error
1456 #endif
1457 XFtype d = (UWtype) (u >> W_TYPE_SIZE);
1458 d *= Wtype_MAXp1_F;
1459 d += (UWtype)u;
1460 return d;
1462 #endif
1464 #if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
1465 TFtype
1466 __floatditf (DWtype u)
1468 #if W_TYPE_SIZE > TF_SIZE
1469 # error
1470 #endif
1471 TFtype d = (Wtype) (u >> W_TYPE_SIZE);
1472 d *= Wtype_MAXp1_F;
1473 d += (UWtype)u;
1474 return d;
1476 #endif
1478 #if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
1479 TFtype
1480 __floatunditf (UDWtype u)
1482 #if W_TYPE_SIZE > TF_SIZE
1483 # error
1484 #endif
1485 TFtype d = (UWtype) (u >> W_TYPE_SIZE);
1486 d *= Wtype_MAXp1_F;
1487 d += (UWtype)u;
1488 return d;
1490 #endif
1492 #if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \
1493 || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
1494 #define DI_SIZE (W_TYPE_SIZE * 2)
1495 #define F_MODE_OK(SIZE) \
1496 (SIZE < DI_SIZE \
1497 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1498 && !AVOID_FP_TYPE_CONVERSION(SIZE))
1499 #if defined(L_floatdisf)
1500 #define FUNC __floatdisf
1501 #define FSTYPE SFtype
1502 #define FSSIZE SF_SIZE
1503 #else
1504 #define FUNC __floatdidf
1505 #define FSTYPE DFtype
1506 #define FSSIZE DF_SIZE
1507 #endif
1509 FSTYPE
1510 FUNC (DWtype u)
1512 #if FSSIZE >= W_TYPE_SIZE
1513 /* When the word size is small, we never get any rounding error. */
1514 FSTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1515 f *= Wtype_MAXp1_F;
1516 f += (UWtype)u;
1517 return f;
1518 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) \
1519 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) \
1520 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1522 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1523 # define FSIZE DF_SIZE
1524 # define FTYPE DFtype
1525 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1526 # define FSIZE XF_SIZE
1527 # define FTYPE XFtype
1528 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1529 # define FSIZE TF_SIZE
1530 # define FTYPE TFtype
1531 #else
1532 # error
1533 #endif
1535 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1537 /* Protect against double-rounding error.
1538 Represent any low-order bits, that might be truncated by a bit that
1539 won't be lost. The bit can go in anywhere below the rounding position
1540 of the FSTYPE. A fixed mask and bit position handles all usual
1541 configurations. */
1542 if (! (- ((DWtype) 1 << FSIZE) < u
1543 && u < ((DWtype) 1 << FSIZE)))
1545 if ((UDWtype) u & (REP_BIT - 1))
1547 u &= ~ (REP_BIT - 1);
1548 u |= REP_BIT;
1552 /* Do the calculation in a wider type so that we don't lose any of
1553 the precision of the high word while multiplying it. */
1554 FTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1555 f *= Wtype_MAXp1_F;
1556 f += (UWtype)u;
1557 return (FSTYPE) f;
1558 #else
1559 #if FSSIZE >= W_TYPE_SIZE - 2
1560 # error
1561 #endif
1562 /* Finally, the word size is larger than the number of bits in the
1563 required FSTYPE, and we've got no suitable wider type. The only
1564 way to avoid double rounding is to special case the
1565 extraction. */
1567 /* If there are no high bits set, fall back to one conversion. */
1568 if ((Wtype)u == u)
1569 return (FSTYPE)(Wtype)u;
1571 /* Otherwise, find the power of two. */
1572 Wtype hi = u >> W_TYPE_SIZE;
1573 if (hi < 0)
1574 hi = -(UWtype) hi;
1576 UWtype count, shift;
1577 count_leading_zeros (count, hi);
1579 /* No leading bits means u == minimum. */
1580 if (count == 0)
1581 return -(Wtype_MAXp1_F * (Wtype_MAXp1_F / 2));
1583 shift = 1 + W_TYPE_SIZE - count;
1585 /* Shift down the most significant bits. */
1586 hi = u >> shift;
1588 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1589 if ((UWtype)u << (W_TYPE_SIZE - shift))
1590 hi |= 1;
1592 /* Convert the one word of data, and rescale. */
1593 FSTYPE f = hi, e;
1594 if (shift == W_TYPE_SIZE)
1595 e = Wtype_MAXp1_F;
1596 /* The following two cases could be merged if we knew that the target
1597 supported a native unsigned->float conversion. More often, we only
1598 have a signed conversion, and have to add extra fixup code. */
1599 else if (shift == W_TYPE_SIZE - 1)
1600 e = Wtype_MAXp1_F / 2;
1601 else
1602 e = (Wtype)1 << shift;
1603 return f * e;
1604 #endif
1606 #endif
1608 #if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \
1609 || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
1610 #define DI_SIZE (W_TYPE_SIZE * 2)
1611 #define F_MODE_OK(SIZE) \
1612 (SIZE < DI_SIZE \
1613 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1614 && !AVOID_FP_TYPE_CONVERSION(SIZE))
1615 #if defined(L_floatundisf)
1616 #define FUNC __floatundisf
1617 #define FSTYPE SFtype
1618 #define FSSIZE SF_SIZE
1619 #else
1620 #define FUNC __floatundidf
1621 #define FSTYPE DFtype
1622 #define FSSIZE DF_SIZE
1623 #endif
1625 FSTYPE
1626 FUNC (UDWtype u)
1628 #if FSSIZE >= W_TYPE_SIZE
1629 /* When the word size is small, we never get any rounding error. */
1630 FSTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1631 f *= Wtype_MAXp1_F;
1632 f += (UWtype)u;
1633 return f;
1634 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) \
1635 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) \
1636 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1638 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1639 # define FSIZE DF_SIZE
1640 # define FTYPE DFtype
1641 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1642 # define FSIZE XF_SIZE
1643 # define FTYPE XFtype
1644 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1645 # define FSIZE TF_SIZE
1646 # define FTYPE TFtype
1647 #else
1648 # error
1649 #endif
1651 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1653 /* Protect against double-rounding error.
1654 Represent any low-order bits, that might be truncated by a bit that
1655 won't be lost. The bit can go in anywhere below the rounding position
1656 of the FSTYPE. A fixed mask and bit position handles all usual
1657 configurations. */
1658 if (u >= ((UDWtype) 1 << FSIZE))
1660 if ((UDWtype) u & (REP_BIT - 1))
1662 u &= ~ (REP_BIT - 1);
1663 u |= REP_BIT;
1667 /* Do the calculation in a wider type so that we don't lose any of
1668 the precision of the high word while multiplying it. */
1669 FTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1670 f *= Wtype_MAXp1_F;
1671 f += (UWtype)u;
1672 return (FSTYPE) f;
1673 #else
1674 #if FSSIZE == W_TYPE_SIZE - 1
1675 # error
1676 #endif
1677 /* Finally, the word size is larger than the number of bits in the
1678 required FSTYPE, and we've got no suitable wider type. The only
1679 way to avoid double rounding is to special case the
1680 extraction. */
1682 /* If there are no high bits set, fall back to one conversion. */
1683 if ((UWtype)u == u)
1684 return (FSTYPE)(UWtype)u;
1686 /* Otherwise, find the power of two. */
1687 UWtype hi = u >> W_TYPE_SIZE;
1689 UWtype count, shift;
1690 count_leading_zeros (count, hi);
1692 shift = W_TYPE_SIZE - count;
1694 /* Shift down the most significant bits. */
1695 hi = u >> shift;
1697 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1698 if ((UWtype)u << (W_TYPE_SIZE - shift))
1699 hi |= 1;
1701 /* Convert the one word of data, and rescale. */
1702 FSTYPE f = hi, e;
1703 if (shift == W_TYPE_SIZE)
1704 e = Wtype_MAXp1_F;
1705 /* The following two cases could be merged if we knew that the target
1706 supported a native unsigned->float conversion. More often, we only
1707 have a signed conversion, and have to add extra fixup code. */
1708 else if (shift == W_TYPE_SIZE - 1)
1709 e = Wtype_MAXp1_F / 2;
1710 else
1711 e = (Wtype)1 << shift;
1712 return f * e;
1713 #endif
1715 #endif
1717 #if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
1718 UWtype
1719 __fixunsxfSI (XFtype a)
1721 if (a >= - (DFtype) Wtype_MIN)
1722 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1723 return (Wtype) a;
1725 #endif
1727 #if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
1728 UWtype
1729 __fixunsdfSI (DFtype a)
1731 if (a >= - (DFtype) Wtype_MIN)
1732 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1733 return (Wtype) a;
1735 #endif
1737 #if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
1738 UWtype
1739 __fixunssfSI (SFtype a)
1741 if (a >= - (SFtype) Wtype_MIN)
1742 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1743 return (Wtype) a;
1745 #endif
1747 /* Integer power helper used from __builtin_powi for non-constant
1748 exponents. */
1750 #if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
1751 || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
1752 || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
1753 || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
1754 # if defined(L_powisf2)
1755 # define TYPE SFtype
1756 # define NAME __powisf2
1757 # elif defined(L_powidf2)
1758 # define TYPE DFtype
1759 # define NAME __powidf2
1760 # elif defined(L_powixf2)
1761 # define TYPE XFtype
1762 # define NAME __powixf2
1763 # elif defined(L_powitf2)
1764 # define TYPE TFtype
1765 # define NAME __powitf2
1766 # endif
1768 #undef int
1769 #undef unsigned
1770 TYPE
1771 NAME (TYPE x, int m)
1773 unsigned int n = m < 0 ? -m : m;
1774 TYPE y = n % 2 ? x : 1;
1775 while (n >>= 1)
1777 x = x * x;
1778 if (n % 2)
1779 y = y * x;
1781 return m < 0 ? 1/y : y;
1784 #endif
1786 #if ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
1787 || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
1788 || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
1789 || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
1791 #undef float
1792 #undef double
1793 #undef long
1795 #if defined(L_mulsc3) || defined(L_divsc3)
1796 # define MTYPE SFtype
1797 # define CTYPE SCtype
1798 # define MODE sc
1799 # define CEXT f
1800 # define NOTRUNC __FLT_EVAL_METHOD__ == 0
1801 #elif defined(L_muldc3) || defined(L_divdc3)
1802 # define MTYPE DFtype
1803 # define CTYPE DCtype
1804 # define MODE dc
1805 # if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64
1806 # define CEXT l
1807 # define NOTRUNC 1
1808 # else
1809 # define CEXT
1810 # define NOTRUNC __FLT_EVAL_METHOD__ == 0 || __FLT_EVAL_METHOD__ == 1
1811 # endif
1812 #elif defined(L_mulxc3) || defined(L_divxc3)
1813 # define MTYPE XFtype
1814 # define CTYPE XCtype
1815 # define MODE xc
1816 # define CEXT l
1817 # define NOTRUNC 1
1818 #elif defined(L_multc3) || defined(L_divtc3)
1819 # define MTYPE TFtype
1820 # define CTYPE TCtype
1821 # define MODE tc
1822 # if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128
1823 # define CEXT l
1824 # else
1825 # define CEXT LIBGCC2_TF_CEXT
1826 # endif
1827 # define NOTRUNC 1
1828 #else
1829 # error
1830 #endif
1832 #define CONCAT3(A,B,C) _CONCAT3(A,B,C)
1833 #define _CONCAT3(A,B,C) A##B##C
1835 #define CONCAT2(A,B) _CONCAT2(A,B)
1836 #define _CONCAT2(A,B) A##B
1838 /* All of these would be present in a full C99 implementation of <math.h>
1839 and <complex.h>. Our problem is that only a few systems have such full
1840 implementations. Further, libgcc_s.so isn't currently linked against
1841 libm.so, and even for systems that do provide full C99, the extra overhead
1842 of all programs using libgcc having to link against libm. So avoid it. */
1844 #define isnan(x) __builtin_expect ((x) != (x), 0)
1845 #define isfinite(x) __builtin_expect (!isnan((x) - (x)), 1)
1846 #define isinf(x) __builtin_expect (!isnan(x) & !isfinite(x), 0)
1848 #define INFINITY CONCAT2(__builtin_huge_val, CEXT) ()
1849 #define I 1i
1851 /* Helpers to make the following code slightly less gross. */
1852 #define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
1853 #define FABS CONCAT2(__builtin_fabs, CEXT)
1855 /* Verify that MTYPE matches up with CEXT. */
1856 extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];
1858 /* Ensure that we've lost any extra precision. */
1859 #if NOTRUNC
1860 # define TRUNC(x)
1861 #else
1862 # define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
1863 #endif
1865 #if defined(L_mulsc3) || defined(L_muldc3) \
1866 || defined(L_mulxc3) || defined(L_multc3)
1868 CTYPE
1869 CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1871 MTYPE ac, bd, ad, bc, x, y;
1872 CTYPE res;
1874 ac = a * c;
1875 bd = b * d;
1876 ad = a * d;
1877 bc = b * c;
1879 TRUNC (ac);
1880 TRUNC (bd);
1881 TRUNC (ad);
1882 TRUNC (bc);
1884 x = ac - bd;
1885 y = ad + bc;
1887 if (isnan (x) && isnan (y))
1889 /* Recover infinities that computed as NaN + iNaN. */
1890 _Bool recalc = 0;
1891 if (isinf (a) || isinf (b))
1893 /* z is infinite. "Box" the infinity and change NaNs in
1894 the other factor to 0. */
1895 a = COPYSIGN (isinf (a) ? 1 : 0, a);
1896 b = COPYSIGN (isinf (b) ? 1 : 0, b);
1897 if (isnan (c)) c = COPYSIGN (0, c);
1898 if (isnan (d)) d = COPYSIGN (0, d);
1899 recalc = 1;
1901 if (isinf (c) || isinf (d))
1903 /* w is infinite. "Box" the infinity and change NaNs in
1904 the other factor to 0. */
1905 c = COPYSIGN (isinf (c) ? 1 : 0, c);
1906 d = COPYSIGN (isinf (d) ? 1 : 0, d);
1907 if (isnan (a)) a = COPYSIGN (0, a);
1908 if (isnan (b)) b = COPYSIGN (0, b);
1909 recalc = 1;
1911 if (!recalc
1912 && (isinf (ac) || isinf (bd)
1913 || isinf (ad) || isinf (bc)))
1915 /* Recover infinities from overflow by changing NaNs to 0. */
1916 if (isnan (a)) a = COPYSIGN (0, a);
1917 if (isnan (b)) b = COPYSIGN (0, b);
1918 if (isnan (c)) c = COPYSIGN (0, c);
1919 if (isnan (d)) d = COPYSIGN (0, d);
1920 recalc = 1;
1922 if (recalc)
1924 x = INFINITY * (a * c - b * d);
1925 y = INFINITY * (a * d + b * c);
1929 __real__ res = x;
1930 __imag__ res = y;
1931 return res;
1933 #endif /* complex multiply */
1935 #if defined(L_divsc3) || defined(L_divdc3) \
1936 || defined(L_divxc3) || defined(L_divtc3)
1938 CTYPE
1939 CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1941 MTYPE denom, ratio, x, y;
1942 CTYPE res;
1944 /* ??? We can get better behavior from logarithmic scaling instead of
1945 the division. But that would mean starting to link libgcc against
1946 libm. We could implement something akin to ldexp/frexp as gcc builtins
1947 fairly easily... */
1948 if (FABS (c) < FABS (d))
1950 ratio = c / d;
1951 denom = (c * ratio) + d;
1952 x = ((a * ratio) + b) / denom;
1953 y = ((b * ratio) - a) / denom;
1955 else
1957 ratio = d / c;
1958 denom = (d * ratio) + c;
1959 x = ((b * ratio) + a) / denom;
1960 y = (b - (a * ratio)) / denom;
1963 /* Recover infinities and zeros that computed as NaN+iNaN; the only cases
1964 are nonzero/zero, infinite/finite, and finite/infinite. */
1965 if (isnan (x) && isnan (y))
1967 if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b)))
1969 x = COPYSIGN (INFINITY, c) * a;
1970 y = COPYSIGN (INFINITY, c) * b;
1972 else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
1974 a = COPYSIGN (isinf (a) ? 1 : 0, a);
1975 b = COPYSIGN (isinf (b) ? 1 : 0, b);
1976 x = INFINITY * (a * c + b * d);
1977 y = INFINITY * (b * c - a * d);
1979 else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
1981 c = COPYSIGN (isinf (c) ? 1 : 0, c);
1982 d = COPYSIGN (isinf (d) ? 1 : 0, d);
1983 x = 0.0 * (a * c + b * d);
1984 y = 0.0 * (b * c - a * d);
1988 __real__ res = x;
1989 __imag__ res = y;
1990 return res;
1992 #endif /* complex divide */
1994 #endif /* all complex float routines */
1996 /* From here on down, the routines use normal data types. */
1998 #define SItype bogus_type
1999 #define USItype bogus_type
2000 #define DItype bogus_type
2001 #define UDItype bogus_type
2002 #define SFtype bogus_type
2003 #define DFtype bogus_type
2004 #undef Wtype
2005 #undef UWtype
2006 #undef HWtype
2007 #undef UHWtype
2008 #undef DWtype
2009 #undef UDWtype
2011 #undef char
2012 #undef short
2013 #undef int
2014 #undef long
2015 #undef unsigned
2016 #undef float
2017 #undef double
2019 #ifdef L__gcc_bcmp
2021 /* Like bcmp except the sign is meaningful.
2022 Result is negative if S1 is less than S2,
2023 positive if S1 is greater, 0 if S1 and S2 are equal. */
2026 __gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
2028 while (size > 0)
2030 const unsigned char c1 = *s1++, c2 = *s2++;
2031 if (c1 != c2)
2032 return c1 - c2;
2033 size--;
2035 return 0;
2038 #endif
2040 /* __eprintf used to be used by GCC's private version of <assert.h>.
2041 We no longer provide that header, but this routine remains in libgcc.a
2042 for binary backward compatibility. Note that it is not included in
2043 the shared version of libgcc. */
2044 #ifdef L_eprintf
2045 #ifndef inhibit_libc
2047 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
2048 #include <stdio.h>
2050 void
2051 __eprintf (const char *string, const char *expression,
2052 unsigned int line, const char *filename)
2054 fprintf (stderr, string, expression, line, filename);
2055 fflush (stderr);
2056 abort ();
2059 #endif
2060 #endif
2063 #ifdef L_clear_cache
2064 /* Clear part of an instruction cache. */
2066 void
2067 __clear_cache (char *beg __attribute__((__unused__)),
2068 char *end __attribute__((__unused__)))
2070 #ifdef CLEAR_INSN_CACHE
2071 CLEAR_INSN_CACHE (beg, end);
2072 #endif /* CLEAR_INSN_CACHE */
2075 #endif /* L_clear_cache */
2077 #ifdef L_trampoline
2079 /* Jump to a trampoline, loading the static chain address. */
2081 #if defined(WINNT) && ! defined(__CYGWIN__)
2082 #include <windows.h>
2083 int getpagesize (void);
2084 int mprotect (char *,int, int);
2087 getpagesize (void)
2089 #ifdef _ALPHA_
2090 return 8192;
2091 #else
2092 return 4096;
2093 #endif
2097 mprotect (char *addr, int len, int prot)
2099 DWORD np, op;
2101 if (prot == 7)
2102 np = 0x40;
2103 else if (prot == 5)
2104 np = 0x20;
2105 else if (prot == 4)
2106 np = 0x10;
2107 else if (prot == 3)
2108 np = 0x04;
2109 else if (prot == 1)
2110 np = 0x02;
2111 else if (prot == 0)
2112 np = 0x01;
2113 else
2114 return -1;
2116 if (VirtualProtect (addr, len, np, &op))
2117 return 0;
2118 else
2119 return -1;
2122 #endif /* WINNT && ! __CYGWIN__ */
2124 #ifdef TRANSFER_FROM_TRAMPOLINE
2125 TRANSFER_FROM_TRAMPOLINE
2126 #endif
2127 #endif /* L_trampoline */
2129 #ifndef __CYGWIN__
2130 #ifdef L__main
2132 #include "gbl-ctors.h"
2134 /* Some systems use __main in a way incompatible with its use in gcc, in these
2135 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
2136 give the same symbol without quotes for an alternative entry point. You
2137 must define both, or neither. */
2138 #ifndef NAME__MAIN
2139 #define NAME__MAIN "__main"
2140 #define SYMBOL__MAIN __main
2141 #endif
2143 #if defined (INIT_SECTION_ASM_OP) || defined (INIT_ARRAY_SECTION_ASM_OP)
2144 #undef HAS_INIT_SECTION
2145 #define HAS_INIT_SECTION
2146 #endif
2148 #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
2150 /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
2151 code to run constructors. In that case, we need to handle EH here, too. */
2153 #ifdef EH_FRAME_SECTION_NAME
2154 #include "unwind-dw2-fde.h"
2155 extern unsigned char __EH_FRAME_BEGIN__[];
2156 #endif
2158 /* Run all the global destructors on exit from the program. */
2160 void
2161 __do_global_dtors (void)
2163 #ifdef DO_GLOBAL_DTORS_BODY
2164 DO_GLOBAL_DTORS_BODY;
2165 #else
2166 static func_ptr *p = __DTOR_LIST__ + 1;
2167 while (*p)
2169 p++;
2170 (*(p-1)) ();
2172 #endif
2173 #if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION)
2175 static int completed = 0;
2176 if (! completed)
2178 completed = 1;
2179 __deregister_frame_info (__EH_FRAME_BEGIN__);
2182 #endif
2184 #endif
2186 #ifndef HAS_INIT_SECTION
2187 /* Run all the global constructors on entry to the program. */
2189 void
2190 __do_global_ctors (void)
2192 #ifdef EH_FRAME_SECTION_NAME
2194 static struct object object;
2195 __register_frame_info (__EH_FRAME_BEGIN__, &object);
2197 #endif
2198 DO_GLOBAL_CTORS_BODY;
2199 atexit (__do_global_dtors);
2201 #endif /* no HAS_INIT_SECTION */
2203 #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
2204 /* Subroutine called automatically by `main'.
2205 Compiling a global function named `main'
2206 produces an automatic call to this function at the beginning.
2208 For many systems, this routine calls __do_global_ctors.
2209 For systems which support a .init section we use the .init section
2210 to run __do_global_ctors, so we need not do anything here. */
2212 extern void SYMBOL__MAIN (void);
2213 void
2214 SYMBOL__MAIN (void)
2216 /* Support recursive calls to `main': run initializers just once. */
2217 static int initialized;
2218 if (! initialized)
2220 initialized = 1;
2221 __do_global_ctors ();
2224 #endif /* no HAS_INIT_SECTION or INVOKE__main */
2226 #endif /* L__main */
2227 #endif /* __CYGWIN__ */
2229 #ifdef L_ctors
2231 #include "gbl-ctors.h"
2233 /* Provide default definitions for the lists of constructors and
2234 destructors, so that we don't get linker errors. These symbols are
2235 intentionally bss symbols, so that gld and/or collect will provide
2236 the right values. */
2238 /* We declare the lists here with two elements each,
2239 so that they are valid empty lists if no other definition is loaded.
2241 If we are using the old "set" extensions to have the gnu linker
2242 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
2243 must be in the bss/common section.
2245 Long term no port should use those extensions. But many still do. */
2246 #if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY)
2247 #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
2248 func_ptr __CTOR_LIST__[2] = {0, 0};
2249 func_ptr __DTOR_LIST__[2] = {0, 0};
2250 #else
2251 func_ptr __CTOR_LIST__[2];
2252 func_ptr __DTOR_LIST__[2];
2253 #endif
2254 #endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
2255 #endif /* L_ctors */
2256 #endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */