1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
24 #include "coretypes.h"
32 #include "hard-reg-set.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
44 #include "typeclass.h"
47 #include "langhooks.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
56 /* Decide whether a function's arguments should be processed
57 from first to last or from last to first.
59 They should if the stack and args grow in opposite directions, but
60 only if we have push insns. */
64 #ifndef PUSH_ARGS_REVERSED
65 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
66 #define PUSH_ARGS_REVERSED /* If it's last to first. */
72 #ifndef STACK_PUSH_CODE
73 #ifdef STACK_GROWS_DOWNWARD
74 #define STACK_PUSH_CODE PRE_DEC
76 #define STACK_PUSH_CODE PRE_INC
81 /* If this is nonzero, we do not bother generating VOLATILE
82 around volatile memory references, and we are willing to
83 output indirect addresses. If cse is to follow, we reject
84 indirect addresses so a useful potential cse is generated;
85 if it is used only once, instruction combination will produce
86 the same indirect address eventually. */
89 /* This structure is used by move_by_pieces to describe the move to
100 int explicit_inc_from
;
101 unsigned HOST_WIDE_INT len
;
102 HOST_WIDE_INT offset
;
106 /* This structure is used by store_by_pieces to describe the clear to
109 struct store_by_pieces
115 unsigned HOST_WIDE_INT len
;
116 HOST_WIDE_INT offset
;
117 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
122 static unsigned HOST_WIDE_INT
move_by_pieces_ninsns (unsigned HOST_WIDE_INT
,
125 static void move_by_pieces_1 (rtx (*) (rtx
, ...), enum machine_mode
,
126 struct move_by_pieces
*);
127 static bool block_move_libcall_safe_for_call_parm (void);
128 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned);
129 static rtx
emit_block_move_via_libcall (rtx
, rtx
, rtx
, bool);
130 static tree
emit_block_move_libcall_fn (int);
131 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
132 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
133 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
134 static void store_by_pieces_1 (struct store_by_pieces
*, unsigned int);
135 static void store_by_pieces_2 (rtx (*) (rtx
, ...), enum machine_mode
,
136 struct store_by_pieces
*);
137 static rtx
clear_storage_via_libcall (rtx
, rtx
, bool);
138 static tree
clear_storage_libcall_fn (int);
139 static rtx
compress_float_constant (rtx
, rtx
);
140 static rtx
get_subtarget (rtx
);
141 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
142 HOST_WIDE_INT
, enum machine_mode
,
143 tree
, tree
, int, int);
144 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
145 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
, enum machine_mode
,
148 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (tree
, tree
);
150 static int is_aligning_offset (tree
, tree
);
151 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
152 enum expand_modifier
);
153 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
154 static rtx
do_store_flag (tree
, rtx
, enum machine_mode
, int);
156 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
158 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
);
159 static rtx
const_vector_from_tree (tree
);
160 static void write_complex_part (rtx
, rtx
, bool);
162 /* Record for each mode whether we can move a register directly to or
163 from an object of that mode in memory. If we can't, we won't try
164 to use that mode directly when accessing a field of that mode. */
166 static char direct_load
[NUM_MACHINE_MODES
];
167 static char direct_store
[NUM_MACHINE_MODES
];
169 /* Record for each mode whether we can float-extend from memory. */
171 static bool float_extend_from_mem
[NUM_MACHINE_MODES
][NUM_MACHINE_MODES
];
173 /* This macro is used to determine whether move_by_pieces should be called
174 to perform a structure copy. */
175 #ifndef MOVE_BY_PIECES_P
176 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
177 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
178 < (unsigned int) MOVE_RATIO)
181 /* This macro is used to determine whether clear_by_pieces should be
182 called to clear storage. */
183 #ifndef CLEAR_BY_PIECES_P
184 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
185 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
186 < (unsigned int) CLEAR_RATIO)
189 /* This macro is used to determine whether store_by_pieces should be
190 called to "memset" storage with byte values other than zero, or
191 to "memcpy" storage when the source is a constant string. */
192 #ifndef STORE_BY_PIECES_P
193 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
194 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
195 < (unsigned int) MOVE_RATIO)
198 /* This array records the insn_code of insns to perform block moves. */
199 enum insn_code movmem_optab
[NUM_MACHINE_MODES
];
201 /* This array records the insn_code of insns to perform block sets. */
202 enum insn_code setmem_optab
[NUM_MACHINE_MODES
];
204 /* These arrays record the insn_code of three different kinds of insns
205 to perform block compares. */
206 enum insn_code cmpstr_optab
[NUM_MACHINE_MODES
];
207 enum insn_code cmpstrn_optab
[NUM_MACHINE_MODES
];
208 enum insn_code cmpmem_optab
[NUM_MACHINE_MODES
];
210 /* Synchronization primitives. */
211 enum insn_code sync_add_optab
[NUM_MACHINE_MODES
];
212 enum insn_code sync_sub_optab
[NUM_MACHINE_MODES
];
213 enum insn_code sync_ior_optab
[NUM_MACHINE_MODES
];
214 enum insn_code sync_and_optab
[NUM_MACHINE_MODES
];
215 enum insn_code sync_xor_optab
[NUM_MACHINE_MODES
];
216 enum insn_code sync_nand_optab
[NUM_MACHINE_MODES
];
217 enum insn_code sync_old_add_optab
[NUM_MACHINE_MODES
];
218 enum insn_code sync_old_sub_optab
[NUM_MACHINE_MODES
];
219 enum insn_code sync_old_ior_optab
[NUM_MACHINE_MODES
];
220 enum insn_code sync_old_and_optab
[NUM_MACHINE_MODES
];
221 enum insn_code sync_old_xor_optab
[NUM_MACHINE_MODES
];
222 enum insn_code sync_old_nand_optab
[NUM_MACHINE_MODES
];
223 enum insn_code sync_new_add_optab
[NUM_MACHINE_MODES
];
224 enum insn_code sync_new_sub_optab
[NUM_MACHINE_MODES
];
225 enum insn_code sync_new_ior_optab
[NUM_MACHINE_MODES
];
226 enum insn_code sync_new_and_optab
[NUM_MACHINE_MODES
];
227 enum insn_code sync_new_xor_optab
[NUM_MACHINE_MODES
];
228 enum insn_code sync_new_nand_optab
[NUM_MACHINE_MODES
];
229 enum insn_code sync_compare_and_swap
[NUM_MACHINE_MODES
];
230 enum insn_code sync_compare_and_swap_cc
[NUM_MACHINE_MODES
];
231 enum insn_code sync_lock_test_and_set
[NUM_MACHINE_MODES
];
232 enum insn_code sync_lock_release
[NUM_MACHINE_MODES
];
234 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
236 #ifndef SLOW_UNALIGNED_ACCESS
237 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
240 /* This is run once per compilation to set up which modes can be used
241 directly in memory and to initialize the block move optab. */
244 init_expr_once (void)
247 enum machine_mode mode
;
252 /* Try indexing by frame ptr and try by stack ptr.
253 It is known that on the Convex the stack ptr isn't a valid index.
254 With luck, one or the other is valid on any machine. */
255 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
256 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
258 /* A scratch register we can modify in-place below to avoid
259 useless RTL allocations. */
260 reg
= gen_rtx_REG (VOIDmode
, -1);
262 insn
= rtx_alloc (INSN
);
263 pat
= gen_rtx_SET (0, NULL_RTX
, NULL_RTX
);
264 PATTERN (insn
) = pat
;
266 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
267 mode
= (enum machine_mode
) ((int) mode
+ 1))
271 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
272 PUT_MODE (mem
, mode
);
273 PUT_MODE (mem1
, mode
);
274 PUT_MODE (reg
, mode
);
276 /* See if there is some register that can be used in this mode and
277 directly loaded or stored from memory. */
279 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
280 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
281 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
284 if (! HARD_REGNO_MODE_OK (regno
, mode
))
290 SET_DEST (pat
) = reg
;
291 if (recog (pat
, insn
, &num_clobbers
) >= 0)
292 direct_load
[(int) mode
] = 1;
294 SET_SRC (pat
) = mem1
;
295 SET_DEST (pat
) = reg
;
296 if (recog (pat
, insn
, &num_clobbers
) >= 0)
297 direct_load
[(int) mode
] = 1;
300 SET_DEST (pat
) = mem
;
301 if (recog (pat
, insn
, &num_clobbers
) >= 0)
302 direct_store
[(int) mode
] = 1;
305 SET_DEST (pat
) = mem1
;
306 if (recog (pat
, insn
, &num_clobbers
) >= 0)
307 direct_store
[(int) mode
] = 1;
311 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
313 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
314 mode
= GET_MODE_WIDER_MODE (mode
))
316 enum machine_mode srcmode
;
317 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
318 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
322 ic
= can_extend_p (mode
, srcmode
, 0);
323 if (ic
== CODE_FOR_nothing
)
326 PUT_MODE (mem
, srcmode
);
328 if ((*insn_data
[ic
].operand
[1].predicate
) (mem
, srcmode
))
329 float_extend_from_mem
[mode
][srcmode
] = true;
334 /* This is run at the start of compiling a function. */
339 cfun
->expr
= ggc_alloc_cleared (sizeof (struct expr_status
));
342 /* Copy data from FROM to TO, where the machine modes are not the same.
343 Both modes may be integer, or both may be floating.
344 UNSIGNEDP should be nonzero if FROM is an unsigned type.
345 This causes zero-extension instead of sign-extension. */
348 convert_move (rtx to
, rtx from
, int unsignedp
)
350 enum machine_mode to_mode
= GET_MODE (to
);
351 enum machine_mode from_mode
= GET_MODE (from
);
352 int to_real
= GET_MODE_CLASS (to_mode
) == MODE_FLOAT
;
353 int from_real
= GET_MODE_CLASS (from_mode
) == MODE_FLOAT
;
357 /* rtx code for making an equivalent value. */
358 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
359 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
362 gcc_assert (to_real
== from_real
);
364 /* If the source and destination are already the same, then there's
369 /* If FROM is a SUBREG that indicates that we have already done at least
370 the required extension, strip it. We don't handle such SUBREGs as
373 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
374 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from
)))
375 >= GET_MODE_SIZE (to_mode
))
376 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
377 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
379 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
381 if (to_mode
== from_mode
382 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
384 emit_move_insn (to
, from
);
388 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
390 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
392 if (VECTOR_MODE_P (to_mode
))
393 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
395 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
397 emit_move_insn (to
, from
);
401 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
403 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
404 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
413 gcc_assert (GET_MODE_PRECISION (from_mode
)
414 != GET_MODE_PRECISION (to_mode
));
416 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
421 /* Try converting directly if the insn is supported. */
423 code
= tab
->handlers
[to_mode
][from_mode
].insn_code
;
424 if (code
!= CODE_FOR_nothing
)
426 emit_unop_insn (code
, to
, from
,
427 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
431 /* Otherwise use a libcall. */
432 libcall
= tab
->handlers
[to_mode
][from_mode
].libfunc
;
434 /* Is this conversion implemented yet? */
435 gcc_assert (libcall
);
438 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
440 insns
= get_insns ();
442 emit_libcall_block (insns
, to
, value
,
443 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
445 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
449 /* Handle pointer conversion. */ /* SPEE 900220. */
450 /* Targets are expected to provide conversion insns between PxImode and
451 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
452 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
454 enum machine_mode full_mode
455 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
457 gcc_assert (trunc_optab
->handlers
[to_mode
][full_mode
].insn_code
458 != CODE_FOR_nothing
);
460 if (full_mode
!= from_mode
)
461 from
= convert_to_mode (full_mode
, from
, unsignedp
);
462 emit_unop_insn (trunc_optab
->handlers
[to_mode
][full_mode
].insn_code
,
466 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
469 enum machine_mode full_mode
470 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
472 gcc_assert (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
473 != CODE_FOR_nothing
);
475 if (to_mode
== full_mode
)
477 emit_unop_insn (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
,
482 new_from
= gen_reg_rtx (full_mode
);
483 emit_unop_insn (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
,
484 new_from
, from
, UNKNOWN
);
486 /* else proceed to integer conversions below. */
487 from_mode
= full_mode
;
491 /* Now both modes are integers. */
493 /* Handle expanding beyond a word. */
494 if (GET_MODE_BITSIZE (from_mode
) < GET_MODE_BITSIZE (to_mode
)
495 && GET_MODE_BITSIZE (to_mode
) > BITS_PER_WORD
)
502 enum machine_mode lowpart_mode
;
503 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
505 /* Try converting directly if the insn is supported. */
506 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
509 /* If FROM is a SUBREG, put it into a register. Do this
510 so that we always generate the same set of insns for
511 better cse'ing; if an intermediate assignment occurred,
512 we won't be doing the operation directly on the SUBREG. */
513 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
514 from
= force_reg (from_mode
, from
);
515 emit_unop_insn (code
, to
, from
, equiv_code
);
518 /* Next, try converting via full word. */
519 else if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
520 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
521 != CODE_FOR_nothing
))
525 if (reg_overlap_mentioned_p (to
, from
))
526 from
= force_reg (from_mode
, from
);
527 emit_insn (gen_rtx_CLOBBER (VOIDmode
, to
));
529 convert_move (gen_lowpart (word_mode
, to
), from
, unsignedp
);
530 emit_unop_insn (code
, to
,
531 gen_lowpart (word_mode
, to
), equiv_code
);
535 /* No special multiword conversion insn; do it by hand. */
538 /* Since we will turn this into a no conflict block, we must ensure
539 that the source does not overlap the target. */
541 if (reg_overlap_mentioned_p (to
, from
))
542 from
= force_reg (from_mode
, from
);
544 /* Get a copy of FROM widened to a word, if necessary. */
545 if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
)
546 lowpart_mode
= word_mode
;
548 lowpart_mode
= from_mode
;
550 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
552 lowpart
= gen_lowpart (lowpart_mode
, to
);
553 emit_move_insn (lowpart
, lowfrom
);
555 /* Compute the value to put in each remaining word. */
557 fill_value
= const0_rtx
;
562 && insn_data
[(int) CODE_FOR_slt
].operand
[0].mode
== word_mode
563 && STORE_FLAG_VALUE
== -1)
565 emit_cmp_insn (lowfrom
, const0_rtx
, NE
, NULL_RTX
,
567 fill_value
= gen_reg_rtx (word_mode
);
568 emit_insn (gen_slt (fill_value
));
574 = expand_shift (RSHIFT_EXPR
, lowpart_mode
, lowfrom
,
575 size_int (GET_MODE_BITSIZE (lowpart_mode
) - 1),
577 fill_value
= convert_to_mode (word_mode
, fill_value
, 1);
581 /* Fill the remaining words. */
582 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
584 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
585 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
587 gcc_assert (subword
);
589 if (fill_value
!= subword
)
590 emit_move_insn (subword
, fill_value
);
593 insns
= get_insns ();
596 emit_no_conflict_block (insns
, to
, from
, NULL_RTX
,
597 gen_rtx_fmt_e (equiv_code
, to_mode
, copy_rtx (from
)));
601 /* Truncating multi-word to a word or less. */
602 if (GET_MODE_BITSIZE (from_mode
) > BITS_PER_WORD
603 && GET_MODE_BITSIZE (to_mode
) <= BITS_PER_WORD
)
606 && ! MEM_VOLATILE_P (from
)
607 && direct_load
[(int) to_mode
]
608 && ! mode_dependent_address_p (XEXP (from
, 0)))
610 || GET_CODE (from
) == SUBREG
))
611 from
= force_reg (from_mode
, from
);
612 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
616 /* Now follow all the conversions between integers
617 no more than a word long. */
619 /* For truncation, usually we can just refer to FROM in a narrower mode. */
620 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
621 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
622 GET_MODE_BITSIZE (from_mode
)))
625 && ! MEM_VOLATILE_P (from
)
626 && direct_load
[(int) to_mode
]
627 && ! mode_dependent_address_p (XEXP (from
, 0)))
629 || GET_CODE (from
) == SUBREG
))
630 from
= force_reg (from_mode
, from
);
631 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
632 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
633 from
= copy_to_reg (from
);
634 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
638 /* Handle extension. */
639 if (GET_MODE_BITSIZE (to_mode
) > GET_MODE_BITSIZE (from_mode
))
641 /* Convert directly if that works. */
642 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
645 emit_unop_insn (code
, to
, from
, equiv_code
);
650 enum machine_mode intermediate
;
654 /* Search for a mode to convert via. */
655 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
656 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
657 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
659 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
660 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
661 GET_MODE_BITSIZE (intermediate
))))
662 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
663 != CODE_FOR_nothing
))
665 convert_move (to
, convert_to_mode (intermediate
, from
,
666 unsignedp
), unsignedp
);
670 /* No suitable intermediate mode.
671 Generate what we need with shifts. */
672 shift_amount
= build_int_cst (NULL_TREE
,
673 GET_MODE_BITSIZE (to_mode
)
674 - GET_MODE_BITSIZE (from_mode
));
675 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
676 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
678 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
681 emit_move_insn (to
, tmp
);
686 /* Support special truncate insns for certain modes. */
687 if (trunc_optab
->handlers
[to_mode
][from_mode
].insn_code
!= CODE_FOR_nothing
)
689 emit_unop_insn (trunc_optab
->handlers
[to_mode
][from_mode
].insn_code
,
694 /* Handle truncation of volatile memrefs, and so on;
695 the things that couldn't be truncated directly,
696 and for which there was no special instruction.
698 ??? Code above formerly short-circuited this, for most integer
699 mode pairs, with a force_reg in from_mode followed by a recursive
700 call to this routine. Appears always to have been wrong. */
701 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
))
703 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
704 emit_move_insn (to
, temp
);
708 /* Mode combination is not recognized. */
712 /* Return an rtx for a value that would result
713 from converting X to mode MODE.
714 Both X and MODE may be floating, or both integer.
715 UNSIGNEDP is nonzero if X is an unsigned value.
716 This can be done by referring to a part of X in place
717 or by copying to a new temporary with conversion. */
720 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
722 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
725 /* Return an rtx for a value that would result
726 from converting X from mode OLDMODE to mode MODE.
727 Both modes may be floating, or both integer.
728 UNSIGNEDP is nonzero if X is an unsigned value.
730 This can be done by referring to a part of X in place
731 or by copying to a new temporary with conversion.
733 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
736 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
740 /* If FROM is a SUBREG that indicates that we have already done at least
741 the required extension, strip it. */
743 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
744 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
745 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
746 x
= gen_lowpart (mode
, x
);
748 if (GET_MODE (x
) != VOIDmode
)
749 oldmode
= GET_MODE (x
);
754 /* There is one case that we must handle specially: If we are converting
755 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
756 we are to interpret the constant as unsigned, gen_lowpart will do
757 the wrong if the constant appears negative. What we want to do is
758 make the high-order word of the constant zero, not all ones. */
760 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
761 && GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
762 && GET_CODE (x
) == CONST_INT
&& INTVAL (x
) < 0)
764 HOST_WIDE_INT val
= INTVAL (x
);
766 if (oldmode
!= VOIDmode
767 && HOST_BITS_PER_WIDE_INT
> GET_MODE_BITSIZE (oldmode
))
769 int width
= GET_MODE_BITSIZE (oldmode
);
771 /* We need to zero extend VAL. */
772 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
775 return immed_double_const (val
, (HOST_WIDE_INT
) 0, mode
);
778 /* We can do this with a gen_lowpart if both desired and current modes
779 are integer, and this is either a constant integer, a register, or a
780 non-volatile MEM. Except for the constant case where MODE is no
781 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
783 if ((GET_CODE (x
) == CONST_INT
784 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
785 || (GET_MODE_CLASS (mode
) == MODE_INT
786 && GET_MODE_CLASS (oldmode
) == MODE_INT
787 && (GET_CODE (x
) == CONST_DOUBLE
788 || (GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (oldmode
)
789 && ((MEM_P (x
) && ! MEM_VOLATILE_P (x
)
790 && direct_load
[(int) mode
])
792 && (! HARD_REGISTER_P (x
)
793 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
794 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
795 GET_MODE_BITSIZE (GET_MODE (x
)))))))))
797 /* ?? If we don't know OLDMODE, we have to assume here that
798 X does not need sign- or zero-extension. This may not be
799 the case, but it's the best we can do. */
800 if (GET_CODE (x
) == CONST_INT
&& oldmode
!= VOIDmode
801 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (oldmode
))
803 HOST_WIDE_INT val
= INTVAL (x
);
804 int width
= GET_MODE_BITSIZE (oldmode
);
806 /* We must sign or zero-extend in this case. Start by
807 zero-extending, then sign extend if we need to. */
808 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
810 && (val
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
811 val
|= (HOST_WIDE_INT
) (-1) << width
;
813 return gen_int_mode (val
, mode
);
816 return gen_lowpart (mode
, x
);
819 /* Converting from integer constant into mode is always equivalent to an
821 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
823 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
824 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
827 temp
= gen_reg_rtx (mode
);
828 convert_move (temp
, x
, unsignedp
);
832 /* STORE_MAX_PIECES is the number of bytes at a time that we can
833 store efficiently. Due to internal GCC limitations, this is
834 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
835 for an immediate constant. */
837 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
839 /* Determine whether the LEN bytes can be moved by using several move
840 instructions. Return nonzero if a call to move_by_pieces should
844 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
845 unsigned int align ATTRIBUTE_UNUSED
)
847 return MOVE_BY_PIECES_P (len
, align
);
850 /* Generate several move instructions to copy LEN bytes from block FROM to
851 block TO. (These are MEM rtx's with BLKmode).
853 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
854 used to push FROM to the stack.
856 ALIGN is maximum stack alignment we can assume.
858 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
859 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
863 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
864 unsigned int align
, int endp
)
866 struct move_by_pieces data
;
867 rtx to_addr
, from_addr
= XEXP (from
, 0);
868 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
869 enum machine_mode mode
= VOIDmode
, tmode
;
870 enum insn_code icode
;
872 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
875 data
.from_addr
= from_addr
;
878 to_addr
= XEXP (to
, 0);
881 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
882 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
884 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
891 #ifdef STACK_GROWS_DOWNWARD
897 data
.to_addr
= to_addr
;
900 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
901 || GET_CODE (from_addr
) == POST_INC
902 || GET_CODE (from_addr
) == POST_DEC
);
904 data
.explicit_inc_from
= 0;
905 data
.explicit_inc_to
= 0;
906 if (data
.reverse
) data
.offset
= len
;
909 /* If copying requires more than two move insns,
910 copy addresses to registers (to make displacements shorter)
911 and use post-increment if available. */
912 if (!(data
.autinc_from
&& data
.autinc_to
)
913 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
915 /* Find the mode of the largest move... */
916 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
917 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
918 if (GET_MODE_SIZE (tmode
) < max_size
)
921 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
923 data
.from_addr
= copy_addr_to_reg (plus_constant (from_addr
, len
));
924 data
.autinc_from
= 1;
925 data
.explicit_inc_from
= -1;
927 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
929 data
.from_addr
= copy_addr_to_reg (from_addr
);
930 data
.autinc_from
= 1;
931 data
.explicit_inc_from
= 1;
933 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
934 data
.from_addr
= copy_addr_to_reg (from_addr
);
935 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
937 data
.to_addr
= copy_addr_to_reg (plus_constant (to_addr
, len
));
939 data
.explicit_inc_to
= -1;
941 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
943 data
.to_addr
= copy_addr_to_reg (to_addr
);
945 data
.explicit_inc_to
= 1;
947 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
948 data
.to_addr
= copy_addr_to_reg (to_addr
);
951 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
952 if (align
>= GET_MODE_ALIGNMENT (tmode
))
953 align
= GET_MODE_ALIGNMENT (tmode
);
956 enum machine_mode xmode
;
958 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
960 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
961 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
962 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
965 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
968 /* First move what we can in the largest integer mode, then go to
969 successively smaller modes. */
973 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
974 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
975 if (GET_MODE_SIZE (tmode
) < max_size
)
978 if (mode
== VOIDmode
)
981 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
982 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
983 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
985 max_size
= GET_MODE_SIZE (mode
);
988 /* The code above should have handled everything. */
989 gcc_assert (!data
.len
);
995 gcc_assert (!data
.reverse
);
1000 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
1001 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
1003 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
1006 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
1013 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
1021 /* Return number of insns required to move L bytes by pieces.
1022 ALIGN (in bits) is maximum alignment we can assume. */
1024 static unsigned HOST_WIDE_INT
1025 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
1026 unsigned int max_size
)
1028 unsigned HOST_WIDE_INT n_insns
= 0;
1029 enum machine_mode tmode
;
1031 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
1032 if (align
>= GET_MODE_ALIGNMENT (tmode
))
1033 align
= GET_MODE_ALIGNMENT (tmode
);
1036 enum machine_mode tmode
, xmode
;
1038 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
1040 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
1041 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
1042 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
1045 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
1048 while (max_size
> 1)
1050 enum machine_mode mode
= VOIDmode
;
1051 enum insn_code icode
;
1053 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1054 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
1055 if (GET_MODE_SIZE (tmode
) < max_size
)
1058 if (mode
== VOIDmode
)
1061 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
1062 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1063 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1065 max_size
= GET_MODE_SIZE (mode
);
1072 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1073 with move instructions for mode MODE. GENFUN is the gen_... function
1074 to make a move insn for that mode. DATA has all the other info. */
1077 move_by_pieces_1 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
1078 struct move_by_pieces
*data
)
1080 unsigned int size
= GET_MODE_SIZE (mode
);
1081 rtx to1
= NULL_RTX
, from1
;
1083 while (data
->len
>= size
)
1086 data
->offset
-= size
;
1090 if (data
->autinc_to
)
1091 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1094 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1097 if (data
->autinc_from
)
1098 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1101 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1103 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1104 emit_insn (gen_add2_insn (data
->to_addr
,
1105 GEN_INT (-(HOST_WIDE_INT
)size
)));
1106 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1107 emit_insn (gen_add2_insn (data
->from_addr
,
1108 GEN_INT (-(HOST_WIDE_INT
)size
)));
1111 emit_insn ((*genfun
) (to1
, from1
));
1114 #ifdef PUSH_ROUNDING
1115 emit_single_push_insn (mode
, from1
, NULL
);
1121 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1122 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
1123 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1124 emit_insn (gen_add2_insn (data
->from_addr
, GEN_INT (size
)));
1126 if (! data
->reverse
)
1127 data
->offset
+= size
;
1133 /* Emit code to move a block Y to a block X. This may be done with
1134 string-move instructions, with multiple scalar move instructions,
1135 or with a library call.
1137 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1138 SIZE is an rtx that says how long they are.
1139 ALIGN is the maximum alignment we can assume they have.
1140 METHOD describes what kind of copy this is, and what mechanisms may be used.
1142 Return the address of the new block, if memcpy is called and returns it,
1146 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1154 case BLOCK_OP_NORMAL
:
1155 case BLOCK_OP_TAILCALL
:
1156 may_use_call
= true;
1159 case BLOCK_OP_CALL_PARM
:
1160 may_use_call
= block_move_libcall_safe_for_call_parm ();
1162 /* Make inhibit_defer_pop nonzero around the library call
1163 to force it to pop the arguments right away. */
1167 case BLOCK_OP_NO_LIBCALL
:
1168 may_use_call
= false;
1175 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1177 gcc_assert (MEM_P (x
));
1178 gcc_assert (MEM_P (y
));
1181 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1182 block copy is more efficient for other large modes, e.g. DCmode. */
1183 x
= adjust_address (x
, BLKmode
, 0);
1184 y
= adjust_address (y
, BLKmode
, 0);
1186 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1187 can be incorrect is coming from __builtin_memcpy. */
1188 if (GET_CODE (size
) == CONST_INT
)
1190 if (INTVAL (size
) == 0)
1193 x
= shallow_copy_rtx (x
);
1194 y
= shallow_copy_rtx (y
);
1195 set_mem_size (x
, size
);
1196 set_mem_size (y
, size
);
1199 if (GET_CODE (size
) == CONST_INT
&& MOVE_BY_PIECES_P (INTVAL (size
), align
))
1200 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1201 else if (emit_block_move_via_movmem (x
, y
, size
, align
))
1203 else if (may_use_call
)
1204 retval
= emit_block_move_via_libcall (x
, y
, size
,
1205 method
== BLOCK_OP_TAILCALL
);
1207 emit_block_move_via_loop (x
, y
, size
, align
);
1209 if (method
== BLOCK_OP_CALL_PARM
)
1215 /* A subroutine of emit_block_move. Returns true if calling the
1216 block move libcall will not clobber any parameters which may have
1217 already been placed on the stack. */
1220 block_move_libcall_safe_for_call_parm (void)
1222 /* If arguments are pushed on the stack, then they're safe. */
1226 /* If registers go on the stack anyway, any argument is sure to clobber
1227 an outgoing argument. */
1228 #if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
1230 tree fn
= emit_block_move_libcall_fn (false);
1232 if (REG_PARM_STACK_SPACE (fn
) != 0)
1237 /* If any argument goes in memory, then it might clobber an outgoing
1240 CUMULATIVE_ARGS args_so_far
;
1243 fn
= emit_block_move_libcall_fn (false);
1244 INIT_CUMULATIVE_ARGS (args_so_far
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1246 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1247 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1249 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1250 rtx tmp
= FUNCTION_ARG (args_so_far
, mode
, NULL_TREE
, 1);
1251 if (!tmp
|| !REG_P (tmp
))
1253 if (targetm
.calls
.arg_partial_bytes (&args_so_far
, mode
, NULL
, 1))
1255 FUNCTION_ARG_ADVANCE (args_so_far
, mode
, NULL_TREE
, 1);
1261 /* A subroutine of emit_block_move. Expand a movmem pattern;
1262 return true if successful. */
1265 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
)
1267 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
1268 int save_volatile_ok
= volatile_ok
;
1269 enum machine_mode mode
;
1271 /* Since this is a move insn, we don't care about volatility. */
1274 /* Try the most limited insn first, because there's no point
1275 including more than one in the machine description unless
1276 the more limited one has some advantage. */
1278 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1279 mode
= GET_MODE_WIDER_MODE (mode
))
1281 enum insn_code code
= movmem_optab
[(int) mode
];
1282 insn_operand_predicate_fn pred
;
1284 if (code
!= CODE_FOR_nothing
1285 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1286 here because if SIZE is less than the mode mask, as it is
1287 returned by the macro, it will definitely be less than the
1288 actual mode mask. */
1289 && ((GET_CODE (size
) == CONST_INT
1290 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1291 <= (GET_MODE_MASK (mode
) >> 1)))
1292 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
1293 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
1294 || (*pred
) (x
, BLKmode
))
1295 && ((pred
= insn_data
[(int) code
].operand
[1].predicate
) == 0
1296 || (*pred
) (y
, BLKmode
))
1297 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
1298 || (*pred
) (opalign
, VOIDmode
)))
1301 rtx last
= get_last_insn ();
1304 op2
= convert_to_mode (mode
, size
, 1);
1305 pred
= insn_data
[(int) code
].operand
[2].predicate
;
1306 if (pred
!= 0 && ! (*pred
) (op2
, mode
))
1307 op2
= copy_to_mode_reg (mode
, op2
);
1309 /* ??? When called via emit_block_move_for_call, it'd be
1310 nice if there were some way to inform the backend, so
1311 that it doesn't fail the expansion because it thinks
1312 emitting the libcall would be more efficient. */
1314 pat
= GEN_FCN ((int) code
) (x
, y
, op2
, opalign
);
1318 volatile_ok
= save_volatile_ok
;
1322 delete_insns_since (last
);
1326 volatile_ok
= save_volatile_ok
;
1330 /* A subroutine of emit_block_move. Expand a call to memcpy.
1331 Return the return value from memcpy, 0 otherwise. */
1334 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1336 rtx dst_addr
, src_addr
;
1337 tree call_expr
, arg_list
, fn
, src_tree
, dst_tree
, size_tree
;
1338 enum machine_mode size_mode
;
1341 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1342 pseudos. We can then place those new pseudos into a VAR_DECL and
1345 dst_addr
= copy_to_mode_reg (Pmode
, XEXP (dst
, 0));
1346 src_addr
= copy_to_mode_reg (Pmode
, XEXP (src
, 0));
1348 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1349 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1351 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1352 src_tree
= make_tree (ptr_type_node
, src_addr
);
1354 size_mode
= TYPE_MODE (sizetype
);
1356 size
= convert_to_mode (size_mode
, size
, 1);
1357 size
= copy_to_mode_reg (size_mode
, size
);
1359 /* It is incorrect to use the libcall calling conventions to call
1360 memcpy in this context. This could be a user call to memcpy and
1361 the user may wish to examine the return value from memcpy. For
1362 targets where libcalls and normal calls have different conventions
1363 for returning pointers, we could end up generating incorrect code. */
1365 size_tree
= make_tree (sizetype
, size
);
1367 fn
= emit_block_move_libcall_fn (true);
1368 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
1369 arg_list
= tree_cons (NULL_TREE
, src_tree
, arg_list
);
1370 arg_list
= tree_cons (NULL_TREE
, dst_tree
, arg_list
);
1372 /* Now we have to build up the CALL_EXPR itself. */
1373 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
1374 call_expr
= build3 (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
1375 call_expr
, arg_list
, NULL_TREE
);
1376 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1378 retval
= expand_expr (call_expr
, NULL_RTX
, VOIDmode
, 0);
1383 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1384 for the function we use for block copies. The first time FOR_CALL
1385 is true, we call assemble_external. */
1387 static GTY(()) tree block_move_fn
;
1390 init_block_move_fn (const char *asmspec
)
1396 fn
= get_identifier ("memcpy");
1397 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1398 const_ptr_type_node
, sizetype
,
1401 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
1402 DECL_EXTERNAL (fn
) = 1;
1403 TREE_PUBLIC (fn
) = 1;
1404 DECL_ARTIFICIAL (fn
) = 1;
1405 TREE_NOTHROW (fn
) = 1;
1411 set_user_assembler_name (block_move_fn
, asmspec
);
1415 emit_block_move_libcall_fn (int for_call
)
1417 static bool emitted_extern
;
1420 init_block_move_fn (NULL
);
1422 if (for_call
&& !emitted_extern
)
1424 emitted_extern
= true;
1425 make_decl_rtl (block_move_fn
);
1426 assemble_external (block_move_fn
);
1429 return block_move_fn
;
1432 /* A subroutine of emit_block_move. Copy the data via an explicit
1433 loop. This is used only when libcalls are forbidden. */
1434 /* ??? It'd be nice to copy in hunks larger than QImode. */
1437 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1438 unsigned int align ATTRIBUTE_UNUSED
)
1440 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
1441 enum machine_mode iter_mode
;
1443 iter_mode
= GET_MODE (size
);
1444 if (iter_mode
== VOIDmode
)
1445 iter_mode
= word_mode
;
1447 top_label
= gen_label_rtx ();
1448 cmp_label
= gen_label_rtx ();
1449 iter
= gen_reg_rtx (iter_mode
);
1451 emit_move_insn (iter
, const0_rtx
);
1453 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1454 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1455 do_pending_stack_adjust ();
1457 emit_jump (cmp_label
);
1458 emit_label (top_label
);
1460 tmp
= convert_modes (Pmode
, iter_mode
, iter
, true);
1461 x_addr
= gen_rtx_PLUS (Pmode
, x_addr
, tmp
);
1462 y_addr
= gen_rtx_PLUS (Pmode
, y_addr
, tmp
);
1463 x
= change_address (x
, QImode
, x_addr
);
1464 y
= change_address (y
, QImode
, y_addr
);
1466 emit_move_insn (x
, y
);
1468 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1469 true, OPTAB_LIB_WIDEN
);
1471 emit_move_insn (iter
, tmp
);
1473 emit_label (cmp_label
);
1475 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1479 /* Copy all or part of a value X into registers starting at REGNO.
1480 The number of registers to be filled is NREGS. */
1483 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
1486 #ifdef HAVE_load_multiple
1494 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
1495 x
= validize_mem (force_const_mem (mode
, x
));
1497 /* See if the machine can do this with a load multiple insn. */
1498 #ifdef HAVE_load_multiple
1499 if (HAVE_load_multiple
)
1501 last
= get_last_insn ();
1502 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1510 delete_insns_since (last
);
1514 for (i
= 0; i
< nregs
; i
++)
1515 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1516 operand_subword_force (x
, i
, mode
));
1519 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1520 The number of registers to be filled is NREGS. */
1523 move_block_from_reg (int regno
, rtx x
, int nregs
)
1530 /* See if the machine can do this with a store multiple insn. */
1531 #ifdef HAVE_store_multiple
1532 if (HAVE_store_multiple
)
1534 rtx last
= get_last_insn ();
1535 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1543 delete_insns_since (last
);
1547 for (i
= 0; i
< nregs
; i
++)
1549 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1553 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1557 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1558 ORIG, where ORIG is a non-consecutive group of registers represented by
1559 a PARALLEL. The clone is identical to the original except in that the
1560 original set of registers is replaced by a new set of pseudo registers.
1561 The new set has the same modes as the original set. */
1564 gen_group_rtx (rtx orig
)
1569 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1571 length
= XVECLEN (orig
, 0);
1572 tmps
= alloca (sizeof (rtx
) * length
);
1574 /* Skip a NULL entry in first slot. */
1575 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1580 for (; i
< length
; i
++)
1582 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1583 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1585 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1588 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1591 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1592 except that values are placed in TMPS[i], and must later be moved
1593 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1596 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1600 enum machine_mode m
= GET_MODE (orig_src
);
1602 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1605 && !SCALAR_INT_MODE_P (m
)
1606 && !MEM_P (orig_src
)
1607 && GET_CODE (orig_src
) != CONCAT
)
1609 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1610 if (imode
== BLKmode
)
1611 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
, 0);
1613 src
= gen_reg_rtx (imode
);
1614 if (imode
!= BLKmode
)
1615 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1616 emit_move_insn (src
, orig_src
);
1617 /* ...and back again. */
1618 if (imode
!= BLKmode
)
1619 src
= gen_lowpart (imode
, src
);
1620 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1624 /* Check for a NULL entry, used to indicate that the parameter goes
1625 both on the stack and in registers. */
1626 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1631 /* Process the pieces. */
1632 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1634 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1635 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1636 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1639 /* Handle trailing fragments that run over the size of the struct. */
1640 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1642 /* Arrange to shift the fragment to where it belongs.
1643 extract_bit_field loads to the lsb of the reg. */
1645 #ifdef BLOCK_REG_PADDING
1646 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1647 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1652 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1653 bytelen
= ssize
- bytepos
;
1654 gcc_assert (bytelen
> 0);
1657 /* If we won't be loading directly from memory, protect the real source
1658 from strange tricks we might play; but make sure that the source can
1659 be loaded directly into the destination. */
1661 if (!MEM_P (orig_src
)
1662 && (!CONSTANT_P (orig_src
)
1663 || (GET_MODE (orig_src
) != mode
1664 && GET_MODE (orig_src
) != VOIDmode
)))
1666 if (GET_MODE (orig_src
) == VOIDmode
)
1667 src
= gen_reg_rtx (mode
);
1669 src
= gen_reg_rtx (GET_MODE (orig_src
));
1671 emit_move_insn (src
, orig_src
);
1674 /* Optimize the access just a bit. */
1676 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1677 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1678 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1679 && bytelen
== GET_MODE_SIZE (mode
))
1681 tmps
[i
] = gen_reg_rtx (mode
);
1682 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1684 else if (COMPLEX_MODE_P (mode
)
1685 && GET_MODE (src
) == mode
1686 && bytelen
== GET_MODE_SIZE (mode
))
1687 /* Let emit_move_complex do the bulk of the work. */
1689 else if (GET_CODE (src
) == CONCAT
)
1691 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1692 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1694 if ((bytepos
== 0 && bytelen
== slen0
)
1695 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1697 /* The following assumes that the concatenated objects all
1698 have the same size. In this case, a simple calculation
1699 can be used to determine the object and the bit field
1701 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1702 if (! CONSTANT_P (tmps
[i
])
1703 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1704 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1705 (bytepos
% slen0
) * BITS_PER_UNIT
,
1706 1, NULL_RTX
, mode
, mode
);
1712 gcc_assert (!bytepos
);
1713 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1714 emit_move_insn (mem
, src
);
1715 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1716 0, 1, NULL_RTX
, mode
, mode
);
1719 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1720 SIMD register, which is currently broken. While we get GCC
1721 to emit proper RTL for these cases, let's dump to memory. */
1722 else if (VECTOR_MODE_P (GET_MODE (dst
))
1725 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1728 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1729 emit_move_insn (mem
, src
);
1730 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1732 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1733 && XVECLEN (dst
, 0) > 1)
1734 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE(dst
), bytepos
);
1735 else if (CONSTANT_P (src
)
1736 || (REG_P (src
) && GET_MODE (src
) == mode
))
1739 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1740 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1744 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1745 build_int_cst (NULL_TREE
, shift
), tmps
[i
], 0);
1749 /* Emit code to move a block SRC of type TYPE to a block DST,
1750 where DST is non-consecutive registers represented by a PARALLEL.
1751 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1755 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1760 tmps
= alloca (sizeof (rtx
) * XVECLEN (dst
, 0));
1761 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1763 /* Copy the extracted pieces into the proper (probable) hard regs. */
1764 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1766 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1769 emit_move_insn (d
, tmps
[i
]);
1773 /* Similar, but load SRC into new pseudos in a format that looks like
1774 PARALLEL. This can later be fed to emit_group_move to get things
1775 in the right place. */
1778 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1783 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1784 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1786 /* Convert the vector to look just like the original PARALLEL, except
1787 with the computed values. */
1788 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1790 rtx e
= XVECEXP (parallel
, 0, i
);
1791 rtx d
= XEXP (e
, 0);
1795 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1796 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1798 RTVEC_ELT (vec
, i
) = e
;
1801 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1804 /* Emit code to move a block SRC to block DST, where SRC and DST are
1805 non-consecutive groups of registers, each represented by a PARALLEL. */
1808 emit_group_move (rtx dst
, rtx src
)
1812 gcc_assert (GET_CODE (src
) == PARALLEL
1813 && GET_CODE (dst
) == PARALLEL
1814 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1816 /* Skip first entry if NULL. */
1817 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1818 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1819 XEXP (XVECEXP (src
, 0, i
), 0));
1822 /* Move a group of registers represented by a PARALLEL into pseudos. */
1825 emit_group_move_into_temps (rtx src
)
1827 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1830 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1832 rtx e
= XVECEXP (src
, 0, i
);
1833 rtx d
= XEXP (e
, 0);
1836 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1837 RTVEC_ELT (vec
, i
) = e
;
1840 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1843 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1844 where SRC is non-consecutive registers represented by a PARALLEL.
1845 SSIZE represents the total size of block ORIG_DST, or -1 if not
1849 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1853 enum machine_mode m
= GET_MODE (orig_dst
);
1855 gcc_assert (GET_CODE (src
) == PARALLEL
);
1857 if (!SCALAR_INT_MODE_P (m
)
1858 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1860 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1861 if (imode
== BLKmode
)
1862 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
, 0);
1864 dst
= gen_reg_rtx (imode
);
1865 emit_group_store (dst
, src
, type
, ssize
);
1866 if (imode
!= BLKmode
)
1867 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1868 emit_move_insn (orig_dst
, dst
);
1872 /* Check for a NULL entry, used to indicate that the parameter goes
1873 both on the stack and in registers. */
1874 if (XEXP (XVECEXP (src
, 0, 0), 0))
1879 tmps
= alloca (sizeof (rtx
) * XVECLEN (src
, 0));
1881 /* Copy the (probable) hard regs into pseudos. */
1882 for (i
= start
; i
< XVECLEN (src
, 0); i
++)
1884 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1885 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1886 emit_move_insn (tmps
[i
], reg
);
1889 /* If we won't be storing directly into memory, protect the real destination
1890 from strange tricks we might play. */
1892 if (GET_CODE (dst
) == PARALLEL
)
1896 /* We can get a PARALLEL dst if there is a conditional expression in
1897 a return statement. In that case, the dst and src are the same,
1898 so no action is necessary. */
1899 if (rtx_equal_p (dst
, src
))
1902 /* It is unclear if we can ever reach here, but we may as well handle
1903 it. Allocate a temporary, and split this into a store/load to/from
1906 temp
= assign_stack_temp (GET_MODE (dst
), ssize
, 0);
1907 emit_group_store (temp
, src
, type
, ssize
);
1908 emit_group_load (dst
, temp
, type
, ssize
);
1911 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1913 dst
= gen_reg_rtx (GET_MODE (orig_dst
));
1914 /* Make life a bit easier for combine. */
1915 emit_move_insn (dst
, CONST0_RTX (GET_MODE (orig_dst
)));
1918 /* Process the pieces. */
1919 for (i
= start
; i
< XVECLEN (src
, 0); i
++)
1921 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
1922 enum machine_mode mode
= GET_MODE (tmps
[i
]);
1923 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1926 /* Handle trailing fragments that run over the size of the struct. */
1927 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1929 /* store_bit_field always takes its value from the lsb.
1930 Move the fragment to the lsb if it's not already there. */
1932 #ifdef BLOCK_REG_PADDING
1933 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
1934 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1940 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1941 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
1942 build_int_cst (NULL_TREE
, shift
),
1945 bytelen
= ssize
- bytepos
;
1948 if (GET_CODE (dst
) == CONCAT
)
1950 if (bytepos
+ bytelen
<= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
1951 dest
= XEXP (dst
, 0);
1952 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
1954 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
1955 dest
= XEXP (dst
, 1);
1959 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
1960 dest
= assign_stack_temp (GET_MODE (dest
),
1961 GET_MODE_SIZE (GET_MODE (dest
)), 0);
1962 emit_move_insn (adjust_address (dest
, GET_MODE (tmps
[i
]), bytepos
),
1969 /* Optimize the access just a bit. */
1971 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
1972 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
1973 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1974 && bytelen
== GET_MODE_SIZE (mode
))
1975 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
1977 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
1981 /* Copy from the pseudo into the (probable) hard reg. */
1982 if (orig_dst
!= dst
)
1983 emit_move_insn (orig_dst
, dst
);
1986 /* Generate code to copy a BLKmode object of TYPE out of a
1987 set of registers starting with SRCREG into TGTBLK. If TGTBLK
1988 is null, a stack temporary is created. TGTBLK is returned.
1990 The purpose of this routine is to handle functions that return
1991 BLKmode structures in registers. Some machines (the PA for example)
1992 want to return all small structures in registers regardless of the
1993 structure's alignment. */
1996 copy_blkmode_from_reg (rtx tgtblk
, rtx srcreg
, tree type
)
1998 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
1999 rtx src
= NULL
, dst
= NULL
;
2000 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2001 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2005 tgtblk
= assign_temp (build_qualified_type (type
,
2007 | TYPE_QUAL_CONST
)),
2009 preserve_temp_slots (tgtblk
);
2012 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2013 into a new pseudo which is a full word. */
2015 if (GET_MODE (srcreg
) != BLKmode
2016 && GET_MODE_SIZE (GET_MODE (srcreg
)) < UNITS_PER_WORD
)
2017 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2019 /* If the structure doesn't take up a whole number of words, see whether
2020 SRCREG is padded on the left or on the right. If it's on the left,
2021 set PADDING_CORRECTION to the number of bits to skip.
2023 In most ABIs, the structure will be returned at the least end of
2024 the register, which translates to right padding on little-endian
2025 targets and left padding on big-endian targets. The opposite
2026 holds if the structure is returned at the most significant
2027 end of the register. */
2028 if (bytes
% UNITS_PER_WORD
!= 0
2029 && (targetm
.calls
.return_in_msb (type
)
2031 : BYTES_BIG_ENDIAN
))
2033 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2035 /* Copy the structure BITSIZE bites at a time.
2037 We could probably emit more efficient code for machines which do not use
2038 strict alignment, but it doesn't seem worth the effort at the current
2040 for (bitpos
= 0, xbitpos
= padding_correction
;
2041 bitpos
< bytes
* BITS_PER_UNIT
;
2042 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2044 /* We need a new source operand each time xbitpos is on a
2045 word boundary and when xbitpos == padding_correction
2046 (the first time through). */
2047 if (xbitpos
% BITS_PER_WORD
== 0
2048 || xbitpos
== padding_correction
)
2049 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
,
2052 /* We need a new destination operand each time bitpos is on
2054 if (bitpos
% BITS_PER_WORD
== 0)
2055 dst
= operand_subword (tgtblk
, bitpos
/ BITS_PER_WORD
, 1, BLKmode
);
2057 /* Use xbitpos for the source extraction (right justified) and
2058 xbitpos for the destination store (left justified). */
2059 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, word_mode
,
2060 extract_bit_field (src
, bitsize
,
2061 xbitpos
% BITS_PER_WORD
, 1,
2062 NULL_RTX
, word_mode
, word_mode
));
2068 /* Add a USE expression for REG to the (possibly empty) list pointed
2069 to by CALL_FUSAGE. REG must denote a hard register. */
2072 use_reg (rtx
*call_fusage
, rtx reg
)
2074 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2077 = gen_rtx_EXPR_LIST (VOIDmode
,
2078 gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2081 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2082 starting at REGNO. All of these registers must be hard registers. */
2085 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2089 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2091 for (i
= 0; i
< nregs
; i
++)
2092 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2095 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2096 PARALLEL REGS. This is for calls that pass values in multiple
2097 non-contiguous locations. The Irix 6 ABI has examples of this. */
2100 use_group_regs (rtx
*call_fusage
, rtx regs
)
2104 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2106 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2108 /* A NULL entry means the parameter goes both on the stack and in
2109 registers. This can also be a MEM for targets that pass values
2110 partially on the stack and partially in registers. */
2111 if (reg
!= 0 && REG_P (reg
))
2112 use_reg (call_fusage
, reg
);
2117 /* Determine whether the LEN bytes generated by CONSTFUN can be
2118 stored to memory using several move instructions. CONSTFUNDATA is
2119 a pointer which will be passed as argument in every CONSTFUN call.
2120 ALIGN is maximum alignment we can assume. Return nonzero if a
2121 call to store_by_pieces should succeed. */
2124 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2125 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2126 void *constfundata
, unsigned int align
)
2128 unsigned HOST_WIDE_INT l
;
2129 unsigned int max_size
;
2130 HOST_WIDE_INT offset
= 0;
2131 enum machine_mode mode
, tmode
;
2132 enum insn_code icode
;
2139 if (! STORE_BY_PIECES_P (len
, align
))
2142 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2143 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2144 align
= GET_MODE_ALIGNMENT (tmode
);
2147 enum machine_mode xmode
;
2149 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2151 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2152 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2153 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2156 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2159 /* We would first store what we can in the largest integer mode, then go to
2160 successively smaller modes. */
2163 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2168 max_size
= STORE_MAX_PIECES
+ 1;
2169 while (max_size
> 1)
2171 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2172 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2173 if (GET_MODE_SIZE (tmode
) < max_size
)
2176 if (mode
== VOIDmode
)
2179 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2180 if (icode
!= CODE_FOR_nothing
2181 && align
>= GET_MODE_ALIGNMENT (mode
))
2183 unsigned int size
= GET_MODE_SIZE (mode
);
2190 cst
= (*constfun
) (constfundata
, offset
, mode
);
2191 if (!LEGITIMATE_CONSTANT_P (cst
))
2201 max_size
= GET_MODE_SIZE (mode
);
2204 /* The code above should have handled everything. */
2211 /* Generate several move instructions to store LEN bytes generated by
2212 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2213 pointer which will be passed as argument in every CONSTFUN call.
2214 ALIGN is maximum alignment we can assume.
2215 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2216 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2220 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2221 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2222 void *constfundata
, unsigned int align
, int endp
)
2224 struct store_by_pieces data
;
2228 gcc_assert (endp
!= 2);
2232 gcc_assert (STORE_BY_PIECES_P (len
, align
));
2233 data
.constfun
= constfun
;
2234 data
.constfundata
= constfundata
;
2237 store_by_pieces_1 (&data
, align
);
2242 gcc_assert (!data
.reverse
);
2247 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2248 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2250 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
2253 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2260 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2268 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2269 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2272 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2274 struct store_by_pieces data
;
2279 data
.constfun
= clear_by_pieces_1
;
2280 data
.constfundata
= NULL
;
2283 store_by_pieces_1 (&data
, align
);
2286 /* Callback routine for clear_by_pieces.
2287 Return const0_rtx unconditionally. */
2290 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2291 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2292 enum machine_mode mode ATTRIBUTE_UNUSED
)
2297 /* Subroutine of clear_by_pieces and store_by_pieces.
2298 Generate several move instructions to store LEN bytes of block TO. (A MEM
2299 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2302 store_by_pieces_1 (struct store_by_pieces
*data ATTRIBUTE_UNUSED
,
2303 unsigned int align ATTRIBUTE_UNUSED
)
2305 rtx to_addr
= XEXP (data
->to
, 0);
2306 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2307 enum machine_mode mode
= VOIDmode
, tmode
;
2308 enum insn_code icode
;
2311 data
->to_addr
= to_addr
;
2313 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2314 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2316 data
->explicit_inc_to
= 0;
2318 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2320 data
->offset
= data
->len
;
2322 /* If storing requires more than two move insns,
2323 copy addresses to registers (to make displacements shorter)
2324 and use post-increment if available. */
2325 if (!data
->autinc_to
2326 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2328 /* Determine the main mode we'll be using. */
2329 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2330 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2331 if (GET_MODE_SIZE (tmode
) < max_size
)
2334 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2336 data
->to_addr
= copy_addr_to_reg (plus_constant (to_addr
, data
->len
));
2337 data
->autinc_to
= 1;
2338 data
->explicit_inc_to
= -1;
2341 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2342 && ! data
->autinc_to
)
2344 data
->to_addr
= copy_addr_to_reg (to_addr
);
2345 data
->autinc_to
= 1;
2346 data
->explicit_inc_to
= 1;
2349 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2350 data
->to_addr
= copy_addr_to_reg (to_addr
);
2353 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2354 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2355 align
= GET_MODE_ALIGNMENT (tmode
);
2358 enum machine_mode xmode
;
2360 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2362 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2363 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2364 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2367 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2370 /* First store what we can in the largest integer mode, then go to
2371 successively smaller modes. */
2373 while (max_size
> 1)
2375 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2376 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2377 if (GET_MODE_SIZE (tmode
) < max_size
)
2380 if (mode
== VOIDmode
)
2383 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2384 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2385 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2387 max_size
= GET_MODE_SIZE (mode
);
2390 /* The code above should have handled everything. */
2391 gcc_assert (!data
->len
);
2394 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2395 with move instructions for mode MODE. GENFUN is the gen_... function
2396 to make a move insn for that mode. DATA has all the other info. */
2399 store_by_pieces_2 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
2400 struct store_by_pieces
*data
)
2402 unsigned int size
= GET_MODE_SIZE (mode
);
2405 while (data
->len
>= size
)
2408 data
->offset
-= size
;
2410 if (data
->autinc_to
)
2411 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2414 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2416 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2417 emit_insn (gen_add2_insn (data
->to_addr
,
2418 GEN_INT (-(HOST_WIDE_INT
) size
)));
2420 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2421 emit_insn ((*genfun
) (to1
, cst
));
2423 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2424 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
2426 if (! data
->reverse
)
2427 data
->offset
+= size
;
2433 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2434 its length in bytes. */
2437 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2439 enum machine_mode mode
= GET_MODE (object
);
2442 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2444 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2445 just move a zero. Otherwise, do this a piece at a time. */
2447 && GET_CODE (size
) == CONST_INT
2448 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2450 rtx zero
= CONST0_RTX (mode
);
2453 emit_move_insn (object
, zero
);
2457 if (COMPLEX_MODE_P (mode
))
2459 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2462 write_complex_part (object
, zero
, 0);
2463 write_complex_part (object
, zero
, 1);
2469 if (size
== const0_rtx
)
2472 align
= MEM_ALIGN (object
);
2474 if (GET_CODE (size
) == CONST_INT
2475 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2476 clear_by_pieces (object
, INTVAL (size
), align
);
2477 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
))
2480 return clear_storage_via_libcall (object
, size
,
2481 method
== BLOCK_OP_TAILCALL
);
2486 /* A subroutine of clear_storage. Expand a call to memset.
2487 Return the return value of memset, 0 otherwise. */
2490 clear_storage_via_libcall (rtx object
, rtx size
, bool tailcall
)
2492 tree call_expr
, arg_list
, fn
, object_tree
, size_tree
;
2493 enum machine_mode size_mode
;
2496 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2497 place those into new pseudos into a VAR_DECL and use them later. */
2499 object
= copy_to_mode_reg (Pmode
, XEXP (object
, 0));
2501 size_mode
= TYPE_MODE (sizetype
);
2502 size
= convert_to_mode (size_mode
, size
, 1);
2503 size
= copy_to_mode_reg (size_mode
, size
);
2505 /* It is incorrect to use the libcall calling conventions to call
2506 memset in this context. This could be a user call to memset and
2507 the user may wish to examine the return value from memset. For
2508 targets where libcalls and normal calls have different conventions
2509 for returning pointers, we could end up generating incorrect code. */
2511 object_tree
= make_tree (ptr_type_node
, object
);
2512 size_tree
= make_tree (sizetype
, size
);
2514 fn
= clear_storage_libcall_fn (true);
2515 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
2516 arg_list
= tree_cons (NULL_TREE
, integer_zero_node
, arg_list
);
2517 arg_list
= tree_cons (NULL_TREE
, object_tree
, arg_list
);
2519 /* Now we have to build up the CALL_EXPR itself. */
2520 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
2521 call_expr
= build3 (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
2522 call_expr
, arg_list
, NULL_TREE
);
2523 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2525 retval
= expand_expr (call_expr
, NULL_RTX
, VOIDmode
, 0);
2530 /* A subroutine of clear_storage_via_libcall. Create the tree node
2531 for the function we use for block clears. The first time FOR_CALL
2532 is true, we call assemble_external. */
2534 static GTY(()) tree block_clear_fn
;
2537 init_block_clear_fn (const char *asmspec
)
2539 if (!block_clear_fn
)
2543 fn
= get_identifier ("memset");
2544 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2545 integer_type_node
, sizetype
,
2548 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
2549 DECL_EXTERNAL (fn
) = 1;
2550 TREE_PUBLIC (fn
) = 1;
2551 DECL_ARTIFICIAL (fn
) = 1;
2552 TREE_NOTHROW (fn
) = 1;
2554 block_clear_fn
= fn
;
2558 set_user_assembler_name (block_clear_fn
, asmspec
);
2562 clear_storage_libcall_fn (int for_call
)
2564 static bool emitted_extern
;
2566 if (!block_clear_fn
)
2567 init_block_clear_fn (NULL
);
2569 if (for_call
&& !emitted_extern
)
2571 emitted_extern
= true;
2572 make_decl_rtl (block_clear_fn
);
2573 assemble_external (block_clear_fn
);
2576 return block_clear_fn
;
2579 /* Expand a setmem pattern; return true if successful. */
2582 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
)
2584 /* Try the most limited insn first, because there's no point
2585 including more than one in the machine description unless
2586 the more limited one has some advantage. */
2588 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
2589 enum machine_mode mode
;
2591 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2592 mode
= GET_MODE_WIDER_MODE (mode
))
2594 enum insn_code code
= setmem_optab
[(int) mode
];
2595 insn_operand_predicate_fn pred
;
2597 if (code
!= CODE_FOR_nothing
2598 /* We don't need MODE to be narrower than
2599 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2600 the mode mask, as it is returned by the macro, it will
2601 definitely be less than the actual mode mask. */
2602 && ((GET_CODE (size
) == CONST_INT
2603 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2604 <= (GET_MODE_MASK (mode
) >> 1)))
2605 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
2606 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
2607 || (*pred
) (object
, BLKmode
))
2608 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
2609 || (*pred
) (opalign
, VOIDmode
)))
2612 enum machine_mode char_mode
;
2613 rtx last
= get_last_insn ();
2616 opsize
= convert_to_mode (mode
, size
, 1);
2617 pred
= insn_data
[(int) code
].operand
[1].predicate
;
2618 if (pred
!= 0 && ! (*pred
) (opsize
, mode
))
2619 opsize
= copy_to_mode_reg (mode
, opsize
);
2622 char_mode
= insn_data
[(int) code
].operand
[2].mode
;
2623 if (char_mode
!= VOIDmode
)
2625 opchar
= convert_to_mode (char_mode
, opchar
, 1);
2626 pred
= insn_data
[(int) code
].operand
[2].predicate
;
2627 if (pred
!= 0 && ! (*pred
) (opchar
, char_mode
))
2628 opchar
= copy_to_mode_reg (char_mode
, opchar
);
2631 pat
= GEN_FCN ((int) code
) (object
, opsize
, opchar
, opalign
);
2638 delete_insns_since (last
);
2646 /* Write to one of the components of the complex value CPLX. Write VAL to
2647 the real part if IMAG_P is false, and the imaginary part if its true. */
2650 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
2652 enum machine_mode cmode
;
2653 enum machine_mode imode
;
2656 if (GET_CODE (cplx
) == CONCAT
)
2658 emit_move_insn (XEXP (cplx
, imag_p
), val
);
2662 cmode
= GET_MODE (cplx
);
2663 imode
= GET_MODE_INNER (cmode
);
2664 ibitsize
= GET_MODE_BITSIZE (imode
);
2666 /* For MEMs simplify_gen_subreg may generate an invalid new address
2667 because, e.g., the original address is considered mode-dependent
2668 by the target, which restricts simplify_subreg from invoking
2669 adjust_address_nv. Instead of preparing fallback support for an
2670 invalid address, we call adjust_address_nv directly. */
2672 emit_move_insn (adjust_address_nv (cplx
, imode
,
2673 imag_p
? GET_MODE_SIZE (imode
) : 0),
2676 /* If the sub-object is at least word sized, then we know that subregging
2677 will work. This special case is important, since store_bit_field
2678 wants to operate on integer modes, and there's rarely an OImode to
2679 correspond to TCmode. */
2680 if (ibitsize
>= BITS_PER_WORD
2681 /* For hard regs we have exact predicates. Assume we can split
2682 the original object if it spans an even number of hard regs.
2683 This special case is important for SCmode on 64-bit platforms
2684 where the natural size of floating-point regs is 32-bit. */
2686 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2687 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2689 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
2690 imag_p
? GET_MODE_SIZE (imode
) : 0);
2693 emit_move_insn (part
, val
);
2697 /* simplify_gen_subreg may fail for sub-word MEMs. */
2698 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2701 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, imode
, val
);
2704 /* Extract one of the components of the complex value CPLX. Extract the
2705 real part if IMAG_P is false, and the imaginary part if it's true. */
2708 read_complex_part (rtx cplx
, bool imag_p
)
2710 enum machine_mode cmode
, imode
;
2713 if (GET_CODE (cplx
) == CONCAT
)
2714 return XEXP (cplx
, imag_p
);
2716 cmode
= GET_MODE (cplx
);
2717 imode
= GET_MODE_INNER (cmode
);
2718 ibitsize
= GET_MODE_BITSIZE (imode
);
2720 /* Special case reads from complex constants that got spilled to memory. */
2721 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
2723 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
2724 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
2726 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
2727 if (CONSTANT_CLASS_P (part
))
2728 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
2732 /* For MEMs simplify_gen_subreg may generate an invalid new address
2733 because, e.g., the original address is considered mode-dependent
2734 by the target, which restricts simplify_subreg from invoking
2735 adjust_address_nv. Instead of preparing fallback support for an
2736 invalid address, we call adjust_address_nv directly. */
2738 return adjust_address_nv (cplx
, imode
,
2739 imag_p
? GET_MODE_SIZE (imode
) : 0);
2741 /* If the sub-object is at least word sized, then we know that subregging
2742 will work. This special case is important, since extract_bit_field
2743 wants to operate on integer modes, and there's rarely an OImode to
2744 correspond to TCmode. */
2745 if (ibitsize
>= BITS_PER_WORD
2746 /* For hard regs we have exact predicates. Assume we can split
2747 the original object if it spans an even number of hard regs.
2748 This special case is important for SCmode on 64-bit platforms
2749 where the natural size of floating-point regs is 32-bit. */
2751 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2752 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2754 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
2755 imag_p
? GET_MODE_SIZE (imode
) : 0);
2759 /* simplify_gen_subreg may fail for sub-word MEMs. */
2760 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2763 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
2764 true, NULL_RTX
, imode
, imode
);
2767 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2768 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2769 represented in NEW_MODE. If FORCE is true, this will never happen, as
2770 we'll force-create a SUBREG if needed. */
2773 emit_move_change_mode (enum machine_mode new_mode
,
2774 enum machine_mode old_mode
, rtx x
, bool force
)
2778 if (reload_in_progress
&& MEM_P (x
))
2780 /* We can't use gen_lowpart here because it may call change_address
2781 which is not appropriate if we were called when a reload was in
2782 progress. We don't have to worry about changing the address since
2783 the size in bytes is supposed to be the same. Copy the MEM to
2784 change the mode and move any substitutions from the old MEM to
2787 ret
= adjust_address_nv (x
, new_mode
, 0);
2788 copy_replacements (x
, ret
);
2792 /* Note that we do want simplify_subreg's behavior of validating
2793 that the new mode is ok for a hard register. If we were to use
2794 simplify_gen_subreg, we would create the subreg, but would
2795 probably run into the target not being able to implement it. */
2796 /* Except, of course, when FORCE is true, when this is exactly what
2797 we want. Which is needed for CCmodes on some targets. */
2799 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
2801 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
2807 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2808 an integer mode of the same size as MODE. Returns the instruction
2809 emitted, or NULL if such a move could not be generated. */
2812 emit_move_via_integer (enum machine_mode mode
, rtx x
, rtx y
)
2814 enum machine_mode imode
;
2815 enum insn_code code
;
2817 /* There must exist a mode of the exact size we require. */
2818 imode
= int_mode_for_mode (mode
);
2819 if (imode
== BLKmode
)
2822 /* The target must support moves in this mode. */
2823 code
= mov_optab
->handlers
[imode
].insn_code
;
2824 if (code
== CODE_FOR_nothing
)
2827 x
= emit_move_change_mode (imode
, mode
, x
, false);
2830 y
= emit_move_change_mode (imode
, mode
, y
, false);
2833 return emit_insn (GEN_FCN (code
) (x
, y
));
2836 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2837 Return an equivalent MEM that does not use an auto-increment. */
2840 emit_move_resolve_push (enum machine_mode mode
, rtx x
)
2842 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
2843 HOST_WIDE_INT adjust
;
2846 adjust
= GET_MODE_SIZE (mode
);
2847 #ifdef PUSH_ROUNDING
2848 adjust
= PUSH_ROUNDING (adjust
);
2850 if (code
== PRE_DEC
|| code
== POST_DEC
)
2853 /* Do not use anti_adjust_stack, since we don't want to update
2854 stack_pointer_delta. */
2855 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
2856 GEN_INT (adjust
), stack_pointer_rtx
,
2857 0, OPTAB_LIB_WIDEN
);
2858 if (temp
!= stack_pointer_rtx
)
2859 emit_move_insn (stack_pointer_rtx
, temp
);
2865 temp
= stack_pointer_rtx
;
2868 temp
= plus_constant (stack_pointer_rtx
, -GET_MODE_SIZE (mode
));
2871 temp
= plus_constant (stack_pointer_rtx
, GET_MODE_SIZE (mode
));
2877 return replace_equiv_address (x
, temp
);
2880 /* A subroutine of emit_move_complex. Generate a move from Y into X.
2881 X is known to satisfy push_operand, and MODE is known to be complex.
2882 Returns the last instruction emitted. */
2885 emit_move_complex_push (enum machine_mode mode
, rtx x
, rtx y
)
2887 enum machine_mode submode
= GET_MODE_INNER (mode
);
2890 #ifdef PUSH_ROUNDING
2891 unsigned int submodesize
= GET_MODE_SIZE (submode
);
2893 /* In case we output to the stack, but the size is smaller than the
2894 machine can push exactly, we need to use move instructions. */
2895 if (PUSH_ROUNDING (submodesize
) != submodesize
)
2897 x
= emit_move_resolve_push (mode
, x
);
2898 return emit_move_insn (x
, y
);
2902 /* Note that the real part always precedes the imag part in memory
2903 regardless of machine's endianness. */
2904 switch (GET_CODE (XEXP (x
, 0)))
2918 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
2919 read_complex_part (y
, imag_first
));
2920 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
2921 read_complex_part (y
, !imag_first
));
2924 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2925 MODE is known to be complex. Returns the last instruction emitted. */
2928 emit_move_complex (enum machine_mode mode
, rtx x
, rtx y
)
2932 /* Need to take special care for pushes, to maintain proper ordering
2933 of the data, and possibly extra padding. */
2934 if (push_operand (x
, mode
))
2935 return emit_move_complex_push (mode
, x
, y
);
2937 /* See if we can coerce the target into moving both values at once. */
2939 /* Move floating point as parts. */
2940 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
2941 && mov_optab
->handlers
[GET_MODE_INNER (mode
)].insn_code
!= CODE_FOR_nothing
)
2943 /* Not possible if the values are inherently not adjacent. */
2944 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
2946 /* Is possible if both are registers (or subregs of registers). */
2947 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
2949 /* If one of the operands is a memory, and alignment constraints
2950 are friendly enough, we may be able to do combined memory operations.
2951 We do not attempt this if Y is a constant because that combination is
2952 usually better with the by-parts thing below. */
2953 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
2954 && (!STRICT_ALIGNMENT
2955 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
2964 /* For memory to memory moves, optimal behavior can be had with the
2965 existing block move logic. */
2966 if (MEM_P (x
) && MEM_P (y
))
2968 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
2969 BLOCK_OP_NO_LIBCALL
);
2970 return get_last_insn ();
2973 ret
= emit_move_via_integer (mode
, x
, y
);
2978 /* Show the output dies here. This is necessary for SUBREGs
2979 of pseudos since we cannot track their lifetimes correctly;
2980 hard regs shouldn't appear here except as return values. */
2981 if (!reload_completed
&& !reload_in_progress
2982 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
2983 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
2985 write_complex_part (x
, read_complex_part (y
, false), false);
2986 write_complex_part (x
, read_complex_part (y
, true), true);
2987 return get_last_insn ();
2990 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2991 MODE is known to be MODE_CC. Returns the last instruction emitted. */
2994 emit_move_ccmode (enum machine_mode mode
, rtx x
, rtx y
)
2998 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3001 enum insn_code code
= mov_optab
->handlers
[CCmode
].insn_code
;
3002 if (code
!= CODE_FOR_nothing
)
3004 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3005 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3006 return emit_insn (GEN_FCN (code
) (x
, y
));
3010 /* Otherwise, find the MODE_INT mode of the same width. */
3011 ret
= emit_move_via_integer (mode
, x
, y
);
3012 gcc_assert (ret
!= NULL
);
3016 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3017 MODE is any multi-word or full-word mode that lacks a move_insn
3018 pattern. Note that you will get better code if you define such
3019 patterns, even if they must turn into multiple assembler instructions. */
3022 emit_move_multi_word (enum machine_mode mode
, rtx x
, rtx y
)
3029 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3031 /* If X is a push on the stack, do the push now and replace
3032 X with a reference to the stack pointer. */
3033 if (push_operand (x
, mode
))
3034 x
= emit_move_resolve_push (mode
, x
);
3036 /* If we are in reload, see if either operand is a MEM whose address
3037 is scheduled for replacement. */
3038 if (reload_in_progress
&& MEM_P (x
)
3039 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3040 x
= replace_equiv_address_nv (x
, inner
);
3041 if (reload_in_progress
&& MEM_P (y
)
3042 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3043 y
= replace_equiv_address_nv (y
, inner
);
3047 need_clobber
= false;
3049 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3052 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3053 rtx ypart
= operand_subword (y
, i
, 1, mode
);
3055 /* If we can't get a part of Y, put Y into memory if it is a
3056 constant. Otherwise, force it into a register. Then we must
3057 be able to get a part of Y. */
3058 if (ypart
== 0 && CONSTANT_P (y
))
3060 y
= force_const_mem (mode
, y
);
3061 ypart
= operand_subword (y
, i
, 1, mode
);
3063 else if (ypart
== 0)
3064 ypart
= operand_subword_force (y
, i
, mode
);
3066 gcc_assert (xpart
&& ypart
);
3068 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3070 last_insn
= emit_move_insn (xpart
, ypart
);
3076 /* Show the output dies here. This is necessary for SUBREGs
3077 of pseudos since we cannot track their lifetimes correctly;
3078 hard regs shouldn't appear here except as return values.
3079 We never want to emit such a clobber after reload. */
3081 && ! (reload_in_progress
|| reload_completed
)
3082 && need_clobber
!= 0)
3083 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
3090 /* Low level part of emit_move_insn.
3091 Called just like emit_move_insn, but assumes X and Y
3092 are basically valid. */
3095 emit_move_insn_1 (rtx x
, rtx y
)
3097 enum machine_mode mode
= GET_MODE (x
);
3098 enum insn_code code
;
3100 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3102 code
= mov_optab
->handlers
[mode
].insn_code
;
3103 if (code
!= CODE_FOR_nothing
)
3104 return emit_insn (GEN_FCN (code
) (x
, y
));
3106 /* Expand complex moves by moving real part and imag part. */
3107 if (COMPLEX_MODE_P (mode
))
3108 return emit_move_complex (mode
, x
, y
);
3110 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3111 return emit_move_ccmode (mode
, x
, y
);
3113 /* Try using a move pattern for the corresponding integer mode. This is
3114 only safe when simplify_subreg can convert MODE constants into integer
3115 constants. At present, it can only do this reliably if the value
3116 fits within a HOST_WIDE_INT. */
3117 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3119 rtx ret
= emit_move_via_integer (mode
, x
, y
);
3124 return emit_move_multi_word (mode
, x
, y
);
3127 /* Generate code to copy Y into X.
3128 Both Y and X must have the same mode, except that
3129 Y can be a constant with VOIDmode.
3130 This mode cannot be BLKmode; use emit_block_move for that.
3132 Return the last instruction emitted. */
3135 emit_move_insn (rtx x
, rtx y
)
3137 enum machine_mode mode
= GET_MODE (x
);
3138 rtx y_cst
= NULL_RTX
;
3141 gcc_assert (mode
!= BLKmode
3142 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3147 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3148 && (last_insn
= compress_float_constant (x
, y
)))
3153 if (!LEGITIMATE_CONSTANT_P (y
))
3155 y
= force_const_mem (mode
, y
);
3157 /* If the target's cannot_force_const_mem prevented the spill,
3158 assume that the target's move expanders will also take care
3159 of the non-legitimate constant. */
3165 /* If X or Y are memory references, verify that their addresses are valid
3168 && ((! memory_address_p (GET_MODE (x
), XEXP (x
, 0))
3169 && ! push_operand (x
, GET_MODE (x
)))
3171 && CONSTANT_ADDRESS_P (XEXP (x
, 0)))))
3172 x
= validize_mem (x
);
3175 && (! memory_address_p (GET_MODE (y
), XEXP (y
, 0))
3177 && CONSTANT_ADDRESS_P (XEXP (y
, 0)))))
3178 y
= validize_mem (y
);
3180 gcc_assert (mode
!= BLKmode
);
3182 last_insn
= emit_move_insn_1 (x
, y
);
3184 if (y_cst
&& REG_P (x
)
3185 && (set
= single_set (last_insn
)) != NULL_RTX
3186 && SET_DEST (set
) == x
3187 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3188 set_unique_reg_note (last_insn
, REG_EQUAL
, y_cst
);
3193 /* If Y is representable exactly in a narrower mode, and the target can
3194 perform the extension directly from constant or memory, then emit the
3195 move as an extension. */
3198 compress_float_constant (rtx x
, rtx y
)
3200 enum machine_mode dstmode
= GET_MODE (x
);
3201 enum machine_mode orig_srcmode
= GET_MODE (y
);
3202 enum machine_mode srcmode
;
3204 int oldcost
, newcost
;
3206 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3208 if (LEGITIMATE_CONSTANT_P (y
))
3209 oldcost
= rtx_cost (y
, SET
);
3211 oldcost
= rtx_cost (force_const_mem (dstmode
, y
), SET
);
3213 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3214 srcmode
!= orig_srcmode
;
3215 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3218 rtx trunc_y
, last_insn
;
3220 /* Skip if the target can't extend this way. */
3221 ic
= can_extend_p (dstmode
, srcmode
, 0);
3222 if (ic
== CODE_FOR_nothing
)
3225 /* Skip if the narrowed value isn't exact. */
3226 if (! exact_real_truncate (srcmode
, &r
))
3229 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3231 if (LEGITIMATE_CONSTANT_P (trunc_y
))
3233 /* Skip if the target needs extra instructions to perform
3235 if (! (*insn_data
[ic
].operand
[1].predicate
) (trunc_y
, srcmode
))
3237 /* This is valid, but may not be cheaper than the original. */
3238 newcost
= rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
), SET
);
3239 if (oldcost
< newcost
)
3242 else if (float_extend_from_mem
[dstmode
][srcmode
])
3244 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3245 /* This is valid, but may not be cheaper than the original. */
3246 newcost
= rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
), SET
);
3247 if (oldcost
< newcost
)
3249 trunc_y
= validize_mem (trunc_y
);
3254 emit_unop_insn (ic
, x
, trunc_y
, UNKNOWN
);
3255 last_insn
= get_last_insn ();
3258 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3266 /* Pushing data onto the stack. */
3268 /* Push a block of length SIZE (perhaps variable)
3269 and return an rtx to address the beginning of the block.
3270 The value may be virtual_outgoing_args_rtx.
3272 EXTRA is the number of bytes of padding to push in addition to SIZE.
3273 BELOW nonzero means this padding comes at low addresses;
3274 otherwise, the padding comes at high addresses. */
3277 push_block (rtx size
, int extra
, int below
)
3281 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3282 if (CONSTANT_P (size
))
3283 anti_adjust_stack (plus_constant (size
, extra
));
3284 else if (REG_P (size
) && extra
== 0)
3285 anti_adjust_stack (size
);
3288 temp
= copy_to_mode_reg (Pmode
, size
);
3290 temp
= expand_binop (Pmode
, add_optab
, temp
, GEN_INT (extra
),
3291 temp
, 0, OPTAB_LIB_WIDEN
);
3292 anti_adjust_stack (temp
);
3295 #ifndef STACK_GROWS_DOWNWARD
3301 temp
= virtual_outgoing_args_rtx
;
3302 if (extra
!= 0 && below
)
3303 temp
= plus_constant (temp
, extra
);
3307 if (GET_CODE (size
) == CONST_INT
)
3308 temp
= plus_constant (virtual_outgoing_args_rtx
,
3309 -INTVAL (size
) - (below
? 0 : extra
));
3310 else if (extra
!= 0 && !below
)
3311 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3312 negate_rtx (Pmode
, plus_constant (size
, extra
)));
3314 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3315 negate_rtx (Pmode
, size
));
3318 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3321 #ifdef PUSH_ROUNDING
3323 /* Emit single push insn. */
3326 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
3329 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3331 enum insn_code icode
;
3332 insn_operand_predicate_fn pred
;
3334 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3335 /* If there is push pattern, use it. Otherwise try old way of throwing
3336 MEM representing push operation to move expander. */
3337 icode
= push_optab
->handlers
[(int) mode
].insn_code
;
3338 if (icode
!= CODE_FOR_nothing
)
3340 if (((pred
= insn_data
[(int) icode
].operand
[0].predicate
)
3341 && !((*pred
) (x
, mode
))))
3342 x
= force_reg (mode
, x
);
3343 emit_insn (GEN_FCN (icode
) (x
));
3346 if (GET_MODE_SIZE (mode
) == rounded_size
)
3347 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
3348 /* If we are to pad downward, adjust the stack pointer first and
3349 then store X into the stack location using an offset. This is
3350 because emit_move_insn does not know how to pad; it does not have
3352 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
3354 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
3355 HOST_WIDE_INT offset
;
3357 emit_move_insn (stack_pointer_rtx
,
3358 expand_binop (Pmode
,
3359 #ifdef STACK_GROWS_DOWNWARD
3365 GEN_INT (rounded_size
),
3366 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
3368 offset
= (HOST_WIDE_INT
) padding_size
;
3369 #ifdef STACK_GROWS_DOWNWARD
3370 if (STACK_PUSH_CODE
== POST_DEC
)
3371 /* We have already decremented the stack pointer, so get the
3373 offset
+= (HOST_WIDE_INT
) rounded_size
;
3375 if (STACK_PUSH_CODE
== POST_INC
)
3376 /* We have already incremented the stack pointer, so get the
3378 offset
-= (HOST_WIDE_INT
) rounded_size
;
3380 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
, GEN_INT (offset
));
3384 #ifdef STACK_GROWS_DOWNWARD
3385 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3386 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3387 GEN_INT (-(HOST_WIDE_INT
) rounded_size
));
3389 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3390 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3391 GEN_INT (rounded_size
));
3393 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
3396 dest
= gen_rtx_MEM (mode
, dest_addr
);
3400 set_mem_attributes (dest
, type
, 1);
3402 if (flag_optimize_sibling_calls
)
3403 /* Function incoming arguments may overlap with sibling call
3404 outgoing arguments and we cannot allow reordering of reads
3405 from function arguments with stores to outgoing arguments
3406 of sibling calls. */
3407 set_mem_alias_set (dest
, 0);
3409 emit_move_insn (dest
, x
);
3413 /* Generate code to push X onto the stack, assuming it has mode MODE and
3415 MODE is redundant except when X is a CONST_INT (since they don't
3417 SIZE is an rtx for the size of data to be copied (in bytes),
3418 needed only if X is BLKmode.
3420 ALIGN (in bits) is maximum alignment we can assume.
3422 If PARTIAL and REG are both nonzero, then copy that many of the first
3423 bytes of X into registers starting with REG, and push the rest of X.
3424 The amount of space pushed is decreased by PARTIAL bytes.
3425 REG must be a hard register in this case.
3426 If REG is zero but PARTIAL is not, take any all others actions for an
3427 argument partially in registers, but do not actually load any
3430 EXTRA is the amount in bytes of extra space to leave next to this arg.
3431 This is ignored if an argument block has already been allocated.
3433 On a machine that lacks real push insns, ARGS_ADDR is the address of
3434 the bottom of the argument block for this call. We use indexing off there
3435 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3436 argument block has not been preallocated.
3438 ARGS_SO_FAR is the size of args previously pushed for this call.
3440 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3441 for arguments passed in registers. If nonzero, it will be the number
3442 of bytes required. */
3445 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
3446 unsigned int align
, int partial
, rtx reg
, int extra
,
3447 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
3451 enum direction stack_direction
3452 #ifdef STACK_GROWS_DOWNWARD
3458 /* Decide where to pad the argument: `downward' for below,
3459 `upward' for above, or `none' for don't pad it.
3460 Default is below for small data on big-endian machines; else above. */
3461 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
3463 /* Invert direction if stack is post-decrement.
3465 if (STACK_PUSH_CODE
== POST_DEC
)
3466 if (where_pad
!= none
)
3467 where_pad
= (where_pad
== downward
? upward
: downward
);
3471 if (mode
== BLKmode
)
3473 /* Copy a block into the stack, entirely or partially. */
3480 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3481 used
= partial
- offset
;
3485 /* USED is now the # of bytes we need not copy to the stack
3486 because registers will take care of them. */
3489 xinner
= adjust_address (xinner
, BLKmode
, used
);
3491 /* If the partial register-part of the arg counts in its stack size,
3492 skip the part of stack space corresponding to the registers.
3493 Otherwise, start copying to the beginning of the stack space,
3494 by setting SKIP to 0. */
3495 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
3497 #ifdef PUSH_ROUNDING
3498 /* Do it with several push insns if that doesn't take lots of insns
3499 and if there is no difficulty with push insns that skip bytes
3500 on the stack for alignment purposes. */
3503 && GET_CODE (size
) == CONST_INT
3505 && MEM_ALIGN (xinner
) >= align
3506 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
3507 /* Here we avoid the case of a structure whose weak alignment
3508 forces many pushes of a small amount of data,
3509 and such small pushes do rounding that causes trouble. */
3510 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
3511 || align
>= BIGGEST_ALIGNMENT
3512 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
3513 == (align
/ BITS_PER_UNIT
)))
3514 && PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
3516 /* Push padding now if padding above and stack grows down,
3517 or if padding below and stack grows up.
3518 But if space already allocated, this has already been done. */
3519 if (extra
&& args_addr
== 0
3520 && where_pad
!= none
&& where_pad
!= stack_direction
)
3521 anti_adjust_stack (GEN_INT (extra
));
3523 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
3526 #endif /* PUSH_ROUNDING */
3530 /* Otherwise make space on the stack and copy the data
3531 to the address of that space. */
3533 /* Deduct words put into registers from the size we must copy. */
3536 if (GET_CODE (size
) == CONST_INT
)
3537 size
= GEN_INT (INTVAL (size
) - used
);
3539 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
3540 GEN_INT (used
), NULL_RTX
, 0,
3544 /* Get the address of the stack space.
3545 In this case, we do not deal with EXTRA separately.
3546 A single stack adjust will do. */
3549 temp
= push_block (size
, extra
, where_pad
== downward
);
3552 else if (GET_CODE (args_so_far
) == CONST_INT
)
3553 temp
= memory_address (BLKmode
,
3554 plus_constant (args_addr
,
3555 skip
+ INTVAL (args_so_far
)));
3557 temp
= memory_address (BLKmode
,
3558 plus_constant (gen_rtx_PLUS (Pmode
,
3563 if (!ACCUMULATE_OUTGOING_ARGS
)
3565 /* If the source is referenced relative to the stack pointer,
3566 copy it to another register to stabilize it. We do not need
3567 to do this if we know that we won't be changing sp. */
3569 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
3570 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
3571 temp
= copy_to_reg (temp
);
3574 target
= gen_rtx_MEM (BLKmode
, temp
);
3576 /* We do *not* set_mem_attributes here, because incoming arguments
3577 may overlap with sibling call outgoing arguments and we cannot
3578 allow reordering of reads from function arguments with stores
3579 to outgoing arguments of sibling calls. We do, however, want
3580 to record the alignment of the stack slot. */
3581 /* ALIGN may well be better aligned than TYPE, e.g. due to
3582 PARM_BOUNDARY. Assume the caller isn't lying. */
3583 set_mem_align (target
, align
);
3585 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
3588 else if (partial
> 0)
3590 /* Scalar partly in registers. */
3592 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
3595 /* # bytes of start of argument
3596 that we must make space for but need not store. */
3597 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3598 int args_offset
= INTVAL (args_so_far
);
3601 /* Push padding now if padding above and stack grows down,
3602 or if padding below and stack grows up.
3603 But if space already allocated, this has already been done. */
3604 if (extra
&& args_addr
== 0
3605 && where_pad
!= none
&& where_pad
!= stack_direction
)
3606 anti_adjust_stack (GEN_INT (extra
));
3608 /* If we make space by pushing it, we might as well push
3609 the real data. Otherwise, we can leave OFFSET nonzero
3610 and leave the space uninitialized. */
3614 /* Now NOT_STACK gets the number of words that we don't need to
3615 allocate on the stack. Convert OFFSET to words too. */
3616 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
3617 offset
/= UNITS_PER_WORD
;
3619 /* If the partial register-part of the arg counts in its stack size,
3620 skip the part of stack space corresponding to the registers.
3621 Otherwise, start copying to the beginning of the stack space,
3622 by setting SKIP to 0. */
3623 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
3625 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
3626 x
= validize_mem (force_const_mem (mode
, x
));
3628 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3629 SUBREGs of such registers are not allowed. */
3630 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3631 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
3632 x
= copy_to_reg (x
);
3634 /* Loop over all the words allocated on the stack for this arg. */
3635 /* We can do it by words, because any scalar bigger than a word
3636 has a size a multiple of a word. */
3637 #ifndef PUSH_ARGS_REVERSED
3638 for (i
= not_stack
; i
< size
; i
++)
3640 for (i
= size
- 1; i
>= not_stack
; i
--)
3642 if (i
>= not_stack
+ offset
)
3643 emit_push_insn (operand_subword_force (x
, i
, mode
),
3644 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
3646 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
3648 reg_parm_stack_space
, alignment_pad
);
3655 /* Push padding now if padding above and stack grows down,
3656 or if padding below and stack grows up.
3657 But if space already allocated, this has already been done. */
3658 if (extra
&& args_addr
== 0
3659 && where_pad
!= none
&& where_pad
!= stack_direction
)
3660 anti_adjust_stack (GEN_INT (extra
));
3662 #ifdef PUSH_ROUNDING
3663 if (args_addr
== 0 && PUSH_ARGS
)
3664 emit_single_push_insn (mode
, x
, type
);
3668 if (GET_CODE (args_so_far
) == CONST_INT
)
3670 = memory_address (mode
,
3671 plus_constant (args_addr
,
3672 INTVAL (args_so_far
)));
3674 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
3676 dest
= gen_rtx_MEM (mode
, addr
);
3678 /* We do *not* set_mem_attributes here, because incoming arguments
3679 may overlap with sibling call outgoing arguments and we cannot
3680 allow reordering of reads from function arguments with stores
3681 to outgoing arguments of sibling calls. We do, however, want
3682 to record the alignment of the stack slot. */
3683 /* ALIGN may well be better aligned than TYPE, e.g. due to
3684 PARM_BOUNDARY. Assume the caller isn't lying. */
3685 set_mem_align (dest
, align
);
3687 emit_move_insn (dest
, x
);
3691 /* If part should go in registers, copy that part
3692 into the appropriate registers. Do this now, at the end,
3693 since mem-to-mem copies above may do function calls. */
3694 if (partial
> 0 && reg
!= 0)
3696 /* Handle calls that pass values in multiple non-contiguous locations.
3697 The Irix 6 ABI has examples of this. */
3698 if (GET_CODE (reg
) == PARALLEL
)
3699 emit_group_load (reg
, x
, type
, -1);
3702 gcc_assert (partial
% UNITS_PER_WORD
== 0);
3703 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
3707 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
3708 anti_adjust_stack (GEN_INT (extra
));
3710 if (alignment_pad
&& args_addr
== 0)
3711 anti_adjust_stack (alignment_pad
);
3714 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3718 get_subtarget (rtx x
)
3722 /* Only registers can be subtargets. */
3724 /* Don't use hard regs to avoid extending their life. */
3725 || REGNO (x
) < FIRST_PSEUDO_REGISTER
3729 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3730 FIELD is a bitfield. Returns true if the optimization was successful,
3731 and there's nothing else to do. */
3734 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
3735 unsigned HOST_WIDE_INT bitpos
,
3736 enum machine_mode mode1
, rtx str_rtx
,
3739 enum machine_mode str_mode
= GET_MODE (str_rtx
);
3740 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
3745 if (mode1
!= VOIDmode
3746 || bitsize
>= BITS_PER_WORD
3747 || str_bitsize
> BITS_PER_WORD
3748 || TREE_SIDE_EFFECTS (to
)
3749 || TREE_THIS_VOLATILE (to
))
3753 if (!BINARY_CLASS_P (src
)
3754 || TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
3757 op0
= TREE_OPERAND (src
, 0);
3758 op1
= TREE_OPERAND (src
, 1);
3761 if (!operand_equal_p (to
, op0
, 0))
3764 if (MEM_P (str_rtx
))
3766 unsigned HOST_WIDE_INT offset1
;
3768 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
3769 str_mode
= word_mode
;
3770 str_mode
= get_best_mode (bitsize
, bitpos
,
3771 MEM_ALIGN (str_rtx
), str_mode
, 0);
3772 if (str_mode
== VOIDmode
)
3774 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
3777 bitpos
%= str_bitsize
;
3778 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
3779 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
3781 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
3784 /* If the bit field covers the whole REG/MEM, store_field
3785 will likely generate better code. */
3786 if (bitsize
>= str_bitsize
)
3789 /* We can't handle fields split across multiple entities. */
3790 if (bitpos
+ bitsize
> str_bitsize
)
3793 if (BYTES_BIG_ENDIAN
)
3794 bitpos
= str_bitsize
- bitpos
- bitsize
;
3796 switch (TREE_CODE (src
))
3800 /* For now, just optimize the case of the topmost bitfield
3801 where we don't need to do any masking and also
3802 1 bit bitfields where xor can be used.
3803 We might win by one instruction for the other bitfields
3804 too if insv/extv instructions aren't used, so that
3805 can be added later. */
3806 if (bitpos
+ bitsize
!= str_bitsize
3807 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
3810 value
= expand_expr (op1
, NULL_RTX
, str_mode
, 0);
3811 value
= convert_modes (str_mode
,
3812 TYPE_MODE (TREE_TYPE (op1
)), value
,
3813 TYPE_UNSIGNED (TREE_TYPE (op1
)));
3815 /* We may be accessing data outside the field, which means
3816 we can alias adjacent data. */
3817 if (MEM_P (str_rtx
))
3819 str_rtx
= shallow_copy_rtx (str_rtx
);
3820 set_mem_alias_set (str_rtx
, 0);
3821 set_mem_expr (str_rtx
, 0);
3824 binop
= TREE_CODE (src
) == PLUS_EXPR
? add_optab
: sub_optab
;
3825 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
3827 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
3830 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
,
3831 build_int_cst (NULL_TREE
, bitpos
),
3833 result
= expand_binop (str_mode
, binop
, str_rtx
,
3834 value
, str_rtx
, 1, OPTAB_WIDEN
);
3835 if (result
!= str_rtx
)
3836 emit_move_insn (str_rtx
, result
);
3841 if (TREE_CODE (op1
) != INTEGER_CST
)
3843 value
= expand_expr (op1
, NULL_RTX
, GET_MODE (str_rtx
), 0);
3844 value
= convert_modes (GET_MODE (str_rtx
),
3845 TYPE_MODE (TREE_TYPE (op1
)), value
,
3846 TYPE_UNSIGNED (TREE_TYPE (op1
)));
3848 /* We may be accessing data outside the field, which means
3849 we can alias adjacent data. */
3850 if (MEM_P (str_rtx
))
3852 str_rtx
= shallow_copy_rtx (str_rtx
);
3853 set_mem_alias_set (str_rtx
, 0);
3854 set_mem_expr (str_rtx
, 0);
3857 binop
= TREE_CODE (src
) == BIT_IOR_EXPR
? ior_optab
: xor_optab
;
3858 if (bitpos
+ bitsize
!= GET_MODE_BITSIZE (GET_MODE (str_rtx
)))
3860 rtx mask
= GEN_INT (((unsigned HOST_WIDE_INT
) 1 << bitsize
)
3862 value
= expand_and (GET_MODE (str_rtx
), value
, mask
,
3865 value
= expand_shift (LSHIFT_EXPR
, GET_MODE (str_rtx
), value
,
3866 build_int_cst (NULL_TREE
, bitpos
),
3868 result
= expand_binop (GET_MODE (str_rtx
), binop
, str_rtx
,
3869 value
, str_rtx
, 1, OPTAB_WIDEN
);
3870 if (result
!= str_rtx
)
3871 emit_move_insn (str_rtx
, result
);
3882 /* Expand an assignment that stores the value of FROM into TO. */
3885 expand_assignment (tree to
, tree from
)
3890 /* Don't crash if the lhs of the assignment was erroneous. */
3892 if (TREE_CODE (to
) == ERROR_MARK
)
3894 result
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
3898 /* Assignment of a structure component needs special treatment
3899 if the structure component's rtx is not simply a MEM.
3900 Assignment of an array element at a constant index, and assignment of
3901 an array element in an unaligned packed structure field, has the same
3903 if (handled_component_p (to
)
3904 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
3906 enum machine_mode mode1
;
3907 HOST_WIDE_INT bitsize
, bitpos
;
3914 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
3915 &unsignedp
, &volatilep
, true);
3917 /* If we are going to use store_bit_field and extract_bit_field,
3918 make sure to_rtx will be safe for multiple use. */
3920 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, 0);
3924 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
3926 gcc_assert (MEM_P (to_rtx
));
3928 #ifdef POINTERS_EXTEND_UNSIGNED
3929 if (GET_MODE (offset_rtx
) != Pmode
)
3930 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
3932 if (GET_MODE (offset_rtx
) != ptr_mode
)
3933 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
3936 /* A constant address in TO_RTX can have VOIDmode, we must not try
3937 to call force_reg for that case. Avoid that case. */
3939 && GET_MODE (to_rtx
) == BLKmode
3940 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
3942 && (bitpos
% bitsize
) == 0
3943 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
3944 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
3946 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
3950 to_rtx
= offset_address (to_rtx
, offset_rtx
,
3951 highest_pow2_factor_for_target (to
,
3955 /* Handle expand_expr of a complex value returning a CONCAT. */
3956 if (GET_CODE (to_rtx
) == CONCAT
)
3958 if (TREE_CODE (TREE_TYPE (from
)) == COMPLEX_TYPE
)
3960 gcc_assert (bitpos
== 0);
3961 result
= store_expr (from
, to_rtx
, false);
3965 gcc_assert (bitpos
== 0 || bitpos
== GET_MODE_BITSIZE (mode1
));
3966 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false);
3973 /* If the field is at offset zero, we could have been given the
3974 DECL_RTX of the parent struct. Don't munge it. */
3975 to_rtx
= shallow_copy_rtx (to_rtx
);
3977 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
3979 /* Deal with volatile and readonly fields. The former is only
3980 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
3982 MEM_VOLATILE_P (to_rtx
) = 1;
3983 if (component_uses_parent_alias_set (to
))
3984 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
3987 if (optimize_bitfield_assignment_op (bitsize
, bitpos
, mode1
,
3991 result
= store_field (to_rtx
, bitsize
, bitpos
, mode1
, from
,
3992 TREE_TYPE (tem
), get_alias_set (to
));
3996 preserve_temp_slots (result
);
4002 /* If the rhs is a function call and its value is not an aggregate,
4003 call the function before we start to compute the lhs.
4004 This is needed for correct code for cases such as
4005 val = setjmp (buf) on machines where reference to val
4006 requires loading up part of an address in a separate insn.
4008 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4009 since it might be a promoted variable where the zero- or sign- extension
4010 needs to be done. Handling this in the normal way is safe because no
4011 computation is done before the call. */
4012 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
4013 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
4014 && ! ((TREE_CODE (to
) == VAR_DECL
|| TREE_CODE (to
) == PARM_DECL
)
4015 && REG_P (DECL_RTL (to
))))
4020 value
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
4022 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4024 /* Handle calls that return values in multiple non-contiguous locations.
4025 The Irix 6 ABI has examples of this. */
4026 if (GET_CODE (to_rtx
) == PARALLEL
)
4027 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
4028 int_size_in_bytes (TREE_TYPE (from
)));
4029 else if (GET_MODE (to_rtx
) == BLKmode
)
4030 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
4033 if (POINTER_TYPE_P (TREE_TYPE (to
)))
4034 value
= convert_memory_address (GET_MODE (to_rtx
), value
);
4035 emit_move_insn (to_rtx
, value
);
4037 preserve_temp_slots (to_rtx
);
4043 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4044 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4047 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4049 /* Don't move directly into a return register. */
4050 if (TREE_CODE (to
) == RESULT_DECL
4051 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
4056 temp
= expand_expr (from
, 0, GET_MODE (to_rtx
), 0);
4058 if (GET_CODE (to_rtx
) == PARALLEL
)
4059 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
4060 int_size_in_bytes (TREE_TYPE (from
)));
4062 emit_move_insn (to_rtx
, temp
);
4064 preserve_temp_slots (to_rtx
);
4070 /* In case we are returning the contents of an object which overlaps
4071 the place the value is being stored, use a safe function when copying
4072 a value through a pointer into a structure value return block. */
4073 if (TREE_CODE (to
) == RESULT_DECL
&& TREE_CODE (from
) == INDIRECT_REF
4074 && current_function_returns_struct
4075 && !current_function_returns_pcc_struct
)
4080 size
= expr_size (from
);
4081 from_rtx
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
4083 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
4084 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
4085 XEXP (from_rtx
, 0), Pmode
,
4086 convert_to_mode (TYPE_MODE (sizetype
),
4087 size
, TYPE_UNSIGNED (sizetype
)),
4088 TYPE_MODE (sizetype
));
4090 preserve_temp_slots (to_rtx
);
4096 /* Compute FROM and store the value in the rtx we got. */
4099 result
= store_expr (from
, to_rtx
, 0);
4100 preserve_temp_slots (result
);
4106 /* Generate code for computing expression EXP,
4107 and storing the value into TARGET.
4109 If the mode is BLKmode then we may return TARGET itself.
4110 It turns out that in BLKmode it doesn't cause a problem.
4111 because C has no operators that could combine two different
4112 assignments into the same BLKmode object with different values
4113 with no sequence point. Will other languages need this to
4116 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4117 stack, and block moves may need to be treated specially. */
4120 store_expr (tree exp
, rtx target
, int call_param_p
)
4123 rtx alt_rtl
= NULL_RTX
;
4124 int dont_return_target
= 0;
4126 if (VOID_TYPE_P (TREE_TYPE (exp
)))
4128 /* C++ can generate ?: expressions with a throw expression in one
4129 branch and an rvalue in the other. Here, we resolve attempts to
4130 store the throw expression's nonexistent result. */
4131 gcc_assert (!call_param_p
);
4132 expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
4135 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
4137 /* Perform first part of compound expression, then assign from second
4139 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
4140 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4141 return store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
);
4143 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
4145 /* For conditional expression, get safe form of the target. Then
4146 test the condition, doing the appropriate assignment on either
4147 side. This avoids the creation of unnecessary temporaries.
4148 For non-BLKmode, it is more efficient not to do this. */
4150 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
4152 do_pending_stack_adjust ();
4154 jumpifnot (TREE_OPERAND (exp
, 0), lab1
);
4155 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
);
4156 emit_jump_insn (gen_jump (lab2
));
4159 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
);
4165 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
4166 /* If this is a scalar in a register that is stored in a wider mode
4167 than the declared mode, compute the result into its declared mode
4168 and then convert to the wider mode. Our value is the computed
4171 rtx inner_target
= 0;
4173 /* We can do the conversion inside EXP, which will often result
4174 in some optimizations. Do the conversion in two steps: first
4175 change the signedness, if needed, then the extend. But don't
4176 do this if the type of EXP is a subtype of something else
4177 since then the conversion might involve more than just
4178 converting modes. */
4179 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
4180 && TREE_TYPE (TREE_TYPE (exp
)) == 0
4181 && (!lang_hooks
.reduce_bit_field_operations
4182 || (GET_MODE_PRECISION (GET_MODE (target
))
4183 == TYPE_PRECISION (TREE_TYPE (exp
)))))
4185 if (TYPE_UNSIGNED (TREE_TYPE (exp
))
4186 != SUBREG_PROMOTED_UNSIGNED_P (target
))
4188 (lang_hooks
.types
.signed_or_unsigned_type
4189 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)), exp
);
4191 exp
= convert (lang_hooks
.types
.type_for_mode
4192 (GET_MODE (SUBREG_REG (target
)),
4193 SUBREG_PROMOTED_UNSIGNED_P (target
)),
4196 inner_target
= SUBREG_REG (target
);
4199 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
4200 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4202 /* If TEMP is a VOIDmode constant, use convert_modes to make
4203 sure that we properly convert it. */
4204 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
4206 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4207 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
4208 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
4209 GET_MODE (target
), temp
,
4210 SUBREG_PROMOTED_UNSIGNED_P (target
));
4213 convert_move (SUBREG_REG (target
), temp
,
4214 SUBREG_PROMOTED_UNSIGNED_P (target
));
4220 temp
= expand_expr_real (exp
, target
, GET_MODE (target
),
4222 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
4224 /* Return TARGET if it's a specified hardware register.
4225 If TARGET is a volatile mem ref, either return TARGET
4226 or return a reg copied *from* TARGET; ANSI requires this.
4228 Otherwise, if TEMP is not TARGET, return TEMP
4229 if it is constant (for efficiency),
4230 or if we really want the correct value. */
4231 if (!(target
&& REG_P (target
)
4232 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)
4233 && !(MEM_P (target
) && MEM_VOLATILE_P (target
))
4234 && ! rtx_equal_p (temp
, target
)
4235 && CONSTANT_P (temp
))
4236 dont_return_target
= 1;
4239 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4240 the same as that of TARGET, adjust the constant. This is needed, for
4241 example, in case it is a CONST_DOUBLE and we want only a word-sized
4243 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
4244 && TREE_CODE (exp
) != ERROR_MARK
4245 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
4246 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4247 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
4249 /* If value was not generated in the target, store it there.
4250 Convert the value to TARGET's type first if necessary and emit the
4251 pending incrementations that have been queued when expanding EXP.
4252 Note that we cannot emit the whole queue blindly because this will
4253 effectively disable the POST_INC optimization later.
4255 If TEMP and TARGET compare equal according to rtx_equal_p, but
4256 one or both of them are volatile memory refs, we have to distinguish
4258 - expand_expr has used TARGET. In this case, we must not generate
4259 another copy. This can be detected by TARGET being equal according
4261 - expand_expr has not used TARGET - that means that the source just
4262 happens to have the same RTX form. Since temp will have been created
4263 by expand_expr, it will compare unequal according to == .
4264 We must generate a copy in this case, to reach the correct number
4265 of volatile memory references. */
4267 if ((! rtx_equal_p (temp
, target
)
4268 || (temp
!= target
&& (side_effects_p (temp
)
4269 || side_effects_p (target
))))
4270 && TREE_CODE (exp
) != ERROR_MARK
4271 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4272 but TARGET is not valid memory reference, TEMP will differ
4273 from TARGET although it is really the same location. */
4274 && !(alt_rtl
&& rtx_equal_p (alt_rtl
, target
))
4275 /* If there's nothing to copy, don't bother. Don't call
4276 expr_size unless necessary, because some front-ends (C++)
4277 expr_size-hook must not be given objects that are not
4278 supposed to be bit-copied or bit-initialized. */
4279 && expr_size (exp
) != const0_rtx
)
4281 if (GET_MODE (temp
) != GET_MODE (target
)
4282 && GET_MODE (temp
) != VOIDmode
)
4284 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
4285 if (dont_return_target
)
4287 /* In this case, we will return TEMP,
4288 so make sure it has the proper mode.
4289 But don't forget to store the value into TARGET. */
4290 temp
= convert_to_mode (GET_MODE (target
), temp
, unsignedp
);
4291 emit_move_insn (target
, temp
);
4294 convert_move (target
, temp
, unsignedp
);
4297 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
4299 /* Handle copying a string constant into an array. The string
4300 constant may be shorter than the array. So copy just the string's
4301 actual length, and clear the rest. First get the size of the data
4302 type of the string, which is actually the size of the target. */
4303 rtx size
= expr_size (exp
);
4305 if (GET_CODE (size
) == CONST_INT
4306 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
4307 emit_block_move (target
, temp
, size
,
4309 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4312 /* Compute the size of the data to copy from the string. */
4314 = size_binop (MIN_EXPR
,
4315 make_tree (sizetype
, size
),
4316 size_int (TREE_STRING_LENGTH (exp
)));
4318 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
4320 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
4323 /* Copy that much. */
4324 copy_size_rtx
= convert_to_mode (ptr_mode
, copy_size_rtx
,
4325 TYPE_UNSIGNED (sizetype
));
4326 emit_block_move (target
, temp
, copy_size_rtx
,
4328 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4330 /* Figure out how much is left in TARGET that we have to clear.
4331 Do all calculations in ptr_mode. */
4332 if (GET_CODE (copy_size_rtx
) == CONST_INT
)
4334 size
= plus_constant (size
, -INTVAL (copy_size_rtx
));
4335 target
= adjust_address (target
, BLKmode
,
4336 INTVAL (copy_size_rtx
));
4340 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
4341 copy_size_rtx
, NULL_RTX
, 0,
4344 #ifdef POINTERS_EXTEND_UNSIGNED
4345 if (GET_MODE (copy_size_rtx
) != Pmode
)
4346 copy_size_rtx
= convert_to_mode (Pmode
, copy_size_rtx
,
4347 TYPE_UNSIGNED (sizetype
));
4350 target
= offset_address (target
, copy_size_rtx
,
4351 highest_pow2_factor (copy_size
));
4352 label
= gen_label_rtx ();
4353 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
4354 GET_MODE (size
), 0, label
);
4357 if (size
!= const0_rtx
)
4358 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
4364 /* Handle calls that return values in multiple non-contiguous locations.
4365 The Irix 6 ABI has examples of this. */
4366 else if (GET_CODE (target
) == PARALLEL
)
4367 emit_group_load (target
, temp
, TREE_TYPE (exp
),
4368 int_size_in_bytes (TREE_TYPE (exp
)));
4369 else if (GET_MODE (temp
) == BLKmode
)
4370 emit_block_move (target
, temp
, expr_size (exp
),
4372 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4375 temp
= force_operand (temp
, target
);
4377 emit_move_insn (target
, temp
);
4384 /* Examine CTOR to discover:
4385 * how many scalar fields are set to nonzero values,
4386 and place it in *P_NZ_ELTS;
4387 * how many scalar fields are set to non-constant values,
4388 and place it in *P_NC_ELTS; and
4389 * how many scalar fields in total are in CTOR,
4390 and place it in *P_ELT_COUNT.
4391 * if a type is a union, and the initializer from the constructor
4392 is not the largest element in the union, then set *p_must_clear. */
4395 categorize_ctor_elements_1 (tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4396 HOST_WIDE_INT
*p_nc_elts
,
4397 HOST_WIDE_INT
*p_elt_count
,
4400 unsigned HOST_WIDE_INT idx
;
4401 HOST_WIDE_INT nz_elts
, nc_elts
, elt_count
;
4402 tree value
, purpose
;
4408 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
4413 if (TREE_CODE (purpose
) == RANGE_EXPR
)
4415 tree lo_index
= TREE_OPERAND (purpose
, 0);
4416 tree hi_index
= TREE_OPERAND (purpose
, 1);
4418 if (host_integerp (lo_index
, 1) && host_integerp (hi_index
, 1))
4419 mult
= (tree_low_cst (hi_index
, 1)
4420 - tree_low_cst (lo_index
, 1) + 1);
4423 switch (TREE_CODE (value
))
4427 HOST_WIDE_INT nz
= 0, nc
= 0, ic
= 0;
4428 categorize_ctor_elements_1 (value
, &nz
, &nc
, &ic
, p_must_clear
);
4429 nz_elts
+= mult
* nz
;
4430 nc_elts
+= mult
* nc
;
4431 elt_count
+= mult
* ic
;
4437 if (!initializer_zerop (value
))
4443 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
4444 elt_count
+= mult
* TREE_STRING_LENGTH (value
);
4448 if (!initializer_zerop (TREE_REALPART (value
)))
4450 if (!initializer_zerop (TREE_IMAGPART (value
)))
4458 for (v
= TREE_VECTOR_CST_ELTS (value
); v
; v
= TREE_CHAIN (v
))
4460 if (!initializer_zerop (TREE_VALUE (v
)))
4470 if (!initializer_constant_valid_p (value
, TREE_TYPE (value
)))
4477 && (TREE_CODE (TREE_TYPE (ctor
)) == UNION_TYPE
4478 || TREE_CODE (TREE_TYPE (ctor
)) == QUAL_UNION_TYPE
))
4481 bool clear_this
= true;
4483 if (!VEC_empty (constructor_elt
, CONSTRUCTOR_ELTS (ctor
)))
4485 /* We don't expect more than one element of the union to be
4486 initialized. Not sure what we should do otherwise... */
4487 gcc_assert (VEC_length (constructor_elt
, CONSTRUCTOR_ELTS (ctor
))
4490 init_sub_type
= TREE_TYPE (VEC_index (constructor_elt
,
4491 CONSTRUCTOR_ELTS (ctor
),
4494 /* ??? We could look at each element of the union, and find the
4495 largest element. Which would avoid comparing the size of the
4496 initialized element against any tail padding in the union.
4497 Doesn't seem worth the effort... */
4498 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor
)),
4499 TYPE_SIZE (init_sub_type
)) == 1)
4501 /* And now we have to find out if the element itself is fully
4502 constructed. E.g. for union { struct { int a, b; } s; } u
4503 = { .s = { .a = 1 } }. */
4504 if (elt_count
== count_type_elements (init_sub_type
))
4509 *p_must_clear
= clear_this
;
4512 *p_nz_elts
+= nz_elts
;
4513 *p_nc_elts
+= nc_elts
;
4514 *p_elt_count
+= elt_count
;
4518 categorize_ctor_elements (tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4519 HOST_WIDE_INT
*p_nc_elts
,
4520 HOST_WIDE_INT
*p_elt_count
,
4526 *p_must_clear
= false;
4527 categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_nc_elts
, p_elt_count
,
4531 /* Count the number of scalars in TYPE. Return -1 on overflow or
4535 count_type_elements (tree type
)
4537 const HOST_WIDE_INT max
= ~((HOST_WIDE_INT
)1 << (HOST_BITS_PER_WIDE_INT
-1));
4538 switch (TREE_CODE (type
))
4542 tree telts
= array_type_nelts (type
);
4543 if (telts
&& host_integerp (telts
, 1))
4545 HOST_WIDE_INT n
= tree_low_cst (telts
, 1) + 1;
4546 HOST_WIDE_INT m
= count_type_elements (TREE_TYPE (type
));
4549 else if (max
/ n
> m
)
4557 HOST_WIDE_INT n
= 0, t
;
4560 for (f
= TYPE_FIELDS (type
); f
; f
= TREE_CHAIN (f
))
4561 if (TREE_CODE (f
) == FIELD_DECL
)
4563 t
= count_type_elements (TREE_TYPE (f
));
4573 case QUAL_UNION_TYPE
:
4575 /* Ho hum. How in the world do we guess here? Clearly it isn't
4576 right to count the fields. Guess based on the number of words. */
4577 HOST_WIDE_INT n
= int_size_in_bytes (type
);
4580 return n
/ UNITS_PER_WORD
;
4587 return TYPE_VECTOR_SUBPARTS (type
);
4596 case REFERENCE_TYPE
:
4608 /* Return 1 if EXP contains mostly (3/4) zeros. */
4611 mostly_zeros_p (tree exp
)
4613 if (TREE_CODE (exp
) == CONSTRUCTOR
)
4616 HOST_WIDE_INT nz_elts
, nc_elts
, count
, elts
;
4619 categorize_ctor_elements (exp
, &nz_elts
, &nc_elts
, &count
, &must_clear
);
4623 elts
= count_type_elements (TREE_TYPE (exp
));
4625 return nz_elts
< elts
/ 4;
4628 return initializer_zerop (exp
);
4631 /* Helper function for store_constructor.
4632 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4633 TYPE is the type of the CONSTRUCTOR, not the element type.
4634 CLEARED is as for store_constructor.
4635 ALIAS_SET is the alias set to use for any stores.
4637 This provides a recursive shortcut back to store_constructor when it isn't
4638 necessary to go through store_field. This is so that we can pass through
4639 the cleared field to let store_constructor know that we may not have to
4640 clear a substructure if the outer structure has already been cleared. */
4643 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
4644 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
4645 tree exp
, tree type
, int cleared
, int alias_set
)
4647 if (TREE_CODE (exp
) == CONSTRUCTOR
4648 /* We can only call store_constructor recursively if the size and
4649 bit position are on a byte boundary. */
4650 && bitpos
% BITS_PER_UNIT
== 0
4651 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
4652 /* If we have a nonzero bitpos for a register target, then we just
4653 let store_field do the bitfield handling. This is unlikely to
4654 generate unnecessary clear instructions anyways. */
4655 && (bitpos
== 0 || MEM_P (target
)))
4659 = adjust_address (target
,
4660 GET_MODE (target
) == BLKmode
4662 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
4663 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
4666 /* Update the alias set, if required. */
4667 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
4668 && MEM_ALIAS_SET (target
) != 0)
4670 target
= copy_rtx (target
);
4671 set_mem_alias_set (target
, alias_set
);
4674 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
4677 store_field (target
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
);
4680 /* Store the value of constructor EXP into the rtx TARGET.
4681 TARGET is either a REG or a MEM; we know it cannot conflict, since
4682 safe_from_p has been called.
4683 CLEARED is true if TARGET is known to have been zero'd.
4684 SIZE is the number of bytes of TARGET we are allowed to modify: this
4685 may not be the same as the size of EXP if we are assigning to a field
4686 which has been packed to exclude padding bits. */
4689 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
4691 tree type
= TREE_TYPE (exp
);
4692 #ifdef WORD_REGISTER_OPERATIONS
4693 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
4696 switch (TREE_CODE (type
))
4700 case QUAL_UNION_TYPE
:
4702 unsigned HOST_WIDE_INT idx
;
4705 /* If size is zero or the target is already cleared, do nothing. */
4706 if (size
== 0 || cleared
)
4708 /* We either clear the aggregate or indicate the value is dead. */
4709 else if ((TREE_CODE (type
) == UNION_TYPE
4710 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
4711 && ! CONSTRUCTOR_ELTS (exp
))
4712 /* If the constructor is empty, clear the union. */
4714 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
4718 /* If we are building a static constructor into a register,
4719 set the initial value as zero so we can fold the value into
4720 a constant. But if more than one register is involved,
4721 this probably loses. */
4722 else if (REG_P (target
) && TREE_STATIC (exp
)
4723 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
4725 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
4729 /* If the constructor has fewer fields than the structure or
4730 if we are initializing the structure to mostly zeros, clear
4731 the whole structure first. Don't do this if TARGET is a
4732 register whose mode size isn't equal to SIZE since
4733 clear_storage can't handle this case. */
4735 && (((int)VEC_length (constructor_elt
, CONSTRUCTOR_ELTS (exp
))
4736 != fields_length (type
))
4737 || mostly_zeros_p (exp
))
4739 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
4742 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
4747 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
4749 /* Store each element of the constructor into the
4750 corresponding field of TARGET. */
4751 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
4753 enum machine_mode mode
;
4754 HOST_WIDE_INT bitsize
;
4755 HOST_WIDE_INT bitpos
= 0;
4757 rtx to_rtx
= target
;
4759 /* Just ignore missing fields. We cleared the whole
4760 structure, above, if any fields are missing. */
4764 if (cleared
&& initializer_zerop (value
))
4767 if (host_integerp (DECL_SIZE (field
), 1))
4768 bitsize
= tree_low_cst (DECL_SIZE (field
), 1);
4772 mode
= DECL_MODE (field
);
4773 if (DECL_BIT_FIELD (field
))
4776 offset
= DECL_FIELD_OFFSET (field
);
4777 if (host_integerp (offset
, 0)
4778 && host_integerp (bit_position (field
), 0))
4780 bitpos
= int_bit_position (field
);
4784 bitpos
= tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 0);
4791 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
4792 make_tree (TREE_TYPE (exp
),
4795 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, 0);
4796 gcc_assert (MEM_P (to_rtx
));
4798 #ifdef POINTERS_EXTEND_UNSIGNED
4799 if (GET_MODE (offset_rtx
) != Pmode
)
4800 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
4802 if (GET_MODE (offset_rtx
) != ptr_mode
)
4803 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
4806 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4807 highest_pow2_factor (offset
));
4810 #ifdef WORD_REGISTER_OPERATIONS
4811 /* If this initializes a field that is smaller than a
4812 word, at the start of a word, try to widen it to a full
4813 word. This special case allows us to output C++ member
4814 function initializations in a form that the optimizers
4817 && bitsize
< BITS_PER_WORD
4818 && bitpos
% BITS_PER_WORD
== 0
4819 && GET_MODE_CLASS (mode
) == MODE_INT
4820 && TREE_CODE (value
) == INTEGER_CST
4822 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
4824 tree type
= TREE_TYPE (value
);
4826 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
4828 type
= lang_hooks
.types
.type_for_size
4829 (BITS_PER_WORD
, TYPE_UNSIGNED (type
));
4830 value
= convert (type
, value
);
4833 if (BYTES_BIG_ENDIAN
)
4835 = fold_build2 (LSHIFT_EXPR
, type
, value
,
4836 build_int_cst (NULL_TREE
,
4837 BITS_PER_WORD
- bitsize
));
4838 bitsize
= BITS_PER_WORD
;
4843 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
4844 && DECL_NONADDRESSABLE_P (field
))
4846 to_rtx
= copy_rtx (to_rtx
);
4847 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
4850 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
4851 value
, type
, cleared
,
4852 get_alias_set (TREE_TYPE (field
)));
4859 unsigned HOST_WIDE_INT i
;
4862 tree elttype
= TREE_TYPE (type
);
4864 HOST_WIDE_INT minelt
= 0;
4865 HOST_WIDE_INT maxelt
= 0;
4867 domain
= TYPE_DOMAIN (type
);
4868 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
4869 && TYPE_MAX_VALUE (domain
)
4870 && host_integerp (TYPE_MIN_VALUE (domain
), 0)
4871 && host_integerp (TYPE_MAX_VALUE (domain
), 0));
4873 /* If we have constant bounds for the range of the type, get them. */
4876 minelt
= tree_low_cst (TYPE_MIN_VALUE (domain
), 0);
4877 maxelt
= tree_low_cst (TYPE_MAX_VALUE (domain
), 0);
4880 /* If the constructor has fewer elements than the array, clear
4881 the whole array first. Similarly if this is static
4882 constructor of a non-BLKmode object. */
4885 else if (REG_P (target
) && TREE_STATIC (exp
))
4889 unsigned HOST_WIDE_INT idx
;
4891 HOST_WIDE_INT count
= 0, zero_count
= 0;
4892 need_to_clear
= ! const_bounds_p
;
4894 /* This loop is a more accurate version of the loop in
4895 mostly_zeros_p (it handles RANGE_EXPR in an index). It
4896 is also needed to check for missing elements. */
4897 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
4899 HOST_WIDE_INT this_node_count
;
4904 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
4906 tree lo_index
= TREE_OPERAND (index
, 0);
4907 tree hi_index
= TREE_OPERAND (index
, 1);
4909 if (! host_integerp (lo_index
, 1)
4910 || ! host_integerp (hi_index
, 1))
4916 this_node_count
= (tree_low_cst (hi_index
, 1)
4917 - tree_low_cst (lo_index
, 1) + 1);
4920 this_node_count
= 1;
4922 count
+= this_node_count
;
4923 if (mostly_zeros_p (value
))
4924 zero_count
+= this_node_count
;
4927 /* Clear the entire array first if there are any missing
4928 elements, or if the incidence of zero elements is >=
4931 && (count
< maxelt
- minelt
+ 1
4932 || 4 * zero_count
>= 3 * count
))
4936 if (need_to_clear
&& size
> 0)
4939 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
4941 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
4945 if (!cleared
&& REG_P (target
))
4946 /* Inform later passes that the old value is dead. */
4947 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
4949 /* Store each element of the constructor into the
4950 corresponding element of TARGET, determined by counting the
4952 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
4954 enum machine_mode mode
;
4955 HOST_WIDE_INT bitsize
;
4956 HOST_WIDE_INT bitpos
;
4958 rtx xtarget
= target
;
4960 if (cleared
&& initializer_zerop (value
))
4963 unsignedp
= TYPE_UNSIGNED (elttype
);
4964 mode
= TYPE_MODE (elttype
);
4965 if (mode
== BLKmode
)
4966 bitsize
= (host_integerp (TYPE_SIZE (elttype
), 1)
4967 ? tree_low_cst (TYPE_SIZE (elttype
), 1)
4970 bitsize
= GET_MODE_BITSIZE (mode
);
4972 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
4974 tree lo_index
= TREE_OPERAND (index
, 0);
4975 tree hi_index
= TREE_OPERAND (index
, 1);
4976 rtx index_r
, pos_rtx
;
4977 HOST_WIDE_INT lo
, hi
, count
;
4980 /* If the range is constant and "small", unroll the loop. */
4982 && host_integerp (lo_index
, 0)
4983 && host_integerp (hi_index
, 0)
4984 && (lo
= tree_low_cst (lo_index
, 0),
4985 hi
= tree_low_cst (hi_index
, 0),
4986 count
= hi
- lo
+ 1,
4989 || (host_integerp (TYPE_SIZE (elttype
), 1)
4990 && (tree_low_cst (TYPE_SIZE (elttype
), 1) * count
4993 lo
-= minelt
; hi
-= minelt
;
4994 for (; lo
<= hi
; lo
++)
4996 bitpos
= lo
* tree_low_cst (TYPE_SIZE (elttype
), 0);
4999 && !MEM_KEEP_ALIAS_SET_P (target
)
5000 && TREE_CODE (type
) == ARRAY_TYPE
5001 && TYPE_NONALIASED_COMPONENT (type
))
5003 target
= copy_rtx (target
);
5004 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5007 store_constructor_field
5008 (target
, bitsize
, bitpos
, mode
, value
, type
, cleared
,
5009 get_alias_set (elttype
));
5014 rtx loop_start
= gen_label_rtx ();
5015 rtx loop_end
= gen_label_rtx ();
5018 expand_expr (hi_index
, NULL_RTX
, VOIDmode
, 0);
5019 unsignedp
= TYPE_UNSIGNED (domain
);
5021 index
= build_decl (VAR_DECL
, NULL_TREE
, domain
);
5024 = gen_reg_rtx (promote_mode (domain
, DECL_MODE (index
),
5026 SET_DECL_RTL (index
, index_r
);
5027 store_expr (lo_index
, index_r
, 0);
5029 /* Build the head of the loop. */
5030 do_pending_stack_adjust ();
5031 emit_label (loop_start
);
5033 /* Assign value to element index. */
5035 = convert (ssizetype
,
5036 fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
5037 index
, TYPE_MIN_VALUE (domain
)));
5038 position
= size_binop (MULT_EXPR
, position
,
5040 TYPE_SIZE_UNIT (elttype
)));
5042 pos_rtx
= expand_expr (position
, 0, VOIDmode
, 0);
5043 xtarget
= offset_address (target
, pos_rtx
,
5044 highest_pow2_factor (position
));
5045 xtarget
= adjust_address (xtarget
, mode
, 0);
5046 if (TREE_CODE (value
) == CONSTRUCTOR
)
5047 store_constructor (value
, xtarget
, cleared
,
5048 bitsize
/ BITS_PER_UNIT
);
5050 store_expr (value
, xtarget
, 0);
5052 /* Generate a conditional jump to exit the loop. */
5053 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
5055 jumpif (exit_cond
, loop_end
);
5057 /* Update the loop counter, and jump to the head of
5059 expand_assignment (index
,
5060 build2 (PLUS_EXPR
, TREE_TYPE (index
),
5061 index
, integer_one_node
));
5063 emit_jump (loop_start
);
5065 /* Build the end of the loop. */
5066 emit_label (loop_end
);
5069 else if ((index
!= 0 && ! host_integerp (index
, 0))
5070 || ! host_integerp (TYPE_SIZE (elttype
), 1))
5075 index
= ssize_int (1);
5078 index
= fold_convert (ssizetype
,
5079 fold_build2 (MINUS_EXPR
,
5082 TYPE_MIN_VALUE (domain
)));
5084 position
= size_binop (MULT_EXPR
, index
,
5086 TYPE_SIZE_UNIT (elttype
)));
5087 xtarget
= offset_address (target
,
5088 expand_expr (position
, 0, VOIDmode
, 0),
5089 highest_pow2_factor (position
));
5090 xtarget
= adjust_address (xtarget
, mode
, 0);
5091 store_expr (value
, xtarget
, 0);
5096 bitpos
= ((tree_low_cst (index
, 0) - minelt
)
5097 * tree_low_cst (TYPE_SIZE (elttype
), 1));
5099 bitpos
= (i
* tree_low_cst (TYPE_SIZE (elttype
), 1));
5101 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
5102 && TREE_CODE (type
) == ARRAY_TYPE
5103 && TYPE_NONALIASED_COMPONENT (type
))
5105 target
= copy_rtx (target
);
5106 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5108 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
5109 type
, cleared
, get_alias_set (elttype
));
5117 unsigned HOST_WIDE_INT idx
;
5118 constructor_elt
*ce
;
5122 tree elttype
= TREE_TYPE (type
);
5123 int elt_size
= tree_low_cst (TYPE_SIZE (elttype
), 1);
5124 enum machine_mode eltmode
= TYPE_MODE (elttype
);
5125 HOST_WIDE_INT bitsize
;
5126 HOST_WIDE_INT bitpos
;
5127 rtvec vector
= NULL
;
5130 gcc_assert (eltmode
!= BLKmode
);
5132 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
5133 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
5135 enum machine_mode mode
= GET_MODE (target
);
5137 icode
= (int) vec_init_optab
->handlers
[mode
].insn_code
;
5138 if (icode
!= CODE_FOR_nothing
)
5142 vector
= rtvec_alloc (n_elts
);
5143 for (i
= 0; i
< n_elts
; i
++)
5144 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
5148 /* If the constructor has fewer elements than the vector,
5149 clear the whole array first. Similarly if this is static
5150 constructor of a non-BLKmode object. */
5153 else if (REG_P (target
) && TREE_STATIC (exp
))
5157 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
5160 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
5162 int n_elts_here
= tree_low_cst
5163 (int_const_binop (TRUNC_DIV_EXPR
,
5164 TYPE_SIZE (TREE_TYPE (value
)),
5165 TYPE_SIZE (elttype
), 0), 1);
5167 count
+= n_elts_here
;
5168 if (mostly_zeros_p (value
))
5169 zero_count
+= n_elts_here
;
5172 /* Clear the entire vector first if there are any missing elements,
5173 or if the incidence of zero elements is >= 75%. */
5174 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
5177 if (need_to_clear
&& size
> 0 && !vector
)
5180 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5182 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5186 /* Inform later passes that the old value is dead. */
5187 if (!cleared
&& REG_P (target
))
5188 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5190 /* Store each element of the constructor into the corresponding
5191 element of TARGET, determined by counting the elements. */
5192 for (idx
= 0, i
= 0;
5193 VEC_iterate (constructor_elt
, CONSTRUCTOR_ELTS (exp
), idx
, ce
);
5194 idx
++, i
+= bitsize
/ elt_size
)
5196 HOST_WIDE_INT eltpos
;
5197 tree value
= ce
->value
;
5199 bitsize
= tree_low_cst (TYPE_SIZE (TREE_TYPE (value
)), 1);
5200 if (cleared
&& initializer_zerop (value
))
5204 eltpos
= tree_low_cst (ce
->index
, 1);
5210 /* Vector CONSTRUCTORs should only be built from smaller
5211 vectors in the case of BLKmode vectors. */
5212 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
5213 RTVEC_ELT (vector
, eltpos
)
5214 = expand_expr (value
, NULL_RTX
, VOIDmode
, 0);
5218 enum machine_mode value_mode
=
5219 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
5220 ? TYPE_MODE (TREE_TYPE (value
))
5222 bitpos
= eltpos
* elt_size
;
5223 store_constructor_field (target
, bitsize
, bitpos
,
5224 value_mode
, value
, type
,
5225 cleared
, get_alias_set (elttype
));
5230 emit_insn (GEN_FCN (icode
)
5232 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
5241 /* Store the value of EXP (an expression tree)
5242 into a subfield of TARGET which has mode MODE and occupies
5243 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5244 If MODE is VOIDmode, it means that we are storing into a bit-field.
5246 Always return const0_rtx unless we have something particular to
5249 TYPE is the type of the underlying object,
5251 ALIAS_SET is the alias set for the destination. This value will
5252 (in general) be different from that for TARGET, since TARGET is a
5253 reference to the containing structure. */
5256 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
5257 enum machine_mode mode
, tree exp
, tree type
, int alias_set
)
5259 HOST_WIDE_INT width_mask
= 0;
5261 if (TREE_CODE (exp
) == ERROR_MARK
)
5264 /* If we have nothing to store, do nothing unless the expression has
5267 return expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
5268 else if (bitsize
>= 0 && bitsize
< HOST_BITS_PER_WIDE_INT
)
5269 width_mask
= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
5271 /* If we are storing into an unaligned field of an aligned union that is
5272 in a register, we may have the mode of TARGET being an integer mode but
5273 MODE == BLKmode. In that case, get an aligned object whose size and
5274 alignment are the same as TARGET and store TARGET into it (we can avoid
5275 the store if the field being stored is the entire width of TARGET). Then
5276 call ourselves recursively to store the field into a BLKmode version of
5277 that object. Finally, load from the object into TARGET. This is not
5278 very efficient in general, but should only be slightly more expensive
5279 than the otherwise-required unaligned accesses. Perhaps this can be
5280 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5281 twice, once with emit_move_insn and once via store_field. */
5284 && (REG_P (target
) || GET_CODE (target
) == SUBREG
))
5286 rtx object
= assign_temp (type
, 0, 1, 1);
5287 rtx blk_object
= adjust_address (object
, BLKmode
, 0);
5289 if (bitsize
!= (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (target
)))
5290 emit_move_insn (object
, target
);
5292 store_field (blk_object
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
);
5294 emit_move_insn (target
, object
);
5296 /* We want to return the BLKmode version of the data. */
5300 if (GET_CODE (target
) == CONCAT
)
5302 /* We're storing into a struct containing a single __complex. */
5304 gcc_assert (!bitpos
);
5305 return store_expr (exp
, target
, 0);
5308 /* If the structure is in a register or if the component
5309 is a bit field, we cannot use addressing to access it.
5310 Use bit-field techniques or SUBREG to store in it. */
5312 if (mode
== VOIDmode
5313 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
5314 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
5315 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
5317 || GET_CODE (target
) == SUBREG
5318 /* If the field isn't aligned enough to store as an ordinary memref,
5319 store it as a bit field. */
5321 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
5322 || bitpos
% GET_MODE_ALIGNMENT (mode
))
5323 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
5324 || (bitpos
% BITS_PER_UNIT
!= 0)))
5325 /* If the RHS and field are a constant size and the size of the
5326 RHS isn't the same size as the bitfield, we must use bitfield
5329 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
5330 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0))
5334 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5335 implies a mask operation. If the precision is the same size as
5336 the field we're storing into, that mask is redundant. This is
5337 particularly common with bit field assignments generated by the
5339 if (TREE_CODE (exp
) == NOP_EXPR
)
5341 tree type
= TREE_TYPE (exp
);
5342 if (INTEGRAL_TYPE_P (type
)
5343 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
5344 && bitsize
== TYPE_PRECISION (type
))
5346 type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
5347 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
5348 exp
= TREE_OPERAND (exp
, 0);
5352 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, 0);
5354 /* If BITSIZE is narrower than the size of the type of EXP
5355 we will be narrowing TEMP. Normally, what's wanted are the
5356 low-order bits. However, if EXP's type is a record and this is
5357 big-endian machine, we want the upper BITSIZE bits. */
5358 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
5359 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
5360 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
5361 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
5362 size_int (GET_MODE_BITSIZE (GET_MODE (temp
))
5366 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5368 if (mode
!= VOIDmode
&& mode
!= BLKmode
5369 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
5370 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
5372 /* If the modes of TARGET and TEMP are both BLKmode, both
5373 must be in memory and BITPOS must be aligned on a byte
5374 boundary. If so, we simply do a block copy. */
5375 if (GET_MODE (target
) == BLKmode
&& GET_MODE (temp
) == BLKmode
)
5377 gcc_assert (MEM_P (target
) && MEM_P (temp
)
5378 && !(bitpos
% BITS_PER_UNIT
));
5380 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5381 emit_block_move (target
, temp
,
5382 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
5389 /* Store the value in the bitfield. */
5390 store_bit_field (target
, bitsize
, bitpos
, mode
, temp
);
5396 /* Now build a reference to just the desired component. */
5397 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
5399 if (to_rtx
== target
)
5400 to_rtx
= copy_rtx (to_rtx
);
5402 MEM_SET_IN_STRUCT_P (to_rtx
, 1);
5403 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
5404 set_mem_alias_set (to_rtx
, alias_set
);
5406 return store_expr (exp
, to_rtx
, 0);
5410 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5411 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5412 codes and find the ultimate containing object, which we return.
5414 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5415 bit position, and *PUNSIGNEDP to the signedness of the field.
5416 If the position of the field is variable, we store a tree
5417 giving the variable offset (in units) in *POFFSET.
5418 This offset is in addition to the bit position.
5419 If the position is not variable, we store 0 in *POFFSET.
5421 If any of the extraction expressions is volatile,
5422 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5424 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5425 is a mode that can be used to access the field. In that case, *PBITSIZE
5428 If the field describes a variable-sized object, *PMODE is set to
5429 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5430 this case, but the address of the object can be found.
5432 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5433 look through nodes that serve as markers of a greater alignment than
5434 the one that can be deduced from the expression. These nodes make it
5435 possible for front-ends to prevent temporaries from being created by
5436 the middle-end on alignment considerations. For that purpose, the
5437 normal operating mode at high-level is to always pass FALSE so that
5438 the ultimate containing object is really returned; moreover, the
5439 associated predicate handled_component_p will always return TRUE
5440 on these nodes, thus indicating that they are essentially handled
5441 by get_inner_reference. TRUE should only be passed when the caller
5442 is scanning the expression in order to build another representation
5443 and specifically knows how to handle these nodes; as such, this is
5444 the normal operating mode in the RTL expanders. */
5447 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
5448 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
5449 enum machine_mode
*pmode
, int *punsignedp
,
5450 int *pvolatilep
, bool keep_aligning
)
5453 enum machine_mode mode
= VOIDmode
;
5454 tree offset
= size_zero_node
;
5455 tree bit_offset
= bitsize_zero_node
;
5458 /* First get the mode, signedness, and size. We do this from just the
5459 outermost expression. */
5460 if (TREE_CODE (exp
) == COMPONENT_REF
)
5462 size_tree
= DECL_SIZE (TREE_OPERAND (exp
, 1));
5463 if (! DECL_BIT_FIELD (TREE_OPERAND (exp
, 1)))
5464 mode
= DECL_MODE (TREE_OPERAND (exp
, 1));
5466 *punsignedp
= DECL_UNSIGNED (TREE_OPERAND (exp
, 1));
5468 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
5470 size_tree
= TREE_OPERAND (exp
, 1);
5471 *punsignedp
= BIT_FIELD_REF_UNSIGNED (exp
);
5475 mode
= TYPE_MODE (TREE_TYPE (exp
));
5476 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
5478 if (mode
== BLKmode
)
5479 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
5481 *pbitsize
= GET_MODE_BITSIZE (mode
);
5486 if (! host_integerp (size_tree
, 1))
5487 mode
= BLKmode
, *pbitsize
= -1;
5489 *pbitsize
= tree_low_cst (size_tree
, 1);
5492 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5493 and find the ultimate containing object. */
5496 switch (TREE_CODE (exp
))
5499 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5500 TREE_OPERAND (exp
, 2));
5505 tree field
= TREE_OPERAND (exp
, 1);
5506 tree this_offset
= component_ref_field_offset (exp
);
5508 /* If this field hasn't been filled in yet, don't go past it.
5509 This should only happen when folding expressions made during
5510 type construction. */
5511 if (this_offset
== 0)
5514 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
5515 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5516 DECL_FIELD_BIT_OFFSET (field
));
5518 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5523 case ARRAY_RANGE_REF
:
5525 tree index
= TREE_OPERAND (exp
, 1);
5526 tree low_bound
= array_ref_low_bound (exp
);
5527 tree unit_size
= array_ref_element_size (exp
);
5529 /* We assume all arrays have sizes that are a multiple of a byte.
5530 First subtract the lower bound, if any, in the type of the
5531 index, then convert to sizetype and multiply by the size of
5532 the array element. */
5533 if (! integer_zerop (low_bound
))
5534 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
5537 offset
= size_binop (PLUS_EXPR
, offset
,
5538 size_binop (MULT_EXPR
,
5539 convert (sizetype
, index
),
5548 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5549 bitsize_int (*pbitsize
));
5552 case VIEW_CONVERT_EXPR
:
5553 if (keep_aligning
&& STRICT_ALIGNMENT
5554 && (TYPE_ALIGN (TREE_TYPE (exp
))
5555 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
5556 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
5557 < BIGGEST_ALIGNMENT
)
5558 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
5559 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
5567 /* If any reference in the chain is volatile, the effect is volatile. */
5568 if (TREE_THIS_VOLATILE (exp
))
5571 exp
= TREE_OPERAND (exp
, 0);
5575 /* If OFFSET is constant, see if we can return the whole thing as a
5576 constant bit position. Otherwise, split it up. */
5577 if (host_integerp (offset
, 0)
5578 && 0 != (tem
= size_binop (MULT_EXPR
, convert (bitsizetype
, offset
),
5580 && 0 != (tem
= size_binop (PLUS_EXPR
, tem
, bit_offset
))
5581 && host_integerp (tem
, 0))
5582 *pbitpos
= tree_low_cst (tem
, 0), *poffset
= 0;
5584 *pbitpos
= tree_low_cst (bit_offset
, 0), *poffset
= offset
;
5590 /* Return a tree of sizetype representing the size, in bytes, of the element
5591 of EXP, an ARRAY_REF. */
5594 array_ref_element_size (tree exp
)
5596 tree aligned_size
= TREE_OPERAND (exp
, 3);
5597 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5599 /* If a size was specified in the ARRAY_REF, it's the size measured
5600 in alignment units of the element type. So multiply by that value. */
5603 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5604 sizetype from another type of the same width and signedness. */
5605 if (TREE_TYPE (aligned_size
) != sizetype
)
5606 aligned_size
= fold_convert (sizetype
, aligned_size
);
5607 return size_binop (MULT_EXPR
, aligned_size
,
5608 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
5611 /* Otherwise, take the size from that of the element type. Substitute
5612 any PLACEHOLDER_EXPR that we have. */
5614 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
5617 /* Return a tree representing the lower bound of the array mentioned in
5618 EXP, an ARRAY_REF. */
5621 array_ref_low_bound (tree exp
)
5623 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5625 /* If a lower bound is specified in EXP, use it. */
5626 if (TREE_OPERAND (exp
, 2))
5627 return TREE_OPERAND (exp
, 2);
5629 /* Otherwise, if there is a domain type and it has a lower bound, use it,
5630 substituting for a PLACEHOLDER_EXPR as needed. */
5631 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
5632 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
5634 /* Otherwise, return a zero of the appropriate type. */
5635 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
5638 /* Return a tree representing the upper bound of the array mentioned in
5639 EXP, an ARRAY_REF. */
5642 array_ref_up_bound (tree exp
)
5644 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5646 /* If there is a domain type and it has an upper bound, use it, substituting
5647 for a PLACEHOLDER_EXPR as needed. */
5648 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
5649 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
5651 /* Otherwise fail. */
5655 /* Return a tree representing the offset, in bytes, of the field referenced
5656 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
5659 component_ref_field_offset (tree exp
)
5661 tree aligned_offset
= TREE_OPERAND (exp
, 2);
5662 tree field
= TREE_OPERAND (exp
, 1);
5664 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
5665 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
5669 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5670 sizetype from another type of the same width and signedness. */
5671 if (TREE_TYPE (aligned_offset
) != sizetype
)
5672 aligned_offset
= fold_convert (sizetype
, aligned_offset
);
5673 return size_binop (MULT_EXPR
, aligned_offset
,
5674 size_int (DECL_OFFSET_ALIGN (field
) / BITS_PER_UNIT
));
5677 /* Otherwise, take the offset from that of the field. Substitute
5678 any PLACEHOLDER_EXPR that we have. */
5680 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
5683 /* Return 1 if T is an expression that get_inner_reference handles. */
5686 handled_component_p (tree t
)
5688 switch (TREE_CODE (t
))
5693 case ARRAY_RANGE_REF
:
5694 case VIEW_CONVERT_EXPR
:
5704 /* Given an rtx VALUE that may contain additions and multiplications, return
5705 an equivalent value that just refers to a register, memory, or constant.
5706 This is done by generating instructions to perform the arithmetic and
5707 returning a pseudo-register containing the value.
5709 The returned value may be a REG, SUBREG, MEM or constant. */
5712 force_operand (rtx value
, rtx target
)
5715 /* Use subtarget as the target for operand 0 of a binary operation. */
5716 rtx subtarget
= get_subtarget (target
);
5717 enum rtx_code code
= GET_CODE (value
);
5719 /* Check for subreg applied to an expression produced by loop optimizer. */
5721 && !REG_P (SUBREG_REG (value
))
5722 && !MEM_P (SUBREG_REG (value
)))
5724 value
= simplify_gen_subreg (GET_MODE (value
),
5725 force_reg (GET_MODE (SUBREG_REG (value
)),
5726 force_operand (SUBREG_REG (value
),
5728 GET_MODE (SUBREG_REG (value
)),
5729 SUBREG_BYTE (value
));
5730 code
= GET_CODE (value
);
5733 /* Check for a PIC address load. */
5734 if ((code
== PLUS
|| code
== MINUS
)
5735 && XEXP (value
, 0) == pic_offset_table_rtx
5736 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
5737 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
5738 || GET_CODE (XEXP (value
, 1)) == CONST
))
5741 subtarget
= gen_reg_rtx (GET_MODE (value
));
5742 emit_move_insn (subtarget
, value
);
5746 if (code
== ZERO_EXTEND
|| code
== SIGN_EXTEND
)
5749 target
= gen_reg_rtx (GET_MODE (value
));
5750 convert_move (target
, force_operand (XEXP (value
, 0), NULL
),
5751 code
== ZERO_EXTEND
);
5755 if (ARITHMETIC_P (value
))
5757 op2
= XEXP (value
, 1);
5758 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
5760 if (code
== MINUS
&& GET_CODE (op2
) == CONST_INT
)
5763 op2
= negate_rtx (GET_MODE (value
), op2
);
5766 /* Check for an addition with OP2 a constant integer and our first
5767 operand a PLUS of a virtual register and something else. In that
5768 case, we want to emit the sum of the virtual register and the
5769 constant first and then add the other value. This allows virtual
5770 register instantiation to simply modify the constant rather than
5771 creating another one around this addition. */
5772 if (code
== PLUS
&& GET_CODE (op2
) == CONST_INT
5773 && GET_CODE (XEXP (value
, 0)) == PLUS
5774 && REG_P (XEXP (XEXP (value
, 0), 0))
5775 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5776 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
5778 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
5779 XEXP (XEXP (value
, 0), 0), op2
,
5780 subtarget
, 0, OPTAB_LIB_WIDEN
);
5781 return expand_simple_binop (GET_MODE (value
), code
, temp
,
5782 force_operand (XEXP (XEXP (value
,
5784 target
, 0, OPTAB_LIB_WIDEN
);
5787 op1
= force_operand (XEXP (value
, 0), subtarget
);
5788 op2
= force_operand (op2
, NULL_RTX
);
5792 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
5794 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
5795 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5796 target
, 1, OPTAB_LIB_WIDEN
);
5798 return expand_divmod (0,
5799 FLOAT_MODE_P (GET_MODE (value
))
5800 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
5801 GET_MODE (value
), op1
, op2
, target
, 0);
5804 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
5808 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
5812 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
5816 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5817 target
, 0, OPTAB_LIB_WIDEN
);
5820 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5821 target
, 1, OPTAB_LIB_WIDEN
);
5824 if (UNARY_P (value
))
5826 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
5827 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
5830 #ifdef INSN_SCHEDULING
5831 /* On machines that have insn scheduling, we want all memory reference to be
5832 explicit, so we need to deal with such paradoxical SUBREGs. */
5833 if (GET_CODE (value
) == SUBREG
&& MEM_P (SUBREG_REG (value
))
5834 && (GET_MODE_SIZE (GET_MODE (value
))
5835 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value
)))))
5837 = simplify_gen_subreg (GET_MODE (value
),
5838 force_reg (GET_MODE (SUBREG_REG (value
)),
5839 force_operand (SUBREG_REG (value
),
5841 GET_MODE (SUBREG_REG (value
)),
5842 SUBREG_BYTE (value
));
5848 /* Subroutine of expand_expr: return nonzero iff there is no way that
5849 EXP can reference X, which is being modified. TOP_P is nonzero if this
5850 call is going to be used to determine whether we need a temporary
5851 for EXP, as opposed to a recursive call to this function.
5853 It is always safe for this routine to return zero since it merely
5854 searches for optimization opportunities. */
5857 safe_from_p (rtx x
, tree exp
, int top_p
)
5863 /* If EXP has varying size, we MUST use a target since we currently
5864 have no way of allocating temporaries of variable size
5865 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
5866 So we assume here that something at a higher level has prevented a
5867 clash. This is somewhat bogus, but the best we can do. Only
5868 do this when X is BLKmode and when we are at the top level. */
5869 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
5870 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
5871 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
5872 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
5873 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
5875 && GET_MODE (x
) == BLKmode
)
5876 /* If X is in the outgoing argument area, it is always safe. */
5878 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
5879 || (GET_CODE (XEXP (x
, 0)) == PLUS
5880 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
5883 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
5884 find the underlying pseudo. */
5885 if (GET_CODE (x
) == SUBREG
)
5888 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
5892 /* Now look at our tree code and possibly recurse. */
5893 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
5895 case tcc_declaration
:
5896 exp_rtl
= DECL_RTL_IF_SET (exp
);
5902 case tcc_exceptional
:
5903 if (TREE_CODE (exp
) == TREE_LIST
)
5907 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
5909 exp
= TREE_CHAIN (exp
);
5912 if (TREE_CODE (exp
) != TREE_LIST
)
5913 return safe_from_p (x
, exp
, 0);
5916 else if (TREE_CODE (exp
) == ERROR_MARK
)
5917 return 1; /* An already-visited SAVE_EXPR? */
5922 /* The only case we look at here is the DECL_INITIAL inside a
5924 return (TREE_CODE (exp
) != DECL_EXPR
5925 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
5926 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
5927 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
5930 case tcc_comparison
:
5931 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
5936 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
5938 case tcc_expression
:
5940 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
5941 the expression. If it is set, we conflict iff we are that rtx or
5942 both are in memory. Otherwise, we check all operands of the
5943 expression recursively. */
5945 switch (TREE_CODE (exp
))
5948 /* If the operand is static or we are static, we can't conflict.
5949 Likewise if we don't conflict with the operand at all. */
5950 if (staticp (TREE_OPERAND (exp
, 0))
5951 || TREE_STATIC (exp
)
5952 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
5955 /* Otherwise, the only way this can conflict is if we are taking
5956 the address of a DECL a that address if part of X, which is
5958 exp
= TREE_OPERAND (exp
, 0);
5961 if (!DECL_RTL_SET_P (exp
)
5962 || !MEM_P (DECL_RTL (exp
)))
5965 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
5969 case MISALIGNED_INDIRECT_REF
:
5970 case ALIGN_INDIRECT_REF
:
5973 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
5974 get_alias_set (exp
)))
5979 /* Assume that the call will clobber all hard registers and
5981 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
5986 case WITH_CLEANUP_EXPR
:
5987 case CLEANUP_POINT_EXPR
:
5988 /* Lowered by gimplify.c. */
5992 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
5998 /* If we have an rtx, we do not need to scan our operands. */
6002 nops
= TREE_CODE_LENGTH (TREE_CODE (exp
));
6003 for (i
= 0; i
< nops
; i
++)
6004 if (TREE_OPERAND (exp
, i
) != 0
6005 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
6008 /* If this is a language-specific tree code, it may require
6009 special handling. */
6010 if ((unsigned int) TREE_CODE (exp
)
6011 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
6012 && !lang_hooks
.safe_from_p (x
, exp
))
6017 /* Should never get a type here. */
6021 /* If we have an rtl, find any enclosed object. Then see if we conflict
6025 if (GET_CODE (exp_rtl
) == SUBREG
)
6027 exp_rtl
= SUBREG_REG (exp_rtl
);
6029 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
6033 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6034 are memory and they conflict. */
6035 return ! (rtx_equal_p (x
, exp_rtl
)
6036 || (MEM_P (x
) && MEM_P (exp_rtl
)
6037 && true_dependence (exp_rtl
, VOIDmode
, x
,
6038 rtx_addr_varies_p
)));
6041 /* If we reach here, it is safe. */
6046 /* Return the highest power of two that EXP is known to be a multiple of.
6047 This is used in updating alignment of MEMs in array references. */
6049 unsigned HOST_WIDE_INT
6050 highest_pow2_factor (tree exp
)
6052 unsigned HOST_WIDE_INT c0
, c1
;
6054 switch (TREE_CODE (exp
))
6057 /* We can find the lowest bit that's a one. If the low
6058 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6059 We need to handle this case since we can find it in a COND_EXPR,
6060 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6061 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6063 if (TREE_CONSTANT_OVERFLOW (exp
))
6064 return BIGGEST_ALIGNMENT
;
6067 /* Note: tree_low_cst is intentionally not used here,
6068 we don't care about the upper bits. */
6069 c0
= TREE_INT_CST_LOW (exp
);
6071 return c0
? c0
: BIGGEST_ALIGNMENT
;
6075 case PLUS_EXPR
: case MINUS_EXPR
: case MIN_EXPR
: case MAX_EXPR
:
6076 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6077 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6078 return MIN (c0
, c1
);
6081 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6082 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6085 case ROUND_DIV_EXPR
: case TRUNC_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6087 if (integer_pow2p (TREE_OPERAND (exp
, 1))
6088 && host_integerp (TREE_OPERAND (exp
, 1), 1))
6090 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6091 c1
= tree_low_cst (TREE_OPERAND (exp
, 1), 1);
6092 return MAX (1, c0
/ c1
);
6096 case NON_LVALUE_EXPR
: case NOP_EXPR
: case CONVERT_EXPR
:
6098 return highest_pow2_factor (TREE_OPERAND (exp
, 0));
6101 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
6104 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6105 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 2));
6106 return MIN (c0
, c1
);
6115 /* Similar, except that the alignment requirements of TARGET are
6116 taken into account. Assume it is at least as aligned as its
6117 type, unless it is a COMPONENT_REF in which case the layout of
6118 the structure gives the alignment. */
6120 static unsigned HOST_WIDE_INT
6121 highest_pow2_factor_for_target (tree target
, tree exp
)
6123 unsigned HOST_WIDE_INT target_align
, factor
;
6125 factor
= highest_pow2_factor (exp
);
6126 if (TREE_CODE (target
) == COMPONENT_REF
)
6127 target_align
= DECL_ALIGN_UNIT (TREE_OPERAND (target
, 1));
6129 target_align
= TYPE_ALIGN_UNIT (TREE_TYPE (target
));
6130 return MAX (factor
, target_align
);
6133 /* Expands variable VAR. */
6136 expand_var (tree var
)
6138 if (DECL_EXTERNAL (var
))
6141 if (TREE_STATIC (var
))
6142 /* If this is an inlined copy of a static local variable,
6143 look up the original decl. */
6144 var
= DECL_ORIGIN (var
);
6146 if (TREE_STATIC (var
)
6147 ? !TREE_ASM_WRITTEN (var
)
6148 : !DECL_RTL_SET_P (var
))
6150 if (TREE_CODE (var
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (var
))
6151 /* Should be ignored. */;
6152 else if (lang_hooks
.expand_decl (var
))
6154 else if (TREE_CODE (var
) == VAR_DECL
&& !TREE_STATIC (var
))
6156 else if (TREE_CODE (var
) == VAR_DECL
&& TREE_STATIC (var
))
6157 rest_of_decl_compilation (var
, 0, 0);
6159 /* No expansion needed. */
6160 gcc_assert (TREE_CODE (var
) == TYPE_DECL
6161 || TREE_CODE (var
) == CONST_DECL
6162 || TREE_CODE (var
) == FUNCTION_DECL
6163 || TREE_CODE (var
) == LABEL_DECL
);
6167 /* Subroutine of expand_expr. Expand the two operands of a binary
6168 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6169 The value may be stored in TARGET if TARGET is nonzero. The
6170 MODIFIER argument is as documented by expand_expr. */
6173 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
6174 enum expand_modifier modifier
)
6176 if (! safe_from_p (target
, exp1
, 1))
6178 if (operand_equal_p (exp0
, exp1
, 0))
6180 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6181 *op1
= copy_rtx (*op0
);
6185 /* If we need to preserve evaluation order, copy exp0 into its own
6186 temporary variable so that it can't be clobbered by exp1. */
6187 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
6188 exp0
= save_expr (exp0
);
6189 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6190 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
6195 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6196 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6199 expand_expr_addr_expr_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6200 enum expand_modifier modifier
)
6202 rtx result
, subtarget
;
6204 HOST_WIDE_INT bitsize
, bitpos
;
6205 int volatilep
, unsignedp
;
6206 enum machine_mode mode1
;
6208 /* If we are taking the address of a constant and are at the top level,
6209 we have to use output_constant_def since we can't call force_const_mem
6211 /* ??? This should be considered a front-end bug. We should not be
6212 generating ADDR_EXPR of something that isn't an LVALUE. The only
6213 exception here is STRING_CST. */
6214 if (TREE_CODE (exp
) == CONSTRUCTOR
6215 || CONSTANT_CLASS_P (exp
))
6216 return XEXP (output_constant_def (exp
, 0), 0);
6218 /* Everything must be something allowed by is_gimple_addressable. */
6219 switch (TREE_CODE (exp
))
6222 /* This case will happen via recursion for &a->b. */
6223 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, EXPAND_NORMAL
);
6226 /* Recurse and make the output_constant_def clause above handle this. */
6227 return expand_expr_addr_expr_1 (DECL_INITIAL (exp
), target
,
6231 /* The real part of the complex number is always first, therefore
6232 the address is the same as the address of the parent object. */
6235 inner
= TREE_OPERAND (exp
, 0);
6239 /* The imaginary part of the complex number is always second.
6240 The expression is therefore always offset by the size of the
6243 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
6244 inner
= TREE_OPERAND (exp
, 0);
6248 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6249 expand_expr, as that can have various side effects; LABEL_DECLs for
6250 example, may not have their DECL_RTL set yet. Assume language
6251 specific tree nodes can be expanded in some interesting way. */
6253 || TREE_CODE (exp
) >= LAST_AND_UNUSED_TREE_CODE
)
6255 result
= expand_expr (exp
, target
, tmode
,
6256 modifier
== EXPAND_INITIALIZER
6257 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
6259 /* If the DECL isn't in memory, then the DECL wasn't properly
6260 marked TREE_ADDRESSABLE, which will be either a front-end
6261 or a tree optimizer bug. */
6262 gcc_assert (MEM_P (result
));
6263 result
= XEXP (result
, 0);
6265 /* ??? Is this needed anymore? */
6266 if (DECL_P (exp
) && !TREE_USED (exp
) == 0)
6268 assemble_external (exp
);
6269 TREE_USED (exp
) = 1;
6272 if (modifier
!= EXPAND_INITIALIZER
6273 && modifier
!= EXPAND_CONST_ADDRESS
)
6274 result
= force_operand (result
, target
);
6278 /* Pass FALSE as the last argument to get_inner_reference although
6279 we are expanding to RTL. The rationale is that we know how to
6280 handle "aligning nodes" here: we can just bypass them because
6281 they won't change the final object whose address will be returned
6282 (they actually exist only for that purpose). */
6283 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
6284 &mode1
, &unsignedp
, &volatilep
, false);
6288 /* We must have made progress. */
6289 gcc_assert (inner
!= exp
);
6291 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
6292 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
);
6298 if (modifier
!= EXPAND_NORMAL
)
6299 result
= force_operand (result
, NULL
);
6300 tmp
= expand_expr (offset
, NULL
, tmode
, EXPAND_NORMAL
);
6302 result
= convert_memory_address (tmode
, result
);
6303 tmp
= convert_memory_address (tmode
, tmp
);
6305 if (modifier
== EXPAND_SUM
)
6306 result
= gen_rtx_PLUS (tmode
, result
, tmp
);
6309 subtarget
= bitpos
? NULL_RTX
: target
;
6310 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
6311 1, OPTAB_LIB_WIDEN
);
6317 /* Someone beforehand should have rejected taking the address
6318 of such an object. */
6319 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
6321 result
= plus_constant (result
, bitpos
/ BITS_PER_UNIT
);
6322 if (modifier
< EXPAND_SUM
)
6323 result
= force_operand (result
, target
);
6329 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6330 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6333 expand_expr_addr_expr (tree exp
, rtx target
, enum machine_mode tmode
,
6334 enum expand_modifier modifier
)
6336 enum machine_mode rmode
;
6339 /* Target mode of VOIDmode says "whatever's natural". */
6340 if (tmode
== VOIDmode
)
6341 tmode
= TYPE_MODE (TREE_TYPE (exp
));
6343 /* We can get called with some Weird Things if the user does silliness
6344 like "(short) &a". In that case, convert_memory_address won't do
6345 the right thing, so ignore the given target mode. */
6346 if (tmode
!= Pmode
&& tmode
!= ptr_mode
)
6349 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
6352 /* Despite expand_expr claims concerning ignoring TMODE when not
6353 strictly convenient, stuff breaks if we don't honor it. Note
6354 that combined with the above, we only do this for pointer modes. */
6355 rmode
= GET_MODE (result
);
6356 if (rmode
== VOIDmode
)
6359 result
= convert_memory_address (tmode
, result
);
6365 /* expand_expr: generate code for computing expression EXP.
6366 An rtx for the computed value is returned. The value is never null.
6367 In the case of a void EXP, const0_rtx is returned.
6369 The value may be stored in TARGET if TARGET is nonzero.
6370 TARGET is just a suggestion; callers must assume that
6371 the rtx returned may not be the same as TARGET.
6373 If TARGET is CONST0_RTX, it means that the value will be ignored.
6375 If TMODE is not VOIDmode, it suggests generating the
6376 result in mode TMODE. But this is done only when convenient.
6377 Otherwise, TMODE is ignored and the value generated in its natural mode.
6378 TMODE is just a suggestion; callers must assume that
6379 the rtx returned may not have mode TMODE.
6381 Note that TARGET may have neither TMODE nor MODE. In that case, it
6382 probably will not be used.
6384 If MODIFIER is EXPAND_SUM then when EXP is an addition
6385 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6386 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6387 products as above, or REG or MEM, or constant.
6388 Ordinarily in such cases we would output mul or add instructions
6389 and then return a pseudo reg containing the sum.
6391 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6392 it also marks a label as absolutely required (it can't be dead).
6393 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6394 This is used for outputting expressions used in initializers.
6396 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6397 with a constant address even if that address is not normally legitimate.
6398 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6400 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6401 a call parameter. Such targets require special care as we haven't yet
6402 marked TARGET so that it's safe from being trashed by libcalls. We
6403 don't want to use TARGET for anything but the final result;
6404 Intermediate values must go elsewhere. Additionally, calls to
6405 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
6407 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
6408 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
6409 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
6410 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
6413 static rtx
expand_expr_real_1 (tree
, rtx
, enum machine_mode
,
6414 enum expand_modifier
, rtx
*);
6417 expand_expr_real (tree exp
, rtx target
, enum machine_mode tmode
,
6418 enum expand_modifier modifier
, rtx
*alt_rtl
)
6421 rtx ret
, last
= NULL
;
6423 /* Handle ERROR_MARK before anybody tries to access its type. */
6424 if (TREE_CODE (exp
) == ERROR_MARK
6425 || TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
)
6427 ret
= CONST0_RTX (tmode
);
6428 return ret
? ret
: const0_rtx
;
6431 if (flag_non_call_exceptions
)
6433 rn
= lookup_stmt_eh_region (exp
);
6434 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
6436 last
= get_last_insn ();
6439 /* If this is an expression of some kind and it has an associated line
6440 number, then emit the line number before expanding the expression.
6442 We need to save and restore the file and line information so that
6443 errors discovered during expansion are emitted with the right
6444 information. It would be better of the diagnostic routines
6445 used the file/line information embedded in the tree nodes rather
6447 if (cfun
&& EXPR_HAS_LOCATION (exp
))
6449 location_t saved_location
= input_location
;
6450 input_location
= EXPR_LOCATION (exp
);
6451 emit_line_note (input_location
);
6453 /* Record where the insns produced belong. */
6454 record_block_change (TREE_BLOCK (exp
));
6456 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
6458 input_location
= saved_location
;
6462 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
6465 /* If using non-call exceptions, mark all insns that may trap.
6466 expand_call() will mark CALL_INSNs before we get to this code,
6467 but it doesn't handle libcalls, and these may trap. */
6471 for (insn
= next_real_insn (last
); insn
;
6472 insn
= next_real_insn (insn
))
6474 if (! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
6475 /* If we want exceptions for non-call insns, any
6476 may_trap_p instruction may throw. */
6477 && GET_CODE (PATTERN (insn
)) != CLOBBER
6478 && GET_CODE (PATTERN (insn
)) != USE
6479 && (CALL_P (insn
) || may_trap_p (PATTERN (insn
))))
6481 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_EH_REGION
, GEN_INT (rn
),
6491 expand_expr_real_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6492 enum expand_modifier modifier
, rtx
*alt_rtl
)
6495 tree type
= TREE_TYPE (exp
);
6497 enum machine_mode mode
;
6498 enum tree_code code
= TREE_CODE (exp
);
6500 rtx subtarget
, original_target
;
6503 bool reduce_bit_field
= false;
6504 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
6505 ? reduce_to_bit_field_precision ((expr), \
6510 mode
= TYPE_MODE (type
);
6511 unsignedp
= TYPE_UNSIGNED (type
);
6512 if (lang_hooks
.reduce_bit_field_operations
6513 && TREE_CODE (type
) == INTEGER_TYPE
6514 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
))
6516 /* An operation in what may be a bit-field type needs the
6517 result to be reduced to the precision of the bit-field type,
6518 which is narrower than that of the type's mode. */
6519 reduce_bit_field
= true;
6520 if (modifier
== EXPAND_STACK_PARM
)
6524 /* Use subtarget as the target for operand 0 of a binary operation. */
6525 subtarget
= get_subtarget (target
);
6526 original_target
= target
;
6527 ignore
= (target
== const0_rtx
6528 || ((code
== NON_LVALUE_EXPR
|| code
== NOP_EXPR
6529 || code
== CONVERT_EXPR
|| code
== COND_EXPR
6530 || code
== VIEW_CONVERT_EXPR
)
6531 && TREE_CODE (type
) == VOID_TYPE
));
6533 /* If we are going to ignore this result, we need only do something
6534 if there is a side-effect somewhere in the expression. If there
6535 is, short-circuit the most common cases here. Note that we must
6536 not call expand_expr with anything but const0_rtx in case this
6537 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6541 if (! TREE_SIDE_EFFECTS (exp
))
6544 /* Ensure we reference a volatile object even if value is ignored, but
6545 don't do this if all we are doing is taking its address. */
6546 if (TREE_THIS_VOLATILE (exp
)
6547 && TREE_CODE (exp
) != FUNCTION_DECL
6548 && mode
!= VOIDmode
&& mode
!= BLKmode
6549 && modifier
!= EXPAND_CONST_ADDRESS
)
6551 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
6553 temp
= copy_to_reg (temp
);
6557 if (TREE_CODE_CLASS (code
) == tcc_unary
6558 || code
== COMPONENT_REF
|| code
== INDIRECT_REF
)
6559 return expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
6562 else if (TREE_CODE_CLASS (code
) == tcc_binary
6563 || TREE_CODE_CLASS (code
) == tcc_comparison
6564 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
6566 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6567 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6570 else if (code
== BIT_FIELD_REF
)
6572 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6573 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6574 expand_expr (TREE_OPERAND (exp
, 2), const0_rtx
, VOIDmode
, modifier
);
6581 /* If will do cse, generate all results into pseudo registers
6582 since 1) that allows cse to find more things
6583 and 2) otherwise cse could produce an insn the machine
6584 cannot support. An exception is a CONSTRUCTOR into a multi-word
6585 MEM: that's much more likely to be most efficient into the MEM.
6586 Another is a CALL_EXPR which must return in memory. */
6588 if (! cse_not_expected
&& mode
!= BLKmode
&& target
6589 && (!REG_P (target
) || REGNO (target
) < FIRST_PSEUDO_REGISTER
)
6590 && ! (code
== CONSTRUCTOR
&& GET_MODE_SIZE (mode
) > UNITS_PER_WORD
)
6591 && ! (code
== CALL_EXPR
&& aggregate_value_p (exp
, exp
)))
6598 tree function
= decl_function_context (exp
);
6600 temp
= label_rtx (exp
);
6601 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
6603 if (function
!= current_function_decl
6605 LABEL_REF_NONLOCAL_P (temp
) = 1;
6607 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
6612 return expand_expr_real_1 (SSA_NAME_VAR (exp
), target
, tmode
, modifier
,
6617 /* If a static var's type was incomplete when the decl was written,
6618 but the type is complete now, lay out the decl now. */
6619 if (DECL_SIZE (exp
) == 0
6620 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
6621 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
6622 layout_decl (exp
, 0);
6624 /* ... fall through ... */
6628 gcc_assert (DECL_RTL (exp
));
6630 /* Ensure variable marked as used even if it doesn't go through
6631 a parser. If it hasn't be used yet, write out an external
6633 if (! TREE_USED (exp
))
6635 assemble_external (exp
);
6636 TREE_USED (exp
) = 1;
6639 /* Show we haven't gotten RTL for this yet. */
6642 /* Variables inherited from containing functions should have
6643 been lowered by this point. */
6644 context
= decl_function_context (exp
);
6645 gcc_assert (!context
6646 || context
== current_function_decl
6647 || TREE_STATIC (exp
)
6648 /* ??? C++ creates functions that are not TREE_STATIC. */
6649 || TREE_CODE (exp
) == FUNCTION_DECL
);
6651 /* This is the case of an array whose size is to be determined
6652 from its initializer, while the initializer is still being parsed.
6655 if (MEM_P (DECL_RTL (exp
))
6656 && REG_P (XEXP (DECL_RTL (exp
), 0)))
6657 temp
= validize_mem (DECL_RTL (exp
));
6659 /* If DECL_RTL is memory, we are in the normal case and either
6660 the address is not valid or it is not a register and -fforce-addr
6661 is specified, get the address into a register. */
6663 else if (MEM_P (DECL_RTL (exp
))
6664 && modifier
!= EXPAND_CONST_ADDRESS
6665 && modifier
!= EXPAND_SUM
6666 && modifier
!= EXPAND_INITIALIZER
6667 && (! memory_address_p (DECL_MODE (exp
),
6668 XEXP (DECL_RTL (exp
), 0))
6670 && !REG_P (XEXP (DECL_RTL (exp
), 0)))))
6673 *alt_rtl
= DECL_RTL (exp
);
6674 temp
= replace_equiv_address (DECL_RTL (exp
),
6675 copy_rtx (XEXP (DECL_RTL (exp
), 0)));
6678 /* If we got something, return it. But first, set the alignment
6679 if the address is a register. */
6682 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
6683 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
6688 /* If the mode of DECL_RTL does not match that of the decl, it
6689 must be a promoted value. We return a SUBREG of the wanted mode,
6690 but mark it so that we know that it was already extended. */
6692 if (REG_P (DECL_RTL (exp
))
6693 && GET_MODE (DECL_RTL (exp
)) != DECL_MODE (exp
))
6695 enum machine_mode pmode
;
6697 /* Get the signedness used for this variable. Ensure we get the
6698 same mode we got when the variable was declared. */
6699 pmode
= promote_mode (type
, DECL_MODE (exp
), &unsignedp
,
6700 (TREE_CODE (exp
) == RESULT_DECL
? 1 : 0));
6701 gcc_assert (GET_MODE (DECL_RTL (exp
)) == pmode
);
6703 temp
= gen_lowpart_SUBREG (mode
, DECL_RTL (exp
));
6704 SUBREG_PROMOTED_VAR_P (temp
) = 1;
6705 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
6709 return DECL_RTL (exp
);
6712 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
6713 TREE_INT_CST_HIGH (exp
), mode
);
6715 /* ??? If overflow is set, fold will have done an incomplete job,
6716 which can result in (plus xx (const_int 0)), which can get
6717 simplified by validate_replace_rtx during virtual register
6718 instantiation, which can result in unrecognizable insns.
6719 Avoid this by forcing all overflows into registers. */
6720 if (TREE_CONSTANT_OVERFLOW (exp
)
6721 && modifier
!= EXPAND_INITIALIZER
)
6722 temp
= force_reg (mode
, temp
);
6727 if (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp
))) == MODE_VECTOR_INT
6728 || GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp
))) == MODE_VECTOR_FLOAT
)
6729 return const_vector_from_tree (exp
);
6731 return expand_expr (build_constructor_from_list
6733 TREE_VECTOR_CST_ELTS (exp
)),
6734 ignore
? const0_rtx
: target
, tmode
, modifier
);
6737 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
6740 /* If optimized, generate immediate CONST_DOUBLE
6741 which will be turned into memory by reload if necessary.
6743 We used to force a register so that loop.c could see it. But
6744 this does not allow gen_* patterns to perform optimizations with
6745 the constants. It also produces two insns in cases like "x = 1.0;".
6746 On most machines, floating-point constants are not permitted in
6747 many insns, so we'd end up copying it to a register in any case.
6749 Now, we do the copying in expand_binop, if appropriate. */
6750 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
6751 TYPE_MODE (TREE_TYPE (exp
)));
6754 /* Handle evaluating a complex constant in a CONCAT target. */
6755 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
6757 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
6760 rtarg
= XEXP (original_target
, 0);
6761 itarg
= XEXP (original_target
, 1);
6763 /* Move the real and imaginary parts separately. */
6764 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, 0);
6765 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, 0);
6768 emit_move_insn (rtarg
, op0
);
6770 emit_move_insn (itarg
, op1
);
6772 return original_target
;
6775 /* ... fall through ... */
6778 temp
= output_constant_def (exp
, 1);
6780 /* temp contains a constant address.
6781 On RISC machines where a constant address isn't valid,
6782 make some insns to get that address into a register. */
6783 if (modifier
!= EXPAND_CONST_ADDRESS
6784 && modifier
!= EXPAND_INITIALIZER
6785 && modifier
!= EXPAND_SUM
6786 && (! memory_address_p (mode
, XEXP (temp
, 0))
6787 || flag_force_addr
))
6788 return replace_equiv_address (temp
,
6789 copy_rtx (XEXP (temp
, 0)));
6794 tree val
= TREE_OPERAND (exp
, 0);
6795 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
);
6797 if (!SAVE_EXPR_RESOLVED_P (exp
))
6799 /* We can indeed still hit this case, typically via builtin
6800 expanders calling save_expr immediately before expanding
6801 something. Assume this means that we only have to deal
6802 with non-BLKmode values. */
6803 gcc_assert (GET_MODE (ret
) != BLKmode
);
6805 val
= build_decl (VAR_DECL
, NULL
, TREE_TYPE (exp
));
6806 DECL_ARTIFICIAL (val
) = 1;
6807 DECL_IGNORED_P (val
) = 1;
6808 TREE_OPERAND (exp
, 0) = val
;
6809 SAVE_EXPR_RESOLVED_P (exp
) = 1;
6811 if (!CONSTANT_P (ret
))
6812 ret
= copy_to_reg (ret
);
6813 SET_DECL_RTL (val
, ret
);
6820 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == LABEL_DECL
)
6821 expand_goto (TREE_OPERAND (exp
, 0));
6823 expand_computed_goto (TREE_OPERAND (exp
, 0));
6827 /* If we don't need the result, just ensure we evaluate any
6831 unsigned HOST_WIDE_INT idx
;
6834 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6835 expand_expr (value
, const0_rtx
, VOIDmode
, 0);
6840 /* All elts simple constants => refer to a constant in memory. But
6841 if this is a non-BLKmode mode, let it store a field at a time
6842 since that should make a CONST_INT or CONST_DOUBLE when we
6843 fold. Likewise, if we have a target we can use, it is best to
6844 store directly into the target unless the type is large enough
6845 that memcpy will be used. If we are making an initializer and
6846 all operands are constant, put it in memory as well.
6848 FIXME: Avoid trying to fill vector constructors piece-meal.
6849 Output them with output_constant_def below unless we're sure
6850 they're zeros. This should go away when vector initializers
6851 are treated like VECTOR_CST instead of arrays.
6853 else if ((TREE_STATIC (exp
)
6854 && ((mode
== BLKmode
6855 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
6856 || TREE_ADDRESSABLE (exp
)
6857 || (host_integerp (TYPE_SIZE_UNIT (type
), 1)
6858 && (! MOVE_BY_PIECES_P
6859 (tree_low_cst (TYPE_SIZE_UNIT (type
), 1),
6861 && ! mostly_zeros_p (exp
))))
6862 || ((modifier
== EXPAND_INITIALIZER
6863 || modifier
== EXPAND_CONST_ADDRESS
)
6864 && TREE_CONSTANT (exp
)))
6866 rtx constructor
= output_constant_def (exp
, 1);
6868 if (modifier
!= EXPAND_CONST_ADDRESS
6869 && modifier
!= EXPAND_INITIALIZER
6870 && modifier
!= EXPAND_SUM
)
6871 constructor
= validize_mem (constructor
);
6877 /* Handle calls that pass values in multiple non-contiguous
6878 locations. The Irix 6 ABI has examples of this. */
6879 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
6880 || GET_CODE (target
) == PARALLEL
6881 || modifier
== EXPAND_STACK_PARM
)
6883 = assign_temp (build_qualified_type (type
,
6885 | (TREE_READONLY (exp
)
6886 * TYPE_QUAL_CONST
))),
6887 0, TREE_ADDRESSABLE (exp
), 1);
6889 store_constructor (exp
, target
, 0, int_expr_size (exp
));
6893 case MISALIGNED_INDIRECT_REF
:
6894 case ALIGN_INDIRECT_REF
:
6897 tree exp1
= TREE_OPERAND (exp
, 0);
6899 if (modifier
!= EXPAND_WRITE
)
6903 t
= fold_read_from_constant_string (exp
);
6905 return expand_expr (t
, target
, tmode
, modifier
);
6908 op0
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
6909 op0
= memory_address (mode
, op0
);
6911 if (code
== ALIGN_INDIRECT_REF
)
6913 int align
= TYPE_ALIGN_UNIT (type
);
6914 op0
= gen_rtx_AND (Pmode
, op0
, GEN_INT (-align
));
6915 op0
= memory_address (mode
, op0
);
6918 temp
= gen_rtx_MEM (mode
, op0
);
6920 set_mem_attributes (temp
, exp
, 0);
6922 /* Resolve the misalignment now, so that we don't have to remember
6923 to resolve it later. Of course, this only works for reads. */
6924 /* ??? When we get around to supporting writes, we'll have to handle
6925 this in store_expr directly. The vectorizer isn't generating
6926 those yet, however. */
6927 if (code
== MISALIGNED_INDIRECT_REF
)
6932 gcc_assert (modifier
== EXPAND_NORMAL
);
6934 /* The vectorizer should have already checked the mode. */
6935 icode
= movmisalign_optab
->handlers
[mode
].insn_code
;
6936 gcc_assert (icode
!= CODE_FOR_nothing
);
6938 /* We've already validated the memory, and we're creating a
6939 new pseudo destination. The predicates really can't fail. */
6940 reg
= gen_reg_rtx (mode
);
6942 /* Nor can the insn generator. */
6943 insn
= GEN_FCN (icode
) (reg
, temp
);
6952 case TARGET_MEM_REF
:
6954 struct mem_address addr
;
6956 get_address_description (exp
, &addr
);
6957 op0
= addr_for_mem_ref (&addr
, true);
6958 op0
= memory_address (mode
, op0
);
6959 temp
= gen_rtx_MEM (mode
, op0
);
6960 set_mem_attributes (temp
, TMR_ORIGINAL (exp
), 0);
6967 tree array
= TREE_OPERAND (exp
, 0);
6968 tree index
= TREE_OPERAND (exp
, 1);
6970 /* Fold an expression like: "foo"[2].
6971 This is not done in fold so it won't happen inside &.
6972 Don't fold if this is for wide characters since it's too
6973 difficult to do correctly and this is a very rare case. */
6975 if (modifier
!= EXPAND_CONST_ADDRESS
6976 && modifier
!= EXPAND_INITIALIZER
6977 && modifier
!= EXPAND_MEMORY
)
6979 tree t
= fold_read_from_constant_string (exp
);
6982 return expand_expr (t
, target
, tmode
, modifier
);
6985 /* If this is a constant index into a constant array,
6986 just get the value from the array. Handle both the cases when
6987 we have an explicit constructor and when our operand is a variable
6988 that was declared const. */
6990 if (modifier
!= EXPAND_CONST_ADDRESS
6991 && modifier
!= EXPAND_INITIALIZER
6992 && modifier
!= EXPAND_MEMORY
6993 && TREE_CODE (array
) == CONSTRUCTOR
6994 && ! TREE_SIDE_EFFECTS (array
)
6995 && TREE_CODE (index
) == INTEGER_CST
)
6997 unsigned HOST_WIDE_INT ix
;
7000 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
7002 if (tree_int_cst_equal (field
, index
))
7004 if (!TREE_SIDE_EFFECTS (value
))
7005 return expand_expr (fold (value
), target
, tmode
, modifier
);
7010 else if (optimize
>= 1
7011 && modifier
!= EXPAND_CONST_ADDRESS
7012 && modifier
!= EXPAND_INITIALIZER
7013 && modifier
!= EXPAND_MEMORY
7014 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
7015 && TREE_CODE (array
) == VAR_DECL
&& DECL_INITIAL (array
)
7016 && TREE_CODE (DECL_INITIAL (array
)) != ERROR_MARK
7017 && targetm
.binds_local_p (array
))
7019 if (TREE_CODE (index
) == INTEGER_CST
)
7021 tree init
= DECL_INITIAL (array
);
7023 if (TREE_CODE (init
) == CONSTRUCTOR
)
7025 unsigned HOST_WIDE_INT ix
;
7028 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
7030 if (tree_int_cst_equal (field
, index
))
7032 if (!TREE_SIDE_EFFECTS (value
))
7033 return expand_expr (fold (value
), target
, tmode
,
7038 else if (TREE_CODE (init
) == STRING_CST
7039 && 0 > compare_tree_int (index
,
7040 TREE_STRING_LENGTH (init
)))
7042 tree type
= TREE_TYPE (TREE_TYPE (init
));
7043 enum machine_mode mode
= TYPE_MODE (type
);
7045 if (GET_MODE_CLASS (mode
) == MODE_INT
7046 && GET_MODE_SIZE (mode
) == 1)
7047 return gen_int_mode (TREE_STRING_POINTER (init
)
7048 [TREE_INT_CST_LOW (index
)], mode
);
7053 goto normal_inner_ref
;
7056 /* If the operand is a CONSTRUCTOR, we can just extract the
7057 appropriate field if it is present. */
7058 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == CONSTRUCTOR
)
7060 unsigned HOST_WIDE_INT idx
;
7063 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp
, 0)),
7065 if (field
== TREE_OPERAND (exp
, 1)
7066 /* We can normally use the value of the field in the
7067 CONSTRUCTOR. However, if this is a bitfield in
7068 an integral mode that we can fit in a HOST_WIDE_INT,
7069 we must mask only the number of bits in the bitfield,
7070 since this is done implicitly by the constructor. If
7071 the bitfield does not meet either of those conditions,
7072 we can't do this optimization. */
7073 && (! DECL_BIT_FIELD (field
)
7074 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
7075 && (GET_MODE_BITSIZE (DECL_MODE (field
))
7076 <= HOST_BITS_PER_WIDE_INT
))))
7078 if (DECL_BIT_FIELD (field
)
7079 && modifier
== EXPAND_STACK_PARM
)
7081 op0
= expand_expr (value
, target
, tmode
, modifier
);
7082 if (DECL_BIT_FIELD (field
))
7084 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
7085 enum machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
7087 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
7089 op1
= GEN_INT (((HOST_WIDE_INT
) 1 << bitsize
) - 1);
7090 op0
= expand_and (imode
, op0
, op1
, target
);
7095 = build_int_cst (NULL_TREE
,
7096 GET_MODE_BITSIZE (imode
) - bitsize
);
7098 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
7100 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
7108 goto normal_inner_ref
;
7111 case ARRAY_RANGE_REF
:
7114 enum machine_mode mode1
;
7115 HOST_WIDE_INT bitsize
, bitpos
;
7118 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7119 &mode1
, &unsignedp
, &volatilep
, true);
7122 /* If we got back the original object, something is wrong. Perhaps
7123 we are evaluating an expression too early. In any event, don't
7124 infinitely recurse. */
7125 gcc_assert (tem
!= exp
);
7127 /* If TEM's type is a union of variable size, pass TARGET to the inner
7128 computation, since it will need a temporary and TARGET is known
7129 to have to do. This occurs in unchecked conversion in Ada. */
7133 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
7134 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
7136 && modifier
!= EXPAND_STACK_PARM
7137 ? target
: NULL_RTX
),
7139 (modifier
== EXPAND_INITIALIZER
7140 || modifier
== EXPAND_CONST_ADDRESS
7141 || modifier
== EXPAND_STACK_PARM
)
7142 ? modifier
: EXPAND_NORMAL
);
7144 /* If this is a constant, put it into a register if it is a
7145 legitimate constant and OFFSET is 0 and memory if it isn't. */
7146 if (CONSTANT_P (op0
))
7148 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (tem
));
7149 if (mode
!= BLKmode
&& LEGITIMATE_CONSTANT_P (op0
)
7151 op0
= force_reg (mode
, op0
);
7153 op0
= validize_mem (force_const_mem (mode
, op0
));
7156 /* Otherwise, if this object not in memory and we either have an
7157 offset or a BLKmode result, put it there. This case can't occur in
7158 C, but can in Ada if we have unchecked conversion of an expression
7159 from a scalar type to an array or record type or for an
7160 ARRAY_RANGE_REF whose type is BLKmode. */
7161 else if (!MEM_P (op0
)
7163 || (code
== ARRAY_RANGE_REF
&& mode
== BLKmode
)))
7165 tree nt
= build_qualified_type (TREE_TYPE (tem
),
7166 (TYPE_QUALS (TREE_TYPE (tem
))
7167 | TYPE_QUAL_CONST
));
7168 rtx memloc
= assign_temp (nt
, 1, 1, 1);
7170 emit_move_insn (memloc
, op0
);
7176 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
7179 gcc_assert (MEM_P (op0
));
7181 #ifdef POINTERS_EXTEND_UNSIGNED
7182 if (GET_MODE (offset_rtx
) != Pmode
)
7183 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
7185 if (GET_MODE (offset_rtx
) != ptr_mode
)
7186 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
7189 if (GET_MODE (op0
) == BLKmode
7190 /* A constant address in OP0 can have VOIDmode, we must
7191 not try to call force_reg in that case. */
7192 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
7194 && (bitpos
% bitsize
) == 0
7195 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
7196 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
7198 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7202 op0
= offset_address (op0
, offset_rtx
,
7203 highest_pow2_factor (offset
));
7206 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7207 record its alignment as BIGGEST_ALIGNMENT. */
7208 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
7209 && is_aligning_offset (offset
, tem
))
7210 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
7212 /* Don't forget about volatility even if this is a bitfield. */
7213 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
7215 if (op0
== orig_op0
)
7216 op0
= copy_rtx (op0
);
7218 MEM_VOLATILE_P (op0
) = 1;
7221 /* The following code doesn't handle CONCAT.
7222 Assume only bitpos == 0 can be used for CONCAT, due to
7223 one element arrays having the same mode as its element. */
7224 if (GET_CODE (op0
) == CONCAT
)
7226 gcc_assert (bitpos
== 0
7227 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)));
7231 /* In cases where an aligned union has an unaligned object
7232 as a field, we might be extracting a BLKmode value from
7233 an integer-mode (e.g., SImode) object. Handle this case
7234 by doing the extract into an object as wide as the field
7235 (which we know to be the width of a basic mode), then
7236 storing into memory, and changing the mode to BLKmode. */
7237 if (mode1
== VOIDmode
7238 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
7239 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
7240 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7241 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
7242 && modifier
!= EXPAND_CONST_ADDRESS
7243 && modifier
!= EXPAND_INITIALIZER
)
7244 /* If the field isn't aligned enough to fetch as a memref,
7245 fetch it as a bit field. */
7246 || (mode1
!= BLKmode
7247 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
7248 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
7250 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
7251 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
7252 && ((modifier
== EXPAND_CONST_ADDRESS
7253 || modifier
== EXPAND_INITIALIZER
)
7255 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
7256 || (bitpos
% BITS_PER_UNIT
!= 0)))
7257 /* If the type and the field are a constant size and the
7258 size of the type isn't the same size as the bitfield,
7259 we must use bitfield operations. */
7261 && TYPE_SIZE (TREE_TYPE (exp
))
7262 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
7263 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
7266 enum machine_mode ext_mode
= mode
;
7268 if (ext_mode
== BLKmode
7269 && ! (target
!= 0 && MEM_P (op0
)
7271 && bitpos
% BITS_PER_UNIT
== 0))
7272 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
7274 if (ext_mode
== BLKmode
)
7277 target
= assign_temp (type
, 0, 1, 1);
7282 /* In this case, BITPOS must start at a byte boundary and
7283 TARGET, if specified, must be a MEM. */
7284 gcc_assert (MEM_P (op0
)
7285 && (!target
|| MEM_P (target
))
7286 && !(bitpos
% BITS_PER_UNIT
));
7288 emit_block_move (target
,
7289 adjust_address (op0
, VOIDmode
,
7290 bitpos
/ BITS_PER_UNIT
),
7291 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
7293 (modifier
== EXPAND_STACK_PARM
7294 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7299 op0
= validize_mem (op0
);
7301 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
7302 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7304 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
7305 (modifier
== EXPAND_STACK_PARM
7306 ? NULL_RTX
: target
),
7307 ext_mode
, ext_mode
);
7309 /* If the result is a record type and BITSIZE is narrower than
7310 the mode of OP0, an integral mode, and this is a big endian
7311 machine, we must put the field into the high-order bits. */
7312 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
7313 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
7314 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
7315 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
7316 size_int (GET_MODE_BITSIZE (GET_MODE (op0
))
7320 /* If the result type is BLKmode, store the data into a temporary
7321 of the appropriate type, but with the mode corresponding to the
7322 mode for the data we have (op0's mode). It's tempting to make
7323 this a constant type, since we know it's only being stored once,
7324 but that can cause problems if we are taking the address of this
7325 COMPONENT_REF because the MEM of any reference via that address
7326 will have flags corresponding to the type, which will not
7327 necessarily be constant. */
7328 if (mode
== BLKmode
)
7331 = assign_stack_temp_for_type
7332 (ext_mode
, GET_MODE_BITSIZE (ext_mode
), 0, type
);
7334 emit_move_insn (new, op0
);
7335 op0
= copy_rtx (new);
7336 PUT_MODE (op0
, BLKmode
);
7337 set_mem_attributes (op0
, exp
, 1);
7343 /* If the result is BLKmode, use that to access the object
7345 if (mode
== BLKmode
)
7348 /* Get a reference to just this component. */
7349 if (modifier
== EXPAND_CONST_ADDRESS
7350 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7351 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7353 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7355 if (op0
== orig_op0
)
7356 op0
= copy_rtx (op0
);
7358 set_mem_attributes (op0
, exp
, 0);
7359 if (REG_P (XEXP (op0
, 0)))
7360 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7362 MEM_VOLATILE_P (op0
) |= volatilep
;
7363 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
7364 || modifier
== EXPAND_CONST_ADDRESS
7365 || modifier
== EXPAND_INITIALIZER
)
7367 else if (target
== 0)
7368 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
7370 convert_move (target
, op0
, unsignedp
);
7375 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
7378 /* Check for a built-in function. */
7379 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
7380 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7382 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7384 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7385 == BUILT_IN_FRONTEND
)
7386 return lang_hooks
.expand_expr (exp
, original_target
,
7390 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
7393 return expand_call (exp
, target
, ignore
);
7395 case NON_LVALUE_EXPR
:
7398 if (TREE_OPERAND (exp
, 0) == error_mark_node
)
7401 if (TREE_CODE (type
) == UNION_TYPE
)
7403 tree valtype
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7405 /* If both input and output are BLKmode, this conversion isn't doing
7406 anything except possibly changing memory attribute. */
7407 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
7409 rtx result
= expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
,
7412 result
= copy_rtx (result
);
7413 set_mem_attributes (result
, exp
, 0);
7419 if (TYPE_MODE (type
) != BLKmode
)
7420 target
= gen_reg_rtx (TYPE_MODE (type
));
7422 target
= assign_temp (type
, 0, 1, 1);
7426 /* Store data into beginning of memory target. */
7427 store_expr (TREE_OPERAND (exp
, 0),
7428 adjust_address (target
, TYPE_MODE (valtype
), 0),
7429 modifier
== EXPAND_STACK_PARM
);
7433 gcc_assert (REG_P (target
));
7435 /* Store this field into a union of the proper type. */
7436 store_field (target
,
7437 MIN ((int_size_in_bytes (TREE_TYPE
7438 (TREE_OPERAND (exp
, 0)))
7440 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
7441 0, TYPE_MODE (valtype
), TREE_OPERAND (exp
, 0),
7445 /* Return the entire union. */
7449 if (mode
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
7451 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
,
7454 /* If the signedness of the conversion differs and OP0 is
7455 a promoted SUBREG, clear that indication since we now
7456 have to do the proper extension. */
7457 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))) != unsignedp
7458 && GET_CODE (op0
) == SUBREG
)
7459 SUBREG_PROMOTED_VAR_P (op0
) = 0;
7461 return REDUCE_BIT_FIELD (op0
);
7464 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
7465 if (GET_MODE (op0
) == mode
)
7468 /* If OP0 is a constant, just convert it into the proper mode. */
7469 else if (CONSTANT_P (op0
))
7471 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7472 enum machine_mode inner_mode
= TYPE_MODE (inner_type
);
7474 if (modifier
== EXPAND_INITIALIZER
)
7475 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
7476 subreg_lowpart_offset (mode
,
7479 op0
= convert_modes (mode
, inner_mode
, op0
,
7480 TYPE_UNSIGNED (inner_type
));
7483 else if (modifier
== EXPAND_INITIALIZER
)
7484 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
7486 else if (target
== 0)
7487 op0
= convert_to_mode (mode
, op0
,
7488 TYPE_UNSIGNED (TREE_TYPE
7489 (TREE_OPERAND (exp
, 0))));
7492 convert_move (target
, op0
,
7493 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7497 return REDUCE_BIT_FIELD (op0
);
7499 case VIEW_CONVERT_EXPR
:
7500 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
7502 /* If the input and output modes are both the same, we are done.
7503 Otherwise, if neither mode is BLKmode and both are integral and within
7504 a word, we can use gen_lowpart. If neither is true, make sure the
7505 operand is in memory and convert the MEM to the new mode. */
7506 if (TYPE_MODE (type
) == GET_MODE (op0
))
7508 else if (TYPE_MODE (type
) != BLKmode
&& GET_MODE (op0
) != BLKmode
7509 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
7510 && GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_INT
7511 && GET_MODE_SIZE (TYPE_MODE (type
)) <= UNITS_PER_WORD
7512 && GET_MODE_SIZE (GET_MODE (op0
)) <= UNITS_PER_WORD
)
7513 op0
= gen_lowpart (TYPE_MODE (type
), op0
);
7514 else if (!MEM_P (op0
))
7516 /* If the operand is not a MEM, force it into memory. Since we
7517 are going to be be changing the mode of the MEM, don't call
7518 force_const_mem for constants because we don't allow pool
7519 constants to change mode. */
7520 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7522 gcc_assert (!TREE_ADDRESSABLE (exp
));
7524 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
7526 = assign_stack_temp_for_type
7527 (TYPE_MODE (inner_type
),
7528 GET_MODE_SIZE (TYPE_MODE (inner_type
)), 0, inner_type
);
7530 emit_move_insn (target
, op0
);
7534 /* At this point, OP0 is in the correct mode. If the output type is such
7535 that the operand is known to be aligned, indicate that it is.
7536 Otherwise, we need only be concerned about alignment for non-BLKmode
7540 op0
= copy_rtx (op0
);
7542 if (TYPE_ALIGN_OK (type
))
7543 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
7544 else if (TYPE_MODE (type
) != BLKmode
&& STRICT_ALIGNMENT
7545 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
)))
7547 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7548 HOST_WIDE_INT temp_size
7549 = MAX (int_size_in_bytes (inner_type
),
7550 (HOST_WIDE_INT
) GET_MODE_SIZE (TYPE_MODE (type
)));
7551 rtx
new = assign_stack_temp_for_type (TYPE_MODE (type
),
7552 temp_size
, 0, type
);
7553 rtx new_with_op0_mode
= adjust_address (new, GET_MODE (op0
), 0);
7555 gcc_assert (!TREE_ADDRESSABLE (exp
));
7557 if (GET_MODE (op0
) == BLKmode
)
7558 emit_block_move (new_with_op0_mode
, op0
,
7559 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type
))),
7560 (modifier
== EXPAND_STACK_PARM
7561 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7563 emit_move_insn (new_with_op0_mode
, op0
);
7568 op0
= adjust_address (op0
, TYPE_MODE (type
), 0);
7574 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7575 something else, make sure we add the register to the constant and
7576 then to the other thing. This case can occur during strength
7577 reduction and doing it this way will produce better code if the
7578 frame pointer or argument pointer is eliminated.
7580 fold-const.c will ensure that the constant is always in the inner
7581 PLUS_EXPR, so the only case we need to do anything about is if
7582 sp, ap, or fp is our second argument, in which case we must swap
7583 the innermost first argument and our second argument. */
7585 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == PLUS_EXPR
7586 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 1)) == INTEGER_CST
7587 && TREE_CODE (TREE_OPERAND (exp
, 1)) == VAR_DECL
7588 && (DECL_RTL (TREE_OPERAND (exp
, 1)) == frame_pointer_rtx
7589 || DECL_RTL (TREE_OPERAND (exp
, 1)) == stack_pointer_rtx
7590 || DECL_RTL (TREE_OPERAND (exp
, 1)) == arg_pointer_rtx
))
7592 tree t
= TREE_OPERAND (exp
, 1);
7594 TREE_OPERAND (exp
, 1) = TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
7595 TREE_OPERAND (TREE_OPERAND (exp
, 0), 0) = t
;
7598 /* If the result is to be ptr_mode and we are adding an integer to
7599 something, we might be forming a constant. So try to use
7600 plus_constant. If it produces a sum and we can't accept it,
7601 use force_operand. This allows P = &ARR[const] to generate
7602 efficient code on machines where a SYMBOL_REF is not a valid
7605 If this is an EXPAND_SUM call, always return the sum. */
7606 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
7607 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
7609 if (modifier
== EXPAND_STACK_PARM
)
7611 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
7612 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
7613 && TREE_CONSTANT (TREE_OPERAND (exp
, 1)))
7617 op1
= expand_expr (TREE_OPERAND (exp
, 1), subtarget
, VOIDmode
,
7619 /* Use immed_double_const to ensure that the constant is
7620 truncated according to the mode of OP1, then sign extended
7621 to a HOST_WIDE_INT. Using the constant directly can result
7622 in non-canonical RTL in a 64x32 cross compile. */
7624 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 0)),
7626 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))));
7627 op1
= plus_constant (op1
, INTVAL (constant_part
));
7628 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7629 op1
= force_operand (op1
, target
);
7630 return REDUCE_BIT_FIELD (op1
);
7633 else if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
7634 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_INT
7635 && TREE_CONSTANT (TREE_OPERAND (exp
, 0)))
7639 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
7640 (modifier
== EXPAND_INITIALIZER
7641 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
7642 if (! CONSTANT_P (op0
))
7644 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
,
7645 VOIDmode
, modifier
);
7646 /* Return a PLUS if modifier says it's OK. */
7647 if (modifier
== EXPAND_SUM
7648 || modifier
== EXPAND_INITIALIZER
)
7649 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
7652 /* Use immed_double_const to ensure that the constant is
7653 truncated according to the mode of OP1, then sign extended
7654 to a HOST_WIDE_INT. Using the constant directly can result
7655 in non-canonical RTL in a 64x32 cross compile. */
7657 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1)),
7659 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7660 op0
= plus_constant (op0
, INTVAL (constant_part
));
7661 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7662 op0
= force_operand (op0
, target
);
7663 return REDUCE_BIT_FIELD (op0
);
7667 /* No sense saving up arithmetic to be done
7668 if it's all in the wrong mode to form part of an address.
7669 And force_operand won't know whether to sign-extend or
7671 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7672 || mode
!= ptr_mode
)
7674 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7675 subtarget
, &op0
, &op1
, 0);
7676 if (op0
== const0_rtx
)
7678 if (op1
== const0_rtx
)
7683 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7684 subtarget
, &op0
, &op1
, modifier
);
7685 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
7688 /* For initializers, we are allowed to return a MINUS of two
7689 symbolic constants. Here we handle all cases when both operands
7691 /* Handle difference of two symbolic constants,
7692 for the sake of an initializer. */
7693 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7694 && really_constant_p (TREE_OPERAND (exp
, 0))
7695 && really_constant_p (TREE_OPERAND (exp
, 1)))
7697 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7698 NULL_RTX
, &op0
, &op1
, modifier
);
7700 /* If the last operand is a CONST_INT, use plus_constant of
7701 the negated constant. Else make the MINUS. */
7702 if (GET_CODE (op1
) == CONST_INT
)
7703 return REDUCE_BIT_FIELD (plus_constant (op0
, - INTVAL (op1
)));
7705 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
7708 /* No sense saving up arithmetic to be done
7709 if it's all in the wrong mode to form part of an address.
7710 And force_operand won't know whether to sign-extend or
7712 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7713 || mode
!= ptr_mode
)
7716 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7717 subtarget
, &op0
, &op1
, modifier
);
7719 /* Convert A - const to A + (-const). */
7720 if (GET_CODE (op1
) == CONST_INT
)
7722 op1
= negate_rtx (mode
, op1
);
7723 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
7729 /* If first operand is constant, swap them.
7730 Thus the following special case checks need only
7731 check the second operand. */
7732 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
)
7734 tree t1
= TREE_OPERAND (exp
, 0);
7735 TREE_OPERAND (exp
, 0) = TREE_OPERAND (exp
, 1);
7736 TREE_OPERAND (exp
, 1) = t1
;
7739 /* Attempt to return something suitable for generating an
7740 indexed address, for machines that support that. */
7742 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
7743 && host_integerp (TREE_OPERAND (exp
, 1), 0))
7745 tree exp1
= TREE_OPERAND (exp
, 1);
7747 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
7751 op0
= force_operand (op0
, NULL_RTX
);
7753 op0
= copy_to_mode_reg (mode
, op0
);
7755 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
7756 gen_int_mode (tree_low_cst (exp1
, 0),
7757 TYPE_MODE (TREE_TYPE (exp1
)))));
7760 if (modifier
== EXPAND_STACK_PARM
)
7763 /* Check for multiplying things that have been extended
7764 from a narrower type. If this machine supports multiplying
7765 in that narrower type with a result in the desired type,
7766 do it that way, and avoid the explicit type-conversion. */
7767 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == NOP_EXPR
7768 && TREE_CODE (type
) == INTEGER_TYPE
7769 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7770 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))))
7771 && ((TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
7772 && int_fits_type_p (TREE_OPERAND (exp
, 1),
7773 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7774 /* Don't use a widening multiply if a shift will do. */
7775 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
7776 > HOST_BITS_PER_WIDE_INT
)
7777 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1))) < 0))
7779 (TREE_CODE (TREE_OPERAND (exp
, 1)) == NOP_EXPR
7780 && (TYPE_PRECISION (TREE_TYPE
7781 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
7782 == TYPE_PRECISION (TREE_TYPE
7784 (TREE_OPERAND (exp
, 0), 0))))
7785 /* If both operands are extended, they must either both
7786 be zero-extended or both be sign-extended. */
7787 && (TYPE_UNSIGNED (TREE_TYPE
7788 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
7789 == TYPE_UNSIGNED (TREE_TYPE
7791 (TREE_OPERAND (exp
, 0), 0)))))))
7793 tree op0type
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0));
7794 enum machine_mode innermode
= TYPE_MODE (op0type
);
7795 bool zextend_p
= TYPE_UNSIGNED (op0type
);
7796 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
7797 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
7799 if (mode
== GET_MODE_2XWIDER_MODE (innermode
))
7801 if (this_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
7803 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
7804 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7805 TREE_OPERAND (exp
, 1),
7806 NULL_RTX
, &op0
, &op1
, 0);
7808 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7809 TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
7810 NULL_RTX
, &op0
, &op1
, 0);
7813 else if (other_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
7814 && innermode
== word_mode
)
7817 op0
= expand_expr (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7818 NULL_RTX
, VOIDmode
, 0);
7819 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
7820 op1
= convert_modes (innermode
, mode
,
7821 expand_expr (TREE_OPERAND (exp
, 1),
7822 NULL_RTX
, VOIDmode
, 0),
7825 op1
= expand_expr (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
7826 NULL_RTX
, VOIDmode
, 0);
7827 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
7828 unsignedp
, OPTAB_LIB_WIDEN
);
7829 hipart
= gen_highpart (innermode
, temp
);
7830 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
7834 emit_move_insn (hipart
, htem
);
7835 return REDUCE_BIT_FIELD (temp
);
7839 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7840 subtarget
, &op0
, &op1
, 0);
7841 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
7843 case TRUNC_DIV_EXPR
:
7844 case FLOOR_DIV_EXPR
:
7846 case ROUND_DIV_EXPR
:
7847 case EXACT_DIV_EXPR
:
7848 if (modifier
== EXPAND_STACK_PARM
)
7850 /* Possible optimization: compute the dividend with EXPAND_SUM
7851 then if the divisor is constant can optimize the case
7852 where some terms of the dividend have coeffs divisible by it. */
7853 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7854 subtarget
, &op0
, &op1
, 0);
7855 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
7860 case TRUNC_MOD_EXPR
:
7861 case FLOOR_MOD_EXPR
:
7863 case ROUND_MOD_EXPR
:
7864 if (modifier
== EXPAND_STACK_PARM
)
7866 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7867 subtarget
, &op0
, &op1
, 0);
7868 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
7870 case FIX_ROUND_EXPR
:
7871 case FIX_FLOOR_EXPR
:
7873 gcc_unreachable (); /* Not used for C. */
7875 case FIX_TRUNC_EXPR
:
7876 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
, 0);
7877 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
7878 target
= gen_reg_rtx (mode
);
7879 expand_fix (target
, op0
, unsignedp
);
7883 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
, 0);
7884 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
7885 target
= gen_reg_rtx (mode
);
7886 /* expand_float can't figure out what to do if FROM has VOIDmode.
7887 So give it the correct mode. With -O, cse will optimize this. */
7888 if (GET_MODE (op0
) == VOIDmode
)
7889 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))),
7891 expand_float (target
, op0
,
7892 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7896 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
7897 if (modifier
== EXPAND_STACK_PARM
)
7899 temp
= expand_unop (mode
,
7900 optab_for_tree_code (NEGATE_EXPR
, type
),
7903 return REDUCE_BIT_FIELD (temp
);
7906 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
7907 if (modifier
== EXPAND_STACK_PARM
)
7910 /* ABS_EXPR is not valid for complex arguments. */
7911 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7912 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
7914 /* Unsigned abs is simply the operand. Testing here means we don't
7915 risk generating incorrect code below. */
7916 if (TYPE_UNSIGNED (type
))
7919 return expand_abs (mode
, op0
, target
, unsignedp
,
7920 safe_from_p (target
, TREE_OPERAND (exp
, 0), 1));
7924 target
= original_target
;
7926 || modifier
== EXPAND_STACK_PARM
7927 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
7928 || GET_MODE (target
) != mode
7930 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
7931 target
= gen_reg_rtx (mode
);
7932 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7933 target
, &op0
, &op1
, 0);
7935 /* First try to do it with a special MIN or MAX instruction.
7936 If that does not win, use a conditional jump to select the proper
7938 this_optab
= optab_for_tree_code (code
, type
);
7939 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
7944 /* At this point, a MEM target is no longer useful; we will get better
7947 if (! REG_P (target
))
7948 target
= gen_reg_rtx (mode
);
7950 /* If op1 was placed in target, swap op0 and op1. */
7951 if (target
!= op0
&& target
== op1
)
7958 /* We generate better code and avoid problems with op1 mentioning
7959 target by forcing op1 into a pseudo if it isn't a constant. */
7960 if (! CONSTANT_P (op1
))
7961 op1
= force_reg (mode
, op1
);
7963 #ifdef HAVE_conditional_move
7964 /* Use a conditional move if possible. */
7965 if (can_conditionally_move_p (mode
))
7967 enum rtx_code comparison_code
;
7970 if (code
== MAX_EXPR
)
7971 comparison_code
= unsignedp
? GEU
: GE
;
7973 comparison_code
= unsignedp
? LEU
: LE
;
7975 /* ??? Same problem as in expmed.c: emit_conditional_move
7976 forces a stack adjustment via compare_from_rtx, and we
7977 lose the stack adjustment if the sequence we are about
7978 to create is discarded. */
7979 do_pending_stack_adjust ();
7983 /* Try to emit the conditional move. */
7984 insn
= emit_conditional_move (target
, comparison_code
,
7989 /* If we could do the conditional move, emit the sequence,
7993 rtx seq
= get_insns ();
7999 /* Otherwise discard the sequence and fall back to code with
8005 emit_move_insn (target
, op0
);
8007 temp
= gen_label_rtx ();
8009 /* If this mode is an integer too wide to compare properly,
8010 compare word by word. Rely on cse to optimize constant cases. */
8011 if (GET_MODE_CLASS (mode
) == MODE_INT
8012 && ! can_compare_p (GE
, mode
, ccp_jump
))
8014 if (code
== MAX_EXPR
)
8015 do_jump_by_parts_greater_rtx (mode
, unsignedp
, target
, op1
,
8018 do_jump_by_parts_greater_rtx (mode
, unsignedp
, op1
, target
,
8023 do_compare_rtx_and_jump (target
, op1
, code
== MAX_EXPR
? GE
: LE
,
8024 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
);
8026 emit_move_insn (target
, op1
);
8031 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8032 if (modifier
== EXPAND_STACK_PARM
)
8034 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8038 /* ??? Can optimize bitwise operations with one arg constant.
8039 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8040 and (a bitwise1 b) bitwise2 b (etc)
8041 but that is probably not worth while. */
8043 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8044 boolean values when we want in all cases to compute both of them. In
8045 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8046 as actual zero-or-1 values and then bitwise anding. In cases where
8047 there cannot be any side effects, better code would be made by
8048 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8049 how to recognize those cases. */
8051 case TRUTH_AND_EXPR
:
8052 code
= BIT_AND_EXPR
;
8057 code
= BIT_IOR_EXPR
;
8061 case TRUTH_XOR_EXPR
:
8062 code
= BIT_XOR_EXPR
;
8070 if (! safe_from_p (subtarget
, TREE_OPERAND (exp
, 1), 1))
8072 if (modifier
== EXPAND_STACK_PARM
)
8074 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8075 return expand_shift (code
, mode
, op0
, TREE_OPERAND (exp
, 1), target
,
8078 /* Could determine the answer when only additive constants differ. Also,
8079 the addition of one can be handled by changing the condition. */
8086 case UNORDERED_EXPR
:
8094 temp
= do_store_flag (exp
,
8095 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
8096 tmode
!= VOIDmode
? tmode
: mode
, 0);
8100 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
8101 if (code
== NE_EXPR
&& integer_zerop (TREE_OPERAND (exp
, 1))
8103 && REG_P (original_target
)
8104 && (GET_MODE (original_target
)
8105 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
8107 temp
= expand_expr (TREE_OPERAND (exp
, 0), original_target
,
8110 /* If temp is constant, we can just compute the result. */
8111 if (GET_CODE (temp
) == CONST_INT
)
8113 if (INTVAL (temp
) != 0)
8114 emit_move_insn (target
, const1_rtx
);
8116 emit_move_insn (target
, const0_rtx
);
8121 if (temp
!= original_target
)
8123 enum machine_mode mode1
= GET_MODE (temp
);
8124 if (mode1
== VOIDmode
)
8125 mode1
= tmode
!= VOIDmode
? tmode
: mode
;
8127 temp
= copy_to_mode_reg (mode1
, temp
);
8130 op1
= gen_label_rtx ();
8131 emit_cmp_and_jump_insns (temp
, const0_rtx
, EQ
, NULL_RTX
,
8132 GET_MODE (temp
), unsignedp
, op1
);
8133 emit_move_insn (temp
, const1_rtx
);
8138 /* If no set-flag instruction, must generate a conditional store
8139 into a temporary variable. Drop through and handle this
8144 || modifier
== EXPAND_STACK_PARM
8145 || ! safe_from_p (target
, exp
, 1)
8146 /* Make sure we don't have a hard reg (such as function's return
8147 value) live across basic blocks, if not optimizing. */
8148 || (!optimize
&& REG_P (target
)
8149 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
8150 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8153 emit_move_insn (target
, const0_rtx
);
8155 op1
= gen_label_rtx ();
8156 jumpifnot (exp
, op1
);
8159 emit_move_insn (target
, const1_rtx
);
8162 return ignore
? const0_rtx
: target
;
8164 case TRUTH_NOT_EXPR
:
8165 if (modifier
== EXPAND_STACK_PARM
)
8167 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
, 0);
8168 /* The parser is careful to generate TRUTH_NOT_EXPR
8169 only with operands that are always zero or one. */
8170 temp
= expand_binop (mode
, xor_optab
, op0
, const1_rtx
,
8171 target
, 1, OPTAB_LIB_WIDEN
);
8175 case STATEMENT_LIST
:
8177 tree_stmt_iterator iter
;
8179 gcc_assert (ignore
);
8181 for (iter
= tsi_start (exp
); !tsi_end_p (iter
); tsi_next (&iter
))
8182 expand_expr (tsi_stmt (iter
), const0_rtx
, VOIDmode
, modifier
);
8187 /* A COND_EXPR with its type being VOID_TYPE represents a
8188 conditional jump and is handled in
8189 expand_gimple_cond_expr. */
8190 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp
)));
8192 /* Note that COND_EXPRs whose type is a structure or union
8193 are required to be constructed to contain assignments of
8194 a temporary variable, so that we can evaluate them here
8195 for side effect only. If type is void, we must do likewise. */
8197 gcc_assert (!TREE_ADDRESSABLE (type
)
8199 && TREE_TYPE (TREE_OPERAND (exp
, 1)) != void_type_node
8200 && TREE_TYPE (TREE_OPERAND (exp
, 2)) != void_type_node
);
8202 /* If we are not to produce a result, we have no target. Otherwise,
8203 if a target was specified use it; it will not be used as an
8204 intermediate target unless it is safe. If no target, use a
8207 if (modifier
!= EXPAND_STACK_PARM
8209 && safe_from_p (original_target
, TREE_OPERAND (exp
, 0), 1)
8210 && GET_MODE (original_target
) == mode
8211 #ifdef HAVE_conditional_move
8212 && (! can_conditionally_move_p (mode
)
8213 || REG_P (original_target
))
8215 && !MEM_P (original_target
))
8216 temp
= original_target
;
8218 temp
= assign_temp (type
, 0, 0, 1);
8220 do_pending_stack_adjust ();
8222 op0
= gen_label_rtx ();
8223 op1
= gen_label_rtx ();
8224 jumpifnot (TREE_OPERAND (exp
, 0), op0
);
8225 store_expr (TREE_OPERAND (exp
, 1), temp
,
8226 modifier
== EXPAND_STACK_PARM
);
8228 emit_jump_insn (gen_jump (op1
));
8231 store_expr (TREE_OPERAND (exp
, 2), temp
,
8232 modifier
== EXPAND_STACK_PARM
);
8239 target
= expand_vec_cond_expr (exp
, target
);
8244 tree lhs
= TREE_OPERAND (exp
, 0);
8245 tree rhs
= TREE_OPERAND (exp
, 1);
8247 gcc_assert (ignore
);
8249 /* Check for |= or &= of a bitfield of size one into another bitfield
8250 of size 1. In this case, (unless we need the result of the
8251 assignment) we can do this more efficiently with a
8252 test followed by an assignment, if necessary.
8254 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8255 things change so we do, this code should be enhanced to
8257 if (TREE_CODE (lhs
) == COMPONENT_REF
8258 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
8259 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
8260 && TREE_OPERAND (rhs
, 0) == lhs
8261 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
8262 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
8263 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
8265 rtx label
= gen_label_rtx ();
8267 do_jump (TREE_OPERAND (rhs
, 1),
8268 TREE_CODE (rhs
) == BIT_IOR_EXPR
? label
: 0,
8269 TREE_CODE (rhs
) == BIT_AND_EXPR
? label
: 0);
8270 expand_assignment (lhs
, convert (TREE_TYPE (rhs
),
8271 (TREE_CODE (rhs
) == BIT_IOR_EXPR
8273 : integer_zero_node
)));
8274 do_pending_stack_adjust ();
8279 expand_assignment (lhs
, rhs
);
8285 if (!TREE_OPERAND (exp
, 0))
8286 expand_null_return ();
8288 expand_return (TREE_OPERAND (exp
, 0));
8292 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
8295 /* Get the rtx code of the operands. */
8296 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8297 op1
= expand_expr (TREE_OPERAND (exp
, 1), 0, VOIDmode
, 0);
8300 target
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp
)));
8302 /* Move the real (op0) and imaginary (op1) parts to their location. */
8303 write_complex_part (target
, op0
, false);
8304 write_complex_part (target
, op1
, true);
8309 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8310 return read_complex_part (op0
, false);
8313 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8314 return read_complex_part (op0
, true);
8317 expand_resx_expr (exp
);
8320 case TRY_CATCH_EXPR
:
8322 case EH_FILTER_EXPR
:
8323 case TRY_FINALLY_EXPR
:
8324 /* Lowered by tree-eh.c. */
8327 case WITH_CLEANUP_EXPR
:
8328 case CLEANUP_POINT_EXPR
:
8330 case CASE_LABEL_EXPR
:
8336 case PREINCREMENT_EXPR
:
8337 case PREDECREMENT_EXPR
:
8338 case POSTINCREMENT_EXPR
:
8339 case POSTDECREMENT_EXPR
:
8342 case TRUTH_ANDIF_EXPR
:
8343 case TRUTH_ORIF_EXPR
:
8344 /* Lowered by gimplify.c. */
8348 return get_exception_pointer (cfun
);
8351 return get_exception_filter (cfun
);
8354 /* Function descriptors are not valid except for as
8355 initialization constants, and should not be expanded. */
8363 expand_label (TREE_OPERAND (exp
, 0));
8367 expand_asm_expr (exp
);
8370 case WITH_SIZE_EXPR
:
8371 /* WITH_SIZE_EXPR expands to its first argument. The caller should
8372 have pulled out the size to use in whatever context it needed. */
8373 return expand_expr_real (TREE_OPERAND (exp
, 0), original_target
, tmode
,
8376 case REALIGN_LOAD_EXPR
:
8378 tree oprnd0
= TREE_OPERAND (exp
, 0);
8379 tree oprnd1
= TREE_OPERAND (exp
, 1);
8380 tree oprnd2
= TREE_OPERAND (exp
, 2);
8383 this_optab
= optab_for_tree_code (code
, type
);
8384 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, 0);
8385 op2
= expand_expr (oprnd2
, NULL_RTX
, VOIDmode
, 0);
8386 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
8392 case REDUC_MAX_EXPR
:
8393 case REDUC_MIN_EXPR
:
8394 case REDUC_PLUS_EXPR
:
8396 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
, 0);
8397 this_optab
= optab_for_tree_code (code
, type
);
8398 temp
= expand_unop (mode
, this_optab
, op0
, target
, unsignedp
);
8403 case VEC_LSHIFT_EXPR
:
8404 case VEC_RSHIFT_EXPR
:
8406 target
= expand_vec_shift_expr (exp
, target
);
8411 return lang_hooks
.expand_expr (exp
, original_target
, tmode
,
8415 /* Here to do an ordinary binary operator. */
8417 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8418 subtarget
, &op0
, &op1
, 0);
8420 this_optab
= optab_for_tree_code (code
, type
);
8422 if (modifier
== EXPAND_STACK_PARM
)
8424 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
8425 unsignedp
, OPTAB_LIB_WIDEN
);
8427 return REDUCE_BIT_FIELD (temp
);
8429 #undef REDUCE_BIT_FIELD
8431 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
8432 signedness of TYPE), possibly returning the result in TARGET. */
8434 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
8436 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
8437 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
8439 if (TYPE_UNSIGNED (type
))
8442 if (prec
< HOST_BITS_PER_WIDE_INT
)
8443 mask
= immed_double_const (((unsigned HOST_WIDE_INT
) 1 << prec
) - 1, 0,
8446 mask
= immed_double_const ((unsigned HOST_WIDE_INT
) -1,
8447 ((unsigned HOST_WIDE_INT
) 1
8448 << (prec
- HOST_BITS_PER_WIDE_INT
)) - 1,
8450 return expand_and (GET_MODE (exp
), exp
, mask
, target
);
8454 tree count
= build_int_cst (NULL_TREE
,
8455 GET_MODE_BITSIZE (GET_MODE (exp
)) - prec
);
8456 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
8457 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
8461 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
8462 when applied to the address of EXP produces an address known to be
8463 aligned more than BIGGEST_ALIGNMENT. */
8466 is_aligning_offset (tree offset
, tree exp
)
8468 /* Strip off any conversions. */
8469 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8470 || TREE_CODE (offset
) == NOP_EXPR
8471 || TREE_CODE (offset
) == CONVERT_EXPR
)
8472 offset
= TREE_OPERAND (offset
, 0);
8474 /* We must now have a BIT_AND_EXPR with a constant that is one less than
8475 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
8476 if (TREE_CODE (offset
) != BIT_AND_EXPR
8477 || !host_integerp (TREE_OPERAND (offset
, 1), 1)
8478 || compare_tree_int (TREE_OPERAND (offset
, 1),
8479 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
8480 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset
, 1), 1) + 1) < 0)
8483 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
8484 It must be NEGATE_EXPR. Then strip any more conversions. */
8485 offset
= TREE_OPERAND (offset
, 0);
8486 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8487 || TREE_CODE (offset
) == NOP_EXPR
8488 || TREE_CODE (offset
) == CONVERT_EXPR
)
8489 offset
= TREE_OPERAND (offset
, 0);
8491 if (TREE_CODE (offset
) != NEGATE_EXPR
)
8494 offset
= TREE_OPERAND (offset
, 0);
8495 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8496 || TREE_CODE (offset
) == NOP_EXPR
8497 || TREE_CODE (offset
) == CONVERT_EXPR
)
8498 offset
= TREE_OPERAND (offset
, 0);
8500 /* This must now be the address of EXP. */
8501 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
8504 /* Return the tree node if an ARG corresponds to a string constant or zero
8505 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
8506 in bytes within the string that ARG is accessing. The type of the
8507 offset will be `sizetype'. */
8510 string_constant (tree arg
, tree
*ptr_offset
)
8515 if (TREE_CODE (arg
) == ADDR_EXPR
)
8517 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
8519 *ptr_offset
= size_zero_node
;
8520 return TREE_OPERAND (arg
, 0);
8522 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
8524 array
= TREE_OPERAND (arg
, 0);
8525 offset
= size_zero_node
;
8527 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
8529 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
8530 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
8531 if (TREE_CODE (array
) != STRING_CST
8532 && TREE_CODE (array
) != VAR_DECL
)
8538 else if (TREE_CODE (arg
) == PLUS_EXPR
)
8540 tree arg0
= TREE_OPERAND (arg
, 0);
8541 tree arg1
= TREE_OPERAND (arg
, 1);
8546 if (TREE_CODE (arg0
) == ADDR_EXPR
8547 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
8548 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
8550 array
= TREE_OPERAND (arg0
, 0);
8553 else if (TREE_CODE (arg1
) == ADDR_EXPR
8554 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
8555 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
8557 array
= TREE_OPERAND (arg1
, 0);
8566 if (TREE_CODE (array
) == STRING_CST
)
8568 *ptr_offset
= convert (sizetype
, offset
);
8571 else if (TREE_CODE (array
) == VAR_DECL
)
8575 /* Variables initialized to string literals can be handled too. */
8576 if (DECL_INITIAL (array
) == NULL_TREE
8577 || TREE_CODE (DECL_INITIAL (array
)) != STRING_CST
)
8580 /* If they are read-only, non-volatile and bind locally. */
8581 if (! TREE_READONLY (array
)
8582 || TREE_SIDE_EFFECTS (array
)
8583 || ! targetm
.binds_local_p (array
))
8586 /* Avoid const char foo[4] = "abcde"; */
8587 if (DECL_SIZE_UNIT (array
) == NULL_TREE
8588 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
8589 || (length
= TREE_STRING_LENGTH (DECL_INITIAL (array
))) <= 0
8590 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
8593 /* If variable is bigger than the string literal, OFFSET must be constant
8594 and inside of the bounds of the string literal. */
8595 offset
= convert (sizetype
, offset
);
8596 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
8597 && (! host_integerp (offset
, 1)
8598 || compare_tree_int (offset
, length
) >= 0))
8601 *ptr_offset
= offset
;
8602 return DECL_INITIAL (array
);
8608 /* Generate code to calculate EXP using a store-flag instruction
8609 and return an rtx for the result. EXP is either a comparison
8610 or a TRUTH_NOT_EXPR whose operand is a comparison.
8612 If TARGET is nonzero, store the result there if convenient.
8614 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
8617 Return zero if there is no suitable set-flag instruction
8618 available on this machine.
8620 Once expand_expr has been called on the arguments of the comparison,
8621 we are committed to doing the store flag, since it is not safe to
8622 re-evaluate the expression. We emit the store-flag insn by calling
8623 emit_store_flag, but only expand the arguments if we have a reason
8624 to believe that emit_store_flag will be successful. If we think that
8625 it will, but it isn't, we have to simulate the store-flag with a
8626 set/jump/set sequence. */
8629 do_store_flag (tree exp
, rtx target
, enum machine_mode mode
, int only_cheap
)
8632 tree arg0
, arg1
, type
;
8634 enum machine_mode operand_mode
;
8638 enum insn_code icode
;
8639 rtx subtarget
= target
;
8642 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
8643 result at the end. We can't simply invert the test since it would
8644 have already been inverted if it were valid. This case occurs for
8645 some floating-point comparisons. */
8647 if (TREE_CODE (exp
) == TRUTH_NOT_EXPR
)
8648 invert
= 1, exp
= TREE_OPERAND (exp
, 0);
8650 arg0
= TREE_OPERAND (exp
, 0);
8651 arg1
= TREE_OPERAND (exp
, 1);
8653 /* Don't crash if the comparison was erroneous. */
8654 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
8657 type
= TREE_TYPE (arg0
);
8658 operand_mode
= TYPE_MODE (type
);
8659 unsignedp
= TYPE_UNSIGNED (type
);
8661 /* We won't bother with BLKmode store-flag operations because it would mean
8662 passing a lot of information to emit_store_flag. */
8663 if (operand_mode
== BLKmode
)
8666 /* We won't bother with store-flag operations involving function pointers
8667 when function pointers must be canonicalized before comparisons. */
8668 #ifdef HAVE_canonicalize_funcptr_for_compare
8669 if (HAVE_canonicalize_funcptr_for_compare
8670 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == POINTER_TYPE
8671 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8673 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 1))) == POINTER_TYPE
8674 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
8675 == FUNCTION_TYPE
))))
8682 /* Get the rtx comparison code to use. We know that EXP is a comparison
8683 operation of some type. Some comparisons against 1 and -1 can be
8684 converted to comparisons with zero. Do so here so that the tests
8685 below will be aware that we have a comparison with zero. These
8686 tests will not catch constants in the first operand, but constants
8687 are rarely passed as the first operand. */
8689 switch (TREE_CODE (exp
))
8698 if (integer_onep (arg1
))
8699 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
8701 code
= unsignedp
? LTU
: LT
;
8704 if (! unsignedp
&& integer_all_onesp (arg1
))
8705 arg1
= integer_zero_node
, code
= LT
;
8707 code
= unsignedp
? LEU
: LE
;
8710 if (! unsignedp
&& integer_all_onesp (arg1
))
8711 arg1
= integer_zero_node
, code
= GE
;
8713 code
= unsignedp
? GTU
: GT
;
8716 if (integer_onep (arg1
))
8717 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
8719 code
= unsignedp
? GEU
: GE
;
8722 case UNORDERED_EXPR
:
8751 /* Put a constant second. */
8752 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
)
8754 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
8755 code
= swap_condition (code
);
8758 /* If this is an equality or inequality test of a single bit, we can
8759 do this by shifting the bit being tested to the low-order bit and
8760 masking the result with the constant 1. If the condition was EQ,
8761 we xor it with 1. This does not require an scc insn and is faster
8762 than an scc insn even if we have it.
8764 The code to make this transformation was moved into fold_single_bit_test,
8765 so we just call into the folder and expand its result. */
8767 if ((code
== NE
|| code
== EQ
)
8768 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
8769 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
8771 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
8772 return expand_expr (fold_single_bit_test (code
== NE
? NE_EXPR
: EQ_EXPR
,
8774 target
, VOIDmode
, EXPAND_NORMAL
);
8777 /* Now see if we are likely to be able to do this. Return if not. */
8778 if (! can_compare_p (code
, operand_mode
, ccp_store_flag
))
8781 icode
= setcc_gen_code
[(int) code
];
8782 if (icode
== CODE_FOR_nothing
8783 || (only_cheap
&& insn_data
[(int) icode
].operand
[0].mode
!= mode
))
8785 /* We can only do this if it is one of the special cases that
8786 can be handled without an scc insn. */
8787 if ((code
== LT
&& integer_zerop (arg1
))
8788 || (! only_cheap
&& code
== GE
&& integer_zerop (arg1
)))
8790 else if (! only_cheap
&& (code
== NE
|| code
== EQ
)
8791 && TREE_CODE (type
) != REAL_TYPE
8792 && ((abs_optab
->handlers
[(int) operand_mode
].insn_code
8793 != CODE_FOR_nothing
)
8794 || (ffs_optab
->handlers
[(int) operand_mode
].insn_code
8795 != CODE_FOR_nothing
)))
8801 if (! get_subtarget (target
)
8802 || GET_MODE (subtarget
) != operand_mode
)
8805 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, 0);
8808 target
= gen_reg_rtx (mode
);
8810 result
= emit_store_flag (target
, code
, op0
, op1
,
8811 operand_mode
, unsignedp
, 1);
8816 result
= expand_binop (mode
, xor_optab
, result
, const1_rtx
,
8817 result
, 0, OPTAB_LIB_WIDEN
);
8821 /* If this failed, we have to do this with set/compare/jump/set code. */
8823 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
8824 target
= gen_reg_rtx (GET_MODE (target
));
8826 emit_move_insn (target
, invert
? const0_rtx
: const1_rtx
);
8827 result
= compare_from_rtx (op0
, op1
, code
, unsignedp
,
8828 operand_mode
, NULL_RTX
);
8829 if (GET_CODE (result
) == CONST_INT
)
8830 return (((result
== const0_rtx
&& ! invert
)
8831 || (result
!= const0_rtx
&& invert
))
8832 ? const0_rtx
: const1_rtx
);
8834 /* The code of RESULT may not match CODE if compare_from_rtx
8835 decided to swap its operands and reverse the original code.
8837 We know that compare_from_rtx returns either a CONST_INT or
8838 a new comparison code, so it is safe to just extract the
8839 code from RESULT. */
8840 code
= GET_CODE (result
);
8842 label
= gen_label_rtx ();
8843 gcc_assert (bcc_gen_fctn
[(int) code
]);
8845 emit_jump_insn ((*bcc_gen_fctn
[(int) code
]) (label
));
8846 emit_move_insn (target
, invert
? const1_rtx
: const0_rtx
);
8853 /* Stubs in case we haven't got a casesi insn. */
8855 # define HAVE_casesi 0
8856 # define gen_casesi(a, b, c, d, e) (0)
8857 # define CODE_FOR_casesi CODE_FOR_nothing
8860 /* If the machine does not have a case insn that compares the bounds,
8861 this means extra overhead for dispatch tables, which raises the
8862 threshold for using them. */
8863 #ifndef CASE_VALUES_THRESHOLD
8864 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
8865 #endif /* CASE_VALUES_THRESHOLD */
8868 case_values_threshold (void)
8870 return CASE_VALUES_THRESHOLD
;
8873 /* Attempt to generate a casesi instruction. Returns 1 if successful,
8874 0 otherwise (i.e. if there is no casesi instruction). */
8876 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
8877 rtx table_label ATTRIBUTE_UNUSED
, rtx default_label
)
8879 enum machine_mode index_mode
= SImode
;
8880 int index_bits
= GET_MODE_BITSIZE (index_mode
);
8881 rtx op1
, op2
, index
;
8882 enum machine_mode op_mode
;
8887 /* Convert the index to SImode. */
8888 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
8890 enum machine_mode omode
= TYPE_MODE (index_type
);
8891 rtx rangertx
= expand_expr (range
, NULL_RTX
, VOIDmode
, 0);
8893 /* We must handle the endpoints in the original mode. */
8894 index_expr
= build2 (MINUS_EXPR
, index_type
,
8895 index_expr
, minval
);
8896 minval
= integer_zero_node
;
8897 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
8898 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
8899 omode
, 1, default_label
);
8900 /* Now we can safely truncate. */
8901 index
= convert_to_mode (index_mode
, index
, 0);
8905 if (TYPE_MODE (index_type
) != index_mode
)
8907 index_expr
= convert (lang_hooks
.types
.type_for_size
8908 (index_bits
, 0), index_expr
);
8909 index_type
= TREE_TYPE (index_expr
);
8912 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
8915 do_pending_stack_adjust ();
8917 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[0].mode
;
8918 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[0].predicate
)
8920 index
= copy_to_mode_reg (op_mode
, index
);
8922 op1
= expand_expr (minval
, NULL_RTX
, VOIDmode
, 0);
8924 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[1].mode
;
8925 op1
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (minval
)),
8926 op1
, TYPE_UNSIGNED (TREE_TYPE (minval
)));
8927 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[1].predicate
)
8929 op1
= copy_to_mode_reg (op_mode
, op1
);
8931 op2
= expand_expr (range
, NULL_RTX
, VOIDmode
, 0);
8933 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[2].mode
;
8934 op2
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (range
)),
8935 op2
, TYPE_UNSIGNED (TREE_TYPE (range
)));
8936 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[2].predicate
)
8938 op2
= copy_to_mode_reg (op_mode
, op2
);
8940 emit_jump_insn (gen_casesi (index
, op1
, op2
,
8941 table_label
, default_label
));
8945 /* Attempt to generate a tablejump instruction; same concept. */
8946 #ifndef HAVE_tablejump
8947 #define HAVE_tablejump 0
8948 #define gen_tablejump(x, y) (0)
8951 /* Subroutine of the next function.
8953 INDEX is the value being switched on, with the lowest value
8954 in the table already subtracted.
8955 MODE is its expected mode (needed if INDEX is constant).
8956 RANGE is the length of the jump table.
8957 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
8959 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
8960 index value is out of range. */
8963 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
8968 if (INTVAL (range
) > cfun
->max_jumptable_ents
)
8969 cfun
->max_jumptable_ents
= INTVAL (range
);
8971 /* Do an unsigned comparison (in the proper mode) between the index
8972 expression and the value which represents the length of the range.
8973 Since we just finished subtracting the lower bound of the range
8974 from the index expression, this comparison allows us to simultaneously
8975 check that the original index expression value is both greater than
8976 or equal to the minimum value of the range and less than or equal to
8977 the maximum value of the range. */
8979 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
8982 /* If index is in range, it must fit in Pmode.
8983 Convert to Pmode so we can index with it. */
8985 index
= convert_to_mode (Pmode
, index
, 1);
8987 /* Don't let a MEM slip through, because then INDEX that comes
8988 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
8989 and break_out_memory_refs will go to work on it and mess it up. */
8990 #ifdef PIC_CASE_VECTOR_ADDRESS
8991 if (flag_pic
&& !REG_P (index
))
8992 index
= copy_to_mode_reg (Pmode
, index
);
8995 /* If flag_force_addr were to affect this address
8996 it could interfere with the tricky assumptions made
8997 about addresses that contain label-refs,
8998 which may be valid only very near the tablejump itself. */
8999 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
9000 GET_MODE_SIZE, because this indicates how large insns are. The other
9001 uses should all be Pmode, because they are addresses. This code
9002 could fail if addresses and insns are not the same size. */
9003 index
= gen_rtx_PLUS (Pmode
,
9004 gen_rtx_MULT (Pmode
, index
,
9005 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE
))),
9006 gen_rtx_LABEL_REF (Pmode
, table_label
));
9007 #ifdef PIC_CASE_VECTOR_ADDRESS
9009 index
= PIC_CASE_VECTOR_ADDRESS (index
);
9012 index
= memory_address_noforce (CASE_VECTOR_MODE
, index
);
9013 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
9014 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
9015 convert_move (temp
, vector
, 0);
9017 emit_jump_insn (gen_tablejump (temp
, table_label
));
9019 /* If we are generating PIC code or if the table is PC-relative, the
9020 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
9021 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
9026 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
9027 rtx table_label
, rtx default_label
)
9031 if (! HAVE_tablejump
)
9034 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
9035 convert (index_type
, index_expr
),
9036 convert (index_type
, minval
));
9037 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
9038 do_pending_stack_adjust ();
9040 do_tablejump (index
, TYPE_MODE (index_type
),
9041 convert_modes (TYPE_MODE (index_type
),
9042 TYPE_MODE (TREE_TYPE (range
)),
9043 expand_expr (range
, NULL_RTX
,
9045 TYPE_UNSIGNED (TREE_TYPE (range
))),
9046 table_label
, default_label
);
9050 /* Nonzero if the mode is a valid vector mode for this architecture.
9051 This returns nonzero even if there is no hardware support for the
9052 vector mode, but we can emulate with narrower modes. */
9055 vector_mode_valid_p (enum machine_mode mode
)
9057 enum mode_class
class = GET_MODE_CLASS (mode
);
9058 enum machine_mode innermode
;
9060 /* Doh! What's going on? */
9061 if (class != MODE_VECTOR_INT
9062 && class != MODE_VECTOR_FLOAT
)
9065 /* Hardware support. Woo hoo! */
9066 if (targetm
.vector_mode_supported_p (mode
))
9069 innermode
= GET_MODE_INNER (mode
);
9071 /* We should probably return 1 if requesting V4DI and we have no DI,
9072 but we have V2DI, but this is probably very unlikely. */
9074 /* If we have support for the inner mode, we can safely emulate it.
9075 We may not have V2DI, but me can emulate with a pair of DIs. */
9076 return targetm
.scalar_mode_supported_p (innermode
);
9079 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
9081 const_vector_from_tree (tree exp
)
9086 enum machine_mode inner
, mode
;
9088 mode
= TYPE_MODE (TREE_TYPE (exp
));
9090 if (initializer_zerop (exp
))
9091 return CONST0_RTX (mode
);
9093 units
= GET_MODE_NUNITS (mode
);
9094 inner
= GET_MODE_INNER (mode
);
9096 v
= rtvec_alloc (units
);
9098 link
= TREE_VECTOR_CST_ELTS (exp
);
9099 for (i
= 0; link
; link
= TREE_CHAIN (link
), ++i
)
9101 elt
= TREE_VALUE (link
);
9103 if (TREE_CODE (elt
) == REAL_CST
)
9104 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
9107 RTVEC_ELT (v
, i
) = immed_double_const (TREE_INT_CST_LOW (elt
),
9108 TREE_INT_CST_HIGH (elt
),
9112 /* Initialize remaining elements to 0. */
9113 for (; i
< units
; ++i
)
9114 RTVEC_ELT (v
, i
) = CONST0_RTX (inner
);
9116 return gen_rtx_CONST_VECTOR (mode
, v
);
9118 #include "gt-expr.h"