PR sanitizer/58413
[official-gcc.git] / gcc / var-tracking.c
blob5d39c500a5192e03c77a18f4a2bde3a4ff6735ef
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "tm_p.h"
95 #include "hard-reg-set.h"
96 #include "basic-block.h"
97 #include "flags.h"
98 #include "insn-config.h"
99 #include "reload.h"
100 #include "sbitmap.h"
101 #include "alloc-pool.h"
102 #include "fibheap.h"
103 #include "hash-table.h"
104 #include "regs.h"
105 #include "expr.h"
106 #include "tree-pass.h"
107 #include "tree-ssa.h"
108 #include "cselib.h"
109 #include "target.h"
110 #include "params.h"
111 #include "diagnostic.h"
112 #include "tree-pretty-print.h"
113 #include "pointer-set.h"
114 #include "recog.h"
115 #include "tm_p.h"
116 #include "alias.h"
118 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
119 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
120 Currently the value is the same as IDENTIFIER_NODE, which has such
121 a property. If this compile time assertion ever fails, make sure that
122 the new tree code that equals (int) VALUE has the same property. */
123 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
125 /* Type of micro operation. */
126 enum micro_operation_type
128 MO_USE, /* Use location (REG or MEM). */
129 MO_USE_NO_VAR,/* Use location which is not associated with a variable
130 or the variable is not trackable. */
131 MO_VAL_USE, /* Use location which is associated with a value. */
132 MO_VAL_LOC, /* Use location which appears in a debug insn. */
133 MO_VAL_SET, /* Set location associated with a value. */
134 MO_SET, /* Set location. */
135 MO_COPY, /* Copy the same portion of a variable from one
136 location to another. */
137 MO_CLOBBER, /* Clobber location. */
138 MO_CALL, /* Call insn. */
139 MO_ADJUST /* Adjust stack pointer. */
143 static const char * const ATTRIBUTE_UNUSED
144 micro_operation_type_name[] = {
145 "MO_USE",
146 "MO_USE_NO_VAR",
147 "MO_VAL_USE",
148 "MO_VAL_LOC",
149 "MO_VAL_SET",
150 "MO_SET",
151 "MO_COPY",
152 "MO_CLOBBER",
153 "MO_CALL",
154 "MO_ADJUST"
157 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
158 Notes emitted as AFTER_CALL are to take effect during the call,
159 rather than after the call. */
160 enum emit_note_where
162 EMIT_NOTE_BEFORE_INSN,
163 EMIT_NOTE_AFTER_INSN,
164 EMIT_NOTE_AFTER_CALL_INSN
167 /* Structure holding information about micro operation. */
168 typedef struct micro_operation_def
170 /* Type of micro operation. */
171 enum micro_operation_type type;
173 /* The instruction which the micro operation is in, for MO_USE,
174 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
175 instruction or note in the original flow (before any var-tracking
176 notes are inserted, to simplify emission of notes), for MO_SET
177 and MO_CLOBBER. */
178 rtx insn;
180 union {
181 /* Location. For MO_SET and MO_COPY, this is the SET that
182 performs the assignment, if known, otherwise it is the target
183 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
184 CONCAT of the VALUE and the LOC associated with it. For
185 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
186 associated with it. */
187 rtx loc;
189 /* Stack adjustment. */
190 HOST_WIDE_INT adjust;
191 } u;
192 } micro_operation;
195 /* A declaration of a variable, or an RTL value being handled like a
196 declaration. */
197 typedef void *decl_or_value;
199 /* Return true if a decl_or_value DV is a DECL or NULL. */
200 static inline bool
201 dv_is_decl_p (decl_or_value dv)
203 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
206 /* Return true if a decl_or_value is a VALUE rtl. */
207 static inline bool
208 dv_is_value_p (decl_or_value dv)
210 return dv && !dv_is_decl_p (dv);
213 /* Return the decl in the decl_or_value. */
214 static inline tree
215 dv_as_decl (decl_or_value dv)
217 gcc_checking_assert (dv_is_decl_p (dv));
218 return (tree) dv;
221 /* Return the value in the decl_or_value. */
222 static inline rtx
223 dv_as_value (decl_or_value dv)
225 gcc_checking_assert (dv_is_value_p (dv));
226 return (rtx)dv;
229 /* Return the opaque pointer in the decl_or_value. */
230 static inline void *
231 dv_as_opaque (decl_or_value dv)
233 return dv;
237 /* Description of location of a part of a variable. The content of a physical
238 register is described by a chain of these structures.
239 The chains are pretty short (usually 1 or 2 elements) and thus
240 chain is the best data structure. */
241 typedef struct attrs_def
243 /* Pointer to next member of the list. */
244 struct attrs_def *next;
246 /* The rtx of register. */
247 rtx loc;
249 /* The declaration corresponding to LOC. */
250 decl_or_value dv;
252 /* Offset from start of DECL. */
253 HOST_WIDE_INT offset;
254 } *attrs;
256 /* Structure for chaining the locations. */
257 typedef struct location_chain_def
259 /* Next element in the chain. */
260 struct location_chain_def *next;
262 /* The location (REG, MEM or VALUE). */
263 rtx loc;
265 /* The "value" stored in this location. */
266 rtx set_src;
268 /* Initialized? */
269 enum var_init_status init;
270 } *location_chain;
272 /* A vector of loc_exp_dep holds the active dependencies of a one-part
273 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
274 location of DV. Each entry is also part of VALUE' s linked-list of
275 backlinks back to DV. */
276 typedef struct loc_exp_dep_s
278 /* The dependent DV. */
279 decl_or_value dv;
280 /* The dependency VALUE or DECL_DEBUG. */
281 rtx value;
282 /* The next entry in VALUE's backlinks list. */
283 struct loc_exp_dep_s *next;
284 /* A pointer to the pointer to this entry (head or prev's next) in
285 the doubly-linked list. */
286 struct loc_exp_dep_s **pprev;
287 } loc_exp_dep;
290 /* This data structure holds information about the depth of a variable
291 expansion. */
292 typedef struct expand_depth_struct
294 /* This measures the complexity of the expanded expression. It
295 grows by one for each level of expansion that adds more than one
296 operand. */
297 int complexity;
298 /* This counts the number of ENTRY_VALUE expressions in an
299 expansion. We want to minimize their use. */
300 int entryvals;
301 } expand_depth;
303 /* This data structure is allocated for one-part variables at the time
304 of emitting notes. */
305 struct onepart_aux
307 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
308 computation used the expansion of this variable, and that ought
309 to be notified should this variable change. If the DV's cur_loc
310 expanded to NULL, all components of the loc list are regarded as
311 active, so that any changes in them give us a chance to get a
312 location. Otherwise, only components of the loc that expanded to
313 non-NULL are regarded as active dependencies. */
314 loc_exp_dep *backlinks;
315 /* This holds the LOC that was expanded into cur_loc. We need only
316 mark a one-part variable as changed if the FROM loc is removed,
317 or if it has no known location and a loc is added, or if it gets
318 a change notification from any of its active dependencies. */
319 rtx from;
320 /* The depth of the cur_loc expression. */
321 expand_depth depth;
322 /* Dependencies actively used when expand FROM into cur_loc. */
323 vec<loc_exp_dep, va_heap, vl_embed> deps;
326 /* Structure describing one part of variable. */
327 typedef struct variable_part_def
329 /* Chain of locations of the part. */
330 location_chain loc_chain;
332 /* Location which was last emitted to location list. */
333 rtx cur_loc;
335 union variable_aux
337 /* The offset in the variable, if !var->onepart. */
338 HOST_WIDE_INT offset;
340 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
341 struct onepart_aux *onepaux;
342 } aux;
343 } variable_part;
345 /* Maximum number of location parts. */
346 #define MAX_VAR_PARTS 16
348 /* Enumeration type used to discriminate various types of one-part
349 variables. */
350 typedef enum onepart_enum
352 /* Not a one-part variable. */
353 NOT_ONEPART = 0,
354 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
355 ONEPART_VDECL = 1,
356 /* A DEBUG_EXPR_DECL. */
357 ONEPART_DEXPR = 2,
358 /* A VALUE. */
359 ONEPART_VALUE = 3
360 } onepart_enum_t;
362 /* Structure describing where the variable is located. */
363 typedef struct variable_def
365 /* The declaration of the variable, or an RTL value being handled
366 like a declaration. */
367 decl_or_value dv;
369 /* Reference count. */
370 int refcount;
372 /* Number of variable parts. */
373 char n_var_parts;
375 /* What type of DV this is, according to enum onepart_enum. */
376 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
378 /* True if this variable_def struct is currently in the
379 changed_variables hash table. */
380 bool in_changed_variables;
382 /* The variable parts. */
383 variable_part var_part[1];
384 } *variable;
385 typedef const struct variable_def *const_variable;
387 /* Pointer to the BB's information specific to variable tracking pass. */
388 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
390 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
391 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
393 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
395 /* Access VAR's Ith part's offset, checking that it's not a one-part
396 variable. */
397 #define VAR_PART_OFFSET(var, i) __extension__ \
398 (*({ variable const __v = (var); \
399 gcc_checking_assert (!__v->onepart); \
400 &__v->var_part[(i)].aux.offset; }))
402 /* Access VAR's one-part auxiliary data, checking that it is a
403 one-part variable. */
404 #define VAR_LOC_1PAUX(var) __extension__ \
405 (*({ variable const __v = (var); \
406 gcc_checking_assert (__v->onepart); \
407 &__v->var_part[0].aux.onepaux; }))
409 #else
410 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
411 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
412 #endif
414 /* These are accessor macros for the one-part auxiliary data. When
415 convenient for users, they're guarded by tests that the data was
416 allocated. */
417 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
418 ? VAR_LOC_1PAUX (var)->backlinks \
419 : NULL)
420 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
421 ? &VAR_LOC_1PAUX (var)->backlinks \
422 : NULL)
423 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
424 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
425 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
426 ? &VAR_LOC_1PAUX (var)->deps \
427 : NULL)
431 typedef unsigned int dvuid;
433 /* Return the uid of DV. */
435 static inline dvuid
436 dv_uid (decl_or_value dv)
438 if (dv_is_value_p (dv))
439 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
440 else
441 return DECL_UID (dv_as_decl (dv));
444 /* Compute the hash from the uid. */
446 static inline hashval_t
447 dv_uid2hash (dvuid uid)
449 return uid;
452 /* The hash function for a mask table in a shared_htab chain. */
454 static inline hashval_t
455 dv_htab_hash (decl_or_value dv)
457 return dv_uid2hash (dv_uid (dv));
460 static void variable_htab_free (void *);
462 /* Variable hashtable helpers. */
464 struct variable_hasher
466 typedef variable_def value_type;
467 typedef void compare_type;
468 static inline hashval_t hash (const value_type *);
469 static inline bool equal (const value_type *, const compare_type *);
470 static inline void remove (value_type *);
473 /* The hash function for variable_htab, computes the hash value
474 from the declaration of variable X. */
476 inline hashval_t
477 variable_hasher::hash (const value_type *v)
479 return dv_htab_hash (v->dv);
482 /* Compare the declaration of variable X with declaration Y. */
484 inline bool
485 variable_hasher::equal (const value_type *v, const compare_type *y)
487 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
489 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
492 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
494 inline void
495 variable_hasher::remove (value_type *var)
497 variable_htab_free (var);
500 typedef hash_table <variable_hasher> variable_table_type;
501 typedef variable_table_type::iterator variable_iterator_type;
503 /* Structure for passing some other parameters to function
504 emit_note_insn_var_location. */
505 typedef struct emit_note_data_def
507 /* The instruction which the note will be emitted before/after. */
508 rtx insn;
510 /* Where the note will be emitted (before/after insn)? */
511 enum emit_note_where where;
513 /* The variables and values active at this point. */
514 variable_table_type vars;
515 } emit_note_data;
517 /* Structure holding a refcounted hash table. If refcount > 1,
518 it must be first unshared before modified. */
519 typedef struct shared_hash_def
521 /* Reference count. */
522 int refcount;
524 /* Actual hash table. */
525 variable_table_type htab;
526 } *shared_hash;
528 /* Structure holding the IN or OUT set for a basic block. */
529 typedef struct dataflow_set_def
531 /* Adjustment of stack offset. */
532 HOST_WIDE_INT stack_adjust;
534 /* Attributes for registers (lists of attrs). */
535 attrs regs[FIRST_PSEUDO_REGISTER];
537 /* Variable locations. */
538 shared_hash vars;
540 /* Vars that is being traversed. */
541 shared_hash traversed_vars;
542 } dataflow_set;
544 /* The structure (one for each basic block) containing the information
545 needed for variable tracking. */
546 typedef struct variable_tracking_info_def
548 /* The vector of micro operations. */
549 vec<micro_operation> mos;
551 /* The IN and OUT set for dataflow analysis. */
552 dataflow_set in;
553 dataflow_set out;
555 /* The permanent-in dataflow set for this block. This is used to
556 hold values for which we had to compute entry values. ??? This
557 should probably be dynamically allocated, to avoid using more
558 memory in non-debug builds. */
559 dataflow_set *permp;
561 /* Has the block been visited in DFS? */
562 bool visited;
564 /* Has the block been flooded in VTA? */
565 bool flooded;
567 } *variable_tracking_info;
569 /* Alloc pool for struct attrs_def. */
570 static alloc_pool attrs_pool;
572 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
573 static alloc_pool var_pool;
575 /* Alloc pool for struct variable_def with a single var_part entry. */
576 static alloc_pool valvar_pool;
578 /* Alloc pool for struct location_chain_def. */
579 static alloc_pool loc_chain_pool;
581 /* Alloc pool for struct shared_hash_def. */
582 static alloc_pool shared_hash_pool;
584 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
585 static alloc_pool loc_exp_dep_pool;
587 /* Changed variables, notes will be emitted for them. */
588 static variable_table_type changed_variables;
590 /* Shall notes be emitted? */
591 static bool emit_notes;
593 /* Values whose dynamic location lists have gone empty, but whose
594 cselib location lists are still usable. Use this to hold the
595 current location, the backlinks, etc, during emit_notes. */
596 static variable_table_type dropped_values;
598 /* Empty shared hashtable. */
599 static shared_hash empty_shared_hash;
601 /* Scratch register bitmap used by cselib_expand_value_rtx. */
602 static bitmap scratch_regs = NULL;
604 #ifdef HAVE_window_save
605 typedef struct GTY(()) parm_reg {
606 rtx outgoing;
607 rtx incoming;
608 } parm_reg_t;
611 /* Vector of windowed parameter registers, if any. */
612 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
613 #endif
615 /* Variable used to tell whether cselib_process_insn called our hook. */
616 static bool cselib_hook_called;
618 /* Local function prototypes. */
619 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
620 HOST_WIDE_INT *);
621 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
622 HOST_WIDE_INT *);
623 static bool vt_stack_adjustments (void);
625 static void init_attrs_list_set (attrs *);
626 static void attrs_list_clear (attrs *);
627 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
628 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
629 static void attrs_list_copy (attrs *, attrs);
630 static void attrs_list_union (attrs *, attrs);
632 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
633 variable var, enum var_init_status);
634 static void vars_copy (variable_table_type, variable_table_type);
635 static tree var_debug_decl (tree);
636 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
637 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
638 enum var_init_status, rtx);
639 static void var_reg_delete (dataflow_set *, rtx, bool);
640 static void var_regno_delete (dataflow_set *, int);
641 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
642 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
643 enum var_init_status, rtx);
644 static void var_mem_delete (dataflow_set *, rtx, bool);
646 static void dataflow_set_init (dataflow_set *);
647 static void dataflow_set_clear (dataflow_set *);
648 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
649 static int variable_union_info_cmp_pos (const void *, const void *);
650 static void dataflow_set_union (dataflow_set *, dataflow_set *);
651 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type);
652 static bool canon_value_cmp (rtx, rtx);
653 static int loc_cmp (rtx, rtx);
654 static bool variable_part_different_p (variable_part *, variable_part *);
655 static bool onepart_variable_different_p (variable, variable);
656 static bool variable_different_p (variable, variable);
657 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
658 static void dataflow_set_destroy (dataflow_set *);
660 static bool contains_symbol_ref (rtx);
661 static bool track_expr_p (tree, bool);
662 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
663 static int add_uses (rtx *, void *);
664 static void add_uses_1 (rtx *, void *);
665 static void add_stores (rtx, const_rtx, void *);
666 static bool compute_bb_dataflow (basic_block);
667 static bool vt_find_locations (void);
669 static void dump_attrs_list (attrs);
670 static void dump_var (variable);
671 static void dump_vars (variable_table_type);
672 static void dump_dataflow_set (dataflow_set *);
673 static void dump_dataflow_sets (void);
675 static void set_dv_changed (decl_or_value, bool);
676 static void variable_was_changed (variable, dataflow_set *);
677 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
678 decl_or_value, HOST_WIDE_INT,
679 enum var_init_status, rtx);
680 static void set_variable_part (dataflow_set *, rtx,
681 decl_or_value, HOST_WIDE_INT,
682 enum var_init_status, rtx, enum insert_option);
683 static variable_def **clobber_slot_part (dataflow_set *, rtx,
684 variable_def **, HOST_WIDE_INT, rtx);
685 static void clobber_variable_part (dataflow_set *, rtx,
686 decl_or_value, HOST_WIDE_INT, rtx);
687 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
688 HOST_WIDE_INT);
689 static void delete_variable_part (dataflow_set *, rtx,
690 decl_or_value, HOST_WIDE_INT);
691 static void emit_notes_in_bb (basic_block, dataflow_set *);
692 static void vt_emit_notes (void);
694 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
695 static void vt_add_function_parameters (void);
696 static bool vt_initialize (void);
697 static void vt_finalize (void);
699 /* Given a SET, calculate the amount of stack adjustment it contains
700 PRE- and POST-modifying stack pointer.
701 This function is similar to stack_adjust_offset. */
703 static void
704 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
705 HOST_WIDE_INT *post)
707 rtx src = SET_SRC (pattern);
708 rtx dest = SET_DEST (pattern);
709 enum rtx_code code;
711 if (dest == stack_pointer_rtx)
713 /* (set (reg sp) (plus (reg sp) (const_int))) */
714 code = GET_CODE (src);
715 if (! (code == PLUS || code == MINUS)
716 || XEXP (src, 0) != stack_pointer_rtx
717 || !CONST_INT_P (XEXP (src, 1)))
718 return;
720 if (code == MINUS)
721 *post += INTVAL (XEXP (src, 1));
722 else
723 *post -= INTVAL (XEXP (src, 1));
725 else if (MEM_P (dest))
727 /* (set (mem (pre_dec (reg sp))) (foo)) */
728 src = XEXP (dest, 0);
729 code = GET_CODE (src);
731 switch (code)
733 case PRE_MODIFY:
734 case POST_MODIFY:
735 if (XEXP (src, 0) == stack_pointer_rtx)
737 rtx val = XEXP (XEXP (src, 1), 1);
738 /* We handle only adjustments by constant amount. */
739 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
740 CONST_INT_P (val));
742 if (code == PRE_MODIFY)
743 *pre -= INTVAL (val);
744 else
745 *post -= INTVAL (val);
746 break;
748 return;
750 case PRE_DEC:
751 if (XEXP (src, 0) == stack_pointer_rtx)
753 *pre += GET_MODE_SIZE (GET_MODE (dest));
754 break;
756 return;
758 case POST_DEC:
759 if (XEXP (src, 0) == stack_pointer_rtx)
761 *post += GET_MODE_SIZE (GET_MODE (dest));
762 break;
764 return;
766 case PRE_INC:
767 if (XEXP (src, 0) == stack_pointer_rtx)
769 *pre -= GET_MODE_SIZE (GET_MODE (dest));
770 break;
772 return;
774 case POST_INC:
775 if (XEXP (src, 0) == stack_pointer_rtx)
777 *post -= GET_MODE_SIZE (GET_MODE (dest));
778 break;
780 return;
782 default:
783 return;
788 /* Given an INSN, calculate the amount of stack adjustment it contains
789 PRE- and POST-modifying stack pointer. */
791 static void
792 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
793 HOST_WIDE_INT *post)
795 rtx pattern;
797 *pre = 0;
798 *post = 0;
800 pattern = PATTERN (insn);
801 if (RTX_FRAME_RELATED_P (insn))
803 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
804 if (expr)
805 pattern = XEXP (expr, 0);
808 if (GET_CODE (pattern) == SET)
809 stack_adjust_offset_pre_post (pattern, pre, post);
810 else if (GET_CODE (pattern) == PARALLEL
811 || GET_CODE (pattern) == SEQUENCE)
813 int i;
815 /* There may be stack adjustments inside compound insns. Search
816 for them. */
817 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
818 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
819 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
823 /* Compute stack adjustments for all blocks by traversing DFS tree.
824 Return true when the adjustments on all incoming edges are consistent.
825 Heavily borrowed from pre_and_rev_post_order_compute. */
827 static bool
828 vt_stack_adjustments (void)
830 edge_iterator *stack;
831 int sp;
833 /* Initialize entry block. */
834 VTI (ENTRY_BLOCK_PTR)->visited = true;
835 VTI (ENTRY_BLOCK_PTR)->in.stack_adjust = INCOMING_FRAME_SP_OFFSET;
836 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = INCOMING_FRAME_SP_OFFSET;
838 /* Allocate stack for back-tracking up CFG. */
839 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
840 sp = 0;
842 /* Push the first edge on to the stack. */
843 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
845 while (sp)
847 edge_iterator ei;
848 basic_block src;
849 basic_block dest;
851 /* Look at the edge on the top of the stack. */
852 ei = stack[sp - 1];
853 src = ei_edge (ei)->src;
854 dest = ei_edge (ei)->dest;
856 /* Check if the edge destination has been visited yet. */
857 if (!VTI (dest)->visited)
859 rtx insn;
860 HOST_WIDE_INT pre, post, offset;
861 VTI (dest)->visited = true;
862 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
864 if (dest != EXIT_BLOCK_PTR)
865 for (insn = BB_HEAD (dest);
866 insn != NEXT_INSN (BB_END (dest));
867 insn = NEXT_INSN (insn))
868 if (INSN_P (insn))
870 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
871 offset += pre + post;
874 VTI (dest)->out.stack_adjust = offset;
876 if (EDGE_COUNT (dest->succs) > 0)
877 /* Since the DEST node has been visited for the first
878 time, check its successors. */
879 stack[sp++] = ei_start (dest->succs);
881 else
883 /* Check whether the adjustments on the edges are the same. */
884 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
886 free (stack);
887 return false;
890 if (! ei_one_before_end_p (ei))
891 /* Go to the next edge. */
892 ei_next (&stack[sp - 1]);
893 else
894 /* Return to previous level if there are no more edges. */
895 sp--;
899 free (stack);
900 return true;
903 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
904 hard_frame_pointer_rtx is being mapped to it and offset for it. */
905 static rtx cfa_base_rtx;
906 static HOST_WIDE_INT cfa_base_offset;
908 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
909 or hard_frame_pointer_rtx. */
911 static inline rtx
912 compute_cfa_pointer (HOST_WIDE_INT adjustment)
914 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
917 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
918 or -1 if the replacement shouldn't be done. */
919 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
921 /* Data for adjust_mems callback. */
923 struct adjust_mem_data
925 bool store;
926 enum machine_mode mem_mode;
927 HOST_WIDE_INT stack_adjust;
928 rtx side_effects;
931 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
932 transformation of wider mode arithmetics to narrower mode,
933 -1 if it is suitable and subexpressions shouldn't be
934 traversed and 0 if it is suitable and subexpressions should
935 be traversed. Called through for_each_rtx. */
937 static int
938 use_narrower_mode_test (rtx *loc, void *data)
940 rtx subreg = (rtx) data;
942 if (CONSTANT_P (*loc))
943 return -1;
944 switch (GET_CODE (*loc))
946 case REG:
947 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
948 return 1;
949 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
950 *loc, subreg_lowpart_offset (GET_MODE (subreg),
951 GET_MODE (*loc))))
952 return 1;
953 return -1;
954 case PLUS:
955 case MINUS:
956 case MULT:
957 return 0;
958 case ASHIFT:
959 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
960 return 1;
961 else
962 return -1;
963 default:
964 return 1;
968 /* Transform X into narrower mode MODE from wider mode WMODE. */
970 static rtx
971 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
973 rtx op0, op1;
974 if (CONSTANT_P (x))
975 return lowpart_subreg (mode, x, wmode);
976 switch (GET_CODE (x))
978 case REG:
979 return lowpart_subreg (mode, x, wmode);
980 case PLUS:
981 case MINUS:
982 case MULT:
983 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
984 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
985 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
986 case ASHIFT:
987 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
988 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
989 default:
990 gcc_unreachable ();
994 /* Helper function for adjusting used MEMs. */
996 static rtx
997 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
999 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1000 rtx mem, addr = loc, tem;
1001 enum machine_mode mem_mode_save;
1002 bool store_save;
1003 switch (GET_CODE (loc))
1005 case REG:
1006 /* Don't do any sp or fp replacements outside of MEM addresses
1007 on the LHS. */
1008 if (amd->mem_mode == VOIDmode && amd->store)
1009 return loc;
1010 if (loc == stack_pointer_rtx
1011 && !frame_pointer_needed
1012 && cfa_base_rtx)
1013 return compute_cfa_pointer (amd->stack_adjust);
1014 else if (loc == hard_frame_pointer_rtx
1015 && frame_pointer_needed
1016 && hard_frame_pointer_adjustment != -1
1017 && cfa_base_rtx)
1018 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1019 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1020 return loc;
1021 case MEM:
1022 mem = loc;
1023 if (!amd->store)
1025 mem = targetm.delegitimize_address (mem);
1026 if (mem != loc && !MEM_P (mem))
1027 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1030 addr = XEXP (mem, 0);
1031 mem_mode_save = amd->mem_mode;
1032 amd->mem_mode = GET_MODE (mem);
1033 store_save = amd->store;
1034 amd->store = false;
1035 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1036 amd->store = store_save;
1037 amd->mem_mode = mem_mode_save;
1038 if (mem == loc)
1039 addr = targetm.delegitimize_address (addr);
1040 if (addr != XEXP (mem, 0))
1041 mem = replace_equiv_address_nv (mem, addr);
1042 if (!amd->store)
1043 mem = avoid_constant_pool_reference (mem);
1044 return mem;
1045 case PRE_INC:
1046 case PRE_DEC:
1047 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1048 gen_int_mode (GET_CODE (loc) == PRE_INC
1049 ? GET_MODE_SIZE (amd->mem_mode)
1050 : -GET_MODE_SIZE (amd->mem_mode),
1051 GET_MODE (loc)));
1052 case POST_INC:
1053 case POST_DEC:
1054 if (addr == loc)
1055 addr = XEXP (loc, 0);
1056 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1057 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1058 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1059 gen_int_mode ((GET_CODE (loc) == PRE_INC
1060 || GET_CODE (loc) == POST_INC)
1061 ? GET_MODE_SIZE (amd->mem_mode)
1062 : -GET_MODE_SIZE (amd->mem_mode),
1063 GET_MODE (loc)));
1064 amd->side_effects = alloc_EXPR_LIST (0,
1065 gen_rtx_SET (VOIDmode,
1066 XEXP (loc, 0),
1067 tem),
1068 amd->side_effects);
1069 return addr;
1070 case PRE_MODIFY:
1071 addr = XEXP (loc, 1);
1072 case POST_MODIFY:
1073 if (addr == loc)
1074 addr = XEXP (loc, 0);
1075 gcc_assert (amd->mem_mode != VOIDmode);
1076 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1077 amd->side_effects = alloc_EXPR_LIST (0,
1078 gen_rtx_SET (VOIDmode,
1079 XEXP (loc, 0),
1080 XEXP (loc, 1)),
1081 amd->side_effects);
1082 return addr;
1083 case SUBREG:
1084 /* First try without delegitimization of whole MEMs and
1085 avoid_constant_pool_reference, which is more likely to succeed. */
1086 store_save = amd->store;
1087 amd->store = true;
1088 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1089 data);
1090 amd->store = store_save;
1091 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1092 if (mem == SUBREG_REG (loc))
1094 tem = loc;
1095 goto finish_subreg;
1097 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1098 GET_MODE (SUBREG_REG (loc)),
1099 SUBREG_BYTE (loc));
1100 if (tem)
1101 goto finish_subreg;
1102 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1103 GET_MODE (SUBREG_REG (loc)),
1104 SUBREG_BYTE (loc));
1105 if (tem == NULL_RTX)
1106 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1107 finish_subreg:
1108 if (MAY_HAVE_DEBUG_INSNS
1109 && GET_CODE (tem) == SUBREG
1110 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1111 || GET_CODE (SUBREG_REG (tem)) == MINUS
1112 || GET_CODE (SUBREG_REG (tem)) == MULT
1113 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1114 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1115 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1116 && GET_MODE_SIZE (GET_MODE (tem))
1117 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
1118 && subreg_lowpart_p (tem)
1119 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
1120 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1121 GET_MODE (SUBREG_REG (tem)));
1122 return tem;
1123 case ASM_OPERANDS:
1124 /* Don't do any replacements in second and following
1125 ASM_OPERANDS of inline-asm with multiple sets.
1126 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1127 and ASM_OPERANDS_LABEL_VEC need to be equal between
1128 all the ASM_OPERANDs in the insn and adjust_insn will
1129 fix this up. */
1130 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1131 return loc;
1132 break;
1133 default:
1134 break;
1136 return NULL_RTX;
1139 /* Helper function for replacement of uses. */
1141 static void
1142 adjust_mem_uses (rtx *x, void *data)
1144 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1145 if (new_x != *x)
1146 validate_change (NULL_RTX, x, new_x, true);
1149 /* Helper function for replacement of stores. */
1151 static void
1152 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1154 if (MEM_P (loc))
1156 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1157 adjust_mems, data);
1158 if (new_dest != SET_DEST (expr))
1160 rtx xexpr = CONST_CAST_RTX (expr);
1161 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1166 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1167 replace them with their value in the insn and add the side-effects
1168 as other sets to the insn. */
1170 static void
1171 adjust_insn (basic_block bb, rtx insn)
1173 struct adjust_mem_data amd;
1174 rtx set;
1176 #ifdef HAVE_window_save
1177 /* If the target machine has an explicit window save instruction, the
1178 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1179 if (RTX_FRAME_RELATED_P (insn)
1180 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1182 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1183 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1184 parm_reg_t *p;
1186 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1188 XVECEXP (rtl, 0, i * 2)
1189 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1190 /* Do not clobber the attached DECL, but only the REG. */
1191 XVECEXP (rtl, 0, i * 2 + 1)
1192 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1193 gen_raw_REG (GET_MODE (p->outgoing),
1194 REGNO (p->outgoing)));
1197 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1198 return;
1200 #endif
1202 amd.mem_mode = VOIDmode;
1203 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1204 amd.side_effects = NULL_RTX;
1206 amd.store = true;
1207 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1209 amd.store = false;
1210 if (GET_CODE (PATTERN (insn)) == PARALLEL
1211 && asm_noperands (PATTERN (insn)) > 0
1212 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1214 rtx body, set0;
1215 int i;
1217 /* inline-asm with multiple sets is tiny bit more complicated,
1218 because the 3 vectors in ASM_OPERANDS need to be shared between
1219 all ASM_OPERANDS in the instruction. adjust_mems will
1220 not touch ASM_OPERANDS other than the first one, asm_noperands
1221 test above needs to be called before that (otherwise it would fail)
1222 and afterwards this code fixes it up. */
1223 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1224 body = PATTERN (insn);
1225 set0 = XVECEXP (body, 0, 0);
1226 gcc_checking_assert (GET_CODE (set0) == SET
1227 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1228 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1229 for (i = 1; i < XVECLEN (body, 0); i++)
1230 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1231 break;
1232 else
1234 set = XVECEXP (body, 0, i);
1235 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1236 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1237 == i);
1238 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1239 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1240 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1241 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1242 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1243 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1245 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1246 ASM_OPERANDS_INPUT_VEC (newsrc)
1247 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1248 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1249 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1250 ASM_OPERANDS_LABEL_VEC (newsrc)
1251 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1252 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1256 else
1257 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1259 /* For read-only MEMs containing some constant, prefer those
1260 constants. */
1261 set = single_set (insn);
1262 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1264 rtx note = find_reg_equal_equiv_note (insn);
1266 if (note && CONSTANT_P (XEXP (note, 0)))
1267 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1270 if (amd.side_effects)
1272 rtx *pat, new_pat, s;
1273 int i, oldn, newn;
1275 pat = &PATTERN (insn);
1276 if (GET_CODE (*pat) == COND_EXEC)
1277 pat = &COND_EXEC_CODE (*pat);
1278 if (GET_CODE (*pat) == PARALLEL)
1279 oldn = XVECLEN (*pat, 0);
1280 else
1281 oldn = 1;
1282 for (s = amd.side_effects, newn = 0; s; newn++)
1283 s = XEXP (s, 1);
1284 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1285 if (GET_CODE (*pat) == PARALLEL)
1286 for (i = 0; i < oldn; i++)
1287 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1288 else
1289 XVECEXP (new_pat, 0, 0) = *pat;
1290 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1291 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1292 free_EXPR_LIST_list (&amd.side_effects);
1293 validate_change (NULL_RTX, pat, new_pat, true);
1297 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1298 static inline rtx
1299 dv_as_rtx (decl_or_value dv)
1301 tree decl;
1303 if (dv_is_value_p (dv))
1304 return dv_as_value (dv);
1306 decl = dv_as_decl (dv);
1308 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1309 return DECL_RTL_KNOWN_SET (decl);
1312 /* Return nonzero if a decl_or_value must not have more than one
1313 variable part. The returned value discriminates among various
1314 kinds of one-part DVs ccording to enum onepart_enum. */
1315 static inline onepart_enum_t
1316 dv_onepart_p (decl_or_value dv)
1318 tree decl;
1320 if (!MAY_HAVE_DEBUG_INSNS)
1321 return NOT_ONEPART;
1323 if (dv_is_value_p (dv))
1324 return ONEPART_VALUE;
1326 decl = dv_as_decl (dv);
1328 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1329 return ONEPART_DEXPR;
1331 if (target_for_debug_bind (decl) != NULL_TREE)
1332 return ONEPART_VDECL;
1334 return NOT_ONEPART;
1337 /* Return the variable pool to be used for a dv of type ONEPART. */
1338 static inline alloc_pool
1339 onepart_pool (onepart_enum_t onepart)
1341 return onepart ? valvar_pool : var_pool;
1344 /* Build a decl_or_value out of a decl. */
1345 static inline decl_or_value
1346 dv_from_decl (tree decl)
1348 decl_or_value dv;
1349 dv = decl;
1350 gcc_checking_assert (dv_is_decl_p (dv));
1351 return dv;
1354 /* Build a decl_or_value out of a value. */
1355 static inline decl_or_value
1356 dv_from_value (rtx value)
1358 decl_or_value dv;
1359 dv = value;
1360 gcc_checking_assert (dv_is_value_p (dv));
1361 return dv;
1364 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1365 static inline decl_or_value
1366 dv_from_rtx (rtx x)
1368 decl_or_value dv;
1370 switch (GET_CODE (x))
1372 case DEBUG_EXPR:
1373 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1374 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1375 break;
1377 case VALUE:
1378 dv = dv_from_value (x);
1379 break;
1381 default:
1382 gcc_unreachable ();
1385 return dv;
1388 extern void debug_dv (decl_or_value dv);
1390 DEBUG_FUNCTION void
1391 debug_dv (decl_or_value dv)
1393 if (dv_is_value_p (dv))
1394 debug_rtx (dv_as_value (dv));
1395 else
1396 debug_generic_stmt (dv_as_decl (dv));
1399 static void loc_exp_dep_clear (variable var);
1401 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1403 static void
1404 variable_htab_free (void *elem)
1406 int i;
1407 variable var = (variable) elem;
1408 location_chain node, next;
1410 gcc_checking_assert (var->refcount > 0);
1412 var->refcount--;
1413 if (var->refcount > 0)
1414 return;
1416 for (i = 0; i < var->n_var_parts; i++)
1418 for (node = var->var_part[i].loc_chain; node; node = next)
1420 next = node->next;
1421 pool_free (loc_chain_pool, node);
1423 var->var_part[i].loc_chain = NULL;
1425 if (var->onepart && VAR_LOC_1PAUX (var))
1427 loc_exp_dep_clear (var);
1428 if (VAR_LOC_DEP_LST (var))
1429 VAR_LOC_DEP_LST (var)->pprev = NULL;
1430 XDELETE (VAR_LOC_1PAUX (var));
1431 /* These may be reused across functions, so reset
1432 e.g. NO_LOC_P. */
1433 if (var->onepart == ONEPART_DEXPR)
1434 set_dv_changed (var->dv, true);
1436 pool_free (onepart_pool (var->onepart), var);
1439 /* Initialize the set (array) SET of attrs to empty lists. */
1441 static void
1442 init_attrs_list_set (attrs *set)
1444 int i;
1446 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1447 set[i] = NULL;
1450 /* Make the list *LISTP empty. */
1452 static void
1453 attrs_list_clear (attrs *listp)
1455 attrs list, next;
1457 for (list = *listp; list; list = next)
1459 next = list->next;
1460 pool_free (attrs_pool, list);
1462 *listp = NULL;
1465 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1467 static attrs
1468 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1470 for (; list; list = list->next)
1471 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1472 return list;
1473 return NULL;
1476 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1478 static void
1479 attrs_list_insert (attrs *listp, decl_or_value dv,
1480 HOST_WIDE_INT offset, rtx loc)
1482 attrs list;
1484 list = (attrs) pool_alloc (attrs_pool);
1485 list->loc = loc;
1486 list->dv = dv;
1487 list->offset = offset;
1488 list->next = *listp;
1489 *listp = list;
1492 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1494 static void
1495 attrs_list_copy (attrs *dstp, attrs src)
1497 attrs n;
1499 attrs_list_clear (dstp);
1500 for (; src; src = src->next)
1502 n = (attrs) pool_alloc (attrs_pool);
1503 n->loc = src->loc;
1504 n->dv = src->dv;
1505 n->offset = src->offset;
1506 n->next = *dstp;
1507 *dstp = n;
1511 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1513 static void
1514 attrs_list_union (attrs *dstp, attrs src)
1516 for (; src; src = src->next)
1518 if (!attrs_list_member (*dstp, src->dv, src->offset))
1519 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1523 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1524 *DSTP. */
1526 static void
1527 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1529 gcc_assert (!*dstp);
1530 for (; src; src = src->next)
1532 if (!dv_onepart_p (src->dv))
1533 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1535 for (src = src2; src; src = src->next)
1537 if (!dv_onepart_p (src->dv)
1538 && !attrs_list_member (*dstp, src->dv, src->offset))
1539 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1543 /* Shared hashtable support. */
1545 /* Return true if VARS is shared. */
1547 static inline bool
1548 shared_hash_shared (shared_hash vars)
1550 return vars->refcount > 1;
1553 /* Return the hash table for VARS. */
1555 static inline variable_table_type
1556 shared_hash_htab (shared_hash vars)
1558 return vars->htab;
1561 /* Return true if VAR is shared, or maybe because VARS is shared. */
1563 static inline bool
1564 shared_var_p (variable var, shared_hash vars)
1566 /* Don't count an entry in the changed_variables table as a duplicate. */
1567 return ((var->refcount > 1 + (int) var->in_changed_variables)
1568 || shared_hash_shared (vars));
1571 /* Copy variables into a new hash table. */
1573 static shared_hash
1574 shared_hash_unshare (shared_hash vars)
1576 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1577 gcc_assert (vars->refcount > 1);
1578 new_vars->refcount = 1;
1579 new_vars->htab.create (vars->htab.elements () + 3);
1580 vars_copy (new_vars->htab, vars->htab);
1581 vars->refcount--;
1582 return new_vars;
1585 /* Increment reference counter on VARS and return it. */
1587 static inline shared_hash
1588 shared_hash_copy (shared_hash vars)
1590 vars->refcount++;
1591 return vars;
1594 /* Decrement reference counter and destroy hash table if not shared
1595 anymore. */
1597 static void
1598 shared_hash_destroy (shared_hash vars)
1600 gcc_checking_assert (vars->refcount > 0);
1601 if (--vars->refcount == 0)
1603 vars->htab.dispose ();
1604 pool_free (shared_hash_pool, vars);
1608 /* Unshare *PVARS if shared and return slot for DV. If INS is
1609 INSERT, insert it if not already present. */
1611 static inline variable_def **
1612 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1613 hashval_t dvhash, enum insert_option ins)
1615 if (shared_hash_shared (*pvars))
1616 *pvars = shared_hash_unshare (*pvars);
1617 return shared_hash_htab (*pvars).find_slot_with_hash (dv, dvhash, ins);
1620 static inline variable_def **
1621 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1622 enum insert_option ins)
1624 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1627 /* Return slot for DV, if it is already present in the hash table.
1628 If it is not present, insert it only VARS is not shared, otherwise
1629 return NULL. */
1631 static inline variable_def **
1632 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1634 return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash,
1635 shared_hash_shared (vars)
1636 ? NO_INSERT : INSERT);
1639 static inline variable_def **
1640 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1642 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1645 /* Return slot for DV only if it is already present in the hash table. */
1647 static inline variable_def **
1648 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1649 hashval_t dvhash)
1651 return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash, NO_INSERT);
1654 static inline variable_def **
1655 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1657 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1660 /* Return variable for DV or NULL if not already present in the hash
1661 table. */
1663 static inline variable
1664 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1666 return shared_hash_htab (vars).find_with_hash (dv, dvhash);
1669 static inline variable
1670 shared_hash_find (shared_hash vars, decl_or_value dv)
1672 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1675 /* Return true if TVAL is better than CVAL as a canonival value. We
1676 choose lowest-numbered VALUEs, using the RTX address as a
1677 tie-breaker. The idea is to arrange them into a star topology,
1678 such that all of them are at most one step away from the canonical
1679 value, and the canonical value has backlinks to all of them, in
1680 addition to all the actual locations. We don't enforce this
1681 topology throughout the entire dataflow analysis, though.
1684 static inline bool
1685 canon_value_cmp (rtx tval, rtx cval)
1687 return !cval
1688 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1691 static bool dst_can_be_shared;
1693 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1695 static variable_def **
1696 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1697 enum var_init_status initialized)
1699 variable new_var;
1700 int i;
1702 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1703 new_var->dv = var->dv;
1704 new_var->refcount = 1;
1705 var->refcount--;
1706 new_var->n_var_parts = var->n_var_parts;
1707 new_var->onepart = var->onepart;
1708 new_var->in_changed_variables = false;
1710 if (! flag_var_tracking_uninit)
1711 initialized = VAR_INIT_STATUS_INITIALIZED;
1713 for (i = 0; i < var->n_var_parts; i++)
1715 location_chain node;
1716 location_chain *nextp;
1718 if (i == 0 && var->onepart)
1720 /* One-part auxiliary data is only used while emitting
1721 notes, so propagate it to the new variable in the active
1722 dataflow set. If we're not emitting notes, this will be
1723 a no-op. */
1724 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1725 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1726 VAR_LOC_1PAUX (var) = NULL;
1728 else
1729 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1730 nextp = &new_var->var_part[i].loc_chain;
1731 for (node = var->var_part[i].loc_chain; node; node = node->next)
1733 location_chain new_lc;
1735 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1736 new_lc->next = NULL;
1737 if (node->init > initialized)
1738 new_lc->init = node->init;
1739 else
1740 new_lc->init = initialized;
1741 if (node->set_src && !(MEM_P (node->set_src)))
1742 new_lc->set_src = node->set_src;
1743 else
1744 new_lc->set_src = NULL;
1745 new_lc->loc = node->loc;
1747 *nextp = new_lc;
1748 nextp = &new_lc->next;
1751 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1754 dst_can_be_shared = false;
1755 if (shared_hash_shared (set->vars))
1756 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1757 else if (set->traversed_vars && set->vars != set->traversed_vars)
1758 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1759 *slot = new_var;
1760 if (var->in_changed_variables)
1762 variable_def **cslot
1763 = changed_variables.find_slot_with_hash (var->dv,
1764 dv_htab_hash (var->dv), NO_INSERT);
1765 gcc_assert (*cslot == (void *) var);
1766 var->in_changed_variables = false;
1767 variable_htab_free (var);
1768 *cslot = new_var;
1769 new_var->in_changed_variables = true;
1771 return slot;
1774 /* Copy all variables from hash table SRC to hash table DST. */
1776 static void
1777 vars_copy (variable_table_type dst, variable_table_type src)
1779 variable_iterator_type hi;
1780 variable var;
1782 FOR_EACH_HASH_TABLE_ELEMENT (src, var, variable, hi)
1784 variable_def **dstp;
1785 var->refcount++;
1786 dstp = dst.find_slot_with_hash (var->dv, dv_htab_hash (var->dv), INSERT);
1787 *dstp = var;
1791 /* Map a decl to its main debug decl. */
1793 static inline tree
1794 var_debug_decl (tree decl)
1796 if (decl && TREE_CODE (decl) == VAR_DECL
1797 && DECL_HAS_DEBUG_EXPR_P (decl))
1799 tree debugdecl = DECL_DEBUG_EXPR (decl);
1800 if (DECL_P (debugdecl))
1801 decl = debugdecl;
1804 return decl;
1807 /* Set the register LOC to contain DV, OFFSET. */
1809 static void
1810 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1811 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1812 enum insert_option iopt)
1814 attrs node;
1815 bool decl_p = dv_is_decl_p (dv);
1817 if (decl_p)
1818 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1820 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1821 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1822 && node->offset == offset)
1823 break;
1824 if (!node)
1825 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1826 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1829 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1831 static void
1832 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1833 rtx set_src)
1835 tree decl = REG_EXPR (loc);
1836 HOST_WIDE_INT offset = REG_OFFSET (loc);
1838 var_reg_decl_set (set, loc, initialized,
1839 dv_from_decl (decl), offset, set_src, INSERT);
1842 static enum var_init_status
1843 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1845 variable var;
1846 int i;
1847 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1849 if (! flag_var_tracking_uninit)
1850 return VAR_INIT_STATUS_INITIALIZED;
1852 var = shared_hash_find (set->vars, dv);
1853 if (var)
1855 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1857 location_chain nextp;
1858 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1859 if (rtx_equal_p (nextp->loc, loc))
1861 ret_val = nextp->init;
1862 break;
1867 return ret_val;
1870 /* Delete current content of register LOC in dataflow set SET and set
1871 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1872 MODIFY is true, any other live copies of the same variable part are
1873 also deleted from the dataflow set, otherwise the variable part is
1874 assumed to be copied from another location holding the same
1875 part. */
1877 static void
1878 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1879 enum var_init_status initialized, rtx set_src)
1881 tree decl = REG_EXPR (loc);
1882 HOST_WIDE_INT offset = REG_OFFSET (loc);
1883 attrs node, next;
1884 attrs *nextp;
1886 decl = var_debug_decl (decl);
1888 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1889 initialized = get_init_value (set, loc, dv_from_decl (decl));
1891 nextp = &set->regs[REGNO (loc)];
1892 for (node = *nextp; node; node = next)
1894 next = node->next;
1895 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1897 delete_variable_part (set, node->loc, node->dv, node->offset);
1898 pool_free (attrs_pool, node);
1899 *nextp = next;
1901 else
1903 node->loc = loc;
1904 nextp = &node->next;
1907 if (modify)
1908 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1909 var_reg_set (set, loc, initialized, set_src);
1912 /* Delete the association of register LOC in dataflow set SET with any
1913 variables that aren't onepart. If CLOBBER is true, also delete any
1914 other live copies of the same variable part, and delete the
1915 association with onepart dvs too. */
1917 static void
1918 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1920 attrs *nextp = &set->regs[REGNO (loc)];
1921 attrs node, next;
1923 if (clobber)
1925 tree decl = REG_EXPR (loc);
1926 HOST_WIDE_INT offset = REG_OFFSET (loc);
1928 decl = var_debug_decl (decl);
1930 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1933 for (node = *nextp; node; node = next)
1935 next = node->next;
1936 if (clobber || !dv_onepart_p (node->dv))
1938 delete_variable_part (set, node->loc, node->dv, node->offset);
1939 pool_free (attrs_pool, node);
1940 *nextp = next;
1942 else
1943 nextp = &node->next;
1947 /* Delete content of register with number REGNO in dataflow set SET. */
1949 static void
1950 var_regno_delete (dataflow_set *set, int regno)
1952 attrs *reg = &set->regs[regno];
1953 attrs node, next;
1955 for (node = *reg; node; node = next)
1957 next = node->next;
1958 delete_variable_part (set, node->loc, node->dv, node->offset);
1959 pool_free (attrs_pool, node);
1961 *reg = NULL;
1964 /* Return true if I is the negated value of a power of two. */
1965 static bool
1966 negative_power_of_two_p (HOST_WIDE_INT i)
1968 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1969 return x == (x & -x);
1972 /* Strip constant offsets and alignments off of LOC. Return the base
1973 expression. */
1975 static rtx
1976 vt_get_canonicalize_base (rtx loc)
1978 while ((GET_CODE (loc) == PLUS
1979 || GET_CODE (loc) == AND)
1980 && GET_CODE (XEXP (loc, 1)) == CONST_INT
1981 && (GET_CODE (loc) != AND
1982 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
1983 loc = XEXP (loc, 0);
1985 return loc;
1988 /* This caches canonicalized addresses for VALUEs, computed using
1989 information in the global cselib table. */
1990 static struct pointer_map_t *global_get_addr_cache;
1992 /* This caches canonicalized addresses for VALUEs, computed using
1993 information from the global cache and information pertaining to a
1994 basic block being analyzed. */
1995 static struct pointer_map_t *local_get_addr_cache;
1997 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
1999 /* Return the canonical address for LOC, that must be a VALUE, using a
2000 cached global equivalence or computing it and storing it in the
2001 global cache. */
2003 static rtx
2004 get_addr_from_global_cache (rtx const loc)
2006 rtx x;
2007 void **slot;
2009 gcc_checking_assert (GET_CODE (loc) == VALUE);
2011 slot = pointer_map_insert (global_get_addr_cache, loc);
2012 if (*slot)
2013 return (rtx)*slot;
2015 x = canon_rtx (get_addr (loc));
2017 /* Tentative, avoiding infinite recursion. */
2018 *slot = x;
2020 if (x != loc)
2022 rtx nx = vt_canonicalize_addr (NULL, x);
2023 if (nx != x)
2025 /* The table may have moved during recursion, recompute
2026 SLOT. */
2027 slot = pointer_map_contains (global_get_addr_cache, loc);
2028 *slot = x = nx;
2032 return x;
2035 /* Return the canonical address for LOC, that must be a VALUE, using a
2036 cached local equivalence or computing it and storing it in the
2037 local cache. */
2039 static rtx
2040 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2042 rtx x;
2043 void **slot;
2044 decl_or_value dv;
2045 variable var;
2046 location_chain l;
2048 gcc_checking_assert (GET_CODE (loc) == VALUE);
2050 slot = pointer_map_insert (local_get_addr_cache, loc);
2051 if (*slot)
2052 return (rtx)*slot;
2054 x = get_addr_from_global_cache (loc);
2056 /* Tentative, avoiding infinite recursion. */
2057 *slot = x;
2059 /* Recurse to cache local expansion of X, or if we need to search
2060 for a VALUE in the expansion. */
2061 if (x != loc)
2063 rtx nx = vt_canonicalize_addr (set, x);
2064 if (nx != x)
2066 slot = pointer_map_contains (local_get_addr_cache, loc);
2067 *slot = x = nx;
2069 return x;
2072 dv = dv_from_rtx (x);
2073 var = shared_hash_find (set->vars, dv);
2074 if (!var)
2075 return x;
2077 /* Look for an improved equivalent expression. */
2078 for (l = var->var_part[0].loc_chain; l; l = l->next)
2080 rtx base = vt_get_canonicalize_base (l->loc);
2081 if (GET_CODE (base) == VALUE
2082 && canon_value_cmp (base, loc))
2084 rtx nx = vt_canonicalize_addr (set, l->loc);
2085 if (x != nx)
2087 slot = pointer_map_contains (local_get_addr_cache, loc);
2088 *slot = x = nx;
2090 break;
2094 return x;
2097 /* Canonicalize LOC using equivalences from SET in addition to those
2098 in the cselib static table. It expects a VALUE-based expression,
2099 and it will only substitute VALUEs with other VALUEs or
2100 function-global equivalences, so that, if two addresses have base
2101 VALUEs that are locally or globally related in ways that
2102 memrefs_conflict_p cares about, they will both canonicalize to
2103 expressions that have the same base VALUE.
2105 The use of VALUEs as canonical base addresses enables the canonical
2106 RTXs to remain unchanged globally, if they resolve to a constant,
2107 or throughout a basic block otherwise, so that they can be cached
2108 and the cache needs not be invalidated when REGs, MEMs or such
2109 change. */
2111 static rtx
2112 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2114 HOST_WIDE_INT ofst = 0;
2115 enum machine_mode mode = GET_MODE (oloc);
2116 rtx loc = oloc;
2117 rtx x;
2118 bool retry = true;
2120 while (retry)
2122 while (GET_CODE (loc) == PLUS
2123 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2125 ofst += INTVAL (XEXP (loc, 1));
2126 loc = XEXP (loc, 0);
2129 /* Alignment operations can't normally be combined, so just
2130 canonicalize the base and we're done. We'll normally have
2131 only one stack alignment anyway. */
2132 if (GET_CODE (loc) == AND
2133 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2134 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2136 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2137 if (x != XEXP (loc, 0))
2138 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2139 retry = false;
2142 if (GET_CODE (loc) == VALUE)
2144 if (set)
2145 loc = get_addr_from_local_cache (set, loc);
2146 else
2147 loc = get_addr_from_global_cache (loc);
2149 /* Consolidate plus_constants. */
2150 while (ofst && GET_CODE (loc) == PLUS
2151 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2153 ofst += INTVAL (XEXP (loc, 1));
2154 loc = XEXP (loc, 0);
2157 retry = false;
2159 else
2161 x = canon_rtx (loc);
2162 if (retry)
2163 retry = (x != loc);
2164 loc = x;
2168 /* Add OFST back in. */
2169 if (ofst)
2171 /* Don't build new RTL if we can help it. */
2172 if (GET_CODE (oloc) == PLUS
2173 && XEXP (oloc, 0) == loc
2174 && INTVAL (XEXP (oloc, 1)) == ofst)
2175 return oloc;
2177 loc = plus_constant (mode, loc, ofst);
2180 return loc;
2183 /* Return true iff there's a true dependence between MLOC and LOC.
2184 MADDR must be a canonicalized version of MLOC's address. */
2186 static inline bool
2187 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2189 if (GET_CODE (loc) != MEM)
2190 return false;
2192 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2193 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2194 return false;
2196 return true;
2199 /* Hold parameters for the hashtab traversal function
2200 drop_overlapping_mem_locs, see below. */
2202 struct overlapping_mems
2204 dataflow_set *set;
2205 rtx loc, addr;
2208 /* Remove all MEMs that overlap with COMS->LOC from the location list
2209 of a hash table entry for a value. COMS->ADDR must be a
2210 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2211 canonicalized itself. */
2214 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2216 dataflow_set *set = coms->set;
2217 rtx mloc = coms->loc, addr = coms->addr;
2218 variable var = *slot;
2220 if (var->onepart == ONEPART_VALUE)
2222 location_chain loc, *locp;
2223 bool changed = false;
2224 rtx cur_loc;
2226 gcc_assert (var->n_var_parts == 1);
2228 if (shared_var_p (var, set->vars))
2230 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2231 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2232 break;
2234 if (!loc)
2235 return 1;
2237 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2238 var = *slot;
2239 gcc_assert (var->n_var_parts == 1);
2242 if (VAR_LOC_1PAUX (var))
2243 cur_loc = VAR_LOC_FROM (var);
2244 else
2245 cur_loc = var->var_part[0].cur_loc;
2247 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2248 loc; loc = *locp)
2250 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2252 locp = &loc->next;
2253 continue;
2256 *locp = loc->next;
2257 /* If we have deleted the location which was last emitted
2258 we have to emit new location so add the variable to set
2259 of changed variables. */
2260 if (cur_loc == loc->loc)
2262 changed = true;
2263 var->var_part[0].cur_loc = NULL;
2264 if (VAR_LOC_1PAUX (var))
2265 VAR_LOC_FROM (var) = NULL;
2267 pool_free (loc_chain_pool, loc);
2270 if (!var->var_part[0].loc_chain)
2272 var->n_var_parts--;
2273 changed = true;
2275 if (changed)
2276 variable_was_changed (var, set);
2279 return 1;
2282 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2284 static void
2285 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2287 struct overlapping_mems coms;
2289 gcc_checking_assert (GET_CODE (loc) == MEM);
2291 coms.set = set;
2292 coms.loc = canon_rtx (loc);
2293 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2295 set->traversed_vars = set->vars;
2296 shared_hash_htab (set->vars)
2297 .traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2298 set->traversed_vars = NULL;
2301 /* Set the location of DV, OFFSET as the MEM LOC. */
2303 static void
2304 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2305 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2306 enum insert_option iopt)
2308 if (dv_is_decl_p (dv))
2309 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2311 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2314 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2315 SET to LOC.
2316 Adjust the address first if it is stack pointer based. */
2318 static void
2319 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2320 rtx set_src)
2322 tree decl = MEM_EXPR (loc);
2323 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2325 var_mem_decl_set (set, loc, initialized,
2326 dv_from_decl (decl), offset, set_src, INSERT);
2329 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2330 dataflow set SET to LOC. If MODIFY is true, any other live copies
2331 of the same variable part are also deleted from the dataflow set,
2332 otherwise the variable part is assumed to be copied from another
2333 location holding the same part.
2334 Adjust the address first if it is stack pointer based. */
2336 static void
2337 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2338 enum var_init_status initialized, rtx set_src)
2340 tree decl = MEM_EXPR (loc);
2341 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2343 clobber_overlapping_mems (set, loc);
2344 decl = var_debug_decl (decl);
2346 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2347 initialized = get_init_value (set, loc, dv_from_decl (decl));
2349 if (modify)
2350 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2351 var_mem_set (set, loc, initialized, set_src);
2354 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2355 true, also delete any other live copies of the same variable part.
2356 Adjust the address first if it is stack pointer based. */
2358 static void
2359 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2361 tree decl = MEM_EXPR (loc);
2362 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2364 clobber_overlapping_mems (set, loc);
2365 decl = var_debug_decl (decl);
2366 if (clobber)
2367 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2368 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2371 /* Return true if LOC should not be expanded for location expressions,
2372 or used in them. */
2374 static inline bool
2375 unsuitable_loc (rtx loc)
2377 switch (GET_CODE (loc))
2379 case PC:
2380 case SCRATCH:
2381 case CC0:
2382 case ASM_INPUT:
2383 case ASM_OPERANDS:
2384 return true;
2386 default:
2387 return false;
2391 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2392 bound to it. */
2394 static inline void
2395 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2397 if (REG_P (loc))
2399 if (modified)
2400 var_regno_delete (set, REGNO (loc));
2401 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2402 dv_from_value (val), 0, NULL_RTX, INSERT);
2404 else if (MEM_P (loc))
2406 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2408 if (modified)
2409 clobber_overlapping_mems (set, loc);
2411 if (l && GET_CODE (l->loc) == VALUE)
2412 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2414 /* If this MEM is a global constant, we don't need it in the
2415 dynamic tables. ??? We should test this before emitting the
2416 micro-op in the first place. */
2417 while (l)
2418 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2419 break;
2420 else
2421 l = l->next;
2423 if (!l)
2424 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2425 dv_from_value (val), 0, NULL_RTX, INSERT);
2427 else
2429 /* Other kinds of equivalences are necessarily static, at least
2430 so long as we do not perform substitutions while merging
2431 expressions. */
2432 gcc_unreachable ();
2433 set_variable_part (set, loc, dv_from_value (val), 0,
2434 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2438 /* Bind a value to a location it was just stored in. If MODIFIED
2439 holds, assume the location was modified, detaching it from any
2440 values bound to it. */
2442 static void
2443 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
2445 cselib_val *v = CSELIB_VAL_PTR (val);
2447 gcc_assert (cselib_preserved_value_p (v));
2449 if (dump_file)
2451 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2452 print_inline_rtx (dump_file, loc, 0);
2453 fprintf (dump_file, " evaluates to ");
2454 print_inline_rtx (dump_file, val, 0);
2455 if (v->locs)
2457 struct elt_loc_list *l;
2458 for (l = v->locs; l; l = l->next)
2460 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2461 print_inline_rtx (dump_file, l->loc, 0);
2464 fprintf (dump_file, "\n");
2467 gcc_checking_assert (!unsuitable_loc (loc));
2469 val_bind (set, val, loc, modified);
2472 /* Clear (canonical address) slots that reference X. */
2474 static bool
2475 local_get_addr_clear_given_value (const void *v ATTRIBUTE_UNUSED,
2476 void **slot, void *x)
2478 if (vt_get_canonicalize_base ((rtx)*slot) == x)
2479 *slot = NULL;
2480 return true;
2483 /* Reset this node, detaching all its equivalences. Return the slot
2484 in the variable hash table that holds dv, if there is one. */
2486 static void
2487 val_reset (dataflow_set *set, decl_or_value dv)
2489 variable var = shared_hash_find (set->vars, dv) ;
2490 location_chain node;
2491 rtx cval;
2493 if (!var || !var->n_var_parts)
2494 return;
2496 gcc_assert (var->n_var_parts == 1);
2498 if (var->onepart == ONEPART_VALUE)
2500 rtx x = dv_as_value (dv);
2501 void **slot;
2503 /* Relationships in the global cache don't change, so reset the
2504 local cache entry only. */
2505 slot = pointer_map_contains (local_get_addr_cache, x);
2506 if (slot)
2508 /* If the value resolved back to itself, odds are that other
2509 values may have cached it too. These entries now refer
2510 to the old X, so detach them too. Entries that used the
2511 old X but resolved to something else remain ok as long as
2512 that something else isn't also reset. */
2513 if (*slot == x)
2514 pointer_map_traverse (local_get_addr_cache,
2515 local_get_addr_clear_given_value, x);
2516 *slot = NULL;
2520 cval = NULL;
2521 for (node = var->var_part[0].loc_chain; node; node = node->next)
2522 if (GET_CODE (node->loc) == VALUE
2523 && canon_value_cmp (node->loc, cval))
2524 cval = node->loc;
2526 for (node = var->var_part[0].loc_chain; node; node = node->next)
2527 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2529 /* Redirect the equivalence link to the new canonical
2530 value, or simply remove it if it would point at
2531 itself. */
2532 if (cval)
2533 set_variable_part (set, cval, dv_from_value (node->loc),
2534 0, node->init, node->set_src, NO_INSERT);
2535 delete_variable_part (set, dv_as_value (dv),
2536 dv_from_value (node->loc), 0);
2539 if (cval)
2541 decl_or_value cdv = dv_from_value (cval);
2543 /* Keep the remaining values connected, accummulating links
2544 in the canonical value. */
2545 for (node = var->var_part[0].loc_chain; node; node = node->next)
2547 if (node->loc == cval)
2548 continue;
2549 else if (GET_CODE (node->loc) == REG)
2550 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2551 node->set_src, NO_INSERT);
2552 else if (GET_CODE (node->loc) == MEM)
2553 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2554 node->set_src, NO_INSERT);
2555 else
2556 set_variable_part (set, node->loc, cdv, 0,
2557 node->init, node->set_src, NO_INSERT);
2561 /* We remove this last, to make sure that the canonical value is not
2562 removed to the point of requiring reinsertion. */
2563 if (cval)
2564 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2566 clobber_variable_part (set, NULL, dv, 0, NULL);
2569 /* Find the values in a given location and map the val to another
2570 value, if it is unique, or add the location as one holding the
2571 value. */
2573 static void
2574 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
2576 decl_or_value dv = dv_from_value (val);
2578 if (dump_file && (dump_flags & TDF_DETAILS))
2580 if (insn)
2581 fprintf (dump_file, "%i: ", INSN_UID (insn));
2582 else
2583 fprintf (dump_file, "head: ");
2584 print_inline_rtx (dump_file, val, 0);
2585 fputs (" is at ", dump_file);
2586 print_inline_rtx (dump_file, loc, 0);
2587 fputc ('\n', dump_file);
2590 val_reset (set, dv);
2592 gcc_checking_assert (!unsuitable_loc (loc));
2594 if (REG_P (loc))
2596 attrs node, found = NULL;
2598 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2599 if (dv_is_value_p (node->dv)
2600 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2602 found = node;
2604 /* Map incoming equivalences. ??? Wouldn't it be nice if
2605 we just started sharing the location lists? Maybe a
2606 circular list ending at the value itself or some
2607 such. */
2608 set_variable_part (set, dv_as_value (node->dv),
2609 dv_from_value (val), node->offset,
2610 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2611 set_variable_part (set, val, node->dv, node->offset,
2612 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2615 /* If we didn't find any equivalence, we need to remember that
2616 this value is held in the named register. */
2617 if (found)
2618 return;
2620 /* ??? Attempt to find and merge equivalent MEMs or other
2621 expressions too. */
2623 val_bind (set, val, loc, false);
2626 /* Initialize dataflow set SET to be empty.
2627 VARS_SIZE is the initial size of hash table VARS. */
2629 static void
2630 dataflow_set_init (dataflow_set *set)
2632 init_attrs_list_set (set->regs);
2633 set->vars = shared_hash_copy (empty_shared_hash);
2634 set->stack_adjust = 0;
2635 set->traversed_vars = NULL;
2638 /* Delete the contents of dataflow set SET. */
2640 static void
2641 dataflow_set_clear (dataflow_set *set)
2643 int i;
2645 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2646 attrs_list_clear (&set->regs[i]);
2648 shared_hash_destroy (set->vars);
2649 set->vars = shared_hash_copy (empty_shared_hash);
2652 /* Copy the contents of dataflow set SRC to DST. */
2654 static void
2655 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2657 int i;
2659 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2660 attrs_list_copy (&dst->regs[i], src->regs[i]);
2662 shared_hash_destroy (dst->vars);
2663 dst->vars = shared_hash_copy (src->vars);
2664 dst->stack_adjust = src->stack_adjust;
2667 /* Information for merging lists of locations for a given offset of variable.
2669 struct variable_union_info
2671 /* Node of the location chain. */
2672 location_chain lc;
2674 /* The sum of positions in the input chains. */
2675 int pos;
2677 /* The position in the chain of DST dataflow set. */
2678 int pos_dst;
2681 /* Buffer for location list sorting and its allocated size. */
2682 static struct variable_union_info *vui_vec;
2683 static int vui_allocated;
2685 /* Compare function for qsort, order the structures by POS element. */
2687 static int
2688 variable_union_info_cmp_pos (const void *n1, const void *n2)
2690 const struct variable_union_info *const i1 =
2691 (const struct variable_union_info *) n1;
2692 const struct variable_union_info *const i2 =
2693 ( const struct variable_union_info *) n2;
2695 if (i1->pos != i2->pos)
2696 return i1->pos - i2->pos;
2698 return (i1->pos_dst - i2->pos_dst);
2701 /* Compute union of location parts of variable *SLOT and the same variable
2702 from hash table DATA. Compute "sorted" union of the location chains
2703 for common offsets, i.e. the locations of a variable part are sorted by
2704 a priority where the priority is the sum of the positions in the 2 chains
2705 (if a location is only in one list the position in the second list is
2706 defined to be larger than the length of the chains).
2707 When we are updating the location parts the newest location is in the
2708 beginning of the chain, so when we do the described "sorted" union
2709 we keep the newest locations in the beginning. */
2711 static int
2712 variable_union (variable src, dataflow_set *set)
2714 variable dst;
2715 variable_def **dstp;
2716 int i, j, k;
2718 dstp = shared_hash_find_slot (set->vars, src->dv);
2719 if (!dstp || !*dstp)
2721 src->refcount++;
2723 dst_can_be_shared = false;
2724 if (!dstp)
2725 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2727 *dstp = src;
2729 /* Continue traversing the hash table. */
2730 return 1;
2732 else
2733 dst = *dstp;
2735 gcc_assert (src->n_var_parts);
2736 gcc_checking_assert (src->onepart == dst->onepart);
2738 /* We can combine one-part variables very efficiently, because their
2739 entries are in canonical order. */
2740 if (src->onepart)
2742 location_chain *nodep, dnode, snode;
2744 gcc_assert (src->n_var_parts == 1
2745 && dst->n_var_parts == 1);
2747 snode = src->var_part[0].loc_chain;
2748 gcc_assert (snode);
2750 restart_onepart_unshared:
2751 nodep = &dst->var_part[0].loc_chain;
2752 dnode = *nodep;
2753 gcc_assert (dnode);
2755 while (snode)
2757 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2759 if (r > 0)
2761 location_chain nnode;
2763 if (shared_var_p (dst, set->vars))
2765 dstp = unshare_variable (set, dstp, dst,
2766 VAR_INIT_STATUS_INITIALIZED);
2767 dst = *dstp;
2768 goto restart_onepart_unshared;
2771 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2772 nnode->loc = snode->loc;
2773 nnode->init = snode->init;
2774 if (!snode->set_src || MEM_P (snode->set_src))
2775 nnode->set_src = NULL;
2776 else
2777 nnode->set_src = snode->set_src;
2778 nnode->next = dnode;
2779 dnode = nnode;
2781 else if (r == 0)
2782 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2784 if (r >= 0)
2785 snode = snode->next;
2787 nodep = &dnode->next;
2788 dnode = *nodep;
2791 return 1;
2794 gcc_checking_assert (!src->onepart);
2796 /* Count the number of location parts, result is K. */
2797 for (i = 0, j = 0, k = 0;
2798 i < src->n_var_parts && j < dst->n_var_parts; k++)
2800 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2802 i++;
2803 j++;
2805 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2806 i++;
2807 else
2808 j++;
2810 k += src->n_var_parts - i;
2811 k += dst->n_var_parts - j;
2813 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2814 thus there are at most MAX_VAR_PARTS different offsets. */
2815 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2817 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2819 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2820 dst = *dstp;
2823 i = src->n_var_parts - 1;
2824 j = dst->n_var_parts - 1;
2825 dst->n_var_parts = k;
2827 for (k--; k >= 0; k--)
2829 location_chain node, node2;
2831 if (i >= 0 && j >= 0
2832 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2834 /* Compute the "sorted" union of the chains, i.e. the locations which
2835 are in both chains go first, they are sorted by the sum of
2836 positions in the chains. */
2837 int dst_l, src_l;
2838 int ii, jj, n;
2839 struct variable_union_info *vui;
2841 /* If DST is shared compare the location chains.
2842 If they are different we will modify the chain in DST with
2843 high probability so make a copy of DST. */
2844 if (shared_var_p (dst, set->vars))
2846 for (node = src->var_part[i].loc_chain,
2847 node2 = dst->var_part[j].loc_chain; node && node2;
2848 node = node->next, node2 = node2->next)
2850 if (!((REG_P (node2->loc)
2851 && REG_P (node->loc)
2852 && REGNO (node2->loc) == REGNO (node->loc))
2853 || rtx_equal_p (node2->loc, node->loc)))
2855 if (node2->init < node->init)
2856 node2->init = node->init;
2857 break;
2860 if (node || node2)
2862 dstp = unshare_variable (set, dstp, dst,
2863 VAR_INIT_STATUS_UNKNOWN);
2864 dst = (variable)*dstp;
2868 src_l = 0;
2869 for (node = src->var_part[i].loc_chain; node; node = node->next)
2870 src_l++;
2871 dst_l = 0;
2872 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2873 dst_l++;
2875 if (dst_l == 1)
2877 /* The most common case, much simpler, no qsort is needed. */
2878 location_chain dstnode = dst->var_part[j].loc_chain;
2879 dst->var_part[k].loc_chain = dstnode;
2880 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET(dst, j);
2881 node2 = dstnode;
2882 for (node = src->var_part[i].loc_chain; node; node = node->next)
2883 if (!((REG_P (dstnode->loc)
2884 && REG_P (node->loc)
2885 && REGNO (dstnode->loc) == REGNO (node->loc))
2886 || rtx_equal_p (dstnode->loc, node->loc)))
2888 location_chain new_node;
2890 /* Copy the location from SRC. */
2891 new_node = (location_chain) pool_alloc (loc_chain_pool);
2892 new_node->loc = node->loc;
2893 new_node->init = node->init;
2894 if (!node->set_src || MEM_P (node->set_src))
2895 new_node->set_src = NULL;
2896 else
2897 new_node->set_src = node->set_src;
2898 node2->next = new_node;
2899 node2 = new_node;
2901 node2->next = NULL;
2903 else
2905 if (src_l + dst_l > vui_allocated)
2907 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2908 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2909 vui_allocated);
2911 vui = vui_vec;
2913 /* Fill in the locations from DST. */
2914 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2915 node = node->next, jj++)
2917 vui[jj].lc = node;
2918 vui[jj].pos_dst = jj;
2920 /* Pos plus value larger than a sum of 2 valid positions. */
2921 vui[jj].pos = jj + src_l + dst_l;
2924 /* Fill in the locations from SRC. */
2925 n = dst_l;
2926 for (node = src->var_part[i].loc_chain, ii = 0; node;
2927 node = node->next, ii++)
2929 /* Find location from NODE. */
2930 for (jj = 0; jj < dst_l; jj++)
2932 if ((REG_P (vui[jj].lc->loc)
2933 && REG_P (node->loc)
2934 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2935 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2937 vui[jj].pos = jj + ii;
2938 break;
2941 if (jj >= dst_l) /* The location has not been found. */
2943 location_chain new_node;
2945 /* Copy the location from SRC. */
2946 new_node = (location_chain) pool_alloc (loc_chain_pool);
2947 new_node->loc = node->loc;
2948 new_node->init = node->init;
2949 if (!node->set_src || MEM_P (node->set_src))
2950 new_node->set_src = NULL;
2951 else
2952 new_node->set_src = node->set_src;
2953 vui[n].lc = new_node;
2954 vui[n].pos_dst = src_l + dst_l;
2955 vui[n].pos = ii + src_l + dst_l;
2956 n++;
2960 if (dst_l == 2)
2962 /* Special case still very common case. For dst_l == 2
2963 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2964 vui[i].pos == i + src_l + dst_l. */
2965 if (vui[0].pos > vui[1].pos)
2967 /* Order should be 1, 0, 2... */
2968 dst->var_part[k].loc_chain = vui[1].lc;
2969 vui[1].lc->next = vui[0].lc;
2970 if (n >= 3)
2972 vui[0].lc->next = vui[2].lc;
2973 vui[n - 1].lc->next = NULL;
2975 else
2976 vui[0].lc->next = NULL;
2977 ii = 3;
2979 else
2981 dst->var_part[k].loc_chain = vui[0].lc;
2982 if (n >= 3 && vui[2].pos < vui[1].pos)
2984 /* Order should be 0, 2, 1, 3... */
2985 vui[0].lc->next = vui[2].lc;
2986 vui[2].lc->next = vui[1].lc;
2987 if (n >= 4)
2989 vui[1].lc->next = vui[3].lc;
2990 vui[n - 1].lc->next = NULL;
2992 else
2993 vui[1].lc->next = NULL;
2994 ii = 4;
2996 else
2998 /* Order should be 0, 1, 2... */
2999 ii = 1;
3000 vui[n - 1].lc->next = NULL;
3003 for (; ii < n; ii++)
3004 vui[ii - 1].lc->next = vui[ii].lc;
3006 else
3008 qsort (vui, n, sizeof (struct variable_union_info),
3009 variable_union_info_cmp_pos);
3011 /* Reconnect the nodes in sorted order. */
3012 for (ii = 1; ii < n; ii++)
3013 vui[ii - 1].lc->next = vui[ii].lc;
3014 vui[n - 1].lc->next = NULL;
3015 dst->var_part[k].loc_chain = vui[0].lc;
3018 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3020 i--;
3021 j--;
3023 else if ((i >= 0 && j >= 0
3024 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3025 || i < 0)
3027 dst->var_part[k] = dst->var_part[j];
3028 j--;
3030 else if ((i >= 0 && j >= 0
3031 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3032 || j < 0)
3034 location_chain *nextp;
3036 /* Copy the chain from SRC. */
3037 nextp = &dst->var_part[k].loc_chain;
3038 for (node = src->var_part[i].loc_chain; node; node = node->next)
3040 location_chain new_lc;
3042 new_lc = (location_chain) pool_alloc (loc_chain_pool);
3043 new_lc->next = NULL;
3044 new_lc->init = node->init;
3045 if (!node->set_src || MEM_P (node->set_src))
3046 new_lc->set_src = NULL;
3047 else
3048 new_lc->set_src = node->set_src;
3049 new_lc->loc = node->loc;
3051 *nextp = new_lc;
3052 nextp = &new_lc->next;
3055 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3056 i--;
3058 dst->var_part[k].cur_loc = NULL;
3061 if (flag_var_tracking_uninit)
3062 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3064 location_chain node, node2;
3065 for (node = src->var_part[i].loc_chain; node; node = node->next)
3066 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3067 if (rtx_equal_p (node->loc, node2->loc))
3069 if (node->init > node2->init)
3070 node2->init = node->init;
3074 /* Continue traversing the hash table. */
3075 return 1;
3078 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3080 static void
3081 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3083 int i;
3085 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3086 attrs_list_union (&dst->regs[i], src->regs[i]);
3088 if (dst->vars == empty_shared_hash)
3090 shared_hash_destroy (dst->vars);
3091 dst->vars = shared_hash_copy (src->vars);
3093 else
3095 variable_iterator_type hi;
3096 variable var;
3098 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (src->vars),
3099 var, variable, hi)
3100 variable_union (var, dst);
3104 /* Whether the value is currently being expanded. */
3105 #define VALUE_RECURSED_INTO(x) \
3106 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3108 /* Whether no expansion was found, saving useless lookups.
3109 It must only be set when VALUE_CHANGED is clear. */
3110 #define NO_LOC_P(x) \
3111 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3113 /* Whether cur_loc in the value needs to be (re)computed. */
3114 #define VALUE_CHANGED(x) \
3115 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3116 /* Whether cur_loc in the decl needs to be (re)computed. */
3117 #define DECL_CHANGED(x) TREE_VISITED (x)
3119 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3120 user DECLs, this means they're in changed_variables. Values and
3121 debug exprs may be left with this flag set if no user variable
3122 requires them to be evaluated. */
3124 static inline void
3125 set_dv_changed (decl_or_value dv, bool newv)
3127 switch (dv_onepart_p (dv))
3129 case ONEPART_VALUE:
3130 if (newv)
3131 NO_LOC_P (dv_as_value (dv)) = false;
3132 VALUE_CHANGED (dv_as_value (dv)) = newv;
3133 break;
3135 case ONEPART_DEXPR:
3136 if (newv)
3137 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3138 /* Fall through... */
3140 default:
3141 DECL_CHANGED (dv_as_decl (dv)) = newv;
3142 break;
3146 /* Return true if DV needs to have its cur_loc recomputed. */
3148 static inline bool
3149 dv_changed_p (decl_or_value dv)
3151 return (dv_is_value_p (dv)
3152 ? VALUE_CHANGED (dv_as_value (dv))
3153 : DECL_CHANGED (dv_as_decl (dv)));
3156 /* Return a location list node whose loc is rtx_equal to LOC, in the
3157 location list of a one-part variable or value VAR, or in that of
3158 any values recursively mentioned in the location lists. VARS must
3159 be in star-canonical form. */
3161 static location_chain
3162 find_loc_in_1pdv (rtx loc, variable var, variable_table_type vars)
3164 location_chain node;
3165 enum rtx_code loc_code;
3167 if (!var)
3168 return NULL;
3170 gcc_checking_assert (var->onepart);
3172 if (!var->n_var_parts)
3173 return NULL;
3175 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3177 loc_code = GET_CODE (loc);
3178 for (node = var->var_part[0].loc_chain; node; node = node->next)
3180 decl_or_value dv;
3181 variable rvar;
3183 if (GET_CODE (node->loc) != loc_code)
3185 if (GET_CODE (node->loc) != VALUE)
3186 continue;
3188 else if (loc == node->loc)
3189 return node;
3190 else if (loc_code != VALUE)
3192 if (rtx_equal_p (loc, node->loc))
3193 return node;
3194 continue;
3197 /* Since we're in star-canonical form, we don't need to visit
3198 non-canonical nodes: one-part variables and non-canonical
3199 values would only point back to the canonical node. */
3200 if (dv_is_value_p (var->dv)
3201 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3203 /* Skip all subsequent VALUEs. */
3204 while (node->next && GET_CODE (node->next->loc) == VALUE)
3206 node = node->next;
3207 gcc_checking_assert (!canon_value_cmp (node->loc,
3208 dv_as_value (var->dv)));
3209 if (loc == node->loc)
3210 return node;
3212 continue;
3215 gcc_checking_assert (node == var->var_part[0].loc_chain);
3216 gcc_checking_assert (!node->next);
3218 dv = dv_from_value (node->loc);
3219 rvar = vars.find_with_hash (dv, dv_htab_hash (dv));
3220 return find_loc_in_1pdv (loc, rvar, vars);
3223 /* ??? Gotta look in cselib_val locations too. */
3225 return NULL;
3228 /* Hash table iteration argument passed to variable_merge. */
3229 struct dfset_merge
3231 /* The set in which the merge is to be inserted. */
3232 dataflow_set *dst;
3233 /* The set that we're iterating in. */
3234 dataflow_set *cur;
3235 /* The set that may contain the other dv we are to merge with. */
3236 dataflow_set *src;
3237 /* Number of onepart dvs in src. */
3238 int src_onepart_cnt;
3241 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3242 loc_cmp order, and it is maintained as such. */
3244 static void
3245 insert_into_intersection (location_chain *nodep, rtx loc,
3246 enum var_init_status status)
3248 location_chain node;
3249 int r;
3251 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3252 if ((r = loc_cmp (node->loc, loc)) == 0)
3254 node->init = MIN (node->init, status);
3255 return;
3257 else if (r > 0)
3258 break;
3260 node = (location_chain) pool_alloc (loc_chain_pool);
3262 node->loc = loc;
3263 node->set_src = NULL;
3264 node->init = status;
3265 node->next = *nodep;
3266 *nodep = node;
3269 /* Insert in DEST the intersection of the locations present in both
3270 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3271 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3272 DSM->dst. */
3274 static void
3275 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3276 location_chain s1node, variable s2var)
3278 dataflow_set *s1set = dsm->cur;
3279 dataflow_set *s2set = dsm->src;
3280 location_chain found;
3282 if (s2var)
3284 location_chain s2node;
3286 gcc_checking_assert (s2var->onepart);
3288 if (s2var->n_var_parts)
3290 s2node = s2var->var_part[0].loc_chain;
3292 for (; s1node && s2node;
3293 s1node = s1node->next, s2node = s2node->next)
3294 if (s1node->loc != s2node->loc)
3295 break;
3296 else if (s1node->loc == val)
3297 continue;
3298 else
3299 insert_into_intersection (dest, s1node->loc,
3300 MIN (s1node->init, s2node->init));
3304 for (; s1node; s1node = s1node->next)
3306 if (s1node->loc == val)
3307 continue;
3309 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3310 shared_hash_htab (s2set->vars))))
3312 insert_into_intersection (dest, s1node->loc,
3313 MIN (s1node->init, found->init));
3314 continue;
3317 if (GET_CODE (s1node->loc) == VALUE
3318 && !VALUE_RECURSED_INTO (s1node->loc))
3320 decl_or_value dv = dv_from_value (s1node->loc);
3321 variable svar = shared_hash_find (s1set->vars, dv);
3322 if (svar)
3324 if (svar->n_var_parts == 1)
3326 VALUE_RECURSED_INTO (s1node->loc) = true;
3327 intersect_loc_chains (val, dest, dsm,
3328 svar->var_part[0].loc_chain,
3329 s2var);
3330 VALUE_RECURSED_INTO (s1node->loc) = false;
3335 /* ??? gotta look in cselib_val locations too. */
3337 /* ??? if the location is equivalent to any location in src,
3338 searched recursively
3340 add to dst the values needed to represent the equivalence
3342 telling whether locations S is equivalent to another dv's
3343 location list:
3345 for each location D in the list
3347 if S and D satisfy rtx_equal_p, then it is present
3349 else if D is a value, recurse without cycles
3351 else if S and D have the same CODE and MODE
3353 for each operand oS and the corresponding oD
3355 if oS and oD are not equivalent, then S an D are not equivalent
3357 else if they are RTX vectors
3359 if any vector oS element is not equivalent to its respective oD,
3360 then S and D are not equivalent
3368 /* Return -1 if X should be before Y in a location list for a 1-part
3369 variable, 1 if Y should be before X, and 0 if they're equivalent
3370 and should not appear in the list. */
3372 static int
3373 loc_cmp (rtx x, rtx y)
3375 int i, j, r;
3376 RTX_CODE code = GET_CODE (x);
3377 const char *fmt;
3379 if (x == y)
3380 return 0;
3382 if (REG_P (x))
3384 if (!REG_P (y))
3385 return -1;
3386 gcc_assert (GET_MODE (x) == GET_MODE (y));
3387 if (REGNO (x) == REGNO (y))
3388 return 0;
3389 else if (REGNO (x) < REGNO (y))
3390 return -1;
3391 else
3392 return 1;
3395 if (REG_P (y))
3396 return 1;
3398 if (MEM_P (x))
3400 if (!MEM_P (y))
3401 return -1;
3402 gcc_assert (GET_MODE (x) == GET_MODE (y));
3403 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3406 if (MEM_P (y))
3407 return 1;
3409 if (GET_CODE (x) == VALUE)
3411 if (GET_CODE (y) != VALUE)
3412 return -1;
3413 /* Don't assert the modes are the same, that is true only
3414 when not recursing. (subreg:QI (value:SI 1:1) 0)
3415 and (subreg:QI (value:DI 2:2) 0) can be compared,
3416 even when the modes are different. */
3417 if (canon_value_cmp (x, y))
3418 return -1;
3419 else
3420 return 1;
3423 if (GET_CODE (y) == VALUE)
3424 return 1;
3426 /* Entry value is the least preferable kind of expression. */
3427 if (GET_CODE (x) == ENTRY_VALUE)
3429 if (GET_CODE (y) != ENTRY_VALUE)
3430 return 1;
3431 gcc_assert (GET_MODE (x) == GET_MODE (y));
3432 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3435 if (GET_CODE (y) == ENTRY_VALUE)
3436 return -1;
3438 if (GET_CODE (x) == GET_CODE (y))
3439 /* Compare operands below. */;
3440 else if (GET_CODE (x) < GET_CODE (y))
3441 return -1;
3442 else
3443 return 1;
3445 gcc_assert (GET_MODE (x) == GET_MODE (y));
3447 if (GET_CODE (x) == DEBUG_EXPR)
3449 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3450 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3451 return -1;
3452 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3453 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3454 return 1;
3457 fmt = GET_RTX_FORMAT (code);
3458 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3459 switch (fmt[i])
3461 case 'w':
3462 if (XWINT (x, i) == XWINT (y, i))
3463 break;
3464 else if (XWINT (x, i) < XWINT (y, i))
3465 return -1;
3466 else
3467 return 1;
3469 case 'n':
3470 case 'i':
3471 if (XINT (x, i) == XINT (y, i))
3472 break;
3473 else if (XINT (x, i) < XINT (y, i))
3474 return -1;
3475 else
3476 return 1;
3478 case 'V':
3479 case 'E':
3480 /* Compare the vector length first. */
3481 if (XVECLEN (x, i) == XVECLEN (y, i))
3482 /* Compare the vectors elements. */;
3483 else if (XVECLEN (x, i) < XVECLEN (y, i))
3484 return -1;
3485 else
3486 return 1;
3488 for (j = 0; j < XVECLEN (x, i); j++)
3489 if ((r = loc_cmp (XVECEXP (x, i, j),
3490 XVECEXP (y, i, j))))
3491 return r;
3492 break;
3494 case 'e':
3495 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3496 return r;
3497 break;
3499 case 'S':
3500 case 's':
3501 if (XSTR (x, i) == XSTR (y, i))
3502 break;
3503 if (!XSTR (x, i))
3504 return -1;
3505 if (!XSTR (y, i))
3506 return 1;
3507 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3508 break;
3509 else if (r < 0)
3510 return -1;
3511 else
3512 return 1;
3514 case 'u':
3515 /* These are just backpointers, so they don't matter. */
3516 break;
3518 case '0':
3519 case 't':
3520 break;
3522 /* It is believed that rtx's at this level will never
3523 contain anything but integers and other rtx's,
3524 except for within LABEL_REFs and SYMBOL_REFs. */
3525 default:
3526 gcc_unreachable ();
3529 return 0;
3532 #if ENABLE_CHECKING
3533 /* Check the order of entries in one-part variables. */
3536 canonicalize_loc_order_check (variable_def **slot,
3537 dataflow_set *data ATTRIBUTE_UNUSED)
3539 variable var = *slot;
3540 location_chain node, next;
3542 #ifdef ENABLE_RTL_CHECKING
3543 int i;
3544 for (i = 0; i < var->n_var_parts; i++)
3545 gcc_assert (var->var_part[0].cur_loc == NULL);
3546 gcc_assert (!var->in_changed_variables);
3547 #endif
3549 if (!var->onepart)
3550 return 1;
3552 gcc_assert (var->n_var_parts == 1);
3553 node = var->var_part[0].loc_chain;
3554 gcc_assert (node);
3556 while ((next = node->next))
3558 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3559 node = next;
3562 return 1;
3564 #endif
3566 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3567 more likely to be chosen as canonical for an equivalence set.
3568 Ensure less likely values can reach more likely neighbors, making
3569 the connections bidirectional. */
3572 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3574 variable var = *slot;
3575 decl_or_value dv = var->dv;
3576 rtx val;
3577 location_chain node;
3579 if (!dv_is_value_p (dv))
3580 return 1;
3582 gcc_checking_assert (var->n_var_parts == 1);
3584 val = dv_as_value (dv);
3586 for (node = var->var_part[0].loc_chain; node; node = node->next)
3587 if (GET_CODE (node->loc) == VALUE)
3589 if (canon_value_cmp (node->loc, val))
3590 VALUE_RECURSED_INTO (val) = true;
3591 else
3593 decl_or_value odv = dv_from_value (node->loc);
3594 variable_def **oslot;
3595 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3597 set_slot_part (set, val, oslot, odv, 0,
3598 node->init, NULL_RTX);
3600 VALUE_RECURSED_INTO (node->loc) = true;
3604 return 1;
3607 /* Remove redundant entries from equivalence lists in onepart
3608 variables, canonicalizing equivalence sets into star shapes. */
3611 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3613 variable var = *slot;
3614 decl_or_value dv = var->dv;
3615 location_chain node;
3616 decl_or_value cdv;
3617 rtx val, cval;
3618 variable_def **cslot;
3619 bool has_value;
3620 bool has_marks;
3622 if (!var->onepart)
3623 return 1;
3625 gcc_checking_assert (var->n_var_parts == 1);
3627 if (dv_is_value_p (dv))
3629 cval = dv_as_value (dv);
3630 if (!VALUE_RECURSED_INTO (cval))
3631 return 1;
3632 VALUE_RECURSED_INTO (cval) = false;
3634 else
3635 cval = NULL_RTX;
3637 restart:
3638 val = cval;
3639 has_value = false;
3640 has_marks = false;
3642 gcc_assert (var->n_var_parts == 1);
3644 for (node = var->var_part[0].loc_chain; node; node = node->next)
3645 if (GET_CODE (node->loc) == VALUE)
3647 has_value = true;
3648 if (VALUE_RECURSED_INTO (node->loc))
3649 has_marks = true;
3650 if (canon_value_cmp (node->loc, cval))
3651 cval = node->loc;
3654 if (!has_value)
3655 return 1;
3657 if (cval == val)
3659 if (!has_marks || dv_is_decl_p (dv))
3660 return 1;
3662 /* Keep it marked so that we revisit it, either after visiting a
3663 child node, or after visiting a new parent that might be
3664 found out. */
3665 VALUE_RECURSED_INTO (val) = true;
3667 for (node = var->var_part[0].loc_chain; node; node = node->next)
3668 if (GET_CODE (node->loc) == VALUE
3669 && VALUE_RECURSED_INTO (node->loc))
3671 cval = node->loc;
3672 restart_with_cval:
3673 VALUE_RECURSED_INTO (cval) = false;
3674 dv = dv_from_value (cval);
3675 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3676 if (!slot)
3678 gcc_assert (dv_is_decl_p (var->dv));
3679 /* The canonical value was reset and dropped.
3680 Remove it. */
3681 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3682 return 1;
3684 var = *slot;
3685 gcc_assert (dv_is_value_p (var->dv));
3686 if (var->n_var_parts == 0)
3687 return 1;
3688 gcc_assert (var->n_var_parts == 1);
3689 goto restart;
3692 VALUE_RECURSED_INTO (val) = false;
3694 return 1;
3697 /* Push values to the canonical one. */
3698 cdv = dv_from_value (cval);
3699 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3701 for (node = var->var_part[0].loc_chain; node; node = node->next)
3702 if (node->loc != cval)
3704 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3705 node->init, NULL_RTX);
3706 if (GET_CODE (node->loc) == VALUE)
3708 decl_or_value ndv = dv_from_value (node->loc);
3710 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3711 NO_INSERT);
3713 if (canon_value_cmp (node->loc, val))
3715 /* If it could have been a local minimum, it's not any more,
3716 since it's now neighbor to cval, so it may have to push
3717 to it. Conversely, if it wouldn't have prevailed over
3718 val, then whatever mark it has is fine: if it was to
3719 push, it will now push to a more canonical node, but if
3720 it wasn't, then it has already pushed any values it might
3721 have to. */
3722 VALUE_RECURSED_INTO (node->loc) = true;
3723 /* Make sure we visit node->loc by ensuring we cval is
3724 visited too. */
3725 VALUE_RECURSED_INTO (cval) = true;
3727 else if (!VALUE_RECURSED_INTO (node->loc))
3728 /* If we have no need to "recurse" into this node, it's
3729 already "canonicalized", so drop the link to the old
3730 parent. */
3731 clobber_variable_part (set, cval, ndv, 0, NULL);
3733 else if (GET_CODE (node->loc) == REG)
3735 attrs list = set->regs[REGNO (node->loc)], *listp;
3737 /* Change an existing attribute referring to dv so that it
3738 refers to cdv, removing any duplicate this might
3739 introduce, and checking that no previous duplicates
3740 existed, all in a single pass. */
3742 while (list)
3744 if (list->offset == 0
3745 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3746 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3747 break;
3749 list = list->next;
3752 gcc_assert (list);
3753 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3755 list->dv = cdv;
3756 for (listp = &list->next; (list = *listp); listp = &list->next)
3758 if (list->offset)
3759 continue;
3761 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3763 *listp = list->next;
3764 pool_free (attrs_pool, list);
3765 list = *listp;
3766 break;
3769 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3772 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3774 for (listp = &list->next; (list = *listp); listp = &list->next)
3776 if (list->offset)
3777 continue;
3779 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3781 *listp = list->next;
3782 pool_free (attrs_pool, list);
3783 list = *listp;
3784 break;
3787 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3790 else
3791 gcc_unreachable ();
3793 #if ENABLE_CHECKING
3794 while (list)
3796 if (list->offset == 0
3797 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3798 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3799 gcc_unreachable ();
3801 list = list->next;
3803 #endif
3807 if (val)
3808 set_slot_part (set, val, cslot, cdv, 0,
3809 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3811 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3813 /* Variable may have been unshared. */
3814 var = *slot;
3815 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3816 && var->var_part[0].loc_chain->next == NULL);
3818 if (VALUE_RECURSED_INTO (cval))
3819 goto restart_with_cval;
3821 return 1;
3824 /* Bind one-part variables to the canonical value in an equivalence
3825 set. Not doing this causes dataflow convergence failure in rare
3826 circumstances, see PR42873. Unfortunately we can't do this
3827 efficiently as part of canonicalize_values_star, since we may not
3828 have determined or even seen the canonical value of a set when we
3829 get to a variable that references another member of the set. */
3832 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3834 variable var = *slot;
3835 decl_or_value dv = var->dv;
3836 location_chain node;
3837 rtx cval;
3838 decl_or_value cdv;
3839 variable_def **cslot;
3840 variable cvar;
3841 location_chain cnode;
3843 if (!var->onepart || var->onepart == ONEPART_VALUE)
3844 return 1;
3846 gcc_assert (var->n_var_parts == 1);
3848 node = var->var_part[0].loc_chain;
3850 if (GET_CODE (node->loc) != VALUE)
3851 return 1;
3853 gcc_assert (!node->next);
3854 cval = node->loc;
3856 /* Push values to the canonical one. */
3857 cdv = dv_from_value (cval);
3858 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3859 if (!cslot)
3860 return 1;
3861 cvar = *cslot;
3862 gcc_assert (cvar->n_var_parts == 1);
3864 cnode = cvar->var_part[0].loc_chain;
3866 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3867 that are not “more canonical” than it. */
3868 if (GET_CODE (cnode->loc) != VALUE
3869 || !canon_value_cmp (cnode->loc, cval))
3870 return 1;
3872 /* CVAL was found to be non-canonical. Change the variable to point
3873 to the canonical VALUE. */
3874 gcc_assert (!cnode->next);
3875 cval = cnode->loc;
3877 slot = set_slot_part (set, cval, slot, dv, 0,
3878 node->init, node->set_src);
3879 clobber_slot_part (set, cval, slot, 0, node->set_src);
3881 return 1;
3884 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3885 corresponding entry in DSM->src. Multi-part variables are combined
3886 with variable_union, whereas onepart dvs are combined with
3887 intersection. */
3889 static int
3890 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3892 dataflow_set *dst = dsm->dst;
3893 variable_def **dstslot;
3894 variable s2var, dvar = NULL;
3895 decl_or_value dv = s1var->dv;
3896 onepart_enum_t onepart = s1var->onepart;
3897 rtx val;
3898 hashval_t dvhash;
3899 location_chain node, *nodep;
3901 /* If the incoming onepart variable has an empty location list, then
3902 the intersection will be just as empty. For other variables,
3903 it's always union. */
3904 gcc_checking_assert (s1var->n_var_parts
3905 && s1var->var_part[0].loc_chain);
3907 if (!onepart)
3908 return variable_union (s1var, dst);
3910 gcc_checking_assert (s1var->n_var_parts == 1);
3912 dvhash = dv_htab_hash (dv);
3913 if (dv_is_value_p (dv))
3914 val = dv_as_value (dv);
3915 else
3916 val = NULL;
3918 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3919 if (!s2var)
3921 dst_can_be_shared = false;
3922 return 1;
3925 dsm->src_onepart_cnt--;
3926 gcc_assert (s2var->var_part[0].loc_chain
3927 && s2var->onepart == onepart
3928 && s2var->n_var_parts == 1);
3930 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3931 if (dstslot)
3933 dvar = *dstslot;
3934 gcc_assert (dvar->refcount == 1
3935 && dvar->onepart == onepart
3936 && dvar->n_var_parts == 1);
3937 nodep = &dvar->var_part[0].loc_chain;
3939 else
3941 nodep = &node;
3942 node = NULL;
3945 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3947 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3948 dvhash, INSERT);
3949 *dstslot = dvar = s2var;
3950 dvar->refcount++;
3952 else
3954 dst_can_be_shared = false;
3956 intersect_loc_chains (val, nodep, dsm,
3957 s1var->var_part[0].loc_chain, s2var);
3959 if (!dstslot)
3961 if (node)
3963 dvar = (variable) pool_alloc (onepart_pool (onepart));
3964 dvar->dv = dv;
3965 dvar->refcount = 1;
3966 dvar->n_var_parts = 1;
3967 dvar->onepart = onepart;
3968 dvar->in_changed_variables = false;
3969 dvar->var_part[0].loc_chain = node;
3970 dvar->var_part[0].cur_loc = NULL;
3971 if (onepart)
3972 VAR_LOC_1PAUX (dvar) = NULL;
3973 else
3974 VAR_PART_OFFSET (dvar, 0) = 0;
3976 dstslot
3977 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
3978 INSERT);
3979 gcc_assert (!*dstslot);
3980 *dstslot = dvar;
3982 else
3983 return 1;
3987 nodep = &dvar->var_part[0].loc_chain;
3988 while ((node = *nodep))
3990 location_chain *nextp = &node->next;
3992 if (GET_CODE (node->loc) == REG)
3994 attrs list;
3996 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
3997 if (GET_MODE (node->loc) == GET_MODE (list->loc)
3998 && dv_is_value_p (list->dv))
3999 break;
4001 if (!list)
4002 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4003 dv, 0, node->loc);
4004 /* If this value became canonical for another value that had
4005 this register, we want to leave it alone. */
4006 else if (dv_as_value (list->dv) != val)
4008 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4009 dstslot, dv, 0,
4010 node->init, NULL_RTX);
4011 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4013 /* Since nextp points into the removed node, we can't
4014 use it. The pointer to the next node moved to nodep.
4015 However, if the variable we're walking is unshared
4016 during our walk, we'll keep walking the location list
4017 of the previously-shared variable, in which case the
4018 node won't have been removed, and we'll want to skip
4019 it. That's why we test *nodep here. */
4020 if (*nodep != node)
4021 nextp = nodep;
4024 else
4025 /* Canonicalization puts registers first, so we don't have to
4026 walk it all. */
4027 break;
4028 nodep = nextp;
4031 if (dvar != *dstslot)
4032 dvar = *dstslot;
4033 nodep = &dvar->var_part[0].loc_chain;
4035 if (val)
4037 /* Mark all referenced nodes for canonicalization, and make sure
4038 we have mutual equivalence links. */
4039 VALUE_RECURSED_INTO (val) = true;
4040 for (node = *nodep; node; node = node->next)
4041 if (GET_CODE (node->loc) == VALUE)
4043 VALUE_RECURSED_INTO (node->loc) = true;
4044 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4045 node->init, NULL, INSERT);
4048 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4049 gcc_assert (*dstslot == dvar);
4050 canonicalize_values_star (dstslot, dst);
4051 gcc_checking_assert (dstslot
4052 == shared_hash_find_slot_noinsert_1 (dst->vars,
4053 dv, dvhash));
4054 dvar = *dstslot;
4056 else
4058 bool has_value = false, has_other = false;
4060 /* If we have one value and anything else, we're going to
4061 canonicalize this, so make sure all values have an entry in
4062 the table and are marked for canonicalization. */
4063 for (node = *nodep; node; node = node->next)
4065 if (GET_CODE (node->loc) == VALUE)
4067 /* If this was marked during register canonicalization,
4068 we know we have to canonicalize values. */
4069 if (has_value)
4070 has_other = true;
4071 has_value = true;
4072 if (has_other)
4073 break;
4075 else
4077 has_other = true;
4078 if (has_value)
4079 break;
4083 if (has_value && has_other)
4085 for (node = *nodep; node; node = node->next)
4087 if (GET_CODE (node->loc) == VALUE)
4089 decl_or_value dv = dv_from_value (node->loc);
4090 variable_def **slot = NULL;
4092 if (shared_hash_shared (dst->vars))
4093 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4094 if (!slot)
4095 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4096 INSERT);
4097 if (!*slot)
4099 variable var = (variable) pool_alloc (onepart_pool
4100 (ONEPART_VALUE));
4101 var->dv = dv;
4102 var->refcount = 1;
4103 var->n_var_parts = 1;
4104 var->onepart = ONEPART_VALUE;
4105 var->in_changed_variables = false;
4106 var->var_part[0].loc_chain = NULL;
4107 var->var_part[0].cur_loc = NULL;
4108 VAR_LOC_1PAUX (var) = NULL;
4109 *slot = var;
4112 VALUE_RECURSED_INTO (node->loc) = true;
4116 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4117 gcc_assert (*dstslot == dvar);
4118 canonicalize_values_star (dstslot, dst);
4119 gcc_checking_assert (dstslot
4120 == shared_hash_find_slot_noinsert_1 (dst->vars,
4121 dv, dvhash));
4122 dvar = *dstslot;
4126 if (!onepart_variable_different_p (dvar, s2var))
4128 variable_htab_free (dvar);
4129 *dstslot = dvar = s2var;
4130 dvar->refcount++;
4132 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4134 variable_htab_free (dvar);
4135 *dstslot = dvar = s1var;
4136 dvar->refcount++;
4137 dst_can_be_shared = false;
4139 else
4140 dst_can_be_shared = false;
4142 return 1;
4145 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4146 multi-part variable. Unions of multi-part variables and
4147 intersections of one-part ones will be handled in
4148 variable_merge_over_cur(). */
4150 static int
4151 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4153 dataflow_set *dst = dsm->dst;
4154 decl_or_value dv = s2var->dv;
4156 if (!s2var->onepart)
4158 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4159 *dstp = s2var;
4160 s2var->refcount++;
4161 return 1;
4164 dsm->src_onepart_cnt++;
4165 return 1;
4168 /* Combine dataflow set information from SRC2 into DST, using PDST
4169 to carry over information across passes. */
4171 static void
4172 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4174 dataflow_set cur = *dst;
4175 dataflow_set *src1 = &cur;
4176 struct dfset_merge dsm;
4177 int i;
4178 size_t src1_elems, src2_elems;
4179 variable_iterator_type hi;
4180 variable var;
4182 src1_elems = shared_hash_htab (src1->vars).elements ();
4183 src2_elems = shared_hash_htab (src2->vars).elements ();
4184 dataflow_set_init (dst);
4185 dst->stack_adjust = cur.stack_adjust;
4186 shared_hash_destroy (dst->vars);
4187 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4188 dst->vars->refcount = 1;
4189 dst->vars->htab.create (MAX (src1_elems, src2_elems));
4191 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4192 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4194 dsm.dst = dst;
4195 dsm.src = src2;
4196 dsm.cur = src1;
4197 dsm.src_onepart_cnt = 0;
4199 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.src->vars),
4200 var, variable, hi)
4201 variable_merge_over_src (var, &dsm);
4202 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.cur->vars),
4203 var, variable, hi)
4204 variable_merge_over_cur (var, &dsm);
4206 if (dsm.src_onepart_cnt)
4207 dst_can_be_shared = false;
4209 dataflow_set_destroy (src1);
4212 /* Mark register equivalences. */
4214 static void
4215 dataflow_set_equiv_regs (dataflow_set *set)
4217 int i;
4218 attrs list, *listp;
4220 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4222 rtx canon[NUM_MACHINE_MODES];
4224 /* If the list is empty or one entry, no need to canonicalize
4225 anything. */
4226 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4227 continue;
4229 memset (canon, 0, sizeof (canon));
4231 for (list = set->regs[i]; list; list = list->next)
4232 if (list->offset == 0 && dv_is_value_p (list->dv))
4234 rtx val = dv_as_value (list->dv);
4235 rtx *cvalp = &canon[(int)GET_MODE (val)];
4236 rtx cval = *cvalp;
4238 if (canon_value_cmp (val, cval))
4239 *cvalp = val;
4242 for (list = set->regs[i]; list; list = list->next)
4243 if (list->offset == 0 && dv_onepart_p (list->dv))
4245 rtx cval = canon[(int)GET_MODE (list->loc)];
4247 if (!cval)
4248 continue;
4250 if (dv_is_value_p (list->dv))
4252 rtx val = dv_as_value (list->dv);
4254 if (val == cval)
4255 continue;
4257 VALUE_RECURSED_INTO (val) = true;
4258 set_variable_part (set, val, dv_from_value (cval), 0,
4259 VAR_INIT_STATUS_INITIALIZED,
4260 NULL, NO_INSERT);
4263 VALUE_RECURSED_INTO (cval) = true;
4264 set_variable_part (set, cval, list->dv, 0,
4265 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4268 for (listp = &set->regs[i]; (list = *listp);
4269 listp = list ? &list->next : listp)
4270 if (list->offset == 0 && dv_onepart_p (list->dv))
4272 rtx cval = canon[(int)GET_MODE (list->loc)];
4273 variable_def **slot;
4275 if (!cval)
4276 continue;
4278 if (dv_is_value_p (list->dv))
4280 rtx val = dv_as_value (list->dv);
4281 if (!VALUE_RECURSED_INTO (val))
4282 continue;
4285 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4286 canonicalize_values_star (slot, set);
4287 if (*listp != list)
4288 list = NULL;
4293 /* Remove any redundant values in the location list of VAR, which must
4294 be unshared and 1-part. */
4296 static void
4297 remove_duplicate_values (variable var)
4299 location_chain node, *nodep;
4301 gcc_assert (var->onepart);
4302 gcc_assert (var->n_var_parts == 1);
4303 gcc_assert (var->refcount == 1);
4305 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4307 if (GET_CODE (node->loc) == VALUE)
4309 if (VALUE_RECURSED_INTO (node->loc))
4311 /* Remove duplicate value node. */
4312 *nodep = node->next;
4313 pool_free (loc_chain_pool, node);
4314 continue;
4316 else
4317 VALUE_RECURSED_INTO (node->loc) = true;
4319 nodep = &node->next;
4322 for (node = var->var_part[0].loc_chain; node; node = node->next)
4323 if (GET_CODE (node->loc) == VALUE)
4325 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4326 VALUE_RECURSED_INTO (node->loc) = false;
4331 /* Hash table iteration argument passed to variable_post_merge. */
4332 struct dfset_post_merge
4334 /* The new input set for the current block. */
4335 dataflow_set *set;
4336 /* Pointer to the permanent input set for the current block, or
4337 NULL. */
4338 dataflow_set **permp;
4341 /* Create values for incoming expressions associated with one-part
4342 variables that don't have value numbers for them. */
4345 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4347 dataflow_set *set = dfpm->set;
4348 variable var = *slot;
4349 location_chain node;
4351 if (!var->onepart || !var->n_var_parts)
4352 return 1;
4354 gcc_assert (var->n_var_parts == 1);
4356 if (dv_is_decl_p (var->dv))
4358 bool check_dupes = false;
4360 restart:
4361 for (node = var->var_part[0].loc_chain; node; node = node->next)
4363 if (GET_CODE (node->loc) == VALUE)
4364 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4365 else if (GET_CODE (node->loc) == REG)
4367 attrs att, *attp, *curp = NULL;
4369 if (var->refcount != 1)
4371 slot = unshare_variable (set, slot, var,
4372 VAR_INIT_STATUS_INITIALIZED);
4373 var = *slot;
4374 goto restart;
4377 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4378 attp = &att->next)
4379 if (att->offset == 0
4380 && GET_MODE (att->loc) == GET_MODE (node->loc))
4382 if (dv_is_value_p (att->dv))
4384 rtx cval = dv_as_value (att->dv);
4385 node->loc = cval;
4386 check_dupes = true;
4387 break;
4389 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4390 curp = attp;
4393 if (!curp)
4395 curp = attp;
4396 while (*curp)
4397 if ((*curp)->offset == 0
4398 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4399 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4400 break;
4401 else
4402 curp = &(*curp)->next;
4403 gcc_assert (*curp);
4406 if (!att)
4408 decl_or_value cdv;
4409 rtx cval;
4411 if (!*dfpm->permp)
4413 *dfpm->permp = XNEW (dataflow_set);
4414 dataflow_set_init (*dfpm->permp);
4417 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4418 att; att = att->next)
4419 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4421 gcc_assert (att->offset == 0
4422 && dv_is_value_p (att->dv));
4423 val_reset (set, att->dv);
4424 break;
4427 if (att)
4429 cdv = att->dv;
4430 cval = dv_as_value (cdv);
4432 else
4434 /* Create a unique value to hold this register,
4435 that ought to be found and reused in
4436 subsequent rounds. */
4437 cselib_val *v;
4438 gcc_assert (!cselib_lookup (node->loc,
4439 GET_MODE (node->loc), 0,
4440 VOIDmode));
4441 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4442 VOIDmode);
4443 cselib_preserve_value (v);
4444 cselib_invalidate_rtx (node->loc);
4445 cval = v->val_rtx;
4446 cdv = dv_from_value (cval);
4447 if (dump_file)
4448 fprintf (dump_file,
4449 "Created new value %u:%u for reg %i\n",
4450 v->uid, v->hash, REGNO (node->loc));
4453 var_reg_decl_set (*dfpm->permp, node->loc,
4454 VAR_INIT_STATUS_INITIALIZED,
4455 cdv, 0, NULL, INSERT);
4457 node->loc = cval;
4458 check_dupes = true;
4461 /* Remove attribute referring to the decl, which now
4462 uses the value for the register, already existing or
4463 to be added when we bring perm in. */
4464 att = *curp;
4465 *curp = att->next;
4466 pool_free (attrs_pool, att);
4470 if (check_dupes)
4471 remove_duplicate_values (var);
4474 return 1;
4477 /* Reset values in the permanent set that are not associated with the
4478 chosen expression. */
4481 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4483 dataflow_set *set = dfpm->set;
4484 variable pvar = *pslot, var;
4485 location_chain pnode;
4486 decl_or_value dv;
4487 attrs att;
4489 gcc_assert (dv_is_value_p (pvar->dv)
4490 && pvar->n_var_parts == 1);
4491 pnode = pvar->var_part[0].loc_chain;
4492 gcc_assert (pnode
4493 && !pnode->next
4494 && REG_P (pnode->loc));
4496 dv = pvar->dv;
4498 var = shared_hash_find (set->vars, dv);
4499 if (var)
4501 /* Although variable_post_merge_new_vals may have made decls
4502 non-star-canonical, values that pre-existed in canonical form
4503 remain canonical, and newly-created values reference a single
4504 REG, so they are canonical as well. Since VAR has the
4505 location list for a VALUE, using find_loc_in_1pdv for it is
4506 fine, since VALUEs don't map back to DECLs. */
4507 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4508 return 1;
4509 val_reset (set, dv);
4512 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4513 if (att->offset == 0
4514 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4515 && dv_is_value_p (att->dv))
4516 break;
4518 /* If there is a value associated with this register already, create
4519 an equivalence. */
4520 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4522 rtx cval = dv_as_value (att->dv);
4523 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4524 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4525 NULL, INSERT);
4527 else if (!att)
4529 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4530 dv, 0, pnode->loc);
4531 variable_union (pvar, set);
4534 return 1;
4537 /* Just checking stuff and registering register attributes for
4538 now. */
4540 static void
4541 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4543 struct dfset_post_merge dfpm;
4545 dfpm.set = set;
4546 dfpm.permp = permp;
4548 shared_hash_htab (set->vars)
4549 .traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4550 if (*permp)
4551 shared_hash_htab ((*permp)->vars)
4552 .traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4553 shared_hash_htab (set->vars)
4554 .traverse <dataflow_set *, canonicalize_values_star> (set);
4555 shared_hash_htab (set->vars)
4556 .traverse <dataflow_set *, canonicalize_vars_star> (set);
4559 /* Return a node whose loc is a MEM that refers to EXPR in the
4560 location list of a one-part variable or value VAR, or in that of
4561 any values recursively mentioned in the location lists. */
4563 static location_chain
4564 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type vars)
4566 location_chain node;
4567 decl_or_value dv;
4568 variable var;
4569 location_chain where = NULL;
4571 if (!val)
4572 return NULL;
4574 gcc_assert (GET_CODE (val) == VALUE
4575 && !VALUE_RECURSED_INTO (val));
4577 dv = dv_from_value (val);
4578 var = vars.find_with_hash (dv, dv_htab_hash (dv));
4580 if (!var)
4581 return NULL;
4583 gcc_assert (var->onepart);
4585 if (!var->n_var_parts)
4586 return NULL;
4588 VALUE_RECURSED_INTO (val) = true;
4590 for (node = var->var_part[0].loc_chain; node; node = node->next)
4591 if (MEM_P (node->loc)
4592 && MEM_EXPR (node->loc) == expr
4593 && INT_MEM_OFFSET (node->loc) == 0)
4595 where = node;
4596 break;
4598 else if (GET_CODE (node->loc) == VALUE
4599 && !VALUE_RECURSED_INTO (node->loc)
4600 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4601 break;
4603 VALUE_RECURSED_INTO (val) = false;
4605 return where;
4608 /* Return TRUE if the value of MEM may vary across a call. */
4610 static bool
4611 mem_dies_at_call (rtx mem)
4613 tree expr = MEM_EXPR (mem);
4614 tree decl;
4616 if (!expr)
4617 return true;
4619 decl = get_base_address (expr);
4621 if (!decl)
4622 return true;
4624 if (!DECL_P (decl))
4625 return true;
4627 return (may_be_aliased (decl)
4628 || (!TREE_READONLY (decl) && is_global_var (decl)));
4631 /* Remove all MEMs from the location list of a hash table entry for a
4632 one-part variable, except those whose MEM attributes map back to
4633 the variable itself, directly or within a VALUE. */
4636 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4638 variable var = *slot;
4640 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4642 tree decl = dv_as_decl (var->dv);
4643 location_chain loc, *locp;
4644 bool changed = false;
4646 if (!var->n_var_parts)
4647 return 1;
4649 gcc_assert (var->n_var_parts == 1);
4651 if (shared_var_p (var, set->vars))
4653 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4655 /* We want to remove dying MEMs that doesn't refer to DECL. */
4656 if (GET_CODE (loc->loc) == MEM
4657 && (MEM_EXPR (loc->loc) != decl
4658 || INT_MEM_OFFSET (loc->loc) != 0)
4659 && !mem_dies_at_call (loc->loc))
4660 break;
4661 /* We want to move here MEMs that do refer to DECL. */
4662 else if (GET_CODE (loc->loc) == VALUE
4663 && find_mem_expr_in_1pdv (decl, loc->loc,
4664 shared_hash_htab (set->vars)))
4665 break;
4668 if (!loc)
4669 return 1;
4671 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4672 var = *slot;
4673 gcc_assert (var->n_var_parts == 1);
4676 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4677 loc; loc = *locp)
4679 rtx old_loc = loc->loc;
4680 if (GET_CODE (old_loc) == VALUE)
4682 location_chain mem_node
4683 = find_mem_expr_in_1pdv (decl, loc->loc,
4684 shared_hash_htab (set->vars));
4686 /* ??? This picks up only one out of multiple MEMs that
4687 refer to the same variable. Do we ever need to be
4688 concerned about dealing with more than one, or, given
4689 that they should all map to the same variable
4690 location, their addresses will have been merged and
4691 they will be regarded as equivalent? */
4692 if (mem_node)
4694 loc->loc = mem_node->loc;
4695 loc->set_src = mem_node->set_src;
4696 loc->init = MIN (loc->init, mem_node->init);
4700 if (GET_CODE (loc->loc) != MEM
4701 || (MEM_EXPR (loc->loc) == decl
4702 && INT_MEM_OFFSET (loc->loc) == 0)
4703 || !mem_dies_at_call (loc->loc))
4705 if (old_loc != loc->loc && emit_notes)
4707 if (old_loc == var->var_part[0].cur_loc)
4709 changed = true;
4710 var->var_part[0].cur_loc = NULL;
4713 locp = &loc->next;
4714 continue;
4717 if (emit_notes)
4719 if (old_loc == var->var_part[0].cur_loc)
4721 changed = true;
4722 var->var_part[0].cur_loc = NULL;
4725 *locp = loc->next;
4726 pool_free (loc_chain_pool, loc);
4729 if (!var->var_part[0].loc_chain)
4731 var->n_var_parts--;
4732 changed = true;
4734 if (changed)
4735 variable_was_changed (var, set);
4738 return 1;
4741 /* Remove all MEMs from the location list of a hash table entry for a
4742 value. */
4745 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4747 variable var = *slot;
4749 if (var->onepart == ONEPART_VALUE)
4751 location_chain loc, *locp;
4752 bool changed = false;
4753 rtx cur_loc;
4755 gcc_assert (var->n_var_parts == 1);
4757 if (shared_var_p (var, set->vars))
4759 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4760 if (GET_CODE (loc->loc) == MEM
4761 && mem_dies_at_call (loc->loc))
4762 break;
4764 if (!loc)
4765 return 1;
4767 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4768 var = *slot;
4769 gcc_assert (var->n_var_parts == 1);
4772 if (VAR_LOC_1PAUX (var))
4773 cur_loc = VAR_LOC_FROM (var);
4774 else
4775 cur_loc = var->var_part[0].cur_loc;
4777 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4778 loc; loc = *locp)
4780 if (GET_CODE (loc->loc) != MEM
4781 || !mem_dies_at_call (loc->loc))
4783 locp = &loc->next;
4784 continue;
4787 *locp = loc->next;
4788 /* If we have deleted the location which was last emitted
4789 we have to emit new location so add the variable to set
4790 of changed variables. */
4791 if (cur_loc == loc->loc)
4793 changed = true;
4794 var->var_part[0].cur_loc = NULL;
4795 if (VAR_LOC_1PAUX (var))
4796 VAR_LOC_FROM (var) = NULL;
4798 pool_free (loc_chain_pool, loc);
4801 if (!var->var_part[0].loc_chain)
4803 var->n_var_parts--;
4804 changed = true;
4806 if (changed)
4807 variable_was_changed (var, set);
4810 return 1;
4813 /* Remove all variable-location information about call-clobbered
4814 registers, as well as associations between MEMs and VALUEs. */
4816 static void
4817 dataflow_set_clear_at_call (dataflow_set *set)
4819 unsigned int r;
4820 hard_reg_set_iterator hrsi;
4822 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4823 var_regno_delete (set, r);
4825 if (MAY_HAVE_DEBUG_INSNS)
4827 set->traversed_vars = set->vars;
4828 shared_hash_htab (set->vars)
4829 .traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4830 set->traversed_vars = set->vars;
4831 shared_hash_htab (set->vars)
4832 .traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4833 set->traversed_vars = NULL;
4837 static bool
4838 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4840 location_chain lc1, lc2;
4842 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4844 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4846 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4848 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4849 break;
4851 if (rtx_equal_p (lc1->loc, lc2->loc))
4852 break;
4854 if (!lc2)
4855 return true;
4857 return false;
4860 /* Return true if one-part variables VAR1 and VAR2 are different.
4861 They must be in canonical order. */
4863 static bool
4864 onepart_variable_different_p (variable var1, variable var2)
4866 location_chain lc1, lc2;
4868 if (var1 == var2)
4869 return false;
4871 gcc_assert (var1->n_var_parts == 1
4872 && var2->n_var_parts == 1);
4874 lc1 = var1->var_part[0].loc_chain;
4875 lc2 = var2->var_part[0].loc_chain;
4877 gcc_assert (lc1 && lc2);
4879 while (lc1 && lc2)
4881 if (loc_cmp (lc1->loc, lc2->loc))
4882 return true;
4883 lc1 = lc1->next;
4884 lc2 = lc2->next;
4887 return lc1 != lc2;
4890 /* Return true if variables VAR1 and VAR2 are different. */
4892 static bool
4893 variable_different_p (variable var1, variable var2)
4895 int i;
4897 if (var1 == var2)
4898 return false;
4900 if (var1->onepart != var2->onepart)
4901 return true;
4903 if (var1->n_var_parts != var2->n_var_parts)
4904 return true;
4906 if (var1->onepart && var1->n_var_parts)
4908 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4909 && var1->n_var_parts == 1);
4910 /* One-part values have locations in a canonical order. */
4911 return onepart_variable_different_p (var1, var2);
4914 for (i = 0; i < var1->n_var_parts; i++)
4916 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4917 return true;
4918 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4919 return true;
4920 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4921 return true;
4923 return false;
4926 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4928 static bool
4929 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4931 variable_iterator_type hi;
4932 variable var1;
4934 if (old_set->vars == new_set->vars)
4935 return false;
4937 if (shared_hash_htab (old_set->vars).elements ()
4938 != shared_hash_htab (new_set->vars).elements ())
4939 return true;
4941 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (old_set->vars),
4942 var1, variable, hi)
4944 variable_table_type htab = shared_hash_htab (new_set->vars);
4945 variable var2 = htab.find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4946 if (!var2)
4948 if (dump_file && (dump_flags & TDF_DETAILS))
4950 fprintf (dump_file, "dataflow difference found: removal of:\n");
4951 dump_var (var1);
4953 return true;
4956 if (variable_different_p (var1, var2))
4958 if (dump_file && (dump_flags & TDF_DETAILS))
4960 fprintf (dump_file, "dataflow difference found: "
4961 "old and new follow:\n");
4962 dump_var (var1);
4963 dump_var (var2);
4965 return true;
4969 /* No need to traverse the second hashtab, if both have the same number
4970 of elements and the second one had all entries found in the first one,
4971 then it can't have any extra entries. */
4972 return false;
4975 /* Free the contents of dataflow set SET. */
4977 static void
4978 dataflow_set_destroy (dataflow_set *set)
4980 int i;
4982 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4983 attrs_list_clear (&set->regs[i]);
4985 shared_hash_destroy (set->vars);
4986 set->vars = NULL;
4989 /* Return true if RTL X contains a SYMBOL_REF. */
4991 static bool
4992 contains_symbol_ref (rtx x)
4994 const char *fmt;
4995 RTX_CODE code;
4996 int i;
4998 if (!x)
4999 return false;
5001 code = GET_CODE (x);
5002 if (code == SYMBOL_REF)
5003 return true;
5005 fmt = GET_RTX_FORMAT (code);
5006 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5008 if (fmt[i] == 'e')
5010 if (contains_symbol_ref (XEXP (x, i)))
5011 return true;
5013 else if (fmt[i] == 'E')
5015 int j;
5016 for (j = 0; j < XVECLEN (x, i); j++)
5017 if (contains_symbol_ref (XVECEXP (x, i, j)))
5018 return true;
5022 return false;
5025 /* Shall EXPR be tracked? */
5027 static bool
5028 track_expr_p (tree expr, bool need_rtl)
5030 rtx decl_rtl;
5031 tree realdecl;
5033 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5034 return DECL_RTL_SET_P (expr);
5036 /* If EXPR is not a parameter or a variable do not track it. */
5037 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5038 return 0;
5040 /* It also must have a name... */
5041 if (!DECL_NAME (expr) && need_rtl)
5042 return 0;
5044 /* ... and a RTL assigned to it. */
5045 decl_rtl = DECL_RTL_IF_SET (expr);
5046 if (!decl_rtl && need_rtl)
5047 return 0;
5049 /* If this expression is really a debug alias of some other declaration, we
5050 don't need to track this expression if the ultimate declaration is
5051 ignored. */
5052 realdecl = expr;
5053 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5055 realdecl = DECL_DEBUG_EXPR (realdecl);
5056 if (!DECL_P (realdecl))
5058 if (handled_component_p (realdecl)
5059 || (TREE_CODE (realdecl) == MEM_REF
5060 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5062 HOST_WIDE_INT bitsize, bitpos, maxsize;
5063 tree innerdecl
5064 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5065 &maxsize);
5066 if (!DECL_P (innerdecl)
5067 || DECL_IGNORED_P (innerdecl)
5068 || TREE_STATIC (innerdecl)
5069 || bitsize <= 0
5070 || bitpos + bitsize > 256
5071 || bitsize != maxsize)
5072 return 0;
5073 else
5074 realdecl = expr;
5076 else
5077 return 0;
5081 /* Do not track EXPR if REALDECL it should be ignored for debugging
5082 purposes. */
5083 if (DECL_IGNORED_P (realdecl))
5084 return 0;
5086 /* Do not track global variables until we are able to emit correct location
5087 list for them. */
5088 if (TREE_STATIC (realdecl))
5089 return 0;
5091 /* When the EXPR is a DECL for alias of some variable (see example)
5092 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5093 DECL_RTL contains SYMBOL_REF.
5095 Example:
5096 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5097 char **_dl_argv;
5099 if (decl_rtl && MEM_P (decl_rtl)
5100 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5101 return 0;
5103 /* If RTX is a memory it should not be very large (because it would be
5104 an array or struct). */
5105 if (decl_rtl && MEM_P (decl_rtl))
5107 /* Do not track structures and arrays. */
5108 if (GET_MODE (decl_rtl) == BLKmode
5109 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5110 return 0;
5111 if (MEM_SIZE_KNOWN_P (decl_rtl)
5112 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5113 return 0;
5116 DECL_CHANGED (expr) = 0;
5117 DECL_CHANGED (realdecl) = 0;
5118 return 1;
5121 /* Determine whether a given LOC refers to the same variable part as
5122 EXPR+OFFSET. */
5124 static bool
5125 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5127 tree expr2;
5128 HOST_WIDE_INT offset2;
5130 if (! DECL_P (expr))
5131 return false;
5133 if (REG_P (loc))
5135 expr2 = REG_EXPR (loc);
5136 offset2 = REG_OFFSET (loc);
5138 else if (MEM_P (loc))
5140 expr2 = MEM_EXPR (loc);
5141 offset2 = INT_MEM_OFFSET (loc);
5143 else
5144 return false;
5146 if (! expr2 || ! DECL_P (expr2))
5147 return false;
5149 expr = var_debug_decl (expr);
5150 expr2 = var_debug_decl (expr2);
5152 return (expr == expr2 && offset == offset2);
5155 /* LOC is a REG or MEM that we would like to track if possible.
5156 If EXPR is null, we don't know what expression LOC refers to,
5157 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5158 LOC is an lvalue register.
5160 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5161 is something we can track. When returning true, store the mode of
5162 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5163 from EXPR in *OFFSET_OUT (if nonnull). */
5165 static bool
5166 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5167 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5169 enum machine_mode mode;
5171 if (expr == NULL || !track_expr_p (expr, true))
5172 return false;
5174 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5175 whole subreg, but only the old inner part is really relevant. */
5176 mode = GET_MODE (loc);
5177 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5179 enum machine_mode pseudo_mode;
5181 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5182 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5184 offset += byte_lowpart_offset (pseudo_mode, mode);
5185 mode = pseudo_mode;
5189 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5190 Do the same if we are storing to a register and EXPR occupies
5191 the whole of register LOC; in that case, the whole of EXPR is
5192 being changed. We exclude complex modes from the second case
5193 because the real and imaginary parts are represented as separate
5194 pseudo registers, even if the whole complex value fits into one
5195 hard register. */
5196 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5197 || (store_reg_p
5198 && !COMPLEX_MODE_P (DECL_MODE (expr))
5199 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5200 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5202 mode = DECL_MODE (expr);
5203 offset = 0;
5206 if (offset < 0 || offset >= MAX_VAR_PARTS)
5207 return false;
5209 if (mode_out)
5210 *mode_out = mode;
5211 if (offset_out)
5212 *offset_out = offset;
5213 return true;
5216 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5217 want to track. When returning nonnull, make sure that the attributes
5218 on the returned value are updated. */
5220 static rtx
5221 var_lowpart (enum machine_mode mode, rtx loc)
5223 unsigned int offset, reg_offset, regno;
5225 if (GET_MODE (loc) == mode)
5226 return loc;
5228 if (!REG_P (loc) && !MEM_P (loc))
5229 return NULL;
5231 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5233 if (MEM_P (loc))
5234 return adjust_address_nv (loc, mode, offset);
5236 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5237 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5238 reg_offset, mode);
5239 return gen_rtx_REG_offset (loc, mode, regno, offset);
5242 /* Carry information about uses and stores while walking rtx. */
5244 struct count_use_info
5246 /* The insn where the RTX is. */
5247 rtx insn;
5249 /* The basic block where insn is. */
5250 basic_block bb;
5252 /* The array of n_sets sets in the insn, as determined by cselib. */
5253 struct cselib_set *sets;
5254 int n_sets;
5256 /* True if we're counting stores, false otherwise. */
5257 bool store_p;
5260 /* Find a VALUE corresponding to X. */
5262 static inline cselib_val *
5263 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
5265 int i;
5267 if (cui->sets)
5269 /* This is called after uses are set up and before stores are
5270 processed by cselib, so it's safe to look up srcs, but not
5271 dsts. So we look up expressions that appear in srcs or in
5272 dest expressions, but we search the sets array for dests of
5273 stores. */
5274 if (cui->store_p)
5276 /* Some targets represent memset and memcpy patterns
5277 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5278 (set (mem:BLK ...) (const_int ...)) or
5279 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5280 in that case, otherwise we end up with mode mismatches. */
5281 if (mode == BLKmode && MEM_P (x))
5282 return NULL;
5283 for (i = 0; i < cui->n_sets; i++)
5284 if (cui->sets[i].dest == x)
5285 return cui->sets[i].src_elt;
5287 else
5288 return cselib_lookup (x, mode, 0, VOIDmode);
5291 return NULL;
5294 /* Replace all registers and addresses in an expression with VALUE
5295 expressions that map back to them, unless the expression is a
5296 register. If no mapping is or can be performed, returns NULL. */
5298 static rtx
5299 replace_expr_with_values (rtx loc)
5301 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5302 return NULL;
5303 else if (MEM_P (loc))
5305 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5306 get_address_mode (loc), 0,
5307 GET_MODE (loc));
5308 if (addr)
5309 return replace_equiv_address_nv (loc, addr->val_rtx);
5310 else
5311 return NULL;
5313 else
5314 return cselib_subst_to_values (loc, VOIDmode);
5317 /* Return true if *X is a DEBUG_EXPR. Usable as an argument to
5318 for_each_rtx to tell whether there are any DEBUG_EXPRs within
5319 RTX. */
5321 static int
5322 rtx_debug_expr_p (rtx *x, void *data ATTRIBUTE_UNUSED)
5324 rtx loc = *x;
5326 return GET_CODE (loc) == DEBUG_EXPR;
5329 /* Determine what kind of micro operation to choose for a USE. Return
5330 MO_CLOBBER if no micro operation is to be generated. */
5332 static enum micro_operation_type
5333 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
5335 tree expr;
5337 if (cui && cui->sets)
5339 if (GET_CODE (loc) == VAR_LOCATION)
5341 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5343 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5344 if (! VAR_LOC_UNKNOWN_P (ploc))
5346 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5347 VOIDmode);
5349 /* ??? flag_float_store and volatile mems are never
5350 given values, but we could in theory use them for
5351 locations. */
5352 gcc_assert (val || 1);
5354 return MO_VAL_LOC;
5356 else
5357 return MO_CLOBBER;
5360 if (REG_P (loc) || MEM_P (loc))
5362 if (modep)
5363 *modep = GET_MODE (loc);
5364 if (cui->store_p)
5366 if (REG_P (loc)
5367 || (find_use_val (loc, GET_MODE (loc), cui)
5368 && cselib_lookup (XEXP (loc, 0),
5369 get_address_mode (loc), 0,
5370 GET_MODE (loc))))
5371 return MO_VAL_SET;
5373 else
5375 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5377 if (val && !cselib_preserved_value_p (val))
5378 return MO_VAL_USE;
5383 if (REG_P (loc))
5385 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5387 if (loc == cfa_base_rtx)
5388 return MO_CLOBBER;
5389 expr = REG_EXPR (loc);
5391 if (!expr)
5392 return MO_USE_NO_VAR;
5393 else if (target_for_debug_bind (var_debug_decl (expr)))
5394 return MO_CLOBBER;
5395 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5396 false, modep, NULL))
5397 return MO_USE;
5398 else
5399 return MO_USE_NO_VAR;
5401 else if (MEM_P (loc))
5403 expr = MEM_EXPR (loc);
5405 if (!expr)
5406 return MO_CLOBBER;
5407 else if (target_for_debug_bind (var_debug_decl (expr)))
5408 return MO_CLOBBER;
5409 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5410 false, modep, NULL)
5411 /* Multi-part variables shouldn't refer to one-part
5412 variable names such as VALUEs (never happens) or
5413 DEBUG_EXPRs (only happens in the presence of debug
5414 insns). */
5415 && (!MAY_HAVE_DEBUG_INSNS
5416 || !for_each_rtx (&XEXP (loc, 0), rtx_debug_expr_p, NULL)))
5417 return MO_USE;
5418 else
5419 return MO_CLOBBER;
5422 return MO_CLOBBER;
5425 /* Log to OUT information about micro-operation MOPT involving X in
5426 INSN of BB. */
5428 static inline void
5429 log_op_type (rtx x, basic_block bb, rtx insn,
5430 enum micro_operation_type mopt, FILE *out)
5432 fprintf (out, "bb %i op %i insn %i %s ",
5433 bb->index, VTI (bb)->mos.length (),
5434 INSN_UID (insn), micro_operation_type_name[mopt]);
5435 print_inline_rtx (out, x, 2);
5436 fputc ('\n', out);
5439 /* Tell whether the CONCAT used to holds a VALUE and its location
5440 needs value resolution, i.e., an attempt of mapping the location
5441 back to other incoming values. */
5442 #define VAL_NEEDS_RESOLUTION(x) \
5443 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5444 /* Whether the location in the CONCAT is a tracked expression, that
5445 should also be handled like a MO_USE. */
5446 #define VAL_HOLDS_TRACK_EXPR(x) \
5447 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5448 /* Whether the location in the CONCAT should be handled like a MO_COPY
5449 as well. */
5450 #define VAL_EXPR_IS_COPIED(x) \
5451 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5452 /* Whether the location in the CONCAT should be handled like a
5453 MO_CLOBBER as well. */
5454 #define VAL_EXPR_IS_CLOBBERED(x) \
5455 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5457 /* All preserved VALUEs. */
5458 static vec<rtx> preserved_values;
5460 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5462 static void
5463 preserve_value (cselib_val *val)
5465 cselib_preserve_value (val);
5466 preserved_values.safe_push (val->val_rtx);
5469 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5470 any rtxes not suitable for CONST use not replaced by VALUEs
5471 are discovered. */
5473 static int
5474 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5476 if (*x == NULL_RTX)
5477 return 0;
5479 switch (GET_CODE (*x))
5481 case REG:
5482 case DEBUG_EXPR:
5483 case PC:
5484 case SCRATCH:
5485 case CC0:
5486 case ASM_INPUT:
5487 case ASM_OPERANDS:
5488 return 1;
5489 case MEM:
5490 return !MEM_READONLY_P (*x);
5491 default:
5492 return 0;
5496 /* Add uses (register and memory references) LOC which will be tracked
5497 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5499 static int
5500 add_uses (rtx *ploc, void *data)
5502 rtx loc = *ploc;
5503 enum machine_mode mode = VOIDmode;
5504 struct count_use_info *cui = (struct count_use_info *)data;
5505 enum micro_operation_type type = use_type (loc, cui, &mode);
5507 if (type != MO_CLOBBER)
5509 basic_block bb = cui->bb;
5510 micro_operation mo;
5512 mo.type = type;
5513 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5514 mo.insn = cui->insn;
5516 if (type == MO_VAL_LOC)
5518 rtx oloc = loc;
5519 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5520 cselib_val *val;
5522 gcc_assert (cui->sets);
5524 if (MEM_P (vloc)
5525 && !REG_P (XEXP (vloc, 0))
5526 && !MEM_P (XEXP (vloc, 0)))
5528 rtx mloc = vloc;
5529 enum machine_mode address_mode = get_address_mode (mloc);
5530 cselib_val *val
5531 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5532 GET_MODE (mloc));
5534 if (val && !cselib_preserved_value_p (val))
5535 preserve_value (val);
5538 if (CONSTANT_P (vloc)
5539 && (GET_CODE (vloc) != CONST
5540 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5541 /* For constants don't look up any value. */;
5542 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5543 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5545 enum machine_mode mode2;
5546 enum micro_operation_type type2;
5547 rtx nloc = NULL;
5548 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5550 if (resolvable)
5551 nloc = replace_expr_with_values (vloc);
5553 if (nloc)
5555 oloc = shallow_copy_rtx (oloc);
5556 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5559 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5561 type2 = use_type (vloc, 0, &mode2);
5563 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5564 || type2 == MO_CLOBBER);
5566 if (type2 == MO_CLOBBER
5567 && !cselib_preserved_value_p (val))
5569 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5570 preserve_value (val);
5573 else if (!VAR_LOC_UNKNOWN_P (vloc))
5575 oloc = shallow_copy_rtx (oloc);
5576 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5579 mo.u.loc = oloc;
5581 else if (type == MO_VAL_USE)
5583 enum machine_mode mode2 = VOIDmode;
5584 enum micro_operation_type type2;
5585 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5586 rtx vloc, oloc = loc, nloc;
5588 gcc_assert (cui->sets);
5590 if (MEM_P (oloc)
5591 && !REG_P (XEXP (oloc, 0))
5592 && !MEM_P (XEXP (oloc, 0)))
5594 rtx mloc = oloc;
5595 enum machine_mode address_mode = get_address_mode (mloc);
5596 cselib_val *val
5597 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5598 GET_MODE (mloc));
5600 if (val && !cselib_preserved_value_p (val))
5601 preserve_value (val);
5604 type2 = use_type (loc, 0, &mode2);
5606 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5607 || type2 == MO_CLOBBER);
5609 if (type2 == MO_USE)
5610 vloc = var_lowpart (mode2, loc);
5611 else
5612 vloc = oloc;
5614 /* The loc of a MO_VAL_USE may have two forms:
5616 (concat val src): val is at src, a value-based
5617 representation.
5619 (concat (concat val use) src): same as above, with use as
5620 the MO_USE tracked value, if it differs from src.
5624 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5625 nloc = replace_expr_with_values (loc);
5626 if (!nloc)
5627 nloc = oloc;
5629 if (vloc != nloc)
5630 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5631 else
5632 oloc = val->val_rtx;
5634 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5636 if (type2 == MO_USE)
5637 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5638 if (!cselib_preserved_value_p (val))
5640 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5641 preserve_value (val);
5644 else
5645 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5647 if (dump_file && (dump_flags & TDF_DETAILS))
5648 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5649 VTI (bb)->mos.safe_push (mo);
5652 return 0;
5655 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5657 static void
5658 add_uses_1 (rtx *x, void *cui)
5660 for_each_rtx (x, add_uses, cui);
5663 /* This is the value used during expansion of locations. We want it
5664 to be unbounded, so that variables expanded deep in a recursion
5665 nest are fully evaluated, so that their values are cached
5666 correctly. We avoid recursion cycles through other means, and we
5667 don't unshare RTL, so excess complexity is not a problem. */
5668 #define EXPR_DEPTH (INT_MAX)
5669 /* We use this to keep too-complex expressions from being emitted as
5670 location notes, and then to debug information. Users can trade
5671 compile time for ridiculously complex expressions, although they're
5672 seldom useful, and they may often have to be discarded as not
5673 representable anyway. */
5674 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5676 /* Attempt to reverse the EXPR operation in the debug info and record
5677 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5678 no longer live we can express its value as VAL - 6. */
5680 static void
5681 reverse_op (rtx val, const_rtx expr, rtx insn)
5683 rtx src, arg, ret;
5684 cselib_val *v;
5685 struct elt_loc_list *l;
5686 enum rtx_code code;
5687 int count;
5689 if (GET_CODE (expr) != SET)
5690 return;
5692 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5693 return;
5695 src = SET_SRC (expr);
5696 switch (GET_CODE (src))
5698 case PLUS:
5699 case MINUS:
5700 case XOR:
5701 case NOT:
5702 case NEG:
5703 if (!REG_P (XEXP (src, 0)))
5704 return;
5705 break;
5706 case SIGN_EXTEND:
5707 case ZERO_EXTEND:
5708 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5709 return;
5710 break;
5711 default:
5712 return;
5715 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5716 return;
5718 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5719 if (!v || !cselib_preserved_value_p (v))
5720 return;
5722 /* Use canonical V to avoid creating multiple redundant expressions
5723 for different VALUES equivalent to V. */
5724 v = canonical_cselib_val (v);
5726 /* Adding a reverse op isn't useful if V already has an always valid
5727 location. Ignore ENTRY_VALUE, while it is always constant, we should
5728 prefer non-ENTRY_VALUE locations whenever possible. */
5729 for (l = v->locs, count = 0; l; l = l->next, count++)
5730 if (CONSTANT_P (l->loc)
5731 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5732 return;
5733 /* Avoid creating too large locs lists. */
5734 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5735 return;
5737 switch (GET_CODE (src))
5739 case NOT:
5740 case NEG:
5741 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5742 return;
5743 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5744 break;
5745 case SIGN_EXTEND:
5746 case ZERO_EXTEND:
5747 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5748 break;
5749 case XOR:
5750 code = XOR;
5751 goto binary;
5752 case PLUS:
5753 code = MINUS;
5754 goto binary;
5755 case MINUS:
5756 code = PLUS;
5757 goto binary;
5758 binary:
5759 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5760 return;
5761 arg = XEXP (src, 1);
5762 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5764 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5765 if (arg == NULL_RTX)
5766 return;
5767 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5768 return;
5770 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5771 if (ret == val)
5772 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5773 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5774 breaks a lot of routines during var-tracking. */
5775 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5776 break;
5777 default:
5778 gcc_unreachable ();
5781 cselib_add_permanent_equiv (v, ret, insn);
5784 /* Add stores (register and memory references) LOC which will be tracked
5785 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5786 CUIP->insn is instruction which the LOC is part of. */
5788 static void
5789 add_stores (rtx loc, const_rtx expr, void *cuip)
5791 enum machine_mode mode = VOIDmode, mode2;
5792 struct count_use_info *cui = (struct count_use_info *)cuip;
5793 basic_block bb = cui->bb;
5794 micro_operation mo;
5795 rtx oloc = loc, nloc, src = NULL;
5796 enum micro_operation_type type = use_type (loc, cui, &mode);
5797 bool track_p = false;
5798 cselib_val *v;
5799 bool resolve, preserve;
5801 if (type == MO_CLOBBER)
5802 return;
5804 mode2 = mode;
5806 if (REG_P (loc))
5808 gcc_assert (loc != cfa_base_rtx);
5809 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5810 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5811 || GET_CODE (expr) == CLOBBER)
5813 mo.type = MO_CLOBBER;
5814 mo.u.loc = loc;
5815 if (GET_CODE (expr) == SET
5816 && SET_DEST (expr) == loc
5817 && !unsuitable_loc (SET_SRC (expr))
5818 && find_use_val (loc, mode, cui))
5820 gcc_checking_assert (type == MO_VAL_SET);
5821 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5824 else
5826 if (GET_CODE (expr) == SET
5827 && SET_DEST (expr) == loc
5828 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5829 src = var_lowpart (mode2, SET_SRC (expr));
5830 loc = var_lowpart (mode2, loc);
5832 if (src == NULL)
5834 mo.type = MO_SET;
5835 mo.u.loc = loc;
5837 else
5839 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5840 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5842 /* If this is an instruction copying (part of) a parameter
5843 passed by invisible reference to its register location,
5844 pretend it's a SET so that the initial memory location
5845 is discarded, as the parameter register can be reused
5846 for other purposes and we do not track locations based
5847 on generic registers. */
5848 if (MEM_P (src)
5849 && REG_EXPR (loc)
5850 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5851 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5852 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5853 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5854 != arg_pointer_rtx)
5855 mo.type = MO_SET;
5856 else
5857 mo.type = MO_COPY;
5859 else
5860 mo.type = MO_SET;
5861 mo.u.loc = xexpr;
5864 mo.insn = cui->insn;
5866 else if (MEM_P (loc)
5867 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5868 || cui->sets))
5870 if (MEM_P (loc) && type == MO_VAL_SET
5871 && !REG_P (XEXP (loc, 0))
5872 && !MEM_P (XEXP (loc, 0)))
5874 rtx mloc = loc;
5875 enum machine_mode address_mode = get_address_mode (mloc);
5876 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5877 address_mode, 0,
5878 GET_MODE (mloc));
5880 if (val && !cselib_preserved_value_p (val))
5881 preserve_value (val);
5884 if (GET_CODE (expr) == CLOBBER || !track_p)
5886 mo.type = MO_CLOBBER;
5887 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5889 else
5891 if (GET_CODE (expr) == SET
5892 && SET_DEST (expr) == loc
5893 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5894 src = var_lowpart (mode2, SET_SRC (expr));
5895 loc = var_lowpart (mode2, loc);
5897 if (src == NULL)
5899 mo.type = MO_SET;
5900 mo.u.loc = loc;
5902 else
5904 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5905 if (same_variable_part_p (SET_SRC (xexpr),
5906 MEM_EXPR (loc),
5907 INT_MEM_OFFSET (loc)))
5908 mo.type = MO_COPY;
5909 else
5910 mo.type = MO_SET;
5911 mo.u.loc = xexpr;
5914 mo.insn = cui->insn;
5916 else
5917 return;
5919 if (type != MO_VAL_SET)
5920 goto log_and_return;
5922 v = find_use_val (oloc, mode, cui);
5924 if (!v)
5925 goto log_and_return;
5927 resolve = preserve = !cselib_preserved_value_p (v);
5929 if (loc == stack_pointer_rtx
5930 && hard_frame_pointer_adjustment != -1
5931 && preserve)
5932 cselib_set_value_sp_based (v);
5934 nloc = replace_expr_with_values (oloc);
5935 if (nloc)
5936 oloc = nloc;
5938 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5940 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
5942 gcc_assert (oval != v);
5943 gcc_assert (REG_P (oloc) || MEM_P (oloc));
5945 if (oval && !cselib_preserved_value_p (oval))
5947 micro_operation moa;
5949 preserve_value (oval);
5951 moa.type = MO_VAL_USE;
5952 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
5953 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
5954 moa.insn = cui->insn;
5956 if (dump_file && (dump_flags & TDF_DETAILS))
5957 log_op_type (moa.u.loc, cui->bb, cui->insn,
5958 moa.type, dump_file);
5959 VTI (bb)->mos.safe_push (moa);
5962 resolve = false;
5964 else if (resolve && GET_CODE (mo.u.loc) == SET)
5966 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
5967 nloc = replace_expr_with_values (SET_SRC (expr));
5968 else
5969 nloc = NULL_RTX;
5971 /* Avoid the mode mismatch between oexpr and expr. */
5972 if (!nloc && mode != mode2)
5974 nloc = SET_SRC (expr);
5975 gcc_assert (oloc == SET_DEST (expr));
5978 if (nloc && nloc != SET_SRC (mo.u.loc))
5979 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
5980 else
5982 if (oloc == SET_DEST (mo.u.loc))
5983 /* No point in duplicating. */
5984 oloc = mo.u.loc;
5985 if (!REG_P (SET_SRC (mo.u.loc)))
5986 resolve = false;
5989 else if (!resolve)
5991 if (GET_CODE (mo.u.loc) == SET
5992 && oloc == SET_DEST (mo.u.loc))
5993 /* No point in duplicating. */
5994 oloc = mo.u.loc;
5996 else
5997 resolve = false;
5999 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6001 if (mo.u.loc != oloc)
6002 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6004 /* The loc of a MO_VAL_SET may have various forms:
6006 (concat val dst): dst now holds val
6008 (concat val (set dst src)): dst now holds val, copied from src
6010 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6011 after replacing mems and non-top-level regs with values.
6013 (concat (concat val dstv) (set dst src)): dst now holds val,
6014 copied from src. dstv is a value-based representation of dst, if
6015 it differs from dst. If resolution is needed, src is a REG, and
6016 its mode is the same as that of val.
6018 (concat (concat val (set dstv srcv)) (set dst src)): src
6019 copied to dst, holding val. dstv and srcv are value-based
6020 representations of dst and src, respectively.
6024 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6025 reverse_op (v->val_rtx, expr, cui->insn);
6027 mo.u.loc = loc;
6029 if (track_p)
6030 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6031 if (preserve)
6033 VAL_NEEDS_RESOLUTION (loc) = resolve;
6034 preserve_value (v);
6036 if (mo.type == MO_CLOBBER)
6037 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6038 if (mo.type == MO_COPY)
6039 VAL_EXPR_IS_COPIED (loc) = 1;
6041 mo.type = MO_VAL_SET;
6043 log_and_return:
6044 if (dump_file && (dump_flags & TDF_DETAILS))
6045 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6046 VTI (bb)->mos.safe_push (mo);
6049 /* Arguments to the call. */
6050 static rtx call_arguments;
6052 /* Compute call_arguments. */
6054 static void
6055 prepare_call_arguments (basic_block bb, rtx insn)
6057 rtx link, x, call;
6058 rtx prev, cur, next;
6059 rtx this_arg = NULL_RTX;
6060 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6061 tree obj_type_ref = NULL_TREE;
6062 CUMULATIVE_ARGS args_so_far_v;
6063 cumulative_args_t args_so_far;
6065 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6066 args_so_far = pack_cumulative_args (&args_so_far_v);
6067 call = get_call_rtx_from (insn);
6068 if (call)
6070 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6072 rtx symbol = XEXP (XEXP (call, 0), 0);
6073 if (SYMBOL_REF_DECL (symbol))
6074 fndecl = SYMBOL_REF_DECL (symbol);
6076 if (fndecl == NULL_TREE)
6077 fndecl = MEM_EXPR (XEXP (call, 0));
6078 if (fndecl
6079 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6080 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6081 fndecl = NULL_TREE;
6082 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6083 type = TREE_TYPE (fndecl);
6084 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6086 if (TREE_CODE (fndecl) == INDIRECT_REF
6087 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6088 obj_type_ref = TREE_OPERAND (fndecl, 0);
6089 fndecl = NULL_TREE;
6091 if (type)
6093 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6094 t = TREE_CHAIN (t))
6095 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6096 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6097 break;
6098 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6099 type = NULL;
6100 else
6102 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6103 link = CALL_INSN_FUNCTION_USAGE (insn);
6104 #ifndef PCC_STATIC_STRUCT_RETURN
6105 if (aggregate_value_p (TREE_TYPE (type), type)
6106 && targetm.calls.struct_value_rtx (type, 0) == 0)
6108 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6109 enum machine_mode mode = TYPE_MODE (struct_addr);
6110 rtx reg;
6111 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6112 nargs + 1);
6113 reg = targetm.calls.function_arg (args_so_far, mode,
6114 struct_addr, true);
6115 targetm.calls.function_arg_advance (args_so_far, mode,
6116 struct_addr, true);
6117 if (reg == NULL_RTX)
6119 for (; link; link = XEXP (link, 1))
6120 if (GET_CODE (XEXP (link, 0)) == USE
6121 && MEM_P (XEXP (XEXP (link, 0), 0)))
6123 link = XEXP (link, 1);
6124 break;
6128 else
6129 #endif
6130 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6131 nargs);
6132 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6134 enum machine_mode mode;
6135 t = TYPE_ARG_TYPES (type);
6136 mode = TYPE_MODE (TREE_VALUE (t));
6137 this_arg = targetm.calls.function_arg (args_so_far, mode,
6138 TREE_VALUE (t), true);
6139 if (this_arg && !REG_P (this_arg))
6140 this_arg = NULL_RTX;
6141 else if (this_arg == NULL_RTX)
6143 for (; link; link = XEXP (link, 1))
6144 if (GET_CODE (XEXP (link, 0)) == USE
6145 && MEM_P (XEXP (XEXP (link, 0), 0)))
6147 this_arg = XEXP (XEXP (link, 0), 0);
6148 break;
6155 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6157 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6158 if (GET_CODE (XEXP (link, 0)) == USE)
6160 rtx item = NULL_RTX;
6161 x = XEXP (XEXP (link, 0), 0);
6162 if (GET_MODE (link) == VOIDmode
6163 || GET_MODE (link) == BLKmode
6164 || (GET_MODE (link) != GET_MODE (x)
6165 && (GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6166 || GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)))
6167 /* Can't do anything for these, if the original type mode
6168 isn't known or can't be converted. */;
6169 else if (REG_P (x))
6171 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6172 if (val && cselib_preserved_value_p (val))
6173 item = val->val_rtx;
6174 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
6176 enum machine_mode mode = GET_MODE (x);
6178 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6179 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6181 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6183 if (reg == NULL_RTX || !REG_P (reg))
6184 continue;
6185 val = cselib_lookup (reg, mode, 0, VOIDmode);
6186 if (val && cselib_preserved_value_p (val))
6188 item = val->val_rtx;
6189 break;
6194 else if (MEM_P (x))
6196 rtx mem = x;
6197 cselib_val *val;
6199 if (!frame_pointer_needed)
6201 struct adjust_mem_data amd;
6202 amd.mem_mode = VOIDmode;
6203 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6204 amd.side_effects = NULL_RTX;
6205 amd.store = true;
6206 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6207 &amd);
6208 gcc_assert (amd.side_effects == NULL_RTX);
6210 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6211 if (val && cselib_preserved_value_p (val))
6212 item = val->val_rtx;
6213 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT)
6215 /* For non-integer stack argument see also if they weren't
6216 initialized by integers. */
6217 enum machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6218 if (imode != GET_MODE (mem) && imode != BLKmode)
6220 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6221 imode, 0, VOIDmode);
6222 if (val && cselib_preserved_value_p (val))
6223 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6224 imode);
6228 if (item)
6230 rtx x2 = x;
6231 if (GET_MODE (item) != GET_MODE (link))
6232 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6233 if (GET_MODE (x2) != GET_MODE (link))
6234 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6235 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6236 call_arguments
6237 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6239 if (t && t != void_list_node)
6241 tree argtype = TREE_VALUE (t);
6242 enum machine_mode mode = TYPE_MODE (argtype);
6243 rtx reg;
6244 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6246 argtype = build_pointer_type (argtype);
6247 mode = TYPE_MODE (argtype);
6249 reg = targetm.calls.function_arg (args_so_far, mode,
6250 argtype, true);
6251 if (TREE_CODE (argtype) == REFERENCE_TYPE
6252 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6253 && reg
6254 && REG_P (reg)
6255 && GET_MODE (reg) == mode
6256 && GET_MODE_CLASS (mode) == MODE_INT
6257 && REG_P (x)
6258 && REGNO (x) == REGNO (reg)
6259 && GET_MODE (x) == mode
6260 && item)
6262 enum machine_mode indmode
6263 = TYPE_MODE (TREE_TYPE (argtype));
6264 rtx mem = gen_rtx_MEM (indmode, x);
6265 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6266 if (val && cselib_preserved_value_p (val))
6268 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6269 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6270 call_arguments);
6272 else
6274 struct elt_loc_list *l;
6275 tree initial;
6277 /* Try harder, when passing address of a constant
6278 pool integer it can be easily read back. */
6279 item = XEXP (item, 1);
6280 if (GET_CODE (item) == SUBREG)
6281 item = SUBREG_REG (item);
6282 gcc_assert (GET_CODE (item) == VALUE);
6283 val = CSELIB_VAL_PTR (item);
6284 for (l = val->locs; l; l = l->next)
6285 if (GET_CODE (l->loc) == SYMBOL_REF
6286 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6287 && SYMBOL_REF_DECL (l->loc)
6288 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6290 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6291 if (host_integerp (initial, 0))
6293 item = GEN_INT (tree_low_cst (initial, 0));
6294 item = gen_rtx_CONCAT (indmode, mem, item);
6295 call_arguments
6296 = gen_rtx_EXPR_LIST (VOIDmode, item,
6297 call_arguments);
6299 break;
6303 targetm.calls.function_arg_advance (args_so_far, mode,
6304 argtype, true);
6305 t = TREE_CHAIN (t);
6309 /* Add debug arguments. */
6310 if (fndecl
6311 && TREE_CODE (fndecl) == FUNCTION_DECL
6312 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6314 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6315 if (debug_args)
6317 unsigned int ix;
6318 tree param;
6319 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6321 rtx item;
6322 tree dtemp = (**debug_args)[ix + 1];
6323 enum machine_mode mode = DECL_MODE (dtemp);
6324 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6325 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6326 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6327 call_arguments);
6332 /* Reverse call_arguments chain. */
6333 prev = NULL_RTX;
6334 for (cur = call_arguments; cur; cur = next)
6336 next = XEXP (cur, 1);
6337 XEXP (cur, 1) = prev;
6338 prev = cur;
6340 call_arguments = prev;
6342 x = get_call_rtx_from (insn);
6343 if (x)
6345 x = XEXP (XEXP (x, 0), 0);
6346 if (GET_CODE (x) == SYMBOL_REF)
6347 /* Don't record anything. */;
6348 else if (CONSTANT_P (x))
6350 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6351 pc_rtx, x);
6352 call_arguments
6353 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6355 else
6357 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6358 if (val && cselib_preserved_value_p (val))
6360 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6361 call_arguments
6362 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6366 if (this_arg)
6368 enum machine_mode mode
6369 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6370 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6371 HOST_WIDE_INT token
6372 = tree_low_cst (OBJ_TYPE_REF_TOKEN (obj_type_ref), 0);
6373 if (token)
6374 clobbered = plus_constant (mode, clobbered,
6375 token * GET_MODE_SIZE (mode));
6376 clobbered = gen_rtx_MEM (mode, clobbered);
6377 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6378 call_arguments
6379 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6383 /* Callback for cselib_record_sets_hook, that records as micro
6384 operations uses and stores in an insn after cselib_record_sets has
6385 analyzed the sets in an insn, but before it modifies the stored
6386 values in the internal tables, unless cselib_record_sets doesn't
6387 call it directly (perhaps because we're not doing cselib in the
6388 first place, in which case sets and n_sets will be 0). */
6390 static void
6391 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
6393 basic_block bb = BLOCK_FOR_INSN (insn);
6394 int n1, n2;
6395 struct count_use_info cui;
6396 micro_operation *mos;
6398 cselib_hook_called = true;
6400 cui.insn = insn;
6401 cui.bb = bb;
6402 cui.sets = sets;
6403 cui.n_sets = n_sets;
6405 n1 = VTI (bb)->mos.length ();
6406 cui.store_p = false;
6407 note_uses (&PATTERN (insn), add_uses_1, &cui);
6408 n2 = VTI (bb)->mos.length () - 1;
6409 mos = VTI (bb)->mos.address ();
6411 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6412 MO_VAL_LOC last. */
6413 while (n1 < n2)
6415 while (n1 < n2 && mos[n1].type == MO_USE)
6416 n1++;
6417 while (n1 < n2 && mos[n2].type != MO_USE)
6418 n2--;
6419 if (n1 < n2)
6421 micro_operation sw;
6423 sw = mos[n1];
6424 mos[n1] = mos[n2];
6425 mos[n2] = sw;
6429 n2 = VTI (bb)->mos.length () - 1;
6430 while (n1 < n2)
6432 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6433 n1++;
6434 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6435 n2--;
6436 if (n1 < n2)
6438 micro_operation sw;
6440 sw = mos[n1];
6441 mos[n1] = mos[n2];
6442 mos[n2] = sw;
6446 if (CALL_P (insn))
6448 micro_operation mo;
6450 mo.type = MO_CALL;
6451 mo.insn = insn;
6452 mo.u.loc = call_arguments;
6453 call_arguments = NULL_RTX;
6455 if (dump_file && (dump_flags & TDF_DETAILS))
6456 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6457 VTI (bb)->mos.safe_push (mo);
6460 n1 = VTI (bb)->mos.length ();
6461 /* This will record NEXT_INSN (insn), such that we can
6462 insert notes before it without worrying about any
6463 notes that MO_USEs might emit after the insn. */
6464 cui.store_p = true;
6465 note_stores (PATTERN (insn), add_stores, &cui);
6466 n2 = VTI (bb)->mos.length () - 1;
6467 mos = VTI (bb)->mos.address ();
6469 /* Order the MO_VAL_USEs first (note_stores does nothing
6470 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6471 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6472 while (n1 < n2)
6474 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6475 n1++;
6476 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6477 n2--;
6478 if (n1 < n2)
6480 micro_operation sw;
6482 sw = mos[n1];
6483 mos[n1] = mos[n2];
6484 mos[n2] = sw;
6488 n2 = VTI (bb)->mos.length () - 1;
6489 while (n1 < n2)
6491 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6492 n1++;
6493 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6494 n2--;
6495 if (n1 < n2)
6497 micro_operation sw;
6499 sw = mos[n1];
6500 mos[n1] = mos[n2];
6501 mos[n2] = sw;
6506 static enum var_init_status
6507 find_src_status (dataflow_set *in, rtx src)
6509 tree decl = NULL_TREE;
6510 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6512 if (! flag_var_tracking_uninit)
6513 status = VAR_INIT_STATUS_INITIALIZED;
6515 if (src && REG_P (src))
6516 decl = var_debug_decl (REG_EXPR (src));
6517 else if (src && MEM_P (src))
6518 decl = var_debug_decl (MEM_EXPR (src));
6520 if (src && decl)
6521 status = get_init_value (in, src, dv_from_decl (decl));
6523 return status;
6526 /* SRC is the source of an assignment. Use SET to try to find what
6527 was ultimately assigned to SRC. Return that value if known,
6528 otherwise return SRC itself. */
6530 static rtx
6531 find_src_set_src (dataflow_set *set, rtx src)
6533 tree decl = NULL_TREE; /* The variable being copied around. */
6534 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6535 variable var;
6536 location_chain nextp;
6537 int i;
6538 bool found;
6540 if (src && REG_P (src))
6541 decl = var_debug_decl (REG_EXPR (src));
6542 else if (src && MEM_P (src))
6543 decl = var_debug_decl (MEM_EXPR (src));
6545 if (src && decl)
6547 decl_or_value dv = dv_from_decl (decl);
6549 var = shared_hash_find (set->vars, dv);
6550 if (var)
6552 found = false;
6553 for (i = 0; i < var->n_var_parts && !found; i++)
6554 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6555 nextp = nextp->next)
6556 if (rtx_equal_p (nextp->loc, src))
6558 set_src = nextp->set_src;
6559 found = true;
6565 return set_src;
6568 /* Compute the changes of variable locations in the basic block BB. */
6570 static bool
6571 compute_bb_dataflow (basic_block bb)
6573 unsigned int i;
6574 micro_operation *mo;
6575 bool changed;
6576 dataflow_set old_out;
6577 dataflow_set *in = &VTI (bb)->in;
6578 dataflow_set *out = &VTI (bb)->out;
6580 dataflow_set_init (&old_out);
6581 dataflow_set_copy (&old_out, out);
6582 dataflow_set_copy (out, in);
6584 if (MAY_HAVE_DEBUG_INSNS)
6585 local_get_addr_cache = pointer_map_create ();
6587 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6589 rtx insn = mo->insn;
6591 switch (mo->type)
6593 case MO_CALL:
6594 dataflow_set_clear_at_call (out);
6595 break;
6597 case MO_USE:
6599 rtx loc = mo->u.loc;
6601 if (REG_P (loc))
6602 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6603 else if (MEM_P (loc))
6604 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6606 break;
6608 case MO_VAL_LOC:
6610 rtx loc = mo->u.loc;
6611 rtx val, vloc;
6612 tree var;
6614 if (GET_CODE (loc) == CONCAT)
6616 val = XEXP (loc, 0);
6617 vloc = XEXP (loc, 1);
6619 else
6621 val = NULL_RTX;
6622 vloc = loc;
6625 var = PAT_VAR_LOCATION_DECL (vloc);
6627 clobber_variable_part (out, NULL_RTX,
6628 dv_from_decl (var), 0, NULL_RTX);
6629 if (val)
6631 if (VAL_NEEDS_RESOLUTION (loc))
6632 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6633 set_variable_part (out, val, dv_from_decl (var), 0,
6634 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6635 INSERT);
6637 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6638 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6639 dv_from_decl (var), 0,
6640 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6641 INSERT);
6643 break;
6645 case MO_VAL_USE:
6647 rtx loc = mo->u.loc;
6648 rtx val, vloc, uloc;
6650 vloc = uloc = XEXP (loc, 1);
6651 val = XEXP (loc, 0);
6653 if (GET_CODE (val) == CONCAT)
6655 uloc = XEXP (val, 1);
6656 val = XEXP (val, 0);
6659 if (VAL_NEEDS_RESOLUTION (loc))
6660 val_resolve (out, val, vloc, insn);
6661 else
6662 val_store (out, val, uloc, insn, false);
6664 if (VAL_HOLDS_TRACK_EXPR (loc))
6666 if (GET_CODE (uloc) == REG)
6667 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6668 NULL);
6669 else if (GET_CODE (uloc) == MEM)
6670 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6671 NULL);
6674 break;
6676 case MO_VAL_SET:
6678 rtx loc = mo->u.loc;
6679 rtx val, vloc, uloc;
6680 rtx dstv, srcv;
6682 vloc = loc;
6683 uloc = XEXP (vloc, 1);
6684 val = XEXP (vloc, 0);
6685 vloc = uloc;
6687 if (GET_CODE (uloc) == SET)
6689 dstv = SET_DEST (uloc);
6690 srcv = SET_SRC (uloc);
6692 else
6694 dstv = uloc;
6695 srcv = NULL;
6698 if (GET_CODE (val) == CONCAT)
6700 dstv = vloc = XEXP (val, 1);
6701 val = XEXP (val, 0);
6704 if (GET_CODE (vloc) == SET)
6706 srcv = SET_SRC (vloc);
6708 gcc_assert (val != srcv);
6709 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6711 dstv = vloc = SET_DEST (vloc);
6713 if (VAL_NEEDS_RESOLUTION (loc))
6714 val_resolve (out, val, srcv, insn);
6716 else if (VAL_NEEDS_RESOLUTION (loc))
6718 gcc_assert (GET_CODE (uloc) == SET
6719 && GET_CODE (SET_SRC (uloc)) == REG);
6720 val_resolve (out, val, SET_SRC (uloc), insn);
6723 if (VAL_HOLDS_TRACK_EXPR (loc))
6725 if (VAL_EXPR_IS_CLOBBERED (loc))
6727 if (REG_P (uloc))
6728 var_reg_delete (out, uloc, true);
6729 else if (MEM_P (uloc))
6731 gcc_assert (MEM_P (dstv));
6732 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6733 var_mem_delete (out, dstv, true);
6736 else
6738 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6739 rtx src = NULL, dst = uloc;
6740 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6742 if (GET_CODE (uloc) == SET)
6744 src = SET_SRC (uloc);
6745 dst = SET_DEST (uloc);
6748 if (copied_p)
6750 if (flag_var_tracking_uninit)
6752 status = find_src_status (in, src);
6754 if (status == VAR_INIT_STATUS_UNKNOWN)
6755 status = find_src_status (out, src);
6758 src = find_src_set_src (in, src);
6761 if (REG_P (dst))
6762 var_reg_delete_and_set (out, dst, !copied_p,
6763 status, srcv);
6764 else if (MEM_P (dst))
6766 gcc_assert (MEM_P (dstv));
6767 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6768 var_mem_delete_and_set (out, dstv, !copied_p,
6769 status, srcv);
6773 else if (REG_P (uloc))
6774 var_regno_delete (out, REGNO (uloc));
6775 else if (MEM_P (uloc))
6777 gcc_checking_assert (GET_CODE (vloc) == MEM);
6778 gcc_checking_assert (dstv == vloc);
6779 if (dstv != vloc)
6780 clobber_overlapping_mems (out, vloc);
6783 val_store (out, val, dstv, insn, true);
6785 break;
6787 case MO_SET:
6789 rtx loc = mo->u.loc;
6790 rtx set_src = NULL;
6792 if (GET_CODE (loc) == SET)
6794 set_src = SET_SRC (loc);
6795 loc = SET_DEST (loc);
6798 if (REG_P (loc))
6799 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6800 set_src);
6801 else if (MEM_P (loc))
6802 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6803 set_src);
6805 break;
6807 case MO_COPY:
6809 rtx loc = mo->u.loc;
6810 enum var_init_status src_status;
6811 rtx set_src = NULL;
6813 if (GET_CODE (loc) == SET)
6815 set_src = SET_SRC (loc);
6816 loc = SET_DEST (loc);
6819 if (! flag_var_tracking_uninit)
6820 src_status = VAR_INIT_STATUS_INITIALIZED;
6821 else
6823 src_status = find_src_status (in, set_src);
6825 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6826 src_status = find_src_status (out, set_src);
6829 set_src = find_src_set_src (in, set_src);
6831 if (REG_P (loc))
6832 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6833 else if (MEM_P (loc))
6834 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6836 break;
6838 case MO_USE_NO_VAR:
6840 rtx loc = mo->u.loc;
6842 if (REG_P (loc))
6843 var_reg_delete (out, loc, false);
6844 else if (MEM_P (loc))
6845 var_mem_delete (out, loc, false);
6847 break;
6849 case MO_CLOBBER:
6851 rtx loc = mo->u.loc;
6853 if (REG_P (loc))
6854 var_reg_delete (out, loc, true);
6855 else if (MEM_P (loc))
6856 var_mem_delete (out, loc, true);
6858 break;
6860 case MO_ADJUST:
6861 out->stack_adjust += mo->u.adjust;
6862 break;
6866 if (MAY_HAVE_DEBUG_INSNS)
6868 pointer_map_destroy (local_get_addr_cache);
6869 local_get_addr_cache = NULL;
6871 dataflow_set_equiv_regs (out);
6872 shared_hash_htab (out->vars)
6873 .traverse <dataflow_set *, canonicalize_values_mark> (out);
6874 shared_hash_htab (out->vars)
6875 .traverse <dataflow_set *, canonicalize_values_star> (out);
6876 #if ENABLE_CHECKING
6877 shared_hash_htab (out->vars)
6878 .traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6879 #endif
6881 changed = dataflow_set_different (&old_out, out);
6882 dataflow_set_destroy (&old_out);
6883 return changed;
6886 /* Find the locations of variables in the whole function. */
6888 static bool
6889 vt_find_locations (void)
6891 fibheap_t worklist, pending, fibheap_swap;
6892 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6893 basic_block bb;
6894 edge e;
6895 int *bb_order;
6896 int *rc_order;
6897 int i;
6898 int htabsz = 0;
6899 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6900 bool success = true;
6902 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6903 /* Compute reverse completion order of depth first search of the CFG
6904 so that the data-flow runs faster. */
6905 rc_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
6906 bb_order = XNEWVEC (int, last_basic_block);
6907 pre_and_rev_post_order_compute (NULL, rc_order, false);
6908 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
6909 bb_order[rc_order[i]] = i;
6910 free (rc_order);
6912 worklist = fibheap_new ();
6913 pending = fibheap_new ();
6914 visited = sbitmap_alloc (last_basic_block);
6915 in_worklist = sbitmap_alloc (last_basic_block);
6916 in_pending = sbitmap_alloc (last_basic_block);
6917 bitmap_clear (in_worklist);
6919 FOR_EACH_BB (bb)
6920 fibheap_insert (pending, bb_order[bb->index], bb);
6921 bitmap_ones (in_pending);
6923 while (success && !fibheap_empty (pending))
6925 fibheap_swap = pending;
6926 pending = worklist;
6927 worklist = fibheap_swap;
6928 sbitmap_swap = in_pending;
6929 in_pending = in_worklist;
6930 in_worklist = sbitmap_swap;
6932 bitmap_clear (visited);
6934 while (!fibheap_empty (worklist))
6936 bb = (basic_block) fibheap_extract_min (worklist);
6937 bitmap_clear_bit (in_worklist, bb->index);
6938 gcc_assert (!bitmap_bit_p (visited, bb->index));
6939 if (!bitmap_bit_p (visited, bb->index))
6941 bool changed;
6942 edge_iterator ei;
6943 int oldinsz, oldoutsz;
6945 bitmap_set_bit (visited, bb->index);
6947 if (VTI (bb)->in.vars)
6949 htabsz
6950 -= shared_hash_htab (VTI (bb)->in.vars).size ()
6951 + shared_hash_htab (VTI (bb)->out.vars).size ();
6952 oldinsz = shared_hash_htab (VTI (bb)->in.vars).elements ();
6953 oldoutsz = shared_hash_htab (VTI (bb)->out.vars).elements ();
6955 else
6956 oldinsz = oldoutsz = 0;
6958 if (MAY_HAVE_DEBUG_INSNS)
6960 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
6961 bool first = true, adjust = false;
6963 /* Calculate the IN set as the intersection of
6964 predecessor OUT sets. */
6966 dataflow_set_clear (in);
6967 dst_can_be_shared = true;
6969 FOR_EACH_EDGE (e, ei, bb->preds)
6970 if (!VTI (e->src)->flooded)
6971 gcc_assert (bb_order[bb->index]
6972 <= bb_order[e->src->index]);
6973 else if (first)
6975 dataflow_set_copy (in, &VTI (e->src)->out);
6976 first_out = &VTI (e->src)->out;
6977 first = false;
6979 else
6981 dataflow_set_merge (in, &VTI (e->src)->out);
6982 adjust = true;
6985 if (adjust)
6987 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
6988 #if ENABLE_CHECKING
6989 /* Merge and merge_adjust should keep entries in
6990 canonical order. */
6991 shared_hash_htab (in->vars)
6992 .traverse <dataflow_set *,
6993 canonicalize_loc_order_check> (in);
6994 #endif
6995 if (dst_can_be_shared)
6997 shared_hash_destroy (in->vars);
6998 in->vars = shared_hash_copy (first_out->vars);
7002 VTI (bb)->flooded = true;
7004 else
7006 /* Calculate the IN set as union of predecessor OUT sets. */
7007 dataflow_set_clear (&VTI (bb)->in);
7008 FOR_EACH_EDGE (e, ei, bb->preds)
7009 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7012 changed = compute_bb_dataflow (bb);
7013 htabsz += shared_hash_htab (VTI (bb)->in.vars).size ()
7014 + shared_hash_htab (VTI (bb)->out.vars).size ();
7016 if (htabmax && htabsz > htabmax)
7018 if (MAY_HAVE_DEBUG_INSNS)
7019 inform (DECL_SOURCE_LOCATION (cfun->decl),
7020 "variable tracking size limit exceeded with "
7021 "-fvar-tracking-assignments, retrying without");
7022 else
7023 inform (DECL_SOURCE_LOCATION (cfun->decl),
7024 "variable tracking size limit exceeded");
7025 success = false;
7026 break;
7029 if (changed)
7031 FOR_EACH_EDGE (e, ei, bb->succs)
7033 if (e->dest == EXIT_BLOCK_PTR)
7034 continue;
7036 if (bitmap_bit_p (visited, e->dest->index))
7038 if (!bitmap_bit_p (in_pending, e->dest->index))
7040 /* Send E->DEST to next round. */
7041 bitmap_set_bit (in_pending, e->dest->index);
7042 fibheap_insert (pending,
7043 bb_order[e->dest->index],
7044 e->dest);
7047 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7049 /* Add E->DEST to current round. */
7050 bitmap_set_bit (in_worklist, e->dest->index);
7051 fibheap_insert (worklist, bb_order[e->dest->index],
7052 e->dest);
7057 if (dump_file)
7058 fprintf (dump_file,
7059 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7060 bb->index,
7061 (int)shared_hash_htab (VTI (bb)->in.vars).size (),
7062 oldinsz,
7063 (int)shared_hash_htab (VTI (bb)->out.vars).size (),
7064 oldoutsz,
7065 (int)worklist->nodes, (int)pending->nodes, htabsz);
7067 if (dump_file && (dump_flags & TDF_DETAILS))
7069 fprintf (dump_file, "BB %i IN:\n", bb->index);
7070 dump_dataflow_set (&VTI (bb)->in);
7071 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7072 dump_dataflow_set (&VTI (bb)->out);
7078 if (success && MAY_HAVE_DEBUG_INSNS)
7079 FOR_EACH_BB (bb)
7080 gcc_assert (VTI (bb)->flooded);
7082 free (bb_order);
7083 fibheap_delete (worklist);
7084 fibheap_delete (pending);
7085 sbitmap_free (visited);
7086 sbitmap_free (in_worklist);
7087 sbitmap_free (in_pending);
7089 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7090 return success;
7093 /* Print the content of the LIST to dump file. */
7095 static void
7096 dump_attrs_list (attrs list)
7098 for (; list; list = list->next)
7100 if (dv_is_decl_p (list->dv))
7101 print_mem_expr (dump_file, dv_as_decl (list->dv));
7102 else
7103 print_rtl_single (dump_file, dv_as_value (list->dv));
7104 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7106 fprintf (dump_file, "\n");
7109 /* Print the information about variable *SLOT to dump file. */
7112 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7114 variable var = *slot;
7116 dump_var (var);
7118 /* Continue traversing the hash table. */
7119 return 1;
7122 /* Print the information about variable VAR to dump file. */
7124 static void
7125 dump_var (variable var)
7127 int i;
7128 location_chain node;
7130 if (dv_is_decl_p (var->dv))
7132 const_tree decl = dv_as_decl (var->dv);
7134 if (DECL_NAME (decl))
7136 fprintf (dump_file, " name: %s",
7137 IDENTIFIER_POINTER (DECL_NAME (decl)));
7138 if (dump_flags & TDF_UID)
7139 fprintf (dump_file, "D.%u", DECL_UID (decl));
7141 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7142 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7143 else
7144 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7145 fprintf (dump_file, "\n");
7147 else
7149 fputc (' ', dump_file);
7150 print_rtl_single (dump_file, dv_as_value (var->dv));
7153 for (i = 0; i < var->n_var_parts; i++)
7155 fprintf (dump_file, " offset %ld\n",
7156 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7157 for (node = var->var_part[i].loc_chain; node; node = node->next)
7159 fprintf (dump_file, " ");
7160 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7161 fprintf (dump_file, "[uninit]");
7162 print_rtl_single (dump_file, node->loc);
7167 /* Print the information about variables from hash table VARS to dump file. */
7169 static void
7170 dump_vars (variable_table_type vars)
7172 if (vars.elements () > 0)
7174 fprintf (dump_file, "Variables:\n");
7175 vars.traverse <void *, dump_var_tracking_slot> (NULL);
7179 /* Print the dataflow set SET to dump file. */
7181 static void
7182 dump_dataflow_set (dataflow_set *set)
7184 int i;
7186 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7187 set->stack_adjust);
7188 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7190 if (set->regs[i])
7192 fprintf (dump_file, "Reg %d:", i);
7193 dump_attrs_list (set->regs[i]);
7196 dump_vars (shared_hash_htab (set->vars));
7197 fprintf (dump_file, "\n");
7200 /* Print the IN and OUT sets for each basic block to dump file. */
7202 static void
7203 dump_dataflow_sets (void)
7205 basic_block bb;
7207 FOR_EACH_BB (bb)
7209 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7210 fprintf (dump_file, "IN:\n");
7211 dump_dataflow_set (&VTI (bb)->in);
7212 fprintf (dump_file, "OUT:\n");
7213 dump_dataflow_set (&VTI (bb)->out);
7217 /* Return the variable for DV in dropped_values, inserting one if
7218 requested with INSERT. */
7220 static inline variable
7221 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7223 variable_def **slot;
7224 variable empty_var;
7225 onepart_enum_t onepart;
7227 slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7229 if (!slot)
7230 return NULL;
7232 if (*slot)
7233 return *slot;
7235 gcc_checking_assert (insert == INSERT);
7237 onepart = dv_onepart_p (dv);
7239 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7241 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7242 empty_var->dv = dv;
7243 empty_var->refcount = 1;
7244 empty_var->n_var_parts = 0;
7245 empty_var->onepart = onepart;
7246 empty_var->in_changed_variables = false;
7247 empty_var->var_part[0].loc_chain = NULL;
7248 empty_var->var_part[0].cur_loc = NULL;
7249 VAR_LOC_1PAUX (empty_var) = NULL;
7250 set_dv_changed (dv, true);
7252 *slot = empty_var;
7254 return empty_var;
7257 /* Recover the one-part aux from dropped_values. */
7259 static struct onepart_aux *
7260 recover_dropped_1paux (variable var)
7262 variable dvar;
7264 gcc_checking_assert (var->onepart);
7266 if (VAR_LOC_1PAUX (var))
7267 return VAR_LOC_1PAUX (var);
7269 if (var->onepart == ONEPART_VDECL)
7270 return NULL;
7272 dvar = variable_from_dropped (var->dv, NO_INSERT);
7274 if (!dvar)
7275 return NULL;
7277 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7278 VAR_LOC_1PAUX (dvar) = NULL;
7280 return VAR_LOC_1PAUX (var);
7283 /* Add variable VAR to the hash table of changed variables and
7284 if it has no locations delete it from SET's hash table. */
7286 static void
7287 variable_was_changed (variable var, dataflow_set *set)
7289 hashval_t hash = dv_htab_hash (var->dv);
7291 if (emit_notes)
7293 variable_def **slot;
7295 /* Remember this decl or VALUE has been added to changed_variables. */
7296 set_dv_changed (var->dv, true);
7298 slot = changed_variables.find_slot_with_hash (var->dv, hash, INSERT);
7300 if (*slot)
7302 variable old_var = *slot;
7303 gcc_assert (old_var->in_changed_variables);
7304 old_var->in_changed_variables = false;
7305 if (var != old_var && var->onepart)
7307 /* Restore the auxiliary info from an empty variable
7308 previously created for changed_variables, so it is
7309 not lost. */
7310 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7311 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7312 VAR_LOC_1PAUX (old_var) = NULL;
7314 variable_htab_free (*slot);
7317 if (set && var->n_var_parts == 0)
7319 onepart_enum_t onepart = var->onepart;
7320 variable empty_var = NULL;
7321 variable_def **dslot = NULL;
7323 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7325 dslot = dropped_values.find_slot_with_hash (var->dv,
7326 dv_htab_hash (var->dv),
7327 INSERT);
7328 empty_var = *dslot;
7330 if (empty_var)
7332 gcc_checking_assert (!empty_var->in_changed_variables);
7333 if (!VAR_LOC_1PAUX (var))
7335 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7336 VAR_LOC_1PAUX (empty_var) = NULL;
7338 else
7339 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7343 if (!empty_var)
7345 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7346 empty_var->dv = var->dv;
7347 empty_var->refcount = 1;
7348 empty_var->n_var_parts = 0;
7349 empty_var->onepart = onepart;
7350 if (dslot)
7352 empty_var->refcount++;
7353 *dslot = empty_var;
7356 else
7357 empty_var->refcount++;
7358 empty_var->in_changed_variables = true;
7359 *slot = empty_var;
7360 if (onepart)
7362 empty_var->var_part[0].loc_chain = NULL;
7363 empty_var->var_part[0].cur_loc = NULL;
7364 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7365 VAR_LOC_1PAUX (var) = NULL;
7367 goto drop_var;
7369 else
7371 if (var->onepart && !VAR_LOC_1PAUX (var))
7372 recover_dropped_1paux (var);
7373 var->refcount++;
7374 var->in_changed_variables = true;
7375 *slot = var;
7378 else
7380 gcc_assert (set);
7381 if (var->n_var_parts == 0)
7383 variable_def **slot;
7385 drop_var:
7386 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7387 if (slot)
7389 if (shared_hash_shared (set->vars))
7390 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7391 NO_INSERT);
7392 shared_hash_htab (set->vars).clear_slot (slot);
7398 /* Look for the index in VAR->var_part corresponding to OFFSET.
7399 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7400 referenced int will be set to the index that the part has or should
7401 have, if it should be inserted. */
7403 static inline int
7404 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7405 int *insertion_point)
7407 int pos, low, high;
7409 if (var->onepart)
7411 if (offset != 0)
7412 return -1;
7414 if (insertion_point)
7415 *insertion_point = 0;
7417 return var->n_var_parts - 1;
7420 /* Find the location part. */
7421 low = 0;
7422 high = var->n_var_parts;
7423 while (low != high)
7425 pos = (low + high) / 2;
7426 if (VAR_PART_OFFSET (var, pos) < offset)
7427 low = pos + 1;
7428 else
7429 high = pos;
7431 pos = low;
7433 if (insertion_point)
7434 *insertion_point = pos;
7436 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7437 return pos;
7439 return -1;
7442 static variable_def **
7443 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7444 decl_or_value dv, HOST_WIDE_INT offset,
7445 enum var_init_status initialized, rtx set_src)
7447 int pos;
7448 location_chain node, next;
7449 location_chain *nextp;
7450 variable var;
7451 onepart_enum_t onepart;
7453 var = *slot;
7455 if (var)
7456 onepart = var->onepart;
7457 else
7458 onepart = dv_onepart_p (dv);
7460 gcc_checking_assert (offset == 0 || !onepart);
7461 gcc_checking_assert (loc != dv_as_opaque (dv));
7463 if (! flag_var_tracking_uninit)
7464 initialized = VAR_INIT_STATUS_INITIALIZED;
7466 if (!var)
7468 /* Create new variable information. */
7469 var = (variable) pool_alloc (onepart_pool (onepart));
7470 var->dv = dv;
7471 var->refcount = 1;
7472 var->n_var_parts = 1;
7473 var->onepart = onepart;
7474 var->in_changed_variables = false;
7475 if (var->onepart)
7476 VAR_LOC_1PAUX (var) = NULL;
7477 else
7478 VAR_PART_OFFSET (var, 0) = offset;
7479 var->var_part[0].loc_chain = NULL;
7480 var->var_part[0].cur_loc = NULL;
7481 *slot = var;
7482 pos = 0;
7483 nextp = &var->var_part[0].loc_chain;
7485 else if (onepart)
7487 int r = -1, c = 0;
7489 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7491 pos = 0;
7493 if (GET_CODE (loc) == VALUE)
7495 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7496 nextp = &node->next)
7497 if (GET_CODE (node->loc) == VALUE)
7499 if (node->loc == loc)
7501 r = 0;
7502 break;
7504 if (canon_value_cmp (node->loc, loc))
7505 c++;
7506 else
7508 r = 1;
7509 break;
7512 else if (REG_P (node->loc) || MEM_P (node->loc))
7513 c++;
7514 else
7516 r = 1;
7517 break;
7520 else if (REG_P (loc))
7522 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7523 nextp = &node->next)
7524 if (REG_P (node->loc))
7526 if (REGNO (node->loc) < REGNO (loc))
7527 c++;
7528 else
7530 if (REGNO (node->loc) == REGNO (loc))
7531 r = 0;
7532 else
7533 r = 1;
7534 break;
7537 else
7539 r = 1;
7540 break;
7543 else if (MEM_P (loc))
7545 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7546 nextp = &node->next)
7547 if (REG_P (node->loc))
7548 c++;
7549 else if (MEM_P (node->loc))
7551 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7552 break;
7553 else
7554 c++;
7556 else
7558 r = 1;
7559 break;
7562 else
7563 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7564 nextp = &node->next)
7565 if ((r = loc_cmp (node->loc, loc)) >= 0)
7566 break;
7567 else
7568 c++;
7570 if (r == 0)
7571 return slot;
7573 if (shared_var_p (var, set->vars))
7575 slot = unshare_variable (set, slot, var, initialized);
7576 var = *slot;
7577 for (nextp = &var->var_part[0].loc_chain; c;
7578 nextp = &(*nextp)->next)
7579 c--;
7580 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7583 else
7585 int inspos = 0;
7587 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7589 pos = find_variable_location_part (var, offset, &inspos);
7591 if (pos >= 0)
7593 node = var->var_part[pos].loc_chain;
7595 if (node
7596 && ((REG_P (node->loc) && REG_P (loc)
7597 && REGNO (node->loc) == REGNO (loc))
7598 || rtx_equal_p (node->loc, loc)))
7600 /* LOC is in the beginning of the chain so we have nothing
7601 to do. */
7602 if (node->init < initialized)
7603 node->init = initialized;
7604 if (set_src != NULL)
7605 node->set_src = set_src;
7607 return slot;
7609 else
7611 /* We have to make a copy of a shared variable. */
7612 if (shared_var_p (var, set->vars))
7614 slot = unshare_variable (set, slot, var, initialized);
7615 var = *slot;
7619 else
7621 /* We have not found the location part, new one will be created. */
7623 /* We have to make a copy of the shared variable. */
7624 if (shared_var_p (var, set->vars))
7626 slot = unshare_variable (set, slot, var, initialized);
7627 var = *slot;
7630 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7631 thus there are at most MAX_VAR_PARTS different offsets. */
7632 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7633 && (!var->n_var_parts || !onepart));
7635 /* We have to move the elements of array starting at index
7636 inspos to the next position. */
7637 for (pos = var->n_var_parts; pos > inspos; pos--)
7638 var->var_part[pos] = var->var_part[pos - 1];
7640 var->n_var_parts++;
7641 gcc_checking_assert (!onepart);
7642 VAR_PART_OFFSET (var, pos) = offset;
7643 var->var_part[pos].loc_chain = NULL;
7644 var->var_part[pos].cur_loc = NULL;
7647 /* Delete the location from the list. */
7648 nextp = &var->var_part[pos].loc_chain;
7649 for (node = var->var_part[pos].loc_chain; node; node = next)
7651 next = node->next;
7652 if ((REG_P (node->loc) && REG_P (loc)
7653 && REGNO (node->loc) == REGNO (loc))
7654 || rtx_equal_p (node->loc, loc))
7656 /* Save these values, to assign to the new node, before
7657 deleting this one. */
7658 if (node->init > initialized)
7659 initialized = node->init;
7660 if (node->set_src != NULL && set_src == NULL)
7661 set_src = node->set_src;
7662 if (var->var_part[pos].cur_loc == node->loc)
7663 var->var_part[pos].cur_loc = NULL;
7664 pool_free (loc_chain_pool, node);
7665 *nextp = next;
7666 break;
7668 else
7669 nextp = &node->next;
7672 nextp = &var->var_part[pos].loc_chain;
7675 /* Add the location to the beginning. */
7676 node = (location_chain) pool_alloc (loc_chain_pool);
7677 node->loc = loc;
7678 node->init = initialized;
7679 node->set_src = set_src;
7680 node->next = *nextp;
7681 *nextp = node;
7683 /* If no location was emitted do so. */
7684 if (var->var_part[pos].cur_loc == NULL)
7685 variable_was_changed (var, set);
7687 return slot;
7690 /* Set the part of variable's location in the dataflow set SET. The
7691 variable part is specified by variable's declaration in DV and
7692 offset OFFSET and the part's location by LOC. IOPT should be
7693 NO_INSERT if the variable is known to be in SET already and the
7694 variable hash table must not be resized, and INSERT otherwise. */
7696 static void
7697 set_variable_part (dataflow_set *set, rtx loc,
7698 decl_or_value dv, HOST_WIDE_INT offset,
7699 enum var_init_status initialized, rtx set_src,
7700 enum insert_option iopt)
7702 variable_def **slot;
7704 if (iopt == NO_INSERT)
7705 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7706 else
7708 slot = shared_hash_find_slot (set->vars, dv);
7709 if (!slot)
7710 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7712 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7715 /* Remove all recorded register locations for the given variable part
7716 from dataflow set SET, except for those that are identical to loc.
7717 The variable part is specified by variable's declaration or value
7718 DV and offset OFFSET. */
7720 static variable_def **
7721 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7722 HOST_WIDE_INT offset, rtx set_src)
7724 variable var = *slot;
7725 int pos = find_variable_location_part (var, offset, NULL);
7727 if (pos >= 0)
7729 location_chain node, next;
7731 /* Remove the register locations from the dataflow set. */
7732 next = var->var_part[pos].loc_chain;
7733 for (node = next; node; node = next)
7735 next = node->next;
7736 if (node->loc != loc
7737 && (!flag_var_tracking_uninit
7738 || !set_src
7739 || MEM_P (set_src)
7740 || !rtx_equal_p (set_src, node->set_src)))
7742 if (REG_P (node->loc))
7744 attrs anode, anext;
7745 attrs *anextp;
7747 /* Remove the variable part from the register's
7748 list, but preserve any other variable parts
7749 that might be regarded as live in that same
7750 register. */
7751 anextp = &set->regs[REGNO (node->loc)];
7752 for (anode = *anextp; anode; anode = anext)
7754 anext = anode->next;
7755 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7756 && anode->offset == offset)
7758 pool_free (attrs_pool, anode);
7759 *anextp = anext;
7761 else
7762 anextp = &anode->next;
7766 slot = delete_slot_part (set, node->loc, slot, offset);
7771 return slot;
7774 /* Remove all recorded register locations for the given variable part
7775 from dataflow set SET, except for those that are identical to loc.
7776 The variable part is specified by variable's declaration or value
7777 DV and offset OFFSET. */
7779 static void
7780 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7781 HOST_WIDE_INT offset, rtx set_src)
7783 variable_def **slot;
7785 if (!dv_as_opaque (dv)
7786 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7787 return;
7789 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7790 if (!slot)
7791 return;
7793 clobber_slot_part (set, loc, slot, offset, set_src);
7796 /* Delete the part of variable's location from dataflow set SET. The
7797 variable part is specified by its SET->vars slot SLOT and offset
7798 OFFSET and the part's location by LOC. */
7800 static variable_def **
7801 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7802 HOST_WIDE_INT offset)
7804 variable var = *slot;
7805 int pos = find_variable_location_part (var, offset, NULL);
7807 if (pos >= 0)
7809 location_chain node, next;
7810 location_chain *nextp;
7811 bool changed;
7812 rtx cur_loc;
7814 if (shared_var_p (var, set->vars))
7816 /* If the variable contains the location part we have to
7817 make a copy of the variable. */
7818 for (node = var->var_part[pos].loc_chain; node;
7819 node = node->next)
7821 if ((REG_P (node->loc) && REG_P (loc)
7822 && REGNO (node->loc) == REGNO (loc))
7823 || rtx_equal_p (node->loc, loc))
7825 slot = unshare_variable (set, slot, var,
7826 VAR_INIT_STATUS_UNKNOWN);
7827 var = *slot;
7828 break;
7833 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7834 cur_loc = VAR_LOC_FROM (var);
7835 else
7836 cur_loc = var->var_part[pos].cur_loc;
7838 /* Delete the location part. */
7839 changed = false;
7840 nextp = &var->var_part[pos].loc_chain;
7841 for (node = *nextp; node; node = next)
7843 next = node->next;
7844 if ((REG_P (node->loc) && REG_P (loc)
7845 && REGNO (node->loc) == REGNO (loc))
7846 || rtx_equal_p (node->loc, loc))
7848 /* If we have deleted the location which was last emitted
7849 we have to emit new location so add the variable to set
7850 of changed variables. */
7851 if (cur_loc == node->loc)
7853 changed = true;
7854 var->var_part[pos].cur_loc = NULL;
7855 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7856 VAR_LOC_FROM (var) = NULL;
7858 pool_free (loc_chain_pool, node);
7859 *nextp = next;
7860 break;
7862 else
7863 nextp = &node->next;
7866 if (var->var_part[pos].loc_chain == NULL)
7868 changed = true;
7869 var->n_var_parts--;
7870 while (pos < var->n_var_parts)
7872 var->var_part[pos] = var->var_part[pos + 1];
7873 pos++;
7876 if (changed)
7877 variable_was_changed (var, set);
7880 return slot;
7883 /* Delete the part of variable's location from dataflow set SET. The
7884 variable part is specified by variable's declaration or value DV
7885 and offset OFFSET and the part's location by LOC. */
7887 static void
7888 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7889 HOST_WIDE_INT offset)
7891 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7892 if (!slot)
7893 return;
7895 delete_slot_part (set, loc, slot, offset);
7899 /* Structure for passing some other parameters to function
7900 vt_expand_loc_callback. */
7901 struct expand_loc_callback_data
7903 /* The variables and values active at this point. */
7904 variable_table_type vars;
7906 /* Stack of values and debug_exprs under expansion, and their
7907 children. */
7908 vec<rtx, va_stack> expanding;
7910 /* Stack of values and debug_exprs whose expansion hit recursion
7911 cycles. They will have VALUE_RECURSED_INTO marked when added to
7912 this list. This flag will be cleared if any of its dependencies
7913 resolves to a valid location. So, if the flag remains set at the
7914 end of the search, we know no valid location for this one can
7915 possibly exist. */
7916 vec<rtx, va_stack> pending;
7918 /* The maximum depth among the sub-expressions under expansion.
7919 Zero indicates no expansion so far. */
7920 expand_depth depth;
7923 /* Allocate the one-part auxiliary data structure for VAR, with enough
7924 room for COUNT dependencies. */
7926 static void
7927 loc_exp_dep_alloc (variable var, int count)
7929 size_t allocsize;
7931 gcc_checking_assert (var->onepart);
7933 /* We can be called with COUNT == 0 to allocate the data structure
7934 without any dependencies, e.g. for the backlinks only. However,
7935 if we are specifying a COUNT, then the dependency list must have
7936 been emptied before. It would be possible to adjust pointers or
7937 force it empty here, but this is better done at an earlier point
7938 in the algorithm, so we instead leave an assertion to catch
7939 errors. */
7940 gcc_checking_assert (!count
7941 || VAR_LOC_DEP_VEC (var) == NULL
7942 || VAR_LOC_DEP_VEC (var)->is_empty ());
7944 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
7945 return;
7947 allocsize = offsetof (struct onepart_aux, deps)
7948 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
7950 if (VAR_LOC_1PAUX (var))
7952 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
7953 VAR_LOC_1PAUX (var), allocsize);
7954 /* If the reallocation moves the onepaux structure, the
7955 back-pointer to BACKLINKS in the first list member will still
7956 point to its old location. Adjust it. */
7957 if (VAR_LOC_DEP_LST (var))
7958 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
7960 else
7962 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
7963 *VAR_LOC_DEP_LSTP (var) = NULL;
7964 VAR_LOC_FROM (var) = NULL;
7965 VAR_LOC_DEPTH (var).complexity = 0;
7966 VAR_LOC_DEPTH (var).entryvals = 0;
7968 VAR_LOC_DEP_VEC (var)->embedded_init (count);
7971 /* Remove all entries from the vector of active dependencies of VAR,
7972 removing them from the back-links lists too. */
7974 static void
7975 loc_exp_dep_clear (variable var)
7977 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
7979 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
7980 if (led->next)
7981 led->next->pprev = led->pprev;
7982 if (led->pprev)
7983 *led->pprev = led->next;
7984 VAR_LOC_DEP_VEC (var)->pop ();
7988 /* Insert an active dependency from VAR on X to the vector of
7989 dependencies, and add the corresponding back-link to X's list of
7990 back-links in VARS. */
7992 static void
7993 loc_exp_insert_dep (variable var, rtx x, variable_table_type vars)
7995 decl_or_value dv;
7996 variable xvar;
7997 loc_exp_dep *led;
7999 dv = dv_from_rtx (x);
8001 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8002 an additional look up? */
8003 xvar = vars.find_with_hash (dv, dv_htab_hash (dv));
8005 if (!xvar)
8007 xvar = variable_from_dropped (dv, NO_INSERT);
8008 gcc_checking_assert (xvar);
8011 /* No point in adding the same backlink more than once. This may
8012 arise if say the same value appears in two complex expressions in
8013 the same loc_list, or even more than once in a single
8014 expression. */
8015 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8016 return;
8018 if (var->onepart == NOT_ONEPART)
8019 led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
8020 else
8022 loc_exp_dep empty;
8023 memset (&empty, 0, sizeof (empty));
8024 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8025 led = &VAR_LOC_DEP_VEC (var)->last ();
8027 led->dv = var->dv;
8028 led->value = x;
8030 loc_exp_dep_alloc (xvar, 0);
8031 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8032 led->next = *led->pprev;
8033 if (led->next)
8034 led->next->pprev = &led->next;
8035 *led->pprev = led;
8038 /* Create active dependencies of VAR on COUNT values starting at
8039 VALUE, and corresponding back-links to the entries in VARS. Return
8040 true if we found any pending-recursion results. */
8042 static bool
8043 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8044 variable_table_type vars)
8046 bool pending_recursion = false;
8048 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8049 || VAR_LOC_DEP_VEC (var)->is_empty ());
8051 /* Set up all dependencies from last_child (as set up at the end of
8052 the loop above) to the end. */
8053 loc_exp_dep_alloc (var, count);
8055 while (count--)
8057 rtx x = *value++;
8059 if (!pending_recursion)
8060 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8062 loc_exp_insert_dep (var, x, vars);
8065 return pending_recursion;
8068 /* Notify the back-links of IVAR that are pending recursion that we
8069 have found a non-NIL value for it, so they are cleared for another
8070 attempt to compute a current location. */
8072 static void
8073 notify_dependents_of_resolved_value (variable ivar, variable_table_type vars)
8075 loc_exp_dep *led, *next;
8077 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8079 decl_or_value dv = led->dv;
8080 variable var;
8082 next = led->next;
8084 if (dv_is_value_p (dv))
8086 rtx value = dv_as_value (dv);
8088 /* If we have already resolved it, leave it alone. */
8089 if (!VALUE_RECURSED_INTO (value))
8090 continue;
8092 /* Check that VALUE_RECURSED_INTO, true from the test above,
8093 implies NO_LOC_P. */
8094 gcc_checking_assert (NO_LOC_P (value));
8096 /* We won't notify variables that are being expanded,
8097 because their dependency list is cleared before
8098 recursing. */
8099 NO_LOC_P (value) = false;
8100 VALUE_RECURSED_INTO (value) = false;
8102 gcc_checking_assert (dv_changed_p (dv));
8104 else
8106 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8107 if (!dv_changed_p (dv))
8108 continue;
8111 var = vars.find_with_hash (dv, dv_htab_hash (dv));
8113 if (!var)
8114 var = variable_from_dropped (dv, NO_INSERT);
8116 if (var)
8117 notify_dependents_of_resolved_value (var, vars);
8119 if (next)
8120 next->pprev = led->pprev;
8121 if (led->pprev)
8122 *led->pprev = next;
8123 led->next = NULL;
8124 led->pprev = NULL;
8128 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8129 int max_depth, void *data);
8131 /* Return the combined depth, when one sub-expression evaluated to
8132 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8134 static inline expand_depth
8135 update_depth (expand_depth saved_depth, expand_depth best_depth)
8137 /* If we didn't find anything, stick with what we had. */
8138 if (!best_depth.complexity)
8139 return saved_depth;
8141 /* If we found hadn't found anything, use the depth of the current
8142 expression. Do NOT add one extra level, we want to compute the
8143 maximum depth among sub-expressions. We'll increment it later,
8144 if appropriate. */
8145 if (!saved_depth.complexity)
8146 return best_depth;
8148 /* Combine the entryval count so that regardless of which one we
8149 return, the entryval count is accurate. */
8150 best_depth.entryvals = saved_depth.entryvals
8151 = best_depth.entryvals + saved_depth.entryvals;
8153 if (saved_depth.complexity < best_depth.complexity)
8154 return best_depth;
8155 else
8156 return saved_depth;
8159 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8160 DATA for cselib expand callback. If PENDRECP is given, indicate in
8161 it whether any sub-expression couldn't be fully evaluated because
8162 it is pending recursion resolution. */
8164 static inline rtx
8165 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8167 struct expand_loc_callback_data *elcd
8168 = (struct expand_loc_callback_data *) data;
8169 location_chain loc, next;
8170 rtx result = NULL;
8171 int first_child, result_first_child, last_child;
8172 bool pending_recursion;
8173 rtx loc_from = NULL;
8174 struct elt_loc_list *cloc = NULL;
8175 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8176 int wanted_entryvals, found_entryvals = 0;
8178 /* Clear all backlinks pointing at this, so that we're not notified
8179 while we're active. */
8180 loc_exp_dep_clear (var);
8182 retry:
8183 if (var->onepart == ONEPART_VALUE)
8185 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8187 gcc_checking_assert (cselib_preserved_value_p (val));
8189 cloc = val->locs;
8192 first_child = result_first_child = last_child
8193 = elcd->expanding.length ();
8195 wanted_entryvals = found_entryvals;
8197 /* Attempt to expand each available location in turn. */
8198 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8199 loc || cloc; loc = next)
8201 result_first_child = last_child;
8203 if (!loc)
8205 loc_from = cloc->loc;
8206 next = loc;
8207 cloc = cloc->next;
8208 if (unsuitable_loc (loc_from))
8209 continue;
8211 else
8213 loc_from = loc->loc;
8214 next = loc->next;
8217 gcc_checking_assert (!unsuitable_loc (loc_from));
8219 elcd->depth.complexity = elcd->depth.entryvals = 0;
8220 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8221 vt_expand_loc_callback, data);
8222 last_child = elcd->expanding.length ();
8224 if (result)
8226 depth = elcd->depth;
8228 gcc_checking_assert (depth.complexity
8229 || result_first_child == last_child);
8231 if (last_child - result_first_child != 1)
8233 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8234 depth.entryvals++;
8235 depth.complexity++;
8238 if (depth.complexity <= EXPR_USE_DEPTH)
8240 if (depth.entryvals <= wanted_entryvals)
8241 break;
8242 else if (!found_entryvals || depth.entryvals < found_entryvals)
8243 found_entryvals = depth.entryvals;
8246 result = NULL;
8249 /* Set it up in case we leave the loop. */
8250 depth.complexity = depth.entryvals = 0;
8251 loc_from = NULL;
8252 result_first_child = first_child;
8255 if (!loc_from && wanted_entryvals < found_entryvals)
8257 /* We found entries with ENTRY_VALUEs and skipped them. Since
8258 we could not find any expansions without ENTRY_VALUEs, but we
8259 found at least one with them, go back and get an entry with
8260 the minimum number ENTRY_VALUE count that we found. We could
8261 avoid looping, but since each sub-loc is already resolved,
8262 the re-expansion should be trivial. ??? Should we record all
8263 attempted locs as dependencies, so that we retry the
8264 expansion should any of them change, in the hope it can give
8265 us a new entry without an ENTRY_VALUE? */
8266 elcd->expanding.truncate (first_child);
8267 goto retry;
8270 /* Register all encountered dependencies as active. */
8271 pending_recursion = loc_exp_dep_set
8272 (var, result, elcd->expanding.address () + result_first_child,
8273 last_child - result_first_child, elcd->vars);
8275 elcd->expanding.truncate (first_child);
8277 /* Record where the expansion came from. */
8278 gcc_checking_assert (!result || !pending_recursion);
8279 VAR_LOC_FROM (var) = loc_from;
8280 VAR_LOC_DEPTH (var) = depth;
8282 gcc_checking_assert (!depth.complexity == !result);
8284 elcd->depth = update_depth (saved_depth, depth);
8286 /* Indicate whether any of the dependencies are pending recursion
8287 resolution. */
8288 if (pendrecp)
8289 *pendrecp = pending_recursion;
8291 if (!pendrecp || !pending_recursion)
8292 var->var_part[0].cur_loc = result;
8294 return result;
8297 /* Callback for cselib_expand_value, that looks for expressions
8298 holding the value in the var-tracking hash tables. Return X for
8299 standard processing, anything else is to be used as-is. */
8301 static rtx
8302 vt_expand_loc_callback (rtx x, bitmap regs,
8303 int max_depth ATTRIBUTE_UNUSED,
8304 void *data)
8306 struct expand_loc_callback_data *elcd
8307 = (struct expand_loc_callback_data *) data;
8308 decl_or_value dv;
8309 variable var;
8310 rtx result, subreg;
8311 bool pending_recursion = false;
8312 bool from_empty = false;
8314 switch (GET_CODE (x))
8316 case SUBREG:
8317 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8318 EXPR_DEPTH,
8319 vt_expand_loc_callback, data);
8321 if (!subreg)
8322 return NULL;
8324 result = simplify_gen_subreg (GET_MODE (x), subreg,
8325 GET_MODE (SUBREG_REG (x)),
8326 SUBREG_BYTE (x));
8328 /* Invalid SUBREGs are ok in debug info. ??? We could try
8329 alternate expansions for the VALUE as well. */
8330 if (!result)
8331 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8333 return result;
8335 case DEBUG_EXPR:
8336 case VALUE:
8337 dv = dv_from_rtx (x);
8338 break;
8340 default:
8341 return x;
8344 elcd->expanding.safe_push (x);
8346 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8347 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8349 if (NO_LOC_P (x))
8351 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8352 return NULL;
8355 var = elcd->vars.find_with_hash (dv, dv_htab_hash (dv));
8357 if (!var)
8359 from_empty = true;
8360 var = variable_from_dropped (dv, INSERT);
8363 gcc_checking_assert (var);
8365 if (!dv_changed_p (dv))
8367 gcc_checking_assert (!NO_LOC_P (x));
8368 gcc_checking_assert (var->var_part[0].cur_loc);
8369 gcc_checking_assert (VAR_LOC_1PAUX (var));
8370 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8372 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8374 return var->var_part[0].cur_loc;
8377 VALUE_RECURSED_INTO (x) = true;
8378 /* This is tentative, but it makes some tests simpler. */
8379 NO_LOC_P (x) = true;
8381 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8383 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8385 if (pending_recursion)
8387 gcc_checking_assert (!result);
8388 elcd->pending.safe_push (x);
8390 else
8392 NO_LOC_P (x) = !result;
8393 VALUE_RECURSED_INTO (x) = false;
8394 set_dv_changed (dv, false);
8396 if (result)
8397 notify_dependents_of_resolved_value (var, elcd->vars);
8400 return result;
8403 /* While expanding variables, we may encounter recursion cycles
8404 because of mutual (possibly indirect) dependencies between two
8405 particular variables (or values), say A and B. If we're trying to
8406 expand A when we get to B, which in turn attempts to expand A, if
8407 we can't find any other expansion for B, we'll add B to this
8408 pending-recursion stack, and tentatively return NULL for its
8409 location. This tentative value will be used for any other
8410 occurrences of B, unless A gets some other location, in which case
8411 it will notify B that it is worth another try at computing a
8412 location for it, and it will use the location computed for A then.
8413 At the end of the expansion, the tentative NULL locations become
8414 final for all members of PENDING that didn't get a notification.
8415 This function performs this finalization of NULL locations. */
8417 static void
8418 resolve_expansions_pending_recursion (vec<rtx, va_stack> pending)
8420 while (!pending.is_empty ())
8422 rtx x = pending.pop ();
8423 decl_or_value dv;
8425 if (!VALUE_RECURSED_INTO (x))
8426 continue;
8428 gcc_checking_assert (NO_LOC_P (x));
8429 VALUE_RECURSED_INTO (x) = false;
8430 dv = dv_from_rtx (x);
8431 gcc_checking_assert (dv_changed_p (dv));
8432 set_dv_changed (dv, false);
8436 /* Initialize expand_loc_callback_data D with variable hash table V.
8437 It must be a macro because of alloca (vec stack). */
8438 #define INIT_ELCD(d, v) \
8439 do \
8441 (d).vars = (v); \
8442 vec_stack_alloc (rtx, (d).expanding, 4); \
8443 vec_stack_alloc (rtx, (d).pending, 4); \
8444 (d).depth.complexity = (d).depth.entryvals = 0; \
8446 while (0)
8447 /* Finalize expand_loc_callback_data D, resolved to location L. */
8448 #define FINI_ELCD(d, l) \
8449 do \
8451 resolve_expansions_pending_recursion ((d).pending); \
8452 (d).pending.release (); \
8453 (d).expanding.release (); \
8455 if ((l) && MEM_P (l)) \
8456 (l) = targetm.delegitimize_address (l); \
8458 while (0)
8460 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8461 equivalences in VARS, updating their CUR_LOCs in the process. */
8463 static rtx
8464 vt_expand_loc (rtx loc, variable_table_type vars)
8466 struct expand_loc_callback_data data;
8467 rtx result;
8469 if (!MAY_HAVE_DEBUG_INSNS)
8470 return loc;
8472 INIT_ELCD (data, vars);
8474 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8475 vt_expand_loc_callback, &data);
8477 FINI_ELCD (data, result);
8479 return result;
8482 /* Expand the one-part VARiable to a location, using the equivalences
8483 in VARS, updating their CUR_LOCs in the process. */
8485 static rtx
8486 vt_expand_1pvar (variable var, variable_table_type vars)
8488 struct expand_loc_callback_data data;
8489 rtx loc;
8491 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8493 if (!dv_changed_p (var->dv))
8494 return var->var_part[0].cur_loc;
8496 INIT_ELCD (data, vars);
8498 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8500 gcc_checking_assert (data.expanding.is_empty ());
8502 FINI_ELCD (data, loc);
8504 return loc;
8507 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8508 additional parameters: WHERE specifies whether the note shall be emitted
8509 before or after instruction INSN. */
8512 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8514 variable var = *varp;
8515 rtx insn = data->insn;
8516 enum emit_note_where where = data->where;
8517 variable_table_type vars = data->vars;
8518 rtx note, note_vl;
8519 int i, j, n_var_parts;
8520 bool complete;
8521 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8522 HOST_WIDE_INT last_limit;
8523 tree type_size_unit;
8524 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8525 rtx loc[MAX_VAR_PARTS];
8526 tree decl;
8527 location_chain lc;
8529 gcc_checking_assert (var->onepart == NOT_ONEPART
8530 || var->onepart == ONEPART_VDECL);
8532 decl = dv_as_decl (var->dv);
8534 complete = true;
8535 last_limit = 0;
8536 n_var_parts = 0;
8537 if (!var->onepart)
8538 for (i = 0; i < var->n_var_parts; i++)
8539 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8540 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8541 for (i = 0; i < var->n_var_parts; i++)
8543 enum machine_mode mode, wider_mode;
8544 rtx loc2;
8545 HOST_WIDE_INT offset;
8547 if (i == 0 && var->onepart)
8549 gcc_checking_assert (var->n_var_parts == 1);
8550 offset = 0;
8551 initialized = VAR_INIT_STATUS_INITIALIZED;
8552 loc2 = vt_expand_1pvar (var, vars);
8554 else
8556 if (last_limit < VAR_PART_OFFSET (var, i))
8558 complete = false;
8559 break;
8561 else if (last_limit > VAR_PART_OFFSET (var, i))
8562 continue;
8563 offset = VAR_PART_OFFSET (var, i);
8564 loc2 = var->var_part[i].cur_loc;
8565 if (loc2 && GET_CODE (loc2) == MEM
8566 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8568 rtx depval = XEXP (loc2, 0);
8570 loc2 = vt_expand_loc (loc2, vars);
8572 if (loc2)
8573 loc_exp_insert_dep (var, depval, vars);
8575 if (!loc2)
8577 complete = false;
8578 continue;
8580 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8581 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8582 if (var->var_part[i].cur_loc == lc->loc)
8584 initialized = lc->init;
8585 break;
8587 gcc_assert (lc);
8590 offsets[n_var_parts] = offset;
8591 if (!loc2)
8593 complete = false;
8594 continue;
8596 loc[n_var_parts] = loc2;
8597 mode = GET_MODE (var->var_part[i].cur_loc);
8598 if (mode == VOIDmode && var->onepart)
8599 mode = DECL_MODE (decl);
8600 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8602 /* Attempt to merge adjacent registers or memory. */
8603 wider_mode = GET_MODE_WIDER_MODE (mode);
8604 for (j = i + 1; j < var->n_var_parts; j++)
8605 if (last_limit <= VAR_PART_OFFSET (var, j))
8606 break;
8607 if (j < var->n_var_parts
8608 && wider_mode != VOIDmode
8609 && var->var_part[j].cur_loc
8610 && mode == GET_MODE (var->var_part[j].cur_loc)
8611 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8612 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8613 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8614 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8616 rtx new_loc = NULL;
8618 if (REG_P (loc[n_var_parts])
8619 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8620 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8621 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8622 == REGNO (loc2))
8624 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8625 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8626 mode, 0);
8627 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8628 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8629 if (new_loc)
8631 if (!REG_P (new_loc)
8632 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8633 new_loc = NULL;
8634 else
8635 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8638 else if (MEM_P (loc[n_var_parts])
8639 && GET_CODE (XEXP (loc2, 0)) == PLUS
8640 && REG_P (XEXP (XEXP (loc2, 0), 0))
8641 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8643 if ((REG_P (XEXP (loc[n_var_parts], 0))
8644 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8645 XEXP (XEXP (loc2, 0), 0))
8646 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8647 == GET_MODE_SIZE (mode))
8648 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8649 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8650 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8651 XEXP (XEXP (loc2, 0), 0))
8652 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8653 + GET_MODE_SIZE (mode)
8654 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8655 new_loc = adjust_address_nv (loc[n_var_parts],
8656 wider_mode, 0);
8659 if (new_loc)
8661 loc[n_var_parts] = new_loc;
8662 mode = wider_mode;
8663 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8664 i = j;
8667 ++n_var_parts;
8669 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8670 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8671 complete = false;
8673 if (! flag_var_tracking_uninit)
8674 initialized = VAR_INIT_STATUS_INITIALIZED;
8676 note_vl = NULL_RTX;
8677 if (!complete)
8678 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX,
8679 (int) initialized);
8680 else if (n_var_parts == 1)
8682 rtx expr_list;
8684 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8685 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8686 else
8687 expr_list = loc[0];
8689 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list,
8690 (int) initialized);
8692 else if (n_var_parts)
8694 rtx parallel;
8696 for (i = 0; i < n_var_parts; i++)
8697 loc[i]
8698 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8700 parallel = gen_rtx_PARALLEL (VOIDmode,
8701 gen_rtvec_v (n_var_parts, loc));
8702 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8703 parallel, (int) initialized);
8706 if (where != EMIT_NOTE_BEFORE_INSN)
8708 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8709 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8710 NOTE_DURING_CALL_P (note) = true;
8712 else
8714 /* Make sure that the call related notes come first. */
8715 while (NEXT_INSN (insn)
8716 && NOTE_P (insn)
8717 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8718 && NOTE_DURING_CALL_P (insn))
8719 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8720 insn = NEXT_INSN (insn);
8721 if (NOTE_P (insn)
8722 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8723 && NOTE_DURING_CALL_P (insn))
8724 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8725 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8726 else
8727 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8729 NOTE_VAR_LOCATION (note) = note_vl;
8731 set_dv_changed (var->dv, false);
8732 gcc_assert (var->in_changed_variables);
8733 var->in_changed_variables = false;
8734 changed_variables.clear_slot (varp);
8736 /* Continue traversing the hash table. */
8737 return 1;
8740 /* While traversing changed_variables, push onto DATA (a stack of RTX
8741 values) entries that aren't user variables. */
8744 var_track_values_to_stack (variable_def **slot,
8745 vec<rtx, va_stack> *changed_values_stack)
8747 variable var = *slot;
8749 if (var->onepart == ONEPART_VALUE)
8750 changed_values_stack->safe_push (dv_as_value (var->dv));
8751 else if (var->onepart == ONEPART_DEXPR)
8752 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8754 return 1;
8757 /* Remove from changed_variables the entry whose DV corresponds to
8758 value or debug_expr VAL. */
8759 static void
8760 remove_value_from_changed_variables (rtx val)
8762 decl_or_value dv = dv_from_rtx (val);
8763 variable_def **slot;
8764 variable var;
8766 slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
8767 NO_INSERT);
8768 var = *slot;
8769 var->in_changed_variables = false;
8770 changed_variables.clear_slot (slot);
8773 /* If VAL (a value or debug_expr) has backlinks to variables actively
8774 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8775 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8776 have dependencies of their own to notify. */
8778 static void
8779 notify_dependents_of_changed_value (rtx val, variable_table_type htab,
8780 vec<rtx, va_stack> *changed_values_stack)
8782 variable_def **slot;
8783 variable var;
8784 loc_exp_dep *led;
8785 decl_or_value dv = dv_from_rtx (val);
8787 slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
8788 NO_INSERT);
8789 if (!slot)
8790 slot = htab.find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8791 if (!slot)
8792 slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv),
8793 NO_INSERT);
8794 var = *slot;
8796 while ((led = VAR_LOC_DEP_LST (var)))
8798 decl_or_value ldv = led->dv;
8799 variable ivar;
8801 /* Deactivate and remove the backlink, as it was “used up”. It
8802 makes no sense to attempt to notify the same entity again:
8803 either it will be recomputed and re-register an active
8804 dependency, or it will still have the changed mark. */
8805 if (led->next)
8806 led->next->pprev = led->pprev;
8807 if (led->pprev)
8808 *led->pprev = led->next;
8809 led->next = NULL;
8810 led->pprev = NULL;
8812 if (dv_changed_p (ldv))
8813 continue;
8815 switch (dv_onepart_p (ldv))
8817 case ONEPART_VALUE:
8818 case ONEPART_DEXPR:
8819 set_dv_changed (ldv, true);
8820 changed_values_stack->safe_push (dv_as_rtx (ldv));
8821 break;
8823 case ONEPART_VDECL:
8824 ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
8825 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8826 variable_was_changed (ivar, NULL);
8827 break;
8829 case NOT_ONEPART:
8830 pool_free (loc_exp_dep_pool, led);
8831 ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
8832 if (ivar)
8834 int i = ivar->n_var_parts;
8835 while (i--)
8837 rtx loc = ivar->var_part[i].cur_loc;
8839 if (loc && GET_CODE (loc) == MEM
8840 && XEXP (loc, 0) == val)
8842 variable_was_changed (ivar, NULL);
8843 break;
8847 break;
8849 default:
8850 gcc_unreachable ();
8855 /* Take out of changed_variables any entries that don't refer to use
8856 variables. Back-propagate change notifications from values and
8857 debug_exprs to their active dependencies in HTAB or in
8858 CHANGED_VARIABLES. */
8860 static void
8861 process_changed_values (variable_table_type htab)
8863 int i, n;
8864 rtx val;
8865 vec<rtx, va_stack> changed_values_stack;
8867 vec_stack_alloc (rtx, changed_values_stack, 20);
8869 /* Move values from changed_variables to changed_values_stack. */
8870 changed_variables
8871 .traverse <vec<rtx, va_stack>*, var_track_values_to_stack>
8872 (&changed_values_stack);
8874 /* Back-propagate change notifications in values while popping
8875 them from the stack. */
8876 for (n = i = changed_values_stack.length ();
8877 i > 0; i = changed_values_stack.length ())
8879 val = changed_values_stack.pop ();
8880 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8882 /* This condition will hold when visiting each of the entries
8883 originally in changed_variables. We can't remove them
8884 earlier because this could drop the backlinks before we got a
8885 chance to use them. */
8886 if (i == n)
8888 remove_value_from_changed_variables (val);
8889 n--;
8893 changed_values_stack.release ();
8896 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8897 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8898 the notes shall be emitted before of after instruction INSN. */
8900 static void
8901 emit_notes_for_changes (rtx insn, enum emit_note_where where,
8902 shared_hash vars)
8904 emit_note_data data;
8905 variable_table_type htab = shared_hash_htab (vars);
8907 if (!changed_variables.elements ())
8908 return;
8910 if (MAY_HAVE_DEBUG_INSNS)
8911 process_changed_values (htab);
8913 data.insn = insn;
8914 data.where = where;
8915 data.vars = htab;
8917 changed_variables
8918 .traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8921 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8922 same variable in hash table DATA or is not there at all. */
8925 emit_notes_for_differences_1 (variable_def **slot, variable_table_type new_vars)
8927 variable old_var, new_var;
8929 old_var = *slot;
8930 new_var = new_vars.find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
8932 if (!new_var)
8934 /* Variable has disappeared. */
8935 variable empty_var = NULL;
8937 if (old_var->onepart == ONEPART_VALUE
8938 || old_var->onepart == ONEPART_DEXPR)
8940 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
8941 if (empty_var)
8943 gcc_checking_assert (!empty_var->in_changed_variables);
8944 if (!VAR_LOC_1PAUX (old_var))
8946 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
8947 VAR_LOC_1PAUX (empty_var) = NULL;
8949 else
8950 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
8954 if (!empty_var)
8956 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
8957 empty_var->dv = old_var->dv;
8958 empty_var->refcount = 0;
8959 empty_var->n_var_parts = 0;
8960 empty_var->onepart = old_var->onepart;
8961 empty_var->in_changed_variables = false;
8964 if (empty_var->onepart)
8966 /* Propagate the auxiliary data to (ultimately)
8967 changed_variables. */
8968 empty_var->var_part[0].loc_chain = NULL;
8969 empty_var->var_part[0].cur_loc = NULL;
8970 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
8971 VAR_LOC_1PAUX (old_var) = NULL;
8973 variable_was_changed (empty_var, NULL);
8974 /* Continue traversing the hash table. */
8975 return 1;
8977 /* Update cur_loc and one-part auxiliary data, before new_var goes
8978 through variable_was_changed. */
8979 if (old_var != new_var && new_var->onepart)
8981 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
8982 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
8983 VAR_LOC_1PAUX (old_var) = NULL;
8984 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
8986 if (variable_different_p (old_var, new_var))
8987 variable_was_changed (new_var, NULL);
8989 /* Continue traversing the hash table. */
8990 return 1;
8993 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
8994 table DATA. */
8997 emit_notes_for_differences_2 (variable_def **slot, variable_table_type old_vars)
8999 variable old_var, new_var;
9001 new_var = *slot;
9002 old_var = old_vars.find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9003 if (!old_var)
9005 int i;
9006 for (i = 0; i < new_var->n_var_parts; i++)
9007 new_var->var_part[i].cur_loc = NULL;
9008 variable_was_changed (new_var, NULL);
9011 /* Continue traversing the hash table. */
9012 return 1;
9015 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9016 NEW_SET. */
9018 static void
9019 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
9020 dataflow_set *new_set)
9022 shared_hash_htab (old_set->vars)
9023 .traverse <variable_table_type, emit_notes_for_differences_1>
9024 (shared_hash_htab (new_set->vars));
9025 shared_hash_htab (new_set->vars)
9026 .traverse <variable_table_type, emit_notes_for_differences_2>
9027 (shared_hash_htab (old_set->vars));
9028 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9031 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9033 static rtx
9034 next_non_note_insn_var_location (rtx insn)
9036 while (insn)
9038 insn = NEXT_INSN (insn);
9039 if (insn == 0
9040 || !NOTE_P (insn)
9041 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9042 break;
9045 return insn;
9048 /* Emit the notes for changes of location parts in the basic block BB. */
9050 static void
9051 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9053 unsigned int i;
9054 micro_operation *mo;
9056 dataflow_set_clear (set);
9057 dataflow_set_copy (set, &VTI (bb)->in);
9059 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9061 rtx insn = mo->insn;
9062 rtx next_insn = next_non_note_insn_var_location (insn);
9064 switch (mo->type)
9066 case MO_CALL:
9067 dataflow_set_clear_at_call (set);
9068 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9070 rtx arguments = mo->u.loc, *p = &arguments, note;
9071 while (*p)
9073 XEXP (XEXP (*p, 0), 1)
9074 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9075 shared_hash_htab (set->vars));
9076 /* If expansion is successful, keep it in the list. */
9077 if (XEXP (XEXP (*p, 0), 1))
9078 p = &XEXP (*p, 1);
9079 /* Otherwise, if the following item is data_value for it,
9080 drop it too too. */
9081 else if (XEXP (*p, 1)
9082 && REG_P (XEXP (XEXP (*p, 0), 0))
9083 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9084 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9086 && REGNO (XEXP (XEXP (*p, 0), 0))
9087 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9088 0), 0)))
9089 *p = XEXP (XEXP (*p, 1), 1);
9090 /* Just drop this item. */
9091 else
9092 *p = XEXP (*p, 1);
9094 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9095 NOTE_VAR_LOCATION (note) = arguments;
9097 break;
9099 case MO_USE:
9101 rtx loc = mo->u.loc;
9103 if (REG_P (loc))
9104 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9105 else
9106 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9108 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9110 break;
9112 case MO_VAL_LOC:
9114 rtx loc = mo->u.loc;
9115 rtx val, vloc;
9116 tree var;
9118 if (GET_CODE (loc) == CONCAT)
9120 val = XEXP (loc, 0);
9121 vloc = XEXP (loc, 1);
9123 else
9125 val = NULL_RTX;
9126 vloc = loc;
9129 var = PAT_VAR_LOCATION_DECL (vloc);
9131 clobber_variable_part (set, NULL_RTX,
9132 dv_from_decl (var), 0, NULL_RTX);
9133 if (val)
9135 if (VAL_NEEDS_RESOLUTION (loc))
9136 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9137 set_variable_part (set, val, dv_from_decl (var), 0,
9138 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9139 INSERT);
9141 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9142 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9143 dv_from_decl (var), 0,
9144 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9145 INSERT);
9147 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9149 break;
9151 case MO_VAL_USE:
9153 rtx loc = mo->u.loc;
9154 rtx val, vloc, uloc;
9156 vloc = uloc = XEXP (loc, 1);
9157 val = XEXP (loc, 0);
9159 if (GET_CODE (val) == CONCAT)
9161 uloc = XEXP (val, 1);
9162 val = XEXP (val, 0);
9165 if (VAL_NEEDS_RESOLUTION (loc))
9166 val_resolve (set, val, vloc, insn);
9167 else
9168 val_store (set, val, uloc, insn, false);
9170 if (VAL_HOLDS_TRACK_EXPR (loc))
9172 if (GET_CODE (uloc) == REG)
9173 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9174 NULL);
9175 else if (GET_CODE (uloc) == MEM)
9176 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9177 NULL);
9180 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9182 break;
9184 case MO_VAL_SET:
9186 rtx loc = mo->u.loc;
9187 rtx val, vloc, uloc;
9188 rtx dstv, srcv;
9190 vloc = loc;
9191 uloc = XEXP (vloc, 1);
9192 val = XEXP (vloc, 0);
9193 vloc = uloc;
9195 if (GET_CODE (uloc) == SET)
9197 dstv = SET_DEST (uloc);
9198 srcv = SET_SRC (uloc);
9200 else
9202 dstv = uloc;
9203 srcv = NULL;
9206 if (GET_CODE (val) == CONCAT)
9208 dstv = vloc = XEXP (val, 1);
9209 val = XEXP (val, 0);
9212 if (GET_CODE (vloc) == SET)
9214 srcv = SET_SRC (vloc);
9216 gcc_assert (val != srcv);
9217 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9219 dstv = vloc = SET_DEST (vloc);
9221 if (VAL_NEEDS_RESOLUTION (loc))
9222 val_resolve (set, val, srcv, insn);
9224 else if (VAL_NEEDS_RESOLUTION (loc))
9226 gcc_assert (GET_CODE (uloc) == SET
9227 && GET_CODE (SET_SRC (uloc)) == REG);
9228 val_resolve (set, val, SET_SRC (uloc), insn);
9231 if (VAL_HOLDS_TRACK_EXPR (loc))
9233 if (VAL_EXPR_IS_CLOBBERED (loc))
9235 if (REG_P (uloc))
9236 var_reg_delete (set, uloc, true);
9237 else if (MEM_P (uloc))
9239 gcc_assert (MEM_P (dstv));
9240 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9241 var_mem_delete (set, dstv, true);
9244 else
9246 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9247 rtx src = NULL, dst = uloc;
9248 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9250 if (GET_CODE (uloc) == SET)
9252 src = SET_SRC (uloc);
9253 dst = SET_DEST (uloc);
9256 if (copied_p)
9258 status = find_src_status (set, src);
9260 src = find_src_set_src (set, src);
9263 if (REG_P (dst))
9264 var_reg_delete_and_set (set, dst, !copied_p,
9265 status, srcv);
9266 else if (MEM_P (dst))
9268 gcc_assert (MEM_P (dstv));
9269 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9270 var_mem_delete_and_set (set, dstv, !copied_p,
9271 status, srcv);
9275 else if (REG_P (uloc))
9276 var_regno_delete (set, REGNO (uloc));
9277 else if (MEM_P (uloc))
9279 gcc_checking_assert (GET_CODE (vloc) == MEM);
9280 gcc_checking_assert (vloc == dstv);
9281 if (vloc != dstv)
9282 clobber_overlapping_mems (set, vloc);
9285 val_store (set, val, dstv, insn, true);
9287 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9288 set->vars);
9290 break;
9292 case MO_SET:
9294 rtx loc = mo->u.loc;
9295 rtx set_src = NULL;
9297 if (GET_CODE (loc) == SET)
9299 set_src = SET_SRC (loc);
9300 loc = SET_DEST (loc);
9303 if (REG_P (loc))
9304 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9305 set_src);
9306 else
9307 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9308 set_src);
9310 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9311 set->vars);
9313 break;
9315 case MO_COPY:
9317 rtx loc = mo->u.loc;
9318 enum var_init_status src_status;
9319 rtx set_src = NULL;
9321 if (GET_CODE (loc) == SET)
9323 set_src = SET_SRC (loc);
9324 loc = SET_DEST (loc);
9327 src_status = find_src_status (set, set_src);
9328 set_src = find_src_set_src (set, set_src);
9330 if (REG_P (loc))
9331 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9332 else
9333 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9335 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9336 set->vars);
9338 break;
9340 case MO_USE_NO_VAR:
9342 rtx loc = mo->u.loc;
9344 if (REG_P (loc))
9345 var_reg_delete (set, loc, false);
9346 else
9347 var_mem_delete (set, loc, false);
9349 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9351 break;
9353 case MO_CLOBBER:
9355 rtx loc = mo->u.loc;
9357 if (REG_P (loc))
9358 var_reg_delete (set, loc, true);
9359 else
9360 var_mem_delete (set, loc, true);
9362 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9363 set->vars);
9365 break;
9367 case MO_ADJUST:
9368 set->stack_adjust += mo->u.adjust;
9369 break;
9374 /* Emit notes for the whole function. */
9376 static void
9377 vt_emit_notes (void)
9379 basic_block bb;
9380 dataflow_set cur;
9382 gcc_assert (!changed_variables.elements ());
9384 /* Free memory occupied by the out hash tables, as they aren't used
9385 anymore. */
9386 FOR_EACH_BB (bb)
9387 dataflow_set_clear (&VTI (bb)->out);
9389 /* Enable emitting notes by functions (mainly by set_variable_part and
9390 delete_variable_part). */
9391 emit_notes = true;
9393 if (MAY_HAVE_DEBUG_INSNS)
9395 dropped_values.create (cselib_get_next_uid () * 2);
9396 loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9397 sizeof (loc_exp_dep), 64);
9400 dataflow_set_init (&cur);
9402 FOR_EACH_BB (bb)
9404 /* Emit the notes for changes of variable locations between two
9405 subsequent basic blocks. */
9406 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9408 if (MAY_HAVE_DEBUG_INSNS)
9409 local_get_addr_cache = pointer_map_create ();
9411 /* Emit the notes for the changes in the basic block itself. */
9412 emit_notes_in_bb (bb, &cur);
9414 if (MAY_HAVE_DEBUG_INSNS)
9415 pointer_map_destroy (local_get_addr_cache);
9416 local_get_addr_cache = NULL;
9418 /* Free memory occupied by the in hash table, we won't need it
9419 again. */
9420 dataflow_set_clear (&VTI (bb)->in);
9422 #ifdef ENABLE_CHECKING
9423 shared_hash_htab (cur.vars)
9424 .traverse <variable_table_type, emit_notes_for_differences_1>
9425 (shared_hash_htab (empty_shared_hash));
9426 #endif
9427 dataflow_set_destroy (&cur);
9429 if (MAY_HAVE_DEBUG_INSNS)
9430 dropped_values.dispose ();
9432 emit_notes = false;
9435 /* If there is a declaration and offset associated with register/memory RTL
9436 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9438 static bool
9439 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9441 if (REG_P (rtl))
9443 if (REG_ATTRS (rtl))
9445 *declp = REG_EXPR (rtl);
9446 *offsetp = REG_OFFSET (rtl);
9447 return true;
9450 else if (MEM_P (rtl))
9452 if (MEM_ATTRS (rtl))
9454 *declp = MEM_EXPR (rtl);
9455 *offsetp = INT_MEM_OFFSET (rtl);
9456 return true;
9459 return false;
9462 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9463 of VAL. */
9465 static void
9466 record_entry_value (cselib_val *val, rtx rtl)
9468 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9470 ENTRY_VALUE_EXP (ev) = rtl;
9472 cselib_add_permanent_equiv (val, ev, get_insns ());
9475 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9477 static void
9478 vt_add_function_parameter (tree parm)
9480 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9481 rtx incoming = DECL_INCOMING_RTL (parm);
9482 tree decl;
9483 enum machine_mode mode;
9484 HOST_WIDE_INT offset;
9485 dataflow_set *out;
9486 decl_or_value dv;
9488 if (TREE_CODE (parm) != PARM_DECL)
9489 return;
9491 if (!decl_rtl || !incoming)
9492 return;
9494 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9495 return;
9497 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9498 rewrite the incoming location of parameters passed on the stack
9499 into MEMs based on the argument pointer, so that incoming doesn't
9500 depend on a pseudo. */
9501 if (MEM_P (incoming)
9502 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9503 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9504 && XEXP (XEXP (incoming, 0), 0)
9505 == crtl->args.internal_arg_pointer
9506 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9508 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9509 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9510 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9511 incoming
9512 = replace_equiv_address_nv (incoming,
9513 plus_constant (Pmode,
9514 arg_pointer_rtx, off));
9517 #ifdef HAVE_window_save
9518 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9519 If the target machine has an explicit window save instruction, the
9520 actual entry value is the corresponding OUTGOING_REGNO instead. */
9521 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9523 if (REG_P (incoming)
9524 && HARD_REGISTER_P (incoming)
9525 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9527 parm_reg_t p;
9528 p.incoming = incoming;
9529 incoming
9530 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9531 OUTGOING_REGNO (REGNO (incoming)), 0);
9532 p.outgoing = incoming;
9533 vec_safe_push (windowed_parm_regs, p);
9535 else if (MEM_P (incoming)
9536 && REG_P (XEXP (incoming, 0))
9537 && HARD_REGISTER_P (XEXP (incoming, 0)))
9539 rtx reg = XEXP (incoming, 0);
9540 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9542 parm_reg_t p;
9543 p.incoming = reg;
9544 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9545 p.outgoing = reg;
9546 vec_safe_push (windowed_parm_regs, p);
9547 incoming = replace_equiv_address_nv (incoming, reg);
9551 #endif
9553 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9555 if (MEM_P (incoming))
9557 /* This means argument is passed by invisible reference. */
9558 offset = 0;
9559 decl = parm;
9561 else
9563 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9564 return;
9565 offset += byte_lowpart_offset (GET_MODE (incoming),
9566 GET_MODE (decl_rtl));
9570 if (!decl)
9571 return;
9573 if (parm != decl)
9575 /* If that DECL_RTL wasn't a pseudo that got spilled to
9576 memory, bail out. Otherwise, the spill slot sharing code
9577 will force the memory to reference spill_slot_decl (%sfp),
9578 so we don't match above. That's ok, the pseudo must have
9579 referenced the entire parameter, so just reset OFFSET. */
9580 if (decl != get_spill_slot_decl (false))
9581 return;
9582 offset = 0;
9585 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9586 return;
9588 out = &VTI (ENTRY_BLOCK_PTR)->out;
9590 dv = dv_from_decl (parm);
9592 if (target_for_debug_bind (parm)
9593 /* We can't deal with these right now, because this kind of
9594 variable is single-part. ??? We could handle parallels
9595 that describe multiple locations for the same single
9596 value, but ATM we don't. */
9597 && GET_CODE (incoming) != PARALLEL)
9599 cselib_val *val;
9600 rtx lowpart;
9602 /* ??? We shouldn't ever hit this, but it may happen because
9603 arguments passed by invisible reference aren't dealt with
9604 above: incoming-rtl will have Pmode rather than the
9605 expected mode for the type. */
9606 if (offset)
9607 return;
9609 lowpart = var_lowpart (mode, incoming);
9610 if (!lowpart)
9611 return;
9613 val = cselib_lookup_from_insn (lowpart, mode, true,
9614 VOIDmode, get_insns ());
9616 /* ??? Float-typed values in memory are not handled by
9617 cselib. */
9618 if (val)
9620 preserve_value (val);
9621 set_variable_part (out, val->val_rtx, dv, offset,
9622 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9623 dv = dv_from_value (val->val_rtx);
9626 if (MEM_P (incoming))
9628 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9629 VOIDmode, get_insns ());
9630 if (val)
9632 preserve_value (val);
9633 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9638 if (REG_P (incoming))
9640 incoming = var_lowpart (mode, incoming);
9641 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9642 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9643 incoming);
9644 set_variable_part (out, incoming, dv, offset,
9645 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9646 if (dv_is_value_p (dv))
9648 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9649 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9650 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9652 enum machine_mode indmode
9653 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9654 rtx mem = gen_rtx_MEM (indmode, incoming);
9655 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9656 VOIDmode,
9657 get_insns ());
9658 if (val)
9660 preserve_value (val);
9661 record_entry_value (val, mem);
9662 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9663 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9668 else if (MEM_P (incoming))
9670 incoming = var_lowpart (mode, incoming);
9671 set_variable_part (out, incoming, dv, offset,
9672 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9676 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9678 static void
9679 vt_add_function_parameters (void)
9681 tree parm;
9683 for (parm = DECL_ARGUMENTS (current_function_decl);
9684 parm; parm = DECL_CHAIN (parm))
9685 vt_add_function_parameter (parm);
9687 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9689 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9691 if (TREE_CODE (vexpr) == INDIRECT_REF)
9692 vexpr = TREE_OPERAND (vexpr, 0);
9694 if (TREE_CODE (vexpr) == PARM_DECL
9695 && DECL_ARTIFICIAL (vexpr)
9696 && !DECL_IGNORED_P (vexpr)
9697 && DECL_NAMELESS (vexpr))
9698 vt_add_function_parameter (vexpr);
9702 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9703 ensure it isn't flushed during cselib_reset_table.
9704 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9705 has been eliminated. */
9707 static void
9708 vt_init_cfa_base (void)
9710 cselib_val *val;
9712 #ifdef FRAME_POINTER_CFA_OFFSET
9713 cfa_base_rtx = frame_pointer_rtx;
9714 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9715 #else
9716 cfa_base_rtx = arg_pointer_rtx;
9717 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9718 #endif
9719 if (cfa_base_rtx == hard_frame_pointer_rtx
9720 || !fixed_regs[REGNO (cfa_base_rtx)])
9722 cfa_base_rtx = NULL_RTX;
9723 return;
9725 if (!MAY_HAVE_DEBUG_INSNS)
9726 return;
9728 /* Tell alias analysis that cfa_base_rtx should share
9729 find_base_term value with stack pointer or hard frame pointer. */
9730 if (!frame_pointer_needed)
9731 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9732 else if (!crtl->stack_realign_tried)
9733 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9735 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9736 VOIDmode, get_insns ());
9737 preserve_value (val);
9738 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9741 /* Allocate and initialize the data structures for variable tracking
9742 and parse the RTL to get the micro operations. */
9744 static bool
9745 vt_initialize (void)
9747 basic_block bb;
9748 HOST_WIDE_INT fp_cfa_offset = -1;
9750 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9752 attrs_pool = create_alloc_pool ("attrs_def pool",
9753 sizeof (struct attrs_def), 1024);
9754 var_pool = create_alloc_pool ("variable_def pool",
9755 sizeof (struct variable_def)
9756 + (MAX_VAR_PARTS - 1)
9757 * sizeof (((variable)NULL)->var_part[0]), 64);
9758 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9759 sizeof (struct location_chain_def),
9760 1024);
9761 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9762 sizeof (struct shared_hash_def), 256);
9763 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9764 empty_shared_hash->refcount = 1;
9765 empty_shared_hash->htab.create (1);
9766 changed_variables.create (10);
9768 /* Init the IN and OUT sets. */
9769 FOR_ALL_BB (bb)
9771 VTI (bb)->visited = false;
9772 VTI (bb)->flooded = false;
9773 dataflow_set_init (&VTI (bb)->in);
9774 dataflow_set_init (&VTI (bb)->out);
9775 VTI (bb)->permp = NULL;
9778 if (MAY_HAVE_DEBUG_INSNS)
9780 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9781 scratch_regs = BITMAP_ALLOC (NULL);
9782 valvar_pool = create_alloc_pool ("small variable_def pool",
9783 sizeof (struct variable_def), 256);
9784 preserved_values.create (256);
9785 global_get_addr_cache = pointer_map_create ();
9787 else
9789 scratch_regs = NULL;
9790 valvar_pool = NULL;
9791 global_get_addr_cache = NULL;
9794 if (MAY_HAVE_DEBUG_INSNS)
9796 rtx reg, expr;
9797 int ofst;
9798 cselib_val *val;
9800 #ifdef FRAME_POINTER_CFA_OFFSET
9801 reg = frame_pointer_rtx;
9802 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9803 #else
9804 reg = arg_pointer_rtx;
9805 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9806 #endif
9808 ofst -= INCOMING_FRAME_SP_OFFSET;
9810 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9811 VOIDmode, get_insns ());
9812 preserve_value (val);
9813 cselib_preserve_cfa_base_value (val, REGNO (reg));
9814 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9815 stack_pointer_rtx, -ofst);
9816 cselib_add_permanent_equiv (val, expr, get_insns ());
9818 if (ofst)
9820 val = cselib_lookup_from_insn (stack_pointer_rtx,
9821 GET_MODE (stack_pointer_rtx), 1,
9822 VOIDmode, get_insns ());
9823 preserve_value (val);
9824 expr = plus_constant (GET_MODE (reg), reg, ofst);
9825 cselib_add_permanent_equiv (val, expr, get_insns ());
9829 /* In order to factor out the adjustments made to the stack pointer or to
9830 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9831 instead of individual location lists, we're going to rewrite MEMs based
9832 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9833 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9834 resp. arg_pointer_rtx. We can do this either when there is no frame
9835 pointer in the function and stack adjustments are consistent for all
9836 basic blocks or when there is a frame pointer and no stack realignment.
9837 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9838 has been eliminated. */
9839 if (!frame_pointer_needed)
9841 rtx reg, elim;
9843 if (!vt_stack_adjustments ())
9844 return false;
9846 #ifdef FRAME_POINTER_CFA_OFFSET
9847 reg = frame_pointer_rtx;
9848 #else
9849 reg = arg_pointer_rtx;
9850 #endif
9851 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9852 if (elim != reg)
9854 if (GET_CODE (elim) == PLUS)
9855 elim = XEXP (elim, 0);
9856 if (elim == stack_pointer_rtx)
9857 vt_init_cfa_base ();
9860 else if (!crtl->stack_realign_tried)
9862 rtx reg, elim;
9864 #ifdef FRAME_POINTER_CFA_OFFSET
9865 reg = frame_pointer_rtx;
9866 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9867 #else
9868 reg = arg_pointer_rtx;
9869 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
9870 #endif
9871 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9872 if (elim != reg)
9874 if (GET_CODE (elim) == PLUS)
9876 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
9877 elim = XEXP (elim, 0);
9879 if (elim != hard_frame_pointer_rtx)
9880 fp_cfa_offset = -1;
9882 else
9883 fp_cfa_offset = -1;
9886 /* If the stack is realigned and a DRAP register is used, we're going to
9887 rewrite MEMs based on it representing incoming locations of parameters
9888 passed on the stack into MEMs based on the argument pointer. Although
9889 we aren't going to rewrite other MEMs, we still need to initialize the
9890 virtual CFA pointer in order to ensure that the argument pointer will
9891 be seen as a constant throughout the function.
9893 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
9894 else if (stack_realign_drap)
9896 rtx reg, elim;
9898 #ifdef FRAME_POINTER_CFA_OFFSET
9899 reg = frame_pointer_rtx;
9900 #else
9901 reg = arg_pointer_rtx;
9902 #endif
9903 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9904 if (elim != reg)
9906 if (GET_CODE (elim) == PLUS)
9907 elim = XEXP (elim, 0);
9908 if (elim == hard_frame_pointer_rtx)
9909 vt_init_cfa_base ();
9913 hard_frame_pointer_adjustment = -1;
9915 vt_add_function_parameters ();
9917 FOR_EACH_BB (bb)
9919 rtx insn;
9920 HOST_WIDE_INT pre, post = 0;
9921 basic_block first_bb, last_bb;
9923 if (MAY_HAVE_DEBUG_INSNS)
9925 cselib_record_sets_hook = add_with_sets;
9926 if (dump_file && (dump_flags & TDF_DETAILS))
9927 fprintf (dump_file, "first value: %i\n",
9928 cselib_get_next_uid ());
9931 first_bb = bb;
9932 for (;;)
9934 edge e;
9935 if (bb->next_bb == EXIT_BLOCK_PTR
9936 || ! single_pred_p (bb->next_bb))
9937 break;
9938 e = find_edge (bb, bb->next_bb);
9939 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
9940 break;
9941 bb = bb->next_bb;
9943 last_bb = bb;
9945 /* Add the micro-operations to the vector. */
9946 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
9948 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
9949 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
9950 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
9951 insn = NEXT_INSN (insn))
9953 if (INSN_P (insn))
9955 if (!frame_pointer_needed)
9957 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
9958 if (pre)
9960 micro_operation mo;
9961 mo.type = MO_ADJUST;
9962 mo.u.adjust = pre;
9963 mo.insn = insn;
9964 if (dump_file && (dump_flags & TDF_DETAILS))
9965 log_op_type (PATTERN (insn), bb, insn,
9966 MO_ADJUST, dump_file);
9967 VTI (bb)->mos.safe_push (mo);
9968 VTI (bb)->out.stack_adjust += pre;
9972 cselib_hook_called = false;
9973 adjust_insn (bb, insn);
9974 if (MAY_HAVE_DEBUG_INSNS)
9976 if (CALL_P (insn))
9977 prepare_call_arguments (bb, insn);
9978 cselib_process_insn (insn);
9979 if (dump_file && (dump_flags & TDF_DETAILS))
9981 print_rtl_single (dump_file, insn);
9982 dump_cselib_table (dump_file);
9985 if (!cselib_hook_called)
9986 add_with_sets (insn, 0, 0);
9987 cancel_changes (0);
9989 if (!frame_pointer_needed && post)
9991 micro_operation mo;
9992 mo.type = MO_ADJUST;
9993 mo.u.adjust = post;
9994 mo.insn = insn;
9995 if (dump_file && (dump_flags & TDF_DETAILS))
9996 log_op_type (PATTERN (insn), bb, insn,
9997 MO_ADJUST, dump_file);
9998 VTI (bb)->mos.safe_push (mo);
9999 VTI (bb)->out.stack_adjust += post;
10002 if (fp_cfa_offset != -1
10003 && hard_frame_pointer_adjustment == -1
10004 && fp_setter_insn (insn))
10006 vt_init_cfa_base ();
10007 hard_frame_pointer_adjustment = fp_cfa_offset;
10008 /* Disassociate sp from fp now. */
10009 if (MAY_HAVE_DEBUG_INSNS)
10011 cselib_val *v;
10012 cselib_invalidate_rtx (stack_pointer_rtx);
10013 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10014 VOIDmode);
10015 if (v && !cselib_preserved_value_p (v))
10017 cselib_set_value_sp_based (v);
10018 preserve_value (v);
10024 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10027 bb = last_bb;
10029 if (MAY_HAVE_DEBUG_INSNS)
10031 cselib_preserve_only_values ();
10032 cselib_reset_table (cselib_get_next_uid ());
10033 cselib_record_sets_hook = NULL;
10037 hard_frame_pointer_adjustment = -1;
10038 VTI (ENTRY_BLOCK_PTR)->flooded = true;
10039 cfa_base_rtx = NULL_RTX;
10040 return true;
10043 /* This is *not* reset after each function. It gives each
10044 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10045 a unique label number. */
10047 static int debug_label_num = 1;
10049 /* Get rid of all debug insns from the insn stream. */
10051 static void
10052 delete_debug_insns (void)
10054 basic_block bb;
10055 rtx insn, next;
10057 if (!MAY_HAVE_DEBUG_INSNS)
10058 return;
10060 FOR_EACH_BB (bb)
10062 FOR_BB_INSNS_SAFE (bb, insn, next)
10063 if (DEBUG_INSN_P (insn))
10065 tree decl = INSN_VAR_LOCATION_DECL (insn);
10066 if (TREE_CODE (decl) == LABEL_DECL
10067 && DECL_NAME (decl)
10068 && !DECL_RTL_SET_P (decl))
10070 PUT_CODE (insn, NOTE);
10071 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10072 NOTE_DELETED_LABEL_NAME (insn)
10073 = IDENTIFIER_POINTER (DECL_NAME (decl));
10074 SET_DECL_RTL (decl, insn);
10075 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10077 else
10078 delete_insn (insn);
10083 /* Run a fast, BB-local only version of var tracking, to take care of
10084 information that we don't do global analysis on, such that not all
10085 information is lost. If SKIPPED holds, we're skipping the global
10086 pass entirely, so we should try to use information it would have
10087 handled as well.. */
10089 static void
10090 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10092 /* ??? Just skip it all for now. */
10093 delete_debug_insns ();
10096 /* Free the data structures needed for variable tracking. */
10098 static void
10099 vt_finalize (void)
10101 basic_block bb;
10103 FOR_EACH_BB (bb)
10105 VTI (bb)->mos.release ();
10108 FOR_ALL_BB (bb)
10110 dataflow_set_destroy (&VTI (bb)->in);
10111 dataflow_set_destroy (&VTI (bb)->out);
10112 if (VTI (bb)->permp)
10114 dataflow_set_destroy (VTI (bb)->permp);
10115 XDELETE (VTI (bb)->permp);
10118 free_aux_for_blocks ();
10119 empty_shared_hash->htab.dispose ();
10120 changed_variables.dispose ();
10121 free_alloc_pool (attrs_pool);
10122 free_alloc_pool (var_pool);
10123 free_alloc_pool (loc_chain_pool);
10124 free_alloc_pool (shared_hash_pool);
10126 if (MAY_HAVE_DEBUG_INSNS)
10128 if (global_get_addr_cache)
10129 pointer_map_destroy (global_get_addr_cache);
10130 global_get_addr_cache = NULL;
10131 if (loc_exp_dep_pool)
10132 free_alloc_pool (loc_exp_dep_pool);
10133 loc_exp_dep_pool = NULL;
10134 free_alloc_pool (valvar_pool);
10135 preserved_values.release ();
10136 cselib_finish ();
10137 BITMAP_FREE (scratch_regs);
10138 scratch_regs = NULL;
10141 #ifdef HAVE_window_save
10142 vec_free (windowed_parm_regs);
10143 #endif
10145 if (vui_vec)
10146 XDELETEVEC (vui_vec);
10147 vui_vec = NULL;
10148 vui_allocated = 0;
10151 /* The entry point to variable tracking pass. */
10153 static inline unsigned int
10154 variable_tracking_main_1 (void)
10156 bool success;
10158 if (flag_var_tracking_assignments < 0)
10160 delete_debug_insns ();
10161 return 0;
10164 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
10166 vt_debug_insns_local (true);
10167 return 0;
10170 mark_dfs_back_edges ();
10171 if (!vt_initialize ())
10173 vt_finalize ();
10174 vt_debug_insns_local (true);
10175 return 0;
10178 success = vt_find_locations ();
10180 if (!success && flag_var_tracking_assignments > 0)
10182 vt_finalize ();
10184 delete_debug_insns ();
10186 /* This is later restored by our caller. */
10187 flag_var_tracking_assignments = 0;
10189 success = vt_initialize ();
10190 gcc_assert (success);
10192 success = vt_find_locations ();
10195 if (!success)
10197 vt_finalize ();
10198 vt_debug_insns_local (false);
10199 return 0;
10202 if (dump_file && (dump_flags & TDF_DETAILS))
10204 dump_dataflow_sets ();
10205 dump_reg_info (dump_file);
10206 dump_flow_info (dump_file, dump_flags);
10209 timevar_push (TV_VAR_TRACKING_EMIT);
10210 vt_emit_notes ();
10211 timevar_pop (TV_VAR_TRACKING_EMIT);
10213 vt_finalize ();
10214 vt_debug_insns_local (false);
10215 return 0;
10218 unsigned int
10219 variable_tracking_main (void)
10221 unsigned int ret;
10222 int save = flag_var_tracking_assignments;
10224 ret = variable_tracking_main_1 ();
10226 flag_var_tracking_assignments = save;
10228 return ret;
10231 static bool
10232 gate_handle_var_tracking (void)
10234 return (flag_var_tracking && !targetm.delay_vartrack);
10239 namespace {
10241 const pass_data pass_data_variable_tracking =
10243 RTL_PASS, /* type */
10244 "vartrack", /* name */
10245 OPTGROUP_NONE, /* optinfo_flags */
10246 true, /* has_gate */
10247 true, /* has_execute */
10248 TV_VAR_TRACKING, /* tv_id */
10249 0, /* properties_required */
10250 0, /* properties_provided */
10251 0, /* properties_destroyed */
10252 0, /* todo_flags_start */
10253 ( TODO_verify_rtl_sharing | TODO_verify_flow ), /* todo_flags_finish */
10256 class pass_variable_tracking : public rtl_opt_pass
10258 public:
10259 pass_variable_tracking(gcc::context *ctxt)
10260 : rtl_opt_pass(pass_data_variable_tracking, ctxt)
10263 /* opt_pass methods: */
10264 bool gate () { return gate_handle_var_tracking (); }
10265 unsigned int execute () { return variable_tracking_main (); }
10267 }; // class pass_variable_tracking
10269 } // anon namespace
10271 rtl_opt_pass *
10272 make_pass_variable_tracking (gcc::context *ctxt)
10274 return new pass_variable_tracking (ctxt);