PR sanitizer/58413
[official-gcc.git] / gcc / expmed.c
blobba9a7b68c42823777c7c5474db7de141f5135deb
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2013 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "diagnostic-core.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "expr.h"
33 #include "optabs.h"
34 #include "recog.h"
35 #include "langhooks.h"
36 #include "df.h"
37 #include "target.h"
38 #include "expmed.h"
40 struct target_expmed default_target_expmed;
41 #if SWITCHABLE_TARGET
42 struct target_expmed *this_target_expmed = &default_target_expmed;
43 #endif
45 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
46 unsigned HOST_WIDE_INT,
47 unsigned HOST_WIDE_INT,
48 unsigned HOST_WIDE_INT,
49 rtx);
50 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
51 unsigned HOST_WIDE_INT,
52 unsigned HOST_WIDE_INT,
53 unsigned HOST_WIDE_INT,
54 rtx);
55 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
56 unsigned HOST_WIDE_INT,
57 unsigned HOST_WIDE_INT, rtx, int, bool);
58 static rtx mask_rtx (enum machine_mode, int, int, int);
59 static rtx lshift_value (enum machine_mode, unsigned HOST_WIDE_INT, int);
60 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
61 unsigned HOST_WIDE_INT, int);
62 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
63 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
64 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
66 /* Test whether a value is zero of a power of two. */
67 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
68 (((x) & ((x) - (unsigned HOST_WIDE_INT) 1)) == 0)
70 struct init_expmed_rtl
72 struct rtx_def reg;
73 struct rtx_def plus;
74 struct rtx_def neg;
75 struct rtx_def mult;
76 struct rtx_def sdiv;
77 struct rtx_def udiv;
78 struct rtx_def sdiv_32;
79 struct rtx_def smod_32;
80 struct rtx_def wide_mult;
81 struct rtx_def wide_lshr;
82 struct rtx_def wide_trunc;
83 struct rtx_def shift;
84 struct rtx_def shift_mult;
85 struct rtx_def shift_add;
86 struct rtx_def shift_sub0;
87 struct rtx_def shift_sub1;
88 struct rtx_def zext;
89 struct rtx_def trunc;
91 rtx pow2[MAX_BITS_PER_WORD];
92 rtx cint[MAX_BITS_PER_WORD];
95 static void
96 init_expmed_one_conv (struct init_expmed_rtl *all, enum machine_mode to_mode,
97 enum machine_mode from_mode, bool speed)
99 int to_size, from_size;
100 rtx which;
102 /* We're given no information about the true size of a partial integer,
103 only the size of the "full" integer it requires for storage. For
104 comparison purposes here, reduce the bit size by one in that case. */
105 to_size = (GET_MODE_BITSIZE (to_mode)
106 - (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT));
107 from_size = (GET_MODE_BITSIZE (from_mode)
108 - (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT));
110 /* Assume cost of zero-extend and sign-extend is the same. */
111 which = (to_size < from_size ? &all->trunc : &all->zext);
113 PUT_MODE (&all->reg, from_mode);
114 set_convert_cost (to_mode, from_mode, speed, set_src_cost (which, speed));
117 static void
118 init_expmed_one_mode (struct init_expmed_rtl *all,
119 enum machine_mode mode, int speed)
121 int m, n, mode_bitsize;
122 enum machine_mode mode_from;
124 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
126 PUT_MODE (&all->reg, mode);
127 PUT_MODE (&all->plus, mode);
128 PUT_MODE (&all->neg, mode);
129 PUT_MODE (&all->mult, mode);
130 PUT_MODE (&all->sdiv, mode);
131 PUT_MODE (&all->udiv, mode);
132 PUT_MODE (&all->sdiv_32, mode);
133 PUT_MODE (&all->smod_32, mode);
134 PUT_MODE (&all->wide_trunc, mode);
135 PUT_MODE (&all->shift, mode);
136 PUT_MODE (&all->shift_mult, mode);
137 PUT_MODE (&all->shift_add, mode);
138 PUT_MODE (&all->shift_sub0, mode);
139 PUT_MODE (&all->shift_sub1, mode);
140 PUT_MODE (&all->zext, mode);
141 PUT_MODE (&all->trunc, mode);
143 set_add_cost (speed, mode, set_src_cost (&all->plus, speed));
144 set_neg_cost (speed, mode, set_src_cost (&all->neg, speed));
145 set_mul_cost (speed, mode, set_src_cost (&all->mult, speed));
146 set_sdiv_cost (speed, mode, set_src_cost (&all->sdiv, speed));
147 set_udiv_cost (speed, mode, set_src_cost (&all->udiv, speed));
149 set_sdiv_pow2_cheap (speed, mode, (set_src_cost (&all->sdiv_32, speed)
150 <= 2 * add_cost (speed, mode)));
151 set_smod_pow2_cheap (speed, mode, (set_src_cost (&all->smod_32, speed)
152 <= 4 * add_cost (speed, mode)));
154 set_shift_cost (speed, mode, 0, 0);
156 int cost = add_cost (speed, mode);
157 set_shiftadd_cost (speed, mode, 0, cost);
158 set_shiftsub0_cost (speed, mode, 0, cost);
159 set_shiftsub1_cost (speed, mode, 0, cost);
162 n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
163 for (m = 1; m < n; m++)
165 XEXP (&all->shift, 1) = all->cint[m];
166 XEXP (&all->shift_mult, 1) = all->pow2[m];
168 set_shift_cost (speed, mode, m, set_src_cost (&all->shift, speed));
169 set_shiftadd_cost (speed, mode, m, set_src_cost (&all->shift_add, speed));
170 set_shiftsub0_cost (speed, mode, m, set_src_cost (&all->shift_sub0, speed));
171 set_shiftsub1_cost (speed, mode, m, set_src_cost (&all->shift_sub1, speed));
174 if (SCALAR_INT_MODE_P (mode))
176 for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
177 mode_from = (enum machine_mode)(mode_from + 1))
178 init_expmed_one_conv (all, mode, mode_from, speed);
180 if (GET_MODE_CLASS (mode) == MODE_INT)
182 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
183 if (wider_mode != VOIDmode)
185 PUT_MODE (&all->zext, wider_mode);
186 PUT_MODE (&all->wide_mult, wider_mode);
187 PUT_MODE (&all->wide_lshr, wider_mode);
188 XEXP (&all->wide_lshr, 1) = GEN_INT (mode_bitsize);
190 set_mul_widen_cost (speed, wider_mode,
191 set_src_cost (&all->wide_mult, speed));
192 set_mul_highpart_cost (speed, mode,
193 set_src_cost (&all->wide_trunc, speed));
198 void
199 init_expmed (void)
201 struct init_expmed_rtl all;
202 enum machine_mode mode;
203 int m, speed;
205 memset (&all, 0, sizeof all);
206 for (m = 1; m < MAX_BITS_PER_WORD; m++)
208 all.pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
209 all.cint[m] = GEN_INT (m);
212 PUT_CODE (&all.reg, REG);
213 /* Avoid using hard regs in ways which may be unsupported. */
214 SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
216 PUT_CODE (&all.plus, PLUS);
217 XEXP (&all.plus, 0) = &all.reg;
218 XEXP (&all.plus, 1) = &all.reg;
220 PUT_CODE (&all.neg, NEG);
221 XEXP (&all.neg, 0) = &all.reg;
223 PUT_CODE (&all.mult, MULT);
224 XEXP (&all.mult, 0) = &all.reg;
225 XEXP (&all.mult, 1) = &all.reg;
227 PUT_CODE (&all.sdiv, DIV);
228 XEXP (&all.sdiv, 0) = &all.reg;
229 XEXP (&all.sdiv, 1) = &all.reg;
231 PUT_CODE (&all.udiv, UDIV);
232 XEXP (&all.udiv, 0) = &all.reg;
233 XEXP (&all.udiv, 1) = &all.reg;
235 PUT_CODE (&all.sdiv_32, DIV);
236 XEXP (&all.sdiv_32, 0) = &all.reg;
237 XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? all.cint[32] : GEN_INT (32);
239 PUT_CODE (&all.smod_32, MOD);
240 XEXP (&all.smod_32, 0) = &all.reg;
241 XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
243 PUT_CODE (&all.zext, ZERO_EXTEND);
244 XEXP (&all.zext, 0) = &all.reg;
246 PUT_CODE (&all.wide_mult, MULT);
247 XEXP (&all.wide_mult, 0) = &all.zext;
248 XEXP (&all.wide_mult, 1) = &all.zext;
250 PUT_CODE (&all.wide_lshr, LSHIFTRT);
251 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
253 PUT_CODE (&all.wide_trunc, TRUNCATE);
254 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
256 PUT_CODE (&all.shift, ASHIFT);
257 XEXP (&all.shift, 0) = &all.reg;
259 PUT_CODE (&all.shift_mult, MULT);
260 XEXP (&all.shift_mult, 0) = &all.reg;
262 PUT_CODE (&all.shift_add, PLUS);
263 XEXP (&all.shift_add, 0) = &all.shift_mult;
264 XEXP (&all.shift_add, 1) = &all.reg;
266 PUT_CODE (&all.shift_sub0, MINUS);
267 XEXP (&all.shift_sub0, 0) = &all.shift_mult;
268 XEXP (&all.shift_sub0, 1) = &all.reg;
270 PUT_CODE (&all.shift_sub1, MINUS);
271 XEXP (&all.shift_sub1, 0) = &all.reg;
272 XEXP (&all.shift_sub1, 1) = &all.shift_mult;
274 PUT_CODE (&all.trunc, TRUNCATE);
275 XEXP (&all.trunc, 0) = &all.reg;
277 for (speed = 0; speed < 2; speed++)
279 crtl->maybe_hot_insn_p = speed;
280 set_zero_cost (speed, set_src_cost (const0_rtx, speed));
282 for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
283 mode = (enum machine_mode)(mode + 1))
284 init_expmed_one_mode (&all, mode, speed);
286 if (MIN_MODE_PARTIAL_INT != VOIDmode)
287 for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
288 mode = (enum machine_mode)(mode + 1))
289 init_expmed_one_mode (&all, mode, speed);
291 if (MIN_MODE_VECTOR_INT != VOIDmode)
292 for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
293 mode = (enum machine_mode)(mode + 1))
294 init_expmed_one_mode (&all, mode, speed);
297 if (alg_hash_used_p ())
299 struct alg_hash_entry *p = alg_hash_entry_ptr (0);
300 memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
302 else
303 set_alg_hash_used_p (true);
304 default_rtl_profile ();
307 /* Return an rtx representing minus the value of X.
308 MODE is the intended mode of the result,
309 useful if X is a CONST_INT. */
312 negate_rtx (enum machine_mode mode, rtx x)
314 rtx result = simplify_unary_operation (NEG, mode, x, mode);
316 if (result == 0)
317 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
319 return result;
322 /* Adjust bitfield memory MEM so that it points to the first unit of mode
323 MODE that contains a bitfield of size BITSIZE at bit position BITNUM.
324 If MODE is BLKmode, return a reference to every byte in the bitfield.
325 Set *NEW_BITNUM to the bit position of the field within the new memory. */
327 static rtx
328 narrow_bit_field_mem (rtx mem, enum machine_mode mode,
329 unsigned HOST_WIDE_INT bitsize,
330 unsigned HOST_WIDE_INT bitnum,
331 unsigned HOST_WIDE_INT *new_bitnum)
333 if (mode == BLKmode)
335 *new_bitnum = bitnum % BITS_PER_UNIT;
336 HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
337 HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
338 / BITS_PER_UNIT);
339 return adjust_bitfield_address_size (mem, mode, offset, size);
341 else
343 unsigned int unit = GET_MODE_BITSIZE (mode);
344 *new_bitnum = bitnum % unit;
345 HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
346 return adjust_bitfield_address (mem, mode, offset);
350 /* The caller wants to perform insertion or extraction PATTERN on a
351 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
352 BITREGION_START and BITREGION_END are as for store_bit_field
353 and FIELDMODE is the natural mode of the field.
355 Search for a mode that is compatible with the memory access
356 restrictions and (where applicable) with a register insertion or
357 extraction. Return the new memory on success, storing the adjusted
358 bit position in *NEW_BITNUM. Return null otherwise. */
360 static rtx
361 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
362 rtx op0, HOST_WIDE_INT bitsize,
363 HOST_WIDE_INT bitnum,
364 unsigned HOST_WIDE_INT bitregion_start,
365 unsigned HOST_WIDE_INT bitregion_end,
366 enum machine_mode fieldmode,
367 unsigned HOST_WIDE_INT *new_bitnum)
369 bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
370 bitregion_end, MEM_ALIGN (op0),
371 MEM_VOLATILE_P (op0));
372 enum machine_mode best_mode;
373 if (iter.next_mode (&best_mode))
375 /* We can use a memory in BEST_MODE. See whether this is true for
376 any wider modes. All other things being equal, we prefer to
377 use the widest mode possible because it tends to expose more
378 CSE opportunities. */
379 if (!iter.prefer_smaller_modes ())
381 /* Limit the search to the mode required by the corresponding
382 register insertion or extraction instruction, if any. */
383 enum machine_mode limit_mode = word_mode;
384 extraction_insn insn;
385 if (get_best_reg_extraction_insn (&insn, pattern,
386 GET_MODE_BITSIZE (best_mode),
387 fieldmode))
388 limit_mode = insn.field_mode;
390 enum machine_mode wider_mode;
391 while (iter.next_mode (&wider_mode)
392 && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
393 best_mode = wider_mode;
395 return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
396 new_bitnum);
398 return NULL_RTX;
401 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
402 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
403 offset is then BITNUM / BITS_PER_UNIT. */
405 static bool
406 lowpart_bit_field_p (unsigned HOST_WIDE_INT bitnum,
407 unsigned HOST_WIDE_INT bitsize,
408 enum machine_mode struct_mode)
410 if (BYTES_BIG_ENDIAN)
411 return (bitnum % BITS_PER_UNIT == 0
412 && (bitnum + bitsize == GET_MODE_BITSIZE (struct_mode)
413 || (bitnum + bitsize) % BITS_PER_WORD == 0));
414 else
415 return bitnum % BITS_PER_WORD == 0;
418 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
419 bit number BITNUM can be treated as a simple value of mode MODE. */
421 static bool
422 simple_mem_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
423 unsigned HOST_WIDE_INT bitnum, enum machine_mode mode)
425 return (MEM_P (op0)
426 && bitnum % BITS_PER_UNIT == 0
427 && bitsize == GET_MODE_BITSIZE (mode)
428 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
429 || (bitnum % GET_MODE_ALIGNMENT (mode) == 0
430 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
433 /* Try to use instruction INSV to store VALUE into a field of OP0.
434 BITSIZE and BITNUM are as for store_bit_field. */
436 static bool
437 store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
438 unsigned HOST_WIDE_INT bitsize,
439 unsigned HOST_WIDE_INT bitnum, rtx value)
441 struct expand_operand ops[4];
442 rtx value1;
443 rtx xop0 = op0;
444 rtx last = get_last_insn ();
445 bool copy_back = false;
447 enum machine_mode op_mode = insv->field_mode;
448 unsigned int unit = GET_MODE_BITSIZE (op_mode);
449 if (bitsize == 0 || bitsize > unit)
450 return false;
452 if (MEM_P (xop0))
453 /* Get a reference to the first byte of the field. */
454 xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
455 &bitnum);
456 else
458 /* Convert from counting within OP0 to counting in OP_MODE. */
459 if (BYTES_BIG_ENDIAN)
460 bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
462 /* If xop0 is a register, we need it in OP_MODE
463 to make it acceptable to the format of insv. */
464 if (GET_CODE (xop0) == SUBREG)
465 /* We can't just change the mode, because this might clobber op0,
466 and we will need the original value of op0 if insv fails. */
467 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
468 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
469 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
472 /* If the destination is a paradoxical subreg such that we need a
473 truncate to the inner mode, perform the insertion on a temporary and
474 truncate the result to the original destination. Note that we can't
475 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
476 X) 0)) is (reg:N X). */
477 if (GET_CODE (xop0) == SUBREG
478 && REG_P (SUBREG_REG (xop0))
479 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
480 op_mode))
482 rtx tem = gen_reg_rtx (op_mode);
483 emit_move_insn (tem, xop0);
484 xop0 = tem;
485 copy_back = true;
488 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
489 "backwards" from the size of the unit we are inserting into.
490 Otherwise, we count bits from the most significant on a
491 BYTES/BITS_BIG_ENDIAN machine. */
493 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
494 bitnum = unit - bitsize - bitnum;
496 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
497 value1 = value;
498 if (GET_MODE (value) != op_mode)
500 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
502 /* Optimization: Don't bother really extending VALUE
503 if it has all the bits we will actually use. However,
504 if we must narrow it, be sure we do it correctly. */
506 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
508 rtx tmp;
510 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
511 if (! tmp)
512 tmp = simplify_gen_subreg (op_mode,
513 force_reg (GET_MODE (value),
514 value1),
515 GET_MODE (value), 0);
516 value1 = tmp;
518 else
519 value1 = gen_lowpart (op_mode, value1);
521 else if (CONST_INT_P (value))
522 value1 = gen_int_mode (INTVAL (value), op_mode);
523 else
524 /* Parse phase is supposed to make VALUE's data type
525 match that of the component reference, which is a type
526 at least as wide as the field; so VALUE should have
527 a mode that corresponds to that type. */
528 gcc_assert (CONSTANT_P (value));
531 create_fixed_operand (&ops[0], xop0);
532 create_integer_operand (&ops[1], bitsize);
533 create_integer_operand (&ops[2], bitnum);
534 create_input_operand (&ops[3], value1, op_mode);
535 if (maybe_expand_insn (insv->icode, 4, ops))
537 if (copy_back)
538 convert_move (op0, xop0, true);
539 return true;
541 delete_insns_since (last);
542 return false;
545 /* A subroutine of store_bit_field, with the same arguments. Return true
546 if the operation could be implemented.
548 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
549 no other way of implementing the operation. If FALLBACK_P is false,
550 return false instead. */
552 static bool
553 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
554 unsigned HOST_WIDE_INT bitnum,
555 unsigned HOST_WIDE_INT bitregion_start,
556 unsigned HOST_WIDE_INT bitregion_end,
557 enum machine_mode fieldmode,
558 rtx value, bool fallback_p)
560 rtx op0 = str_rtx;
561 rtx orig_value;
563 while (GET_CODE (op0) == SUBREG)
565 /* The following line once was done only if WORDS_BIG_ENDIAN,
566 but I think that is a mistake. WORDS_BIG_ENDIAN is
567 meaningful at a much higher level; when structures are copied
568 between memory and regs, the higher-numbered regs
569 always get higher addresses. */
570 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
571 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
572 int byte_offset = 0;
574 /* Paradoxical subregs need special handling on big endian machines. */
575 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
577 int difference = inner_mode_size - outer_mode_size;
579 if (WORDS_BIG_ENDIAN)
580 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
581 if (BYTES_BIG_ENDIAN)
582 byte_offset += difference % UNITS_PER_WORD;
584 else
585 byte_offset = SUBREG_BYTE (op0);
587 bitnum += byte_offset * BITS_PER_UNIT;
588 op0 = SUBREG_REG (op0);
591 /* No action is needed if the target is a register and if the field
592 lies completely outside that register. This can occur if the source
593 code contains an out-of-bounds access to a small array. */
594 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
595 return true;
597 /* Use vec_set patterns for inserting parts of vectors whenever
598 available. */
599 if (VECTOR_MODE_P (GET_MODE (op0))
600 && !MEM_P (op0)
601 && optab_handler (vec_set_optab, GET_MODE (op0)) != CODE_FOR_nothing
602 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
603 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
604 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
606 struct expand_operand ops[3];
607 enum machine_mode outermode = GET_MODE (op0);
608 enum machine_mode innermode = GET_MODE_INNER (outermode);
609 enum insn_code icode = optab_handler (vec_set_optab, outermode);
610 int pos = bitnum / GET_MODE_BITSIZE (innermode);
612 create_fixed_operand (&ops[0], op0);
613 create_input_operand (&ops[1], value, innermode);
614 create_integer_operand (&ops[2], pos);
615 if (maybe_expand_insn (icode, 3, ops))
616 return true;
619 /* If the target is a register, overwriting the entire object, or storing
620 a full-word or multi-word field can be done with just a SUBREG. */
621 if (!MEM_P (op0)
622 && bitsize == GET_MODE_BITSIZE (fieldmode)
623 && ((bitsize == GET_MODE_BITSIZE (GET_MODE (op0)) && bitnum == 0)
624 || (bitsize % BITS_PER_WORD == 0 && bitnum % BITS_PER_WORD == 0)))
626 /* Use the subreg machinery either to narrow OP0 to the required
627 words or to cope with mode punning between equal-sized modes. */
628 rtx sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
629 bitnum / BITS_PER_UNIT);
630 if (sub)
632 emit_move_insn (sub, value);
633 return true;
637 /* If the target is memory, storing any naturally aligned field can be
638 done with a simple store. For targets that support fast unaligned
639 memory, any naturally sized, unit aligned field can be done directly. */
640 if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode))
642 op0 = adjust_bitfield_address (op0, fieldmode, bitnum / BITS_PER_UNIT);
643 emit_move_insn (op0, value);
644 return true;
647 /* Make sure we are playing with integral modes. Pun with subregs
648 if we aren't. This must come after the entire register case above,
649 since that case is valid for any mode. The following cases are only
650 valid for integral modes. */
652 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
653 if (imode != GET_MODE (op0))
655 if (MEM_P (op0))
656 op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
657 else
659 gcc_assert (imode != BLKmode);
660 op0 = gen_lowpart (imode, op0);
665 /* Storing an lsb-aligned field in a register
666 can be done with a movstrict instruction. */
668 if (!MEM_P (op0)
669 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
670 && bitsize == GET_MODE_BITSIZE (fieldmode)
671 && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
673 struct expand_operand ops[2];
674 enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
675 rtx arg0 = op0;
676 unsigned HOST_WIDE_INT subreg_off;
678 if (GET_CODE (arg0) == SUBREG)
680 /* Else we've got some float mode source being extracted into
681 a different float mode destination -- this combination of
682 subregs results in Severe Tire Damage. */
683 gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
684 || GET_MODE_CLASS (fieldmode) == MODE_INT
685 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
686 arg0 = SUBREG_REG (arg0);
689 subreg_off = bitnum / BITS_PER_UNIT;
690 if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off))
692 arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
694 create_fixed_operand (&ops[0], arg0);
695 /* Shrink the source operand to FIELDMODE. */
696 create_convert_operand_to (&ops[1], value, fieldmode, false);
697 if (maybe_expand_insn (icode, 2, ops))
698 return true;
702 /* Handle fields bigger than a word. */
704 if (bitsize > BITS_PER_WORD)
706 /* Here we transfer the words of the field
707 in the order least significant first.
708 This is because the most significant word is the one which may
709 be less than full.
710 However, only do that if the value is not BLKmode. */
712 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
713 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
714 unsigned int i;
715 rtx last;
717 /* This is the mode we must force value to, so that there will be enough
718 subwords to extract. Note that fieldmode will often (always?) be
719 VOIDmode, because that is what store_field uses to indicate that this
720 is a bit field, but passing VOIDmode to operand_subword_force
721 is not allowed. */
722 fieldmode = GET_MODE (value);
723 if (fieldmode == VOIDmode)
724 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
726 last = get_last_insn ();
727 for (i = 0; i < nwords; i++)
729 /* If I is 0, use the low-order word in both field and target;
730 if I is 1, use the next to lowest word; and so on. */
731 unsigned int wordnum = (backwards
732 ? GET_MODE_SIZE (fieldmode) / UNITS_PER_WORD
733 - i - 1
734 : i);
735 unsigned int bit_offset = (backwards
736 ? MAX ((int) bitsize - ((int) i + 1)
737 * BITS_PER_WORD,
739 : (int) i * BITS_PER_WORD);
740 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
741 unsigned HOST_WIDE_INT new_bitsize =
742 MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
744 /* If the remaining chunk doesn't have full wordsize we have
745 to make sure that for big endian machines the higher order
746 bits are used. */
747 if (new_bitsize < BITS_PER_WORD && BYTES_BIG_ENDIAN && !backwards)
748 value_word = simplify_expand_binop (word_mode, lshr_optab,
749 value_word,
750 GEN_INT (BITS_PER_WORD
751 - new_bitsize),
752 NULL_RTX, true,
753 OPTAB_LIB_WIDEN);
755 if (!store_bit_field_1 (op0, new_bitsize,
756 bitnum + bit_offset,
757 bitregion_start, bitregion_end,
758 word_mode,
759 value_word, fallback_p))
761 delete_insns_since (last);
762 return false;
765 return true;
768 /* If VALUE has a floating-point or complex mode, access it as an
769 integer of the corresponding size. This can occur on a machine
770 with 64 bit registers that uses SFmode for float. It can also
771 occur for unaligned float or complex fields. */
772 orig_value = value;
773 if (GET_MODE (value) != VOIDmode
774 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
775 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
777 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
778 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
781 /* If OP0 is a multi-word register, narrow it to the affected word.
782 If the region spans two words, defer to store_split_bit_field. */
783 if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
785 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
786 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
787 gcc_assert (op0);
788 bitnum %= BITS_PER_WORD;
789 if (bitnum + bitsize > BITS_PER_WORD)
791 if (!fallback_p)
792 return false;
794 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
795 bitregion_end, value);
796 return true;
800 /* From here on we can assume that the field to be stored in fits
801 within a word. If the destination is a register, it too fits
802 in a word. */
804 extraction_insn insv;
805 if (!MEM_P (op0)
806 && get_best_reg_extraction_insn (&insv, EP_insv,
807 GET_MODE_BITSIZE (GET_MODE (op0)),
808 fieldmode)
809 && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
810 return true;
812 /* If OP0 is a memory, try copying it to a register and seeing if a
813 cheap register alternative is available. */
814 if (MEM_P (op0))
816 /* Do not use unaligned memory insvs for volatile bitfields when
817 -fstrict-volatile-bitfields is in effect. */
818 if (!(MEM_VOLATILE_P (op0)
819 && flag_strict_volatile_bitfields > 0)
820 && get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
821 fieldmode)
822 && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
823 return true;
825 rtx last = get_last_insn ();
827 /* Try loading part of OP0 into a register, inserting the bitfield
828 into that, and then copying the result back to OP0. */
829 unsigned HOST_WIDE_INT bitpos;
830 rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
831 bitregion_start, bitregion_end,
832 fieldmode, &bitpos);
833 if (xop0)
835 rtx tempreg = copy_to_reg (xop0);
836 if (store_bit_field_1 (tempreg, bitsize, bitpos,
837 bitregion_start, bitregion_end,
838 fieldmode, orig_value, false))
840 emit_move_insn (xop0, tempreg);
841 return true;
843 delete_insns_since (last);
847 if (!fallback_p)
848 return false;
850 store_fixed_bit_field (op0, bitsize, bitnum, bitregion_start,
851 bitregion_end, value);
852 return true;
855 /* Generate code to store value from rtx VALUE
856 into a bit-field within structure STR_RTX
857 containing BITSIZE bits starting at bit BITNUM.
859 BITREGION_START is bitpos of the first bitfield in this region.
860 BITREGION_END is the bitpos of the ending bitfield in this region.
861 These two fields are 0, if the C++ memory model does not apply,
862 or we are not interested in keeping track of bitfield regions.
864 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
866 void
867 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
868 unsigned HOST_WIDE_INT bitnum,
869 unsigned HOST_WIDE_INT bitregion_start,
870 unsigned HOST_WIDE_INT bitregion_end,
871 enum machine_mode fieldmode,
872 rtx value)
874 /* Under the C++0x memory model, we must not touch bits outside the
875 bit region. Adjust the address to start at the beginning of the
876 bit region. */
877 if (MEM_P (str_rtx) && bitregion_start > 0)
879 enum machine_mode bestmode;
880 HOST_WIDE_INT offset, size;
882 gcc_assert ((bitregion_start % BITS_PER_UNIT) == 0);
884 offset = bitregion_start / BITS_PER_UNIT;
885 bitnum -= bitregion_start;
886 size = (bitnum + bitsize + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
887 bitregion_end -= bitregion_start;
888 bitregion_start = 0;
889 bestmode = get_best_mode (bitsize, bitnum,
890 bitregion_start, bitregion_end,
891 MEM_ALIGN (str_rtx), VOIDmode,
892 MEM_VOLATILE_P (str_rtx));
893 str_rtx = adjust_bitfield_address_size (str_rtx, bestmode, offset, size);
896 if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
897 bitregion_start, bitregion_end,
898 fieldmode, value, true))
899 gcc_unreachable ();
902 /* Use shifts and boolean operations to store VALUE into a bit field of
903 width BITSIZE in OP0, starting at bit BITNUM. */
905 static void
906 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
907 unsigned HOST_WIDE_INT bitnum,
908 unsigned HOST_WIDE_INT bitregion_start,
909 unsigned HOST_WIDE_INT bitregion_end,
910 rtx value)
912 enum machine_mode mode;
913 rtx temp;
914 int all_zero = 0;
915 int all_one = 0;
917 /* There is a case not handled here:
918 a structure with a known alignment of just a halfword
919 and a field split across two aligned halfwords within the structure.
920 Or likewise a structure with a known alignment of just a byte
921 and a field split across two bytes.
922 Such cases are not supposed to be able to occur. */
924 if (MEM_P (op0))
926 unsigned HOST_WIDE_INT maxbits = MAX_FIXED_MODE_SIZE;
928 if (bitregion_end)
929 maxbits = bitregion_end - bitregion_start + 1;
931 /* Get the proper mode to use for this field. We want a mode that
932 includes the entire field. If such a mode would be larger than
933 a word, we won't be doing the extraction the normal way.
934 We don't want a mode bigger than the destination. */
936 mode = GET_MODE (op0);
937 if (GET_MODE_BITSIZE (mode) == 0
938 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
939 mode = word_mode;
941 if (MEM_VOLATILE_P (op0)
942 && GET_MODE_BITSIZE (GET_MODE (op0)) > 0
943 && GET_MODE_BITSIZE (GET_MODE (op0)) <= maxbits
944 && flag_strict_volatile_bitfields > 0)
945 mode = GET_MODE (op0);
946 else
947 mode = get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
948 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
950 if (mode == VOIDmode)
952 /* The only way this should occur is if the field spans word
953 boundaries. */
954 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
955 bitregion_end, value);
956 return;
959 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
962 mode = GET_MODE (op0);
963 gcc_assert (SCALAR_INT_MODE_P (mode));
965 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
966 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
968 if (BYTES_BIG_ENDIAN)
969 /* BITNUM is the distance between our msb
970 and that of the containing datum.
971 Convert it to the distance from the lsb. */
972 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
974 /* Now BITNUM is always the distance between our lsb
975 and that of OP0. */
977 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
978 we must first convert its mode to MODE. */
980 if (CONST_INT_P (value))
982 HOST_WIDE_INT v = INTVAL (value);
984 if (bitsize < HOST_BITS_PER_WIDE_INT)
985 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
987 if (v == 0)
988 all_zero = 1;
989 else if ((bitsize < HOST_BITS_PER_WIDE_INT
990 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
991 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
992 all_one = 1;
994 value = lshift_value (mode, v, bitnum);
996 else
998 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
999 && bitnum + bitsize != GET_MODE_BITSIZE (mode));
1001 if (GET_MODE (value) != mode)
1002 value = convert_to_mode (mode, value, 1);
1004 if (must_and)
1005 value = expand_binop (mode, and_optab, value,
1006 mask_rtx (mode, 0, bitsize, 0),
1007 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1008 if (bitnum > 0)
1009 value = expand_shift (LSHIFT_EXPR, mode, value,
1010 bitnum, NULL_RTX, 1);
1013 /* Now clear the chosen bits in OP0,
1014 except that if VALUE is -1 we need not bother. */
1015 /* We keep the intermediates in registers to allow CSE to combine
1016 consecutive bitfield assignments. */
1018 temp = force_reg (mode, op0);
1020 if (! all_one)
1022 temp = expand_binop (mode, and_optab, temp,
1023 mask_rtx (mode, bitnum, bitsize, 1),
1024 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1025 temp = force_reg (mode, temp);
1028 /* Now logical-or VALUE into OP0, unless it is zero. */
1030 if (! all_zero)
1032 temp = expand_binop (mode, ior_optab, temp, value,
1033 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1034 temp = force_reg (mode, temp);
1037 if (op0 != temp)
1039 op0 = copy_rtx (op0);
1040 emit_move_insn (op0, temp);
1044 /* Store a bit field that is split across multiple accessible memory objects.
1046 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1047 BITSIZE is the field width; BITPOS the position of its first bit
1048 (within the word).
1049 VALUE is the value to store.
1051 This does not yet handle fields wider than BITS_PER_WORD. */
1053 static void
1054 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1055 unsigned HOST_WIDE_INT bitpos,
1056 unsigned HOST_WIDE_INT bitregion_start,
1057 unsigned HOST_WIDE_INT bitregion_end,
1058 rtx value)
1060 unsigned int unit;
1061 unsigned int bitsdone = 0;
1063 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1064 much at a time. */
1065 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1066 unit = BITS_PER_WORD;
1067 else
1068 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1070 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1071 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1072 that VALUE might be a floating-point constant. */
1073 if (CONSTANT_P (value) && !CONST_INT_P (value))
1075 rtx word = gen_lowpart_common (word_mode, value);
1077 if (word && (value != word))
1078 value = word;
1079 else
1080 value = gen_lowpart_common (word_mode,
1081 force_reg (GET_MODE (value) != VOIDmode
1082 ? GET_MODE (value)
1083 : word_mode, value));
1086 while (bitsdone < bitsize)
1088 unsigned HOST_WIDE_INT thissize;
1089 rtx part, word;
1090 unsigned HOST_WIDE_INT thispos;
1091 unsigned HOST_WIDE_INT offset;
1093 offset = (bitpos + bitsdone) / unit;
1094 thispos = (bitpos + bitsdone) % unit;
1096 /* When region of bytes we can touch is restricted, decrease
1097 UNIT close to the end of the region as needed. If op0 is a REG
1098 or SUBREG of REG, don't do this, as there can't be data races
1099 on a register and we can expand shorter code in some cases. */
1100 if (bitregion_end
1101 && unit > BITS_PER_UNIT
1102 && bitpos + bitsdone - thispos + unit > bitregion_end + 1
1103 && !REG_P (op0)
1104 && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
1106 unit = unit / 2;
1107 continue;
1110 /* THISSIZE must not overrun a word boundary. Otherwise,
1111 store_fixed_bit_field will call us again, and we will mutually
1112 recurse forever. */
1113 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1114 thissize = MIN (thissize, unit - thispos);
1116 if (BYTES_BIG_ENDIAN)
1118 /* Fetch successively less significant portions. */
1119 if (CONST_INT_P (value))
1120 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1121 >> (bitsize - bitsdone - thissize))
1122 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1123 else
1125 int total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1126 /* The args are chosen so that the last part includes the
1127 lsb. Give extract_bit_field the value it needs (with
1128 endianness compensation) to fetch the piece we want. */
1129 part = extract_fixed_bit_field (word_mode, value, thissize,
1130 total_bits - bitsize + bitsdone,
1131 NULL_RTX, 1, false);
1134 else
1136 /* Fetch successively more significant portions. */
1137 if (CONST_INT_P (value))
1138 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1139 >> bitsdone)
1140 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1141 else
1142 part = extract_fixed_bit_field (word_mode, value, thissize,
1143 bitsdone, NULL_RTX, 1, false);
1146 /* If OP0 is a register, then handle OFFSET here.
1148 When handling multiword bitfields, extract_bit_field may pass
1149 down a word_mode SUBREG of a larger REG for a bitfield that actually
1150 crosses a word boundary. Thus, for a SUBREG, we must find
1151 the current word starting from the base register. */
1152 if (GET_CODE (op0) == SUBREG)
1154 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD)
1155 + (offset * unit / BITS_PER_WORD);
1156 enum machine_mode sub_mode = GET_MODE (SUBREG_REG (op0));
1157 if (sub_mode != BLKmode && GET_MODE_SIZE (sub_mode) < UNITS_PER_WORD)
1158 word = word_offset ? const0_rtx : op0;
1159 else
1160 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1161 GET_MODE (SUBREG_REG (op0)));
1162 offset &= BITS_PER_WORD / unit - 1;
1164 else if (REG_P (op0))
1166 enum machine_mode op0_mode = GET_MODE (op0);
1167 if (op0_mode != BLKmode && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD)
1168 word = offset ? const0_rtx : op0;
1169 else
1170 word = operand_subword_force (op0, offset * unit / BITS_PER_WORD,
1171 GET_MODE (op0));
1172 offset &= BITS_PER_WORD / unit - 1;
1174 else
1175 word = op0;
1177 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1178 it is just an out-of-bounds access. Ignore it. */
1179 if (word != const0_rtx)
1180 store_fixed_bit_field (word, thissize, offset * unit + thispos,
1181 bitregion_start, bitregion_end, part);
1182 bitsdone += thissize;
1186 /* A subroutine of extract_bit_field_1 that converts return value X
1187 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1188 to extract_bit_field. */
1190 static rtx
1191 convert_extracted_bit_field (rtx x, enum machine_mode mode,
1192 enum machine_mode tmode, bool unsignedp)
1194 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1195 return x;
1197 /* If the x mode is not a scalar integral, first convert to the
1198 integer mode of that size and then access it as a floating-point
1199 value via a SUBREG. */
1200 if (!SCALAR_INT_MODE_P (tmode))
1202 enum machine_mode smode;
1204 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1205 x = convert_to_mode (smode, x, unsignedp);
1206 x = force_reg (smode, x);
1207 return gen_lowpart (tmode, x);
1210 return convert_to_mode (tmode, x, unsignedp);
1213 /* Try to use an ext(z)v pattern to extract a field from OP0.
1214 Return the extracted value on success, otherwise return null.
1215 EXT_MODE is the mode of the extraction and the other arguments
1216 are as for extract_bit_field. */
1218 static rtx
1219 extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
1220 unsigned HOST_WIDE_INT bitsize,
1221 unsigned HOST_WIDE_INT bitnum,
1222 int unsignedp, rtx target,
1223 enum machine_mode mode, enum machine_mode tmode)
1225 struct expand_operand ops[4];
1226 rtx spec_target = target;
1227 rtx spec_target_subreg = 0;
1228 enum machine_mode ext_mode = extv->field_mode;
1229 unsigned unit = GET_MODE_BITSIZE (ext_mode);
1231 if (bitsize == 0 || unit < bitsize)
1232 return NULL_RTX;
1234 if (MEM_P (op0))
1235 /* Get a reference to the first byte of the field. */
1236 op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
1237 &bitnum);
1238 else
1240 /* Convert from counting within OP0 to counting in EXT_MODE. */
1241 if (BYTES_BIG_ENDIAN)
1242 bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1244 /* If op0 is a register, we need it in EXT_MODE to make it
1245 acceptable to the format of ext(z)v. */
1246 if (GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1247 return NULL_RTX;
1248 if (REG_P (op0) && GET_MODE (op0) != ext_mode)
1249 op0 = gen_lowpart_SUBREG (ext_mode, op0);
1252 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1253 "backwards" from the size of the unit we are extracting from.
1254 Otherwise, we count bits from the most significant on a
1255 BYTES/BITS_BIG_ENDIAN machine. */
1257 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1258 bitnum = unit - bitsize - bitnum;
1260 if (target == 0)
1261 target = spec_target = gen_reg_rtx (tmode);
1263 if (GET_MODE (target) != ext_mode)
1265 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1266 between the mode of the extraction (word_mode) and the target
1267 mode. Instead, create a temporary and use convert_move to set
1268 the target. */
1269 if (REG_P (target)
1270 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode))
1272 target = gen_lowpart (ext_mode, target);
1273 if (GET_MODE_PRECISION (ext_mode)
1274 > GET_MODE_PRECISION (GET_MODE (spec_target)))
1275 spec_target_subreg = target;
1277 else
1278 target = gen_reg_rtx (ext_mode);
1281 create_output_operand (&ops[0], target, ext_mode);
1282 create_fixed_operand (&ops[1], op0);
1283 create_integer_operand (&ops[2], bitsize);
1284 create_integer_operand (&ops[3], bitnum);
1285 if (maybe_expand_insn (extv->icode, 4, ops))
1287 target = ops[0].value;
1288 if (target == spec_target)
1289 return target;
1290 if (target == spec_target_subreg)
1291 return spec_target;
1292 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1294 return NULL_RTX;
1297 /* A subroutine of extract_bit_field, with the same arguments.
1298 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1299 if we can find no other means of implementing the operation.
1300 if FALLBACK_P is false, return NULL instead. */
1302 static rtx
1303 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1304 unsigned HOST_WIDE_INT bitnum,
1305 int unsignedp, bool packedp, rtx target,
1306 enum machine_mode mode, enum machine_mode tmode,
1307 bool fallback_p)
1309 rtx op0 = str_rtx;
1310 enum machine_mode int_mode;
1311 enum machine_mode mode1;
1313 if (tmode == VOIDmode)
1314 tmode = mode;
1316 while (GET_CODE (op0) == SUBREG)
1318 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1319 op0 = SUBREG_REG (op0);
1322 /* If we have an out-of-bounds access to a register, just return an
1323 uninitialized register of the required mode. This can occur if the
1324 source code contains an out-of-bounds access to a small array. */
1325 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1326 return gen_reg_rtx (tmode);
1328 if (REG_P (op0)
1329 && mode == GET_MODE (op0)
1330 && bitnum == 0
1331 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1333 /* We're trying to extract a full register from itself. */
1334 return op0;
1337 /* See if we can get a better vector mode before extracting. */
1338 if (VECTOR_MODE_P (GET_MODE (op0))
1339 && !MEM_P (op0)
1340 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1342 enum machine_mode new_mode;
1344 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1345 new_mode = MIN_MODE_VECTOR_FLOAT;
1346 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1347 new_mode = MIN_MODE_VECTOR_FRACT;
1348 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1349 new_mode = MIN_MODE_VECTOR_UFRACT;
1350 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1351 new_mode = MIN_MODE_VECTOR_ACCUM;
1352 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1353 new_mode = MIN_MODE_VECTOR_UACCUM;
1354 else
1355 new_mode = MIN_MODE_VECTOR_INT;
1357 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1358 if (GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1359 && targetm.vector_mode_supported_p (new_mode))
1360 break;
1361 if (new_mode != VOIDmode)
1362 op0 = gen_lowpart (new_mode, op0);
1365 /* Use vec_extract patterns for extracting parts of vectors whenever
1366 available. */
1367 if (VECTOR_MODE_P (GET_MODE (op0))
1368 && !MEM_P (op0)
1369 && optab_handler (vec_extract_optab, GET_MODE (op0)) != CODE_FOR_nothing
1370 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1371 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1373 struct expand_operand ops[3];
1374 enum machine_mode outermode = GET_MODE (op0);
1375 enum machine_mode innermode = GET_MODE_INNER (outermode);
1376 enum insn_code icode = optab_handler (vec_extract_optab, outermode);
1377 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1379 create_output_operand (&ops[0], target, innermode);
1380 create_input_operand (&ops[1], op0, outermode);
1381 create_integer_operand (&ops[2], pos);
1382 if (maybe_expand_insn (icode, 3, ops))
1384 target = ops[0].value;
1385 if (GET_MODE (target) != mode)
1386 return gen_lowpart (tmode, target);
1387 return target;
1391 /* Make sure we are playing with integral modes. Pun with subregs
1392 if we aren't. */
1394 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1395 if (imode != GET_MODE (op0))
1397 if (MEM_P (op0))
1398 op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
1399 else if (imode != BLKmode)
1401 op0 = gen_lowpart (imode, op0);
1403 /* If we got a SUBREG, force it into a register since we
1404 aren't going to be able to do another SUBREG on it. */
1405 if (GET_CODE (op0) == SUBREG)
1406 op0 = force_reg (imode, op0);
1408 else if (REG_P (op0))
1410 rtx reg, subreg;
1411 imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
1412 MODE_INT);
1413 reg = gen_reg_rtx (imode);
1414 subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
1415 emit_move_insn (subreg, op0);
1416 op0 = reg;
1417 bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
1419 else
1421 HOST_WIDE_INT size = GET_MODE_SIZE (GET_MODE (op0));
1422 rtx mem = assign_stack_temp (GET_MODE (op0), size);
1423 emit_move_insn (mem, op0);
1424 op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
1429 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1430 If that's wrong, the solution is to test for it and set TARGET to 0
1431 if needed. */
1433 /* If the bitfield is volatile, we need to make sure the access
1434 remains on a type-aligned boundary. */
1435 if (GET_CODE (op0) == MEM
1436 && MEM_VOLATILE_P (op0)
1437 && GET_MODE_BITSIZE (GET_MODE (op0)) > 0
1438 && flag_strict_volatile_bitfields > 0)
1439 goto no_subreg_mode_swap;
1441 /* Only scalar integer modes can be converted via subregs. There is an
1442 additional problem for FP modes here in that they can have a precision
1443 which is different from the size. mode_for_size uses precision, but
1444 we want a mode based on the size, so we must avoid calling it for FP
1445 modes. */
1446 mode1 = mode;
1447 if (SCALAR_INT_MODE_P (tmode))
1449 enum machine_mode try_mode = mode_for_size (bitsize,
1450 GET_MODE_CLASS (tmode), 0);
1451 if (try_mode != BLKmode)
1452 mode1 = try_mode;
1454 gcc_assert (mode1 != BLKmode);
1456 /* Extraction of a full MODE1 value can be done with a subreg as long
1457 as the least significant bit of the value is the least significant
1458 bit of either OP0 or a word of OP0. */
1459 if (!MEM_P (op0)
1460 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
1461 && bitsize == GET_MODE_BITSIZE (mode1)
1462 && TRULY_NOOP_TRUNCATION_MODES_P (mode1, GET_MODE (op0)))
1464 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1465 bitnum / BITS_PER_UNIT);
1466 if (sub)
1467 return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
1470 /* Extraction of a full MODE1 value can be done with a load as long as
1471 the field is on a byte boundary and is sufficiently aligned. */
1472 if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1))
1474 op0 = adjust_bitfield_address (op0, mode1, bitnum / BITS_PER_UNIT);
1475 return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
1478 no_subreg_mode_swap:
1480 /* Handle fields bigger than a word. */
1482 if (bitsize > BITS_PER_WORD)
1484 /* Here we transfer the words of the field
1485 in the order least significant first.
1486 This is because the most significant word is the one which may
1487 be less than full. */
1489 unsigned int backwards = WORDS_BIG_ENDIAN;
1490 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1491 unsigned int i;
1492 rtx last;
1494 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1495 target = gen_reg_rtx (mode);
1497 /* Indicate for flow that the entire target reg is being set. */
1498 emit_clobber (target);
1500 last = get_last_insn ();
1501 for (i = 0; i < nwords; i++)
1503 /* If I is 0, use the low-order word in both field and target;
1504 if I is 1, use the next to lowest word; and so on. */
1505 /* Word number in TARGET to use. */
1506 unsigned int wordnum
1507 = (backwards
1508 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1509 : i);
1510 /* Offset from start of field in OP0. */
1511 unsigned int bit_offset = (backwards
1512 ? MAX ((int) bitsize - ((int) i + 1)
1513 * BITS_PER_WORD,
1515 : (int) i * BITS_PER_WORD);
1516 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1517 rtx result_part
1518 = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
1519 bitsize - i * BITS_PER_WORD),
1520 bitnum + bit_offset, 1, false, target_part,
1521 mode, word_mode, fallback_p);
1523 gcc_assert (target_part);
1524 if (!result_part)
1526 delete_insns_since (last);
1527 return NULL;
1530 if (result_part != target_part)
1531 emit_move_insn (target_part, result_part);
1534 if (unsignedp)
1536 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1537 need to be zero'd out. */
1538 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1540 unsigned int i, total_words;
1542 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1543 for (i = nwords; i < total_words; i++)
1544 emit_move_insn
1545 (operand_subword (target,
1546 backwards ? total_words - i - 1 : i,
1547 1, VOIDmode),
1548 const0_rtx);
1550 return target;
1553 /* Signed bit field: sign-extend with two arithmetic shifts. */
1554 target = expand_shift (LSHIFT_EXPR, mode, target,
1555 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1556 return expand_shift (RSHIFT_EXPR, mode, target,
1557 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1560 /* If OP0 is a multi-word register, narrow it to the affected word.
1561 If the region spans two words, defer to extract_split_bit_field. */
1562 if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1564 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
1565 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1566 bitnum %= BITS_PER_WORD;
1567 if (bitnum + bitsize > BITS_PER_WORD)
1569 if (!fallback_p)
1570 return NULL_RTX;
1571 target = extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
1572 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1576 /* From here on we know the desired field is smaller than a word.
1577 If OP0 is a register, it too fits within a word. */
1578 enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
1579 extraction_insn extv;
1580 if (!MEM_P (op0)
1581 /* ??? We could limit the structure size to the part of OP0 that
1582 contains the field, with appropriate checks for endianness
1583 and TRULY_NOOP_TRUNCATION. */
1584 && get_best_reg_extraction_insn (&extv, pattern,
1585 GET_MODE_BITSIZE (GET_MODE (op0)),
1586 tmode))
1588 rtx result = extract_bit_field_using_extv (&extv, op0, bitsize, bitnum,
1589 unsignedp, target, mode,
1590 tmode);
1591 if (result)
1592 return result;
1595 /* If OP0 is a memory, try copying it to a register and seeing if a
1596 cheap register alternative is available. */
1597 if (MEM_P (op0))
1599 /* Do not use extv/extzv for volatile bitfields when
1600 -fstrict-volatile-bitfields is in effect. */
1601 if (!(MEM_VOLATILE_P (op0) && flag_strict_volatile_bitfields > 0)
1602 && get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
1603 tmode))
1605 rtx result = extract_bit_field_using_extv (&extv, op0, bitsize,
1606 bitnum, unsignedp,
1607 target, mode,
1608 tmode);
1609 if (result)
1610 return result;
1613 rtx last = get_last_insn ();
1615 /* Try loading part of OP0 into a register and extracting the
1616 bitfield from that. */
1617 unsigned HOST_WIDE_INT bitpos;
1618 rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
1619 0, 0, tmode, &bitpos);
1620 if (xop0)
1622 xop0 = copy_to_reg (xop0);
1623 rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
1624 unsignedp, packedp, target,
1625 mode, tmode, false);
1626 if (result)
1627 return result;
1628 delete_insns_since (last);
1632 if (!fallback_p)
1633 return NULL;
1635 /* Find a correspondingly-sized integer field, so we can apply
1636 shifts and masks to it. */
1637 int_mode = int_mode_for_mode (tmode);
1638 if (int_mode == BLKmode)
1639 int_mode = int_mode_for_mode (mode);
1640 /* Should probably push op0 out to memory and then do a load. */
1641 gcc_assert (int_mode != BLKmode);
1643 target = extract_fixed_bit_field (int_mode, op0, bitsize, bitnum,
1644 target, unsignedp, packedp);
1645 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1648 /* Generate code to extract a byte-field from STR_RTX
1649 containing BITSIZE bits, starting at BITNUM,
1650 and put it in TARGET if possible (if TARGET is nonzero).
1651 Regardless of TARGET, we return the rtx for where the value is placed.
1653 STR_RTX is the structure containing the byte (a REG or MEM).
1654 UNSIGNEDP is nonzero if this is an unsigned bit field.
1655 PACKEDP is nonzero if the field has the packed attribute.
1656 MODE is the natural mode of the field value once extracted.
1657 TMODE is the mode the caller would like the value to have;
1658 but the value may be returned with type MODE instead.
1660 If a TARGET is specified and we can store in it at no extra cost,
1661 we do so, and return TARGET.
1662 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1663 if they are equally easy. */
1666 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1667 unsigned HOST_WIDE_INT bitnum, int unsignedp, bool packedp,
1668 rtx target, enum machine_mode mode, enum machine_mode tmode)
1670 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp, packedp,
1671 target, mode, tmode, true);
1674 /* Use shifts and boolean operations to extract a field of BITSIZE bits
1675 from bit BITNUM of OP0.
1677 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1678 PACKEDP is true if the field has the packed attribute.
1680 If TARGET is nonzero, attempts to store the value there
1681 and return TARGET, but this is not guaranteed.
1682 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1684 static rtx
1685 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1686 unsigned HOST_WIDE_INT bitsize,
1687 unsigned HOST_WIDE_INT bitnum, rtx target,
1688 int unsignedp, bool packedp)
1690 enum machine_mode mode;
1692 if (MEM_P (op0))
1694 /* Get the proper mode to use for this field. We want a mode that
1695 includes the entire field. If such a mode would be larger than
1696 a word, we won't be doing the extraction the normal way. */
1698 if (MEM_VOLATILE_P (op0)
1699 && flag_strict_volatile_bitfields > 0)
1701 if (GET_MODE_BITSIZE (GET_MODE (op0)) > 0)
1702 mode = GET_MODE (op0);
1703 else if (target && GET_MODE_BITSIZE (GET_MODE (target)) > 0)
1704 mode = GET_MODE (target);
1705 else
1706 mode = tmode;
1708 else
1709 mode = get_best_mode (bitsize, bitnum, 0, 0,
1710 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1712 if (mode == VOIDmode)
1713 /* The only way this should occur is if the field spans word
1714 boundaries. */
1715 return extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
1717 unsigned int total_bits = GET_MODE_BITSIZE (mode);
1718 HOST_WIDE_INT bit_offset = bitnum - bitnum % total_bits;
1720 /* If we're accessing a volatile MEM, we can't apply BIT_OFFSET
1721 if it results in a multi-word access where we otherwise wouldn't
1722 have one. So, check for that case here. */
1723 if (MEM_P (op0)
1724 && MEM_VOLATILE_P (op0)
1725 && flag_strict_volatile_bitfields > 0
1726 && bitnum % BITS_PER_UNIT + bitsize <= total_bits
1727 && bitnum % GET_MODE_BITSIZE (mode) + bitsize > total_bits)
1729 if (STRICT_ALIGNMENT)
1731 static bool informed_about_misalignment = false;
1733 if (packedp)
1735 if (bitsize == total_bits)
1736 warning_at (input_location, OPT_fstrict_volatile_bitfields,
1737 "multiple accesses to volatile structure"
1738 " member because of packed attribute");
1739 else
1740 warning_at (input_location, OPT_fstrict_volatile_bitfields,
1741 "multiple accesses to volatile structure"
1742 " bitfield because of packed attribute");
1744 return extract_split_bit_field (op0, bitsize, bitnum,
1745 unsignedp);
1748 if (bitsize == total_bits)
1749 warning_at (input_location, OPT_fstrict_volatile_bitfields,
1750 "mis-aligned access used for structure member");
1751 else
1752 warning_at (input_location, OPT_fstrict_volatile_bitfields,
1753 "mis-aligned access used for structure bitfield");
1755 if (! informed_about_misalignment)
1757 informed_about_misalignment = true;
1758 inform (input_location,
1759 "when a volatile object spans multiple type-sized"
1760 " locations, the compiler must choose between using"
1761 " a single mis-aligned access to preserve the"
1762 " volatility, or using multiple aligned accesses"
1763 " to avoid runtime faults; this code may fail at"
1764 " runtime if the hardware does not allow this"
1765 " access");
1768 bit_offset = bitnum - bitnum % BITS_PER_UNIT;
1770 op0 = adjust_bitfield_address (op0, mode, bit_offset / BITS_PER_UNIT);
1771 bitnum -= bit_offset;
1774 mode = GET_MODE (op0);
1775 gcc_assert (SCALAR_INT_MODE_P (mode));
1777 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1778 for invalid input, such as extract equivalent of f5 from
1779 gcc.dg/pr48335-2.c. */
1781 if (BYTES_BIG_ENDIAN)
1782 /* BITNUM is the distance between our msb and that of OP0.
1783 Convert it to the distance from the lsb. */
1784 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1786 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
1787 We have reduced the big-endian case to the little-endian case. */
1789 if (unsignedp)
1791 if (bitnum)
1793 /* If the field does not already start at the lsb,
1794 shift it so it does. */
1795 /* Maybe propagate the target for the shift. */
1796 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1797 if (tmode != mode)
1798 subtarget = 0;
1799 op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
1801 /* Convert the value to the desired mode. */
1802 if (mode != tmode)
1803 op0 = convert_to_mode (tmode, op0, 1);
1805 /* Unless the msb of the field used to be the msb when we shifted,
1806 mask out the upper bits. */
1808 if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
1809 return expand_binop (GET_MODE (op0), and_optab, op0,
1810 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1811 target, 1, OPTAB_LIB_WIDEN);
1812 return op0;
1815 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1816 then arithmetic-shift its lsb to the lsb of the word. */
1817 op0 = force_reg (mode, op0);
1819 /* Find the narrowest integer mode that contains the field. */
1821 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1822 mode = GET_MODE_WIDER_MODE (mode))
1823 if (GET_MODE_BITSIZE (mode) >= bitsize + bitnum)
1825 op0 = convert_to_mode (mode, op0, 0);
1826 break;
1829 if (mode != tmode)
1830 target = 0;
1832 if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
1834 int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
1835 /* Maybe propagate the target for the shift. */
1836 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1837 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1840 return expand_shift (RSHIFT_EXPR, mode, op0,
1841 GET_MODE_BITSIZE (mode) - bitsize, target, 0);
1844 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1845 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1846 complement of that if COMPLEMENT. The mask is truncated if
1847 necessary to the width of mode MODE. The mask is zero-extended if
1848 BITSIZE+BITPOS is too small for MODE. */
1850 static rtx
1851 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1853 double_int mask;
1855 mask = double_int::mask (bitsize);
1856 mask = mask.llshift (bitpos, HOST_BITS_PER_DOUBLE_INT);
1858 if (complement)
1859 mask = ~mask;
1861 return immed_double_int_const (mask, mode);
1864 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1865 VALUE << BITPOS. */
1867 static rtx
1868 lshift_value (enum machine_mode mode, unsigned HOST_WIDE_INT value,
1869 int bitpos)
1871 double_int val;
1873 val = double_int::from_uhwi (value);
1874 val = val.llshift (bitpos, HOST_BITS_PER_DOUBLE_INT);
1876 return immed_double_int_const (val, mode);
1879 /* Extract a bit field that is split across two words
1880 and return an RTX for the result.
1882 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1883 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1884 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1886 static rtx
1887 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1888 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1890 unsigned int unit;
1891 unsigned int bitsdone = 0;
1892 rtx result = NULL_RTX;
1893 int first = 1;
1895 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1896 much at a time. */
1897 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1898 unit = BITS_PER_WORD;
1899 else
1900 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1902 while (bitsdone < bitsize)
1904 unsigned HOST_WIDE_INT thissize;
1905 rtx part, word;
1906 unsigned HOST_WIDE_INT thispos;
1907 unsigned HOST_WIDE_INT offset;
1909 offset = (bitpos + bitsdone) / unit;
1910 thispos = (bitpos + bitsdone) % unit;
1912 /* THISSIZE must not overrun a word boundary. Otherwise,
1913 extract_fixed_bit_field will call us again, and we will mutually
1914 recurse forever. */
1915 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1916 thissize = MIN (thissize, unit - thispos);
1918 /* If OP0 is a register, then handle OFFSET here.
1920 When handling multiword bitfields, extract_bit_field may pass
1921 down a word_mode SUBREG of a larger REG for a bitfield that actually
1922 crosses a word boundary. Thus, for a SUBREG, we must find
1923 the current word starting from the base register. */
1924 if (GET_CODE (op0) == SUBREG)
1926 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1927 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1928 GET_MODE (SUBREG_REG (op0)));
1929 offset = 0;
1931 else if (REG_P (op0))
1933 word = operand_subword_force (op0, offset, GET_MODE (op0));
1934 offset = 0;
1936 else
1937 word = op0;
1939 /* Extract the parts in bit-counting order,
1940 whose meaning is determined by BYTES_PER_UNIT.
1941 OFFSET is in UNITs, and UNIT is in bits. */
1942 part = extract_fixed_bit_field (word_mode, word, thissize,
1943 offset * unit + thispos, 0, 1, false);
1944 bitsdone += thissize;
1946 /* Shift this part into place for the result. */
1947 if (BYTES_BIG_ENDIAN)
1949 if (bitsize != bitsdone)
1950 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1951 bitsize - bitsdone, 0, 1);
1953 else
1955 if (bitsdone != thissize)
1956 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1957 bitsdone - thissize, 0, 1);
1960 if (first)
1961 result = part;
1962 else
1963 /* Combine the parts with bitwise or. This works
1964 because we extracted each part as an unsigned bit field. */
1965 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
1966 OPTAB_LIB_WIDEN);
1968 first = 0;
1971 /* Unsigned bit field: we are done. */
1972 if (unsignedp)
1973 return result;
1974 /* Signed bit field: sign-extend with two arithmetic shifts. */
1975 result = expand_shift (LSHIFT_EXPR, word_mode, result,
1976 BITS_PER_WORD - bitsize, NULL_RTX, 0);
1977 return expand_shift (RSHIFT_EXPR, word_mode, result,
1978 BITS_PER_WORD - bitsize, NULL_RTX, 0);
1981 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
1982 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
1983 MODE, fill the upper bits with zeros. Fail if the layout of either
1984 mode is unknown (as for CC modes) or if the extraction would involve
1985 unprofitable mode punning. Return the value on success, otherwise
1986 return null.
1988 This is different from gen_lowpart* in these respects:
1990 - the returned value must always be considered an rvalue
1992 - when MODE is wider than SRC_MODE, the extraction involves
1993 a zero extension
1995 - when MODE is smaller than SRC_MODE, the extraction involves
1996 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
1998 In other words, this routine performs a computation, whereas the
1999 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2000 operations. */
2003 extract_low_bits (enum machine_mode mode, enum machine_mode src_mode, rtx src)
2005 enum machine_mode int_mode, src_int_mode;
2007 if (mode == src_mode)
2008 return src;
2010 if (CONSTANT_P (src))
2012 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2013 fails, it will happily create (subreg (symbol_ref)) or similar
2014 invalid SUBREGs. */
2015 unsigned int byte = subreg_lowpart_offset (mode, src_mode);
2016 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2017 if (ret)
2018 return ret;
2020 if (GET_MODE (src) == VOIDmode
2021 || !validate_subreg (mode, src_mode, src, byte))
2022 return NULL_RTX;
2024 src = force_reg (GET_MODE (src), src);
2025 return gen_rtx_SUBREG (mode, src, byte);
2028 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2029 return NULL_RTX;
2031 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2032 && MODES_TIEABLE_P (mode, src_mode))
2034 rtx x = gen_lowpart_common (mode, src);
2035 if (x)
2036 return x;
2039 src_int_mode = int_mode_for_mode (src_mode);
2040 int_mode = int_mode_for_mode (mode);
2041 if (src_int_mode == BLKmode || int_mode == BLKmode)
2042 return NULL_RTX;
2044 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2045 return NULL_RTX;
2046 if (!MODES_TIEABLE_P (int_mode, mode))
2047 return NULL_RTX;
2049 src = gen_lowpart (src_int_mode, src);
2050 src = convert_modes (int_mode, src_int_mode, src, true);
2051 src = gen_lowpart (mode, src);
2052 return src;
2055 /* Add INC into TARGET. */
2057 void
2058 expand_inc (rtx target, rtx inc)
2060 rtx value = expand_binop (GET_MODE (target), add_optab,
2061 target, inc,
2062 target, 0, OPTAB_LIB_WIDEN);
2063 if (value != target)
2064 emit_move_insn (target, value);
2067 /* Subtract DEC from TARGET. */
2069 void
2070 expand_dec (rtx target, rtx dec)
2072 rtx value = expand_binop (GET_MODE (target), sub_optab,
2073 target, dec,
2074 target, 0, OPTAB_LIB_WIDEN);
2075 if (value != target)
2076 emit_move_insn (target, value);
2079 /* Output a shift instruction for expression code CODE,
2080 with SHIFTED being the rtx for the value to shift,
2081 and AMOUNT the rtx for the amount to shift by.
2082 Store the result in the rtx TARGET, if that is convenient.
2083 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2084 Return the rtx for where the value is. */
2086 static rtx
2087 expand_shift_1 (enum tree_code code, enum machine_mode mode, rtx shifted,
2088 rtx amount, rtx target, int unsignedp)
2090 rtx op1, temp = 0;
2091 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2092 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2093 optab lshift_optab = ashl_optab;
2094 optab rshift_arith_optab = ashr_optab;
2095 optab rshift_uns_optab = lshr_optab;
2096 optab lrotate_optab = rotl_optab;
2097 optab rrotate_optab = rotr_optab;
2098 enum machine_mode op1_mode;
2099 int attempt;
2100 bool speed = optimize_insn_for_speed_p ();
2102 op1 = amount;
2103 op1_mode = GET_MODE (op1);
2105 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2106 shift amount is a vector, use the vector/vector shift patterns. */
2107 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2109 lshift_optab = vashl_optab;
2110 rshift_arith_optab = vashr_optab;
2111 rshift_uns_optab = vlshr_optab;
2112 lrotate_optab = vrotl_optab;
2113 rrotate_optab = vrotr_optab;
2116 /* Previously detected shift-counts computed by NEGATE_EXPR
2117 and shifted in the other direction; but that does not work
2118 on all machines. */
2120 if (SHIFT_COUNT_TRUNCATED)
2122 if (CONST_INT_P (op1)
2123 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2124 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2125 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2126 % GET_MODE_BITSIZE (mode));
2127 else if (GET_CODE (op1) == SUBREG
2128 && subreg_lowpart_p (op1)
2129 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
2130 && SCALAR_INT_MODE_P (GET_MODE (op1)))
2131 op1 = SUBREG_REG (op1);
2134 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2135 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2136 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2137 amount instead. */
2138 if (rotate
2139 && CONST_INT_P (op1)
2140 && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (mode) / 2 + left,
2141 GET_MODE_BITSIZE (mode) - 1))
2143 op1 = GEN_INT (GET_MODE_BITSIZE (mode) - INTVAL (op1));
2144 left = !left;
2145 code = left ? LROTATE_EXPR : RROTATE_EXPR;
2148 if (op1 == const0_rtx)
2149 return shifted;
2151 /* Check whether its cheaper to implement a left shift by a constant
2152 bit count by a sequence of additions. */
2153 if (code == LSHIFT_EXPR
2154 && CONST_INT_P (op1)
2155 && INTVAL (op1) > 0
2156 && INTVAL (op1) < GET_MODE_PRECISION (mode)
2157 && INTVAL (op1) < MAX_BITS_PER_WORD
2158 && (shift_cost (speed, mode, INTVAL (op1))
2159 > INTVAL (op1) * add_cost (speed, mode))
2160 && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
2162 int i;
2163 for (i = 0; i < INTVAL (op1); i++)
2165 temp = force_reg (mode, shifted);
2166 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2167 unsignedp, OPTAB_LIB_WIDEN);
2169 return shifted;
2172 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2174 enum optab_methods methods;
2176 if (attempt == 0)
2177 methods = OPTAB_DIRECT;
2178 else if (attempt == 1)
2179 methods = OPTAB_WIDEN;
2180 else
2181 methods = OPTAB_LIB_WIDEN;
2183 if (rotate)
2185 /* Widening does not work for rotation. */
2186 if (methods == OPTAB_WIDEN)
2187 continue;
2188 else if (methods == OPTAB_LIB_WIDEN)
2190 /* If we have been unable to open-code this by a rotation,
2191 do it as the IOR of two shifts. I.e., to rotate A
2192 by N bits, compute
2193 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2194 where C is the bitsize of A.
2196 It is theoretically possible that the target machine might
2197 not be able to perform either shift and hence we would
2198 be making two libcalls rather than just the one for the
2199 shift (similarly if IOR could not be done). We will allow
2200 this extremely unlikely lossage to avoid complicating the
2201 code below. */
2203 rtx subtarget = target == shifted ? 0 : target;
2204 rtx new_amount, other_amount;
2205 rtx temp1;
2207 new_amount = op1;
2208 if (op1 == const0_rtx)
2209 return shifted;
2210 else if (CONST_INT_P (op1))
2211 other_amount = GEN_INT (GET_MODE_BITSIZE (mode)
2212 - INTVAL (op1));
2213 else
2215 other_amount
2216 = simplify_gen_unary (NEG, GET_MODE (op1),
2217 op1, GET_MODE (op1));
2218 HOST_WIDE_INT mask = GET_MODE_PRECISION (mode) - 1;
2219 other_amount
2220 = simplify_gen_binary (AND, GET_MODE (op1), other_amount,
2221 gen_int_mode (mask, GET_MODE (op1)));
2224 shifted = force_reg (mode, shifted);
2226 temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2227 mode, shifted, new_amount, 0, 1);
2228 temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2229 mode, shifted, other_amount,
2230 subtarget, 1);
2231 return expand_binop (mode, ior_optab, temp, temp1, target,
2232 unsignedp, methods);
2235 temp = expand_binop (mode,
2236 left ? lrotate_optab : rrotate_optab,
2237 shifted, op1, target, unsignedp, methods);
2239 else if (unsignedp)
2240 temp = expand_binop (mode,
2241 left ? lshift_optab : rshift_uns_optab,
2242 shifted, op1, target, unsignedp, methods);
2244 /* Do arithmetic shifts.
2245 Also, if we are going to widen the operand, we can just as well
2246 use an arithmetic right-shift instead of a logical one. */
2247 if (temp == 0 && ! rotate
2248 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2250 enum optab_methods methods1 = methods;
2252 /* If trying to widen a log shift to an arithmetic shift,
2253 don't accept an arithmetic shift of the same size. */
2254 if (unsignedp)
2255 methods1 = OPTAB_MUST_WIDEN;
2257 /* Arithmetic shift */
2259 temp = expand_binop (mode,
2260 left ? lshift_optab : rshift_arith_optab,
2261 shifted, op1, target, unsignedp, methods1);
2264 /* We used to try extzv here for logical right shifts, but that was
2265 only useful for one machine, the VAX, and caused poor code
2266 generation there for lshrdi3, so the code was deleted and a
2267 define_expand for lshrsi3 was added to vax.md. */
2270 gcc_assert (temp);
2271 return temp;
2274 /* Output a shift instruction for expression code CODE,
2275 with SHIFTED being the rtx for the value to shift,
2276 and AMOUNT the amount to shift by.
2277 Store the result in the rtx TARGET, if that is convenient.
2278 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2279 Return the rtx for where the value is. */
2282 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2283 int amount, rtx target, int unsignedp)
2285 return expand_shift_1 (code, mode,
2286 shifted, GEN_INT (amount), target, unsignedp);
2289 /* Output a shift instruction for expression code CODE,
2290 with SHIFTED being the rtx for the value to shift,
2291 and AMOUNT the tree for the amount to shift by.
2292 Store the result in the rtx TARGET, if that is convenient.
2293 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2294 Return the rtx for where the value is. */
2297 expand_variable_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2298 tree amount, rtx target, int unsignedp)
2300 return expand_shift_1 (code, mode,
2301 shifted, expand_normal (amount), target, unsignedp);
2305 /* Indicates the type of fixup needed after a constant multiplication.
2306 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2307 the result should be negated, and ADD_VARIANT means that the
2308 multiplicand should be added to the result. */
2309 enum mult_variant {basic_variant, negate_variant, add_variant};
2311 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2312 const struct mult_cost *, enum machine_mode mode);
2313 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2314 struct algorithm *, enum mult_variant *, int);
2315 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2316 const struct algorithm *, enum mult_variant);
2317 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2318 static rtx extract_high_half (enum machine_mode, rtx);
2319 static rtx expmed_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2320 static rtx expmed_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2321 int, int);
2322 /* Compute and return the best algorithm for multiplying by T.
2323 The algorithm must cost less than cost_limit
2324 If retval.cost >= COST_LIMIT, no algorithm was found and all
2325 other field of the returned struct are undefined.
2326 MODE is the machine mode of the multiplication. */
2328 static void
2329 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2330 const struct mult_cost *cost_limit, enum machine_mode mode)
2332 int m;
2333 struct algorithm *alg_in, *best_alg;
2334 struct mult_cost best_cost;
2335 struct mult_cost new_limit;
2336 int op_cost, op_latency;
2337 unsigned HOST_WIDE_INT orig_t = t;
2338 unsigned HOST_WIDE_INT q;
2339 int maxm, hash_index;
2340 bool cache_hit = false;
2341 enum alg_code cache_alg = alg_zero;
2342 bool speed = optimize_insn_for_speed_p ();
2343 enum machine_mode imode;
2344 struct alg_hash_entry *entry_ptr;
2346 /* Indicate that no algorithm is yet found. If no algorithm
2347 is found, this value will be returned and indicate failure. */
2348 alg_out->cost.cost = cost_limit->cost + 1;
2349 alg_out->cost.latency = cost_limit->latency + 1;
2351 if (cost_limit->cost < 0
2352 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2353 return;
2355 /* Be prepared for vector modes. */
2356 imode = GET_MODE_INNER (mode);
2357 if (imode == VOIDmode)
2358 imode = mode;
2360 maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
2362 /* Restrict the bits of "t" to the multiplication's mode. */
2363 t &= GET_MODE_MASK (imode);
2365 /* t == 1 can be done in zero cost. */
2366 if (t == 1)
2368 alg_out->ops = 1;
2369 alg_out->cost.cost = 0;
2370 alg_out->cost.latency = 0;
2371 alg_out->op[0] = alg_m;
2372 return;
2375 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2376 fail now. */
2377 if (t == 0)
2379 if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
2380 return;
2381 else
2383 alg_out->ops = 1;
2384 alg_out->cost.cost = zero_cost (speed);
2385 alg_out->cost.latency = zero_cost (speed);
2386 alg_out->op[0] = alg_zero;
2387 return;
2391 /* We'll be needing a couple extra algorithm structures now. */
2393 alg_in = XALLOCA (struct algorithm);
2394 best_alg = XALLOCA (struct algorithm);
2395 best_cost = *cost_limit;
2397 /* Compute the hash index. */
2398 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2400 /* See if we already know what to do for T. */
2401 entry_ptr = alg_hash_entry_ptr (hash_index);
2402 if (entry_ptr->t == t
2403 && entry_ptr->mode == mode
2404 && entry_ptr->mode == mode
2405 && entry_ptr->speed == speed
2406 && entry_ptr->alg != alg_unknown)
2408 cache_alg = entry_ptr->alg;
2410 if (cache_alg == alg_impossible)
2412 /* The cache tells us that it's impossible to synthesize
2413 multiplication by T within entry_ptr->cost. */
2414 if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
2415 /* COST_LIMIT is at least as restrictive as the one
2416 recorded in the hash table, in which case we have no
2417 hope of synthesizing a multiplication. Just
2418 return. */
2419 return;
2421 /* If we get here, COST_LIMIT is less restrictive than the
2422 one recorded in the hash table, so we may be able to
2423 synthesize a multiplication. Proceed as if we didn't
2424 have the cache entry. */
2426 else
2428 if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
2429 /* The cached algorithm shows that this multiplication
2430 requires more cost than COST_LIMIT. Just return. This
2431 way, we don't clobber this cache entry with
2432 alg_impossible but retain useful information. */
2433 return;
2435 cache_hit = true;
2437 switch (cache_alg)
2439 case alg_shift:
2440 goto do_alg_shift;
2442 case alg_add_t_m2:
2443 case alg_sub_t_m2:
2444 goto do_alg_addsub_t_m2;
2446 case alg_add_factor:
2447 case alg_sub_factor:
2448 goto do_alg_addsub_factor;
2450 case alg_add_t2_m:
2451 goto do_alg_add_t2_m;
2453 case alg_sub_t2_m:
2454 goto do_alg_sub_t2_m;
2456 default:
2457 gcc_unreachable ();
2462 /* If we have a group of zero bits at the low-order part of T, try
2463 multiplying by the remaining bits and then doing a shift. */
2465 if ((t & 1) == 0)
2467 do_alg_shift:
2468 m = floor_log2 (t & -t); /* m = number of low zero bits */
2469 if (m < maxm)
2471 q = t >> m;
2472 /* The function expand_shift will choose between a shift and
2473 a sequence of additions, so the observed cost is given as
2474 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2475 op_cost = m * add_cost (speed, mode);
2476 if (shift_cost (speed, mode, m) < op_cost)
2477 op_cost = shift_cost (speed, mode, m);
2478 new_limit.cost = best_cost.cost - op_cost;
2479 new_limit.latency = best_cost.latency - op_cost;
2480 synth_mult (alg_in, q, &new_limit, mode);
2482 alg_in->cost.cost += op_cost;
2483 alg_in->cost.latency += op_cost;
2484 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2486 struct algorithm *x;
2487 best_cost = alg_in->cost;
2488 x = alg_in, alg_in = best_alg, best_alg = x;
2489 best_alg->log[best_alg->ops] = m;
2490 best_alg->op[best_alg->ops] = alg_shift;
2493 /* See if treating ORIG_T as a signed number yields a better
2494 sequence. Try this sequence only for a negative ORIG_T
2495 as it would be useless for a non-negative ORIG_T. */
2496 if ((HOST_WIDE_INT) orig_t < 0)
2498 /* Shift ORIG_T as follows because a right shift of a
2499 negative-valued signed type is implementation
2500 defined. */
2501 q = ~(~orig_t >> m);
2502 /* The function expand_shift will choose between a shift
2503 and a sequence of additions, so the observed cost is
2504 given as MIN (m * add_cost(speed, mode),
2505 shift_cost(speed, mode, m)). */
2506 op_cost = m * add_cost (speed, mode);
2507 if (shift_cost (speed, mode, m) < op_cost)
2508 op_cost = shift_cost (speed, mode, m);
2509 new_limit.cost = best_cost.cost - op_cost;
2510 new_limit.latency = best_cost.latency - op_cost;
2511 synth_mult (alg_in, q, &new_limit, mode);
2513 alg_in->cost.cost += op_cost;
2514 alg_in->cost.latency += op_cost;
2515 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2517 struct algorithm *x;
2518 best_cost = alg_in->cost;
2519 x = alg_in, alg_in = best_alg, best_alg = x;
2520 best_alg->log[best_alg->ops] = m;
2521 best_alg->op[best_alg->ops] = alg_shift;
2525 if (cache_hit)
2526 goto done;
2529 /* If we have an odd number, add or subtract one. */
2530 if ((t & 1) != 0)
2532 unsigned HOST_WIDE_INT w;
2534 do_alg_addsub_t_m2:
2535 for (w = 1; (w & t) != 0; w <<= 1)
2537 /* If T was -1, then W will be zero after the loop. This is another
2538 case where T ends with ...111. Handling this with (T + 1) and
2539 subtract 1 produces slightly better code and results in algorithm
2540 selection much faster than treating it like the ...0111 case
2541 below. */
2542 if (w == 0
2543 || (w > 2
2544 /* Reject the case where t is 3.
2545 Thus we prefer addition in that case. */
2546 && t != 3))
2548 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2550 op_cost = add_cost (speed, mode);
2551 new_limit.cost = best_cost.cost - op_cost;
2552 new_limit.latency = best_cost.latency - op_cost;
2553 synth_mult (alg_in, t + 1, &new_limit, mode);
2555 alg_in->cost.cost += op_cost;
2556 alg_in->cost.latency += op_cost;
2557 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2559 struct algorithm *x;
2560 best_cost = alg_in->cost;
2561 x = alg_in, alg_in = best_alg, best_alg = x;
2562 best_alg->log[best_alg->ops] = 0;
2563 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2566 else
2568 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2570 op_cost = add_cost (speed, mode);
2571 new_limit.cost = best_cost.cost - op_cost;
2572 new_limit.latency = best_cost.latency - op_cost;
2573 synth_mult (alg_in, t - 1, &new_limit, mode);
2575 alg_in->cost.cost += op_cost;
2576 alg_in->cost.latency += op_cost;
2577 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2579 struct algorithm *x;
2580 best_cost = alg_in->cost;
2581 x = alg_in, alg_in = best_alg, best_alg = x;
2582 best_alg->log[best_alg->ops] = 0;
2583 best_alg->op[best_alg->ops] = alg_add_t_m2;
2587 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2588 quickly with a - a * n for some appropriate constant n. */
2589 m = exact_log2 (-orig_t + 1);
2590 if (m >= 0 && m < maxm)
2592 op_cost = shiftsub1_cost (speed, mode, m);
2593 new_limit.cost = best_cost.cost - op_cost;
2594 new_limit.latency = best_cost.latency - op_cost;
2595 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
2596 &new_limit, mode);
2598 alg_in->cost.cost += op_cost;
2599 alg_in->cost.latency += op_cost;
2600 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2602 struct algorithm *x;
2603 best_cost = alg_in->cost;
2604 x = alg_in, alg_in = best_alg, best_alg = x;
2605 best_alg->log[best_alg->ops] = m;
2606 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2610 if (cache_hit)
2611 goto done;
2614 /* Look for factors of t of the form
2615 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2616 If we find such a factor, we can multiply by t using an algorithm that
2617 multiplies by q, shift the result by m and add/subtract it to itself.
2619 We search for large factors first and loop down, even if large factors
2620 are less probable than small; if we find a large factor we will find a
2621 good sequence quickly, and therefore be able to prune (by decreasing
2622 COST_LIMIT) the search. */
2624 do_alg_addsub_factor:
2625 for (m = floor_log2 (t - 1); m >= 2; m--)
2627 unsigned HOST_WIDE_INT d;
2629 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2630 if (t % d == 0 && t > d && m < maxm
2631 && (!cache_hit || cache_alg == alg_add_factor))
2633 /* If the target has a cheap shift-and-add instruction use
2634 that in preference to a shift insn followed by an add insn.
2635 Assume that the shift-and-add is "atomic" with a latency
2636 equal to its cost, otherwise assume that on superscalar
2637 hardware the shift may be executed concurrently with the
2638 earlier steps in the algorithm. */
2639 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2640 if (shiftadd_cost (speed, mode, m) < op_cost)
2642 op_cost = shiftadd_cost (speed, mode, m);
2643 op_latency = op_cost;
2645 else
2646 op_latency = add_cost (speed, mode);
2648 new_limit.cost = best_cost.cost - op_cost;
2649 new_limit.latency = best_cost.latency - op_latency;
2650 synth_mult (alg_in, t / d, &new_limit, mode);
2652 alg_in->cost.cost += op_cost;
2653 alg_in->cost.latency += op_latency;
2654 if (alg_in->cost.latency < op_cost)
2655 alg_in->cost.latency = op_cost;
2656 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2658 struct algorithm *x;
2659 best_cost = alg_in->cost;
2660 x = alg_in, alg_in = best_alg, best_alg = x;
2661 best_alg->log[best_alg->ops] = m;
2662 best_alg->op[best_alg->ops] = alg_add_factor;
2664 /* Other factors will have been taken care of in the recursion. */
2665 break;
2668 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2669 if (t % d == 0 && t > d && m < maxm
2670 && (!cache_hit || cache_alg == alg_sub_factor))
2672 /* If the target has a cheap shift-and-subtract insn use
2673 that in preference to a shift insn followed by a sub insn.
2674 Assume that the shift-and-sub is "atomic" with a latency
2675 equal to it's cost, otherwise assume that on superscalar
2676 hardware the shift may be executed concurrently with the
2677 earlier steps in the algorithm. */
2678 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2679 if (shiftsub0_cost (speed, mode, m) < op_cost)
2681 op_cost = shiftsub0_cost (speed, mode, m);
2682 op_latency = op_cost;
2684 else
2685 op_latency = add_cost (speed, mode);
2687 new_limit.cost = best_cost.cost - op_cost;
2688 new_limit.latency = best_cost.latency - op_latency;
2689 synth_mult (alg_in, t / d, &new_limit, mode);
2691 alg_in->cost.cost += op_cost;
2692 alg_in->cost.latency += op_latency;
2693 if (alg_in->cost.latency < op_cost)
2694 alg_in->cost.latency = op_cost;
2695 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2697 struct algorithm *x;
2698 best_cost = alg_in->cost;
2699 x = alg_in, alg_in = best_alg, best_alg = x;
2700 best_alg->log[best_alg->ops] = m;
2701 best_alg->op[best_alg->ops] = alg_sub_factor;
2703 break;
2706 if (cache_hit)
2707 goto done;
2709 /* Try shift-and-add (load effective address) instructions,
2710 i.e. do a*3, a*5, a*9. */
2711 if ((t & 1) != 0)
2713 do_alg_add_t2_m:
2714 q = t - 1;
2715 q = q & -q;
2716 m = exact_log2 (q);
2717 if (m >= 0 && m < maxm)
2719 op_cost = shiftadd_cost (speed, mode, m);
2720 new_limit.cost = best_cost.cost - op_cost;
2721 new_limit.latency = best_cost.latency - op_cost;
2722 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2724 alg_in->cost.cost += op_cost;
2725 alg_in->cost.latency += op_cost;
2726 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2728 struct algorithm *x;
2729 best_cost = alg_in->cost;
2730 x = alg_in, alg_in = best_alg, best_alg = x;
2731 best_alg->log[best_alg->ops] = m;
2732 best_alg->op[best_alg->ops] = alg_add_t2_m;
2735 if (cache_hit)
2736 goto done;
2738 do_alg_sub_t2_m:
2739 q = t + 1;
2740 q = q & -q;
2741 m = exact_log2 (q);
2742 if (m >= 0 && m < maxm)
2744 op_cost = shiftsub0_cost (speed, mode, m);
2745 new_limit.cost = best_cost.cost - op_cost;
2746 new_limit.latency = best_cost.latency - op_cost;
2747 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2749 alg_in->cost.cost += op_cost;
2750 alg_in->cost.latency += op_cost;
2751 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2753 struct algorithm *x;
2754 best_cost = alg_in->cost;
2755 x = alg_in, alg_in = best_alg, best_alg = x;
2756 best_alg->log[best_alg->ops] = m;
2757 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2760 if (cache_hit)
2761 goto done;
2764 done:
2765 /* If best_cost has not decreased, we have not found any algorithm. */
2766 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2768 /* We failed to find an algorithm. Record alg_impossible for
2769 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2770 we are asked to find an algorithm for T within the same or
2771 lower COST_LIMIT, we can immediately return to the
2772 caller. */
2773 entry_ptr->t = t;
2774 entry_ptr->mode = mode;
2775 entry_ptr->speed = speed;
2776 entry_ptr->alg = alg_impossible;
2777 entry_ptr->cost = *cost_limit;
2778 return;
2781 /* Cache the result. */
2782 if (!cache_hit)
2784 entry_ptr->t = t;
2785 entry_ptr->mode = mode;
2786 entry_ptr->speed = speed;
2787 entry_ptr->alg = best_alg->op[best_alg->ops];
2788 entry_ptr->cost.cost = best_cost.cost;
2789 entry_ptr->cost.latency = best_cost.latency;
2792 /* If we are getting a too long sequence for `struct algorithm'
2793 to record, make this search fail. */
2794 if (best_alg->ops == MAX_BITS_PER_WORD)
2795 return;
2797 /* Copy the algorithm from temporary space to the space at alg_out.
2798 We avoid using structure assignment because the majority of
2799 best_alg is normally undefined, and this is a critical function. */
2800 alg_out->ops = best_alg->ops + 1;
2801 alg_out->cost = best_cost;
2802 memcpy (alg_out->op, best_alg->op,
2803 alg_out->ops * sizeof *alg_out->op);
2804 memcpy (alg_out->log, best_alg->log,
2805 alg_out->ops * sizeof *alg_out->log);
2808 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2809 Try three variations:
2811 - a shift/add sequence based on VAL itself
2812 - a shift/add sequence based on -VAL, followed by a negation
2813 - a shift/add sequence based on VAL - 1, followed by an addition.
2815 Return true if the cheapest of these cost less than MULT_COST,
2816 describing the algorithm in *ALG and final fixup in *VARIANT. */
2818 static bool
2819 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2820 struct algorithm *alg, enum mult_variant *variant,
2821 int mult_cost)
2823 struct algorithm alg2;
2824 struct mult_cost limit;
2825 int op_cost;
2826 bool speed = optimize_insn_for_speed_p ();
2828 /* Fail quickly for impossible bounds. */
2829 if (mult_cost < 0)
2830 return false;
2832 /* Ensure that mult_cost provides a reasonable upper bound.
2833 Any constant multiplication can be performed with less
2834 than 2 * bits additions. */
2835 op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
2836 if (mult_cost > op_cost)
2837 mult_cost = op_cost;
2839 *variant = basic_variant;
2840 limit.cost = mult_cost;
2841 limit.latency = mult_cost;
2842 synth_mult (alg, val, &limit, mode);
2844 /* This works only if the inverted value actually fits in an
2845 `unsigned int' */
2846 if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
2848 op_cost = neg_cost(speed, mode);
2849 if (MULT_COST_LESS (&alg->cost, mult_cost))
2851 limit.cost = alg->cost.cost - op_cost;
2852 limit.latency = alg->cost.latency - op_cost;
2854 else
2856 limit.cost = mult_cost - op_cost;
2857 limit.latency = mult_cost - op_cost;
2860 synth_mult (&alg2, -val, &limit, mode);
2861 alg2.cost.cost += op_cost;
2862 alg2.cost.latency += op_cost;
2863 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2864 *alg = alg2, *variant = negate_variant;
2867 /* This proves very useful for division-by-constant. */
2868 op_cost = add_cost (speed, mode);
2869 if (MULT_COST_LESS (&alg->cost, mult_cost))
2871 limit.cost = alg->cost.cost - op_cost;
2872 limit.latency = alg->cost.latency - op_cost;
2874 else
2876 limit.cost = mult_cost - op_cost;
2877 limit.latency = mult_cost - op_cost;
2880 synth_mult (&alg2, val - 1, &limit, mode);
2881 alg2.cost.cost += op_cost;
2882 alg2.cost.latency += op_cost;
2883 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2884 *alg = alg2, *variant = add_variant;
2886 return MULT_COST_LESS (&alg->cost, mult_cost);
2889 /* A subroutine of expand_mult, used for constant multiplications.
2890 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2891 convenient. Use the shift/add sequence described by ALG and apply
2892 the final fixup specified by VARIANT. */
2894 static rtx
2895 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2896 rtx target, const struct algorithm *alg,
2897 enum mult_variant variant)
2899 HOST_WIDE_INT val_so_far;
2900 rtx insn, accum, tem;
2901 int opno;
2902 enum machine_mode nmode;
2904 /* Avoid referencing memory over and over and invalid sharing
2905 on SUBREGs. */
2906 op0 = force_reg (mode, op0);
2908 /* ACCUM starts out either as OP0 or as a zero, depending on
2909 the first operation. */
2911 if (alg->op[0] == alg_zero)
2913 accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
2914 val_so_far = 0;
2916 else if (alg->op[0] == alg_m)
2918 accum = copy_to_mode_reg (mode, op0);
2919 val_so_far = 1;
2921 else
2922 gcc_unreachable ();
2924 for (opno = 1; opno < alg->ops; opno++)
2926 int log = alg->log[opno];
2927 rtx shift_subtarget = optimize ? 0 : accum;
2928 rtx add_target
2929 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2930 && !optimize)
2931 ? target : 0;
2932 rtx accum_target = optimize ? 0 : accum;
2933 rtx accum_inner;
2935 switch (alg->op[opno])
2937 case alg_shift:
2938 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
2939 /* REG_EQUAL note will be attached to the following insn. */
2940 emit_move_insn (accum, tem);
2941 val_so_far <<= log;
2942 break;
2944 case alg_add_t_m2:
2945 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
2946 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2947 add_target ? add_target : accum_target);
2948 val_so_far += (HOST_WIDE_INT) 1 << log;
2949 break;
2951 case alg_sub_t_m2:
2952 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
2953 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2954 add_target ? add_target : accum_target);
2955 val_so_far -= (HOST_WIDE_INT) 1 << log;
2956 break;
2958 case alg_add_t2_m:
2959 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2960 log, shift_subtarget, 0);
2961 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2962 add_target ? add_target : accum_target);
2963 val_so_far = (val_so_far << log) + 1;
2964 break;
2966 case alg_sub_t2_m:
2967 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2968 log, shift_subtarget, 0);
2969 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2970 add_target ? add_target : accum_target);
2971 val_so_far = (val_so_far << log) - 1;
2972 break;
2974 case alg_add_factor:
2975 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
2976 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2977 add_target ? add_target : accum_target);
2978 val_so_far += val_so_far << log;
2979 break;
2981 case alg_sub_factor:
2982 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
2983 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2984 (add_target
2985 ? add_target : (optimize ? 0 : tem)));
2986 val_so_far = (val_so_far << log) - val_so_far;
2987 break;
2989 default:
2990 gcc_unreachable ();
2993 if (SCALAR_INT_MODE_P (mode))
2995 /* Write a REG_EQUAL note on the last insn so that we can cse
2996 multiplication sequences. Note that if ACCUM is a SUBREG,
2997 we've set the inner register and must properly indicate that. */
2998 tem = op0, nmode = mode;
2999 accum_inner = accum;
3000 if (GET_CODE (accum) == SUBREG)
3002 accum_inner = SUBREG_REG (accum);
3003 nmode = GET_MODE (accum_inner);
3004 tem = gen_lowpart (nmode, op0);
3007 insn = get_last_insn ();
3008 set_dst_reg_note (insn, REG_EQUAL,
3009 gen_rtx_MULT (nmode, tem,
3010 gen_int_mode (val_so_far, nmode)),
3011 accum_inner);
3015 if (variant == negate_variant)
3017 val_so_far = -val_so_far;
3018 accum = expand_unop (mode, neg_optab, accum, target, 0);
3020 else if (variant == add_variant)
3022 val_so_far = val_so_far + 1;
3023 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3026 /* Compare only the bits of val and val_so_far that are significant
3027 in the result mode, to avoid sign-/zero-extension confusion. */
3028 nmode = GET_MODE_INNER (mode);
3029 if (nmode == VOIDmode)
3030 nmode = mode;
3031 val &= GET_MODE_MASK (nmode);
3032 val_so_far &= GET_MODE_MASK (nmode);
3033 gcc_assert (val == val_so_far);
3035 return accum;
3038 /* Perform a multiplication and return an rtx for the result.
3039 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3040 TARGET is a suggestion for where to store the result (an rtx).
3042 We check specially for a constant integer as OP1.
3043 If you want this check for OP0 as well, then before calling
3044 you should swap the two operands if OP0 would be constant. */
3047 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3048 int unsignedp)
3050 enum mult_variant variant;
3051 struct algorithm algorithm;
3052 rtx scalar_op1;
3053 int max_cost;
3054 bool speed = optimize_insn_for_speed_p ();
3055 bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
3057 if (CONSTANT_P (op0))
3059 rtx temp = op0;
3060 op0 = op1;
3061 op1 = temp;
3064 /* For vectors, there are several simplifications that can be made if
3065 all elements of the vector constant are identical. */
3066 scalar_op1 = op1;
3067 if (GET_CODE (op1) == CONST_VECTOR)
3069 int i, n = CONST_VECTOR_NUNITS (op1);
3070 scalar_op1 = CONST_VECTOR_ELT (op1, 0);
3071 for (i = 1; i < n; ++i)
3072 if (!rtx_equal_p (scalar_op1, CONST_VECTOR_ELT (op1, i)))
3073 goto skip_scalar;
3076 if (INTEGRAL_MODE_P (mode))
3078 rtx fake_reg;
3079 HOST_WIDE_INT coeff;
3080 bool is_neg;
3081 int mode_bitsize;
3083 if (op1 == CONST0_RTX (mode))
3084 return op1;
3085 if (op1 == CONST1_RTX (mode))
3086 return op0;
3087 if (op1 == CONSTM1_RTX (mode))
3088 return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
3089 op0, target, 0);
3091 if (do_trapv)
3092 goto skip_synth;
3094 /* These are the operations that are potentially turned into
3095 a sequence of shifts and additions. */
3096 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
3098 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3099 less than or equal in size to `unsigned int' this doesn't matter.
3100 If the mode is larger than `unsigned int', then synth_mult works
3101 only if the constant value exactly fits in an `unsigned int' without
3102 any truncation. This means that multiplying by negative values does
3103 not work; results are off by 2^32 on a 32 bit machine. */
3105 if (CONST_INT_P (scalar_op1))
3107 coeff = INTVAL (scalar_op1);
3108 is_neg = coeff < 0;
3110 else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
3112 /* If we are multiplying in DImode, it may still be a win
3113 to try to work with shifts and adds. */
3114 if (CONST_DOUBLE_HIGH (scalar_op1) == 0
3115 && (CONST_DOUBLE_LOW (scalar_op1) > 0
3116 || (CONST_DOUBLE_LOW (scalar_op1) < 0
3117 && EXACT_POWER_OF_2_OR_ZERO_P
3118 (CONST_DOUBLE_LOW (scalar_op1)))))
3120 coeff = CONST_DOUBLE_LOW (scalar_op1);
3121 is_neg = false;
3123 else if (CONST_DOUBLE_LOW (scalar_op1) == 0)
3125 coeff = CONST_DOUBLE_HIGH (scalar_op1);
3126 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3128 int shift = floor_log2 (coeff) + HOST_BITS_PER_WIDE_INT;
3129 if (shift < HOST_BITS_PER_DOUBLE_INT - 1
3130 || mode_bitsize <= HOST_BITS_PER_DOUBLE_INT)
3131 return expand_shift (LSHIFT_EXPR, mode, op0,
3132 shift, target, unsignedp);
3134 goto skip_synth;
3136 else
3137 goto skip_synth;
3139 else
3140 goto skip_synth;
3142 /* We used to test optimize here, on the grounds that it's better to
3143 produce a smaller program when -O is not used. But this causes
3144 such a terrible slowdown sometimes that it seems better to always
3145 use synth_mult. */
3147 /* Special case powers of two. */
3148 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
3149 && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
3150 return expand_shift (LSHIFT_EXPR, mode, op0,
3151 floor_log2 (coeff), target, unsignedp);
3153 fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3155 /* Attempt to handle multiplication of DImode values by negative
3156 coefficients, by performing the multiplication by a positive
3157 multiplier and then inverting the result. */
3158 if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
3160 /* Its safe to use -coeff even for INT_MIN, as the
3161 result is interpreted as an unsigned coefficient.
3162 Exclude cost of op0 from max_cost to match the cost
3163 calculation of the synth_mult. */
3164 coeff = -(unsigned HOST_WIDE_INT) coeff;
3165 max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), speed)
3166 - neg_cost(speed, mode));
3167 if (max_cost <= 0)
3168 goto skip_synth;
3170 /* Special case powers of two. */
3171 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3173 rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
3174 floor_log2 (coeff), target, unsignedp);
3175 return expand_unop (mode, neg_optab, temp, target, 0);
3178 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3179 max_cost))
3181 rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
3182 &algorithm, variant);
3183 return expand_unop (mode, neg_optab, temp, target, 0);
3185 goto skip_synth;
3188 /* Exclude cost of op0 from max_cost to match the cost
3189 calculation of the synth_mult. */
3190 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), speed);
3191 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3192 return expand_mult_const (mode, op0, coeff, target,
3193 &algorithm, variant);
3195 skip_synth:
3197 /* Expand x*2.0 as x+x. */
3198 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1))
3200 REAL_VALUE_TYPE d;
3201 REAL_VALUE_FROM_CONST_DOUBLE (d, scalar_op1);
3203 if (REAL_VALUES_EQUAL (d, dconst2))
3205 op0 = force_reg (GET_MODE (op0), op0);
3206 return expand_binop (mode, add_optab, op0, op0,
3207 target, unsignedp, OPTAB_LIB_WIDEN);
3210 skip_scalar:
3212 /* This used to use umul_optab if unsigned, but for non-widening multiply
3213 there is no difference between signed and unsigned. */
3214 op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
3215 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3216 gcc_assert (op0);
3217 return op0;
3220 /* Return a cost estimate for multiplying a register by the given
3221 COEFFicient in the given MODE and SPEED. */
3224 mult_by_coeff_cost (HOST_WIDE_INT coeff, enum machine_mode mode, bool speed)
3226 int max_cost;
3227 struct algorithm algorithm;
3228 enum mult_variant variant;
3230 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3231 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg), speed);
3232 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3233 return algorithm.cost.cost;
3234 else
3235 return max_cost;
3238 /* Perform a widening multiplication and return an rtx for the result.
3239 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3240 TARGET is a suggestion for where to store the result (an rtx).
3241 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3242 or smul_widen_optab.
3244 We check specially for a constant integer as OP1, comparing the
3245 cost of a widening multiply against the cost of a sequence of shifts
3246 and adds. */
3249 expand_widening_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3250 int unsignedp, optab this_optab)
3252 bool speed = optimize_insn_for_speed_p ();
3253 rtx cop1;
3255 if (CONST_INT_P (op1)
3256 && GET_MODE (op0) != VOIDmode
3257 && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
3258 this_optab == umul_widen_optab))
3259 && CONST_INT_P (cop1)
3260 && (INTVAL (cop1) >= 0
3261 || HWI_COMPUTABLE_MODE_P (mode)))
3263 HOST_WIDE_INT coeff = INTVAL (cop1);
3264 int max_cost;
3265 enum mult_variant variant;
3266 struct algorithm algorithm;
3268 /* Special case powers of two. */
3269 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3271 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3272 return expand_shift (LSHIFT_EXPR, mode, op0,
3273 floor_log2 (coeff), target, unsignedp);
3276 /* Exclude cost of op0 from max_cost to match the cost
3277 calculation of the synth_mult. */
3278 max_cost = mul_widen_cost (speed, mode);
3279 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3280 max_cost))
3282 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3283 return expand_mult_const (mode, op0, coeff, target,
3284 &algorithm, variant);
3287 return expand_binop (mode, this_optab, op0, op1, target,
3288 unsignedp, OPTAB_LIB_WIDEN);
3291 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3292 replace division by D, and put the least significant N bits of the result
3293 in *MULTIPLIER_PTR and return the most significant bit.
3295 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3296 needed precision is in PRECISION (should be <= N).
3298 PRECISION should be as small as possible so this function can choose
3299 multiplier more freely.
3301 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3302 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3304 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3305 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3307 unsigned HOST_WIDE_INT
3308 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3309 unsigned HOST_WIDE_INT *multiplier_ptr,
3310 int *post_shift_ptr, int *lgup_ptr)
3312 double_int mhigh, mlow;
3313 int lgup, post_shift;
3314 int pow, pow2;
3316 /* lgup = ceil(log2(divisor)); */
3317 lgup = ceil_log2 (d);
3319 gcc_assert (lgup <= n);
3321 pow = n + lgup;
3322 pow2 = n + lgup - precision;
3324 /* We could handle this with some effort, but this case is much
3325 better handled directly with a scc insn, so rely on caller using
3326 that. */
3327 gcc_assert (pow != HOST_BITS_PER_DOUBLE_INT);
3329 /* mlow = 2^(N + lgup)/d */
3330 double_int val = double_int_zero.set_bit (pow);
3331 mlow = val.div (double_int::from_uhwi (d), true, TRUNC_DIV_EXPR);
3333 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3334 val |= double_int_zero.set_bit (pow2);
3335 mhigh = val.div (double_int::from_uhwi (d), true, TRUNC_DIV_EXPR);
3337 gcc_assert (!mhigh.high || val.high - d < d);
3338 gcc_assert (mhigh.high <= 1 && mlow.high <= 1);
3339 /* Assert that mlow < mhigh. */
3340 gcc_assert (mlow.ult (mhigh));
3342 /* If precision == N, then mlow, mhigh exceed 2^N
3343 (but they do not exceed 2^(N+1)). */
3345 /* Reduce to lowest terms. */
3346 for (post_shift = lgup; post_shift > 0; post_shift--)
3348 int shft = HOST_BITS_PER_WIDE_INT - 1;
3349 unsigned HOST_WIDE_INT ml_lo = (mlow.high << shft) | (mlow.low >> 1);
3350 unsigned HOST_WIDE_INT mh_lo = (mhigh.high << shft) | (mhigh.low >> 1);
3351 if (ml_lo >= mh_lo)
3352 break;
3354 mlow = double_int::from_uhwi (ml_lo);
3355 mhigh = double_int::from_uhwi (mh_lo);
3358 *post_shift_ptr = post_shift;
3359 *lgup_ptr = lgup;
3360 if (n < HOST_BITS_PER_WIDE_INT)
3362 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3363 *multiplier_ptr = mhigh.low & mask;
3364 return mhigh.low >= mask;
3366 else
3368 *multiplier_ptr = mhigh.low;
3369 return mhigh.high;
3373 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3374 congruent to 1 (mod 2**N). */
3376 static unsigned HOST_WIDE_INT
3377 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3379 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3381 /* The algorithm notes that the choice y = x satisfies
3382 x*y == 1 mod 2^3, since x is assumed odd.
3383 Each iteration doubles the number of bits of significance in y. */
3385 unsigned HOST_WIDE_INT mask;
3386 unsigned HOST_WIDE_INT y = x;
3387 int nbit = 3;
3389 mask = (n == HOST_BITS_PER_WIDE_INT
3390 ? ~(unsigned HOST_WIDE_INT) 0
3391 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3393 while (nbit < n)
3395 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3396 nbit *= 2;
3398 return y;
3401 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3402 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3403 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3404 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3405 become signed.
3407 The result is put in TARGET if that is convenient.
3409 MODE is the mode of operation. */
3412 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3413 rtx op1, rtx target, int unsignedp)
3415 rtx tem;
3416 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3418 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3419 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3420 tem = expand_and (mode, tem, op1, NULL_RTX);
3421 adj_operand
3422 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3423 adj_operand);
3425 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3426 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3427 tem = expand_and (mode, tem, op0, NULL_RTX);
3428 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3429 target);
3431 return target;
3434 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3436 static rtx
3437 extract_high_half (enum machine_mode mode, rtx op)
3439 enum machine_mode wider_mode;
3441 if (mode == word_mode)
3442 return gen_highpart (mode, op);
3444 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3446 wider_mode = GET_MODE_WIDER_MODE (mode);
3447 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3448 GET_MODE_BITSIZE (mode), 0, 1);
3449 return convert_modes (mode, wider_mode, op, 0);
3452 /* Like expmed_mult_highpart, but only consider using a multiplication
3453 optab. OP1 is an rtx for the constant operand. */
3455 static rtx
3456 expmed_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3457 rtx target, int unsignedp, int max_cost)
3459 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3460 enum machine_mode wider_mode;
3461 optab moptab;
3462 rtx tem;
3463 int size;
3464 bool speed = optimize_insn_for_speed_p ();
3466 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3468 wider_mode = GET_MODE_WIDER_MODE (mode);
3469 size = GET_MODE_BITSIZE (mode);
3471 /* Firstly, try using a multiplication insn that only generates the needed
3472 high part of the product, and in the sign flavor of unsignedp. */
3473 if (mul_highpart_cost (speed, mode) < max_cost)
3475 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3476 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3477 unsignedp, OPTAB_DIRECT);
3478 if (tem)
3479 return tem;
3482 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3483 Need to adjust the result after the multiplication. */
3484 if (size - 1 < BITS_PER_WORD
3485 && (mul_highpart_cost (speed, mode)
3486 + 2 * shift_cost (speed, mode, size-1)
3487 + 4 * add_cost (speed, mode) < max_cost))
3489 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3490 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3491 unsignedp, OPTAB_DIRECT);
3492 if (tem)
3493 /* We used the wrong signedness. Adjust the result. */
3494 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3495 tem, unsignedp);
3498 /* Try widening multiplication. */
3499 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3500 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3501 && mul_widen_cost (speed, wider_mode) < max_cost)
3503 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3504 unsignedp, OPTAB_WIDEN);
3505 if (tem)
3506 return extract_high_half (mode, tem);
3509 /* Try widening the mode and perform a non-widening multiplication. */
3510 if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
3511 && size - 1 < BITS_PER_WORD
3512 && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
3513 < max_cost))
3515 rtx insns, wop0, wop1;
3517 /* We need to widen the operands, for example to ensure the
3518 constant multiplier is correctly sign or zero extended.
3519 Use a sequence to clean-up any instructions emitted by
3520 the conversions if things don't work out. */
3521 start_sequence ();
3522 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3523 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3524 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3525 unsignedp, OPTAB_WIDEN);
3526 insns = get_insns ();
3527 end_sequence ();
3529 if (tem)
3531 emit_insn (insns);
3532 return extract_high_half (mode, tem);
3536 /* Try widening multiplication of opposite signedness, and adjust. */
3537 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3538 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3539 && size - 1 < BITS_PER_WORD
3540 && (mul_widen_cost (speed, wider_mode)
3541 + 2 * shift_cost (speed, mode, size-1)
3542 + 4 * add_cost (speed, mode) < max_cost))
3544 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3545 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3546 if (tem != 0)
3548 tem = extract_high_half (mode, tem);
3549 /* We used the wrong signedness. Adjust the result. */
3550 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3551 target, unsignedp);
3555 return 0;
3558 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3559 putting the high half of the result in TARGET if that is convenient,
3560 and return where the result is. If the operation can not be performed,
3561 0 is returned.
3563 MODE is the mode of operation and result.
3565 UNSIGNEDP nonzero means unsigned multiply.
3567 MAX_COST is the total allowed cost for the expanded RTL. */
3569 static rtx
3570 expmed_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3571 rtx target, int unsignedp, int max_cost)
3573 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3574 unsigned HOST_WIDE_INT cnst1;
3575 int extra_cost;
3576 bool sign_adjust = false;
3577 enum mult_variant variant;
3578 struct algorithm alg;
3579 rtx tem;
3580 bool speed = optimize_insn_for_speed_p ();
3582 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3583 /* We can't support modes wider than HOST_BITS_PER_INT. */
3584 gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
3586 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3588 /* We can't optimize modes wider than BITS_PER_WORD.
3589 ??? We might be able to perform double-word arithmetic if
3590 mode == word_mode, however all the cost calculations in
3591 synth_mult etc. assume single-word operations. */
3592 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3593 return expmed_mult_highpart_optab (mode, op0, op1, target,
3594 unsignedp, max_cost);
3596 extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
3598 /* Check whether we try to multiply by a negative constant. */
3599 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3601 sign_adjust = true;
3602 extra_cost += add_cost (speed, mode);
3605 /* See whether shift/add multiplication is cheap enough. */
3606 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3607 max_cost - extra_cost))
3609 /* See whether the specialized multiplication optabs are
3610 cheaper than the shift/add version. */
3611 tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3612 alg.cost.cost + extra_cost);
3613 if (tem)
3614 return tem;
3616 tem = convert_to_mode (wider_mode, op0, unsignedp);
3617 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3618 tem = extract_high_half (mode, tem);
3620 /* Adjust result for signedness. */
3621 if (sign_adjust)
3622 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3624 return tem;
3626 return expmed_mult_highpart_optab (mode, op0, op1, target,
3627 unsignedp, max_cost);
3631 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3633 static rtx
3634 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3636 unsigned HOST_WIDE_INT masklow, maskhigh;
3637 rtx result, temp, shift, label;
3638 int logd;
3640 logd = floor_log2 (d);
3641 result = gen_reg_rtx (mode);
3643 /* Avoid conditional branches when they're expensive. */
3644 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3645 && optimize_insn_for_speed_p ())
3647 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3648 mode, 0, -1);
3649 if (signmask)
3651 signmask = force_reg (mode, signmask);
3652 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3653 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3655 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3656 which instruction sequence to use. If logical right shifts
3657 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3658 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3660 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3661 if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
3662 || (set_src_cost (temp, optimize_insn_for_speed_p ())
3663 > COSTS_N_INSNS (2)))
3665 temp = expand_binop (mode, xor_optab, op0, signmask,
3666 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3667 temp = expand_binop (mode, sub_optab, temp, signmask,
3668 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3669 temp = expand_binop (mode, and_optab, temp,
3670 gen_int_mode (masklow, mode),
3671 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3672 temp = expand_binop (mode, xor_optab, temp, signmask,
3673 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3674 temp = expand_binop (mode, sub_optab, temp, signmask,
3675 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3677 else
3679 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3680 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3681 signmask = force_reg (mode, signmask);
3683 temp = expand_binop (mode, add_optab, op0, signmask,
3684 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3685 temp = expand_binop (mode, and_optab, temp,
3686 gen_int_mode (masklow, mode),
3687 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3688 temp = expand_binop (mode, sub_optab, temp, signmask,
3689 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3691 return temp;
3695 /* Mask contains the mode's signbit and the significant bits of the
3696 modulus. By including the signbit in the operation, many targets
3697 can avoid an explicit compare operation in the following comparison
3698 against zero. */
3700 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3701 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3703 masklow |= HOST_WIDE_INT_M1U << (GET_MODE_BITSIZE (mode) - 1);
3704 maskhigh = -1;
3706 else
3707 maskhigh = HOST_WIDE_INT_M1U
3708 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3710 temp = expand_binop (mode, and_optab, op0,
3711 immed_double_const (masklow, maskhigh, mode),
3712 result, 1, OPTAB_LIB_WIDEN);
3713 if (temp != result)
3714 emit_move_insn (result, temp);
3716 label = gen_label_rtx ();
3717 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3719 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3720 0, OPTAB_LIB_WIDEN);
3721 masklow = HOST_WIDE_INT_M1U << logd;
3722 maskhigh = -1;
3723 temp = expand_binop (mode, ior_optab, temp,
3724 immed_double_const (masklow, maskhigh, mode),
3725 result, 1, OPTAB_LIB_WIDEN);
3726 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3727 0, OPTAB_LIB_WIDEN);
3728 if (temp != result)
3729 emit_move_insn (result, temp);
3730 emit_label (label);
3731 return result;
3734 /* Expand signed division of OP0 by a power of two D in mode MODE.
3735 This routine is only called for positive values of D. */
3737 static rtx
3738 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3740 rtx temp, label;
3741 int logd;
3743 logd = floor_log2 (d);
3745 if (d == 2
3746 && BRANCH_COST (optimize_insn_for_speed_p (),
3747 false) >= 1)
3749 temp = gen_reg_rtx (mode);
3750 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3751 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3752 0, OPTAB_LIB_WIDEN);
3753 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3756 #ifdef HAVE_conditional_move
3757 if (BRANCH_COST (optimize_insn_for_speed_p (), false)
3758 >= 2)
3760 rtx temp2;
3762 /* ??? emit_conditional_move forces a stack adjustment via
3763 compare_from_rtx so, if the sequence is discarded, it will
3764 be lost. Do it now instead. */
3765 do_pending_stack_adjust ();
3767 start_sequence ();
3768 temp2 = copy_to_mode_reg (mode, op0);
3769 temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
3770 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3771 temp = force_reg (mode, temp);
3773 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3774 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3775 mode, temp, temp2, mode, 0);
3776 if (temp2)
3778 rtx seq = get_insns ();
3779 end_sequence ();
3780 emit_insn (seq);
3781 return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
3783 end_sequence ();
3785 #endif
3787 if (BRANCH_COST (optimize_insn_for_speed_p (),
3788 false) >= 2)
3790 int ushift = GET_MODE_BITSIZE (mode) - logd;
3792 temp = gen_reg_rtx (mode);
3793 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3794 if (shift_cost (optimize_insn_for_speed_p (), mode, ushift)
3795 > COSTS_N_INSNS (1))
3796 temp = expand_binop (mode, and_optab, temp, gen_int_mode (d - 1, mode),
3797 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3798 else
3799 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3800 ushift, NULL_RTX, 1);
3801 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3802 0, OPTAB_LIB_WIDEN);
3803 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3806 label = gen_label_rtx ();
3807 temp = copy_to_mode_reg (mode, op0);
3808 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3809 expand_inc (temp, gen_int_mode (d - 1, mode));
3810 emit_label (label);
3811 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3814 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3815 if that is convenient, and returning where the result is.
3816 You may request either the quotient or the remainder as the result;
3817 specify REM_FLAG nonzero to get the remainder.
3819 CODE is the expression code for which kind of division this is;
3820 it controls how rounding is done. MODE is the machine mode to use.
3821 UNSIGNEDP nonzero means do unsigned division. */
3823 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3824 and then correct it by or'ing in missing high bits
3825 if result of ANDI is nonzero.
3826 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3827 This could optimize to a bfexts instruction.
3828 But C doesn't use these operations, so their optimizations are
3829 left for later. */
3830 /* ??? For modulo, we don't actually need the highpart of the first product,
3831 the low part will do nicely. And for small divisors, the second multiply
3832 can also be a low-part only multiply or even be completely left out.
3833 E.g. to calculate the remainder of a division by 3 with a 32 bit
3834 multiply, multiply with 0x55555556 and extract the upper two bits;
3835 the result is exact for inputs up to 0x1fffffff.
3836 The input range can be reduced by using cross-sum rules.
3837 For odd divisors >= 3, the following table gives right shift counts
3838 so that if a number is shifted by an integer multiple of the given
3839 amount, the remainder stays the same:
3840 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3841 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3842 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3843 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3844 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3846 Cross-sum rules for even numbers can be derived by leaving as many bits
3847 to the right alone as the divisor has zeros to the right.
3848 E.g. if x is an unsigned 32 bit number:
3849 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3853 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3854 rtx op0, rtx op1, rtx target, int unsignedp)
3856 enum machine_mode compute_mode;
3857 rtx tquotient;
3858 rtx quotient = 0, remainder = 0;
3859 rtx last;
3860 int size;
3861 rtx insn;
3862 optab optab1, optab2;
3863 int op1_is_constant, op1_is_pow2 = 0;
3864 int max_cost, extra_cost;
3865 static HOST_WIDE_INT last_div_const = 0;
3866 bool speed = optimize_insn_for_speed_p ();
3868 op1_is_constant = CONST_INT_P (op1);
3869 if (op1_is_constant)
3871 unsigned HOST_WIDE_INT ext_op1 = UINTVAL (op1);
3872 if (unsignedp)
3873 ext_op1 &= GET_MODE_MASK (mode);
3874 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3875 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3879 This is the structure of expand_divmod:
3881 First comes code to fix up the operands so we can perform the operations
3882 correctly and efficiently.
3884 Second comes a switch statement with code specific for each rounding mode.
3885 For some special operands this code emits all RTL for the desired
3886 operation, for other cases, it generates only a quotient and stores it in
3887 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3888 to indicate that it has not done anything.
3890 Last comes code that finishes the operation. If QUOTIENT is set and
3891 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3892 QUOTIENT is not set, it is computed using trunc rounding.
3894 We try to generate special code for division and remainder when OP1 is a
3895 constant. If |OP1| = 2**n we can use shifts and some other fast
3896 operations. For other values of OP1, we compute a carefully selected
3897 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3898 by m.
3900 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3901 half of the product. Different strategies for generating the product are
3902 implemented in expmed_mult_highpart.
3904 If what we actually want is the remainder, we generate that by another
3905 by-constant multiplication and a subtraction. */
3907 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3908 code below will malfunction if we are, so check here and handle
3909 the special case if so. */
3910 if (op1 == const1_rtx)
3911 return rem_flag ? const0_rtx : op0;
3913 /* When dividing by -1, we could get an overflow.
3914 negv_optab can handle overflows. */
3915 if (! unsignedp && op1 == constm1_rtx)
3917 if (rem_flag)
3918 return const0_rtx;
3919 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3920 ? negv_optab : neg_optab, op0, target, 0);
3923 if (target
3924 /* Don't use the function value register as a target
3925 since we have to read it as well as write it,
3926 and function-inlining gets confused by this. */
3927 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3928 /* Don't clobber an operand while doing a multi-step calculation. */
3929 || ((rem_flag || op1_is_constant)
3930 && (reg_mentioned_p (target, op0)
3931 || (MEM_P (op0) && MEM_P (target))))
3932 || reg_mentioned_p (target, op1)
3933 || (MEM_P (op1) && MEM_P (target))))
3934 target = 0;
3936 /* Get the mode in which to perform this computation. Normally it will
3937 be MODE, but sometimes we can't do the desired operation in MODE.
3938 If so, pick a wider mode in which we can do the operation. Convert
3939 to that mode at the start to avoid repeated conversions.
3941 First see what operations we need. These depend on the expression
3942 we are evaluating. (We assume that divxx3 insns exist under the
3943 same conditions that modxx3 insns and that these insns don't normally
3944 fail. If these assumptions are not correct, we may generate less
3945 efficient code in some cases.)
3947 Then see if we find a mode in which we can open-code that operation
3948 (either a division, modulus, or shift). Finally, check for the smallest
3949 mode for which we can do the operation with a library call. */
3951 /* We might want to refine this now that we have division-by-constant
3952 optimization. Since expmed_mult_highpart tries so many variants, it is
3953 not straightforward to generalize this. Maybe we should make an array
3954 of possible modes in init_expmed? Save this for GCC 2.7. */
3956 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3957 ? (unsignedp ? lshr_optab : ashr_optab)
3958 : (unsignedp ? udiv_optab : sdiv_optab));
3959 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3960 ? optab1
3961 : (unsignedp ? udivmod_optab : sdivmod_optab));
3963 for (compute_mode = mode; compute_mode != VOIDmode;
3964 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3965 if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
3966 || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
3967 break;
3969 if (compute_mode == VOIDmode)
3970 for (compute_mode = mode; compute_mode != VOIDmode;
3971 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3972 if (optab_libfunc (optab1, compute_mode)
3973 || optab_libfunc (optab2, compute_mode))
3974 break;
3976 /* If we still couldn't find a mode, use MODE, but expand_binop will
3977 probably die. */
3978 if (compute_mode == VOIDmode)
3979 compute_mode = mode;
3981 if (target && GET_MODE (target) == compute_mode)
3982 tquotient = target;
3983 else
3984 tquotient = gen_reg_rtx (compute_mode);
3986 size = GET_MODE_BITSIZE (compute_mode);
3987 #if 0
3988 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3989 (mode), and thereby get better code when OP1 is a constant. Do that
3990 later. It will require going over all usages of SIZE below. */
3991 size = GET_MODE_BITSIZE (mode);
3992 #endif
3994 /* Only deduct something for a REM if the last divide done was
3995 for a different constant. Then set the constant of the last
3996 divide. */
3997 max_cost = (unsignedp
3998 ? udiv_cost (speed, compute_mode)
3999 : sdiv_cost (speed, compute_mode));
4000 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
4001 && INTVAL (op1) == last_div_const))
4002 max_cost -= (mul_cost (speed, compute_mode)
4003 + add_cost (speed, compute_mode));
4005 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
4007 /* Now convert to the best mode to use. */
4008 if (compute_mode != mode)
4010 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
4011 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
4013 /* convert_modes may have placed op1 into a register, so we
4014 must recompute the following. */
4015 op1_is_constant = CONST_INT_P (op1);
4016 op1_is_pow2 = (op1_is_constant
4017 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4018 || (! unsignedp
4019 && EXACT_POWER_OF_2_OR_ZERO_P (-UINTVAL (op1))))));
4022 /* If one of the operands is a volatile MEM, copy it into a register. */
4024 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
4025 op0 = force_reg (compute_mode, op0);
4026 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
4027 op1 = force_reg (compute_mode, op1);
4029 /* If we need the remainder or if OP1 is constant, we need to
4030 put OP0 in a register in case it has any queued subexpressions. */
4031 if (rem_flag || op1_is_constant)
4032 op0 = force_reg (compute_mode, op0);
4034 last = get_last_insn ();
4036 /* Promote floor rounding to trunc rounding for unsigned operations. */
4037 if (unsignedp)
4039 if (code == FLOOR_DIV_EXPR)
4040 code = TRUNC_DIV_EXPR;
4041 if (code == FLOOR_MOD_EXPR)
4042 code = TRUNC_MOD_EXPR;
4043 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4044 code = TRUNC_DIV_EXPR;
4047 if (op1 != const0_rtx)
4048 switch (code)
4050 case TRUNC_MOD_EXPR:
4051 case TRUNC_DIV_EXPR:
4052 if (op1_is_constant)
4054 if (unsignedp)
4056 unsigned HOST_WIDE_INT mh, ml;
4057 int pre_shift, post_shift;
4058 int dummy;
4059 unsigned HOST_WIDE_INT d = (INTVAL (op1)
4060 & GET_MODE_MASK (compute_mode));
4062 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4064 pre_shift = floor_log2 (d);
4065 if (rem_flag)
4067 unsigned HOST_WIDE_INT mask
4068 = ((unsigned HOST_WIDE_INT) 1 << pre_shift) - 1;
4069 remainder
4070 = expand_binop (compute_mode, and_optab, op0,
4071 gen_int_mode (mask, compute_mode),
4072 remainder, 1,
4073 OPTAB_LIB_WIDEN);
4074 if (remainder)
4075 return gen_lowpart (mode, remainder);
4077 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4078 pre_shift, tquotient, 1);
4080 else if (size <= HOST_BITS_PER_WIDE_INT)
4082 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4084 /* Most significant bit of divisor is set; emit an scc
4085 insn. */
4086 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4087 compute_mode, 1, 1);
4089 else
4091 /* Find a suitable multiplier and right shift count
4092 instead of multiplying with D. */
4094 mh = choose_multiplier (d, size, size,
4095 &ml, &post_shift, &dummy);
4097 /* If the suggested multiplier is more than SIZE bits,
4098 we can do better for even divisors, using an
4099 initial right shift. */
4100 if (mh != 0 && (d & 1) == 0)
4102 pre_shift = floor_log2 (d & -d);
4103 mh = choose_multiplier (d >> pre_shift, size,
4104 size - pre_shift,
4105 &ml, &post_shift, &dummy);
4106 gcc_assert (!mh);
4108 else
4109 pre_shift = 0;
4111 if (mh != 0)
4113 rtx t1, t2, t3, t4;
4115 if (post_shift - 1 >= BITS_PER_WORD)
4116 goto fail1;
4118 extra_cost
4119 = (shift_cost (speed, compute_mode, post_shift - 1)
4120 + shift_cost (speed, compute_mode, 1)
4121 + 2 * add_cost (speed, compute_mode));
4122 t1 = expmed_mult_highpart
4123 (compute_mode, op0,
4124 gen_int_mode (ml, compute_mode),
4125 NULL_RTX, 1, max_cost - extra_cost);
4126 if (t1 == 0)
4127 goto fail1;
4128 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4129 op0, t1),
4130 NULL_RTX);
4131 t3 = expand_shift (RSHIFT_EXPR, compute_mode,
4132 t2, 1, NULL_RTX, 1);
4133 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4134 t1, t3),
4135 NULL_RTX);
4136 quotient = expand_shift
4137 (RSHIFT_EXPR, compute_mode, t4,
4138 post_shift - 1, tquotient, 1);
4140 else
4142 rtx t1, t2;
4144 if (pre_shift >= BITS_PER_WORD
4145 || post_shift >= BITS_PER_WORD)
4146 goto fail1;
4148 t1 = expand_shift
4149 (RSHIFT_EXPR, compute_mode, op0,
4150 pre_shift, NULL_RTX, 1);
4151 extra_cost
4152 = (shift_cost (speed, compute_mode, pre_shift)
4153 + shift_cost (speed, compute_mode, post_shift));
4154 t2 = expmed_mult_highpart
4155 (compute_mode, t1,
4156 gen_int_mode (ml, compute_mode),
4157 NULL_RTX, 1, max_cost - extra_cost);
4158 if (t2 == 0)
4159 goto fail1;
4160 quotient = expand_shift
4161 (RSHIFT_EXPR, compute_mode, t2,
4162 post_shift, tquotient, 1);
4166 else /* Too wide mode to use tricky code */
4167 break;
4169 insn = get_last_insn ();
4170 if (insn != last)
4171 set_dst_reg_note (insn, REG_EQUAL,
4172 gen_rtx_UDIV (compute_mode, op0, op1),
4173 quotient);
4175 else /* TRUNC_DIV, signed */
4177 unsigned HOST_WIDE_INT ml;
4178 int lgup, post_shift;
4179 rtx mlr;
4180 HOST_WIDE_INT d = INTVAL (op1);
4181 unsigned HOST_WIDE_INT abs_d;
4183 /* Since d might be INT_MIN, we have to cast to
4184 unsigned HOST_WIDE_INT before negating to avoid
4185 undefined signed overflow. */
4186 abs_d = (d >= 0
4187 ? (unsigned HOST_WIDE_INT) d
4188 : - (unsigned HOST_WIDE_INT) d);
4190 /* n rem d = n rem -d */
4191 if (rem_flag && d < 0)
4193 d = abs_d;
4194 op1 = gen_int_mode (abs_d, compute_mode);
4197 if (d == 1)
4198 quotient = op0;
4199 else if (d == -1)
4200 quotient = expand_unop (compute_mode, neg_optab, op0,
4201 tquotient, 0);
4202 else if (HOST_BITS_PER_WIDE_INT >= size
4203 && abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4205 /* This case is not handled correctly below. */
4206 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4207 compute_mode, 1, 1);
4208 if (quotient == 0)
4209 goto fail1;
4211 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4212 && (rem_flag
4213 ? smod_pow2_cheap (speed, compute_mode)
4214 : sdiv_pow2_cheap (speed, compute_mode))
4215 /* We assume that cheap metric is true if the
4216 optab has an expander for this mode. */
4217 && ((optab_handler ((rem_flag ? smod_optab
4218 : sdiv_optab),
4219 compute_mode)
4220 != CODE_FOR_nothing)
4221 || (optab_handler (sdivmod_optab,
4222 compute_mode)
4223 != CODE_FOR_nothing)))
4225 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4227 if (rem_flag)
4229 remainder = expand_smod_pow2 (compute_mode, op0, d);
4230 if (remainder)
4231 return gen_lowpart (mode, remainder);
4234 if (sdiv_pow2_cheap (speed, compute_mode)
4235 && ((optab_handler (sdiv_optab, compute_mode)
4236 != CODE_FOR_nothing)
4237 || (optab_handler (sdivmod_optab, compute_mode)
4238 != CODE_FOR_nothing)))
4239 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4240 compute_mode, op0,
4241 gen_int_mode (abs_d,
4242 compute_mode),
4243 NULL_RTX, 0);
4244 else
4245 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4247 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4248 negate the quotient. */
4249 if (d < 0)
4251 insn = get_last_insn ();
4252 if (insn != last
4253 && abs_d < ((unsigned HOST_WIDE_INT) 1
4254 << (HOST_BITS_PER_WIDE_INT - 1)))
4255 set_dst_reg_note (insn, REG_EQUAL,
4256 gen_rtx_DIV (compute_mode, op0,
4257 gen_int_mode
4258 (abs_d,
4259 compute_mode)),
4260 quotient);
4262 quotient = expand_unop (compute_mode, neg_optab,
4263 quotient, quotient, 0);
4266 else if (size <= HOST_BITS_PER_WIDE_INT)
4268 choose_multiplier (abs_d, size, size - 1,
4269 &ml, &post_shift, &lgup);
4270 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4272 rtx t1, t2, t3;
4274 if (post_shift >= BITS_PER_WORD
4275 || size - 1 >= BITS_PER_WORD)
4276 goto fail1;
4278 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4279 + shift_cost (speed, compute_mode, size - 1)
4280 + add_cost (speed, compute_mode));
4281 t1 = expmed_mult_highpart
4282 (compute_mode, op0, gen_int_mode (ml, compute_mode),
4283 NULL_RTX, 0, max_cost - extra_cost);
4284 if (t1 == 0)
4285 goto fail1;
4286 t2 = expand_shift
4287 (RSHIFT_EXPR, compute_mode, t1,
4288 post_shift, NULL_RTX, 0);
4289 t3 = expand_shift
4290 (RSHIFT_EXPR, compute_mode, op0,
4291 size - 1, NULL_RTX, 0);
4292 if (d < 0)
4293 quotient
4294 = force_operand (gen_rtx_MINUS (compute_mode,
4295 t3, t2),
4296 tquotient);
4297 else
4298 quotient
4299 = force_operand (gen_rtx_MINUS (compute_mode,
4300 t2, t3),
4301 tquotient);
4303 else
4305 rtx t1, t2, t3, t4;
4307 if (post_shift >= BITS_PER_WORD
4308 || size - 1 >= BITS_PER_WORD)
4309 goto fail1;
4311 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4312 mlr = gen_int_mode (ml, compute_mode);
4313 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4314 + shift_cost (speed, compute_mode, size - 1)
4315 + 2 * add_cost (speed, compute_mode));
4316 t1 = expmed_mult_highpart (compute_mode, op0, mlr,
4317 NULL_RTX, 0,
4318 max_cost - extra_cost);
4319 if (t1 == 0)
4320 goto fail1;
4321 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4322 t1, op0),
4323 NULL_RTX);
4324 t3 = expand_shift
4325 (RSHIFT_EXPR, compute_mode, t2,
4326 post_shift, NULL_RTX, 0);
4327 t4 = expand_shift
4328 (RSHIFT_EXPR, compute_mode, op0,
4329 size - 1, NULL_RTX, 0);
4330 if (d < 0)
4331 quotient
4332 = force_operand (gen_rtx_MINUS (compute_mode,
4333 t4, t3),
4334 tquotient);
4335 else
4336 quotient
4337 = force_operand (gen_rtx_MINUS (compute_mode,
4338 t3, t4),
4339 tquotient);
4342 else /* Too wide mode to use tricky code */
4343 break;
4345 insn = get_last_insn ();
4346 if (insn != last)
4347 set_dst_reg_note (insn, REG_EQUAL,
4348 gen_rtx_DIV (compute_mode, op0, op1),
4349 quotient);
4351 break;
4353 fail1:
4354 delete_insns_since (last);
4355 break;
4357 case FLOOR_DIV_EXPR:
4358 case FLOOR_MOD_EXPR:
4359 /* We will come here only for signed operations. */
4360 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4362 unsigned HOST_WIDE_INT mh, ml;
4363 int pre_shift, lgup, post_shift;
4364 HOST_WIDE_INT d = INTVAL (op1);
4366 if (d > 0)
4368 /* We could just as easily deal with negative constants here,
4369 but it does not seem worth the trouble for GCC 2.6. */
4370 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4372 pre_shift = floor_log2 (d);
4373 if (rem_flag)
4375 unsigned HOST_WIDE_INT mask
4376 = ((unsigned HOST_WIDE_INT) 1 << pre_shift) - 1;
4377 remainder = expand_binop
4378 (compute_mode, and_optab, op0,
4379 gen_int_mode (mask, compute_mode),
4380 remainder, 0, OPTAB_LIB_WIDEN);
4381 if (remainder)
4382 return gen_lowpart (mode, remainder);
4384 quotient = expand_shift
4385 (RSHIFT_EXPR, compute_mode, op0,
4386 pre_shift, tquotient, 0);
4388 else
4390 rtx t1, t2, t3, t4;
4392 mh = choose_multiplier (d, size, size - 1,
4393 &ml, &post_shift, &lgup);
4394 gcc_assert (!mh);
4396 if (post_shift < BITS_PER_WORD
4397 && size - 1 < BITS_PER_WORD)
4399 t1 = expand_shift
4400 (RSHIFT_EXPR, compute_mode, op0,
4401 size - 1, NULL_RTX, 0);
4402 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4403 NULL_RTX, 0, OPTAB_WIDEN);
4404 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4405 + shift_cost (speed, compute_mode, size - 1)
4406 + 2 * add_cost (speed, compute_mode));
4407 t3 = expmed_mult_highpart
4408 (compute_mode, t2, gen_int_mode (ml, compute_mode),
4409 NULL_RTX, 1, max_cost - extra_cost);
4410 if (t3 != 0)
4412 t4 = expand_shift
4413 (RSHIFT_EXPR, compute_mode, t3,
4414 post_shift, NULL_RTX, 1);
4415 quotient = expand_binop (compute_mode, xor_optab,
4416 t4, t1, tquotient, 0,
4417 OPTAB_WIDEN);
4422 else
4424 rtx nsign, t1, t2, t3, t4;
4425 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4426 op0, constm1_rtx), NULL_RTX);
4427 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4428 0, OPTAB_WIDEN);
4429 nsign = expand_shift
4430 (RSHIFT_EXPR, compute_mode, t2,
4431 size - 1, NULL_RTX, 0);
4432 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4433 NULL_RTX);
4434 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4435 NULL_RTX, 0);
4436 if (t4)
4438 rtx t5;
4439 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4440 NULL_RTX, 0);
4441 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4442 t4, t5),
4443 tquotient);
4448 if (quotient != 0)
4449 break;
4450 delete_insns_since (last);
4452 /* Try using an instruction that produces both the quotient and
4453 remainder, using truncation. We can easily compensate the quotient
4454 or remainder to get floor rounding, once we have the remainder.
4455 Notice that we compute also the final remainder value here,
4456 and return the result right away. */
4457 if (target == 0 || GET_MODE (target) != compute_mode)
4458 target = gen_reg_rtx (compute_mode);
4460 if (rem_flag)
4462 remainder
4463 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4464 quotient = gen_reg_rtx (compute_mode);
4466 else
4468 quotient
4469 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4470 remainder = gen_reg_rtx (compute_mode);
4473 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4474 quotient, remainder, 0))
4476 /* This could be computed with a branch-less sequence.
4477 Save that for later. */
4478 rtx tem;
4479 rtx label = gen_label_rtx ();
4480 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4481 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4482 NULL_RTX, 0, OPTAB_WIDEN);
4483 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4484 expand_dec (quotient, const1_rtx);
4485 expand_inc (remainder, op1);
4486 emit_label (label);
4487 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4490 /* No luck with division elimination or divmod. Have to do it
4491 by conditionally adjusting op0 *and* the result. */
4493 rtx label1, label2, label3, label4, label5;
4494 rtx adjusted_op0;
4495 rtx tem;
4497 quotient = gen_reg_rtx (compute_mode);
4498 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4499 label1 = gen_label_rtx ();
4500 label2 = gen_label_rtx ();
4501 label3 = gen_label_rtx ();
4502 label4 = gen_label_rtx ();
4503 label5 = gen_label_rtx ();
4504 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4505 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4506 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4507 quotient, 0, OPTAB_LIB_WIDEN);
4508 if (tem != quotient)
4509 emit_move_insn (quotient, tem);
4510 emit_jump_insn (gen_jump (label5));
4511 emit_barrier ();
4512 emit_label (label1);
4513 expand_inc (adjusted_op0, const1_rtx);
4514 emit_jump_insn (gen_jump (label4));
4515 emit_barrier ();
4516 emit_label (label2);
4517 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4518 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4519 quotient, 0, OPTAB_LIB_WIDEN);
4520 if (tem != quotient)
4521 emit_move_insn (quotient, tem);
4522 emit_jump_insn (gen_jump (label5));
4523 emit_barrier ();
4524 emit_label (label3);
4525 expand_dec (adjusted_op0, const1_rtx);
4526 emit_label (label4);
4527 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4528 quotient, 0, OPTAB_LIB_WIDEN);
4529 if (tem != quotient)
4530 emit_move_insn (quotient, tem);
4531 expand_dec (quotient, const1_rtx);
4532 emit_label (label5);
4534 break;
4536 case CEIL_DIV_EXPR:
4537 case CEIL_MOD_EXPR:
4538 if (unsignedp)
4540 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4542 rtx t1, t2, t3;
4543 unsigned HOST_WIDE_INT d = INTVAL (op1);
4544 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4545 floor_log2 (d), tquotient, 1);
4546 t2 = expand_binop (compute_mode, and_optab, op0,
4547 gen_int_mode (d - 1, compute_mode),
4548 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4549 t3 = gen_reg_rtx (compute_mode);
4550 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4551 compute_mode, 1, 1);
4552 if (t3 == 0)
4554 rtx lab;
4555 lab = gen_label_rtx ();
4556 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4557 expand_inc (t1, const1_rtx);
4558 emit_label (lab);
4559 quotient = t1;
4561 else
4562 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4563 t1, t3),
4564 tquotient);
4565 break;
4568 /* Try using an instruction that produces both the quotient and
4569 remainder, using truncation. We can easily compensate the
4570 quotient or remainder to get ceiling rounding, once we have the
4571 remainder. Notice that we compute also the final remainder
4572 value here, and return the result right away. */
4573 if (target == 0 || GET_MODE (target) != compute_mode)
4574 target = gen_reg_rtx (compute_mode);
4576 if (rem_flag)
4578 remainder = (REG_P (target)
4579 ? target : gen_reg_rtx (compute_mode));
4580 quotient = gen_reg_rtx (compute_mode);
4582 else
4584 quotient = (REG_P (target)
4585 ? target : gen_reg_rtx (compute_mode));
4586 remainder = gen_reg_rtx (compute_mode);
4589 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4590 remainder, 1))
4592 /* This could be computed with a branch-less sequence.
4593 Save that for later. */
4594 rtx label = gen_label_rtx ();
4595 do_cmp_and_jump (remainder, const0_rtx, EQ,
4596 compute_mode, label);
4597 expand_inc (quotient, const1_rtx);
4598 expand_dec (remainder, op1);
4599 emit_label (label);
4600 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4603 /* No luck with division elimination or divmod. Have to do it
4604 by conditionally adjusting op0 *and* the result. */
4606 rtx label1, label2;
4607 rtx adjusted_op0, tem;
4609 quotient = gen_reg_rtx (compute_mode);
4610 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4611 label1 = gen_label_rtx ();
4612 label2 = gen_label_rtx ();
4613 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4614 compute_mode, label1);
4615 emit_move_insn (quotient, const0_rtx);
4616 emit_jump_insn (gen_jump (label2));
4617 emit_barrier ();
4618 emit_label (label1);
4619 expand_dec (adjusted_op0, const1_rtx);
4620 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4621 quotient, 1, OPTAB_LIB_WIDEN);
4622 if (tem != quotient)
4623 emit_move_insn (quotient, tem);
4624 expand_inc (quotient, const1_rtx);
4625 emit_label (label2);
4628 else /* signed */
4630 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4631 && INTVAL (op1) >= 0)
4633 /* This is extremely similar to the code for the unsigned case
4634 above. For 2.7 we should merge these variants, but for
4635 2.6.1 I don't want to touch the code for unsigned since that
4636 get used in C. The signed case will only be used by other
4637 languages (Ada). */
4639 rtx t1, t2, t3;
4640 unsigned HOST_WIDE_INT d = INTVAL (op1);
4641 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4642 floor_log2 (d), tquotient, 0);
4643 t2 = expand_binop (compute_mode, and_optab, op0,
4644 gen_int_mode (d - 1, compute_mode),
4645 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4646 t3 = gen_reg_rtx (compute_mode);
4647 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4648 compute_mode, 1, 1);
4649 if (t3 == 0)
4651 rtx lab;
4652 lab = gen_label_rtx ();
4653 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4654 expand_inc (t1, const1_rtx);
4655 emit_label (lab);
4656 quotient = t1;
4658 else
4659 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4660 t1, t3),
4661 tquotient);
4662 break;
4665 /* Try using an instruction that produces both the quotient and
4666 remainder, using truncation. We can easily compensate the
4667 quotient or remainder to get ceiling rounding, once we have the
4668 remainder. Notice that we compute also the final remainder
4669 value here, and return the result right away. */
4670 if (target == 0 || GET_MODE (target) != compute_mode)
4671 target = gen_reg_rtx (compute_mode);
4672 if (rem_flag)
4674 remainder= (REG_P (target)
4675 ? target : gen_reg_rtx (compute_mode));
4676 quotient = gen_reg_rtx (compute_mode);
4678 else
4680 quotient = (REG_P (target)
4681 ? target : gen_reg_rtx (compute_mode));
4682 remainder = gen_reg_rtx (compute_mode);
4685 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4686 remainder, 0))
4688 /* This could be computed with a branch-less sequence.
4689 Save that for later. */
4690 rtx tem;
4691 rtx label = gen_label_rtx ();
4692 do_cmp_and_jump (remainder, const0_rtx, EQ,
4693 compute_mode, label);
4694 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4695 NULL_RTX, 0, OPTAB_WIDEN);
4696 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4697 expand_inc (quotient, const1_rtx);
4698 expand_dec (remainder, op1);
4699 emit_label (label);
4700 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4703 /* No luck with division elimination or divmod. Have to do it
4704 by conditionally adjusting op0 *and* the result. */
4706 rtx label1, label2, label3, label4, label5;
4707 rtx adjusted_op0;
4708 rtx tem;
4710 quotient = gen_reg_rtx (compute_mode);
4711 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4712 label1 = gen_label_rtx ();
4713 label2 = gen_label_rtx ();
4714 label3 = gen_label_rtx ();
4715 label4 = gen_label_rtx ();
4716 label5 = gen_label_rtx ();
4717 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4718 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4719 compute_mode, label1);
4720 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4721 quotient, 0, OPTAB_LIB_WIDEN);
4722 if (tem != quotient)
4723 emit_move_insn (quotient, tem);
4724 emit_jump_insn (gen_jump (label5));
4725 emit_barrier ();
4726 emit_label (label1);
4727 expand_dec (adjusted_op0, const1_rtx);
4728 emit_jump_insn (gen_jump (label4));
4729 emit_barrier ();
4730 emit_label (label2);
4731 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4732 compute_mode, label3);
4733 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4734 quotient, 0, OPTAB_LIB_WIDEN);
4735 if (tem != quotient)
4736 emit_move_insn (quotient, tem);
4737 emit_jump_insn (gen_jump (label5));
4738 emit_barrier ();
4739 emit_label (label3);
4740 expand_inc (adjusted_op0, const1_rtx);
4741 emit_label (label4);
4742 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4743 quotient, 0, OPTAB_LIB_WIDEN);
4744 if (tem != quotient)
4745 emit_move_insn (quotient, tem);
4746 expand_inc (quotient, const1_rtx);
4747 emit_label (label5);
4750 break;
4752 case EXACT_DIV_EXPR:
4753 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4755 HOST_WIDE_INT d = INTVAL (op1);
4756 unsigned HOST_WIDE_INT ml;
4757 int pre_shift;
4758 rtx t1;
4760 pre_shift = floor_log2 (d & -d);
4761 ml = invert_mod2n (d >> pre_shift, size);
4762 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4763 pre_shift, NULL_RTX, unsignedp);
4764 quotient = expand_mult (compute_mode, t1,
4765 gen_int_mode (ml, compute_mode),
4766 NULL_RTX, 1);
4768 insn = get_last_insn ();
4769 set_dst_reg_note (insn, REG_EQUAL,
4770 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4771 compute_mode, op0, op1),
4772 quotient);
4774 break;
4776 case ROUND_DIV_EXPR:
4777 case ROUND_MOD_EXPR:
4778 if (unsignedp)
4780 rtx tem;
4781 rtx label;
4782 label = gen_label_rtx ();
4783 quotient = gen_reg_rtx (compute_mode);
4784 remainder = gen_reg_rtx (compute_mode);
4785 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4787 rtx tem;
4788 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4789 quotient, 1, OPTAB_LIB_WIDEN);
4790 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4791 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4792 remainder, 1, OPTAB_LIB_WIDEN);
4794 tem = plus_constant (compute_mode, op1, -1);
4795 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem, 1, NULL_RTX, 1);
4796 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4797 expand_inc (quotient, const1_rtx);
4798 expand_dec (remainder, op1);
4799 emit_label (label);
4801 else
4803 rtx abs_rem, abs_op1, tem, mask;
4804 rtx label;
4805 label = gen_label_rtx ();
4806 quotient = gen_reg_rtx (compute_mode);
4807 remainder = gen_reg_rtx (compute_mode);
4808 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4810 rtx tem;
4811 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4812 quotient, 0, OPTAB_LIB_WIDEN);
4813 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4814 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4815 remainder, 0, OPTAB_LIB_WIDEN);
4817 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4818 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4819 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4820 1, NULL_RTX, 1);
4821 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4822 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4823 NULL_RTX, 0, OPTAB_WIDEN);
4824 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4825 size - 1, NULL_RTX, 0);
4826 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4827 NULL_RTX, 0, OPTAB_WIDEN);
4828 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4829 NULL_RTX, 0, OPTAB_WIDEN);
4830 expand_inc (quotient, tem);
4831 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4832 NULL_RTX, 0, OPTAB_WIDEN);
4833 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4834 NULL_RTX, 0, OPTAB_WIDEN);
4835 expand_dec (remainder, tem);
4836 emit_label (label);
4838 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4840 default:
4841 gcc_unreachable ();
4844 if (quotient == 0)
4846 if (target && GET_MODE (target) != compute_mode)
4847 target = 0;
4849 if (rem_flag)
4851 /* Try to produce the remainder without producing the quotient.
4852 If we seem to have a divmod pattern that does not require widening,
4853 don't try widening here. We should really have a WIDEN argument
4854 to expand_twoval_binop, since what we'd really like to do here is
4855 1) try a mod insn in compute_mode
4856 2) try a divmod insn in compute_mode
4857 3) try a div insn in compute_mode and multiply-subtract to get
4858 remainder
4859 4) try the same things with widening allowed. */
4860 remainder
4861 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4862 op0, op1, target,
4863 unsignedp,
4864 ((optab_handler (optab2, compute_mode)
4865 != CODE_FOR_nothing)
4866 ? OPTAB_DIRECT : OPTAB_WIDEN));
4867 if (remainder == 0)
4869 /* No luck there. Can we do remainder and divide at once
4870 without a library call? */
4871 remainder = gen_reg_rtx (compute_mode);
4872 if (! expand_twoval_binop ((unsignedp
4873 ? udivmod_optab
4874 : sdivmod_optab),
4875 op0, op1,
4876 NULL_RTX, remainder, unsignedp))
4877 remainder = 0;
4880 if (remainder)
4881 return gen_lowpart (mode, remainder);
4884 /* Produce the quotient. Try a quotient insn, but not a library call.
4885 If we have a divmod in this mode, use it in preference to widening
4886 the div (for this test we assume it will not fail). Note that optab2
4887 is set to the one of the two optabs that the call below will use. */
4888 quotient
4889 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4890 op0, op1, rem_flag ? NULL_RTX : target,
4891 unsignedp,
4892 ((optab_handler (optab2, compute_mode)
4893 != CODE_FOR_nothing)
4894 ? OPTAB_DIRECT : OPTAB_WIDEN));
4896 if (quotient == 0)
4898 /* No luck there. Try a quotient-and-remainder insn,
4899 keeping the quotient alone. */
4900 quotient = gen_reg_rtx (compute_mode);
4901 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4902 op0, op1,
4903 quotient, NULL_RTX, unsignedp))
4905 quotient = 0;
4906 if (! rem_flag)
4907 /* Still no luck. If we are not computing the remainder,
4908 use a library call for the quotient. */
4909 quotient = sign_expand_binop (compute_mode,
4910 udiv_optab, sdiv_optab,
4911 op0, op1, target,
4912 unsignedp, OPTAB_LIB_WIDEN);
4917 if (rem_flag)
4919 if (target && GET_MODE (target) != compute_mode)
4920 target = 0;
4922 if (quotient == 0)
4924 /* No divide instruction either. Use library for remainder. */
4925 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4926 op0, op1, target,
4927 unsignedp, OPTAB_LIB_WIDEN);
4928 /* No remainder function. Try a quotient-and-remainder
4929 function, keeping the remainder. */
4930 if (!remainder)
4932 remainder = gen_reg_rtx (compute_mode);
4933 if (!expand_twoval_binop_libfunc
4934 (unsignedp ? udivmod_optab : sdivmod_optab,
4935 op0, op1,
4936 NULL_RTX, remainder,
4937 unsignedp ? UMOD : MOD))
4938 remainder = NULL_RTX;
4941 else
4943 /* We divided. Now finish doing X - Y * (X / Y). */
4944 remainder = expand_mult (compute_mode, quotient, op1,
4945 NULL_RTX, unsignedp);
4946 remainder = expand_binop (compute_mode, sub_optab, op0,
4947 remainder, target, unsignedp,
4948 OPTAB_LIB_WIDEN);
4952 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4955 /* Return a tree node with data type TYPE, describing the value of X.
4956 Usually this is an VAR_DECL, if there is no obvious better choice.
4957 X may be an expression, however we only support those expressions
4958 generated by loop.c. */
4960 tree
4961 make_tree (tree type, rtx x)
4963 tree t;
4965 switch (GET_CODE (x))
4967 case CONST_INT:
4969 HOST_WIDE_INT hi = 0;
4971 if (INTVAL (x) < 0
4972 && !(TYPE_UNSIGNED (type)
4973 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4974 < HOST_BITS_PER_WIDE_INT)))
4975 hi = -1;
4977 t = build_int_cst_wide (type, INTVAL (x), hi);
4979 return t;
4982 case CONST_DOUBLE:
4983 if (GET_MODE (x) == VOIDmode)
4984 t = build_int_cst_wide (type,
4985 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4986 else
4988 REAL_VALUE_TYPE d;
4990 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4991 t = build_real (type, d);
4994 return t;
4996 case CONST_VECTOR:
4998 int units = CONST_VECTOR_NUNITS (x);
4999 tree itype = TREE_TYPE (type);
5000 tree *elts;
5001 int i;
5003 /* Build a tree with vector elements. */
5004 elts = XALLOCAVEC (tree, units);
5005 for (i = units - 1; i >= 0; --i)
5007 rtx elt = CONST_VECTOR_ELT (x, i);
5008 elts[i] = make_tree (itype, elt);
5011 return build_vector (type, elts);
5014 case PLUS:
5015 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5016 make_tree (type, XEXP (x, 1)));
5018 case MINUS:
5019 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5020 make_tree (type, XEXP (x, 1)));
5022 case NEG:
5023 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5025 case MULT:
5026 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5027 make_tree (type, XEXP (x, 1)));
5029 case ASHIFT:
5030 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5031 make_tree (type, XEXP (x, 1)));
5033 case LSHIFTRT:
5034 t = unsigned_type_for (type);
5035 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5036 make_tree (t, XEXP (x, 0)),
5037 make_tree (type, XEXP (x, 1))));
5039 case ASHIFTRT:
5040 t = signed_type_for (type);
5041 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5042 make_tree (t, XEXP (x, 0)),
5043 make_tree (type, XEXP (x, 1))));
5045 case DIV:
5046 if (TREE_CODE (type) != REAL_TYPE)
5047 t = signed_type_for (type);
5048 else
5049 t = type;
5051 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5052 make_tree (t, XEXP (x, 0)),
5053 make_tree (t, XEXP (x, 1))));
5054 case UDIV:
5055 t = unsigned_type_for (type);
5056 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5057 make_tree (t, XEXP (x, 0)),
5058 make_tree (t, XEXP (x, 1))));
5060 case SIGN_EXTEND:
5061 case ZERO_EXTEND:
5062 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5063 GET_CODE (x) == ZERO_EXTEND);
5064 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5066 case CONST:
5067 return make_tree (type, XEXP (x, 0));
5069 case SYMBOL_REF:
5070 t = SYMBOL_REF_DECL (x);
5071 if (t)
5072 return fold_convert (type, build_fold_addr_expr (t));
5073 /* else fall through. */
5075 default:
5076 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5078 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5079 address mode to pointer mode. */
5080 if (POINTER_TYPE_P (type))
5081 x = convert_memory_address_addr_space
5082 (TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5084 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5085 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5086 t->decl_with_rtl.rtl = x;
5088 return t;
5092 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5093 and returning TARGET.
5095 If TARGET is 0, a pseudo-register or constant is returned. */
5098 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
5100 rtx tem = 0;
5102 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5103 tem = simplify_binary_operation (AND, mode, op0, op1);
5104 if (tem == 0)
5105 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5107 if (target == 0)
5108 target = tem;
5109 else if (tem != target)
5110 emit_move_insn (target, tem);
5111 return target;
5114 /* Helper function for emit_store_flag. */
5115 static rtx
5116 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5117 enum machine_mode mode, enum machine_mode compare_mode,
5118 int unsignedp, rtx x, rtx y, int normalizep,
5119 enum machine_mode target_mode)
5121 struct expand_operand ops[4];
5122 rtx op0, last, comparison, subtarget;
5123 enum machine_mode result_mode = targetm.cstore_mode (icode);
5125 last = get_last_insn ();
5126 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5127 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5128 if (!x || !y)
5130 delete_insns_since (last);
5131 return NULL_RTX;
5134 if (target_mode == VOIDmode)
5135 target_mode = result_mode;
5136 if (!target)
5137 target = gen_reg_rtx (target_mode);
5139 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5141 create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
5142 create_fixed_operand (&ops[1], comparison);
5143 create_fixed_operand (&ops[2], x);
5144 create_fixed_operand (&ops[3], y);
5145 if (!maybe_expand_insn (icode, 4, ops))
5147 delete_insns_since (last);
5148 return NULL_RTX;
5150 subtarget = ops[0].value;
5152 /* If we are converting to a wider mode, first convert to
5153 TARGET_MODE, then normalize. This produces better combining
5154 opportunities on machines that have a SIGN_EXTRACT when we are
5155 testing a single bit. This mostly benefits the 68k.
5157 If STORE_FLAG_VALUE does not have the sign bit set when
5158 interpreted in MODE, we can do this conversion as unsigned, which
5159 is usually more efficient. */
5160 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
5162 convert_move (target, subtarget,
5163 val_signbit_known_clear_p (result_mode,
5164 STORE_FLAG_VALUE));
5165 op0 = target;
5166 result_mode = target_mode;
5168 else
5169 op0 = subtarget;
5171 /* If we want to keep subexpressions around, don't reuse our last
5172 target. */
5173 if (optimize)
5174 subtarget = 0;
5176 /* Now normalize to the proper value in MODE. Sometimes we don't
5177 have to do anything. */
5178 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5180 /* STORE_FLAG_VALUE might be the most negative number, so write
5181 the comparison this way to avoid a compiler-time warning. */
5182 else if (- normalizep == STORE_FLAG_VALUE)
5183 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5185 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5186 it hard to use a value of just the sign bit due to ANSI integer
5187 constant typing rules. */
5188 else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
5189 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5190 GET_MODE_BITSIZE (result_mode) - 1, subtarget,
5191 normalizep == 1);
5192 else
5194 gcc_assert (STORE_FLAG_VALUE & 1);
5196 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5197 if (normalizep == -1)
5198 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5201 /* If we were converting to a smaller mode, do the conversion now. */
5202 if (target_mode != result_mode)
5204 convert_move (target, op0, 0);
5205 return target;
5207 else
5208 return op0;
5212 /* A subroutine of emit_store_flag only including "tricks" that do not
5213 need a recursive call. These are kept separate to avoid infinite
5214 loops. */
5216 static rtx
5217 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5218 enum machine_mode mode, int unsignedp, int normalizep,
5219 enum machine_mode target_mode)
5221 rtx subtarget;
5222 enum insn_code icode;
5223 enum machine_mode compare_mode;
5224 enum mode_class mclass;
5225 enum rtx_code scode;
5226 rtx tem;
5228 if (unsignedp)
5229 code = unsigned_condition (code);
5230 scode = swap_condition (code);
5232 /* If one operand is constant, make it the second one. Only do this
5233 if the other operand is not constant as well. */
5235 if (swap_commutative_operands_p (op0, op1))
5237 tem = op0;
5238 op0 = op1;
5239 op1 = tem;
5240 code = swap_condition (code);
5243 if (mode == VOIDmode)
5244 mode = GET_MODE (op0);
5246 /* For some comparisons with 1 and -1, we can convert this to
5247 comparisons with zero. This will often produce more opportunities for
5248 store-flag insns. */
5250 switch (code)
5252 case LT:
5253 if (op1 == const1_rtx)
5254 op1 = const0_rtx, code = LE;
5255 break;
5256 case LE:
5257 if (op1 == constm1_rtx)
5258 op1 = const0_rtx, code = LT;
5259 break;
5260 case GE:
5261 if (op1 == const1_rtx)
5262 op1 = const0_rtx, code = GT;
5263 break;
5264 case GT:
5265 if (op1 == constm1_rtx)
5266 op1 = const0_rtx, code = GE;
5267 break;
5268 case GEU:
5269 if (op1 == const1_rtx)
5270 op1 = const0_rtx, code = NE;
5271 break;
5272 case LTU:
5273 if (op1 == const1_rtx)
5274 op1 = const0_rtx, code = EQ;
5275 break;
5276 default:
5277 break;
5280 /* If we are comparing a double-word integer with zero or -1, we can
5281 convert the comparison into one involving a single word. */
5282 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5283 && GET_MODE_CLASS (mode) == MODE_INT
5284 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5286 if ((code == EQ || code == NE)
5287 && (op1 == const0_rtx || op1 == constm1_rtx))
5289 rtx op00, op01;
5291 /* Do a logical OR or AND of the two words and compare the
5292 result. */
5293 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5294 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5295 tem = expand_binop (word_mode,
5296 op1 == const0_rtx ? ior_optab : and_optab,
5297 op00, op01, NULL_RTX, unsignedp,
5298 OPTAB_DIRECT);
5300 if (tem != 0)
5301 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5302 unsignedp, normalizep);
5304 else if ((code == LT || code == GE) && op1 == const0_rtx)
5306 rtx op0h;
5308 /* If testing the sign bit, can just test on high word. */
5309 op0h = simplify_gen_subreg (word_mode, op0, mode,
5310 subreg_highpart_offset (word_mode,
5311 mode));
5312 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5313 unsignedp, normalizep);
5315 else
5316 tem = NULL_RTX;
5318 if (tem)
5320 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5321 return tem;
5322 if (!target)
5323 target = gen_reg_rtx (target_mode);
5325 convert_move (target, tem,
5326 !val_signbit_known_set_p (word_mode,
5327 (normalizep ? normalizep
5328 : STORE_FLAG_VALUE)));
5329 return target;
5333 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5334 complement of A (for GE) and shifting the sign bit to the low bit. */
5335 if (op1 == const0_rtx && (code == LT || code == GE)
5336 && GET_MODE_CLASS (mode) == MODE_INT
5337 && (normalizep || STORE_FLAG_VALUE == 1
5338 || val_signbit_p (mode, STORE_FLAG_VALUE)))
5340 subtarget = target;
5342 if (!target)
5343 target_mode = mode;
5345 /* If the result is to be wider than OP0, it is best to convert it
5346 first. If it is to be narrower, it is *incorrect* to convert it
5347 first. */
5348 else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5350 op0 = convert_modes (target_mode, mode, op0, 0);
5351 mode = target_mode;
5354 if (target_mode != mode)
5355 subtarget = 0;
5357 if (code == GE)
5358 op0 = expand_unop (mode, one_cmpl_optab, op0,
5359 ((STORE_FLAG_VALUE == 1 || normalizep)
5360 ? 0 : subtarget), 0);
5362 if (STORE_FLAG_VALUE == 1 || normalizep)
5363 /* If we are supposed to produce a 0/1 value, we want to do
5364 a logical shift from the sign bit to the low-order bit; for
5365 a -1/0 value, we do an arithmetic shift. */
5366 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5367 GET_MODE_BITSIZE (mode) - 1,
5368 subtarget, normalizep != -1);
5370 if (mode != target_mode)
5371 op0 = convert_modes (target_mode, mode, op0, 0);
5373 return op0;
5376 mclass = GET_MODE_CLASS (mode);
5377 for (compare_mode = mode; compare_mode != VOIDmode;
5378 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5380 enum machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5381 icode = optab_handler (cstore_optab, optab_mode);
5382 if (icode != CODE_FOR_nothing)
5384 do_pending_stack_adjust ();
5385 tem = emit_cstore (target, icode, code, mode, compare_mode,
5386 unsignedp, op0, op1, normalizep, target_mode);
5387 if (tem)
5388 return tem;
5390 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5392 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5393 unsignedp, op1, op0, normalizep, target_mode);
5394 if (tem)
5395 return tem;
5397 break;
5401 return 0;
5404 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5405 and storing in TARGET. Normally return TARGET.
5406 Return 0 if that cannot be done.
5408 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5409 it is VOIDmode, they cannot both be CONST_INT.
5411 UNSIGNEDP is for the case where we have to widen the operands
5412 to perform the operation. It says to use zero-extension.
5414 NORMALIZEP is 1 if we should convert the result to be either zero
5415 or one. Normalize is -1 if we should convert the result to be
5416 either zero or -1. If NORMALIZEP is zero, the result will be left
5417 "raw" out of the scc insn. */
5420 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5421 enum machine_mode mode, int unsignedp, int normalizep)
5423 enum machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5424 enum rtx_code rcode;
5425 rtx subtarget;
5426 rtx tem, last, trueval;
5428 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5429 target_mode);
5430 if (tem)
5431 return tem;
5433 /* If we reached here, we can't do this with a scc insn, however there
5434 are some comparisons that can be done in other ways. Don't do any
5435 of these cases if branches are very cheap. */
5436 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5437 return 0;
5439 /* See what we need to return. We can only return a 1, -1, or the
5440 sign bit. */
5442 if (normalizep == 0)
5444 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5445 normalizep = STORE_FLAG_VALUE;
5447 else if (val_signbit_p (mode, STORE_FLAG_VALUE))
5449 else
5450 return 0;
5453 last = get_last_insn ();
5455 /* If optimizing, use different pseudo registers for each insn, instead
5456 of reusing the same pseudo. This leads to better CSE, but slows
5457 down the compiler, since there are more pseudos */
5458 subtarget = (!optimize
5459 && (target_mode == mode)) ? target : NULL_RTX;
5460 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
5462 /* For floating-point comparisons, try the reverse comparison or try
5463 changing the "orderedness" of the comparison. */
5464 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5466 enum rtx_code first_code;
5467 bool and_them;
5469 rcode = reverse_condition_maybe_unordered (code);
5470 if (can_compare_p (rcode, mode, ccp_store_flag)
5471 && (code == ORDERED || code == UNORDERED
5472 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5473 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5475 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5476 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5478 /* For the reverse comparison, use either an addition or a XOR. */
5479 if (want_add
5480 && rtx_cost (GEN_INT (normalizep), PLUS, 1,
5481 optimize_insn_for_speed_p ()) == 0)
5483 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5484 STORE_FLAG_VALUE, target_mode);
5485 if (tem)
5486 return expand_binop (target_mode, add_optab, tem,
5487 gen_int_mode (normalizep, target_mode),
5488 target, 0, OPTAB_WIDEN);
5490 else if (!want_add
5491 && rtx_cost (trueval, XOR, 1,
5492 optimize_insn_for_speed_p ()) == 0)
5494 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5495 normalizep, target_mode);
5496 if (tem)
5497 return expand_binop (target_mode, xor_optab, tem, trueval,
5498 target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
5502 delete_insns_since (last);
5504 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5505 if (code == ORDERED || code == UNORDERED)
5506 return 0;
5508 and_them = split_comparison (code, mode, &first_code, &code);
5510 /* If there are no NaNs, the first comparison should always fall through.
5511 Effectively change the comparison to the other one. */
5512 if (!HONOR_NANS (mode))
5514 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
5515 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
5516 target_mode);
5519 #ifdef HAVE_conditional_move
5520 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5521 conditional move. */
5522 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
5523 normalizep, target_mode);
5524 if (tem == 0)
5525 return 0;
5527 if (and_them)
5528 tem = emit_conditional_move (target, code, op0, op1, mode,
5529 tem, const0_rtx, GET_MODE (tem), 0);
5530 else
5531 tem = emit_conditional_move (target, code, op0, op1, mode,
5532 trueval, tem, GET_MODE (tem), 0);
5534 if (tem == 0)
5535 delete_insns_since (last);
5536 return tem;
5537 #else
5538 return 0;
5539 #endif
5542 /* The remaining tricks only apply to integer comparisons. */
5544 if (GET_MODE_CLASS (mode) != MODE_INT)
5545 return 0;
5547 /* If this is an equality comparison of integers, we can try to exclusive-or
5548 (or subtract) the two operands and use a recursive call to try the
5549 comparison with zero. Don't do any of these cases if branches are
5550 very cheap. */
5552 if ((code == EQ || code == NE) && op1 != const0_rtx)
5554 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5555 OPTAB_WIDEN);
5557 if (tem == 0)
5558 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5559 OPTAB_WIDEN);
5560 if (tem != 0)
5561 tem = emit_store_flag (target, code, tem, const0_rtx,
5562 mode, unsignedp, normalizep);
5563 if (tem != 0)
5564 return tem;
5566 delete_insns_since (last);
5569 /* For integer comparisons, try the reverse comparison. However, for
5570 small X and if we'd have anyway to extend, implementing "X != 0"
5571 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5572 rcode = reverse_condition (code);
5573 if (can_compare_p (rcode, mode, ccp_store_flag)
5574 && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
5575 && code == NE
5576 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5577 && op1 == const0_rtx))
5579 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5580 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5582 /* Again, for the reverse comparison, use either an addition or a XOR. */
5583 if (want_add
5584 && rtx_cost (GEN_INT (normalizep), PLUS, 1,
5585 optimize_insn_for_speed_p ()) == 0)
5587 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5588 STORE_FLAG_VALUE, target_mode);
5589 if (tem != 0)
5590 tem = expand_binop (target_mode, add_optab, tem,
5591 gen_int_mode (normalizep, target_mode),
5592 target, 0, OPTAB_WIDEN);
5594 else if (!want_add
5595 && rtx_cost (trueval, XOR, 1,
5596 optimize_insn_for_speed_p ()) == 0)
5598 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5599 normalizep, target_mode);
5600 if (tem != 0)
5601 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5602 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5605 if (tem != 0)
5606 return tem;
5607 delete_insns_since (last);
5610 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5611 the constant zero. Reject all other comparisons at this point. Only
5612 do LE and GT if branches are expensive since they are expensive on
5613 2-operand machines. */
5615 if (op1 != const0_rtx
5616 || (code != EQ && code != NE
5617 && (BRANCH_COST (optimize_insn_for_speed_p (),
5618 false) <= 1 || (code != LE && code != GT))))
5619 return 0;
5621 /* Try to put the result of the comparison in the sign bit. Assume we can't
5622 do the necessary operation below. */
5624 tem = 0;
5626 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5627 the sign bit set. */
5629 if (code == LE)
5631 /* This is destructive, so SUBTARGET can't be OP0. */
5632 if (rtx_equal_p (subtarget, op0))
5633 subtarget = 0;
5635 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5636 OPTAB_WIDEN);
5637 if (tem)
5638 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5639 OPTAB_WIDEN);
5642 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5643 number of bits in the mode of OP0, minus one. */
5645 if (code == GT)
5647 if (rtx_equal_p (subtarget, op0))
5648 subtarget = 0;
5650 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5651 GET_MODE_BITSIZE (mode) - 1,
5652 subtarget, 0);
5653 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5654 OPTAB_WIDEN);
5657 if (code == EQ || code == NE)
5659 /* For EQ or NE, one way to do the comparison is to apply an operation
5660 that converts the operand into a positive number if it is nonzero
5661 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5662 for NE we negate. This puts the result in the sign bit. Then we
5663 normalize with a shift, if needed.
5665 Two operations that can do the above actions are ABS and FFS, so try
5666 them. If that doesn't work, and MODE is smaller than a full word,
5667 we can use zero-extension to the wider mode (an unsigned conversion)
5668 as the operation. */
5670 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5671 that is compensated by the subsequent overflow when subtracting
5672 one / negating. */
5674 if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
5675 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5676 else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
5677 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5678 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5680 tem = convert_modes (word_mode, mode, op0, 1);
5681 mode = word_mode;
5684 if (tem != 0)
5686 if (code == EQ)
5687 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5688 0, OPTAB_WIDEN);
5689 else
5690 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5693 /* If we couldn't do it that way, for NE we can "or" the two's complement
5694 of the value with itself. For EQ, we take the one's complement of
5695 that "or", which is an extra insn, so we only handle EQ if branches
5696 are expensive. */
5698 if (tem == 0
5699 && (code == NE
5700 || BRANCH_COST (optimize_insn_for_speed_p (),
5701 false) > 1))
5703 if (rtx_equal_p (subtarget, op0))
5704 subtarget = 0;
5706 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5707 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5708 OPTAB_WIDEN);
5710 if (tem && code == EQ)
5711 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5715 if (tem && normalizep)
5716 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5717 GET_MODE_BITSIZE (mode) - 1,
5718 subtarget, normalizep == 1);
5720 if (tem)
5722 if (!target)
5724 else if (GET_MODE (tem) != target_mode)
5726 convert_move (target, tem, 0);
5727 tem = target;
5729 else if (!subtarget)
5731 emit_move_insn (target, tem);
5732 tem = target;
5735 else
5736 delete_insns_since (last);
5738 return tem;
5741 /* Like emit_store_flag, but always succeeds. */
5744 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5745 enum machine_mode mode, int unsignedp, int normalizep)
5747 rtx tem, label;
5748 rtx trueval, falseval;
5750 /* First see if emit_store_flag can do the job. */
5751 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5752 if (tem != 0)
5753 return tem;
5755 if (!target)
5756 target = gen_reg_rtx (word_mode);
5758 /* If this failed, we have to do this with set/compare/jump/set code.
5759 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5760 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
5761 if (code == NE
5762 && GET_MODE_CLASS (mode) == MODE_INT
5763 && REG_P (target)
5764 && op0 == target
5765 && op1 == const0_rtx)
5767 label = gen_label_rtx ();
5768 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp,
5769 mode, NULL_RTX, NULL_RTX, label, -1);
5770 emit_move_insn (target, trueval);
5771 emit_label (label);
5772 return target;
5775 if (!REG_P (target)
5776 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5777 target = gen_reg_rtx (GET_MODE (target));
5779 /* Jump in the right direction if the target cannot implement CODE
5780 but can jump on its reverse condition. */
5781 falseval = const0_rtx;
5782 if (! can_compare_p (code, mode, ccp_jump)
5783 && (! FLOAT_MODE_P (mode)
5784 || code == ORDERED || code == UNORDERED
5785 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5786 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5788 enum rtx_code rcode;
5789 if (FLOAT_MODE_P (mode))
5790 rcode = reverse_condition_maybe_unordered (code);
5791 else
5792 rcode = reverse_condition (code);
5794 /* Canonicalize to UNORDERED for the libcall. */
5795 if (can_compare_p (rcode, mode, ccp_jump)
5796 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
5798 falseval = trueval;
5799 trueval = const0_rtx;
5800 code = rcode;
5804 emit_move_insn (target, trueval);
5805 label = gen_label_rtx ();
5806 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5807 NULL_RTX, label, -1);
5809 emit_move_insn (target, falseval);
5810 emit_label (label);
5812 return target;
5815 /* Perform possibly multi-word comparison and conditional jump to LABEL
5816 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5817 now a thin wrapper around do_compare_rtx_and_jump. */
5819 static void
5820 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5821 rtx label)
5823 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5824 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5825 NULL_RTX, NULL_RTX, label, -1);