1 /* Reassociation for trees.
2 Copyright (C) 2005-2016 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "alloc-pool.h"
31 #include "tree-pass.h"
35 #include "optabs-tree.h"
36 #include "gimple-pretty-print.h"
37 #include "diagnostic-core.h"
38 #include "fold-const.h"
39 #include "stor-layout.h"
41 #include "gimple-fold.h"
43 #include "gimple-iterator.h"
44 #include "gimplify-me.h"
46 #include "tree-ssa-loop.h"
49 #include "langhooks.h"
54 #include "case-cfn-macros.h"
56 /* This is a simple global reassociation pass. It is, in part, based
57 on the LLVM pass of the same name (They do some things more/less
58 than we do, in different orders, etc).
60 It consists of five steps:
62 1. Breaking up subtract operations into addition + negate, where
63 it would promote the reassociation of adds.
65 2. Left linearization of the expression trees, so that (A+B)+(C+D)
66 becomes (((A+B)+C)+D), which is easier for us to rewrite later.
67 During linearization, we place the operands of the binary
68 expressions into a vector of operand_entry_*
70 3. Optimization of the operand lists, eliminating things like a +
73 3a. Combine repeated factors with the same occurrence counts
74 into a __builtin_powi call that will later be optimized into
75 an optimal number of multiplies.
77 4. Rewrite the expression trees we linearized and optimized so
78 they are in proper rank order.
80 5. Repropagate negates, as nothing else will clean it up ATM.
82 A bit of theory on #4, since nobody seems to write anything down
83 about why it makes sense to do it the way they do it:
85 We could do this much nicer theoretically, but don't (for reasons
86 explained after how to do it theoretically nice :P).
88 In order to promote the most redundancy elimination, you want
89 binary expressions whose operands are the same rank (or
90 preferably, the same value) exposed to the redundancy eliminator,
91 for possible elimination.
93 So the way to do this if we really cared, is to build the new op
94 tree from the leaves to the roots, merging as you go, and putting the
95 new op on the end of the worklist, until you are left with one
96 thing on the worklist.
98 IE if you have to rewrite the following set of operands (listed with
99 rank in parentheses), with opcode PLUS_EXPR:
101 a (1), b (1), c (1), d (2), e (2)
104 We start with our merge worklist empty, and the ops list with all of
107 You want to first merge all leaves of the same rank, as much as
110 So first build a binary op of
112 mergetmp = a + b, and put "mergetmp" on the merge worklist.
114 Because there is no three operand form of PLUS_EXPR, c is not going to
115 be exposed to redundancy elimination as a rank 1 operand.
117 So you might as well throw it on the merge worklist (you could also
118 consider it to now be a rank two operand, and merge it with d and e,
119 but in this case, you then have evicted e from a binary op. So at
120 least in this situation, you can't win.)
122 Then build a binary op of d + e
125 and put mergetmp2 on the merge worklist.
127 so merge worklist = {mergetmp, c, mergetmp2}
129 Continue building binary ops of these operations until you have only
130 one operation left on the worklist.
135 mergetmp3 = mergetmp + c
137 worklist = {mergetmp2, mergetmp3}
139 mergetmp4 = mergetmp2 + mergetmp3
141 worklist = {mergetmp4}
143 because we have one operation left, we can now just set the original
144 statement equal to the result of that operation.
146 This will at least expose a + b and d + e to redundancy elimination
147 as binary operations.
149 For extra points, you can reuse the old statements to build the
150 mergetmps, since you shouldn't run out.
152 So why don't we do this?
154 Because it's expensive, and rarely will help. Most trees we are
155 reassociating have 3 or less ops. If they have 2 ops, they already
156 will be written into a nice single binary op. If you have 3 ops, a
157 single simple check suffices to tell you whether the first two are of the
158 same rank. If so, you know to order it
161 newstmt = mergetmp + op3
165 newstmt = mergetmp + op1
167 If all three are of the same rank, you can't expose them all in a
168 single binary operator anyway, so the above is *still* the best you
171 Thus, this is what we do. When we have three ops left, we check to see
172 what order to put them in, and call it a day. As a nod to vector sum
173 reduction, we check if any of the ops are really a phi node that is a
174 destructive update for the associating op, and keep the destructive
175 update together for vector sum reduction recognition. */
177 /* Enable insertion of __builtin_powi calls during execute_reassoc. See
178 point 3a in the pass header comment. */
179 static bool reassoc_insert_powi_p
;
185 int constants_eliminated
;
188 int pows_encountered
;
192 /* Operator, rank pair. */
199 gimple
*stmt_to_insert
;
202 static object_allocator
<operand_entry
> operand_entry_pool
203 ("operand entry pool");
205 /* This is used to assign a unique ID to each struct operand_entry
206 so that qsort results are identical on different hosts. */
207 static int next_operand_entry_id
;
209 /* Starting rank number for a given basic block, so that we can rank
210 operations using unmovable instructions in that BB based on the bb
212 static long *bb_rank
;
214 /* Operand->rank hashtable. */
215 static hash_map
<tree
, long> *operand_rank
;
217 /* Vector of SSA_NAMEs on which after reassociate_bb is done with
218 all basic blocks the CFG should be adjusted - basic blocks
219 split right after that SSA_NAME's definition statement and before
220 the only use, which must be a bit ior. */
221 static vec
<tree
> reassoc_branch_fixups
;
224 static long get_rank (tree
);
225 static bool reassoc_stmt_dominates_stmt_p (gimple
*, gimple
*);
227 /* Wrapper around gsi_remove, which adjusts gimple_uid of debug stmts
228 possibly added by gsi_remove. */
231 reassoc_remove_stmt (gimple_stmt_iterator
*gsi
)
233 gimple
*stmt
= gsi_stmt (*gsi
);
235 if (!MAY_HAVE_DEBUG_STMTS
|| gimple_code (stmt
) == GIMPLE_PHI
)
236 return gsi_remove (gsi
, true);
238 gimple_stmt_iterator prev
= *gsi
;
240 unsigned uid
= gimple_uid (stmt
);
241 basic_block bb
= gimple_bb (stmt
);
242 bool ret
= gsi_remove (gsi
, true);
243 if (!gsi_end_p (prev
))
246 prev
= gsi_start_bb (bb
);
247 gimple
*end_stmt
= gsi_stmt (*gsi
);
248 while ((stmt
= gsi_stmt (prev
)) != end_stmt
)
250 gcc_assert (stmt
&& is_gimple_debug (stmt
) && gimple_uid (stmt
) == 0);
251 gimple_set_uid (stmt
, uid
);
257 /* Bias amount for loop-carried phis. We want this to be larger than
258 the depth of any reassociation tree we can see, but not larger than
259 the rank difference between two blocks. */
260 #define PHI_LOOP_BIAS (1 << 15)
262 /* Rank assigned to a phi statement. If STMT is a loop-carried phi of
263 an innermost loop, and the phi has only a single use which is inside
264 the loop, then the rank is the block rank of the loop latch plus an
265 extra bias for the loop-carried dependence. This causes expressions
266 calculated into an accumulator variable to be independent for each
267 iteration of the loop. If STMT is some other phi, the rank is the
268 block rank of its containing block. */
270 phi_rank (gimple
*stmt
)
272 basic_block bb
= gimple_bb (stmt
);
273 struct loop
*father
= bb
->loop_father
;
279 /* We only care about real loops (those with a latch). */
281 return bb_rank
[bb
->index
];
283 /* Interesting phis must be in headers of innermost loops. */
284 if (bb
!= father
->header
286 return bb_rank
[bb
->index
];
288 /* Ignore virtual SSA_NAMEs. */
289 res
= gimple_phi_result (stmt
);
290 if (virtual_operand_p (res
))
291 return bb_rank
[bb
->index
];
293 /* The phi definition must have a single use, and that use must be
294 within the loop. Otherwise this isn't an accumulator pattern. */
295 if (!single_imm_use (res
, &use
, &use_stmt
)
296 || gimple_bb (use_stmt
)->loop_father
!= father
)
297 return bb_rank
[bb
->index
];
299 /* Look for phi arguments from within the loop. If found, bias this phi. */
300 for (i
= 0; i
< gimple_phi_num_args (stmt
); i
++)
302 tree arg
= gimple_phi_arg_def (stmt
, i
);
303 if (TREE_CODE (arg
) == SSA_NAME
304 && !SSA_NAME_IS_DEFAULT_DEF (arg
))
306 gimple
*def_stmt
= SSA_NAME_DEF_STMT (arg
);
307 if (gimple_bb (def_stmt
)->loop_father
== father
)
308 return bb_rank
[father
->latch
->index
] + PHI_LOOP_BIAS
;
312 /* Must be an uninteresting phi. */
313 return bb_rank
[bb
->index
];
316 /* If EXP is an SSA_NAME defined by a PHI statement that represents a
317 loop-carried dependence of an innermost loop, return TRUE; else
320 loop_carried_phi (tree exp
)
325 if (TREE_CODE (exp
) != SSA_NAME
326 || SSA_NAME_IS_DEFAULT_DEF (exp
))
329 phi_stmt
= SSA_NAME_DEF_STMT (exp
);
331 if (gimple_code (SSA_NAME_DEF_STMT (exp
)) != GIMPLE_PHI
)
334 /* Non-loop-carried phis have block rank. Loop-carried phis have
335 an additional bias added in. If this phi doesn't have block rank,
336 it's biased and should not be propagated. */
337 block_rank
= bb_rank
[gimple_bb (phi_stmt
)->index
];
339 if (phi_rank (phi_stmt
) != block_rank
)
345 /* Return the maximum of RANK and the rank that should be propagated
346 from expression OP. For most operands, this is just the rank of OP.
347 For loop-carried phis, the value is zero to avoid undoing the bias
348 in favor of the phi. */
350 propagate_rank (long rank
, tree op
)
354 if (loop_carried_phi (op
))
357 op_rank
= get_rank (op
);
359 return MAX (rank
, op_rank
);
362 /* Look up the operand rank structure for expression E. */
365 find_operand_rank (tree e
)
367 long *slot
= operand_rank
->get (e
);
368 return slot
? *slot
: -1;
371 /* Insert {E,RANK} into the operand rank hashtable. */
374 insert_operand_rank (tree e
, long rank
)
376 gcc_assert (rank
> 0);
377 gcc_assert (!operand_rank
->put (e
, rank
));
380 /* Given an expression E, return the rank of the expression. */
385 /* SSA_NAME's have the rank of the expression they are the result
387 For globals and uninitialized values, the rank is 0.
388 For function arguments, use the pre-setup rank.
389 For PHI nodes, stores, asm statements, etc, we use the rank of
391 For simple operations, the rank is the maximum rank of any of
392 its operands, or the bb_rank, whichever is less.
393 I make no claims that this is optimal, however, it gives good
396 /* We make an exception to the normal ranking system to break
397 dependences of accumulator variables in loops. Suppose we
398 have a simple one-block loop containing:
405 As shown, each iteration of the calculation into x is fully
406 dependent upon the iteration before it. We would prefer to
407 see this in the form:
414 If the loop is unrolled, the calculations of b and c from
415 different iterations can be interleaved.
417 To obtain this result during reassociation, we bias the rank
418 of the phi definition x_1 upward, when it is recognized as an
419 accumulator pattern. The artificial rank causes it to be
420 added last, providing the desired independence. */
422 if (TREE_CODE (e
) == SSA_NAME
)
429 if (SSA_NAME_IS_DEFAULT_DEF (e
))
430 return find_operand_rank (e
);
432 stmt
= SSA_NAME_DEF_STMT (e
);
433 if (gimple_code (stmt
) == GIMPLE_PHI
)
434 return phi_rank (stmt
);
436 if (!is_gimple_assign (stmt
))
437 return bb_rank
[gimple_bb (stmt
)->index
];
439 /* If we already have a rank for this expression, use that. */
440 rank
= find_operand_rank (e
);
444 /* Otherwise, find the maximum rank for the operands. As an
445 exception, remove the bias from loop-carried phis when propagating
446 the rank so that dependent operations are not also biased. */
447 /* Simply walk over all SSA uses - this takes advatage of the
448 fact that non-SSA operands are is_gimple_min_invariant and
451 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, iter
, SSA_OP_USE
)
452 rank
= propagate_rank (rank
, op
);
454 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
456 fprintf (dump_file
, "Rank for ");
457 print_generic_expr (dump_file
, e
, 0);
458 fprintf (dump_file
, " is %ld\n", (rank
+ 1));
461 /* Note the rank in the hashtable so we don't recompute it. */
462 insert_operand_rank (e
, (rank
+ 1));
466 /* Constants, globals, etc., are rank 0 */
471 /* We want integer ones to end up last no matter what, since they are
472 the ones we can do the most with. */
473 #define INTEGER_CONST_TYPE 1 << 3
474 #define FLOAT_CONST_TYPE 1 << 2
475 #define OTHER_CONST_TYPE 1 << 1
477 /* Classify an invariant tree into integer, float, or other, so that
478 we can sort them to be near other constants of the same type. */
480 constant_type (tree t
)
482 if (INTEGRAL_TYPE_P (TREE_TYPE (t
)))
483 return INTEGER_CONST_TYPE
;
484 else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t
)))
485 return FLOAT_CONST_TYPE
;
487 return OTHER_CONST_TYPE
;
490 /* qsort comparison function to sort operand entries PA and PB by rank
491 so that the sorted array is ordered by rank in decreasing order. */
493 sort_by_operand_rank (const void *pa
, const void *pb
)
495 const operand_entry
*oea
= *(const operand_entry
*const *)pa
;
496 const operand_entry
*oeb
= *(const operand_entry
*const *)pb
;
498 /* It's nicer for optimize_expression if constants that are likely
499 to fold when added/multiplied//whatever are put next to each
500 other. Since all constants have rank 0, order them by type. */
501 if (oeb
->rank
== 0 && oea
->rank
== 0)
503 if (constant_type (oeb
->op
) != constant_type (oea
->op
))
504 return constant_type (oeb
->op
) - constant_type (oea
->op
);
506 /* To make sorting result stable, we use unique IDs to determine
508 return oeb
->id
- oea
->id
;
511 /* Lastly, make sure the versions that are the same go next to each
513 if ((oeb
->rank
- oea
->rank
== 0)
514 && TREE_CODE (oea
->op
) == SSA_NAME
515 && TREE_CODE (oeb
->op
) == SSA_NAME
)
517 /* As SSA_NAME_VERSION is assigned pretty randomly, because we reuse
518 versions of removed SSA_NAMEs, so if possible, prefer to sort
519 based on basic block and gimple_uid of the SSA_NAME_DEF_STMT.
521 if (!SSA_NAME_IS_DEFAULT_DEF (oea
->op
)
522 && !SSA_NAME_IS_DEFAULT_DEF (oeb
->op
)
523 && !oea
->stmt_to_insert
524 && !oeb
->stmt_to_insert
525 && SSA_NAME_VERSION (oeb
->op
) != SSA_NAME_VERSION (oea
->op
))
527 gimple
*stmta
= SSA_NAME_DEF_STMT (oea
->op
);
528 gimple
*stmtb
= SSA_NAME_DEF_STMT (oeb
->op
);
529 basic_block bba
= gimple_bb (stmta
);
530 basic_block bbb
= gimple_bb (stmtb
);
533 if (bb_rank
[bbb
->index
] != bb_rank
[bba
->index
])
534 return bb_rank
[bbb
->index
] - bb_rank
[bba
->index
];
538 bool da
= reassoc_stmt_dominates_stmt_p (stmta
, stmtb
);
539 bool db
= reassoc_stmt_dominates_stmt_p (stmtb
, stmta
);
545 if (SSA_NAME_VERSION (oeb
->op
) != SSA_NAME_VERSION (oea
->op
))
546 return SSA_NAME_VERSION (oeb
->op
) - SSA_NAME_VERSION (oea
->op
);
548 return oeb
->id
- oea
->id
;
551 if (oeb
->rank
!= oea
->rank
)
552 return oeb
->rank
- oea
->rank
;
554 return oeb
->id
- oea
->id
;
557 /* Add an operand entry to *OPS for the tree operand OP. */
560 add_to_ops_vec (vec
<operand_entry
*> *ops
, tree op
, gimple
*stmt_to_insert
= NULL
)
562 operand_entry
*oe
= operand_entry_pool
.allocate ();
565 oe
->rank
= get_rank (op
);
566 oe
->id
= next_operand_entry_id
++;
568 oe
->stmt_to_insert
= stmt_to_insert
;
572 /* Add an operand entry to *OPS for the tree operand OP with repeat
576 add_repeat_to_ops_vec (vec
<operand_entry
*> *ops
, tree op
,
577 HOST_WIDE_INT repeat
)
579 operand_entry
*oe
= operand_entry_pool
.allocate ();
582 oe
->rank
= get_rank (op
);
583 oe
->id
= next_operand_entry_id
++;
585 oe
->stmt_to_insert
= NULL
;
588 reassociate_stats
.pows_encountered
++;
591 /* Return true if STMT is reassociable operation containing a binary
592 operation with tree code CODE, and is inside LOOP. */
595 is_reassociable_op (gimple
*stmt
, enum tree_code code
, struct loop
*loop
)
597 basic_block bb
= gimple_bb (stmt
);
599 if (gimple_bb (stmt
) == NULL
)
602 if (!flow_bb_inside_loop_p (loop
, bb
))
605 if (is_gimple_assign (stmt
)
606 && gimple_assign_rhs_code (stmt
) == code
607 && has_single_use (gimple_assign_lhs (stmt
)))
614 /* Return true if STMT is a nop-conversion. */
617 gimple_nop_conversion_p (gimple
*stmt
)
619 if (gassign
*ass
= dyn_cast
<gassign
*> (stmt
))
621 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (ass
))
622 && tree_nop_conversion_p (TREE_TYPE (gimple_assign_lhs (ass
)),
623 TREE_TYPE (gimple_assign_rhs1 (ass
))))
629 /* Given NAME, if NAME is defined by a unary operation OPCODE, return the
630 operand of the negate operation. Otherwise, return NULL. */
633 get_unary_op (tree name
, enum tree_code opcode
)
635 gimple
*stmt
= SSA_NAME_DEF_STMT (name
);
637 /* Look through nop conversions (sign changes). */
638 if (gimple_nop_conversion_p (stmt
)
639 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
)
640 stmt
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
642 if (!is_gimple_assign (stmt
))
645 if (gimple_assign_rhs_code (stmt
) == opcode
)
646 return gimple_assign_rhs1 (stmt
);
650 /* Return true if OP1 and OP2 have the same value if casted to either type. */
653 ops_equal_values_p (tree op1
, tree op2
)
659 if (TREE_CODE (op1
) == SSA_NAME
)
661 gimple
*stmt
= SSA_NAME_DEF_STMT (op1
);
662 if (gimple_nop_conversion_p (stmt
))
664 op1
= gimple_assign_rhs1 (stmt
);
670 if (TREE_CODE (op2
) == SSA_NAME
)
672 gimple
*stmt
= SSA_NAME_DEF_STMT (op2
);
673 if (gimple_nop_conversion_p (stmt
))
675 op2
= gimple_assign_rhs1 (stmt
);
686 /* If CURR and LAST are a pair of ops that OPCODE allows us to
687 eliminate through equivalences, do so, remove them from OPS, and
688 return true. Otherwise, return false. */
691 eliminate_duplicate_pair (enum tree_code opcode
,
692 vec
<operand_entry
*> *ops
,
699 /* If we have two of the same op, and the opcode is & |, min, or max,
700 we can eliminate one of them.
701 If we have two of the same op, and the opcode is ^, we can
702 eliminate both of them. */
704 if (last
&& last
->op
== curr
->op
)
712 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
714 fprintf (dump_file
, "Equivalence: ");
715 print_generic_expr (dump_file
, curr
->op
, 0);
716 fprintf (dump_file
, " [&|minmax] ");
717 print_generic_expr (dump_file
, last
->op
, 0);
718 fprintf (dump_file
, " -> ");
719 print_generic_stmt (dump_file
, last
->op
, 0);
722 ops
->ordered_remove (i
);
723 reassociate_stats
.ops_eliminated
++;
728 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
730 fprintf (dump_file
, "Equivalence: ");
731 print_generic_expr (dump_file
, curr
->op
, 0);
732 fprintf (dump_file
, " ^ ");
733 print_generic_expr (dump_file
, last
->op
, 0);
734 fprintf (dump_file
, " -> nothing\n");
737 reassociate_stats
.ops_eliminated
+= 2;
739 if (ops
->length () == 2)
742 add_to_ops_vec (ops
, build_zero_cst (TREE_TYPE (last
->op
)));
747 ops
->ordered_remove (i
-1);
748 ops
->ordered_remove (i
-1);
760 static vec
<tree
> plus_negates
;
762 /* If OPCODE is PLUS_EXPR, CURR->OP is a negate expression or a bitwise not
763 expression, look in OPS for a corresponding positive operation to cancel
764 it out. If we find one, remove the other from OPS, replace
765 OPS[CURRINDEX] with 0 or -1, respectively, and return true. Otherwise,
769 eliminate_plus_minus_pair (enum tree_code opcode
,
770 vec
<operand_entry
*> *ops
,
771 unsigned int currindex
,
779 if (opcode
!= PLUS_EXPR
|| TREE_CODE (curr
->op
) != SSA_NAME
)
782 negateop
= get_unary_op (curr
->op
, NEGATE_EXPR
);
783 notop
= get_unary_op (curr
->op
, BIT_NOT_EXPR
);
784 if (negateop
== NULL_TREE
&& notop
== NULL_TREE
)
787 /* Any non-negated version will have a rank that is one less than
788 the current rank. So once we hit those ranks, if we don't find
791 for (i
= currindex
+ 1;
792 ops
->iterate (i
, &oe
)
793 && oe
->rank
>= curr
->rank
- 1 ;
797 && ops_equal_values_p (oe
->op
, negateop
))
799 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
801 fprintf (dump_file
, "Equivalence: ");
802 print_generic_expr (dump_file
, negateop
, 0);
803 fprintf (dump_file
, " + -");
804 print_generic_expr (dump_file
, oe
->op
, 0);
805 fprintf (dump_file
, " -> 0\n");
808 ops
->ordered_remove (i
);
809 add_to_ops_vec (ops
, build_zero_cst (TREE_TYPE (oe
->op
)));
810 ops
->ordered_remove (currindex
);
811 reassociate_stats
.ops_eliminated
++;
816 && ops_equal_values_p (oe
->op
, notop
))
818 tree op_type
= TREE_TYPE (oe
->op
);
820 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
822 fprintf (dump_file
, "Equivalence: ");
823 print_generic_expr (dump_file
, notop
, 0);
824 fprintf (dump_file
, " + ~");
825 print_generic_expr (dump_file
, oe
->op
, 0);
826 fprintf (dump_file
, " -> -1\n");
829 ops
->ordered_remove (i
);
830 add_to_ops_vec (ops
, build_all_ones_cst (op_type
));
831 ops
->ordered_remove (currindex
);
832 reassociate_stats
.ops_eliminated
++;
838 /* If CURR->OP is a negate expr without nop conversion in a plus expr:
839 save it for later inspection in repropagate_negates(). */
840 if (negateop
!= NULL_TREE
841 && gimple_assign_rhs_code (SSA_NAME_DEF_STMT (curr
->op
)) == NEGATE_EXPR
)
842 plus_negates
.safe_push (curr
->op
);
847 /* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a
848 bitwise not expression, look in OPS for a corresponding operand to
849 cancel it out. If we find one, remove the other from OPS, replace
850 OPS[CURRINDEX] with 0, and return true. Otherwise, return
854 eliminate_not_pairs (enum tree_code opcode
,
855 vec
<operand_entry
*> *ops
,
856 unsigned int currindex
,
863 if ((opcode
!= BIT_IOR_EXPR
&& opcode
!= BIT_AND_EXPR
)
864 || TREE_CODE (curr
->op
) != SSA_NAME
)
867 notop
= get_unary_op (curr
->op
, BIT_NOT_EXPR
);
868 if (notop
== NULL_TREE
)
871 /* Any non-not version will have a rank that is one less than
872 the current rank. So once we hit those ranks, if we don't find
875 for (i
= currindex
+ 1;
876 ops
->iterate (i
, &oe
)
877 && oe
->rank
>= curr
->rank
- 1;
882 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
884 fprintf (dump_file
, "Equivalence: ");
885 print_generic_expr (dump_file
, notop
, 0);
886 if (opcode
== BIT_AND_EXPR
)
887 fprintf (dump_file
, " & ~");
888 else if (opcode
== BIT_IOR_EXPR
)
889 fprintf (dump_file
, " | ~");
890 print_generic_expr (dump_file
, oe
->op
, 0);
891 if (opcode
== BIT_AND_EXPR
)
892 fprintf (dump_file
, " -> 0\n");
893 else if (opcode
== BIT_IOR_EXPR
)
894 fprintf (dump_file
, " -> -1\n");
897 if (opcode
== BIT_AND_EXPR
)
898 oe
->op
= build_zero_cst (TREE_TYPE (oe
->op
));
899 else if (opcode
== BIT_IOR_EXPR
)
900 oe
->op
= build_all_ones_cst (TREE_TYPE (oe
->op
));
902 reassociate_stats
.ops_eliminated
+= ops
->length () - 1;
904 ops
->quick_push (oe
);
912 /* Use constant value that may be present in OPS to try to eliminate
913 operands. Note that this function is only really used when we've
914 eliminated ops for other reasons, or merged constants. Across
915 single statements, fold already does all of this, plus more. There
916 is little point in duplicating logic, so I've only included the
917 identities that I could ever construct testcases to trigger. */
920 eliminate_using_constants (enum tree_code opcode
,
921 vec
<operand_entry
*> *ops
)
923 operand_entry
*oelast
= ops
->last ();
924 tree type
= TREE_TYPE (oelast
->op
);
926 if (oelast
->rank
== 0
927 && (ANY_INTEGRAL_TYPE_P (type
) || FLOAT_TYPE_P (type
)))
932 if (integer_zerop (oelast
->op
))
934 if (ops
->length () != 1)
936 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
937 fprintf (dump_file
, "Found & 0, removing all other ops\n");
939 reassociate_stats
.ops_eliminated
+= ops
->length () - 1;
942 ops
->quick_push (oelast
);
946 else if (integer_all_onesp (oelast
->op
))
948 if (ops
->length () != 1)
950 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
951 fprintf (dump_file
, "Found & -1, removing\n");
953 reassociate_stats
.ops_eliminated
++;
958 if (integer_all_onesp (oelast
->op
))
960 if (ops
->length () != 1)
962 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
963 fprintf (dump_file
, "Found | -1, removing all other ops\n");
965 reassociate_stats
.ops_eliminated
+= ops
->length () - 1;
968 ops
->quick_push (oelast
);
972 else if (integer_zerop (oelast
->op
))
974 if (ops
->length () != 1)
976 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
977 fprintf (dump_file
, "Found | 0, removing\n");
979 reassociate_stats
.ops_eliminated
++;
984 if (integer_zerop (oelast
->op
)
985 || (FLOAT_TYPE_P (type
)
986 && !HONOR_NANS (type
)
987 && !HONOR_SIGNED_ZEROS (type
)
988 && real_zerop (oelast
->op
)))
990 if (ops
->length () != 1)
992 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
993 fprintf (dump_file
, "Found * 0, removing all other ops\n");
995 reassociate_stats
.ops_eliminated
+= ops
->length () - 1;
997 ops
->quick_push (oelast
);
1001 else if (integer_onep (oelast
->op
)
1002 || (FLOAT_TYPE_P (type
)
1003 && !HONOR_SNANS (type
)
1004 && real_onep (oelast
->op
)))
1006 if (ops
->length () != 1)
1008 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1009 fprintf (dump_file
, "Found * 1, removing\n");
1011 reassociate_stats
.ops_eliminated
++;
1019 if (integer_zerop (oelast
->op
)
1020 || (FLOAT_TYPE_P (type
)
1021 && (opcode
== PLUS_EXPR
|| opcode
== MINUS_EXPR
)
1022 && fold_real_zero_addition_p (type
, oelast
->op
,
1023 opcode
== MINUS_EXPR
)))
1025 if (ops
->length () != 1)
1027 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1028 fprintf (dump_file
, "Found [|^+] 0, removing\n");
1030 reassociate_stats
.ops_eliminated
++;
1042 static void linearize_expr_tree (vec
<operand_entry
*> *, gimple
*,
1045 /* Structure for tracking and counting operands. */
1049 enum tree_code oecode
;
1054 /* The heap for the oecount hashtable and the sorted list of operands. */
1055 static vec
<oecount
> cvec
;
1058 /* Oecount hashtable helpers. */
1060 struct oecount_hasher
: int_hash
<int, 0, 1>
1062 static inline hashval_t
hash (int);
1063 static inline bool equal (int, int);
1066 /* Hash function for oecount. */
1069 oecount_hasher::hash (int p
)
1071 const oecount
*c
= &cvec
[p
- 42];
1072 return htab_hash_pointer (c
->op
) ^ (hashval_t
)c
->oecode
;
1075 /* Comparison function for oecount. */
1078 oecount_hasher::equal (int p1
, int p2
)
1080 const oecount
*c1
= &cvec
[p1
- 42];
1081 const oecount
*c2
= &cvec
[p2
- 42];
1082 return (c1
->oecode
== c2
->oecode
1083 && c1
->op
== c2
->op
);
1086 /* Comparison function for qsort sorting oecount elements by count. */
1089 oecount_cmp (const void *p1
, const void *p2
)
1091 const oecount
*c1
= (const oecount
*)p1
;
1092 const oecount
*c2
= (const oecount
*)p2
;
1093 if (c1
->cnt
!= c2
->cnt
)
1094 return c1
->cnt
- c2
->cnt
;
1096 /* If counts are identical, use unique IDs to stabilize qsort. */
1097 return c1
->id
- c2
->id
;
1100 /* Return TRUE iff STMT represents a builtin call that raises OP
1101 to some exponent. */
1104 stmt_is_power_of_op (gimple
*stmt
, tree op
)
1106 if (!is_gimple_call (stmt
))
1109 switch (gimple_call_combined_fn (stmt
))
1113 return (operand_equal_p (gimple_call_arg (stmt
, 0), op
, 0));
1120 /* Given STMT which is a __builtin_pow* call, decrement its exponent
1121 in place and return the result. Assumes that stmt_is_power_of_op
1122 was previously called for STMT and returned TRUE. */
1124 static HOST_WIDE_INT
1125 decrement_power (gimple
*stmt
)
1127 REAL_VALUE_TYPE c
, cint
;
1128 HOST_WIDE_INT power
;
1131 switch (gimple_call_combined_fn (stmt
))
1134 arg1
= gimple_call_arg (stmt
, 1);
1135 c
= TREE_REAL_CST (arg1
);
1136 power
= real_to_integer (&c
) - 1;
1137 real_from_integer (&cint
, VOIDmode
, power
, SIGNED
);
1138 gimple_call_set_arg (stmt
, 1, build_real (TREE_TYPE (arg1
), cint
));
1142 arg1
= gimple_call_arg (stmt
, 1);
1143 power
= TREE_INT_CST_LOW (arg1
) - 1;
1144 gimple_call_set_arg (stmt
, 1, build_int_cst (TREE_TYPE (arg1
), power
));
1152 /* Replace SSA defined by STMT and replace all its uses with new
1153 SSA. Also return the new SSA. */
1156 make_new_ssa_for_def (gimple
*stmt
, enum tree_code opcode
, tree op
)
1160 imm_use_iterator iter
;
1161 tree new_lhs
, new_debug_lhs
= NULL_TREE
;
1162 tree lhs
= gimple_get_lhs (stmt
);
1164 new_lhs
= make_ssa_name (TREE_TYPE (lhs
));
1165 gimple_set_lhs (stmt
, new_lhs
);
1167 /* Also need to update GIMPLE_DEBUGs. */
1168 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
1170 tree repl
= new_lhs
;
1171 if (is_gimple_debug (use_stmt
))
1173 if (new_debug_lhs
== NULL_TREE
)
1175 new_debug_lhs
= make_node (DEBUG_EXPR_DECL
);
1177 = gimple_build_debug_bind (new_debug_lhs
,
1178 build2 (opcode
, TREE_TYPE (lhs
),
1181 DECL_ARTIFICIAL (new_debug_lhs
) = 1;
1182 TREE_TYPE (new_debug_lhs
) = TREE_TYPE (lhs
);
1183 SET_DECL_MODE (new_debug_lhs
, TYPE_MODE (TREE_TYPE (lhs
)));
1184 gimple_set_uid (def_temp
, gimple_uid (stmt
));
1185 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
1186 gsi_insert_after (&gsi
, def_temp
, GSI_SAME_STMT
);
1188 repl
= new_debug_lhs
;
1190 FOR_EACH_IMM_USE_ON_STMT (use
, iter
)
1191 SET_USE (use
, repl
);
1192 update_stmt (use_stmt
);
1197 /* Replace all SSAs defined in STMTS_TO_FIX and replace its
1198 uses with new SSAs. Also do this for the stmt that defines DEF
1199 if *DEF is not OP. */
1202 make_new_ssa_for_all_defs (tree
*def
, enum tree_code opcode
, tree op
,
1203 vec
<gimple
*> &stmts_to_fix
)
1209 && TREE_CODE (*def
) == SSA_NAME
1210 && (stmt
= SSA_NAME_DEF_STMT (*def
))
1211 && gimple_code (stmt
) != GIMPLE_NOP
)
1212 *def
= make_new_ssa_for_def (stmt
, opcode
, op
);
1214 FOR_EACH_VEC_ELT (stmts_to_fix
, i
, stmt
)
1215 make_new_ssa_for_def (stmt
, opcode
, op
);
1218 /* Find the single immediate use of STMT's LHS, and replace it
1219 with OP. Remove STMT. If STMT's LHS is the same as *DEF,
1220 replace *DEF with OP as well. */
1223 propagate_op_to_single_use (tree op
, gimple
*stmt
, tree
*def
)
1228 gimple_stmt_iterator gsi
;
1230 if (is_gimple_call (stmt
))
1231 lhs
= gimple_call_lhs (stmt
);
1233 lhs
= gimple_assign_lhs (stmt
);
1235 gcc_assert (has_single_use (lhs
));
1236 single_imm_use (lhs
, &use
, &use_stmt
);
1240 if (TREE_CODE (op
) != SSA_NAME
)
1241 update_stmt (use_stmt
);
1242 gsi
= gsi_for_stmt (stmt
);
1243 unlink_stmt_vdef (stmt
);
1244 reassoc_remove_stmt (&gsi
);
1245 release_defs (stmt
);
1248 /* Walks the linear chain with result *DEF searching for an operation
1249 with operand OP and code OPCODE removing that from the chain. *DEF
1250 is updated if there is only one operand but no operation left. */
1253 zero_one_operation (tree
*def
, enum tree_code opcode
, tree op
)
1255 tree orig_def
= *def
;
1256 gimple
*stmt
= SSA_NAME_DEF_STMT (*def
);
1257 /* PR72835 - Record the stmt chain that has to be updated such that
1258 we dont use the same LHS when the values computed are different. */
1259 auto_vec
<gimple
*, 64> stmts_to_fix
;
1265 if (opcode
== MULT_EXPR
)
1267 if (stmt_is_power_of_op (stmt
, op
))
1269 if (decrement_power (stmt
) == 1)
1271 if (stmts_to_fix
.length () > 0)
1272 stmts_to_fix
.pop ();
1273 propagate_op_to_single_use (op
, stmt
, def
);
1277 else if (gimple_assign_rhs_code (stmt
) == NEGATE_EXPR
)
1279 if (gimple_assign_rhs1 (stmt
) == op
)
1281 tree cst
= build_minus_one_cst (TREE_TYPE (op
));
1282 if (stmts_to_fix
.length () > 0)
1283 stmts_to_fix
.pop ();
1284 propagate_op_to_single_use (cst
, stmt
, def
);
1287 else if (integer_minus_onep (op
)
1288 || real_minus_onep (op
))
1290 gimple_assign_set_rhs_code
1291 (stmt
, TREE_CODE (gimple_assign_rhs1 (stmt
)));
1297 name
= gimple_assign_rhs1 (stmt
);
1299 /* If this is the operation we look for and one of the operands
1300 is ours simply propagate the other operand into the stmts
1302 if (gimple_assign_rhs_code (stmt
) == opcode
1304 || gimple_assign_rhs2 (stmt
) == op
))
1307 name
= gimple_assign_rhs2 (stmt
);
1308 if (stmts_to_fix
.length () > 0)
1309 stmts_to_fix
.pop ();
1310 propagate_op_to_single_use (name
, stmt
, def
);
1314 /* We might have a multiply of two __builtin_pow* calls, and
1315 the operand might be hiding in the rightmost one. Likewise
1316 this can happen for a negate. */
1317 if (opcode
== MULT_EXPR
1318 && gimple_assign_rhs_code (stmt
) == opcode
1319 && TREE_CODE (gimple_assign_rhs2 (stmt
)) == SSA_NAME
1320 && has_single_use (gimple_assign_rhs2 (stmt
)))
1322 gimple
*stmt2
= SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt
));
1323 if (stmt_is_power_of_op (stmt2
, op
))
1325 if (decrement_power (stmt2
) == 1)
1326 propagate_op_to_single_use (op
, stmt2
, def
);
1328 stmts_to_fix
.safe_push (stmt2
);
1331 else if (is_gimple_assign (stmt2
)
1332 && gimple_assign_rhs_code (stmt2
) == NEGATE_EXPR
)
1334 if (gimple_assign_rhs1 (stmt2
) == op
)
1336 tree cst
= build_minus_one_cst (TREE_TYPE (op
));
1337 propagate_op_to_single_use (cst
, stmt2
, def
);
1340 else if (integer_minus_onep (op
)
1341 || real_minus_onep (op
))
1343 stmts_to_fix
.safe_push (stmt2
);
1344 gimple_assign_set_rhs_code
1345 (stmt2
, TREE_CODE (gimple_assign_rhs1 (stmt2
)));
1351 /* Continue walking the chain. */
1352 gcc_assert (name
!= op
1353 && TREE_CODE (name
) == SSA_NAME
);
1354 stmt
= SSA_NAME_DEF_STMT (name
);
1355 stmts_to_fix
.safe_push (stmt
);
1359 if (stmts_to_fix
.length () > 0 || *def
== orig_def
)
1360 make_new_ssa_for_all_defs (def
, opcode
, op
, stmts_to_fix
);
1363 /* Returns true if statement S1 dominates statement S2. Like
1364 stmt_dominates_stmt_p, but uses stmt UIDs to optimize. */
1367 reassoc_stmt_dominates_stmt_p (gimple
*s1
, gimple
*s2
)
1369 basic_block bb1
= gimple_bb (s1
), bb2
= gimple_bb (s2
);
1371 /* If bb1 is NULL, it should be a GIMPLE_NOP def stmt of an (D)
1372 SSA_NAME. Assume it lives at the beginning of function and
1373 thus dominates everything. */
1374 if (!bb1
|| s1
== s2
)
1377 /* If bb2 is NULL, it doesn't dominate any stmt with a bb. */
1383 /* PHIs in the same basic block are assumed to be
1384 executed all in parallel, if only one stmt is a PHI,
1385 it dominates the other stmt in the same basic block. */
1386 if (gimple_code (s1
) == GIMPLE_PHI
)
1389 if (gimple_code (s2
) == GIMPLE_PHI
)
1392 gcc_assert (gimple_uid (s1
) && gimple_uid (s2
));
1394 if (gimple_uid (s1
) < gimple_uid (s2
))
1397 if (gimple_uid (s1
) > gimple_uid (s2
))
1400 gimple_stmt_iterator gsi
= gsi_for_stmt (s1
);
1401 unsigned int uid
= gimple_uid (s1
);
1402 for (gsi_next (&gsi
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1404 gimple
*s
= gsi_stmt (gsi
);
1405 if (gimple_uid (s
) != uid
)
1414 return dominated_by_p (CDI_DOMINATORS
, bb2
, bb1
);
1417 /* Insert STMT after INSERT_POINT. */
1420 insert_stmt_after (gimple
*stmt
, gimple
*insert_point
)
1422 gimple_stmt_iterator gsi
;
1425 if (gimple_code (insert_point
) == GIMPLE_PHI
)
1426 bb
= gimple_bb (insert_point
);
1427 else if (!stmt_ends_bb_p (insert_point
))
1429 gsi
= gsi_for_stmt (insert_point
);
1430 gimple_set_uid (stmt
, gimple_uid (insert_point
));
1431 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
1435 /* We assume INSERT_POINT is a SSA_NAME_DEF_STMT of some SSA_NAME,
1436 thus if it must end a basic block, it should be a call that can
1437 throw, or some assignment that can throw. If it throws, the LHS
1438 of it will not be initialized though, so only valid places using
1439 the SSA_NAME should be dominated by the fallthru edge. */
1440 bb
= find_fallthru_edge (gimple_bb (insert_point
)->succs
)->dest
;
1441 gsi
= gsi_after_labels (bb
);
1442 if (gsi_end_p (gsi
))
1444 gimple_stmt_iterator gsi2
= gsi_last_bb (bb
);
1445 gimple_set_uid (stmt
,
1446 gsi_end_p (gsi2
) ? 1 : gimple_uid (gsi_stmt (gsi2
)));
1449 gimple_set_uid (stmt
, gimple_uid (gsi_stmt (gsi
)));
1450 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
1453 /* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for
1454 the result. Places the statement after the definition of either
1455 OP1 or OP2. Returns the new statement. */
1458 build_and_add_sum (tree type
, tree op1
, tree op2
, enum tree_code opcode
)
1460 gimple
*op1def
= NULL
, *op2def
= NULL
;
1461 gimple_stmt_iterator gsi
;
1465 /* Create the addition statement. */
1466 op
= make_ssa_name (type
);
1467 sum
= gimple_build_assign (op
, opcode
, op1
, op2
);
1469 /* Find an insertion place and insert. */
1470 if (TREE_CODE (op1
) == SSA_NAME
)
1471 op1def
= SSA_NAME_DEF_STMT (op1
);
1472 if (TREE_CODE (op2
) == SSA_NAME
)
1473 op2def
= SSA_NAME_DEF_STMT (op2
);
1474 if ((!op1def
|| gimple_nop_p (op1def
))
1475 && (!op2def
|| gimple_nop_p (op2def
)))
1477 gsi
= gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
)));
1478 if (gsi_end_p (gsi
))
1480 gimple_stmt_iterator gsi2
1481 = gsi_last_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
)));
1482 gimple_set_uid (sum
,
1483 gsi_end_p (gsi2
) ? 1 : gimple_uid (gsi_stmt (gsi2
)));
1486 gimple_set_uid (sum
, gimple_uid (gsi_stmt (gsi
)));
1487 gsi_insert_before (&gsi
, sum
, GSI_NEW_STMT
);
1491 gimple
*insert_point
;
1492 if ((!op1def
|| gimple_nop_p (op1def
))
1493 || (op2def
&& !gimple_nop_p (op2def
)
1494 && reassoc_stmt_dominates_stmt_p (op1def
, op2def
)))
1495 insert_point
= op2def
;
1497 insert_point
= op1def
;
1498 insert_stmt_after (sum
, insert_point
);
1505 /* Perform un-distribution of divisions and multiplications.
1506 A * X + B * X is transformed into (A + B) * X and A / X + B / X
1507 to (A + B) / X for real X.
1509 The algorithm is organized as follows.
1511 - First we walk the addition chain *OPS looking for summands that
1512 are defined by a multiplication or a real division. This results
1513 in the candidates bitmap with relevant indices into *OPS.
1515 - Second we build the chains of multiplications or divisions for
1516 these candidates, counting the number of occurrences of (operand, code)
1517 pairs in all of the candidates chains.
1519 - Third we sort the (operand, code) pairs by number of occurrence and
1520 process them starting with the pair with the most uses.
1522 * For each such pair we walk the candidates again to build a
1523 second candidate bitmap noting all multiplication/division chains
1524 that have at least one occurrence of (operand, code).
1526 * We build an alternate addition chain only covering these
1527 candidates with one (operand, code) operation removed from their
1528 multiplication/division chain.
1530 * The first candidate gets replaced by the alternate addition chain
1531 multiplied/divided by the operand.
1533 * All candidate chains get disabled for further processing and
1534 processing of (operand, code) pairs continues.
1536 The alternate addition chains built are re-processed by the main
1537 reassociation algorithm which allows optimizing a * x * y + b * y * x
1538 to (a + b ) * x * y in one invocation of the reassociation pass. */
1541 undistribute_ops_list (enum tree_code opcode
,
1542 vec
<operand_entry
*> *ops
, struct loop
*loop
)
1544 unsigned int length
= ops
->length ();
1547 unsigned nr_candidates
, nr_candidates2
;
1548 sbitmap_iterator sbi0
;
1549 vec
<operand_entry
*> *subops
;
1550 bool changed
= false;
1551 int next_oecount_id
= 0;
1554 || opcode
!= PLUS_EXPR
)
1557 /* Build a list of candidates to process. */
1558 auto_sbitmap
candidates (length
);
1559 bitmap_clear (candidates
);
1561 FOR_EACH_VEC_ELT (*ops
, i
, oe1
)
1563 enum tree_code dcode
;
1566 if (TREE_CODE (oe1
->op
) != SSA_NAME
)
1568 oe1def
= SSA_NAME_DEF_STMT (oe1
->op
);
1569 if (!is_gimple_assign (oe1def
))
1571 dcode
= gimple_assign_rhs_code (oe1def
);
1572 if ((dcode
!= MULT_EXPR
1573 && dcode
!= RDIV_EXPR
)
1574 || !is_reassociable_op (oe1def
, dcode
, loop
))
1577 bitmap_set_bit (candidates
, i
);
1581 if (nr_candidates
< 2)
1584 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1586 fprintf (dump_file
, "searching for un-distribute opportunities ");
1587 print_generic_expr (dump_file
,
1588 (*ops
)[bitmap_first_set_bit (candidates
)]->op
, 0);
1589 fprintf (dump_file
, " %d\n", nr_candidates
);
1592 /* Build linearized sub-operand lists and the counting table. */
1595 hash_table
<oecount_hasher
> ctable (15);
1597 /* ??? Macro arguments cannot have multi-argument template types in
1598 them. This typedef is needed to workaround that limitation. */
1599 typedef vec
<operand_entry
*> vec_operand_entry_t_heap
;
1600 subops
= XCNEWVEC (vec_operand_entry_t_heap
, ops
->length ());
1601 EXECUTE_IF_SET_IN_BITMAP (candidates
, 0, i
, sbi0
)
1604 enum tree_code oecode
;
1607 oedef
= SSA_NAME_DEF_STMT ((*ops
)[i
]->op
);
1608 oecode
= gimple_assign_rhs_code (oedef
);
1609 linearize_expr_tree (&subops
[i
], oedef
,
1610 associative_tree_code (oecode
), false);
1612 FOR_EACH_VEC_ELT (subops
[i
], j
, oe1
)
1619 c
.id
= next_oecount_id
++;
1622 idx
= cvec
.length () + 41;
1623 slot
= ctable
.find_slot (idx
, INSERT
);
1631 cvec
[*slot
- 42].cnt
++;
1636 /* Sort the counting table. */
1637 cvec
.qsort (oecount_cmp
);
1639 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1642 fprintf (dump_file
, "Candidates:\n");
1643 FOR_EACH_VEC_ELT (cvec
, j
, c
)
1645 fprintf (dump_file
, " %u %s: ", c
->cnt
,
1646 c
->oecode
== MULT_EXPR
1647 ? "*" : c
->oecode
== RDIV_EXPR
? "/" : "?");
1648 print_generic_expr (dump_file
, c
->op
, 0);
1649 fprintf (dump_file
, "\n");
1653 /* Process the (operand, code) pairs in order of most occurrence. */
1654 auto_sbitmap
candidates2 (length
);
1655 while (!cvec
.is_empty ())
1657 oecount
*c
= &cvec
.last ();
1661 /* Now collect the operands in the outer chain that contain
1662 the common operand in their inner chain. */
1663 bitmap_clear (candidates2
);
1665 EXECUTE_IF_SET_IN_BITMAP (candidates
, 0, i
, sbi0
)
1668 enum tree_code oecode
;
1670 tree op
= (*ops
)[i
]->op
;
1672 /* If we undistributed in this chain already this may be
1674 if (TREE_CODE (op
) != SSA_NAME
)
1677 oedef
= SSA_NAME_DEF_STMT (op
);
1678 oecode
= gimple_assign_rhs_code (oedef
);
1679 if (oecode
!= c
->oecode
)
1682 FOR_EACH_VEC_ELT (subops
[i
], j
, oe1
)
1684 if (oe1
->op
== c
->op
)
1686 bitmap_set_bit (candidates2
, i
);
1693 if (nr_candidates2
>= 2)
1695 operand_entry
*oe1
, *oe2
;
1697 int first
= bitmap_first_set_bit (candidates2
);
1699 /* Build the new addition chain. */
1700 oe1
= (*ops
)[first
];
1701 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1703 fprintf (dump_file
, "Building (");
1704 print_generic_expr (dump_file
, oe1
->op
, 0);
1706 zero_one_operation (&oe1
->op
, c
->oecode
, c
->op
);
1707 EXECUTE_IF_SET_IN_BITMAP (candidates2
, first
+1, i
, sbi0
)
1711 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1713 fprintf (dump_file
, " + ");
1714 print_generic_expr (dump_file
, oe2
->op
, 0);
1716 zero_one_operation (&oe2
->op
, c
->oecode
, c
->op
);
1717 sum
= build_and_add_sum (TREE_TYPE (oe1
->op
),
1718 oe1
->op
, oe2
->op
, opcode
);
1719 oe2
->op
= build_zero_cst (TREE_TYPE (oe2
->op
));
1721 oe1
->op
= gimple_get_lhs (sum
);
1724 /* Apply the multiplication/division. */
1725 prod
= build_and_add_sum (TREE_TYPE (oe1
->op
),
1726 oe1
->op
, c
->op
, c
->oecode
);
1727 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1729 fprintf (dump_file
, ") %s ", c
->oecode
== MULT_EXPR
? "*" : "/");
1730 print_generic_expr (dump_file
, c
->op
, 0);
1731 fprintf (dump_file
, "\n");
1734 /* Record it in the addition chain and disable further
1735 undistribution with this op. */
1736 oe1
->op
= gimple_assign_lhs (prod
);
1737 oe1
->rank
= get_rank (oe1
->op
);
1738 subops
[first
].release ();
1746 for (i
= 0; i
< ops
->length (); ++i
)
1747 subops
[i
].release ();
1754 /* If OPCODE is BIT_IOR_EXPR or BIT_AND_EXPR and CURR is a comparison
1755 expression, examine the other OPS to see if any of them are comparisons
1756 of the same values, which we may be able to combine or eliminate.
1757 For example, we can rewrite (a < b) | (a == b) as (a <= b). */
1760 eliminate_redundant_comparison (enum tree_code opcode
,
1761 vec
<operand_entry
*> *ops
,
1762 unsigned int currindex
,
1763 operand_entry
*curr
)
1766 enum tree_code lcode
, rcode
;
1767 gimple
*def1
, *def2
;
1771 if (opcode
!= BIT_IOR_EXPR
&& opcode
!= BIT_AND_EXPR
)
1774 /* Check that CURR is a comparison. */
1775 if (TREE_CODE (curr
->op
) != SSA_NAME
)
1777 def1
= SSA_NAME_DEF_STMT (curr
->op
);
1778 if (!is_gimple_assign (def1
))
1780 lcode
= gimple_assign_rhs_code (def1
);
1781 if (TREE_CODE_CLASS (lcode
) != tcc_comparison
)
1783 op1
= gimple_assign_rhs1 (def1
);
1784 op2
= gimple_assign_rhs2 (def1
);
1786 /* Now look for a similar comparison in the remaining OPS. */
1787 for (i
= currindex
+ 1; ops
->iterate (i
, &oe
); i
++)
1791 if (TREE_CODE (oe
->op
) != SSA_NAME
)
1793 def2
= SSA_NAME_DEF_STMT (oe
->op
);
1794 if (!is_gimple_assign (def2
))
1796 rcode
= gimple_assign_rhs_code (def2
);
1797 if (TREE_CODE_CLASS (rcode
) != tcc_comparison
)
1800 /* If we got here, we have a match. See if we can combine the
1802 if (opcode
== BIT_IOR_EXPR
)
1803 t
= maybe_fold_or_comparisons (lcode
, op1
, op2
,
1804 rcode
, gimple_assign_rhs1 (def2
),
1805 gimple_assign_rhs2 (def2
));
1807 t
= maybe_fold_and_comparisons (lcode
, op1
, op2
,
1808 rcode
, gimple_assign_rhs1 (def2
),
1809 gimple_assign_rhs2 (def2
));
1813 /* maybe_fold_and_comparisons and maybe_fold_or_comparisons
1814 always give us a boolean_type_node value back. If the original
1815 BIT_AND_EXPR or BIT_IOR_EXPR was of a wider integer type,
1816 we need to convert. */
1817 if (!useless_type_conversion_p (TREE_TYPE (curr
->op
), TREE_TYPE (t
)))
1818 t
= fold_convert (TREE_TYPE (curr
->op
), t
);
1820 if (TREE_CODE (t
) != INTEGER_CST
1821 && !operand_equal_p (t
, curr
->op
, 0))
1823 enum tree_code subcode
;
1824 tree newop1
, newop2
;
1825 if (!COMPARISON_CLASS_P (t
))
1827 extract_ops_from_tree (t
, &subcode
, &newop1
, &newop2
);
1828 STRIP_USELESS_TYPE_CONVERSION (newop1
);
1829 STRIP_USELESS_TYPE_CONVERSION (newop2
);
1830 if (!is_gimple_val (newop1
) || !is_gimple_val (newop2
))
1834 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1836 fprintf (dump_file
, "Equivalence: ");
1837 print_generic_expr (dump_file
, curr
->op
, 0);
1838 fprintf (dump_file
, " %s ", op_symbol_code (opcode
));
1839 print_generic_expr (dump_file
, oe
->op
, 0);
1840 fprintf (dump_file
, " -> ");
1841 print_generic_expr (dump_file
, t
, 0);
1842 fprintf (dump_file
, "\n");
1845 /* Now we can delete oe, as it has been subsumed by the new combined
1847 ops
->ordered_remove (i
);
1848 reassociate_stats
.ops_eliminated
++;
1850 /* If t is the same as curr->op, we're done. Otherwise we must
1851 replace curr->op with t. Special case is if we got a constant
1852 back, in which case we add it to the end instead of in place of
1853 the current entry. */
1854 if (TREE_CODE (t
) == INTEGER_CST
)
1856 ops
->ordered_remove (currindex
);
1857 add_to_ops_vec (ops
, t
);
1859 else if (!operand_equal_p (t
, curr
->op
, 0))
1862 enum tree_code subcode
;
1865 gcc_assert (COMPARISON_CLASS_P (t
));
1866 extract_ops_from_tree (t
, &subcode
, &newop1
, &newop2
);
1867 STRIP_USELESS_TYPE_CONVERSION (newop1
);
1868 STRIP_USELESS_TYPE_CONVERSION (newop2
);
1869 gcc_checking_assert (is_gimple_val (newop1
)
1870 && is_gimple_val (newop2
));
1871 sum
= build_and_add_sum (TREE_TYPE (t
), newop1
, newop2
, subcode
);
1872 curr
->op
= gimple_get_lhs (sum
);
1881 /* Transform repeated addition of same values into multiply with
1884 transform_add_to_multiply (vec
<operand_entry
*> *ops
)
1887 tree op
= NULL_TREE
;
1889 int i
, start
= -1, end
= 0, count
= 0;
1890 auto_vec
<std::pair
<int, int> > indxs
;
1891 bool changed
= false;
1893 if (!INTEGRAL_TYPE_P (TREE_TYPE ((*ops
)[0]->op
))
1894 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE ((*ops
)[0]->op
))
1895 || !flag_unsafe_math_optimizations
))
1898 /* Look for repeated operands. */
1899 FOR_EACH_VEC_ELT (*ops
, i
, oe
)
1907 else if (operand_equal_p (oe
->op
, op
, 0))
1915 indxs
.safe_push (std::make_pair (start
, end
));
1923 indxs
.safe_push (std::make_pair (start
, end
));
1925 for (j
= indxs
.length () - 1; j
>= 0; --j
)
1927 /* Convert repeated operand addition to multiplication. */
1928 start
= indxs
[j
].first
;
1929 end
= indxs
[j
].second
;
1930 op
= (*ops
)[start
]->op
;
1931 count
= end
- start
+ 1;
1932 for (i
= end
; i
>= start
; --i
)
1933 ops
->unordered_remove (i
);
1934 tree tmp
= make_ssa_name (TREE_TYPE (op
));
1935 tree cst
= build_int_cst (integer_type_node
, count
);
1937 = gimple_build_assign (tmp
, MULT_EXPR
,
1938 op
, fold_convert (TREE_TYPE (op
), cst
));
1939 gimple_set_visited (mul_stmt
, true);
1940 add_to_ops_vec (ops
, tmp
, mul_stmt
);
1948 /* Perform various identities and other optimizations on the list of
1949 operand entries, stored in OPS. The tree code for the binary
1950 operation between all the operands is OPCODE. */
1953 optimize_ops_list (enum tree_code opcode
,
1954 vec
<operand_entry
*> *ops
)
1956 unsigned int length
= ops
->length ();
1959 operand_entry
*oelast
= NULL
;
1960 bool iterate
= false;
1965 oelast
= ops
->last ();
1967 /* If the last two are constants, pop the constants off, merge them
1968 and try the next two. */
1969 if (oelast
->rank
== 0 && is_gimple_min_invariant (oelast
->op
))
1971 operand_entry
*oelm1
= (*ops
)[length
- 2];
1973 if (oelm1
->rank
== 0
1974 && is_gimple_min_invariant (oelm1
->op
)
1975 && useless_type_conversion_p (TREE_TYPE (oelm1
->op
),
1976 TREE_TYPE (oelast
->op
)))
1978 tree folded
= fold_binary (opcode
, TREE_TYPE (oelm1
->op
),
1979 oelm1
->op
, oelast
->op
);
1981 if (folded
&& is_gimple_min_invariant (folded
))
1983 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1984 fprintf (dump_file
, "Merging constants\n");
1989 add_to_ops_vec (ops
, folded
);
1990 reassociate_stats
.constants_eliminated
++;
1992 optimize_ops_list (opcode
, ops
);
1998 eliminate_using_constants (opcode
, ops
);
2001 for (i
= 0; ops
->iterate (i
, &oe
);)
2005 if (eliminate_not_pairs (opcode
, ops
, i
, oe
))
2007 if (eliminate_duplicate_pair (opcode
, ops
, &done
, i
, oe
, oelast
)
2008 || (!done
&& eliminate_plus_minus_pair (opcode
, ops
, i
, oe
))
2009 || (!done
&& eliminate_redundant_comparison (opcode
, ops
, i
, oe
)))
2021 length
= ops
->length ();
2022 oelast
= ops
->last ();
2025 optimize_ops_list (opcode
, ops
);
2028 /* The following functions are subroutines to optimize_range_tests and allow
2029 it to try to change a logical combination of comparisons into a range
2033 X == 2 || X == 5 || X == 3 || X == 4
2037 (unsigned) (X - 2) <= 3
2039 For more information see comments above fold_test_range in fold-const.c,
2040 this implementation is for GIMPLE. */
2048 bool strict_overflow_p
;
2049 unsigned int idx
, next
;
2052 /* This is similar to make_range in fold-const.c, but on top of
2053 GIMPLE instead of trees. If EXP is non-NULL, it should be
2054 an SSA_NAME and STMT argument is ignored, otherwise STMT
2055 argument should be a GIMPLE_COND. */
2058 init_range_entry (struct range_entry
*r
, tree exp
, gimple
*stmt
)
2062 bool is_bool
, strict_overflow_p
;
2066 r
->strict_overflow_p
= false;
2068 r
->high
= NULL_TREE
;
2069 if (exp
!= NULL_TREE
2070 && (TREE_CODE (exp
) != SSA_NAME
|| !INTEGRAL_TYPE_P (TREE_TYPE (exp
))))
2073 /* Start with simply saying "EXP != 0" and then look at the code of EXP
2074 and see if we can refine the range. Some of the cases below may not
2075 happen, but it doesn't seem worth worrying about this. We "continue"
2076 the outer loop when we've changed something; otherwise we "break"
2077 the switch, which will "break" the while. */
2078 low
= exp
? build_int_cst (TREE_TYPE (exp
), 0) : boolean_false_node
;
2081 strict_overflow_p
= false;
2083 if (exp
== NULL_TREE
)
2085 else if (TYPE_PRECISION (TREE_TYPE (exp
)) == 1)
2087 if (TYPE_UNSIGNED (TREE_TYPE (exp
)))
2092 else if (TREE_CODE (TREE_TYPE (exp
)) == BOOLEAN_TYPE
)
2097 enum tree_code code
;
2098 tree arg0
, arg1
, exp_type
;
2102 if (exp
!= NULL_TREE
)
2104 if (TREE_CODE (exp
) != SSA_NAME
2105 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp
))
2108 stmt
= SSA_NAME_DEF_STMT (exp
);
2109 if (!is_gimple_assign (stmt
))
2112 code
= gimple_assign_rhs_code (stmt
);
2113 arg0
= gimple_assign_rhs1 (stmt
);
2114 arg1
= gimple_assign_rhs2 (stmt
);
2115 exp_type
= TREE_TYPE (exp
);
2119 code
= gimple_cond_code (stmt
);
2120 arg0
= gimple_cond_lhs (stmt
);
2121 arg1
= gimple_cond_rhs (stmt
);
2122 exp_type
= boolean_type_node
;
2125 if (TREE_CODE (arg0
) != SSA_NAME
)
2127 loc
= gimple_location (stmt
);
2131 if (TREE_CODE (TREE_TYPE (exp
)) == BOOLEAN_TYPE
2132 /* Ensure the range is either +[-,0], +[0,0],
2133 -[-,0], -[0,0] or +[1,-], +[1,1], -[1,-] or
2134 -[1,1]. If it is e.g. +[-,-] or -[-,-]
2135 or similar expression of unconditional true or
2136 false, it should not be negated. */
2137 && ((high
&& integer_zerop (high
))
2138 || (low
&& integer_onep (low
))))
2151 if (TYPE_PRECISION (TREE_TYPE (arg0
)) == 1)
2153 if (TYPE_UNSIGNED (TREE_TYPE (arg0
)))
2158 else if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
)
2173 nexp
= make_range_step (loc
, code
, arg0
, arg1
, exp_type
,
2175 &strict_overflow_p
);
2176 if (nexp
!= NULL_TREE
)
2179 gcc_assert (TREE_CODE (exp
) == SSA_NAME
);
2192 r
->strict_overflow_p
= strict_overflow_p
;
2196 /* Comparison function for qsort. Sort entries
2197 without SSA_NAME exp first, then with SSA_NAMEs sorted
2198 by increasing SSA_NAME_VERSION, and for the same SSA_NAMEs
2199 by increasing ->low and if ->low is the same, by increasing
2200 ->high. ->low == NULL_TREE means minimum, ->high == NULL_TREE
2204 range_entry_cmp (const void *a
, const void *b
)
2206 const struct range_entry
*p
= (const struct range_entry
*) a
;
2207 const struct range_entry
*q
= (const struct range_entry
*) b
;
2209 if (p
->exp
!= NULL_TREE
&& TREE_CODE (p
->exp
) == SSA_NAME
)
2211 if (q
->exp
!= NULL_TREE
&& TREE_CODE (q
->exp
) == SSA_NAME
)
2213 /* Group range_entries for the same SSA_NAME together. */
2214 if (SSA_NAME_VERSION (p
->exp
) < SSA_NAME_VERSION (q
->exp
))
2216 else if (SSA_NAME_VERSION (p
->exp
) > SSA_NAME_VERSION (q
->exp
))
2218 /* If ->low is different, NULL low goes first, then by
2220 if (p
->low
!= NULL_TREE
)
2222 if (q
->low
!= NULL_TREE
)
2224 tree tem
= fold_binary (LT_EXPR
, boolean_type_node
,
2226 if (tem
&& integer_onep (tem
))
2228 tem
= fold_binary (GT_EXPR
, boolean_type_node
,
2230 if (tem
&& integer_onep (tem
))
2236 else if (q
->low
!= NULL_TREE
)
2238 /* If ->high is different, NULL high goes last, before that by
2240 if (p
->high
!= NULL_TREE
)
2242 if (q
->high
!= NULL_TREE
)
2244 tree tem
= fold_binary (LT_EXPR
, boolean_type_node
,
2246 if (tem
&& integer_onep (tem
))
2248 tem
= fold_binary (GT_EXPR
, boolean_type_node
,
2250 if (tem
&& integer_onep (tem
))
2256 else if (q
->high
!= NULL_TREE
)
2258 /* If both ranges are the same, sort below by ascending idx. */
2263 else if (q
->exp
!= NULL_TREE
&& TREE_CODE (q
->exp
) == SSA_NAME
)
2266 if (p
->idx
< q
->idx
)
2270 gcc_checking_assert (p
->idx
> q
->idx
);
2275 /* Helper routine of optimize_range_test.
2276 [EXP, IN_P, LOW, HIGH, STRICT_OVERFLOW_P] is a merged range for
2277 RANGE and OTHERRANGE through OTHERRANGE + COUNT - 1 ranges,
2278 OPCODE and OPS are arguments of optimize_range_tests. If OTHERRANGE
2279 is NULL, OTHERRANGEP should not be and then OTHERRANGEP points to
2280 an array of COUNT pointers to other ranges. Return
2281 true if the range merge has been successful.
2282 If OPCODE is ERROR_MARK, this is called from within
2283 maybe_optimize_range_tests and is performing inter-bb range optimization.
2284 In that case, whether an op is BIT_AND_EXPR or BIT_IOR_EXPR is found in
2288 update_range_test (struct range_entry
*range
, struct range_entry
*otherrange
,
2289 struct range_entry
**otherrangep
,
2290 unsigned int count
, enum tree_code opcode
,
2291 vec
<operand_entry
*> *ops
, tree exp
, gimple_seq seq
,
2292 bool in_p
, tree low
, tree high
, bool strict_overflow_p
)
2294 operand_entry
*oe
= (*ops
)[range
->idx
];
2296 gimple
*stmt
= op
? SSA_NAME_DEF_STMT (op
)
2297 : last_stmt (BASIC_BLOCK_FOR_FN (cfun
, oe
->id
));
2298 location_t loc
= gimple_location (stmt
);
2299 tree optype
= op
? TREE_TYPE (op
) : boolean_type_node
;
2300 tree tem
= build_range_check (loc
, optype
, unshare_expr (exp
),
2302 enum warn_strict_overflow_code wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
2303 gimple_stmt_iterator gsi
;
2304 unsigned int i
, uid
;
2306 if (tem
== NULL_TREE
)
2309 /* If op is default def SSA_NAME, there is no place to insert the
2310 new comparison. Give up, unless we can use OP itself as the
2312 if (op
&& SSA_NAME_IS_DEFAULT_DEF (op
))
2314 if (op
== range
->exp
2315 && ((TYPE_PRECISION (optype
) == 1 && TYPE_UNSIGNED (optype
))
2316 || TREE_CODE (optype
) == BOOLEAN_TYPE
)
2318 || (TREE_CODE (tem
) == EQ_EXPR
2319 && TREE_OPERAND (tem
, 0) == op
2320 && integer_onep (TREE_OPERAND (tem
, 1))))
2321 && opcode
!= BIT_IOR_EXPR
2322 && (opcode
!= ERROR_MARK
|| oe
->rank
!= BIT_IOR_EXPR
))
2331 if (strict_overflow_p
&& issue_strict_overflow_warning (wc
))
2332 warning_at (loc
, OPT_Wstrict_overflow
,
2333 "assuming signed overflow does not occur "
2334 "when simplifying range test");
2336 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2338 struct range_entry
*r
;
2339 fprintf (dump_file
, "Optimizing range tests ");
2340 print_generic_expr (dump_file
, range
->exp
, 0);
2341 fprintf (dump_file
, " %c[", range
->in_p
? '+' : '-');
2342 print_generic_expr (dump_file
, range
->low
, 0);
2343 fprintf (dump_file
, ", ");
2344 print_generic_expr (dump_file
, range
->high
, 0);
2345 fprintf (dump_file
, "]");
2346 for (i
= 0; i
< count
; i
++)
2352 fprintf (dump_file
, " and %c[", r
->in_p
? '+' : '-');
2353 print_generic_expr (dump_file
, r
->low
, 0);
2354 fprintf (dump_file
, ", ");
2355 print_generic_expr (dump_file
, r
->high
, 0);
2356 fprintf (dump_file
, "]");
2358 fprintf (dump_file
, "\n into ");
2359 print_generic_expr (dump_file
, tem
, 0);
2360 fprintf (dump_file
, "\n");
2363 if (opcode
== BIT_IOR_EXPR
2364 || (opcode
== ERROR_MARK
&& oe
->rank
== BIT_IOR_EXPR
))
2365 tem
= invert_truthvalue_loc (loc
, tem
);
2367 tem
= fold_convert_loc (loc
, optype
, tem
);
2370 gsi
= gsi_for_stmt (stmt
);
2371 uid
= gimple_uid (stmt
);
2379 gcc_checking_assert (tem
== op
);
2380 /* In rare cases range->exp can be equal to lhs of stmt.
2381 In that case we have to insert after the stmt rather then before
2382 it. If stmt is a PHI, insert it at the start of the basic block. */
2383 else if (op
!= range
->exp
)
2385 gsi_insert_seq_before (&gsi
, seq
, GSI_SAME_STMT
);
2386 tem
= force_gimple_operand_gsi (&gsi
, tem
, true, NULL_TREE
, true,
2390 else if (gimple_code (stmt
) != GIMPLE_PHI
)
2392 gsi_insert_seq_after (&gsi
, seq
, GSI_CONTINUE_LINKING
);
2393 tem
= force_gimple_operand_gsi (&gsi
, tem
, true, NULL_TREE
, false,
2394 GSI_CONTINUE_LINKING
);
2398 gsi
= gsi_after_labels (gimple_bb (stmt
));
2399 if (!gsi_end_p (gsi
))
2400 uid
= gimple_uid (gsi_stmt (gsi
));
2403 gsi
= gsi_start_bb (gimple_bb (stmt
));
2405 while (!gsi_end_p (gsi
))
2407 uid
= gimple_uid (gsi_stmt (gsi
));
2411 gsi_insert_seq_before (&gsi
, seq
, GSI_SAME_STMT
);
2412 tem
= force_gimple_operand_gsi (&gsi
, tem
, true, NULL_TREE
, true,
2414 if (gsi_end_p (gsi
))
2415 gsi
= gsi_last_bb (gimple_bb (stmt
));
2419 for (; !gsi_end_p (gsi
); gsi_prev (&gsi
))
2420 if (gimple_uid (gsi_stmt (gsi
)))
2423 gimple_set_uid (gsi_stmt (gsi
), uid
);
2430 range
->strict_overflow_p
= false;
2432 for (i
= 0; i
< count
; i
++)
2435 range
= otherrange
+ i
;
2437 range
= otherrangep
[i
];
2438 oe
= (*ops
)[range
->idx
];
2439 /* Now change all the other range test immediate uses, so that
2440 those tests will be optimized away. */
2441 if (opcode
== ERROR_MARK
)
2444 oe
->op
= build_int_cst (TREE_TYPE (oe
->op
),
2445 oe
->rank
== BIT_IOR_EXPR
? 0 : 1);
2447 oe
->op
= (oe
->rank
== BIT_IOR_EXPR
2448 ? boolean_false_node
: boolean_true_node
);
2451 oe
->op
= error_mark_node
;
2452 range
->exp
= NULL_TREE
;
2453 range
->low
= NULL_TREE
;
2454 range
->high
= NULL_TREE
;
2459 /* Optimize X == CST1 || X == CST2
2460 if popcount (CST1 ^ CST2) == 1 into
2461 (X & ~(CST1 ^ CST2)) == (CST1 & ~(CST1 ^ CST2)).
2462 Similarly for ranges. E.g.
2463 X != 2 && X != 3 && X != 10 && X != 11
2464 will be transformed by the previous optimization into
2465 !((X - 2U) <= 1U || (X - 10U) <= 1U)
2466 and this loop can transform that into
2467 !(((X & ~8) - 2U) <= 1U). */
2470 optimize_range_tests_xor (enum tree_code opcode
, tree type
,
2471 tree lowi
, tree lowj
, tree highi
, tree highj
,
2472 vec
<operand_entry
*> *ops
,
2473 struct range_entry
*rangei
,
2474 struct range_entry
*rangej
)
2476 tree lowxor
, highxor
, tem
, exp
;
2477 /* Check lowi ^ lowj == highi ^ highj and
2478 popcount (lowi ^ lowj) == 1. */
2479 lowxor
= fold_binary (BIT_XOR_EXPR
, type
, lowi
, lowj
);
2480 if (lowxor
== NULL_TREE
|| TREE_CODE (lowxor
) != INTEGER_CST
)
2482 if (!integer_pow2p (lowxor
))
2484 highxor
= fold_binary (BIT_XOR_EXPR
, type
, highi
, highj
);
2485 if (!tree_int_cst_equal (lowxor
, highxor
))
2488 tem
= fold_build1 (BIT_NOT_EXPR
, type
, lowxor
);
2489 exp
= fold_build2 (BIT_AND_EXPR
, type
, rangei
->exp
, tem
);
2490 lowj
= fold_build2 (BIT_AND_EXPR
, type
, lowi
, tem
);
2491 highj
= fold_build2 (BIT_AND_EXPR
, type
, highi
, tem
);
2492 if (update_range_test (rangei
, rangej
, NULL
, 1, opcode
, ops
, exp
,
2493 NULL
, rangei
->in_p
, lowj
, highj
,
2494 rangei
->strict_overflow_p
2495 || rangej
->strict_overflow_p
))
2500 /* Optimize X == CST1 || X == CST2
2501 if popcount (CST2 - CST1) == 1 into
2502 ((X - CST1) & ~(CST2 - CST1)) == 0.
2503 Similarly for ranges. E.g.
2504 X == 43 || X == 76 || X == 44 || X == 78 || X == 77 || X == 46
2505 || X == 75 || X == 45
2506 will be transformed by the previous optimization into
2507 (X - 43U) <= 3U || (X - 75U) <= 3U
2508 and this loop can transform that into
2509 ((X - 43U) & ~(75U - 43U)) <= 3U. */
2511 optimize_range_tests_diff (enum tree_code opcode
, tree type
,
2512 tree lowi
, tree lowj
, tree highi
, tree highj
,
2513 vec
<operand_entry
*> *ops
,
2514 struct range_entry
*rangei
,
2515 struct range_entry
*rangej
)
2517 tree tem1
, tem2
, mask
;
2518 /* Check highi - lowi == highj - lowj. */
2519 tem1
= fold_binary (MINUS_EXPR
, type
, highi
, lowi
);
2520 if (tem1
== NULL_TREE
|| TREE_CODE (tem1
) != INTEGER_CST
)
2522 tem2
= fold_binary (MINUS_EXPR
, type
, highj
, lowj
);
2523 if (!tree_int_cst_equal (tem1
, tem2
))
2525 /* Check popcount (lowj - lowi) == 1. */
2526 tem1
= fold_binary (MINUS_EXPR
, type
, lowj
, lowi
);
2527 if (tem1
== NULL_TREE
|| TREE_CODE (tem1
) != INTEGER_CST
)
2529 if (!integer_pow2p (tem1
))
2532 type
= unsigned_type_for (type
);
2533 tem1
= fold_convert (type
, tem1
);
2534 tem2
= fold_convert (type
, tem2
);
2535 lowi
= fold_convert (type
, lowi
);
2536 mask
= fold_build1 (BIT_NOT_EXPR
, type
, tem1
);
2537 tem1
= fold_binary (MINUS_EXPR
, type
,
2538 fold_convert (type
, rangei
->exp
), lowi
);
2539 tem1
= fold_build2 (BIT_AND_EXPR
, type
, tem1
, mask
);
2540 lowj
= build_int_cst (type
, 0);
2541 if (update_range_test (rangei
, rangej
, NULL
, 1, opcode
, ops
, tem1
,
2542 NULL
, rangei
->in_p
, lowj
, tem2
,
2543 rangei
->strict_overflow_p
2544 || rangej
->strict_overflow_p
))
2549 /* It does some common checks for function optimize_range_tests_xor and
2550 optimize_range_tests_diff.
2551 If OPTIMIZE_XOR is TRUE, it calls optimize_range_tests_xor.
2552 Else it calls optimize_range_tests_diff. */
2555 optimize_range_tests_1 (enum tree_code opcode
, int first
, int length
,
2556 bool optimize_xor
, vec
<operand_entry
*> *ops
,
2557 struct range_entry
*ranges
)
2560 bool any_changes
= false;
2561 for (i
= first
; i
< length
; i
++)
2563 tree lowi
, highi
, lowj
, highj
, type
, tem
;
2565 if (ranges
[i
].exp
== NULL_TREE
|| ranges
[i
].in_p
)
2567 type
= TREE_TYPE (ranges
[i
].exp
);
2568 if (!INTEGRAL_TYPE_P (type
))
2570 lowi
= ranges
[i
].low
;
2571 if (lowi
== NULL_TREE
)
2572 lowi
= TYPE_MIN_VALUE (type
);
2573 highi
= ranges
[i
].high
;
2574 if (highi
== NULL_TREE
)
2576 for (j
= i
+ 1; j
< length
&& j
< i
+ 64; j
++)
2579 if (ranges
[i
].exp
!= ranges
[j
].exp
|| ranges
[j
].in_p
)
2581 lowj
= ranges
[j
].low
;
2582 if (lowj
== NULL_TREE
)
2584 highj
= ranges
[j
].high
;
2585 if (highj
== NULL_TREE
)
2586 highj
= TYPE_MAX_VALUE (type
);
2587 /* Check lowj > highi. */
2588 tem
= fold_binary (GT_EXPR
, boolean_type_node
,
2590 if (tem
== NULL_TREE
|| !integer_onep (tem
))
2593 changes
= optimize_range_tests_xor (opcode
, type
, lowi
, lowj
,
2595 ranges
+ i
, ranges
+ j
);
2597 changes
= optimize_range_tests_diff (opcode
, type
, lowi
, lowj
,
2599 ranges
+ i
, ranges
+ j
);
2610 /* Helper function of optimize_range_tests_to_bit_test. Handle a single
2611 range, EXP, LOW, HIGH, compute bit mask of bits to test and return
2612 EXP on success, NULL otherwise. */
2615 extract_bit_test_mask (tree exp
, int prec
, tree totallow
, tree low
, tree high
,
2616 wide_int
*mask
, tree
*totallowp
)
2618 tree tem
= int_const_binop (MINUS_EXPR
, high
, low
);
2619 if (tem
== NULL_TREE
2620 || TREE_CODE (tem
) != INTEGER_CST
2621 || TREE_OVERFLOW (tem
)
2622 || tree_int_cst_sgn (tem
) == -1
2623 || compare_tree_int (tem
, prec
) != -1)
2626 unsigned HOST_WIDE_INT max
= tree_to_uhwi (tem
) + 1;
2627 *mask
= wi::shifted_mask (0, max
, false, prec
);
2628 if (TREE_CODE (exp
) == BIT_AND_EXPR
2629 && TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
2631 widest_int msk
= wi::to_widest (TREE_OPERAND (exp
, 1));
2632 msk
= wi::zext (~msk
, TYPE_PRECISION (TREE_TYPE (exp
)));
2633 if (wi::popcount (msk
) == 1
2634 && wi::ltu_p (msk
, prec
- max
))
2636 *mask
|= wi::shifted_mask (msk
.to_uhwi (), max
, false, prec
);
2637 max
+= msk
.to_uhwi ();
2638 exp
= TREE_OPERAND (exp
, 0);
2639 if (integer_zerop (low
)
2640 && TREE_CODE (exp
) == PLUS_EXPR
2641 && TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
2643 tree ret
= TREE_OPERAND (exp
, 0);
2646 = wi::neg (wi::sext (wi::to_widest (TREE_OPERAND (exp
, 1)),
2647 TYPE_PRECISION (TREE_TYPE (low
))));
2648 tree tbias
= wide_int_to_tree (TREE_TYPE (ret
), bias
);
2654 else if (!tree_int_cst_lt (totallow
, tbias
))
2656 bias
= wi::to_widest (tbias
);
2657 bias
-= wi::to_widest (totallow
);
2658 if (bias
>= 0 && bias
< prec
- max
)
2660 *mask
= wi::lshift (*mask
, bias
);
2668 if (!tree_int_cst_lt (totallow
, low
))
2670 tem
= int_const_binop (MINUS_EXPR
, low
, totallow
);
2671 if (tem
== NULL_TREE
2672 || TREE_CODE (tem
) != INTEGER_CST
2673 || TREE_OVERFLOW (tem
)
2674 || compare_tree_int (tem
, prec
- max
) == 1)
2677 *mask
= wi::lshift (*mask
, wi::to_widest (tem
));
2681 /* Attempt to optimize small range tests using bit test.
2683 X != 43 && X != 76 && X != 44 && X != 78 && X != 49
2684 && X != 77 && X != 46 && X != 75 && X != 45 && X != 82
2685 has been by earlier optimizations optimized into:
2686 ((X - 43U) & ~32U) > 3U && X != 49 && X != 82
2687 As all the 43 through 82 range is less than 64 numbers,
2688 for 64-bit word targets optimize that into:
2689 (X - 43U) > 40U && ((1 << (X - 43U)) & 0x8F0000004FULL) == 0 */
2692 optimize_range_tests_to_bit_test (enum tree_code opcode
, int first
, int length
,
2693 vec
<operand_entry
*> *ops
,
2694 struct range_entry
*ranges
)
2697 bool any_changes
= false;
2698 int prec
= GET_MODE_BITSIZE (word_mode
);
2699 auto_vec
<struct range_entry
*, 64> candidates
;
2701 for (i
= first
; i
< length
- 2; i
++)
2703 tree lowi
, highi
, lowj
, highj
, type
;
2705 if (ranges
[i
].exp
== NULL_TREE
|| ranges
[i
].in_p
)
2707 type
= TREE_TYPE (ranges
[i
].exp
);
2708 if (!INTEGRAL_TYPE_P (type
))
2710 lowi
= ranges
[i
].low
;
2711 if (lowi
== NULL_TREE
)
2712 lowi
= TYPE_MIN_VALUE (type
);
2713 highi
= ranges
[i
].high
;
2714 if (highi
== NULL_TREE
)
2717 tree exp
= extract_bit_test_mask (ranges
[i
].exp
, prec
, lowi
, lowi
,
2718 highi
, &mask
, &lowi
);
2719 if (exp
== NULL_TREE
)
2721 bool strict_overflow_p
= ranges
[i
].strict_overflow_p
;
2722 candidates
.truncate (0);
2723 int end
= MIN (i
+ 64, length
);
2724 for (j
= i
+ 1; j
< end
; j
++)
2727 if (ranges
[j
].exp
== NULL_TREE
|| ranges
[j
].in_p
)
2729 if (ranges
[j
].exp
== exp
)
2731 else if (TREE_CODE (ranges
[j
].exp
) == BIT_AND_EXPR
)
2733 exp2
= TREE_OPERAND (ranges
[j
].exp
, 0);
2736 else if (TREE_CODE (exp2
) == PLUS_EXPR
)
2738 exp2
= TREE_OPERAND (exp2
, 0);
2748 lowj
= ranges
[j
].low
;
2749 if (lowj
== NULL_TREE
)
2751 highj
= ranges
[j
].high
;
2752 if (highj
== NULL_TREE
)
2753 highj
= TYPE_MAX_VALUE (type
);
2755 exp2
= extract_bit_test_mask (ranges
[j
].exp
, prec
, lowi
, lowj
,
2756 highj
, &mask2
, NULL
);
2760 strict_overflow_p
|= ranges
[j
].strict_overflow_p
;
2761 candidates
.safe_push (&ranges
[j
]);
2764 /* If we need otherwise 3 or more comparisons, use a bit test. */
2765 if (candidates
.length () >= 2)
2767 tree high
= wide_int_to_tree (TREE_TYPE (lowi
),
2768 wi::to_widest (lowi
)
2769 + prec
- 1 - wi::clz (mask
));
2770 operand_entry
*oe
= (*ops
)[ranges
[i
].idx
];
2772 gimple
*stmt
= op
? SSA_NAME_DEF_STMT (op
)
2773 : last_stmt (BASIC_BLOCK_FOR_FN (cfun
, oe
->id
));
2774 location_t loc
= gimple_location (stmt
);
2775 tree optype
= op
? TREE_TYPE (op
) : boolean_type_node
;
2777 /* See if it isn't cheaper to pretend the minimum value of the
2778 range is 0, if maximum value is small enough.
2779 We can avoid then subtraction of the minimum value, but the
2780 mask constant could be perhaps more expensive. */
2781 if (compare_tree_int (lowi
, 0) > 0
2782 && compare_tree_int (high
, prec
) < 0)
2785 HOST_WIDE_INT m
= tree_to_uhwi (lowi
);
2786 rtx reg
= gen_raw_REG (word_mode
, 10000);
2787 bool speed_p
= optimize_bb_for_speed_p (gimple_bb (stmt
));
2788 cost_diff
= set_rtx_cost (gen_rtx_PLUS (word_mode
, reg
,
2789 GEN_INT (-m
)), speed_p
);
2790 rtx r
= immed_wide_int_const (mask
, word_mode
);
2791 cost_diff
+= set_src_cost (gen_rtx_AND (word_mode
, reg
, r
),
2792 word_mode
, speed_p
);
2793 r
= immed_wide_int_const (wi::lshift (mask
, m
), word_mode
);
2794 cost_diff
-= set_src_cost (gen_rtx_AND (word_mode
, reg
, r
),
2795 word_mode
, speed_p
);
2798 mask
= wi::lshift (mask
, m
);
2799 lowi
= build_zero_cst (TREE_TYPE (lowi
));
2803 tree tem
= build_range_check (loc
, optype
, unshare_expr (exp
),
2805 if (tem
== NULL_TREE
|| is_gimple_val (tem
))
2807 tree etype
= unsigned_type_for (TREE_TYPE (exp
));
2808 exp
= fold_build2_loc (loc
, MINUS_EXPR
, etype
,
2809 fold_convert_loc (loc
, etype
, exp
),
2810 fold_convert_loc (loc
, etype
, lowi
));
2811 exp
= fold_convert_loc (loc
, integer_type_node
, exp
);
2812 tree word_type
= lang_hooks
.types
.type_for_mode (word_mode
, 1);
2813 exp
= fold_build2_loc (loc
, LSHIFT_EXPR
, word_type
,
2814 build_int_cst (word_type
, 1), exp
);
2815 exp
= fold_build2_loc (loc
, BIT_AND_EXPR
, word_type
, exp
,
2816 wide_int_to_tree (word_type
, mask
));
2817 exp
= fold_build2_loc (loc
, EQ_EXPR
, optype
, exp
,
2818 build_zero_cst (word_type
));
2819 if (is_gimple_val (exp
))
2822 /* The shift might have undefined behavior if TEM is true,
2823 but reassociate_bb isn't prepared to have basic blocks
2824 split when it is running. So, temporarily emit a code
2825 with BIT_IOR_EXPR instead of &&, and fix it up in
2828 tem
= force_gimple_operand (tem
, &seq
, true, NULL_TREE
);
2829 gcc_assert (TREE_CODE (tem
) == SSA_NAME
);
2830 gimple_set_visited (SSA_NAME_DEF_STMT (tem
), true);
2832 exp
= force_gimple_operand (exp
, &seq2
, true, NULL_TREE
);
2833 gimple_seq_add_seq_without_update (&seq
, seq2
);
2834 gcc_assert (TREE_CODE (exp
) == SSA_NAME
);
2835 gimple_set_visited (SSA_NAME_DEF_STMT (exp
), true);
2836 gimple
*g
= gimple_build_assign (make_ssa_name (optype
),
2837 BIT_IOR_EXPR
, tem
, exp
);
2838 gimple_set_location (g
, loc
);
2839 gimple_seq_add_stmt_without_update (&seq
, g
);
2840 exp
= gimple_assign_lhs (g
);
2841 tree val
= build_zero_cst (optype
);
2842 if (update_range_test (&ranges
[i
], NULL
, candidates
.address (),
2843 candidates
.length (), opcode
, ops
, exp
,
2844 seq
, false, val
, val
, strict_overflow_p
))
2847 reassoc_branch_fixups
.safe_push (tem
);
2850 gimple_seq_discard (seq
);
2856 /* Attempt to optimize for signed a and b where b is known to be >= 0:
2857 a >= 0 && a < b into (unsigned) a < (unsigned) b
2858 a >= 0 && a <= b into (unsigned) a <= (unsigned) b */
2861 optimize_range_tests_var_bound (enum tree_code opcode
, int first
, int length
,
2862 vec
<operand_entry
*> *ops
,
2863 struct range_entry
*ranges
)
2866 bool any_changes
= false;
2867 hash_map
<tree
, int> *map
= NULL
;
2869 for (i
= first
; i
< length
; i
++)
2871 if (ranges
[i
].exp
== NULL_TREE
2872 || TREE_CODE (ranges
[i
].exp
) != SSA_NAME
2876 tree type
= TREE_TYPE (ranges
[i
].exp
);
2877 if (!INTEGRAL_TYPE_P (type
)
2878 || TYPE_UNSIGNED (type
)
2879 || ranges
[i
].low
== NULL_TREE
2880 || !integer_zerop (ranges
[i
].low
)
2881 || ranges
[i
].high
!= NULL_TREE
)
2883 /* EXP >= 0 here. */
2885 map
= new hash_map
<tree
, int>;
2886 map
->put (ranges
[i
].exp
, i
);
2892 for (i
= 0; i
< length
; i
++)
2894 if (ranges
[i
].low
== NULL_TREE
2895 || ranges
[i
].high
== NULL_TREE
2896 || !integer_zerop (ranges
[i
].low
)
2897 || !integer_zerop (ranges
[i
].high
))
2905 if (TREE_CODE (ranges
[i
].exp
) != SSA_NAME
)
2907 stmt
= SSA_NAME_DEF_STMT (ranges
[i
].exp
);
2908 if (!is_gimple_assign (stmt
))
2910 ccode
= gimple_assign_rhs_code (stmt
);
2911 rhs1
= gimple_assign_rhs1 (stmt
);
2912 rhs2
= gimple_assign_rhs2 (stmt
);
2916 operand_entry
*oe
= (*ops
)[ranges
[i
].idx
];
2917 stmt
= last_stmt (BASIC_BLOCK_FOR_FN (cfun
, oe
->id
));
2918 if (gimple_code (stmt
) != GIMPLE_COND
)
2920 ccode
= gimple_cond_code (stmt
);
2921 rhs1
= gimple_cond_lhs (stmt
);
2922 rhs2
= gimple_cond_rhs (stmt
);
2925 if (TREE_CODE (rhs1
) != SSA_NAME
2926 || rhs2
== NULL_TREE
2927 || TREE_CODE (rhs2
) != SSA_NAME
)
2934 if (!ranges
[i
].in_p
)
2935 std::swap (rhs1
, rhs2
);
2936 ccode
= swap_tree_comparison (ccode
);
2941 std::swap (rhs1
, rhs2
);
2947 int *idx
= map
->get (rhs1
);
2951 wide_int nz
= get_nonzero_bits (rhs2
);
2955 /* We have EXP < RHS2 or EXP <= RHS2 where EXP >= 0
2956 and RHS2 is known to be RHS2 >= 0. */
2957 tree utype
= unsigned_type_for (TREE_TYPE (rhs1
));
2959 enum warn_strict_overflow_code wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
2960 if ((ranges
[*idx
].strict_overflow_p
2961 || ranges
[i
].strict_overflow_p
)
2962 && issue_strict_overflow_warning (wc
))
2963 warning_at (gimple_location (stmt
), OPT_Wstrict_overflow
,
2964 "assuming signed overflow does not occur "
2965 "when simplifying range test");
2967 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2969 struct range_entry
*r
= &ranges
[*idx
];
2970 fprintf (dump_file
, "Optimizing range test ");
2971 print_generic_expr (dump_file
, r
->exp
, 0);
2972 fprintf (dump_file
, " +[");
2973 print_generic_expr (dump_file
, r
->low
, 0);
2974 fprintf (dump_file
, ", ");
2975 print_generic_expr (dump_file
, r
->high
, 0);
2976 fprintf (dump_file
, "] and comparison ");
2977 print_generic_expr (dump_file
, rhs1
, 0);
2978 fprintf (dump_file
, " %s ", op_symbol_code (ccode
));
2979 print_generic_expr (dump_file
, rhs2
, 0);
2980 fprintf (dump_file
, "\n into (");
2981 print_generic_expr (dump_file
, utype
, 0);
2982 fprintf (dump_file
, ") ");
2983 print_generic_expr (dump_file
, rhs1
, 0);
2984 fprintf (dump_file
, " %s (", op_symbol_code (ccode
));
2985 print_generic_expr (dump_file
, utype
, 0);
2986 fprintf (dump_file
, ") ");
2987 print_generic_expr (dump_file
, rhs2
, 0);
2988 fprintf (dump_file
, "\n");
2992 std::swap (rhs1
, rhs2
);
2994 unsigned int uid
= gimple_uid (stmt
);
2995 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
2996 gimple
*g
= gimple_build_assign (make_ssa_name (utype
), NOP_EXPR
, rhs1
);
2997 gimple_set_uid (g
, uid
);
2998 rhs1
= gimple_assign_lhs (g
);
2999 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
3000 g
= gimple_build_assign (make_ssa_name (utype
), NOP_EXPR
, rhs2
);
3001 gimple_set_uid (g
, uid
);
3002 rhs2
= gimple_assign_lhs (g
);
3003 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
3004 if (tree_swap_operands_p (rhs1
, rhs2
))
3006 std::swap (rhs1
, rhs2
);
3007 ccode
= swap_tree_comparison (ccode
);
3009 if (gimple_code (stmt
) == GIMPLE_COND
)
3011 gcond
*c
= as_a
<gcond
*> (stmt
);
3012 gimple_cond_set_code (c
, ccode
);
3013 gimple_cond_set_lhs (c
, rhs1
);
3014 gimple_cond_set_rhs (c
, rhs2
);
3019 operand_entry
*oe
= (*ops
)[ranges
[i
].idx
];
3020 tree ctype
= oe
->op
? TREE_TYPE (oe
->op
) : boolean_type_node
;
3021 if (!INTEGRAL_TYPE_P (ctype
)
3022 || (TREE_CODE (ctype
) != BOOLEAN_TYPE
3023 && TYPE_PRECISION (ctype
) != 1))
3024 ctype
= boolean_type_node
;
3025 g
= gimple_build_assign (make_ssa_name (ctype
), ccode
, rhs1
, rhs2
);
3026 gimple_set_uid (g
, uid
);
3027 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
3028 if (oe
->op
&& ctype
!= TREE_TYPE (oe
->op
))
3030 g
= gimple_build_assign (make_ssa_name (TREE_TYPE (oe
->op
)),
3031 NOP_EXPR
, gimple_assign_lhs (g
));
3032 gimple_set_uid (g
, uid
);
3033 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
3035 ranges
[i
].exp
= gimple_assign_lhs (g
);
3036 oe
->op
= ranges
[i
].exp
;
3037 ranges
[i
].low
= build_zero_cst (TREE_TYPE (ranges
[i
].exp
));
3038 ranges
[i
].high
= ranges
[i
].low
;
3040 ranges
[i
].strict_overflow_p
= false;
3041 operand_entry
*oe
= (*ops
)[ranges
[*idx
].idx
];
3042 /* Now change all the other range test immediate uses, so that
3043 those tests will be optimized away. */
3044 if (opcode
== ERROR_MARK
)
3047 oe
->op
= build_int_cst (TREE_TYPE (oe
->op
),
3048 oe
->rank
== BIT_IOR_EXPR
? 0 : 1);
3050 oe
->op
= (oe
->rank
== BIT_IOR_EXPR
3051 ? boolean_false_node
: boolean_true_node
);
3054 oe
->op
= error_mark_node
;
3055 ranges
[*idx
].exp
= NULL_TREE
;
3056 ranges
[*idx
].low
= NULL_TREE
;
3057 ranges
[*idx
].high
= NULL_TREE
;
3065 /* Optimize range tests, similarly how fold_range_test optimizes
3066 it on trees. The tree code for the binary
3067 operation between all the operands is OPCODE.
3068 If OPCODE is ERROR_MARK, optimize_range_tests is called from within
3069 maybe_optimize_range_tests for inter-bb range optimization.
3070 In that case if oe->op is NULL, oe->id is bb->index whose
3071 GIMPLE_COND is && or ||ed into the test, and oe->rank says
3072 the actual opcode. */
3075 optimize_range_tests (enum tree_code opcode
,
3076 vec
<operand_entry
*> *ops
)
3078 unsigned int length
= ops
->length (), i
, j
, first
;
3080 struct range_entry
*ranges
;
3081 bool any_changes
= false;
3086 ranges
= XNEWVEC (struct range_entry
, length
);
3087 for (i
= 0; i
< length
; i
++)
3091 init_range_entry (ranges
+ i
, oe
->op
,
3094 : last_stmt (BASIC_BLOCK_FOR_FN (cfun
, oe
->id
)));
3095 /* For | invert it now, we will invert it again before emitting
3096 the optimized expression. */
3097 if (opcode
== BIT_IOR_EXPR
3098 || (opcode
== ERROR_MARK
&& oe
->rank
== BIT_IOR_EXPR
))
3099 ranges
[i
].in_p
= !ranges
[i
].in_p
;
3102 qsort (ranges
, length
, sizeof (*ranges
), range_entry_cmp
);
3103 for (i
= 0; i
< length
; i
++)
3104 if (ranges
[i
].exp
!= NULL_TREE
&& TREE_CODE (ranges
[i
].exp
) == SSA_NAME
)
3107 /* Try to merge ranges. */
3108 for (first
= i
; i
< length
; i
++)
3110 tree low
= ranges
[i
].low
;
3111 tree high
= ranges
[i
].high
;
3112 int in_p
= ranges
[i
].in_p
;
3113 bool strict_overflow_p
= ranges
[i
].strict_overflow_p
;
3114 int update_fail_count
= 0;
3116 for (j
= i
+ 1; j
< length
; j
++)
3118 if (ranges
[i
].exp
!= ranges
[j
].exp
)
3120 if (!merge_ranges (&in_p
, &low
, &high
, in_p
, low
, high
,
3121 ranges
[j
].in_p
, ranges
[j
].low
, ranges
[j
].high
))
3123 strict_overflow_p
|= ranges
[j
].strict_overflow_p
;
3129 if (update_range_test (ranges
+ i
, ranges
+ i
+ 1, NULL
, j
- i
- 1,
3130 opcode
, ops
, ranges
[i
].exp
, NULL
, in_p
,
3131 low
, high
, strict_overflow_p
))
3136 /* Avoid quadratic complexity if all merge_ranges calls would succeed,
3137 while update_range_test would fail. */
3138 else if (update_fail_count
== 64)
3141 ++update_fail_count
;
3144 any_changes
|= optimize_range_tests_1 (opcode
, first
, length
, true,
3147 if (BRANCH_COST (optimize_function_for_speed_p (cfun
), false) >= 2)
3148 any_changes
|= optimize_range_tests_1 (opcode
, first
, length
, false,
3150 if (lshift_cheap_p (optimize_function_for_speed_p (cfun
)))
3151 any_changes
|= optimize_range_tests_to_bit_test (opcode
, first
, length
,
3153 any_changes
|= optimize_range_tests_var_bound (opcode
, first
, length
, ops
,
3156 if (any_changes
&& opcode
!= ERROR_MARK
)
3159 FOR_EACH_VEC_ELT (*ops
, i
, oe
)
3161 if (oe
->op
== error_mark_node
)
3170 XDELETEVEC (ranges
);
3174 /* A subroutine of optimize_vec_cond_expr to extract and canonicalize
3175 the operands of the VEC_COND_EXPR. Returns ERROR_MARK on failure,
3176 otherwise the comparison code. */
3179 ovce_extract_ops (tree var
, gassign
**rets
, bool *reti
)
3181 if (TREE_CODE (var
) != SSA_NAME
)
3184 gassign
*stmt
= dyn_cast
<gassign
*> (SSA_NAME_DEF_STMT (var
));
3188 /* ??? If we start creating more COND_EXPR, we could perform
3189 this same optimization with them. For now, simplify. */
3190 if (gimple_assign_rhs_code (stmt
) != VEC_COND_EXPR
)
3193 tree cond
= gimple_assign_rhs1 (stmt
);
3194 tree_code cmp
= TREE_CODE (cond
);
3195 if (TREE_CODE_CLASS (cmp
) != tcc_comparison
)
3198 /* ??? For now, allow only canonical true and false result vectors.
3199 We could expand this to other constants should the need arise,
3200 but at the moment we don't create them. */
3201 tree t
= gimple_assign_rhs2 (stmt
);
3202 tree f
= gimple_assign_rhs3 (stmt
);
3204 if (integer_all_onesp (t
))
3206 else if (integer_all_onesp (f
))
3208 cmp
= invert_tree_comparison (cmp
, false);
3213 if (!integer_zerop (f
))
3224 /* Optimize the condition of VEC_COND_EXPRs which have been combined
3225 with OPCODE (either BIT_AND_EXPR or BIT_IOR_EXPR). */
3228 optimize_vec_cond_expr (tree_code opcode
, vec
<operand_entry
*> *ops
)
3230 unsigned int length
= ops
->length (), i
, j
;
3231 bool any_changes
= false;
3236 for (i
= 0; i
< length
; ++i
)
3238 tree elt0
= (*ops
)[i
]->op
;
3242 tree_code cmp0
= ovce_extract_ops (elt0
, &stmt0
, &invert
);
3243 if (cmp0
== ERROR_MARK
)
3246 for (j
= i
+ 1; j
< length
; ++j
)
3248 tree
&elt1
= (*ops
)[j
]->op
;
3251 tree_code cmp1
= ovce_extract_ops (elt1
, &stmt1
, NULL
);
3252 if (cmp1
== ERROR_MARK
)
3255 tree cond0
= gimple_assign_rhs1 (stmt0
);
3256 tree x0
= TREE_OPERAND (cond0
, 0);
3257 tree y0
= TREE_OPERAND (cond0
, 1);
3259 tree cond1
= gimple_assign_rhs1 (stmt1
);
3260 tree x1
= TREE_OPERAND (cond1
, 0);
3261 tree y1
= TREE_OPERAND (cond1
, 1);
3264 if (opcode
== BIT_AND_EXPR
)
3265 comb
= maybe_fold_and_comparisons (cmp0
, x0
, y0
, cmp1
, x1
, y1
);
3266 else if (opcode
== BIT_IOR_EXPR
)
3267 comb
= maybe_fold_or_comparisons (cmp0
, x0
, y0
, cmp1
, x1
, y1
);
3274 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3276 fprintf (dump_file
, "Transforming ");
3277 print_generic_expr (dump_file
, cond0
, 0);
3278 fprintf (dump_file
, " %c ", opcode
== BIT_AND_EXPR
? '&' : '|');
3279 print_generic_expr (dump_file
, cond1
, 0);
3280 fprintf (dump_file
, " into ");
3281 print_generic_expr (dump_file
, comb
, 0);
3282 fputc ('\n', dump_file
);
3285 gimple_assign_set_rhs1 (stmt0
, comb
);
3287 std::swap (*gimple_assign_rhs2_ptr (stmt0
),
3288 *gimple_assign_rhs3_ptr (stmt0
));
3289 update_stmt (stmt0
);
3291 elt1
= error_mark_node
;
3300 FOR_EACH_VEC_ELT (*ops
, i
, oe
)
3302 if (oe
->op
== error_mark_node
)
3314 /* Return true if STMT is a cast like:
3320 # _345 = PHI <_123(N), 1(...), 1(...)>
3321 where _234 has bool type, _123 has single use and
3322 bb N has a single successor M. This is commonly used in
3323 the last block of a range test.
3325 Also Return true if STMT is tcc_compare like:
3331 # _345 = PHI <_234(N), 1(...), 1(...)>
3333 where _234 has booltype, single use and
3334 bb N has a single successor M. This is commonly used in
3335 the last block of a range test. */
3338 final_range_test_p (gimple
*stmt
)
3340 basic_block bb
, rhs_bb
, lhs_bb
;
3343 use_operand_p use_p
;
3346 if (!gimple_assign_cast_p (stmt
)
3347 && (!is_gimple_assign (stmt
)
3348 || (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
))
3349 != tcc_comparison
)))
3351 bb
= gimple_bb (stmt
);
3352 if (!single_succ_p (bb
))
3354 e
= single_succ_edge (bb
);
3355 if (e
->flags
& EDGE_COMPLEX
)
3358 lhs
= gimple_assign_lhs (stmt
);
3359 rhs
= gimple_assign_rhs1 (stmt
);
3360 if (gimple_assign_cast_p (stmt
)
3361 && (!INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
3362 || TREE_CODE (rhs
) != SSA_NAME
3363 || TREE_CODE (TREE_TYPE (rhs
)) != BOOLEAN_TYPE
))
3366 if (!gimple_assign_cast_p (stmt
)
3367 && (TREE_CODE (TREE_TYPE (lhs
)) != BOOLEAN_TYPE
))
3370 /* Test whether lhs is consumed only by a PHI in the only successor bb. */
3371 if (!single_imm_use (lhs
, &use_p
, &use_stmt
))
3374 if (gimple_code (use_stmt
) != GIMPLE_PHI
3375 || gimple_bb (use_stmt
) != e
->dest
)
3378 /* And that the rhs is defined in the same loop. */
3379 if (gimple_assign_cast_p (stmt
))
3381 if (TREE_CODE (rhs
) != SSA_NAME
3382 || !(rhs_bb
= gimple_bb (SSA_NAME_DEF_STMT (rhs
)))
3383 || !flow_bb_inside_loop_p (loop_containing_stmt (stmt
), rhs_bb
))
3388 if (TREE_CODE (lhs
) != SSA_NAME
3389 || !(lhs_bb
= gimple_bb (SSA_NAME_DEF_STMT (lhs
)))
3390 || !flow_bb_inside_loop_p (loop_containing_stmt (stmt
), lhs_bb
))
3397 /* Return true if BB is suitable basic block for inter-bb range test
3398 optimization. If BACKWARD is true, BB should be the only predecessor
3399 of TEST_BB, and *OTHER_BB is either NULL and filled by the routine,
3400 or compared with to find a common basic block to which all conditions
3401 branch to if true resp. false. If BACKWARD is false, TEST_BB should
3402 be the only predecessor of BB. */
3405 suitable_cond_bb (basic_block bb
, basic_block test_bb
, basic_block
*other_bb
,
3408 edge_iterator ei
, ei2
;
3412 bool other_edge_seen
= false;
3417 /* Check last stmt first. */
3418 stmt
= last_stmt (bb
);
3420 || (gimple_code (stmt
) != GIMPLE_COND
3421 && (backward
|| !final_range_test_p (stmt
)))
3422 || gimple_visited_p (stmt
)
3423 || stmt_could_throw_p (stmt
)
3426 is_cond
= gimple_code (stmt
) == GIMPLE_COND
;
3429 /* If last stmt is GIMPLE_COND, verify that one of the succ edges
3430 goes to the next bb (if BACKWARD, it is TEST_BB), and the other
3431 to *OTHER_BB (if not set yet, try to find it out). */
3432 if (EDGE_COUNT (bb
->succs
) != 2)
3434 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3436 if (!(e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
3438 if (e
->dest
== test_bb
)
3447 if (*other_bb
== NULL
)
3449 FOR_EACH_EDGE (e2
, ei2
, test_bb
->succs
)
3450 if (!(e2
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
3452 else if (e
->dest
== e2
->dest
)
3453 *other_bb
= e
->dest
;
3454 if (*other_bb
== NULL
)
3457 if (e
->dest
== *other_bb
)
3458 other_edge_seen
= true;
3462 if (*other_bb
== NULL
|| !other_edge_seen
)
3465 else if (single_succ (bb
) != *other_bb
)
3468 /* Now check all PHIs of *OTHER_BB. */
3469 e
= find_edge (bb
, *other_bb
);
3470 e2
= find_edge (test_bb
, *other_bb
);
3471 for (gsi
= gsi_start_phis (e
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3473 gphi
*phi
= gsi
.phi ();
3474 /* If both BB and TEST_BB end with GIMPLE_COND, all PHI arguments
3475 corresponding to BB and TEST_BB predecessor must be the same. */
3476 if (!operand_equal_p (gimple_phi_arg_def (phi
, e
->dest_idx
),
3477 gimple_phi_arg_def (phi
, e2
->dest_idx
), 0))
3479 /* Otherwise, if one of the blocks doesn't end with GIMPLE_COND,
3480 one of the PHIs should have the lhs of the last stmt in
3481 that block as PHI arg and that PHI should have 0 or 1
3482 corresponding to it in all other range test basic blocks
3486 if (gimple_phi_arg_def (phi
, e
->dest_idx
)
3487 == gimple_assign_lhs (stmt
)
3488 && (integer_zerop (gimple_phi_arg_def (phi
, e2
->dest_idx
))
3489 || integer_onep (gimple_phi_arg_def (phi
,
3495 gimple
*test_last
= last_stmt (test_bb
);
3496 if (gimple_code (test_last
) != GIMPLE_COND
3497 && gimple_phi_arg_def (phi
, e2
->dest_idx
)
3498 == gimple_assign_lhs (test_last
)
3499 && (integer_zerop (gimple_phi_arg_def (phi
, e
->dest_idx
))
3500 || integer_onep (gimple_phi_arg_def (phi
, e
->dest_idx
))))
3510 /* Return true if BB doesn't have side-effects that would disallow
3511 range test optimization, all SSA_NAMEs set in the bb are consumed
3512 in the bb and there are no PHIs. */
3515 no_side_effect_bb (basic_block bb
)
3517 gimple_stmt_iterator gsi
;
3520 if (!gimple_seq_empty_p (phi_nodes (bb
)))
3522 last
= last_stmt (bb
);
3523 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3525 gimple
*stmt
= gsi_stmt (gsi
);
3527 imm_use_iterator imm_iter
;
3528 use_operand_p use_p
;
3530 if (is_gimple_debug (stmt
))
3532 if (gimple_has_side_effects (stmt
))
3536 if (!is_gimple_assign (stmt
))
3538 lhs
= gimple_assign_lhs (stmt
);
3539 if (TREE_CODE (lhs
) != SSA_NAME
)
3541 if (gimple_assign_rhs_could_trap_p (stmt
))
3543 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, lhs
)
3545 gimple
*use_stmt
= USE_STMT (use_p
);
3546 if (is_gimple_debug (use_stmt
))
3548 if (gimple_bb (use_stmt
) != bb
)
3555 /* If VAR is set by CODE (BIT_{AND,IOR}_EXPR) which is reassociable,
3556 return true and fill in *OPS recursively. */
3559 get_ops (tree var
, enum tree_code code
, vec
<operand_entry
*> *ops
,
3562 gimple
*stmt
= SSA_NAME_DEF_STMT (var
);
3566 if (!is_reassociable_op (stmt
, code
, loop
))
3569 rhs
[0] = gimple_assign_rhs1 (stmt
);
3570 rhs
[1] = gimple_assign_rhs2 (stmt
);
3571 gimple_set_visited (stmt
, true);
3572 for (i
= 0; i
< 2; i
++)
3573 if (TREE_CODE (rhs
[i
]) == SSA_NAME
3574 && !get_ops (rhs
[i
], code
, ops
, loop
)
3575 && has_single_use (rhs
[i
]))
3577 operand_entry
*oe
= operand_entry_pool
.allocate ();
3583 oe
->stmt_to_insert
= NULL
;
3584 ops
->safe_push (oe
);
3589 /* Find the ops that were added by get_ops starting from VAR, see if
3590 they were changed during update_range_test and if yes, create new
3594 update_ops (tree var
, enum tree_code code
, vec
<operand_entry
*> ops
,
3595 unsigned int *pidx
, struct loop
*loop
)
3597 gimple
*stmt
= SSA_NAME_DEF_STMT (var
);
3601 if (!is_reassociable_op (stmt
, code
, loop
))
3604 rhs
[0] = gimple_assign_rhs1 (stmt
);
3605 rhs
[1] = gimple_assign_rhs2 (stmt
);
3608 for (i
= 0; i
< 2; i
++)
3609 if (TREE_CODE (rhs
[i
]) == SSA_NAME
)
3611 rhs
[2 + i
] = update_ops (rhs
[i
], code
, ops
, pidx
, loop
);
3612 if (rhs
[2 + i
] == NULL_TREE
)
3614 if (has_single_use (rhs
[i
]))
3615 rhs
[2 + i
] = ops
[(*pidx
)++]->op
;
3617 rhs
[2 + i
] = rhs
[i
];
3620 if ((rhs
[2] != rhs
[0] || rhs
[3] != rhs
[1])
3621 && (rhs
[2] != rhs
[1] || rhs
[3] != rhs
[0]))
3623 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
3624 var
= make_ssa_name (TREE_TYPE (var
));
3625 gassign
*g
= gimple_build_assign (var
, gimple_assign_rhs_code (stmt
),
3627 gimple_set_uid (g
, gimple_uid (stmt
));
3628 gimple_set_visited (g
, true);
3629 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
3634 /* Structure to track the initial value passed to get_ops and
3635 the range in the ops vector for each basic block. */
3637 struct inter_bb_range_test_entry
3640 unsigned int first_idx
, last_idx
;
3643 /* Inter-bb range test optimization.
3645 Returns TRUE if a gimple conditional is optimized to a true/false,
3646 otherwise return FALSE.
3648 This indicates to the caller that it should run a CFG cleanup pass
3649 once reassociation is completed. */
3652 maybe_optimize_range_tests (gimple
*stmt
)
3654 basic_block first_bb
= gimple_bb (stmt
);
3655 basic_block last_bb
= first_bb
;
3656 basic_block other_bb
= NULL
;
3660 auto_vec
<operand_entry
*> ops
;
3661 auto_vec
<inter_bb_range_test_entry
> bbinfo
;
3662 bool any_changes
= false;
3663 bool cfg_cleanup_needed
= false;
3665 /* Consider only basic blocks that end with GIMPLE_COND or
3666 a cast statement satisfying final_range_test_p. All
3667 but the last bb in the first_bb .. last_bb range
3668 should end with GIMPLE_COND. */
3669 if (gimple_code (stmt
) == GIMPLE_COND
)
3671 if (EDGE_COUNT (first_bb
->succs
) != 2)
3672 return cfg_cleanup_needed
;
3674 else if (final_range_test_p (stmt
))
3675 other_bb
= single_succ (first_bb
);
3677 return cfg_cleanup_needed
;
3679 if (stmt_could_throw_p (stmt
))
3680 return cfg_cleanup_needed
;
3682 /* As relative ordering of post-dominator sons isn't fixed,
3683 maybe_optimize_range_tests can be called first on any
3684 bb in the range we want to optimize. So, start searching
3685 backwards, if first_bb can be set to a predecessor. */
3686 while (single_pred_p (first_bb
))
3688 basic_block pred_bb
= single_pred (first_bb
);
3689 if (!suitable_cond_bb (pred_bb
, first_bb
, &other_bb
, true))
3691 if (!no_side_effect_bb (first_bb
))
3695 /* If first_bb is last_bb, other_bb hasn't been computed yet.
3696 Before starting forward search in last_bb successors, find
3697 out the other_bb. */
3698 if (first_bb
== last_bb
)
3701 /* As non-GIMPLE_COND last stmt always terminates the range,
3702 if forward search didn't discover anything, just give up. */
3703 if (gimple_code (stmt
) != GIMPLE_COND
)
3704 return cfg_cleanup_needed
;
3705 /* Look at both successors. Either it ends with a GIMPLE_COND
3706 and satisfies suitable_cond_bb, or ends with a cast and
3707 other_bb is that cast's successor. */
3708 FOR_EACH_EDGE (e
, ei
, first_bb
->succs
)
3709 if (!(e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
3710 || e
->dest
== first_bb
)
3711 return cfg_cleanup_needed
;
3712 else if (single_pred_p (e
->dest
))
3714 stmt
= last_stmt (e
->dest
);
3716 && gimple_code (stmt
) == GIMPLE_COND
3717 && EDGE_COUNT (e
->dest
->succs
) == 2)
3719 if (suitable_cond_bb (first_bb
, e
->dest
, &other_bb
, true))
3725 && final_range_test_p (stmt
)
3726 && find_edge (first_bb
, single_succ (e
->dest
)))
3728 other_bb
= single_succ (e
->dest
);
3729 if (other_bb
== first_bb
)
3733 if (other_bb
== NULL
)
3734 return cfg_cleanup_needed
;
3736 /* Now do the forward search, moving last_bb to successor bbs
3737 that aren't other_bb. */
3738 while (EDGE_COUNT (last_bb
->succs
) == 2)
3740 FOR_EACH_EDGE (e
, ei
, last_bb
->succs
)
3741 if (e
->dest
!= other_bb
)
3745 if (!single_pred_p (e
->dest
))
3747 if (!suitable_cond_bb (e
->dest
, last_bb
, &other_bb
, false))
3749 if (!no_side_effect_bb (e
->dest
))
3753 if (first_bb
== last_bb
)
3754 return cfg_cleanup_needed
;
3755 /* Here basic blocks first_bb through last_bb's predecessor
3756 end with GIMPLE_COND, all of them have one of the edges to
3757 other_bb and another to another block in the range,
3758 all blocks except first_bb don't have side-effects and
3759 last_bb ends with either GIMPLE_COND, or cast satisfying
3760 final_range_test_p. */
3761 for (bb
= last_bb
; ; bb
= single_pred (bb
))
3763 enum tree_code code
;
3765 inter_bb_range_test_entry bb_ent
;
3767 bb_ent
.op
= NULL_TREE
;
3768 bb_ent
.first_idx
= ops
.length ();
3769 bb_ent
.last_idx
= bb_ent
.first_idx
;
3770 e
= find_edge (bb
, other_bb
);
3771 stmt
= last_stmt (bb
);
3772 gimple_set_visited (stmt
, true);
3773 if (gimple_code (stmt
) != GIMPLE_COND
)
3775 use_operand_p use_p
;
3780 lhs
= gimple_assign_lhs (stmt
);
3781 rhs
= gimple_assign_rhs1 (stmt
);
3782 gcc_assert (bb
== last_bb
);
3791 # _345 = PHI <_123(N), 1(...), 1(...)>
3793 or 0 instead of 1. If it is 0, the _234
3794 range test is anded together with all the
3795 other range tests, if it is 1, it is ored with
3797 single_imm_use (lhs
, &use_p
, &phi
);
3798 gcc_assert (gimple_code (phi
) == GIMPLE_PHI
);
3799 e2
= find_edge (first_bb
, other_bb
);
3801 gcc_assert (gimple_phi_arg_def (phi
, e
->dest_idx
) == lhs
);
3802 if (integer_zerop (gimple_phi_arg_def (phi
, d
)))
3803 code
= BIT_AND_EXPR
;
3806 gcc_checking_assert (integer_onep (gimple_phi_arg_def (phi
, d
)));
3807 code
= BIT_IOR_EXPR
;
3810 /* If _234 SSA_NAME_DEF_STMT is
3812 (or &, corresponding to 1/0 in the phi arguments,
3813 push into ops the individual range test arguments
3814 of the bitwise or resp. and, recursively. */
3815 if (TREE_CODE (rhs
) == SSA_NAME
3816 && (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
))
3818 && !get_ops (rhs
, code
, &ops
,
3819 loop_containing_stmt (stmt
))
3820 && has_single_use (rhs
))
3822 /* Otherwise, push the _234 range test itself. */
3823 operand_entry
*oe
= operand_entry_pool
.allocate ();
3829 oe
->stmt_to_insert
= NULL
;
3834 else if (is_gimple_assign (stmt
)
3835 && (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
))
3837 && !get_ops (lhs
, code
, &ops
,
3838 loop_containing_stmt (stmt
))
3839 && has_single_use (lhs
))
3841 operand_entry
*oe
= operand_entry_pool
.allocate ();
3852 bb_ent
.last_idx
= ops
.length ();
3855 bbinfo
.safe_push (bb_ent
);
3858 /* Otherwise stmt is GIMPLE_COND. */
3859 code
= gimple_cond_code (stmt
);
3860 lhs
= gimple_cond_lhs (stmt
);
3861 rhs
= gimple_cond_rhs (stmt
);
3862 if (TREE_CODE (lhs
) == SSA_NAME
3863 && INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
3864 && ((code
!= EQ_EXPR
&& code
!= NE_EXPR
)
3865 || rhs
!= boolean_false_node
3866 /* Either push into ops the individual bitwise
3867 or resp. and operands, depending on which
3868 edge is other_bb. */
3869 || !get_ops (lhs
, (((e
->flags
& EDGE_TRUE_VALUE
) == 0)
3870 ^ (code
== EQ_EXPR
))
3871 ? BIT_AND_EXPR
: BIT_IOR_EXPR
, &ops
,
3872 loop_containing_stmt (stmt
))))
3874 /* Or push the GIMPLE_COND stmt itself. */
3875 operand_entry
*oe
= operand_entry_pool
.allocate ();
3878 oe
->rank
= (e
->flags
& EDGE_TRUE_VALUE
)
3879 ? BIT_IOR_EXPR
: BIT_AND_EXPR
;
3880 /* oe->op = NULL signs that there is no SSA_NAME
3881 for the range test, and oe->id instead is the
3882 basic block number, at which's end the GIMPLE_COND
3886 oe
->stmt_to_insert
= NULL
;
3891 else if (ops
.length () > bb_ent
.first_idx
)
3894 bb_ent
.last_idx
= ops
.length ();
3896 bbinfo
.safe_push (bb_ent
);
3900 if (ops
.length () > 1)
3901 any_changes
= optimize_range_tests (ERROR_MARK
, &ops
);
3904 unsigned int idx
, max_idx
= 0;
3905 /* update_ops relies on has_single_use predicates returning the
3906 same values as it did during get_ops earlier. Additionally it
3907 never removes statements, only adds new ones and it should walk
3908 from the single imm use and check the predicate already before
3909 making those changes.
3910 On the other side, the handling of GIMPLE_COND directly can turn
3911 previously multiply used SSA_NAMEs into single use SSA_NAMEs, so
3912 it needs to be done in a separate loop afterwards. */
3913 for (bb
= last_bb
, idx
= 0; ; bb
= single_pred (bb
), idx
++)
3915 if (bbinfo
[idx
].first_idx
< bbinfo
[idx
].last_idx
3916 && bbinfo
[idx
].op
!= NULL_TREE
)
3921 stmt
= last_stmt (bb
);
3922 new_op
= update_ops (bbinfo
[idx
].op
,
3924 ops
[bbinfo
[idx
].first_idx
]->rank
,
3925 ops
, &bbinfo
[idx
].first_idx
,
3926 loop_containing_stmt (stmt
));
3927 if (new_op
== NULL_TREE
)
3929 gcc_assert (bb
== last_bb
);
3930 new_op
= ops
[bbinfo
[idx
].first_idx
++]->op
;
3932 if (bbinfo
[idx
].op
!= new_op
)
3934 imm_use_iterator iter
;
3935 use_operand_p use_p
;
3936 gimple
*use_stmt
, *cast_or_tcc_cmp_stmt
= NULL
;
3938 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, bbinfo
[idx
].op
)
3939 if (is_gimple_debug (use_stmt
))
3941 else if (gimple_code (use_stmt
) == GIMPLE_COND
3942 || gimple_code (use_stmt
) == GIMPLE_PHI
)
3943 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
3944 SET_USE (use_p
, new_op
);
3945 else if ((is_gimple_assign (use_stmt
)
3947 (gimple_assign_rhs_code (use_stmt
))
3948 == tcc_comparison
)))
3949 cast_or_tcc_cmp_stmt
= use_stmt
;
3950 else if (gimple_assign_cast_p (use_stmt
))
3951 cast_or_tcc_cmp_stmt
= use_stmt
;
3955 if (cast_or_tcc_cmp_stmt
)
3957 gcc_assert (bb
== last_bb
);
3958 tree lhs
= gimple_assign_lhs (cast_or_tcc_cmp_stmt
);
3959 tree new_lhs
= make_ssa_name (TREE_TYPE (lhs
));
3960 enum tree_code rhs_code
3961 = gimple_assign_cast_p (cast_or_tcc_cmp_stmt
)
3962 ? gimple_assign_rhs_code (cast_or_tcc_cmp_stmt
)
3965 if (is_gimple_min_invariant (new_op
))
3967 new_op
= fold_convert (TREE_TYPE (lhs
), new_op
);
3968 g
= gimple_build_assign (new_lhs
, new_op
);
3971 g
= gimple_build_assign (new_lhs
, rhs_code
, new_op
);
3972 gimple_stmt_iterator gsi
3973 = gsi_for_stmt (cast_or_tcc_cmp_stmt
);
3974 gimple_set_uid (g
, gimple_uid (cast_or_tcc_cmp_stmt
));
3975 gimple_set_visited (g
, true);
3976 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
3977 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
3978 if (is_gimple_debug (use_stmt
))
3980 else if (gimple_code (use_stmt
) == GIMPLE_COND
3981 || gimple_code (use_stmt
) == GIMPLE_PHI
)
3982 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
3983 SET_USE (use_p
, new_lhs
);
3992 for (bb
= last_bb
, idx
= 0; ; bb
= single_pred (bb
), idx
++)
3994 if (bbinfo
[idx
].first_idx
< bbinfo
[idx
].last_idx
3995 && bbinfo
[idx
].op
== NULL_TREE
3996 && ops
[bbinfo
[idx
].first_idx
]->op
!= NULL_TREE
)
3998 gcond
*cond_stmt
= as_a
<gcond
*> (last_stmt (bb
));
4003 /* If we collapse the conditional to a true/false
4004 condition, then bubble that knowledge up to our caller. */
4005 if (integer_zerop (ops
[bbinfo
[idx
].first_idx
]->op
))
4007 gimple_cond_make_false (cond_stmt
);
4008 cfg_cleanup_needed
= true;
4010 else if (integer_onep (ops
[bbinfo
[idx
].first_idx
]->op
))
4012 gimple_cond_make_true (cond_stmt
);
4013 cfg_cleanup_needed
= true;
4017 gimple_cond_set_code (cond_stmt
, NE_EXPR
);
4018 gimple_cond_set_lhs (cond_stmt
,
4019 ops
[bbinfo
[idx
].first_idx
]->op
);
4020 gimple_cond_set_rhs (cond_stmt
, boolean_false_node
);
4022 update_stmt (cond_stmt
);
4028 /* The above changes could result in basic blocks after the first
4029 modified one, up to and including last_bb, to be executed even if
4030 they would not be in the original program. If the value ranges of
4031 assignment lhs' in those bbs were dependent on the conditions
4032 guarding those basic blocks which now can change, the VRs might
4033 be incorrect. As no_side_effect_bb should ensure those SSA_NAMEs
4034 are only used within the same bb, it should be not a big deal if
4035 we just reset all the VRs in those bbs. See PR68671. */
4036 for (bb
= last_bb
, idx
= 0; idx
< max_idx
; bb
= single_pred (bb
), idx
++)
4037 reset_flow_sensitive_info_in_bb (bb
);
4039 return cfg_cleanup_needed
;
4042 /* Return true if OPERAND is defined by a PHI node which uses the LHS
4043 of STMT in it's operands. This is also known as a "destructive
4044 update" operation. */
4047 is_phi_for_stmt (gimple
*stmt
, tree operand
)
4052 use_operand_p arg_p
;
4055 if (TREE_CODE (operand
) != SSA_NAME
)
4058 lhs
= gimple_assign_lhs (stmt
);
4060 def_stmt
= SSA_NAME_DEF_STMT (operand
);
4061 def_phi
= dyn_cast
<gphi
*> (def_stmt
);
4065 FOR_EACH_PHI_ARG (arg_p
, def_phi
, i
, SSA_OP_USE
)
4066 if (lhs
== USE_FROM_PTR (arg_p
))
4071 /* Remove def stmt of VAR if VAR has zero uses and recurse
4072 on rhs1 operand if so. */
4075 remove_visited_stmt_chain (tree var
)
4078 gimple_stmt_iterator gsi
;
4082 if (TREE_CODE (var
) != SSA_NAME
|| !has_zero_uses (var
))
4084 stmt
= SSA_NAME_DEF_STMT (var
);
4085 if (is_gimple_assign (stmt
) && gimple_visited_p (stmt
))
4087 var
= gimple_assign_rhs1 (stmt
);
4088 gsi
= gsi_for_stmt (stmt
);
4089 reassoc_remove_stmt (&gsi
);
4090 release_defs (stmt
);
4097 /* This function checks three consequtive operands in
4098 passed operands vector OPS starting from OPINDEX and
4099 swaps two operands if it is profitable for binary operation
4100 consuming OPINDEX + 1 abnd OPINDEX + 2 operands.
4102 We pair ops with the same rank if possible.
4104 The alternative we try is to see if STMT is a destructive
4105 update style statement, which is like:
4108 In that case, we want to use the destructive update form to
4109 expose the possible vectorizer sum reduction opportunity.
4110 In that case, the third operand will be the phi node. This
4111 check is not performed if STMT is null.
4113 We could, of course, try to be better as noted above, and do a
4114 lot of work to try to find these opportunities in >3 operand
4115 cases, but it is unlikely to be worth it. */
4118 swap_ops_for_binary_stmt (vec
<operand_entry
*> ops
,
4119 unsigned int opindex
, gimple
*stmt
)
4121 operand_entry
*oe1
, *oe2
, *oe3
;
4124 oe2
= ops
[opindex
+ 1];
4125 oe3
= ops
[opindex
+ 2];
4127 if ((oe1
->rank
== oe2
->rank
4128 && oe2
->rank
!= oe3
->rank
)
4129 || (stmt
&& is_phi_for_stmt (stmt
, oe3
->op
)
4130 && !is_phi_for_stmt (stmt
, oe1
->op
)
4131 && !is_phi_for_stmt (stmt
, oe2
->op
)))
4132 std::swap (*oe1
, *oe3
);
4133 else if ((oe1
->rank
== oe3
->rank
4134 && oe2
->rank
!= oe3
->rank
)
4135 || (stmt
&& is_phi_for_stmt (stmt
, oe2
->op
)
4136 && !is_phi_for_stmt (stmt
, oe1
->op
)
4137 && !is_phi_for_stmt (stmt
, oe3
->op
)))
4138 std::swap (*oe1
, *oe2
);
4141 /* If definition of RHS1 or RHS2 dominates STMT, return the later of those
4142 two definitions, otherwise return STMT. */
4144 static inline gimple
*
4145 find_insert_point (gimple
*stmt
, tree rhs1
, tree rhs2
)
4147 if (TREE_CODE (rhs1
) == SSA_NAME
4148 && reassoc_stmt_dominates_stmt_p (stmt
, SSA_NAME_DEF_STMT (rhs1
)))
4149 stmt
= SSA_NAME_DEF_STMT (rhs1
);
4150 if (TREE_CODE (rhs2
) == SSA_NAME
4151 && reassoc_stmt_dominates_stmt_p (stmt
, SSA_NAME_DEF_STMT (rhs2
)))
4152 stmt
= SSA_NAME_DEF_STMT (rhs2
);
4156 /* If the stmt that defines operand has to be inserted, insert it
4159 insert_stmt_before_use (gimple
*stmt
, gimple
*stmt_to_insert
)
4161 gcc_assert (is_gimple_assign (stmt_to_insert
));
4162 tree rhs1
= gimple_assign_rhs1 (stmt_to_insert
);
4163 tree rhs2
= gimple_assign_rhs2 (stmt_to_insert
);
4164 gimple
*insert_point
= find_insert_point (stmt
, rhs1
, rhs2
);
4165 gimple_stmt_iterator gsi
= gsi_for_stmt (insert_point
);
4166 gimple_set_uid (stmt_to_insert
, gimple_uid (insert_point
));
4168 /* If the insert point is not stmt, then insert_point would be
4169 the point where operand rhs1 or rhs2 is defined. In this case,
4170 stmt_to_insert has to be inserted afterwards. This would
4171 only happen when the stmt insertion point is flexible. */
4172 if (stmt
== insert_point
)
4173 gsi_insert_before (&gsi
, stmt_to_insert
, GSI_NEW_STMT
);
4175 insert_stmt_after (stmt_to_insert
, insert_point
);
4179 /* Recursively rewrite our linearized statements so that the operators
4180 match those in OPS[OPINDEX], putting the computation in rank
4181 order. Return new lhs. */
4184 rewrite_expr_tree (gimple
*stmt
, unsigned int opindex
,
4185 vec
<operand_entry
*> ops
, bool changed
)
4187 tree rhs1
= gimple_assign_rhs1 (stmt
);
4188 tree rhs2
= gimple_assign_rhs2 (stmt
);
4189 tree lhs
= gimple_assign_lhs (stmt
);
4192 /* The final recursion case for this function is that you have
4193 exactly two operations left.
4194 If we had exactly one op in the entire list to start with, we
4195 would have never called this function, and the tail recursion
4196 rewrites them one at a time. */
4197 if (opindex
+ 2 == ops
.length ())
4199 operand_entry
*oe1
, *oe2
;
4202 oe2
= ops
[opindex
+ 1];
4204 if (rhs1
!= oe1
->op
|| rhs2
!= oe2
->op
)
4206 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
4207 unsigned int uid
= gimple_uid (stmt
);
4209 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4211 fprintf (dump_file
, "Transforming ");
4212 print_gimple_stmt (dump_file
, stmt
, 0, 0);
4215 /* If the stmt that defines operand has to be inserted, insert it
4217 if (oe1
->stmt_to_insert
)
4218 insert_stmt_before_use (stmt
, oe1
->stmt_to_insert
);
4219 if (oe2
->stmt_to_insert
)
4220 insert_stmt_before_use (stmt
, oe2
->stmt_to_insert
);
4221 /* Even when changed is false, reassociation could have e.g. removed
4222 some redundant operations, so unless we are just swapping the
4223 arguments or unless there is no change at all (then we just
4224 return lhs), force creation of a new SSA_NAME. */
4225 if (changed
|| ((rhs1
!= oe2
->op
|| rhs2
!= oe1
->op
) && opindex
))
4227 gimple
*insert_point
4228 = find_insert_point (stmt
, oe1
->op
, oe2
->op
);
4229 lhs
= make_ssa_name (TREE_TYPE (lhs
));
4231 = gimple_build_assign (lhs
, gimple_assign_rhs_code (stmt
),
4233 gimple_set_uid (stmt
, uid
);
4234 gimple_set_visited (stmt
, true);
4235 if (insert_point
== gsi_stmt (gsi
))
4236 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
4238 insert_stmt_after (stmt
, insert_point
);
4242 gcc_checking_assert (find_insert_point (stmt
, oe1
->op
, oe2
->op
)
4244 gimple_assign_set_rhs1 (stmt
, oe1
->op
);
4245 gimple_assign_set_rhs2 (stmt
, oe2
->op
);
4249 if (rhs1
!= oe1
->op
&& rhs1
!= oe2
->op
)
4250 remove_visited_stmt_chain (rhs1
);
4252 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4254 fprintf (dump_file
, " into ");
4255 print_gimple_stmt (dump_file
, stmt
, 0, 0);
4261 /* If we hit here, we should have 3 or more ops left. */
4262 gcc_assert (opindex
+ 2 < ops
.length ());
4264 /* Rewrite the next operator. */
4267 /* If the stmt that defines operand has to be inserted, insert it
4269 if (oe
->stmt_to_insert
)
4270 insert_stmt_before_use (stmt
, oe
->stmt_to_insert
);
4272 /* Recurse on the LHS of the binary operator, which is guaranteed to
4273 be the non-leaf side. */
4275 = rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1
), opindex
+ 1, ops
,
4276 changed
|| oe
->op
!= rhs2
);
4278 if (oe
->op
!= rhs2
|| new_rhs1
!= rhs1
)
4280 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4282 fprintf (dump_file
, "Transforming ");
4283 print_gimple_stmt (dump_file
, stmt
, 0, 0);
4286 /* If changed is false, this is either opindex == 0
4287 or all outer rhs2's were equal to corresponding oe->op,
4288 and powi_result is NULL.
4289 That means lhs is equivalent before and after reassociation.
4290 Otherwise ensure the old lhs SSA_NAME is not reused and
4291 create a new stmt as well, so that any debug stmts will be
4292 properly adjusted. */
4295 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
4296 unsigned int uid
= gimple_uid (stmt
);
4297 gimple
*insert_point
= find_insert_point (stmt
, new_rhs1
, oe
->op
);
4299 lhs
= make_ssa_name (TREE_TYPE (lhs
));
4300 stmt
= gimple_build_assign (lhs
, gimple_assign_rhs_code (stmt
),
4302 gimple_set_uid (stmt
, uid
);
4303 gimple_set_visited (stmt
, true);
4304 if (insert_point
== gsi_stmt (gsi
))
4305 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
4307 insert_stmt_after (stmt
, insert_point
);
4311 gcc_checking_assert (find_insert_point (stmt
, new_rhs1
, oe
->op
)
4313 gimple_assign_set_rhs1 (stmt
, new_rhs1
);
4314 gimple_assign_set_rhs2 (stmt
, oe
->op
);
4318 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4320 fprintf (dump_file
, " into ");
4321 print_gimple_stmt (dump_file
, stmt
, 0, 0);
4327 /* Find out how many cycles we need to compute statements chain.
4328 OPS_NUM holds number os statements in a chain. CPU_WIDTH is a
4329 maximum number of independent statements we may execute per cycle. */
4332 get_required_cycles (int ops_num
, int cpu_width
)
4338 /* While we have more than 2 * cpu_width operands
4339 we may reduce number of operands by cpu_width
4341 res
= ops_num
/ (2 * cpu_width
);
4343 /* Remained operands count may be reduced twice per cycle
4344 until we have only one operand. */
4345 rest
= (unsigned)(ops_num
- res
* cpu_width
);
4346 elog
= exact_log2 (rest
);
4350 res
+= floor_log2 (rest
) + 1;
4355 /* Returns an optimal number of registers to use for computation of
4356 given statements. */
4359 get_reassociation_width (int ops_num
, enum tree_code opc
,
4362 int param_width
= PARAM_VALUE (PARAM_TREE_REASSOC_WIDTH
);
4367 if (param_width
> 0)
4368 width
= param_width
;
4370 width
= targetm
.sched
.reassociation_width (opc
, mode
);
4375 /* Get the minimal time required for sequence computation. */
4376 cycles_best
= get_required_cycles (ops_num
, width
);
4378 /* Check if we may use less width and still compute sequence for
4379 the same time. It will allow us to reduce registers usage.
4380 get_required_cycles is monotonically increasing with lower width
4381 so we can perform a binary search for the minimal width that still
4382 results in the optimal cycle count. */
4384 while (width
> width_min
)
4386 int width_mid
= (width
+ width_min
) / 2;
4388 if (get_required_cycles (ops_num
, width_mid
) == cycles_best
)
4390 else if (width_min
< width_mid
)
4391 width_min
= width_mid
;
4399 /* Recursively rewrite our linearized statements so that the operators
4400 match those in OPS[OPINDEX], putting the computation in rank
4401 order and trying to allow operations to be executed in
4405 rewrite_expr_tree_parallel (gassign
*stmt
, int width
,
4406 vec
<operand_entry
*> ops
)
4408 enum tree_code opcode
= gimple_assign_rhs_code (stmt
);
4409 int op_num
= ops
.length ();
4410 int stmt_num
= op_num
- 1;
4411 gimple
**stmts
= XALLOCAVEC (gimple
*, stmt_num
);
4412 int op_index
= op_num
- 1;
4414 int ready_stmts_end
= 0;
4416 gimple
*stmt1
= NULL
, *stmt2
= NULL
;
4417 tree last_rhs1
= gimple_assign_rhs1 (stmt
);
4419 /* We start expression rewriting from the top statements.
4420 So, in this loop we create a full list of statements
4421 we will work with. */
4422 stmts
[stmt_num
- 1] = stmt
;
4423 for (i
= stmt_num
- 2; i
>= 0; i
--)
4424 stmts
[i
] = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmts
[i
+1]));
4426 for (i
= 0; i
< stmt_num
; i
++)
4430 /* Determine whether we should use results of
4431 already handled statements or not. */
4432 if (ready_stmts_end
== 0
4433 && (i
- stmt_index
>= width
|| op_index
< 1))
4434 ready_stmts_end
= i
;
4436 /* Now we choose operands for the next statement. Non zero
4437 value in ready_stmts_end means here that we should use
4438 the result of already generated statements as new operand. */
4439 if (ready_stmts_end
> 0)
4441 op1
= gimple_assign_lhs (stmts
[stmt_index
++]);
4442 if (ready_stmts_end
> stmt_index
)
4443 op2
= gimple_assign_lhs (stmts
[stmt_index
++]);
4444 else if (op_index
>= 0)
4446 operand_entry
*oe
= ops
[op_index
--];
4447 stmt2
= oe
->stmt_to_insert
;
4452 gcc_assert (stmt_index
< i
);
4453 op2
= gimple_assign_lhs (stmts
[stmt_index
++]);
4456 if (stmt_index
>= ready_stmts_end
)
4457 ready_stmts_end
= 0;
4462 swap_ops_for_binary_stmt (ops
, op_index
- 2, NULL
);
4463 operand_entry
*oe2
= ops
[op_index
--];
4464 operand_entry
*oe1
= ops
[op_index
--];
4466 stmt2
= oe2
->stmt_to_insert
;
4468 stmt1
= oe1
->stmt_to_insert
;
4471 /* If we emit the last statement then we should put
4472 operands into the last statement. It will also
4474 if (op_index
< 0 && stmt_index
== i
)
4477 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4479 fprintf (dump_file
, "Transforming ");
4480 print_gimple_stmt (dump_file
, stmts
[i
], 0, 0);
4483 /* If the stmt that defines operand has to be inserted, insert it
4486 insert_stmt_before_use (stmts
[i
], stmt1
);
4488 insert_stmt_before_use (stmts
[i
], stmt2
);
4489 stmt1
= stmt2
= NULL
;
4491 /* We keep original statement only for the last one. All
4492 others are recreated. */
4493 if (i
== stmt_num
- 1)
4495 gimple_assign_set_rhs1 (stmts
[i
], op1
);
4496 gimple_assign_set_rhs2 (stmts
[i
], op2
);
4497 update_stmt (stmts
[i
]);
4501 stmts
[i
] = build_and_add_sum (TREE_TYPE (last_rhs1
), op1
, op2
, opcode
);
4503 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4505 fprintf (dump_file
, " into ");
4506 print_gimple_stmt (dump_file
, stmts
[i
], 0, 0);
4510 remove_visited_stmt_chain (last_rhs1
);
4513 /* Transform STMT, which is really (A +B) + (C + D) into the left
4514 linear form, ((A+B)+C)+D.
4515 Recurse on D if necessary. */
4518 linearize_expr (gimple
*stmt
)
4520 gimple_stmt_iterator gsi
;
4521 gimple
*binlhs
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
4522 gimple
*binrhs
= SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt
));
4523 gimple
*oldbinrhs
= binrhs
;
4524 enum tree_code rhscode
= gimple_assign_rhs_code (stmt
);
4525 gimple
*newbinrhs
= NULL
;
4526 struct loop
*loop
= loop_containing_stmt (stmt
);
4527 tree lhs
= gimple_assign_lhs (stmt
);
4529 gcc_assert (is_reassociable_op (binlhs
, rhscode
, loop
)
4530 && is_reassociable_op (binrhs
, rhscode
, loop
));
4532 gsi
= gsi_for_stmt (stmt
);
4534 gimple_assign_set_rhs2 (stmt
, gimple_assign_rhs1 (binrhs
));
4535 binrhs
= gimple_build_assign (make_ssa_name (TREE_TYPE (lhs
)),
4536 gimple_assign_rhs_code (binrhs
),
4537 gimple_assign_lhs (binlhs
),
4538 gimple_assign_rhs2 (binrhs
));
4539 gimple_assign_set_rhs1 (stmt
, gimple_assign_lhs (binrhs
));
4540 gsi_insert_before (&gsi
, binrhs
, GSI_SAME_STMT
);
4541 gimple_set_uid (binrhs
, gimple_uid (stmt
));
4543 if (TREE_CODE (gimple_assign_rhs2 (stmt
)) == SSA_NAME
)
4544 newbinrhs
= SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt
));
4546 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4548 fprintf (dump_file
, "Linearized: ");
4549 print_gimple_stmt (dump_file
, stmt
, 0, 0);
4552 reassociate_stats
.linearized
++;
4555 gsi
= gsi_for_stmt (oldbinrhs
);
4556 reassoc_remove_stmt (&gsi
);
4557 release_defs (oldbinrhs
);
4559 gimple_set_visited (stmt
, true);
4560 gimple_set_visited (binlhs
, true);
4561 gimple_set_visited (binrhs
, true);
4563 /* Tail recurse on the new rhs if it still needs reassociation. */
4564 if (newbinrhs
&& is_reassociable_op (newbinrhs
, rhscode
, loop
))
4565 /* ??? This should probably be linearize_expr (newbinrhs) but I don't
4566 want to change the algorithm while converting to tuples. */
4567 linearize_expr (stmt
);
4570 /* If LHS has a single immediate use that is a GIMPLE_ASSIGN statement, return
4571 it. Otherwise, return NULL. */
4574 get_single_immediate_use (tree lhs
)
4576 use_operand_p immuse
;
4579 if (TREE_CODE (lhs
) == SSA_NAME
4580 && single_imm_use (lhs
, &immuse
, &immusestmt
)
4581 && is_gimple_assign (immusestmt
))
4587 /* Recursively negate the value of TONEGATE, and return the SSA_NAME
4588 representing the negated value. Insertions of any necessary
4589 instructions go before GSI.
4590 This function is recursive in that, if you hand it "a_5" as the
4591 value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will
4592 transform b_3 + b_4 into a_5 = -b_3 + -b_4. */
4595 negate_value (tree tonegate
, gimple_stmt_iterator
*gsip
)
4597 gimple
*negatedefstmt
= NULL
;
4598 tree resultofnegate
;
4599 gimple_stmt_iterator gsi
;
4602 /* If we are trying to negate a name, defined by an add, negate the
4603 add operands instead. */
4604 if (TREE_CODE (tonegate
) == SSA_NAME
)
4605 negatedefstmt
= SSA_NAME_DEF_STMT (tonegate
);
4606 if (TREE_CODE (tonegate
) == SSA_NAME
4607 && is_gimple_assign (negatedefstmt
)
4608 && TREE_CODE (gimple_assign_lhs (negatedefstmt
)) == SSA_NAME
4609 && has_single_use (gimple_assign_lhs (negatedefstmt
))
4610 && gimple_assign_rhs_code (negatedefstmt
) == PLUS_EXPR
)
4612 tree rhs1
= gimple_assign_rhs1 (negatedefstmt
);
4613 tree rhs2
= gimple_assign_rhs2 (negatedefstmt
);
4614 tree lhs
= gimple_assign_lhs (negatedefstmt
);
4617 gsi
= gsi_for_stmt (negatedefstmt
);
4618 rhs1
= negate_value (rhs1
, &gsi
);
4620 gsi
= gsi_for_stmt (negatedefstmt
);
4621 rhs2
= negate_value (rhs2
, &gsi
);
4623 gsi
= gsi_for_stmt (negatedefstmt
);
4624 lhs
= make_ssa_name (TREE_TYPE (lhs
));
4625 gimple_set_visited (negatedefstmt
, true);
4626 g
= gimple_build_assign (lhs
, PLUS_EXPR
, rhs1
, rhs2
);
4627 gimple_set_uid (g
, gimple_uid (negatedefstmt
));
4628 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
4632 tonegate
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (tonegate
), tonegate
);
4633 resultofnegate
= force_gimple_operand_gsi (gsip
, tonegate
, true,
4634 NULL_TREE
, true, GSI_SAME_STMT
);
4636 uid
= gimple_uid (gsi_stmt (gsi
));
4637 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
4639 gimple
*stmt
= gsi_stmt (gsi
);
4640 if (gimple_uid (stmt
) != 0)
4642 gimple_set_uid (stmt
, uid
);
4644 return resultofnegate
;
4647 /* Return true if we should break up the subtract in STMT into an add
4648 with negate. This is true when we the subtract operands are really
4649 adds, or the subtract itself is used in an add expression. In
4650 either case, breaking up the subtract into an add with negate
4651 exposes the adds to reassociation. */
4654 should_break_up_subtract (gimple
*stmt
)
4656 tree lhs
= gimple_assign_lhs (stmt
);
4657 tree binlhs
= gimple_assign_rhs1 (stmt
);
4658 tree binrhs
= gimple_assign_rhs2 (stmt
);
4660 struct loop
*loop
= loop_containing_stmt (stmt
);
4662 if (TREE_CODE (binlhs
) == SSA_NAME
4663 && is_reassociable_op (SSA_NAME_DEF_STMT (binlhs
), PLUS_EXPR
, loop
))
4666 if (TREE_CODE (binrhs
) == SSA_NAME
4667 && is_reassociable_op (SSA_NAME_DEF_STMT (binrhs
), PLUS_EXPR
, loop
))
4670 if (TREE_CODE (lhs
) == SSA_NAME
4671 && (immusestmt
= get_single_immediate_use (lhs
))
4672 && is_gimple_assign (immusestmt
)
4673 && (gimple_assign_rhs_code (immusestmt
) == PLUS_EXPR
4674 || gimple_assign_rhs_code (immusestmt
) == MULT_EXPR
))
4679 /* Transform STMT from A - B into A + -B. */
4682 break_up_subtract (gimple
*stmt
, gimple_stmt_iterator
*gsip
)
4684 tree rhs1
= gimple_assign_rhs1 (stmt
);
4685 tree rhs2
= gimple_assign_rhs2 (stmt
);
4687 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4689 fprintf (dump_file
, "Breaking up subtract ");
4690 print_gimple_stmt (dump_file
, stmt
, 0, 0);
4693 rhs2
= negate_value (rhs2
, gsip
);
4694 gimple_assign_set_rhs_with_ops (gsip
, PLUS_EXPR
, rhs1
, rhs2
);
4698 /* Determine whether STMT is a builtin call that raises an SSA name
4699 to an integer power and has only one use. If so, and this is early
4700 reassociation and unsafe math optimizations are permitted, place
4701 the SSA name in *BASE and the exponent in *EXPONENT, and return TRUE.
4702 If any of these conditions does not hold, return FALSE. */
4705 acceptable_pow_call (gcall
*stmt
, tree
*base
, HOST_WIDE_INT
*exponent
)
4708 REAL_VALUE_TYPE c
, cint
;
4710 switch (gimple_call_combined_fn (stmt
))
4713 if (flag_errno_math
)
4716 *base
= gimple_call_arg (stmt
, 0);
4717 arg1
= gimple_call_arg (stmt
, 1);
4719 if (TREE_CODE (arg1
) != REAL_CST
)
4722 c
= TREE_REAL_CST (arg1
);
4724 if (REAL_EXP (&c
) > HOST_BITS_PER_WIDE_INT
)
4727 *exponent
= real_to_integer (&c
);
4728 real_from_integer (&cint
, VOIDmode
, *exponent
, SIGNED
);
4729 if (!real_identical (&c
, &cint
))
4735 *base
= gimple_call_arg (stmt
, 0);
4736 arg1
= gimple_call_arg (stmt
, 1);
4738 if (!tree_fits_shwi_p (arg1
))
4741 *exponent
= tree_to_shwi (arg1
);
4748 /* Expanding negative exponents is generally unproductive, so we don't
4749 complicate matters with those. Exponents of zero and one should
4750 have been handled by expression folding. */
4751 if (*exponent
< 2 || TREE_CODE (*base
) != SSA_NAME
)
4757 /* Try to derive and add operand entry for OP to *OPS. Return false if
4761 try_special_add_to_ops (vec
<operand_entry
*> *ops
,
4762 enum tree_code code
,
4763 tree op
, gimple
* def_stmt
)
4765 tree base
= NULL_TREE
;
4766 HOST_WIDE_INT exponent
= 0;
4768 if (TREE_CODE (op
) != SSA_NAME
4769 || ! has_single_use (op
))
4772 if (code
== MULT_EXPR
4773 && reassoc_insert_powi_p
4774 && flag_unsafe_math_optimizations
4775 && is_gimple_call (def_stmt
)
4776 && acceptable_pow_call (as_a
<gcall
*> (def_stmt
), &base
, &exponent
))
4778 add_repeat_to_ops_vec (ops
, base
, exponent
);
4779 gimple_set_visited (def_stmt
, true);
4782 else if (code
== MULT_EXPR
4783 && is_gimple_assign (def_stmt
)
4784 && gimple_assign_rhs_code (def_stmt
) == NEGATE_EXPR
4785 && !HONOR_SNANS (TREE_TYPE (op
))
4786 && (!HONOR_SIGNED_ZEROS (TREE_TYPE (op
))
4787 || !COMPLEX_FLOAT_TYPE_P (TREE_TYPE (op
))))
4789 tree rhs1
= gimple_assign_rhs1 (def_stmt
);
4790 tree cst
= build_minus_one_cst (TREE_TYPE (op
));
4791 add_to_ops_vec (ops
, rhs1
);
4792 add_to_ops_vec (ops
, cst
);
4793 gimple_set_visited (def_stmt
, true);
4800 /* Recursively linearize a binary expression that is the RHS of STMT.
4801 Place the operands of the expression tree in the vector named OPS. */
4804 linearize_expr_tree (vec
<operand_entry
*> *ops
, gimple
*stmt
,
4805 bool is_associative
, bool set_visited
)
4807 tree binlhs
= gimple_assign_rhs1 (stmt
);
4808 tree binrhs
= gimple_assign_rhs2 (stmt
);
4809 gimple
*binlhsdef
= NULL
, *binrhsdef
= NULL
;
4810 bool binlhsisreassoc
= false;
4811 bool binrhsisreassoc
= false;
4812 enum tree_code rhscode
= gimple_assign_rhs_code (stmt
);
4813 struct loop
*loop
= loop_containing_stmt (stmt
);
4816 gimple_set_visited (stmt
, true);
4818 if (TREE_CODE (binlhs
) == SSA_NAME
)
4820 binlhsdef
= SSA_NAME_DEF_STMT (binlhs
);
4821 binlhsisreassoc
= (is_reassociable_op (binlhsdef
, rhscode
, loop
)
4822 && !stmt_could_throw_p (binlhsdef
));
4825 if (TREE_CODE (binrhs
) == SSA_NAME
)
4827 binrhsdef
= SSA_NAME_DEF_STMT (binrhs
);
4828 binrhsisreassoc
= (is_reassociable_op (binrhsdef
, rhscode
, loop
)
4829 && !stmt_could_throw_p (binrhsdef
));
4832 /* If the LHS is not reassociable, but the RHS is, we need to swap
4833 them. If neither is reassociable, there is nothing we can do, so
4834 just put them in the ops vector. If the LHS is reassociable,
4835 linearize it. If both are reassociable, then linearize the RHS
4838 if (!binlhsisreassoc
)
4840 /* If this is not a associative operation like division, give up. */
4841 if (!is_associative
)
4843 add_to_ops_vec (ops
, binrhs
);
4847 if (!binrhsisreassoc
)
4849 if (!try_special_add_to_ops (ops
, rhscode
, binrhs
, binrhsdef
))
4850 add_to_ops_vec (ops
, binrhs
);
4852 if (!try_special_add_to_ops (ops
, rhscode
, binlhs
, binlhsdef
))
4853 add_to_ops_vec (ops
, binlhs
);
4858 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4860 fprintf (dump_file
, "swapping operands of ");
4861 print_gimple_stmt (dump_file
, stmt
, 0, 0);
4864 swap_ssa_operands (stmt
,
4865 gimple_assign_rhs1_ptr (stmt
),
4866 gimple_assign_rhs2_ptr (stmt
));
4869 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4871 fprintf (dump_file
, " is now ");
4872 print_gimple_stmt (dump_file
, stmt
, 0, 0);
4875 /* We want to make it so the lhs is always the reassociative op,
4877 std::swap (binlhs
, binrhs
);
4879 else if (binrhsisreassoc
)
4881 linearize_expr (stmt
);
4882 binlhs
= gimple_assign_rhs1 (stmt
);
4883 binrhs
= gimple_assign_rhs2 (stmt
);
4886 gcc_assert (TREE_CODE (binrhs
) != SSA_NAME
4887 || !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs
),
4889 linearize_expr_tree (ops
, SSA_NAME_DEF_STMT (binlhs
),
4890 is_associative
, set_visited
);
4892 if (!try_special_add_to_ops (ops
, rhscode
, binrhs
, binrhsdef
))
4893 add_to_ops_vec (ops
, binrhs
);
4896 /* Repropagate the negates back into subtracts, since no other pass
4897 currently does it. */
4900 repropagate_negates (void)
4905 FOR_EACH_VEC_ELT (plus_negates
, i
, negate
)
4907 gimple
*user
= get_single_immediate_use (negate
);
4909 if (!user
|| !is_gimple_assign (user
))
4912 /* The negate operand can be either operand of a PLUS_EXPR
4913 (it can be the LHS if the RHS is a constant for example).
4915 Force the negate operand to the RHS of the PLUS_EXPR, then
4916 transform the PLUS_EXPR into a MINUS_EXPR. */
4917 if (gimple_assign_rhs_code (user
) == PLUS_EXPR
)
4919 /* If the negated operand appears on the LHS of the
4920 PLUS_EXPR, exchange the operands of the PLUS_EXPR
4921 to force the negated operand to the RHS of the PLUS_EXPR. */
4922 if (gimple_assign_rhs1 (user
) == negate
)
4924 swap_ssa_operands (user
,
4925 gimple_assign_rhs1_ptr (user
),
4926 gimple_assign_rhs2_ptr (user
));
4929 /* Now transform the PLUS_EXPR into a MINUS_EXPR and replace
4930 the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */
4931 if (gimple_assign_rhs2 (user
) == negate
)
4933 tree rhs1
= gimple_assign_rhs1 (user
);
4934 tree rhs2
= gimple_assign_rhs1 (SSA_NAME_DEF_STMT (negate
));
4935 gimple_stmt_iterator gsi
= gsi_for_stmt (user
);
4936 gimple_assign_set_rhs_with_ops (&gsi
, MINUS_EXPR
, rhs1
, rhs2
);
4940 else if (gimple_assign_rhs_code (user
) == MINUS_EXPR
)
4942 if (gimple_assign_rhs1 (user
) == negate
)
4947 which we transform into
4950 This pushes down the negate which we possibly can merge
4951 into some other operation, hence insert it into the
4952 plus_negates vector. */
4953 gimple
*feed
= SSA_NAME_DEF_STMT (negate
);
4954 tree a
= gimple_assign_rhs1 (feed
);
4955 tree b
= gimple_assign_rhs2 (user
);
4956 gimple_stmt_iterator gsi
= gsi_for_stmt (feed
);
4957 gimple_stmt_iterator gsi2
= gsi_for_stmt (user
);
4958 tree x
= make_ssa_name (TREE_TYPE (gimple_assign_lhs (feed
)));
4959 gimple
*g
= gimple_build_assign (x
, PLUS_EXPR
, a
, b
);
4960 gsi_insert_before (&gsi2
, g
, GSI_SAME_STMT
);
4961 gimple_assign_set_rhs_with_ops (&gsi2
, NEGATE_EXPR
, x
);
4962 user
= gsi_stmt (gsi2
);
4964 reassoc_remove_stmt (&gsi
);
4965 release_defs (feed
);
4966 plus_negates
.safe_push (gimple_assign_lhs (user
));
4970 /* Transform "x = -a; y = b - x" into "y = b + a", getting
4971 rid of one operation. */
4972 gimple
*feed
= SSA_NAME_DEF_STMT (negate
);
4973 tree a
= gimple_assign_rhs1 (feed
);
4974 tree rhs1
= gimple_assign_rhs1 (user
);
4975 gimple_stmt_iterator gsi
= gsi_for_stmt (user
);
4976 gimple_assign_set_rhs_with_ops (&gsi
, PLUS_EXPR
, rhs1
, a
);
4977 update_stmt (gsi_stmt (gsi
));
4983 /* Returns true if OP is of a type for which we can do reassociation.
4984 That is for integral or non-saturating fixed-point types, and for
4985 floating point type when associative-math is enabled. */
4988 can_reassociate_p (tree op
)
4990 tree type
= TREE_TYPE (op
);
4991 if ((ANY_INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_WRAPS (type
))
4992 || NON_SAT_FIXED_POINT_TYPE_P (type
)
4993 || (flag_associative_math
&& FLOAT_TYPE_P (type
)))
4998 /* Break up subtract operations in block BB.
5000 We do this top down because we don't know whether the subtract is
5001 part of a possible chain of reassociation except at the top.
5010 we want to break up k = t - q, but we won't until we've transformed q
5011 = b - r, which won't be broken up until we transform b = c - d.
5013 En passant, clear the GIMPLE visited flag on every statement
5014 and set UIDs within each basic block. */
5017 break_up_subtract_bb (basic_block bb
)
5019 gimple_stmt_iterator gsi
;
5021 unsigned int uid
= 1;
5023 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5025 gimple
*stmt
= gsi_stmt (gsi
);
5026 gimple_set_visited (stmt
, false);
5027 gimple_set_uid (stmt
, uid
++);
5029 if (!is_gimple_assign (stmt
)
5030 || !can_reassociate_p (gimple_assign_lhs (stmt
)))
5033 /* Look for simple gimple subtract operations. */
5034 if (gimple_assign_rhs_code (stmt
) == MINUS_EXPR
)
5036 if (!can_reassociate_p (gimple_assign_rhs1 (stmt
))
5037 || !can_reassociate_p (gimple_assign_rhs2 (stmt
)))
5040 /* Check for a subtract used only in an addition. If this
5041 is the case, transform it into add of a negate for better
5042 reassociation. IE transform C = A-B into C = A + -B if C
5043 is only used in an addition. */
5044 if (should_break_up_subtract (stmt
))
5045 break_up_subtract (stmt
, &gsi
);
5047 else if (gimple_assign_rhs_code (stmt
) == NEGATE_EXPR
5048 && can_reassociate_p (gimple_assign_rhs1 (stmt
)))
5049 plus_negates
.safe_push (gimple_assign_lhs (stmt
));
5051 for (son
= first_dom_son (CDI_DOMINATORS
, bb
);
5053 son
= next_dom_son (CDI_DOMINATORS
, son
))
5054 break_up_subtract_bb (son
);
5057 /* Used for repeated factor analysis. */
5058 struct repeat_factor
5060 /* An SSA name that occurs in a multiply chain. */
5063 /* Cached rank of the factor. */
5066 /* Number of occurrences of the factor in the chain. */
5067 HOST_WIDE_INT count
;
5069 /* An SSA name representing the product of this factor and
5070 all factors appearing later in the repeated factor vector. */
5075 static vec
<repeat_factor
> repeat_factor_vec
;
5077 /* Used for sorting the repeat factor vector. Sort primarily by
5078 ascending occurrence count, secondarily by descending rank. */
5081 compare_repeat_factors (const void *x1
, const void *x2
)
5083 const repeat_factor
*rf1
= (const repeat_factor
*) x1
;
5084 const repeat_factor
*rf2
= (const repeat_factor
*) x2
;
5086 if (rf1
->count
!= rf2
->count
)
5087 return rf1
->count
- rf2
->count
;
5089 return rf2
->rank
- rf1
->rank
;
5092 /* Look for repeated operands in OPS in the multiply tree rooted at
5093 STMT. Replace them with an optimal sequence of multiplies and powi
5094 builtin calls, and remove the used operands from OPS. Return an
5095 SSA name representing the value of the replacement sequence. */
5098 attempt_builtin_powi (gimple
*stmt
, vec
<operand_entry
*> *ops
)
5100 unsigned i
, j
, vec_len
;
5103 repeat_factor
*rf1
, *rf2
;
5104 repeat_factor rfnew
;
5105 tree result
= NULL_TREE
;
5106 tree target_ssa
, iter_result
;
5107 tree type
= TREE_TYPE (gimple_get_lhs (stmt
));
5108 tree powi_fndecl
= mathfn_built_in (type
, BUILT_IN_POWI
);
5109 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
5110 gimple
*mul_stmt
, *pow_stmt
;
5112 /* Nothing to do if BUILT_IN_POWI doesn't exist for this type and
5117 /* Allocate the repeated factor vector. */
5118 repeat_factor_vec
.create (10);
5120 /* Scan the OPS vector for all SSA names in the product and build
5121 up a vector of occurrence counts for each factor. */
5122 FOR_EACH_VEC_ELT (*ops
, i
, oe
)
5124 if (TREE_CODE (oe
->op
) == SSA_NAME
)
5126 FOR_EACH_VEC_ELT (repeat_factor_vec
, j
, rf1
)
5128 if (rf1
->factor
== oe
->op
)
5130 rf1
->count
+= oe
->count
;
5135 if (j
>= repeat_factor_vec
.length ())
5137 rfnew
.factor
= oe
->op
;
5138 rfnew
.rank
= oe
->rank
;
5139 rfnew
.count
= oe
->count
;
5140 rfnew
.repr
= NULL_TREE
;
5141 repeat_factor_vec
.safe_push (rfnew
);
5146 /* Sort the repeated factor vector by (a) increasing occurrence count,
5147 and (b) decreasing rank. */
5148 repeat_factor_vec
.qsort (compare_repeat_factors
);
5150 /* It is generally best to combine as many base factors as possible
5151 into a product before applying __builtin_powi to the result.
5152 However, the sort order chosen for the repeated factor vector
5153 allows us to cache partial results for the product of the base
5154 factors for subsequent use. When we already have a cached partial
5155 result from a previous iteration, it is best to make use of it
5156 before looking for another __builtin_pow opportunity.
5158 As an example, consider x * x * y * y * y * z * z * z * z.
5159 We want to first compose the product x * y * z, raise it to the
5160 second power, then multiply this by y * z, and finally multiply
5161 by z. This can be done in 5 multiplies provided we cache y * z
5162 for use in both expressions:
5170 If we instead ignored the cached y * z and first multiplied by
5171 the __builtin_pow opportunity z * z, we would get the inferior:
5180 vec_len
= repeat_factor_vec
.length ();
5182 /* Repeatedly look for opportunities to create a builtin_powi call. */
5185 HOST_WIDE_INT power
;
5187 /* First look for the largest cached product of factors from
5188 preceding iterations. If found, create a builtin_powi for
5189 it if the minimum occurrence count for its factors is at
5190 least 2, or just use this cached product as our next
5191 multiplicand if the minimum occurrence count is 1. */
5192 FOR_EACH_VEC_ELT (repeat_factor_vec
, j
, rf1
)
5194 if (rf1
->repr
&& rf1
->count
> 0)
5204 iter_result
= rf1
->repr
;
5206 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5210 fputs ("Multiplying by cached product ", dump_file
);
5211 for (elt
= j
; elt
< vec_len
; elt
++)
5213 rf
= &repeat_factor_vec
[elt
];
5214 print_generic_expr (dump_file
, rf
->factor
, 0);
5215 if (elt
< vec_len
- 1)
5216 fputs (" * ", dump_file
);
5218 fputs ("\n", dump_file
);
5223 iter_result
= make_temp_ssa_name (type
, NULL
, "reassocpow");
5224 pow_stmt
= gimple_build_call (powi_fndecl
, 2, rf1
->repr
,
5225 build_int_cst (integer_type_node
,
5227 gimple_call_set_lhs (pow_stmt
, iter_result
);
5228 gimple_set_location (pow_stmt
, gimple_location (stmt
));
5229 gimple_set_uid (pow_stmt
, gimple_uid (stmt
));
5230 gsi_insert_before (&gsi
, pow_stmt
, GSI_SAME_STMT
);
5232 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5236 fputs ("Building __builtin_pow call for cached product (",
5238 for (elt
= j
; elt
< vec_len
; elt
++)
5240 rf
= &repeat_factor_vec
[elt
];
5241 print_generic_expr (dump_file
, rf
->factor
, 0);
5242 if (elt
< vec_len
- 1)
5243 fputs (" * ", dump_file
);
5245 fprintf (dump_file
, ")^" HOST_WIDE_INT_PRINT_DEC
"\n",
5252 /* Otherwise, find the first factor in the repeated factor
5253 vector whose occurrence count is at least 2. If no such
5254 factor exists, there are no builtin_powi opportunities
5256 FOR_EACH_VEC_ELT (repeat_factor_vec
, j
, rf1
)
5258 if (rf1
->count
>= 2)
5267 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5271 fputs ("Building __builtin_pow call for (", dump_file
);
5272 for (elt
= j
; elt
< vec_len
; elt
++)
5274 rf
= &repeat_factor_vec
[elt
];
5275 print_generic_expr (dump_file
, rf
->factor
, 0);
5276 if (elt
< vec_len
- 1)
5277 fputs (" * ", dump_file
);
5279 fprintf (dump_file
, ")^" HOST_WIDE_INT_PRINT_DEC
"\n", power
);
5282 reassociate_stats
.pows_created
++;
5284 /* Visit each element of the vector in reverse order (so that
5285 high-occurrence elements are visited first, and within the
5286 same occurrence count, lower-ranked elements are visited
5287 first). Form a linear product of all elements in this order
5288 whose occurrencce count is at least that of element J.
5289 Record the SSA name representing the product of each element
5290 with all subsequent elements in the vector. */
5291 if (j
== vec_len
- 1)
5292 rf1
->repr
= rf1
->factor
;
5295 for (ii
= vec_len
- 2; ii
>= (int)j
; ii
--)
5299 rf1
= &repeat_factor_vec
[ii
];
5300 rf2
= &repeat_factor_vec
[ii
+ 1];
5302 /* Init the last factor's representative to be itself. */
5304 rf2
->repr
= rf2
->factor
;
5309 target_ssa
= make_temp_ssa_name (type
, NULL
, "reassocpow");
5310 mul_stmt
= gimple_build_assign (target_ssa
, MULT_EXPR
,
5312 gimple_set_location (mul_stmt
, gimple_location (stmt
));
5313 gimple_set_uid (mul_stmt
, gimple_uid (stmt
));
5314 gsi_insert_before (&gsi
, mul_stmt
, GSI_SAME_STMT
);
5315 rf1
->repr
= target_ssa
;
5317 /* Don't reprocess the multiply we just introduced. */
5318 gimple_set_visited (mul_stmt
, true);
5322 /* Form a call to __builtin_powi for the maximum product
5323 just formed, raised to the power obtained earlier. */
5324 rf1
= &repeat_factor_vec
[j
];
5325 iter_result
= make_temp_ssa_name (type
, NULL
, "reassocpow");
5326 pow_stmt
= gimple_build_call (powi_fndecl
, 2, rf1
->repr
,
5327 build_int_cst (integer_type_node
,
5329 gimple_call_set_lhs (pow_stmt
, iter_result
);
5330 gimple_set_location (pow_stmt
, gimple_location (stmt
));
5331 gimple_set_uid (pow_stmt
, gimple_uid (stmt
));
5332 gsi_insert_before (&gsi
, pow_stmt
, GSI_SAME_STMT
);
5335 /* If we previously formed at least one other builtin_powi call,
5336 form the product of this one and those others. */
5339 tree new_result
= make_temp_ssa_name (type
, NULL
, "reassocpow");
5340 mul_stmt
= gimple_build_assign (new_result
, MULT_EXPR
,
5341 result
, iter_result
);
5342 gimple_set_location (mul_stmt
, gimple_location (stmt
));
5343 gimple_set_uid (mul_stmt
, gimple_uid (stmt
));
5344 gsi_insert_before (&gsi
, mul_stmt
, GSI_SAME_STMT
);
5345 gimple_set_visited (mul_stmt
, true);
5346 result
= new_result
;
5349 result
= iter_result
;
5351 /* Decrement the occurrence count of each element in the product
5352 by the count found above, and remove this many copies of each
5354 for (i
= j
; i
< vec_len
; i
++)
5359 rf1
= &repeat_factor_vec
[i
];
5360 rf1
->count
-= power
;
5362 FOR_EACH_VEC_ELT_REVERSE (*ops
, n
, oe
)
5364 if (oe
->op
== rf1
->factor
)
5368 ops
->ordered_remove (n
);
5384 /* At this point all elements in the repeated factor vector have a
5385 remaining occurrence count of 0 or 1, and those with a count of 1
5386 don't have cached representatives. Re-sort the ops vector and
5388 ops
->qsort (sort_by_operand_rank
);
5389 repeat_factor_vec
.release ();
5391 /* Return the final product computed herein. Note that there may
5392 still be some elements with single occurrence count left in OPS;
5393 those will be handled by the normal reassociation logic. */
5397 /* Attempt to optimize
5398 CST1 * copysign (CST2, y) -> copysign (CST1 * CST2, y) if CST1 > 0, or
5399 CST1 * copysign (CST2, y) -> -copysign (CST1 * CST2, y) if CST1 < 0. */
5402 attempt_builtin_copysign (vec
<operand_entry
*> *ops
)
5406 unsigned int length
= ops
->length ();
5407 tree cst
= ops
->last ()->op
;
5409 if (length
== 1 || TREE_CODE (cst
) != REAL_CST
)
5412 FOR_EACH_VEC_ELT (*ops
, i
, oe
)
5414 if (TREE_CODE (oe
->op
) == SSA_NAME
5415 && has_single_use (oe
->op
))
5417 gimple
*def_stmt
= SSA_NAME_DEF_STMT (oe
->op
);
5418 if (gcall
*old_call
= dyn_cast
<gcall
*> (def_stmt
))
5421 switch (gimple_call_combined_fn (old_call
))
5424 arg0
= gimple_call_arg (old_call
, 0);
5425 arg1
= gimple_call_arg (old_call
, 1);
5426 /* The first argument of copysign must be a constant,
5427 otherwise there's nothing to do. */
5428 if (TREE_CODE (arg0
) == REAL_CST
)
5430 tree type
= TREE_TYPE (arg0
);
5431 tree mul
= const_binop (MULT_EXPR
, type
, cst
, arg0
);
5432 /* If we couldn't fold to a single constant, skip it.
5433 That happens e.g. for inexact multiplication when
5435 if (mul
== NULL_TREE
)
5437 /* Instead of adjusting OLD_CALL, let's build a new
5438 call to not leak the LHS and prevent keeping bogus
5439 debug statements. DCE will clean up the old call. */
5441 if (gimple_call_internal_p (old_call
))
5442 new_call
= gimple_build_call_internal
5443 (IFN_COPYSIGN
, 2, mul
, arg1
);
5445 new_call
= gimple_build_call
5446 (gimple_call_fndecl (old_call
), 2, mul
, arg1
);
5447 tree lhs
= make_ssa_name (type
);
5448 gimple_call_set_lhs (new_call
, lhs
);
5449 gimple_set_location (new_call
,
5450 gimple_location (old_call
));
5451 insert_stmt_after (new_call
, old_call
);
5452 /* We've used the constant, get rid of it. */
5454 bool cst1_neg
= real_isneg (TREE_REAL_CST_PTR (cst
));
5455 /* Handle the CST1 < 0 case by negating the result. */
5458 tree negrhs
= make_ssa_name (TREE_TYPE (lhs
));
5460 = gimple_build_assign (negrhs
, NEGATE_EXPR
, lhs
);
5461 insert_stmt_after (negate_stmt
, new_call
);
5466 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5468 fprintf (dump_file
, "Optimizing copysign: ");
5469 print_generic_expr (dump_file
, cst
, 0);
5470 fprintf (dump_file
, " * COPYSIGN (");
5471 print_generic_expr (dump_file
, arg0
, 0);
5472 fprintf (dump_file
, ", ");
5473 print_generic_expr (dump_file
, arg1
, 0);
5474 fprintf (dump_file
, ") into %sCOPYSIGN (",
5475 cst1_neg
? "-" : "");
5476 print_generic_expr (dump_file
, mul
, 0);
5477 fprintf (dump_file
, ", ");
5478 print_generic_expr (dump_file
, arg1
, 0);
5479 fprintf (dump_file
, "\n");
5492 /* Transform STMT at *GSI into a copy by replacing its rhs with NEW_RHS. */
5495 transform_stmt_to_copy (gimple_stmt_iterator
*gsi
, gimple
*stmt
, tree new_rhs
)
5499 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5501 fprintf (dump_file
, "Transforming ");
5502 print_gimple_stmt (dump_file
, stmt
, 0, 0);
5505 rhs1
= gimple_assign_rhs1 (stmt
);
5506 gimple_assign_set_rhs_from_tree (gsi
, new_rhs
);
5508 remove_visited_stmt_chain (rhs1
);
5510 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5512 fprintf (dump_file
, " into ");
5513 print_gimple_stmt (dump_file
, stmt
, 0, 0);
5517 /* Transform STMT at *GSI into a multiply of RHS1 and RHS2. */
5520 transform_stmt_to_multiply (gimple_stmt_iterator
*gsi
, gimple
*stmt
,
5521 tree rhs1
, tree rhs2
)
5523 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5525 fprintf (dump_file
, "Transforming ");
5526 print_gimple_stmt (dump_file
, stmt
, 0, 0);
5529 gimple_assign_set_rhs_with_ops (gsi
, MULT_EXPR
, rhs1
, rhs2
);
5530 update_stmt (gsi_stmt (*gsi
));
5531 remove_visited_stmt_chain (rhs1
);
5533 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5535 fprintf (dump_file
, " into ");
5536 print_gimple_stmt (dump_file
, stmt
, 0, 0);
5540 /* Reassociate expressions in basic block BB and its post-dominator as
5543 Bubble up return status from maybe_optimize_range_tests. */
5546 reassociate_bb (basic_block bb
)
5548 gimple_stmt_iterator gsi
;
5550 gimple
*stmt
= last_stmt (bb
);
5551 bool cfg_cleanup_needed
= false;
5553 if (stmt
&& !gimple_visited_p (stmt
))
5554 cfg_cleanup_needed
|= maybe_optimize_range_tests (stmt
);
5556 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
5558 stmt
= gsi_stmt (gsi
);
5560 if (is_gimple_assign (stmt
)
5561 && !stmt_could_throw_p (stmt
))
5563 tree lhs
, rhs1
, rhs2
;
5564 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
5566 /* If this is not a gimple binary expression, there is
5567 nothing for us to do with it. */
5568 if (get_gimple_rhs_class (rhs_code
) != GIMPLE_BINARY_RHS
)
5571 /* If this was part of an already processed statement,
5572 we don't need to touch it again. */
5573 if (gimple_visited_p (stmt
))
5575 /* This statement might have become dead because of previous
5577 if (has_zero_uses (gimple_get_lhs (stmt
)))
5579 reassoc_remove_stmt (&gsi
);
5580 release_defs (stmt
);
5581 /* We might end up removing the last stmt above which
5582 places the iterator to the end of the sequence.
5583 Reset it to the last stmt in this case which might
5584 be the end of the sequence as well if we removed
5585 the last statement of the sequence. In which case
5586 we need to bail out. */
5587 if (gsi_end_p (gsi
))
5589 gsi
= gsi_last_bb (bb
);
5590 if (gsi_end_p (gsi
))
5597 lhs
= gimple_assign_lhs (stmt
);
5598 rhs1
= gimple_assign_rhs1 (stmt
);
5599 rhs2
= gimple_assign_rhs2 (stmt
);
5601 /* For non-bit or min/max operations we can't associate
5602 all types. Verify that here. */
5603 if (rhs_code
!= BIT_IOR_EXPR
5604 && rhs_code
!= BIT_AND_EXPR
5605 && rhs_code
!= BIT_XOR_EXPR
5606 && rhs_code
!= MIN_EXPR
5607 && rhs_code
!= MAX_EXPR
5608 && (!can_reassociate_p (lhs
)
5609 || !can_reassociate_p (rhs1
)
5610 || !can_reassociate_p (rhs2
)))
5613 if (associative_tree_code (rhs_code
))
5615 auto_vec
<operand_entry
*> ops
;
5616 tree powi_result
= NULL_TREE
;
5617 bool is_vector
= VECTOR_TYPE_P (TREE_TYPE (lhs
));
5619 /* There may be no immediate uses left by the time we
5620 get here because we may have eliminated them all. */
5621 if (TREE_CODE (lhs
) == SSA_NAME
&& has_zero_uses (lhs
))
5624 gimple_set_visited (stmt
, true);
5625 linearize_expr_tree (&ops
, stmt
, true, true);
5626 ops
.qsort (sort_by_operand_rank
);
5627 optimize_ops_list (rhs_code
, &ops
);
5628 if (undistribute_ops_list (rhs_code
, &ops
,
5629 loop_containing_stmt (stmt
)))
5631 ops
.qsort (sort_by_operand_rank
);
5632 optimize_ops_list (rhs_code
, &ops
);
5635 if (rhs_code
== PLUS_EXPR
5636 && transform_add_to_multiply (&ops
))
5637 ops
.qsort (sort_by_operand_rank
);
5639 if (rhs_code
== BIT_IOR_EXPR
|| rhs_code
== BIT_AND_EXPR
)
5642 optimize_vec_cond_expr (rhs_code
, &ops
);
5644 optimize_range_tests (rhs_code
, &ops
);
5647 if (rhs_code
== MULT_EXPR
&& !is_vector
)
5649 attempt_builtin_copysign (&ops
);
5651 if (reassoc_insert_powi_p
5652 && flag_unsafe_math_optimizations
)
5653 powi_result
= attempt_builtin_powi (stmt
, &ops
);
5656 operand_entry
*last
;
5657 bool negate_result
= false;
5658 if (ops
.length () > 1
5659 && rhs_code
== MULT_EXPR
)
5662 if ((integer_minus_onep (last
->op
)
5663 || real_minus_onep (last
->op
))
5664 && !HONOR_SNANS (TREE_TYPE (lhs
))
5665 && (!HONOR_SIGNED_ZEROS (TREE_TYPE (lhs
))
5666 || !COMPLEX_FLOAT_TYPE_P (TREE_TYPE (lhs
))))
5669 negate_result
= true;
5674 /* If the operand vector is now empty, all operands were
5675 consumed by the __builtin_powi optimization. */
5676 if (ops
.length () == 0)
5677 transform_stmt_to_copy (&gsi
, stmt
, powi_result
);
5678 else if (ops
.length () == 1)
5680 tree last_op
= ops
.last ()->op
;
5682 /* If the stmt that defines operand has to be inserted, insert it
5684 if (ops
.last ()->stmt_to_insert
)
5685 insert_stmt_before_use (stmt
, ops
.last ()->stmt_to_insert
);
5687 transform_stmt_to_multiply (&gsi
, stmt
, last_op
,
5690 transform_stmt_to_copy (&gsi
, stmt
, last_op
);
5694 machine_mode mode
= TYPE_MODE (TREE_TYPE (lhs
));
5695 int ops_num
= ops
.length ();
5696 int width
= get_reassociation_width (ops_num
, rhs_code
, mode
);
5698 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5700 "Width = %d was chosen for reassociation\n", width
);
5703 && ops
.length () > 3)
5704 rewrite_expr_tree_parallel (as_a
<gassign
*> (stmt
),
5708 /* When there are three operands left, we want
5709 to make sure the ones that get the double
5710 binary op are chosen wisely. */
5711 int len
= ops
.length ();
5713 swap_ops_for_binary_stmt (ops
, len
- 3, stmt
);
5715 new_lhs
= rewrite_expr_tree (stmt
, 0, ops
,
5720 /* If we combined some repeated factors into a
5721 __builtin_powi call, multiply that result by the
5722 reassociated operands. */
5725 gimple
*mul_stmt
, *lhs_stmt
= SSA_NAME_DEF_STMT (lhs
);
5726 tree type
= TREE_TYPE (lhs
);
5727 tree target_ssa
= make_temp_ssa_name (type
, NULL
,
5729 gimple_set_lhs (lhs_stmt
, target_ssa
);
5730 update_stmt (lhs_stmt
);
5733 target_ssa
= new_lhs
;
5736 mul_stmt
= gimple_build_assign (lhs
, MULT_EXPR
,
5737 powi_result
, target_ssa
);
5738 gimple_set_location (mul_stmt
, gimple_location (stmt
));
5739 gimple_set_uid (mul_stmt
, gimple_uid (stmt
));
5740 gsi_insert_after (&gsi
, mul_stmt
, GSI_NEW_STMT
);
5746 stmt
= SSA_NAME_DEF_STMT (lhs
);
5747 tree tmp
= make_ssa_name (TREE_TYPE (lhs
));
5748 gimple_set_lhs (stmt
, tmp
);
5751 gassign
*neg_stmt
= gimple_build_assign (lhs
, NEGATE_EXPR
,
5753 gimple_set_uid (neg_stmt
, gimple_uid (stmt
));
5754 gsi_insert_after (&gsi
, neg_stmt
, GSI_NEW_STMT
);
5760 for (son
= first_dom_son (CDI_POST_DOMINATORS
, bb
);
5762 son
= next_dom_son (CDI_POST_DOMINATORS
, son
))
5763 cfg_cleanup_needed
|= reassociate_bb (son
);
5765 return cfg_cleanup_needed
;
5768 /* Add jumps around shifts for range tests turned into bit tests.
5769 For each SSA_NAME VAR we have code like:
5770 VAR = ...; // final stmt of range comparison
5771 // bit test here...;
5772 OTHERVAR = ...; // final stmt of the bit test sequence
5773 RES = VAR | OTHERVAR;
5774 Turn the above into:
5781 // bit test here...;
5784 # RES = PHI<1(l1), OTHERVAR(l2)>; */
5792 FOR_EACH_VEC_ELT (reassoc_branch_fixups
, i
, var
)
5794 gimple
*def_stmt
= SSA_NAME_DEF_STMT (var
);
5797 bool ok
= single_imm_use (var
, &use
, &use_stmt
);
5799 && is_gimple_assign (use_stmt
)
5800 && gimple_assign_rhs_code (use_stmt
) == BIT_IOR_EXPR
5801 && gimple_bb (def_stmt
) == gimple_bb (use_stmt
));
5803 basic_block cond_bb
= gimple_bb (def_stmt
);
5804 basic_block then_bb
= split_block (cond_bb
, def_stmt
)->dest
;
5805 basic_block merge_bb
= split_block (then_bb
, use_stmt
)->dest
;
5807 gimple_stmt_iterator gsi
= gsi_for_stmt (def_stmt
);
5808 gimple
*g
= gimple_build_cond (NE_EXPR
, var
,
5809 build_zero_cst (TREE_TYPE (var
)),
5810 NULL_TREE
, NULL_TREE
);
5811 location_t loc
= gimple_location (use_stmt
);
5812 gimple_set_location (g
, loc
);
5813 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
5815 edge etrue
= make_edge (cond_bb
, merge_bb
, EDGE_TRUE_VALUE
);
5816 etrue
->probability
= REG_BR_PROB_BASE
/ 2;
5817 etrue
->count
= cond_bb
->count
/ 2;
5818 edge efalse
= find_edge (cond_bb
, then_bb
);
5819 efalse
->flags
= EDGE_FALSE_VALUE
;
5820 efalse
->probability
-= etrue
->probability
;
5821 efalse
->count
-= etrue
->count
;
5822 then_bb
->count
-= etrue
->count
;
5824 tree othervar
= NULL_TREE
;
5825 if (gimple_assign_rhs1 (use_stmt
) == var
)
5826 othervar
= gimple_assign_rhs2 (use_stmt
);
5827 else if (gimple_assign_rhs2 (use_stmt
) == var
)
5828 othervar
= gimple_assign_rhs1 (use_stmt
);
5831 tree lhs
= gimple_assign_lhs (use_stmt
);
5832 gphi
*phi
= create_phi_node (lhs
, merge_bb
);
5833 add_phi_arg (phi
, build_one_cst (TREE_TYPE (lhs
)), etrue
, loc
);
5834 add_phi_arg (phi
, othervar
, single_succ_edge (then_bb
), loc
);
5835 gsi
= gsi_for_stmt (use_stmt
);
5836 gsi_remove (&gsi
, true);
5838 set_immediate_dominator (CDI_DOMINATORS
, merge_bb
, cond_bb
);
5839 set_immediate_dominator (CDI_POST_DOMINATORS
, cond_bb
, merge_bb
);
5841 reassoc_branch_fixups
.release ();
5844 void dump_ops_vector (FILE *file
, vec
<operand_entry
*> ops
);
5845 void debug_ops_vector (vec
<operand_entry
*> ops
);
5847 /* Dump the operand entry vector OPS to FILE. */
5850 dump_ops_vector (FILE *file
, vec
<operand_entry
*> ops
)
5855 FOR_EACH_VEC_ELT (ops
, i
, oe
)
5857 fprintf (file
, "Op %d -> rank: %d, tree: ", i
, oe
->rank
);
5858 print_generic_expr (file
, oe
->op
, 0);
5859 fprintf (file
, "\n");
5863 /* Dump the operand entry vector OPS to STDERR. */
5866 debug_ops_vector (vec
<operand_entry
*> ops
)
5868 dump_ops_vector (stderr
, ops
);
5871 /* Bubble up return status from reassociate_bb. */
5876 break_up_subtract_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
5877 return reassociate_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
));
5880 /* Initialize the reassociation pass. */
5887 int *bbs
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
);
5889 /* Find the loops, so that we can prevent moving calculations in
5891 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
5893 memset (&reassociate_stats
, 0, sizeof (reassociate_stats
));
5895 next_operand_entry_id
= 0;
5897 /* Reverse RPO (Reverse Post Order) will give us something where
5898 deeper loops come later. */
5899 pre_and_rev_post_order_compute (NULL
, bbs
, false);
5900 bb_rank
= XCNEWVEC (long, last_basic_block_for_fn (cfun
));
5901 operand_rank
= new hash_map
<tree
, long>;
5903 /* Give each default definition a distinct rank. This includes
5904 parameters and the static chain. Walk backwards over all
5905 SSA names so that we get proper rank ordering according
5906 to tree_swap_operands_p. */
5907 for (i
= num_ssa_names
- 1; i
> 0; --i
)
5909 tree name
= ssa_name (i
);
5910 if (name
&& SSA_NAME_IS_DEFAULT_DEF (name
))
5911 insert_operand_rank (name
, ++rank
);
5914 /* Set up rank for each BB */
5915 for (i
= 0; i
< n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
; i
++)
5916 bb_rank
[bbs
[i
]] = ++rank
<< 16;
5919 calculate_dominance_info (CDI_POST_DOMINATORS
);
5920 plus_negates
= vNULL
;
5923 /* Cleanup after the reassociation pass, and print stats if
5929 statistics_counter_event (cfun
, "Linearized",
5930 reassociate_stats
.linearized
);
5931 statistics_counter_event (cfun
, "Constants eliminated",
5932 reassociate_stats
.constants_eliminated
);
5933 statistics_counter_event (cfun
, "Ops eliminated",
5934 reassociate_stats
.ops_eliminated
);
5935 statistics_counter_event (cfun
, "Statements rewritten",
5936 reassociate_stats
.rewritten
);
5937 statistics_counter_event (cfun
, "Built-in pow[i] calls encountered",
5938 reassociate_stats
.pows_encountered
);
5939 statistics_counter_event (cfun
, "Built-in powi calls created",
5940 reassociate_stats
.pows_created
);
5942 delete operand_rank
;
5943 operand_entry_pool
.release ();
5945 plus_negates
.release ();
5946 free_dominance_info (CDI_POST_DOMINATORS
);
5947 loop_optimizer_finalize ();
5950 /* Gate and execute functions for Reassociation. If INSERT_POWI_P, enable
5951 insertion of __builtin_powi calls.
5953 Returns TODO_cfg_cleanup if a CFG cleanup pass is desired due to
5954 optimization of a gimple conditional. Otherwise returns zero. */
5957 execute_reassoc (bool insert_powi_p
)
5959 reassoc_insert_powi_p
= insert_powi_p
;
5963 bool cfg_cleanup_needed
;
5964 cfg_cleanup_needed
= do_reassoc ();
5965 repropagate_negates ();
5969 return cfg_cleanup_needed
? TODO_cleanup_cfg
: 0;
5974 const pass_data pass_data_reassoc
=
5976 GIMPLE_PASS
, /* type */
5977 "reassoc", /* name */
5978 OPTGROUP_NONE
, /* optinfo_flags */
5979 TV_TREE_REASSOC
, /* tv_id */
5980 ( PROP_cfg
| PROP_ssa
), /* properties_required */
5981 0, /* properties_provided */
5982 0, /* properties_destroyed */
5983 0, /* todo_flags_start */
5984 TODO_update_ssa_only_virtuals
, /* todo_flags_finish */
5987 class pass_reassoc
: public gimple_opt_pass
5990 pass_reassoc (gcc::context
*ctxt
)
5991 : gimple_opt_pass (pass_data_reassoc
, ctxt
), insert_powi_p (false)
5994 /* opt_pass methods: */
5995 opt_pass
* clone () { return new pass_reassoc (m_ctxt
); }
5996 void set_pass_param (unsigned int n
, bool param
)
5998 gcc_assert (n
== 0);
5999 insert_powi_p
= param
;
6001 virtual bool gate (function
*) { return flag_tree_reassoc
!= 0; }
6002 virtual unsigned int execute (function
*)
6003 { return execute_reassoc (insert_powi_p
); }
6006 /* Enable insertion of __builtin_powi calls during execute_reassoc. See
6007 point 3a in the pass header comment. */
6009 }; // class pass_reassoc
6014 make_pass_reassoc (gcc::context
*ctxt
)
6016 return new pass_reassoc (ctxt
);