1 /* Inline functions for tree-flow.h
2 Copyright (C) 2001, 2003, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #ifndef _TREE_FLOW_INLINE_H
23 #define _TREE_FLOW_INLINE_H 1
25 /* Inline functions for manipulating various data structures defined in
26 tree-flow.h. See tree-flow.h for documentation. */
28 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
31 first_htab_element (htab_iterator
*hti
, htab_t table
)
34 hti
->slot
= table
->entries
;
35 hti
->limit
= hti
->slot
+ htab_size (table
);
39 if (x
!= HTAB_EMPTY_ENTRY
&& x
!= HTAB_DELETED_ENTRY
)
41 } while (++(hti
->slot
) < hti
->limit
);
43 if (hti
->slot
< hti
->limit
)
48 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
49 or NULL if we have reached the end. */
52 end_htab_p (htab_iterator
*hti
)
54 if (hti
->slot
>= hti
->limit
)
59 /* Advance the hashtable iterator pointed to by HTI to the next element of the
63 next_htab_element (htab_iterator
*hti
)
65 while (++(hti
->slot
) < hti
->limit
)
68 if (x
!= HTAB_EMPTY_ENTRY
&& x
!= HTAB_DELETED_ENTRY
)
74 /* Initialize ITER to point to the first referenced variable in the
75 referenced_vars hashtable, and return that variable. */
78 first_referenced_var (referenced_var_iterator
*iter
)
80 struct int_tree_map
*itm
;
81 itm
= (struct int_tree_map
*) first_htab_element (&iter
->hti
,
88 /* Return true if we have hit the end of the referenced variables ITER is
92 end_referenced_vars_p (referenced_var_iterator
*iter
)
94 return end_htab_p (&iter
->hti
);
97 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
98 and return that variable. */
101 next_referenced_var (referenced_var_iterator
*iter
)
103 struct int_tree_map
*itm
;
104 itm
= (struct int_tree_map
*) next_htab_element (&iter
->hti
);
110 /* Fill up VEC with the variables in the referenced vars hashtable. */
113 fill_referenced_var_vec (VEC (tree
, heap
) **vec
)
115 referenced_var_iterator rvi
;
118 FOR_EACH_REFERENCED_VAR (var
, rvi
)
119 VEC_safe_push (tree
, heap
, *vec
, var
);
122 /* Return the variable annotation for T, which must be a _DECL node.
123 Return NULL if the variable annotation doesn't already exist. */
124 static inline var_ann_t
128 gcc_assert (DECL_P (t
));
129 gcc_assert (TREE_CODE (t
) != FUNCTION_DECL
);
130 gcc_assert (!t
->common
.ann
|| t
->common
.ann
->common
.type
== VAR_ANN
);
132 return (var_ann_t
) t
->common
.ann
;
135 /* Return the variable annotation for T, which must be a _DECL node.
136 Create the variable annotation if it doesn't exist. */
137 static inline var_ann_t
138 get_var_ann (tree var
)
140 var_ann_t ann
= var_ann (var
);
141 return (ann
) ? ann
: create_var_ann (var
);
144 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
145 Return NULL if the function annotation doesn't already exist. */
146 static inline function_ann_t
147 function_ann (tree t
)
150 gcc_assert (TREE_CODE (t
) == FUNCTION_DECL
);
151 gcc_assert (!t
->common
.ann
|| t
->common
.ann
->common
.type
== FUNCTION_ANN
);
153 return (function_ann_t
) t
->common
.ann
;
156 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
157 Create the function annotation if it doesn't exist. */
158 static inline function_ann_t
159 get_function_ann (tree var
)
161 function_ann_t ann
= function_ann (var
);
162 return (ann
) ? ann
: create_function_ann (var
);
165 /* Return the statement annotation for T, which must be a statement
166 node. Return NULL if the statement annotation doesn't exist. */
167 static inline stmt_ann_t
170 #ifdef ENABLE_CHECKING
171 gcc_assert (is_gimple_stmt (t
));
173 return (stmt_ann_t
) t
->common
.ann
;
176 /* Return the statement annotation for T, which must be a statement
177 node. Create the statement annotation if it doesn't exist. */
178 static inline stmt_ann_t
179 get_stmt_ann (tree stmt
)
181 stmt_ann_t ann
= stmt_ann (stmt
);
182 return (ann
) ? ann
: create_stmt_ann (stmt
);
185 /* Return the annotation type for annotation ANN. */
186 static inline enum tree_ann_type
187 ann_type (tree_ann_t ann
)
189 return ann
->common
.type
;
192 /* Return the basic block for statement T. */
193 static inline basic_block
198 if (TREE_CODE (t
) == PHI_NODE
)
202 return ann
? ann
->bb
: NULL
;
205 /* Return the may_aliases varray for variable VAR, or NULL if it has
207 static inline VEC(tree
, gc
) *
208 may_aliases (tree var
)
210 var_ann_t ann
= var_ann (var
);
211 return ann
? ann
->may_aliases
: NULL
;
214 /* Return the line number for EXPR, or return -1 if we have no line
215 number information for it. */
217 get_lineno (tree expr
)
219 if (expr
== NULL_TREE
)
222 if (TREE_CODE (expr
) == COMPOUND_EXPR
)
223 expr
= TREE_OPERAND (expr
, 0);
225 if (! EXPR_HAS_LOCATION (expr
))
228 return EXPR_LINENO (expr
);
231 /* Return the file name for EXPR, or return "???" if we have no
232 filename information. */
233 static inline const char *
234 get_filename (tree expr
)
236 const char *filename
;
237 if (expr
== NULL_TREE
)
240 if (TREE_CODE (expr
) == COMPOUND_EXPR
)
241 expr
= TREE_OPERAND (expr
, 0);
243 if (EXPR_HAS_LOCATION (expr
) && (filename
= EXPR_FILENAME (expr
)))
249 /* Return true if T is a noreturn call. */
251 noreturn_call_p (tree t
)
253 tree call
= get_call_expr_in (t
);
254 return call
!= 0 && (call_expr_flags (call
) & ECF_NORETURN
) != 0;
257 /* Mark statement T as modified. */
259 mark_stmt_modified (tree t
)
262 if (TREE_CODE (t
) == PHI_NODE
)
267 ann
= create_stmt_ann (t
);
268 else if (noreturn_call_p (t
))
269 VEC_safe_push (tree
, gc
, modified_noreturn_calls
, t
);
273 /* Mark statement T as modified, and update it. */
277 if (TREE_CODE (t
) == PHI_NODE
)
279 mark_stmt_modified (t
);
280 update_stmt_operands (t
);
284 update_stmt_if_modified (tree t
)
286 if (stmt_modified_p (t
))
287 update_stmt_operands (t
);
290 /* Return true if T is marked as modified, false otherwise. */
292 stmt_modified_p (tree t
)
294 stmt_ann_t ann
= stmt_ann (t
);
296 /* Note that if the statement doesn't yet have an annotation, we consider it
297 modified. This will force the next call to update_stmt_operands to scan
299 return ann
? ann
->modified
: true;
302 /* Delink an immediate_uses node from its chain. */
304 delink_imm_use (ssa_use_operand_t
*linknode
)
306 /* Return if this node is not in a list. */
307 if (linknode
->prev
== NULL
)
310 linknode
->prev
->next
= linknode
->next
;
311 linknode
->next
->prev
= linknode
->prev
;
312 linknode
->prev
= NULL
;
313 linknode
->next
= NULL
;
316 /* Link ssa_imm_use node LINKNODE into the chain for LIST. */
318 link_imm_use_to_list (ssa_use_operand_t
*linknode
, ssa_use_operand_t
*list
)
320 /* Link the new node at the head of the list. If we are in the process of
321 traversing the list, we won't visit any new nodes added to it. */
322 linknode
->prev
= list
;
323 linknode
->next
= list
->next
;
324 list
->next
->prev
= linknode
;
325 list
->next
= linknode
;
328 /* Link ssa_imm_use node LINKNODE into the chain for DEF. */
330 link_imm_use (ssa_use_operand_t
*linknode
, tree def
)
332 ssa_use_operand_t
*root
;
334 if (!def
|| TREE_CODE (def
) != SSA_NAME
)
335 linknode
->prev
= NULL
;
338 root
= &(SSA_NAME_IMM_USE_NODE (def
));
339 #ifdef ENABLE_CHECKING
341 gcc_assert (*(linknode
->use
) == def
);
343 link_imm_use_to_list (linknode
, root
);
347 /* Set the value of a use pointed to by USE to VAL. */
349 set_ssa_use_from_ptr (use_operand_p use
, tree val
)
351 delink_imm_use (use
);
353 link_imm_use (use
, val
);
356 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
359 link_imm_use_stmt (ssa_use_operand_t
*linknode
, tree def
, tree stmt
)
362 link_imm_use (linknode
, def
);
364 link_imm_use (linknode
, NULL
);
365 linknode
->stmt
= stmt
;
368 /* Relink a new node in place of an old node in the list. */
370 relink_imm_use (ssa_use_operand_t
*node
, ssa_use_operand_t
*old
)
372 /* The node one had better be in the same list. */
373 gcc_assert (*(old
->use
) == *(node
->use
));
374 node
->prev
= old
->prev
;
375 node
->next
= old
->next
;
378 old
->prev
->next
= node
;
379 old
->next
->prev
= node
;
380 /* Remove the old node from the list. */
385 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
388 relink_imm_use_stmt (ssa_use_operand_t
*linknode
, ssa_use_operand_t
*old
, tree stmt
)
391 relink_imm_use (linknode
, old
);
393 link_imm_use (linknode
, NULL
);
394 linknode
->stmt
= stmt
;
397 /* Finished the traverse of an immediate use list IMM by removing it from
400 end_safe_imm_use_traverse (imm_use_iterator
*imm
)
402 delink_imm_use (&(imm
->iter_node
));
405 /* Return true if IMM is at the end of the list. */
407 end_safe_imm_use_p (imm_use_iterator
*imm
)
409 return (imm
->imm_use
== imm
->end_p
);
412 /* Initialize iterator IMM to process the list for VAR. */
413 static inline use_operand_p
414 first_safe_imm_use (imm_use_iterator
*imm
, tree var
)
416 /* Set up and link the iterator node into the linked list for VAR. */
417 imm
->iter_node
.use
= NULL
;
418 imm
->iter_node
.stmt
= NULL_TREE
;
419 imm
->end_p
= &(SSA_NAME_IMM_USE_NODE (var
));
420 /* Check if there are 0 elements. */
421 if (imm
->end_p
->next
== imm
->end_p
)
423 imm
->imm_use
= imm
->end_p
;
424 return NULL_USE_OPERAND_P
;
427 link_imm_use (&(imm
->iter_node
), var
);
428 imm
->imm_use
= imm
->iter_node
.next
;
432 /* Bump IMM to the next use in the list. */
433 static inline use_operand_p
434 next_safe_imm_use (imm_use_iterator
*imm
)
436 ssa_use_operand_t
*ptr
;
440 /* If the next node following the iter_node is still the one referred to by
441 imm_use, then the list hasn't changed, go to the next node. */
442 if (imm
->iter_node
.next
== imm
->imm_use
)
444 ptr
= &(imm
->iter_node
);
445 /* Remove iternode from the list. */
446 delink_imm_use (ptr
);
447 imm
->imm_use
= imm
->imm_use
->next
;
448 if (! end_safe_imm_use_p (imm
))
450 /* This isn't the end, link iternode before the next use. */
451 ptr
->prev
= imm
->imm_use
->prev
;
452 ptr
->next
= imm
->imm_use
;
453 imm
->imm_use
->prev
->next
= ptr
;
454 imm
->imm_use
->prev
= ptr
;
461 /* If the 'next' value after the iterator isn't the same as it was, then
462 a node has been deleted, so we simply proceed to the node following
463 where the iterator is in the list. */
464 imm
->imm_use
= imm
->iter_node
.next
;
465 if (end_safe_imm_use_p (imm
))
467 end_safe_imm_use_traverse (imm
);
475 /* Return true is IMM has reached the end of the immediate use list. */
477 end_readonly_imm_use_p (imm_use_iterator
*imm
)
479 return (imm
->imm_use
== imm
->end_p
);
482 /* Initialize iterator IMM to process the list for VAR. */
483 static inline use_operand_p
484 first_readonly_imm_use (imm_use_iterator
*imm
, tree var
)
486 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
488 imm
->end_p
= &(SSA_NAME_IMM_USE_NODE (var
));
489 imm
->imm_use
= imm
->end_p
->next
;
490 #ifdef ENABLE_CHECKING
491 imm
->iter_node
.next
= imm
->imm_use
->next
;
493 if (end_readonly_imm_use_p (imm
))
494 return NULL_USE_OPERAND_P
;
498 /* Bump IMM to the next use in the list. */
499 static inline use_operand_p
500 next_readonly_imm_use (imm_use_iterator
*imm
)
502 use_operand_p old
= imm
->imm_use
;
504 #ifdef ENABLE_CHECKING
505 /* If this assertion fails, it indicates the 'next' pointer has changed
506 since we the last bump. This indicates that the list is being modified
507 via stmt changes, or SET_USE, or somesuch thing, and you need to be
508 using the SAFE version of the iterator. */
509 gcc_assert (imm
->iter_node
.next
== old
->next
);
510 imm
->iter_node
.next
= old
->next
->next
;
513 imm
->imm_use
= old
->next
;
514 if (end_readonly_imm_use_p (imm
))
519 /* Return true if VAR has no uses. */
521 has_zero_uses (tree var
)
523 ssa_use_operand_t
*ptr
;
524 ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
525 /* A single use means there is no items in the list. */
526 return (ptr
== ptr
->next
);
529 /* Return true if VAR has a single use. */
531 has_single_use (tree var
)
533 ssa_use_operand_t
*ptr
;
534 ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
535 /* A single use means there is one item in the list. */
536 return (ptr
!= ptr
->next
&& ptr
== ptr
->next
->next
);
539 /* If VAR has only a single immediate use, return true, and set USE_P and STMT
540 to the use pointer and stmt of occurrence. */
542 single_imm_use (tree var
, use_operand_p
*use_p
, tree
*stmt
)
544 ssa_use_operand_t
*ptr
;
546 ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
547 if (ptr
!= ptr
->next
&& ptr
== ptr
->next
->next
)
550 *stmt
= ptr
->next
->stmt
;
553 *use_p
= NULL_USE_OPERAND_P
;
558 /* Return the number of immediate uses of VAR. */
559 static inline unsigned int
560 num_imm_uses (tree var
)
562 ssa_use_operand_t
*ptr
, *start
;
565 start
= &(SSA_NAME_IMM_USE_NODE (var
));
567 for (ptr
= start
->next
; ptr
!= start
; ptr
= ptr
->next
)
574 /* Return the tree pointer to by USE. */
576 get_use_from_ptr (use_operand_p use
)
581 /* Return the tree pointer to by DEF. */
583 get_def_from_ptr (def_operand_p def
)
588 /* Return a def_operand_p pointer for the result of PHI. */
589 static inline def_operand_p
590 get_phi_result_ptr (tree phi
)
592 return &(PHI_RESULT_TREE (phi
));
595 /* Return a use_operand_p pointer for argument I of phinode PHI. */
596 static inline use_operand_p
597 get_phi_arg_def_ptr (tree phi
, int i
)
599 return &(PHI_ARG_IMM_USE_NODE (phi
,i
));
603 /* Return the bitmap of addresses taken by STMT, or NULL if it takes
606 addresses_taken (tree stmt
)
608 stmt_ann_t ann
= stmt_ann (stmt
);
609 return ann
? ann
->addresses_taken
: NULL
;
612 /* Return the PHI nodes for basic block BB, or NULL if there are no
615 phi_nodes (basic_block bb
)
617 return bb
->phi_nodes
;
620 /* Set list of phi nodes of a basic block BB to L. */
623 set_phi_nodes (basic_block bb
, tree l
)
628 for (phi
= l
; phi
; phi
= PHI_CHAIN (phi
))
629 set_bb_for_stmt (phi
, bb
);
632 /* Return the phi argument which contains the specified use. */
635 phi_arg_index_from_use (use_operand_p use
)
637 struct phi_arg_d
*element
, *root
;
641 /* Since the use is the first thing in a PHI argument element, we can
642 calculate its index based on casting it to an argument, and performing
643 pointer arithmetic. */
645 phi
= USE_STMT (use
);
646 gcc_assert (TREE_CODE (phi
) == PHI_NODE
);
648 element
= (struct phi_arg_d
*)use
;
649 root
= &(PHI_ARG_ELT (phi
, 0));
650 index
= element
- root
;
652 #ifdef ENABLE_CHECKING
653 /* Make sure the calculation doesn't have any leftover bytes. If it does,
654 then imm_use is likely not the first element in phi_arg_d. */
656 (((char *)element
- (char *)root
) % sizeof (struct phi_arg_d
)) == 0);
657 gcc_assert (index
>= 0 && index
< PHI_ARG_CAPACITY (phi
));
663 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
666 set_is_used (tree var
)
668 var_ann_t ann
= get_var_ann (var
);
673 /* ----------------------------------------------------------------------- */
675 /* Return true if T is an executable statement. */
677 is_exec_stmt (tree t
)
679 return (t
&& !IS_EMPTY_STMT (t
) && t
!= error_mark_node
);
683 /* Return true if this stmt can be the target of a control transfer stmt such
686 is_label_stmt (tree t
)
689 switch (TREE_CODE (t
))
693 case CASE_LABEL_EXPR
:
701 /* PHI nodes should contain only ssa_names and invariants. A test
702 for ssa_name is definitely simpler; don't let invalid contents
703 slip in in the meantime. */
706 phi_ssa_name_p (tree t
)
708 if (TREE_CODE (t
) == SSA_NAME
)
710 #ifdef ENABLE_CHECKING
711 gcc_assert (is_gimple_min_invariant (t
));
716 /* ----------------------------------------------------------------------- */
718 /* Return a block_stmt_iterator that points to beginning of basic
720 static inline block_stmt_iterator
721 bsi_start (basic_block bb
)
723 block_stmt_iterator bsi
;
725 bsi
.tsi
= tsi_start (bb
->stmt_list
);
728 gcc_assert (bb
->index
< NUM_FIXED_BLOCKS
);
730 bsi
.tsi
.container
= NULL
;
736 /* Return a block statement iterator that points to the first non-label
739 static inline block_stmt_iterator
740 bsi_after_labels (basic_block bb
)
742 block_stmt_iterator bsi
;
743 tree_stmt_iterator next
;
749 gcc_assert (bb
->index
< NUM_FIXED_BLOCKS
);
751 bsi
.tsi
.container
= NULL
;
755 bsi
.tsi
= tsi_start (bb
->stmt_list
);
756 if (tsi_end_p (bsi
.tsi
))
762 while (!tsi_end_p (next
)
763 && TREE_CODE (tsi_stmt (next
)) == LABEL_EXPR
)
772 /* Return a block statement iterator that points to the end of basic
774 static inline block_stmt_iterator
775 bsi_last (basic_block bb
)
777 block_stmt_iterator bsi
;
779 bsi
.tsi
= tsi_last (bb
->stmt_list
);
782 gcc_assert (bb
->index
< NUM_FIXED_BLOCKS
);
784 bsi
.tsi
.container
= NULL
;
790 /* Return true if block statement iterator I has reached the end of
793 bsi_end_p (block_stmt_iterator i
)
795 return tsi_end_p (i
.tsi
);
798 /* Modify block statement iterator I so that it is at the next
799 statement in the basic block. */
801 bsi_next (block_stmt_iterator
*i
)
806 /* Modify block statement iterator I so that it is at the previous
807 statement in the basic block. */
809 bsi_prev (block_stmt_iterator
*i
)
814 /* Return the statement that block statement iterator I is currently
817 bsi_stmt (block_stmt_iterator i
)
819 return tsi_stmt (i
.tsi
);
822 /* Return a pointer to the statement that block statement iterator I
825 bsi_stmt_ptr (block_stmt_iterator i
)
827 return tsi_stmt_ptr (i
.tsi
);
830 /* Returns the loop of the statement STMT. */
832 static inline struct loop
*
833 loop_containing_stmt (tree stmt
)
835 basic_block bb
= bb_for_stmt (stmt
);
839 return bb
->loop_father
;
842 /* Return true if VAR is a clobbered by function calls. */
844 is_call_clobbered (tree var
)
846 return is_global_var (var
)
847 || bitmap_bit_p (call_clobbered_vars
, DECL_UID (var
));
850 /* Mark variable VAR as being clobbered by function calls. */
852 mark_call_clobbered (tree var
)
854 /* If VAR is a memory tag, then we need to consider it a global
855 variable. This is because the pointer that VAR represents has
856 been found to point to either an arbitrary location or to a known
857 location in global memory. */
858 if (MTAG_P (var
) && TREE_CODE (var
) != STRUCT_FIELD_TAG
)
859 MTAG_GLOBAL (var
) = 1;
860 bitmap_set_bit (call_clobbered_vars
, DECL_UID (var
));
861 ssa_call_clobbered_cache_valid
= false;
862 ssa_ro_call_cache_valid
= false;
865 /* Clear the call-clobbered attribute from variable VAR. */
867 clear_call_clobbered (tree var
)
869 if (MTAG_P (var
) && TREE_CODE (var
) != STRUCT_FIELD_TAG
)
870 MTAG_GLOBAL (var
) = 0;
871 bitmap_clear_bit (call_clobbered_vars
, DECL_UID (var
));
872 ssa_call_clobbered_cache_valid
= false;
873 ssa_ro_call_cache_valid
= false;
876 /* Mark variable VAR as being non-addressable. */
878 mark_non_addressable (tree var
)
880 bitmap_clear_bit (call_clobbered_vars
, DECL_UID (var
));
881 TREE_ADDRESSABLE (var
) = 0;
882 ssa_call_clobbered_cache_valid
= false;
883 ssa_ro_call_cache_valid
= false;
886 /* Return the common annotation for T. Return NULL if the annotation
887 doesn't already exist. */
888 static inline tree_ann_t
891 return t
->common
.ann
;
894 /* Return a common annotation for T. Create the constant annotation if it
896 static inline tree_ann_t
897 get_tree_ann (tree t
)
899 tree_ann_t ann
= tree_ann (t
);
900 return (ann
) ? ann
: create_tree_ann (t
);
903 /* ----------------------------------------------------------------------- */
905 /* The following set of routines are used to iterator over various type of
908 /* Return true if PTR is finished iterating. */
910 op_iter_done (ssa_op_iter
*ptr
)
915 /* Get the next iterator use value for PTR. */
916 static inline use_operand_p
917 op_iter_next_use (ssa_op_iter
*ptr
)
920 #ifdef ENABLE_CHECKING
921 gcc_assert (ptr
->iter_type
== ssa_op_iter_use
);
925 use_p
= USE_OP_PTR (ptr
->uses
);
926 ptr
->uses
= ptr
->uses
->next
;
931 use_p
= VUSE_OP_PTR (ptr
->vuses
);
932 ptr
->vuses
= ptr
->vuses
->next
;
937 use_p
= MAYDEF_OP_PTR (ptr
->mayuses
);
938 ptr
->mayuses
= ptr
->mayuses
->next
;
943 use_p
= MUSTDEF_KILL_PTR (ptr
->mustkills
);
944 ptr
->mustkills
= ptr
->mustkills
->next
;
947 if (ptr
->phi_i
< ptr
->num_phi
)
949 return PHI_ARG_DEF_PTR (ptr
->phi_stmt
, (ptr
->phi_i
)++);
952 return NULL_USE_OPERAND_P
;
955 /* Get the next iterator def value for PTR. */
956 static inline def_operand_p
957 op_iter_next_def (ssa_op_iter
*ptr
)
960 #ifdef ENABLE_CHECKING
961 gcc_assert (ptr
->iter_type
== ssa_op_iter_def
);
965 def_p
= DEF_OP_PTR (ptr
->defs
);
966 ptr
->defs
= ptr
->defs
->next
;
971 def_p
= MUSTDEF_RESULT_PTR (ptr
->mustdefs
);
972 ptr
->mustdefs
= ptr
->mustdefs
->next
;
977 def_p
= MAYDEF_RESULT_PTR (ptr
->maydefs
);
978 ptr
->maydefs
= ptr
->maydefs
->next
;
982 return NULL_DEF_OPERAND_P
;
985 /* Get the next iterator tree value for PTR. */
987 op_iter_next_tree (ssa_op_iter
*ptr
)
990 #ifdef ENABLE_CHECKING
991 gcc_assert (ptr
->iter_type
== ssa_op_iter_tree
);
995 val
= USE_OP (ptr
->uses
);
996 ptr
->uses
= ptr
->uses
->next
;
1001 val
= VUSE_OP (ptr
->vuses
);
1002 ptr
->vuses
= ptr
->vuses
->next
;
1007 val
= MAYDEF_OP (ptr
->mayuses
);
1008 ptr
->mayuses
= ptr
->mayuses
->next
;
1013 val
= MUSTDEF_KILL (ptr
->mustkills
);
1014 ptr
->mustkills
= ptr
->mustkills
->next
;
1019 val
= DEF_OP (ptr
->defs
);
1020 ptr
->defs
= ptr
->defs
->next
;
1025 val
= MUSTDEF_RESULT (ptr
->mustdefs
);
1026 ptr
->mustdefs
= ptr
->mustdefs
->next
;
1031 val
= MAYDEF_RESULT (ptr
->maydefs
);
1032 ptr
->maydefs
= ptr
->maydefs
->next
;
1042 /* This functions clears the iterator PTR, and marks it done. This is normally
1043 used to prevent warnings in the compile about might be uninitialized
1047 clear_and_done_ssa_iter (ssa_op_iter
*ptr
)
1052 ptr
->maydefs
= NULL
;
1053 ptr
->mayuses
= NULL
;
1054 ptr
->mustdefs
= NULL
;
1055 ptr
->mustkills
= NULL
;
1056 ptr
->iter_type
= ssa_op_iter_none
;
1059 ptr
->phi_stmt
= NULL_TREE
;
1063 /* Initialize the iterator PTR to the virtual defs in STMT. */
1065 op_iter_init (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1067 #ifdef ENABLE_CHECKING
1068 gcc_assert (stmt_ann (stmt
));
1071 ptr
->defs
= (flags
& SSA_OP_DEF
) ? DEF_OPS (stmt
) : NULL
;
1072 ptr
->uses
= (flags
& SSA_OP_USE
) ? USE_OPS (stmt
) : NULL
;
1073 ptr
->vuses
= (flags
& SSA_OP_VUSE
) ? VUSE_OPS (stmt
) : NULL
;
1074 ptr
->maydefs
= (flags
& SSA_OP_VMAYDEF
) ? MAYDEF_OPS (stmt
) : NULL
;
1075 ptr
->mayuses
= (flags
& SSA_OP_VMAYUSE
) ? MAYDEF_OPS (stmt
) : NULL
;
1076 ptr
->mustdefs
= (flags
& SSA_OP_VMUSTDEF
) ? MUSTDEF_OPS (stmt
) : NULL
;
1077 ptr
->mustkills
= (flags
& SSA_OP_VMUSTKILL
) ? MUSTDEF_OPS (stmt
) : NULL
;
1082 ptr
->phi_stmt
= NULL_TREE
;
1085 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
1087 static inline use_operand_p
1088 op_iter_init_use (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1090 gcc_assert ((flags
& SSA_OP_ALL_DEFS
) == 0);
1091 op_iter_init (ptr
, stmt
, flags
);
1092 ptr
->iter_type
= ssa_op_iter_use
;
1093 return op_iter_next_use (ptr
);
1096 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
1098 static inline def_operand_p
1099 op_iter_init_def (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1101 gcc_assert ((flags
& (SSA_OP_ALL_USES
| SSA_OP_VIRTUAL_KILLS
)) == 0);
1102 op_iter_init (ptr
, stmt
, flags
);
1103 ptr
->iter_type
= ssa_op_iter_def
;
1104 return op_iter_next_def (ptr
);
1107 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
1108 the first operand as a tree. */
1110 op_iter_init_tree (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1112 op_iter_init (ptr
, stmt
, flags
);
1113 ptr
->iter_type
= ssa_op_iter_tree
;
1114 return op_iter_next_tree (ptr
);
1117 /* Get the next iterator mustdef value for PTR, returning the mustdef values in
1120 op_iter_next_maymustdef (use_operand_p
*use
, def_operand_p
*def
,
1123 #ifdef ENABLE_CHECKING
1124 gcc_assert (ptr
->iter_type
== ssa_op_iter_maymustdef
);
1128 *def
= MAYDEF_RESULT_PTR (ptr
->mayuses
);
1129 *use
= MAYDEF_OP_PTR (ptr
->mayuses
);
1130 ptr
->mayuses
= ptr
->mayuses
->next
;
1136 *def
= MUSTDEF_RESULT_PTR (ptr
->mustkills
);
1137 *use
= MUSTDEF_KILL_PTR (ptr
->mustkills
);
1138 ptr
->mustkills
= ptr
->mustkills
->next
;
1142 *def
= NULL_DEF_OPERAND_P
;
1143 *use
= NULL_USE_OPERAND_P
;
1149 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1152 op_iter_init_maydef (ssa_op_iter
*ptr
, tree stmt
, use_operand_p
*use
,
1155 gcc_assert (TREE_CODE (stmt
) != PHI_NODE
);
1157 op_iter_init (ptr
, stmt
, SSA_OP_VMAYUSE
);
1158 ptr
->iter_type
= ssa_op_iter_maymustdef
;
1159 op_iter_next_maymustdef (use
, def
, ptr
);
1163 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1166 op_iter_init_mustdef (ssa_op_iter
*ptr
, tree stmt
, use_operand_p
*kill
,
1169 gcc_assert (TREE_CODE (stmt
) != PHI_NODE
);
1171 op_iter_init (ptr
, stmt
, SSA_OP_VMUSTKILL
);
1172 ptr
->iter_type
= ssa_op_iter_maymustdef
;
1173 op_iter_next_maymustdef (kill
, def
, ptr
);
1176 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1179 op_iter_init_must_and_may_def (ssa_op_iter
*ptr
, tree stmt
,
1180 use_operand_p
*kill
, def_operand_p
*def
)
1182 gcc_assert (TREE_CODE (stmt
) != PHI_NODE
);
1184 op_iter_init (ptr
, stmt
, SSA_OP_VMUSTKILL
|SSA_OP_VMAYUSE
);
1185 ptr
->iter_type
= ssa_op_iter_maymustdef
;
1186 op_iter_next_maymustdef (kill
, def
, ptr
);
1190 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1193 single_ssa_tree_operand (tree stmt
, int flags
)
1198 var
= op_iter_init_tree (&iter
, stmt
, flags
);
1199 if (op_iter_done (&iter
))
1201 op_iter_next_tree (&iter
);
1202 if (op_iter_done (&iter
))
1208 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1210 static inline use_operand_p
1211 single_ssa_use_operand (tree stmt
, int flags
)
1216 var
= op_iter_init_use (&iter
, stmt
, flags
);
1217 if (op_iter_done (&iter
))
1218 return NULL_USE_OPERAND_P
;
1219 op_iter_next_use (&iter
);
1220 if (op_iter_done (&iter
))
1222 return NULL_USE_OPERAND_P
;
1227 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1229 static inline def_operand_p
1230 single_ssa_def_operand (tree stmt
, int flags
)
1235 var
= op_iter_init_def (&iter
, stmt
, flags
);
1236 if (op_iter_done (&iter
))
1237 return NULL_DEF_OPERAND_P
;
1238 op_iter_next_def (&iter
);
1239 if (op_iter_done (&iter
))
1241 return NULL_DEF_OPERAND_P
;
1245 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1248 zero_ssa_operands (tree stmt
, int flags
)
1252 op_iter_init_tree (&iter
, stmt
, flags
);
1253 return op_iter_done (&iter
);
1257 /* Return the number of operands matching FLAGS in STMT. */
1259 num_ssa_operands (tree stmt
, int flags
)
1265 FOR_EACH_SSA_TREE_OPERAND (t
, stmt
, iter
, flags
)
1271 /* Delink all immediate_use information for STMT. */
1273 delink_stmt_imm_use (tree stmt
)
1276 use_operand_p use_p
;
1278 if (ssa_operands_active ())
1279 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
,
1280 (SSA_OP_ALL_USES
| SSA_OP_ALL_KILLS
))
1281 delink_imm_use (use_p
);
1285 /* This routine will compare all the operands matching FLAGS in STMT1 to those
1286 in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */
1288 compare_ssa_operands_equal (tree stmt1
, tree stmt2
, int flags
)
1290 ssa_op_iter iter1
, iter2
;
1291 tree op1
= NULL_TREE
;
1292 tree op2
= NULL_TREE
;
1298 look1
= stmt1
&& stmt_ann (stmt1
);
1299 look2
= stmt2
&& stmt_ann (stmt2
);
1303 op1
= op_iter_init_tree (&iter1
, stmt1
, flags
);
1305 return op_iter_done (&iter1
);
1308 clear_and_done_ssa_iter (&iter1
);
1312 op2
= op_iter_init_tree (&iter2
, stmt2
, flags
);
1314 return op_iter_done (&iter2
);
1317 clear_and_done_ssa_iter (&iter2
);
1319 while (!op_iter_done (&iter1
) && !op_iter_done (&iter2
))
1323 op1
= op_iter_next_tree (&iter1
);
1324 op2
= op_iter_next_tree (&iter2
);
1327 return (op_iter_done (&iter1
) && op_iter_done (&iter2
));
1331 /* If there is a single DEF in the PHI node which matches FLAG, return it.
1332 Otherwise return NULL_DEF_OPERAND_P. */
1334 single_phi_def (tree stmt
, int flags
)
1336 tree def
= PHI_RESULT (stmt
);
1337 if ((flags
& SSA_OP_DEF
) && is_gimple_reg (def
))
1339 if ((flags
& SSA_OP_VIRTUAL_DEFS
) && !is_gimple_reg (def
))
1344 /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
1345 be either SSA_OP_USES or SAS_OP_VIRTUAL_USES. */
1346 static inline use_operand_p
1347 op_iter_init_phiuse (ssa_op_iter
*ptr
, tree phi
, int flags
)
1349 tree phi_def
= PHI_RESULT (phi
);
1352 clear_and_done_ssa_iter (ptr
);
1355 gcc_assert ((flags
& (SSA_OP_USE
| SSA_OP_VIRTUAL_USES
)) != 0);
1357 comp
= (is_gimple_reg (phi_def
) ? SSA_OP_USE
: SSA_OP_VIRTUAL_USES
);
1359 /* If the PHI node doesn't the operand type we care about, we're done. */
1360 if ((flags
& comp
) == 0)
1363 return NULL_USE_OPERAND_P
;
1366 ptr
->phi_stmt
= phi
;
1367 ptr
->num_phi
= PHI_NUM_ARGS (phi
);
1368 ptr
->iter_type
= ssa_op_iter_use
;
1369 return op_iter_next_use (ptr
);
1373 /* Start an iterator for a PHI definition. */
1375 static inline def_operand_p
1376 op_iter_init_phidef (ssa_op_iter
*ptr
, tree phi
, int flags
)
1378 tree phi_def
= PHI_RESULT (phi
);
1381 clear_and_done_ssa_iter (ptr
);
1384 gcc_assert ((flags
& (SSA_OP_DEF
| SSA_OP_VIRTUAL_DEFS
)) != 0);
1386 comp
= (is_gimple_reg (phi_def
) ? SSA_OP_DEF
: SSA_OP_VIRTUAL_DEFS
);
1388 /* If the PHI node doesn't the operand type we care about, we're done. */
1389 if ((flags
& comp
) == 0)
1392 return NULL_USE_OPERAND_P
;
1395 ptr
->iter_type
= ssa_op_iter_def
;
1396 /* The first call to op_iter_next_def will terminate the iterator since
1397 all the fields are NULL. Simply return the result here as the first and
1398 therefore only result. */
1399 return PHI_RESULT_PTR (phi
);
1404 /* Return true if VAR cannot be modified by the program. */
1407 unmodifiable_var_p (tree var
)
1409 if (TREE_CODE (var
) == SSA_NAME
)
1410 var
= SSA_NAME_VAR (var
);
1413 return TREE_READONLY (var
) && (TREE_STATIC (var
) || MTAG_GLOBAL (var
));
1415 return TREE_READONLY (var
) && (TREE_STATIC (var
) || DECL_EXTERNAL (var
));
1418 /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
1421 array_ref_contains_indirect_ref (tree ref
)
1423 gcc_assert (TREE_CODE (ref
) == ARRAY_REF
);
1426 ref
= TREE_OPERAND (ref
, 0);
1427 } while (handled_component_p (ref
));
1429 return TREE_CODE (ref
) == INDIRECT_REF
;
1432 /* Return true if REF, a handled component reference, has an ARRAY_REF
1436 ref_contains_array_ref (tree ref
)
1438 gcc_assert (handled_component_p (ref
));
1441 if (TREE_CODE (ref
) == ARRAY_REF
)
1443 ref
= TREE_OPERAND (ref
, 0);
1444 } while (handled_component_p (ref
));
1449 /* Given a variable VAR, lookup and return a pointer to the list of
1450 subvariables for it. */
1452 static inline subvar_t
*
1453 lookup_subvars_for_var (tree var
)
1455 var_ann_t ann
= var_ann (var
);
1457 return &ann
->subvars
;
1460 /* Given a variable VAR, return a linked list of subvariables for VAR, or
1461 NULL, if there are no subvariables. */
1463 static inline subvar_t
1464 get_subvars_for_var (tree var
)
1468 gcc_assert (SSA_VAR_P (var
));
1470 if (TREE_CODE (var
) == SSA_NAME
)
1471 subvars
= *(lookup_subvars_for_var (SSA_NAME_VAR (var
)));
1473 subvars
= *(lookup_subvars_for_var (var
));
1477 /* Return the subvariable of VAR at offset OFFSET. */
1480 get_subvar_at (tree var
, unsigned HOST_WIDE_INT offset
)
1484 for (sv
= get_subvars_for_var (var
); sv
; sv
= sv
->next
)
1485 if (sv
->offset
== offset
)
1491 /* Return true if V is a tree that we can have subvars for.
1492 Normally, this is any aggregate type. Also complex
1493 types which are not gimple registers can have subvars. */
1496 var_can_have_subvars (tree v
)
1498 /* Non decls or memory tags can never have subvars. */
1499 if (!DECL_P (v
) || MTAG_P (v
))
1502 /* Aggregates can have subvars. */
1503 if (AGGREGATE_TYPE_P (TREE_TYPE (v
)))
1506 /* Complex types variables which are not also a gimple register can
1508 if (TREE_CODE (TREE_TYPE (v
)) == COMPLEX_TYPE
1509 && !DECL_COMPLEX_GIMPLE_REG_P (v
))
1516 /* Return true if OFFSET and SIZE define a range that overlaps with some
1517 portion of the range of SV, a subvar. If there was an exact overlap,
1518 *EXACT will be set to true upon return. */
1521 overlap_subvar (unsigned HOST_WIDE_INT offset
, unsigned HOST_WIDE_INT size
,
1522 subvar_t sv
, bool *exact
)
1524 /* There are three possible cases of overlap.
1525 1. We can have an exact overlap, like so:
1526 |offset, offset + size |
1527 |sv->offset, sv->offset + sv->size |
1529 2. We can have offset starting after sv->offset, like so:
1531 |offset, offset + size |
1532 |sv->offset, sv->offset + sv->size |
1534 3. We can have offset starting before sv->offset, like so:
1536 |offset, offset + size |
1537 |sv->offset, sv->offset + sv->size|
1542 if (offset
== sv
->offset
&& size
== sv
->size
)
1548 else if (offset
>= sv
->offset
&& offset
< (sv
->offset
+ sv
->size
))
1552 else if (offset
< sv
->offset
&& (size
> sv
->offset
- offset
))
1560 #endif /* _TREE_FLOW_INLINE_H */