Merge from gomp branch:
[official-gcc.git] / gcc / function.c
blobf5da84c8241288fde9672f36934e84af504d49fe
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "toplev.h"
56 #include "hashtab.h"
57 #include "ggc.h"
58 #include "tm_p.h"
59 #include "integrate.h"
60 #include "langhooks.h"
61 #include "target.h"
62 #include "cfglayout.h"
63 #include "tree-gimple.h"
64 #include "tree-pass.h"
65 #include "predict.h"
67 #ifndef LOCAL_ALIGNMENT
68 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
69 #endif
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94 /* Nonzero if function being compiled doesn't contain any calls
95 (ignoring the prologue and epilogue). This is set prior to
96 local register allocation and is valid for the remaining
97 compiler passes. */
98 int current_function_is_leaf;
100 /* Nonzero if function being compiled doesn't modify the stack pointer
101 (ignoring the prologue and epilogue). This is only valid after
102 life_analysis has run. */
103 int current_function_sp_is_unchanging;
105 /* Nonzero if the function being compiled is a leaf function which only
106 uses leaf registers. This is valid after reload (specifically after
107 sched2) and is useful only if the port defines LEAF_REGISTERS. */
108 int current_function_uses_only_leaf_regs;
110 /* Nonzero once virtual register instantiation has been done.
111 assign_stack_local uses frame_pointer_rtx when this is nonzero.
112 calls.c:emit_library_call_value_1 uses it to set up
113 post-instantiation libcalls. */
114 int virtuals_instantiated;
116 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
117 static GTY(()) int funcdef_no;
119 /* These variables hold pointers to functions to create and destroy
120 target specific, per-function data structures. */
121 struct machine_function * (*init_machine_status) (void);
123 /* The currently compiled function. */
124 struct function *cfun = 0;
126 DEF_VEC_I(int);
127 DEF_VEC_ALLOC_I(int,heap);
129 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
130 static VEC(int,heap) *prologue;
131 static VEC(int,heap) *epilogue;
133 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
134 in this function. */
135 static VEC(int,heap) *sibcall_epilogue;
137 /* In order to evaluate some expressions, such as function calls returning
138 structures in memory, we need to temporarily allocate stack locations.
139 We record each allocated temporary in the following structure.
141 Associated with each temporary slot is a nesting level. When we pop up
142 one level, all temporaries associated with the previous level are freed.
143 Normally, all temporaries are freed after the execution of the statement
144 in which they were created. However, if we are inside a ({...}) grouping,
145 the result may be in a temporary and hence must be preserved. If the
146 result could be in a temporary, we preserve it if we can determine which
147 one it is in. If we cannot determine which temporary may contain the
148 result, all temporaries are preserved. A temporary is preserved by
149 pretending it was allocated at the previous nesting level.
151 Automatic variables are also assigned temporary slots, at the nesting
152 level where they are defined. They are marked a "kept" so that
153 free_temp_slots will not free them. */
155 struct temp_slot GTY(())
157 /* Points to next temporary slot. */
158 struct temp_slot *next;
159 /* Points to previous temporary slot. */
160 struct temp_slot *prev;
162 /* The rtx to used to reference the slot. */
163 rtx slot;
164 /* The rtx used to represent the address if not the address of the
165 slot above. May be an EXPR_LIST if multiple addresses exist. */
166 rtx address;
167 /* The alignment (in bits) of the slot. */
168 unsigned int align;
169 /* The size, in units, of the slot. */
170 HOST_WIDE_INT size;
171 /* The type of the object in the slot, or zero if it doesn't correspond
172 to a type. We use this to determine whether a slot can be reused.
173 It can be reused if objects of the type of the new slot will always
174 conflict with objects of the type of the old slot. */
175 tree type;
176 /* Nonzero if this temporary is currently in use. */
177 char in_use;
178 /* Nonzero if this temporary has its address taken. */
179 char addr_taken;
180 /* Nesting level at which this slot is being used. */
181 int level;
182 /* Nonzero if this should survive a call to free_temp_slots. */
183 int keep;
184 /* The offset of the slot from the frame_pointer, including extra space
185 for alignment. This info is for combine_temp_slots. */
186 HOST_WIDE_INT base_offset;
187 /* The size of the slot, including extra space for alignment. This
188 info is for combine_temp_slots. */
189 HOST_WIDE_INT full_size;
192 /* Forward declarations. */
194 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
195 struct function *);
196 static struct temp_slot *find_temp_slot_from_address (rtx);
197 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
198 static void pad_below (struct args_size *, enum machine_mode, tree);
199 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
200 static void reorder_fix_fragments (tree);
201 static int all_blocks (tree, tree *);
202 static tree *get_block_vector (tree, int *);
203 extern tree debug_find_var_in_block_tree (tree, tree);
204 /* We always define `record_insns' even if it's not used so that we
205 can always export `prologue_epilogue_contains'. */
206 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
207 static int contains (rtx, VEC(int,heap) **);
208 #ifdef HAVE_return
209 static void emit_return_into_block (basic_block, rtx);
210 #endif
211 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
212 static rtx keep_stack_depressed (rtx);
213 #endif
214 static void prepare_function_start (tree);
215 static void do_clobber_return_reg (rtx, void *);
216 static void do_use_return_reg (rtx, void *);
217 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
219 /* Pointer to chain of `struct function' for containing functions. */
220 struct function *outer_function_chain;
222 /* Given a function decl for a containing function,
223 return the `struct function' for it. */
225 struct function *
226 find_function_data (tree decl)
228 struct function *p;
230 for (p = outer_function_chain; p; p = p->outer)
231 if (p->decl == decl)
232 return p;
234 gcc_unreachable ();
237 /* Save the current context for compilation of a nested function.
238 This is called from language-specific code. The caller should use
239 the enter_nested langhook to save any language-specific state,
240 since this function knows only about language-independent
241 variables. */
243 void
244 push_function_context_to (tree context ATTRIBUTE_UNUSED)
246 struct function *p;
248 if (cfun == 0)
249 init_dummy_function_start ();
250 p = cfun;
252 p->outer = outer_function_chain;
253 outer_function_chain = p;
255 lang_hooks.function.enter_nested (p);
257 cfun = 0;
260 void
261 push_function_context (void)
263 push_function_context_to (current_function_decl);
266 /* Restore the last saved context, at the end of a nested function.
267 This function is called from language-specific code. */
269 void
270 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
272 struct function *p = outer_function_chain;
274 cfun = p;
275 outer_function_chain = p->outer;
277 current_function_decl = p->decl;
279 lang_hooks.function.leave_nested (p);
281 /* Reset variables that have known state during rtx generation. */
282 virtuals_instantiated = 0;
283 generating_concat_p = 1;
286 void
287 pop_function_context (void)
289 pop_function_context_from (current_function_decl);
292 /* Clear out all parts of the state in F that can safely be discarded
293 after the function has been parsed, but not compiled, to let
294 garbage collection reclaim the memory. */
296 void
297 free_after_parsing (struct function *f)
299 /* f->expr->forced_labels is used by code generation. */
300 /* f->emit->regno_reg_rtx is used by code generation. */
301 /* f->varasm is used by code generation. */
302 /* f->eh->eh_return_stub_label is used by code generation. */
304 lang_hooks.function.final (f);
307 /* Clear out all parts of the state in F that can safely be discarded
308 after the function has been compiled, to let garbage collection
309 reclaim the memory. */
311 void
312 free_after_compilation (struct function *f)
314 VEC_free (int, heap, prologue);
315 VEC_free (int, heap, epilogue);
316 VEC_free (int, heap, sibcall_epilogue);
318 f->eh = NULL;
319 f->expr = NULL;
320 f->emit = NULL;
321 f->varasm = NULL;
322 f->machine = NULL;
323 f->cfg = NULL;
325 f->x_avail_temp_slots = NULL;
326 f->x_used_temp_slots = NULL;
327 f->arg_offset_rtx = NULL;
328 f->return_rtx = NULL;
329 f->internal_arg_pointer = NULL;
330 f->x_nonlocal_goto_handler_labels = NULL;
331 f->x_return_label = NULL;
332 f->x_naked_return_label = NULL;
333 f->x_stack_slot_list = NULL;
334 f->x_tail_recursion_reentry = NULL;
335 f->x_arg_pointer_save_area = NULL;
336 f->x_parm_birth_insn = NULL;
337 f->original_arg_vector = NULL;
338 f->original_decl_initial = NULL;
339 f->epilogue_delay_list = NULL;
342 /* Allocate fixed slots in the stack frame of the current function. */
344 /* Return size needed for stack frame based on slots so far allocated in
345 function F.
346 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
347 the caller may have to do that. */
349 static HOST_WIDE_INT
350 get_func_frame_size (struct function *f)
352 if (FRAME_GROWS_DOWNWARD)
353 return -f->x_frame_offset;
354 else
355 return f->x_frame_offset;
358 /* Return size needed for stack frame based on slots so far allocated.
359 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
360 the caller may have to do that. */
361 HOST_WIDE_INT
362 get_frame_size (void)
364 return get_func_frame_size (cfun);
367 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
368 with machine mode MODE.
370 ALIGN controls the amount of alignment for the address of the slot:
371 0 means according to MODE,
372 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
373 -2 means use BITS_PER_UNIT,
374 positive specifies alignment boundary in bits.
376 We do not round to stack_boundary here.
378 FUNCTION specifies the function to allocate in. */
380 static rtx
381 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
382 struct function *function)
384 rtx x, addr;
385 int bigend_correction = 0;
386 unsigned int alignment;
387 int frame_off, frame_alignment, frame_phase;
389 if (align == 0)
391 tree type;
393 if (mode == BLKmode)
394 alignment = BIGGEST_ALIGNMENT;
395 else
396 alignment = GET_MODE_ALIGNMENT (mode);
398 /* Allow the target to (possibly) increase the alignment of this
399 stack slot. */
400 type = lang_hooks.types.type_for_mode (mode, 0);
401 if (type)
402 alignment = LOCAL_ALIGNMENT (type, alignment);
404 alignment /= BITS_PER_UNIT;
406 else if (align == -1)
408 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
409 size = CEIL_ROUND (size, alignment);
411 else if (align == -2)
412 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
413 else
414 alignment = align / BITS_PER_UNIT;
416 if (FRAME_GROWS_DOWNWARD)
417 function->x_frame_offset -= size;
419 /* Ignore alignment we can't do with expected alignment of the boundary. */
420 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
421 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
423 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
424 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
426 /* Calculate how many bytes the start of local variables is off from
427 stack alignment. */
428 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
429 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
430 frame_phase = frame_off ? frame_alignment - frame_off : 0;
432 /* Round the frame offset to the specified alignment. The default is
433 to always honor requests to align the stack but a port may choose to
434 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
435 if (STACK_ALIGNMENT_NEEDED
436 || mode != BLKmode
437 || size != 0)
439 /* We must be careful here, since FRAME_OFFSET might be negative and
440 division with a negative dividend isn't as well defined as we might
441 like. So we instead assume that ALIGNMENT is a power of two and
442 use logical operations which are unambiguous. */
443 if (FRAME_GROWS_DOWNWARD)
444 function->x_frame_offset
445 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
446 (unsigned HOST_WIDE_INT) alignment)
447 + frame_phase);
448 else
449 function->x_frame_offset
450 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
451 (unsigned HOST_WIDE_INT) alignment)
452 + frame_phase);
455 /* On a big-endian machine, if we are allocating more space than we will use,
456 use the least significant bytes of those that are allocated. */
457 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
458 bigend_correction = size - GET_MODE_SIZE (mode);
460 /* If we have already instantiated virtual registers, return the actual
461 address relative to the frame pointer. */
462 if (function == cfun && virtuals_instantiated)
463 addr = plus_constant (frame_pointer_rtx,
464 trunc_int_for_mode
465 (frame_offset + bigend_correction
466 + STARTING_FRAME_OFFSET, Pmode));
467 else
468 addr = plus_constant (virtual_stack_vars_rtx,
469 trunc_int_for_mode
470 (function->x_frame_offset + bigend_correction,
471 Pmode));
473 if (!FRAME_GROWS_DOWNWARD)
474 function->x_frame_offset += size;
476 x = gen_rtx_MEM (mode, addr);
477 MEM_NOTRAP_P (x) = 1;
479 function->x_stack_slot_list
480 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
482 /* Try to detect frame size overflows on native platforms. */
483 #if BITS_PER_WORD >= 32
484 if ((FRAME_GROWS_DOWNWARD
485 ? (unsigned HOST_WIDE_INT) -function->x_frame_offset
486 : (unsigned HOST_WIDE_INT) function->x_frame_offset)
487 > ((unsigned HOST_WIDE_INT) 1 << (BITS_PER_WORD - 1))
488 /* Leave room for the fixed part of the frame. */
489 - 64 * UNITS_PER_WORD)
491 error ("%Jtotal size of local objects too large", function->decl);
492 /* Avoid duplicate error messages as much as possible. */
493 function->x_frame_offset = 0;
495 #endif
497 return x;
500 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
501 current function. */
504 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
506 return assign_stack_local_1 (mode, size, align, cfun);
510 /* Removes temporary slot TEMP from LIST. */
512 static void
513 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
515 if (temp->next)
516 temp->next->prev = temp->prev;
517 if (temp->prev)
518 temp->prev->next = temp->next;
519 else
520 *list = temp->next;
522 temp->prev = temp->next = NULL;
525 /* Inserts temporary slot TEMP to LIST. */
527 static void
528 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
530 temp->next = *list;
531 if (*list)
532 (*list)->prev = temp;
533 temp->prev = NULL;
534 *list = temp;
537 /* Returns the list of used temp slots at LEVEL. */
539 static struct temp_slot **
540 temp_slots_at_level (int level)
543 if (!used_temp_slots)
544 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
546 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
547 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
549 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
552 /* Returns the maximal temporary slot level. */
554 static int
555 max_slot_level (void)
557 if (!used_temp_slots)
558 return -1;
560 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
563 /* Moves temporary slot TEMP to LEVEL. */
565 static void
566 move_slot_to_level (struct temp_slot *temp, int level)
568 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
569 insert_slot_to_list (temp, temp_slots_at_level (level));
570 temp->level = level;
573 /* Make temporary slot TEMP available. */
575 static void
576 make_slot_available (struct temp_slot *temp)
578 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
579 insert_slot_to_list (temp, &avail_temp_slots);
580 temp->in_use = 0;
581 temp->level = -1;
584 /* Allocate a temporary stack slot and record it for possible later
585 reuse.
587 MODE is the machine mode to be given to the returned rtx.
589 SIZE is the size in units of the space required. We do no rounding here
590 since assign_stack_local will do any required rounding.
592 KEEP is 1 if this slot is to be retained after a call to
593 free_temp_slots. Automatic variables for a block are allocated
594 with this flag. KEEP values of 2 or 3 were needed respectively
595 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
596 or for SAVE_EXPRs, but they are now unused.
598 TYPE is the type that will be used for the stack slot. */
601 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
602 int keep, tree type)
604 unsigned int align;
605 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
606 rtx slot;
608 /* If SIZE is -1 it means that somebody tried to allocate a temporary
609 of a variable size. */
610 gcc_assert (size != -1);
612 /* These are now unused. */
613 gcc_assert (keep <= 1);
615 if (mode == BLKmode)
616 align = BIGGEST_ALIGNMENT;
617 else
618 align = GET_MODE_ALIGNMENT (mode);
620 if (! type)
621 type = lang_hooks.types.type_for_mode (mode, 0);
623 if (type)
624 align = LOCAL_ALIGNMENT (type, align);
626 /* Try to find an available, already-allocated temporary of the proper
627 mode which meets the size and alignment requirements. Choose the
628 smallest one with the closest alignment. */
629 for (p = avail_temp_slots; p; p = p->next)
631 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
632 && objects_must_conflict_p (p->type, type)
633 && (best_p == 0 || best_p->size > p->size
634 || (best_p->size == p->size && best_p->align > p->align)))
636 if (p->align == align && p->size == size)
638 selected = p;
639 cut_slot_from_list (selected, &avail_temp_slots);
640 best_p = 0;
641 break;
643 best_p = p;
647 /* Make our best, if any, the one to use. */
648 if (best_p)
650 selected = best_p;
651 cut_slot_from_list (selected, &avail_temp_slots);
653 /* If there are enough aligned bytes left over, make them into a new
654 temp_slot so that the extra bytes don't get wasted. Do this only
655 for BLKmode slots, so that we can be sure of the alignment. */
656 if (GET_MODE (best_p->slot) == BLKmode)
658 int alignment = best_p->align / BITS_PER_UNIT;
659 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
661 if (best_p->size - rounded_size >= alignment)
663 p = ggc_alloc (sizeof (struct temp_slot));
664 p->in_use = p->addr_taken = 0;
665 p->size = best_p->size - rounded_size;
666 p->base_offset = best_p->base_offset + rounded_size;
667 p->full_size = best_p->full_size - rounded_size;
668 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
669 p->align = best_p->align;
670 p->address = 0;
671 p->type = best_p->type;
672 insert_slot_to_list (p, &avail_temp_slots);
674 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
675 stack_slot_list);
677 best_p->size = rounded_size;
678 best_p->full_size = rounded_size;
683 /* If we still didn't find one, make a new temporary. */
684 if (selected == 0)
686 HOST_WIDE_INT frame_offset_old = frame_offset;
688 p = ggc_alloc (sizeof (struct temp_slot));
690 /* We are passing an explicit alignment request to assign_stack_local.
691 One side effect of that is assign_stack_local will not round SIZE
692 to ensure the frame offset remains suitably aligned.
694 So for requests which depended on the rounding of SIZE, we go ahead
695 and round it now. We also make sure ALIGNMENT is at least
696 BIGGEST_ALIGNMENT. */
697 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
698 p->slot = assign_stack_local (mode,
699 (mode == BLKmode
700 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
701 : size),
702 align);
704 p->align = align;
706 /* The following slot size computation is necessary because we don't
707 know the actual size of the temporary slot until assign_stack_local
708 has performed all the frame alignment and size rounding for the
709 requested temporary. Note that extra space added for alignment
710 can be either above or below this stack slot depending on which
711 way the frame grows. We include the extra space if and only if it
712 is above this slot. */
713 if (FRAME_GROWS_DOWNWARD)
714 p->size = frame_offset_old - frame_offset;
715 else
716 p->size = size;
718 /* Now define the fields used by combine_temp_slots. */
719 if (FRAME_GROWS_DOWNWARD)
721 p->base_offset = frame_offset;
722 p->full_size = frame_offset_old - frame_offset;
724 else
726 p->base_offset = frame_offset_old;
727 p->full_size = frame_offset - frame_offset_old;
729 p->address = 0;
731 selected = p;
734 p = selected;
735 p->in_use = 1;
736 p->addr_taken = 0;
737 p->type = type;
738 p->level = temp_slot_level;
739 p->keep = keep;
741 pp = temp_slots_at_level (p->level);
742 insert_slot_to_list (p, pp);
744 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
745 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
746 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
748 /* If we know the alias set for the memory that will be used, use
749 it. If there's no TYPE, then we don't know anything about the
750 alias set for the memory. */
751 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
752 set_mem_align (slot, align);
754 /* If a type is specified, set the relevant flags. */
755 if (type != 0)
757 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
758 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
760 MEM_NOTRAP_P (slot) = 1;
762 return slot;
765 /* Allocate a temporary stack slot and record it for possible later
766 reuse. First three arguments are same as in preceding function. */
769 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
771 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
774 /* Assign a temporary.
775 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
776 and so that should be used in error messages. In either case, we
777 allocate of the given type.
778 KEEP is as for assign_stack_temp.
779 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
780 it is 0 if a register is OK.
781 DONT_PROMOTE is 1 if we should not promote values in register
782 to wider modes. */
785 assign_temp (tree type_or_decl, int keep, int memory_required,
786 int dont_promote ATTRIBUTE_UNUSED)
788 tree type, decl;
789 enum machine_mode mode;
790 #ifdef PROMOTE_MODE
791 int unsignedp;
792 #endif
794 if (DECL_P (type_or_decl))
795 decl = type_or_decl, type = TREE_TYPE (decl);
796 else
797 decl = NULL, type = type_or_decl;
799 mode = TYPE_MODE (type);
800 #ifdef PROMOTE_MODE
801 unsignedp = TYPE_UNSIGNED (type);
802 #endif
804 if (mode == BLKmode || memory_required)
806 HOST_WIDE_INT size = int_size_in_bytes (type);
807 tree size_tree;
808 rtx tmp;
810 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
811 problems with allocating the stack space. */
812 if (size == 0)
813 size = 1;
815 /* Unfortunately, we don't yet know how to allocate variable-sized
816 temporaries. However, sometimes we have a fixed upper limit on
817 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
818 instead. This is the case for Chill variable-sized strings. */
819 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
820 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
821 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
822 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
824 /* If we still haven't been able to get a size, see if the language
825 can compute a maximum size. */
826 if (size == -1
827 && (size_tree = lang_hooks.types.max_size (type)) != 0
828 && host_integerp (size_tree, 1))
829 size = tree_low_cst (size_tree, 1);
831 /* The size of the temporary may be too large to fit into an integer. */
832 /* ??? Not sure this should happen except for user silliness, so limit
833 this to things that aren't compiler-generated temporaries. The
834 rest of the time we'll die in assign_stack_temp_for_type. */
835 if (decl && size == -1
836 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
838 error ("size of variable %q+D is too large", decl);
839 size = 1;
842 tmp = assign_stack_temp_for_type (mode, size, keep, type);
843 return tmp;
846 #ifdef PROMOTE_MODE
847 if (! dont_promote)
848 mode = promote_mode (type, mode, &unsignedp, 0);
849 #endif
851 return gen_reg_rtx (mode);
854 /* Combine temporary stack slots which are adjacent on the stack.
856 This allows for better use of already allocated stack space. This is only
857 done for BLKmode slots because we can be sure that we won't have alignment
858 problems in this case. */
860 static void
861 combine_temp_slots (void)
863 struct temp_slot *p, *q, *next, *next_q;
864 int num_slots;
866 /* We can't combine slots, because the information about which slot
867 is in which alias set will be lost. */
868 if (flag_strict_aliasing)
869 return;
871 /* If there are a lot of temp slots, don't do anything unless
872 high levels of optimization. */
873 if (! flag_expensive_optimizations)
874 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
875 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
876 return;
878 for (p = avail_temp_slots; p; p = next)
880 int delete_p = 0;
882 next = p->next;
884 if (GET_MODE (p->slot) != BLKmode)
885 continue;
887 for (q = p->next; q; q = next_q)
889 int delete_q = 0;
891 next_q = q->next;
893 if (GET_MODE (q->slot) != BLKmode)
894 continue;
896 if (p->base_offset + p->full_size == q->base_offset)
898 /* Q comes after P; combine Q into P. */
899 p->size += q->size;
900 p->full_size += q->full_size;
901 delete_q = 1;
903 else if (q->base_offset + q->full_size == p->base_offset)
905 /* P comes after Q; combine P into Q. */
906 q->size += p->size;
907 q->full_size += p->full_size;
908 delete_p = 1;
909 break;
911 if (delete_q)
912 cut_slot_from_list (q, &avail_temp_slots);
915 /* Either delete P or advance past it. */
916 if (delete_p)
917 cut_slot_from_list (p, &avail_temp_slots);
921 /* Find the temp slot corresponding to the object at address X. */
923 static struct temp_slot *
924 find_temp_slot_from_address (rtx x)
926 struct temp_slot *p;
927 rtx next;
928 int i;
930 for (i = max_slot_level (); i >= 0; i--)
931 for (p = *temp_slots_at_level (i); p; p = p->next)
933 if (XEXP (p->slot, 0) == x
934 || p->address == x
935 || (GET_CODE (x) == PLUS
936 && XEXP (x, 0) == virtual_stack_vars_rtx
937 && GET_CODE (XEXP (x, 1)) == CONST_INT
938 && INTVAL (XEXP (x, 1)) >= p->base_offset
939 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
940 return p;
942 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
943 for (next = p->address; next; next = XEXP (next, 1))
944 if (XEXP (next, 0) == x)
945 return p;
948 /* If we have a sum involving a register, see if it points to a temp
949 slot. */
950 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
951 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
952 return p;
953 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
954 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
955 return p;
957 return 0;
960 /* Indicate that NEW is an alternate way of referring to the temp slot
961 that previously was known by OLD. */
963 void
964 update_temp_slot_address (rtx old, rtx new)
966 struct temp_slot *p;
968 if (rtx_equal_p (old, new))
969 return;
971 p = find_temp_slot_from_address (old);
973 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
974 is a register, see if one operand of the PLUS is a temporary
975 location. If so, NEW points into it. Otherwise, if both OLD and
976 NEW are a PLUS and if there is a register in common between them.
977 If so, try a recursive call on those values. */
978 if (p == 0)
980 if (GET_CODE (old) != PLUS)
981 return;
983 if (REG_P (new))
985 update_temp_slot_address (XEXP (old, 0), new);
986 update_temp_slot_address (XEXP (old, 1), new);
987 return;
989 else if (GET_CODE (new) != PLUS)
990 return;
992 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
993 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
994 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
995 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
996 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
997 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
998 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
999 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1001 return;
1004 /* Otherwise add an alias for the temp's address. */
1005 else if (p->address == 0)
1006 p->address = new;
1007 else
1009 if (GET_CODE (p->address) != EXPR_LIST)
1010 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1012 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1016 /* If X could be a reference to a temporary slot, mark the fact that its
1017 address was taken. */
1019 void
1020 mark_temp_addr_taken (rtx x)
1022 struct temp_slot *p;
1024 if (x == 0)
1025 return;
1027 /* If X is not in memory or is at a constant address, it cannot be in
1028 a temporary slot. */
1029 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1030 return;
1032 p = find_temp_slot_from_address (XEXP (x, 0));
1033 if (p != 0)
1034 p->addr_taken = 1;
1037 /* If X could be a reference to a temporary slot, mark that slot as
1038 belonging to the to one level higher than the current level. If X
1039 matched one of our slots, just mark that one. Otherwise, we can't
1040 easily predict which it is, so upgrade all of them. Kept slots
1041 need not be touched.
1043 This is called when an ({...}) construct occurs and a statement
1044 returns a value in memory. */
1046 void
1047 preserve_temp_slots (rtx x)
1049 struct temp_slot *p = 0, *next;
1051 /* If there is no result, we still might have some objects whose address
1052 were taken, so we need to make sure they stay around. */
1053 if (x == 0)
1055 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1057 next = p->next;
1059 if (p->addr_taken)
1060 move_slot_to_level (p, temp_slot_level - 1);
1063 return;
1066 /* If X is a register that is being used as a pointer, see if we have
1067 a temporary slot we know it points to. To be consistent with
1068 the code below, we really should preserve all non-kept slots
1069 if we can't find a match, but that seems to be much too costly. */
1070 if (REG_P (x) && REG_POINTER (x))
1071 p = find_temp_slot_from_address (x);
1073 /* If X is not in memory or is at a constant address, it cannot be in
1074 a temporary slot, but it can contain something whose address was
1075 taken. */
1076 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1078 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1080 next = p->next;
1082 if (p->addr_taken)
1083 move_slot_to_level (p, temp_slot_level - 1);
1086 return;
1089 /* First see if we can find a match. */
1090 if (p == 0)
1091 p = find_temp_slot_from_address (XEXP (x, 0));
1093 if (p != 0)
1095 /* Move everything at our level whose address was taken to our new
1096 level in case we used its address. */
1097 struct temp_slot *q;
1099 if (p->level == temp_slot_level)
1101 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1103 next = q->next;
1105 if (p != q && q->addr_taken)
1106 move_slot_to_level (q, temp_slot_level - 1);
1109 move_slot_to_level (p, temp_slot_level - 1);
1110 p->addr_taken = 0;
1112 return;
1115 /* Otherwise, preserve all non-kept slots at this level. */
1116 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1118 next = p->next;
1120 if (!p->keep)
1121 move_slot_to_level (p, temp_slot_level - 1);
1125 /* Free all temporaries used so far. This is normally called at the
1126 end of generating code for a statement. */
1128 void
1129 free_temp_slots (void)
1131 struct temp_slot *p, *next;
1133 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1135 next = p->next;
1137 if (!p->keep)
1138 make_slot_available (p);
1141 combine_temp_slots ();
1144 /* Push deeper into the nesting level for stack temporaries. */
1146 void
1147 push_temp_slots (void)
1149 temp_slot_level++;
1152 /* Pop a temporary nesting level. All slots in use in the current level
1153 are freed. */
1155 void
1156 pop_temp_slots (void)
1158 struct temp_slot *p, *next;
1160 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1162 next = p->next;
1163 make_slot_available (p);
1166 combine_temp_slots ();
1168 temp_slot_level--;
1171 /* Initialize temporary slots. */
1173 void
1174 init_temp_slots (void)
1176 /* We have not allocated any temporaries yet. */
1177 avail_temp_slots = 0;
1178 used_temp_slots = 0;
1179 temp_slot_level = 0;
1182 /* These routines are responsible for converting virtual register references
1183 to the actual hard register references once RTL generation is complete.
1185 The following four variables are used for communication between the
1186 routines. They contain the offsets of the virtual registers from their
1187 respective hard registers. */
1189 static int in_arg_offset;
1190 static int var_offset;
1191 static int dynamic_offset;
1192 static int out_arg_offset;
1193 static int cfa_offset;
1195 /* In most machines, the stack pointer register is equivalent to the bottom
1196 of the stack. */
1198 #ifndef STACK_POINTER_OFFSET
1199 #define STACK_POINTER_OFFSET 0
1200 #endif
1202 /* If not defined, pick an appropriate default for the offset of dynamically
1203 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1204 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1206 #ifndef STACK_DYNAMIC_OFFSET
1208 /* The bottom of the stack points to the actual arguments. If
1209 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1210 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1211 stack space for register parameters is not pushed by the caller, but
1212 rather part of the fixed stack areas and hence not included in
1213 `current_function_outgoing_args_size'. Nevertheless, we must allow
1214 for it when allocating stack dynamic objects. */
1216 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1217 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1218 ((ACCUMULATE_OUTGOING_ARGS \
1219 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1220 + (STACK_POINTER_OFFSET)) \
1222 #else
1223 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1224 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1225 + (STACK_POINTER_OFFSET))
1226 #endif
1227 #endif
1230 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1231 is a virtual register, return the equivalent hard register and set the
1232 offset indirectly through the pointer. Otherwise, return 0. */
1234 static rtx
1235 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1237 rtx new;
1238 HOST_WIDE_INT offset;
1240 if (x == virtual_incoming_args_rtx)
1241 new = arg_pointer_rtx, offset = in_arg_offset;
1242 else if (x == virtual_stack_vars_rtx)
1243 new = frame_pointer_rtx, offset = var_offset;
1244 else if (x == virtual_stack_dynamic_rtx)
1245 new = stack_pointer_rtx, offset = dynamic_offset;
1246 else if (x == virtual_outgoing_args_rtx)
1247 new = stack_pointer_rtx, offset = out_arg_offset;
1248 else if (x == virtual_cfa_rtx)
1250 #ifdef FRAME_POINTER_CFA_OFFSET
1251 new = frame_pointer_rtx;
1252 #else
1253 new = arg_pointer_rtx;
1254 #endif
1255 offset = cfa_offset;
1257 else
1258 return NULL_RTX;
1260 *poffset = offset;
1261 return new;
1264 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1265 Instantiate any virtual registers present inside of *LOC. The expression
1266 is simplified, as much as possible, but is not to be considered "valid"
1267 in any sense implied by the target. If any change is made, set CHANGED
1268 to true. */
1270 static int
1271 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1273 HOST_WIDE_INT offset;
1274 bool *changed = (bool *) data;
1275 rtx x, new;
1277 x = *loc;
1278 if (x == 0)
1279 return 0;
1281 switch (GET_CODE (x))
1283 case REG:
1284 new = instantiate_new_reg (x, &offset);
1285 if (new)
1287 *loc = plus_constant (new, offset);
1288 if (changed)
1289 *changed = true;
1291 return -1;
1293 case PLUS:
1294 new = instantiate_new_reg (XEXP (x, 0), &offset);
1295 if (new)
1297 new = plus_constant (new, offset);
1298 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1299 if (changed)
1300 *changed = true;
1301 return -1;
1304 /* FIXME -- from old code */
1305 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1306 we can commute the PLUS and SUBREG because pointers into the
1307 frame are well-behaved. */
1308 break;
1310 default:
1311 break;
1314 return 0;
1317 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1318 matches the predicate for insn CODE operand OPERAND. */
1320 static int
1321 safe_insn_predicate (int code, int operand, rtx x)
1323 const struct insn_operand_data *op_data;
1325 if (code < 0)
1326 return true;
1328 op_data = &insn_data[code].operand[operand];
1329 if (op_data->predicate == NULL)
1330 return true;
1332 return op_data->predicate (x, op_data->mode);
1335 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1336 registers present inside of insn. The result will be a valid insn. */
1338 static void
1339 instantiate_virtual_regs_in_insn (rtx insn)
1341 HOST_WIDE_INT offset;
1342 int insn_code, i;
1343 bool any_change = false;
1344 rtx set, new, x, seq;
1346 /* There are some special cases to be handled first. */
1347 set = single_set (insn);
1348 if (set)
1350 /* We're allowed to assign to a virtual register. This is interpreted
1351 to mean that the underlying register gets assigned the inverse
1352 transformation. This is used, for example, in the handling of
1353 non-local gotos. */
1354 new = instantiate_new_reg (SET_DEST (set), &offset);
1355 if (new)
1357 start_sequence ();
1359 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1360 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1361 GEN_INT (-offset));
1362 x = force_operand (x, new);
1363 if (x != new)
1364 emit_move_insn (new, x);
1366 seq = get_insns ();
1367 end_sequence ();
1369 emit_insn_before (seq, insn);
1370 delete_insn (insn);
1371 return;
1374 /* Handle a straight copy from a virtual register by generating a
1375 new add insn. The difference between this and falling through
1376 to the generic case is avoiding a new pseudo and eliminating a
1377 move insn in the initial rtl stream. */
1378 new = instantiate_new_reg (SET_SRC (set), &offset);
1379 if (new && offset != 0
1380 && REG_P (SET_DEST (set))
1381 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1383 start_sequence ();
1385 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1386 new, GEN_INT (offset), SET_DEST (set),
1387 1, OPTAB_LIB_WIDEN);
1388 if (x != SET_DEST (set))
1389 emit_move_insn (SET_DEST (set), x);
1391 seq = get_insns ();
1392 end_sequence ();
1394 emit_insn_before (seq, insn);
1395 delete_insn (insn);
1396 return;
1399 extract_insn (insn);
1400 insn_code = INSN_CODE (insn);
1402 /* Handle a plus involving a virtual register by determining if the
1403 operands remain valid if they're modified in place. */
1404 if (GET_CODE (SET_SRC (set)) == PLUS
1405 && recog_data.n_operands >= 3
1406 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1407 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1408 && GET_CODE (recog_data.operand[2]) == CONST_INT
1409 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1411 offset += INTVAL (recog_data.operand[2]);
1413 /* If the sum is zero, then replace with a plain move. */
1414 if (offset == 0
1415 && REG_P (SET_DEST (set))
1416 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1418 start_sequence ();
1419 emit_move_insn (SET_DEST (set), new);
1420 seq = get_insns ();
1421 end_sequence ();
1423 emit_insn_before (seq, insn);
1424 delete_insn (insn);
1425 return;
1428 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1430 /* Using validate_change and apply_change_group here leaves
1431 recog_data in an invalid state. Since we know exactly what
1432 we want to check, do those two by hand. */
1433 if (safe_insn_predicate (insn_code, 1, new)
1434 && safe_insn_predicate (insn_code, 2, x))
1436 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1437 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1438 any_change = true;
1440 /* Fall through into the regular operand fixup loop in
1441 order to take care of operands other than 1 and 2. */
1445 else
1447 extract_insn (insn);
1448 insn_code = INSN_CODE (insn);
1451 /* In the general case, we expect virtual registers to appear only in
1452 operands, and then only as either bare registers or inside memories. */
1453 for (i = 0; i < recog_data.n_operands; ++i)
1455 x = recog_data.operand[i];
1456 switch (GET_CODE (x))
1458 case MEM:
1460 rtx addr = XEXP (x, 0);
1461 bool changed = false;
1463 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1464 if (!changed)
1465 continue;
1467 start_sequence ();
1468 x = replace_equiv_address (x, addr);
1469 seq = get_insns ();
1470 end_sequence ();
1471 if (seq)
1472 emit_insn_before (seq, insn);
1474 break;
1476 case REG:
1477 new = instantiate_new_reg (x, &offset);
1478 if (new == NULL)
1479 continue;
1480 if (offset == 0)
1481 x = new;
1482 else
1484 start_sequence ();
1486 /* Careful, special mode predicates may have stuff in
1487 insn_data[insn_code].operand[i].mode that isn't useful
1488 to us for computing a new value. */
1489 /* ??? Recognize address_operand and/or "p" constraints
1490 to see if (plus new offset) is a valid before we put
1491 this through expand_simple_binop. */
1492 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1493 GEN_INT (offset), NULL_RTX,
1494 1, OPTAB_LIB_WIDEN);
1495 seq = get_insns ();
1496 end_sequence ();
1497 emit_insn_before (seq, insn);
1499 break;
1501 case SUBREG:
1502 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1503 if (new == NULL)
1504 continue;
1505 if (offset != 0)
1507 start_sequence ();
1508 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1509 GEN_INT (offset), NULL_RTX,
1510 1, OPTAB_LIB_WIDEN);
1511 seq = get_insns ();
1512 end_sequence ();
1513 emit_insn_before (seq, insn);
1515 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1516 GET_MODE (new), SUBREG_BYTE (x));
1517 break;
1519 default:
1520 continue;
1523 /* At this point, X contains the new value for the operand.
1524 Validate the new value vs the insn predicate. Note that
1525 asm insns will have insn_code -1 here. */
1526 if (!safe_insn_predicate (insn_code, i, x))
1527 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1529 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1530 any_change = true;
1533 if (any_change)
1535 /* Propagate operand changes into the duplicates. */
1536 for (i = 0; i < recog_data.n_dups; ++i)
1537 *recog_data.dup_loc[i]
1538 = recog_data.operand[(unsigned)recog_data.dup_num[i]];
1540 /* Force re-recognition of the instruction for validation. */
1541 INSN_CODE (insn) = -1;
1544 if (asm_noperands (PATTERN (insn)) >= 0)
1546 if (!check_asm_operands (PATTERN (insn)))
1548 error_for_asm (insn, "impossible constraint in %<asm%>");
1549 delete_insn (insn);
1552 else
1554 if (recog_memoized (insn) < 0)
1555 fatal_insn_not_found (insn);
1559 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1560 do any instantiation required. */
1562 static void
1563 instantiate_decl (rtx x)
1565 rtx addr;
1567 if (x == 0)
1568 return;
1570 /* If this is a CONCAT, recurse for the pieces. */
1571 if (GET_CODE (x) == CONCAT)
1573 instantiate_decl (XEXP (x, 0));
1574 instantiate_decl (XEXP (x, 1));
1575 return;
1578 /* If this is not a MEM, no need to do anything. Similarly if the
1579 address is a constant or a register that is not a virtual register. */
1580 if (!MEM_P (x))
1581 return;
1583 addr = XEXP (x, 0);
1584 if (CONSTANT_P (addr)
1585 || (REG_P (addr)
1586 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1587 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1588 return;
1590 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1593 /* Helper for instantiate_decls called via walk_tree: Process all decls
1594 in the given DECL_VALUE_EXPR. */
1596 static tree
1597 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1599 tree t = *tp;
1600 if (! EXPR_P (t))
1602 *walk_subtrees = 0;
1603 if (DECL_P (t) && DECL_RTL_SET_P (t))
1604 instantiate_decl (DECL_RTL (t));
1606 return NULL;
1609 /* Subroutine of instantiate_decls: Process all decls in the given
1610 BLOCK node and all its subblocks. */
1612 static void
1613 instantiate_decls_1 (tree let)
1615 tree t;
1617 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1619 if (DECL_RTL_SET_P (t))
1620 instantiate_decl (DECL_RTL (t));
1621 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1623 tree v = DECL_VALUE_EXPR (t);
1624 walk_tree (&v, instantiate_expr, NULL, NULL);
1628 /* Process all subblocks. */
1629 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1630 instantiate_decls_1 (t);
1633 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1634 all virtual registers in their DECL_RTL's. */
1636 static void
1637 instantiate_decls (tree fndecl)
1639 tree decl;
1641 /* Process all parameters of the function. */
1642 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1644 instantiate_decl (DECL_RTL (decl));
1645 instantiate_decl (DECL_INCOMING_RTL (decl));
1646 if (DECL_HAS_VALUE_EXPR_P (decl))
1648 tree v = DECL_VALUE_EXPR (decl);
1649 walk_tree (&v, instantiate_expr, NULL, NULL);
1653 /* Now process all variables defined in the function or its subblocks. */
1654 instantiate_decls_1 (DECL_INITIAL (fndecl));
1657 /* Pass through the INSNS of function FNDECL and convert virtual register
1658 references to hard register references. */
1660 void
1661 instantiate_virtual_regs (void)
1663 rtx insn;
1665 /* Compute the offsets to use for this function. */
1666 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1667 var_offset = STARTING_FRAME_OFFSET;
1668 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1669 out_arg_offset = STACK_POINTER_OFFSET;
1670 #ifdef FRAME_POINTER_CFA_OFFSET
1671 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1672 #else
1673 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1674 #endif
1676 /* Initialize recognition, indicating that volatile is OK. */
1677 init_recog ();
1679 /* Scan through all the insns, instantiating every virtual register still
1680 present. */
1681 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1682 if (INSN_P (insn))
1684 /* These patterns in the instruction stream can never be recognized.
1685 Fortunately, they shouldn't contain virtual registers either. */
1686 if (GET_CODE (PATTERN (insn)) == USE
1687 || GET_CODE (PATTERN (insn)) == CLOBBER
1688 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1689 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1690 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1691 continue;
1693 instantiate_virtual_regs_in_insn (insn);
1695 if (INSN_DELETED_P (insn))
1696 continue;
1698 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1700 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1701 if (GET_CODE (insn) == CALL_INSN)
1702 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1703 instantiate_virtual_regs_in_rtx, NULL);
1706 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1707 instantiate_decls (current_function_decl);
1709 /* Indicate that, from now on, assign_stack_local should use
1710 frame_pointer_rtx. */
1711 virtuals_instantiated = 1;
1714 struct tree_opt_pass pass_instantiate_virtual_regs =
1716 "vregs", /* name */
1717 NULL, /* gate */
1718 instantiate_virtual_regs, /* execute */
1719 NULL, /* sub */
1720 NULL, /* next */
1721 0, /* static_pass_number */
1722 0, /* tv_id */
1723 0, /* properties_required */
1724 0, /* properties_provided */
1725 0, /* properties_destroyed */
1726 0, /* todo_flags_start */
1727 TODO_dump_func, /* todo_flags_finish */
1728 0 /* letter */
1732 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1733 This means a type for which function calls must pass an address to the
1734 function or get an address back from the function.
1735 EXP may be a type node or an expression (whose type is tested). */
1738 aggregate_value_p (tree exp, tree fntype)
1740 int i, regno, nregs;
1741 rtx reg;
1743 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1745 if (fntype)
1746 switch (TREE_CODE (fntype))
1748 case CALL_EXPR:
1749 fntype = get_callee_fndecl (fntype);
1750 fntype = fntype ? TREE_TYPE (fntype) : 0;
1751 break;
1752 case FUNCTION_DECL:
1753 fntype = TREE_TYPE (fntype);
1754 break;
1755 case FUNCTION_TYPE:
1756 case METHOD_TYPE:
1757 break;
1758 case IDENTIFIER_NODE:
1759 fntype = 0;
1760 break;
1761 default:
1762 /* We don't expect other rtl types here. */
1763 gcc_unreachable ();
1766 if (TREE_CODE (type) == VOID_TYPE)
1767 return 0;
1768 /* If the front end has decided that this needs to be passed by
1769 reference, do so. */
1770 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1771 && DECL_BY_REFERENCE (exp))
1772 return 1;
1773 if (targetm.calls.return_in_memory (type, fntype))
1774 return 1;
1775 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1776 and thus can't be returned in registers. */
1777 if (TREE_ADDRESSABLE (type))
1778 return 1;
1779 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1780 return 1;
1781 /* Make sure we have suitable call-clobbered regs to return
1782 the value in; if not, we must return it in memory. */
1783 reg = hard_function_value (type, 0, fntype, 0);
1785 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1786 it is OK. */
1787 if (!REG_P (reg))
1788 return 0;
1790 regno = REGNO (reg);
1791 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1792 for (i = 0; i < nregs; i++)
1793 if (! call_used_regs[regno + i])
1794 return 1;
1795 return 0;
1798 /* Return true if we should assign DECL a pseudo register; false if it
1799 should live on the local stack. */
1801 bool
1802 use_register_for_decl (tree decl)
1804 /* Honor volatile. */
1805 if (TREE_SIDE_EFFECTS (decl))
1806 return false;
1808 /* Honor addressability. */
1809 if (TREE_ADDRESSABLE (decl))
1810 return false;
1812 /* Only register-like things go in registers. */
1813 if (DECL_MODE (decl) == BLKmode)
1814 return false;
1816 /* If -ffloat-store specified, don't put explicit float variables
1817 into registers. */
1818 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1819 propagates values across these stores, and it probably shouldn't. */
1820 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1821 return false;
1823 /* If we're not interested in tracking debugging information for
1824 this decl, then we can certainly put it in a register. */
1825 if (DECL_IGNORED_P (decl))
1826 return true;
1828 return (optimize || DECL_REGISTER (decl));
1831 /* Return true if TYPE should be passed by invisible reference. */
1833 bool
1834 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1835 tree type, bool named_arg)
1837 if (type)
1839 /* If this type contains non-trivial constructors, then it is
1840 forbidden for the middle-end to create any new copies. */
1841 if (TREE_ADDRESSABLE (type))
1842 return true;
1844 /* GCC post 3.4 passes *all* variable sized types by reference. */
1845 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1846 return true;
1849 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1852 /* Return true if TYPE, which is passed by reference, should be callee
1853 copied instead of caller copied. */
1855 bool
1856 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1857 tree type, bool named_arg)
1859 if (type && TREE_ADDRESSABLE (type))
1860 return false;
1861 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1864 /* Structures to communicate between the subroutines of assign_parms.
1865 The first holds data persistent across all parameters, the second
1866 is cleared out for each parameter. */
1868 struct assign_parm_data_all
1870 CUMULATIVE_ARGS args_so_far;
1871 struct args_size stack_args_size;
1872 tree function_result_decl;
1873 tree orig_fnargs;
1874 rtx conversion_insns;
1875 HOST_WIDE_INT pretend_args_size;
1876 HOST_WIDE_INT extra_pretend_bytes;
1877 int reg_parm_stack_space;
1880 struct assign_parm_data_one
1882 tree nominal_type;
1883 tree passed_type;
1884 rtx entry_parm;
1885 rtx stack_parm;
1886 enum machine_mode nominal_mode;
1887 enum machine_mode passed_mode;
1888 enum machine_mode promoted_mode;
1889 struct locate_and_pad_arg_data locate;
1890 int partial;
1891 BOOL_BITFIELD named_arg : 1;
1892 BOOL_BITFIELD passed_pointer : 1;
1893 BOOL_BITFIELD on_stack : 1;
1894 BOOL_BITFIELD loaded_in_reg : 1;
1897 /* A subroutine of assign_parms. Initialize ALL. */
1899 static void
1900 assign_parms_initialize_all (struct assign_parm_data_all *all)
1902 tree fntype;
1904 memset (all, 0, sizeof (*all));
1906 fntype = TREE_TYPE (current_function_decl);
1908 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1909 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1910 #else
1911 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1912 current_function_decl, -1);
1913 #endif
1915 #ifdef REG_PARM_STACK_SPACE
1916 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1917 #endif
1920 /* If ARGS contains entries with complex types, split the entry into two
1921 entries of the component type. Return a new list of substitutions are
1922 needed, else the old list. */
1924 static tree
1925 split_complex_args (tree args)
1927 tree p;
1929 /* Before allocating memory, check for the common case of no complex. */
1930 for (p = args; p; p = TREE_CHAIN (p))
1932 tree type = TREE_TYPE (p);
1933 if (TREE_CODE (type) == COMPLEX_TYPE
1934 && targetm.calls.split_complex_arg (type))
1935 goto found;
1937 return args;
1939 found:
1940 args = copy_list (args);
1942 for (p = args; p; p = TREE_CHAIN (p))
1944 tree type = TREE_TYPE (p);
1945 if (TREE_CODE (type) == COMPLEX_TYPE
1946 && targetm.calls.split_complex_arg (type))
1948 tree decl;
1949 tree subtype = TREE_TYPE (type);
1950 bool addressable = TREE_ADDRESSABLE (p);
1952 /* Rewrite the PARM_DECL's type with its component. */
1953 TREE_TYPE (p) = subtype;
1954 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1955 DECL_MODE (p) = VOIDmode;
1956 DECL_SIZE (p) = NULL;
1957 DECL_SIZE_UNIT (p) = NULL;
1958 /* If this arg must go in memory, put it in a pseudo here.
1959 We can't allow it to go in memory as per normal parms,
1960 because the usual place might not have the imag part
1961 adjacent to the real part. */
1962 DECL_ARTIFICIAL (p) = addressable;
1963 DECL_IGNORED_P (p) = addressable;
1964 TREE_ADDRESSABLE (p) = 0;
1965 layout_decl (p, 0);
1967 /* Build a second synthetic decl. */
1968 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1969 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1970 DECL_ARTIFICIAL (decl) = addressable;
1971 DECL_IGNORED_P (decl) = addressable;
1972 layout_decl (decl, 0);
1974 /* Splice it in; skip the new decl. */
1975 TREE_CHAIN (decl) = TREE_CHAIN (p);
1976 TREE_CHAIN (p) = decl;
1977 p = decl;
1981 return args;
1984 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
1985 the hidden struct return argument, and (abi willing) complex args.
1986 Return the new parameter list. */
1988 static tree
1989 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
1991 tree fndecl = current_function_decl;
1992 tree fntype = TREE_TYPE (fndecl);
1993 tree fnargs = DECL_ARGUMENTS (fndecl);
1995 /* If struct value address is treated as the first argument, make it so. */
1996 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
1997 && ! current_function_returns_pcc_struct
1998 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2000 tree type = build_pointer_type (TREE_TYPE (fntype));
2001 tree decl;
2003 decl = build_decl (PARM_DECL, NULL_TREE, type);
2004 DECL_ARG_TYPE (decl) = type;
2005 DECL_ARTIFICIAL (decl) = 1;
2006 DECL_IGNORED_P (decl) = 1;
2008 TREE_CHAIN (decl) = fnargs;
2009 fnargs = decl;
2010 all->function_result_decl = decl;
2013 all->orig_fnargs = fnargs;
2015 /* If the target wants to split complex arguments into scalars, do so. */
2016 if (targetm.calls.split_complex_arg)
2017 fnargs = split_complex_args (fnargs);
2019 return fnargs;
2022 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2023 data for the parameter. Incorporate ABI specifics such as pass-by-
2024 reference and type promotion. */
2026 static void
2027 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2028 struct assign_parm_data_one *data)
2030 tree nominal_type, passed_type;
2031 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2033 memset (data, 0, sizeof (*data));
2035 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2036 if (!current_function_stdarg)
2037 data->named_arg = 1; /* No varadic parms. */
2038 else if (TREE_CHAIN (parm))
2039 data->named_arg = 1; /* Not the last non-varadic parm. */
2040 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2041 data->named_arg = 1; /* Only varadic ones are unnamed. */
2042 else
2043 data->named_arg = 0; /* Treat as varadic. */
2045 nominal_type = TREE_TYPE (parm);
2046 passed_type = DECL_ARG_TYPE (parm);
2048 /* Look out for errors propagating this far. Also, if the parameter's
2049 type is void then its value doesn't matter. */
2050 if (TREE_TYPE (parm) == error_mark_node
2051 /* This can happen after weird syntax errors
2052 or if an enum type is defined among the parms. */
2053 || TREE_CODE (parm) != PARM_DECL
2054 || passed_type == NULL
2055 || VOID_TYPE_P (nominal_type))
2057 nominal_type = passed_type = void_type_node;
2058 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2059 goto egress;
2062 /* Find mode of arg as it is passed, and mode of arg as it should be
2063 during execution of this function. */
2064 passed_mode = TYPE_MODE (passed_type);
2065 nominal_mode = TYPE_MODE (nominal_type);
2067 /* If the parm is to be passed as a transparent union, use the type of
2068 the first field for the tests below. We have already verified that
2069 the modes are the same. */
2070 if (TREE_CODE (passed_type) == UNION_TYPE
2071 && TYPE_TRANSPARENT_UNION (passed_type))
2072 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2074 /* See if this arg was passed by invisible reference. */
2075 if (pass_by_reference (&all->args_so_far, passed_mode,
2076 passed_type, data->named_arg))
2078 passed_type = nominal_type = build_pointer_type (passed_type);
2079 data->passed_pointer = true;
2080 passed_mode = nominal_mode = Pmode;
2083 /* Find mode as it is passed by the ABI. */
2084 promoted_mode = passed_mode;
2085 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2087 int unsignedp = TYPE_UNSIGNED (passed_type);
2088 promoted_mode = promote_mode (passed_type, promoted_mode,
2089 &unsignedp, 1);
2092 egress:
2093 data->nominal_type = nominal_type;
2094 data->passed_type = passed_type;
2095 data->nominal_mode = nominal_mode;
2096 data->passed_mode = passed_mode;
2097 data->promoted_mode = promoted_mode;
2100 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2102 static void
2103 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2104 struct assign_parm_data_one *data, bool no_rtl)
2106 int varargs_pretend_bytes = 0;
2108 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2109 data->promoted_mode,
2110 data->passed_type,
2111 &varargs_pretend_bytes, no_rtl);
2113 /* If the back-end has requested extra stack space, record how much is
2114 needed. Do not change pretend_args_size otherwise since it may be
2115 nonzero from an earlier partial argument. */
2116 if (varargs_pretend_bytes > 0)
2117 all->pretend_args_size = varargs_pretend_bytes;
2120 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2121 the incoming location of the current parameter. */
2123 static void
2124 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2125 struct assign_parm_data_one *data)
2127 HOST_WIDE_INT pretend_bytes = 0;
2128 rtx entry_parm;
2129 bool in_regs;
2131 if (data->promoted_mode == VOIDmode)
2133 data->entry_parm = data->stack_parm = const0_rtx;
2134 return;
2137 #ifdef FUNCTION_INCOMING_ARG
2138 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2139 data->passed_type, data->named_arg);
2140 #else
2141 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2142 data->passed_type, data->named_arg);
2143 #endif
2145 if (entry_parm == 0)
2146 data->promoted_mode = data->passed_mode;
2148 /* Determine parm's home in the stack, in case it arrives in the stack
2149 or we should pretend it did. Compute the stack position and rtx where
2150 the argument arrives and its size.
2152 There is one complexity here: If this was a parameter that would
2153 have been passed in registers, but wasn't only because it is
2154 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2155 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2156 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2157 as it was the previous time. */
2158 in_regs = entry_parm != 0;
2159 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2160 in_regs = true;
2161 #endif
2162 if (!in_regs && !data->named_arg)
2164 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2166 rtx tem;
2167 #ifdef FUNCTION_INCOMING_ARG
2168 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2169 data->passed_type, true);
2170 #else
2171 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2172 data->passed_type, true);
2173 #endif
2174 in_regs = tem != NULL;
2178 /* If this parameter was passed both in registers and in the stack, use
2179 the copy on the stack. */
2180 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2181 data->passed_type))
2182 entry_parm = 0;
2184 if (entry_parm)
2186 int partial;
2188 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2189 data->promoted_mode,
2190 data->passed_type,
2191 data->named_arg);
2192 data->partial = partial;
2194 /* The caller might already have allocated stack space for the
2195 register parameters. */
2196 if (partial != 0 && all->reg_parm_stack_space == 0)
2198 /* Part of this argument is passed in registers and part
2199 is passed on the stack. Ask the prologue code to extend
2200 the stack part so that we can recreate the full value.
2202 PRETEND_BYTES is the size of the registers we need to store.
2203 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2204 stack space that the prologue should allocate.
2206 Internally, gcc assumes that the argument pointer is aligned
2207 to STACK_BOUNDARY bits. This is used both for alignment
2208 optimizations (see init_emit) and to locate arguments that are
2209 aligned to more than PARM_BOUNDARY bits. We must preserve this
2210 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2211 a stack boundary. */
2213 /* We assume at most one partial arg, and it must be the first
2214 argument on the stack. */
2215 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2217 pretend_bytes = partial;
2218 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2220 /* We want to align relative to the actual stack pointer, so
2221 don't include this in the stack size until later. */
2222 all->extra_pretend_bytes = all->pretend_args_size;
2226 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2227 entry_parm ? data->partial : 0, current_function_decl,
2228 &all->stack_args_size, &data->locate);
2230 /* Adjust offsets to include the pretend args. */
2231 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2232 data->locate.slot_offset.constant += pretend_bytes;
2233 data->locate.offset.constant += pretend_bytes;
2235 data->entry_parm = entry_parm;
2238 /* A subroutine of assign_parms. If there is actually space on the stack
2239 for this parm, count it in stack_args_size and return true. */
2241 static bool
2242 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2243 struct assign_parm_data_one *data)
2245 /* Trivially true if we've no incoming register. */
2246 if (data->entry_parm == NULL)
2248 /* Also true if we're partially in registers and partially not,
2249 since we've arranged to drop the entire argument on the stack. */
2250 else if (data->partial != 0)
2252 /* Also true if the target says that it's passed in both registers
2253 and on the stack. */
2254 else if (GET_CODE (data->entry_parm) == PARALLEL
2255 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2257 /* Also true if the target says that there's stack allocated for
2258 all register parameters. */
2259 else if (all->reg_parm_stack_space > 0)
2261 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2262 else
2263 return false;
2265 all->stack_args_size.constant += data->locate.size.constant;
2266 if (data->locate.size.var)
2267 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2269 return true;
2272 /* A subroutine of assign_parms. Given that this parameter is allocated
2273 stack space by the ABI, find it. */
2275 static void
2276 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2278 rtx offset_rtx, stack_parm;
2279 unsigned int align, boundary;
2281 /* If we're passing this arg using a reg, make its stack home the
2282 aligned stack slot. */
2283 if (data->entry_parm)
2284 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2285 else
2286 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2288 stack_parm = current_function_internal_arg_pointer;
2289 if (offset_rtx != const0_rtx)
2290 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2291 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2293 set_mem_attributes (stack_parm, parm, 1);
2295 boundary = data->locate.boundary;
2296 align = BITS_PER_UNIT;
2298 /* If we're padding upward, we know that the alignment of the slot
2299 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2300 intentionally forcing upward padding. Otherwise we have to come
2301 up with a guess at the alignment based on OFFSET_RTX. */
2302 if (data->locate.where_pad != downward || data->entry_parm)
2303 align = boundary;
2304 else if (GET_CODE (offset_rtx) == CONST_INT)
2306 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2307 align = align & -align;
2309 set_mem_align (stack_parm, align);
2311 if (data->entry_parm)
2312 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2314 data->stack_parm = stack_parm;
2317 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2318 always valid and contiguous. */
2320 static void
2321 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2323 rtx entry_parm = data->entry_parm;
2324 rtx stack_parm = data->stack_parm;
2326 /* If this parm was passed part in regs and part in memory, pretend it
2327 arrived entirely in memory by pushing the register-part onto the stack.
2328 In the special case of a DImode or DFmode that is split, we could put
2329 it together in a pseudoreg directly, but for now that's not worth
2330 bothering with. */
2331 if (data->partial != 0)
2333 /* Handle calls that pass values in multiple non-contiguous
2334 locations. The Irix 6 ABI has examples of this. */
2335 if (GET_CODE (entry_parm) == PARALLEL)
2336 emit_group_store (validize_mem (stack_parm), entry_parm,
2337 data->passed_type,
2338 int_size_in_bytes (data->passed_type));
2339 else
2341 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2342 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2343 data->partial / UNITS_PER_WORD);
2346 entry_parm = stack_parm;
2349 /* If we didn't decide this parm came in a register, by default it came
2350 on the stack. */
2351 else if (entry_parm == NULL)
2352 entry_parm = stack_parm;
2354 /* When an argument is passed in multiple locations, we can't make use
2355 of this information, but we can save some copying if the whole argument
2356 is passed in a single register. */
2357 else if (GET_CODE (entry_parm) == PARALLEL
2358 && data->nominal_mode != BLKmode
2359 && data->passed_mode != BLKmode)
2361 size_t i, len = XVECLEN (entry_parm, 0);
2363 for (i = 0; i < len; i++)
2364 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2365 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2366 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2367 == data->passed_mode)
2368 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2370 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2371 break;
2375 data->entry_parm = entry_parm;
2378 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2379 always valid and properly aligned. */
2381 static void
2382 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2384 rtx stack_parm = data->stack_parm;
2386 /* If we can't trust the parm stack slot to be aligned enough for its
2387 ultimate type, don't use that slot after entry. We'll make another
2388 stack slot, if we need one. */
2389 if (stack_parm
2390 && ((STRICT_ALIGNMENT
2391 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2392 || (data->nominal_type
2393 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2394 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2395 stack_parm = NULL;
2397 /* If parm was passed in memory, and we need to convert it on entry,
2398 don't store it back in that same slot. */
2399 else if (data->entry_parm == stack_parm
2400 && data->nominal_mode != BLKmode
2401 && data->nominal_mode != data->passed_mode)
2402 stack_parm = NULL;
2404 /* If stack protection is in effect for this function, don't leave any
2405 pointers in their passed stack slots. */
2406 else if (cfun->stack_protect_guard
2407 && (flag_stack_protect == 2
2408 || data->passed_pointer
2409 || POINTER_TYPE_P (data->nominal_type)))
2410 stack_parm = NULL;
2412 data->stack_parm = stack_parm;
2415 /* A subroutine of assign_parms. Return true if the current parameter
2416 should be stored as a BLKmode in the current frame. */
2418 static bool
2419 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2421 if (data->nominal_mode == BLKmode)
2422 return true;
2423 if (GET_CODE (data->entry_parm) == PARALLEL)
2424 return true;
2426 #ifdef BLOCK_REG_PADDING
2427 /* Only assign_parm_setup_block knows how to deal with register arguments
2428 that are padded at the least significant end. */
2429 if (REG_P (data->entry_parm)
2430 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2431 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2432 == (BYTES_BIG_ENDIAN ? upward : downward)))
2433 return true;
2434 #endif
2436 return false;
2439 /* A subroutine of assign_parms. Arrange for the parameter to be
2440 present and valid in DATA->STACK_RTL. */
2442 static void
2443 assign_parm_setup_block (struct assign_parm_data_all *all,
2444 tree parm, struct assign_parm_data_one *data)
2446 rtx entry_parm = data->entry_parm;
2447 rtx stack_parm = data->stack_parm;
2448 HOST_WIDE_INT size;
2449 HOST_WIDE_INT size_stored;
2450 rtx orig_entry_parm = entry_parm;
2452 if (GET_CODE (entry_parm) == PARALLEL)
2453 entry_parm = emit_group_move_into_temps (entry_parm);
2455 /* If we've a non-block object that's nevertheless passed in parts,
2456 reconstitute it in register operations rather than on the stack. */
2457 if (GET_CODE (entry_parm) == PARALLEL
2458 && data->nominal_mode != BLKmode)
2460 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2462 if ((XVECLEN (entry_parm, 0) > 1
2463 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2464 && use_register_for_decl (parm))
2466 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2468 push_to_sequence (all->conversion_insns);
2470 /* For values returned in multiple registers, handle possible
2471 incompatible calls to emit_group_store.
2473 For example, the following would be invalid, and would have to
2474 be fixed by the conditional below:
2476 emit_group_store ((reg:SF), (parallel:DF))
2477 emit_group_store ((reg:SI), (parallel:DI))
2479 An example of this are doubles in e500 v2:
2480 (parallel:DF (expr_list (reg:SI) (const_int 0))
2481 (expr_list (reg:SI) (const_int 4))). */
2482 if (data->nominal_mode != data->passed_mode)
2484 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2485 emit_group_store (t, entry_parm, NULL_TREE,
2486 GET_MODE_SIZE (GET_MODE (entry_parm)));
2487 convert_move (parmreg, t, 0);
2489 else
2490 emit_group_store (parmreg, entry_parm, data->nominal_type,
2491 int_size_in_bytes (data->nominal_type));
2493 all->conversion_insns = get_insns ();
2494 end_sequence ();
2496 SET_DECL_RTL (parm, parmreg);
2497 return;
2501 size = int_size_in_bytes (data->passed_type);
2502 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2503 if (stack_parm == 0)
2505 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2506 stack_parm = assign_stack_local (BLKmode, size_stored,
2507 DECL_ALIGN (parm));
2508 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2509 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2510 set_mem_attributes (stack_parm, parm, 1);
2513 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2514 calls that pass values in multiple non-contiguous locations. */
2515 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2517 rtx mem;
2519 /* Note that we will be storing an integral number of words.
2520 So we have to be careful to ensure that we allocate an
2521 integral number of words. We do this above when we call
2522 assign_stack_local if space was not allocated in the argument
2523 list. If it was, this will not work if PARM_BOUNDARY is not
2524 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2525 if it becomes a problem. Exception is when BLKmode arrives
2526 with arguments not conforming to word_mode. */
2528 if (data->stack_parm == 0)
2530 else if (GET_CODE (entry_parm) == PARALLEL)
2532 else
2533 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2535 mem = validize_mem (stack_parm);
2537 /* Handle values in multiple non-contiguous locations. */
2538 if (GET_CODE (entry_parm) == PARALLEL)
2540 push_to_sequence (all->conversion_insns);
2541 emit_group_store (mem, entry_parm, data->passed_type, size);
2542 all->conversion_insns = get_insns ();
2543 end_sequence ();
2546 else if (size == 0)
2549 /* If SIZE is that of a mode no bigger than a word, just use
2550 that mode's store operation. */
2551 else if (size <= UNITS_PER_WORD)
2553 enum machine_mode mode
2554 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2556 if (mode != BLKmode
2557 #ifdef BLOCK_REG_PADDING
2558 && (size == UNITS_PER_WORD
2559 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2560 != (BYTES_BIG_ENDIAN ? upward : downward)))
2561 #endif
2564 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2565 emit_move_insn (change_address (mem, mode, 0), reg);
2568 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2569 machine must be aligned to the left before storing
2570 to memory. Note that the previous test doesn't
2571 handle all cases (e.g. SIZE == 3). */
2572 else if (size != UNITS_PER_WORD
2573 #ifdef BLOCK_REG_PADDING
2574 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2575 == downward)
2576 #else
2577 && BYTES_BIG_ENDIAN
2578 #endif
2581 rtx tem, x;
2582 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2583 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2585 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2586 build_int_cst (NULL_TREE, by),
2587 NULL_RTX, 1);
2588 tem = change_address (mem, word_mode, 0);
2589 emit_move_insn (tem, x);
2591 else
2592 move_block_from_reg (REGNO (entry_parm), mem,
2593 size_stored / UNITS_PER_WORD);
2595 else
2596 move_block_from_reg (REGNO (entry_parm), mem,
2597 size_stored / UNITS_PER_WORD);
2599 else if (data->stack_parm == 0)
2601 push_to_sequence (all->conversion_insns);
2602 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2603 BLOCK_OP_NORMAL);
2604 all->conversion_insns = get_insns ();
2605 end_sequence ();
2608 data->stack_parm = stack_parm;
2609 SET_DECL_RTL (parm, stack_parm);
2612 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2613 parameter. Get it there. Perform all ABI specified conversions. */
2615 static void
2616 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2617 struct assign_parm_data_one *data)
2619 rtx parmreg;
2620 enum machine_mode promoted_nominal_mode;
2621 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2622 bool did_conversion = false;
2624 /* Store the parm in a pseudoregister during the function, but we may
2625 need to do it in a wider mode. */
2627 promoted_nominal_mode
2628 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2630 parmreg = gen_reg_rtx (promoted_nominal_mode);
2632 if (!DECL_ARTIFICIAL (parm))
2633 mark_user_reg (parmreg);
2635 /* If this was an item that we received a pointer to,
2636 set DECL_RTL appropriately. */
2637 if (data->passed_pointer)
2639 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2640 set_mem_attributes (x, parm, 1);
2641 SET_DECL_RTL (parm, x);
2643 else
2644 SET_DECL_RTL (parm, parmreg);
2646 /* Copy the value into the register. */
2647 if (data->nominal_mode != data->passed_mode
2648 || promoted_nominal_mode != data->promoted_mode)
2650 int save_tree_used;
2652 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2653 mode, by the caller. We now have to convert it to
2654 NOMINAL_MODE, if different. However, PARMREG may be in
2655 a different mode than NOMINAL_MODE if it is being stored
2656 promoted.
2658 If ENTRY_PARM is a hard register, it might be in a register
2659 not valid for operating in its mode (e.g., an odd-numbered
2660 register for a DFmode). In that case, moves are the only
2661 thing valid, so we can't do a convert from there. This
2662 occurs when the calling sequence allow such misaligned
2663 usages.
2665 In addition, the conversion may involve a call, which could
2666 clobber parameters which haven't been copied to pseudo
2667 registers yet. Therefore, we must first copy the parm to
2668 a pseudo reg here, and save the conversion until after all
2669 parameters have been moved. */
2671 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2673 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2675 push_to_sequence (all->conversion_insns);
2676 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2678 if (GET_CODE (tempreg) == SUBREG
2679 && GET_MODE (tempreg) == data->nominal_mode
2680 && REG_P (SUBREG_REG (tempreg))
2681 && data->nominal_mode == data->passed_mode
2682 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2683 && GET_MODE_SIZE (GET_MODE (tempreg))
2684 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2686 /* The argument is already sign/zero extended, so note it
2687 into the subreg. */
2688 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2689 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2692 /* TREE_USED gets set erroneously during expand_assignment. */
2693 save_tree_used = TREE_USED (parm);
2694 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2695 TREE_USED (parm) = save_tree_used;
2696 all->conversion_insns = get_insns ();
2697 end_sequence ();
2699 did_conversion = true;
2701 else
2702 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2704 /* If we were passed a pointer but the actual value can safely live
2705 in a register, put it in one. */
2706 if (data->passed_pointer
2707 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2708 /* If by-reference argument was promoted, demote it. */
2709 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2710 || use_register_for_decl (parm)))
2712 /* We can't use nominal_mode, because it will have been set to
2713 Pmode above. We must use the actual mode of the parm. */
2714 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2715 mark_user_reg (parmreg);
2717 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2719 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2720 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2722 push_to_sequence (all->conversion_insns);
2723 emit_move_insn (tempreg, DECL_RTL (parm));
2724 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2725 emit_move_insn (parmreg, tempreg);
2726 all->conversion_insns = get_insns ();
2727 end_sequence ();
2729 did_conversion = true;
2731 else
2732 emit_move_insn (parmreg, DECL_RTL (parm));
2734 SET_DECL_RTL (parm, parmreg);
2736 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2737 now the parm. */
2738 data->stack_parm = NULL;
2741 /* Mark the register as eliminable if we did no conversion and it was
2742 copied from memory at a fixed offset, and the arg pointer was not
2743 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2744 offset formed an invalid address, such memory-equivalences as we
2745 make here would screw up life analysis for it. */
2746 if (data->nominal_mode == data->passed_mode
2747 && !did_conversion
2748 && data->stack_parm != 0
2749 && MEM_P (data->stack_parm)
2750 && data->locate.offset.var == 0
2751 && reg_mentioned_p (virtual_incoming_args_rtx,
2752 XEXP (data->stack_parm, 0)))
2754 rtx linsn = get_last_insn ();
2755 rtx sinsn, set;
2757 /* Mark complex types separately. */
2758 if (GET_CODE (parmreg) == CONCAT)
2760 enum machine_mode submode
2761 = GET_MODE_INNER (GET_MODE (parmreg));
2762 int regnor = REGNO (XEXP (parmreg, 0));
2763 int regnoi = REGNO (XEXP (parmreg, 1));
2764 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2765 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2766 GET_MODE_SIZE (submode));
2768 /* Scan backwards for the set of the real and
2769 imaginary parts. */
2770 for (sinsn = linsn; sinsn != 0;
2771 sinsn = prev_nonnote_insn (sinsn))
2773 set = single_set (sinsn);
2774 if (set == 0)
2775 continue;
2777 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2778 REG_NOTES (sinsn)
2779 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2780 REG_NOTES (sinsn));
2781 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2782 REG_NOTES (sinsn)
2783 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2784 REG_NOTES (sinsn));
2787 else if ((set = single_set (linsn)) != 0
2788 && SET_DEST (set) == parmreg)
2789 REG_NOTES (linsn)
2790 = gen_rtx_EXPR_LIST (REG_EQUIV,
2791 data->stack_parm, REG_NOTES (linsn));
2794 /* For pointer data type, suggest pointer register. */
2795 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2796 mark_reg_pointer (parmreg,
2797 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2800 /* A subroutine of assign_parms. Allocate stack space to hold the current
2801 parameter. Get it there. Perform all ABI specified conversions. */
2803 static void
2804 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2805 struct assign_parm_data_one *data)
2807 /* Value must be stored in the stack slot STACK_PARM during function
2808 execution. */
2809 bool to_conversion = false;
2811 if (data->promoted_mode != data->nominal_mode)
2813 /* Conversion is required. */
2814 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2816 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2818 push_to_sequence (all->conversion_insns);
2819 to_conversion = true;
2821 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2822 TYPE_UNSIGNED (TREE_TYPE (parm)));
2824 if (data->stack_parm)
2825 /* ??? This may need a big-endian conversion on sparc64. */
2826 data->stack_parm
2827 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2830 if (data->entry_parm != data->stack_parm)
2832 rtx src, dest;
2834 if (data->stack_parm == 0)
2836 data->stack_parm
2837 = assign_stack_local (GET_MODE (data->entry_parm),
2838 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2839 TYPE_ALIGN (data->passed_type));
2840 set_mem_attributes (data->stack_parm, parm, 1);
2843 dest = validize_mem (data->stack_parm);
2844 src = validize_mem (data->entry_parm);
2846 if (MEM_P (src))
2848 /* Use a block move to handle potentially misaligned entry_parm. */
2849 if (!to_conversion)
2850 push_to_sequence (all->conversion_insns);
2851 to_conversion = true;
2853 emit_block_move (dest, src,
2854 GEN_INT (int_size_in_bytes (data->passed_type)),
2855 BLOCK_OP_NORMAL);
2857 else
2858 emit_move_insn (dest, src);
2861 if (to_conversion)
2863 all->conversion_insns = get_insns ();
2864 end_sequence ();
2867 SET_DECL_RTL (parm, data->stack_parm);
2870 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2871 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2873 static void
2874 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2876 tree parm;
2877 tree orig_fnargs = all->orig_fnargs;
2879 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2881 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2882 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2884 rtx tmp, real, imag;
2885 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2887 real = DECL_RTL (fnargs);
2888 imag = DECL_RTL (TREE_CHAIN (fnargs));
2889 if (inner != GET_MODE (real))
2891 real = gen_lowpart_SUBREG (inner, real);
2892 imag = gen_lowpart_SUBREG (inner, imag);
2895 if (TREE_ADDRESSABLE (parm))
2897 rtx rmem, imem;
2898 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2900 /* split_complex_arg put the real and imag parts in
2901 pseudos. Move them to memory. */
2902 tmp = assign_stack_local (DECL_MODE (parm), size,
2903 TYPE_ALIGN (TREE_TYPE (parm)));
2904 set_mem_attributes (tmp, parm, 1);
2905 rmem = adjust_address_nv (tmp, inner, 0);
2906 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2907 push_to_sequence (all->conversion_insns);
2908 emit_move_insn (rmem, real);
2909 emit_move_insn (imem, imag);
2910 all->conversion_insns = get_insns ();
2911 end_sequence ();
2913 else
2914 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2915 SET_DECL_RTL (parm, tmp);
2917 real = DECL_INCOMING_RTL (fnargs);
2918 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2919 if (inner != GET_MODE (real))
2921 real = gen_lowpart_SUBREG (inner, real);
2922 imag = gen_lowpart_SUBREG (inner, imag);
2924 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2925 set_decl_incoming_rtl (parm, tmp);
2926 fnargs = TREE_CHAIN (fnargs);
2928 else
2930 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2931 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2933 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2934 instead of the copy of decl, i.e. FNARGS. */
2935 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2936 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2939 fnargs = TREE_CHAIN (fnargs);
2943 /* Assign RTL expressions to the function's parameters. This may involve
2944 copying them into registers and using those registers as the DECL_RTL. */
2946 static void
2947 assign_parms (tree fndecl)
2949 struct assign_parm_data_all all;
2950 tree fnargs, parm;
2952 current_function_internal_arg_pointer
2953 = targetm.calls.internal_arg_pointer ();
2955 assign_parms_initialize_all (&all);
2956 fnargs = assign_parms_augmented_arg_list (&all);
2958 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2960 struct assign_parm_data_one data;
2962 /* Extract the type of PARM; adjust it according to ABI. */
2963 assign_parm_find_data_types (&all, parm, &data);
2965 /* Early out for errors and void parameters. */
2966 if (data.passed_mode == VOIDmode)
2968 SET_DECL_RTL (parm, const0_rtx);
2969 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
2970 continue;
2973 if (current_function_stdarg && !TREE_CHAIN (parm))
2974 assign_parms_setup_varargs (&all, &data, false);
2976 /* Find out where the parameter arrives in this function. */
2977 assign_parm_find_entry_rtl (&all, &data);
2979 /* Find out where stack space for this parameter might be. */
2980 if (assign_parm_is_stack_parm (&all, &data))
2982 assign_parm_find_stack_rtl (parm, &data);
2983 assign_parm_adjust_entry_rtl (&data);
2986 /* Record permanently how this parm was passed. */
2987 set_decl_incoming_rtl (parm, data.entry_parm);
2989 /* Update info on where next arg arrives in registers. */
2990 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
2991 data.passed_type, data.named_arg);
2993 assign_parm_adjust_stack_rtl (&data);
2995 if (assign_parm_setup_block_p (&data))
2996 assign_parm_setup_block (&all, parm, &data);
2997 else if (data.passed_pointer || use_register_for_decl (parm))
2998 assign_parm_setup_reg (&all, parm, &data);
2999 else
3000 assign_parm_setup_stack (&all, parm, &data);
3003 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3004 assign_parms_unsplit_complex (&all, fnargs);
3006 /* Output all parameter conversion instructions (possibly including calls)
3007 now that all parameters have been copied out of hard registers. */
3008 emit_insn (all.conversion_insns);
3010 /* If we are receiving a struct value address as the first argument, set up
3011 the RTL for the function result. As this might require code to convert
3012 the transmitted address to Pmode, we do this here to ensure that possible
3013 preliminary conversions of the address have been emitted already. */
3014 if (all.function_result_decl)
3016 tree result = DECL_RESULT (current_function_decl);
3017 rtx addr = DECL_RTL (all.function_result_decl);
3018 rtx x;
3020 if (DECL_BY_REFERENCE (result))
3021 x = addr;
3022 else
3024 addr = convert_memory_address (Pmode, addr);
3025 x = gen_rtx_MEM (DECL_MODE (result), addr);
3026 set_mem_attributes (x, result, 1);
3028 SET_DECL_RTL (result, x);
3031 /* We have aligned all the args, so add space for the pretend args. */
3032 current_function_pretend_args_size = all.pretend_args_size;
3033 all.stack_args_size.constant += all.extra_pretend_bytes;
3034 current_function_args_size = all.stack_args_size.constant;
3036 /* Adjust function incoming argument size for alignment and
3037 minimum length. */
3039 #ifdef REG_PARM_STACK_SPACE
3040 current_function_args_size = MAX (current_function_args_size,
3041 REG_PARM_STACK_SPACE (fndecl));
3042 #endif
3044 current_function_args_size = CEIL_ROUND (current_function_args_size,
3045 PARM_BOUNDARY / BITS_PER_UNIT);
3047 #ifdef ARGS_GROW_DOWNWARD
3048 current_function_arg_offset_rtx
3049 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3050 : expand_expr (size_diffop (all.stack_args_size.var,
3051 size_int (-all.stack_args_size.constant)),
3052 NULL_RTX, VOIDmode, 0));
3053 #else
3054 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3055 #endif
3057 /* See how many bytes, if any, of its args a function should try to pop
3058 on return. */
3060 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3061 current_function_args_size);
3063 /* For stdarg.h function, save info about
3064 regs and stack space used by the named args. */
3066 current_function_args_info = all.args_so_far;
3068 /* Set the rtx used for the function return value. Put this in its
3069 own variable so any optimizers that need this information don't have
3070 to include tree.h. Do this here so it gets done when an inlined
3071 function gets output. */
3073 current_function_return_rtx
3074 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3075 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3077 /* If scalar return value was computed in a pseudo-reg, or was a named
3078 return value that got dumped to the stack, copy that to the hard
3079 return register. */
3080 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3082 tree decl_result = DECL_RESULT (fndecl);
3083 rtx decl_rtl = DECL_RTL (decl_result);
3085 if (REG_P (decl_rtl)
3086 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3087 : DECL_REGISTER (decl_result))
3089 rtx real_decl_rtl;
3091 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3092 fndecl, true);
3093 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3094 /* The delay slot scheduler assumes that current_function_return_rtx
3095 holds the hard register containing the return value, not a
3096 temporary pseudo. */
3097 current_function_return_rtx = real_decl_rtl;
3102 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3103 For all seen types, gimplify their sizes. */
3105 static tree
3106 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3108 tree t = *tp;
3110 *walk_subtrees = 0;
3111 if (TYPE_P (t))
3113 if (POINTER_TYPE_P (t))
3114 *walk_subtrees = 1;
3115 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3116 && !TYPE_SIZES_GIMPLIFIED (t))
3118 gimplify_type_sizes (t, (tree *) data);
3119 *walk_subtrees = 1;
3123 return NULL;
3126 /* Gimplify the parameter list for current_function_decl. This involves
3127 evaluating SAVE_EXPRs of variable sized parameters and generating code
3128 to implement callee-copies reference parameters. Returns a list of
3129 statements to add to the beginning of the function, or NULL if nothing
3130 to do. */
3132 tree
3133 gimplify_parameters (void)
3135 struct assign_parm_data_all all;
3136 tree fnargs, parm, stmts = NULL;
3138 assign_parms_initialize_all (&all);
3139 fnargs = assign_parms_augmented_arg_list (&all);
3141 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3143 struct assign_parm_data_one data;
3145 /* Extract the type of PARM; adjust it according to ABI. */
3146 assign_parm_find_data_types (&all, parm, &data);
3148 /* Early out for errors and void parameters. */
3149 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3150 continue;
3152 /* Update info on where next arg arrives in registers. */
3153 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3154 data.passed_type, data.named_arg);
3156 /* ??? Once upon a time variable_size stuffed parameter list
3157 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3158 turned out to be less than manageable in the gimple world.
3159 Now we have to hunt them down ourselves. */
3160 walk_tree_without_duplicates (&data.passed_type,
3161 gimplify_parm_type, &stmts);
3163 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3165 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3166 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3169 if (data.passed_pointer)
3171 tree type = TREE_TYPE (data.passed_type);
3172 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3173 type, data.named_arg))
3175 tree local, t;
3177 /* For constant sized objects, this is trivial; for
3178 variable-sized objects, we have to play games. */
3179 if (TREE_CONSTANT (DECL_SIZE (parm)))
3181 local = create_tmp_var (type, get_name (parm));
3182 DECL_IGNORED_P (local) = 0;
3184 else
3186 tree ptr_type, addr, args;
3188 ptr_type = build_pointer_type (type);
3189 addr = create_tmp_var (ptr_type, get_name (parm));
3190 DECL_IGNORED_P (addr) = 0;
3191 local = build_fold_indirect_ref (addr);
3193 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3194 t = built_in_decls[BUILT_IN_ALLOCA];
3195 t = build_function_call_expr (t, args);
3196 t = fold_convert (ptr_type, t);
3197 t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3198 gimplify_and_add (t, &stmts);
3201 t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3202 gimplify_and_add (t, &stmts);
3204 SET_DECL_VALUE_EXPR (parm, local);
3205 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3210 return stmts;
3213 /* Indicate whether REGNO is an incoming argument to the current function
3214 that was promoted to a wider mode. If so, return the RTX for the
3215 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3216 that REGNO is promoted from and whether the promotion was signed or
3217 unsigned. */
3220 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3222 tree arg;
3224 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3225 arg = TREE_CHAIN (arg))
3226 if (REG_P (DECL_INCOMING_RTL (arg))
3227 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3228 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3230 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3231 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3233 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3234 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3235 && mode != DECL_MODE (arg))
3237 *pmode = DECL_MODE (arg);
3238 *punsignedp = unsignedp;
3239 return DECL_INCOMING_RTL (arg);
3243 return 0;
3247 /* Compute the size and offset from the start of the stacked arguments for a
3248 parm passed in mode PASSED_MODE and with type TYPE.
3250 INITIAL_OFFSET_PTR points to the current offset into the stacked
3251 arguments.
3253 The starting offset and size for this parm are returned in
3254 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3255 nonzero, the offset is that of stack slot, which is returned in
3256 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3257 padding required from the initial offset ptr to the stack slot.
3259 IN_REGS is nonzero if the argument will be passed in registers. It will
3260 never be set if REG_PARM_STACK_SPACE is not defined.
3262 FNDECL is the function in which the argument was defined.
3264 There are two types of rounding that are done. The first, controlled by
3265 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3266 list to be aligned to the specific boundary (in bits). This rounding
3267 affects the initial and starting offsets, but not the argument size.
3269 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3270 optionally rounds the size of the parm to PARM_BOUNDARY. The
3271 initial offset is not affected by this rounding, while the size always
3272 is and the starting offset may be. */
3274 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3275 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3276 callers pass in the total size of args so far as
3277 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3279 void
3280 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3281 int partial, tree fndecl ATTRIBUTE_UNUSED,
3282 struct args_size *initial_offset_ptr,
3283 struct locate_and_pad_arg_data *locate)
3285 tree sizetree;
3286 enum direction where_pad;
3287 unsigned int boundary;
3288 int reg_parm_stack_space = 0;
3289 int part_size_in_regs;
3291 #ifdef REG_PARM_STACK_SPACE
3292 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3294 /* If we have found a stack parm before we reach the end of the
3295 area reserved for registers, skip that area. */
3296 if (! in_regs)
3298 if (reg_parm_stack_space > 0)
3300 if (initial_offset_ptr->var)
3302 initial_offset_ptr->var
3303 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3304 ssize_int (reg_parm_stack_space));
3305 initial_offset_ptr->constant = 0;
3307 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3308 initial_offset_ptr->constant = reg_parm_stack_space;
3311 #endif /* REG_PARM_STACK_SPACE */
3313 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3315 sizetree
3316 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3317 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3318 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3319 locate->where_pad = where_pad;
3320 locate->boundary = boundary;
3322 /* Remember if the outgoing parameter requires extra alignment on the
3323 calling function side. */
3324 if (boundary > PREFERRED_STACK_BOUNDARY)
3325 boundary = PREFERRED_STACK_BOUNDARY;
3326 if (cfun->stack_alignment_needed < boundary)
3327 cfun->stack_alignment_needed = boundary;
3329 #ifdef ARGS_GROW_DOWNWARD
3330 locate->slot_offset.constant = -initial_offset_ptr->constant;
3331 if (initial_offset_ptr->var)
3332 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3333 initial_offset_ptr->var);
3336 tree s2 = sizetree;
3337 if (where_pad != none
3338 && (!host_integerp (sizetree, 1)
3339 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3340 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3341 SUB_PARM_SIZE (locate->slot_offset, s2);
3344 locate->slot_offset.constant += part_size_in_regs;
3346 if (!in_regs
3347 #ifdef REG_PARM_STACK_SPACE
3348 || REG_PARM_STACK_SPACE (fndecl) > 0
3349 #endif
3351 pad_to_arg_alignment (&locate->slot_offset, boundary,
3352 &locate->alignment_pad);
3354 locate->size.constant = (-initial_offset_ptr->constant
3355 - locate->slot_offset.constant);
3356 if (initial_offset_ptr->var)
3357 locate->size.var = size_binop (MINUS_EXPR,
3358 size_binop (MINUS_EXPR,
3359 ssize_int (0),
3360 initial_offset_ptr->var),
3361 locate->slot_offset.var);
3363 /* Pad_below needs the pre-rounded size to know how much to pad
3364 below. */
3365 locate->offset = locate->slot_offset;
3366 if (where_pad == downward)
3367 pad_below (&locate->offset, passed_mode, sizetree);
3369 #else /* !ARGS_GROW_DOWNWARD */
3370 if (!in_regs
3371 #ifdef REG_PARM_STACK_SPACE
3372 || REG_PARM_STACK_SPACE (fndecl) > 0
3373 #endif
3375 pad_to_arg_alignment (initial_offset_ptr, boundary,
3376 &locate->alignment_pad);
3377 locate->slot_offset = *initial_offset_ptr;
3379 #ifdef PUSH_ROUNDING
3380 if (passed_mode != BLKmode)
3381 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3382 #endif
3384 /* Pad_below needs the pre-rounded size to know how much to pad below
3385 so this must be done before rounding up. */
3386 locate->offset = locate->slot_offset;
3387 if (where_pad == downward)
3388 pad_below (&locate->offset, passed_mode, sizetree);
3390 if (where_pad != none
3391 && (!host_integerp (sizetree, 1)
3392 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3393 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3395 ADD_PARM_SIZE (locate->size, sizetree);
3397 locate->size.constant -= part_size_in_regs;
3398 #endif /* ARGS_GROW_DOWNWARD */
3401 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3402 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3404 static void
3405 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3406 struct args_size *alignment_pad)
3408 tree save_var = NULL_TREE;
3409 HOST_WIDE_INT save_constant = 0;
3410 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3411 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3413 #ifdef SPARC_STACK_BOUNDARY_HACK
3414 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3415 the real alignment of %sp. However, when it does this, the
3416 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3417 if (SPARC_STACK_BOUNDARY_HACK)
3418 sp_offset = 0;
3419 #endif
3421 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3423 save_var = offset_ptr->var;
3424 save_constant = offset_ptr->constant;
3427 alignment_pad->var = NULL_TREE;
3428 alignment_pad->constant = 0;
3430 if (boundary > BITS_PER_UNIT)
3432 if (offset_ptr->var)
3434 tree sp_offset_tree = ssize_int (sp_offset);
3435 tree offset = size_binop (PLUS_EXPR,
3436 ARGS_SIZE_TREE (*offset_ptr),
3437 sp_offset_tree);
3438 #ifdef ARGS_GROW_DOWNWARD
3439 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3440 #else
3441 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3442 #endif
3444 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3445 /* ARGS_SIZE_TREE includes constant term. */
3446 offset_ptr->constant = 0;
3447 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3448 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3449 save_var);
3451 else
3453 offset_ptr->constant = -sp_offset +
3454 #ifdef ARGS_GROW_DOWNWARD
3455 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3456 #else
3457 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3458 #endif
3459 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3460 alignment_pad->constant = offset_ptr->constant - save_constant;
3465 static void
3466 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3468 if (passed_mode != BLKmode)
3470 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3471 offset_ptr->constant
3472 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3473 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3474 - GET_MODE_SIZE (passed_mode));
3476 else
3478 if (TREE_CODE (sizetree) != INTEGER_CST
3479 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3481 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3482 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3483 /* Add it in. */
3484 ADD_PARM_SIZE (*offset_ptr, s2);
3485 SUB_PARM_SIZE (*offset_ptr, sizetree);
3490 /* Walk the tree of blocks describing the binding levels within a function
3491 and warn about variables the might be killed by setjmp or vfork.
3492 This is done after calling flow_analysis and before global_alloc
3493 clobbers the pseudo-regs to hard regs. */
3495 void
3496 setjmp_vars_warning (tree block)
3498 tree decl, sub;
3500 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3502 if (TREE_CODE (decl) == VAR_DECL
3503 && DECL_RTL_SET_P (decl)
3504 && REG_P (DECL_RTL (decl))
3505 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3506 warning (0, "variable %q+D might be clobbered by %<longjmp%>"
3507 " or %<vfork%>",
3508 decl);
3511 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3512 setjmp_vars_warning (sub);
3515 /* Do the appropriate part of setjmp_vars_warning
3516 but for arguments instead of local variables. */
3518 void
3519 setjmp_args_warning (void)
3521 tree decl;
3522 for (decl = DECL_ARGUMENTS (current_function_decl);
3523 decl; decl = TREE_CHAIN (decl))
3524 if (DECL_RTL (decl) != 0
3525 && REG_P (DECL_RTL (decl))
3526 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3527 warning (0, "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3528 decl);
3532 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3533 and create duplicate blocks. */
3534 /* ??? Need an option to either create block fragments or to create
3535 abstract origin duplicates of a source block. It really depends
3536 on what optimization has been performed. */
3538 void
3539 reorder_blocks (void)
3541 tree block = DECL_INITIAL (current_function_decl);
3542 VEC(tree,heap) *block_stack;
3544 if (block == NULL_TREE)
3545 return;
3547 block_stack = VEC_alloc (tree, heap, 10);
3549 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3550 clear_block_marks (block);
3552 /* Prune the old trees away, so that they don't get in the way. */
3553 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3554 BLOCK_CHAIN (block) = NULL_TREE;
3556 /* Recreate the block tree from the note nesting. */
3557 reorder_blocks_1 (get_insns (), block, &block_stack);
3558 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3560 /* Remove deleted blocks from the block fragment chains. */
3561 reorder_fix_fragments (block);
3563 VEC_free (tree, heap, block_stack);
3566 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3568 void
3569 clear_block_marks (tree block)
3571 while (block)
3573 TREE_ASM_WRITTEN (block) = 0;
3574 clear_block_marks (BLOCK_SUBBLOCKS (block));
3575 block = BLOCK_CHAIN (block);
3579 static void
3580 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3582 rtx insn;
3584 for (insn = insns; insn; insn = NEXT_INSN (insn))
3586 if (NOTE_P (insn))
3588 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3590 tree block = NOTE_BLOCK (insn);
3592 /* If we have seen this block before, that means it now
3593 spans multiple address regions. Create a new fragment. */
3594 if (TREE_ASM_WRITTEN (block))
3596 tree new_block = copy_node (block);
3597 tree origin;
3599 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3600 ? BLOCK_FRAGMENT_ORIGIN (block)
3601 : block);
3602 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3603 BLOCK_FRAGMENT_CHAIN (new_block)
3604 = BLOCK_FRAGMENT_CHAIN (origin);
3605 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3607 NOTE_BLOCK (insn) = new_block;
3608 block = new_block;
3611 BLOCK_SUBBLOCKS (block) = 0;
3612 TREE_ASM_WRITTEN (block) = 1;
3613 /* When there's only one block for the entire function,
3614 current_block == block and we mustn't do this, it
3615 will cause infinite recursion. */
3616 if (block != current_block)
3618 BLOCK_SUPERCONTEXT (block) = current_block;
3619 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3620 BLOCK_SUBBLOCKS (current_block) = block;
3621 current_block = block;
3623 VEC_safe_push (tree, heap, *p_block_stack, block);
3625 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3627 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3628 BLOCK_SUBBLOCKS (current_block)
3629 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3630 current_block = BLOCK_SUPERCONTEXT (current_block);
3636 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3637 appears in the block tree, select one of the fragments to become
3638 the new origin block. */
3640 static void
3641 reorder_fix_fragments (tree block)
3643 while (block)
3645 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3646 tree new_origin = NULL_TREE;
3648 if (dup_origin)
3650 if (! TREE_ASM_WRITTEN (dup_origin))
3652 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3654 /* Find the first of the remaining fragments. There must
3655 be at least one -- the current block. */
3656 while (! TREE_ASM_WRITTEN (new_origin))
3657 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3658 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3661 else if (! dup_origin)
3662 new_origin = block;
3664 /* Re-root the rest of the fragments to the new origin. In the
3665 case that DUP_ORIGIN was null, that means BLOCK was the origin
3666 of a chain of fragments and we want to remove those fragments
3667 that didn't make it to the output. */
3668 if (new_origin)
3670 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3671 tree chain = *pp;
3673 while (chain)
3675 if (TREE_ASM_WRITTEN (chain))
3677 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3678 *pp = chain;
3679 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3681 chain = BLOCK_FRAGMENT_CHAIN (chain);
3683 *pp = NULL_TREE;
3686 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3687 block = BLOCK_CHAIN (block);
3691 /* Reverse the order of elements in the chain T of blocks,
3692 and return the new head of the chain (old last element). */
3694 tree
3695 blocks_nreverse (tree t)
3697 tree prev = 0, decl, next;
3698 for (decl = t; decl; decl = next)
3700 next = BLOCK_CHAIN (decl);
3701 BLOCK_CHAIN (decl) = prev;
3702 prev = decl;
3704 return prev;
3707 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3708 non-NULL, list them all into VECTOR, in a depth-first preorder
3709 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3710 blocks. */
3712 static int
3713 all_blocks (tree block, tree *vector)
3715 int n_blocks = 0;
3717 while (block)
3719 TREE_ASM_WRITTEN (block) = 0;
3721 /* Record this block. */
3722 if (vector)
3723 vector[n_blocks] = block;
3725 ++n_blocks;
3727 /* Record the subblocks, and their subblocks... */
3728 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3729 vector ? vector + n_blocks : 0);
3730 block = BLOCK_CHAIN (block);
3733 return n_blocks;
3736 /* Return a vector containing all the blocks rooted at BLOCK. The
3737 number of elements in the vector is stored in N_BLOCKS_P. The
3738 vector is dynamically allocated; it is the caller's responsibility
3739 to call `free' on the pointer returned. */
3741 static tree *
3742 get_block_vector (tree block, int *n_blocks_p)
3744 tree *block_vector;
3746 *n_blocks_p = all_blocks (block, NULL);
3747 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3748 all_blocks (block, block_vector);
3750 return block_vector;
3753 static GTY(()) int next_block_index = 2;
3755 /* Set BLOCK_NUMBER for all the blocks in FN. */
3757 void
3758 number_blocks (tree fn)
3760 int i;
3761 int n_blocks;
3762 tree *block_vector;
3764 /* For SDB and XCOFF debugging output, we start numbering the blocks
3765 from 1 within each function, rather than keeping a running
3766 count. */
3767 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3768 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3769 next_block_index = 1;
3770 #endif
3772 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3774 /* The top-level BLOCK isn't numbered at all. */
3775 for (i = 1; i < n_blocks; ++i)
3776 /* We number the blocks from two. */
3777 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3779 free (block_vector);
3781 return;
3784 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3786 tree
3787 debug_find_var_in_block_tree (tree var, tree block)
3789 tree t;
3791 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3792 if (t == var)
3793 return block;
3795 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3797 tree ret = debug_find_var_in_block_tree (var, t);
3798 if (ret)
3799 return ret;
3802 return NULL_TREE;
3805 /* Allocate a function structure for FNDECL and set its contents
3806 to the defaults. */
3808 void
3809 allocate_struct_function (tree fndecl)
3811 tree result;
3812 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3814 cfun = ggc_alloc_cleared (sizeof (struct function));
3816 cfun->stack_alignment_needed = STACK_BOUNDARY;
3817 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3819 current_function_funcdef_no = funcdef_no++;
3821 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3823 init_eh_for_function ();
3825 lang_hooks.function.init (cfun);
3826 if (init_machine_status)
3827 cfun->machine = (*init_machine_status) ();
3829 if (fndecl == NULL)
3830 return;
3832 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3833 cfun->decl = fndecl;
3835 result = DECL_RESULT (fndecl);
3836 if (aggregate_value_p (result, fndecl))
3838 #ifdef PCC_STATIC_STRUCT_RETURN
3839 current_function_returns_pcc_struct = 1;
3840 #endif
3841 current_function_returns_struct = 1;
3844 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3846 current_function_stdarg
3847 = (fntype
3848 && TYPE_ARG_TYPES (fntype) != 0
3849 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3850 != void_type_node));
3852 /* Assume all registers in stdarg functions need to be saved. */
3853 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3854 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3857 /* Reset cfun, and other non-struct-function variables to defaults as
3858 appropriate for emitting rtl at the start of a function. */
3860 static void
3861 prepare_function_start (tree fndecl)
3863 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3864 cfun = DECL_STRUCT_FUNCTION (fndecl);
3865 else
3866 allocate_struct_function (fndecl);
3867 init_emit ();
3868 init_varasm_status (cfun);
3869 init_expr ();
3871 cse_not_expected = ! optimize;
3873 /* Caller save not needed yet. */
3874 caller_save_needed = 0;
3876 /* We haven't done register allocation yet. */
3877 reg_renumber = 0;
3879 /* Indicate that we have not instantiated virtual registers yet. */
3880 virtuals_instantiated = 0;
3882 /* Indicate that we want CONCATs now. */
3883 generating_concat_p = 1;
3885 /* Indicate we have no need of a frame pointer yet. */
3886 frame_pointer_needed = 0;
3889 /* Initialize the rtl expansion mechanism so that we can do simple things
3890 like generate sequences. This is used to provide a context during global
3891 initialization of some passes. */
3892 void
3893 init_dummy_function_start (void)
3895 prepare_function_start (NULL);
3898 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3899 and initialize static variables for generating RTL for the statements
3900 of the function. */
3902 void
3903 init_function_start (tree subr)
3905 prepare_function_start (subr);
3907 /* Prevent ever trying to delete the first instruction of a
3908 function. Also tell final how to output a linenum before the
3909 function prologue. Note linenums could be missing, e.g. when
3910 compiling a Java .class file. */
3911 if (! DECL_IS_BUILTIN (subr))
3912 emit_line_note (DECL_SOURCE_LOCATION (subr));
3914 /* Make sure first insn is a note even if we don't want linenums.
3915 This makes sure the first insn will never be deleted.
3916 Also, final expects a note to appear there. */
3917 emit_note (NOTE_INSN_DELETED);
3919 /* Warn if this value is an aggregate type,
3920 regardless of which calling convention we are using for it. */
3921 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3922 warning (OPT_Waggregate_return, "function returns an aggregate");
3925 /* Make sure all values used by the optimization passes have sane
3926 defaults. */
3927 void
3928 init_function_for_compilation (void)
3930 reg_renumber = 0;
3932 /* No prologue/epilogue insns yet. Make sure that these vectors are
3933 empty. */
3934 gcc_assert (VEC_length (int, prologue) == 0);
3935 gcc_assert (VEC_length (int, epilogue) == 0);
3936 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3939 struct tree_opt_pass pass_init_function =
3941 NULL, /* name */
3942 NULL, /* gate */
3943 init_function_for_compilation, /* execute */
3944 NULL, /* sub */
3945 NULL, /* next */
3946 0, /* static_pass_number */
3947 0, /* tv_id */
3948 0, /* properties_required */
3949 0, /* properties_provided */
3950 0, /* properties_destroyed */
3951 0, /* todo_flags_start */
3952 0, /* todo_flags_finish */
3953 0 /* letter */
3957 void
3958 expand_main_function (void)
3960 #if (defined(INVOKE__main) \
3961 || (!defined(HAS_INIT_SECTION) \
3962 && !defined(INIT_SECTION_ASM_OP) \
3963 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3964 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3965 #endif
3968 /* Expand code to initialize the stack_protect_guard. This is invoked at
3969 the beginning of a function to be protected. */
3971 #ifndef HAVE_stack_protect_set
3972 # define HAVE_stack_protect_set 0
3973 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
3974 #endif
3976 void
3977 stack_protect_prologue (void)
3979 tree guard_decl = targetm.stack_protect_guard ();
3980 rtx x, y;
3982 /* Avoid expand_expr here, because we don't want guard_decl pulled
3983 into registers unless absolutely necessary. And we know that
3984 cfun->stack_protect_guard is a local stack slot, so this skips
3985 all the fluff. */
3986 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3987 y = validize_mem (DECL_RTL (guard_decl));
3989 /* Allow the target to copy from Y to X without leaking Y into a
3990 register. */
3991 if (HAVE_stack_protect_set)
3993 rtx insn = gen_stack_protect_set (x, y);
3994 if (insn)
3996 emit_insn (insn);
3997 return;
4001 /* Otherwise do a straight move. */
4002 emit_move_insn (x, y);
4005 /* Expand code to verify the stack_protect_guard. This is invoked at
4006 the end of a function to be protected. */
4008 #ifndef HAVE_stack_protect_test
4009 # define HAVE_stack_protect_test 0
4010 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4011 #endif
4013 void
4014 stack_protect_epilogue (void)
4016 tree guard_decl = targetm.stack_protect_guard ();
4017 rtx label = gen_label_rtx ();
4018 rtx x, y, tmp;
4020 /* Avoid expand_expr here, because we don't want guard_decl pulled
4021 into registers unless absolutely necessary. And we know that
4022 cfun->stack_protect_guard is a local stack slot, so this skips
4023 all the fluff. */
4024 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4025 y = validize_mem (DECL_RTL (guard_decl));
4027 /* Allow the target to compare Y with X without leaking either into
4028 a register. */
4029 switch (HAVE_stack_protect_test != 0)
4031 case 1:
4032 tmp = gen_stack_protect_test (x, y, label);
4033 if (tmp)
4035 emit_insn (tmp);
4036 break;
4038 /* FALLTHRU */
4040 default:
4041 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4042 break;
4045 /* The noreturn predictor has been moved to the tree level. The rtl-level
4046 predictors estimate this branch about 20%, which isn't enough to get
4047 things moved out of line. Since this is the only extant case of adding
4048 a noreturn function at the rtl level, it doesn't seem worth doing ought
4049 except adding the prediction by hand. */
4050 tmp = get_last_insn ();
4051 if (JUMP_P (tmp))
4052 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4054 expand_expr_stmt (targetm.stack_protect_fail ());
4055 emit_label (label);
4058 /* Start the RTL for a new function, and set variables used for
4059 emitting RTL.
4060 SUBR is the FUNCTION_DECL node.
4061 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4062 the function's parameters, which must be run at any return statement. */
4064 void
4065 expand_function_start (tree subr)
4067 /* Make sure volatile mem refs aren't considered
4068 valid operands of arithmetic insns. */
4069 init_recog_no_volatile ();
4071 current_function_profile
4072 = (profile_flag
4073 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4075 current_function_limit_stack
4076 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4078 /* Make the label for return statements to jump to. Do not special
4079 case machines with special return instructions -- they will be
4080 handled later during jump, ifcvt, or epilogue creation. */
4081 return_label = gen_label_rtx ();
4083 /* Initialize rtx used to return the value. */
4084 /* Do this before assign_parms so that we copy the struct value address
4085 before any library calls that assign parms might generate. */
4087 /* Decide whether to return the value in memory or in a register. */
4088 if (aggregate_value_p (DECL_RESULT (subr), subr))
4090 /* Returning something that won't go in a register. */
4091 rtx value_address = 0;
4093 #ifdef PCC_STATIC_STRUCT_RETURN
4094 if (current_function_returns_pcc_struct)
4096 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4097 value_address = assemble_static_space (size);
4099 else
4100 #endif
4102 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4103 /* Expect to be passed the address of a place to store the value.
4104 If it is passed as an argument, assign_parms will take care of
4105 it. */
4106 if (sv)
4108 value_address = gen_reg_rtx (Pmode);
4109 emit_move_insn (value_address, sv);
4112 if (value_address)
4114 rtx x = value_address;
4115 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4117 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4118 set_mem_attributes (x, DECL_RESULT (subr), 1);
4120 SET_DECL_RTL (DECL_RESULT (subr), x);
4123 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4124 /* If return mode is void, this decl rtl should not be used. */
4125 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4126 else
4128 /* Compute the return values into a pseudo reg, which we will copy
4129 into the true return register after the cleanups are done. */
4130 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4131 if (TYPE_MODE (return_type) != BLKmode
4132 && targetm.calls.return_in_msb (return_type))
4133 /* expand_function_end will insert the appropriate padding in
4134 this case. Use the return value's natural (unpadded) mode
4135 within the function proper. */
4136 SET_DECL_RTL (DECL_RESULT (subr),
4137 gen_reg_rtx (TYPE_MODE (return_type)));
4138 else
4140 /* In order to figure out what mode to use for the pseudo, we
4141 figure out what the mode of the eventual return register will
4142 actually be, and use that. */
4143 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4145 /* Structures that are returned in registers are not
4146 aggregate_value_p, so we may see a PARALLEL or a REG. */
4147 if (REG_P (hard_reg))
4148 SET_DECL_RTL (DECL_RESULT (subr),
4149 gen_reg_rtx (GET_MODE (hard_reg)));
4150 else
4152 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4153 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4157 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4158 result to the real return register(s). */
4159 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4162 /* Initialize rtx for parameters and local variables.
4163 In some cases this requires emitting insns. */
4164 assign_parms (subr);
4166 /* If function gets a static chain arg, store it. */
4167 if (cfun->static_chain_decl)
4169 tree parm = cfun->static_chain_decl;
4170 rtx local = gen_reg_rtx (Pmode);
4172 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4173 SET_DECL_RTL (parm, local);
4174 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4176 emit_move_insn (local, static_chain_incoming_rtx);
4179 /* If the function receives a non-local goto, then store the
4180 bits we need to restore the frame pointer. */
4181 if (cfun->nonlocal_goto_save_area)
4183 tree t_save;
4184 rtx r_save;
4186 /* ??? We need to do this save early. Unfortunately here is
4187 before the frame variable gets declared. Help out... */
4188 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4190 t_save = build4 (ARRAY_REF, ptr_type_node,
4191 cfun->nonlocal_goto_save_area,
4192 integer_zero_node, NULL_TREE, NULL_TREE);
4193 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4194 r_save = convert_memory_address (Pmode, r_save);
4196 emit_move_insn (r_save, virtual_stack_vars_rtx);
4197 update_nonlocal_goto_save_area ();
4200 /* The following was moved from init_function_start.
4201 The move is supposed to make sdb output more accurate. */
4202 /* Indicate the beginning of the function body,
4203 as opposed to parm setup. */
4204 emit_note (NOTE_INSN_FUNCTION_BEG);
4206 if (!NOTE_P (get_last_insn ()))
4207 emit_note (NOTE_INSN_DELETED);
4208 parm_birth_insn = get_last_insn ();
4210 if (current_function_profile)
4212 #ifdef PROFILE_HOOK
4213 PROFILE_HOOK (current_function_funcdef_no);
4214 #endif
4217 /* After the display initializations is where the tail-recursion label
4218 should go, if we end up needing one. Ensure we have a NOTE here
4219 since some things (like trampolines) get placed before this. */
4220 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4222 /* Make sure there is a line number after the function entry setup code. */
4223 force_next_line_note ();
4226 /* Undo the effects of init_dummy_function_start. */
4227 void
4228 expand_dummy_function_end (void)
4230 /* End any sequences that failed to be closed due to syntax errors. */
4231 while (in_sequence_p ())
4232 end_sequence ();
4234 /* Outside function body, can't compute type's actual size
4235 until next function's body starts. */
4237 free_after_parsing (cfun);
4238 free_after_compilation (cfun);
4239 cfun = 0;
4242 /* Call DOIT for each hard register used as a return value from
4243 the current function. */
4245 void
4246 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4248 rtx outgoing = current_function_return_rtx;
4250 if (! outgoing)
4251 return;
4253 if (REG_P (outgoing))
4254 (*doit) (outgoing, arg);
4255 else if (GET_CODE (outgoing) == PARALLEL)
4257 int i;
4259 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4261 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4263 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4264 (*doit) (x, arg);
4269 static void
4270 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4272 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4275 void
4276 clobber_return_register (void)
4278 diddle_return_value (do_clobber_return_reg, NULL);
4280 /* In case we do use pseudo to return value, clobber it too. */
4281 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4283 tree decl_result = DECL_RESULT (current_function_decl);
4284 rtx decl_rtl = DECL_RTL (decl_result);
4285 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4287 do_clobber_return_reg (decl_rtl, NULL);
4292 static void
4293 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4295 emit_insn (gen_rtx_USE (VOIDmode, reg));
4298 void
4299 use_return_register (void)
4301 diddle_return_value (do_use_return_reg, NULL);
4304 /* Possibly warn about unused parameters. */
4305 void
4306 do_warn_unused_parameter (tree fn)
4308 tree decl;
4310 for (decl = DECL_ARGUMENTS (fn);
4311 decl; decl = TREE_CHAIN (decl))
4312 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4313 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4314 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4317 static GTY(()) rtx initial_trampoline;
4319 /* Generate RTL for the end of the current function. */
4321 void
4322 expand_function_end (void)
4324 rtx clobber_after;
4326 /* If arg_pointer_save_area was referenced only from a nested
4327 function, we will not have initialized it yet. Do that now. */
4328 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4329 get_arg_pointer_save_area (cfun);
4331 /* If we are doing stack checking and this function makes calls,
4332 do a stack probe at the start of the function to ensure we have enough
4333 space for another stack frame. */
4334 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4336 rtx insn, seq;
4338 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4339 if (CALL_P (insn))
4341 start_sequence ();
4342 probe_stack_range (STACK_CHECK_PROTECT,
4343 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4344 seq = get_insns ();
4345 end_sequence ();
4346 emit_insn_before (seq, tail_recursion_reentry);
4347 break;
4351 /* Possibly warn about unused parameters.
4352 When frontend does unit-at-a-time, the warning is already
4353 issued at finalization time. */
4354 if (warn_unused_parameter
4355 && !lang_hooks.callgraph.expand_function)
4356 do_warn_unused_parameter (current_function_decl);
4358 /* End any sequences that failed to be closed due to syntax errors. */
4359 while (in_sequence_p ())
4360 end_sequence ();
4362 clear_pending_stack_adjust ();
4363 do_pending_stack_adjust ();
4365 /* Mark the end of the function body.
4366 If control reaches this insn, the function can drop through
4367 without returning a value. */
4368 emit_note (NOTE_INSN_FUNCTION_END);
4370 /* Must mark the last line number note in the function, so that the test
4371 coverage code can avoid counting the last line twice. This just tells
4372 the code to ignore the immediately following line note, since there
4373 already exists a copy of this note somewhere above. This line number
4374 note is still needed for debugging though, so we can't delete it. */
4375 if (flag_test_coverage)
4376 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4378 /* Output a linenumber for the end of the function.
4379 SDB depends on this. */
4380 force_next_line_note ();
4381 emit_line_note (input_location);
4383 /* Before the return label (if any), clobber the return
4384 registers so that they are not propagated live to the rest of
4385 the function. This can only happen with functions that drop
4386 through; if there had been a return statement, there would
4387 have either been a return rtx, or a jump to the return label.
4389 We delay actual code generation after the current_function_value_rtx
4390 is computed. */
4391 clobber_after = get_last_insn ();
4393 /* Output the label for the actual return from the function. */
4394 emit_label (return_label);
4396 if (USING_SJLJ_EXCEPTIONS)
4398 /* Let except.c know where it should emit the call to unregister
4399 the function context for sjlj exceptions. */
4400 if (flag_exceptions)
4401 sjlj_emit_function_exit_after (get_last_insn ());
4403 else
4405 /* @@@ This is a kludge. We want to ensure that instructions that
4406 may trap are not moved into the epilogue by scheduling, because
4407 we don't always emit unwind information for the epilogue.
4408 However, not all machine descriptions define a blockage insn, so
4409 emit an ASM_INPUT to act as one. */
4410 if (flag_non_call_exceptions)
4411 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4414 /* If this is an implementation of throw, do what's necessary to
4415 communicate between __builtin_eh_return and the epilogue. */
4416 expand_eh_return ();
4418 /* If scalar return value was computed in a pseudo-reg, or was a named
4419 return value that got dumped to the stack, copy that to the hard
4420 return register. */
4421 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4423 tree decl_result = DECL_RESULT (current_function_decl);
4424 rtx decl_rtl = DECL_RTL (decl_result);
4426 if (REG_P (decl_rtl)
4427 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4428 : DECL_REGISTER (decl_result))
4430 rtx real_decl_rtl = current_function_return_rtx;
4432 /* This should be set in assign_parms. */
4433 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4435 /* If this is a BLKmode structure being returned in registers,
4436 then use the mode computed in expand_return. Note that if
4437 decl_rtl is memory, then its mode may have been changed,
4438 but that current_function_return_rtx has not. */
4439 if (GET_MODE (real_decl_rtl) == BLKmode)
4440 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4442 /* If a non-BLKmode return value should be padded at the least
4443 significant end of the register, shift it left by the appropriate
4444 amount. BLKmode results are handled using the group load/store
4445 machinery. */
4446 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4447 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4449 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4450 REGNO (real_decl_rtl)),
4451 decl_rtl);
4452 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4454 /* If a named return value dumped decl_return to memory, then
4455 we may need to re-do the PROMOTE_MODE signed/unsigned
4456 extension. */
4457 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4459 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4461 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4462 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4463 &unsignedp, 1);
4465 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4467 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4469 /* If expand_function_start has created a PARALLEL for decl_rtl,
4470 move the result to the real return registers. Otherwise, do
4471 a group load from decl_rtl for a named return. */
4472 if (GET_CODE (decl_rtl) == PARALLEL)
4473 emit_group_move (real_decl_rtl, decl_rtl);
4474 else
4475 emit_group_load (real_decl_rtl, decl_rtl,
4476 TREE_TYPE (decl_result),
4477 int_size_in_bytes (TREE_TYPE (decl_result)));
4479 /* In the case of complex integer modes smaller than a word, we'll
4480 need to generate some non-trivial bitfield insertions. Do that
4481 on a pseudo and not the hard register. */
4482 else if (GET_CODE (decl_rtl) == CONCAT
4483 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4484 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4486 int old_generating_concat_p;
4487 rtx tmp;
4489 old_generating_concat_p = generating_concat_p;
4490 generating_concat_p = 0;
4491 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4492 generating_concat_p = old_generating_concat_p;
4494 emit_move_insn (tmp, decl_rtl);
4495 emit_move_insn (real_decl_rtl, tmp);
4497 else
4498 emit_move_insn (real_decl_rtl, decl_rtl);
4502 /* If returning a structure, arrange to return the address of the value
4503 in a place where debuggers expect to find it.
4505 If returning a structure PCC style,
4506 the caller also depends on this value.
4507 And current_function_returns_pcc_struct is not necessarily set. */
4508 if (current_function_returns_struct
4509 || current_function_returns_pcc_struct)
4511 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4512 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4513 rtx outgoing;
4515 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4516 type = TREE_TYPE (type);
4517 else
4518 value_address = XEXP (value_address, 0);
4520 outgoing = targetm.calls.function_value (build_pointer_type (type),
4521 current_function_decl, true);
4523 /* Mark this as a function return value so integrate will delete the
4524 assignment and USE below when inlining this function. */
4525 REG_FUNCTION_VALUE_P (outgoing) = 1;
4527 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4528 value_address = convert_memory_address (GET_MODE (outgoing),
4529 value_address);
4531 emit_move_insn (outgoing, value_address);
4533 /* Show return register used to hold result (in this case the address
4534 of the result. */
4535 current_function_return_rtx = outgoing;
4538 /* Emit the actual code to clobber return register. */
4540 rtx seq;
4542 start_sequence ();
4543 clobber_return_register ();
4544 expand_naked_return ();
4545 seq = get_insns ();
4546 end_sequence ();
4548 emit_insn_after (seq, clobber_after);
4551 /* Output the label for the naked return from the function. */
4552 emit_label (naked_return_label);
4554 /* If stack protection is enabled for this function, check the guard. */
4555 if (cfun->stack_protect_guard)
4556 stack_protect_epilogue ();
4558 /* If we had calls to alloca, and this machine needs
4559 an accurate stack pointer to exit the function,
4560 insert some code to save and restore the stack pointer. */
4561 if (! EXIT_IGNORE_STACK
4562 && current_function_calls_alloca)
4564 rtx tem = 0;
4566 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4567 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4570 /* ??? This should no longer be necessary since stupid is no longer with
4571 us, but there are some parts of the compiler (eg reload_combine, and
4572 sh mach_dep_reorg) that still try and compute their own lifetime info
4573 instead of using the general framework. */
4574 use_return_register ();
4578 get_arg_pointer_save_area (struct function *f)
4580 rtx ret = f->x_arg_pointer_save_area;
4582 if (! ret)
4584 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4585 f->x_arg_pointer_save_area = ret;
4588 if (f == cfun && ! f->arg_pointer_save_area_init)
4590 rtx seq;
4592 /* Save the arg pointer at the beginning of the function. The
4593 generated stack slot may not be a valid memory address, so we
4594 have to check it and fix it if necessary. */
4595 start_sequence ();
4596 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4597 seq = get_insns ();
4598 end_sequence ();
4600 push_topmost_sequence ();
4601 emit_insn_after (seq, entry_of_function ());
4602 pop_topmost_sequence ();
4605 return ret;
4608 /* Extend a vector that records the INSN_UIDs of INSNS
4609 (a list of one or more insns). */
4611 static void
4612 record_insns (rtx insns, VEC(int,heap) **vecp)
4614 rtx tmp;
4616 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4617 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4620 /* Set the locator of the insn chain starting at INSN to LOC. */
4621 static void
4622 set_insn_locators (rtx insn, int loc)
4624 while (insn != NULL_RTX)
4626 if (INSN_P (insn))
4627 INSN_LOCATOR (insn) = loc;
4628 insn = NEXT_INSN (insn);
4632 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4633 be running after reorg, SEQUENCE rtl is possible. */
4635 static int
4636 contains (rtx insn, VEC(int,heap) **vec)
4638 int i, j;
4640 if (NONJUMP_INSN_P (insn)
4641 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4643 int count = 0;
4644 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4645 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4646 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4647 == VEC_index (int, *vec, j))
4648 count++;
4649 return count;
4651 else
4653 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4654 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4655 return 1;
4657 return 0;
4661 prologue_epilogue_contains (rtx insn)
4663 if (contains (insn, &prologue))
4664 return 1;
4665 if (contains (insn, &epilogue))
4666 return 1;
4667 return 0;
4671 sibcall_epilogue_contains (rtx insn)
4673 if (sibcall_epilogue)
4674 return contains (insn, &sibcall_epilogue);
4675 return 0;
4678 #ifdef HAVE_return
4679 /* Insert gen_return at the end of block BB. This also means updating
4680 block_for_insn appropriately. */
4682 static void
4683 emit_return_into_block (basic_block bb, rtx line_note)
4685 emit_jump_insn_after (gen_return (), BB_END (bb));
4686 if (line_note)
4687 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4689 #endif /* HAVE_return */
4691 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4693 /* These functions convert the epilogue into a variant that does not
4694 modify the stack pointer. This is used in cases where a function
4695 returns an object whose size is not known until it is computed.
4696 The called function leaves the object on the stack, leaves the
4697 stack depressed, and returns a pointer to the object.
4699 What we need to do is track all modifications and references to the
4700 stack pointer, deleting the modifications and changing the
4701 references to point to the location the stack pointer would have
4702 pointed to had the modifications taken place.
4704 These functions need to be portable so we need to make as few
4705 assumptions about the epilogue as we can. However, the epilogue
4706 basically contains three things: instructions to reset the stack
4707 pointer, instructions to reload registers, possibly including the
4708 frame pointer, and an instruction to return to the caller.
4710 We must be sure of what a relevant epilogue insn is doing. We also
4711 make no attempt to validate the insns we make since if they are
4712 invalid, we probably can't do anything valid. The intent is that
4713 these routines get "smarter" as more and more machines start to use
4714 them and they try operating on different epilogues.
4716 We use the following structure to track what the part of the
4717 epilogue that we've already processed has done. We keep two copies
4718 of the SP equivalence, one for use during the insn we are
4719 processing and one for use in the next insn. The difference is
4720 because one part of a PARALLEL may adjust SP and the other may use
4721 it. */
4723 struct epi_info
4725 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4726 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4727 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4728 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4729 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4730 should be set to once we no longer need
4731 its value. */
4732 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4733 for registers. */
4736 static void handle_epilogue_set (rtx, struct epi_info *);
4737 static void update_epilogue_consts (rtx, rtx, void *);
4738 static void emit_equiv_load (struct epi_info *);
4740 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4741 no modifications to the stack pointer. Return the new list of insns. */
4743 static rtx
4744 keep_stack_depressed (rtx insns)
4746 int j;
4747 struct epi_info info;
4748 rtx insn, next;
4750 /* If the epilogue is just a single instruction, it must be OK as is. */
4751 if (NEXT_INSN (insns) == NULL_RTX)
4752 return insns;
4754 /* Otherwise, start a sequence, initialize the information we have, and
4755 process all the insns we were given. */
4756 start_sequence ();
4758 info.sp_equiv_reg = stack_pointer_rtx;
4759 info.sp_offset = 0;
4760 info.equiv_reg_src = 0;
4762 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4763 info.const_equiv[j] = 0;
4765 insn = insns;
4766 next = NULL_RTX;
4767 while (insn != NULL_RTX)
4769 next = NEXT_INSN (insn);
4771 if (!INSN_P (insn))
4773 add_insn (insn);
4774 insn = next;
4775 continue;
4778 /* If this insn references the register that SP is equivalent to and
4779 we have a pending load to that register, we must force out the load
4780 first and then indicate we no longer know what SP's equivalent is. */
4781 if (info.equiv_reg_src != 0
4782 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4784 emit_equiv_load (&info);
4785 info.sp_equiv_reg = 0;
4788 info.new_sp_equiv_reg = info.sp_equiv_reg;
4789 info.new_sp_offset = info.sp_offset;
4791 /* If this is a (RETURN) and the return address is on the stack,
4792 update the address and change to an indirect jump. */
4793 if (GET_CODE (PATTERN (insn)) == RETURN
4794 || (GET_CODE (PATTERN (insn)) == PARALLEL
4795 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4797 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4798 rtx base = 0;
4799 HOST_WIDE_INT offset = 0;
4800 rtx jump_insn, jump_set;
4802 /* If the return address is in a register, we can emit the insn
4803 unchanged. Otherwise, it must be a MEM and we see what the
4804 base register and offset are. In any case, we have to emit any
4805 pending load to the equivalent reg of SP, if any. */
4806 if (REG_P (retaddr))
4808 emit_equiv_load (&info);
4809 add_insn (insn);
4810 insn = next;
4811 continue;
4813 else
4815 rtx ret_ptr;
4816 gcc_assert (MEM_P (retaddr));
4818 ret_ptr = XEXP (retaddr, 0);
4820 if (REG_P (ret_ptr))
4822 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4823 offset = 0;
4825 else
4827 gcc_assert (GET_CODE (ret_ptr) == PLUS
4828 && REG_P (XEXP (ret_ptr, 0))
4829 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4830 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4831 offset = INTVAL (XEXP (ret_ptr, 1));
4835 /* If the base of the location containing the return pointer
4836 is SP, we must update it with the replacement address. Otherwise,
4837 just build the necessary MEM. */
4838 retaddr = plus_constant (base, offset);
4839 if (base == stack_pointer_rtx)
4840 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4841 plus_constant (info.sp_equiv_reg,
4842 info.sp_offset));
4844 retaddr = gen_rtx_MEM (Pmode, retaddr);
4845 MEM_NOTRAP_P (retaddr) = 1;
4847 /* If there is a pending load to the equivalent register for SP
4848 and we reference that register, we must load our address into
4849 a scratch register and then do that load. */
4850 if (info.equiv_reg_src
4851 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4853 unsigned int regno;
4854 rtx reg;
4856 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4857 if (HARD_REGNO_MODE_OK (regno, Pmode)
4858 && !fixed_regs[regno]
4859 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4860 && !REGNO_REG_SET_P
4861 (EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno)
4862 && !refers_to_regno_p (regno,
4863 regno + hard_regno_nregs[regno]
4864 [Pmode],
4865 info.equiv_reg_src, NULL)
4866 && info.const_equiv[regno] == 0)
4867 break;
4869 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4871 reg = gen_rtx_REG (Pmode, regno);
4872 emit_move_insn (reg, retaddr);
4873 retaddr = reg;
4876 emit_equiv_load (&info);
4877 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4879 /* Show the SET in the above insn is a RETURN. */
4880 jump_set = single_set (jump_insn);
4881 gcc_assert (jump_set);
4882 SET_IS_RETURN_P (jump_set) = 1;
4885 /* If SP is not mentioned in the pattern and its equivalent register, if
4886 any, is not modified, just emit it. Otherwise, if neither is set,
4887 replace the reference to SP and emit the insn. If none of those are
4888 true, handle each SET individually. */
4889 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4890 && (info.sp_equiv_reg == stack_pointer_rtx
4891 || !reg_set_p (info.sp_equiv_reg, insn)))
4892 add_insn (insn);
4893 else if (! reg_set_p (stack_pointer_rtx, insn)
4894 && (info.sp_equiv_reg == stack_pointer_rtx
4895 || !reg_set_p (info.sp_equiv_reg, insn)))
4897 int changed;
4899 changed = validate_replace_rtx (stack_pointer_rtx,
4900 plus_constant (info.sp_equiv_reg,
4901 info.sp_offset),
4902 insn);
4903 gcc_assert (changed);
4905 add_insn (insn);
4907 else if (GET_CODE (PATTERN (insn)) == SET)
4908 handle_epilogue_set (PATTERN (insn), &info);
4909 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4911 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4912 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4913 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4915 else
4916 add_insn (insn);
4918 info.sp_equiv_reg = info.new_sp_equiv_reg;
4919 info.sp_offset = info.new_sp_offset;
4921 /* Now update any constants this insn sets. */
4922 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4923 insn = next;
4926 insns = get_insns ();
4927 end_sequence ();
4928 return insns;
4931 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4932 structure that contains information about what we've seen so far. We
4933 process this SET by either updating that data or by emitting one or
4934 more insns. */
4936 static void
4937 handle_epilogue_set (rtx set, struct epi_info *p)
4939 /* First handle the case where we are setting SP. Record what it is being
4940 set from, which we must be able to determine */
4941 if (reg_set_p (stack_pointer_rtx, set))
4943 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4945 if (GET_CODE (SET_SRC (set)) == PLUS)
4947 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4948 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4949 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4950 else
4952 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4953 && (REGNO (XEXP (SET_SRC (set), 1))
4954 < FIRST_PSEUDO_REGISTER)
4955 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4956 p->new_sp_offset
4957 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4960 else
4961 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4963 /* If we are adjusting SP, we adjust from the old data. */
4964 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4966 p->new_sp_equiv_reg = p->sp_equiv_reg;
4967 p->new_sp_offset += p->sp_offset;
4970 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4972 return;
4975 /* Next handle the case where we are setting SP's equivalent
4976 register. We must not already have a value to set it to. We
4977 could update, but there seems little point in handling that case.
4978 Note that we have to allow for the case where we are setting the
4979 register set in the previous part of a PARALLEL inside a single
4980 insn. But use the old offset for any updates within this insn.
4981 We must allow for the case where the register is being set in a
4982 different (usually wider) mode than Pmode). */
4983 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4985 gcc_assert (!p->equiv_reg_src
4986 && REG_P (p->new_sp_equiv_reg)
4987 && REG_P (SET_DEST (set))
4988 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4989 <= BITS_PER_WORD)
4990 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4991 p->equiv_reg_src
4992 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4993 plus_constant (p->sp_equiv_reg,
4994 p->sp_offset));
4997 /* Otherwise, replace any references to SP in the insn to its new value
4998 and emit the insn. */
4999 else
5001 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5002 plus_constant (p->sp_equiv_reg,
5003 p->sp_offset));
5004 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
5005 plus_constant (p->sp_equiv_reg,
5006 p->sp_offset));
5007 emit_insn (set);
5011 /* Update the tracking information for registers set to constants. */
5013 static void
5014 update_epilogue_consts (rtx dest, rtx x, void *data)
5016 struct epi_info *p = (struct epi_info *) data;
5017 rtx new;
5019 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5020 return;
5022 /* If we are either clobbering a register or doing a partial set,
5023 show we don't know the value. */
5024 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
5025 p->const_equiv[REGNO (dest)] = 0;
5027 /* If we are setting it to a constant, record that constant. */
5028 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5029 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5031 /* If this is a binary operation between a register we have been tracking
5032 and a constant, see if we can compute a new constant value. */
5033 else if (ARITHMETIC_P (SET_SRC (x))
5034 && REG_P (XEXP (SET_SRC (x), 0))
5035 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5036 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5037 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5038 && 0 != (new = simplify_binary_operation
5039 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5040 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5041 XEXP (SET_SRC (x), 1)))
5042 && GET_CODE (new) == CONST_INT)
5043 p->const_equiv[REGNO (dest)] = new;
5045 /* Otherwise, we can't do anything with this value. */
5046 else
5047 p->const_equiv[REGNO (dest)] = 0;
5050 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5052 static void
5053 emit_equiv_load (struct epi_info *p)
5055 if (p->equiv_reg_src != 0)
5057 rtx dest = p->sp_equiv_reg;
5059 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5060 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5061 REGNO (p->sp_equiv_reg));
5063 emit_move_insn (dest, p->equiv_reg_src);
5064 p->equiv_reg_src = 0;
5067 #endif
5069 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5070 this into place with notes indicating where the prologue ends and where
5071 the epilogue begins. Update the basic block information when possible. */
5073 void
5074 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5076 int inserted = 0;
5077 edge e;
5078 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5079 rtx seq;
5080 #endif
5081 #ifdef HAVE_prologue
5082 rtx prologue_end = NULL_RTX;
5083 #endif
5084 #if defined (HAVE_epilogue) || defined(HAVE_return)
5085 rtx epilogue_end = NULL_RTX;
5086 #endif
5087 edge_iterator ei;
5089 #ifdef HAVE_prologue
5090 if (HAVE_prologue)
5092 start_sequence ();
5093 seq = gen_prologue ();
5094 emit_insn (seq);
5096 /* Retain a map of the prologue insns. */
5097 record_insns (seq, &prologue);
5098 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5100 seq = get_insns ();
5101 end_sequence ();
5102 set_insn_locators (seq, prologue_locator);
5104 /* Can't deal with multiple successors of the entry block
5105 at the moment. Function should always have at least one
5106 entry point. */
5107 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5109 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5110 inserted = 1;
5112 #endif
5114 /* If the exit block has no non-fake predecessors, we don't need
5115 an epilogue. */
5116 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5117 if ((e->flags & EDGE_FAKE) == 0)
5118 break;
5119 if (e == NULL)
5120 goto epilogue_done;
5122 #ifdef HAVE_return
5123 if (optimize && HAVE_return)
5125 /* If we're allowed to generate a simple return instruction,
5126 then by definition we don't need a full epilogue. Examine
5127 the block that falls through to EXIT. If it does not
5128 contain any code, examine its predecessors and try to
5129 emit (conditional) return instructions. */
5131 basic_block last;
5132 rtx label;
5134 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5135 if (e->flags & EDGE_FALLTHRU)
5136 break;
5137 if (e == NULL)
5138 goto epilogue_done;
5139 last = e->src;
5141 /* Verify that there are no active instructions in the last block. */
5142 label = BB_END (last);
5143 while (label && !LABEL_P (label))
5145 if (active_insn_p (label))
5146 break;
5147 label = PREV_INSN (label);
5150 if (BB_HEAD (last) == label && LABEL_P (label))
5152 edge_iterator ei2;
5153 rtx epilogue_line_note = NULL_RTX;
5155 /* Locate the line number associated with the closing brace,
5156 if we can find one. */
5157 for (seq = get_last_insn ();
5158 seq && ! active_insn_p (seq);
5159 seq = PREV_INSN (seq))
5160 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5162 epilogue_line_note = seq;
5163 break;
5166 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5168 basic_block bb = e->src;
5169 rtx jump;
5171 if (bb == ENTRY_BLOCK_PTR)
5173 ei_next (&ei2);
5174 continue;
5177 jump = BB_END (bb);
5178 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5180 ei_next (&ei2);
5181 continue;
5184 /* If we have an unconditional jump, we can replace that
5185 with a simple return instruction. */
5186 if (simplejump_p (jump))
5188 emit_return_into_block (bb, epilogue_line_note);
5189 delete_insn (jump);
5192 /* If we have a conditional jump, we can try to replace
5193 that with a conditional return instruction. */
5194 else if (condjump_p (jump))
5196 if (! redirect_jump (jump, 0, 0))
5198 ei_next (&ei2);
5199 continue;
5202 /* If this block has only one successor, it both jumps
5203 and falls through to the fallthru block, so we can't
5204 delete the edge. */
5205 if (single_succ_p (bb))
5207 ei_next (&ei2);
5208 continue;
5211 else
5213 ei_next (&ei2);
5214 continue;
5217 /* Fix up the CFG for the successful change we just made. */
5218 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5221 /* Emit a return insn for the exit fallthru block. Whether
5222 this is still reachable will be determined later. */
5224 emit_barrier_after (BB_END (last));
5225 emit_return_into_block (last, epilogue_line_note);
5226 epilogue_end = BB_END (last);
5227 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5228 goto epilogue_done;
5231 #endif
5232 /* Find the edge that falls through to EXIT. Other edges may exist
5233 due to RETURN instructions, but those don't need epilogues.
5234 There really shouldn't be a mixture -- either all should have
5235 been converted or none, however... */
5237 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5238 if (e->flags & EDGE_FALLTHRU)
5239 break;
5240 if (e == NULL)
5241 goto epilogue_done;
5243 #ifdef HAVE_epilogue
5244 if (HAVE_epilogue)
5246 start_sequence ();
5247 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5249 seq = gen_epilogue ();
5251 #ifdef INCOMING_RETURN_ADDR_RTX
5252 /* If this function returns with the stack depressed and we can support
5253 it, massage the epilogue to actually do that. */
5254 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5255 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5256 seq = keep_stack_depressed (seq);
5257 #endif
5259 emit_jump_insn (seq);
5261 /* Retain a map of the epilogue insns. */
5262 record_insns (seq, &epilogue);
5263 set_insn_locators (seq, epilogue_locator);
5265 seq = get_insns ();
5266 end_sequence ();
5268 insert_insn_on_edge (seq, e);
5269 inserted = 1;
5271 else
5272 #endif
5274 basic_block cur_bb;
5276 if (! next_active_insn (BB_END (e->src)))
5277 goto epilogue_done;
5278 /* We have a fall-through edge to the exit block, the source is not
5279 at the end of the function, and there will be an assembler epilogue
5280 at the end of the function.
5281 We can't use force_nonfallthru here, because that would try to
5282 use return. Inserting a jump 'by hand' is extremely messy, so
5283 we take advantage of cfg_layout_finalize using
5284 fixup_fallthru_exit_predecessor. */
5285 cfg_layout_initialize (0);
5286 FOR_EACH_BB (cur_bb)
5287 if (cur_bb->index >= NUM_FIXED_BLOCKS
5288 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5289 cur_bb->aux = cur_bb->next_bb;
5290 cfg_layout_finalize ();
5292 epilogue_done:
5294 if (inserted)
5295 commit_edge_insertions ();
5297 #ifdef HAVE_sibcall_epilogue
5298 /* Emit sibling epilogues before any sibling call sites. */
5299 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5301 basic_block bb = e->src;
5302 rtx insn = BB_END (bb);
5304 if (!CALL_P (insn)
5305 || ! SIBLING_CALL_P (insn))
5307 ei_next (&ei);
5308 continue;
5311 start_sequence ();
5312 emit_insn (gen_sibcall_epilogue ());
5313 seq = get_insns ();
5314 end_sequence ();
5316 /* Retain a map of the epilogue insns. Used in life analysis to
5317 avoid getting rid of sibcall epilogue insns. Do this before we
5318 actually emit the sequence. */
5319 record_insns (seq, &sibcall_epilogue);
5320 set_insn_locators (seq, epilogue_locator);
5322 emit_insn_before (seq, insn);
5323 ei_next (&ei);
5325 #endif
5327 #ifdef HAVE_prologue
5328 /* This is probably all useless now that we use locators. */
5329 if (prologue_end)
5331 rtx insn, prev;
5333 /* GDB handles `break f' by setting a breakpoint on the first
5334 line note after the prologue. Which means (1) that if
5335 there are line number notes before where we inserted the
5336 prologue we should move them, and (2) we should generate a
5337 note before the end of the first basic block, if there isn't
5338 one already there.
5340 ??? This behavior is completely broken when dealing with
5341 multiple entry functions. We simply place the note always
5342 into first basic block and let alternate entry points
5343 to be missed.
5346 for (insn = prologue_end; insn; insn = prev)
5348 prev = PREV_INSN (insn);
5349 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5351 /* Note that we cannot reorder the first insn in the
5352 chain, since rest_of_compilation relies on that
5353 remaining constant. */
5354 if (prev == NULL)
5355 break;
5356 reorder_insns (insn, insn, prologue_end);
5360 /* Find the last line number note in the first block. */
5361 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5362 insn != prologue_end && insn;
5363 insn = PREV_INSN (insn))
5364 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5365 break;
5367 /* If we didn't find one, make a copy of the first line number
5368 we run across. */
5369 if (! insn)
5371 for (insn = next_active_insn (prologue_end);
5372 insn;
5373 insn = PREV_INSN (insn))
5374 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5376 emit_note_copy_after (insn, prologue_end);
5377 break;
5381 #endif
5382 #ifdef HAVE_epilogue
5383 if (epilogue_end)
5385 rtx insn, next;
5387 /* Similarly, move any line notes that appear after the epilogue.
5388 There is no need, however, to be quite so anal about the existence
5389 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5390 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5391 info generation. */
5392 for (insn = epilogue_end; insn; insn = next)
5394 next = NEXT_INSN (insn);
5395 if (NOTE_P (insn)
5396 && (NOTE_LINE_NUMBER (insn) > 0
5397 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5398 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5399 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5402 #endif
5405 /* Reposition the prologue-end and epilogue-begin notes after instruction
5406 scheduling and delayed branch scheduling. */
5408 void
5409 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5411 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5412 rtx insn, last, note;
5413 int len;
5415 if ((len = VEC_length (int, prologue)) > 0)
5417 last = 0, note = 0;
5419 /* Scan from the beginning until we reach the last prologue insn.
5420 We apparently can't depend on basic_block_{head,end} after
5421 reorg has run. */
5422 for (insn = f; insn; insn = NEXT_INSN (insn))
5424 if (NOTE_P (insn))
5426 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5427 note = insn;
5429 else if (contains (insn, &prologue))
5431 last = insn;
5432 if (--len == 0)
5433 break;
5437 if (last)
5439 /* Find the prologue-end note if we haven't already, and
5440 move it to just after the last prologue insn. */
5441 if (note == 0)
5443 for (note = last; (note = NEXT_INSN (note));)
5444 if (NOTE_P (note)
5445 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5446 break;
5449 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5450 if (LABEL_P (last))
5451 last = NEXT_INSN (last);
5452 reorder_insns (note, note, last);
5456 if ((len = VEC_length (int, epilogue)) > 0)
5458 last = 0, note = 0;
5460 /* Scan from the end until we reach the first epilogue insn.
5461 We apparently can't depend on basic_block_{head,end} after
5462 reorg has run. */
5463 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5465 if (NOTE_P (insn))
5467 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5468 note = insn;
5470 else if (contains (insn, &epilogue))
5472 last = insn;
5473 if (--len == 0)
5474 break;
5478 if (last)
5480 /* Find the epilogue-begin note if we haven't already, and
5481 move it to just before the first epilogue insn. */
5482 if (note == 0)
5484 for (note = insn; (note = PREV_INSN (note));)
5485 if (NOTE_P (note)
5486 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5487 break;
5490 if (PREV_INSN (last) != note)
5491 reorder_insns (note, note, PREV_INSN (last));
5494 #endif /* HAVE_prologue or HAVE_epilogue */
5497 /* Resets insn_block_boundaries array. */
5499 void
5500 reset_block_changes (void)
5502 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5503 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5506 /* Record the boundary for BLOCK. */
5507 void
5508 record_block_change (tree block)
5510 int i, n;
5511 tree last_block;
5513 if (!block)
5514 return;
5516 if(!cfun->ib_boundaries_block)
5517 return;
5519 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5520 VARRAY_POP (cfun->ib_boundaries_block);
5521 n = get_max_uid ();
5522 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5523 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5525 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5528 /* Finishes record of boundaries. */
5529 void finalize_block_changes (void)
5531 record_block_change (DECL_INITIAL (current_function_decl));
5534 /* For INSN return the BLOCK it belongs to. */
5535 void
5536 check_block_change (rtx insn, tree *block)
5538 unsigned uid = INSN_UID (insn);
5540 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5541 return;
5543 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5546 /* Releases the ib_boundaries_block records. */
5547 void
5548 free_block_changes (void)
5550 cfun->ib_boundaries_block = NULL;
5553 /* Returns the name of the current function. */
5554 const char *
5555 current_function_name (void)
5557 return lang_hooks.decl_printable_name (cfun->decl, 2);
5561 static void
5562 rest_of_handle_check_leaf_regs (void)
5564 #ifdef LEAF_REGISTERS
5565 current_function_uses_only_leaf_regs
5566 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5567 #endif
5570 struct tree_opt_pass pass_leaf_regs =
5572 NULL, /* name */
5573 NULL, /* gate */
5574 rest_of_handle_check_leaf_regs, /* execute */
5575 NULL, /* sub */
5576 NULL, /* next */
5577 0, /* static_pass_number */
5578 0, /* tv_id */
5579 0, /* properties_required */
5580 0, /* properties_provided */
5581 0, /* properties_destroyed */
5582 0, /* todo_flags_start */
5583 0, /* todo_flags_finish */
5584 0 /* letter */
5588 #include "gt-function.h"