Merge from gomp branch:
[official-gcc.git] / gcc / cfg.c
blob7b2a30fea6dd16e9cbf4641fdb6ca74c268fd74d
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This file contains low level functions to manipulate the CFG and
24 analyze it. All other modules should not transform the data structure
25 directly and use abstraction instead. The file is supposed to be
26 ordered bottom-up and should not contain any code dependent on a
27 particular intermediate language (RTL or trees).
29 Available functionality:
30 - Initialization/deallocation
31 init_flow, clear_edges
32 - Low level basic block manipulation
33 alloc_block, expunge_block
34 - Edge manipulation
35 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
36 - Low level edge redirection (without updating instruction chain)
37 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
38 - Dumping and debugging
39 dump_flow_info, debug_flow_info, dump_edge_info
40 - Allocation of AUX fields for basic blocks
41 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
42 - clear_bb_flags
43 - Consistency checking
44 verify_flow_info
45 - Dumping and debugging
46 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
49 #include "config.h"
50 #include "system.h"
51 #include "coretypes.h"
52 #include "tm.h"
53 #include "tree.h"
54 #include "rtl.h"
55 #include "hard-reg-set.h"
56 #include "regs.h"
57 #include "flags.h"
58 #include "output.h"
59 #include "function.h"
60 #include "except.h"
61 #include "toplev.h"
62 #include "tm_p.h"
63 #include "obstack.h"
64 #include "timevar.h"
65 #include "ggc.h"
66 #include "hashtab.h"
67 #include "alloc-pool.h"
69 /* The obstack on which the flow graph components are allocated. */
71 struct bitmap_obstack reg_obstack;
73 void debug_flow_info (void);
74 static void free_edge (edge);
76 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
78 /* Called once at initialization time. */
80 void
81 init_flow (void)
83 if (!cfun->cfg)
84 cfun->cfg = ggc_alloc_cleared (sizeof (struct control_flow_graph));
85 n_edges = 0;
86 ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (struct basic_block_def));
87 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
88 EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (struct basic_block_def));
89 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
90 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
91 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
94 /* Helper function for remove_edge and clear_edges. Frees edge structure
95 without actually unlinking it from the pred/succ lists. */
97 static void
98 free_edge (edge e ATTRIBUTE_UNUSED)
100 n_edges--;
101 ggc_free (e);
104 /* Free the memory associated with the edge structures. */
106 void
107 clear_edges (void)
109 basic_block bb;
110 edge e;
111 edge_iterator ei;
113 FOR_EACH_BB (bb)
115 FOR_EACH_EDGE (e, ei, bb->succs)
116 free_edge (e);
117 VEC_truncate (edge, bb->succs, 0);
118 VEC_truncate (edge, bb->preds, 0);
121 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
122 free_edge (e);
123 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
124 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
126 gcc_assert (!n_edges);
129 /* Allocate memory for basic_block. */
131 basic_block
132 alloc_block (void)
134 basic_block bb;
135 bb = ggc_alloc_cleared (sizeof (*bb));
136 return bb;
139 /* Link block B to chain after AFTER. */
140 void
141 link_block (basic_block b, basic_block after)
143 b->next_bb = after->next_bb;
144 b->prev_bb = after;
145 after->next_bb = b;
146 b->next_bb->prev_bb = b;
149 /* Unlink block B from chain. */
150 void
151 unlink_block (basic_block b)
153 b->next_bb->prev_bb = b->prev_bb;
154 b->prev_bb->next_bb = b->next_bb;
155 b->prev_bb = NULL;
156 b->next_bb = NULL;
159 /* Sequentially order blocks and compact the arrays. */
160 void
161 compact_blocks (void)
163 int i;
164 basic_block bb;
166 SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
167 SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
169 i = NUM_FIXED_BLOCKS;
170 FOR_EACH_BB (bb)
172 SET_BASIC_BLOCK (i, bb);
173 bb->index = i;
174 i++;
177 gcc_assert (i == n_basic_blocks);
179 for (; i < last_basic_block; i++)
180 SET_BASIC_BLOCK (i, NULL);
182 last_basic_block = n_basic_blocks;
185 /* Remove block B from the basic block array. */
187 void
188 expunge_block (basic_block b)
190 unlink_block (b);
191 SET_BASIC_BLOCK (b->index, NULL);
192 n_basic_blocks--;
193 /* We should be able to ggc_free here, but we are not.
194 The dead SSA_NAMES are left pointing to dead statements that are pointing
195 to dead basic blocks making garbage collector to die.
196 We should be able to release all dead SSA_NAMES and at the same time we should
197 clear out BB pointer of dead statements consistently. */
200 /* Connect E to E->src. */
202 static inline void
203 connect_src (edge e)
205 VEC_safe_push (edge, gc, e->src->succs, e);
208 /* Connect E to E->dest. */
210 static inline void
211 connect_dest (edge e)
213 basic_block dest = e->dest;
214 VEC_safe_push (edge, gc, dest->preds, e);
215 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
218 /* Disconnect edge E from E->src. */
220 static inline void
221 disconnect_src (edge e)
223 basic_block src = e->src;
224 edge_iterator ei;
225 edge tmp;
227 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
229 if (tmp == e)
231 VEC_unordered_remove (edge, src->succs, ei.index);
232 return;
234 else
235 ei_next (&ei);
238 gcc_unreachable ();
241 /* Disconnect edge E from E->dest. */
243 static inline void
244 disconnect_dest (edge e)
246 basic_block dest = e->dest;
247 unsigned int dest_idx = e->dest_idx;
249 VEC_unordered_remove (edge, dest->preds, dest_idx);
251 /* If we removed an edge in the middle of the edge vector, we need
252 to update dest_idx of the edge that moved into the "hole". */
253 if (dest_idx < EDGE_COUNT (dest->preds))
254 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
257 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
258 created edge. Use this only if you are sure that this edge can't
259 possibly already exist. */
261 edge
262 unchecked_make_edge (basic_block src, basic_block dst, int flags)
264 edge e;
265 e = ggc_alloc_cleared (sizeof (*e));
266 n_edges++;
268 e->src = src;
269 e->dest = dst;
270 e->flags = flags;
272 connect_src (e);
273 connect_dest (e);
275 execute_on_growing_pred (e);
277 return e;
280 /* Create an edge connecting SRC and DST with FLAGS optionally using
281 edge cache CACHE. Return the new edge, NULL if already exist. */
283 edge
284 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
286 if (edge_cache == NULL
287 || src == ENTRY_BLOCK_PTR
288 || dst == EXIT_BLOCK_PTR)
289 return make_edge (src, dst, flags);
291 /* Does the requested edge already exist? */
292 if (! TEST_BIT (edge_cache, dst->index))
294 /* The edge does not exist. Create one and update the
295 cache. */
296 SET_BIT (edge_cache, dst->index);
297 return unchecked_make_edge (src, dst, flags);
300 /* At this point, we know that the requested edge exists. Adjust
301 flags if necessary. */
302 if (flags)
304 edge e = find_edge (src, dst);
305 e->flags |= flags;
308 return NULL;
311 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
312 created edge or NULL if already exist. */
314 edge
315 make_edge (basic_block src, basic_block dest, int flags)
317 edge e = find_edge (src, dest);
319 /* Make sure we don't add duplicate edges. */
320 if (e)
322 e->flags |= flags;
323 return NULL;
326 return unchecked_make_edge (src, dest, flags);
329 /* Create an edge connecting SRC to DEST and set probability by knowing
330 that it is the single edge leaving SRC. */
332 edge
333 make_single_succ_edge (basic_block src, basic_block dest, int flags)
335 edge e = make_edge (src, dest, flags);
337 e->probability = REG_BR_PROB_BASE;
338 e->count = src->count;
339 return e;
342 /* This function will remove an edge from the flow graph. */
344 void
345 remove_edge (edge e)
347 remove_predictions_associated_with_edge (e);
348 execute_on_shrinking_pred (e);
350 disconnect_src (e);
351 disconnect_dest (e);
353 free_edge (e);
356 /* Redirect an edge's successor from one block to another. */
358 void
359 redirect_edge_succ (edge e, basic_block new_succ)
361 execute_on_shrinking_pred (e);
363 disconnect_dest (e);
365 e->dest = new_succ;
367 /* Reconnect the edge to the new successor block. */
368 connect_dest (e);
370 execute_on_growing_pred (e);
373 /* Like previous but avoid possible duplicate edge. */
375 edge
376 redirect_edge_succ_nodup (edge e, basic_block new_succ)
378 edge s;
380 s = find_edge (e->src, new_succ);
381 if (s && s != e)
383 s->flags |= e->flags;
384 s->probability += e->probability;
385 if (s->probability > REG_BR_PROB_BASE)
386 s->probability = REG_BR_PROB_BASE;
387 s->count += e->count;
388 remove_edge (e);
389 e = s;
391 else
392 redirect_edge_succ (e, new_succ);
394 return e;
397 /* Redirect an edge's predecessor from one block to another. */
399 void
400 redirect_edge_pred (edge e, basic_block new_pred)
402 disconnect_src (e);
404 e->src = new_pred;
406 /* Reconnect the edge to the new predecessor block. */
407 connect_src (e);
410 /* Clear all basic block flags, with the exception of partitioning. */
411 void
412 clear_bb_flags (void)
414 basic_block bb;
416 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
417 bb->flags = (BB_PARTITION (bb) | (bb->flags & BB_DISABLE_SCHEDULE)
418 | (bb->flags & BB_RTL));
421 /* Check the consistency of profile information. We can't do that
422 in verify_flow_info, as the counts may get invalid for incompletely
423 solved graphs, later eliminating of conditionals or roundoff errors.
424 It is still practical to have them reported for debugging of simple
425 testcases. */
426 void
427 check_bb_profile (basic_block bb, FILE * file)
429 edge e;
430 int sum = 0;
431 gcov_type lsum;
432 edge_iterator ei;
434 if (profile_status == PROFILE_ABSENT)
435 return;
437 if (bb != EXIT_BLOCK_PTR)
439 FOR_EACH_EDGE (e, ei, bb->succs)
440 sum += e->probability;
441 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
442 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
443 sum * 100.0 / REG_BR_PROB_BASE);
444 lsum = 0;
445 FOR_EACH_EDGE (e, ei, bb->succs)
446 lsum += e->count;
447 if (EDGE_COUNT (bb->succs)
448 && (lsum - bb->count > 100 || lsum - bb->count < -100))
449 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
450 (int) lsum, (int) bb->count);
452 if (bb != ENTRY_BLOCK_PTR)
454 sum = 0;
455 FOR_EACH_EDGE (e, ei, bb->preds)
456 sum += EDGE_FREQUENCY (e);
457 if (abs (sum - bb->frequency) > 100)
458 fprintf (file,
459 "Invalid sum of incoming frequencies %i, should be %i\n",
460 sum, bb->frequency);
461 lsum = 0;
462 FOR_EACH_EDGE (e, ei, bb->preds)
463 lsum += e->count;
464 if (lsum - bb->count > 100 || lsum - bb->count < -100)
465 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
466 (int) lsum, (int) bb->count);
470 void
471 dump_flow_info (FILE *file)
473 basic_block bb;
475 /* There are no pseudo registers after reload. Don't dump them. */
476 if (reg_n_info && !reload_completed)
478 unsigned int i, max = max_reg_num ();
479 fprintf (file, "%d registers.\n", max);
480 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
481 if (REG_N_REFS (i))
483 enum reg_class class, altclass;
485 fprintf (file, "\nRegister %d used %d times across %d insns",
486 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
487 if (REG_BASIC_BLOCK (i) >= 0)
488 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
489 if (REG_N_SETS (i))
490 fprintf (file, "; set %d time%s", REG_N_SETS (i),
491 (REG_N_SETS (i) == 1) ? "" : "s");
492 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
493 fprintf (file, "; user var");
494 if (REG_N_DEATHS (i) != 1)
495 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
496 if (REG_N_CALLS_CROSSED (i) == 1)
497 fprintf (file, "; crosses 1 call");
498 else if (REG_N_CALLS_CROSSED (i))
499 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
500 if (regno_reg_rtx[i] != NULL
501 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
502 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
504 class = reg_preferred_class (i);
505 altclass = reg_alternate_class (i);
506 if (class != GENERAL_REGS || altclass != ALL_REGS)
508 if (altclass == ALL_REGS || class == ALL_REGS)
509 fprintf (file, "; pref %s", reg_class_names[(int) class]);
510 else if (altclass == NO_REGS)
511 fprintf (file, "; %s or none", reg_class_names[(int) class]);
512 else
513 fprintf (file, "; pref %s, else %s",
514 reg_class_names[(int) class],
515 reg_class_names[(int) altclass]);
518 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
519 fprintf (file, "; pointer");
520 fprintf (file, ".\n");
524 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
525 FOR_EACH_BB (bb)
527 edge e;
528 edge_iterator ei;
530 fprintf (file, "\nBasic block %d ", bb->index);
531 fprintf (file, "prev %d, next %d, ",
532 bb->prev_bb->index, bb->next_bb->index);
533 fprintf (file, "loop_depth %d, count ", bb->loop_depth);
534 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
535 fprintf (file, ", freq %i", bb->frequency);
536 if (maybe_hot_bb_p (bb))
537 fprintf (file, ", maybe hot");
538 if (probably_never_executed_bb_p (bb))
539 fprintf (file, ", probably never executed");
540 fprintf (file, ".\n");
542 fprintf (file, "Predecessors: ");
543 FOR_EACH_EDGE (e, ei, bb->preds)
544 dump_edge_info (file, e, 0);
546 fprintf (file, "\nSuccessors: ");
547 FOR_EACH_EDGE (e, ei, bb->succs)
548 dump_edge_info (file, e, 1);
550 if (bb->flags & BB_RTL)
552 if (bb->il.rtl->global_live_at_start)
554 fprintf (file, "\nRegisters live at start:");
555 dump_regset (bb->il.rtl->global_live_at_start, file);
558 if (bb->il.rtl->global_live_at_end)
560 fprintf (file, "\nRegisters live at end:");
561 dump_regset (bb->il.rtl->global_live_at_end, file);
565 putc ('\n', file);
566 check_bb_profile (bb, file);
569 putc ('\n', file);
572 void
573 debug_flow_info (void)
575 dump_flow_info (stderr);
578 void
579 dump_edge_info (FILE *file, edge e, int do_succ)
581 basic_block side = (do_succ ? e->dest : e->src);
583 if (side == ENTRY_BLOCK_PTR)
584 fputs (" ENTRY", file);
585 else if (side == EXIT_BLOCK_PTR)
586 fputs (" EXIT", file);
587 else
588 fprintf (file, " %d", side->index);
590 if (e->probability)
591 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
593 if (e->count)
595 fprintf (file, " count:");
596 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
599 if (e->flags)
601 static const char * const bitnames[] = {
602 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
603 "can_fallthru", "irreducible", "sibcall", "loop_exit",
604 "true", "false", "exec"
606 int comma = 0;
607 int i, flags = e->flags;
609 fputs (" (", file);
610 for (i = 0; flags; i++)
611 if (flags & (1 << i))
613 flags &= ~(1 << i);
615 if (comma)
616 fputc (',', file);
617 if (i < (int) ARRAY_SIZE (bitnames))
618 fputs (bitnames[i], file);
619 else
620 fprintf (file, "%d", i);
621 comma = 1;
624 fputc (')', file);
628 /* Simple routines to easily allocate AUX fields of basic blocks. */
630 static struct obstack block_aux_obstack;
631 static void *first_block_aux_obj = 0;
632 static struct obstack edge_aux_obstack;
633 static void *first_edge_aux_obj = 0;
635 /* Allocate a memory block of SIZE as BB->aux. The obstack must
636 be first initialized by alloc_aux_for_blocks. */
638 inline void
639 alloc_aux_for_block (basic_block bb, int size)
641 /* Verify that aux field is clear. */
642 gcc_assert (!bb->aux && first_block_aux_obj);
643 bb->aux = obstack_alloc (&block_aux_obstack, size);
644 memset (bb->aux, 0, size);
647 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
648 alloc_aux_for_block for each basic block. */
650 void
651 alloc_aux_for_blocks (int size)
653 static int initialized;
655 if (!initialized)
657 gcc_obstack_init (&block_aux_obstack);
658 initialized = 1;
660 else
661 /* Check whether AUX data are still allocated. */
662 gcc_assert (!first_block_aux_obj);
664 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
665 if (size)
667 basic_block bb;
669 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
670 alloc_aux_for_block (bb, size);
674 /* Clear AUX pointers of all blocks. */
676 void
677 clear_aux_for_blocks (void)
679 basic_block bb;
681 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
682 bb->aux = NULL;
685 /* Free data allocated in block_aux_obstack and clear AUX pointers
686 of all blocks. */
688 void
689 free_aux_for_blocks (void)
691 gcc_assert (first_block_aux_obj);
692 obstack_free (&block_aux_obstack, first_block_aux_obj);
693 first_block_aux_obj = NULL;
695 clear_aux_for_blocks ();
698 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
699 be first initialized by alloc_aux_for_edges. */
701 inline void
702 alloc_aux_for_edge (edge e, int size)
704 /* Verify that aux field is clear. */
705 gcc_assert (!e->aux && first_edge_aux_obj);
706 e->aux = obstack_alloc (&edge_aux_obstack, size);
707 memset (e->aux, 0, size);
710 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
711 alloc_aux_for_edge for each basic edge. */
713 void
714 alloc_aux_for_edges (int size)
716 static int initialized;
718 if (!initialized)
720 gcc_obstack_init (&edge_aux_obstack);
721 initialized = 1;
723 else
724 /* Check whether AUX data are still allocated. */
725 gcc_assert (!first_edge_aux_obj);
727 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
728 if (size)
730 basic_block bb;
732 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
734 edge e;
735 edge_iterator ei;
737 FOR_EACH_EDGE (e, ei, bb->succs)
738 alloc_aux_for_edge (e, size);
743 /* Clear AUX pointers of all edges. */
745 void
746 clear_aux_for_edges (void)
748 basic_block bb;
749 edge e;
751 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
753 edge_iterator ei;
754 FOR_EACH_EDGE (e, ei, bb->succs)
755 e->aux = NULL;
759 /* Free data allocated in edge_aux_obstack and clear AUX pointers
760 of all edges. */
762 void
763 free_aux_for_edges (void)
765 gcc_assert (first_edge_aux_obj);
766 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
767 first_edge_aux_obj = NULL;
769 clear_aux_for_edges ();
772 void
773 debug_bb (basic_block bb)
775 dump_bb (bb, stderr, 0);
778 basic_block
779 debug_bb_n (int n)
781 basic_block bb = BASIC_BLOCK (n);
782 dump_bb (bb, stderr, 0);
783 return bb;
786 /* Dumps cfg related information about basic block BB to FILE. */
788 static void
789 dump_cfg_bb_info (FILE *file, basic_block bb)
791 unsigned i;
792 edge_iterator ei;
793 bool first = true;
794 static const char * const bb_bitnames[] =
796 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
798 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
799 edge e;
801 fprintf (file, "Basic block %d", bb->index);
802 for (i = 0; i < n_bitnames; i++)
803 if (bb->flags & (1 << i))
805 if (first)
806 fprintf (file, " (");
807 else
808 fprintf (file, ", ");
809 first = false;
810 fprintf (file, bb_bitnames[i]);
812 if (!first)
813 fprintf (file, ")");
814 fprintf (file, "\n");
816 fprintf (file, "Predecessors: ");
817 FOR_EACH_EDGE (e, ei, bb->preds)
818 dump_edge_info (file, e, 0);
820 fprintf (file, "\nSuccessors: ");
821 FOR_EACH_EDGE (e, ei, bb->succs)
822 dump_edge_info (file, e, 1);
823 fprintf (file, "\n\n");
826 /* Dumps a brief description of cfg to FILE. */
828 void
829 brief_dump_cfg (FILE *file)
831 basic_block bb;
833 FOR_EACH_BB (bb)
835 dump_cfg_bb_info (file, bb);
839 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
840 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
841 redirected to destination of TAKEN_EDGE.
843 This function may leave the profile inconsistent in the case TAKEN_EDGE
844 frequency or count is believed to be lower than FREQUENCY or COUNT
845 respectively. */
846 void
847 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
848 gcov_type count, edge taken_edge)
850 edge c;
851 int prob;
852 edge_iterator ei;
854 bb->count -= count;
855 if (bb->count < 0)
857 if (dump_file)
858 fprintf (dump_file, "bb %i count became negative after threading",
859 bb->index);
860 bb->count = 0;
863 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
864 Watch for overflows. */
865 if (bb->frequency)
866 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
867 else
868 prob = 0;
869 if (prob > taken_edge->probability)
871 if (dump_file)
872 fprintf (dump_file, "Jump threading proved probability of edge "
873 "%i->%i too small (it is %i, should be %i).\n",
874 taken_edge->src->index, taken_edge->dest->index,
875 taken_edge->probability, prob);
876 prob = taken_edge->probability;
879 /* Now rescale the probabilities. */
880 taken_edge->probability -= prob;
881 prob = REG_BR_PROB_BASE - prob;
882 bb->frequency -= edge_frequency;
883 if (bb->frequency < 0)
884 bb->frequency = 0;
885 if (prob <= 0)
887 if (dump_file)
888 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
889 "frequency of block should end up being 0, it is %i\n",
890 bb->index, bb->frequency);
891 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
892 ei = ei_start (bb->succs);
893 ei_next (&ei);
894 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
895 c->probability = 0;
897 else if (prob != REG_BR_PROB_BASE)
899 int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
901 FOR_EACH_EDGE (c, ei, bb->succs)
903 c->probability = RDIV (c->probability * scale, 65536);
904 if (c->probability > REG_BR_PROB_BASE)
905 c->probability = REG_BR_PROB_BASE;
909 gcc_assert (bb == taken_edge->src);
910 taken_edge->count -= count;
911 if (taken_edge->count < 0)
913 if (dump_file)
914 fprintf (dump_file, "edge %i->%i count became negative after threading",
915 taken_edge->src->index, taken_edge->dest->index);
916 taken_edge->count = 0;
920 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
921 by NUM/DEN, in int arithmetic. May lose some accuracy. */
922 void
923 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
925 int i;
926 edge e;
927 if (num < 0)
928 num = 0;
929 if (num > den)
930 return;
931 /* Assume that the users are producing the fraction from frequencies
932 that never grow far enough to risk arithmetic overflow. */
933 gcc_assert (num < 65536);
934 for (i = 0; i < nbbs; i++)
936 edge_iterator ei;
937 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
938 bbs[i]->count = RDIV (bbs[i]->count * num, den);
939 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
940 e->count = RDIV (e->count * num, den);
944 /* numbers smaller than this value are safe to multiply without getting
945 64bit overflow. */
946 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
948 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
949 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
950 function but considerably slower. */
951 void
952 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
953 gcov_type den)
955 int i;
956 edge e;
957 gcov_type fraction = RDIV (num * 65536, den);
959 gcc_assert (fraction >= 0);
961 if (num < MAX_SAFE_MULTIPLIER)
962 for (i = 0; i < nbbs; i++)
964 edge_iterator ei;
965 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
966 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
967 bbs[i]->count = RDIV (bbs[i]->count * num, den);
968 else
969 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
970 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
971 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
972 e->count = RDIV (e->count * num, den);
973 else
974 e->count = RDIV (e->count * fraction, 65536);
976 else
977 for (i = 0; i < nbbs; i++)
979 edge_iterator ei;
980 if (sizeof (gcov_type) > sizeof (int))
981 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
982 else
983 bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
984 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
985 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
986 e->count = RDIV (e->count * fraction, 65536);
990 /* Data structures used to maintain mapping between basic blocks and
991 copies. */
992 static htab_t bb_original;
993 static htab_t bb_copy;
994 static alloc_pool original_copy_bb_pool;
996 struct htab_bb_copy_original_entry
998 /* Block we are attaching info to. */
999 int index1;
1000 /* Index of original or copy (depending on the hashtable) */
1001 int index2;
1004 static hashval_t
1005 bb_copy_original_hash (const void *p)
1007 struct htab_bb_copy_original_entry *data
1008 = ((struct htab_bb_copy_original_entry *)p);
1010 return data->index1;
1012 static int
1013 bb_copy_original_eq (const void *p, const void *q)
1015 struct htab_bb_copy_original_entry *data
1016 = ((struct htab_bb_copy_original_entry *)p);
1017 struct htab_bb_copy_original_entry *data2
1018 = ((struct htab_bb_copy_original_entry *)q);
1020 return data->index1 == data2->index1;
1023 /* Initialize the data structures to maintain mapping between blocks
1024 and its copies. */
1025 void
1026 initialize_original_copy_tables (void)
1028 gcc_assert (!original_copy_bb_pool);
1029 original_copy_bb_pool
1030 = create_alloc_pool ("original_copy",
1031 sizeof (struct htab_bb_copy_original_entry), 10);
1032 bb_original = htab_create (10, bb_copy_original_hash,
1033 bb_copy_original_eq, NULL);
1034 bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1037 /* Free the data structures to maintain mapping between blocks and
1038 its copies. */
1039 void
1040 free_original_copy_tables (void)
1042 gcc_assert (original_copy_bb_pool);
1043 htab_delete (bb_copy);
1044 htab_delete (bb_original);
1045 free_alloc_pool (original_copy_bb_pool);
1046 bb_copy = NULL;
1047 bb_original = NULL;
1048 original_copy_bb_pool = NULL;
1051 /* Set original for basic block. Do nothing when data structures are not
1052 initialized so passes not needing this don't need to care. */
1053 void
1054 set_bb_original (basic_block bb, basic_block original)
1056 if (original_copy_bb_pool)
1058 struct htab_bb_copy_original_entry **slot;
1059 struct htab_bb_copy_original_entry key;
1061 key.index1 = bb->index;
1062 slot =
1063 (struct htab_bb_copy_original_entry **) htab_find_slot (bb_original,
1064 &key, INSERT);
1065 if (*slot)
1066 (*slot)->index2 = original->index;
1067 else
1069 *slot = pool_alloc (original_copy_bb_pool);
1070 (*slot)->index1 = bb->index;
1071 (*slot)->index2 = original->index;
1076 /* Get the original basic block. */
1077 basic_block
1078 get_bb_original (basic_block bb)
1080 struct htab_bb_copy_original_entry *entry;
1081 struct htab_bb_copy_original_entry key;
1083 gcc_assert (original_copy_bb_pool);
1085 key.index1 = bb->index;
1086 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
1087 if (entry)
1088 return BASIC_BLOCK (entry->index2);
1089 else
1090 return NULL;
1093 /* Set copy for basic block. Do nothing when data structures are not
1094 initialized so passes not needing this don't need to care. */
1095 void
1096 set_bb_copy (basic_block bb, basic_block copy)
1098 if (original_copy_bb_pool)
1100 struct htab_bb_copy_original_entry **slot;
1101 struct htab_bb_copy_original_entry key;
1103 key.index1 = bb->index;
1104 slot =
1105 (struct htab_bb_copy_original_entry **) htab_find_slot (bb_copy,
1106 &key, INSERT);
1107 if (*slot)
1108 (*slot)->index2 = copy->index;
1109 else
1111 *slot = pool_alloc (original_copy_bb_pool);
1112 (*slot)->index1 = bb->index;
1113 (*slot)->index2 = copy->index;
1118 /* Get the copy of basic block. */
1119 basic_block
1120 get_bb_copy (basic_block bb)
1122 struct htab_bb_copy_original_entry *entry;
1123 struct htab_bb_copy_original_entry key;
1125 gcc_assert (original_copy_bb_pool);
1127 key.index1 = bb->index;
1128 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
1129 if (entry)
1130 return BASIC_BLOCK (entry->index2);
1131 else
1132 return NULL;