1 /* Header file for the value range relational processing.
2 Copyright (C) 2020-2023 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_VALUE_RELATION_H
22 #define GCC_VALUE_RELATION_H
25 // This file provides access to a relation oracle which can be used to
26 // maintain and query relations and equivalences between SSA_NAMES.
28 // The general range_query object provided in value-query.h provides
29 // access to an oracle, if one is available, via the oracle() method.
30 // There are also a couple of access routines provided, which even if there is
31 // no oracle, will return the default VREL_VARYING no relation.
33 // Typically, when a ranger object is active, there will be an oracle, and
34 // any information available can be directly queried. Ranger also sets and
35 // utilizes the relation information to enhance it's range calculations, this
36 // is totally transparent to the client, and they are free to make queries.
38 // relation_kind is a new enum which represents the different relations,
39 // often with a direct mapping to tree codes. ie VREL_EQ is equivalent to
42 // A query is made requesting the relation between SSA1 and SSA@ in a basic
43 // block, or on an edge, the possible return values are:
45 // VREL_EQ, VREL_NE, VREL_LT, VREL_LE, VREL_GT, and VREL_GE mean the same.
46 // VREL_VARYING : No relation between the 2 names.
47 // VREL_UNDEFINED : Impossible relation (ie, A < B && A > B)
49 // The oracle maintains VREL_EQ relations with equivalency sets, so if a
50 // relation comes back VREL_EQ, it is also possible to query the set of
51 // equivalencies. These are basically bitmaps over ssa_names. An iterator is
52 // provided later for this activity.
54 // Relations are maintained via the dominance trees and are optimized assuming
55 // they are registered in dominance order. When a new relation is added, it
56 // is intersected with whatever existing relation exists in the dominance tree
57 // and registered at the specified block.
60 // These codes are arranged such that VREL_VARYING is the first code, and all
61 // the rest are contiguous.
63 typedef enum relation_kind_t
65 VREL_VARYING
= 0, // No known relation, AKA varying.
66 VREL_UNDEFINED
, // Impossible relation, ie (r1 < r2) && (r2 > r1)
73 VREL_PE8
, // 8 bit partial equivalency
74 VREL_PE16
, // 16 bit partial equivalency
75 VREL_PE32
, // 32 bit partial equivalency
76 VREL_PE64
, // 64 bit partial equivalency
77 VREL_LAST
// terminate, not a real relation.
80 // General relation kind transformations.
81 relation_kind
relation_union (relation_kind r1
, relation_kind r2
);
82 relation_kind
relation_intersect (relation_kind r1
, relation_kind r2
);
83 relation_kind
relation_negate (relation_kind r
);
84 relation_kind
relation_swap (relation_kind r
);
85 inline bool relation_lt_le_gt_ge_p (relation_kind r
)
86 { return (r
>= VREL_LT
&& r
<= VREL_GE
); }
87 inline bool relation_partial_equiv_p (relation_kind r
)
88 { return (r
>= VREL_PE8
&& r
<= VREL_PE64
); }
89 inline bool relation_equiv_p (relation_kind r
)
90 { return r
== VREL_EQ
|| relation_partial_equiv_p (r
); }
92 void print_relation (FILE *f
, relation_kind rel
);
94 // Return relation for NAME == NAME with RANGE.
95 relation_kind
get_identity_relation (tree name
, vrange
&range
);
100 virtual ~relation_oracle () { }
101 // register a relation between 2 ssa names at a stmt.
102 void register_stmt (gimple
*, relation_kind
, tree
, tree
);
103 // register a relation between 2 ssa names on an edge.
104 void register_edge (edge
, relation_kind
, tree
, tree
);
106 // register a relation between 2 ssa names in a basic block.
107 virtual void register_relation (basic_block
, relation_kind
, tree
, tree
) = 0;
108 // Query for a relation between two ssa names in a basic block.
109 virtual relation_kind
query_relation (basic_block
, tree
, tree
) = 0;
111 relation_kind
validate_relation (relation_kind
, tree
, tree
);
112 relation_kind
validate_relation (relation_kind
, vrange
&, vrange
&);
114 virtual void dump (FILE *, basic_block
) const = 0;
115 virtual void dump (FILE *) const = 0;
118 friend class equiv_relation_iterator
;
119 // Return equivalency set for an SSA name in a basic block.
120 virtual const_bitmap
equiv_set (tree
, basic_block
) = 0;
121 // Return partial equivalency record for an SSA name.
122 virtual const class pe_slice
*partial_equiv_set (tree
) { return NULL
; }
123 void valid_equivs (bitmap b
, const_bitmap equivs
, basic_block bb
);
124 // Query for a relation between two equivalency sets in a basic block.
125 virtual relation_kind
query_relation (basic_block
, const_bitmap
,
127 friend class path_oracle
;
130 // This class represents an equivalency set, and contains a link to the next
131 // one in the list to be searched.
136 bitmap m_names
; // ssa-names in equiv set.
137 basic_block m_bb
; // Block this belongs to
138 equiv_chain
*m_next
; // Next in block list.
139 void dump (FILE *f
) const; // Show names in this list.
140 equiv_chain
*find (unsigned ssa
);
146 tree ssa_base
; // Slice of this name.
147 relation_kind code
; // bits that are equivalent.
148 bitmap members
; // Other members in the partial equivalency.
151 // The equivalency oracle maintains equivalencies using the dominator tree.
152 // Equivalencies apply to an entire basic block. Equivalencies on edges
153 // can be represented only on edges whose destination is a single-pred block,
154 // and the equivalence is simply applied to that successor block.
156 class equiv_oracle
: public relation_oracle
162 const_bitmap
equiv_set (tree ssa
, basic_block bb
) final override
;
163 const pe_slice
*partial_equiv_set (tree name
) final override
;
164 void register_relation (basic_block bb
, relation_kind k
, tree ssa1
,
167 void add_partial_equiv (relation_kind
, tree
, tree
);
168 relation_kind
partial_equiv (tree ssa1
, tree ssa2
, tree
*base
= NULL
) const;
169 relation_kind
query_relation (basic_block
, tree
, tree
) override
;
170 relation_kind
query_relation (basic_block
, const_bitmap
, const_bitmap
)
172 void dump (FILE *f
, basic_block bb
) const override
;
173 void dump (FILE *f
) const override
;
176 inline bool has_equiv_p (unsigned v
) { return bitmap_bit_p (m_equiv_set
, v
); }
177 bitmap_obstack m_bitmaps
;
178 struct obstack m_chain_obstack
;
180 bitmap m_equiv_set
; // Index by ssa-name. true if an equivalence exists.
181 vec
<equiv_chain
*> m_equiv
; // Index by BB. list of equivalences.
182 vec
<bitmap
> m_self_equiv
; // Index by ssa-name, self equivalency set.
183 vec
<pe_slice
> m_partial
; // Partial equivalencies.
185 void limit_check (basic_block bb
= NULL
);
186 equiv_chain
*find_equiv_block (unsigned ssa
, int bb
) const;
187 equiv_chain
*find_equiv_dom (tree name
, basic_block bb
) const;
189 bitmap
register_equiv (basic_block bb
, unsigned v
, equiv_chain
*equiv_1
);
190 bitmap
register_equiv (basic_block bb
, equiv_chain
*equiv_1
,
191 equiv_chain
*equiv_2
);
192 void register_initial_def (tree ssa
);
193 void add_equiv_to_block (basic_block bb
, bitmap equiv
);
196 // Summary block header for relations.
198 class relation_chain_head
201 bitmap m_names
; // ssa_names with relations in this block.
202 class relation_chain
*m_head
; // List of relations in block.
203 int m_num_relations
; // Number of relations in block.
204 relation_kind
find_relation (const_bitmap b1
, const_bitmap b2
) const;
207 // A relation oracle maintains a set of relations between ssa_names using the
208 // dominator tree structures. Equivalencies are considered a subset of
209 // a general relation and maintained by an equivalence oracle by transparently
210 // passing any EQ_EXPR relations to it.
211 // Relations are handled at the basic block level. All relations apply to
212 // an entire block, and are thus kept in a summary index by block.
213 // Similar to the equivalence oracle, edges are handled by applying the
214 // relation to the destination block of the edge, but ONLY if that block
215 // has a single successor. For now.
217 class dom_oracle
: public equiv_oracle
223 void register_relation (basic_block bb
, relation_kind k
, tree op1
, tree op2
)
226 relation_kind
query_relation (basic_block bb
, tree ssa1
, tree ssa2
)
228 relation_kind
query_relation (basic_block bb
, const_bitmap b1
,
229 const_bitmap b2
) final override
;
231 void dump (FILE *f
, basic_block bb
) const final override
;
232 void dump (FILE *f
) const final override
;
234 bitmap m_tmp
, m_tmp2
;
235 bitmap m_relation_set
; // Index by ssa-name. True if a relation exists
236 vec
<relation_chain_head
> m_relations
; // Index by BB, list of relations.
237 relation_kind
find_relation_block (unsigned bb
, const_bitmap b1
,
238 const_bitmap b2
) const;
239 relation_kind
find_relation_block (int bb
, unsigned v1
, unsigned v2
,
240 relation_chain
**obj
= NULL
) const;
241 relation_kind
find_relation_dom (basic_block bb
, unsigned v1
, unsigned v2
) const;
242 relation_chain
*set_one_relation (basic_block bb
, relation_kind k
, tree op1
,
244 void register_transitives (basic_block
, const class value_relation
&);
248 // A path_oracle implements relations in a list. The only sense of ordering
249 // is the latest registered relation is the first found during a search.
250 // It can be constructed with an optional "root" oracle which will be used
251 // to look up any relations not found in the list.
252 // This allows the client to walk paths starting at some block and register
253 // and query relations along that path, ignoring other edges.
255 // For registering a relation, a query if made of the root oracle if there is
256 // any known relationship at block BB, and it is combined with this new
257 // relation and entered in the list.
259 // Queries are resolved by looking first in the list, and only if nothing is
260 // found is the root oracle queried at block BB.
262 // reset_path is used to clear all locally registered paths to initial state.
264 class path_oracle
: public relation_oracle
267 path_oracle (relation_oracle
*oracle
= NULL
);
269 const_bitmap
equiv_set (tree
, basic_block
) final override
;
270 void register_relation (basic_block
, relation_kind
, tree
, tree
) final override
;
271 void killing_def (tree
);
272 relation_kind
query_relation (basic_block
, tree
, tree
) final override
;
273 relation_kind
query_relation (basic_block
, const_bitmap
, const_bitmap
)
275 void reset_path (relation_oracle
*oracle
= NULL
);
276 void set_root_oracle (relation_oracle
*oracle
) { m_root
= oracle
; }
277 void dump (FILE *, basic_block
) const final override
;
278 void dump (FILE *) const final override
;
280 void register_equiv (basic_block bb
, tree ssa1
, tree ssa2
);
282 relation_chain_head m_relations
;
283 relation_oracle
*m_root
;
284 bitmap m_killed_defs
;
286 bitmap_obstack m_bitmaps
;
287 struct obstack m_chain_obstack
;
290 // Used to assist with iterating over the equivalence list.
291 class equiv_relation_iterator
{
293 equiv_relation_iterator (relation_oracle
*oracle
, basic_block bb
, tree name
,
294 bool full
= true, bool partial
= false);
296 tree
get_name (relation_kind
*rel
= NULL
);
298 relation_oracle
*m_oracle
;
300 const pe_slice
*m_pe
;
301 bitmap_iterator m_bi
;
306 #define FOR_EACH_EQUIVALENCE(oracle, bb, name, equiv_name) \
307 for (equiv_relation_iterator iter (oracle, bb, name, true, false); \
308 ((equiv_name) = iter.get_name ()); \
311 #define FOR_EACH_PARTIAL_EQUIV(oracle, bb, name, equiv_name, equiv_rel) \
312 for (equiv_relation_iterator iter (oracle, bb, name, false, true); \
313 ((equiv_name) = iter.get_name (&equiv_rel)); \
316 #define FOR_EACH_PARTIAL_AND_FULL_EQUIV(oracle, bb, name, equiv_name, \
318 for (equiv_relation_iterator iter (oracle, bb, name, true, true); \
319 ((equiv_name) = iter.get_name (&equiv_rel)); \
322 // -----------------------------------------------------------------------
324 // Range-ops deals with a LHS and 2 operands. A relation trio is a set of
325 // 3 potential relations packed into a single unsigned value.
326 // 1 - LHS relation OP1
327 // 2 - LHS relation OP2
328 // 3 - OP1 relation OP2
329 // VREL_VARYING is a value of 0, and is the default for each position.
334 relation_trio (relation_kind lhs_op1
, relation_kind lhs_op2
,
335 relation_kind op1_op2
);
336 relation_kind
lhs_op1 ();
337 relation_kind
lhs_op2 ();
338 relation_kind
op1_op2 ();
339 relation_trio
swap_op1_op2 ();
341 static relation_trio
lhs_op1 (relation_kind k
);
342 static relation_trio
lhs_op2 (relation_kind k
);
343 static relation_trio
op1_op2 (relation_kind k
);
349 // Default VREL_VARYING for all 3 relations.
350 #define TRIO_VARYING relation_trio ()
353 #define TRIO_MASK 0x000F
355 // These 3 classes are shortcuts for when a caller has a single relation to
356 // pass as a trio, it can simply construct the appropriate one. The other
357 // unspecified relations will be VREL_VARYING.
359 inline relation_trio::relation_trio ()
361 STATIC_ASSERT (VREL_LAST
<= (1 << TRIO_SHIFT
));
365 inline relation_trio::relation_trio (relation_kind lhs_op1
,
366 relation_kind lhs_op2
,
367 relation_kind op1_op2
)
369 STATIC_ASSERT (VREL_LAST
<= (1 << TRIO_SHIFT
));
370 unsigned i1
= (unsigned) lhs_op1
;
371 unsigned i2
= ((unsigned) lhs_op2
) << TRIO_SHIFT
;
372 unsigned i3
= ((unsigned) op1_op2
) << (TRIO_SHIFT
* 2);
373 m_val
= i1
| i2
| i3
;
377 relation_trio::lhs_op1 (relation_kind k
)
379 return relation_trio (k
, VREL_VARYING
, VREL_VARYING
);
382 relation_trio::lhs_op2 (relation_kind k
)
384 return relation_trio (VREL_VARYING
, k
, VREL_VARYING
);
387 relation_trio::op1_op2 (relation_kind k
)
389 return relation_trio (VREL_VARYING
, VREL_VARYING
, k
);
393 relation_trio::lhs_op1 ()
395 return (relation_kind
) (m_val
& TRIO_MASK
);
399 relation_trio::lhs_op2 ()
401 return (relation_kind
) ((m_val
>> TRIO_SHIFT
) & TRIO_MASK
);
405 relation_trio::op1_op2 ()
407 return (relation_kind
) ((m_val
>> (TRIO_SHIFT
* 2)) & TRIO_MASK
);
411 relation_trio::swap_op1_op2 ()
413 return relation_trio (lhs_op2 (), lhs_op1 (), relation_swap (op1_op2 ()));
416 // -----------------------------------------------------------------------
418 // The value-relation class is used to encapsulate the representation of an
419 // individual relation between 2 ssa-names, and to facilitate operating on
426 value_relation (relation_kind kind
, tree n1
, tree n2
);
427 void set_relation (relation_kind kind
, tree n1
, tree n2
);
429 inline relation_kind
kind () const { return related
; }
430 inline tree
op1 () const { return name1
; }
431 inline tree
op2 () const { return name2
; }
433 relation_trio
create_trio (tree lhs
, tree op1
, tree op2
);
434 bool union_ (value_relation
&p
);
435 bool intersect (value_relation
&p
);
437 bool apply_transitive (const value_relation
&rel
);
439 void dump (FILE *f
) const;
441 relation_kind related
;
445 // Set relation R between ssa_name N1 and N2.
448 value_relation::set_relation (relation_kind r
, tree n1
, tree n2
)
450 gcc_checking_assert (TREE_CODE (n1
) == SSA_NAME
451 && TREE_CODE (n2
) == SSA_NAME
);
457 // Default constructor.
460 value_relation::value_relation ()
462 related
= VREL_VARYING
;
467 // Constructor for relation R between SSA version N1 and N2.
470 value_relation::value_relation (relation_kind kind
, tree n1
, tree n2
)
472 set_relation (kind
, n1
, n2
);
475 // Return the number of bits associated with partial equivalency T.
476 // Return 0 if this is not a supported partial equivalency relation.
479 pe_to_bits (relation_kind t
)
496 // Return the partial equivalency code associated with the number of BITS.
497 // return VREL_VARYING if there is no exact match.
500 bits_to_pe (int bits
)
517 // Given partial equivalencies T1 and T2, return the smallest kind.
520 pe_min (relation_kind t1
, relation_kind t2
)
522 gcc_checking_assert (relation_partial_equiv_p (t1
));
523 gcc_checking_assert (relation_partial_equiv_p (t2
));
524 // VREL_PE are declared small to large, so simple min will suffice.
527 #endif /* GCC_VALUE_RELATION_H */