ada: Fix internal error on instantiation with private component type
[official-gcc.git] / gcc / tree-vectorizer.h
blobf1d0cd79961abb095bc79d3b59a81930f0337e59
1 /* Vectorizer
2 Copyright (C) 2003-2023 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 typedef class _stmt_vec_info *stmt_vec_info;
25 typedef struct _slp_tree *slp_tree;
27 #include "tree-data-ref.h"
28 #include "tree-hash-traits.h"
29 #include "target.h"
30 #include "internal-fn.h"
31 #include "tree-ssa-operands.h"
32 #include "gimple-match.h"
34 /* Used for naming of new temporaries. */
35 enum vect_var_kind {
36 vect_simple_var,
37 vect_pointer_var,
38 vect_scalar_var,
39 vect_mask_var
42 /* Defines type of operation. */
43 enum operation_type {
44 unary_op = 1,
45 binary_op,
46 ternary_op
49 /* Define type of available alignment support. */
50 enum dr_alignment_support {
51 dr_unaligned_unsupported,
52 dr_unaligned_supported,
53 dr_explicit_realign,
54 dr_explicit_realign_optimized,
55 dr_aligned
58 /* Define type of def-use cross-iteration cycle. */
59 enum vect_def_type {
60 vect_uninitialized_def = 0,
61 vect_constant_def = 1,
62 vect_external_def,
63 vect_internal_def,
64 vect_induction_def,
65 vect_reduction_def,
66 vect_double_reduction_def,
67 vect_nested_cycle,
68 vect_first_order_recurrence,
69 vect_unknown_def_type
72 /* Define operation type of linear/non-linear induction variable. */
73 enum vect_induction_op_type {
74 vect_step_op_add = 0,
75 vect_step_op_neg,
76 vect_step_op_mul,
77 vect_step_op_shl,
78 vect_step_op_shr
81 /* Define type of reduction. */
82 enum vect_reduction_type {
83 TREE_CODE_REDUCTION,
84 COND_REDUCTION,
85 INTEGER_INDUC_COND_REDUCTION,
86 CONST_COND_REDUCTION,
88 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
89 to implement:
91 for (int i = 0; i < VF; ++i)
92 res = cond[i] ? val[i] : res; */
93 EXTRACT_LAST_REDUCTION,
95 /* Use a folding reduction within the loop to implement:
97 for (int i = 0; i < VF; ++i)
98 res = res OP val[i];
100 (with no reassocation). */
101 FOLD_LEFT_REDUCTION
104 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
105 || ((D) == vect_double_reduction_def) \
106 || ((D) == vect_nested_cycle))
108 /* Structure to encapsulate information about a group of like
109 instructions to be presented to the target cost model. */
110 struct stmt_info_for_cost {
111 int count;
112 enum vect_cost_for_stmt kind;
113 enum vect_cost_model_location where;
114 stmt_vec_info stmt_info;
115 slp_tree node;
116 tree vectype;
117 int misalign;
120 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
122 /* Maps base addresses to an innermost_loop_behavior and the stmt it was
123 derived from that gives the maximum known alignment for that base. */
124 typedef hash_map<tree_operand_hash,
125 std::pair<stmt_vec_info, innermost_loop_behavior *> >
126 vec_base_alignments;
128 /* Represents elements [START, START + LENGTH) of cyclical array OPS*
129 (i.e. OPS repeated to give at least START + LENGTH elements) */
130 struct vect_scalar_ops_slice
132 tree op (unsigned int i) const;
133 bool all_same_p () const;
135 vec<tree> *ops;
136 unsigned int start;
137 unsigned int length;
140 /* Return element I of the slice. */
141 inline tree
142 vect_scalar_ops_slice::op (unsigned int i) const
144 return (*ops)[(i + start) % ops->length ()];
147 /* Hash traits for vect_scalar_ops_slice. */
148 struct vect_scalar_ops_slice_hash : typed_noop_remove<vect_scalar_ops_slice>
150 typedef vect_scalar_ops_slice value_type;
151 typedef vect_scalar_ops_slice compare_type;
153 static const bool empty_zero_p = true;
155 static void mark_deleted (value_type &s) { s.length = ~0U; }
156 static void mark_empty (value_type &s) { s.length = 0; }
157 static bool is_deleted (const value_type &s) { return s.length == ~0U; }
158 static bool is_empty (const value_type &s) { return s.length == 0; }
159 static hashval_t hash (const value_type &);
160 static bool equal (const value_type &, const compare_type &);
163 /************************************************************************
165 ************************************************************************/
166 typedef vec<std::pair<unsigned, unsigned> > lane_permutation_t;
167 typedef auto_vec<std::pair<unsigned, unsigned>, 16> auto_lane_permutation_t;
168 typedef vec<unsigned> load_permutation_t;
169 typedef auto_vec<unsigned, 16> auto_load_permutation_t;
171 /* A computation tree of an SLP instance. Each node corresponds to a group of
172 stmts to be packed in a SIMD stmt. */
173 struct _slp_tree {
174 _slp_tree ();
175 ~_slp_tree ();
177 void push_vec_def (gimple *def);
178 void push_vec_def (tree def) { vec_defs.quick_push (def); }
180 /* Nodes that contain def-stmts of this node statements operands. */
181 vec<slp_tree> children;
183 /* A group of scalar stmts to be vectorized together. */
184 vec<stmt_vec_info> stmts;
185 /* A group of scalar operands to be vectorized together. */
186 vec<tree> ops;
187 /* The representative that should be used for analysis and
188 code generation. */
189 stmt_vec_info representative;
191 /* Load permutation relative to the stores, NULL if there is no
192 permutation. */
193 load_permutation_t load_permutation;
194 /* Lane permutation of the operands scalar lanes encoded as pairs
195 of { operand number, lane number }. The number of elements
196 denotes the number of output lanes. */
197 lane_permutation_t lane_permutation;
199 tree vectype;
200 /* Vectorized defs. */
201 vec<tree> vec_defs;
202 /* Number of vector stmts that are created to replace the group of scalar
203 stmts. It is calculated during the transformation phase as the number of
204 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
205 divided by vector size. */
206 unsigned int vec_stmts_size;
208 /* Reference count in the SLP graph. */
209 unsigned int refcnt;
210 /* The maximum number of vector elements for the subtree rooted
211 at this node. */
212 poly_uint64 max_nunits;
213 /* The DEF type of this node. */
214 enum vect_def_type def_type;
215 /* The number of scalar lanes produced by this node. */
216 unsigned int lanes;
217 /* The operation of this node. */
218 enum tree_code code;
220 int vertex;
222 /* If not NULL this is a cached failed SLP discovery attempt with
223 the lanes that failed during SLP discovery as 'false'. This is
224 a copy of the matches array. */
225 bool *failed;
227 /* Allocate from slp_tree_pool. */
228 static void *operator new (size_t);
230 /* Return memory to slp_tree_pool. */
231 static void operator delete (void *, size_t);
233 /* Linked list of nodes to release when we free the slp_tree_pool. */
234 slp_tree next_node;
235 slp_tree prev_node;
238 /* The enum describes the type of operations that an SLP instance
239 can perform. */
241 enum slp_instance_kind {
242 slp_inst_kind_store,
243 slp_inst_kind_reduc_group,
244 slp_inst_kind_reduc_chain,
245 slp_inst_kind_bb_reduc,
246 slp_inst_kind_ctor
249 /* SLP instance is a sequence of stmts in a loop that can be packed into
250 SIMD stmts. */
251 typedef class _slp_instance {
252 public:
253 /* The root of SLP tree. */
254 slp_tree root;
256 /* For vector constructors, the constructor stmt that the SLP tree is built
257 from, NULL otherwise. */
258 vec<stmt_vec_info> root_stmts;
260 /* For slp_inst_kind_bb_reduc the defs that were not vectorized, NULL
261 otherwise. */
262 vec<tree> remain_defs;
264 /* The unrolling factor required to vectorized this SLP instance. */
265 poly_uint64 unrolling_factor;
267 /* The group of nodes that contain loads of this SLP instance. */
268 vec<slp_tree> loads;
270 /* The SLP node containing the reduction PHIs. */
271 slp_tree reduc_phis;
273 /* Vector cost of this entry to the SLP graph. */
274 stmt_vector_for_cost cost_vec;
276 /* If this instance is the main entry of a subgraph the set of
277 entries into the same subgraph, including itself. */
278 vec<_slp_instance *> subgraph_entries;
280 /* The type of operation the SLP instance is performing. */
281 slp_instance_kind kind;
283 dump_user_location_t location () const;
284 } *slp_instance;
287 /* Access Functions. */
288 #define SLP_INSTANCE_TREE(S) (S)->root
289 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
290 #define SLP_INSTANCE_LOADS(S) (S)->loads
291 #define SLP_INSTANCE_ROOT_STMTS(S) (S)->root_stmts
292 #define SLP_INSTANCE_REMAIN_DEFS(S) (S)->remain_defs
293 #define SLP_INSTANCE_KIND(S) (S)->kind
295 #define SLP_TREE_CHILDREN(S) (S)->children
296 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
297 #define SLP_TREE_SCALAR_OPS(S) (S)->ops
298 #define SLP_TREE_REF_COUNT(S) (S)->refcnt
299 #define SLP_TREE_VEC_DEFS(S) (S)->vec_defs
300 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
301 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
302 #define SLP_TREE_LANE_PERMUTATION(S) (S)->lane_permutation
303 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
304 #define SLP_TREE_VECTYPE(S) (S)->vectype
305 #define SLP_TREE_REPRESENTATIVE(S) (S)->representative
306 #define SLP_TREE_LANES(S) (S)->lanes
307 #define SLP_TREE_CODE(S) (S)->code
309 enum vect_partial_vector_style {
310 vect_partial_vectors_none,
311 vect_partial_vectors_while_ult,
312 vect_partial_vectors_avx512,
313 vect_partial_vectors_len
316 /* Key for map that records association between
317 scalar conditions and corresponding loop mask, and
318 is populated by vect_record_loop_mask. */
320 struct scalar_cond_masked_key
322 scalar_cond_masked_key (tree t, unsigned ncopies_)
323 : ncopies (ncopies_)
325 get_cond_ops_from_tree (t);
328 void get_cond_ops_from_tree (tree);
330 unsigned ncopies;
331 bool inverted_p;
332 tree_code code;
333 tree op0;
334 tree op1;
337 template<>
338 struct default_hash_traits<scalar_cond_masked_key>
340 typedef scalar_cond_masked_key compare_type;
341 typedef scalar_cond_masked_key value_type;
343 static inline hashval_t
344 hash (value_type v)
346 inchash::hash h;
347 h.add_int (v.code);
348 inchash::add_expr (v.op0, h, 0);
349 inchash::add_expr (v.op1, h, 0);
350 h.add_int (v.ncopies);
351 h.add_flag (v.inverted_p);
352 return h.end ();
355 static inline bool
356 equal (value_type existing, value_type candidate)
358 return (existing.ncopies == candidate.ncopies
359 && existing.code == candidate.code
360 && existing.inverted_p == candidate.inverted_p
361 && operand_equal_p (existing.op0, candidate.op0, 0)
362 && operand_equal_p (existing.op1, candidate.op1, 0));
365 static const bool empty_zero_p = true;
367 static inline void
368 mark_empty (value_type &v)
370 v.ncopies = 0;
371 v.inverted_p = false;
374 static inline bool
375 is_empty (value_type v)
377 return v.ncopies == 0;
380 static inline void mark_deleted (value_type &) {}
382 static inline bool is_deleted (const value_type &)
384 return false;
387 static inline void remove (value_type &) {}
390 typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
392 /* Key and map that records association between vector conditions and
393 corresponding loop mask, and is populated by prepare_vec_mask. */
395 typedef pair_hash<tree_operand_hash, tree_operand_hash> tree_cond_mask_hash;
396 typedef hash_set<tree_cond_mask_hash> vec_cond_masked_set_type;
398 /* Describes two objects whose addresses must be unequal for the vectorized
399 loop to be valid. */
400 typedef std::pair<tree, tree> vec_object_pair;
402 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
403 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
404 class vec_lower_bound {
405 public:
406 vec_lower_bound () {}
407 vec_lower_bound (tree e, bool u, poly_uint64 m)
408 : expr (e), unsigned_p (u), min_value (m) {}
410 tree expr;
411 bool unsigned_p;
412 poly_uint64 min_value;
415 /* Vectorizer state shared between different analyses like vector sizes
416 of the same CFG region. */
417 class vec_info_shared {
418 public:
419 vec_info_shared();
420 ~vec_info_shared();
422 void save_datarefs();
423 void check_datarefs();
425 /* The number of scalar stmts. */
426 unsigned n_stmts;
428 /* All data references. Freed by free_data_refs, so not an auto_vec. */
429 vec<data_reference_p> datarefs;
430 vec<data_reference> datarefs_copy;
432 /* The loop nest in which the data dependences are computed. */
433 auto_vec<loop_p> loop_nest;
435 /* All data dependences. Freed by free_dependence_relations, so not
436 an auto_vec. */
437 vec<ddr_p> ddrs;
440 /* Vectorizer state common between loop and basic-block vectorization. */
441 class vec_info {
442 public:
443 typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
444 enum vec_kind { bb, loop };
446 vec_info (vec_kind, vec_info_shared *);
447 ~vec_info ();
449 stmt_vec_info add_stmt (gimple *);
450 stmt_vec_info add_pattern_stmt (gimple *, stmt_vec_info);
451 stmt_vec_info lookup_stmt (gimple *);
452 stmt_vec_info lookup_def (tree);
453 stmt_vec_info lookup_single_use (tree);
454 class dr_vec_info *lookup_dr (data_reference *);
455 void move_dr (stmt_vec_info, stmt_vec_info);
456 void remove_stmt (stmt_vec_info);
457 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
458 void insert_on_entry (stmt_vec_info, gimple *);
459 void insert_seq_on_entry (stmt_vec_info, gimple_seq);
461 /* The type of vectorization. */
462 vec_kind kind;
464 /* Shared vectorizer state. */
465 vec_info_shared *shared;
467 /* The mapping of GIMPLE UID to stmt_vec_info. */
468 vec<stmt_vec_info> stmt_vec_infos;
469 /* Whether the above mapping is complete. */
470 bool stmt_vec_info_ro;
472 /* Whether we've done a transform we think OK to not update virtual
473 SSA form. */
474 bool any_known_not_updated_vssa;
476 /* The SLP graph. */
477 auto_vec<slp_instance> slp_instances;
479 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
480 known alignment for that base. */
481 vec_base_alignments base_alignments;
483 /* All interleaving chains of stores, represented by the first
484 stmt in the chain. */
485 auto_vec<stmt_vec_info> grouped_stores;
487 /* The set of vector modes used in the vectorized region. */
488 mode_set used_vector_modes;
490 /* The argument we should pass to related_vector_mode when looking up
491 the vector mode for a scalar mode, or VOIDmode if we haven't yet
492 made any decisions about which vector modes to use. */
493 machine_mode vector_mode;
495 private:
496 stmt_vec_info new_stmt_vec_info (gimple *stmt);
497 void set_vinfo_for_stmt (gimple *, stmt_vec_info, bool = true);
498 void free_stmt_vec_infos ();
499 void free_stmt_vec_info (stmt_vec_info);
502 class _loop_vec_info;
503 class _bb_vec_info;
505 template<>
506 template<>
507 inline bool
508 is_a_helper <_loop_vec_info *>::test (vec_info *i)
510 return i->kind == vec_info::loop;
513 template<>
514 template<>
515 inline bool
516 is_a_helper <_bb_vec_info *>::test (vec_info *i)
518 return i->kind == vec_info::bb;
521 /* In general, we can divide the vector statements in a vectorized loop
522 into related groups ("rgroups") and say that for each rgroup there is
523 some nS such that the rgroup operates on nS values from one scalar
524 iteration followed by nS values from the next. That is, if VF is the
525 vectorization factor of the loop, the rgroup operates on a sequence:
527 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
529 where (i,j) represents a scalar value with index j in a scalar
530 iteration with index i.
532 [ We use the term "rgroup" to emphasise that this grouping isn't
533 necessarily the same as the grouping of statements used elsewhere.
534 For example, if we implement a group of scalar loads using gather
535 loads, we'll use a separate gather load for each scalar load, and
536 thus each gather load will belong to its own rgroup. ]
538 In general this sequence will occupy nV vectors concatenated
539 together. If these vectors have nL lanes each, the total number
540 of scalar values N is given by:
542 N = nS * VF = nV * nL
544 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
545 are compile-time constants but VF and nL can be variable (if the target
546 supports variable-length vectors).
548 In classical vectorization, each iteration of the vector loop would
549 handle exactly VF iterations of the original scalar loop. However,
550 in vector loops that are able to operate on partial vectors, a
551 particular iteration of the vector loop might handle fewer than VF
552 iterations of the scalar loop. The vector lanes that correspond to
553 iterations of the scalar loop are said to be "active" and the other
554 lanes are said to be "inactive".
556 In such vector loops, many rgroups need to be controlled to ensure
557 that they have no effect for the inactive lanes. Conceptually, each
558 such rgroup needs a sequence of booleans in the same order as above,
559 but with each (i,j) replaced by a boolean that indicates whether
560 iteration i is active. This sequence occupies nV vector controls
561 that again have nL lanes each. Thus the control sequence as a whole
562 consists of VF independent booleans that are each repeated nS times.
564 Taking mask-based approach as a partially-populated vectors example.
565 We make the simplifying assumption that if a sequence of nV masks is
566 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
567 VIEW_CONVERTing it. This holds for all current targets that support
568 fully-masked loops. For example, suppose the scalar loop is:
570 float *f;
571 double *d;
572 for (int i = 0; i < n; ++i)
574 f[i * 2 + 0] += 1.0f;
575 f[i * 2 + 1] += 2.0f;
576 d[i] += 3.0;
579 and suppose that vectors have 256 bits. The vectorized f accesses
580 will belong to one rgroup and the vectorized d access to another:
582 f rgroup: nS = 2, nV = 1, nL = 8
583 d rgroup: nS = 1, nV = 1, nL = 4
584 VF = 4
586 [ In this simple example the rgroups do correspond to the normal
587 SLP grouping scheme. ]
589 If only the first three lanes are active, the masks we need are:
591 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
592 d rgroup: 1 | 1 | 1 | 0
594 Here we can use a mask calculated for f's rgroup for d's, but not
595 vice versa.
597 Thus for each value of nV, it is enough to provide nV masks, with the
598 mask being calculated based on the highest nL (or, equivalently, based
599 on the highest nS) required by any rgroup with that nV. We therefore
600 represent the entire collection of masks as a two-level table, with the
601 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
602 the second being indexed by the mask index 0 <= i < nV. */
604 /* The controls (like masks or lengths) needed by rgroups with nV vectors,
605 according to the description above. */
606 struct rgroup_controls {
607 /* The largest nS for all rgroups that use these controls.
608 For vect_partial_vectors_avx512 this is the constant nscalars_per_iter
609 for all members of the group. */
610 unsigned int max_nscalars_per_iter;
612 /* For the largest nS recorded above, the loop controls divide each scalar
613 into FACTOR equal-sized pieces. This is useful if we need to split
614 element-based accesses into byte-based accesses.
615 For vect_partial_vectors_avx512 this records nV instead. */
616 unsigned int factor;
618 /* This is a vector type with MAX_NSCALARS_PER_ITER * VF / nV elements.
619 For mask-based controls, it is the type of the masks in CONTROLS.
620 For length-based controls, it can be any vector type that has the
621 specified number of elements; the type of the elements doesn't matter. */
622 tree type;
624 /* When there is no uniformly used LOOP_VINFO_RGROUP_COMPARE_TYPE this
625 is the rgroup specific type used. */
626 tree compare_type;
628 /* A vector of nV controls, in iteration order. */
629 vec<tree> controls;
631 /* In case of len_load and len_store with a bias there is only one
632 rgroup. This holds the adjusted loop length for the this rgroup. */
633 tree bias_adjusted_ctrl;
636 struct vec_loop_masks
638 bool is_empty () const { return mask_set.is_empty (); }
640 /* Set to record vectype, nvector pairs. */
641 hash_set<pair_hash <nofree_ptr_hash <tree_node>,
642 int_hash<unsigned, 0>>> mask_set;
644 /* rgroup_controls used for the partial vector scheme. */
645 auto_vec<rgroup_controls> rgc_vec;
648 typedef auto_vec<rgroup_controls> vec_loop_lens;
650 typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
652 /* Information about a reduction accumulator from the main loop that could
653 conceivably be reused as the input to a reduction in an epilogue loop. */
654 struct vect_reusable_accumulator {
655 /* The final value of the accumulator, which forms the input to the
656 reduction operation. */
657 tree reduc_input;
659 /* The stmt_vec_info that describes the reduction (i.e. the one for
660 which is_reduc_info is true). */
661 stmt_vec_info reduc_info;
664 /*-----------------------------------------------------------------*/
665 /* Info on vectorized loops. */
666 /*-----------------------------------------------------------------*/
667 typedef class _loop_vec_info : public vec_info {
668 public:
669 _loop_vec_info (class loop *, vec_info_shared *);
670 ~_loop_vec_info ();
672 /* The loop to which this info struct refers to. */
673 class loop *loop;
675 /* The loop basic blocks. */
676 basic_block *bbs;
678 /* Number of latch executions. */
679 tree num_itersm1;
680 /* Number of iterations. */
681 tree num_iters;
682 /* Number of iterations of the original loop. */
683 tree num_iters_unchanged;
684 /* Condition under which this loop is analyzed and versioned. */
685 tree num_iters_assumptions;
687 /* The cost of the vector code. */
688 class vector_costs *vector_costs;
690 /* The cost of the scalar code. */
691 class vector_costs *scalar_costs;
693 /* Threshold of number of iterations below which vectorization will not be
694 performed. It is calculated from MIN_PROFITABLE_ITERS and
695 param_min_vect_loop_bound. */
696 unsigned int th;
698 /* When applying loop versioning, the vector form should only be used
699 if the number of scalar iterations is >= this value, on top of all
700 the other requirements. Ignored when loop versioning is not being
701 used. */
702 poly_uint64 versioning_threshold;
704 /* Unrolling factor */
705 poly_uint64 vectorization_factor;
707 /* If this loop is an epilogue loop whose main loop can be skipped,
708 MAIN_LOOP_EDGE is the edge from the main loop to this loop's
709 preheader. SKIP_MAIN_LOOP_EDGE is then the edge that skips the
710 main loop and goes straight to this loop's preheader.
712 Both fields are null otherwise. */
713 edge main_loop_edge;
714 edge skip_main_loop_edge;
716 /* If this loop is an epilogue loop that might be skipped after executing
717 the main loop, this edge is the one that skips the epilogue. */
718 edge skip_this_loop_edge;
720 /* The vectorized form of a standard reduction replaces the original
721 scalar code's final result (a loop-closed SSA PHI) with the result
722 of a vector-to-scalar reduction operation. After vectorization,
723 this variable maps these vector-to-scalar results to information
724 about the reductions that generated them. */
725 hash_map<tree, vect_reusable_accumulator> reusable_accumulators;
727 /* The number of times that the target suggested we unroll the vector loop
728 in order to promote more ILP. This value will be used to re-analyze the
729 loop for vectorization and if successful the value will be folded into
730 vectorization_factor (and therefore exactly divides
731 vectorization_factor). */
732 unsigned int suggested_unroll_factor;
734 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
735 if there is no particular limit. */
736 unsigned HOST_WIDE_INT max_vectorization_factor;
738 /* The masks that a fully-masked loop should use to avoid operating
739 on inactive scalars. */
740 vec_loop_masks masks;
742 /* The lengths that a loop with length should use to avoid operating
743 on inactive scalars. */
744 vec_loop_lens lens;
746 /* Set of scalar conditions that have loop mask applied. */
747 scalar_cond_masked_set_type scalar_cond_masked_set;
749 /* Set of vector conditions that have loop mask applied. */
750 vec_cond_masked_set_type vec_cond_masked_set;
752 /* If we are using a loop mask to align memory addresses, this variable
753 contains the number of vector elements that we should skip in the
754 first iteration of the vector loop (i.e. the number of leading
755 elements that should be false in the first mask). */
756 tree mask_skip_niters;
758 /* The type that the loop control IV should be converted to before
759 testing which of the VF scalars are active and inactive.
760 Only meaningful if LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
761 tree rgroup_compare_type;
763 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
764 the loop should not be vectorized, if constant non-zero, simd_if_cond
765 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
766 should be versioned on that condition, using scalar loop if the condition
767 is false and vectorized loop otherwise. */
768 tree simd_if_cond;
770 /* The type that the vector loop control IV should have when
771 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
772 tree rgroup_iv_type;
774 /* The style used for implementing partial vectors when
775 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
776 vect_partial_vector_style partial_vector_style;
778 /* Unknown DRs according to which loop was peeled. */
779 class dr_vec_info *unaligned_dr;
781 /* peeling_for_alignment indicates whether peeling for alignment will take
782 place, and what the peeling factor should be:
783 peeling_for_alignment = X means:
784 If X=0: Peeling for alignment will not be applied.
785 If X>0: Peel first X iterations.
786 If X=-1: Generate a runtime test to calculate the number of iterations
787 to be peeled, using the dataref recorded in the field
788 unaligned_dr. */
789 int peeling_for_alignment;
791 /* The mask used to check the alignment of pointers or arrays. */
792 int ptr_mask;
794 /* Data Dependence Relations defining address ranges that are candidates
795 for a run-time aliasing check. */
796 auto_vec<ddr_p> may_alias_ddrs;
798 /* Data Dependence Relations defining address ranges together with segment
799 lengths from which the run-time aliasing check is built. */
800 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
802 /* Check that the addresses of each pair of objects is unequal. */
803 auto_vec<vec_object_pair> check_unequal_addrs;
805 /* List of values that are required to be nonzero. This is used to check
806 whether things like "x[i * n] += 1;" are safe and eventually gets added
807 to the checks for lower bounds below. */
808 auto_vec<tree> check_nonzero;
810 /* List of values that need to be checked for a minimum value. */
811 auto_vec<vec_lower_bound> lower_bounds;
813 /* Statements in the loop that have data references that are candidates for a
814 runtime (loop versioning) misalignment check. */
815 auto_vec<stmt_vec_info> may_misalign_stmts;
817 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
818 auto_vec<stmt_vec_info> reductions;
820 /* All reduction chains in the loop, represented by the first
821 stmt in the chain. */
822 auto_vec<stmt_vec_info> reduction_chains;
824 /* Cost vector for a single scalar iteration. */
825 auto_vec<stmt_info_for_cost> scalar_cost_vec;
827 /* Map of IV base/step expressions to inserted name in the preheader. */
828 hash_map<tree_operand_hash, tree> *ivexpr_map;
830 /* Map of OpenMP "omp simd array" scan variables to corresponding
831 rhs of the store of the initializer. */
832 hash_map<tree, tree> *scan_map;
834 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
835 applied to the loop, i.e., no unrolling is needed, this is 1. */
836 poly_uint64 slp_unrolling_factor;
838 /* The factor used to over weight those statements in an inner loop
839 relative to the loop being vectorized. */
840 unsigned int inner_loop_cost_factor;
842 /* Is the loop vectorizable? */
843 bool vectorizable;
845 /* Records whether we still have the option of vectorizing this loop
846 using partially-populated vectors; in other words, whether it is
847 still possible for one iteration of the vector loop to handle
848 fewer than VF scalars. */
849 bool can_use_partial_vectors_p;
851 /* True if we've decided to use partially-populated vectors, so that
852 the vector loop can handle fewer than VF scalars. */
853 bool using_partial_vectors_p;
855 /* True if we've decided to use a decrementing loop control IV that counts
856 scalars. This can be done for any loop that:
858 (a) uses length "controls"; and
859 (b) can iterate more than once. */
860 bool using_decrementing_iv_p;
862 /* True if we've decided to use output of select_vl to adjust IV of
863 both loop control and data reference pointer. This is only true
864 for single-rgroup control. */
865 bool using_select_vl_p;
867 /* True if we've decided to use partially-populated vectors for the
868 epilogue of loop. */
869 bool epil_using_partial_vectors_p;
871 /* The bias for len_load and len_store. For now, only 0 and -1 are
872 supported. -1 must be used when a backend does not support
873 len_load/len_store with a length of zero. */
874 signed char partial_load_store_bias;
876 /* When we have grouped data accesses with gaps, we may introduce invalid
877 memory accesses. We peel the last iteration of the loop to prevent
878 this. */
879 bool peeling_for_gaps;
881 /* When the number of iterations is not a multiple of the vector size
882 we need to peel off iterations at the end to form an epilogue loop. */
883 bool peeling_for_niter;
885 /* True if there are no loop carried data dependencies in the loop.
886 If loop->safelen <= 1, then this is always true, either the loop
887 didn't have any loop carried data dependencies, or the loop is being
888 vectorized guarded with some runtime alias checks, or couldn't
889 be vectorized at all, but then this field shouldn't be used.
890 For loop->safelen >= 2, the user has asserted that there are no
891 backward dependencies, but there still could be loop carried forward
892 dependencies in such loops. This flag will be false if normal
893 vectorizer data dependency analysis would fail or require versioning
894 for alias, but because of loop->safelen >= 2 it has been vectorized
895 even without versioning for alias. E.g. in:
896 #pragma omp simd
897 for (int i = 0; i < m; i++)
898 a[i] = a[i + k] * c;
899 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
900 DTRT even for k > 0 && k < m, but without safelen we would not
901 vectorize this, so this field would be false. */
902 bool no_data_dependencies;
904 /* Mark loops having masked stores. */
905 bool has_mask_store;
907 /* Queued scaling factor for the scalar loop. */
908 profile_probability scalar_loop_scaling;
910 /* If if-conversion versioned this loop before conversion, this is the
911 loop version without if-conversion. */
912 class loop *scalar_loop;
914 /* For loops being epilogues of already vectorized loops
915 this points to the original vectorized loop. Otherwise NULL. */
916 _loop_vec_info *orig_loop_info;
918 /* Used to store loop_vec_infos of epilogues of this loop during
919 analysis. */
920 vec<_loop_vec_info *> epilogue_vinfos;
922 } *loop_vec_info;
924 /* Access Functions. */
925 #define LOOP_VINFO_LOOP(L) (L)->loop
926 #define LOOP_VINFO_BBS(L) (L)->bbs
927 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
928 #define LOOP_VINFO_NITERS(L) (L)->num_iters
929 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
930 prologue peeling retain total unchanged scalar loop iterations for
931 cost model. */
932 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
933 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
934 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
935 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
936 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
937 #define LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P(L) (L)->can_use_partial_vectors_p
938 #define LOOP_VINFO_USING_PARTIAL_VECTORS_P(L) (L)->using_partial_vectors_p
939 #define LOOP_VINFO_USING_DECREMENTING_IV_P(L) (L)->using_decrementing_iv_p
940 #define LOOP_VINFO_USING_SELECT_VL_P(L) (L)->using_select_vl_p
941 #define LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P(L) \
942 (L)->epil_using_partial_vectors_p
943 #define LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS(L) (L)->partial_load_store_bias
944 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
945 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
946 #define LOOP_VINFO_MASKS(L) (L)->masks
947 #define LOOP_VINFO_LENS(L) (L)->lens
948 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
949 #define LOOP_VINFO_RGROUP_COMPARE_TYPE(L) (L)->rgroup_compare_type
950 #define LOOP_VINFO_RGROUP_IV_TYPE(L) (L)->rgroup_iv_type
951 #define LOOP_VINFO_PARTIAL_VECTORS_STYLE(L) (L)->partial_vector_style
952 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
953 #define LOOP_VINFO_N_STMTS(L) (L)->shared->n_stmts
954 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
955 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
956 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
957 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
958 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
959 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
960 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
961 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
962 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
963 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
964 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
965 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
966 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
967 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
968 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
969 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
970 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
971 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
972 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
973 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
974 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
975 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
976 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
977 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
978 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
979 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
980 #define LOOP_VINFO_INNER_LOOP_COST_FACTOR(L) (L)->inner_loop_cost_factor
982 #define LOOP_VINFO_FULLY_MASKED_P(L) \
983 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
984 && !LOOP_VINFO_MASKS (L).is_empty ())
986 #define LOOP_VINFO_FULLY_WITH_LENGTH_P(L) \
987 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
988 && !LOOP_VINFO_LENS (L).is_empty ())
990 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
991 ((L)->may_misalign_stmts.length () > 0)
992 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
993 ((L)->comp_alias_ddrs.length () > 0 \
994 || (L)->check_unequal_addrs.length () > 0 \
995 || (L)->lower_bounds.length () > 0)
996 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
997 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
998 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
999 (LOOP_VINFO_SIMD_IF_COND (L))
1000 #define LOOP_REQUIRES_VERSIONING(L) \
1001 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
1002 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
1003 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
1004 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
1006 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
1007 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
1009 #define LOOP_VINFO_EPILOGUE_P(L) \
1010 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
1012 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
1013 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
1015 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
1016 value signifies success, and a NULL value signifies failure, supporting
1017 propagating an opt_problem * describing the failure back up the call
1018 stack. */
1019 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
1021 inline loop_vec_info
1022 loop_vec_info_for_loop (class loop *loop)
1024 return (loop_vec_info) loop->aux;
1027 struct slp_root
1029 slp_root (slp_instance_kind kind_, vec<stmt_vec_info> stmts_,
1030 vec<stmt_vec_info> roots_, vec<tree> remain_ = vNULL)
1031 : kind(kind_), stmts(stmts_), roots(roots_), remain(remain_) {}
1032 slp_instance_kind kind;
1033 vec<stmt_vec_info> stmts;
1034 vec<stmt_vec_info> roots;
1035 vec<tree> remain;
1038 typedef class _bb_vec_info : public vec_info
1040 public:
1041 _bb_vec_info (vec<basic_block> bbs, vec_info_shared *);
1042 ~_bb_vec_info ();
1044 /* The region we are operating on. bbs[0] is the entry, excluding
1045 its PHI nodes. In the future we might want to track an explicit
1046 entry edge to cover bbs[0] PHI nodes and have a region entry
1047 insert location. */
1048 vec<basic_block> bbs;
1050 vec<slp_root> roots;
1051 } *bb_vec_info;
1053 #define BB_VINFO_BB(B) (B)->bb
1054 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
1055 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
1056 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
1057 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
1059 /*-----------------------------------------------------------------*/
1060 /* Info on vectorized defs. */
1061 /*-----------------------------------------------------------------*/
1062 enum stmt_vec_info_type {
1063 undef_vec_info_type = 0,
1064 load_vec_info_type,
1065 store_vec_info_type,
1066 shift_vec_info_type,
1067 op_vec_info_type,
1068 call_vec_info_type,
1069 call_simd_clone_vec_info_type,
1070 assignment_vec_info_type,
1071 condition_vec_info_type,
1072 comparison_vec_info_type,
1073 reduc_vec_info_type,
1074 induc_vec_info_type,
1075 type_promotion_vec_info_type,
1076 type_demotion_vec_info_type,
1077 type_conversion_vec_info_type,
1078 cycle_phi_info_type,
1079 lc_phi_info_type,
1080 phi_info_type,
1081 recurr_info_type,
1082 loop_exit_ctrl_vec_info_type
1085 /* Indicates whether/how a variable is used in the scope of loop/basic
1086 block. */
1087 enum vect_relevant {
1088 vect_unused_in_scope = 0,
1090 /* The def is only used outside the loop. */
1091 vect_used_only_live,
1092 /* The def is in the inner loop, and the use is in the outer loop, and the
1093 use is a reduction stmt. */
1094 vect_used_in_outer_by_reduction,
1095 /* The def is in the inner loop, and the use is in the outer loop (and is
1096 not part of reduction). */
1097 vect_used_in_outer,
1099 /* defs that feed computations that end up (only) in a reduction. These
1100 defs may be used by non-reduction stmts, but eventually, any
1101 computations/values that are affected by these defs are used to compute
1102 a reduction (i.e. don't get stored to memory, for example). We use this
1103 to identify computations that we can change the order in which they are
1104 computed. */
1105 vect_used_by_reduction,
1107 vect_used_in_scope
1110 /* The type of vectorization that can be applied to the stmt: regular loop-based
1111 vectorization; pure SLP - the stmt is a part of SLP instances and does not
1112 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
1113 a part of SLP instance and also must be loop-based vectorized, since it has
1114 uses outside SLP sequences.
1116 In the loop context the meanings of pure and hybrid SLP are slightly
1117 different. By saying that pure SLP is applied to the loop, we mean that we
1118 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
1119 vectorized without doing any conceptual unrolling, cause we don't pack
1120 together stmts from different iterations, only within a single iteration.
1121 Loop hybrid SLP means that we exploit both intra-iteration and
1122 inter-iteration parallelism (e.g., number of elements in the vector is 4
1123 and the slp-group-size is 2, in which case we don't have enough parallelism
1124 within an iteration, so we obtain the rest of the parallelism from subsequent
1125 iterations by unrolling the loop by 2). */
1126 enum slp_vect_type {
1127 loop_vect = 0,
1128 pure_slp,
1129 hybrid
1132 /* Says whether a statement is a load, a store of a vectorized statement
1133 result, or a store of an invariant value. */
1134 enum vec_load_store_type {
1135 VLS_LOAD,
1136 VLS_STORE,
1137 VLS_STORE_INVARIANT
1140 /* Describes how we're going to vectorize an individual load or store,
1141 or a group of loads or stores. */
1142 enum vect_memory_access_type {
1143 /* An access to an invariant address. This is used only for loads. */
1144 VMAT_INVARIANT,
1146 /* A simple contiguous access. */
1147 VMAT_CONTIGUOUS,
1149 /* A contiguous access that goes down in memory rather than up,
1150 with no additional permutation. This is used only for stores
1151 of invariants. */
1152 VMAT_CONTIGUOUS_DOWN,
1154 /* A simple contiguous access in which the elements need to be permuted
1155 after loading or before storing. Only used for loop vectorization;
1156 SLP uses separate permutes. */
1157 VMAT_CONTIGUOUS_PERMUTE,
1159 /* A simple contiguous access in which the elements need to be reversed
1160 after loading or before storing. */
1161 VMAT_CONTIGUOUS_REVERSE,
1163 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
1164 VMAT_LOAD_STORE_LANES,
1166 /* An access in which each scalar element is loaded or stored
1167 individually. */
1168 VMAT_ELEMENTWISE,
1170 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
1171 SLP accesses. Each unrolled iteration uses a contiguous load
1172 or store for the whole group, but the groups from separate iterations
1173 are combined in the same way as for VMAT_ELEMENTWISE. */
1174 VMAT_STRIDED_SLP,
1176 /* The access uses gather loads or scatter stores. */
1177 VMAT_GATHER_SCATTER
1180 class dr_vec_info {
1181 public:
1182 /* The data reference itself. */
1183 data_reference *dr;
1184 /* The statement that contains the data reference. */
1185 stmt_vec_info stmt;
1186 /* The analysis group this DR belongs to when doing BB vectorization.
1187 DRs of the same group belong to the same conditional execution context. */
1188 unsigned group;
1189 /* The misalignment in bytes of the reference, or -1 if not known. */
1190 int misalignment;
1191 /* The byte alignment that we'd ideally like the reference to have,
1192 and the value that misalignment is measured against. */
1193 poly_uint64 target_alignment;
1194 /* If true the alignment of base_decl needs to be increased. */
1195 bool base_misaligned;
1196 tree base_decl;
1198 /* Stores current vectorized loop's offset. To be added to the DR's
1199 offset to calculate current offset of data reference. */
1200 tree offset;
1203 typedef struct data_reference *dr_p;
1205 class _stmt_vec_info {
1206 public:
1208 enum stmt_vec_info_type type;
1210 /* Indicates whether this stmts is part of a computation whose result is
1211 used outside the loop. */
1212 bool live;
1214 /* Stmt is part of some pattern (computation idiom) */
1215 bool in_pattern_p;
1217 /* True if the statement was created during pattern recognition as
1218 part of the replacement for RELATED_STMT. This implies that the
1219 statement isn't part of any basic block, although for convenience
1220 its gimple_bb is the same as for RELATED_STMT. */
1221 bool pattern_stmt_p;
1223 /* Is this statement vectorizable or should it be skipped in (partial)
1224 vectorization. */
1225 bool vectorizable;
1227 /* The stmt to which this info struct refers to. */
1228 gimple *stmt;
1230 /* The vector type to be used for the LHS of this statement. */
1231 tree vectype;
1233 /* The vectorized stmts. */
1234 vec<gimple *> vec_stmts;
1236 /* The following is relevant only for stmts that contain a non-scalar
1237 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
1238 at most one such data-ref. */
1240 dr_vec_info dr_aux;
1242 /* Information about the data-ref relative to this loop
1243 nest (the loop that is being considered for vectorization). */
1244 innermost_loop_behavior dr_wrt_vec_loop;
1246 /* For loop PHI nodes, the base and evolution part of it. This makes sure
1247 this information is still available in vect_update_ivs_after_vectorizer
1248 where we may not be able to re-analyze the PHI nodes evolution as
1249 peeling for the prologue loop can make it unanalyzable. The evolution
1250 part is still correct after peeling, but the base may have changed from
1251 the version here. */
1252 tree loop_phi_evolution_base_unchanged;
1253 tree loop_phi_evolution_part;
1254 enum vect_induction_op_type loop_phi_evolution_type;
1256 /* Used for various bookkeeping purposes, generally holding a pointer to
1257 some other stmt S that is in some way "related" to this stmt.
1258 Current use of this field is:
1259 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
1260 true): S is the "pattern stmt" that represents (and replaces) the
1261 sequence of stmts that constitutes the pattern. Similarly, the
1262 related_stmt of the "pattern stmt" points back to this stmt (which is
1263 the last stmt in the original sequence of stmts that constitutes the
1264 pattern). */
1265 stmt_vec_info related_stmt;
1267 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
1268 The sequence is attached to the original statement rather than the
1269 pattern statement. */
1270 gimple_seq pattern_def_seq;
1272 /* Selected SIMD clone's function info. First vector element
1273 is SIMD clone's function decl, followed by a pair of trees (base + step)
1274 for linear arguments (pair of NULLs for other arguments). */
1275 vec<tree> simd_clone_info;
1277 /* Classify the def of this stmt. */
1278 enum vect_def_type def_type;
1280 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1281 enum slp_vect_type slp_type;
1283 /* Interleaving and reduction chains info. */
1284 /* First element in the group. */
1285 stmt_vec_info first_element;
1286 /* Pointer to the next element in the group. */
1287 stmt_vec_info next_element;
1288 /* The size of the group. */
1289 unsigned int size;
1290 /* For stores, number of stores from this group seen. We vectorize the last
1291 one. */
1292 unsigned int store_count;
1293 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1294 is 1. */
1295 unsigned int gap;
1297 /* The minimum negative dependence distance this stmt participates in
1298 or zero if none. */
1299 unsigned int min_neg_dist;
1301 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1302 of the loop induction variable and computation of array indexes. relevant
1303 indicates whether the stmt needs to be vectorized. */
1304 enum vect_relevant relevant;
1306 /* For loads if this is a gather, for stores if this is a scatter. */
1307 bool gather_scatter_p;
1309 /* True if this is an access with loop-invariant stride. */
1310 bool strided_p;
1312 /* For both loads and stores. */
1313 unsigned simd_lane_access_p : 3;
1315 /* Classifies how the load or store is going to be implemented
1316 for loop vectorization. */
1317 vect_memory_access_type memory_access_type;
1319 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1320 tree induc_cond_initial_val;
1322 /* If not NULL the value to be added to compute final reduction value. */
1323 tree reduc_epilogue_adjustment;
1325 /* On a reduction PHI the reduction type as detected by
1326 vect_is_simple_reduction and vectorizable_reduction. */
1327 enum vect_reduction_type reduc_type;
1329 /* The original reduction code, to be used in the epilogue. */
1330 code_helper reduc_code;
1331 /* An internal function we should use in the epilogue. */
1332 internal_fn reduc_fn;
1334 /* On a stmt participating in the reduction the index of the operand
1335 on the reduction SSA cycle. */
1336 int reduc_idx;
1338 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1339 On the def returned by vect_force_simple_reduction the
1340 corresponding PHI. */
1341 stmt_vec_info reduc_def;
1343 /* The vector input type relevant for reduction vectorization. */
1344 tree reduc_vectype_in;
1346 /* The vector type for performing the actual reduction. */
1347 tree reduc_vectype;
1349 /* If IS_REDUC_INFO is true and if the vector code is performing
1350 N scalar reductions in parallel, this variable gives the initial
1351 scalar values of those N reductions. */
1352 vec<tree> reduc_initial_values;
1354 /* If IS_REDUC_INFO is true and if the vector code is performing
1355 N scalar reductions in parallel, this variable gives the vectorized code's
1356 final (scalar) result for each of those N reductions. In other words,
1357 REDUC_SCALAR_RESULTS[I] replaces the original scalar code's loop-closed
1358 SSA PHI for reduction number I. */
1359 vec<tree> reduc_scalar_results;
1361 /* Only meaningful if IS_REDUC_INFO. If non-null, the reduction is
1362 being performed by an epilogue loop and we have decided to reuse
1363 this accumulator from the main loop. */
1364 vect_reusable_accumulator *reused_accumulator;
1366 /* Whether we force a single cycle PHI during reduction vectorization. */
1367 bool force_single_cycle;
1369 /* Whether on this stmt reduction meta is recorded. */
1370 bool is_reduc_info;
1372 /* If nonzero, the lhs of the statement could be truncated to this
1373 many bits without affecting any users of the result. */
1374 unsigned int min_output_precision;
1376 /* If nonzero, all non-boolean input operands have the same precision,
1377 and they could each be truncated to this many bits without changing
1378 the result. */
1379 unsigned int min_input_precision;
1381 /* If OPERATION_BITS is nonzero, the statement could be performed on
1382 an integer with the sign and number of bits given by OPERATION_SIGN
1383 and OPERATION_BITS without changing the result. */
1384 unsigned int operation_precision;
1385 signop operation_sign;
1387 /* If the statement produces a boolean result, this value describes
1388 how we should choose the associated vector type. The possible
1389 values are:
1391 - an integer precision N if we should use the vector mask type
1392 associated with N-bit integers. This is only used if all relevant
1393 input booleans also want the vector mask type for N-bit integers,
1394 or if we can convert them into that form by pattern-matching.
1396 - ~0U if we considered choosing a vector mask type but decided
1397 to treat the boolean as a normal integer type instead.
1399 - 0 otherwise. This means either that the operation isn't one that
1400 could have a vector mask type (and so should have a normal vector
1401 type instead) or that we simply haven't made a choice either way. */
1402 unsigned int mask_precision;
1404 /* True if this is only suitable for SLP vectorization. */
1405 bool slp_vect_only_p;
1407 /* True if this is a pattern that can only be handled by SLP
1408 vectorization. */
1409 bool slp_vect_pattern_only_p;
1412 /* Information about a gather/scatter call. */
1413 struct gather_scatter_info {
1414 /* The internal function to use for the gather/scatter operation,
1415 or IFN_LAST if a built-in function should be used instead. */
1416 internal_fn ifn;
1418 /* The FUNCTION_DECL for the built-in gather/scatter function,
1419 or null if an internal function should be used instead. */
1420 tree decl;
1422 /* The loop-invariant base value. */
1423 tree base;
1425 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1426 tree offset;
1428 /* Each offset element should be multiplied by this amount before
1429 being added to the base. */
1430 int scale;
1432 /* The definition type for the vectorized offset. */
1433 enum vect_def_type offset_dt;
1435 /* The type of the vectorized offset. */
1436 tree offset_vectype;
1438 /* The type of the scalar elements after loading or before storing. */
1439 tree element_type;
1441 /* The type of the scalar elements being loaded or stored. */
1442 tree memory_type;
1445 /* Access Functions. */
1446 #define STMT_VINFO_TYPE(S) (S)->type
1447 #define STMT_VINFO_STMT(S) (S)->stmt
1448 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1449 #define STMT_VINFO_LIVE_P(S) (S)->live
1450 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1451 #define STMT_VINFO_VEC_STMTS(S) (S)->vec_stmts
1452 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1453 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1454 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1455 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1456 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1457 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1458 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1459 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1460 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1461 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1463 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1464 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1465 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1466 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1467 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1468 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1469 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1470 (S)->dr_wrt_vec_loop.base_misalignment
1471 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1472 (S)->dr_wrt_vec_loop.offset_alignment
1473 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1474 (S)->dr_wrt_vec_loop.step_alignment
1476 #define STMT_VINFO_DR_INFO(S) \
1477 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1479 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1480 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1481 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1482 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1483 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1484 #define STMT_VINFO_GROUPED_ACCESS(S) \
1485 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1486 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1487 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1488 #define STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE(S) (S)->loop_phi_evolution_type
1489 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1490 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1491 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1492 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1493 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1494 #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1495 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1496 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1497 #define STMT_VINFO_SLP_VECT_ONLY_PATTERN(S) (S)->slp_vect_pattern_only_p
1499 #define DR_GROUP_FIRST_ELEMENT(S) \
1500 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1501 #define DR_GROUP_NEXT_ELEMENT(S) \
1502 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1503 #define DR_GROUP_SIZE(S) \
1504 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1505 #define DR_GROUP_STORE_COUNT(S) \
1506 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1507 #define DR_GROUP_GAP(S) \
1508 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1510 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1511 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1512 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1513 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1514 #define REDUC_GROUP_SIZE(S) \
1515 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1517 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1519 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1520 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1521 #define STMT_SLP_TYPE(S) (S)->slp_type
1523 /* Contains the scalar or vector costs for a vec_info. */
1524 class vector_costs
1526 public:
1527 vector_costs (vec_info *, bool);
1528 virtual ~vector_costs () {}
1530 /* Update the costs in response to adding COUNT copies of a statement.
1532 - WHERE specifies whether the cost occurs in the loop prologue,
1533 the loop body, or the loop epilogue.
1534 - KIND is the kind of statement, which is always meaningful.
1535 - STMT_INFO or NODE, if nonnull, describe the statement that will be
1536 vectorized.
1537 - VECTYPE, if nonnull, is the vector type that the vectorized
1538 statement will operate on. Note that this should be used in
1539 preference to STMT_VINFO_VECTYPE (STMT_INFO) since the latter
1540 is not correct for SLP.
1541 - for unaligned_load and unaligned_store statements, MISALIGN is
1542 the byte misalignment of the load or store relative to the target's
1543 preferred alignment for VECTYPE, or DR_MISALIGNMENT_UNKNOWN
1544 if the misalignment is not known.
1546 Return the calculated cost as well as recording it. The return
1547 value is used for dumping purposes. */
1548 virtual unsigned int add_stmt_cost (int count, vect_cost_for_stmt kind,
1549 stmt_vec_info stmt_info,
1550 slp_tree node,
1551 tree vectype, int misalign,
1552 vect_cost_model_location where);
1554 /* Finish calculating the cost of the code. The results can be
1555 read back using the functions below.
1557 If the costs describe vector code, SCALAR_COSTS gives the costs
1558 of the corresponding scalar code, otherwise it is null. */
1559 virtual void finish_cost (const vector_costs *scalar_costs);
1561 /* The costs in THIS and OTHER both describe ways of vectorizing
1562 a main loop. Return true if the costs described by THIS are
1563 cheaper than the costs described by OTHER. Return false if any
1564 of the following are true:
1566 - THIS and OTHER are of equal cost
1567 - OTHER is better than THIS
1568 - we can't be sure about the relative costs of THIS and OTHER. */
1569 virtual bool better_main_loop_than_p (const vector_costs *other) const;
1571 /* Likewise, but the costs in THIS and OTHER both describe ways of
1572 vectorizing an epilogue loop of MAIN_LOOP. */
1573 virtual bool better_epilogue_loop_than_p (const vector_costs *other,
1574 loop_vec_info main_loop) const;
1576 unsigned int prologue_cost () const;
1577 unsigned int body_cost () const;
1578 unsigned int epilogue_cost () const;
1579 unsigned int outside_cost () const;
1580 unsigned int total_cost () const;
1581 unsigned int suggested_unroll_factor () const;
1583 protected:
1584 unsigned int record_stmt_cost (stmt_vec_info, vect_cost_model_location,
1585 unsigned int);
1586 unsigned int adjust_cost_for_freq (stmt_vec_info, vect_cost_model_location,
1587 unsigned int);
1588 int compare_inside_loop_cost (const vector_costs *) const;
1589 int compare_outside_loop_cost (const vector_costs *) const;
1591 /* The region of code that we're considering vectorizing. */
1592 vec_info *m_vinfo;
1594 /* True if we're costing the scalar code, false if we're costing
1595 the vector code. */
1596 bool m_costing_for_scalar;
1598 /* The costs of the three regions, indexed by vect_cost_model_location. */
1599 unsigned int m_costs[3];
1601 /* The suggested unrolling factor determined at finish_cost. */
1602 unsigned int m_suggested_unroll_factor;
1604 /* True if finish_cost has been called. */
1605 bool m_finished;
1608 /* Create costs for VINFO. COSTING_FOR_SCALAR is true if the costs
1609 are for scalar code, false if they are for vector code. */
1611 inline
1612 vector_costs::vector_costs (vec_info *vinfo, bool costing_for_scalar)
1613 : m_vinfo (vinfo),
1614 m_costing_for_scalar (costing_for_scalar),
1615 m_costs (),
1616 m_suggested_unroll_factor(1),
1617 m_finished (false)
1621 /* Return the cost of the prologue code (in abstract units). */
1623 inline unsigned int
1624 vector_costs::prologue_cost () const
1626 gcc_checking_assert (m_finished);
1627 return m_costs[vect_prologue];
1630 /* Return the cost of the body code (in abstract units). */
1632 inline unsigned int
1633 vector_costs::body_cost () const
1635 gcc_checking_assert (m_finished);
1636 return m_costs[vect_body];
1639 /* Return the cost of the epilogue code (in abstract units). */
1641 inline unsigned int
1642 vector_costs::epilogue_cost () const
1644 gcc_checking_assert (m_finished);
1645 return m_costs[vect_epilogue];
1648 /* Return the cost of the prologue and epilogue code (in abstract units). */
1650 inline unsigned int
1651 vector_costs::outside_cost () const
1653 return prologue_cost () + epilogue_cost ();
1656 /* Return the cost of the prologue, body and epilogue code
1657 (in abstract units). */
1659 inline unsigned int
1660 vector_costs::total_cost () const
1662 return body_cost () + outside_cost ();
1665 /* Return the suggested unroll factor. */
1667 inline unsigned int
1668 vector_costs::suggested_unroll_factor () const
1670 gcc_checking_assert (m_finished);
1671 return m_suggested_unroll_factor;
1674 #define VECT_MAX_COST 1000
1676 /* The maximum number of intermediate steps required in multi-step type
1677 conversion. */
1678 #define MAX_INTERM_CVT_STEPS 3
1680 #define MAX_VECTORIZATION_FACTOR INT_MAX
1682 /* Nonzero if TYPE represents a (scalar) boolean type or type
1683 in the middle-end compatible with it (unsigned precision 1 integral
1684 types). Used to determine which types should be vectorized as
1685 VECTOR_BOOLEAN_TYPE_P. */
1687 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1688 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1689 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1690 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1691 && TYPE_PRECISION (TYPE) == 1 \
1692 && TYPE_UNSIGNED (TYPE)))
1694 inline bool
1695 nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1697 return (loop->inner
1698 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1701 /* PHI is either a scalar reduction phi or a scalar induction phi.
1702 Return the initial value of the variable on entry to the containing
1703 loop. */
1705 inline tree
1706 vect_phi_initial_value (gphi *phi)
1708 basic_block bb = gimple_bb (phi);
1709 edge pe = loop_preheader_edge (bb->loop_father);
1710 gcc_assert (pe->dest == bb);
1711 return PHI_ARG_DEF_FROM_EDGE (phi, pe);
1714 /* Return true if STMT_INFO should produce a vector mask type rather than
1715 a normal nonmask type. */
1717 inline bool
1718 vect_use_mask_type_p (stmt_vec_info stmt_info)
1720 return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
1723 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1724 pattern. */
1726 inline bool
1727 is_pattern_stmt_p (stmt_vec_info stmt_info)
1729 return stmt_info->pattern_stmt_p;
1732 /* If STMT_INFO is a pattern statement, return the statement that it
1733 replaces, otherwise return STMT_INFO itself. */
1735 inline stmt_vec_info
1736 vect_orig_stmt (stmt_vec_info stmt_info)
1738 if (is_pattern_stmt_p (stmt_info))
1739 return STMT_VINFO_RELATED_STMT (stmt_info);
1740 return stmt_info;
1743 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1745 inline stmt_vec_info
1746 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1748 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1749 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1750 return stmt1_info;
1751 else
1752 return stmt2_info;
1755 /* If STMT_INFO has been replaced by a pattern statement, return the
1756 replacement statement, otherwise return STMT_INFO itself. */
1758 inline stmt_vec_info
1759 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1761 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1762 return STMT_VINFO_RELATED_STMT (stmt_info);
1763 return stmt_info;
1766 /* Return true if BB is a loop header. */
1768 inline bool
1769 is_loop_header_bb_p (basic_block bb)
1771 if (bb == (bb->loop_father)->header)
1772 return true;
1773 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1774 return false;
1777 /* Return pow2 (X). */
1779 inline int
1780 vect_pow2 (int x)
1782 int i, res = 1;
1784 for (i = 0; i < x; i++)
1785 res *= 2;
1787 return res;
1790 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1792 inline int
1793 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1794 tree vectype, int misalign)
1796 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1797 vectype, misalign);
1800 /* Get cost by calling cost target builtin. */
1802 inline
1803 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1805 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1808 /* Alias targetm.vectorize.init_cost. */
1810 inline vector_costs *
1811 init_cost (vec_info *vinfo, bool costing_for_scalar)
1813 return targetm.vectorize.create_costs (vinfo, costing_for_scalar);
1816 extern void dump_stmt_cost (FILE *, int, enum vect_cost_for_stmt,
1817 stmt_vec_info, slp_tree, tree, int, unsigned,
1818 enum vect_cost_model_location);
1820 /* Alias targetm.vectorize.add_stmt_cost. */
1822 inline unsigned
1823 add_stmt_cost (vector_costs *costs, int count,
1824 enum vect_cost_for_stmt kind,
1825 stmt_vec_info stmt_info, slp_tree node,
1826 tree vectype, int misalign,
1827 enum vect_cost_model_location where)
1829 unsigned cost = costs->add_stmt_cost (count, kind, stmt_info, node, vectype,
1830 misalign, where);
1831 if (dump_file && (dump_flags & TDF_DETAILS))
1832 dump_stmt_cost (dump_file, count, kind, stmt_info, node, vectype, misalign,
1833 cost, where);
1834 return cost;
1837 inline unsigned
1838 add_stmt_cost (vector_costs *costs, int count, enum vect_cost_for_stmt kind,
1839 enum vect_cost_model_location where)
1841 gcc_assert (kind == cond_branch_taken || kind == cond_branch_not_taken
1842 || kind == scalar_stmt);
1843 return add_stmt_cost (costs, count, kind, NULL, NULL, NULL_TREE, 0, where);
1846 /* Alias targetm.vectorize.add_stmt_cost. */
1848 inline unsigned
1849 add_stmt_cost (vector_costs *costs, stmt_info_for_cost *i)
1851 return add_stmt_cost (costs, i->count, i->kind, i->stmt_info, i->node,
1852 i->vectype, i->misalign, i->where);
1855 /* Alias targetm.vectorize.finish_cost. */
1857 inline void
1858 finish_cost (vector_costs *costs, const vector_costs *scalar_costs,
1859 unsigned *prologue_cost, unsigned *body_cost,
1860 unsigned *epilogue_cost, unsigned *suggested_unroll_factor = NULL)
1862 costs->finish_cost (scalar_costs);
1863 *prologue_cost = costs->prologue_cost ();
1864 *body_cost = costs->body_cost ();
1865 *epilogue_cost = costs->epilogue_cost ();
1866 if (suggested_unroll_factor)
1867 *suggested_unroll_factor = costs->suggested_unroll_factor ();
1870 inline void
1871 add_stmt_costs (vector_costs *costs, stmt_vector_for_cost *cost_vec)
1873 stmt_info_for_cost *cost;
1874 unsigned i;
1875 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1876 add_stmt_cost (costs, cost->count, cost->kind, cost->stmt_info,
1877 cost->node, cost->vectype, cost->misalign, cost->where);
1880 /*-----------------------------------------------------------------*/
1881 /* Info on data references alignment. */
1882 /*-----------------------------------------------------------------*/
1883 #define DR_MISALIGNMENT_UNKNOWN (-1)
1884 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1886 inline void
1887 set_dr_misalignment (dr_vec_info *dr_info, int val)
1889 dr_info->misalignment = val;
1892 extern int dr_misalignment (dr_vec_info *dr_info, tree vectype,
1893 poly_int64 offset = 0);
1895 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1897 /* Only defined once DR_MISALIGNMENT is defined. */
1898 inline const poly_uint64
1899 dr_target_alignment (dr_vec_info *dr_info)
1901 if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt))
1902 dr_info = STMT_VINFO_DR_INFO (DR_GROUP_FIRST_ELEMENT (dr_info->stmt));
1903 return dr_info->target_alignment;
1905 #define DR_TARGET_ALIGNMENT(DR) dr_target_alignment (DR)
1907 inline void
1908 set_dr_target_alignment (dr_vec_info *dr_info, poly_uint64 val)
1910 dr_info->target_alignment = val;
1912 #define SET_DR_TARGET_ALIGNMENT(DR, VAL) set_dr_target_alignment (DR, VAL)
1914 /* Return true if data access DR_INFO is aligned to the targets
1915 preferred alignment for VECTYPE (which may be less than a full vector). */
1917 inline bool
1918 aligned_access_p (dr_vec_info *dr_info, tree vectype)
1920 return (dr_misalignment (dr_info, vectype) == 0);
1923 /* Return TRUE if the (mis-)alignment of the data access is known with
1924 respect to the targets preferred alignment for VECTYPE, and FALSE
1925 otherwise. */
1927 inline bool
1928 known_alignment_for_access_p (dr_vec_info *dr_info, tree vectype)
1930 return (dr_misalignment (dr_info, vectype) != DR_MISALIGNMENT_UNKNOWN);
1933 /* Return the minimum alignment in bytes that the vectorized version
1934 of DR_INFO is guaranteed to have. */
1936 inline unsigned int
1937 vect_known_alignment_in_bytes (dr_vec_info *dr_info, tree vectype)
1939 int misalignment = dr_misalignment (dr_info, vectype);
1940 if (misalignment == DR_MISALIGNMENT_UNKNOWN)
1941 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1942 else if (misalignment == 0)
1943 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1944 return misalignment & -misalignment;
1947 /* Return the behavior of DR_INFO with respect to the vectorization context
1948 (which for outer loop vectorization might not be the behavior recorded
1949 in DR_INFO itself). */
1951 inline innermost_loop_behavior *
1952 vect_dr_behavior (vec_info *vinfo, dr_vec_info *dr_info)
1954 stmt_vec_info stmt_info = dr_info->stmt;
1955 loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo);
1956 if (loop_vinfo == NULL
1957 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1958 return &DR_INNERMOST (dr_info->dr);
1959 else
1960 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1963 /* Return the offset calculated by adding the offset of this DR_INFO to the
1964 corresponding data_reference's offset. If CHECK_OUTER then use
1965 vect_dr_behavior to select the appropriate data_reference to use. */
1967 inline tree
1968 get_dr_vinfo_offset (vec_info *vinfo,
1969 dr_vec_info *dr_info, bool check_outer = false)
1971 innermost_loop_behavior *base;
1972 if (check_outer)
1973 base = vect_dr_behavior (vinfo, dr_info);
1974 else
1975 base = &dr_info->dr->innermost;
1977 tree offset = base->offset;
1979 if (!dr_info->offset)
1980 return offset;
1982 offset = fold_convert (sizetype, offset);
1983 return fold_build2 (PLUS_EXPR, TREE_TYPE (dr_info->offset), offset,
1984 dr_info->offset);
1988 /* Return the vect cost model for LOOP. */
1989 inline enum vect_cost_model
1990 loop_cost_model (loop_p loop)
1992 if (loop != NULL
1993 && loop->force_vectorize
1994 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1995 return flag_simd_cost_model;
1996 return flag_vect_cost_model;
1999 /* Return true if the vect cost model is unlimited. */
2000 inline bool
2001 unlimited_cost_model (loop_p loop)
2003 return loop_cost_model (loop) == VECT_COST_MODEL_UNLIMITED;
2006 /* Return true if the loop described by LOOP_VINFO is fully-masked and
2007 if the first iteration should use a partial mask in order to achieve
2008 alignment. */
2010 inline bool
2011 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
2013 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
2014 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
2017 /* Return the number of vectors of type VECTYPE that are needed to get
2018 NUNITS elements. NUNITS should be based on the vectorization factor,
2019 so it is always a known multiple of the number of elements in VECTYPE. */
2021 inline unsigned int
2022 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
2024 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
2027 /* Return the number of copies needed for loop vectorization when
2028 a statement operates on vectors of type VECTYPE. This is the
2029 vectorization factor divided by the number of elements in
2030 VECTYPE and is always known at compile time. */
2032 inline unsigned int
2033 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
2035 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
2038 /* Update maximum unit count *MAX_NUNITS so that it accounts for
2039 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
2041 inline void
2042 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
2044 /* All unit counts have the form vec_info::vector_size * X for some
2045 rational X, so two unit sizes must have a common multiple.
2046 Everything is a multiple of the initial value of 1. */
2047 *max_nunits = force_common_multiple (*max_nunits, nunits);
2050 /* Update maximum unit count *MAX_NUNITS so that it accounts for
2051 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
2052 if we haven't yet recorded any vector types. */
2054 inline void
2055 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
2057 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
2060 /* Return the vectorization factor that should be used for costing
2061 purposes while vectorizing the loop described by LOOP_VINFO.
2062 Pick a reasonable estimate if the vectorization factor isn't
2063 known at compile time. */
2065 inline unsigned int
2066 vect_vf_for_cost (loop_vec_info loop_vinfo)
2068 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2071 /* Estimate the number of elements in VEC_TYPE for costing purposes.
2072 Pick a reasonable estimate if the exact number isn't known at
2073 compile time. */
2075 inline unsigned int
2076 vect_nunits_for_cost (tree vec_type)
2078 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
2081 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
2083 inline unsigned HOST_WIDE_INT
2084 vect_max_vf (loop_vec_info loop_vinfo)
2086 unsigned HOST_WIDE_INT vf;
2087 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
2088 return vf;
2089 return MAX_VECTORIZATION_FACTOR;
2092 /* Return the size of the value accessed by unvectorized data reference
2093 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
2094 for the associated gimple statement, since that guarantees that DR_INFO
2095 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
2096 here includes things like V1SI, which can be vectorized in the same way
2097 as a plain SI.) */
2099 inline unsigned int
2100 vect_get_scalar_dr_size (dr_vec_info *dr_info)
2102 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
2105 /* Return true if LOOP_VINFO requires a runtime check for whether the
2106 vector loop is profitable. */
2108 inline bool
2109 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
2111 unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
2112 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2113 && th >= vect_vf_for_cost (loop_vinfo));
2116 /* Source location + hotness information. */
2117 extern dump_user_location_t vect_location;
2119 /* A macro for calling:
2120 dump_begin_scope (MSG, vect_location);
2121 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
2122 and then calling
2123 dump_end_scope ();
2124 once the object goes out of scope, thus capturing the nesting of
2125 the scopes.
2127 These scopes affect dump messages within them: dump messages at the
2128 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
2129 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
2131 #define DUMP_VECT_SCOPE(MSG) \
2132 AUTO_DUMP_SCOPE (MSG, vect_location)
2134 /* A sentinel class for ensuring that the "vect_location" global gets
2135 reset at the end of a scope.
2137 The "vect_location" global is used during dumping and contains a
2138 location_t, which could contain references to a tree block via the
2139 ad-hoc data. This data is used for tracking inlining information,
2140 but it's not a GC root; it's simply assumed that such locations never
2141 get accessed if the blocks are optimized away.
2143 Hence we need to ensure that such locations are purged at the end
2144 of any operations using them (e.g. via this class). */
2146 class auto_purge_vect_location
2148 public:
2149 ~auto_purge_vect_location ();
2152 /*-----------------------------------------------------------------*/
2153 /* Function prototypes. */
2154 /*-----------------------------------------------------------------*/
2156 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
2157 in tree-vect-loop-manip.cc. */
2158 extern void vect_set_loop_condition (class loop *, loop_vec_info,
2159 tree, tree, tree, bool);
2160 extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
2161 class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
2162 class loop *, edge);
2163 class loop *vect_loop_versioning (loop_vec_info, gimple *);
2164 extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
2165 tree *, tree *, tree *, int, bool, bool,
2166 tree *);
2167 extern tree vect_get_main_loop_result (loop_vec_info, tree, tree);
2168 extern void vect_prepare_for_masked_peels (loop_vec_info);
2169 extern dump_user_location_t find_loop_location (class loop *);
2170 extern bool vect_can_advance_ivs_p (loop_vec_info);
2171 extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
2173 /* In tree-vect-stmts.cc. */
2174 extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
2175 poly_uint64 = 0);
2176 extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
2177 extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
2178 extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
2179 extern tree get_same_sized_vectype (tree, tree);
2180 extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
2181 extern bool vect_get_loop_mask_type (loop_vec_info);
2182 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
2183 stmt_vec_info * = NULL, gimple ** = NULL);
2184 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
2185 tree *, stmt_vec_info * = NULL,
2186 gimple ** = NULL);
2187 extern bool vect_is_simple_use (vec_info *, stmt_vec_info, slp_tree,
2188 unsigned, tree *, slp_tree *,
2189 enum vect_def_type *,
2190 tree *, stmt_vec_info * = NULL);
2191 extern bool vect_maybe_update_slp_op_vectype (slp_tree, tree);
2192 extern bool supportable_widening_operation (vec_info*, code_helper,
2193 stmt_vec_info, tree, tree,
2194 code_helper*, code_helper*,
2195 int*, vec<tree> *);
2196 extern bool supportable_narrowing_operation (code_helper, tree, tree,
2197 code_helper *, int *,
2198 vec<tree> *);
2200 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2201 enum vect_cost_for_stmt, stmt_vec_info,
2202 tree, int, enum vect_cost_model_location);
2203 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2204 enum vect_cost_for_stmt, slp_tree,
2205 tree, int, enum vect_cost_model_location);
2206 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2207 enum vect_cost_for_stmt,
2208 enum vect_cost_model_location);
2210 /* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO. */
2212 inline unsigned
2213 record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
2214 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
2215 int misalign, enum vect_cost_model_location where)
2217 return record_stmt_cost (body_cost_vec, count, kind, stmt_info,
2218 STMT_VINFO_VECTYPE (stmt_info), misalign, where);
2221 extern void vect_finish_replace_stmt (vec_info *, stmt_vec_info, gimple *);
2222 extern void vect_finish_stmt_generation (vec_info *, stmt_vec_info, gimple *,
2223 gimple_stmt_iterator *);
2224 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
2225 extern tree vect_get_store_rhs (stmt_vec_info);
2226 void vect_get_vec_defs_for_operand (vec_info *vinfo, stmt_vec_info, unsigned,
2227 tree op, vec<tree> *, tree = NULL);
2228 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
2229 tree, vec<tree> *,
2230 tree = NULL, vec<tree> * = NULL,
2231 tree = NULL, vec<tree> * = NULL,
2232 tree = NULL, vec<tree> * = NULL);
2233 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
2234 tree, vec<tree> *, tree,
2235 tree = NULL, vec<tree> * = NULL, tree = NULL,
2236 tree = NULL, vec<tree> * = NULL, tree = NULL,
2237 tree = NULL, vec<tree> * = NULL, tree = NULL);
2238 extern tree vect_init_vector (vec_info *, stmt_vec_info, tree, tree,
2239 gimple_stmt_iterator *);
2240 extern tree vect_get_slp_vect_def (slp_tree, unsigned);
2241 extern bool vect_transform_stmt (vec_info *, stmt_vec_info,
2242 gimple_stmt_iterator *,
2243 slp_tree, slp_instance);
2244 extern void vect_remove_stores (vec_info *, stmt_vec_info);
2245 extern bool vect_nop_conversion_p (stmt_vec_info);
2246 extern opt_result vect_analyze_stmt (vec_info *, stmt_vec_info, bool *,
2247 slp_tree,
2248 slp_instance, stmt_vector_for_cost *);
2249 extern void vect_get_load_cost (vec_info *, stmt_vec_info, int,
2250 dr_alignment_support, int, bool,
2251 unsigned int *, unsigned int *,
2252 stmt_vector_for_cost *,
2253 stmt_vector_for_cost *, bool);
2254 extern void vect_get_store_cost (vec_info *, stmt_vec_info, int,
2255 dr_alignment_support, int,
2256 unsigned int *, stmt_vector_for_cost *);
2257 extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
2258 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
2259 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
2260 extern void optimize_mask_stores (class loop*);
2261 extern tree vect_gen_while (gimple_seq *, tree, tree, tree,
2262 const char * = nullptr);
2263 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
2264 extern opt_result vect_get_vector_types_for_stmt (vec_info *,
2265 stmt_vec_info, tree *,
2266 tree *, unsigned int = 0);
2267 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
2269 /* In tree-vect-data-refs.cc. */
2270 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
2271 extern enum dr_alignment_support vect_supportable_dr_alignment
2272 (vec_info *, dr_vec_info *, tree, int);
2273 extern tree vect_get_smallest_scalar_type (stmt_vec_info, tree);
2274 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
2275 extern bool vect_slp_analyze_instance_dependence (vec_info *, slp_instance);
2276 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
2277 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
2278 extern bool vect_slp_analyze_instance_alignment (vec_info *, slp_instance);
2279 extern opt_result vect_analyze_data_ref_accesses (vec_info *, vec<int> *);
2280 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
2281 extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
2282 tree, int, internal_fn *, tree *);
2283 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
2284 gather_scatter_info *);
2285 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
2286 vec<data_reference_p> *,
2287 vec<int> *, int);
2288 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
2289 extern void vect_record_base_alignments (vec_info *);
2290 extern tree vect_create_data_ref_ptr (vec_info *,
2291 stmt_vec_info, tree, class loop *, tree,
2292 tree *, gimple_stmt_iterator *,
2293 gimple **, bool,
2294 tree = NULL_TREE);
2295 extern tree bump_vector_ptr (vec_info *, tree, gimple *, gimple_stmt_iterator *,
2296 stmt_vec_info, tree);
2297 extern void vect_copy_ref_info (tree, tree);
2298 extern tree vect_create_destination_var (tree, tree);
2299 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
2300 extern internal_fn vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2301 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
2302 extern internal_fn vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2303 extern void vect_permute_store_chain (vec_info *, vec<tree> &,
2304 unsigned int, stmt_vec_info,
2305 gimple_stmt_iterator *, vec<tree> *);
2306 extern tree vect_setup_realignment (vec_info *,
2307 stmt_vec_info, gimple_stmt_iterator *,
2308 tree *, enum dr_alignment_support, tree,
2309 class loop **);
2310 extern void vect_transform_grouped_load (vec_info *, stmt_vec_info, vec<tree>,
2311 int, gimple_stmt_iterator *);
2312 extern void vect_record_grouped_load_vectors (vec_info *,
2313 stmt_vec_info, vec<tree>);
2314 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
2315 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
2316 const char * = NULL);
2317 extern tree vect_create_addr_base_for_vector_ref (vec_info *,
2318 stmt_vec_info, gimple_seq *,
2319 tree);
2321 /* In tree-vect-loop.cc. */
2322 extern tree neutral_op_for_reduction (tree, code_helper, tree);
2323 extern widest_int vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo);
2324 bool vect_rgroup_iv_might_wrap_p (loop_vec_info, rgroup_controls *);
2325 /* Used in tree-vect-loop-manip.cc */
2326 extern opt_result vect_determine_partial_vectors_and_peeling (loop_vec_info);
2327 /* Used in gimple-loop-interchange.c and tree-parloops.cc. */
2328 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
2329 enum tree_code);
2330 extern bool needs_fold_left_reduction_p (tree, code_helper);
2331 /* Drive for loop analysis stage. */
2332 extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
2333 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
2334 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
2335 tree *, bool);
2336 extern tree vect_halve_mask_nunits (tree, machine_mode);
2337 extern tree vect_double_mask_nunits (tree, machine_mode);
2338 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
2339 unsigned int, tree, tree);
2340 extern tree vect_get_loop_mask (loop_vec_info, gimple_stmt_iterator *,
2341 vec_loop_masks *,
2342 unsigned int, tree, unsigned int);
2343 extern void vect_record_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
2344 tree, unsigned int);
2345 extern tree vect_get_loop_len (loop_vec_info, gimple_stmt_iterator *,
2346 vec_loop_lens *, unsigned int, tree,
2347 unsigned int, unsigned int);
2348 extern gimple_seq vect_gen_len (tree, tree, tree, tree);
2349 extern stmt_vec_info info_for_reduction (vec_info *, stmt_vec_info);
2350 extern bool reduction_fn_for_scalar_code (code_helper, internal_fn *);
2352 /* Drive for loop transformation stage. */
2353 extern class loop *vect_transform_loop (loop_vec_info, gimple *);
2354 struct vect_loop_form_info
2356 tree number_of_iterations;
2357 tree number_of_iterationsm1;
2358 tree assumptions;
2359 gcond *loop_cond;
2360 gcond *inner_loop_cond;
2362 extern opt_result vect_analyze_loop_form (class loop *, vect_loop_form_info *);
2363 extern loop_vec_info vect_create_loop_vinfo (class loop *, vec_info_shared *,
2364 const vect_loop_form_info *,
2365 loop_vec_info = nullptr);
2366 extern bool vectorizable_live_operation (vec_info *, stmt_vec_info,
2367 slp_tree, slp_instance, int,
2368 bool, stmt_vector_for_cost *);
2369 extern bool vectorizable_reduction (loop_vec_info, stmt_vec_info,
2370 slp_tree, slp_instance,
2371 stmt_vector_for_cost *);
2372 extern bool vectorizable_induction (loop_vec_info, stmt_vec_info,
2373 gimple **, slp_tree,
2374 stmt_vector_for_cost *);
2375 extern bool vect_transform_reduction (loop_vec_info, stmt_vec_info,
2376 gimple_stmt_iterator *,
2377 gimple **, slp_tree);
2378 extern bool vect_transform_cycle_phi (loop_vec_info, stmt_vec_info,
2379 gimple **,
2380 slp_tree, slp_instance);
2381 extern bool vectorizable_lc_phi (loop_vec_info, stmt_vec_info,
2382 gimple **, slp_tree);
2383 extern bool vectorizable_phi (vec_info *, stmt_vec_info, gimple **, slp_tree,
2384 stmt_vector_for_cost *);
2385 extern bool vectorizable_recurr (loop_vec_info, stmt_vec_info,
2386 gimple **, slp_tree, stmt_vector_for_cost *);
2387 extern bool vect_emulated_vector_p (tree);
2388 extern bool vect_can_vectorize_without_simd_p (tree_code);
2389 extern bool vect_can_vectorize_without_simd_p (code_helper);
2390 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
2391 stmt_vector_for_cost *,
2392 stmt_vector_for_cost *,
2393 stmt_vector_for_cost *);
2394 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
2396 /* Nonlinear induction. */
2397 extern tree vect_peel_nonlinear_iv_init (gimple_seq*, tree, tree,
2398 tree, enum vect_induction_op_type);
2400 /* In tree-vect-slp.cc. */
2401 extern void vect_slp_init (void);
2402 extern void vect_slp_fini (void);
2403 extern void vect_free_slp_instance (slp_instance);
2404 extern bool vect_transform_slp_perm_load (vec_info *, slp_tree, const vec<tree> &,
2405 gimple_stmt_iterator *, poly_uint64,
2406 bool, unsigned *,
2407 unsigned * = nullptr, bool = false);
2408 extern bool vect_slp_analyze_operations (vec_info *);
2409 extern void vect_schedule_slp (vec_info *, const vec<slp_instance> &);
2410 extern opt_result vect_analyze_slp (vec_info *, unsigned);
2411 extern bool vect_make_slp_decision (loop_vec_info);
2412 extern void vect_detect_hybrid_slp (loop_vec_info);
2413 extern void vect_optimize_slp (vec_info *);
2414 extern void vect_gather_slp_loads (vec_info *);
2415 extern void vect_get_slp_defs (slp_tree, vec<tree> *);
2416 extern void vect_get_slp_defs (vec_info *, slp_tree, vec<vec<tree> > *,
2417 unsigned n = -1U);
2418 extern bool vect_slp_if_converted_bb (basic_block bb, loop_p orig_loop);
2419 extern bool vect_slp_function (function *);
2420 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
2421 extern stmt_vec_info vect_find_first_scalar_stmt_in_slp (slp_tree);
2422 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
2423 extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
2424 unsigned int * = NULL,
2425 tree * = NULL, tree * = NULL);
2426 extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
2427 const vec<tree> &, unsigned int, vec<tree> &);
2428 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
2429 extern slp_tree vect_create_new_slp_node (unsigned, tree_code);
2430 extern void vect_free_slp_tree (slp_tree);
2431 extern bool compatible_calls_p (gcall *, gcall *);
2432 extern int vect_slp_child_index_for_operand (const gimple *, int op);
2434 /* In tree-vect-patterns.cc. */
2435 extern void
2436 vect_mark_pattern_stmts (vec_info *, stmt_vec_info, gimple *, tree);
2437 extern bool vect_get_range_info (tree, wide_int*, wide_int*);
2439 /* Pattern recognition functions.
2440 Additional pattern recognition functions can (and will) be added
2441 in the future. */
2442 void vect_pattern_recog (vec_info *);
2444 /* In tree-vectorizer.cc. */
2445 unsigned vectorize_loops (void);
2446 void vect_free_loop_info_assumptions (class loop *);
2447 gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
2448 bool vect_stmt_dominates_stmt_p (gimple *, gimple *);
2450 /* SLP Pattern matcher types, tree-vect-slp-patterns.cc. */
2452 /* Forward declaration of possible two operands operation that can be matched
2453 by the complex numbers pattern matchers. */
2454 enum _complex_operation : unsigned;
2456 /* All possible load permute values that could result from the partial data-flow
2457 analysis. */
2458 typedef enum _complex_perm_kinds {
2459 PERM_UNKNOWN,
2460 PERM_EVENODD,
2461 PERM_ODDEVEN,
2462 PERM_ODDODD,
2463 PERM_EVENEVEN,
2464 /* Can be combined with any other PERM values. */
2465 PERM_TOP
2466 } complex_perm_kinds_t;
2468 /* Cache from nodes to the load permutation they represent. */
2469 typedef hash_map <slp_tree, complex_perm_kinds_t>
2470 slp_tree_to_load_perm_map_t;
2472 /* Cache from nodes pair to being compatible or not. */
2473 typedef pair_hash <nofree_ptr_hash <_slp_tree>,
2474 nofree_ptr_hash <_slp_tree>> slp_node_hash;
2475 typedef hash_map <slp_node_hash, bool> slp_compat_nodes_map_t;
2478 /* Vector pattern matcher base class. All SLP pattern matchers must inherit
2479 from this type. */
2481 class vect_pattern
2483 protected:
2484 /* The number of arguments that the IFN requires. */
2485 unsigned m_num_args;
2487 /* The internal function that will be used when a pattern is created. */
2488 internal_fn m_ifn;
2490 /* The current node being inspected. */
2491 slp_tree *m_node;
2493 /* The list of operands to be the children for the node produced when the
2494 internal function is created. */
2495 vec<slp_tree> m_ops;
2497 /* Default constructor where NODE is the root of the tree to inspect. */
2498 vect_pattern (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
2500 this->m_ifn = ifn;
2501 this->m_node = node;
2502 this->m_ops.create (0);
2503 if (m_ops)
2504 this->m_ops.safe_splice (*m_ops);
2507 public:
2509 /* Create a new instance of the pattern matcher class of the given type. */
2510 static vect_pattern* recognize (slp_tree_to_load_perm_map_t *,
2511 slp_compat_nodes_map_t *, slp_tree *);
2513 /* Build the pattern from the data collected so far. */
2514 virtual void build (vec_info *) = 0;
2516 /* Default destructor. */
2517 virtual ~vect_pattern ()
2519 this->m_ops.release ();
2523 /* Function pointer to create a new pattern matcher from a generic type. */
2524 typedef vect_pattern* (*vect_pattern_decl_t) (slp_tree_to_load_perm_map_t *,
2525 slp_compat_nodes_map_t *,
2526 slp_tree *);
2528 /* List of supported pattern matchers. */
2529 extern vect_pattern_decl_t slp_patterns[];
2531 /* Number of supported pattern matchers. */
2532 extern size_t num__slp_patterns;
2534 /* ----------------------------------------------------------------------
2535 Target support routines
2536 -----------------------------------------------------------------------
2537 The following routines are provided to simplify costing decisions in
2538 target code. Please add more as needed. */
2540 /* Return true if an operaton of kind KIND for STMT_INFO represents
2541 the extraction of an element from a vector in preparation for
2542 storing the element to memory. */
2543 inline bool
2544 vect_is_store_elt_extraction (vect_cost_for_stmt kind, stmt_vec_info stmt_info)
2546 return (kind == vec_to_scalar
2547 && STMT_VINFO_DATA_REF (stmt_info)
2548 && DR_IS_WRITE (STMT_VINFO_DATA_REF (stmt_info)));
2551 /* Return true if STMT_INFO represents part of a reduction. */
2552 inline bool
2553 vect_is_reduction (stmt_vec_info stmt_info)
2555 return STMT_VINFO_REDUC_IDX (stmt_info) >= 0;
2558 /* If STMT_INFO describes a reduction, return the vect_reduction_type
2559 of the reduction it describes, otherwise return -1. */
2560 inline int
2561 vect_reduc_type (vec_info *vinfo, stmt_vec_info stmt_info)
2563 if (loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo))
2564 if (STMT_VINFO_REDUC_DEF (stmt_info))
2566 stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
2567 return int (STMT_VINFO_REDUC_TYPE (reduc_info));
2569 return -1;
2572 /* If STMT_INFO is a COND_EXPR that includes an embedded comparison, return the
2573 scalar type of the values being compared. Return null otherwise. */
2574 inline tree
2575 vect_embedded_comparison_type (stmt_vec_info stmt_info)
2577 if (auto *assign = dyn_cast<gassign *> (stmt_info->stmt))
2578 if (gimple_assign_rhs_code (assign) == COND_EXPR)
2580 tree cond = gimple_assign_rhs1 (assign);
2581 if (COMPARISON_CLASS_P (cond))
2582 return TREE_TYPE (TREE_OPERAND (cond, 0));
2584 return NULL_TREE;
2587 /* If STMT_INFO is a comparison or contains an embedded comparison, return the
2588 scalar type of the values being compared. Return null otherwise. */
2589 inline tree
2590 vect_comparison_type (stmt_vec_info stmt_info)
2592 if (auto *assign = dyn_cast<gassign *> (stmt_info->stmt))
2593 if (TREE_CODE_CLASS (gimple_assign_rhs_code (assign)) == tcc_comparison)
2594 return TREE_TYPE (gimple_assign_rhs1 (assign));
2595 return vect_embedded_comparison_type (stmt_info);
2598 /* Return true if STMT_INFO extends the result of a load. */
2599 inline bool
2600 vect_is_extending_load (class vec_info *vinfo, stmt_vec_info stmt_info)
2602 /* Although this is quite large for an inline function, this part
2603 at least should be inline. */
2604 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
2605 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2606 return false;
2608 tree rhs = gimple_assign_rhs1 (stmt_info->stmt);
2609 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2610 tree rhs_type = TREE_TYPE (rhs);
2611 if (!INTEGRAL_TYPE_P (lhs_type)
2612 || !INTEGRAL_TYPE_P (rhs_type)
2613 || TYPE_PRECISION (lhs_type) <= TYPE_PRECISION (rhs_type))
2614 return false;
2616 stmt_vec_info def_stmt_info = vinfo->lookup_def (rhs);
2617 return (def_stmt_info
2618 && STMT_VINFO_DATA_REF (def_stmt_info)
2619 && DR_IS_READ (STMT_VINFO_DATA_REF (def_stmt_info)));
2622 /* Return true if STMT_INFO is an integer truncation. */
2623 inline bool
2624 vect_is_integer_truncation (stmt_vec_info stmt_info)
2626 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
2627 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2628 return false;
2630 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2631 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (assign));
2632 return (INTEGRAL_TYPE_P (lhs_type)
2633 && INTEGRAL_TYPE_P (rhs_type)
2634 && TYPE_PRECISION (lhs_type) < TYPE_PRECISION (rhs_type));
2637 /* Build a GIMPLE_ASSIGN or GIMPLE_CALL with the tree_code,
2638 or internal_fn contained in ch, respectively. */
2639 gimple * vect_gimple_build (tree, code_helper, tree, tree = NULL_TREE);
2640 #endif /* GCC_TREE_VECTORIZER_H */