ada: Fix internal error on instantiation with private component type
[official-gcc.git] / gcc / ira-color.cc
blob5807d6d26f6db24e988a3a81703eb0c4106b2a40
1 /* IRA allocation based on graph coloring.
2 Copyright (C) 2006-2023 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "ira.h"
35 #include "ira-int.h"
36 #include "reload.h"
37 #include "cfgloop.h"
39 /* To prevent soft conflict detection becoming quadratic in the
40 loop depth. Only for very pathological cases, so it hardly
41 seems worth a --param. */
42 const int max_soft_conflict_loop_depth = 64;
44 typedef struct allocno_hard_regs *allocno_hard_regs_t;
46 /* The structure contains information about hard registers can be
47 assigned to allocnos. Usually it is allocno profitable hard
48 registers but in some cases this set can be a bit different. Major
49 reason of the difference is a requirement to use hard register sets
50 that form a tree or a forest (set of trees), i.e. hard register set
51 of a node should contain hard register sets of its subnodes. */
52 struct allocno_hard_regs
54 /* Hard registers can be assigned to an allocno. */
55 HARD_REG_SET set;
56 /* Overall (spilling) cost of all allocnos with given register
57 set. */
58 int64_t cost;
61 typedef struct allocno_hard_regs_node *allocno_hard_regs_node_t;
63 /* A node representing allocno hard registers. Such nodes form a
64 forest (set of trees). Each subnode of given node in the forest
65 refers for hard register set (usually allocno profitable hard
66 register set) which is a subset of one referred from given
67 node. */
68 struct allocno_hard_regs_node
70 /* Set up number of the node in preorder traversing of the forest. */
71 int preorder_num;
72 /* Used for different calculation like finding conflict size of an
73 allocno. */
74 int check;
75 /* Used for calculation of conflict size of an allocno. The
76 conflict size of the allocno is maximal number of given allocno
77 hard registers needed for allocation of the conflicting allocnos.
78 Given allocno is trivially colored if this number plus the number
79 of hard registers needed for given allocno is not greater than
80 the number of given allocno hard register set. */
81 int conflict_size;
82 /* The number of hard registers given by member hard_regs. */
83 int hard_regs_num;
84 /* The following member is used to form the final forest. */
85 bool used_p;
86 /* Pointer to the corresponding profitable hard registers. */
87 allocno_hard_regs_t hard_regs;
88 /* Parent, first subnode, previous and next node with the same
89 parent in the forest. */
90 allocno_hard_regs_node_t parent, first, prev, next;
93 /* Info about changing hard reg costs of an allocno. */
94 struct update_cost_record
96 /* Hard regno for which we changed the cost. */
97 int hard_regno;
98 /* Divisor used when we changed the cost of HARD_REGNO. */
99 int divisor;
100 /* Next record for given allocno. */
101 struct update_cost_record *next;
104 /* To decrease footprint of ira_allocno structure we store all data
105 needed only for coloring in the following structure. */
106 struct allocno_color_data
108 /* TRUE value means that the allocno was not removed yet from the
109 conflicting graph during coloring. */
110 unsigned int in_graph_p : 1;
111 /* TRUE if it is put on the stack to make other allocnos
112 colorable. */
113 unsigned int may_be_spilled_p : 1;
114 /* TRUE if the allocno is trivially colorable. */
115 unsigned int colorable_p : 1;
116 /* Number of hard registers of the allocno class really
117 available for the allocno allocation. It is number of the
118 profitable hard regs. */
119 int available_regs_num;
120 /* Sum of frequencies of hard register preferences of all
121 conflicting allocnos which are not the coloring stack yet. */
122 int conflict_allocno_hard_prefs;
123 /* Allocnos in a bucket (used in coloring) chained by the following
124 two members. */
125 ira_allocno_t next_bucket_allocno;
126 ira_allocno_t prev_bucket_allocno;
127 /* Used for temporary purposes. */
128 int temp;
129 /* Used to exclude repeated processing. */
130 int last_process;
131 /* Profitable hard regs available for this pseudo allocation. It
132 means that the set excludes unavailable hard regs and hard regs
133 conflicting with given pseudo. They should be of the allocno
134 class. */
135 HARD_REG_SET profitable_hard_regs;
136 /* The allocno hard registers node. */
137 allocno_hard_regs_node_t hard_regs_node;
138 /* Array of structures allocno_hard_regs_subnode representing
139 given allocno hard registers node (the 1st element in the array)
140 and all its subnodes in the tree (forest) of allocno hard
141 register nodes (see comments above). */
142 int hard_regs_subnodes_start;
143 /* The length of the previous array. */
144 int hard_regs_subnodes_num;
145 /* Records about updating allocno hard reg costs from copies. If
146 the allocno did not get expected hard register, these records are
147 used to restore original hard reg costs of allocnos connected to
148 this allocno by copies. */
149 struct update_cost_record *update_cost_records;
150 /* Threads. We collect allocnos connected by copies into threads
151 and try to assign hard regs to allocnos by threads. */
152 /* Allocno representing all thread. */
153 ira_allocno_t first_thread_allocno;
154 /* Allocnos in thread forms a cycle list through the following
155 member. */
156 ira_allocno_t next_thread_allocno;
157 /* All thread frequency. Defined only for first thread allocno. */
158 int thread_freq;
159 /* Sum of frequencies of hard register preferences of the allocno. */
160 int hard_reg_prefs;
163 /* See above. */
164 typedef struct allocno_color_data *allocno_color_data_t;
166 /* Container for storing allocno data concerning coloring. */
167 static allocno_color_data_t allocno_color_data;
169 /* Macro to access the data concerning coloring. */
170 #define ALLOCNO_COLOR_DATA(a) ((allocno_color_data_t) ALLOCNO_ADD_DATA (a))
172 /* Used for finding allocno colorability to exclude repeated allocno
173 processing and for updating preferencing to exclude repeated
174 allocno processing during assignment. */
175 static int curr_allocno_process;
177 /* This file contains code for regional graph coloring, spill/restore
178 code placement optimization, and code helping the reload pass to do
179 a better job. */
181 /* Bitmap of allocnos which should be colored. */
182 static bitmap coloring_allocno_bitmap;
184 /* Bitmap of allocnos which should be taken into account during
185 coloring. In general case it contains allocnos from
186 coloring_allocno_bitmap plus other already colored conflicting
187 allocnos. */
188 static bitmap consideration_allocno_bitmap;
190 /* All allocnos sorted according their priorities. */
191 static ira_allocno_t *sorted_allocnos;
193 /* Vec representing the stack of allocnos used during coloring. */
194 static vec<ira_allocno_t> allocno_stack_vec;
196 /* Helper for qsort comparison callbacks - return a positive integer if
197 X > Y, or a negative value otherwise. Use a conditional expression
198 instead of a difference computation to insulate from possible overflow
199 issues, e.g. X - Y < 0 for some X > 0 and Y < 0. */
200 #define SORTGT(x,y) (((x) > (y)) ? 1 : -1)
204 /* Definition of vector of allocno hard registers. */
206 /* Vector of unique allocno hard registers. */
207 static vec<allocno_hard_regs_t> allocno_hard_regs_vec;
209 struct allocno_hard_regs_hasher : nofree_ptr_hash <allocno_hard_regs>
211 static inline hashval_t hash (const allocno_hard_regs *);
212 static inline bool equal (const allocno_hard_regs *,
213 const allocno_hard_regs *);
216 /* Returns hash value for allocno hard registers V. */
217 inline hashval_t
218 allocno_hard_regs_hasher::hash (const allocno_hard_regs *hv)
220 return iterative_hash (&hv->set, sizeof (HARD_REG_SET), 0);
223 /* Compares allocno hard registers V1 and V2. */
224 inline bool
225 allocno_hard_regs_hasher::equal (const allocno_hard_regs *hv1,
226 const allocno_hard_regs *hv2)
228 return hv1->set == hv2->set;
231 /* Hash table of unique allocno hard registers. */
232 static hash_table<allocno_hard_regs_hasher> *allocno_hard_regs_htab;
234 /* Return allocno hard registers in the hash table equal to HV. */
235 static allocno_hard_regs_t
236 find_hard_regs (allocno_hard_regs_t hv)
238 return allocno_hard_regs_htab->find (hv);
241 /* Insert allocno hard registers HV in the hash table (if it is not
242 there yet) and return the value which in the table. */
243 static allocno_hard_regs_t
244 insert_hard_regs (allocno_hard_regs_t hv)
246 allocno_hard_regs **slot = allocno_hard_regs_htab->find_slot (hv, INSERT);
248 if (*slot == NULL)
249 *slot = hv;
250 return *slot;
253 /* Initialize data concerning allocno hard registers. */
254 static void
255 init_allocno_hard_regs (void)
257 allocno_hard_regs_vec.create (200);
258 allocno_hard_regs_htab
259 = new hash_table<allocno_hard_regs_hasher> (200);
262 /* Add (or update info about) allocno hard registers with SET and
263 COST. */
264 static allocno_hard_regs_t
265 add_allocno_hard_regs (HARD_REG_SET set, int64_t cost)
267 struct allocno_hard_regs temp;
268 allocno_hard_regs_t hv;
270 gcc_assert (! hard_reg_set_empty_p (set));
271 temp.set = set;
272 if ((hv = find_hard_regs (&temp)) != NULL)
273 hv->cost += cost;
274 else
276 hv = ((struct allocno_hard_regs *)
277 ira_allocate (sizeof (struct allocno_hard_regs)));
278 hv->set = set;
279 hv->cost = cost;
280 allocno_hard_regs_vec.safe_push (hv);
281 insert_hard_regs (hv);
283 return hv;
286 /* Finalize data concerning allocno hard registers. */
287 static void
288 finish_allocno_hard_regs (void)
290 int i;
291 allocno_hard_regs_t hv;
293 for (i = 0;
294 allocno_hard_regs_vec.iterate (i, &hv);
295 i++)
296 ira_free (hv);
297 delete allocno_hard_regs_htab;
298 allocno_hard_regs_htab = NULL;
299 allocno_hard_regs_vec.release ();
302 /* Sort hard regs according to their frequency of usage. */
303 static int
304 allocno_hard_regs_compare (const void *v1p, const void *v2p)
306 allocno_hard_regs_t hv1 = *(const allocno_hard_regs_t *) v1p;
307 allocno_hard_regs_t hv2 = *(const allocno_hard_regs_t *) v2p;
309 if (hv2->cost > hv1->cost)
310 return 1;
311 else if (hv2->cost < hv1->cost)
312 return -1;
313 return SORTGT (allocno_hard_regs_hasher::hash(hv2), allocno_hard_regs_hasher::hash(hv1));
318 /* Used for finding a common ancestor of two allocno hard registers
319 nodes in the forest. We use the current value of
320 'node_check_tick' to mark all nodes from one node to the top and
321 then walking up from another node until we find a marked node.
323 It is also used to figure out allocno colorability as a mark that
324 we already reset value of member 'conflict_size' for the forest
325 node corresponding to the processed allocno. */
326 static int node_check_tick;
328 /* Roots of the forest containing hard register sets can be assigned
329 to allocnos. */
330 static allocno_hard_regs_node_t hard_regs_roots;
332 /* Definition of vector of allocno hard register nodes. */
334 /* Vector used to create the forest. */
335 static vec<allocno_hard_regs_node_t> hard_regs_node_vec;
337 /* Create and return allocno hard registers node containing allocno
338 hard registers HV. */
339 static allocno_hard_regs_node_t
340 create_new_allocno_hard_regs_node (allocno_hard_regs_t hv)
342 allocno_hard_regs_node_t new_node;
344 new_node = ((struct allocno_hard_regs_node *)
345 ira_allocate (sizeof (struct allocno_hard_regs_node)));
346 new_node->check = 0;
347 new_node->hard_regs = hv;
348 new_node->hard_regs_num = hard_reg_set_size (hv->set);
349 new_node->first = NULL;
350 new_node->used_p = false;
351 return new_node;
354 /* Add allocno hard registers node NEW_NODE to the forest on its level
355 given by ROOTS. */
356 static void
357 add_new_allocno_hard_regs_node_to_forest (allocno_hard_regs_node_t *roots,
358 allocno_hard_regs_node_t new_node)
360 new_node->next = *roots;
361 if (new_node->next != NULL)
362 new_node->next->prev = new_node;
363 new_node->prev = NULL;
364 *roots = new_node;
367 /* Add allocno hard registers HV (or its best approximation if it is
368 not possible) to the forest on its level given by ROOTS. */
369 static void
370 add_allocno_hard_regs_to_forest (allocno_hard_regs_node_t *roots,
371 allocno_hard_regs_t hv)
373 unsigned int i, start;
374 allocno_hard_regs_node_t node, prev, new_node;
375 HARD_REG_SET temp_set;
376 allocno_hard_regs_t hv2;
378 start = hard_regs_node_vec.length ();
379 for (node = *roots; node != NULL; node = node->next)
381 if (hv->set == node->hard_regs->set)
382 return;
383 if (hard_reg_set_subset_p (hv->set, node->hard_regs->set))
385 add_allocno_hard_regs_to_forest (&node->first, hv);
386 return;
388 if (hard_reg_set_subset_p (node->hard_regs->set, hv->set))
389 hard_regs_node_vec.safe_push (node);
390 else if (hard_reg_set_intersect_p (hv->set, node->hard_regs->set))
392 temp_set = hv->set & node->hard_regs->set;
393 hv2 = add_allocno_hard_regs (temp_set, hv->cost);
394 add_allocno_hard_regs_to_forest (&node->first, hv2);
397 if (hard_regs_node_vec.length ()
398 > start + 1)
400 /* Create a new node which contains nodes in hard_regs_node_vec. */
401 CLEAR_HARD_REG_SET (temp_set);
402 for (i = start;
403 i < hard_regs_node_vec.length ();
404 i++)
406 node = hard_regs_node_vec[i];
407 temp_set |= node->hard_regs->set;
409 hv = add_allocno_hard_regs (temp_set, hv->cost);
410 new_node = create_new_allocno_hard_regs_node (hv);
411 prev = NULL;
412 for (i = start;
413 i < hard_regs_node_vec.length ();
414 i++)
416 node = hard_regs_node_vec[i];
417 if (node->prev == NULL)
418 *roots = node->next;
419 else
420 node->prev->next = node->next;
421 if (node->next != NULL)
422 node->next->prev = node->prev;
423 if (prev == NULL)
424 new_node->first = node;
425 else
426 prev->next = node;
427 node->prev = prev;
428 node->next = NULL;
429 prev = node;
431 add_new_allocno_hard_regs_node_to_forest (roots, new_node);
433 hard_regs_node_vec.truncate (start);
436 /* Add allocno hard registers nodes starting with the forest level
437 given by FIRST which contains biggest set inside SET. */
438 static void
439 collect_allocno_hard_regs_cover (allocno_hard_regs_node_t first,
440 HARD_REG_SET set)
442 allocno_hard_regs_node_t node;
444 ira_assert (first != NULL);
445 for (node = first; node != NULL; node = node->next)
446 if (hard_reg_set_subset_p (node->hard_regs->set, set))
447 hard_regs_node_vec.safe_push (node);
448 else if (hard_reg_set_intersect_p (set, node->hard_regs->set))
449 collect_allocno_hard_regs_cover (node->first, set);
452 /* Set up field parent as PARENT in all allocno hard registers nodes
453 in forest given by FIRST. */
454 static void
455 setup_allocno_hard_regs_nodes_parent (allocno_hard_regs_node_t first,
456 allocno_hard_regs_node_t parent)
458 allocno_hard_regs_node_t node;
460 for (node = first; node != NULL; node = node->next)
462 node->parent = parent;
463 setup_allocno_hard_regs_nodes_parent (node->first, node);
467 /* Return allocno hard registers node which is a first common ancestor
468 node of FIRST and SECOND in the forest. */
469 static allocno_hard_regs_node_t
470 first_common_ancestor_node (allocno_hard_regs_node_t first,
471 allocno_hard_regs_node_t second)
473 allocno_hard_regs_node_t node;
475 node_check_tick++;
476 for (node = first; node != NULL; node = node->parent)
477 node->check = node_check_tick;
478 for (node = second; node != NULL; node = node->parent)
479 if (node->check == node_check_tick)
480 return node;
481 return first_common_ancestor_node (second, first);
484 /* Print hard reg set SET to F. */
485 static void
486 print_hard_reg_set (FILE *f, HARD_REG_SET set, bool new_line_p)
488 int i, start, end;
490 for (start = end = -1, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
492 bool reg_included = TEST_HARD_REG_BIT (set, i);
494 if (reg_included)
496 if (start == -1)
497 start = i;
498 end = i;
500 if (start >= 0 && (!reg_included || i == FIRST_PSEUDO_REGISTER - 1))
502 if (start == end)
503 fprintf (f, " %d", start);
504 else if (start == end + 1)
505 fprintf (f, " %d %d", start, end);
506 else
507 fprintf (f, " %d-%d", start, end);
508 start = -1;
511 if (new_line_p)
512 fprintf (f, "\n");
515 /* Dump a hard reg set SET to stderr. */
516 DEBUG_FUNCTION void
517 debug_hard_reg_set (HARD_REG_SET set)
519 print_hard_reg_set (stderr, set, true);
522 /* Print allocno hard register subforest given by ROOTS and its LEVEL
523 to F. */
524 static void
525 print_hard_regs_subforest (FILE *f, allocno_hard_regs_node_t roots,
526 int level)
528 int i;
529 allocno_hard_regs_node_t node;
531 for (node = roots; node != NULL; node = node->next)
533 fprintf (f, " ");
534 for (i = 0; i < level * 2; i++)
535 fprintf (f, " ");
536 fprintf (f, "%d:(", node->preorder_num);
537 print_hard_reg_set (f, node->hard_regs->set, false);
538 fprintf (f, ")@%" PRId64"\n", node->hard_regs->cost);
539 print_hard_regs_subforest (f, node->first, level + 1);
543 /* Print the allocno hard register forest to F. */
544 static void
545 print_hard_regs_forest (FILE *f)
547 fprintf (f, " Hard reg set forest:\n");
548 print_hard_regs_subforest (f, hard_regs_roots, 1);
551 /* Print the allocno hard register forest to stderr. */
552 void
553 ira_debug_hard_regs_forest (void)
555 print_hard_regs_forest (stderr);
558 /* Remove unused allocno hard registers nodes from forest given by its
559 *ROOTS. */
560 static void
561 remove_unused_allocno_hard_regs_nodes (allocno_hard_regs_node_t *roots)
563 allocno_hard_regs_node_t node, prev, next, last;
565 for (prev = NULL, node = *roots; node != NULL; node = next)
567 next = node->next;
568 if (node->used_p)
570 remove_unused_allocno_hard_regs_nodes (&node->first);
571 prev = node;
573 else
575 for (last = node->first;
576 last != NULL && last->next != NULL;
577 last = last->next)
579 if (last != NULL)
581 if (prev == NULL)
582 *roots = node->first;
583 else
584 prev->next = node->first;
585 if (next != NULL)
586 next->prev = last;
587 last->next = next;
588 next = node->first;
590 else
592 if (prev == NULL)
593 *roots = next;
594 else
595 prev->next = next;
596 if (next != NULL)
597 next->prev = prev;
599 ira_free (node);
604 /* Set up fields preorder_num starting with START_NUM in all allocno
605 hard registers nodes in forest given by FIRST. Return biggest set
606 PREORDER_NUM increased by 1. */
607 static int
608 enumerate_allocno_hard_regs_nodes (allocno_hard_regs_node_t first,
609 allocno_hard_regs_node_t parent,
610 int start_num)
612 allocno_hard_regs_node_t node;
614 for (node = first; node != NULL; node = node->next)
616 node->preorder_num = start_num++;
617 node->parent = parent;
618 start_num = enumerate_allocno_hard_regs_nodes (node->first, node,
619 start_num);
621 return start_num;
624 /* Number of allocno hard registers nodes in the forest. */
625 static int allocno_hard_regs_nodes_num;
627 /* Table preorder number of allocno hard registers node in the forest
628 -> the allocno hard registers node. */
629 static allocno_hard_regs_node_t *allocno_hard_regs_nodes;
631 /* See below. */
632 typedef struct allocno_hard_regs_subnode *allocno_hard_regs_subnode_t;
634 /* The structure is used to describes all subnodes (not only immediate
635 ones) in the mentioned above tree for given allocno hard register
636 node. The usage of such data accelerates calculation of
637 colorability of given allocno. */
638 struct allocno_hard_regs_subnode
640 /* The conflict size of conflicting allocnos whose hard register
641 sets are equal sets (plus supersets if given node is given
642 allocno hard registers node) of one in the given node. */
643 int left_conflict_size;
644 /* The summary conflict size of conflicting allocnos whose hard
645 register sets are strict subsets of one in the given node.
646 Overall conflict size is
647 left_conflict_subnodes_size
648 + MIN (max_node_impact - left_conflict_subnodes_size,
649 left_conflict_size)
651 short left_conflict_subnodes_size;
652 short max_node_impact;
655 /* Container for hard regs subnodes of all allocnos. */
656 static allocno_hard_regs_subnode_t allocno_hard_regs_subnodes;
658 /* Table (preorder number of allocno hard registers node in the
659 forest, preorder number of allocno hard registers subnode) -> index
660 of the subnode relative to the node. -1 if it is not a
661 subnode. */
662 static int *allocno_hard_regs_subnode_index;
664 /* Setup arrays ALLOCNO_HARD_REGS_NODES and
665 ALLOCNO_HARD_REGS_SUBNODE_INDEX. */
666 static void
667 setup_allocno_hard_regs_subnode_index (allocno_hard_regs_node_t first)
669 allocno_hard_regs_node_t node, parent;
670 int index;
672 for (node = first; node != NULL; node = node->next)
674 allocno_hard_regs_nodes[node->preorder_num] = node;
675 for (parent = node; parent != NULL; parent = parent->parent)
677 index = parent->preorder_num * allocno_hard_regs_nodes_num;
678 allocno_hard_regs_subnode_index[index + node->preorder_num]
679 = node->preorder_num - parent->preorder_num;
681 setup_allocno_hard_regs_subnode_index (node->first);
685 /* Count all allocno hard registers nodes in tree ROOT. */
686 static int
687 get_allocno_hard_regs_subnodes_num (allocno_hard_regs_node_t root)
689 int len = 1;
691 for (root = root->first; root != NULL; root = root->next)
692 len += get_allocno_hard_regs_subnodes_num (root);
693 return len;
696 /* Build the forest of allocno hard registers nodes and assign each
697 allocno a node from the forest. */
698 static void
699 form_allocno_hard_regs_nodes_forest (void)
701 unsigned int i, j, size, len;
702 int start;
703 ira_allocno_t a;
704 allocno_hard_regs_t hv;
705 bitmap_iterator bi;
706 HARD_REG_SET temp;
707 allocno_hard_regs_node_t node, allocno_hard_regs_node;
708 allocno_color_data_t allocno_data;
710 node_check_tick = 0;
711 init_allocno_hard_regs ();
712 hard_regs_roots = NULL;
713 hard_regs_node_vec.create (100);
714 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
715 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
717 CLEAR_HARD_REG_SET (temp);
718 SET_HARD_REG_BIT (temp, i);
719 hv = add_allocno_hard_regs (temp, 0);
720 node = create_new_allocno_hard_regs_node (hv);
721 add_new_allocno_hard_regs_node_to_forest (&hard_regs_roots, node);
723 start = allocno_hard_regs_vec.length ();
724 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
726 a = ira_allocnos[i];
727 allocno_data = ALLOCNO_COLOR_DATA (a);
729 if (hard_reg_set_empty_p (allocno_data->profitable_hard_regs))
730 continue;
731 hv = (add_allocno_hard_regs
732 (allocno_data->profitable_hard_regs,
733 ALLOCNO_MEMORY_COST (a) - ALLOCNO_CLASS_COST (a)));
735 temp = ~ira_no_alloc_regs;
736 add_allocno_hard_regs (temp, 0);
737 qsort (allocno_hard_regs_vec.address () + start,
738 allocno_hard_regs_vec.length () - start,
739 sizeof (allocno_hard_regs_t), allocno_hard_regs_compare);
740 for (i = start;
741 allocno_hard_regs_vec.iterate (i, &hv);
742 i++)
744 add_allocno_hard_regs_to_forest (&hard_regs_roots, hv);
745 ira_assert (hard_regs_node_vec.length () == 0);
747 /* We need to set up parent fields for right work of
748 first_common_ancestor_node. */
749 setup_allocno_hard_regs_nodes_parent (hard_regs_roots, NULL);
750 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
752 a = ira_allocnos[i];
753 allocno_data = ALLOCNO_COLOR_DATA (a);
754 if (hard_reg_set_empty_p (allocno_data->profitable_hard_regs))
755 continue;
756 hard_regs_node_vec.truncate (0);
757 collect_allocno_hard_regs_cover (hard_regs_roots,
758 allocno_data->profitable_hard_regs);
759 allocno_hard_regs_node = NULL;
760 for (j = 0; hard_regs_node_vec.iterate (j, &node); j++)
761 allocno_hard_regs_node
762 = (j == 0
763 ? node
764 : first_common_ancestor_node (node, allocno_hard_regs_node));
765 /* That is a temporary storage. */
766 allocno_hard_regs_node->used_p = true;
767 allocno_data->hard_regs_node = allocno_hard_regs_node;
769 ira_assert (hard_regs_roots->next == NULL);
770 hard_regs_roots->used_p = true;
771 remove_unused_allocno_hard_regs_nodes (&hard_regs_roots);
772 allocno_hard_regs_nodes_num
773 = enumerate_allocno_hard_regs_nodes (hard_regs_roots, NULL, 0);
774 allocno_hard_regs_nodes
775 = ((allocno_hard_regs_node_t *)
776 ira_allocate (allocno_hard_regs_nodes_num
777 * sizeof (allocno_hard_regs_node_t)));
778 size = allocno_hard_regs_nodes_num * allocno_hard_regs_nodes_num;
779 allocno_hard_regs_subnode_index
780 = (int *) ira_allocate (size * sizeof (int));
781 for (i = 0; i < size; i++)
782 allocno_hard_regs_subnode_index[i] = -1;
783 setup_allocno_hard_regs_subnode_index (hard_regs_roots);
784 start = 0;
785 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
787 a = ira_allocnos[i];
788 allocno_data = ALLOCNO_COLOR_DATA (a);
789 if (hard_reg_set_empty_p (allocno_data->profitable_hard_regs))
790 continue;
791 len = get_allocno_hard_regs_subnodes_num (allocno_data->hard_regs_node);
792 allocno_data->hard_regs_subnodes_start = start;
793 allocno_data->hard_regs_subnodes_num = len;
794 start += len;
796 allocno_hard_regs_subnodes
797 = ((allocno_hard_regs_subnode_t)
798 ira_allocate (sizeof (struct allocno_hard_regs_subnode) * start));
799 hard_regs_node_vec.release ();
802 /* Free tree of allocno hard registers nodes given by its ROOT. */
803 static void
804 finish_allocno_hard_regs_nodes_tree (allocno_hard_regs_node_t root)
806 allocno_hard_regs_node_t child, next;
808 for (child = root->first; child != NULL; child = next)
810 next = child->next;
811 finish_allocno_hard_regs_nodes_tree (child);
813 ira_free (root);
816 /* Finish work with the forest of allocno hard registers nodes. */
817 static void
818 finish_allocno_hard_regs_nodes_forest (void)
820 allocno_hard_regs_node_t node, next;
822 ira_free (allocno_hard_regs_subnodes);
823 for (node = hard_regs_roots; node != NULL; node = next)
825 next = node->next;
826 finish_allocno_hard_regs_nodes_tree (node);
828 ira_free (allocno_hard_regs_nodes);
829 ira_free (allocno_hard_regs_subnode_index);
830 finish_allocno_hard_regs ();
833 /* Set up left conflict sizes and left conflict subnodes sizes of hard
834 registers subnodes of allocno A. Return TRUE if allocno A is
835 trivially colorable. */
836 static bool
837 setup_left_conflict_sizes_p (ira_allocno_t a)
839 int i, k, nobj, start;
840 int conflict_size, left_conflict_subnodes_size, node_preorder_num;
841 allocno_color_data_t data;
842 HARD_REG_SET profitable_hard_regs;
843 allocno_hard_regs_subnode_t subnodes;
844 allocno_hard_regs_node_t node;
845 HARD_REG_SET node_set;
847 nobj = ALLOCNO_NUM_OBJECTS (a);
848 data = ALLOCNO_COLOR_DATA (a);
849 subnodes = allocno_hard_regs_subnodes + data->hard_regs_subnodes_start;
850 profitable_hard_regs = data->profitable_hard_regs;
851 node = data->hard_regs_node;
852 node_preorder_num = node->preorder_num;
853 node_set = node->hard_regs->set;
854 node_check_tick++;
855 for (k = 0; k < nobj; k++)
857 ira_object_t obj = ALLOCNO_OBJECT (a, k);
858 ira_object_t conflict_obj;
859 ira_object_conflict_iterator oci;
861 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
863 int size;
864 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
865 allocno_hard_regs_node_t conflict_node, temp_node;
866 HARD_REG_SET conflict_node_set;
867 allocno_color_data_t conflict_data;
869 conflict_data = ALLOCNO_COLOR_DATA (conflict_a);
870 if (! ALLOCNO_COLOR_DATA (conflict_a)->in_graph_p
871 || ! hard_reg_set_intersect_p (profitable_hard_regs,
872 conflict_data
873 ->profitable_hard_regs))
874 continue;
875 conflict_node = conflict_data->hard_regs_node;
876 conflict_node_set = conflict_node->hard_regs->set;
877 if (hard_reg_set_subset_p (node_set, conflict_node_set))
878 temp_node = node;
879 else
881 ira_assert (hard_reg_set_subset_p (conflict_node_set, node_set));
882 temp_node = conflict_node;
884 if (temp_node->check != node_check_tick)
886 temp_node->check = node_check_tick;
887 temp_node->conflict_size = 0;
889 size = (ira_reg_class_max_nregs
890 [ALLOCNO_CLASS (conflict_a)][ALLOCNO_MODE (conflict_a)]);
891 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1)
892 /* We will deal with the subwords individually. */
893 size = 1;
894 temp_node->conflict_size += size;
897 for (i = 0; i < data->hard_regs_subnodes_num; i++)
899 allocno_hard_regs_node_t temp_node;
901 temp_node = allocno_hard_regs_nodes[i + node_preorder_num];
902 ira_assert (temp_node->preorder_num == i + node_preorder_num);
903 subnodes[i].left_conflict_size = (temp_node->check != node_check_tick
904 ? 0 : temp_node->conflict_size);
905 if (hard_reg_set_subset_p (temp_node->hard_regs->set,
906 profitable_hard_regs))
907 subnodes[i].max_node_impact = temp_node->hard_regs_num;
908 else
910 HARD_REG_SET temp_set;
911 int j, n, hard_regno;
912 enum reg_class aclass;
914 temp_set = temp_node->hard_regs->set & profitable_hard_regs;
915 aclass = ALLOCNO_CLASS (a);
916 for (n = 0, j = ira_class_hard_regs_num[aclass] - 1; j >= 0; j--)
918 hard_regno = ira_class_hard_regs[aclass][j];
919 if (TEST_HARD_REG_BIT (temp_set, hard_regno))
920 n++;
922 subnodes[i].max_node_impact = n;
924 subnodes[i].left_conflict_subnodes_size = 0;
926 start = node_preorder_num * allocno_hard_regs_nodes_num;
927 for (i = data->hard_regs_subnodes_num - 1; i > 0; i--)
929 int size, parent_i;
930 allocno_hard_regs_node_t parent;
932 size = (subnodes[i].left_conflict_subnodes_size
933 + MIN (subnodes[i].max_node_impact
934 - subnodes[i].left_conflict_subnodes_size,
935 subnodes[i].left_conflict_size));
936 parent = allocno_hard_regs_nodes[i + node_preorder_num]->parent;
937 gcc_checking_assert(parent);
938 parent_i
939 = allocno_hard_regs_subnode_index[start + parent->preorder_num];
940 gcc_checking_assert(parent_i >= 0);
941 subnodes[parent_i].left_conflict_subnodes_size += size;
943 left_conflict_subnodes_size = subnodes[0].left_conflict_subnodes_size;
944 conflict_size
945 = (left_conflict_subnodes_size
946 + MIN (subnodes[0].max_node_impact - left_conflict_subnodes_size,
947 subnodes[0].left_conflict_size));
948 conflict_size += ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
949 data->colorable_p = conflict_size <= data->available_regs_num;
950 return data->colorable_p;
953 /* Update left conflict sizes of hard registers subnodes of allocno A
954 after removing allocno REMOVED_A with SIZE from the conflict graph.
955 Return TRUE if A is trivially colorable. */
956 static bool
957 update_left_conflict_sizes_p (ira_allocno_t a,
958 ira_allocno_t removed_a, int size)
960 int i, conflict_size, before_conflict_size, diff, start;
961 int node_preorder_num, parent_i;
962 allocno_hard_regs_node_t node, removed_node, parent;
963 allocno_hard_regs_subnode_t subnodes;
964 allocno_color_data_t data = ALLOCNO_COLOR_DATA (a);
966 ira_assert (! data->colorable_p);
967 node = data->hard_regs_node;
968 node_preorder_num = node->preorder_num;
969 removed_node = ALLOCNO_COLOR_DATA (removed_a)->hard_regs_node;
970 ira_assert (hard_reg_set_subset_p (removed_node->hard_regs->set,
971 node->hard_regs->set)
972 || hard_reg_set_subset_p (node->hard_regs->set,
973 removed_node->hard_regs->set));
974 start = node_preorder_num * allocno_hard_regs_nodes_num;
975 i = allocno_hard_regs_subnode_index[start + removed_node->preorder_num];
976 if (i < 0)
977 i = 0;
978 subnodes = allocno_hard_regs_subnodes + data->hard_regs_subnodes_start;
979 before_conflict_size
980 = (subnodes[i].left_conflict_subnodes_size
981 + MIN (subnodes[i].max_node_impact
982 - subnodes[i].left_conflict_subnodes_size,
983 subnodes[i].left_conflict_size));
984 subnodes[i].left_conflict_size -= size;
985 for (;;)
987 conflict_size
988 = (subnodes[i].left_conflict_subnodes_size
989 + MIN (subnodes[i].max_node_impact
990 - subnodes[i].left_conflict_subnodes_size,
991 subnodes[i].left_conflict_size));
992 if ((diff = before_conflict_size - conflict_size) == 0)
993 break;
994 ira_assert (conflict_size < before_conflict_size);
995 parent = allocno_hard_regs_nodes[i + node_preorder_num]->parent;
996 if (parent == NULL)
997 break;
998 parent_i
999 = allocno_hard_regs_subnode_index[start + parent->preorder_num];
1000 if (parent_i < 0)
1001 break;
1002 i = parent_i;
1003 before_conflict_size
1004 = (subnodes[i].left_conflict_subnodes_size
1005 + MIN (subnodes[i].max_node_impact
1006 - subnodes[i].left_conflict_subnodes_size,
1007 subnodes[i].left_conflict_size));
1008 subnodes[i].left_conflict_subnodes_size -= diff;
1010 if (i != 0
1011 || (conflict_size
1012 + ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]
1013 > data->available_regs_num))
1014 return false;
1015 data->colorable_p = true;
1016 return true;
1019 /* Return true if allocno A has empty profitable hard regs. */
1020 static bool
1021 empty_profitable_hard_regs (ira_allocno_t a)
1023 allocno_color_data_t data = ALLOCNO_COLOR_DATA (a);
1025 return hard_reg_set_empty_p (data->profitable_hard_regs);
1028 /* Set up profitable hard registers for each allocno being
1029 colored. */
1030 static void
1031 setup_profitable_hard_regs (void)
1033 unsigned int i;
1034 int j, k, nobj, hard_regno, nregs, class_size;
1035 ira_allocno_t a;
1036 bitmap_iterator bi;
1037 enum reg_class aclass;
1038 machine_mode mode;
1039 allocno_color_data_t data;
1041 /* Initial set up from allocno classes and explicitly conflicting
1042 hard regs. */
1043 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
1045 a = ira_allocnos[i];
1046 if ((aclass = ALLOCNO_CLASS (a)) == NO_REGS)
1047 continue;
1048 data = ALLOCNO_COLOR_DATA (a);
1049 if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL
1050 && ALLOCNO_CLASS_COST (a) > ALLOCNO_MEMORY_COST (a)
1051 /* Do not empty profitable regs for static chain pointer
1052 pseudo when non-local goto is used. */
1053 && ! non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a)))
1054 CLEAR_HARD_REG_SET (data->profitable_hard_regs);
1055 else
1057 mode = ALLOCNO_MODE (a);
1058 data->profitable_hard_regs
1059 = ira_useful_class_mode_regs[aclass][mode];
1060 nobj = ALLOCNO_NUM_OBJECTS (a);
1061 for (k = 0; k < nobj; k++)
1063 ira_object_t obj = ALLOCNO_OBJECT (a, k);
1065 data->profitable_hard_regs
1066 &= ~OBJECT_TOTAL_CONFLICT_HARD_REGS (obj);
1070 /* Exclude hard regs already assigned for conflicting objects. */
1071 EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, i, bi)
1073 a = ira_allocnos[i];
1074 if ((aclass = ALLOCNO_CLASS (a)) == NO_REGS
1075 || ! ALLOCNO_ASSIGNED_P (a)
1076 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
1077 continue;
1078 mode = ALLOCNO_MODE (a);
1079 nregs = hard_regno_nregs (hard_regno, mode);
1080 nobj = ALLOCNO_NUM_OBJECTS (a);
1081 for (k = 0; k < nobj; k++)
1083 ira_object_t obj = ALLOCNO_OBJECT (a, k);
1084 ira_object_t conflict_obj;
1085 ira_object_conflict_iterator oci;
1087 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
1089 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
1091 /* We can process the conflict allocno repeatedly with
1092 the same result. */
1093 if (nregs == nobj && nregs > 1)
1095 int num = OBJECT_SUBWORD (conflict_obj);
1097 if (REG_WORDS_BIG_ENDIAN)
1098 CLEAR_HARD_REG_BIT
1099 (ALLOCNO_COLOR_DATA (conflict_a)->profitable_hard_regs,
1100 hard_regno + nobj - num - 1);
1101 else
1102 CLEAR_HARD_REG_BIT
1103 (ALLOCNO_COLOR_DATA (conflict_a)->profitable_hard_regs,
1104 hard_regno + num);
1106 else
1107 ALLOCNO_COLOR_DATA (conflict_a)->profitable_hard_regs
1108 &= ~ira_reg_mode_hard_regset[hard_regno][mode];
1112 /* Exclude too costly hard regs. */
1113 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
1115 int min_cost = INT_MAX;
1116 int *costs;
1118 a = ira_allocnos[i];
1119 if ((aclass = ALLOCNO_CLASS (a)) == NO_REGS
1120 || empty_profitable_hard_regs (a))
1121 continue;
1122 data = ALLOCNO_COLOR_DATA (a);
1123 if ((costs = ALLOCNO_UPDATED_HARD_REG_COSTS (a)) != NULL
1124 || (costs = ALLOCNO_HARD_REG_COSTS (a)) != NULL)
1126 class_size = ira_class_hard_regs_num[aclass];
1127 for (j = 0; j < class_size; j++)
1129 hard_regno = ira_class_hard_regs[aclass][j];
1130 if (! TEST_HARD_REG_BIT (data->profitable_hard_regs,
1131 hard_regno))
1132 continue;
1133 if (ALLOCNO_UPDATED_MEMORY_COST (a) < costs[j]
1134 /* Do not remove HARD_REGNO for static chain pointer
1135 pseudo when non-local goto is used. */
1136 && ! non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a)))
1137 CLEAR_HARD_REG_BIT (data->profitable_hard_regs,
1138 hard_regno);
1139 else if (min_cost > costs[j])
1140 min_cost = costs[j];
1143 else if (ALLOCNO_UPDATED_MEMORY_COST (a)
1144 < ALLOCNO_UPDATED_CLASS_COST (a)
1145 /* Do not empty profitable regs for static chain
1146 pointer pseudo when non-local goto is used. */
1147 && ! non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a)))
1148 CLEAR_HARD_REG_SET (data->profitable_hard_regs);
1149 if (ALLOCNO_UPDATED_CLASS_COST (a) > min_cost)
1150 ALLOCNO_UPDATED_CLASS_COST (a) = min_cost;
1156 /* This page contains functions used to choose hard registers for
1157 allocnos. */
1159 /* Pool for update cost records. */
1160 static object_allocator<update_cost_record> update_cost_record_pool
1161 ("update cost records");
1163 /* Return new update cost record with given params. */
1164 static struct update_cost_record *
1165 get_update_cost_record (int hard_regno, int divisor,
1166 struct update_cost_record *next)
1168 struct update_cost_record *record;
1170 record = update_cost_record_pool.allocate ();
1171 record->hard_regno = hard_regno;
1172 record->divisor = divisor;
1173 record->next = next;
1174 return record;
1177 /* Free memory for all records in LIST. */
1178 static void
1179 free_update_cost_record_list (struct update_cost_record *list)
1181 struct update_cost_record *next;
1183 while (list != NULL)
1185 next = list->next;
1186 update_cost_record_pool.remove (list);
1187 list = next;
1191 /* Free memory allocated for all update cost records. */
1192 static void
1193 finish_update_cost_records (void)
1195 update_cost_record_pool.release ();
1198 /* Array whose element value is TRUE if the corresponding hard
1199 register was already allocated for an allocno. */
1200 static bool allocated_hardreg_p[FIRST_PSEUDO_REGISTER];
1202 /* Describes one element in a queue of allocnos whose costs need to be
1203 updated. Each allocno in the queue is known to have an allocno
1204 class. */
1205 struct update_cost_queue_elem
1207 /* This element is in the queue iff CHECK == update_cost_check. */
1208 int check;
1210 /* COST_HOP_DIVISOR**N, where N is the length of the shortest path
1211 connecting this allocno to the one being allocated. */
1212 int divisor;
1214 /* Allocno from which we started chaining costs of connected
1215 allocnos. */
1216 ira_allocno_t start;
1218 /* Allocno from which we are chaining costs of connected allocnos.
1219 It is used not go back in graph of allocnos connected by
1220 copies. */
1221 ira_allocno_t from;
1223 /* The next allocno in the queue, or null if this is the last element. */
1224 ira_allocno_t next;
1227 /* The first element in a queue of allocnos whose copy costs need to be
1228 updated. Null if the queue is empty. */
1229 static ira_allocno_t update_cost_queue;
1231 /* The last element in the queue described by update_cost_queue.
1232 Not valid if update_cost_queue is null. */
1233 static struct update_cost_queue_elem *update_cost_queue_tail;
1235 /* A pool of elements in the queue described by update_cost_queue.
1236 Elements are indexed by ALLOCNO_NUM. */
1237 static struct update_cost_queue_elem *update_cost_queue_elems;
1239 /* The current value of update_costs_from_copies call count. */
1240 static int update_cost_check;
1242 /* Allocate and initialize data necessary for function
1243 update_costs_from_copies. */
1244 static void
1245 initiate_cost_update (void)
1247 size_t size;
1249 size = ira_allocnos_num * sizeof (struct update_cost_queue_elem);
1250 update_cost_queue_elems
1251 = (struct update_cost_queue_elem *) ira_allocate (size);
1252 memset (update_cost_queue_elems, 0, size);
1253 update_cost_check = 0;
1256 /* Deallocate data used by function update_costs_from_copies. */
1257 static void
1258 finish_cost_update (void)
1260 ira_free (update_cost_queue_elems);
1261 finish_update_cost_records ();
1264 /* When we traverse allocnos to update hard register costs, the cost
1265 divisor will be multiplied by the following macro value for each
1266 hop from given allocno to directly connected allocnos. */
1267 #define COST_HOP_DIVISOR 4
1269 /* Start a new cost-updating pass. */
1270 static void
1271 start_update_cost (void)
1273 update_cost_check++;
1274 update_cost_queue = NULL;
1277 /* Add (ALLOCNO, START, FROM, DIVISOR) to the end of update_cost_queue, unless
1278 ALLOCNO is already in the queue, or has NO_REGS class. */
1279 static inline void
1280 queue_update_cost (ira_allocno_t allocno, ira_allocno_t start,
1281 ira_allocno_t from, int divisor)
1283 struct update_cost_queue_elem *elem;
1285 elem = &update_cost_queue_elems[ALLOCNO_NUM (allocno)];
1286 if (elem->check != update_cost_check
1287 && ALLOCNO_CLASS (allocno) != NO_REGS)
1289 elem->check = update_cost_check;
1290 elem->start = start;
1291 elem->from = from;
1292 elem->divisor = divisor;
1293 elem->next = NULL;
1294 if (update_cost_queue == NULL)
1295 update_cost_queue = allocno;
1296 else
1297 update_cost_queue_tail->next = allocno;
1298 update_cost_queue_tail = elem;
1302 /* Try to remove the first element from update_cost_queue. Return
1303 false if the queue was empty, otherwise make (*ALLOCNO, *START,
1304 *FROM, *DIVISOR) describe the removed element. */
1305 static inline bool
1306 get_next_update_cost (ira_allocno_t *allocno, ira_allocno_t *start,
1307 ira_allocno_t *from, int *divisor)
1309 struct update_cost_queue_elem *elem;
1311 if (update_cost_queue == NULL)
1312 return false;
1314 *allocno = update_cost_queue;
1315 elem = &update_cost_queue_elems[ALLOCNO_NUM (*allocno)];
1316 *start = elem->start;
1317 *from = elem->from;
1318 *divisor = elem->divisor;
1319 update_cost_queue = elem->next;
1320 return true;
1323 /* Increase costs of HARD_REGNO by UPDATE_COST and conflict cost by
1324 UPDATE_CONFLICT_COST for ALLOCNO. Return true if we really
1325 modified the cost. */
1326 static bool
1327 update_allocno_cost (ira_allocno_t allocno, int hard_regno,
1328 int update_cost, int update_conflict_cost)
1330 int i;
1331 enum reg_class aclass = ALLOCNO_CLASS (allocno);
1333 i = ira_class_hard_reg_index[aclass][hard_regno];
1334 if (i < 0)
1335 return false;
1336 ira_allocate_and_set_or_copy_costs
1337 (&ALLOCNO_UPDATED_HARD_REG_COSTS (allocno), aclass,
1338 ALLOCNO_UPDATED_CLASS_COST (allocno),
1339 ALLOCNO_HARD_REG_COSTS (allocno));
1340 ira_allocate_and_set_or_copy_costs
1341 (&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (allocno),
1342 aclass, 0, ALLOCNO_CONFLICT_HARD_REG_COSTS (allocno));
1343 ALLOCNO_UPDATED_HARD_REG_COSTS (allocno)[i] += update_cost;
1344 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (allocno)[i] += update_conflict_cost;
1345 return true;
1348 /* Return TRUE if the object OBJ conflicts with the allocno A. */
1349 static bool
1350 object_conflicts_with_allocno_p (ira_object_t obj, ira_allocno_t a)
1352 if (!OBJECT_CONFLICT_VEC_P (obj))
1353 for (int word = 0; word < ALLOCNO_NUM_OBJECTS (a); word++)
1355 ira_object_t another_obj = ALLOCNO_OBJECT (a, word);
1356 if (OBJECT_CONFLICT_ID (another_obj) >= OBJECT_MIN (obj)
1357 && OBJECT_CONFLICT_ID (another_obj) <= OBJECT_MAX (obj)
1358 && TEST_MINMAX_SET_BIT (OBJECT_CONFLICT_BITVEC (obj),
1359 OBJECT_CONFLICT_ID (another_obj),
1360 OBJECT_MIN (obj), OBJECT_MAX (obj)))
1361 return true;
1363 else
1365 /* If this linear walk ever becomes a bottleneck we could add a
1366 conflict_vec_sorted_p flag and if not set, sort the conflicts after
1367 their ID so we can use a binary search. That would also require
1368 tracking the actual number of conflicts in the vector to not rely
1369 on the NULL termination. */
1370 ira_object_conflict_iterator oci;
1371 ira_object_t conflict_obj;
1372 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
1373 if (OBJECT_ALLOCNO (conflict_obj) == a)
1374 return true;
1376 return false;
1379 /* Return TRUE if allocnos A1 and A2 conflicts. Here we are
1380 interested only in conflicts of allocnos with intersecting allocno
1381 classes. */
1382 static bool
1383 allocnos_conflict_p (ira_allocno_t a1, ira_allocno_t a2)
1385 /* Compute the upper bound for the linear iteration when the object
1386 conflicts are represented as a sparse vector. In particular this
1387 will make sure we prefer O(1) bitvector testing. */
1388 int num_conflicts_in_vec1 = 0, num_conflicts_in_vec2 = 0;
1389 for (int word = 0; word < ALLOCNO_NUM_OBJECTS (a1); ++word)
1390 if (OBJECT_CONFLICT_VEC_P (ALLOCNO_OBJECT (a1, word)))
1391 num_conflicts_in_vec1 += OBJECT_NUM_CONFLICTS (ALLOCNO_OBJECT (a1, word));
1392 for (int word = 0; word < ALLOCNO_NUM_OBJECTS (a2); ++word)
1393 if (OBJECT_CONFLICT_VEC_P (ALLOCNO_OBJECT (a2, word)))
1394 num_conflicts_in_vec2 += OBJECT_NUM_CONFLICTS (ALLOCNO_OBJECT (a2, word));
1395 if (num_conflicts_in_vec2 < num_conflicts_in_vec1)
1396 std::swap (a1, a2);
1398 for (int word = 0; word < ALLOCNO_NUM_OBJECTS (a1); word++)
1400 ira_object_t obj = ALLOCNO_OBJECT (a1, word);
1401 /* Take preferences of conflicting allocnos into account. */
1402 if (object_conflicts_with_allocno_p (obj, a2))
1403 return true;
1405 return false;
1408 /* Update (decrease if DECR_P) HARD_REGNO cost of allocnos connected
1409 by copies to ALLOCNO to increase chances to remove some copies as
1410 the result of subsequent assignment. Update conflict costs.
1411 Record cost updates if RECORD_P is true. */
1412 static void
1413 update_costs_from_allocno (ira_allocno_t allocno, int hard_regno,
1414 int divisor, bool decr_p, bool record_p)
1416 int cost, update_cost, update_conflict_cost;
1417 machine_mode mode;
1418 enum reg_class rclass, aclass;
1419 ira_allocno_t another_allocno, start = allocno, from = NULL;
1420 ira_copy_t cp, next_cp;
1422 rclass = REGNO_REG_CLASS (hard_regno);
1425 mode = ALLOCNO_MODE (allocno);
1426 ira_init_register_move_cost_if_necessary (mode);
1427 for (cp = ALLOCNO_COPIES (allocno); cp != NULL; cp = next_cp)
1429 if (cp->first == allocno)
1431 next_cp = cp->next_first_allocno_copy;
1432 another_allocno = cp->second;
1434 else if (cp->second == allocno)
1436 next_cp = cp->next_second_allocno_copy;
1437 another_allocno = cp->first;
1439 else
1440 gcc_unreachable ();
1442 if (another_allocno == from
1443 || (ALLOCNO_COLOR_DATA (another_allocno) != NULL
1444 && (ALLOCNO_COLOR_DATA (allocno)->first_thread_allocno
1445 != ALLOCNO_COLOR_DATA (another_allocno)->first_thread_allocno)))
1446 continue;
1448 aclass = ALLOCNO_CLASS (another_allocno);
1449 if (! TEST_HARD_REG_BIT (reg_class_contents[aclass],
1450 hard_regno)
1451 || ALLOCNO_ASSIGNED_P (another_allocno))
1452 continue;
1454 /* If we have different modes use the smallest one. It is
1455 a sub-register move. It is hard to predict what LRA
1456 will reload (the pseudo or its sub-register) but LRA
1457 will try to minimize the data movement. Also for some
1458 register classes bigger modes might be invalid,
1459 e.g. DImode for AREG on x86. For such cases the
1460 register move cost will be maximal. */
1461 mode = narrower_subreg_mode (ALLOCNO_MODE (cp->first),
1462 ALLOCNO_MODE (cp->second));
1464 ira_init_register_move_cost_if_necessary (mode);
1466 cost = (cp->second == allocno
1467 ? ira_register_move_cost[mode][rclass][aclass]
1468 : ira_register_move_cost[mode][aclass][rclass]);
1469 if (decr_p)
1470 cost = -cost;
1472 update_cost = cp->freq * cost / divisor;
1473 update_conflict_cost = update_cost;
1475 if (internal_flag_ira_verbose > 5 && ira_dump_file != NULL)
1476 fprintf (ira_dump_file,
1477 " a%dr%d (hr%d): update cost by %d, conflict cost by %d\n",
1478 ALLOCNO_NUM (another_allocno), ALLOCNO_REGNO (another_allocno),
1479 hard_regno, update_cost, update_conflict_cost);
1480 if (update_cost == 0)
1481 continue;
1483 if (! update_allocno_cost (another_allocno, hard_regno,
1484 update_cost, update_conflict_cost))
1485 continue;
1486 queue_update_cost (another_allocno, start, allocno,
1487 divisor * COST_HOP_DIVISOR);
1488 if (record_p && ALLOCNO_COLOR_DATA (another_allocno) != NULL)
1489 ALLOCNO_COLOR_DATA (another_allocno)->update_cost_records
1490 = get_update_cost_record (hard_regno, divisor,
1491 ALLOCNO_COLOR_DATA (another_allocno)
1492 ->update_cost_records);
1495 while (get_next_update_cost (&allocno, &start, &from, &divisor));
1498 /* Decrease preferred ALLOCNO hard register costs and costs of
1499 allocnos connected to ALLOCNO through copy. */
1500 static void
1501 update_costs_from_prefs (ira_allocno_t allocno)
1503 ira_pref_t pref;
1505 start_update_cost ();
1506 for (pref = ALLOCNO_PREFS (allocno); pref != NULL; pref = pref->next_pref)
1508 if (internal_flag_ira_verbose > 5 && ira_dump_file != NULL)
1509 fprintf (ira_dump_file, " Start updating from pref of hr%d for a%dr%d:\n",
1510 pref->hard_regno, ALLOCNO_NUM (allocno), ALLOCNO_REGNO (allocno));
1511 update_costs_from_allocno (allocno, pref->hard_regno,
1512 COST_HOP_DIVISOR, true, true);
1516 /* Update (decrease if DECR_P) the cost of allocnos connected to
1517 ALLOCNO through copies to increase chances to remove some copies as
1518 the result of subsequent assignment. ALLOCNO was just assigned to
1519 a hard register. Record cost updates if RECORD_P is true. */
1520 static void
1521 update_costs_from_copies (ira_allocno_t allocno, bool decr_p, bool record_p)
1523 int hard_regno;
1525 hard_regno = ALLOCNO_HARD_REGNO (allocno);
1526 ira_assert (hard_regno >= 0 && ALLOCNO_CLASS (allocno) != NO_REGS);
1527 start_update_cost ();
1528 if (internal_flag_ira_verbose > 5 && ira_dump_file != NULL)
1529 fprintf (ira_dump_file, " Start updating from a%dr%d by copies:\n",
1530 ALLOCNO_NUM (allocno), ALLOCNO_REGNO (allocno));
1531 update_costs_from_allocno (allocno, hard_regno, 1, decr_p, record_p);
1534 /* Update conflict_allocno_hard_prefs of allocnos conflicting with
1535 ALLOCNO. */
1536 static void
1537 update_conflict_allocno_hard_prefs (ira_allocno_t allocno)
1539 int l, nr = ALLOCNO_NUM_OBJECTS (allocno);
1541 for (l = 0; l < nr; l++)
1543 ira_object_t conflict_obj, obj = ALLOCNO_OBJECT (allocno, l);
1544 ira_object_conflict_iterator oci;
1546 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
1548 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
1549 allocno_color_data_t conflict_data = ALLOCNO_COLOR_DATA (conflict_a);
1550 ira_pref_t pref;
1552 if (!(hard_reg_set_intersect_p
1553 (ALLOCNO_COLOR_DATA (allocno)->profitable_hard_regs,
1554 conflict_data->profitable_hard_regs)))
1555 continue;
1556 for (pref = ALLOCNO_PREFS (allocno);
1557 pref != NULL;
1558 pref = pref->next_pref)
1559 conflict_data->conflict_allocno_hard_prefs += pref->freq;
1564 /* Restore costs of allocnos connected to ALLOCNO by copies as it was
1565 before updating costs of these allocnos from given allocno. This
1566 is a wise thing to do as if given allocno did not get an expected
1567 hard reg, using smaller cost of the hard reg for allocnos connected
1568 by copies to given allocno becomes actually misleading. Free all
1569 update cost records for ALLOCNO as we don't need them anymore. */
1570 static void
1571 restore_costs_from_copies (ira_allocno_t allocno)
1573 struct update_cost_record *records, *curr;
1575 if (ALLOCNO_COLOR_DATA (allocno) == NULL)
1576 return;
1577 records = ALLOCNO_COLOR_DATA (allocno)->update_cost_records;
1578 start_update_cost ();
1579 if (internal_flag_ira_verbose > 5 && ira_dump_file != NULL)
1580 fprintf (ira_dump_file, " Start restoring from a%dr%d:\n",
1581 ALLOCNO_NUM (allocno), ALLOCNO_REGNO (allocno));
1582 for (curr = records; curr != NULL; curr = curr->next)
1583 update_costs_from_allocno (allocno, curr->hard_regno,
1584 curr->divisor, true, false);
1585 free_update_cost_record_list (records);
1586 ALLOCNO_COLOR_DATA (allocno)->update_cost_records = NULL;
1589 /* This function updates COSTS (decrease if DECR_P) for hard_registers
1590 of ACLASS by conflict costs of the unassigned allocnos
1591 connected by copies with allocnos in update_cost_queue. This
1592 update increases chances to remove some copies. */
1593 static void
1594 update_conflict_hard_regno_costs (int *costs, enum reg_class aclass,
1595 bool decr_p)
1597 int i, cost, class_size, freq, mult, div, divisor;
1598 int index, hard_regno;
1599 int *conflict_costs;
1600 bool cont_p;
1601 enum reg_class another_aclass;
1602 ira_allocno_t allocno, another_allocno, start, from;
1603 ira_copy_t cp, next_cp;
1605 while (get_next_update_cost (&allocno, &start, &from, &divisor))
1606 for (cp = ALLOCNO_COPIES (allocno); cp != NULL; cp = next_cp)
1608 if (cp->first == allocno)
1610 next_cp = cp->next_first_allocno_copy;
1611 another_allocno = cp->second;
1613 else if (cp->second == allocno)
1615 next_cp = cp->next_second_allocno_copy;
1616 another_allocno = cp->first;
1618 else
1619 gcc_unreachable ();
1621 another_aclass = ALLOCNO_CLASS (another_allocno);
1622 if (another_allocno == from
1623 || ALLOCNO_ASSIGNED_P (another_allocno)
1624 || ALLOCNO_COLOR_DATA (another_allocno)->may_be_spilled_p
1625 || ! ira_reg_classes_intersect_p[aclass][another_aclass])
1626 continue;
1627 if (allocnos_conflict_p (another_allocno, start))
1628 continue;
1630 class_size = ira_class_hard_regs_num[another_aclass];
1631 ira_allocate_and_copy_costs
1632 (&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno),
1633 another_aclass, ALLOCNO_CONFLICT_HARD_REG_COSTS (another_allocno));
1634 conflict_costs
1635 = ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno);
1636 if (conflict_costs == NULL)
1637 cont_p = true;
1638 else
1640 mult = cp->freq;
1641 freq = ALLOCNO_FREQ (another_allocno);
1642 if (freq == 0)
1643 freq = 1;
1644 div = freq * divisor;
1645 cont_p = false;
1646 for (i = class_size - 1; i >= 0; i--)
1648 hard_regno = ira_class_hard_regs[another_aclass][i];
1649 ira_assert (hard_regno >= 0);
1650 index = ira_class_hard_reg_index[aclass][hard_regno];
1651 if (index < 0)
1652 continue;
1653 cost = (int) (((int64_t) conflict_costs [i] * mult) / div);
1654 if (cost == 0)
1655 continue;
1656 cont_p = true;
1657 if (decr_p)
1658 cost = -cost;
1659 costs[index] += cost;
1662 /* Probably 5 hops will be enough. */
1663 if (cont_p
1664 && divisor <= (COST_HOP_DIVISOR
1665 * COST_HOP_DIVISOR
1666 * COST_HOP_DIVISOR
1667 * COST_HOP_DIVISOR))
1668 queue_update_cost (another_allocno, start, from, divisor * COST_HOP_DIVISOR);
1672 /* Set up conflicting (through CONFLICT_REGS) for each object of
1673 allocno A and the start allocno profitable regs (through
1674 START_PROFITABLE_REGS). Remember that the start profitable regs
1675 exclude hard regs which cannot hold value of mode of allocno A.
1676 This covers mostly cases when multi-register value should be
1677 aligned. */
1678 static inline void
1679 get_conflict_and_start_profitable_regs (ira_allocno_t a, bool retry_p,
1680 HARD_REG_SET *conflict_regs,
1681 HARD_REG_SET *start_profitable_regs)
1683 int i, nwords;
1684 ira_object_t obj;
1686 nwords = ALLOCNO_NUM_OBJECTS (a);
1687 for (i = 0; i < nwords; i++)
1689 obj = ALLOCNO_OBJECT (a, i);
1690 conflict_regs[i] = OBJECT_TOTAL_CONFLICT_HARD_REGS (obj);
1692 if (retry_p)
1693 *start_profitable_regs
1694 = (reg_class_contents[ALLOCNO_CLASS (a)]
1695 &~ (ira_prohibited_class_mode_regs
1696 [ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]));
1697 else
1698 *start_profitable_regs = ALLOCNO_COLOR_DATA (a)->profitable_hard_regs;
1701 /* Return true if HARD_REGNO is ok for assigning to allocno A with
1702 PROFITABLE_REGS and whose objects have CONFLICT_REGS. */
1703 static inline bool
1704 check_hard_reg_p (ira_allocno_t a, int hard_regno,
1705 HARD_REG_SET *conflict_regs, HARD_REG_SET profitable_regs)
1707 int j, nwords, nregs;
1708 enum reg_class aclass;
1709 machine_mode mode;
1711 aclass = ALLOCNO_CLASS (a);
1712 mode = ALLOCNO_MODE (a);
1713 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[aclass][mode],
1714 hard_regno))
1715 return false;
1716 /* Checking only profitable hard regs. */
1717 if (! TEST_HARD_REG_BIT (profitable_regs, hard_regno))
1718 return false;
1719 nregs = hard_regno_nregs (hard_regno, mode);
1720 nwords = ALLOCNO_NUM_OBJECTS (a);
1721 for (j = 0; j < nregs; j++)
1723 int k;
1724 int set_to_test_start = 0, set_to_test_end = nwords;
1726 if (nregs == nwords)
1728 if (REG_WORDS_BIG_ENDIAN)
1729 set_to_test_start = nwords - j - 1;
1730 else
1731 set_to_test_start = j;
1732 set_to_test_end = set_to_test_start + 1;
1734 for (k = set_to_test_start; k < set_to_test_end; k++)
1735 if (TEST_HARD_REG_BIT (conflict_regs[k], hard_regno + j))
1736 break;
1737 if (k != set_to_test_end)
1738 break;
1740 return j == nregs;
1743 /* Return number of registers needed to be saved and restored at
1744 function prologue/epilogue if we allocate HARD_REGNO to hold value
1745 of MODE. */
1746 static int
1747 calculate_saved_nregs (int hard_regno, machine_mode mode)
1749 int i;
1750 int nregs = 0;
1752 ira_assert (hard_regno >= 0);
1753 for (i = hard_regno_nregs (hard_regno, mode) - 1; i >= 0; i--)
1754 if (!allocated_hardreg_p[hard_regno + i]
1755 && !crtl->abi->clobbers_full_reg_p (hard_regno + i)
1756 && !LOCAL_REGNO (hard_regno + i))
1757 nregs++;
1758 return nregs;
1761 /* Allocnos A1 and A2 are known to conflict. Check whether, in some loop L
1762 that is either the current loop or a nested subloop, the conflict is of
1763 the following form:
1765 - One allocno (X) is a cap allocno for some non-cap allocno X2.
1767 - X2 belongs to some loop L2.
1769 - The other allocno (Y) is a non-cap allocno.
1771 - Y is an ancestor of some allocno Y2 in L2. (Note that such a Y2
1772 must exist, given that X and Y conflict.)
1774 - Y2 is not referenced in L2 (that is, ALLOCNO_NREFS (Y2) == 0).
1776 - Y can use a different allocation from Y2.
1778 In this case, Y's register is live across L2 but is not used within it,
1779 whereas X's register is used only within L2. The conflict is therefore
1780 only "soft", in that it can easily be avoided by spilling Y2 inside L2
1781 without affecting any insn references.
1783 If the conflict does have this form, return the Y2 that would need to be
1784 spilled in order to allow X and Y (and thus A1 and A2) to use the same
1785 register. Return null otherwise. Returning null is conservatively correct;
1786 any nonnnull return value is an optimization. */
1787 ira_allocno_t
1788 ira_soft_conflict (ira_allocno_t a1, ira_allocno_t a2)
1790 /* Search for the loop L and its associated allocnos X and Y. */
1791 int search_depth = 0;
1792 while (ALLOCNO_CAP_MEMBER (a1) && ALLOCNO_CAP_MEMBER (a2))
1794 a1 = ALLOCNO_CAP_MEMBER (a1);
1795 a2 = ALLOCNO_CAP_MEMBER (a2);
1796 if (search_depth++ > max_soft_conflict_loop_depth)
1797 return nullptr;
1799 /* This must be true if A1 and A2 conflict. */
1800 ira_assert (ALLOCNO_LOOP_TREE_NODE (a1) == ALLOCNO_LOOP_TREE_NODE (a2));
1802 /* Make A1 the cap allocno (X in the comment above) and A2 the
1803 non-cap allocno (Y in the comment above). */
1804 if (ALLOCNO_CAP_MEMBER (a2))
1805 std::swap (a1, a2);
1806 if (!ALLOCNO_CAP_MEMBER (a1))
1807 return nullptr;
1809 /* Search for the real allocno that A1 caps (X2 in the comment above). */
1812 a1 = ALLOCNO_CAP_MEMBER (a1);
1813 if (search_depth++ > max_soft_conflict_loop_depth)
1814 return nullptr;
1816 while (ALLOCNO_CAP_MEMBER (a1));
1818 /* Find the associated allocno for A2 (Y2 in the comment above). */
1819 auto node = ALLOCNO_LOOP_TREE_NODE (a1);
1820 auto local_a2 = node->regno_allocno_map[ALLOCNO_REGNO (a2)];
1822 /* Find the parent of LOCAL_A2/Y2. LOCAL_A2 must be a descendant of A2
1823 for the conflict query to make sense, so this parent lookup must succeed.
1825 If the parent allocno has no references, it is usually cheaper to
1826 spill at that loop level instead. Keep searching until we find
1827 a parent allocno that does have references (but don't look past
1828 the starting allocno). */
1829 ira_allocno_t local_parent_a2;
1830 for (;;)
1832 local_parent_a2 = ira_parent_allocno (local_a2);
1833 if (local_parent_a2 == a2 || ALLOCNO_NREFS (local_parent_a2) != 0)
1834 break;
1835 local_a2 = local_parent_a2;
1837 if (CHECKING_P)
1839 /* Sanity check to make sure that the conflict we've been given
1840 makes sense. */
1841 auto test_a2 = local_parent_a2;
1842 while (test_a2 != a2)
1844 test_a2 = ira_parent_allocno (test_a2);
1845 ira_assert (test_a2);
1848 if (local_a2
1849 && ALLOCNO_NREFS (local_a2) == 0
1850 && ira_subloop_allocnos_can_differ_p (local_parent_a2))
1851 return local_a2;
1852 return nullptr;
1855 /* The caller has decided to allocate HREGNO to A and has proved that
1856 this is safe. However, the allocation might require the kind of
1857 spilling described in the comment above ira_soft_conflict.
1858 The caller has recorded that:
1860 - The allocnos in ALLOCNOS_TO_SPILL are the ones that would need
1861 to be spilled to satisfy soft conflicts for at least one allocation
1862 (not necessarily HREGNO).
1864 - The soft conflicts apply only to A allocations that overlap
1865 SOFT_CONFLICT_REGS.
1867 If allocating HREGNO is subject to any soft conflicts, record the
1868 subloop allocnos that need to be spilled. */
1869 static void
1870 spill_soft_conflicts (ira_allocno_t a, bitmap allocnos_to_spill,
1871 HARD_REG_SET soft_conflict_regs, int hregno)
1873 auto nregs = hard_regno_nregs (hregno, ALLOCNO_MODE (a));
1874 bitmap_iterator bi;
1875 unsigned int i;
1876 EXECUTE_IF_SET_IN_BITMAP (allocnos_to_spill, 0, i, bi)
1878 /* SPILL_A needs to be spilled for at least one allocation
1879 (not necessarily this one). */
1880 auto spill_a = ira_allocnos[i];
1882 /* Find the corresponding allocno for this loop. */
1883 auto conflict_a = spill_a;
1886 conflict_a = ira_parent_or_cap_allocno (conflict_a);
1887 ira_assert (conflict_a);
1889 while (ALLOCNO_LOOP_TREE_NODE (conflict_a)->level
1890 > ALLOCNO_LOOP_TREE_NODE (a)->level);
1892 ira_assert (ALLOCNO_LOOP_TREE_NODE (conflict_a)
1893 == ALLOCNO_LOOP_TREE_NODE (a));
1895 if (conflict_a == a)
1897 /* SPILL_A is a descendant of A. We don't know (and don't need
1898 to know) which cap allocnos have a soft conflict with A.
1899 All we need to do is test whether the soft conflict applies
1900 to the chosen allocation. */
1901 if (ira_hard_reg_set_intersection_p (hregno, ALLOCNO_MODE (a),
1902 soft_conflict_regs))
1903 ALLOCNO_MIGHT_CONFLICT_WITH_PARENT_P (spill_a) = true;
1905 else
1907 /* SPILL_A is a descendant of CONFLICT_A, which has a soft conflict
1908 with A. Test whether the soft conflict applies to the current
1909 allocation. */
1910 ira_assert (ira_soft_conflict (a, conflict_a) == spill_a);
1911 auto conflict_hregno = ALLOCNO_HARD_REGNO (conflict_a);
1912 ira_assert (conflict_hregno >= 0);
1913 auto conflict_nregs = hard_regno_nregs (conflict_hregno,
1914 ALLOCNO_MODE (conflict_a));
1915 if (hregno + nregs > conflict_hregno
1916 && conflict_hregno + conflict_nregs > hregno)
1917 ALLOCNO_MIGHT_CONFLICT_WITH_PARENT_P (spill_a) = true;
1922 /* Choose a hard register for allocno A. If RETRY_P is TRUE, it means
1923 that the function called from function
1924 `ira_reassign_conflict_allocnos' and `allocno_reload_assign'. In
1925 this case some allocno data are not defined or updated and we
1926 should not touch these data. The function returns true if we
1927 managed to assign a hard register to the allocno.
1929 To assign a hard register, first of all we calculate all conflict
1930 hard registers which can come from conflicting allocnos with
1931 already assigned hard registers. After that we find first free
1932 hard register with the minimal cost. During hard register cost
1933 calculation we take conflict hard register costs into account to
1934 give a chance for conflicting allocnos to get a better hard
1935 register in the future.
1937 If the best hard register cost is bigger than cost of memory usage
1938 for the allocno, we don't assign a hard register to given allocno
1939 at all.
1941 If we assign a hard register to the allocno, we update costs of the
1942 hard register for allocnos connected by copies to improve a chance
1943 to coalesce insns represented by the copies when we assign hard
1944 registers to the allocnos connected by the copies. */
1945 static bool
1946 assign_hard_reg (ira_allocno_t a, bool retry_p)
1948 HARD_REG_SET conflicting_regs[2], profitable_hard_regs;
1949 int i, j, hard_regno, best_hard_regno, class_size;
1950 int cost, mem_cost, min_cost, full_cost, min_full_cost, nwords, word;
1951 int *a_costs;
1952 enum reg_class aclass;
1953 machine_mode mode;
1954 static int costs[FIRST_PSEUDO_REGISTER], full_costs[FIRST_PSEUDO_REGISTER];
1955 int saved_nregs;
1956 enum reg_class rclass;
1957 int add_cost;
1958 #ifdef STACK_REGS
1959 bool no_stack_reg_p;
1960 #endif
1961 auto_bitmap allocnos_to_spill;
1962 HARD_REG_SET soft_conflict_regs = {};
1964 ira_assert (! ALLOCNO_ASSIGNED_P (a));
1965 get_conflict_and_start_profitable_regs (a, retry_p,
1966 conflicting_regs,
1967 &profitable_hard_regs);
1968 aclass = ALLOCNO_CLASS (a);
1969 class_size = ira_class_hard_regs_num[aclass];
1970 best_hard_regno = -1;
1971 mem_cost = 0;
1972 memset (costs, 0, sizeof (int) * class_size);
1973 memset (full_costs, 0, sizeof (int) * class_size);
1974 #ifdef STACK_REGS
1975 no_stack_reg_p = false;
1976 #endif
1977 if (! retry_p)
1978 start_update_cost ();
1979 mem_cost += ALLOCNO_UPDATED_MEMORY_COST (a);
1981 ira_allocate_and_copy_costs (&ALLOCNO_UPDATED_HARD_REG_COSTS (a),
1982 aclass, ALLOCNO_HARD_REG_COSTS (a));
1983 a_costs = ALLOCNO_UPDATED_HARD_REG_COSTS (a);
1984 #ifdef STACK_REGS
1985 no_stack_reg_p = no_stack_reg_p || ALLOCNO_TOTAL_NO_STACK_REG_P (a);
1986 #endif
1987 cost = ALLOCNO_UPDATED_CLASS_COST (a);
1988 for (i = 0; i < class_size; i++)
1989 if (a_costs != NULL)
1991 costs[i] += a_costs[i];
1992 full_costs[i] += a_costs[i];
1994 else
1996 costs[i] += cost;
1997 full_costs[i] += cost;
1999 nwords = ALLOCNO_NUM_OBJECTS (a);
2000 curr_allocno_process++;
2001 for (word = 0; word < nwords; word++)
2003 ira_object_t conflict_obj;
2004 ira_object_t obj = ALLOCNO_OBJECT (a, word);
2005 ira_object_conflict_iterator oci;
2007 /* Take preferences of conflicting allocnos into account. */
2008 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2010 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2011 enum reg_class conflict_aclass;
2012 allocno_color_data_t data = ALLOCNO_COLOR_DATA (conflict_a);
2014 /* Reload can give another class so we need to check all
2015 allocnos. */
2016 if (!retry_p
2017 && ((!ALLOCNO_ASSIGNED_P (conflict_a)
2018 || ALLOCNO_HARD_REGNO (conflict_a) < 0)
2019 && !(hard_reg_set_intersect_p
2020 (profitable_hard_regs,
2021 ALLOCNO_COLOR_DATA
2022 (conflict_a)->profitable_hard_regs))))
2024 /* All conflict allocnos are in consideration bitmap
2025 when retry_p is false. It might change in future and
2026 if it happens the assert will be broken. It means
2027 the code should be modified for the new
2028 assumptions. */
2029 ira_assert (bitmap_bit_p (consideration_allocno_bitmap,
2030 ALLOCNO_NUM (conflict_a)));
2031 continue;
2033 conflict_aclass = ALLOCNO_CLASS (conflict_a);
2034 ira_assert (ira_reg_classes_intersect_p
2035 [aclass][conflict_aclass]);
2036 if (ALLOCNO_ASSIGNED_P (conflict_a))
2038 hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2039 if (hard_regno >= 0
2040 && (ira_hard_reg_set_intersection_p
2041 (hard_regno, ALLOCNO_MODE (conflict_a),
2042 reg_class_contents[aclass])))
2044 int n_objects = ALLOCNO_NUM_OBJECTS (conflict_a);
2045 int conflict_nregs;
2047 mode = ALLOCNO_MODE (conflict_a);
2048 conflict_nregs = hard_regno_nregs (hard_regno, mode);
2049 auto spill_a = (retry_p
2050 ? nullptr
2051 : ira_soft_conflict (a, conflict_a));
2052 if (spill_a)
2054 if (bitmap_set_bit (allocnos_to_spill,
2055 ALLOCNO_NUM (spill_a)))
2057 ira_loop_border_costs border_costs (spill_a);
2058 auto cost = border_costs.spill_inside_loop_cost ();
2059 auto note_conflict = [&](int r)
2061 SET_HARD_REG_BIT (soft_conflict_regs, r);
2062 auto hri = ira_class_hard_reg_index[aclass][r];
2063 if (hri >= 0)
2065 costs[hri] += cost;
2066 full_costs[hri] += cost;
2069 for (int r = hard_regno;
2070 r >= 0 && (int) end_hard_regno (mode, r) > hard_regno;
2071 r--)
2072 note_conflict (r);
2073 for (int r = hard_regno + 1;
2074 r < hard_regno + conflict_nregs;
2075 r++)
2076 note_conflict (r);
2079 else
2081 if (conflict_nregs == n_objects && conflict_nregs > 1)
2083 int num = OBJECT_SUBWORD (conflict_obj);
2085 if (REG_WORDS_BIG_ENDIAN)
2086 SET_HARD_REG_BIT (conflicting_regs[word],
2087 hard_regno + n_objects - num - 1);
2088 else
2089 SET_HARD_REG_BIT (conflicting_regs[word],
2090 hard_regno + num);
2092 else
2093 conflicting_regs[word]
2094 |= ira_reg_mode_hard_regset[hard_regno][mode];
2095 if (hard_reg_set_subset_p (profitable_hard_regs,
2096 conflicting_regs[word]))
2097 goto fail;
2101 else if (! retry_p
2102 && ! ALLOCNO_COLOR_DATA (conflict_a)->may_be_spilled_p
2103 /* Don't process the conflict allocno twice. */
2104 && (ALLOCNO_COLOR_DATA (conflict_a)->last_process
2105 != curr_allocno_process))
2107 int k, *conflict_costs;
2109 ALLOCNO_COLOR_DATA (conflict_a)->last_process
2110 = curr_allocno_process;
2111 ira_allocate_and_copy_costs
2112 (&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (conflict_a),
2113 conflict_aclass,
2114 ALLOCNO_CONFLICT_HARD_REG_COSTS (conflict_a));
2115 conflict_costs
2116 = ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (conflict_a);
2117 if (conflict_costs != NULL)
2118 for (j = class_size - 1; j >= 0; j--)
2120 hard_regno = ira_class_hard_regs[aclass][j];
2121 ira_assert (hard_regno >= 0);
2122 k = ira_class_hard_reg_index[conflict_aclass][hard_regno];
2123 if (k < 0
2124 /* If HARD_REGNO is not available for CONFLICT_A,
2125 the conflict would be ignored, since HARD_REGNO
2126 will never be assigned to CONFLICT_A. */
2127 || !TEST_HARD_REG_BIT (data->profitable_hard_regs,
2128 hard_regno))
2129 continue;
2130 full_costs[j] -= conflict_costs[k];
2132 queue_update_cost (conflict_a, conflict_a, NULL, COST_HOP_DIVISOR);
2136 if (! retry_p)
2137 /* Take into account preferences of allocnos connected by copies to
2138 the conflict allocnos. */
2139 update_conflict_hard_regno_costs (full_costs, aclass, true);
2141 /* Take preferences of allocnos connected by copies into
2142 account. */
2143 if (! retry_p)
2145 start_update_cost ();
2146 queue_update_cost (a, a, NULL, COST_HOP_DIVISOR);
2147 update_conflict_hard_regno_costs (full_costs, aclass, false);
2149 min_cost = min_full_cost = INT_MAX;
2150 /* We don't care about giving callee saved registers to allocnos no
2151 living through calls because call clobbered registers are
2152 allocated first (it is usual practice to put them first in
2153 REG_ALLOC_ORDER). */
2154 mode = ALLOCNO_MODE (a);
2155 for (i = 0; i < class_size; i++)
2157 hard_regno = ira_class_hard_regs[aclass][i];
2158 #ifdef STACK_REGS
2159 if (no_stack_reg_p
2160 && FIRST_STACK_REG <= hard_regno && hard_regno <= LAST_STACK_REG)
2161 continue;
2162 #endif
2163 if (! check_hard_reg_p (a, hard_regno,
2164 conflicting_regs, profitable_hard_regs))
2165 continue;
2166 cost = costs[i];
2167 full_cost = full_costs[i];
2168 if (!HONOR_REG_ALLOC_ORDER)
2170 if ((saved_nregs = calculate_saved_nregs (hard_regno, mode)) != 0)
2171 /* We need to save/restore the hard register in
2172 epilogue/prologue. Therefore we increase the cost. */
2174 rclass = REGNO_REG_CLASS (hard_regno);
2175 add_cost = ((ira_memory_move_cost[mode][rclass][0]
2176 + ira_memory_move_cost[mode][rclass][1])
2177 * saved_nregs / hard_regno_nregs (hard_regno,
2178 mode) - 1);
2179 cost += add_cost;
2180 full_cost += add_cost;
2183 if (min_cost > cost)
2184 min_cost = cost;
2185 if (min_full_cost > full_cost)
2187 min_full_cost = full_cost;
2188 best_hard_regno = hard_regno;
2189 ira_assert (hard_regno >= 0);
2191 if (internal_flag_ira_verbose > 5 && ira_dump_file != NULL)
2192 fprintf (ira_dump_file, "(%d=%d,%d) ", hard_regno, cost, full_cost);
2194 if (internal_flag_ira_verbose > 5 && ira_dump_file != NULL)
2195 fprintf (ira_dump_file, "\n");
2196 if (min_full_cost > mem_cost
2197 /* Do not spill static chain pointer pseudo when non-local goto
2198 is used. */
2199 && ! non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a)))
2201 if (! retry_p && internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2202 fprintf (ira_dump_file, "(memory is more profitable %d vs %d) ",
2203 mem_cost, min_full_cost);
2204 best_hard_regno = -1;
2206 fail:
2207 if (best_hard_regno >= 0)
2209 for (i = hard_regno_nregs (best_hard_regno, mode) - 1; i >= 0; i--)
2210 allocated_hardreg_p[best_hard_regno + i] = true;
2211 spill_soft_conflicts (a, allocnos_to_spill, soft_conflict_regs,
2212 best_hard_regno);
2214 if (! retry_p)
2215 restore_costs_from_copies (a);
2216 ALLOCNO_HARD_REGNO (a) = best_hard_regno;
2217 ALLOCNO_ASSIGNED_P (a) = true;
2218 if (best_hard_regno >= 0 && !retry_p)
2219 update_costs_from_copies (a, true, true);
2220 ira_assert (ALLOCNO_CLASS (a) == aclass);
2221 /* We don't need updated costs anymore. */
2222 ira_free_allocno_updated_costs (a);
2223 return best_hard_regno >= 0;
2228 /* An array used to sort copies. */
2229 static ira_copy_t *sorted_copies;
2231 /* If allocno A is a cap, return non-cap allocno from which A is
2232 created. Otherwise, return A. */
2233 static ira_allocno_t
2234 get_cap_member (ira_allocno_t a)
2236 ira_allocno_t member;
2238 while ((member = ALLOCNO_CAP_MEMBER (a)) != NULL)
2239 a = member;
2240 return a;
2243 /* Return TRUE if live ranges of allocnos A1 and A2 intersect. It is
2244 used to find a conflict for new allocnos or allocnos with the
2245 different allocno classes. */
2246 static bool
2247 allocnos_conflict_by_live_ranges_p (ira_allocno_t a1, ira_allocno_t a2)
2249 rtx reg1, reg2;
2250 int i, j;
2251 int n1 = ALLOCNO_NUM_OBJECTS (a1);
2252 int n2 = ALLOCNO_NUM_OBJECTS (a2);
2254 if (a1 == a2)
2255 return false;
2256 reg1 = regno_reg_rtx[ALLOCNO_REGNO (a1)];
2257 reg2 = regno_reg_rtx[ALLOCNO_REGNO (a2)];
2258 if (reg1 != NULL && reg2 != NULL
2259 && ORIGINAL_REGNO (reg1) == ORIGINAL_REGNO (reg2))
2260 return false;
2262 /* We don't keep live ranges for caps because they can be quite big.
2263 Use ranges of non-cap allocno from which caps are created. */
2264 a1 = get_cap_member (a1);
2265 a2 = get_cap_member (a2);
2266 for (i = 0; i < n1; i++)
2268 ira_object_t c1 = ALLOCNO_OBJECT (a1, i);
2270 for (j = 0; j < n2; j++)
2272 ira_object_t c2 = ALLOCNO_OBJECT (a2, j);
2274 if (ira_live_ranges_intersect_p (OBJECT_LIVE_RANGES (c1),
2275 OBJECT_LIVE_RANGES (c2)))
2276 return true;
2279 return false;
2282 /* The function is used to sort copies according to their execution
2283 frequencies. */
2284 static int
2285 copy_freq_compare_func (const void *v1p, const void *v2p)
2287 ira_copy_t cp1 = *(const ira_copy_t *) v1p, cp2 = *(const ira_copy_t *) v2p;
2288 int pri1, pri2;
2290 pri1 = cp1->freq;
2291 pri2 = cp2->freq;
2292 if (pri2 - pri1)
2293 return pri2 - pri1;
2295 /* If frequencies are equal, sort by copies, so that the results of
2296 qsort leave nothing to chance. */
2297 return cp1->num - cp2->num;
2302 /* Return true if any allocno from thread of A1 conflicts with any
2303 allocno from thread A2. */
2304 static bool
2305 allocno_thread_conflict_p (ira_allocno_t a1, ira_allocno_t a2)
2307 ira_allocno_t a, conflict_a;
2309 for (a = ALLOCNO_COLOR_DATA (a2)->next_thread_allocno;;
2310 a = ALLOCNO_COLOR_DATA (a)->next_thread_allocno)
2312 for (conflict_a = ALLOCNO_COLOR_DATA (a1)->next_thread_allocno;;
2313 conflict_a = ALLOCNO_COLOR_DATA (conflict_a)->next_thread_allocno)
2315 if (allocnos_conflict_by_live_ranges_p (a, conflict_a))
2316 return true;
2317 if (conflict_a == a1)
2318 break;
2320 if (a == a2)
2321 break;
2323 return false;
2326 /* Merge two threads given correspondingly by their first allocnos T1
2327 and T2 (more accurately merging T2 into T1). */
2328 static void
2329 merge_threads (ira_allocno_t t1, ira_allocno_t t2)
2331 ira_allocno_t a, next, last;
2333 gcc_assert (t1 != t2
2334 && ALLOCNO_COLOR_DATA (t1)->first_thread_allocno == t1
2335 && ALLOCNO_COLOR_DATA (t2)->first_thread_allocno == t2);
2336 for (last = t2, a = ALLOCNO_COLOR_DATA (t2)->next_thread_allocno;;
2337 a = ALLOCNO_COLOR_DATA (a)->next_thread_allocno)
2339 ALLOCNO_COLOR_DATA (a)->first_thread_allocno = t1;
2340 if (a == t2)
2341 break;
2342 last = a;
2344 next = ALLOCNO_COLOR_DATA (t1)->next_thread_allocno;
2345 ALLOCNO_COLOR_DATA (t1)->next_thread_allocno = t2;
2346 ALLOCNO_COLOR_DATA (last)->next_thread_allocno = next;
2347 ALLOCNO_COLOR_DATA (t1)->thread_freq += ALLOCNO_COLOR_DATA (t2)->thread_freq;
2350 /* Create threads by processing CP_NUM copies from sorted copies. We
2351 process the most expensive copies first. */
2352 static void
2353 form_threads_from_copies (int cp_num)
2355 ira_allocno_t a, thread1, thread2;
2356 ira_copy_t cp;
2358 qsort (sorted_copies, cp_num, sizeof (ira_copy_t), copy_freq_compare_func);
2359 /* Form threads processing copies, most frequently executed
2360 first. */
2361 for (int i = 0; i < cp_num; i++)
2363 cp = sorted_copies[i];
2364 thread1 = ALLOCNO_COLOR_DATA (cp->first)->first_thread_allocno;
2365 thread2 = ALLOCNO_COLOR_DATA (cp->second)->first_thread_allocno;
2366 if (thread1 == thread2)
2367 continue;
2368 if (! allocno_thread_conflict_p (thread1, thread2))
2370 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2371 fprintf
2372 (ira_dump_file,
2373 " Forming thread by copy %d:a%dr%d-a%dr%d (freq=%d):\n",
2374 cp->num, ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first),
2375 ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second),
2376 cp->freq);
2377 merge_threads (thread1, thread2);
2378 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2380 thread1 = ALLOCNO_COLOR_DATA (thread1)->first_thread_allocno;
2381 fprintf (ira_dump_file, " Result (freq=%d): a%dr%d(%d)",
2382 ALLOCNO_COLOR_DATA (thread1)->thread_freq,
2383 ALLOCNO_NUM (thread1), ALLOCNO_REGNO (thread1),
2384 ALLOCNO_FREQ (thread1));
2385 for (a = ALLOCNO_COLOR_DATA (thread1)->next_thread_allocno;
2386 a != thread1;
2387 a = ALLOCNO_COLOR_DATA (a)->next_thread_allocno)
2388 fprintf (ira_dump_file, " a%dr%d(%d)",
2389 ALLOCNO_NUM (a), ALLOCNO_REGNO (a),
2390 ALLOCNO_FREQ (a));
2391 fprintf (ira_dump_file, "\n");
2397 /* Create threads by processing copies of all alocnos from BUCKET. We
2398 process the most expensive copies first. */
2399 static void
2400 form_threads_from_bucket (ira_allocno_t bucket)
2402 ira_allocno_t a;
2403 ira_copy_t cp, next_cp;
2404 int cp_num = 0;
2406 for (a = bucket; a != NULL; a = ALLOCNO_COLOR_DATA (a)->next_bucket_allocno)
2408 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2410 if (cp->first == a)
2412 next_cp = cp->next_first_allocno_copy;
2413 sorted_copies[cp_num++] = cp;
2415 else if (cp->second == a)
2416 next_cp = cp->next_second_allocno_copy;
2417 else
2418 gcc_unreachable ();
2421 form_threads_from_copies (cp_num);
2424 /* Create threads by processing copies of colorable allocno A. We
2425 process most expensive copies first. */
2426 static void
2427 form_threads_from_colorable_allocno (ira_allocno_t a)
2429 ira_allocno_t another_a;
2430 ira_copy_t cp, next_cp;
2431 int cp_num = 0;
2433 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2434 fprintf (ira_dump_file, " Forming thread from allocno a%dr%d:\n",
2435 ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
2436 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2438 if (cp->first == a)
2440 next_cp = cp->next_first_allocno_copy;
2441 another_a = cp->second;
2443 else if (cp->second == a)
2445 next_cp = cp->next_second_allocno_copy;
2446 another_a = cp->first;
2448 else
2449 gcc_unreachable ();
2450 if ((! ALLOCNO_COLOR_DATA (another_a)->in_graph_p
2451 && !ALLOCNO_COLOR_DATA (another_a)->may_be_spilled_p)
2452 || ALLOCNO_COLOR_DATA (another_a)->colorable_p)
2453 sorted_copies[cp_num++] = cp;
2455 form_threads_from_copies (cp_num);
2458 /* Form initial threads which contain only one allocno. */
2459 static void
2460 init_allocno_threads (void)
2462 ira_allocno_t a;
2463 unsigned int j;
2464 bitmap_iterator bi;
2465 ira_pref_t pref;
2467 EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
2469 a = ira_allocnos[j];
2470 /* Set up initial thread data: */
2471 ALLOCNO_COLOR_DATA (a)->first_thread_allocno
2472 = ALLOCNO_COLOR_DATA (a)->next_thread_allocno = a;
2473 ALLOCNO_COLOR_DATA (a)->thread_freq = ALLOCNO_FREQ (a);
2474 ALLOCNO_COLOR_DATA (a)->hard_reg_prefs = 0;
2475 for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref)
2476 ALLOCNO_COLOR_DATA (a)->hard_reg_prefs += pref->freq;
2482 /* This page contains the allocator based on the Chaitin-Briggs algorithm. */
2484 /* Bucket of allocnos that can colored currently without spilling. */
2485 static ira_allocno_t colorable_allocno_bucket;
2487 /* Bucket of allocnos that might be not colored currently without
2488 spilling. */
2489 static ira_allocno_t uncolorable_allocno_bucket;
2491 /* The current number of allocnos in the uncolorable_bucket. */
2492 static int uncolorable_allocnos_num;
2494 /* Return the current spill priority of allocno A. The less the
2495 number, the more preferable the allocno for spilling. */
2496 static inline int
2497 allocno_spill_priority (ira_allocno_t a)
2499 allocno_color_data_t data = ALLOCNO_COLOR_DATA (a);
2501 return (data->temp
2502 / (ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a)
2503 * ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]
2504 + 1));
2507 /* Add allocno A to bucket *BUCKET_PTR. A should be not in a bucket
2508 before the call. */
2509 static void
2510 add_allocno_to_bucket (ira_allocno_t a, ira_allocno_t *bucket_ptr)
2512 ira_allocno_t first_a;
2513 allocno_color_data_t data;
2515 if (bucket_ptr == &uncolorable_allocno_bucket
2516 && ALLOCNO_CLASS (a) != NO_REGS)
2518 uncolorable_allocnos_num++;
2519 ira_assert (uncolorable_allocnos_num > 0);
2521 first_a = *bucket_ptr;
2522 data = ALLOCNO_COLOR_DATA (a);
2523 data->next_bucket_allocno = first_a;
2524 data->prev_bucket_allocno = NULL;
2525 if (first_a != NULL)
2526 ALLOCNO_COLOR_DATA (first_a)->prev_bucket_allocno = a;
2527 *bucket_ptr = a;
2530 /* Compare two allocnos to define which allocno should be pushed first
2531 into the coloring stack. If the return is a negative number, the
2532 allocno given by the first parameter will be pushed first. In this
2533 case such allocno has less priority than the second one and the
2534 hard register will be assigned to it after assignment to the second
2535 one. As the result of such assignment order, the second allocno
2536 has a better chance to get the best hard register. */
2537 static int
2538 bucket_allocno_compare_func (const void *v1p, const void *v2p)
2540 ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
2541 ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
2542 int diff, freq1, freq2, a1_num, a2_num, pref1, pref2;
2543 ira_allocno_t t1 = ALLOCNO_COLOR_DATA (a1)->first_thread_allocno;
2544 ira_allocno_t t2 = ALLOCNO_COLOR_DATA (a2)->first_thread_allocno;
2545 int cl1 = ALLOCNO_CLASS (a1), cl2 = ALLOCNO_CLASS (a2);
2547 freq1 = ALLOCNO_COLOR_DATA (t1)->thread_freq;
2548 freq2 = ALLOCNO_COLOR_DATA (t2)->thread_freq;
2549 if ((diff = freq1 - freq2) != 0)
2550 return diff;
2552 if ((diff = ALLOCNO_NUM (t2) - ALLOCNO_NUM (t1)) != 0)
2553 return diff;
2555 /* Push pseudos requiring less hard registers first. It means that
2556 we will assign pseudos requiring more hard registers first
2557 avoiding creation small holes in free hard register file into
2558 which the pseudos requiring more hard registers cannot fit. */
2559 if ((diff = (ira_reg_class_max_nregs[cl1][ALLOCNO_MODE (a1)]
2560 - ira_reg_class_max_nregs[cl2][ALLOCNO_MODE (a2)])) != 0)
2561 return diff;
2563 freq1 = ALLOCNO_FREQ (a1);
2564 freq2 = ALLOCNO_FREQ (a2);
2565 if ((diff = freq1 - freq2) != 0)
2566 return diff;
2568 a1_num = ALLOCNO_COLOR_DATA (a1)->available_regs_num;
2569 a2_num = ALLOCNO_COLOR_DATA (a2)->available_regs_num;
2570 if ((diff = a2_num - a1_num) != 0)
2571 return diff;
2572 /* Push allocnos with minimal conflict_allocno_hard_prefs first. */
2573 pref1 = ALLOCNO_COLOR_DATA (a1)->conflict_allocno_hard_prefs;
2574 pref2 = ALLOCNO_COLOR_DATA (a2)->conflict_allocno_hard_prefs;
2575 if ((diff = pref1 - pref2) != 0)
2576 return diff;
2577 return ALLOCNO_NUM (a2) - ALLOCNO_NUM (a1);
2580 /* Sort bucket *BUCKET_PTR and return the result through
2581 BUCKET_PTR. */
2582 static void
2583 sort_bucket (ira_allocno_t *bucket_ptr,
2584 int (*compare_func) (const void *, const void *))
2586 ira_allocno_t a, head;
2587 int n;
2589 for (n = 0, a = *bucket_ptr;
2590 a != NULL;
2591 a = ALLOCNO_COLOR_DATA (a)->next_bucket_allocno)
2592 sorted_allocnos[n++] = a;
2593 if (n <= 1)
2594 return;
2595 qsort (sorted_allocnos, n, sizeof (ira_allocno_t), compare_func);
2596 head = NULL;
2597 for (n--; n >= 0; n--)
2599 a = sorted_allocnos[n];
2600 ALLOCNO_COLOR_DATA (a)->next_bucket_allocno = head;
2601 ALLOCNO_COLOR_DATA (a)->prev_bucket_allocno = NULL;
2602 if (head != NULL)
2603 ALLOCNO_COLOR_DATA (head)->prev_bucket_allocno = a;
2604 head = a;
2606 *bucket_ptr = head;
2609 /* Add ALLOCNO to colorable bucket maintaining the order according
2610 their priority. ALLOCNO should be not in a bucket before the
2611 call. */
2612 static void
2613 add_allocno_to_ordered_colorable_bucket (ira_allocno_t allocno)
2615 ira_allocno_t before, after;
2617 form_threads_from_colorable_allocno (allocno);
2618 for (before = colorable_allocno_bucket, after = NULL;
2619 before != NULL;
2620 after = before,
2621 before = ALLOCNO_COLOR_DATA (before)->next_bucket_allocno)
2622 if (bucket_allocno_compare_func (&allocno, &before) < 0)
2623 break;
2624 ALLOCNO_COLOR_DATA (allocno)->next_bucket_allocno = before;
2625 ALLOCNO_COLOR_DATA (allocno)->prev_bucket_allocno = after;
2626 if (after == NULL)
2627 colorable_allocno_bucket = allocno;
2628 else
2629 ALLOCNO_COLOR_DATA (after)->next_bucket_allocno = allocno;
2630 if (before != NULL)
2631 ALLOCNO_COLOR_DATA (before)->prev_bucket_allocno = allocno;
2634 /* Delete ALLOCNO from bucket *BUCKET_PTR. It should be there before
2635 the call. */
2636 static void
2637 delete_allocno_from_bucket (ira_allocno_t allocno, ira_allocno_t *bucket_ptr)
2639 ira_allocno_t prev_allocno, next_allocno;
2641 if (bucket_ptr == &uncolorable_allocno_bucket
2642 && ALLOCNO_CLASS (allocno) != NO_REGS)
2644 uncolorable_allocnos_num--;
2645 ira_assert (uncolorable_allocnos_num >= 0);
2647 prev_allocno = ALLOCNO_COLOR_DATA (allocno)->prev_bucket_allocno;
2648 next_allocno = ALLOCNO_COLOR_DATA (allocno)->next_bucket_allocno;
2649 if (prev_allocno != NULL)
2650 ALLOCNO_COLOR_DATA (prev_allocno)->next_bucket_allocno = next_allocno;
2651 else
2653 ira_assert (*bucket_ptr == allocno);
2654 *bucket_ptr = next_allocno;
2656 if (next_allocno != NULL)
2657 ALLOCNO_COLOR_DATA (next_allocno)->prev_bucket_allocno = prev_allocno;
2660 /* Put allocno A onto the coloring stack without removing it from its
2661 bucket. Pushing allocno to the coloring stack can result in moving
2662 conflicting allocnos from the uncolorable bucket to the colorable
2663 one. Update conflict_allocno_hard_prefs of the conflicting
2664 allocnos which are not on stack yet. */
2665 static void
2666 push_allocno_to_stack (ira_allocno_t a)
2668 enum reg_class aclass;
2669 allocno_color_data_t data, conflict_data;
2670 int size, i, n = ALLOCNO_NUM_OBJECTS (a);
2672 data = ALLOCNO_COLOR_DATA (a);
2673 data->in_graph_p = false;
2674 allocno_stack_vec.safe_push (a);
2675 aclass = ALLOCNO_CLASS (a);
2676 if (aclass == NO_REGS)
2677 return;
2678 size = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2679 if (n > 1)
2681 /* We will deal with the subwords individually. */
2682 gcc_assert (size == ALLOCNO_NUM_OBJECTS (a));
2683 size = 1;
2685 for (i = 0; i < n; i++)
2687 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2688 ira_object_t conflict_obj;
2689 ira_object_conflict_iterator oci;
2691 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2693 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2694 ira_pref_t pref;
2696 conflict_data = ALLOCNO_COLOR_DATA (conflict_a);
2697 if (! conflict_data->in_graph_p
2698 || ALLOCNO_ASSIGNED_P (conflict_a)
2699 || !(hard_reg_set_intersect_p
2700 (ALLOCNO_COLOR_DATA (a)->profitable_hard_regs,
2701 conflict_data->profitable_hard_regs)))
2702 continue;
2703 for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref)
2704 conflict_data->conflict_allocno_hard_prefs -= pref->freq;
2705 if (conflict_data->colorable_p)
2706 continue;
2707 ira_assert (bitmap_bit_p (coloring_allocno_bitmap,
2708 ALLOCNO_NUM (conflict_a)));
2709 if (update_left_conflict_sizes_p (conflict_a, a, size))
2711 delete_allocno_from_bucket
2712 (conflict_a, &uncolorable_allocno_bucket);
2713 add_allocno_to_ordered_colorable_bucket (conflict_a);
2714 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
2716 fprintf (ira_dump_file, " Making");
2717 ira_print_expanded_allocno (conflict_a);
2718 fprintf (ira_dump_file, " colorable\n");
2726 /* Put ALLOCNO onto the coloring stack and remove it from its bucket.
2727 The allocno is in the colorable bucket if COLORABLE_P is TRUE. */
2728 static void
2729 remove_allocno_from_bucket_and_push (ira_allocno_t allocno, bool colorable_p)
2731 if (colorable_p)
2732 delete_allocno_from_bucket (allocno, &colorable_allocno_bucket);
2733 else
2734 delete_allocno_from_bucket (allocno, &uncolorable_allocno_bucket);
2735 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2737 fprintf (ira_dump_file, " Pushing");
2738 ira_print_expanded_allocno (allocno);
2739 if (colorable_p)
2740 fprintf (ira_dump_file, "(cost %d)\n",
2741 ALLOCNO_COLOR_DATA (allocno)->temp);
2742 else
2743 fprintf (ira_dump_file, "(potential spill: %spri=%d, cost=%d)\n",
2744 ALLOCNO_BAD_SPILL_P (allocno) ? "bad spill, " : "",
2745 allocno_spill_priority (allocno),
2746 ALLOCNO_COLOR_DATA (allocno)->temp);
2748 if (! colorable_p)
2749 ALLOCNO_COLOR_DATA (allocno)->may_be_spilled_p = true;
2750 push_allocno_to_stack (allocno);
2753 /* Put all allocnos from colorable bucket onto the coloring stack. */
2754 static void
2755 push_only_colorable (void)
2757 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2758 fprintf (ira_dump_file, " Forming thread from colorable bucket:\n");
2759 form_threads_from_bucket (colorable_allocno_bucket);
2760 for (ira_allocno_t a = colorable_allocno_bucket;
2761 a != NULL;
2762 a = ALLOCNO_COLOR_DATA (a)->next_bucket_allocno)
2763 update_costs_from_prefs (a);
2764 sort_bucket (&colorable_allocno_bucket, bucket_allocno_compare_func);
2765 for (;colorable_allocno_bucket != NULL;)
2766 remove_allocno_from_bucket_and_push (colorable_allocno_bucket, true);
2769 /* Return the frequency of exit edges (if EXIT_P) or entry from/to the
2770 loop given by its LOOP_NODE. */
2772 ira_loop_edge_freq (ira_loop_tree_node_t loop_node, int regno, bool exit_p)
2774 int freq, i;
2775 edge_iterator ei;
2776 edge e;
2778 ira_assert (current_loops != NULL && loop_node->loop != NULL
2779 && (regno < 0 || regno >= FIRST_PSEUDO_REGISTER));
2780 freq = 0;
2781 if (! exit_p)
2783 FOR_EACH_EDGE (e, ei, loop_node->loop->header->preds)
2784 if (e->src != loop_node->loop->latch
2785 && (regno < 0
2786 || (bitmap_bit_p (df_get_live_out (e->src), regno)
2787 && bitmap_bit_p (df_get_live_in (e->dest), regno))))
2788 freq += EDGE_FREQUENCY (e);
2790 else
2792 auto_vec<edge> edges = get_loop_exit_edges (loop_node->loop);
2793 FOR_EACH_VEC_ELT (edges, i, e)
2794 if (regno < 0
2795 || (bitmap_bit_p (df_get_live_out (e->src), regno)
2796 && bitmap_bit_p (df_get_live_in (e->dest), regno)))
2797 freq += EDGE_FREQUENCY (e);
2800 return REG_FREQ_FROM_EDGE_FREQ (freq);
2803 /* Construct an object that describes the boundary between A and its
2804 parent allocno. */
2805 ira_loop_border_costs::ira_loop_border_costs (ira_allocno_t a)
2806 : m_mode (ALLOCNO_MODE (a)),
2807 m_class (ALLOCNO_CLASS (a)),
2808 m_entry_freq (ira_loop_edge_freq (ALLOCNO_LOOP_TREE_NODE (a),
2809 ALLOCNO_REGNO (a), false)),
2810 m_exit_freq (ira_loop_edge_freq (ALLOCNO_LOOP_TREE_NODE (a),
2811 ALLOCNO_REGNO (a), true))
2815 /* Calculate and return the cost of putting allocno A into memory. */
2816 static int
2817 calculate_allocno_spill_cost (ira_allocno_t a)
2819 int regno, cost;
2820 ira_allocno_t parent_allocno;
2821 ira_loop_tree_node_t parent_node, loop_node;
2823 regno = ALLOCNO_REGNO (a);
2824 cost = ALLOCNO_UPDATED_MEMORY_COST (a) - ALLOCNO_UPDATED_CLASS_COST (a);
2825 if (ALLOCNO_CAP (a) != NULL)
2826 return cost;
2827 loop_node = ALLOCNO_LOOP_TREE_NODE (a);
2828 if ((parent_node = loop_node->parent) == NULL)
2829 return cost;
2830 if ((parent_allocno = parent_node->regno_allocno_map[regno]) == NULL)
2831 return cost;
2832 ira_loop_border_costs border_costs (a);
2833 if (ALLOCNO_HARD_REGNO (parent_allocno) < 0)
2834 cost -= border_costs.spill_outside_loop_cost ();
2835 else
2836 cost += (border_costs.spill_inside_loop_cost ()
2837 - border_costs.move_between_loops_cost ());
2838 return cost;
2841 /* Used for sorting allocnos for spilling. */
2842 static inline int
2843 allocno_spill_priority_compare (ira_allocno_t a1, ira_allocno_t a2)
2845 int pri1, pri2, diff;
2847 /* Avoid spilling static chain pointer pseudo when non-local goto is
2848 used. */
2849 if (non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a1)))
2850 return 1;
2851 else if (non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a2)))
2852 return -1;
2853 if (ALLOCNO_BAD_SPILL_P (a1) && ! ALLOCNO_BAD_SPILL_P (a2))
2854 return 1;
2855 if (ALLOCNO_BAD_SPILL_P (a2) && ! ALLOCNO_BAD_SPILL_P (a1))
2856 return -1;
2857 pri1 = allocno_spill_priority (a1);
2858 pri2 = allocno_spill_priority (a2);
2859 if ((diff = pri1 - pri2) != 0)
2860 return diff;
2861 if ((diff
2862 = ALLOCNO_COLOR_DATA (a1)->temp - ALLOCNO_COLOR_DATA (a2)->temp) != 0)
2863 return diff;
2864 return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
2867 /* Used for sorting allocnos for spilling. */
2868 static int
2869 allocno_spill_sort_compare (const void *v1p, const void *v2p)
2871 ira_allocno_t p1 = *(const ira_allocno_t *) v1p;
2872 ira_allocno_t p2 = *(const ira_allocno_t *) v2p;
2874 return allocno_spill_priority_compare (p1, p2);
2877 /* Push allocnos to the coloring stack. The order of allocnos in the
2878 stack defines the order for the subsequent coloring. */
2879 static void
2880 push_allocnos_to_stack (void)
2882 ira_allocno_t a;
2883 int cost;
2885 /* Calculate uncolorable allocno spill costs. */
2886 for (a = uncolorable_allocno_bucket;
2887 a != NULL;
2888 a = ALLOCNO_COLOR_DATA (a)->next_bucket_allocno)
2889 if (ALLOCNO_CLASS (a) != NO_REGS)
2891 cost = calculate_allocno_spill_cost (a);
2892 /* ??? Remove cost of copies between the coalesced
2893 allocnos. */
2894 ALLOCNO_COLOR_DATA (a)->temp = cost;
2896 sort_bucket (&uncolorable_allocno_bucket, allocno_spill_sort_compare);
2897 for (;;)
2899 push_only_colorable ();
2900 a = uncolorable_allocno_bucket;
2901 if (a == NULL)
2902 break;
2903 remove_allocno_from_bucket_and_push (a, false);
2905 ira_assert (colorable_allocno_bucket == NULL
2906 && uncolorable_allocno_bucket == NULL);
2907 ira_assert (uncolorable_allocnos_num == 0);
2910 /* Pop the coloring stack and assign hard registers to the popped
2911 allocnos. */
2912 static void
2913 pop_allocnos_from_stack (void)
2915 ira_allocno_t allocno;
2916 enum reg_class aclass;
2918 for (;allocno_stack_vec.length () != 0;)
2920 allocno = allocno_stack_vec.pop ();
2921 aclass = ALLOCNO_CLASS (allocno);
2922 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2924 fprintf (ira_dump_file, " Popping");
2925 ira_print_expanded_allocno (allocno);
2926 fprintf (ira_dump_file, " -- ");
2928 if (aclass == NO_REGS)
2930 ALLOCNO_HARD_REGNO (allocno) = -1;
2931 ALLOCNO_ASSIGNED_P (allocno) = true;
2932 ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (allocno) == NULL);
2933 ira_assert
2934 (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (allocno) == NULL);
2935 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2936 fprintf (ira_dump_file, "assign memory\n");
2938 else if (assign_hard_reg (allocno, false))
2940 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2941 fprintf (ira_dump_file, " assign reg %d\n",
2942 ALLOCNO_HARD_REGNO (allocno));
2944 else if (ALLOCNO_ASSIGNED_P (allocno))
2946 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2947 fprintf (ira_dump_file, "spill%s\n",
2948 ALLOCNO_COLOR_DATA (allocno)->may_be_spilled_p
2949 ? "" : "!");
2951 ALLOCNO_COLOR_DATA (allocno)->in_graph_p = true;
2955 /* Set up number of available hard registers for allocno A. */
2956 static void
2957 setup_allocno_available_regs_num (ira_allocno_t a)
2959 int i, n, hard_regno, hard_regs_num, nwords;
2960 enum reg_class aclass;
2961 allocno_color_data_t data;
2963 aclass = ALLOCNO_CLASS (a);
2964 data = ALLOCNO_COLOR_DATA (a);
2965 data->available_regs_num = 0;
2966 if (aclass == NO_REGS)
2967 return;
2968 hard_regs_num = ira_class_hard_regs_num[aclass];
2969 nwords = ALLOCNO_NUM_OBJECTS (a);
2970 for (n = 0, i = hard_regs_num - 1; i >= 0; i--)
2972 hard_regno = ira_class_hard_regs[aclass][i];
2973 /* Checking only profitable hard regs. */
2974 if (TEST_HARD_REG_BIT (data->profitable_hard_regs, hard_regno))
2975 n++;
2977 data->available_regs_num = n;
2978 if (internal_flag_ira_verbose <= 2 || ira_dump_file == NULL)
2979 return;
2980 fprintf
2981 (ira_dump_file,
2982 " Allocno a%dr%d of %s(%d) has %d avail. regs ",
2983 ALLOCNO_NUM (a), ALLOCNO_REGNO (a),
2984 reg_class_names[aclass], ira_class_hard_regs_num[aclass], n);
2985 print_hard_reg_set (ira_dump_file, data->profitable_hard_regs, false);
2986 fprintf (ira_dump_file, ", %snode: ",
2987 data->profitable_hard_regs == data->hard_regs_node->hard_regs->set
2988 ? "" : "^");
2989 print_hard_reg_set (ira_dump_file,
2990 data->hard_regs_node->hard_regs->set, false);
2991 for (i = 0; i < nwords; i++)
2993 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2995 if (nwords != 1)
2997 if (i != 0)
2998 fprintf (ira_dump_file, ", ");
2999 fprintf (ira_dump_file, " obj %d", i);
3001 fprintf (ira_dump_file, " (confl regs = ");
3002 print_hard_reg_set (ira_dump_file, OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
3003 false);
3004 fprintf (ira_dump_file, ")");
3006 fprintf (ira_dump_file, "\n");
3009 /* Put ALLOCNO in a bucket corresponding to its number and size of its
3010 conflicting allocnos and hard registers. */
3011 static void
3012 put_allocno_into_bucket (ira_allocno_t allocno)
3014 ALLOCNO_COLOR_DATA (allocno)->in_graph_p = true;
3015 setup_allocno_available_regs_num (allocno);
3016 if (setup_left_conflict_sizes_p (allocno))
3017 add_allocno_to_bucket (allocno, &colorable_allocno_bucket);
3018 else
3019 add_allocno_to_bucket (allocno, &uncolorable_allocno_bucket);
3022 /* Map: allocno number -> allocno priority. */
3023 static int *allocno_priorities;
3025 /* Set up priorities for N allocnos in array
3026 CONSIDERATION_ALLOCNOS. */
3027 static void
3028 setup_allocno_priorities (ira_allocno_t *consideration_allocnos, int n)
3030 int i, length, nrefs, priority, max_priority, mult, diff;
3031 ira_allocno_t a;
3033 max_priority = 0;
3034 for (i = 0; i < n; i++)
3036 a = consideration_allocnos[i];
3037 nrefs = ALLOCNO_NREFS (a);
3038 ira_assert (nrefs >= 0);
3039 mult = floor_log2 (ALLOCNO_NREFS (a)) + 1;
3040 ira_assert (mult >= 0);
3041 mult *= ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
3042 diff = ALLOCNO_MEMORY_COST (a) - ALLOCNO_CLASS_COST (a);
3043 #ifdef __has_builtin
3044 #if __has_builtin(__builtin_smul_overflow)
3045 #define HAS_SMUL_OVERFLOW
3046 #endif
3047 #endif
3048 /* Multiplication can overflow for very large functions.
3049 Check the overflow and constrain the result if necessary: */
3050 #ifdef HAS_SMUL_OVERFLOW
3051 if (__builtin_smul_overflow (mult, diff, &priority)
3052 || priority < -INT_MAX)
3053 priority = diff >= 0 ? INT_MAX : -INT_MAX;
3054 #else
3055 static_assert
3056 (sizeof (long long) >= 2 * sizeof (int),
3057 "overflow code does not work for such int and long long sizes");
3058 long long priorityll = (long long) mult * diff;
3059 if (priorityll < -INT_MAX || priorityll > INT_MAX)
3060 priority = diff >= 0 ? INT_MAX : -INT_MAX;
3061 else
3062 priority = priorityll;
3063 #endif
3064 allocno_priorities[ALLOCNO_NUM (a)] = priority;
3065 if (priority < 0)
3066 priority = -priority;
3067 if (max_priority < priority)
3068 max_priority = priority;
3070 mult = max_priority == 0 ? 1 : INT_MAX / max_priority;
3071 for (i = 0; i < n; i++)
3073 a = consideration_allocnos[i];
3074 length = ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
3075 if (ALLOCNO_NUM_OBJECTS (a) > 1)
3076 length /= ALLOCNO_NUM_OBJECTS (a);
3077 if (length <= 0)
3078 length = 1;
3079 allocno_priorities[ALLOCNO_NUM (a)]
3080 = allocno_priorities[ALLOCNO_NUM (a)] * mult / length;
3084 /* Sort allocnos according to the profit of usage of a hard register
3085 instead of memory for them. */
3086 static int
3087 allocno_cost_compare_func (const void *v1p, const void *v2p)
3089 ira_allocno_t p1 = *(const ira_allocno_t *) v1p;
3090 ira_allocno_t p2 = *(const ira_allocno_t *) v2p;
3091 int c1, c2;
3093 c1 = ALLOCNO_UPDATED_MEMORY_COST (p1) - ALLOCNO_UPDATED_CLASS_COST (p1);
3094 c2 = ALLOCNO_UPDATED_MEMORY_COST (p2) - ALLOCNO_UPDATED_CLASS_COST (p2);
3095 if (c1 - c2)
3096 return c1 - c2;
3098 /* If regs are equally good, sort by allocno numbers, so that the
3099 results of qsort leave nothing to chance. */
3100 return ALLOCNO_NUM (p1) - ALLOCNO_NUM (p2);
3103 /* Return savings on removed copies when ALLOCNO is assigned to
3104 HARD_REGNO. */
3105 static int
3106 allocno_copy_cost_saving (ira_allocno_t allocno, int hard_regno)
3108 int cost = 0;
3109 machine_mode allocno_mode = ALLOCNO_MODE (allocno);
3110 enum reg_class rclass;
3111 ira_copy_t cp, next_cp;
3113 rclass = REGNO_REG_CLASS (hard_regno);
3114 if (ira_reg_class_max_nregs[rclass][allocno_mode]
3115 > ira_class_hard_regs_num[rclass])
3116 /* For the above condition the cost can be wrong. Use the allocno
3117 class in this case. */
3118 rclass = ALLOCNO_CLASS (allocno);
3119 for (cp = ALLOCNO_COPIES (allocno); cp != NULL; cp = next_cp)
3121 if (cp->first == allocno)
3123 next_cp = cp->next_first_allocno_copy;
3124 if (ALLOCNO_HARD_REGNO (cp->second) != hard_regno)
3125 continue;
3127 else if (cp->second == allocno)
3129 next_cp = cp->next_second_allocno_copy;
3130 if (ALLOCNO_HARD_REGNO (cp->first) != hard_regno)
3131 continue;
3133 else
3134 gcc_unreachable ();
3135 ira_init_register_move_cost_if_necessary (allocno_mode);
3136 cost += cp->freq * ira_register_move_cost[allocno_mode][rclass][rclass];
3138 return cost;
3141 /* We used Chaitin-Briggs coloring to assign as many pseudos as
3142 possible to hard registers. Let us try to improve allocation with
3143 cost point of view. This function improves the allocation by
3144 spilling some allocnos and assigning the freed hard registers to
3145 other allocnos if it decreases the overall allocation cost. */
3146 static void
3147 improve_allocation (void)
3149 unsigned int i;
3150 int j, k, n, hregno, conflict_hregno, base_cost, class_size, word, nwords;
3151 int check, spill_cost, min_cost, nregs, conflict_nregs, r, best;
3152 bool try_p;
3153 enum reg_class aclass;
3154 machine_mode mode;
3155 int *allocno_costs;
3156 int costs[FIRST_PSEUDO_REGISTER];
3157 HARD_REG_SET conflicting_regs[2], profitable_hard_regs;
3158 ira_allocno_t a;
3159 bitmap_iterator bi;
3161 /* Don't bother to optimize the code with static chain pointer and
3162 non-local goto in order not to spill the chain pointer
3163 pseudo. */
3164 if (cfun->static_chain_decl && crtl->has_nonlocal_goto)
3165 return;
3166 /* Clear counts used to process conflicting allocnos only once for
3167 each allocno. */
3168 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
3169 ALLOCNO_COLOR_DATA (ira_allocnos[i])->temp = 0;
3170 check = n = 0;
3171 /* Process each allocno and try to assign a hard register to it by
3172 spilling some its conflicting allocnos. */
3173 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
3175 a = ira_allocnos[i];
3176 ALLOCNO_COLOR_DATA (a)->temp = 0;
3177 if (empty_profitable_hard_regs (a))
3178 continue;
3179 check++;
3180 aclass = ALLOCNO_CLASS (a);
3181 allocno_costs = ALLOCNO_HARD_REG_COSTS (a);
3182 if ((hregno = ALLOCNO_HARD_REGNO (a)) < 0)
3183 base_cost = ALLOCNO_UPDATED_MEMORY_COST (a);
3184 else if (allocno_costs == NULL)
3185 /* It means that assigning a hard register is not profitable
3186 (we don't waste memory for hard register costs in this
3187 case). */
3188 continue;
3189 else
3190 base_cost = (allocno_costs[ira_class_hard_reg_index[aclass][hregno]]
3191 - allocno_copy_cost_saving (a, hregno));
3192 try_p = false;
3193 get_conflict_and_start_profitable_regs (a, false,
3194 conflicting_regs,
3195 &profitable_hard_regs);
3196 class_size = ira_class_hard_regs_num[aclass];
3197 /* Set up cost improvement for usage of each profitable hard
3198 register for allocno A. */
3199 for (j = 0; j < class_size; j++)
3201 hregno = ira_class_hard_regs[aclass][j];
3202 if (! check_hard_reg_p (a, hregno,
3203 conflicting_regs, profitable_hard_regs))
3204 continue;
3205 ira_assert (ira_class_hard_reg_index[aclass][hregno] == j);
3206 k = allocno_costs == NULL ? 0 : j;
3207 costs[hregno] = (allocno_costs == NULL
3208 ? ALLOCNO_UPDATED_CLASS_COST (a) : allocno_costs[k]);
3209 costs[hregno] -= allocno_copy_cost_saving (a, hregno);
3210 costs[hregno] -= base_cost;
3211 if (costs[hregno] < 0)
3212 try_p = true;
3214 if (! try_p)
3215 /* There is no chance to improve the allocation cost by
3216 assigning hard register to allocno A even without spilling
3217 conflicting allocnos. */
3218 continue;
3219 auto_bitmap allocnos_to_spill;
3220 HARD_REG_SET soft_conflict_regs = {};
3221 mode = ALLOCNO_MODE (a);
3222 nwords = ALLOCNO_NUM_OBJECTS (a);
3223 /* Process each allocno conflicting with A and update the cost
3224 improvement for profitable hard registers of A. To use a
3225 hard register for A we need to spill some conflicting
3226 allocnos and that creates penalty for the cost
3227 improvement. */
3228 for (word = 0; word < nwords; word++)
3230 ira_object_t conflict_obj;
3231 ira_object_t obj = ALLOCNO_OBJECT (a, word);
3232 ira_object_conflict_iterator oci;
3234 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
3236 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
3238 if (ALLOCNO_COLOR_DATA (conflict_a)->temp == check)
3239 /* We already processed this conflicting allocno
3240 because we processed earlier another object of the
3241 conflicting allocno. */
3242 continue;
3243 ALLOCNO_COLOR_DATA (conflict_a)->temp = check;
3244 if ((conflict_hregno = ALLOCNO_HARD_REGNO (conflict_a)) < 0)
3245 continue;
3246 auto spill_a = ira_soft_conflict (a, conflict_a);
3247 if (spill_a)
3249 if (!bitmap_set_bit (allocnos_to_spill,
3250 ALLOCNO_NUM (spill_a)))
3251 continue;
3252 ira_loop_border_costs border_costs (spill_a);
3253 spill_cost = border_costs.spill_inside_loop_cost ();
3255 else
3257 spill_cost = ALLOCNO_UPDATED_MEMORY_COST (conflict_a);
3258 k = (ira_class_hard_reg_index
3259 [ALLOCNO_CLASS (conflict_a)][conflict_hregno]);
3260 ira_assert (k >= 0);
3261 if ((allocno_costs = ALLOCNO_HARD_REG_COSTS (conflict_a))
3262 != NULL)
3263 spill_cost -= allocno_costs[k];
3264 else
3265 spill_cost -= ALLOCNO_UPDATED_CLASS_COST (conflict_a);
3266 spill_cost
3267 += allocno_copy_cost_saving (conflict_a, conflict_hregno);
3269 conflict_nregs = hard_regno_nregs (conflict_hregno,
3270 ALLOCNO_MODE (conflict_a));
3271 auto note_conflict = [&](int r)
3273 if (check_hard_reg_p (a, r,
3274 conflicting_regs, profitable_hard_regs))
3276 if (spill_a)
3277 SET_HARD_REG_BIT (soft_conflict_regs, r);
3278 costs[r] += spill_cost;
3281 for (r = conflict_hregno;
3282 r >= 0 && (int) end_hard_regno (mode, r) > conflict_hregno;
3283 r--)
3284 note_conflict (r);
3285 for (r = conflict_hregno + 1;
3286 r < conflict_hregno + conflict_nregs;
3287 r++)
3288 note_conflict (r);
3291 min_cost = INT_MAX;
3292 best = -1;
3293 /* Now we choose hard register for A which results in highest
3294 allocation cost improvement. */
3295 for (j = 0; j < class_size; j++)
3297 hregno = ira_class_hard_regs[aclass][j];
3298 if (check_hard_reg_p (a, hregno,
3299 conflicting_regs, profitable_hard_regs)
3300 && min_cost > costs[hregno])
3302 best = hregno;
3303 min_cost = costs[hregno];
3306 if (min_cost >= 0)
3307 /* We are in a situation when assigning any hard register to A
3308 by spilling some conflicting allocnos does not improve the
3309 allocation cost. */
3310 continue;
3311 spill_soft_conflicts (a, allocnos_to_spill, soft_conflict_regs, best);
3312 nregs = hard_regno_nregs (best, mode);
3313 /* Now spill conflicting allocnos which contain a hard register
3314 of A when we assign the best chosen hard register to it. */
3315 for (word = 0; word < nwords; word++)
3317 ira_object_t conflict_obj;
3318 ira_object_t obj = ALLOCNO_OBJECT (a, word);
3319 ira_object_conflict_iterator oci;
3321 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
3323 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
3325 if ((conflict_hregno = ALLOCNO_HARD_REGNO (conflict_a)) < 0)
3326 continue;
3327 conflict_nregs = hard_regno_nregs (conflict_hregno,
3328 ALLOCNO_MODE (conflict_a));
3329 if (best + nregs <= conflict_hregno
3330 || conflict_hregno + conflict_nregs <= best)
3331 /* No intersection. */
3332 continue;
3333 ALLOCNO_HARD_REGNO (conflict_a) = -1;
3334 sorted_allocnos[n++] = conflict_a;
3335 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
3336 fprintf (ira_dump_file, "Spilling a%dr%d for a%dr%d\n",
3337 ALLOCNO_NUM (conflict_a), ALLOCNO_REGNO (conflict_a),
3338 ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
3341 /* Assign the best chosen hard register to A. */
3342 ALLOCNO_HARD_REGNO (a) = best;
3344 for (j = nregs - 1; j >= 0; j--)
3345 allocated_hardreg_p[best + j] = true;
3347 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
3348 fprintf (ira_dump_file, "Assigning %d to a%dr%d\n",
3349 best, ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
3351 if (n == 0)
3352 return;
3353 /* We spilled some allocnos to assign their hard registers to other
3354 allocnos. The spilled allocnos are now in array
3355 'sorted_allocnos'. There is still a possibility that some of the
3356 spilled allocnos can get hard registers. So let us try assign
3357 them hard registers again (just a reminder -- function
3358 'assign_hard_reg' assigns hard registers only if it is possible
3359 and profitable). We process the spilled allocnos with biggest
3360 benefit to get hard register first -- see function
3361 'allocno_cost_compare_func'. */
3362 qsort (sorted_allocnos, n, sizeof (ira_allocno_t),
3363 allocno_cost_compare_func);
3364 for (j = 0; j < n; j++)
3366 a = sorted_allocnos[j];
3367 ALLOCNO_ASSIGNED_P (a) = false;
3368 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3370 fprintf (ira_dump_file, " ");
3371 ira_print_expanded_allocno (a);
3372 fprintf (ira_dump_file, " -- ");
3374 if (assign_hard_reg (a, false))
3376 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3377 fprintf (ira_dump_file, "assign hard reg %d\n",
3378 ALLOCNO_HARD_REGNO (a));
3380 else
3382 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3383 fprintf (ira_dump_file, "assign memory\n");
3388 /* Sort allocnos according to their priorities. */
3389 static int
3390 allocno_priority_compare_func (const void *v1p, const void *v2p)
3392 ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
3393 ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
3394 int pri1, pri2, diff;
3396 /* Assign hard reg to static chain pointer pseudo first when
3397 non-local goto is used. */
3398 if ((diff = (non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a2))
3399 - non_spilled_static_chain_regno_p (ALLOCNO_REGNO (a1)))) != 0)
3400 return diff;
3401 pri1 = allocno_priorities[ALLOCNO_NUM (a1)];
3402 pri2 = allocno_priorities[ALLOCNO_NUM (a2)];
3403 if (pri2 != pri1)
3404 return SORTGT (pri2, pri1);
3406 /* If regs are equally good, sort by allocnos, so that the results of
3407 qsort leave nothing to chance. */
3408 return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
3411 /* Chaitin-Briggs coloring for allocnos in COLORING_ALLOCNO_BITMAP
3412 taking into account allocnos in CONSIDERATION_ALLOCNO_BITMAP. */
3413 static void
3414 color_allocnos (void)
3416 unsigned int i, n;
3417 bitmap_iterator bi;
3418 ira_allocno_t a;
3420 setup_profitable_hard_regs ();
3421 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
3423 allocno_color_data_t data;
3424 ira_pref_t pref, next_pref;
3426 a = ira_allocnos[i];
3427 data = ALLOCNO_COLOR_DATA (a);
3428 data->conflict_allocno_hard_prefs = 0;
3429 for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = next_pref)
3431 next_pref = pref->next_pref;
3432 if (! ira_hard_reg_in_set_p (pref->hard_regno,
3433 ALLOCNO_MODE (a),
3434 data->profitable_hard_regs))
3435 ira_remove_pref (pref);
3439 if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
3441 n = 0;
3442 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
3444 a = ira_allocnos[i];
3445 if (ALLOCNO_CLASS (a) == NO_REGS)
3447 ALLOCNO_HARD_REGNO (a) = -1;
3448 ALLOCNO_ASSIGNED_P (a) = true;
3449 ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
3450 ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
3451 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3453 fprintf (ira_dump_file, " Spill");
3454 ira_print_expanded_allocno (a);
3455 fprintf (ira_dump_file, "\n");
3457 continue;
3459 sorted_allocnos[n++] = a;
3461 if (n != 0)
3463 setup_allocno_priorities (sorted_allocnos, n);
3464 qsort (sorted_allocnos, n, sizeof (ira_allocno_t),
3465 allocno_priority_compare_func);
3466 for (i = 0; i < n; i++)
3468 a = sorted_allocnos[i];
3469 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3471 fprintf (ira_dump_file, " ");
3472 ira_print_expanded_allocno (a);
3473 fprintf (ira_dump_file, " -- ");
3475 if (assign_hard_reg (a, false))
3477 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3478 fprintf (ira_dump_file, "assign hard reg %d\n",
3479 ALLOCNO_HARD_REGNO (a));
3481 else
3483 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3484 fprintf (ira_dump_file, "assign memory\n");
3489 else
3491 form_allocno_hard_regs_nodes_forest ();
3492 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
3493 print_hard_regs_forest (ira_dump_file);
3494 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
3496 a = ira_allocnos[i];
3497 if (ALLOCNO_CLASS (a) != NO_REGS && ! empty_profitable_hard_regs (a))
3499 ALLOCNO_COLOR_DATA (a)->in_graph_p = true;
3500 update_conflict_allocno_hard_prefs (a);
3502 else
3504 ALLOCNO_HARD_REGNO (a) = -1;
3505 ALLOCNO_ASSIGNED_P (a) = true;
3506 /* We don't need updated costs anymore. */
3507 ira_free_allocno_updated_costs (a);
3508 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3510 fprintf (ira_dump_file, " Spill");
3511 ira_print_expanded_allocno (a);
3512 fprintf (ira_dump_file, "\n");
3516 /* Put the allocnos into the corresponding buckets. */
3517 colorable_allocno_bucket = NULL;
3518 uncolorable_allocno_bucket = NULL;
3519 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
3521 a = ira_allocnos[i];
3522 if (ALLOCNO_COLOR_DATA (a)->in_graph_p)
3523 put_allocno_into_bucket (a);
3525 push_allocnos_to_stack ();
3526 pop_allocnos_from_stack ();
3527 finish_allocno_hard_regs_nodes_forest ();
3529 improve_allocation ();
3534 /* Output information about the loop given by its LOOP_TREE_NODE. */
3535 static void
3536 print_loop_title (ira_loop_tree_node_t loop_tree_node)
3538 unsigned int j;
3539 bitmap_iterator bi;
3540 ira_loop_tree_node_t subloop_node, dest_loop_node;
3541 edge e;
3542 edge_iterator ei;
3544 if (loop_tree_node->parent == NULL)
3545 fprintf (ira_dump_file,
3546 "\n Loop 0 (parent -1, header bb%d, depth 0)\n bbs:",
3547 NUM_FIXED_BLOCKS);
3548 else
3550 ira_assert (current_loops != NULL && loop_tree_node->loop != NULL);
3551 fprintf (ira_dump_file,
3552 "\n Loop %d (parent %d, header bb%d, depth %d)\n bbs:",
3553 loop_tree_node->loop_num, loop_tree_node->parent->loop_num,
3554 loop_tree_node->loop->header->index,
3555 loop_depth (loop_tree_node->loop));
3557 for (subloop_node = loop_tree_node->children;
3558 subloop_node != NULL;
3559 subloop_node = subloop_node->next)
3560 if (subloop_node->bb != NULL)
3562 fprintf (ira_dump_file, " %d", subloop_node->bb->index);
3563 FOR_EACH_EDGE (e, ei, subloop_node->bb->succs)
3564 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
3565 && ((dest_loop_node = IRA_BB_NODE (e->dest)->parent)
3566 != loop_tree_node))
3567 fprintf (ira_dump_file, "(->%d:l%d)",
3568 e->dest->index, dest_loop_node->loop_num);
3570 fprintf (ira_dump_file, "\n all:");
3571 EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->all_allocnos, 0, j, bi)
3572 fprintf (ira_dump_file, " %dr%d", j, ALLOCNO_REGNO (ira_allocnos[j]));
3573 fprintf (ira_dump_file, "\n modified regnos:");
3574 EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->modified_regnos, 0, j, bi)
3575 fprintf (ira_dump_file, " %d", j);
3576 fprintf (ira_dump_file, "\n border:");
3577 EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->border_allocnos, 0, j, bi)
3578 fprintf (ira_dump_file, " %dr%d", j, ALLOCNO_REGNO (ira_allocnos[j]));
3579 fprintf (ira_dump_file, "\n Pressure:");
3580 for (j = 0; (int) j < ira_pressure_classes_num; j++)
3582 enum reg_class pclass;
3584 pclass = ira_pressure_classes[j];
3585 if (loop_tree_node->reg_pressure[pclass] == 0)
3586 continue;
3587 fprintf (ira_dump_file, " %s=%d", reg_class_names[pclass],
3588 loop_tree_node->reg_pressure[pclass]);
3590 fprintf (ira_dump_file, "\n");
3593 /* Color the allocnos inside loop (in the extreme case it can be all
3594 of the function) given the corresponding LOOP_TREE_NODE. The
3595 function is called for each loop during top-down traverse of the
3596 loop tree. */
3597 static void
3598 color_pass (ira_loop_tree_node_t loop_tree_node)
3600 int regno, hard_regno, index = -1, n;
3601 int cost;
3602 unsigned int j;
3603 bitmap_iterator bi;
3604 machine_mode mode;
3605 enum reg_class rclass, aclass;
3606 ira_allocno_t a, subloop_allocno;
3607 ira_loop_tree_node_t subloop_node;
3609 ira_assert (loop_tree_node->bb == NULL);
3610 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
3611 print_loop_title (loop_tree_node);
3613 bitmap_copy (coloring_allocno_bitmap, loop_tree_node->all_allocnos);
3614 bitmap_copy (consideration_allocno_bitmap, coloring_allocno_bitmap);
3615 n = 0;
3616 EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
3618 a = ira_allocnos[j];
3619 n++;
3620 if (! ALLOCNO_ASSIGNED_P (a))
3621 continue;
3622 bitmap_clear_bit (coloring_allocno_bitmap, ALLOCNO_NUM (a));
3624 allocno_color_data
3625 = (allocno_color_data_t) ira_allocate (sizeof (struct allocno_color_data)
3626 * n);
3627 memset (allocno_color_data, 0, sizeof (struct allocno_color_data) * n);
3628 curr_allocno_process = 0;
3629 n = 0;
3630 EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
3632 a = ira_allocnos[j];
3633 ALLOCNO_ADD_DATA (a) = allocno_color_data + n;
3634 n++;
3636 init_allocno_threads ();
3637 /* Color all mentioned allocnos including transparent ones. */
3638 color_allocnos ();
3639 /* Process caps. They are processed just once. */
3640 if (flag_ira_region == IRA_REGION_MIXED
3641 || flag_ira_region == IRA_REGION_ALL)
3642 EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->all_allocnos, 0, j, bi)
3644 a = ira_allocnos[j];
3645 if (ALLOCNO_CAP_MEMBER (a) == NULL)
3646 continue;
3647 /* Remove from processing in the next loop. */
3648 bitmap_clear_bit (consideration_allocno_bitmap, j);
3649 rclass = ALLOCNO_CLASS (a);
3650 subloop_allocno = ALLOCNO_CAP_MEMBER (a);
3651 subloop_node = ALLOCNO_LOOP_TREE_NODE (subloop_allocno);
3652 if (ira_single_region_allocno_p (a, subloop_allocno))
3654 mode = ALLOCNO_MODE (a);
3655 hard_regno = ALLOCNO_HARD_REGNO (a);
3656 if (hard_regno >= 0)
3658 index = ira_class_hard_reg_index[rclass][hard_regno];
3659 ira_assert (index >= 0);
3661 regno = ALLOCNO_REGNO (a);
3662 ira_assert (!ALLOCNO_ASSIGNED_P (subloop_allocno));
3663 ALLOCNO_HARD_REGNO (subloop_allocno) = hard_regno;
3664 ALLOCNO_ASSIGNED_P (subloop_allocno) = true;
3665 if (hard_regno >= 0)
3666 update_costs_from_copies (subloop_allocno, true, true);
3667 /* We don't need updated costs anymore. */
3668 ira_free_allocno_updated_costs (subloop_allocno);
3671 /* Update costs of the corresponding allocnos (not caps) in the
3672 subloops. */
3673 for (subloop_node = loop_tree_node->subloops;
3674 subloop_node != NULL;
3675 subloop_node = subloop_node->subloop_next)
3677 ira_assert (subloop_node->bb == NULL);
3678 EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
3680 a = ira_allocnos[j];
3681 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
3682 mode = ALLOCNO_MODE (a);
3683 rclass = ALLOCNO_CLASS (a);
3684 hard_regno = ALLOCNO_HARD_REGNO (a);
3685 /* Use hard register class here. ??? */
3686 if (hard_regno >= 0)
3688 index = ira_class_hard_reg_index[rclass][hard_regno];
3689 ira_assert (index >= 0);
3691 regno = ALLOCNO_REGNO (a);
3692 /* ??? conflict costs */
3693 subloop_allocno = subloop_node->regno_allocno_map[regno];
3694 if (subloop_allocno == NULL
3695 || ALLOCNO_CAP (subloop_allocno) != NULL)
3696 continue;
3697 ira_assert (ALLOCNO_CLASS (subloop_allocno) == rclass);
3698 ira_assert (bitmap_bit_p (subloop_node->all_allocnos,
3699 ALLOCNO_NUM (subloop_allocno)));
3700 if (ira_single_region_allocno_p (a, subloop_allocno)
3701 || !ira_subloop_allocnos_can_differ_p (a, hard_regno >= 0,
3702 false))
3704 gcc_assert (!ALLOCNO_MIGHT_CONFLICT_WITH_PARENT_P
3705 (subloop_allocno));
3706 if (! ALLOCNO_ASSIGNED_P (subloop_allocno))
3708 ALLOCNO_HARD_REGNO (subloop_allocno) = hard_regno;
3709 ALLOCNO_ASSIGNED_P (subloop_allocno) = true;
3710 if (hard_regno >= 0)
3711 update_costs_from_copies (subloop_allocno, true, true);
3712 /* We don't need updated costs anymore. */
3713 ira_free_allocno_updated_costs (subloop_allocno);
3716 else if (hard_regno < 0)
3718 /* If we allocate a register to SUBLOOP_ALLOCNO, we'll need
3719 to load the register on entry to the subloop and store
3720 the register back on exit from the subloop. This incurs
3721 a fixed cost for all registers. Since UPDATED_MEMORY_COST
3722 is (and should only be) used relative to the register costs
3723 for the same allocno, we can subtract this shared register
3724 cost from the memory cost. */
3725 ira_loop_border_costs border_costs (subloop_allocno);
3726 ALLOCNO_UPDATED_MEMORY_COST (subloop_allocno)
3727 -= border_costs.spill_outside_loop_cost ();
3729 else
3731 ira_loop_border_costs border_costs (subloop_allocno);
3732 aclass = ALLOCNO_CLASS (subloop_allocno);
3733 ira_init_register_move_cost_if_necessary (mode);
3734 cost = border_costs.move_between_loops_cost ();
3735 ira_allocate_and_set_or_copy_costs
3736 (&ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno), aclass,
3737 ALLOCNO_UPDATED_CLASS_COST (subloop_allocno),
3738 ALLOCNO_HARD_REG_COSTS (subloop_allocno));
3739 ira_allocate_and_set_or_copy_costs
3740 (&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (subloop_allocno),
3741 aclass, 0, ALLOCNO_CONFLICT_HARD_REG_COSTS (subloop_allocno));
3742 ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno)[index] -= cost;
3743 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (subloop_allocno)[index]
3744 -= cost;
3745 if (ALLOCNO_UPDATED_CLASS_COST (subloop_allocno)
3746 > ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno)[index])
3747 ALLOCNO_UPDATED_CLASS_COST (subloop_allocno)
3748 = ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno)[index];
3749 /* If we spill SUBLOOP_ALLOCNO, we'll need to store HARD_REGNO
3750 on entry to the subloop and restore HARD_REGNO on exit from
3751 the subloop. */
3752 ALLOCNO_UPDATED_MEMORY_COST (subloop_allocno)
3753 += border_costs.spill_inside_loop_cost ();
3757 ira_free (allocno_color_data);
3758 EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
3760 a = ira_allocnos[j];
3761 ALLOCNO_ADD_DATA (a) = NULL;
3765 /* Initialize the common data for coloring and calls functions to do
3766 Chaitin-Briggs and regional coloring. */
3767 static void
3768 do_coloring (void)
3770 coloring_allocno_bitmap = ira_allocate_bitmap ();
3771 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3772 fprintf (ira_dump_file, "\n**** Allocnos coloring:\n\n");
3774 ira_traverse_loop_tree (false, ira_loop_tree_root, color_pass, NULL);
3776 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
3777 ira_print_disposition (ira_dump_file);
3779 ira_free_bitmap (coloring_allocno_bitmap);
3784 /* Move spill/restore code, which are to be generated in ira-emit.cc,
3785 to less frequent points (if it is profitable) by reassigning some
3786 allocnos (in loop with subloops containing in another loop) to
3787 memory which results in longer live-range where the corresponding
3788 pseudo-registers will be in memory. */
3789 static void
3790 move_spill_restore (void)
3792 int cost, regno, hard_regno, hard_regno2, index;
3793 bool changed_p;
3794 machine_mode mode;
3795 enum reg_class rclass;
3796 ira_allocno_t a, parent_allocno, subloop_allocno;
3797 ira_loop_tree_node_t parent, loop_node, subloop_node;
3798 ira_allocno_iterator ai;
3800 for (;;)
3802 changed_p = false;
3803 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3804 fprintf (ira_dump_file, "New iteration of spill/restore move\n");
3805 FOR_EACH_ALLOCNO (a, ai)
3807 regno = ALLOCNO_REGNO (a);
3808 loop_node = ALLOCNO_LOOP_TREE_NODE (a);
3809 if (ALLOCNO_CAP_MEMBER (a) != NULL
3810 || ALLOCNO_CAP (a) != NULL
3811 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0
3812 || loop_node->children == NULL
3813 /* don't do the optimization because it can create
3814 copies and the reload pass can spill the allocno set
3815 by copy although the allocno will not get memory
3816 slot. */
3817 || ira_equiv_no_lvalue_p (regno)
3818 || !bitmap_bit_p (loop_node->border_allocnos, ALLOCNO_NUM (a))
3819 /* Do not spill static chain pointer pseudo when
3820 non-local goto is used. */
3821 || non_spilled_static_chain_regno_p (regno))
3822 continue;
3823 mode = ALLOCNO_MODE (a);
3824 rclass = ALLOCNO_CLASS (a);
3825 index = ira_class_hard_reg_index[rclass][hard_regno];
3826 ira_assert (index >= 0);
3827 cost = (ALLOCNO_MEMORY_COST (a)
3828 - (ALLOCNO_HARD_REG_COSTS (a) == NULL
3829 ? ALLOCNO_CLASS_COST (a)
3830 : ALLOCNO_HARD_REG_COSTS (a)[index]));
3831 ira_init_register_move_cost_if_necessary (mode);
3832 for (subloop_node = loop_node->subloops;
3833 subloop_node != NULL;
3834 subloop_node = subloop_node->subloop_next)
3836 ira_assert (subloop_node->bb == NULL);
3837 subloop_allocno = subloop_node->regno_allocno_map[regno];
3838 if (subloop_allocno == NULL)
3839 continue;
3840 ira_assert (rclass == ALLOCNO_CLASS (subloop_allocno));
3841 ira_loop_border_costs border_costs (subloop_allocno);
3843 /* We have accumulated cost. To get the real cost of
3844 allocno usage in the loop we should subtract the costs
3845 added by propagate_allocno_info for the subloop allocnos. */
3846 int reg_cost
3847 = (ALLOCNO_HARD_REG_COSTS (subloop_allocno) == NULL
3848 ? ALLOCNO_CLASS_COST (subloop_allocno)
3849 : ALLOCNO_HARD_REG_COSTS (subloop_allocno)[index]);
3851 int spill_cost
3852 = (border_costs.spill_inside_loop_cost ()
3853 + ALLOCNO_MEMORY_COST (subloop_allocno));
3855 /* If HARD_REGNO conflicts with SUBLOOP_A then
3856 propagate_allocno_info will have propagated
3857 the cost of spilling HARD_REGNO in SUBLOOP_NODE.
3858 (ira_subloop_allocnos_can_differ_p must be true
3859 in that case.) If HARD_REGNO is a caller-saved
3860 register, we might have modelled it in the same way.
3862 Otherwise, SPILL_COST acted as a cap on the propagated
3863 register cost, in cases where the allocations can differ. */
3864 auto conflicts = ira_total_conflict_hard_regs (subloop_allocno);
3865 if (TEST_HARD_REG_BIT (conflicts, hard_regno)
3866 || (ira_need_caller_save_p (subloop_allocno, hard_regno)
3867 && ira_caller_save_loop_spill_p (a, subloop_allocno,
3868 spill_cost)))
3869 reg_cost = spill_cost;
3870 else if (ira_subloop_allocnos_can_differ_p (a))
3871 reg_cost = MIN (reg_cost, spill_cost);
3873 cost -= ALLOCNO_MEMORY_COST (subloop_allocno) - reg_cost;
3875 if ((hard_regno2 = ALLOCNO_HARD_REGNO (subloop_allocno)) < 0)
3876 /* The register was spilled in the subloop. If we spill
3877 it in the outer loop too then we'll no longer need to
3878 save the register on entry to the subloop and restore
3879 the register on exit from the subloop. */
3880 cost -= border_costs.spill_inside_loop_cost ();
3881 else
3883 /* The register was also allocated in the subloop. If we
3884 spill it in the outer loop then we'll need to load the
3885 register on entry to the subloop and store the register
3886 back on exit from the subloop. */
3887 cost += border_costs.spill_outside_loop_cost ();
3888 if (hard_regno2 != hard_regno)
3889 cost -= border_costs.move_between_loops_cost ();
3892 if ((parent = loop_node->parent) != NULL
3893 && (parent_allocno = parent->regno_allocno_map[regno]) != NULL)
3895 ira_assert (rclass == ALLOCNO_CLASS (parent_allocno));
3896 ira_loop_border_costs border_costs (a);
3897 if ((hard_regno2 = ALLOCNO_HARD_REGNO (parent_allocno)) < 0)
3898 /* The register was spilled in the parent loop. If we spill
3899 it in this loop too then we'll no longer need to load the
3900 register on entry to this loop and save the register back
3901 on exit from this loop. */
3902 cost -= border_costs.spill_outside_loop_cost ();
3903 else
3905 /* The register was also allocated in the parent loop.
3906 If we spill it in this loop then we'll need to save
3907 the register on entry to this loop and restore the
3908 register on exit from this loop. */
3909 cost += border_costs.spill_inside_loop_cost ();
3910 if (hard_regno2 != hard_regno)
3911 cost -= border_costs.move_between_loops_cost ();
3914 if (cost < 0)
3916 ALLOCNO_HARD_REGNO (a) = -1;
3917 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
3919 fprintf
3920 (ira_dump_file,
3921 " Moving spill/restore for a%dr%d up from loop %d",
3922 ALLOCNO_NUM (a), regno, loop_node->loop_num);
3923 fprintf (ira_dump_file, " - profit %d\n", -cost);
3925 changed_p = true;
3928 if (! changed_p)
3929 break;
3935 /* Update current hard reg costs and current conflict hard reg costs
3936 for allocno A. It is done by processing its copies containing
3937 other allocnos already assigned. */
3938 static void
3939 update_curr_costs (ira_allocno_t a)
3941 int i, hard_regno, cost;
3942 machine_mode mode;
3943 enum reg_class aclass, rclass;
3944 ira_allocno_t another_a;
3945 ira_copy_t cp, next_cp;
3947 ira_free_allocno_updated_costs (a);
3948 ira_assert (! ALLOCNO_ASSIGNED_P (a));
3949 aclass = ALLOCNO_CLASS (a);
3950 if (aclass == NO_REGS)
3951 return;
3952 mode = ALLOCNO_MODE (a);
3953 ira_init_register_move_cost_if_necessary (mode);
3954 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
3956 if (cp->first == a)
3958 next_cp = cp->next_first_allocno_copy;
3959 another_a = cp->second;
3961 else if (cp->second == a)
3963 next_cp = cp->next_second_allocno_copy;
3964 another_a = cp->first;
3966 else
3967 gcc_unreachable ();
3968 if (! ira_reg_classes_intersect_p[aclass][ALLOCNO_CLASS (another_a)]
3969 || ! ALLOCNO_ASSIGNED_P (another_a)
3970 || (hard_regno = ALLOCNO_HARD_REGNO (another_a)) < 0)
3971 continue;
3972 rclass = REGNO_REG_CLASS (hard_regno);
3973 i = ira_class_hard_reg_index[aclass][hard_regno];
3974 if (i < 0)
3975 continue;
3976 cost = (cp->first == a
3977 ? ira_register_move_cost[mode][rclass][aclass]
3978 : ira_register_move_cost[mode][aclass][rclass]);
3979 ira_allocate_and_set_or_copy_costs
3980 (&ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a),
3981 ALLOCNO_HARD_REG_COSTS (a));
3982 ira_allocate_and_set_or_copy_costs
3983 (&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
3984 aclass, 0, ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
3985 ALLOCNO_UPDATED_HARD_REG_COSTS (a)[i] -= cp->freq * cost;
3986 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a)[i] -= cp->freq * cost;
3990 /* Try to assign hard registers to the unassigned allocnos and
3991 allocnos conflicting with them or conflicting with allocnos whose
3992 regno >= START_REGNO. The function is called after ira_flattening,
3993 so more allocnos (including ones created in ira-emit.cc) will have a
3994 chance to get a hard register. We use simple assignment algorithm
3995 based on priorities. */
3996 void
3997 ira_reassign_conflict_allocnos (int start_regno)
3999 int i, allocnos_to_color_num;
4000 ira_allocno_t a;
4001 enum reg_class aclass;
4002 bitmap allocnos_to_color;
4003 ira_allocno_iterator ai;
4005 allocnos_to_color = ira_allocate_bitmap ();
4006 allocnos_to_color_num = 0;
4007 FOR_EACH_ALLOCNO (a, ai)
4009 int n = ALLOCNO_NUM_OBJECTS (a);
4011 if (! ALLOCNO_ASSIGNED_P (a)
4012 && ! bitmap_bit_p (allocnos_to_color, ALLOCNO_NUM (a)))
4014 if (ALLOCNO_CLASS (a) != NO_REGS)
4015 sorted_allocnos[allocnos_to_color_num++] = a;
4016 else
4018 ALLOCNO_ASSIGNED_P (a) = true;
4019 ALLOCNO_HARD_REGNO (a) = -1;
4020 ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
4021 ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
4023 bitmap_set_bit (allocnos_to_color, ALLOCNO_NUM (a));
4025 if (ALLOCNO_REGNO (a) < start_regno
4026 || (aclass = ALLOCNO_CLASS (a)) == NO_REGS)
4027 continue;
4028 for (i = 0; i < n; i++)
4030 ira_object_t obj = ALLOCNO_OBJECT (a, i);
4031 ira_object_t conflict_obj;
4032 ira_object_conflict_iterator oci;
4034 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
4036 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
4038 ira_assert (ira_reg_classes_intersect_p
4039 [aclass][ALLOCNO_CLASS (conflict_a)]);
4040 if (!bitmap_set_bit (allocnos_to_color, ALLOCNO_NUM (conflict_a)))
4041 continue;
4042 sorted_allocnos[allocnos_to_color_num++] = conflict_a;
4046 ira_free_bitmap (allocnos_to_color);
4047 if (allocnos_to_color_num > 1)
4049 setup_allocno_priorities (sorted_allocnos, allocnos_to_color_num);
4050 qsort (sorted_allocnos, allocnos_to_color_num, sizeof (ira_allocno_t),
4051 allocno_priority_compare_func);
4053 for (i = 0; i < allocnos_to_color_num; i++)
4055 a = sorted_allocnos[i];
4056 ALLOCNO_ASSIGNED_P (a) = false;
4057 update_curr_costs (a);
4059 for (i = 0; i < allocnos_to_color_num; i++)
4061 a = sorted_allocnos[i];
4062 if (assign_hard_reg (a, true))
4064 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
4065 fprintf
4066 (ira_dump_file,
4067 " Secondary allocation: assign hard reg %d to reg %d\n",
4068 ALLOCNO_HARD_REGNO (a), ALLOCNO_REGNO (a));
4075 /* This page contains functions used to find conflicts using allocno
4076 live ranges. */
4078 #ifdef ENABLE_IRA_CHECKING
4080 /* Return TRUE if live ranges of pseudo-registers REGNO1 and REGNO2
4081 intersect. This should be used when there is only one region.
4082 Currently this is used during reload. */
4083 static bool
4084 conflict_by_live_ranges_p (int regno1, int regno2)
4086 ira_allocno_t a1, a2;
4088 ira_assert (regno1 >= FIRST_PSEUDO_REGISTER
4089 && regno2 >= FIRST_PSEUDO_REGISTER);
4090 /* Reg info calculated by dataflow infrastructure can be different
4091 from one calculated by regclass. */
4092 if ((a1 = ira_loop_tree_root->regno_allocno_map[regno1]) == NULL
4093 || (a2 = ira_loop_tree_root->regno_allocno_map[regno2]) == NULL)
4094 return false;
4095 return allocnos_conflict_by_live_ranges_p (a1, a2);
4098 #endif
4102 /* This page contains code to coalesce memory stack slots used by
4103 spilled allocnos. This results in smaller stack frame, better data
4104 locality, and in smaller code for some architectures like
4105 x86/x86_64 where insn size depends on address displacement value.
4106 On the other hand, it can worsen insn scheduling after the RA but
4107 in practice it is less important than smaller stack frames. */
4109 /* TRUE if we coalesced some allocnos. In other words, if we got
4110 loops formed by members first_coalesced_allocno and
4111 next_coalesced_allocno containing more one allocno. */
4112 static bool allocno_coalesced_p;
4114 /* Bitmap used to prevent a repeated allocno processing because of
4115 coalescing. */
4116 static bitmap processed_coalesced_allocno_bitmap;
4118 /* See below. */
4119 typedef struct coalesce_data *coalesce_data_t;
4121 /* To decrease footprint of ira_allocno structure we store all data
4122 needed only for coalescing in the following structure. */
4123 struct coalesce_data
4125 /* Coalesced allocnos form a cyclic list. One allocno given by
4126 FIRST represents all coalesced allocnos. The
4127 list is chained by NEXT. */
4128 ira_allocno_t first;
4129 ira_allocno_t next;
4130 int temp;
4133 /* Container for storing allocno data concerning coalescing. */
4134 static coalesce_data_t allocno_coalesce_data;
4136 /* Macro to access the data concerning coalescing. */
4137 #define ALLOCNO_COALESCE_DATA(a) ((coalesce_data_t) ALLOCNO_ADD_DATA (a))
4139 /* Merge two sets of coalesced allocnos given correspondingly by
4140 allocnos A1 and A2 (more accurately merging A2 set into A1
4141 set). */
4142 static void
4143 merge_allocnos (ira_allocno_t a1, ira_allocno_t a2)
4145 ira_allocno_t a, first, last, next;
4147 first = ALLOCNO_COALESCE_DATA (a1)->first;
4148 a = ALLOCNO_COALESCE_DATA (a2)->first;
4149 if (first == a)
4150 return;
4151 for (last = a2, a = ALLOCNO_COALESCE_DATA (a2)->next;;
4152 a = ALLOCNO_COALESCE_DATA (a)->next)
4154 ALLOCNO_COALESCE_DATA (a)->first = first;
4155 if (a == a2)
4156 break;
4157 last = a;
4159 next = allocno_coalesce_data[ALLOCNO_NUM (first)].next;
4160 allocno_coalesce_data[ALLOCNO_NUM (first)].next = a2;
4161 allocno_coalesce_data[ALLOCNO_NUM (last)].next = next;
4164 /* Return TRUE if there are conflicting allocnos from two sets of
4165 coalesced allocnos given correspondingly by allocnos A1 and A2. We
4166 use live ranges to find conflicts because conflicts are represented
4167 only for allocnos of the same allocno class and during the reload
4168 pass we coalesce allocnos for sharing stack memory slots. */
4169 static bool
4170 coalesced_allocno_conflict_p (ira_allocno_t a1, ira_allocno_t a2)
4172 ira_allocno_t a, conflict_a;
4174 if (allocno_coalesced_p)
4176 bitmap_clear (processed_coalesced_allocno_bitmap);
4177 for (a = ALLOCNO_COALESCE_DATA (a1)->next;;
4178 a = ALLOCNO_COALESCE_DATA (a)->next)
4180 bitmap_set_bit (processed_coalesced_allocno_bitmap, ALLOCNO_NUM (a));
4181 if (a == a1)
4182 break;
4185 for (a = ALLOCNO_COALESCE_DATA (a2)->next;;
4186 a = ALLOCNO_COALESCE_DATA (a)->next)
4188 for (conflict_a = ALLOCNO_COALESCE_DATA (a1)->next;;
4189 conflict_a = ALLOCNO_COALESCE_DATA (conflict_a)->next)
4191 if (allocnos_conflict_by_live_ranges_p (a, conflict_a))
4192 return true;
4193 if (conflict_a == a1)
4194 break;
4196 if (a == a2)
4197 break;
4199 return false;
4202 /* The major function for aggressive allocno coalescing. We coalesce
4203 only spilled allocnos. If some allocnos have been coalesced, we
4204 set up flag allocno_coalesced_p. */
4205 static void
4206 coalesce_allocnos (void)
4208 ira_allocno_t a;
4209 ira_copy_t cp, next_cp;
4210 unsigned int j;
4211 int i, n, cp_num, regno;
4212 bitmap_iterator bi;
4214 cp_num = 0;
4215 /* Collect copies. */
4216 EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, j, bi)
4218 a = ira_allocnos[j];
4219 regno = ALLOCNO_REGNO (a);
4220 if (! ALLOCNO_ASSIGNED_P (a) || ALLOCNO_HARD_REGNO (a) >= 0
4221 || ira_equiv_no_lvalue_p (regno))
4222 continue;
4223 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
4225 if (cp->first == a)
4227 next_cp = cp->next_first_allocno_copy;
4228 regno = ALLOCNO_REGNO (cp->second);
4229 /* For priority coloring we coalesce allocnos only with
4230 the same allocno class not with intersected allocno
4231 classes as it were possible. It is done for
4232 simplicity. */
4233 if ((cp->insn != NULL || cp->constraint_p)
4234 && ALLOCNO_ASSIGNED_P (cp->second)
4235 && ALLOCNO_HARD_REGNO (cp->second) < 0
4236 && ! ira_equiv_no_lvalue_p (regno))
4237 sorted_copies[cp_num++] = cp;
4239 else if (cp->second == a)
4240 next_cp = cp->next_second_allocno_copy;
4241 else
4242 gcc_unreachable ();
4245 qsort (sorted_copies, cp_num, sizeof (ira_copy_t), copy_freq_compare_func);
4246 /* Coalesced copies, most frequently executed first. */
4247 for (; cp_num != 0;)
4249 for (i = 0; i < cp_num; i++)
4251 cp = sorted_copies[i];
4252 if (! coalesced_allocno_conflict_p (cp->first, cp->second))
4254 allocno_coalesced_p = true;
4255 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
4256 fprintf
4257 (ira_dump_file,
4258 " Coalescing copy %d:a%dr%d-a%dr%d (freq=%d)\n",
4259 cp->num, ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first),
4260 ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second),
4261 cp->freq);
4262 merge_allocnos (cp->first, cp->second);
4263 i++;
4264 break;
4267 /* Collect the rest of copies. */
4268 for (n = 0; i < cp_num; i++)
4270 cp = sorted_copies[i];
4271 if (allocno_coalesce_data[ALLOCNO_NUM (cp->first)].first
4272 != allocno_coalesce_data[ALLOCNO_NUM (cp->second)].first)
4273 sorted_copies[n++] = cp;
4275 cp_num = n;
4279 /* Usage cost and order number of coalesced allocno set to which
4280 given pseudo register belongs to. */
4281 static int *regno_coalesced_allocno_cost;
4282 static int *regno_coalesced_allocno_num;
4284 /* Sort pseudos according frequencies of coalesced allocno sets they
4285 belong to (putting most frequently ones first), and according to
4286 coalesced allocno set order numbers. */
4287 static int
4288 coalesced_pseudo_reg_freq_compare (const void *v1p, const void *v2p)
4290 const int regno1 = *(const int *) v1p;
4291 const int regno2 = *(const int *) v2p;
4292 int diff;
4294 if ((diff = (regno_coalesced_allocno_cost[regno2]
4295 - regno_coalesced_allocno_cost[regno1])) != 0)
4296 return diff;
4297 if ((diff = (regno_coalesced_allocno_num[regno1]
4298 - regno_coalesced_allocno_num[regno2])) != 0)
4299 return diff;
4300 return regno1 - regno2;
4303 /* Widest width in which each pseudo reg is referred to (via subreg).
4304 It is used for sorting pseudo registers. */
4305 static machine_mode *regno_max_ref_mode;
4307 /* Sort pseudos according their slot numbers (putting ones with
4308 smaller numbers first, or last when the frame pointer is not
4309 needed). */
4310 static int
4311 coalesced_pseudo_reg_slot_compare (const void *v1p, const void *v2p)
4313 const int regno1 = *(const int *) v1p;
4314 const int regno2 = *(const int *) v2p;
4315 ira_allocno_t a1 = ira_regno_allocno_map[regno1];
4316 ira_allocno_t a2 = ira_regno_allocno_map[regno2];
4317 int diff, slot_num1, slot_num2;
4318 machine_mode mode1, mode2;
4320 if (a1 == NULL || ALLOCNO_HARD_REGNO (a1) >= 0)
4322 if (a2 == NULL || ALLOCNO_HARD_REGNO (a2) >= 0)
4323 return regno1 - regno2;
4324 return 1;
4326 else if (a2 == NULL || ALLOCNO_HARD_REGNO (a2) >= 0)
4327 return -1;
4328 slot_num1 = -ALLOCNO_HARD_REGNO (a1);
4329 slot_num2 = -ALLOCNO_HARD_REGNO (a2);
4330 if ((diff = slot_num1 - slot_num2) != 0)
4331 return (frame_pointer_needed
4332 || (!FRAME_GROWS_DOWNWARD) == STACK_GROWS_DOWNWARD ? diff : -diff);
4333 mode1 = wider_subreg_mode (PSEUDO_REGNO_MODE (regno1),
4334 regno_max_ref_mode[regno1]);
4335 mode2 = wider_subreg_mode (PSEUDO_REGNO_MODE (regno2),
4336 regno_max_ref_mode[regno2]);
4337 if ((diff = compare_sizes_for_sort (GET_MODE_SIZE (mode2),
4338 GET_MODE_SIZE (mode1))) != 0)
4339 return diff;
4340 return regno1 - regno2;
4343 /* Setup REGNO_COALESCED_ALLOCNO_COST and REGNO_COALESCED_ALLOCNO_NUM
4344 for coalesced allocno sets containing allocnos with their regnos
4345 given in array PSEUDO_REGNOS of length N. */
4346 static void
4347 setup_coalesced_allocno_costs_and_nums (int *pseudo_regnos, int n)
4349 int i, num, regno, cost;
4350 ira_allocno_t allocno, a;
4352 for (num = i = 0; i < n; i++)
4354 regno = pseudo_regnos[i];
4355 allocno = ira_regno_allocno_map[regno];
4356 if (allocno == NULL)
4358 regno_coalesced_allocno_cost[regno] = 0;
4359 regno_coalesced_allocno_num[regno] = ++num;
4360 continue;
4362 if (ALLOCNO_COALESCE_DATA (allocno)->first != allocno)
4363 continue;
4364 num++;
4365 for (cost = 0, a = ALLOCNO_COALESCE_DATA (allocno)->next;;
4366 a = ALLOCNO_COALESCE_DATA (a)->next)
4368 cost += ALLOCNO_FREQ (a);
4369 if (a == allocno)
4370 break;
4372 for (a = ALLOCNO_COALESCE_DATA (allocno)->next;;
4373 a = ALLOCNO_COALESCE_DATA (a)->next)
4375 regno_coalesced_allocno_num[ALLOCNO_REGNO (a)] = num;
4376 regno_coalesced_allocno_cost[ALLOCNO_REGNO (a)] = cost;
4377 if (a == allocno)
4378 break;
4383 /* Collect spilled allocnos representing coalesced allocno sets (the
4384 first coalesced allocno). The collected allocnos are returned
4385 through array SPILLED_COALESCED_ALLOCNOS. The function returns the
4386 number of the collected allocnos. The allocnos are given by their
4387 regnos in array PSEUDO_REGNOS of length N. */
4388 static int
4389 collect_spilled_coalesced_allocnos (int *pseudo_regnos, int n,
4390 ira_allocno_t *spilled_coalesced_allocnos)
4392 int i, num, regno;
4393 ira_allocno_t allocno;
4395 for (num = i = 0; i < n; i++)
4397 regno = pseudo_regnos[i];
4398 allocno = ira_regno_allocno_map[regno];
4399 if (allocno == NULL || ALLOCNO_HARD_REGNO (allocno) >= 0
4400 || ALLOCNO_COALESCE_DATA (allocno)->first != allocno)
4401 continue;
4402 spilled_coalesced_allocnos[num++] = allocno;
4404 return num;
4407 /* Array of live ranges of size IRA_ALLOCNOS_NUM. Live range for
4408 given slot contains live ranges of coalesced allocnos assigned to
4409 given slot. */
4410 static live_range_t *slot_coalesced_allocnos_live_ranges;
4412 /* Return TRUE if coalesced allocnos represented by ALLOCNO has live
4413 ranges intersected with live ranges of coalesced allocnos assigned
4414 to slot with number N. */
4415 static bool
4416 slot_coalesced_allocno_live_ranges_intersect_p (ira_allocno_t allocno, int n)
4418 ira_allocno_t a;
4420 for (a = ALLOCNO_COALESCE_DATA (allocno)->next;;
4421 a = ALLOCNO_COALESCE_DATA (a)->next)
4423 int i;
4424 int nr = ALLOCNO_NUM_OBJECTS (a);
4425 gcc_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
4426 for (i = 0; i < nr; i++)
4428 ira_object_t obj = ALLOCNO_OBJECT (a, i);
4430 if (ira_live_ranges_intersect_p
4431 (slot_coalesced_allocnos_live_ranges[n],
4432 OBJECT_LIVE_RANGES (obj)))
4433 return true;
4435 if (a == allocno)
4436 break;
4438 return false;
4441 /* Update live ranges of slot to which coalesced allocnos represented
4442 by ALLOCNO were assigned. */
4443 static void
4444 setup_slot_coalesced_allocno_live_ranges (ira_allocno_t allocno)
4446 int i, n;
4447 ira_allocno_t a;
4448 live_range_t r;
4450 n = ALLOCNO_COALESCE_DATA (allocno)->temp;
4451 for (a = ALLOCNO_COALESCE_DATA (allocno)->next;;
4452 a = ALLOCNO_COALESCE_DATA (a)->next)
4454 int nr = ALLOCNO_NUM_OBJECTS (a);
4455 gcc_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
4456 for (i = 0; i < nr; i++)
4458 ira_object_t obj = ALLOCNO_OBJECT (a, i);
4460 r = ira_copy_live_range_list (OBJECT_LIVE_RANGES (obj));
4461 slot_coalesced_allocnos_live_ranges[n]
4462 = ira_merge_live_ranges
4463 (slot_coalesced_allocnos_live_ranges[n], r);
4465 if (a == allocno)
4466 break;
4470 /* We have coalesced allocnos involving in copies. Coalesce allocnos
4471 further in order to share the same memory stack slot. Allocnos
4472 representing sets of allocnos coalesced before the call are given
4473 in array SPILLED_COALESCED_ALLOCNOS of length NUM. Return TRUE if
4474 some allocnos were coalesced in the function. */
4475 static bool
4476 coalesce_spill_slots (ira_allocno_t *spilled_coalesced_allocnos, int num)
4478 int i, j, n, last_coalesced_allocno_num;
4479 ira_allocno_t allocno, a;
4480 bool merged_p = false;
4481 bitmap set_jump_crosses = regstat_get_setjmp_crosses ();
4483 slot_coalesced_allocnos_live_ranges
4484 = (live_range_t *) ira_allocate (sizeof (live_range_t) * ira_allocnos_num);
4485 memset (slot_coalesced_allocnos_live_ranges, 0,
4486 sizeof (live_range_t) * ira_allocnos_num);
4487 last_coalesced_allocno_num = 0;
4488 /* Coalesce non-conflicting spilled allocnos preferring most
4489 frequently used. */
4490 for (i = 0; i < num; i++)
4492 allocno = spilled_coalesced_allocnos[i];
4493 if (ALLOCNO_COALESCE_DATA (allocno)->first != allocno
4494 || bitmap_bit_p (set_jump_crosses, ALLOCNO_REGNO (allocno))
4495 || ira_equiv_no_lvalue_p (ALLOCNO_REGNO (allocno)))
4496 continue;
4497 for (j = 0; j < i; j++)
4499 a = spilled_coalesced_allocnos[j];
4500 n = ALLOCNO_COALESCE_DATA (a)->temp;
4501 if (ALLOCNO_COALESCE_DATA (a)->first == a
4502 && ! bitmap_bit_p (set_jump_crosses, ALLOCNO_REGNO (a))
4503 && ! ira_equiv_no_lvalue_p (ALLOCNO_REGNO (a))
4504 && ! slot_coalesced_allocno_live_ranges_intersect_p (allocno, n))
4505 break;
4507 if (j >= i)
4509 /* No coalescing: set up number for coalesced allocnos
4510 represented by ALLOCNO. */
4511 ALLOCNO_COALESCE_DATA (allocno)->temp = last_coalesced_allocno_num++;
4512 setup_slot_coalesced_allocno_live_ranges (allocno);
4514 else
4516 allocno_coalesced_p = true;
4517 merged_p = true;
4518 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
4519 fprintf (ira_dump_file,
4520 " Coalescing spilled allocnos a%dr%d->a%dr%d\n",
4521 ALLOCNO_NUM (allocno), ALLOCNO_REGNO (allocno),
4522 ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
4523 ALLOCNO_COALESCE_DATA (allocno)->temp
4524 = ALLOCNO_COALESCE_DATA (a)->temp;
4525 setup_slot_coalesced_allocno_live_ranges (allocno);
4526 merge_allocnos (a, allocno);
4527 ira_assert (ALLOCNO_COALESCE_DATA (a)->first == a);
4530 for (i = 0; i < ira_allocnos_num; i++)
4531 ira_finish_live_range_list (slot_coalesced_allocnos_live_ranges[i]);
4532 ira_free (slot_coalesced_allocnos_live_ranges);
4533 return merged_p;
4536 /* Sort pseudo-register numbers in array PSEUDO_REGNOS of length N for
4537 subsequent assigning stack slots to them in the reload pass. To do
4538 this we coalesce spilled allocnos first to decrease the number of
4539 memory-memory move insns. This function is called by the
4540 reload. */
4541 void
4542 ira_sort_regnos_for_alter_reg (int *pseudo_regnos, int n,
4543 machine_mode *reg_max_ref_mode)
4545 int max_regno = max_reg_num ();
4546 int i, regno, num, slot_num;
4547 ira_allocno_t allocno, a;
4548 ira_allocno_iterator ai;
4549 ira_allocno_t *spilled_coalesced_allocnos;
4551 ira_assert (! ira_use_lra_p);
4553 /* Set up allocnos can be coalesced. */
4554 coloring_allocno_bitmap = ira_allocate_bitmap ();
4555 for (i = 0; i < n; i++)
4557 regno = pseudo_regnos[i];
4558 allocno = ira_regno_allocno_map[regno];
4559 if (allocno != NULL)
4560 bitmap_set_bit (coloring_allocno_bitmap, ALLOCNO_NUM (allocno));
4562 allocno_coalesced_p = false;
4563 processed_coalesced_allocno_bitmap = ira_allocate_bitmap ();
4564 allocno_coalesce_data
4565 = (coalesce_data_t) ira_allocate (sizeof (struct coalesce_data)
4566 * ira_allocnos_num);
4567 /* Initialize coalesce data for allocnos. */
4568 FOR_EACH_ALLOCNO (a, ai)
4570 ALLOCNO_ADD_DATA (a) = allocno_coalesce_data + ALLOCNO_NUM (a);
4571 ALLOCNO_COALESCE_DATA (a)->first = a;
4572 ALLOCNO_COALESCE_DATA (a)->next = a;
4574 coalesce_allocnos ();
4575 ira_free_bitmap (coloring_allocno_bitmap);
4576 regno_coalesced_allocno_cost
4577 = (int *) ira_allocate (max_regno * sizeof (int));
4578 regno_coalesced_allocno_num
4579 = (int *) ira_allocate (max_regno * sizeof (int));
4580 memset (regno_coalesced_allocno_num, 0, max_regno * sizeof (int));
4581 setup_coalesced_allocno_costs_and_nums (pseudo_regnos, n);
4582 /* Sort regnos according frequencies of the corresponding coalesced
4583 allocno sets. */
4584 qsort (pseudo_regnos, n, sizeof (int), coalesced_pseudo_reg_freq_compare);
4585 spilled_coalesced_allocnos
4586 = (ira_allocno_t *) ira_allocate (ira_allocnos_num
4587 * sizeof (ira_allocno_t));
4588 /* Collect allocnos representing the spilled coalesced allocno
4589 sets. */
4590 num = collect_spilled_coalesced_allocnos (pseudo_regnos, n,
4591 spilled_coalesced_allocnos);
4592 if (flag_ira_share_spill_slots
4593 && coalesce_spill_slots (spilled_coalesced_allocnos, num))
4595 setup_coalesced_allocno_costs_and_nums (pseudo_regnos, n);
4596 qsort (pseudo_regnos, n, sizeof (int),
4597 coalesced_pseudo_reg_freq_compare);
4598 num = collect_spilled_coalesced_allocnos (pseudo_regnos, n,
4599 spilled_coalesced_allocnos);
4601 ira_free_bitmap (processed_coalesced_allocno_bitmap);
4602 allocno_coalesced_p = false;
4603 /* Assign stack slot numbers to spilled allocno sets, use smaller
4604 numbers for most frequently used coalesced allocnos. -1 is
4605 reserved for dynamic search of stack slots for pseudos spilled by
4606 the reload. */
4607 slot_num = 1;
4608 for (i = 0; i < num; i++)
4610 allocno = spilled_coalesced_allocnos[i];
4611 if (ALLOCNO_COALESCE_DATA (allocno)->first != allocno
4612 || ALLOCNO_HARD_REGNO (allocno) >= 0
4613 || ira_equiv_no_lvalue_p (ALLOCNO_REGNO (allocno)))
4614 continue;
4615 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
4616 fprintf (ira_dump_file, " Slot %d (freq,size):", slot_num);
4617 slot_num++;
4618 for (a = ALLOCNO_COALESCE_DATA (allocno)->next;;
4619 a = ALLOCNO_COALESCE_DATA (a)->next)
4621 ira_assert (ALLOCNO_HARD_REGNO (a) < 0);
4622 ALLOCNO_HARD_REGNO (a) = -slot_num;
4623 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
4625 machine_mode mode = wider_subreg_mode
4626 (PSEUDO_REGNO_MODE (ALLOCNO_REGNO (a)),
4627 reg_max_ref_mode[ALLOCNO_REGNO (a)]);
4628 fprintf (ira_dump_file, " a%dr%d(%d,",
4629 ALLOCNO_NUM (a), ALLOCNO_REGNO (a), ALLOCNO_FREQ (a));
4630 print_dec (GET_MODE_SIZE (mode), ira_dump_file, SIGNED);
4631 fprintf (ira_dump_file, ")\n");
4634 if (a == allocno)
4635 break;
4637 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
4638 fprintf (ira_dump_file, "\n");
4640 ira_spilled_reg_stack_slots_num = slot_num - 1;
4641 ira_free (spilled_coalesced_allocnos);
4642 /* Sort regnos according the slot numbers. */
4643 regno_max_ref_mode = reg_max_ref_mode;
4644 qsort (pseudo_regnos, n, sizeof (int), coalesced_pseudo_reg_slot_compare);
4645 FOR_EACH_ALLOCNO (a, ai)
4646 ALLOCNO_ADD_DATA (a) = NULL;
4647 ira_free (allocno_coalesce_data);
4648 ira_free (regno_coalesced_allocno_num);
4649 ira_free (regno_coalesced_allocno_cost);
4654 /* This page contains code used by the reload pass to improve the
4655 final code. */
4657 /* The function is called from reload to mark changes in the
4658 allocation of REGNO made by the reload. Remember that reg_renumber
4659 reflects the change result. */
4660 void
4661 ira_mark_allocation_change (int regno)
4663 ira_allocno_t a = ira_regno_allocno_map[regno];
4664 int old_hard_regno, hard_regno, cost;
4665 enum reg_class aclass = ALLOCNO_CLASS (a);
4667 ira_assert (a != NULL);
4668 hard_regno = reg_renumber[regno];
4669 if ((old_hard_regno = ALLOCNO_HARD_REGNO (a)) == hard_regno)
4670 return;
4671 if (old_hard_regno < 0)
4672 cost = -ALLOCNO_MEMORY_COST (a);
4673 else
4675 ira_assert (ira_class_hard_reg_index[aclass][old_hard_regno] >= 0);
4676 cost = -(ALLOCNO_HARD_REG_COSTS (a) == NULL
4677 ? ALLOCNO_CLASS_COST (a)
4678 : ALLOCNO_HARD_REG_COSTS (a)
4679 [ira_class_hard_reg_index[aclass][old_hard_regno]]);
4680 update_costs_from_copies (a, false, false);
4682 ira_overall_cost -= cost;
4683 ALLOCNO_HARD_REGNO (a) = hard_regno;
4684 if (hard_regno < 0)
4686 ALLOCNO_HARD_REGNO (a) = -1;
4687 cost += ALLOCNO_MEMORY_COST (a);
4689 else if (ira_class_hard_reg_index[aclass][hard_regno] >= 0)
4691 cost += (ALLOCNO_HARD_REG_COSTS (a) == NULL
4692 ? ALLOCNO_CLASS_COST (a)
4693 : ALLOCNO_HARD_REG_COSTS (a)
4694 [ira_class_hard_reg_index[aclass][hard_regno]]);
4695 update_costs_from_copies (a, true, false);
4697 else
4698 /* Reload changed class of the allocno. */
4699 cost = 0;
4700 ira_overall_cost += cost;
4703 /* This function is called when reload deletes memory-memory move. In
4704 this case we marks that the allocation of the corresponding
4705 allocnos should be not changed in future. Otherwise we risk to get
4706 a wrong code. */
4707 void
4708 ira_mark_memory_move_deletion (int dst_regno, int src_regno)
4710 ira_allocno_t dst = ira_regno_allocno_map[dst_regno];
4711 ira_allocno_t src = ira_regno_allocno_map[src_regno];
4713 ira_assert (dst != NULL && src != NULL
4714 && ALLOCNO_HARD_REGNO (dst) < 0
4715 && ALLOCNO_HARD_REGNO (src) < 0);
4716 ALLOCNO_DONT_REASSIGN_P (dst) = true;
4717 ALLOCNO_DONT_REASSIGN_P (src) = true;
4720 /* Try to assign a hard register (except for FORBIDDEN_REGS) to
4721 allocno A and return TRUE in the case of success. */
4722 static bool
4723 allocno_reload_assign (ira_allocno_t a, HARD_REG_SET forbidden_regs)
4725 int hard_regno;
4726 enum reg_class aclass;
4727 int regno = ALLOCNO_REGNO (a);
4728 HARD_REG_SET saved[2];
4729 int i, n;
4731 n = ALLOCNO_NUM_OBJECTS (a);
4732 for (i = 0; i < n; i++)
4734 ira_object_t obj = ALLOCNO_OBJECT (a, i);
4735 saved[i] = OBJECT_TOTAL_CONFLICT_HARD_REGS (obj);
4736 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) |= forbidden_regs;
4737 if (! flag_caller_saves && ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
4738 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) |= ira_need_caller_save_regs (a);
4740 ALLOCNO_ASSIGNED_P (a) = false;
4741 aclass = ALLOCNO_CLASS (a);
4742 update_curr_costs (a);
4743 assign_hard_reg (a, true);
4744 hard_regno = ALLOCNO_HARD_REGNO (a);
4745 reg_renumber[regno] = hard_regno;
4746 if (hard_regno < 0)
4747 ALLOCNO_HARD_REGNO (a) = -1;
4748 else
4750 ira_assert (ira_class_hard_reg_index[aclass][hard_regno] >= 0);
4751 ira_overall_cost
4752 -= (ALLOCNO_MEMORY_COST (a)
4753 - (ALLOCNO_HARD_REG_COSTS (a) == NULL
4754 ? ALLOCNO_CLASS_COST (a)
4755 : ALLOCNO_HARD_REG_COSTS (a)[ira_class_hard_reg_index
4756 [aclass][hard_regno]]));
4757 if (ira_need_caller_save_p (a, hard_regno))
4759 ira_assert (flag_caller_saves);
4760 caller_save_needed = 1;
4764 /* If we found a hard register, modify the RTL for the pseudo
4765 register to show the hard register, and mark the pseudo register
4766 live. */
4767 if (reg_renumber[regno] >= 0)
4769 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
4770 fprintf (ira_dump_file, ": reassign to %d\n", reg_renumber[regno]);
4771 SET_REGNO (regno_reg_rtx[regno], reg_renumber[regno]);
4772 mark_home_live (regno);
4774 else if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
4775 fprintf (ira_dump_file, "\n");
4776 for (i = 0; i < n; i++)
4778 ira_object_t obj = ALLOCNO_OBJECT (a, i);
4779 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) = saved[i];
4781 return reg_renumber[regno] >= 0;
4784 /* Sort pseudos according their usage frequencies (putting most
4785 frequently ones first). */
4786 static int
4787 pseudo_reg_compare (const void *v1p, const void *v2p)
4789 int regno1 = *(const int *) v1p;
4790 int regno2 = *(const int *) v2p;
4791 int diff;
4793 if ((diff = REG_FREQ (regno2) - REG_FREQ (regno1)) != 0)
4794 return diff;
4795 return regno1 - regno2;
4798 /* Try to allocate hard registers to SPILLED_PSEUDO_REGS (there are
4799 NUM of them) or spilled pseudos conflicting with pseudos in
4800 SPILLED_PSEUDO_REGS. Return TRUE and update SPILLED, if the
4801 allocation has been changed. The function doesn't use
4802 BAD_SPILL_REGS and hard registers in PSEUDO_FORBIDDEN_REGS and
4803 PSEUDO_PREVIOUS_REGS for the corresponding pseudos. The function
4804 is called by the reload pass at the end of each reload
4805 iteration. */
4806 bool
4807 ira_reassign_pseudos (int *spilled_pseudo_regs, int num,
4808 HARD_REG_SET bad_spill_regs,
4809 HARD_REG_SET *pseudo_forbidden_regs,
4810 HARD_REG_SET *pseudo_previous_regs,
4811 bitmap spilled)
4813 int i, n, regno;
4814 bool changed_p;
4815 ira_allocno_t a;
4816 HARD_REG_SET forbidden_regs;
4817 bitmap temp = BITMAP_ALLOC (NULL);
4819 /* Add pseudos which conflict with pseudos already in
4820 SPILLED_PSEUDO_REGS to SPILLED_PSEUDO_REGS. This is preferable
4821 to allocating in two steps as some of the conflicts might have
4822 a higher priority than the pseudos passed in SPILLED_PSEUDO_REGS. */
4823 for (i = 0; i < num; i++)
4824 bitmap_set_bit (temp, spilled_pseudo_regs[i]);
4826 for (i = 0, n = num; i < n; i++)
4828 int nr, j;
4829 int regno = spilled_pseudo_regs[i];
4830 bitmap_set_bit (temp, regno);
4832 a = ira_regno_allocno_map[regno];
4833 nr = ALLOCNO_NUM_OBJECTS (a);
4834 for (j = 0; j < nr; j++)
4836 ira_object_t conflict_obj;
4837 ira_object_t obj = ALLOCNO_OBJECT (a, j);
4838 ira_object_conflict_iterator oci;
4840 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
4842 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
4843 if (ALLOCNO_HARD_REGNO (conflict_a) < 0
4844 && ! ALLOCNO_DONT_REASSIGN_P (conflict_a)
4845 && bitmap_set_bit (temp, ALLOCNO_REGNO (conflict_a)))
4847 spilled_pseudo_regs[num++] = ALLOCNO_REGNO (conflict_a);
4848 /* ?!? This seems wrong. */
4849 bitmap_set_bit (consideration_allocno_bitmap,
4850 ALLOCNO_NUM (conflict_a));
4856 if (num > 1)
4857 qsort (spilled_pseudo_regs, num, sizeof (int), pseudo_reg_compare);
4858 changed_p = false;
4859 /* Try to assign hard registers to pseudos from
4860 SPILLED_PSEUDO_REGS. */
4861 for (i = 0; i < num; i++)
4863 regno = spilled_pseudo_regs[i];
4864 forbidden_regs = (bad_spill_regs
4865 | pseudo_forbidden_regs[regno]
4866 | pseudo_previous_regs[regno]);
4867 gcc_assert (reg_renumber[regno] < 0);
4868 a = ira_regno_allocno_map[regno];
4869 ira_mark_allocation_change (regno);
4870 ira_assert (reg_renumber[regno] < 0);
4871 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
4872 fprintf (ira_dump_file,
4873 " Try Assign %d(a%d), cost=%d", regno, ALLOCNO_NUM (a),
4874 ALLOCNO_MEMORY_COST (a)
4875 - ALLOCNO_CLASS_COST (a));
4876 allocno_reload_assign (a, forbidden_regs);
4877 if (reg_renumber[regno] >= 0)
4879 CLEAR_REGNO_REG_SET (spilled, regno);
4880 changed_p = true;
4883 BITMAP_FREE (temp);
4884 return changed_p;
4887 /* The function is called by reload and returns already allocated
4888 stack slot (if any) for REGNO with given INHERENT_SIZE and
4889 TOTAL_SIZE. In the case of failure to find a slot which can be
4890 used for REGNO, the function returns NULL. */
4892 ira_reuse_stack_slot (int regno, poly_uint64 inherent_size,
4893 poly_uint64 total_size)
4895 unsigned int i;
4896 int slot_num, best_slot_num;
4897 int cost, best_cost;
4898 ira_copy_t cp, next_cp;
4899 ira_allocno_t another_allocno, allocno = ira_regno_allocno_map[regno];
4900 rtx x;
4901 bitmap_iterator bi;
4902 class ira_spilled_reg_stack_slot *slot = NULL;
4904 ira_assert (! ira_use_lra_p);
4906 ira_assert (known_eq (inherent_size, PSEUDO_REGNO_BYTES (regno))
4907 && known_le (inherent_size, total_size)
4908 && ALLOCNO_HARD_REGNO (allocno) < 0);
4909 if (! flag_ira_share_spill_slots)
4910 return NULL_RTX;
4911 slot_num = -ALLOCNO_HARD_REGNO (allocno) - 2;
4912 if (slot_num != -1)
4914 slot = &ira_spilled_reg_stack_slots[slot_num];
4915 x = slot->mem;
4917 else
4919 best_cost = best_slot_num = -1;
4920 x = NULL_RTX;
4921 /* It means that the pseudo was spilled in the reload pass, try
4922 to reuse a slot. */
4923 for (slot_num = 0;
4924 slot_num < ira_spilled_reg_stack_slots_num;
4925 slot_num++)
4927 slot = &ira_spilled_reg_stack_slots[slot_num];
4928 if (slot->mem == NULL_RTX)
4929 continue;
4930 if (maybe_lt (slot->width, total_size)
4931 || maybe_lt (GET_MODE_SIZE (GET_MODE (slot->mem)), inherent_size))
4932 continue;
4934 EXECUTE_IF_SET_IN_BITMAP (&slot->spilled_regs,
4935 FIRST_PSEUDO_REGISTER, i, bi)
4937 another_allocno = ira_regno_allocno_map[i];
4938 if (allocnos_conflict_by_live_ranges_p (allocno,
4939 another_allocno))
4940 goto cont;
4942 for (cost = 0, cp = ALLOCNO_COPIES (allocno);
4943 cp != NULL;
4944 cp = next_cp)
4946 if (cp->first == allocno)
4948 next_cp = cp->next_first_allocno_copy;
4949 another_allocno = cp->second;
4951 else if (cp->second == allocno)
4953 next_cp = cp->next_second_allocno_copy;
4954 another_allocno = cp->first;
4956 else
4957 gcc_unreachable ();
4958 if (cp->insn == NULL_RTX)
4959 continue;
4960 if (bitmap_bit_p (&slot->spilled_regs,
4961 ALLOCNO_REGNO (another_allocno)))
4962 cost += cp->freq;
4964 if (cost > best_cost)
4966 best_cost = cost;
4967 best_slot_num = slot_num;
4969 cont:
4972 if (best_cost >= 0)
4974 slot_num = best_slot_num;
4975 slot = &ira_spilled_reg_stack_slots[slot_num];
4976 SET_REGNO_REG_SET (&slot->spilled_regs, regno);
4977 x = slot->mem;
4978 ALLOCNO_HARD_REGNO (allocno) = -slot_num - 2;
4981 if (x != NULL_RTX)
4983 ira_assert (known_ge (slot->width, total_size));
4984 #ifdef ENABLE_IRA_CHECKING
4985 EXECUTE_IF_SET_IN_BITMAP (&slot->spilled_regs,
4986 FIRST_PSEUDO_REGISTER, i, bi)
4988 ira_assert (! conflict_by_live_ranges_p (regno, i));
4990 #endif
4991 SET_REGNO_REG_SET (&slot->spilled_regs, regno);
4992 if (internal_flag_ira_verbose > 3 && ira_dump_file)
4994 fprintf (ira_dump_file, " Assigning %d(freq=%d) slot %d of",
4995 regno, REG_FREQ (regno), slot_num);
4996 EXECUTE_IF_SET_IN_BITMAP (&slot->spilled_regs,
4997 FIRST_PSEUDO_REGISTER, i, bi)
4999 if ((unsigned) regno != i)
5000 fprintf (ira_dump_file, " %d", i);
5002 fprintf (ira_dump_file, "\n");
5005 return x;
5008 /* This is called by reload every time a new stack slot X with
5009 TOTAL_SIZE was allocated for REGNO. We store this info for
5010 subsequent ira_reuse_stack_slot calls. */
5011 void
5012 ira_mark_new_stack_slot (rtx x, int regno, poly_uint64 total_size)
5014 class ira_spilled_reg_stack_slot *slot;
5015 int slot_num;
5016 ira_allocno_t allocno;
5018 ira_assert (! ira_use_lra_p);
5020 ira_assert (known_le (PSEUDO_REGNO_BYTES (regno), total_size));
5021 allocno = ira_regno_allocno_map[regno];
5022 slot_num = -ALLOCNO_HARD_REGNO (allocno) - 2;
5023 if (slot_num == -1)
5025 slot_num = ira_spilled_reg_stack_slots_num++;
5026 ALLOCNO_HARD_REGNO (allocno) = -slot_num - 2;
5028 slot = &ira_spilled_reg_stack_slots[slot_num];
5029 INIT_REG_SET (&slot->spilled_regs);
5030 SET_REGNO_REG_SET (&slot->spilled_regs, regno);
5031 slot->mem = x;
5032 slot->width = total_size;
5033 if (internal_flag_ira_verbose > 3 && ira_dump_file)
5034 fprintf (ira_dump_file, " Assigning %d(freq=%d) a new slot %d\n",
5035 regno, REG_FREQ (regno), slot_num);
5039 /* Return spill cost for pseudo-registers whose numbers are in array
5040 REGNOS (with a negative number as an end marker) for reload with
5041 given IN and OUT for INSN. Return also number points (through
5042 EXCESS_PRESSURE_LIVE_LENGTH) where the pseudo-register lives and
5043 the register pressure is high, number of references of the
5044 pseudo-registers (through NREFS), the number of psuedo registers
5045 whose allocated register wouldn't need saving in the prologue
5046 (through CALL_USED_COUNT), and the first hard regno occupied by the
5047 pseudo-registers (through FIRST_HARD_REGNO). */
5048 static int
5049 calculate_spill_cost (int *regnos, rtx in, rtx out, rtx_insn *insn,
5050 int *excess_pressure_live_length,
5051 int *nrefs, int *call_used_count, int *first_hard_regno)
5053 int i, cost, regno, hard_regno, count, saved_cost;
5054 bool in_p, out_p;
5055 int length;
5056 ira_allocno_t a;
5058 *nrefs = 0;
5059 for (length = count = cost = i = 0;; i++)
5061 regno = regnos[i];
5062 if (regno < 0)
5063 break;
5064 *nrefs += REG_N_REFS (regno);
5065 hard_regno = reg_renumber[regno];
5066 ira_assert (hard_regno >= 0);
5067 a = ira_regno_allocno_map[regno];
5068 length += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) / ALLOCNO_NUM_OBJECTS (a);
5069 cost += ALLOCNO_MEMORY_COST (a) - ALLOCNO_CLASS_COST (a);
5070 if (in_hard_reg_set_p (crtl->abi->full_reg_clobbers (),
5071 ALLOCNO_MODE (a), hard_regno))
5072 count++;
5073 in_p = in && REG_P (in) && (int) REGNO (in) == hard_regno;
5074 out_p = out && REG_P (out) && (int) REGNO (out) == hard_regno;
5075 if ((in_p || out_p)
5076 && find_regno_note (insn, REG_DEAD, hard_regno) != NULL_RTX)
5078 saved_cost = 0;
5079 if (in_p)
5080 saved_cost += ira_memory_move_cost
5081 [ALLOCNO_MODE (a)][ALLOCNO_CLASS (a)][1];
5082 if (out_p)
5083 saved_cost
5084 += ira_memory_move_cost
5085 [ALLOCNO_MODE (a)][ALLOCNO_CLASS (a)][0];
5086 cost -= REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn)) * saved_cost;
5089 *excess_pressure_live_length = length;
5090 *call_used_count = count;
5091 hard_regno = -1;
5092 if (regnos[0] >= 0)
5094 hard_regno = reg_renumber[regnos[0]];
5096 *first_hard_regno = hard_regno;
5097 return cost;
5100 /* Return TRUE if spilling pseudo-registers whose numbers are in array
5101 REGNOS is better than spilling pseudo-registers with numbers in
5102 OTHER_REGNOS for reload with given IN and OUT for INSN. The
5103 function used by the reload pass to make better register spilling
5104 decisions. */
5105 bool
5106 ira_better_spill_reload_regno_p (int *regnos, int *other_regnos,
5107 rtx in, rtx out, rtx_insn *insn)
5109 int cost, other_cost;
5110 int length, other_length;
5111 int nrefs, other_nrefs;
5112 int call_used_count, other_call_used_count;
5113 int hard_regno, other_hard_regno;
5115 cost = calculate_spill_cost (regnos, in, out, insn,
5116 &length, &nrefs, &call_used_count, &hard_regno);
5117 other_cost = calculate_spill_cost (other_regnos, in, out, insn,
5118 &other_length, &other_nrefs,
5119 &other_call_used_count,
5120 &other_hard_regno);
5121 if (nrefs == 0 && other_nrefs != 0)
5122 return true;
5123 if (nrefs != 0 && other_nrefs == 0)
5124 return false;
5125 if (cost != other_cost)
5126 return cost < other_cost;
5127 if (length != other_length)
5128 return length > other_length;
5129 #ifdef REG_ALLOC_ORDER
5130 if (hard_regno >= 0 && other_hard_regno >= 0)
5131 return (inv_reg_alloc_order[hard_regno]
5132 < inv_reg_alloc_order[other_hard_regno]);
5133 #else
5134 if (call_used_count != other_call_used_count)
5135 return call_used_count > other_call_used_count;
5136 #endif
5137 return false;
5142 /* Allocate and initialize data necessary for assign_hard_reg. */
5143 void
5144 ira_initiate_assign (void)
5146 sorted_allocnos
5147 = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
5148 * ira_allocnos_num);
5149 consideration_allocno_bitmap = ira_allocate_bitmap ();
5150 initiate_cost_update ();
5151 allocno_priorities = (int *) ira_allocate (sizeof (int) * ira_allocnos_num);
5152 sorted_copies = (ira_copy_t *) ira_allocate (ira_copies_num
5153 * sizeof (ira_copy_t));
5156 /* Deallocate data used by assign_hard_reg. */
5157 void
5158 ira_finish_assign (void)
5160 ira_free (sorted_allocnos);
5161 ira_free_bitmap (consideration_allocno_bitmap);
5162 finish_cost_update ();
5163 ira_free (allocno_priorities);
5164 ira_free (sorted_copies);
5169 /* Entry function doing color-based register allocation. */
5170 static void
5171 color (void)
5173 allocno_stack_vec.create (ira_allocnos_num);
5174 memset (allocated_hardreg_p, 0, sizeof (allocated_hardreg_p));
5175 ira_initiate_assign ();
5176 do_coloring ();
5177 ira_finish_assign ();
5178 allocno_stack_vec.release ();
5179 move_spill_restore ();
5184 /* This page contains a simple register allocator without usage of
5185 allocno conflicts. This is used for fast allocation for -O0. */
5187 /* Do register allocation by not using allocno conflicts. It uses
5188 only allocno live ranges. The algorithm is close to Chow's
5189 priority coloring. */
5190 static void
5191 fast_allocation (void)
5193 int i, j, k, num, class_size, hard_regno, best_hard_regno, cost, min_cost;
5194 int *costs;
5195 #ifdef STACK_REGS
5196 bool no_stack_reg_p;
5197 #endif
5198 enum reg_class aclass;
5199 machine_mode mode;
5200 ira_allocno_t a;
5201 ira_allocno_iterator ai;
5202 live_range_t r;
5203 HARD_REG_SET conflict_hard_regs, *used_hard_regs;
5205 sorted_allocnos = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
5206 * ira_allocnos_num);
5207 num = 0;
5208 FOR_EACH_ALLOCNO (a, ai)
5209 sorted_allocnos[num++] = a;
5210 allocno_priorities = (int *) ira_allocate (sizeof (int) * ira_allocnos_num);
5211 setup_allocno_priorities (sorted_allocnos, num);
5212 used_hard_regs = (HARD_REG_SET *) ira_allocate (sizeof (HARD_REG_SET)
5213 * ira_max_point);
5214 for (i = 0; i < ira_max_point; i++)
5215 CLEAR_HARD_REG_SET (used_hard_regs[i]);
5216 qsort (sorted_allocnos, num, sizeof (ira_allocno_t),
5217 allocno_priority_compare_func);
5218 for (i = 0; i < num; i++)
5220 int nr, l;
5222 a = sorted_allocnos[i];
5223 nr = ALLOCNO_NUM_OBJECTS (a);
5224 CLEAR_HARD_REG_SET (conflict_hard_regs);
5225 for (l = 0; l < nr; l++)
5227 ira_object_t obj = ALLOCNO_OBJECT (a, l);
5228 conflict_hard_regs |= OBJECT_CONFLICT_HARD_REGS (obj);
5229 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
5230 for (j = r->start; j <= r->finish; j++)
5231 conflict_hard_regs |= used_hard_regs[j];
5233 aclass = ALLOCNO_CLASS (a);
5234 ALLOCNO_ASSIGNED_P (a) = true;
5235 ALLOCNO_HARD_REGNO (a) = -1;
5236 if (hard_reg_set_subset_p (reg_class_contents[aclass],
5237 conflict_hard_regs))
5238 continue;
5239 mode = ALLOCNO_MODE (a);
5240 #ifdef STACK_REGS
5241 no_stack_reg_p = ALLOCNO_NO_STACK_REG_P (a);
5242 #endif
5243 class_size = ira_class_hard_regs_num[aclass];
5244 costs = ALLOCNO_HARD_REG_COSTS (a);
5245 min_cost = INT_MAX;
5246 best_hard_regno = -1;
5247 for (j = 0; j < class_size; j++)
5249 hard_regno = ira_class_hard_regs[aclass][j];
5250 #ifdef STACK_REGS
5251 if (no_stack_reg_p && FIRST_STACK_REG <= hard_regno
5252 && hard_regno <= LAST_STACK_REG)
5253 continue;
5254 #endif
5255 if (ira_hard_reg_set_intersection_p (hard_regno, mode, conflict_hard_regs)
5256 || (TEST_HARD_REG_BIT
5257 (ira_prohibited_class_mode_regs[aclass][mode], hard_regno)))
5258 continue;
5259 if (costs == NULL)
5261 best_hard_regno = hard_regno;
5262 break;
5264 cost = costs[j];
5265 if (min_cost > cost)
5267 min_cost = cost;
5268 best_hard_regno = hard_regno;
5271 if (best_hard_regno < 0)
5272 continue;
5273 ALLOCNO_HARD_REGNO (a) = hard_regno = best_hard_regno;
5274 for (l = 0; l < nr; l++)
5276 ira_object_t obj = ALLOCNO_OBJECT (a, l);
5277 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
5278 for (k = r->start; k <= r->finish; k++)
5279 used_hard_regs[k] |= ira_reg_mode_hard_regset[hard_regno][mode];
5282 ira_free (sorted_allocnos);
5283 ira_free (used_hard_regs);
5284 ira_free (allocno_priorities);
5285 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
5286 ira_print_disposition (ira_dump_file);
5291 /* Entry function doing coloring. */
5292 void
5293 ira_color (void)
5295 ira_allocno_t a;
5296 ira_allocno_iterator ai;
5298 /* Setup updated costs. */
5299 FOR_EACH_ALLOCNO (a, ai)
5301 ALLOCNO_UPDATED_MEMORY_COST (a) = ALLOCNO_MEMORY_COST (a);
5302 ALLOCNO_UPDATED_CLASS_COST (a) = ALLOCNO_CLASS_COST (a);
5304 if (ira_conflicts_p)
5305 color ();
5306 else
5307 fast_allocation ();