* go-gcc.cc: #include "langhooks.h".
[official-gcc.git] / gcc / cselib.c
blob6bdc482b91f9cb7bd5d560c3f09b46b2697177fa
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "rtl.h"
26 #include "tree.h"/* FIXME: For hashing DEBUG_EXPR & friends. */
27 #include "tm_p.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "function.h"
34 #include "emit-rtl.h"
35 #include "diagnostic-core.h"
36 #include "ggc.h"
37 #include "hash-table.h"
38 #include "dumpfile.h"
39 #include "cselib.h"
40 #include "valtrack.h"
41 #include "params.h"
42 #include "alloc-pool.h"
43 #include "target.h"
44 #include "bitmap.h"
46 /* A list of cselib_val structures. */
47 struct elt_list {
48 struct elt_list *next;
49 cselib_val *elt;
52 static bool cselib_record_memory;
53 static bool cselib_preserve_constants;
54 static bool cselib_any_perm_equivs;
55 static inline void promote_debug_loc (struct elt_loc_list *l);
56 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
57 static void new_elt_loc_list (cselib_val *, rtx);
58 static void unchain_one_value (cselib_val *);
59 static void unchain_one_elt_list (struct elt_list **);
60 static void unchain_one_elt_loc_list (struct elt_loc_list **);
61 static void remove_useless_values (void);
62 static int rtx_equal_for_cselib_1 (rtx, rtx, enum machine_mode);
63 static unsigned int cselib_hash_rtx (rtx, int, enum machine_mode);
64 static cselib_val *new_cselib_val (unsigned int, enum machine_mode, rtx);
65 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
66 static cselib_val *cselib_lookup_mem (rtx, int);
67 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
68 static void cselib_invalidate_mem (rtx);
69 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
70 static void cselib_record_sets (rtx);
72 struct expand_value_data
74 bitmap regs_active;
75 cselib_expand_callback callback;
76 void *callback_arg;
77 bool dummy;
80 static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
82 /* There are three ways in which cselib can look up an rtx:
83 - for a REG, the reg_values table (which is indexed by regno) is used
84 - for a MEM, we recursively look up its address and then follow the
85 addr_list of that value
86 - for everything else, we compute a hash value and go through the hash
87 table. Since different rtx's can still have the same hash value,
88 this involves walking the table entries for a given value and comparing
89 the locations of the entries with the rtx we are looking up. */
91 struct cselib_hasher : typed_noop_remove <cselib_val>
93 typedef cselib_val value_type;
94 struct compare_type {
95 /* The rtx value and its mode (needed separately for constant
96 integers). */
97 enum machine_mode mode;
98 rtx x;
99 /* The mode of the contaning MEM, if any, otherwise VOIDmode. */
100 enum machine_mode memmode;
102 static inline hashval_t hash (const value_type *);
103 static inline bool equal (const value_type *, const compare_type *);
106 /* The hash function for our hash table. The value is always computed with
107 cselib_hash_rtx when adding an element; this function just extracts the
108 hash value from a cselib_val structure. */
110 inline hashval_t
111 cselib_hasher::hash (const value_type *v)
113 return v->hash;
116 /* The equality test for our hash table. The first argument V is a table
117 element (i.e. a cselib_val), while the second arg X is an rtx. We know
118 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
119 CONST of an appropriate mode. */
121 inline bool
122 cselib_hasher::equal (const value_type *v, const compare_type *x_arg)
124 struct elt_loc_list *l;
125 rtx x = x_arg->x;
126 enum machine_mode mode = x_arg->mode;
127 enum machine_mode memmode = x_arg->memmode;
129 if (mode != GET_MODE (v->val_rtx))
130 return false;
132 if (GET_CODE (x) == VALUE)
133 return x == v->val_rtx;
135 /* We don't guarantee that distinct rtx's have different hash values,
136 so we need to do a comparison. */
137 for (l = v->locs; l; l = l->next)
138 if (rtx_equal_for_cselib_1 (l->loc, x, memmode))
140 promote_debug_loc (l);
141 return true;
144 return false;
147 /* A table that enables us to look up elts by their value. */
148 static hash_table <cselib_hasher> cselib_hash_table;
150 /* A table to hold preserved values. */
151 static hash_table <cselib_hasher> cselib_preserved_hash_table;
153 /* This is a global so we don't have to pass this through every function.
154 It is used in new_elt_loc_list to set SETTING_INSN. */
155 static rtx cselib_current_insn;
157 /* The unique id that the next create value will take. */
158 static unsigned int next_uid;
160 /* The number of registers we had when the varrays were last resized. */
161 static unsigned int cselib_nregs;
163 /* Count values without known locations, or with only locations that
164 wouldn't have been known except for debug insns. Whenever this
165 grows too big, we remove these useless values from the table.
167 Counting values with only debug values is a bit tricky. We don't
168 want to increment n_useless_values when we create a value for a
169 debug insn, for this would get n_useless_values out of sync, but we
170 want increment it if all locs in the list that were ever referenced
171 in nondebug insns are removed from the list.
173 In the general case, once we do that, we'd have to stop accepting
174 nondebug expressions in the loc list, to avoid having two values
175 equivalent that, without debug insns, would have been made into
176 separate values. However, because debug insns never introduce
177 equivalences themselves (no assignments), the only means for
178 growing loc lists is through nondebug assignments. If the locs
179 also happen to be referenced in debug insns, it will work just fine.
181 A consequence of this is that there's at most one debug-only loc in
182 each loc list. If we keep it in the first entry, testing whether
183 we have a debug-only loc list takes O(1).
185 Furthermore, since any additional entry in a loc list containing a
186 debug loc would have to come from an assignment (nondebug) that
187 references both the initial debug loc and the newly-equivalent loc,
188 the initial debug loc would be promoted to a nondebug loc, and the
189 loc list would not contain debug locs any more.
191 So the only case we have to be careful with in order to keep
192 n_useless_values in sync between debug and nondebug compilations is
193 to avoid incrementing n_useless_values when removing the single loc
194 from a value that turns out to not appear outside debug values. We
195 increment n_useless_debug_values instead, and leave such values
196 alone until, for other reasons, we garbage-collect useless
197 values. */
198 static int n_useless_values;
199 static int n_useless_debug_values;
201 /* Count values whose locs have been taken exclusively from debug
202 insns for the entire life of the value. */
203 static int n_debug_values;
205 /* Number of useless values before we remove them from the hash table. */
206 #define MAX_USELESS_VALUES 32
208 /* This table maps from register number to values. It does not
209 contain pointers to cselib_val structures, but rather elt_lists.
210 The purpose is to be able to refer to the same register in
211 different modes. The first element of the list defines the mode in
212 which the register was set; if the mode is unknown or the value is
213 no longer valid in that mode, ELT will be NULL for the first
214 element. */
215 static struct elt_list **reg_values;
216 static unsigned int reg_values_size;
217 #define REG_VALUES(i) reg_values[i]
219 /* The largest number of hard regs used by any entry added to the
220 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
221 static unsigned int max_value_regs;
223 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
224 in cselib_clear_table() for fast emptying. */
225 static unsigned int *used_regs;
226 static unsigned int n_used_regs;
228 /* We pass this to cselib_invalidate_mem to invalidate all of
229 memory for a non-const call instruction. */
230 static GTY(()) rtx callmem;
232 /* Set by discard_useless_locs if it deleted the last location of any
233 value. */
234 static int values_became_useless;
236 /* Used as stop element of the containing_mem list so we can check
237 presence in the list by checking the next pointer. */
238 static cselib_val dummy_val;
240 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
241 that is constant through the whole function and should never be
242 eliminated. */
243 static cselib_val *cfa_base_preserved_val;
244 static unsigned int cfa_base_preserved_regno = INVALID_REGNUM;
246 /* Used to list all values that contain memory reference.
247 May or may not contain the useless values - the list is compacted
248 each time memory is invalidated. */
249 static cselib_val *first_containing_mem = &dummy_val;
250 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
252 /* If nonnull, cselib will call this function before freeing useless
253 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
254 void (*cselib_discard_hook) (cselib_val *);
256 /* If nonnull, cselib will call this function before recording sets or
257 even clobbering outputs of INSN. All the recorded sets will be
258 represented in the array sets[n_sets]. new_val_min can be used to
259 tell whether values present in sets are introduced by this
260 instruction. */
261 void (*cselib_record_sets_hook) (rtx insn, struct cselib_set *sets,
262 int n_sets);
264 #define PRESERVED_VALUE_P(RTX) \
265 (RTL_FLAG_CHECK1 ("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
267 #define SP_BASED_VALUE_P(RTX) \
268 (RTL_FLAG_CHECK1 ("SP_BASED_VALUE_P", (RTX), VALUE)->jump)
272 /* Allocate a struct elt_list and fill in its two elements with the
273 arguments. */
275 static inline struct elt_list *
276 new_elt_list (struct elt_list *next, cselib_val *elt)
278 struct elt_list *el;
279 el = (struct elt_list *) pool_alloc (elt_list_pool);
280 el->next = next;
281 el->elt = elt;
282 return el;
285 /* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc
286 list. */
288 static inline void
289 new_elt_loc_list (cselib_val *val, rtx loc)
291 struct elt_loc_list *el, *next = val->locs;
293 gcc_checking_assert (!next || !next->setting_insn
294 || !DEBUG_INSN_P (next->setting_insn)
295 || cselib_current_insn == next->setting_insn);
297 /* If we're creating the first loc in a debug insn context, we've
298 just created a debug value. Count it. */
299 if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
300 n_debug_values++;
302 val = canonical_cselib_val (val);
303 next = val->locs;
305 if (GET_CODE (loc) == VALUE)
307 loc = canonical_cselib_val (CSELIB_VAL_PTR (loc))->val_rtx;
309 gcc_checking_assert (PRESERVED_VALUE_P (loc)
310 == PRESERVED_VALUE_P (val->val_rtx));
312 if (val->val_rtx == loc)
313 return;
314 else if (val->uid > CSELIB_VAL_PTR (loc)->uid)
316 /* Reverse the insertion. */
317 new_elt_loc_list (CSELIB_VAL_PTR (loc), val->val_rtx);
318 return;
321 gcc_checking_assert (val->uid < CSELIB_VAL_PTR (loc)->uid);
323 if (CSELIB_VAL_PTR (loc)->locs)
325 /* Bring all locs from LOC to VAL. */
326 for (el = CSELIB_VAL_PTR (loc)->locs; el->next; el = el->next)
328 /* Adjust values that have LOC as canonical so that VAL
329 becomes their canonical. */
330 if (el->loc && GET_CODE (el->loc) == VALUE)
332 gcc_checking_assert (CSELIB_VAL_PTR (el->loc)->locs->loc
333 == loc);
334 CSELIB_VAL_PTR (el->loc)->locs->loc = val->val_rtx;
337 el->next = val->locs;
338 next = val->locs = CSELIB_VAL_PTR (loc)->locs;
341 if (CSELIB_VAL_PTR (loc)->addr_list)
343 /* Bring in addr_list into canonical node. */
344 struct elt_list *last = CSELIB_VAL_PTR (loc)->addr_list;
345 while (last->next)
346 last = last->next;
347 last->next = val->addr_list;
348 val->addr_list = CSELIB_VAL_PTR (loc)->addr_list;
349 CSELIB_VAL_PTR (loc)->addr_list = NULL;
352 if (CSELIB_VAL_PTR (loc)->next_containing_mem != NULL
353 && val->next_containing_mem == NULL)
355 /* Add VAL to the containing_mem list after LOC. LOC will
356 be removed when we notice it doesn't contain any
357 MEMs. */
358 val->next_containing_mem = CSELIB_VAL_PTR (loc)->next_containing_mem;
359 CSELIB_VAL_PTR (loc)->next_containing_mem = val;
362 /* Chain LOC back to VAL. */
363 el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
364 el->loc = val->val_rtx;
365 el->setting_insn = cselib_current_insn;
366 el->next = NULL;
367 CSELIB_VAL_PTR (loc)->locs = el;
370 el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
371 el->loc = loc;
372 el->setting_insn = cselib_current_insn;
373 el->next = next;
374 val->locs = el;
377 /* Promote loc L to a nondebug cselib_current_insn if L is marked as
378 originating from a debug insn, maintaining the debug values
379 count. */
381 static inline void
382 promote_debug_loc (struct elt_loc_list *l)
384 if (l && l->setting_insn && DEBUG_INSN_P (l->setting_insn)
385 && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
387 n_debug_values--;
388 l->setting_insn = cselib_current_insn;
389 if (cselib_preserve_constants && l->next)
391 gcc_assert (l->next->setting_insn
392 && DEBUG_INSN_P (l->next->setting_insn)
393 && !l->next->next);
394 l->next->setting_insn = cselib_current_insn;
396 else
397 gcc_assert (!l->next);
401 /* The elt_list at *PL is no longer needed. Unchain it and free its
402 storage. */
404 static inline void
405 unchain_one_elt_list (struct elt_list **pl)
407 struct elt_list *l = *pl;
409 *pl = l->next;
410 pool_free (elt_list_pool, l);
413 /* Likewise for elt_loc_lists. */
415 static void
416 unchain_one_elt_loc_list (struct elt_loc_list **pl)
418 struct elt_loc_list *l = *pl;
420 *pl = l->next;
421 pool_free (elt_loc_list_pool, l);
424 /* Likewise for cselib_vals. This also frees the addr_list associated with
425 V. */
427 static void
428 unchain_one_value (cselib_val *v)
430 while (v->addr_list)
431 unchain_one_elt_list (&v->addr_list);
433 pool_free (cselib_val_pool, v);
436 /* Remove all entries from the hash table. Also used during
437 initialization. */
439 void
440 cselib_clear_table (void)
442 cselib_reset_table (1);
445 /* Return TRUE if V is a constant, a function invariant or a VALUE
446 equivalence; FALSE otherwise. */
448 static bool
449 invariant_or_equiv_p (cselib_val *v)
451 struct elt_loc_list *l;
453 if (v == cfa_base_preserved_val)
454 return true;
456 /* Keep VALUE equivalences around. */
457 for (l = v->locs; l; l = l->next)
458 if (GET_CODE (l->loc) == VALUE)
459 return true;
461 if (v->locs != NULL
462 && v->locs->next == NULL)
464 if (CONSTANT_P (v->locs->loc)
465 && (GET_CODE (v->locs->loc) != CONST
466 || !references_value_p (v->locs->loc, 0)))
467 return true;
468 /* Although a debug expr may be bound to different expressions,
469 we can preserve it as if it was constant, to get unification
470 and proper merging within var-tracking. */
471 if (GET_CODE (v->locs->loc) == DEBUG_EXPR
472 || GET_CODE (v->locs->loc) == DEBUG_IMPLICIT_PTR
473 || GET_CODE (v->locs->loc) == ENTRY_VALUE
474 || GET_CODE (v->locs->loc) == DEBUG_PARAMETER_REF)
475 return true;
477 /* (plus (value V) (const_int C)) is invariant iff V is invariant. */
478 if (GET_CODE (v->locs->loc) == PLUS
479 && CONST_INT_P (XEXP (v->locs->loc, 1))
480 && GET_CODE (XEXP (v->locs->loc, 0)) == VALUE
481 && invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v->locs->loc, 0))))
482 return true;
485 return false;
488 /* Remove from hash table all VALUEs except constants, function
489 invariants and VALUE equivalences. */
492 preserve_constants_and_equivs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
494 cselib_val *v = *x;
496 if (invariant_or_equiv_p (v))
498 cselib_hasher::compare_type lookup = {
499 GET_MODE (v->val_rtx), v->val_rtx, VOIDmode
501 cselib_val **slot
502 = cselib_preserved_hash_table.find_slot_with_hash (&lookup,
503 v->hash, INSERT);
504 gcc_assert (!*slot);
505 *slot = v;
508 cselib_hash_table.clear_slot (x);
510 return 1;
513 /* Remove all entries from the hash table, arranging for the next
514 value to be numbered NUM. */
516 void
517 cselib_reset_table (unsigned int num)
519 unsigned int i;
521 max_value_regs = 0;
523 if (cfa_base_preserved_val)
525 unsigned int regno = cfa_base_preserved_regno;
526 unsigned int new_used_regs = 0;
527 for (i = 0; i < n_used_regs; i++)
528 if (used_regs[i] == regno)
530 new_used_regs = 1;
531 continue;
533 else
534 REG_VALUES (used_regs[i]) = 0;
535 gcc_assert (new_used_regs == 1);
536 n_used_regs = new_used_regs;
537 used_regs[0] = regno;
538 max_value_regs
539 = hard_regno_nregs[regno][GET_MODE (cfa_base_preserved_val->locs->loc)];
541 else
543 for (i = 0; i < n_used_regs; i++)
544 REG_VALUES (used_regs[i]) = 0;
545 n_used_regs = 0;
548 if (cselib_preserve_constants)
549 cselib_hash_table.traverse <void *, preserve_constants_and_equivs> (NULL);
550 else
552 cselib_hash_table.empty ();
553 gcc_checking_assert (!cselib_any_perm_equivs);
556 n_useless_values = 0;
557 n_useless_debug_values = 0;
558 n_debug_values = 0;
560 next_uid = num;
562 first_containing_mem = &dummy_val;
565 /* Return the number of the next value that will be generated. */
567 unsigned int
568 cselib_get_next_uid (void)
570 return next_uid;
573 /* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
574 INSERTing if requested. When X is part of the address of a MEM,
575 MEMMODE should specify the mode of the MEM. */
577 static cselib_val **
578 cselib_find_slot (enum machine_mode mode, rtx x, hashval_t hash,
579 enum insert_option insert, enum machine_mode memmode)
581 cselib_val **slot = NULL;
582 cselib_hasher::compare_type lookup = { mode, x, memmode };
583 if (cselib_preserve_constants)
584 slot = cselib_preserved_hash_table.find_slot_with_hash (&lookup, hash,
585 NO_INSERT);
586 if (!slot)
587 slot = cselib_hash_table.find_slot_with_hash (&lookup, hash, insert);
588 return slot;
591 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
592 only return true for values which point to a cselib_val whose value
593 element has been set to zero, which implies the cselib_val will be
594 removed. */
597 references_value_p (const_rtx x, int only_useless)
599 const enum rtx_code code = GET_CODE (x);
600 const char *fmt = GET_RTX_FORMAT (code);
601 int i, j;
603 if (GET_CODE (x) == VALUE
604 && (! only_useless ||
605 (CSELIB_VAL_PTR (x)->locs == 0 && !PRESERVED_VALUE_P (x))))
606 return 1;
608 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
610 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
611 return 1;
612 else if (fmt[i] == 'E')
613 for (j = 0; j < XVECLEN (x, i); j++)
614 if (references_value_p (XVECEXP (x, i, j), only_useless))
615 return 1;
618 return 0;
621 /* For all locations found in X, delete locations that reference useless
622 values (i.e. values without any location). Called through
623 htab_traverse. */
626 discard_useless_locs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
628 cselib_val *v = *x;
629 struct elt_loc_list **p = &v->locs;
630 bool had_locs = v->locs != NULL;
631 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
633 while (*p)
635 if (references_value_p ((*p)->loc, 1))
636 unchain_one_elt_loc_list (p);
637 else
638 p = &(*p)->next;
641 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
643 if (setting_insn && DEBUG_INSN_P (setting_insn))
644 n_useless_debug_values++;
645 else
646 n_useless_values++;
647 values_became_useless = 1;
649 return 1;
652 /* If X is a value with no locations, remove it from the hashtable. */
655 discard_useless_values (cselib_val **x, void *info ATTRIBUTE_UNUSED)
657 cselib_val *v = *x;
659 if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
661 if (cselib_discard_hook)
662 cselib_discard_hook (v);
664 CSELIB_VAL_PTR (v->val_rtx) = NULL;
665 cselib_hash_table.clear_slot (x);
666 unchain_one_value (v);
667 n_useless_values--;
670 return 1;
673 /* Clean out useless values (i.e. those which no longer have locations
674 associated with them) from the hash table. */
676 static void
677 remove_useless_values (void)
679 cselib_val **p, *v;
681 /* First pass: eliminate locations that reference the value. That in
682 turn can make more values useless. */
685 values_became_useless = 0;
686 cselib_hash_table.traverse <void *, discard_useless_locs> (NULL);
688 while (values_became_useless);
690 /* Second pass: actually remove the values. */
692 p = &first_containing_mem;
693 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
694 if (v->locs && v == canonical_cselib_val (v))
696 *p = v;
697 p = &(*p)->next_containing_mem;
699 *p = &dummy_val;
701 n_useless_values += n_useless_debug_values;
702 n_debug_values -= n_useless_debug_values;
703 n_useless_debug_values = 0;
705 cselib_hash_table.traverse <void *, discard_useless_values> (NULL);
707 gcc_assert (!n_useless_values);
710 /* Arrange for a value to not be removed from the hash table even if
711 it becomes useless. */
713 void
714 cselib_preserve_value (cselib_val *v)
716 PRESERVED_VALUE_P (v->val_rtx) = 1;
719 /* Test whether a value is preserved. */
721 bool
722 cselib_preserved_value_p (cselib_val *v)
724 return PRESERVED_VALUE_P (v->val_rtx);
727 /* Arrange for a REG value to be assumed constant through the whole function,
728 never invalidated and preserved across cselib_reset_table calls. */
730 void
731 cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
733 if (cselib_preserve_constants
734 && v->locs
735 && REG_P (v->locs->loc))
737 cfa_base_preserved_val = v;
738 cfa_base_preserved_regno = regno;
742 /* Clean all non-constant expressions in the hash table, but retain
743 their values. */
745 void
746 cselib_preserve_only_values (void)
748 int i;
750 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
751 cselib_invalidate_regno (i, reg_raw_mode[i]);
753 cselib_invalidate_mem (callmem);
755 remove_useless_values ();
757 gcc_assert (first_containing_mem == &dummy_val);
760 /* Arrange for a value to be marked as based on stack pointer
761 for find_base_term purposes. */
763 void
764 cselib_set_value_sp_based (cselib_val *v)
766 SP_BASED_VALUE_P (v->val_rtx) = 1;
769 /* Test whether a value is based on stack pointer for
770 find_base_term purposes. */
772 bool
773 cselib_sp_based_value_p (cselib_val *v)
775 return SP_BASED_VALUE_P (v->val_rtx);
778 /* Return the mode in which a register was last set. If X is not a
779 register, return its mode. If the mode in which the register was
780 set is not known, or the value was already clobbered, return
781 VOIDmode. */
783 enum machine_mode
784 cselib_reg_set_mode (const_rtx x)
786 if (!REG_P (x))
787 return GET_MODE (x);
789 if (REG_VALUES (REGNO (x)) == NULL
790 || REG_VALUES (REGNO (x))->elt == NULL)
791 return VOIDmode;
793 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
796 /* Return nonzero if we can prove that X and Y contain the same value, taking
797 our gathered information into account. */
800 rtx_equal_for_cselib_p (rtx x, rtx y)
802 return rtx_equal_for_cselib_1 (x, y, VOIDmode);
805 /* If x is a PLUS or an autoinc operation, expand the operation,
806 storing the offset, if any, in *OFF. */
808 static rtx
809 autoinc_split (rtx x, rtx *off, enum machine_mode memmode)
811 switch (GET_CODE (x))
813 case PLUS:
814 *off = XEXP (x, 1);
815 return XEXP (x, 0);
817 case PRE_DEC:
818 if (memmode == VOIDmode)
819 return x;
821 *off = GEN_INT (-GET_MODE_SIZE (memmode));
822 return XEXP (x, 0);
823 break;
825 case PRE_INC:
826 if (memmode == VOIDmode)
827 return x;
829 *off = GEN_INT (GET_MODE_SIZE (memmode));
830 return XEXP (x, 0);
832 case PRE_MODIFY:
833 return XEXP (x, 1);
835 case POST_DEC:
836 case POST_INC:
837 case POST_MODIFY:
838 return XEXP (x, 0);
840 default:
841 return x;
845 /* Return nonzero if we can prove that X and Y contain the same value,
846 taking our gathered information into account. MEMMODE holds the
847 mode of the enclosing MEM, if any, as required to deal with autoinc
848 addressing modes. If X and Y are not (known to be) part of
849 addresses, MEMMODE should be VOIDmode. */
851 static int
852 rtx_equal_for_cselib_1 (rtx x, rtx y, enum machine_mode memmode)
854 enum rtx_code code;
855 const char *fmt;
856 int i;
858 if (REG_P (x) || MEM_P (x))
860 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode);
862 if (e)
863 x = e->val_rtx;
866 if (REG_P (y) || MEM_P (y))
868 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode);
870 if (e)
871 y = e->val_rtx;
874 if (x == y)
875 return 1;
877 if (GET_CODE (x) == VALUE)
879 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (x));
880 struct elt_loc_list *l;
882 if (GET_CODE (y) == VALUE)
883 return e == canonical_cselib_val (CSELIB_VAL_PTR (y));
885 for (l = e->locs; l; l = l->next)
887 rtx t = l->loc;
889 /* Avoid infinite recursion. We know we have the canonical
890 value, so we can just skip any values in the equivalence
891 list. */
892 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
893 continue;
894 else if (rtx_equal_for_cselib_1 (t, y, memmode))
895 return 1;
898 return 0;
900 else if (GET_CODE (y) == VALUE)
902 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (y));
903 struct elt_loc_list *l;
905 for (l = e->locs; l; l = l->next)
907 rtx t = l->loc;
909 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
910 continue;
911 else if (rtx_equal_for_cselib_1 (x, t, memmode))
912 return 1;
915 return 0;
918 if (GET_MODE (x) != GET_MODE (y))
919 return 0;
921 if (GET_CODE (x) != GET_CODE (y))
923 rtx xorig = x, yorig = y;
924 rtx xoff = NULL, yoff = NULL;
926 x = autoinc_split (x, &xoff, memmode);
927 y = autoinc_split (y, &yoff, memmode);
929 if (!xoff != !yoff)
930 return 0;
932 if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode))
933 return 0;
935 /* Don't recurse if nothing changed. */
936 if (x != xorig || y != yorig)
937 return rtx_equal_for_cselib_1 (x, y, memmode);
939 return 0;
942 /* These won't be handled correctly by the code below. */
943 switch (GET_CODE (x))
945 case CONST_DOUBLE:
946 case CONST_FIXED:
947 case DEBUG_EXPR:
948 return 0;
950 case DEBUG_IMPLICIT_PTR:
951 return DEBUG_IMPLICIT_PTR_DECL (x)
952 == DEBUG_IMPLICIT_PTR_DECL (y);
954 case DEBUG_PARAMETER_REF:
955 return DEBUG_PARAMETER_REF_DECL (x)
956 == DEBUG_PARAMETER_REF_DECL (y);
958 case ENTRY_VALUE:
959 /* ENTRY_VALUEs are function invariant, it is thus undesirable to
960 use rtx_equal_for_cselib_1 to compare the operands. */
961 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
963 case LABEL_REF:
964 return XEXP (x, 0) == XEXP (y, 0);
966 case MEM:
967 /* We have to compare any autoinc operations in the addresses
968 using this MEM's mode. */
969 return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x));
971 default:
972 break;
975 code = GET_CODE (x);
976 fmt = GET_RTX_FORMAT (code);
978 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
980 int j;
982 switch (fmt[i])
984 case 'w':
985 if (XWINT (x, i) != XWINT (y, i))
986 return 0;
987 break;
989 case 'n':
990 case 'i':
991 if (XINT (x, i) != XINT (y, i))
992 return 0;
993 break;
995 case 'V':
996 case 'E':
997 /* Two vectors must have the same length. */
998 if (XVECLEN (x, i) != XVECLEN (y, i))
999 return 0;
1001 /* And the corresponding elements must match. */
1002 for (j = 0; j < XVECLEN (x, i); j++)
1003 if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j),
1004 XVECEXP (y, i, j), memmode))
1005 return 0;
1006 break;
1008 case 'e':
1009 if (i == 1
1010 && targetm.commutative_p (x, UNKNOWN)
1011 && rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode)
1012 && rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode))
1013 return 1;
1014 if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode))
1015 return 0;
1016 break;
1018 case 'S':
1019 case 's':
1020 if (strcmp (XSTR (x, i), XSTR (y, i)))
1021 return 0;
1022 break;
1024 case 'u':
1025 /* These are just backpointers, so they don't matter. */
1026 break;
1028 case '0':
1029 case 't':
1030 break;
1032 /* It is believed that rtx's at this level will never
1033 contain anything but integers and other rtx's,
1034 except for within LABEL_REFs and SYMBOL_REFs. */
1035 default:
1036 gcc_unreachable ();
1039 return 1;
1042 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
1043 For registers and memory locations, we look up their cselib_val structure
1044 and return its VALUE element.
1045 Possible reasons for return 0 are: the object is volatile, or we couldn't
1046 find a register or memory location in the table and CREATE is zero. If
1047 CREATE is nonzero, table elts are created for regs and mem.
1048 N.B. this hash function returns the same hash value for RTXes that
1049 differ only in the order of operands, thus it is suitable for comparisons
1050 that take commutativity into account.
1051 If we wanted to also support associative rules, we'd have to use a different
1052 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
1053 MEMMODE indicates the mode of an enclosing MEM, and it's only
1054 used to compute autoinc values.
1055 We used to have a MODE argument for hashing for CONST_INTs, but that
1056 didn't make sense, since it caused spurious hash differences between
1057 (set (reg:SI 1) (const_int))
1058 (plus:SI (reg:SI 2) (reg:SI 1))
1060 (plus:SI (reg:SI 2) (const_int))
1061 If the mode is important in any context, it must be checked specifically
1062 in a comparison anyway, since relying on hash differences is unsafe. */
1064 static unsigned int
1065 cselib_hash_rtx (rtx x, int create, enum machine_mode memmode)
1067 cselib_val *e;
1068 int i, j;
1069 enum rtx_code code;
1070 const char *fmt;
1071 unsigned int hash = 0;
1073 code = GET_CODE (x);
1074 hash += (unsigned) code + (unsigned) GET_MODE (x);
1076 switch (code)
1078 case VALUE:
1079 e = CSELIB_VAL_PTR (x);
1080 return e->hash;
1082 case MEM:
1083 case REG:
1084 e = cselib_lookup (x, GET_MODE (x), create, memmode);
1085 if (! e)
1086 return 0;
1088 return e->hash;
1090 case DEBUG_EXPR:
1091 hash += ((unsigned) DEBUG_EXPR << 7)
1092 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
1093 return hash ? hash : (unsigned int) DEBUG_EXPR;
1095 case DEBUG_IMPLICIT_PTR:
1096 hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7)
1097 + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x));
1098 return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR;
1100 case DEBUG_PARAMETER_REF:
1101 hash += ((unsigned) DEBUG_PARAMETER_REF << 7)
1102 + DECL_UID (DEBUG_PARAMETER_REF_DECL (x));
1103 return hash ? hash : (unsigned int) DEBUG_PARAMETER_REF;
1105 case ENTRY_VALUE:
1106 /* ENTRY_VALUEs are function invariant, thus try to avoid
1107 recursing on argument if ENTRY_VALUE is one of the
1108 forms emitted by expand_debug_expr, otherwise
1109 ENTRY_VALUE hash would depend on the current value
1110 in some register or memory. */
1111 if (REG_P (ENTRY_VALUE_EXP (x)))
1112 hash += (unsigned int) REG
1113 + (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x))
1114 + (unsigned int) REGNO (ENTRY_VALUE_EXP (x));
1115 else if (MEM_P (ENTRY_VALUE_EXP (x))
1116 && REG_P (XEXP (ENTRY_VALUE_EXP (x), 0)))
1117 hash += (unsigned int) MEM
1118 + (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0))
1119 + (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0));
1120 else
1121 hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode);
1122 return hash ? hash : (unsigned int) ENTRY_VALUE;
1124 case CONST_INT:
1125 hash += ((unsigned) CONST_INT << 7) + UINTVAL (x);
1126 return hash ? hash : (unsigned int) CONST_INT;
1128 case CONST_DOUBLE:
1129 /* This is like the general case, except that it only counts
1130 the integers representing the constant. */
1131 hash += (unsigned) code + (unsigned) GET_MODE (x);
1132 if (GET_MODE (x) != VOIDmode)
1133 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
1134 else
1135 hash += ((unsigned) CONST_DOUBLE_LOW (x)
1136 + (unsigned) CONST_DOUBLE_HIGH (x));
1137 return hash ? hash : (unsigned int) CONST_DOUBLE;
1139 case CONST_FIXED:
1140 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1141 hash += fixed_hash (CONST_FIXED_VALUE (x));
1142 return hash ? hash : (unsigned int) CONST_FIXED;
1144 case CONST_VECTOR:
1146 int units;
1147 rtx elt;
1149 units = CONST_VECTOR_NUNITS (x);
1151 for (i = 0; i < units; ++i)
1153 elt = CONST_VECTOR_ELT (x, i);
1154 hash += cselib_hash_rtx (elt, 0, memmode);
1157 return hash;
1160 /* Assume there is only one rtx object for any given label. */
1161 case LABEL_REF:
1162 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1163 differences and differences between each stage's debugging dumps. */
1164 hash += (((unsigned int) LABEL_REF << 7)
1165 + CODE_LABEL_NUMBER (XEXP (x, 0)));
1166 return hash ? hash : (unsigned int) LABEL_REF;
1168 case SYMBOL_REF:
1170 /* Don't hash on the symbol's address to avoid bootstrap differences.
1171 Different hash values may cause expressions to be recorded in
1172 different orders and thus different registers to be used in the
1173 final assembler. This also avoids differences in the dump files
1174 between various stages. */
1175 unsigned int h = 0;
1176 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1178 while (*p)
1179 h += (h << 7) + *p++; /* ??? revisit */
1181 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1182 return hash ? hash : (unsigned int) SYMBOL_REF;
1185 case PRE_DEC:
1186 case PRE_INC:
1187 /* We can't compute these without knowing the MEM mode. */
1188 gcc_assert (memmode != VOIDmode);
1189 i = GET_MODE_SIZE (memmode);
1190 if (code == PRE_DEC)
1191 i = -i;
1192 /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
1193 like (mem:MEMMODE (plus (reg) (const_int I))). */
1194 hash += (unsigned) PLUS - (unsigned)code
1195 + cselib_hash_rtx (XEXP (x, 0), create, memmode)
1196 + cselib_hash_rtx (GEN_INT (i), create, memmode);
1197 return hash ? hash : 1 + (unsigned) PLUS;
1199 case PRE_MODIFY:
1200 gcc_assert (memmode != VOIDmode);
1201 return cselib_hash_rtx (XEXP (x, 1), create, memmode);
1203 case POST_DEC:
1204 case POST_INC:
1205 case POST_MODIFY:
1206 gcc_assert (memmode != VOIDmode);
1207 return cselib_hash_rtx (XEXP (x, 0), create, memmode);
1209 case PC:
1210 case CC0:
1211 case CALL:
1212 case UNSPEC_VOLATILE:
1213 return 0;
1215 case ASM_OPERANDS:
1216 if (MEM_VOLATILE_P (x))
1217 return 0;
1219 break;
1221 default:
1222 break;
1225 i = GET_RTX_LENGTH (code) - 1;
1226 fmt = GET_RTX_FORMAT (code);
1227 for (; i >= 0; i--)
1229 switch (fmt[i])
1231 case 'e':
1233 rtx tem = XEXP (x, i);
1234 unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode);
1236 if (tem_hash == 0)
1237 return 0;
1239 hash += tem_hash;
1241 break;
1242 case 'E':
1243 for (j = 0; j < XVECLEN (x, i); j++)
1245 unsigned int tem_hash
1246 = cselib_hash_rtx (XVECEXP (x, i, j), create, memmode);
1248 if (tem_hash == 0)
1249 return 0;
1251 hash += tem_hash;
1253 break;
1255 case 's':
1257 const unsigned char *p = (const unsigned char *) XSTR (x, i);
1259 if (p)
1260 while (*p)
1261 hash += *p++;
1262 break;
1265 case 'i':
1266 hash += XINT (x, i);
1267 break;
1269 case '0':
1270 case 't':
1271 /* unused */
1272 break;
1274 default:
1275 gcc_unreachable ();
1279 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
1282 /* Create a new value structure for VALUE and initialize it. The mode of the
1283 value is MODE. */
1285 static inline cselib_val *
1286 new_cselib_val (unsigned int hash, enum machine_mode mode, rtx x)
1288 cselib_val *e = (cselib_val *) pool_alloc (cselib_val_pool);
1290 gcc_assert (hash);
1291 gcc_assert (next_uid);
1293 e->hash = hash;
1294 e->uid = next_uid++;
1295 /* We use an alloc pool to allocate this RTL construct because it
1296 accounts for about 8% of the overall memory usage. We know
1297 precisely when we can have VALUE RTXen (when cselib is active)
1298 so we don't need to put them in garbage collected memory.
1299 ??? Why should a VALUE be an RTX in the first place? */
1300 e->val_rtx = (rtx) pool_alloc (value_pool);
1301 memset (e->val_rtx, 0, RTX_HDR_SIZE);
1302 PUT_CODE (e->val_rtx, VALUE);
1303 PUT_MODE (e->val_rtx, mode);
1304 CSELIB_VAL_PTR (e->val_rtx) = e;
1305 e->addr_list = 0;
1306 e->locs = 0;
1307 e->next_containing_mem = 0;
1309 if (dump_file && (dump_flags & TDF_CSELIB))
1311 fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
1312 if (flag_dump_noaddr || flag_dump_unnumbered)
1313 fputs ("# ", dump_file);
1314 else
1315 fprintf (dump_file, "%p ", (void*)e);
1316 print_rtl_single (dump_file, x);
1317 fputc ('\n', dump_file);
1320 return e;
1323 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1324 contains the data at this address. X is a MEM that represents the
1325 value. Update the two value structures to represent this situation. */
1327 static void
1328 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
1330 struct elt_loc_list *l;
1332 addr_elt = canonical_cselib_val (addr_elt);
1333 mem_elt = canonical_cselib_val (mem_elt);
1335 /* Avoid duplicates. */
1336 for (l = mem_elt->locs; l; l = l->next)
1337 if (MEM_P (l->loc)
1338 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
1340 promote_debug_loc (l);
1341 return;
1344 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
1345 new_elt_loc_list (mem_elt,
1346 replace_equiv_address_nv (x, addr_elt->val_rtx));
1347 if (mem_elt->next_containing_mem == NULL)
1349 mem_elt->next_containing_mem = first_containing_mem;
1350 first_containing_mem = mem_elt;
1354 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1355 If CREATE, make a new one if we haven't seen it before. */
1357 static cselib_val *
1358 cselib_lookup_mem (rtx x, int create)
1360 enum machine_mode mode = GET_MODE (x);
1361 enum machine_mode addr_mode;
1362 cselib_val **slot;
1363 cselib_val *addr;
1364 cselib_val *mem_elt;
1365 struct elt_list *l;
1367 if (MEM_VOLATILE_P (x) || mode == BLKmode
1368 || !cselib_record_memory
1369 || (FLOAT_MODE_P (mode) && flag_float_store))
1370 return 0;
1372 addr_mode = GET_MODE (XEXP (x, 0));
1373 if (addr_mode == VOIDmode)
1374 addr_mode = Pmode;
1376 /* Look up the value for the address. */
1377 addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode);
1378 if (! addr)
1379 return 0;
1381 addr = canonical_cselib_val (addr);
1382 /* Find a value that describes a value of our mode at that address. */
1383 for (l = addr->addr_list; l; l = l->next)
1384 if (GET_MODE (l->elt->val_rtx) == mode)
1386 promote_debug_loc (l->elt->locs);
1387 return l->elt;
1390 if (! create)
1391 return 0;
1393 mem_elt = new_cselib_val (next_uid, mode, x);
1394 add_mem_for_addr (addr, mem_elt, x);
1395 slot = cselib_find_slot (mode, x, mem_elt->hash, INSERT, VOIDmode);
1396 *slot = mem_elt;
1397 return mem_elt;
1400 /* Search through the possible substitutions in P. We prefer a non reg
1401 substitution because this allows us to expand the tree further. If
1402 we find, just a reg, take the lowest regno. There may be several
1403 non-reg results, we just take the first one because they will all
1404 expand to the same place. */
1406 static rtx
1407 expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
1408 int max_depth)
1410 rtx reg_result = NULL;
1411 unsigned int regno = UINT_MAX;
1412 struct elt_loc_list *p_in = p;
1414 for (; p; p = p->next)
1416 /* Return these right away to avoid returning stack pointer based
1417 expressions for frame pointer and vice versa, which is something
1418 that would confuse DSE. See the comment in cselib_expand_value_rtx_1
1419 for more details. */
1420 if (REG_P (p->loc)
1421 && (REGNO (p->loc) == STACK_POINTER_REGNUM
1422 || REGNO (p->loc) == FRAME_POINTER_REGNUM
1423 || REGNO (p->loc) == HARD_FRAME_POINTER_REGNUM
1424 || REGNO (p->loc) == cfa_base_preserved_regno))
1425 return p->loc;
1426 /* Avoid infinite recursion trying to expand a reg into a
1427 the same reg. */
1428 if ((REG_P (p->loc))
1429 && (REGNO (p->loc) < regno)
1430 && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
1432 reg_result = p->loc;
1433 regno = REGNO (p->loc);
1435 /* Avoid infinite recursion and do not try to expand the
1436 value. */
1437 else if (GET_CODE (p->loc) == VALUE
1438 && CSELIB_VAL_PTR (p->loc)->locs == p_in)
1439 continue;
1440 else if (!REG_P (p->loc))
1442 rtx result, note;
1443 if (dump_file && (dump_flags & TDF_CSELIB))
1445 print_inline_rtx (dump_file, p->loc, 0);
1446 fprintf (dump_file, "\n");
1448 if (GET_CODE (p->loc) == LO_SUM
1449 && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
1450 && p->setting_insn
1451 && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
1452 && XEXP (note, 0) == XEXP (p->loc, 1))
1453 return XEXP (p->loc, 1);
1454 result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
1455 if (result)
1456 return result;
1461 if (regno != UINT_MAX)
1463 rtx result;
1464 if (dump_file && (dump_flags & TDF_CSELIB))
1465 fprintf (dump_file, "r%d\n", regno);
1467 result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
1468 if (result)
1469 return result;
1472 if (dump_file && (dump_flags & TDF_CSELIB))
1474 if (reg_result)
1476 print_inline_rtx (dump_file, reg_result, 0);
1477 fprintf (dump_file, "\n");
1479 else
1480 fprintf (dump_file, "NULL\n");
1482 return reg_result;
1486 /* Forward substitute and expand an expression out to its roots.
1487 This is the opposite of common subexpression. Because local value
1488 numbering is such a weak optimization, the expanded expression is
1489 pretty much unique (not from a pointer equals point of view but
1490 from a tree shape point of view.
1492 This function returns NULL if the expansion fails. The expansion
1493 will fail if there is no value number for one of the operands or if
1494 one of the operands has been overwritten between the current insn
1495 and the beginning of the basic block. For instance x has no
1496 expansion in:
1498 r1 <- r1 + 3
1499 x <- r1 + 8
1501 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1502 It is clear on return. */
1505 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
1507 struct expand_value_data evd;
1509 evd.regs_active = regs_active;
1510 evd.callback = NULL;
1511 evd.callback_arg = NULL;
1512 evd.dummy = false;
1514 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1517 /* Same as cselib_expand_value_rtx, but using a callback to try to
1518 resolve some expressions. The CB function should return ORIG if it
1519 can't or does not want to deal with a certain RTX. Any other
1520 return value, including NULL, will be used as the expansion for
1521 VALUE, without any further changes. */
1524 cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1525 cselib_expand_callback cb, void *data)
1527 struct expand_value_data evd;
1529 evd.regs_active = regs_active;
1530 evd.callback = cb;
1531 evd.callback_arg = data;
1532 evd.dummy = false;
1534 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1537 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1538 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1539 would return NULL or non-NULL, without allocating new rtx. */
1541 bool
1542 cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1543 cselib_expand_callback cb, void *data)
1545 struct expand_value_data evd;
1547 evd.regs_active = regs_active;
1548 evd.callback = cb;
1549 evd.callback_arg = data;
1550 evd.dummy = true;
1552 return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
1555 /* Internal implementation of cselib_expand_value_rtx and
1556 cselib_expand_value_rtx_cb. */
1558 static rtx
1559 cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
1560 int max_depth)
1562 rtx copy, scopy;
1563 int i, j;
1564 RTX_CODE code;
1565 const char *format_ptr;
1566 enum machine_mode mode;
1568 code = GET_CODE (orig);
1570 /* For the context of dse, if we end up expand into a huge tree, we
1571 will not have a useful address, so we might as well just give up
1572 quickly. */
1573 if (max_depth <= 0)
1574 return NULL;
1576 switch (code)
1578 case REG:
1580 struct elt_list *l = REG_VALUES (REGNO (orig));
1582 if (l && l->elt == NULL)
1583 l = l->next;
1584 for (; l; l = l->next)
1585 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
1587 rtx result;
1588 unsigned regno = REGNO (orig);
1590 /* The only thing that we are not willing to do (this
1591 is requirement of dse and if others potential uses
1592 need this function we should add a parm to control
1593 it) is that we will not substitute the
1594 STACK_POINTER_REGNUM, FRAME_POINTER or the
1595 HARD_FRAME_POINTER.
1597 These expansions confuses the code that notices that
1598 stores into the frame go dead at the end of the
1599 function and that the frame is not effected by calls
1600 to subroutines. If you allow the
1601 STACK_POINTER_REGNUM substitution, then dse will
1602 think that parameter pushing also goes dead which is
1603 wrong. If you allow the FRAME_POINTER or the
1604 HARD_FRAME_POINTER then you lose the opportunity to
1605 make the frame assumptions. */
1606 if (regno == STACK_POINTER_REGNUM
1607 || regno == FRAME_POINTER_REGNUM
1608 || regno == HARD_FRAME_POINTER_REGNUM
1609 || regno == cfa_base_preserved_regno)
1610 return orig;
1612 bitmap_set_bit (evd->regs_active, regno);
1614 if (dump_file && (dump_flags & TDF_CSELIB))
1615 fprintf (dump_file, "expanding: r%d into: ", regno);
1617 result = expand_loc (l->elt->locs, evd, max_depth);
1618 bitmap_clear_bit (evd->regs_active, regno);
1620 if (result)
1621 return result;
1622 else
1623 return orig;
1627 CASE_CONST_ANY:
1628 case SYMBOL_REF:
1629 case CODE_LABEL:
1630 case PC:
1631 case CC0:
1632 case SCRATCH:
1633 /* SCRATCH must be shared because they represent distinct values. */
1634 return orig;
1635 case CLOBBER:
1636 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1637 return orig;
1638 break;
1640 case CONST:
1641 if (shared_const_p (orig))
1642 return orig;
1643 break;
1645 case SUBREG:
1647 rtx subreg;
1649 if (evd->callback)
1651 subreg = evd->callback (orig, evd->regs_active, max_depth,
1652 evd->callback_arg);
1653 if (subreg != orig)
1654 return subreg;
1657 subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
1658 max_depth - 1);
1659 if (!subreg)
1660 return NULL;
1661 scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1662 GET_MODE (SUBREG_REG (orig)),
1663 SUBREG_BYTE (orig));
1664 if (scopy == NULL
1665 || (GET_CODE (scopy) == SUBREG
1666 && !REG_P (SUBREG_REG (scopy))
1667 && !MEM_P (SUBREG_REG (scopy))))
1668 return NULL;
1670 return scopy;
1673 case VALUE:
1675 rtx result;
1677 if (dump_file && (dump_flags & TDF_CSELIB))
1679 fputs ("\nexpanding ", dump_file);
1680 print_rtl_single (dump_file, orig);
1681 fputs (" into...", dump_file);
1684 if (evd->callback)
1686 result = evd->callback (orig, evd->regs_active, max_depth,
1687 evd->callback_arg);
1689 if (result != orig)
1690 return result;
1693 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
1694 return result;
1697 case DEBUG_EXPR:
1698 if (evd->callback)
1699 return evd->callback (orig, evd->regs_active, max_depth,
1700 evd->callback_arg);
1701 return orig;
1703 default:
1704 break;
1707 /* Copy the various flags, fields, and other information. We assume
1708 that all fields need copying, and then clear the fields that should
1709 not be copied. That is the sensible default behavior, and forces
1710 us to explicitly document why we are *not* copying a flag. */
1711 if (evd->dummy)
1712 copy = NULL;
1713 else
1714 copy = shallow_copy_rtx (orig);
1716 format_ptr = GET_RTX_FORMAT (code);
1718 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1719 switch (*format_ptr++)
1721 case 'e':
1722 if (XEXP (orig, i) != NULL)
1724 rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
1725 max_depth - 1);
1726 if (!result)
1727 return NULL;
1728 if (copy)
1729 XEXP (copy, i) = result;
1731 break;
1733 case 'E':
1734 case 'V':
1735 if (XVEC (orig, i) != NULL)
1737 if (copy)
1738 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1739 for (j = 0; j < XVECLEN (orig, i); j++)
1741 rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
1742 evd, max_depth - 1);
1743 if (!result)
1744 return NULL;
1745 if (copy)
1746 XVECEXP (copy, i, j) = result;
1749 break;
1751 case 't':
1752 case 'w':
1753 case 'i':
1754 case 's':
1755 case 'S':
1756 case 'T':
1757 case 'u':
1758 case 'B':
1759 case '0':
1760 /* These are left unchanged. */
1761 break;
1763 default:
1764 gcc_unreachable ();
1767 if (evd->dummy)
1768 return orig;
1770 mode = GET_MODE (copy);
1771 /* If an operand has been simplified into CONST_INT, which doesn't
1772 have a mode and the mode isn't derivable from whole rtx's mode,
1773 try simplify_*_operation first with mode from original's operand
1774 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1775 scopy = copy;
1776 switch (GET_RTX_CLASS (code))
1778 case RTX_UNARY:
1779 if (CONST_INT_P (XEXP (copy, 0))
1780 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1782 scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
1783 GET_MODE (XEXP (orig, 0)));
1784 if (scopy)
1785 return scopy;
1787 break;
1788 case RTX_COMM_ARITH:
1789 case RTX_BIN_ARITH:
1790 /* These expressions can derive operand modes from the whole rtx's mode. */
1791 break;
1792 case RTX_TERNARY:
1793 case RTX_BITFIELD_OPS:
1794 if (CONST_INT_P (XEXP (copy, 0))
1795 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1797 scopy = simplify_ternary_operation (code, mode,
1798 GET_MODE (XEXP (orig, 0)),
1799 XEXP (copy, 0), XEXP (copy, 1),
1800 XEXP (copy, 2));
1801 if (scopy)
1802 return scopy;
1804 break;
1805 case RTX_COMPARE:
1806 case RTX_COMM_COMPARE:
1807 if (CONST_INT_P (XEXP (copy, 0))
1808 && GET_MODE (XEXP (copy, 1)) == VOIDmode
1809 && (GET_MODE (XEXP (orig, 0)) != VOIDmode
1810 || GET_MODE (XEXP (orig, 1)) != VOIDmode))
1812 scopy = simplify_relational_operation (code, mode,
1813 (GET_MODE (XEXP (orig, 0))
1814 != VOIDmode)
1815 ? GET_MODE (XEXP (orig, 0))
1816 : GET_MODE (XEXP (orig, 1)),
1817 XEXP (copy, 0),
1818 XEXP (copy, 1));
1819 if (scopy)
1820 return scopy;
1822 break;
1823 default:
1824 break;
1826 scopy = simplify_rtx (copy);
1827 if (scopy)
1828 return scopy;
1829 return copy;
1832 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1833 with VALUE expressions. This way, it becomes independent of changes
1834 to registers and memory.
1835 X isn't actually modified; if modifications are needed, new rtl is
1836 allocated. However, the return value can share rtl with X.
1837 If X is within a MEM, MEMMODE must be the mode of the MEM. */
1840 cselib_subst_to_values (rtx x, enum machine_mode memmode)
1842 enum rtx_code code = GET_CODE (x);
1843 const char *fmt = GET_RTX_FORMAT (code);
1844 cselib_val *e;
1845 struct elt_list *l;
1846 rtx copy = x;
1847 int i;
1849 switch (code)
1851 case REG:
1852 l = REG_VALUES (REGNO (x));
1853 if (l && l->elt == NULL)
1854 l = l->next;
1855 for (; l; l = l->next)
1856 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1857 return l->elt->val_rtx;
1859 gcc_unreachable ();
1861 case MEM:
1862 e = cselib_lookup_mem (x, 0);
1863 /* This used to happen for autoincrements, but we deal with them
1864 properly now. Remove the if stmt for the next release. */
1865 if (! e)
1867 /* Assign a value that doesn't match any other. */
1868 e = new_cselib_val (next_uid, GET_MODE (x), x);
1870 return e->val_rtx;
1872 case ENTRY_VALUE:
1873 e = cselib_lookup (x, GET_MODE (x), 0, memmode);
1874 if (! e)
1875 break;
1876 return e->val_rtx;
1878 CASE_CONST_ANY:
1879 return x;
1881 case PRE_DEC:
1882 case PRE_INC:
1883 gcc_assert (memmode != VOIDmode);
1884 i = GET_MODE_SIZE (memmode);
1885 if (code == PRE_DEC)
1886 i = -i;
1887 return cselib_subst_to_values (plus_constant (GET_MODE (x),
1888 XEXP (x, 0), i),
1889 memmode);
1891 case PRE_MODIFY:
1892 gcc_assert (memmode != VOIDmode);
1893 return cselib_subst_to_values (XEXP (x, 1), memmode);
1895 case POST_DEC:
1896 case POST_INC:
1897 case POST_MODIFY:
1898 gcc_assert (memmode != VOIDmode);
1899 return cselib_subst_to_values (XEXP (x, 0), memmode);
1901 default:
1902 break;
1905 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1907 if (fmt[i] == 'e')
1909 rtx t = cselib_subst_to_values (XEXP (x, i), memmode);
1911 if (t != XEXP (x, i))
1913 if (x == copy)
1914 copy = shallow_copy_rtx (x);
1915 XEXP (copy, i) = t;
1918 else if (fmt[i] == 'E')
1920 int j;
1922 for (j = 0; j < XVECLEN (x, i); j++)
1924 rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode);
1926 if (t != XVECEXP (x, i, j))
1928 if (XVEC (x, i) == XVEC (copy, i))
1930 if (x == copy)
1931 copy = shallow_copy_rtx (x);
1932 XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
1934 XVECEXP (copy, i, j) = t;
1940 return copy;
1943 /* Wrapper for cselib_subst_to_values, that indicates X is in INSN. */
1946 cselib_subst_to_values_from_insn (rtx x, enum machine_mode memmode, rtx insn)
1948 rtx ret;
1949 gcc_assert (!cselib_current_insn);
1950 cselib_current_insn = insn;
1951 ret = cselib_subst_to_values (x, memmode);
1952 cselib_current_insn = NULL;
1953 return ret;
1956 /* Look up the rtl expression X in our tables and return the value it
1957 has. If CREATE is zero, we return NULL if we don't know the value.
1958 Otherwise, we create a new one if possible, using mode MODE if X
1959 doesn't have a mode (i.e. because it's a constant). When X is part
1960 of an address, MEMMODE should be the mode of the enclosing MEM if
1961 we're tracking autoinc expressions. */
1963 static cselib_val *
1964 cselib_lookup_1 (rtx x, enum machine_mode mode,
1965 int create, enum machine_mode memmode)
1967 cselib_val **slot;
1968 cselib_val *e;
1969 unsigned int hashval;
1971 if (GET_MODE (x) != VOIDmode)
1972 mode = GET_MODE (x);
1974 if (GET_CODE (x) == VALUE)
1975 return CSELIB_VAL_PTR (x);
1977 if (REG_P (x))
1979 struct elt_list *l;
1980 unsigned int i = REGNO (x);
1982 l = REG_VALUES (i);
1983 if (l && l->elt == NULL)
1984 l = l->next;
1985 for (; l; l = l->next)
1986 if (mode == GET_MODE (l->elt->val_rtx))
1988 promote_debug_loc (l->elt->locs);
1989 return l->elt;
1992 if (! create)
1993 return 0;
1995 if (i < FIRST_PSEUDO_REGISTER)
1997 unsigned int n = hard_regno_nregs[i][mode];
1999 if (n > max_value_regs)
2000 max_value_regs = n;
2003 e = new_cselib_val (next_uid, GET_MODE (x), x);
2004 new_elt_loc_list (e, x);
2005 if (REG_VALUES (i) == 0)
2007 /* Maintain the invariant that the first entry of
2008 REG_VALUES, if present, must be the value used to set the
2009 register, or NULL. */
2010 used_regs[n_used_regs++] = i;
2011 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
2013 else if (cselib_preserve_constants
2014 && GET_MODE_CLASS (mode) == MODE_INT)
2016 /* During var-tracking, try harder to find equivalences
2017 for SUBREGs. If a setter sets say a DImode register
2018 and user uses that register only in SImode, add a lowpart
2019 subreg location. */
2020 struct elt_list *lwider = NULL;
2021 l = REG_VALUES (i);
2022 if (l && l->elt == NULL)
2023 l = l->next;
2024 for (; l; l = l->next)
2025 if (GET_MODE_CLASS (GET_MODE (l->elt->val_rtx)) == MODE_INT
2026 && GET_MODE_SIZE (GET_MODE (l->elt->val_rtx))
2027 > GET_MODE_SIZE (mode)
2028 && (lwider == NULL
2029 || GET_MODE_SIZE (GET_MODE (l->elt->val_rtx))
2030 < GET_MODE_SIZE (GET_MODE (lwider->elt->val_rtx))))
2032 struct elt_loc_list *el;
2033 if (i < FIRST_PSEUDO_REGISTER
2034 && hard_regno_nregs[i][GET_MODE (l->elt->val_rtx)] != 1)
2035 continue;
2036 for (el = l->elt->locs; el; el = el->next)
2037 if (!REG_P (el->loc))
2038 break;
2039 if (el)
2040 lwider = l;
2042 if (lwider)
2044 rtx sub = lowpart_subreg (mode, lwider->elt->val_rtx,
2045 GET_MODE (lwider->elt->val_rtx));
2046 if (sub)
2047 new_elt_loc_list (e, sub);
2050 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
2051 slot = cselib_find_slot (mode, x, e->hash, INSERT, memmode);
2052 *slot = e;
2053 return e;
2056 if (MEM_P (x))
2057 return cselib_lookup_mem (x, create);
2059 hashval = cselib_hash_rtx (x, create, memmode);
2060 /* Can't even create if hashing is not possible. */
2061 if (! hashval)
2062 return 0;
2064 slot = cselib_find_slot (mode, x, hashval,
2065 create ? INSERT : NO_INSERT, memmode);
2066 if (slot == 0)
2067 return 0;
2069 e = (cselib_val *) *slot;
2070 if (e)
2071 return e;
2073 e = new_cselib_val (hashval, mode, x);
2075 /* We have to fill the slot before calling cselib_subst_to_values:
2076 the hash table is inconsistent until we do so, and
2077 cselib_subst_to_values will need to do lookups. */
2078 *slot = e;
2079 new_elt_loc_list (e, cselib_subst_to_values (x, memmode));
2080 return e;
2083 /* Wrapper for cselib_lookup, that indicates X is in INSN. */
2085 cselib_val *
2086 cselib_lookup_from_insn (rtx x, enum machine_mode mode,
2087 int create, enum machine_mode memmode, rtx insn)
2089 cselib_val *ret;
2091 gcc_assert (!cselib_current_insn);
2092 cselib_current_insn = insn;
2094 ret = cselib_lookup (x, mode, create, memmode);
2096 cselib_current_insn = NULL;
2098 return ret;
2101 /* Wrapper for cselib_lookup_1, that logs the lookup result and
2102 maintains invariants related with debug insns. */
2104 cselib_val *
2105 cselib_lookup (rtx x, enum machine_mode mode,
2106 int create, enum machine_mode memmode)
2108 cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode);
2110 /* ??? Should we return NULL if we're not to create an entry, the
2111 found loc is a debug loc and cselib_current_insn is not DEBUG?
2112 If so, we should also avoid converting val to non-DEBUG; probably
2113 easiest setting cselib_current_insn to NULL before the call
2114 above. */
2116 if (dump_file && (dump_flags & TDF_CSELIB))
2118 fputs ("cselib lookup ", dump_file);
2119 print_inline_rtx (dump_file, x, 2);
2120 fprintf (dump_file, " => %u:%u\n",
2121 ret ? ret->uid : 0,
2122 ret ? ret->hash : 0);
2125 return ret;
2128 /* Invalidate any entries in reg_values that overlap REGNO. This is called
2129 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
2130 is used to determine how many hard registers are being changed. If MODE
2131 is VOIDmode, then only REGNO is being changed; this is used when
2132 invalidating call clobbered registers across a call. */
2134 static void
2135 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
2137 unsigned int endregno;
2138 unsigned int i;
2140 /* If we see pseudos after reload, something is _wrong_. */
2141 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
2142 || reg_renumber[regno] < 0);
2144 /* Determine the range of registers that must be invalidated. For
2145 pseudos, only REGNO is affected. For hard regs, we must take MODE
2146 into account, and we must also invalidate lower register numbers
2147 if they contain values that overlap REGNO. */
2148 if (regno < FIRST_PSEUDO_REGISTER)
2150 gcc_assert (mode != VOIDmode);
2152 if (regno < max_value_regs)
2153 i = 0;
2154 else
2155 i = regno - max_value_regs;
2157 endregno = end_hard_regno (mode, regno);
2159 else
2161 i = regno;
2162 endregno = regno + 1;
2165 for (; i < endregno; i++)
2167 struct elt_list **l = &REG_VALUES (i);
2169 /* Go through all known values for this reg; if it overlaps the range
2170 we're invalidating, remove the value. */
2171 while (*l)
2173 cselib_val *v = (*l)->elt;
2174 bool had_locs;
2175 rtx setting_insn;
2176 struct elt_loc_list **p;
2177 unsigned int this_last = i;
2179 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
2180 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
2182 if (this_last < regno || v == NULL
2183 || (v == cfa_base_preserved_val
2184 && i == cfa_base_preserved_regno))
2186 l = &(*l)->next;
2187 continue;
2190 /* We have an overlap. */
2191 if (*l == REG_VALUES (i))
2193 /* Maintain the invariant that the first entry of
2194 REG_VALUES, if present, must be the value used to set
2195 the register, or NULL. This is also nice because
2196 then we won't push the same regno onto user_regs
2197 multiple times. */
2198 (*l)->elt = NULL;
2199 l = &(*l)->next;
2201 else
2202 unchain_one_elt_list (l);
2204 v = canonical_cselib_val (v);
2206 had_locs = v->locs != NULL;
2207 setting_insn = v->locs ? v->locs->setting_insn : NULL;
2209 /* Now, we clear the mapping from value to reg. It must exist, so
2210 this code will crash intentionally if it doesn't. */
2211 for (p = &v->locs; ; p = &(*p)->next)
2213 rtx x = (*p)->loc;
2215 if (REG_P (x) && REGNO (x) == i)
2217 unchain_one_elt_loc_list (p);
2218 break;
2222 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2224 if (setting_insn && DEBUG_INSN_P (setting_insn))
2225 n_useless_debug_values++;
2226 else
2227 n_useless_values++;
2233 /* Invalidate any locations in the table which are changed because of a
2234 store to MEM_RTX. If this is called because of a non-const call
2235 instruction, MEM_RTX is (mem:BLK const0_rtx). */
2237 static void
2238 cselib_invalidate_mem (rtx mem_rtx)
2240 cselib_val **vp, *v, *next;
2241 int num_mems = 0;
2242 rtx mem_addr;
2244 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
2245 mem_rtx = canon_rtx (mem_rtx);
2247 vp = &first_containing_mem;
2248 for (v = *vp; v != &dummy_val; v = next)
2250 bool has_mem = false;
2251 struct elt_loc_list **p = &v->locs;
2252 bool had_locs = v->locs != NULL;
2253 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
2255 while (*p)
2257 rtx x = (*p)->loc;
2258 cselib_val *addr;
2259 struct elt_list **mem_chain;
2261 /* MEMs may occur in locations only at the top level; below
2262 that every MEM or REG is substituted by its VALUE. */
2263 if (!MEM_P (x))
2265 p = &(*p)->next;
2266 continue;
2268 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
2269 && ! canon_anti_dependence (x, false, mem_rtx,
2270 GET_MODE (mem_rtx), mem_addr))
2272 has_mem = true;
2273 num_mems++;
2274 p = &(*p)->next;
2275 continue;
2278 /* This one overlaps. */
2279 /* We must have a mapping from this MEM's address to the
2280 value (E). Remove that, too. */
2281 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x));
2282 addr = canonical_cselib_val (addr);
2283 gcc_checking_assert (v == canonical_cselib_val (v));
2284 mem_chain = &addr->addr_list;
2285 for (;;)
2287 cselib_val *canon = canonical_cselib_val ((*mem_chain)->elt);
2289 if (canon == v)
2291 unchain_one_elt_list (mem_chain);
2292 break;
2295 /* Record canonicalized elt. */
2296 (*mem_chain)->elt = canon;
2298 mem_chain = &(*mem_chain)->next;
2301 unchain_one_elt_loc_list (p);
2304 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2306 if (setting_insn && DEBUG_INSN_P (setting_insn))
2307 n_useless_debug_values++;
2308 else
2309 n_useless_values++;
2312 next = v->next_containing_mem;
2313 if (has_mem)
2315 *vp = v;
2316 vp = &(*vp)->next_containing_mem;
2318 else
2319 v->next_containing_mem = NULL;
2321 *vp = &dummy_val;
2324 /* Invalidate DEST, which is being assigned to or clobbered. */
2326 void
2327 cselib_invalidate_rtx (rtx dest)
2329 while (GET_CODE (dest) == SUBREG
2330 || GET_CODE (dest) == ZERO_EXTRACT
2331 || GET_CODE (dest) == STRICT_LOW_PART)
2332 dest = XEXP (dest, 0);
2334 if (REG_P (dest))
2335 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
2336 else if (MEM_P (dest))
2337 cselib_invalidate_mem (dest);
2340 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
2342 static void
2343 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
2344 void *data ATTRIBUTE_UNUSED)
2346 cselib_invalidate_rtx (dest);
2349 /* Record the result of a SET instruction. DEST is being set; the source
2350 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
2351 describes its address. */
2353 static void
2354 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
2356 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
2358 if (src_elt == 0 || side_effects_p (dest))
2359 return;
2361 if (dreg >= 0)
2363 if (dreg < FIRST_PSEUDO_REGISTER)
2365 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
2367 if (n > max_value_regs)
2368 max_value_regs = n;
2371 if (REG_VALUES (dreg) == 0)
2373 used_regs[n_used_regs++] = dreg;
2374 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
2376 else
2378 /* The register should have been invalidated. */
2379 gcc_assert (REG_VALUES (dreg)->elt == 0);
2380 REG_VALUES (dreg)->elt = src_elt;
2383 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2384 n_useless_values--;
2385 new_elt_loc_list (src_elt, dest);
2387 else if (MEM_P (dest) && dest_addr_elt != 0
2388 && cselib_record_memory)
2390 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2391 n_useless_values--;
2392 add_mem_for_addr (dest_addr_elt, src_elt, dest);
2396 /* Make ELT and X's VALUE equivalent to each other at INSN. */
2398 void
2399 cselib_add_permanent_equiv (cselib_val *elt, rtx x, rtx insn)
2401 cselib_val *nelt;
2402 rtx save_cselib_current_insn = cselib_current_insn;
2404 gcc_checking_assert (elt);
2405 gcc_checking_assert (PRESERVED_VALUE_P (elt->val_rtx));
2406 gcc_checking_assert (!side_effects_p (x));
2408 cselib_current_insn = insn;
2410 nelt = cselib_lookup (x, GET_MODE (elt->val_rtx), 1, VOIDmode);
2412 if (nelt != elt)
2414 cselib_any_perm_equivs = true;
2416 if (!PRESERVED_VALUE_P (nelt->val_rtx))
2417 cselib_preserve_value (nelt);
2419 new_elt_loc_list (nelt, elt->val_rtx);
2422 cselib_current_insn = save_cselib_current_insn;
2425 /* Return TRUE if any permanent equivalences have been recorded since
2426 the table was last initialized. */
2427 bool
2428 cselib_have_permanent_equivalences (void)
2430 return cselib_any_perm_equivs;
2433 /* There is no good way to determine how many elements there can be
2434 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2435 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2437 struct cselib_record_autoinc_data
2439 struct cselib_set *sets;
2440 int n_sets;
2443 /* Callback for for_each_inc_dec. Records in ARG the SETs implied by
2444 autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */
2446 static int
2447 cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED,
2448 rtx dest, rtx src, rtx srcoff, void *arg)
2450 struct cselib_record_autoinc_data *data;
2451 data = (struct cselib_record_autoinc_data *)arg;
2453 data->sets[data->n_sets].dest = dest;
2455 if (srcoff)
2456 data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff);
2457 else
2458 data->sets[data->n_sets].src = src;
2460 data->n_sets++;
2462 return -1;
2465 /* Record the effects of any sets and autoincs in INSN. */
2466 static void
2467 cselib_record_sets (rtx insn)
2469 int n_sets = 0;
2470 int i;
2471 struct cselib_set sets[MAX_SETS];
2472 rtx body = PATTERN (insn);
2473 rtx cond = 0;
2474 int n_sets_before_autoinc;
2475 struct cselib_record_autoinc_data data;
2477 body = PATTERN (insn);
2478 if (GET_CODE (body) == COND_EXEC)
2480 cond = COND_EXEC_TEST (body);
2481 body = COND_EXEC_CODE (body);
2484 /* Find all sets. */
2485 if (GET_CODE (body) == SET)
2487 sets[0].src = SET_SRC (body);
2488 sets[0].dest = SET_DEST (body);
2489 n_sets = 1;
2491 else if (GET_CODE (body) == PARALLEL)
2493 /* Look through the PARALLEL and record the values being
2494 set, if possible. Also handle any CLOBBERs. */
2495 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2497 rtx x = XVECEXP (body, 0, i);
2499 if (GET_CODE (x) == SET)
2501 sets[n_sets].src = SET_SRC (x);
2502 sets[n_sets].dest = SET_DEST (x);
2503 n_sets++;
2508 if (n_sets == 1
2509 && MEM_P (sets[0].src)
2510 && !cselib_record_memory
2511 && MEM_READONLY_P (sets[0].src))
2513 rtx note = find_reg_equal_equiv_note (insn);
2515 if (note && CONSTANT_P (XEXP (note, 0)))
2516 sets[0].src = XEXP (note, 0);
2519 data.sets = sets;
2520 data.n_sets = n_sets_before_autoinc = n_sets;
2521 for_each_inc_dec (&insn, cselib_record_autoinc_cb, &data);
2522 n_sets = data.n_sets;
2524 /* Look up the values that are read. Do this before invalidating the
2525 locations that are written. */
2526 for (i = 0; i < n_sets; i++)
2528 rtx dest = sets[i].dest;
2530 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2531 the low part after invalidating any knowledge about larger modes. */
2532 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
2533 sets[i].dest = dest = XEXP (dest, 0);
2535 /* We don't know how to record anything but REG or MEM. */
2536 if (REG_P (dest)
2537 || (MEM_P (dest) && cselib_record_memory))
2539 rtx src = sets[i].src;
2540 if (cond)
2541 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
2542 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode);
2543 if (MEM_P (dest))
2545 enum machine_mode address_mode = get_address_mode (dest);
2547 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
2548 address_mode, 1,
2549 GET_MODE (dest));
2551 else
2552 sets[i].dest_addr_elt = 0;
2556 if (cselib_record_sets_hook)
2557 cselib_record_sets_hook (insn, sets, n_sets);
2559 /* Invalidate all locations written by this insn. Note that the elts we
2560 looked up in the previous loop aren't affected, just some of their
2561 locations may go away. */
2562 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
2564 for (i = n_sets_before_autoinc; i < n_sets; i++)
2565 cselib_invalidate_rtx (sets[i].dest);
2567 /* If this is an asm, look for duplicate sets. This can happen when the
2568 user uses the same value as an output multiple times. This is valid
2569 if the outputs are not actually used thereafter. Treat this case as
2570 if the value isn't actually set. We do this by smashing the destination
2571 to pc_rtx, so that we won't record the value later. */
2572 if (n_sets >= 2 && asm_noperands (body) >= 0)
2574 for (i = 0; i < n_sets; i++)
2576 rtx dest = sets[i].dest;
2577 if (REG_P (dest) || MEM_P (dest))
2579 int j;
2580 for (j = i + 1; j < n_sets; j++)
2581 if (rtx_equal_p (dest, sets[j].dest))
2583 sets[i].dest = pc_rtx;
2584 sets[j].dest = pc_rtx;
2590 /* Now enter the equivalences in our tables. */
2591 for (i = 0; i < n_sets; i++)
2593 rtx dest = sets[i].dest;
2594 if (REG_P (dest)
2595 || (MEM_P (dest) && cselib_record_memory))
2596 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
2600 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
2602 bool
2603 fp_setter_insn (rtx insn)
2605 rtx expr, pat = NULL_RTX;
2607 if (!RTX_FRAME_RELATED_P (insn))
2608 return false;
2610 expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
2611 if (expr)
2612 pat = XEXP (expr, 0);
2613 if (!modified_in_p (hard_frame_pointer_rtx, pat ? pat : insn))
2614 return false;
2616 /* Don't return true for frame pointer restores in the epilogue. */
2617 if (find_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx))
2618 return false;
2619 return true;
2622 /* Record the effects of INSN. */
2624 void
2625 cselib_process_insn (rtx insn)
2627 int i;
2628 rtx x;
2630 cselib_current_insn = insn;
2632 /* Forget everything at a CODE_LABEL or a setjmp. */
2633 if ((LABEL_P (insn)
2634 || (CALL_P (insn)
2635 && find_reg_note (insn, REG_SETJMP, NULL)))
2636 && !cselib_preserve_constants)
2638 cselib_reset_table (next_uid);
2639 cselib_current_insn = NULL_RTX;
2640 return;
2643 if (! INSN_P (insn))
2645 cselib_current_insn = NULL_RTX;
2646 return;
2649 /* If this is a call instruction, forget anything stored in a
2650 call clobbered register, or, if this is not a const call, in
2651 memory. */
2652 if (CALL_P (insn))
2654 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2655 if (call_used_regs[i]
2656 || (REG_VALUES (i) && REG_VALUES (i)->elt
2657 && HARD_REGNO_CALL_PART_CLOBBERED (i,
2658 GET_MODE (REG_VALUES (i)->elt->val_rtx))))
2659 cselib_invalidate_regno (i, reg_raw_mode[i]);
2661 /* Since it is not clear how cselib is going to be used, be
2662 conservative here and treat looping pure or const functions
2663 as if they were regular functions. */
2664 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
2665 || !(RTL_CONST_OR_PURE_CALL_P (insn)))
2666 cselib_invalidate_mem (callmem);
2669 cselib_record_sets (insn);
2671 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2672 after we have processed the insn. */
2673 if (CALL_P (insn))
2675 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2676 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
2677 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
2678 /* Flush evertything on setjmp. */
2679 if (cselib_preserve_constants
2680 && find_reg_note (insn, REG_SETJMP, NULL))
2682 cselib_preserve_only_values ();
2683 cselib_reset_table (next_uid);
2687 /* On setter of the hard frame pointer if frame_pointer_needed,
2688 invalidate stack_pointer_rtx, so that sp and {,h}fp based
2689 VALUEs are distinct. */
2690 if (reload_completed
2691 && frame_pointer_needed
2692 && fp_setter_insn (insn))
2693 cselib_invalidate_rtx (stack_pointer_rtx);
2695 cselib_current_insn = NULL_RTX;
2697 if (n_useless_values > MAX_USELESS_VALUES
2698 /* remove_useless_values is linear in the hash table size. Avoid
2699 quadratic behavior for very large hashtables with very few
2700 useless elements. */
2701 && ((unsigned int)n_useless_values
2702 > (cselib_hash_table.elements () - n_debug_values) / 4))
2703 remove_useless_values ();
2706 /* Initialize cselib for one pass. The caller must also call
2707 init_alias_analysis. */
2709 void
2710 cselib_init (int record_what)
2712 elt_list_pool = create_alloc_pool ("elt_list",
2713 sizeof (struct elt_list), 10);
2714 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
2715 sizeof (struct elt_loc_list), 10);
2716 cselib_val_pool = create_alloc_pool ("cselib_val_list",
2717 sizeof (cselib_val), 10);
2718 value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
2719 cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
2720 cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
2721 cselib_any_perm_equivs = false;
2723 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2724 see canon_true_dependence. This is only created once. */
2725 if (! callmem)
2726 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
2728 cselib_nregs = max_reg_num ();
2730 /* We preserve reg_values to allow expensive clearing of the whole thing.
2731 Reallocate it however if it happens to be too large. */
2732 if (!reg_values || reg_values_size < cselib_nregs
2733 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
2735 free (reg_values);
2736 /* Some space for newly emit instructions so we don't end up
2737 reallocating in between passes. */
2738 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
2739 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
2741 used_regs = XNEWVEC (unsigned int, cselib_nregs);
2742 n_used_regs = 0;
2743 cselib_hash_table.create (31);
2744 if (cselib_preserve_constants)
2745 cselib_preserved_hash_table.create (31);
2746 next_uid = 1;
2749 /* Called when the current user is done with cselib. */
2751 void
2752 cselib_finish (void)
2754 bool preserved = cselib_preserve_constants;
2755 cselib_discard_hook = NULL;
2756 cselib_preserve_constants = false;
2757 cselib_any_perm_equivs = false;
2758 cfa_base_preserved_val = NULL;
2759 cfa_base_preserved_regno = INVALID_REGNUM;
2760 free_alloc_pool (elt_list_pool);
2761 free_alloc_pool (elt_loc_list_pool);
2762 free_alloc_pool (cselib_val_pool);
2763 free_alloc_pool (value_pool);
2764 cselib_clear_table ();
2765 cselib_hash_table.dispose ();
2766 if (preserved)
2767 cselib_preserved_hash_table.dispose ();
2768 free (used_regs);
2769 used_regs = 0;
2770 n_useless_values = 0;
2771 n_useless_debug_values = 0;
2772 n_debug_values = 0;
2773 next_uid = 0;
2776 /* Dump the cselib_val *X to FILE *OUT. */
2779 dump_cselib_val (cselib_val **x, FILE *out)
2781 cselib_val *v = *x;
2782 bool need_lf = true;
2784 print_inline_rtx (out, v->val_rtx, 0);
2786 if (v->locs)
2788 struct elt_loc_list *l = v->locs;
2789 if (need_lf)
2791 fputc ('\n', out);
2792 need_lf = false;
2794 fputs (" locs:", out);
2797 if (l->setting_insn)
2798 fprintf (out, "\n from insn %i ",
2799 INSN_UID (l->setting_insn));
2800 else
2801 fprintf (out, "\n ");
2802 print_inline_rtx (out, l->loc, 4);
2804 while ((l = l->next));
2805 fputc ('\n', out);
2807 else
2809 fputs (" no locs", out);
2810 need_lf = true;
2813 if (v->addr_list)
2815 struct elt_list *e = v->addr_list;
2816 if (need_lf)
2818 fputc ('\n', out);
2819 need_lf = false;
2821 fputs (" addr list:", out);
2824 fputs ("\n ", out);
2825 print_inline_rtx (out, e->elt->val_rtx, 2);
2827 while ((e = e->next));
2828 fputc ('\n', out);
2830 else
2832 fputs (" no addrs", out);
2833 need_lf = true;
2836 if (v->next_containing_mem == &dummy_val)
2837 fputs (" last mem\n", out);
2838 else if (v->next_containing_mem)
2840 fputs (" next mem ", out);
2841 print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
2842 fputc ('\n', out);
2844 else if (need_lf)
2845 fputc ('\n', out);
2847 return 1;
2850 /* Dump to OUT everything in the CSELIB table. */
2852 void
2853 dump_cselib_table (FILE *out)
2855 fprintf (out, "cselib hash table:\n");
2856 cselib_hash_table.traverse <FILE *, dump_cselib_val> (out);
2857 fprintf (out, "cselib preserved hash table:\n");
2858 cselib_preserved_hash_table.traverse <FILE *, dump_cselib_val> (out);
2859 if (first_containing_mem != &dummy_val)
2861 fputs ("first mem ", out);
2862 print_inline_rtx (out, first_containing_mem->val_rtx, 2);
2863 fputc ('\n', out);
2865 fprintf (out, "next uid %i\n", next_uid);
2868 #include "gt-cselib.h"