1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
26 #include "tree.h"/* FIXME: For hashing DEBUG_EXPR & friends. */
29 #include "hard-reg-set.h"
31 #include "insn-config.h"
35 #include "diagnostic-core.h"
37 #include "hash-table.h"
42 #include "alloc-pool.h"
46 /* A list of cselib_val structures. */
48 struct elt_list
*next
;
52 static bool cselib_record_memory
;
53 static bool cselib_preserve_constants
;
54 static bool cselib_any_perm_equivs
;
55 static inline void promote_debug_loc (struct elt_loc_list
*l
);
56 static struct elt_list
*new_elt_list (struct elt_list
*, cselib_val
*);
57 static void new_elt_loc_list (cselib_val
*, rtx
);
58 static void unchain_one_value (cselib_val
*);
59 static void unchain_one_elt_list (struct elt_list
**);
60 static void unchain_one_elt_loc_list (struct elt_loc_list
**);
61 static void remove_useless_values (void);
62 static int rtx_equal_for_cselib_1 (rtx
, rtx
, enum machine_mode
);
63 static unsigned int cselib_hash_rtx (rtx
, int, enum machine_mode
);
64 static cselib_val
*new_cselib_val (unsigned int, enum machine_mode
, rtx
);
65 static void add_mem_for_addr (cselib_val
*, cselib_val
*, rtx
);
66 static cselib_val
*cselib_lookup_mem (rtx
, int);
67 static void cselib_invalidate_regno (unsigned int, enum machine_mode
);
68 static void cselib_invalidate_mem (rtx
);
69 static void cselib_record_set (rtx
, cselib_val
*, cselib_val
*);
70 static void cselib_record_sets (rtx
);
72 struct expand_value_data
75 cselib_expand_callback callback
;
80 static rtx
cselib_expand_value_rtx_1 (rtx
, struct expand_value_data
*, int);
82 /* There are three ways in which cselib can look up an rtx:
83 - for a REG, the reg_values table (which is indexed by regno) is used
84 - for a MEM, we recursively look up its address and then follow the
85 addr_list of that value
86 - for everything else, we compute a hash value and go through the hash
87 table. Since different rtx's can still have the same hash value,
88 this involves walking the table entries for a given value and comparing
89 the locations of the entries with the rtx we are looking up. */
91 struct cselib_hasher
: typed_noop_remove
<cselib_val
>
93 typedef cselib_val value_type
;
95 /* The rtx value and its mode (needed separately for constant
97 enum machine_mode mode
;
99 /* The mode of the contaning MEM, if any, otherwise VOIDmode. */
100 enum machine_mode memmode
;
102 static inline hashval_t
hash (const value_type
*);
103 static inline bool equal (const value_type
*, const compare_type
*);
106 /* The hash function for our hash table. The value is always computed with
107 cselib_hash_rtx when adding an element; this function just extracts the
108 hash value from a cselib_val structure. */
111 cselib_hasher::hash (const value_type
*v
)
116 /* The equality test for our hash table. The first argument V is a table
117 element (i.e. a cselib_val), while the second arg X is an rtx. We know
118 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
119 CONST of an appropriate mode. */
122 cselib_hasher::equal (const value_type
*v
, const compare_type
*x_arg
)
124 struct elt_loc_list
*l
;
126 enum machine_mode mode
= x_arg
->mode
;
127 enum machine_mode memmode
= x_arg
->memmode
;
129 if (mode
!= GET_MODE (v
->val_rtx
))
132 if (GET_CODE (x
) == VALUE
)
133 return x
== v
->val_rtx
;
135 /* We don't guarantee that distinct rtx's have different hash values,
136 so we need to do a comparison. */
137 for (l
= v
->locs
; l
; l
= l
->next
)
138 if (rtx_equal_for_cselib_1 (l
->loc
, x
, memmode
))
140 promote_debug_loc (l
);
147 /* A table that enables us to look up elts by their value. */
148 static hash_table
<cselib_hasher
> cselib_hash_table
;
150 /* A table to hold preserved values. */
151 static hash_table
<cselib_hasher
> cselib_preserved_hash_table
;
153 /* This is a global so we don't have to pass this through every function.
154 It is used in new_elt_loc_list to set SETTING_INSN. */
155 static rtx cselib_current_insn
;
157 /* The unique id that the next create value will take. */
158 static unsigned int next_uid
;
160 /* The number of registers we had when the varrays were last resized. */
161 static unsigned int cselib_nregs
;
163 /* Count values without known locations, or with only locations that
164 wouldn't have been known except for debug insns. Whenever this
165 grows too big, we remove these useless values from the table.
167 Counting values with only debug values is a bit tricky. We don't
168 want to increment n_useless_values when we create a value for a
169 debug insn, for this would get n_useless_values out of sync, but we
170 want increment it if all locs in the list that were ever referenced
171 in nondebug insns are removed from the list.
173 In the general case, once we do that, we'd have to stop accepting
174 nondebug expressions in the loc list, to avoid having two values
175 equivalent that, without debug insns, would have been made into
176 separate values. However, because debug insns never introduce
177 equivalences themselves (no assignments), the only means for
178 growing loc lists is through nondebug assignments. If the locs
179 also happen to be referenced in debug insns, it will work just fine.
181 A consequence of this is that there's at most one debug-only loc in
182 each loc list. If we keep it in the first entry, testing whether
183 we have a debug-only loc list takes O(1).
185 Furthermore, since any additional entry in a loc list containing a
186 debug loc would have to come from an assignment (nondebug) that
187 references both the initial debug loc and the newly-equivalent loc,
188 the initial debug loc would be promoted to a nondebug loc, and the
189 loc list would not contain debug locs any more.
191 So the only case we have to be careful with in order to keep
192 n_useless_values in sync between debug and nondebug compilations is
193 to avoid incrementing n_useless_values when removing the single loc
194 from a value that turns out to not appear outside debug values. We
195 increment n_useless_debug_values instead, and leave such values
196 alone until, for other reasons, we garbage-collect useless
198 static int n_useless_values
;
199 static int n_useless_debug_values
;
201 /* Count values whose locs have been taken exclusively from debug
202 insns for the entire life of the value. */
203 static int n_debug_values
;
205 /* Number of useless values before we remove them from the hash table. */
206 #define MAX_USELESS_VALUES 32
208 /* This table maps from register number to values. It does not
209 contain pointers to cselib_val structures, but rather elt_lists.
210 The purpose is to be able to refer to the same register in
211 different modes. The first element of the list defines the mode in
212 which the register was set; if the mode is unknown or the value is
213 no longer valid in that mode, ELT will be NULL for the first
215 static struct elt_list
**reg_values
;
216 static unsigned int reg_values_size
;
217 #define REG_VALUES(i) reg_values[i]
219 /* The largest number of hard regs used by any entry added to the
220 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
221 static unsigned int max_value_regs
;
223 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
224 in cselib_clear_table() for fast emptying. */
225 static unsigned int *used_regs
;
226 static unsigned int n_used_regs
;
228 /* We pass this to cselib_invalidate_mem to invalidate all of
229 memory for a non-const call instruction. */
230 static GTY(()) rtx callmem
;
232 /* Set by discard_useless_locs if it deleted the last location of any
234 static int values_became_useless
;
236 /* Used as stop element of the containing_mem list so we can check
237 presence in the list by checking the next pointer. */
238 static cselib_val dummy_val
;
240 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
241 that is constant through the whole function and should never be
243 static cselib_val
*cfa_base_preserved_val
;
244 static unsigned int cfa_base_preserved_regno
= INVALID_REGNUM
;
246 /* Used to list all values that contain memory reference.
247 May or may not contain the useless values - the list is compacted
248 each time memory is invalidated. */
249 static cselib_val
*first_containing_mem
= &dummy_val
;
250 static alloc_pool elt_loc_list_pool
, elt_list_pool
, cselib_val_pool
, value_pool
;
252 /* If nonnull, cselib will call this function before freeing useless
253 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
254 void (*cselib_discard_hook
) (cselib_val
*);
256 /* If nonnull, cselib will call this function before recording sets or
257 even clobbering outputs of INSN. All the recorded sets will be
258 represented in the array sets[n_sets]. new_val_min can be used to
259 tell whether values present in sets are introduced by this
261 void (*cselib_record_sets_hook
) (rtx insn
, struct cselib_set
*sets
,
264 #define PRESERVED_VALUE_P(RTX) \
265 (RTL_FLAG_CHECK1 ("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
267 #define SP_BASED_VALUE_P(RTX) \
268 (RTL_FLAG_CHECK1 ("SP_BASED_VALUE_P", (RTX), VALUE)->jump)
272 /* Allocate a struct elt_list and fill in its two elements with the
275 static inline struct elt_list
*
276 new_elt_list (struct elt_list
*next
, cselib_val
*elt
)
279 el
= (struct elt_list
*) pool_alloc (elt_list_pool
);
285 /* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc
289 new_elt_loc_list (cselib_val
*val
, rtx loc
)
291 struct elt_loc_list
*el
, *next
= val
->locs
;
293 gcc_checking_assert (!next
|| !next
->setting_insn
294 || !DEBUG_INSN_P (next
->setting_insn
)
295 || cselib_current_insn
== next
->setting_insn
);
297 /* If we're creating the first loc in a debug insn context, we've
298 just created a debug value. Count it. */
299 if (!next
&& cselib_current_insn
&& DEBUG_INSN_P (cselib_current_insn
))
302 val
= canonical_cselib_val (val
);
305 if (GET_CODE (loc
) == VALUE
)
307 loc
= canonical_cselib_val (CSELIB_VAL_PTR (loc
))->val_rtx
;
309 gcc_checking_assert (PRESERVED_VALUE_P (loc
)
310 == PRESERVED_VALUE_P (val
->val_rtx
));
312 if (val
->val_rtx
== loc
)
314 else if (val
->uid
> CSELIB_VAL_PTR (loc
)->uid
)
316 /* Reverse the insertion. */
317 new_elt_loc_list (CSELIB_VAL_PTR (loc
), val
->val_rtx
);
321 gcc_checking_assert (val
->uid
< CSELIB_VAL_PTR (loc
)->uid
);
323 if (CSELIB_VAL_PTR (loc
)->locs
)
325 /* Bring all locs from LOC to VAL. */
326 for (el
= CSELIB_VAL_PTR (loc
)->locs
; el
->next
; el
= el
->next
)
328 /* Adjust values that have LOC as canonical so that VAL
329 becomes their canonical. */
330 if (el
->loc
&& GET_CODE (el
->loc
) == VALUE
)
332 gcc_checking_assert (CSELIB_VAL_PTR (el
->loc
)->locs
->loc
334 CSELIB_VAL_PTR (el
->loc
)->locs
->loc
= val
->val_rtx
;
337 el
->next
= val
->locs
;
338 next
= val
->locs
= CSELIB_VAL_PTR (loc
)->locs
;
341 if (CSELIB_VAL_PTR (loc
)->addr_list
)
343 /* Bring in addr_list into canonical node. */
344 struct elt_list
*last
= CSELIB_VAL_PTR (loc
)->addr_list
;
347 last
->next
= val
->addr_list
;
348 val
->addr_list
= CSELIB_VAL_PTR (loc
)->addr_list
;
349 CSELIB_VAL_PTR (loc
)->addr_list
= NULL
;
352 if (CSELIB_VAL_PTR (loc
)->next_containing_mem
!= NULL
353 && val
->next_containing_mem
== NULL
)
355 /* Add VAL to the containing_mem list after LOC. LOC will
356 be removed when we notice it doesn't contain any
358 val
->next_containing_mem
= CSELIB_VAL_PTR (loc
)->next_containing_mem
;
359 CSELIB_VAL_PTR (loc
)->next_containing_mem
= val
;
362 /* Chain LOC back to VAL. */
363 el
= (struct elt_loc_list
*) pool_alloc (elt_loc_list_pool
);
364 el
->loc
= val
->val_rtx
;
365 el
->setting_insn
= cselib_current_insn
;
367 CSELIB_VAL_PTR (loc
)->locs
= el
;
370 el
= (struct elt_loc_list
*) pool_alloc (elt_loc_list_pool
);
372 el
->setting_insn
= cselib_current_insn
;
377 /* Promote loc L to a nondebug cselib_current_insn if L is marked as
378 originating from a debug insn, maintaining the debug values
382 promote_debug_loc (struct elt_loc_list
*l
)
384 if (l
&& l
->setting_insn
&& DEBUG_INSN_P (l
->setting_insn
)
385 && (!cselib_current_insn
|| !DEBUG_INSN_P (cselib_current_insn
)))
388 l
->setting_insn
= cselib_current_insn
;
389 if (cselib_preserve_constants
&& l
->next
)
391 gcc_assert (l
->next
->setting_insn
392 && DEBUG_INSN_P (l
->next
->setting_insn
)
394 l
->next
->setting_insn
= cselib_current_insn
;
397 gcc_assert (!l
->next
);
401 /* The elt_list at *PL is no longer needed. Unchain it and free its
405 unchain_one_elt_list (struct elt_list
**pl
)
407 struct elt_list
*l
= *pl
;
410 pool_free (elt_list_pool
, l
);
413 /* Likewise for elt_loc_lists. */
416 unchain_one_elt_loc_list (struct elt_loc_list
**pl
)
418 struct elt_loc_list
*l
= *pl
;
421 pool_free (elt_loc_list_pool
, l
);
424 /* Likewise for cselib_vals. This also frees the addr_list associated with
428 unchain_one_value (cselib_val
*v
)
431 unchain_one_elt_list (&v
->addr_list
);
433 pool_free (cselib_val_pool
, v
);
436 /* Remove all entries from the hash table. Also used during
440 cselib_clear_table (void)
442 cselib_reset_table (1);
445 /* Return TRUE if V is a constant, a function invariant or a VALUE
446 equivalence; FALSE otherwise. */
449 invariant_or_equiv_p (cselib_val
*v
)
451 struct elt_loc_list
*l
;
453 if (v
== cfa_base_preserved_val
)
456 /* Keep VALUE equivalences around. */
457 for (l
= v
->locs
; l
; l
= l
->next
)
458 if (GET_CODE (l
->loc
) == VALUE
)
462 && v
->locs
->next
== NULL
)
464 if (CONSTANT_P (v
->locs
->loc
)
465 && (GET_CODE (v
->locs
->loc
) != CONST
466 || !references_value_p (v
->locs
->loc
, 0)))
468 /* Although a debug expr may be bound to different expressions,
469 we can preserve it as if it was constant, to get unification
470 and proper merging within var-tracking. */
471 if (GET_CODE (v
->locs
->loc
) == DEBUG_EXPR
472 || GET_CODE (v
->locs
->loc
) == DEBUG_IMPLICIT_PTR
473 || GET_CODE (v
->locs
->loc
) == ENTRY_VALUE
474 || GET_CODE (v
->locs
->loc
) == DEBUG_PARAMETER_REF
)
477 /* (plus (value V) (const_int C)) is invariant iff V is invariant. */
478 if (GET_CODE (v
->locs
->loc
) == PLUS
479 && CONST_INT_P (XEXP (v
->locs
->loc
, 1))
480 && GET_CODE (XEXP (v
->locs
->loc
, 0)) == VALUE
481 && invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v
->locs
->loc
, 0))))
488 /* Remove from hash table all VALUEs except constants, function
489 invariants and VALUE equivalences. */
492 preserve_constants_and_equivs (cselib_val
**x
, void *info ATTRIBUTE_UNUSED
)
496 if (invariant_or_equiv_p (v
))
498 cselib_hasher::compare_type lookup
= {
499 GET_MODE (v
->val_rtx
), v
->val_rtx
, VOIDmode
502 = cselib_preserved_hash_table
.find_slot_with_hash (&lookup
,
508 cselib_hash_table
.clear_slot (x
);
513 /* Remove all entries from the hash table, arranging for the next
514 value to be numbered NUM. */
517 cselib_reset_table (unsigned int num
)
523 if (cfa_base_preserved_val
)
525 unsigned int regno
= cfa_base_preserved_regno
;
526 unsigned int new_used_regs
= 0;
527 for (i
= 0; i
< n_used_regs
; i
++)
528 if (used_regs
[i
] == regno
)
534 REG_VALUES (used_regs
[i
]) = 0;
535 gcc_assert (new_used_regs
== 1);
536 n_used_regs
= new_used_regs
;
537 used_regs
[0] = regno
;
539 = hard_regno_nregs
[regno
][GET_MODE (cfa_base_preserved_val
->locs
->loc
)];
543 for (i
= 0; i
< n_used_regs
; i
++)
544 REG_VALUES (used_regs
[i
]) = 0;
548 if (cselib_preserve_constants
)
549 cselib_hash_table
.traverse
<void *, preserve_constants_and_equivs
> (NULL
);
552 cselib_hash_table
.empty ();
553 gcc_checking_assert (!cselib_any_perm_equivs
);
556 n_useless_values
= 0;
557 n_useless_debug_values
= 0;
562 first_containing_mem
= &dummy_val
;
565 /* Return the number of the next value that will be generated. */
568 cselib_get_next_uid (void)
573 /* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
574 INSERTing if requested. When X is part of the address of a MEM,
575 MEMMODE should specify the mode of the MEM. */
578 cselib_find_slot (enum machine_mode mode
, rtx x
, hashval_t hash
,
579 enum insert_option insert
, enum machine_mode memmode
)
581 cselib_val
**slot
= NULL
;
582 cselib_hasher::compare_type lookup
= { mode
, x
, memmode
};
583 if (cselib_preserve_constants
)
584 slot
= cselib_preserved_hash_table
.find_slot_with_hash (&lookup
, hash
,
587 slot
= cselib_hash_table
.find_slot_with_hash (&lookup
, hash
, insert
);
591 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
592 only return true for values which point to a cselib_val whose value
593 element has been set to zero, which implies the cselib_val will be
597 references_value_p (const_rtx x
, int only_useless
)
599 const enum rtx_code code
= GET_CODE (x
);
600 const char *fmt
= GET_RTX_FORMAT (code
);
603 if (GET_CODE (x
) == VALUE
604 && (! only_useless
||
605 (CSELIB_VAL_PTR (x
)->locs
== 0 && !PRESERVED_VALUE_P (x
))))
608 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
610 if (fmt
[i
] == 'e' && references_value_p (XEXP (x
, i
), only_useless
))
612 else if (fmt
[i
] == 'E')
613 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
614 if (references_value_p (XVECEXP (x
, i
, j
), only_useless
))
621 /* For all locations found in X, delete locations that reference useless
622 values (i.e. values without any location). Called through
626 discard_useless_locs (cselib_val
**x
, void *info ATTRIBUTE_UNUSED
)
629 struct elt_loc_list
**p
= &v
->locs
;
630 bool had_locs
= v
->locs
!= NULL
;
631 rtx setting_insn
= v
->locs
? v
->locs
->setting_insn
: NULL
;
635 if (references_value_p ((*p
)->loc
, 1))
636 unchain_one_elt_loc_list (p
);
641 if (had_locs
&& v
->locs
== 0 && !PRESERVED_VALUE_P (v
->val_rtx
))
643 if (setting_insn
&& DEBUG_INSN_P (setting_insn
))
644 n_useless_debug_values
++;
647 values_became_useless
= 1;
652 /* If X is a value with no locations, remove it from the hashtable. */
655 discard_useless_values (cselib_val
**x
, void *info ATTRIBUTE_UNUSED
)
659 if (v
->locs
== 0 && !PRESERVED_VALUE_P (v
->val_rtx
))
661 if (cselib_discard_hook
)
662 cselib_discard_hook (v
);
664 CSELIB_VAL_PTR (v
->val_rtx
) = NULL
;
665 cselib_hash_table
.clear_slot (x
);
666 unchain_one_value (v
);
673 /* Clean out useless values (i.e. those which no longer have locations
674 associated with them) from the hash table. */
677 remove_useless_values (void)
681 /* First pass: eliminate locations that reference the value. That in
682 turn can make more values useless. */
685 values_became_useless
= 0;
686 cselib_hash_table
.traverse
<void *, discard_useless_locs
> (NULL
);
688 while (values_became_useless
);
690 /* Second pass: actually remove the values. */
692 p
= &first_containing_mem
;
693 for (v
= *p
; v
!= &dummy_val
; v
= v
->next_containing_mem
)
694 if (v
->locs
&& v
== canonical_cselib_val (v
))
697 p
= &(*p
)->next_containing_mem
;
701 n_useless_values
+= n_useless_debug_values
;
702 n_debug_values
-= n_useless_debug_values
;
703 n_useless_debug_values
= 0;
705 cselib_hash_table
.traverse
<void *, discard_useless_values
> (NULL
);
707 gcc_assert (!n_useless_values
);
710 /* Arrange for a value to not be removed from the hash table even if
711 it becomes useless. */
714 cselib_preserve_value (cselib_val
*v
)
716 PRESERVED_VALUE_P (v
->val_rtx
) = 1;
719 /* Test whether a value is preserved. */
722 cselib_preserved_value_p (cselib_val
*v
)
724 return PRESERVED_VALUE_P (v
->val_rtx
);
727 /* Arrange for a REG value to be assumed constant through the whole function,
728 never invalidated and preserved across cselib_reset_table calls. */
731 cselib_preserve_cfa_base_value (cselib_val
*v
, unsigned int regno
)
733 if (cselib_preserve_constants
735 && REG_P (v
->locs
->loc
))
737 cfa_base_preserved_val
= v
;
738 cfa_base_preserved_regno
= regno
;
742 /* Clean all non-constant expressions in the hash table, but retain
746 cselib_preserve_only_values (void)
750 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
751 cselib_invalidate_regno (i
, reg_raw_mode
[i
]);
753 cselib_invalidate_mem (callmem
);
755 remove_useless_values ();
757 gcc_assert (first_containing_mem
== &dummy_val
);
760 /* Arrange for a value to be marked as based on stack pointer
761 for find_base_term purposes. */
764 cselib_set_value_sp_based (cselib_val
*v
)
766 SP_BASED_VALUE_P (v
->val_rtx
) = 1;
769 /* Test whether a value is based on stack pointer for
770 find_base_term purposes. */
773 cselib_sp_based_value_p (cselib_val
*v
)
775 return SP_BASED_VALUE_P (v
->val_rtx
);
778 /* Return the mode in which a register was last set. If X is not a
779 register, return its mode. If the mode in which the register was
780 set is not known, or the value was already clobbered, return
784 cselib_reg_set_mode (const_rtx x
)
789 if (REG_VALUES (REGNO (x
)) == NULL
790 || REG_VALUES (REGNO (x
))->elt
== NULL
)
793 return GET_MODE (REG_VALUES (REGNO (x
))->elt
->val_rtx
);
796 /* Return nonzero if we can prove that X and Y contain the same value, taking
797 our gathered information into account. */
800 rtx_equal_for_cselib_p (rtx x
, rtx y
)
802 return rtx_equal_for_cselib_1 (x
, y
, VOIDmode
);
805 /* If x is a PLUS or an autoinc operation, expand the operation,
806 storing the offset, if any, in *OFF. */
809 autoinc_split (rtx x
, rtx
*off
, enum machine_mode memmode
)
811 switch (GET_CODE (x
))
818 if (memmode
== VOIDmode
)
821 *off
= GEN_INT (-GET_MODE_SIZE (memmode
));
826 if (memmode
== VOIDmode
)
829 *off
= GEN_INT (GET_MODE_SIZE (memmode
));
845 /* Return nonzero if we can prove that X and Y contain the same value,
846 taking our gathered information into account. MEMMODE holds the
847 mode of the enclosing MEM, if any, as required to deal with autoinc
848 addressing modes. If X and Y are not (known to be) part of
849 addresses, MEMMODE should be VOIDmode. */
852 rtx_equal_for_cselib_1 (rtx x
, rtx y
, enum machine_mode memmode
)
858 if (REG_P (x
) || MEM_P (x
))
860 cselib_val
*e
= cselib_lookup (x
, GET_MODE (x
), 0, memmode
);
866 if (REG_P (y
) || MEM_P (y
))
868 cselib_val
*e
= cselib_lookup (y
, GET_MODE (y
), 0, memmode
);
877 if (GET_CODE (x
) == VALUE
)
879 cselib_val
*e
= canonical_cselib_val (CSELIB_VAL_PTR (x
));
880 struct elt_loc_list
*l
;
882 if (GET_CODE (y
) == VALUE
)
883 return e
== canonical_cselib_val (CSELIB_VAL_PTR (y
));
885 for (l
= e
->locs
; l
; l
= l
->next
)
889 /* Avoid infinite recursion. We know we have the canonical
890 value, so we can just skip any values in the equivalence
892 if (REG_P (t
) || MEM_P (t
) || GET_CODE (t
) == VALUE
)
894 else if (rtx_equal_for_cselib_1 (t
, y
, memmode
))
900 else if (GET_CODE (y
) == VALUE
)
902 cselib_val
*e
= canonical_cselib_val (CSELIB_VAL_PTR (y
));
903 struct elt_loc_list
*l
;
905 for (l
= e
->locs
; l
; l
= l
->next
)
909 if (REG_P (t
) || MEM_P (t
) || GET_CODE (t
) == VALUE
)
911 else if (rtx_equal_for_cselib_1 (x
, t
, memmode
))
918 if (GET_MODE (x
) != GET_MODE (y
))
921 if (GET_CODE (x
) != GET_CODE (y
))
923 rtx xorig
= x
, yorig
= y
;
924 rtx xoff
= NULL
, yoff
= NULL
;
926 x
= autoinc_split (x
, &xoff
, memmode
);
927 y
= autoinc_split (y
, &yoff
, memmode
);
932 if (xoff
&& !rtx_equal_for_cselib_1 (xoff
, yoff
, memmode
))
935 /* Don't recurse if nothing changed. */
936 if (x
!= xorig
|| y
!= yorig
)
937 return rtx_equal_for_cselib_1 (x
, y
, memmode
);
942 /* These won't be handled correctly by the code below. */
943 switch (GET_CODE (x
))
950 case DEBUG_IMPLICIT_PTR
:
951 return DEBUG_IMPLICIT_PTR_DECL (x
)
952 == DEBUG_IMPLICIT_PTR_DECL (y
);
954 case DEBUG_PARAMETER_REF
:
955 return DEBUG_PARAMETER_REF_DECL (x
)
956 == DEBUG_PARAMETER_REF_DECL (y
);
959 /* ENTRY_VALUEs are function invariant, it is thus undesirable to
960 use rtx_equal_for_cselib_1 to compare the operands. */
961 return rtx_equal_p (ENTRY_VALUE_EXP (x
), ENTRY_VALUE_EXP (y
));
964 return XEXP (x
, 0) == XEXP (y
, 0);
967 /* We have to compare any autoinc operations in the addresses
968 using this MEM's mode. */
969 return rtx_equal_for_cselib_1 (XEXP (x
, 0), XEXP (y
, 0), GET_MODE (x
));
976 fmt
= GET_RTX_FORMAT (code
);
978 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
985 if (XWINT (x
, i
) != XWINT (y
, i
))
991 if (XINT (x
, i
) != XINT (y
, i
))
997 /* Two vectors must have the same length. */
998 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1001 /* And the corresponding elements must match. */
1002 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1003 if (! rtx_equal_for_cselib_1 (XVECEXP (x
, i
, j
),
1004 XVECEXP (y
, i
, j
), memmode
))
1010 && targetm
.commutative_p (x
, UNKNOWN
)
1011 && rtx_equal_for_cselib_1 (XEXP (x
, 1), XEXP (y
, 0), memmode
)
1012 && rtx_equal_for_cselib_1 (XEXP (x
, 0), XEXP (y
, 1), memmode
))
1014 if (! rtx_equal_for_cselib_1 (XEXP (x
, i
), XEXP (y
, i
), memmode
))
1020 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1025 /* These are just backpointers, so they don't matter. */
1032 /* It is believed that rtx's at this level will never
1033 contain anything but integers and other rtx's,
1034 except for within LABEL_REFs and SYMBOL_REFs. */
1042 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
1043 For registers and memory locations, we look up their cselib_val structure
1044 and return its VALUE element.
1045 Possible reasons for return 0 are: the object is volatile, or we couldn't
1046 find a register or memory location in the table and CREATE is zero. If
1047 CREATE is nonzero, table elts are created for regs and mem.
1048 N.B. this hash function returns the same hash value for RTXes that
1049 differ only in the order of operands, thus it is suitable for comparisons
1050 that take commutativity into account.
1051 If we wanted to also support associative rules, we'd have to use a different
1052 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
1053 MEMMODE indicates the mode of an enclosing MEM, and it's only
1054 used to compute autoinc values.
1055 We used to have a MODE argument for hashing for CONST_INTs, but that
1056 didn't make sense, since it caused spurious hash differences between
1057 (set (reg:SI 1) (const_int))
1058 (plus:SI (reg:SI 2) (reg:SI 1))
1060 (plus:SI (reg:SI 2) (const_int))
1061 If the mode is important in any context, it must be checked specifically
1062 in a comparison anyway, since relying on hash differences is unsafe. */
1065 cselib_hash_rtx (rtx x
, int create
, enum machine_mode memmode
)
1071 unsigned int hash
= 0;
1073 code
= GET_CODE (x
);
1074 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
1079 e
= CSELIB_VAL_PTR (x
);
1084 e
= cselib_lookup (x
, GET_MODE (x
), create
, memmode
);
1091 hash
+= ((unsigned) DEBUG_EXPR
<< 7)
1092 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
));
1093 return hash
? hash
: (unsigned int) DEBUG_EXPR
;
1095 case DEBUG_IMPLICIT_PTR
:
1096 hash
+= ((unsigned) DEBUG_IMPLICIT_PTR
<< 7)
1097 + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x
));
1098 return hash
? hash
: (unsigned int) DEBUG_IMPLICIT_PTR
;
1100 case DEBUG_PARAMETER_REF
:
1101 hash
+= ((unsigned) DEBUG_PARAMETER_REF
<< 7)
1102 + DECL_UID (DEBUG_PARAMETER_REF_DECL (x
));
1103 return hash
? hash
: (unsigned int) DEBUG_PARAMETER_REF
;
1106 /* ENTRY_VALUEs are function invariant, thus try to avoid
1107 recursing on argument if ENTRY_VALUE is one of the
1108 forms emitted by expand_debug_expr, otherwise
1109 ENTRY_VALUE hash would depend on the current value
1110 in some register or memory. */
1111 if (REG_P (ENTRY_VALUE_EXP (x
)))
1112 hash
+= (unsigned int) REG
1113 + (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x
))
1114 + (unsigned int) REGNO (ENTRY_VALUE_EXP (x
));
1115 else if (MEM_P (ENTRY_VALUE_EXP (x
))
1116 && REG_P (XEXP (ENTRY_VALUE_EXP (x
), 0)))
1117 hash
+= (unsigned int) MEM
1118 + (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x
), 0))
1119 + (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x
), 0));
1121 hash
+= cselib_hash_rtx (ENTRY_VALUE_EXP (x
), create
, memmode
);
1122 return hash
? hash
: (unsigned int) ENTRY_VALUE
;
1125 hash
+= ((unsigned) CONST_INT
<< 7) + UINTVAL (x
);
1126 return hash
? hash
: (unsigned int) CONST_INT
;
1129 /* This is like the general case, except that it only counts
1130 the integers representing the constant. */
1131 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
1132 if (GET_MODE (x
) != VOIDmode
)
1133 hash
+= real_hash (CONST_DOUBLE_REAL_VALUE (x
));
1135 hash
+= ((unsigned) CONST_DOUBLE_LOW (x
)
1136 + (unsigned) CONST_DOUBLE_HIGH (x
));
1137 return hash
? hash
: (unsigned int) CONST_DOUBLE
;
1140 hash
+= (unsigned int) code
+ (unsigned int) GET_MODE (x
);
1141 hash
+= fixed_hash (CONST_FIXED_VALUE (x
));
1142 return hash
? hash
: (unsigned int) CONST_FIXED
;
1149 units
= CONST_VECTOR_NUNITS (x
);
1151 for (i
= 0; i
< units
; ++i
)
1153 elt
= CONST_VECTOR_ELT (x
, i
);
1154 hash
+= cselib_hash_rtx (elt
, 0, memmode
);
1160 /* Assume there is only one rtx object for any given label. */
1162 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1163 differences and differences between each stage's debugging dumps. */
1164 hash
+= (((unsigned int) LABEL_REF
<< 7)
1165 + CODE_LABEL_NUMBER (XEXP (x
, 0)));
1166 return hash
? hash
: (unsigned int) LABEL_REF
;
1170 /* Don't hash on the symbol's address to avoid bootstrap differences.
1171 Different hash values may cause expressions to be recorded in
1172 different orders and thus different registers to be used in the
1173 final assembler. This also avoids differences in the dump files
1174 between various stages. */
1176 const unsigned char *p
= (const unsigned char *) XSTR (x
, 0);
1179 h
+= (h
<< 7) + *p
++; /* ??? revisit */
1181 hash
+= ((unsigned int) SYMBOL_REF
<< 7) + h
;
1182 return hash
? hash
: (unsigned int) SYMBOL_REF
;
1187 /* We can't compute these without knowing the MEM mode. */
1188 gcc_assert (memmode
!= VOIDmode
);
1189 i
= GET_MODE_SIZE (memmode
);
1190 if (code
== PRE_DEC
)
1192 /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
1193 like (mem:MEMMODE (plus (reg) (const_int I))). */
1194 hash
+= (unsigned) PLUS
- (unsigned)code
1195 + cselib_hash_rtx (XEXP (x
, 0), create
, memmode
)
1196 + cselib_hash_rtx (GEN_INT (i
), create
, memmode
);
1197 return hash
? hash
: 1 + (unsigned) PLUS
;
1200 gcc_assert (memmode
!= VOIDmode
);
1201 return cselib_hash_rtx (XEXP (x
, 1), create
, memmode
);
1206 gcc_assert (memmode
!= VOIDmode
);
1207 return cselib_hash_rtx (XEXP (x
, 0), create
, memmode
);
1212 case UNSPEC_VOLATILE
:
1216 if (MEM_VOLATILE_P (x
))
1225 i
= GET_RTX_LENGTH (code
) - 1;
1226 fmt
= GET_RTX_FORMAT (code
);
1233 rtx tem
= XEXP (x
, i
);
1234 unsigned int tem_hash
= cselib_hash_rtx (tem
, create
, memmode
);
1243 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1245 unsigned int tem_hash
1246 = cselib_hash_rtx (XVECEXP (x
, i
, j
), create
, memmode
);
1257 const unsigned char *p
= (const unsigned char *) XSTR (x
, i
);
1266 hash
+= XINT (x
, i
);
1279 return hash
? hash
: 1 + (unsigned int) GET_CODE (x
);
1282 /* Create a new value structure for VALUE and initialize it. The mode of the
1285 static inline cselib_val
*
1286 new_cselib_val (unsigned int hash
, enum machine_mode mode
, rtx x
)
1288 cselib_val
*e
= (cselib_val
*) pool_alloc (cselib_val_pool
);
1291 gcc_assert (next_uid
);
1294 e
->uid
= next_uid
++;
1295 /* We use an alloc pool to allocate this RTL construct because it
1296 accounts for about 8% of the overall memory usage. We know
1297 precisely when we can have VALUE RTXen (when cselib is active)
1298 so we don't need to put them in garbage collected memory.
1299 ??? Why should a VALUE be an RTX in the first place? */
1300 e
->val_rtx
= (rtx
) pool_alloc (value_pool
);
1301 memset (e
->val_rtx
, 0, RTX_HDR_SIZE
);
1302 PUT_CODE (e
->val_rtx
, VALUE
);
1303 PUT_MODE (e
->val_rtx
, mode
);
1304 CSELIB_VAL_PTR (e
->val_rtx
) = e
;
1307 e
->next_containing_mem
= 0;
1309 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
1311 fprintf (dump_file
, "cselib value %u:%u ", e
->uid
, hash
);
1312 if (flag_dump_noaddr
|| flag_dump_unnumbered
)
1313 fputs ("# ", dump_file
);
1315 fprintf (dump_file
, "%p ", (void*)e
);
1316 print_rtl_single (dump_file
, x
);
1317 fputc ('\n', dump_file
);
1323 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1324 contains the data at this address. X is a MEM that represents the
1325 value. Update the two value structures to represent this situation. */
1328 add_mem_for_addr (cselib_val
*addr_elt
, cselib_val
*mem_elt
, rtx x
)
1330 struct elt_loc_list
*l
;
1332 addr_elt
= canonical_cselib_val (addr_elt
);
1333 mem_elt
= canonical_cselib_val (mem_elt
);
1335 /* Avoid duplicates. */
1336 for (l
= mem_elt
->locs
; l
; l
= l
->next
)
1338 && CSELIB_VAL_PTR (XEXP (l
->loc
, 0)) == addr_elt
)
1340 promote_debug_loc (l
);
1344 addr_elt
->addr_list
= new_elt_list (addr_elt
->addr_list
, mem_elt
);
1345 new_elt_loc_list (mem_elt
,
1346 replace_equiv_address_nv (x
, addr_elt
->val_rtx
));
1347 if (mem_elt
->next_containing_mem
== NULL
)
1349 mem_elt
->next_containing_mem
= first_containing_mem
;
1350 first_containing_mem
= mem_elt
;
1354 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1355 If CREATE, make a new one if we haven't seen it before. */
1358 cselib_lookup_mem (rtx x
, int create
)
1360 enum machine_mode mode
= GET_MODE (x
);
1361 enum machine_mode addr_mode
;
1364 cselib_val
*mem_elt
;
1367 if (MEM_VOLATILE_P (x
) || mode
== BLKmode
1368 || !cselib_record_memory
1369 || (FLOAT_MODE_P (mode
) && flag_float_store
))
1372 addr_mode
= GET_MODE (XEXP (x
, 0));
1373 if (addr_mode
== VOIDmode
)
1376 /* Look up the value for the address. */
1377 addr
= cselib_lookup (XEXP (x
, 0), addr_mode
, create
, mode
);
1381 addr
= canonical_cselib_val (addr
);
1382 /* Find a value that describes a value of our mode at that address. */
1383 for (l
= addr
->addr_list
; l
; l
= l
->next
)
1384 if (GET_MODE (l
->elt
->val_rtx
) == mode
)
1386 promote_debug_loc (l
->elt
->locs
);
1393 mem_elt
= new_cselib_val (next_uid
, mode
, x
);
1394 add_mem_for_addr (addr
, mem_elt
, x
);
1395 slot
= cselib_find_slot (mode
, x
, mem_elt
->hash
, INSERT
, VOIDmode
);
1400 /* Search through the possible substitutions in P. We prefer a non reg
1401 substitution because this allows us to expand the tree further. If
1402 we find, just a reg, take the lowest regno. There may be several
1403 non-reg results, we just take the first one because they will all
1404 expand to the same place. */
1407 expand_loc (struct elt_loc_list
*p
, struct expand_value_data
*evd
,
1410 rtx reg_result
= NULL
;
1411 unsigned int regno
= UINT_MAX
;
1412 struct elt_loc_list
*p_in
= p
;
1414 for (; p
; p
= p
->next
)
1416 /* Return these right away to avoid returning stack pointer based
1417 expressions for frame pointer and vice versa, which is something
1418 that would confuse DSE. See the comment in cselib_expand_value_rtx_1
1419 for more details. */
1421 && (REGNO (p
->loc
) == STACK_POINTER_REGNUM
1422 || REGNO (p
->loc
) == FRAME_POINTER_REGNUM
1423 || REGNO (p
->loc
) == HARD_FRAME_POINTER_REGNUM
1424 || REGNO (p
->loc
) == cfa_base_preserved_regno
))
1426 /* Avoid infinite recursion trying to expand a reg into a
1428 if ((REG_P (p
->loc
))
1429 && (REGNO (p
->loc
) < regno
)
1430 && !bitmap_bit_p (evd
->regs_active
, REGNO (p
->loc
)))
1432 reg_result
= p
->loc
;
1433 regno
= REGNO (p
->loc
);
1435 /* Avoid infinite recursion and do not try to expand the
1437 else if (GET_CODE (p
->loc
) == VALUE
1438 && CSELIB_VAL_PTR (p
->loc
)->locs
== p_in
)
1440 else if (!REG_P (p
->loc
))
1443 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
1445 print_inline_rtx (dump_file
, p
->loc
, 0);
1446 fprintf (dump_file
, "\n");
1448 if (GET_CODE (p
->loc
) == LO_SUM
1449 && GET_CODE (XEXP (p
->loc
, 1)) == SYMBOL_REF
1451 && (note
= find_reg_note (p
->setting_insn
, REG_EQUAL
, NULL_RTX
))
1452 && XEXP (note
, 0) == XEXP (p
->loc
, 1))
1453 return XEXP (p
->loc
, 1);
1454 result
= cselib_expand_value_rtx_1 (p
->loc
, evd
, max_depth
- 1);
1461 if (regno
!= UINT_MAX
)
1464 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
1465 fprintf (dump_file
, "r%d\n", regno
);
1467 result
= cselib_expand_value_rtx_1 (reg_result
, evd
, max_depth
- 1);
1472 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
1476 print_inline_rtx (dump_file
, reg_result
, 0);
1477 fprintf (dump_file
, "\n");
1480 fprintf (dump_file
, "NULL\n");
1486 /* Forward substitute and expand an expression out to its roots.
1487 This is the opposite of common subexpression. Because local value
1488 numbering is such a weak optimization, the expanded expression is
1489 pretty much unique (not from a pointer equals point of view but
1490 from a tree shape point of view.
1492 This function returns NULL if the expansion fails. The expansion
1493 will fail if there is no value number for one of the operands or if
1494 one of the operands has been overwritten between the current insn
1495 and the beginning of the basic block. For instance x has no
1501 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1502 It is clear on return. */
1505 cselib_expand_value_rtx (rtx orig
, bitmap regs_active
, int max_depth
)
1507 struct expand_value_data evd
;
1509 evd
.regs_active
= regs_active
;
1510 evd
.callback
= NULL
;
1511 evd
.callback_arg
= NULL
;
1514 return cselib_expand_value_rtx_1 (orig
, &evd
, max_depth
);
1517 /* Same as cselib_expand_value_rtx, but using a callback to try to
1518 resolve some expressions. The CB function should return ORIG if it
1519 can't or does not want to deal with a certain RTX. Any other
1520 return value, including NULL, will be used as the expansion for
1521 VALUE, without any further changes. */
1524 cselib_expand_value_rtx_cb (rtx orig
, bitmap regs_active
, int max_depth
,
1525 cselib_expand_callback cb
, void *data
)
1527 struct expand_value_data evd
;
1529 evd
.regs_active
= regs_active
;
1531 evd
.callback_arg
= data
;
1534 return cselib_expand_value_rtx_1 (orig
, &evd
, max_depth
);
1537 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1538 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1539 would return NULL or non-NULL, without allocating new rtx. */
1542 cselib_dummy_expand_value_rtx_cb (rtx orig
, bitmap regs_active
, int max_depth
,
1543 cselib_expand_callback cb
, void *data
)
1545 struct expand_value_data evd
;
1547 evd
.regs_active
= regs_active
;
1549 evd
.callback_arg
= data
;
1552 return cselib_expand_value_rtx_1 (orig
, &evd
, max_depth
) != NULL
;
1555 /* Internal implementation of cselib_expand_value_rtx and
1556 cselib_expand_value_rtx_cb. */
1559 cselib_expand_value_rtx_1 (rtx orig
, struct expand_value_data
*evd
,
1565 const char *format_ptr
;
1566 enum machine_mode mode
;
1568 code
= GET_CODE (orig
);
1570 /* For the context of dse, if we end up expand into a huge tree, we
1571 will not have a useful address, so we might as well just give up
1580 struct elt_list
*l
= REG_VALUES (REGNO (orig
));
1582 if (l
&& l
->elt
== NULL
)
1584 for (; l
; l
= l
->next
)
1585 if (GET_MODE (l
->elt
->val_rtx
) == GET_MODE (orig
))
1588 unsigned regno
= REGNO (orig
);
1590 /* The only thing that we are not willing to do (this
1591 is requirement of dse and if others potential uses
1592 need this function we should add a parm to control
1593 it) is that we will not substitute the
1594 STACK_POINTER_REGNUM, FRAME_POINTER or the
1597 These expansions confuses the code that notices that
1598 stores into the frame go dead at the end of the
1599 function and that the frame is not effected by calls
1600 to subroutines. If you allow the
1601 STACK_POINTER_REGNUM substitution, then dse will
1602 think that parameter pushing also goes dead which is
1603 wrong. If you allow the FRAME_POINTER or the
1604 HARD_FRAME_POINTER then you lose the opportunity to
1605 make the frame assumptions. */
1606 if (regno
== STACK_POINTER_REGNUM
1607 || regno
== FRAME_POINTER_REGNUM
1608 || regno
== HARD_FRAME_POINTER_REGNUM
1609 || regno
== cfa_base_preserved_regno
)
1612 bitmap_set_bit (evd
->regs_active
, regno
);
1614 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
1615 fprintf (dump_file
, "expanding: r%d into: ", regno
);
1617 result
= expand_loc (l
->elt
->locs
, evd
, max_depth
);
1618 bitmap_clear_bit (evd
->regs_active
, regno
);
1633 /* SCRATCH must be shared because they represent distinct values. */
1636 if (REG_P (XEXP (orig
, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig
, 0))))
1641 if (shared_const_p (orig
))
1651 subreg
= evd
->callback (orig
, evd
->regs_active
, max_depth
,
1657 subreg
= cselib_expand_value_rtx_1 (SUBREG_REG (orig
), evd
,
1661 scopy
= simplify_gen_subreg (GET_MODE (orig
), subreg
,
1662 GET_MODE (SUBREG_REG (orig
)),
1663 SUBREG_BYTE (orig
));
1665 || (GET_CODE (scopy
) == SUBREG
1666 && !REG_P (SUBREG_REG (scopy
))
1667 && !MEM_P (SUBREG_REG (scopy
))))
1677 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
1679 fputs ("\nexpanding ", dump_file
);
1680 print_rtl_single (dump_file
, orig
);
1681 fputs (" into...", dump_file
);
1686 result
= evd
->callback (orig
, evd
->regs_active
, max_depth
,
1693 result
= expand_loc (CSELIB_VAL_PTR (orig
)->locs
, evd
, max_depth
);
1699 return evd
->callback (orig
, evd
->regs_active
, max_depth
,
1707 /* Copy the various flags, fields, and other information. We assume
1708 that all fields need copying, and then clear the fields that should
1709 not be copied. That is the sensible default behavior, and forces
1710 us to explicitly document why we are *not* copying a flag. */
1714 copy
= shallow_copy_rtx (orig
);
1716 format_ptr
= GET_RTX_FORMAT (code
);
1718 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
1719 switch (*format_ptr
++)
1722 if (XEXP (orig
, i
) != NULL
)
1724 rtx result
= cselib_expand_value_rtx_1 (XEXP (orig
, i
), evd
,
1729 XEXP (copy
, i
) = result
;
1735 if (XVEC (orig
, i
) != NULL
)
1738 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
1739 for (j
= 0; j
< XVECLEN (orig
, i
); j
++)
1741 rtx result
= cselib_expand_value_rtx_1 (XVECEXP (orig
, i
, j
),
1742 evd
, max_depth
- 1);
1746 XVECEXP (copy
, i
, j
) = result
;
1760 /* These are left unchanged. */
1770 mode
= GET_MODE (copy
);
1771 /* If an operand has been simplified into CONST_INT, which doesn't
1772 have a mode and the mode isn't derivable from whole rtx's mode,
1773 try simplify_*_operation first with mode from original's operand
1774 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1776 switch (GET_RTX_CLASS (code
))
1779 if (CONST_INT_P (XEXP (copy
, 0))
1780 && GET_MODE (XEXP (orig
, 0)) != VOIDmode
)
1782 scopy
= simplify_unary_operation (code
, mode
, XEXP (copy
, 0),
1783 GET_MODE (XEXP (orig
, 0)));
1788 case RTX_COMM_ARITH
:
1790 /* These expressions can derive operand modes from the whole rtx's mode. */
1793 case RTX_BITFIELD_OPS
:
1794 if (CONST_INT_P (XEXP (copy
, 0))
1795 && GET_MODE (XEXP (orig
, 0)) != VOIDmode
)
1797 scopy
= simplify_ternary_operation (code
, mode
,
1798 GET_MODE (XEXP (orig
, 0)),
1799 XEXP (copy
, 0), XEXP (copy
, 1),
1806 case RTX_COMM_COMPARE
:
1807 if (CONST_INT_P (XEXP (copy
, 0))
1808 && GET_MODE (XEXP (copy
, 1)) == VOIDmode
1809 && (GET_MODE (XEXP (orig
, 0)) != VOIDmode
1810 || GET_MODE (XEXP (orig
, 1)) != VOIDmode
))
1812 scopy
= simplify_relational_operation (code
, mode
,
1813 (GET_MODE (XEXP (orig
, 0))
1815 ? GET_MODE (XEXP (orig
, 0))
1816 : GET_MODE (XEXP (orig
, 1)),
1826 scopy
= simplify_rtx (copy
);
1832 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1833 with VALUE expressions. This way, it becomes independent of changes
1834 to registers and memory.
1835 X isn't actually modified; if modifications are needed, new rtl is
1836 allocated. However, the return value can share rtl with X.
1837 If X is within a MEM, MEMMODE must be the mode of the MEM. */
1840 cselib_subst_to_values (rtx x
, enum machine_mode memmode
)
1842 enum rtx_code code
= GET_CODE (x
);
1843 const char *fmt
= GET_RTX_FORMAT (code
);
1852 l
= REG_VALUES (REGNO (x
));
1853 if (l
&& l
->elt
== NULL
)
1855 for (; l
; l
= l
->next
)
1856 if (GET_MODE (l
->elt
->val_rtx
) == GET_MODE (x
))
1857 return l
->elt
->val_rtx
;
1862 e
= cselib_lookup_mem (x
, 0);
1863 /* This used to happen for autoincrements, but we deal with them
1864 properly now. Remove the if stmt for the next release. */
1867 /* Assign a value that doesn't match any other. */
1868 e
= new_cselib_val (next_uid
, GET_MODE (x
), x
);
1873 e
= cselib_lookup (x
, GET_MODE (x
), 0, memmode
);
1883 gcc_assert (memmode
!= VOIDmode
);
1884 i
= GET_MODE_SIZE (memmode
);
1885 if (code
== PRE_DEC
)
1887 return cselib_subst_to_values (plus_constant (GET_MODE (x
),
1892 gcc_assert (memmode
!= VOIDmode
);
1893 return cselib_subst_to_values (XEXP (x
, 1), memmode
);
1898 gcc_assert (memmode
!= VOIDmode
);
1899 return cselib_subst_to_values (XEXP (x
, 0), memmode
);
1905 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1909 rtx t
= cselib_subst_to_values (XEXP (x
, i
), memmode
);
1911 if (t
!= XEXP (x
, i
))
1914 copy
= shallow_copy_rtx (x
);
1918 else if (fmt
[i
] == 'E')
1922 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1924 rtx t
= cselib_subst_to_values (XVECEXP (x
, i
, j
), memmode
);
1926 if (t
!= XVECEXP (x
, i
, j
))
1928 if (XVEC (x
, i
) == XVEC (copy
, i
))
1931 copy
= shallow_copy_rtx (x
);
1932 XVEC (copy
, i
) = shallow_copy_rtvec (XVEC (x
, i
));
1934 XVECEXP (copy
, i
, j
) = t
;
1943 /* Wrapper for cselib_subst_to_values, that indicates X is in INSN. */
1946 cselib_subst_to_values_from_insn (rtx x
, enum machine_mode memmode
, rtx insn
)
1949 gcc_assert (!cselib_current_insn
);
1950 cselib_current_insn
= insn
;
1951 ret
= cselib_subst_to_values (x
, memmode
);
1952 cselib_current_insn
= NULL
;
1956 /* Look up the rtl expression X in our tables and return the value it
1957 has. If CREATE is zero, we return NULL if we don't know the value.
1958 Otherwise, we create a new one if possible, using mode MODE if X
1959 doesn't have a mode (i.e. because it's a constant). When X is part
1960 of an address, MEMMODE should be the mode of the enclosing MEM if
1961 we're tracking autoinc expressions. */
1964 cselib_lookup_1 (rtx x
, enum machine_mode mode
,
1965 int create
, enum machine_mode memmode
)
1969 unsigned int hashval
;
1971 if (GET_MODE (x
) != VOIDmode
)
1972 mode
= GET_MODE (x
);
1974 if (GET_CODE (x
) == VALUE
)
1975 return CSELIB_VAL_PTR (x
);
1980 unsigned int i
= REGNO (x
);
1983 if (l
&& l
->elt
== NULL
)
1985 for (; l
; l
= l
->next
)
1986 if (mode
== GET_MODE (l
->elt
->val_rtx
))
1988 promote_debug_loc (l
->elt
->locs
);
1995 if (i
< FIRST_PSEUDO_REGISTER
)
1997 unsigned int n
= hard_regno_nregs
[i
][mode
];
1999 if (n
> max_value_regs
)
2003 e
= new_cselib_val (next_uid
, GET_MODE (x
), x
);
2004 new_elt_loc_list (e
, x
);
2005 if (REG_VALUES (i
) == 0)
2007 /* Maintain the invariant that the first entry of
2008 REG_VALUES, if present, must be the value used to set the
2009 register, or NULL. */
2010 used_regs
[n_used_regs
++] = i
;
2011 REG_VALUES (i
) = new_elt_list (REG_VALUES (i
), NULL
);
2013 else if (cselib_preserve_constants
2014 && GET_MODE_CLASS (mode
) == MODE_INT
)
2016 /* During var-tracking, try harder to find equivalences
2017 for SUBREGs. If a setter sets say a DImode register
2018 and user uses that register only in SImode, add a lowpart
2020 struct elt_list
*lwider
= NULL
;
2022 if (l
&& l
->elt
== NULL
)
2024 for (; l
; l
= l
->next
)
2025 if (GET_MODE_CLASS (GET_MODE (l
->elt
->val_rtx
)) == MODE_INT
2026 && GET_MODE_SIZE (GET_MODE (l
->elt
->val_rtx
))
2027 > GET_MODE_SIZE (mode
)
2029 || GET_MODE_SIZE (GET_MODE (l
->elt
->val_rtx
))
2030 < GET_MODE_SIZE (GET_MODE (lwider
->elt
->val_rtx
))))
2032 struct elt_loc_list
*el
;
2033 if (i
< FIRST_PSEUDO_REGISTER
2034 && hard_regno_nregs
[i
][GET_MODE (l
->elt
->val_rtx
)] != 1)
2036 for (el
= l
->elt
->locs
; el
; el
= el
->next
)
2037 if (!REG_P (el
->loc
))
2044 rtx sub
= lowpart_subreg (mode
, lwider
->elt
->val_rtx
,
2045 GET_MODE (lwider
->elt
->val_rtx
));
2047 new_elt_loc_list (e
, sub
);
2050 REG_VALUES (i
)->next
= new_elt_list (REG_VALUES (i
)->next
, e
);
2051 slot
= cselib_find_slot (mode
, x
, e
->hash
, INSERT
, memmode
);
2057 return cselib_lookup_mem (x
, create
);
2059 hashval
= cselib_hash_rtx (x
, create
, memmode
);
2060 /* Can't even create if hashing is not possible. */
2064 slot
= cselib_find_slot (mode
, x
, hashval
,
2065 create
? INSERT
: NO_INSERT
, memmode
);
2069 e
= (cselib_val
*) *slot
;
2073 e
= new_cselib_val (hashval
, mode
, x
);
2075 /* We have to fill the slot before calling cselib_subst_to_values:
2076 the hash table is inconsistent until we do so, and
2077 cselib_subst_to_values will need to do lookups. */
2079 new_elt_loc_list (e
, cselib_subst_to_values (x
, memmode
));
2083 /* Wrapper for cselib_lookup, that indicates X is in INSN. */
2086 cselib_lookup_from_insn (rtx x
, enum machine_mode mode
,
2087 int create
, enum machine_mode memmode
, rtx insn
)
2091 gcc_assert (!cselib_current_insn
);
2092 cselib_current_insn
= insn
;
2094 ret
= cselib_lookup (x
, mode
, create
, memmode
);
2096 cselib_current_insn
= NULL
;
2101 /* Wrapper for cselib_lookup_1, that logs the lookup result and
2102 maintains invariants related with debug insns. */
2105 cselib_lookup (rtx x
, enum machine_mode mode
,
2106 int create
, enum machine_mode memmode
)
2108 cselib_val
*ret
= cselib_lookup_1 (x
, mode
, create
, memmode
);
2110 /* ??? Should we return NULL if we're not to create an entry, the
2111 found loc is a debug loc and cselib_current_insn is not DEBUG?
2112 If so, we should also avoid converting val to non-DEBUG; probably
2113 easiest setting cselib_current_insn to NULL before the call
2116 if (dump_file
&& (dump_flags
& TDF_CSELIB
))
2118 fputs ("cselib lookup ", dump_file
);
2119 print_inline_rtx (dump_file
, x
, 2);
2120 fprintf (dump_file
, " => %u:%u\n",
2122 ret
? ret
->hash
: 0);
2128 /* Invalidate any entries in reg_values that overlap REGNO. This is called
2129 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
2130 is used to determine how many hard registers are being changed. If MODE
2131 is VOIDmode, then only REGNO is being changed; this is used when
2132 invalidating call clobbered registers across a call. */
2135 cselib_invalidate_regno (unsigned int regno
, enum machine_mode mode
)
2137 unsigned int endregno
;
2140 /* If we see pseudos after reload, something is _wrong_. */
2141 gcc_assert (!reload_completed
|| regno
< FIRST_PSEUDO_REGISTER
2142 || reg_renumber
[regno
] < 0);
2144 /* Determine the range of registers that must be invalidated. For
2145 pseudos, only REGNO is affected. For hard regs, we must take MODE
2146 into account, and we must also invalidate lower register numbers
2147 if they contain values that overlap REGNO. */
2148 if (regno
< FIRST_PSEUDO_REGISTER
)
2150 gcc_assert (mode
!= VOIDmode
);
2152 if (regno
< max_value_regs
)
2155 i
= regno
- max_value_regs
;
2157 endregno
= end_hard_regno (mode
, regno
);
2162 endregno
= regno
+ 1;
2165 for (; i
< endregno
; i
++)
2167 struct elt_list
**l
= ®_VALUES (i
);
2169 /* Go through all known values for this reg; if it overlaps the range
2170 we're invalidating, remove the value. */
2173 cselib_val
*v
= (*l
)->elt
;
2176 struct elt_loc_list
**p
;
2177 unsigned int this_last
= i
;
2179 if (i
< FIRST_PSEUDO_REGISTER
&& v
!= NULL
)
2180 this_last
= end_hard_regno (GET_MODE (v
->val_rtx
), i
) - 1;
2182 if (this_last
< regno
|| v
== NULL
2183 || (v
== cfa_base_preserved_val
2184 && i
== cfa_base_preserved_regno
))
2190 /* We have an overlap. */
2191 if (*l
== REG_VALUES (i
))
2193 /* Maintain the invariant that the first entry of
2194 REG_VALUES, if present, must be the value used to set
2195 the register, or NULL. This is also nice because
2196 then we won't push the same regno onto user_regs
2202 unchain_one_elt_list (l
);
2204 v
= canonical_cselib_val (v
);
2206 had_locs
= v
->locs
!= NULL
;
2207 setting_insn
= v
->locs
? v
->locs
->setting_insn
: NULL
;
2209 /* Now, we clear the mapping from value to reg. It must exist, so
2210 this code will crash intentionally if it doesn't. */
2211 for (p
= &v
->locs
; ; p
= &(*p
)->next
)
2215 if (REG_P (x
) && REGNO (x
) == i
)
2217 unchain_one_elt_loc_list (p
);
2222 if (had_locs
&& v
->locs
== 0 && !PRESERVED_VALUE_P (v
->val_rtx
))
2224 if (setting_insn
&& DEBUG_INSN_P (setting_insn
))
2225 n_useless_debug_values
++;
2233 /* Invalidate any locations in the table which are changed because of a
2234 store to MEM_RTX. If this is called because of a non-const call
2235 instruction, MEM_RTX is (mem:BLK const0_rtx). */
2238 cselib_invalidate_mem (rtx mem_rtx
)
2240 cselib_val
**vp
, *v
, *next
;
2244 mem_addr
= canon_rtx (get_addr (XEXP (mem_rtx
, 0)));
2245 mem_rtx
= canon_rtx (mem_rtx
);
2247 vp
= &first_containing_mem
;
2248 for (v
= *vp
; v
!= &dummy_val
; v
= next
)
2250 bool has_mem
= false;
2251 struct elt_loc_list
**p
= &v
->locs
;
2252 bool had_locs
= v
->locs
!= NULL
;
2253 rtx setting_insn
= v
->locs
? v
->locs
->setting_insn
: NULL
;
2259 struct elt_list
**mem_chain
;
2261 /* MEMs may occur in locations only at the top level; below
2262 that every MEM or REG is substituted by its VALUE. */
2268 if (num_mems
< PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS
)
2269 && ! canon_anti_dependence (x
, false, mem_rtx
,
2270 GET_MODE (mem_rtx
), mem_addr
))
2278 /* This one overlaps. */
2279 /* We must have a mapping from this MEM's address to the
2280 value (E). Remove that, too. */
2281 addr
= cselib_lookup (XEXP (x
, 0), VOIDmode
, 0, GET_MODE (x
));
2282 addr
= canonical_cselib_val (addr
);
2283 gcc_checking_assert (v
== canonical_cselib_val (v
));
2284 mem_chain
= &addr
->addr_list
;
2287 cselib_val
*canon
= canonical_cselib_val ((*mem_chain
)->elt
);
2291 unchain_one_elt_list (mem_chain
);
2295 /* Record canonicalized elt. */
2296 (*mem_chain
)->elt
= canon
;
2298 mem_chain
= &(*mem_chain
)->next
;
2301 unchain_one_elt_loc_list (p
);
2304 if (had_locs
&& v
->locs
== 0 && !PRESERVED_VALUE_P (v
->val_rtx
))
2306 if (setting_insn
&& DEBUG_INSN_P (setting_insn
))
2307 n_useless_debug_values
++;
2312 next
= v
->next_containing_mem
;
2316 vp
= &(*vp
)->next_containing_mem
;
2319 v
->next_containing_mem
= NULL
;
2324 /* Invalidate DEST, which is being assigned to or clobbered. */
2327 cselib_invalidate_rtx (rtx dest
)
2329 while (GET_CODE (dest
) == SUBREG
2330 || GET_CODE (dest
) == ZERO_EXTRACT
2331 || GET_CODE (dest
) == STRICT_LOW_PART
)
2332 dest
= XEXP (dest
, 0);
2335 cselib_invalidate_regno (REGNO (dest
), GET_MODE (dest
));
2336 else if (MEM_P (dest
))
2337 cselib_invalidate_mem (dest
);
2340 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
2343 cselib_invalidate_rtx_note_stores (rtx dest
, const_rtx ignore ATTRIBUTE_UNUSED
,
2344 void *data ATTRIBUTE_UNUSED
)
2346 cselib_invalidate_rtx (dest
);
2349 /* Record the result of a SET instruction. DEST is being set; the source
2350 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
2351 describes its address. */
2354 cselib_record_set (rtx dest
, cselib_val
*src_elt
, cselib_val
*dest_addr_elt
)
2356 int dreg
= REG_P (dest
) ? (int) REGNO (dest
) : -1;
2358 if (src_elt
== 0 || side_effects_p (dest
))
2363 if (dreg
< FIRST_PSEUDO_REGISTER
)
2365 unsigned int n
= hard_regno_nregs
[dreg
][GET_MODE (dest
)];
2367 if (n
> max_value_regs
)
2371 if (REG_VALUES (dreg
) == 0)
2373 used_regs
[n_used_regs
++] = dreg
;
2374 REG_VALUES (dreg
) = new_elt_list (REG_VALUES (dreg
), src_elt
);
2378 /* The register should have been invalidated. */
2379 gcc_assert (REG_VALUES (dreg
)->elt
== 0);
2380 REG_VALUES (dreg
)->elt
= src_elt
;
2383 if (src_elt
->locs
== 0 && !PRESERVED_VALUE_P (src_elt
->val_rtx
))
2385 new_elt_loc_list (src_elt
, dest
);
2387 else if (MEM_P (dest
) && dest_addr_elt
!= 0
2388 && cselib_record_memory
)
2390 if (src_elt
->locs
== 0 && !PRESERVED_VALUE_P (src_elt
->val_rtx
))
2392 add_mem_for_addr (dest_addr_elt
, src_elt
, dest
);
2396 /* Make ELT and X's VALUE equivalent to each other at INSN. */
2399 cselib_add_permanent_equiv (cselib_val
*elt
, rtx x
, rtx insn
)
2402 rtx save_cselib_current_insn
= cselib_current_insn
;
2404 gcc_checking_assert (elt
);
2405 gcc_checking_assert (PRESERVED_VALUE_P (elt
->val_rtx
));
2406 gcc_checking_assert (!side_effects_p (x
));
2408 cselib_current_insn
= insn
;
2410 nelt
= cselib_lookup (x
, GET_MODE (elt
->val_rtx
), 1, VOIDmode
);
2414 cselib_any_perm_equivs
= true;
2416 if (!PRESERVED_VALUE_P (nelt
->val_rtx
))
2417 cselib_preserve_value (nelt
);
2419 new_elt_loc_list (nelt
, elt
->val_rtx
);
2422 cselib_current_insn
= save_cselib_current_insn
;
2425 /* Return TRUE if any permanent equivalences have been recorded since
2426 the table was last initialized. */
2428 cselib_have_permanent_equivalences (void)
2430 return cselib_any_perm_equivs
;
2433 /* There is no good way to determine how many elements there can be
2434 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2435 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2437 struct cselib_record_autoinc_data
2439 struct cselib_set
*sets
;
2443 /* Callback for for_each_inc_dec. Records in ARG the SETs implied by
2444 autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */
2447 cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED
, rtx op ATTRIBUTE_UNUSED
,
2448 rtx dest
, rtx src
, rtx srcoff
, void *arg
)
2450 struct cselib_record_autoinc_data
*data
;
2451 data
= (struct cselib_record_autoinc_data
*)arg
;
2453 data
->sets
[data
->n_sets
].dest
= dest
;
2456 data
->sets
[data
->n_sets
].src
= gen_rtx_PLUS (GET_MODE (src
), src
, srcoff
);
2458 data
->sets
[data
->n_sets
].src
= src
;
2465 /* Record the effects of any sets and autoincs in INSN. */
2467 cselib_record_sets (rtx insn
)
2471 struct cselib_set sets
[MAX_SETS
];
2472 rtx body
= PATTERN (insn
);
2474 int n_sets_before_autoinc
;
2475 struct cselib_record_autoinc_data data
;
2477 body
= PATTERN (insn
);
2478 if (GET_CODE (body
) == COND_EXEC
)
2480 cond
= COND_EXEC_TEST (body
);
2481 body
= COND_EXEC_CODE (body
);
2484 /* Find all sets. */
2485 if (GET_CODE (body
) == SET
)
2487 sets
[0].src
= SET_SRC (body
);
2488 sets
[0].dest
= SET_DEST (body
);
2491 else if (GET_CODE (body
) == PARALLEL
)
2493 /* Look through the PARALLEL and record the values being
2494 set, if possible. Also handle any CLOBBERs. */
2495 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; --i
)
2497 rtx x
= XVECEXP (body
, 0, i
);
2499 if (GET_CODE (x
) == SET
)
2501 sets
[n_sets
].src
= SET_SRC (x
);
2502 sets
[n_sets
].dest
= SET_DEST (x
);
2509 && MEM_P (sets
[0].src
)
2510 && !cselib_record_memory
2511 && MEM_READONLY_P (sets
[0].src
))
2513 rtx note
= find_reg_equal_equiv_note (insn
);
2515 if (note
&& CONSTANT_P (XEXP (note
, 0)))
2516 sets
[0].src
= XEXP (note
, 0);
2520 data
.n_sets
= n_sets_before_autoinc
= n_sets
;
2521 for_each_inc_dec (&insn
, cselib_record_autoinc_cb
, &data
);
2522 n_sets
= data
.n_sets
;
2524 /* Look up the values that are read. Do this before invalidating the
2525 locations that are written. */
2526 for (i
= 0; i
< n_sets
; i
++)
2528 rtx dest
= sets
[i
].dest
;
2530 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2531 the low part after invalidating any knowledge about larger modes. */
2532 if (GET_CODE (sets
[i
].dest
) == STRICT_LOW_PART
)
2533 sets
[i
].dest
= dest
= XEXP (dest
, 0);
2535 /* We don't know how to record anything but REG or MEM. */
2537 || (MEM_P (dest
) && cselib_record_memory
))
2539 rtx src
= sets
[i
].src
;
2541 src
= gen_rtx_IF_THEN_ELSE (GET_MODE (dest
), cond
, src
, dest
);
2542 sets
[i
].src_elt
= cselib_lookup (src
, GET_MODE (dest
), 1, VOIDmode
);
2545 enum machine_mode address_mode
= get_address_mode (dest
);
2547 sets
[i
].dest_addr_elt
= cselib_lookup (XEXP (dest
, 0),
2552 sets
[i
].dest_addr_elt
= 0;
2556 if (cselib_record_sets_hook
)
2557 cselib_record_sets_hook (insn
, sets
, n_sets
);
2559 /* Invalidate all locations written by this insn. Note that the elts we
2560 looked up in the previous loop aren't affected, just some of their
2561 locations may go away. */
2562 note_stores (body
, cselib_invalidate_rtx_note_stores
, NULL
);
2564 for (i
= n_sets_before_autoinc
; i
< n_sets
; i
++)
2565 cselib_invalidate_rtx (sets
[i
].dest
);
2567 /* If this is an asm, look for duplicate sets. This can happen when the
2568 user uses the same value as an output multiple times. This is valid
2569 if the outputs are not actually used thereafter. Treat this case as
2570 if the value isn't actually set. We do this by smashing the destination
2571 to pc_rtx, so that we won't record the value later. */
2572 if (n_sets
>= 2 && asm_noperands (body
) >= 0)
2574 for (i
= 0; i
< n_sets
; i
++)
2576 rtx dest
= sets
[i
].dest
;
2577 if (REG_P (dest
) || MEM_P (dest
))
2580 for (j
= i
+ 1; j
< n_sets
; j
++)
2581 if (rtx_equal_p (dest
, sets
[j
].dest
))
2583 sets
[i
].dest
= pc_rtx
;
2584 sets
[j
].dest
= pc_rtx
;
2590 /* Now enter the equivalences in our tables. */
2591 for (i
= 0; i
< n_sets
; i
++)
2593 rtx dest
= sets
[i
].dest
;
2595 || (MEM_P (dest
) && cselib_record_memory
))
2596 cselib_record_set (dest
, sets
[i
].src_elt
, sets
[i
].dest_addr_elt
);
2600 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
2603 fp_setter_insn (rtx insn
)
2605 rtx expr
, pat
= NULL_RTX
;
2607 if (!RTX_FRAME_RELATED_P (insn
))
2610 expr
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
2612 pat
= XEXP (expr
, 0);
2613 if (!modified_in_p (hard_frame_pointer_rtx
, pat
? pat
: insn
))
2616 /* Don't return true for frame pointer restores in the epilogue. */
2617 if (find_reg_note (insn
, REG_CFA_RESTORE
, hard_frame_pointer_rtx
))
2622 /* Record the effects of INSN. */
2625 cselib_process_insn (rtx insn
)
2630 cselib_current_insn
= insn
;
2632 /* Forget everything at a CODE_LABEL or a setjmp. */
2635 && find_reg_note (insn
, REG_SETJMP
, NULL
)))
2636 && !cselib_preserve_constants
)
2638 cselib_reset_table (next_uid
);
2639 cselib_current_insn
= NULL_RTX
;
2643 if (! INSN_P (insn
))
2645 cselib_current_insn
= NULL_RTX
;
2649 /* If this is a call instruction, forget anything stored in a
2650 call clobbered register, or, if this is not a const call, in
2654 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2655 if (call_used_regs
[i
]
2656 || (REG_VALUES (i
) && REG_VALUES (i
)->elt
2657 && HARD_REGNO_CALL_PART_CLOBBERED (i
,
2658 GET_MODE (REG_VALUES (i
)->elt
->val_rtx
))))
2659 cselib_invalidate_regno (i
, reg_raw_mode
[i
]);
2661 /* Since it is not clear how cselib is going to be used, be
2662 conservative here and treat looping pure or const functions
2663 as if they were regular functions. */
2664 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
)
2665 || !(RTL_CONST_OR_PURE_CALL_P (insn
)))
2666 cselib_invalidate_mem (callmem
);
2669 cselib_record_sets (insn
);
2671 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2672 after we have processed the insn. */
2675 for (x
= CALL_INSN_FUNCTION_USAGE (insn
); x
; x
= XEXP (x
, 1))
2676 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
2677 cselib_invalidate_rtx (XEXP (XEXP (x
, 0), 0));
2678 /* Flush evertything on setjmp. */
2679 if (cselib_preserve_constants
2680 && find_reg_note (insn
, REG_SETJMP
, NULL
))
2682 cselib_preserve_only_values ();
2683 cselib_reset_table (next_uid
);
2687 /* On setter of the hard frame pointer if frame_pointer_needed,
2688 invalidate stack_pointer_rtx, so that sp and {,h}fp based
2689 VALUEs are distinct. */
2690 if (reload_completed
2691 && frame_pointer_needed
2692 && fp_setter_insn (insn
))
2693 cselib_invalidate_rtx (stack_pointer_rtx
);
2695 cselib_current_insn
= NULL_RTX
;
2697 if (n_useless_values
> MAX_USELESS_VALUES
2698 /* remove_useless_values is linear in the hash table size. Avoid
2699 quadratic behavior for very large hashtables with very few
2700 useless elements. */
2701 && ((unsigned int)n_useless_values
2702 > (cselib_hash_table
.elements () - n_debug_values
) / 4))
2703 remove_useless_values ();
2706 /* Initialize cselib for one pass. The caller must also call
2707 init_alias_analysis. */
2710 cselib_init (int record_what
)
2712 elt_list_pool
= create_alloc_pool ("elt_list",
2713 sizeof (struct elt_list
), 10);
2714 elt_loc_list_pool
= create_alloc_pool ("elt_loc_list",
2715 sizeof (struct elt_loc_list
), 10);
2716 cselib_val_pool
= create_alloc_pool ("cselib_val_list",
2717 sizeof (cselib_val
), 10);
2718 value_pool
= create_alloc_pool ("value", RTX_CODE_SIZE (VALUE
), 100);
2719 cselib_record_memory
= record_what
& CSELIB_RECORD_MEMORY
;
2720 cselib_preserve_constants
= record_what
& CSELIB_PRESERVE_CONSTANTS
;
2721 cselib_any_perm_equivs
= false;
2723 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2724 see canon_true_dependence. This is only created once. */
2726 callmem
= gen_rtx_MEM (BLKmode
, gen_rtx_SCRATCH (VOIDmode
));
2728 cselib_nregs
= max_reg_num ();
2730 /* We preserve reg_values to allow expensive clearing of the whole thing.
2731 Reallocate it however if it happens to be too large. */
2732 if (!reg_values
|| reg_values_size
< cselib_nregs
2733 || (reg_values_size
> 10 && reg_values_size
> cselib_nregs
* 4))
2736 /* Some space for newly emit instructions so we don't end up
2737 reallocating in between passes. */
2738 reg_values_size
= cselib_nregs
+ (63 + cselib_nregs
) / 16;
2739 reg_values
= XCNEWVEC (struct elt_list
*, reg_values_size
);
2741 used_regs
= XNEWVEC (unsigned int, cselib_nregs
);
2743 cselib_hash_table
.create (31);
2744 if (cselib_preserve_constants
)
2745 cselib_preserved_hash_table
.create (31);
2749 /* Called when the current user is done with cselib. */
2752 cselib_finish (void)
2754 bool preserved
= cselib_preserve_constants
;
2755 cselib_discard_hook
= NULL
;
2756 cselib_preserve_constants
= false;
2757 cselib_any_perm_equivs
= false;
2758 cfa_base_preserved_val
= NULL
;
2759 cfa_base_preserved_regno
= INVALID_REGNUM
;
2760 free_alloc_pool (elt_list_pool
);
2761 free_alloc_pool (elt_loc_list_pool
);
2762 free_alloc_pool (cselib_val_pool
);
2763 free_alloc_pool (value_pool
);
2764 cselib_clear_table ();
2765 cselib_hash_table
.dispose ();
2767 cselib_preserved_hash_table
.dispose ();
2770 n_useless_values
= 0;
2771 n_useless_debug_values
= 0;
2776 /* Dump the cselib_val *X to FILE *OUT. */
2779 dump_cselib_val (cselib_val
**x
, FILE *out
)
2782 bool need_lf
= true;
2784 print_inline_rtx (out
, v
->val_rtx
, 0);
2788 struct elt_loc_list
*l
= v
->locs
;
2794 fputs (" locs:", out
);
2797 if (l
->setting_insn
)
2798 fprintf (out
, "\n from insn %i ",
2799 INSN_UID (l
->setting_insn
));
2801 fprintf (out
, "\n ");
2802 print_inline_rtx (out
, l
->loc
, 4);
2804 while ((l
= l
->next
));
2809 fputs (" no locs", out
);
2815 struct elt_list
*e
= v
->addr_list
;
2821 fputs (" addr list:", out
);
2825 print_inline_rtx (out
, e
->elt
->val_rtx
, 2);
2827 while ((e
= e
->next
));
2832 fputs (" no addrs", out
);
2836 if (v
->next_containing_mem
== &dummy_val
)
2837 fputs (" last mem\n", out
);
2838 else if (v
->next_containing_mem
)
2840 fputs (" next mem ", out
);
2841 print_inline_rtx (out
, v
->next_containing_mem
->val_rtx
, 2);
2850 /* Dump to OUT everything in the CSELIB table. */
2853 dump_cselib_table (FILE *out
)
2855 fprintf (out
, "cselib hash table:\n");
2856 cselib_hash_table
.traverse
<FILE *, dump_cselib_val
> (out
);
2857 fprintf (out
, "cselib preserved hash table:\n");
2858 cselib_preserved_hash_table
.traverse
<FILE *, dump_cselib_val
> (out
);
2859 if (first_containing_mem
!= &dummy_val
)
2861 fputs ("first mem ", out
);
2862 print_inline_rtx (out
, first_containing_mem
->val_rtx
, 2);
2865 fprintf (out
, "next uid %i\n", next_uid
);
2868 #include "gt-cselib.h"