* arm/thumb.md: Delete.
[official-gcc.git] / gcc / explow.c
blob0f067caf215f0ca74bf776742c036c877b618c39
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "toplev.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "flags.h"
30 #include "function.h"
31 #include "expr.h"
32 #include "hard-reg-set.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "insn-flags.h"
36 #include "insn-codes.h"
38 #if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
39 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
40 #endif
42 static rtx break_out_memory_refs PARAMS ((rtx));
43 static void emit_stack_probe PARAMS ((rtx));
46 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
48 HOST_WIDE_INT
49 trunc_int_for_mode (c, mode)
50 HOST_WIDE_INT c;
51 enum machine_mode mode;
53 int width = GET_MODE_BITSIZE (mode);
55 /* We clear out all bits that don't belong in MODE, unless they and our
56 sign bit are all one. So we get either a reasonable negative
57 value or a reasonable unsigned value. */
59 if (width < HOST_BITS_PER_WIDE_INT
60 && ((c & ((HOST_WIDE_INT) (-1) << (width - 1)))
61 != ((HOST_WIDE_INT) (-1) << (width - 1))))
62 c &= ((HOST_WIDE_INT) 1 << width) - 1;
64 /* If this would be an entire word for the target, but is not for
65 the host, then sign-extend on the host so that the number will look
66 the same way on the host that it would on the target.
68 For example, when building a 64 bit alpha hosted 32 bit sparc
69 targeted compiler, then we want the 32 bit unsigned value -1 to be
70 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
71 The later confuses the sparc backend. */
73 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT
74 && BITS_PER_WORD == width
75 && (c & ((HOST_WIDE_INT) 1 << (width - 1))))
76 c |= ((HOST_WIDE_INT) (-1) << width);
78 return c;
81 /* Return an rtx for the sum of X and the integer C.
83 This function should be used via the `plus_constant' macro. */
85 rtx
86 plus_constant_wide (x, c)
87 register rtx x;
88 register HOST_WIDE_INT c;
90 register RTX_CODE code;
91 register enum machine_mode mode;
92 register rtx tem;
93 int all_constant = 0;
95 if (c == 0)
96 return x;
98 restart:
100 code = GET_CODE (x);
101 mode = GET_MODE (x);
102 switch (code)
104 case CONST_INT:
105 return GEN_INT (INTVAL (x) + c);
107 case CONST_DOUBLE:
109 HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
110 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
111 HOST_WIDE_INT l2 = c;
112 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
113 HOST_WIDE_INT lv, hv;
115 add_double (l1, h1, l2, h2, &lv, &hv);
117 return immed_double_const (lv, hv, VOIDmode);
120 case MEM:
121 /* If this is a reference to the constant pool, try replacing it with
122 a reference to a new constant. If the resulting address isn't
123 valid, don't return it because we have no way to validize it. */
124 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
125 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
127 /* Any rtl we create here must go in a saveable obstack, since
128 we might have been called from within combine. */
129 push_obstacks_nochange ();
130 rtl_in_saveable_obstack ();
132 = force_const_mem (GET_MODE (x),
133 plus_constant (get_pool_constant (XEXP (x, 0)),
134 c));
135 pop_obstacks ();
136 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
137 return tem;
139 break;
141 case CONST:
142 /* If adding to something entirely constant, set a flag
143 so that we can add a CONST around the result. */
144 x = XEXP (x, 0);
145 all_constant = 1;
146 goto restart;
148 case SYMBOL_REF:
149 case LABEL_REF:
150 all_constant = 1;
151 break;
153 case PLUS:
154 /* The interesting case is adding the integer to a sum.
155 Look for constant term in the sum and combine
156 with C. For an integer constant term, we make a combined
157 integer. For a constant term that is not an explicit integer,
158 we cannot really combine, but group them together anyway.
160 Restart or use a recursive call in case the remaining operand is
161 something that we handle specially, such as a SYMBOL_REF.
163 We may not immediately return from the recursive call here, lest
164 all_constant gets lost. */
166 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
168 c += INTVAL (XEXP (x, 1));
170 if (GET_MODE (x) != VOIDmode)
171 c = trunc_int_for_mode (c, GET_MODE (x));
173 x = XEXP (x, 0);
174 goto restart;
176 else if (CONSTANT_P (XEXP (x, 0)))
178 x = gen_rtx_PLUS (mode,
179 plus_constant (XEXP (x, 0), c),
180 XEXP (x, 1));
181 c = 0;
183 else if (CONSTANT_P (XEXP (x, 1)))
185 x = gen_rtx_PLUS (mode,
186 XEXP (x, 0),
187 plus_constant (XEXP (x, 1), c));
188 c = 0;
190 break;
192 default:
193 break;
196 if (c != 0)
197 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
199 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
200 return x;
201 else if (all_constant)
202 return gen_rtx_CONST (mode, x);
203 else
204 return x;
207 /* This is the same as `plus_constant', except that it handles LO_SUM.
209 This function should be used via the `plus_constant_for_output' macro. */
212 plus_constant_for_output_wide (x, c)
213 register rtx x;
214 register HOST_WIDE_INT c;
216 register enum machine_mode mode = GET_MODE (x);
218 if (GET_CODE (x) == LO_SUM)
219 return gen_rtx_LO_SUM (mode, XEXP (x, 0),
220 plus_constant_for_output (XEXP (x, 1), c));
222 else
223 return plus_constant (x, c);
226 /* If X is a sum, return a new sum like X but lacking any constant terms.
227 Add all the removed constant terms into *CONSTPTR.
228 X itself is not altered. The result != X if and only if
229 it is not isomorphic to X. */
232 eliminate_constant_term (x, constptr)
233 rtx x;
234 rtx *constptr;
236 register rtx x0, x1;
237 rtx tem;
239 if (GET_CODE (x) != PLUS)
240 return x;
242 /* First handle constants appearing at this level explicitly. */
243 if (GET_CODE (XEXP (x, 1)) == CONST_INT
244 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
245 XEXP (x, 1)))
246 && GET_CODE (tem) == CONST_INT)
248 *constptr = tem;
249 return eliminate_constant_term (XEXP (x, 0), constptr);
252 tem = const0_rtx;
253 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
254 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
255 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
256 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
257 *constptr, tem))
258 && GET_CODE (tem) == CONST_INT)
260 *constptr = tem;
261 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
264 return x;
267 /* Returns the insn that next references REG after INSN, or 0
268 if REG is clobbered before next referenced or we cannot find
269 an insn that references REG in a straight-line piece of code. */
272 find_next_ref (reg, insn)
273 rtx reg;
274 rtx insn;
276 rtx next;
278 for (insn = NEXT_INSN (insn); insn; insn = next)
280 next = NEXT_INSN (insn);
281 if (GET_CODE (insn) == NOTE)
282 continue;
283 if (GET_CODE (insn) == CODE_LABEL
284 || GET_CODE (insn) == BARRIER)
285 return 0;
286 if (GET_CODE (insn) == INSN
287 || GET_CODE (insn) == JUMP_INSN
288 || GET_CODE (insn) == CALL_INSN)
290 if (reg_set_p (reg, insn))
291 return 0;
292 if (reg_mentioned_p (reg, PATTERN (insn)))
293 return insn;
294 if (GET_CODE (insn) == JUMP_INSN)
296 if (simplejump_p (insn))
297 next = JUMP_LABEL (insn);
298 else
299 return 0;
301 if (GET_CODE (insn) == CALL_INSN
302 && REGNO (reg) < FIRST_PSEUDO_REGISTER
303 && call_used_regs[REGNO (reg)])
304 return 0;
306 else
307 abort ();
309 return 0;
312 /* Return an rtx for the size in bytes of the value of EXP. */
315 expr_size (exp)
316 tree exp;
318 tree size = size_in_bytes (TREE_TYPE (exp));
320 if (TREE_CODE (size) != INTEGER_CST
321 && contains_placeholder_p (size))
322 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
324 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype),
325 EXPAND_MEMORY_USE_BAD);
328 /* Return a copy of X in which all memory references
329 and all constants that involve symbol refs
330 have been replaced with new temporary registers.
331 Also emit code to load the memory locations and constants
332 into those registers.
334 If X contains no such constants or memory references,
335 X itself (not a copy) is returned.
337 If a constant is found in the address that is not a legitimate constant
338 in an insn, it is left alone in the hope that it might be valid in the
339 address.
341 X may contain no arithmetic except addition, subtraction and multiplication.
342 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
344 static rtx
345 break_out_memory_refs (x)
346 register rtx x;
348 if (GET_CODE (x) == MEM
349 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
350 && GET_MODE (x) != VOIDmode))
351 x = force_reg (GET_MODE (x), x);
352 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
353 || GET_CODE (x) == MULT)
355 register rtx op0 = break_out_memory_refs (XEXP (x, 0));
356 register rtx op1 = break_out_memory_refs (XEXP (x, 1));
358 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
359 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
362 return x;
365 #ifdef POINTERS_EXTEND_UNSIGNED
367 /* Given X, a memory address in ptr_mode, convert it to an address
368 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
369 the fact that pointers are not allowed to overflow by commuting arithmetic
370 operations over conversions so that address arithmetic insns can be
371 used. */
374 convert_memory_address (to_mode, x)
375 enum machine_mode to_mode;
376 rtx x;
378 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
379 rtx temp;
381 /* Here we handle some special cases. If none of them apply, fall through
382 to the default case. */
383 switch (GET_CODE (x))
385 case CONST_INT:
386 case CONST_DOUBLE:
387 return x;
389 case LABEL_REF:
390 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
391 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
392 return temp;
394 case SYMBOL_REF:
395 temp = gen_rtx_SYMBOL_REF (to_mode, XSTR (x, 0));
396 SYMBOL_REF_FLAG (temp) = SYMBOL_REF_FLAG (x);
397 CONSTANT_POOL_ADDRESS_P (temp) = CONSTANT_POOL_ADDRESS_P (x);
398 return temp;
400 case CONST:
401 return gen_rtx_CONST (to_mode,
402 convert_memory_address (to_mode, XEXP (x, 0)));
404 case PLUS:
405 case MULT:
406 /* For addition the second operand is a small constant, we can safely
407 permute the conversion and addition operation. We can always safely
408 permute them if we are making the address narrower. In addition,
409 always permute the operations if this is a constant. */
410 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
411 || (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT
412 && (INTVAL (XEXP (x, 1)) + 20000 < 40000
413 || CONSTANT_P (XEXP (x, 0)))))
414 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
415 convert_memory_address (to_mode, XEXP (x, 0)),
416 convert_memory_address (to_mode, XEXP (x, 1)));
417 break;
419 default:
420 break;
423 return convert_modes (to_mode, from_mode,
424 x, POINTERS_EXTEND_UNSIGNED);
426 #endif
428 /* Given a memory address or facsimile X, construct a new address,
429 currently equivalent, that is stable: future stores won't change it.
431 X must be composed of constants, register and memory references
432 combined with addition, subtraction and multiplication:
433 in other words, just what you can get from expand_expr if sum_ok is 1.
435 Works by making copies of all regs and memory locations used
436 by X and combining them the same way X does.
437 You could also stabilize the reference to this address
438 by copying the address to a register with copy_to_reg;
439 but then you wouldn't get indexed addressing in the reference. */
442 copy_all_regs (x)
443 register rtx x;
445 if (GET_CODE (x) == REG)
447 if (REGNO (x) != FRAME_POINTER_REGNUM
448 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
449 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
450 #endif
452 x = copy_to_reg (x);
454 else if (GET_CODE (x) == MEM)
455 x = copy_to_reg (x);
456 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
457 || GET_CODE (x) == MULT)
459 register rtx op0 = copy_all_regs (XEXP (x, 0));
460 register rtx op1 = copy_all_regs (XEXP (x, 1));
461 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
462 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
464 return x;
467 /* Return something equivalent to X but valid as a memory address
468 for something of mode MODE. When X is not itself valid, this
469 works by copying X or subexpressions of it into registers. */
472 memory_address (mode, x)
473 enum machine_mode mode;
474 register rtx x;
476 register rtx oldx = x;
478 if (GET_CODE (x) == ADDRESSOF)
479 return x;
481 #ifdef POINTERS_EXTEND_UNSIGNED
482 if (GET_MODE (x) == ptr_mode)
483 x = convert_memory_address (Pmode, x);
484 #endif
486 /* By passing constant addresses thru registers
487 we get a chance to cse them. */
488 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
489 x = force_reg (Pmode, x);
491 /* Accept a QUEUED that refers to a REG
492 even though that isn't a valid address.
493 On attempting to put this in an insn we will call protect_from_queue
494 which will turn it into a REG, which is valid. */
495 else if (GET_CODE (x) == QUEUED
496 && GET_CODE (QUEUED_VAR (x)) == REG)
499 /* We get better cse by rejecting indirect addressing at this stage.
500 Let the combiner create indirect addresses where appropriate.
501 For now, generate the code so that the subexpressions useful to share
502 are visible. But not if cse won't be done! */
503 else
505 if (! cse_not_expected && GET_CODE (x) != REG)
506 x = break_out_memory_refs (x);
508 /* At this point, any valid address is accepted. */
509 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
511 /* If it was valid before but breaking out memory refs invalidated it,
512 use it the old way. */
513 if (memory_address_p (mode, oldx))
514 goto win2;
516 /* Perform machine-dependent transformations on X
517 in certain cases. This is not necessary since the code
518 below can handle all possible cases, but machine-dependent
519 transformations can make better code. */
520 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
522 /* PLUS and MULT can appear in special ways
523 as the result of attempts to make an address usable for indexing.
524 Usually they are dealt with by calling force_operand, below.
525 But a sum containing constant terms is special
526 if removing them makes the sum a valid address:
527 then we generate that address in a register
528 and index off of it. We do this because it often makes
529 shorter code, and because the addresses thus generated
530 in registers often become common subexpressions. */
531 if (GET_CODE (x) == PLUS)
533 rtx constant_term = const0_rtx;
534 rtx y = eliminate_constant_term (x, &constant_term);
535 if (constant_term == const0_rtx
536 || ! memory_address_p (mode, y))
537 x = force_operand (x, NULL_RTX);
538 else
540 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
541 if (! memory_address_p (mode, y))
542 x = force_operand (x, NULL_RTX);
543 else
544 x = y;
548 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
549 x = force_operand (x, NULL_RTX);
551 /* If we have a register that's an invalid address,
552 it must be a hard reg of the wrong class. Copy it to a pseudo. */
553 else if (GET_CODE (x) == REG)
554 x = copy_to_reg (x);
556 /* Last resort: copy the value to a register, since
557 the register is a valid address. */
558 else
559 x = force_reg (Pmode, x);
561 goto done;
563 win2:
564 x = oldx;
565 win:
566 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
567 /* Don't copy an addr via a reg if it is one of our stack slots. */
568 && ! (GET_CODE (x) == PLUS
569 && (XEXP (x, 0) == virtual_stack_vars_rtx
570 || XEXP (x, 0) == virtual_incoming_args_rtx)))
572 if (general_operand (x, Pmode))
573 x = force_reg (Pmode, x);
574 else
575 x = force_operand (x, NULL_RTX);
579 done:
581 /* If we didn't change the address, we are done. Otherwise, mark
582 a reg as a pointer if we have REG or REG + CONST_INT. */
583 if (oldx == x)
584 return x;
585 else if (GET_CODE (x) == REG)
586 mark_reg_pointer (x, BITS_PER_UNIT);
587 else if (GET_CODE (x) == PLUS
588 && GET_CODE (XEXP (x, 0)) == REG
589 && GET_CODE (XEXP (x, 1)) == CONST_INT)
590 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
592 /* OLDX may have been the address on a temporary. Update the address
593 to indicate that X is now used. */
594 update_temp_slot_address (oldx, x);
596 return x;
599 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
602 memory_address_noforce (mode, x)
603 enum machine_mode mode;
604 rtx x;
606 int ambient_force_addr = flag_force_addr;
607 rtx val;
609 flag_force_addr = 0;
610 val = memory_address (mode, x);
611 flag_force_addr = ambient_force_addr;
612 return val;
615 /* Convert a mem ref into one with a valid memory address.
616 Pass through anything else unchanged. */
619 validize_mem (ref)
620 rtx ref;
622 if (GET_CODE (ref) != MEM)
623 return ref;
624 if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
625 return ref;
626 /* Don't alter REF itself, since that is probably a stack slot. */
627 return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
630 /* Return a modified copy of X with its memory address copied
631 into a temporary register to protect it from side effects.
632 If X is not a MEM, it is returned unchanged (and not copied).
633 Perhaps even if it is a MEM, if there is no need to change it. */
636 stabilize (x)
637 rtx x;
639 register rtx addr;
640 if (GET_CODE (x) != MEM)
641 return x;
642 addr = XEXP (x, 0);
643 if (rtx_unstable_p (addr))
645 rtx temp = copy_all_regs (addr);
646 rtx mem;
647 if (GET_CODE (temp) != REG)
648 temp = copy_to_reg (temp);
649 mem = gen_rtx_MEM (GET_MODE (x), temp);
651 /* Mark returned memref with in_struct if it's in an array or
652 structure. Copy const and volatile from original memref. */
654 RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (x);
655 MEM_COPY_ATTRIBUTES (mem, x);
656 if (GET_CODE (addr) == PLUS)
657 MEM_SET_IN_STRUCT_P (mem, 1);
659 /* Since the new MEM is just like the old X, it can alias only
660 the things that X could. */
661 MEM_ALIAS_SET (mem) = MEM_ALIAS_SET (x);
663 return mem;
665 return x;
668 /* Copy the value or contents of X to a new temp reg and return that reg. */
671 copy_to_reg (x)
672 rtx x;
674 register rtx temp = gen_reg_rtx (GET_MODE (x));
676 /* If not an operand, must be an address with PLUS and MULT so
677 do the computation. */
678 if (! general_operand (x, VOIDmode))
679 x = force_operand (x, temp);
681 if (x != temp)
682 emit_move_insn (temp, x);
684 return temp;
687 /* Like copy_to_reg but always give the new register mode Pmode
688 in case X is a constant. */
691 copy_addr_to_reg (x)
692 rtx x;
694 return copy_to_mode_reg (Pmode, x);
697 /* Like copy_to_reg but always give the new register mode MODE
698 in case X is a constant. */
701 copy_to_mode_reg (mode, x)
702 enum machine_mode mode;
703 rtx x;
705 register rtx temp = gen_reg_rtx (mode);
707 /* If not an operand, must be an address with PLUS and MULT so
708 do the computation. */
709 if (! general_operand (x, VOIDmode))
710 x = force_operand (x, temp);
712 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
713 abort ();
714 if (x != temp)
715 emit_move_insn (temp, x);
716 return temp;
719 /* Load X into a register if it is not already one.
720 Use mode MODE for the register.
721 X should be valid for mode MODE, but it may be a constant which
722 is valid for all integer modes; that's why caller must specify MODE.
724 The caller must not alter the value in the register we return,
725 since we mark it as a "constant" register. */
728 force_reg (mode, x)
729 enum machine_mode mode;
730 rtx x;
732 register rtx temp, insn, set;
734 if (GET_CODE (x) == REG)
735 return x;
737 temp = gen_reg_rtx (mode);
739 if (! general_operand (x, mode))
740 x = force_operand (x, NULL_RTX);
742 insn = emit_move_insn (temp, x);
744 /* Let optimizers know that TEMP's value never changes
745 and that X can be substituted for it. Don't get confused
746 if INSN set something else (such as a SUBREG of TEMP). */
747 if (CONSTANT_P (x)
748 && (set = single_set (insn)) != 0
749 && SET_DEST (set) == temp)
751 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
753 if (note)
754 XEXP (note, 0) = x;
755 else
756 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, x, REG_NOTES (insn));
758 return temp;
761 /* If X is a memory ref, copy its contents to a new temp reg and return
762 that reg. Otherwise, return X. */
765 force_not_mem (x)
766 rtx x;
768 register rtx temp;
769 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
770 return x;
771 temp = gen_reg_rtx (GET_MODE (x));
772 emit_move_insn (temp, x);
773 return temp;
776 /* Copy X to TARGET (if it's nonzero and a reg)
777 or to a new temp reg and return that reg.
778 MODE is the mode to use for X in case it is a constant. */
781 copy_to_suggested_reg (x, target, mode)
782 rtx x, target;
783 enum machine_mode mode;
785 register rtx temp;
787 if (target && GET_CODE (target) == REG)
788 temp = target;
789 else
790 temp = gen_reg_rtx (mode);
792 emit_move_insn (temp, x);
793 return temp;
796 /* Return the mode to use to store a scalar of TYPE and MODE.
797 PUNSIGNEDP points to the signedness of the type and may be adjusted
798 to show what signedness to use on extension operations.
800 FOR_CALL is non-zero if this call is promoting args for a call. */
802 enum machine_mode
803 promote_mode (type, mode, punsignedp, for_call)
804 tree type;
805 enum machine_mode mode;
806 int *punsignedp;
807 int for_call ATTRIBUTE_UNUSED;
809 enum tree_code code = TREE_CODE (type);
810 int unsignedp = *punsignedp;
812 #ifdef PROMOTE_FOR_CALL_ONLY
813 if (! for_call)
814 return mode;
815 #endif
817 switch (code)
819 #ifdef PROMOTE_MODE
820 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
821 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
822 PROMOTE_MODE (mode, unsignedp, type);
823 break;
824 #endif
826 #ifdef POINTERS_EXTEND_UNSIGNED
827 case REFERENCE_TYPE:
828 case POINTER_TYPE:
829 mode = Pmode;
830 unsignedp = POINTERS_EXTEND_UNSIGNED;
831 break;
832 #endif
834 default:
835 break;
838 *punsignedp = unsignedp;
839 return mode;
842 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
843 This pops when ADJUST is positive. ADJUST need not be constant. */
845 void
846 adjust_stack (adjust)
847 rtx adjust;
849 rtx temp;
850 adjust = protect_from_queue (adjust, 0);
852 if (adjust == const0_rtx)
853 return;
855 /* We expect all variable sized adjustments to be multiple of
856 PREFERRED_STACK_BOUNDARY. */
857 if (GET_CODE (adjust) == CONST_INT)
858 stack_pointer_delta -= INTVAL (adjust);
860 temp = expand_binop (Pmode,
861 #ifdef STACK_GROWS_DOWNWARD
862 add_optab,
863 #else
864 sub_optab,
865 #endif
866 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
867 OPTAB_LIB_WIDEN);
869 if (temp != stack_pointer_rtx)
870 emit_move_insn (stack_pointer_rtx, temp);
873 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
874 This pushes when ADJUST is positive. ADJUST need not be constant. */
876 void
877 anti_adjust_stack (adjust)
878 rtx adjust;
880 rtx temp;
881 adjust = protect_from_queue (adjust, 0);
883 if (adjust == const0_rtx)
884 return;
886 /* We expect all variable sized adjustments to be multiple of
887 PREFERRED_STACK_BOUNDARY. */
888 if (GET_CODE (adjust) == CONST_INT)
889 stack_pointer_delta += INTVAL (adjust);
891 temp = expand_binop (Pmode,
892 #ifdef STACK_GROWS_DOWNWARD
893 sub_optab,
894 #else
895 add_optab,
896 #endif
897 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
898 OPTAB_LIB_WIDEN);
900 if (temp != stack_pointer_rtx)
901 emit_move_insn (stack_pointer_rtx, temp);
904 /* Round the size of a block to be pushed up to the boundary required
905 by this machine. SIZE is the desired size, which need not be constant. */
908 round_push (size)
909 rtx size;
911 #ifdef PREFERRED_STACK_BOUNDARY
912 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
913 if (align == 1)
914 return size;
915 if (GET_CODE (size) == CONST_INT)
917 int new = (INTVAL (size) + align - 1) / align * align;
918 if (INTVAL (size) != new)
919 size = GEN_INT (new);
921 else
923 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
924 but we know it can't. So add ourselves and then do
925 TRUNC_DIV_EXPR. */
926 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
927 NULL_RTX, 1, OPTAB_LIB_WIDEN);
928 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
929 NULL_RTX, 1);
930 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
932 #endif /* PREFERRED_STACK_BOUNDARY */
933 return size;
936 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
937 to a previously-created save area. If no save area has been allocated,
938 this function will allocate one. If a save area is specified, it
939 must be of the proper mode.
941 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
942 are emitted at the current position. */
944 void
945 emit_stack_save (save_level, psave, after)
946 enum save_level save_level;
947 rtx *psave;
948 rtx after;
950 rtx sa = *psave;
951 /* The default is that we use a move insn and save in a Pmode object. */
952 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
953 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
955 /* See if this machine has anything special to do for this kind of save. */
956 switch (save_level)
958 #ifdef HAVE_save_stack_block
959 case SAVE_BLOCK:
960 if (HAVE_save_stack_block)
961 fcn = gen_save_stack_block;
962 break;
963 #endif
964 #ifdef HAVE_save_stack_function
965 case SAVE_FUNCTION:
966 if (HAVE_save_stack_function)
967 fcn = gen_save_stack_function;
968 break;
969 #endif
970 #ifdef HAVE_save_stack_nonlocal
971 case SAVE_NONLOCAL:
972 if (HAVE_save_stack_nonlocal)
973 fcn = gen_save_stack_nonlocal;
974 break;
975 #endif
976 default:
977 break;
980 /* If there is no save area and we have to allocate one, do so. Otherwise
981 verify the save area is the proper mode. */
983 if (sa == 0)
985 if (mode != VOIDmode)
987 if (save_level == SAVE_NONLOCAL)
988 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
989 else
990 *psave = sa = gen_reg_rtx (mode);
993 else
995 if (mode == VOIDmode || GET_MODE (sa) != mode)
996 abort ();
999 if (after)
1001 rtx seq;
1003 start_sequence ();
1004 /* We must validize inside the sequence, to ensure that any instructions
1005 created by the validize call also get moved to the right place. */
1006 if (sa != 0)
1007 sa = validize_mem (sa);
1008 emit_insn (fcn (sa, stack_pointer_rtx));
1009 seq = gen_sequence ();
1010 end_sequence ();
1011 emit_insn_after (seq, after);
1013 else
1015 if (sa != 0)
1016 sa = validize_mem (sa);
1017 emit_insn (fcn (sa, stack_pointer_rtx));
1021 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1022 area made by emit_stack_save. If it is zero, we have nothing to do.
1024 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1025 current position. */
1027 void
1028 emit_stack_restore (save_level, sa, after)
1029 enum save_level save_level;
1030 rtx after;
1031 rtx sa;
1033 /* The default is that we use a move insn. */
1034 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
1036 /* See if this machine has anything special to do for this kind of save. */
1037 switch (save_level)
1039 #ifdef HAVE_restore_stack_block
1040 case SAVE_BLOCK:
1041 if (HAVE_restore_stack_block)
1042 fcn = gen_restore_stack_block;
1043 break;
1044 #endif
1045 #ifdef HAVE_restore_stack_function
1046 case SAVE_FUNCTION:
1047 if (HAVE_restore_stack_function)
1048 fcn = gen_restore_stack_function;
1049 break;
1050 #endif
1051 #ifdef HAVE_restore_stack_nonlocal
1052 case SAVE_NONLOCAL:
1053 if (HAVE_restore_stack_nonlocal)
1054 fcn = gen_restore_stack_nonlocal;
1055 break;
1056 #endif
1057 default:
1058 break;
1061 if (sa != 0)
1062 sa = validize_mem (sa);
1064 if (after)
1066 rtx seq;
1068 start_sequence ();
1069 emit_insn (fcn (stack_pointer_rtx, sa));
1070 seq = gen_sequence ();
1071 end_sequence ();
1072 emit_insn_after (seq, after);
1074 else
1075 emit_insn (fcn (stack_pointer_rtx, sa));
1078 #ifdef SETJMP_VIA_SAVE_AREA
1079 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1080 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1081 platforms, the dynamic stack space used can corrupt the original
1082 frame, thus causing a crash if a longjmp unwinds to it. */
1084 void
1085 optimize_save_area_alloca (insns)
1086 rtx insns;
1088 rtx insn;
1090 for (insn = insns; insn; insn = NEXT_INSN(insn))
1092 rtx note;
1094 if (GET_CODE (insn) != INSN)
1095 continue;
1097 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1099 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1100 continue;
1102 if (!current_function_calls_setjmp)
1104 rtx pat = PATTERN (insn);
1106 /* If we do not see the note in a pattern matching
1107 these precise characteristics, we did something
1108 entirely wrong in allocate_dynamic_stack_space.
1110 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1111 was defined on a machine where stacks grow towards higher
1112 addresses.
1114 Right now only supported port with stack that grow upward
1115 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1116 if (GET_CODE (pat) != SET
1117 || SET_DEST (pat) != stack_pointer_rtx
1118 || GET_CODE (SET_SRC (pat)) != MINUS
1119 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1120 abort ();
1122 /* This will now be transformed into a (set REG REG)
1123 so we can just blow away all the other notes. */
1124 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1125 REG_NOTES (insn) = NULL_RTX;
1127 else
1129 /* setjmp was called, we must remove the REG_SAVE_AREA
1130 note so that later passes do not get confused by its
1131 presence. */
1132 if (note == REG_NOTES (insn))
1134 REG_NOTES (insn) = XEXP (note, 1);
1136 else
1138 rtx srch;
1140 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1141 if (XEXP (srch, 1) == note)
1142 break;
1144 if (srch == NULL_RTX)
1145 abort();
1147 XEXP (srch, 1) = XEXP (note, 1);
1150 /* Once we've seen the note of interest, we need not look at
1151 the rest of them. */
1152 break;
1156 #endif /* SETJMP_VIA_SAVE_AREA */
1158 /* Return an rtx representing the address of an area of memory dynamically
1159 pushed on the stack. This region of memory is always aligned to
1160 a multiple of BIGGEST_ALIGNMENT.
1162 Any required stack pointer alignment is preserved.
1164 SIZE is an rtx representing the size of the area.
1165 TARGET is a place in which the address can be placed.
1167 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1170 allocate_dynamic_stack_space (size, target, known_align)
1171 rtx size;
1172 rtx target;
1173 int known_align;
1175 #ifdef SETJMP_VIA_SAVE_AREA
1176 rtx setjmpless_size = NULL_RTX;
1177 #endif
1179 /* If we're asking for zero bytes, it doesn't matter what we point
1180 to since we can't dereference it. But return a reasonable
1181 address anyway. */
1182 if (size == const0_rtx)
1183 return virtual_stack_dynamic_rtx;
1185 /* Otherwise, show we're calling alloca or equivalent. */
1186 current_function_calls_alloca = 1;
1188 /* Ensure the size is in the proper mode. */
1189 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1190 size = convert_to_mode (Pmode, size, 1);
1192 /* We can't attempt to minimize alignment necessary, because we don't
1193 know the final value of preferred_stack_boundary yet while executing
1194 this code. */
1195 #ifdef PREFERRED_STACK_BOUNDARY
1196 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1197 #endif
1199 /* We will need to ensure that the address we return is aligned to
1200 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1201 always know its final value at this point in the compilation (it
1202 might depend on the size of the outgoing parameter lists, for
1203 example), so we must align the value to be returned in that case.
1204 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1205 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1206 We must also do an alignment operation on the returned value if
1207 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1209 If we have to align, we must leave space in SIZE for the hole
1210 that might result from the alignment operation. */
1212 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET) || ! defined (PREFERRED_STACK_BOUNDARY)
1213 #define MUST_ALIGN 1
1214 #else
1215 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1216 #endif
1218 if (MUST_ALIGN)
1220 if (GET_CODE (size) == CONST_INT)
1221 size = GEN_INT (INTVAL (size)
1222 + (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1));
1223 else
1224 size = expand_binop (Pmode, add_optab, size,
1225 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1226 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1229 #ifdef SETJMP_VIA_SAVE_AREA
1230 /* If setjmp restores regs from a save area in the stack frame,
1231 avoid clobbering the reg save area. Note that the offset of
1232 virtual_incoming_args_rtx includes the preallocated stack args space.
1233 It would be no problem to clobber that, but it's on the wrong side
1234 of the old save area. */
1236 rtx dynamic_offset
1237 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1238 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1240 if (!current_function_calls_setjmp)
1242 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1244 /* See optimize_save_area_alloca to understand what is being
1245 set up here. */
1247 #if !defined(PREFERRED_STACK_BOUNDARY) || !defined(MUST_ALIGN) || (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1248 /* If anyone creates a target with these characteristics, let them
1249 know that our optimization cannot work correctly in such a case. */
1250 abort();
1251 #endif
1253 if (GET_CODE (size) == CONST_INT)
1255 int new = INTVAL (size) / align * align;
1257 if (INTVAL (size) != new)
1258 setjmpless_size = GEN_INT (new);
1259 else
1260 setjmpless_size = size;
1262 else
1264 /* Since we know overflow is not possible, we avoid using
1265 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1266 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1267 GEN_INT (align), NULL_RTX, 1);
1268 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1269 GEN_INT (align), NULL_RTX, 1);
1271 /* Our optimization works based upon being able to perform a simple
1272 transformation of this RTL into a (set REG REG) so make sure things
1273 did in fact end up in a REG. */
1274 if (!register_operand (setjmpless_size, Pmode))
1275 setjmpless_size = force_reg (Pmode, setjmpless_size);
1278 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1279 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1281 #endif /* SETJMP_VIA_SAVE_AREA */
1283 /* Round the size to a multiple of the required stack alignment.
1284 Since the stack if presumed to be rounded before this allocation,
1285 this will maintain the required alignment.
1287 If the stack grows downward, we could save an insn by subtracting
1288 SIZE from the stack pointer and then aligning the stack pointer.
1289 The problem with this is that the stack pointer may be unaligned
1290 between the execution of the subtraction and alignment insns and
1291 some machines do not allow this. Even on those that do, some
1292 signal handlers malfunction if a signal should occur between those
1293 insns. Since this is an extremely rare event, we have no reliable
1294 way of knowing which systems have this problem. So we avoid even
1295 momentarily mis-aligning the stack. */
1297 #ifdef PREFERRED_STACK_BOUNDARY
1298 /* If we added a variable amount to SIZE,
1299 we can no longer assume it is aligned. */
1300 #if !defined (SETJMP_VIA_SAVE_AREA)
1301 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1302 #endif
1303 size = round_push (size);
1304 #endif
1306 do_pending_stack_adjust ();
1308 /* We ought to be called always on the toplevel and stack ought to be aligned
1309 propertly. */
1310 #ifdef PREFERRED_STACK_BOUNDARY
1311 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1312 abort ();
1313 #endif
1315 /* If needed, check that we have the required amount of stack. Take into
1316 account what has already been checked. */
1317 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1318 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1320 /* Don't use a TARGET that isn't a pseudo. */
1321 if (target == 0 || GET_CODE (target) != REG
1322 || REGNO (target) < FIRST_PSEUDO_REGISTER)
1323 target = gen_reg_rtx (Pmode);
1325 mark_reg_pointer (target, known_align);
1327 /* Perform the required allocation from the stack. Some systems do
1328 this differently than simply incrementing/decrementing from the
1329 stack pointer, such as acquiring the space by calling malloc(). */
1330 #ifdef HAVE_allocate_stack
1331 if (HAVE_allocate_stack)
1333 enum machine_mode mode = STACK_SIZE_MODE;
1334 insn_operand_predicate_fn pred;
1336 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[0].predicate;
1337 if (pred && ! ((*pred) (target, Pmode)))
1338 #ifdef POINTERS_EXTEND_UNSIGNED
1339 target = convert_memory_address (Pmode, target);
1340 #else
1341 target = copy_to_mode_reg (Pmode, target);
1342 #endif
1344 if (mode == VOIDmode)
1345 mode = Pmode;
1347 size = convert_modes (mode, ptr_mode, size, 1);
1348 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1349 if (pred && ! ((*pred) (size, mode)))
1350 size = copy_to_mode_reg (mode, size);
1352 emit_insn (gen_allocate_stack (target, size));
1354 else
1355 #endif
1357 #ifndef STACK_GROWS_DOWNWARD
1358 emit_move_insn (target, virtual_stack_dynamic_rtx);
1359 #endif
1360 size = convert_modes (Pmode, ptr_mode, size, 1);
1362 /* Check stack bounds if necessary. */
1363 if (current_function_limit_stack)
1365 rtx available;
1366 rtx space_available = gen_label_rtx ();
1367 #ifdef STACK_GROWS_DOWNWARD
1368 available = expand_binop (Pmode, sub_optab,
1369 stack_pointer_rtx, stack_limit_rtx,
1370 NULL_RTX, 1, OPTAB_WIDEN);
1371 #else
1372 available = expand_binop (Pmode, sub_optab,
1373 stack_limit_rtx, stack_pointer_rtx,
1374 NULL_RTX, 1, OPTAB_WIDEN);
1375 #endif
1376 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1377 0, space_available);
1378 #ifdef HAVE_trap
1379 if (HAVE_trap)
1380 emit_insn (gen_trap ());
1381 else
1382 #endif
1383 error ("stack limits not supported on this target");
1384 emit_barrier ();
1385 emit_label (space_available);
1388 anti_adjust_stack (size);
1389 #ifdef SETJMP_VIA_SAVE_AREA
1390 if (setjmpless_size != NULL_RTX)
1392 rtx note_target = get_last_insn ();
1394 REG_NOTES (note_target)
1395 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1396 REG_NOTES (note_target));
1398 #endif /* SETJMP_VIA_SAVE_AREA */
1399 #ifdef STACK_GROWS_DOWNWARD
1400 emit_move_insn (target, virtual_stack_dynamic_rtx);
1401 #endif
1404 if (MUST_ALIGN)
1406 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1407 but we know it can't. So add ourselves and then do
1408 TRUNC_DIV_EXPR. */
1409 target = expand_binop (Pmode, add_optab, target,
1410 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1411 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1412 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1413 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1414 NULL_RTX, 1);
1415 target = expand_mult (Pmode, target,
1416 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1417 NULL_RTX, 1);
1420 /* Some systems require a particular insn to refer to the stack
1421 to make the pages exist. */
1422 #ifdef HAVE_probe
1423 if (HAVE_probe)
1424 emit_insn (gen_probe ());
1425 #endif
1427 /* Record the new stack level for nonlocal gotos. */
1428 if (nonlocal_goto_handler_slots != 0)
1429 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1431 return target;
1434 /* A front end may want to override GCC's stack checking by providing a
1435 run-time routine to call to check the stack, so provide a mechanism for
1436 calling that routine. */
1438 static rtx stack_check_libfunc;
1440 void
1441 set_stack_check_libfunc (libfunc)
1442 rtx libfunc;
1444 stack_check_libfunc = libfunc;
1447 /* Emit one stack probe at ADDRESS, an address within the stack. */
1449 static void
1450 emit_stack_probe (address)
1451 rtx address;
1453 rtx memref = gen_rtx_MEM (word_mode, address);
1455 MEM_VOLATILE_P (memref) = 1;
1457 if (STACK_CHECK_PROBE_LOAD)
1458 emit_move_insn (gen_reg_rtx (word_mode), memref);
1459 else
1460 emit_move_insn (memref, const0_rtx);
1463 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1464 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1465 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1466 subtract from the stack. If SIZE is constant, this is done
1467 with a fixed number of probes. Otherwise, we must make a loop. */
1469 #ifdef STACK_GROWS_DOWNWARD
1470 #define STACK_GROW_OP MINUS
1471 #else
1472 #define STACK_GROW_OP PLUS
1473 #endif
1475 void
1476 probe_stack_range (first, size)
1477 HOST_WIDE_INT first;
1478 rtx size;
1480 /* First see if the front end has set up a function for us to call to
1481 check the stack. */
1482 if (stack_check_libfunc != 0)
1483 emit_library_call (stack_check_libfunc, 0, VOIDmode, 1,
1484 memory_address (QImode,
1485 gen_rtx (STACK_GROW_OP, Pmode,
1486 stack_pointer_rtx,
1487 plus_constant (size, first))),
1488 ptr_mode);
1490 /* Next see if we have an insn to check the stack. Use it if so. */
1491 #ifdef HAVE_check_stack
1492 else if (HAVE_check_stack)
1494 insn_operand_predicate_fn pred;
1495 rtx last_addr
1496 = force_operand (gen_rtx_STACK_GROW_OP (Pmode,
1497 stack_pointer_rtx,
1498 plus_constant (size, first)),
1499 NULL_RTX);
1501 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1502 if (pred && ! ((*pred) (last_addr, Pmode)))
1503 last_addr = copy_to_mode_reg (Pmode, last_addr);
1505 emit_insn (gen_check_stack (last_addr));
1507 #endif
1509 /* If we have to generate explicit probes, see if we have a constant
1510 small number of them to generate. If so, that's the easy case. */
1511 else if (GET_CODE (size) == CONST_INT
1512 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1514 HOST_WIDE_INT offset;
1516 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1517 for values of N from 1 until it exceeds LAST. If only one
1518 probe is needed, this will not generate any code. Then probe
1519 at LAST. */
1520 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1521 offset < INTVAL (size);
1522 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1523 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1524 stack_pointer_rtx,
1525 GEN_INT (offset)));
1527 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1528 stack_pointer_rtx,
1529 plus_constant (size, first)));
1532 /* In the variable case, do the same as above, but in a loop. We emit loop
1533 notes so that loop optimization can be done. */
1534 else
1536 rtx test_addr
1537 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1538 stack_pointer_rtx,
1539 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1540 NULL_RTX);
1541 rtx last_addr
1542 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1543 stack_pointer_rtx,
1544 plus_constant (size, first)),
1545 NULL_RTX);
1546 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1547 rtx loop_lab = gen_label_rtx ();
1548 rtx test_lab = gen_label_rtx ();
1549 rtx end_lab = gen_label_rtx ();
1550 rtx temp;
1552 if (GET_CODE (test_addr) != REG
1553 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1554 test_addr = force_reg (Pmode, test_addr);
1556 emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG);
1557 emit_jump (test_lab);
1559 emit_label (loop_lab);
1560 emit_stack_probe (test_addr);
1562 emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT);
1564 #ifdef STACK_GROWS_DOWNWARD
1565 #define CMP_OPCODE GTU
1566 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1567 1, OPTAB_WIDEN);
1568 #else
1569 #define CMP_OPCODE LTU
1570 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1571 1, OPTAB_WIDEN);
1572 #endif
1574 if (temp != test_addr)
1575 abort ();
1577 emit_label (test_lab);
1578 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1579 NULL_RTX, Pmode, 1, 0, loop_lab);
1580 emit_jump (end_lab);
1581 emit_note (NULL_PTR, NOTE_INSN_LOOP_END);
1582 emit_label (end_lab);
1584 emit_stack_probe (last_addr);
1588 /* Return an rtx representing the register or memory location
1589 in which a scalar value of data type VALTYPE
1590 was returned by a function call to function FUNC.
1591 FUNC is a FUNCTION_DECL node if the precise function is known,
1592 otherwise 0.
1593 OUTGOING is 1 if on a machine with register windows this function
1594 should return the register in which the function will put its result
1595 and 0 otherwise. */
1598 hard_function_value (valtype, func, outgoing)
1599 tree valtype;
1600 tree func ATTRIBUTE_UNUSED;
1601 int outgoing ATTRIBUTE_UNUSED;
1603 rtx val;
1605 #ifdef FUNCTION_OUTGOING_VALUE
1606 if (outgoing)
1607 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1608 else
1609 #endif
1610 val = FUNCTION_VALUE (valtype, func);
1612 if (GET_CODE (val) == REG
1613 && GET_MODE (val) == BLKmode)
1615 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1616 enum machine_mode tmpmode;
1618 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1619 tmpmode != VOIDmode;
1620 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1622 /* Have we found a large enough mode? */
1623 if (GET_MODE_SIZE (tmpmode) >= bytes)
1624 break;
1627 /* No suitable mode found. */
1628 if (tmpmode == VOIDmode)
1629 abort ();
1631 PUT_MODE (val, tmpmode);
1633 return val;
1636 /* Return an rtx representing the register or memory location
1637 in which a scalar value of mode MODE was returned by a library call. */
1640 hard_libcall_value (mode)
1641 enum machine_mode mode;
1643 return LIBCALL_VALUE (mode);
1646 /* Look up the tree code for a given rtx code
1647 to provide the arithmetic operation for REAL_ARITHMETIC.
1648 The function returns an int because the caller may not know
1649 what `enum tree_code' means. */
1652 rtx_to_tree_code (code)
1653 enum rtx_code code;
1655 enum tree_code tcode;
1657 switch (code)
1659 case PLUS:
1660 tcode = PLUS_EXPR;
1661 break;
1662 case MINUS:
1663 tcode = MINUS_EXPR;
1664 break;
1665 case MULT:
1666 tcode = MULT_EXPR;
1667 break;
1668 case DIV:
1669 tcode = RDIV_EXPR;
1670 break;
1671 case SMIN:
1672 tcode = MIN_EXPR;
1673 break;
1674 case SMAX:
1675 tcode = MAX_EXPR;
1676 break;
1677 default:
1678 tcode = LAST_AND_UNUSED_TREE_CODE;
1679 break;
1681 return ((int) tcode);