Remove _GNU_SOURCE from AM_CPPFLAGS
[official-gcc.git] / gcc / tree-sra.c
blob95a9f1b1235faacd1b50a30e224532376162de8d
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2008, 2009, 2010 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
31 conversions.
33 Both passes operate in four stages:
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
49 accesses.
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
74 #include "config.h"
75 #include "system.h"
76 #include "coretypes.h"
77 #include "alloc-pool.h"
78 #include "tm.h"
79 #include "tree.h"
80 #include "gimple.h"
81 #include "cgraph.h"
82 #include "tree-flow.h"
83 #include "ipa-prop.h"
84 #include "tree-pretty-print.h"
85 #include "statistics.h"
86 #include "tree-dump.h"
87 #include "timevar.h"
88 #include "params.h"
89 #include "target.h"
90 #include "flags.h"
91 #include "dbgcnt.h"
92 #include "tree-inline.h"
93 #include "gimple-pretty-print.h"
95 /* Enumeration of all aggregate reductions we can do. */
96 enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
97 SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
98 SRA_MODE_INTRA }; /* late intraprocedural SRA */
100 /* Global variable describing which aggregate reduction we are performing at
101 the moment. */
102 static enum sra_mode sra_mode;
104 struct assign_link;
106 /* ACCESS represents each access to an aggregate variable (as a whole or a
107 part). It can also represent a group of accesses that refer to exactly the
108 same fragment of an aggregate (i.e. those that have exactly the same offset
109 and size). Such representatives for a single aggregate, once determined,
110 are linked in a linked list and have the group fields set.
112 Moreover, when doing intraprocedural SRA, a tree is built from those
113 representatives (by the means of first_child and next_sibling pointers), in
114 which all items in a subtree are "within" the root, i.e. their offset is
115 greater or equal to offset of the root and offset+size is smaller or equal
116 to offset+size of the root. Children of an access are sorted by offset.
118 Note that accesses to parts of vector and complex number types always
119 represented by an access to the whole complex number or a vector. It is a
120 duty of the modifying functions to replace them appropriately. */
122 struct access
124 /* Values returned by `get_ref_base_and_extent' for each component reference
125 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
126 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
127 HOST_WIDE_INT offset;
128 HOST_WIDE_INT size;
129 tree base;
131 /* Expression. It is context dependent so do not use it to create new
132 expressions to access the original aggregate. See PR 42154 for a
133 testcase. */
134 tree expr;
135 /* Type. */
136 tree type;
138 /* The statement this access belongs to. */
139 gimple stmt;
141 /* Next group representative for this aggregate. */
142 struct access *next_grp;
144 /* Pointer to the group representative. Pointer to itself if the struct is
145 the representative. */
146 struct access *group_representative;
148 /* If this access has any children (in terms of the definition above), this
149 points to the first one. */
150 struct access *first_child;
152 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
153 described above. In IPA-SRA this is a pointer to the next access
154 belonging to the same group (having the same representative). */
155 struct access *next_sibling;
157 /* Pointers to the first and last element in the linked list of assign
158 links. */
159 struct assign_link *first_link, *last_link;
161 /* Pointer to the next access in the work queue. */
162 struct access *next_queued;
164 /* Replacement variable for this access "region." Never to be accessed
165 directly, always only by the means of get_access_replacement() and only
166 when grp_to_be_replaced flag is set. */
167 tree replacement_decl;
169 /* Is this particular access write access? */
170 unsigned write : 1;
172 /* Is this access an artificial one created to scalarize some record
173 entirely? */
174 unsigned total_scalarization : 1;
176 /* Is this access an access to a non-addressable field? */
177 unsigned non_addressable : 1;
179 /* Is this access currently in the work queue? */
180 unsigned grp_queued : 1;
182 /* Does this group contain a write access? This flag is propagated down the
183 access tree. */
184 unsigned grp_write : 1;
186 /* Does this group contain a read access? This flag is propagated down the
187 access tree. */
188 unsigned grp_read : 1;
190 /* Does this group contain a read access that comes from an assignment
191 statement? This flag is propagated down the access tree. */
192 unsigned grp_assignment_read : 1;
194 /* Does this group contain a write access that comes from an assignment
195 statement? This flag is propagated down the access tree. */
196 unsigned grp_assignment_write : 1;
198 /* Does this group contain a read access through a scalar type? This flag is
199 not propagated in the access tree in any direction. */
200 unsigned grp_scalar_read : 1;
202 /* Does this group contain a write access through a scalar type? This flag
203 is not propagated in the access tree in any direction. */
204 unsigned grp_scalar_write : 1;
206 /* Other passes of the analysis use this bit to make function
207 analyze_access_subtree create scalar replacements for this group if
208 possible. */
209 unsigned grp_hint : 1;
211 /* Is the subtree rooted in this access fully covered by scalar
212 replacements? */
213 unsigned grp_covered : 1;
215 /* If set to true, this access and all below it in an access tree must not be
216 scalarized. */
217 unsigned grp_unscalarizable_region : 1;
219 /* Whether data have been written to parts of the aggregate covered by this
220 access which is not to be scalarized. This flag is propagated up in the
221 access tree. */
222 unsigned grp_unscalarized_data : 1;
224 /* Does this access and/or group contain a write access through a
225 BIT_FIELD_REF? */
226 unsigned grp_partial_lhs : 1;
228 /* Set when a scalar replacement should be created for this variable. We do
229 the decision and creation at different places because create_tmp_var
230 cannot be called from within FOR_EACH_REFERENCED_VAR. */
231 unsigned grp_to_be_replaced : 1;
233 /* Should TREE_NO_WARNING of a replacement be set? */
234 unsigned grp_no_warning : 1;
236 /* Is it possible that the group refers to data which might be (directly or
237 otherwise) modified? */
238 unsigned grp_maybe_modified : 1;
240 /* Set when this is a representative of a pointer to scalar (i.e. by
241 reference) parameter which we consider for turning into a plain scalar
242 (i.e. a by value parameter). */
243 unsigned grp_scalar_ptr : 1;
245 /* Set when we discover that this pointer is not safe to dereference in the
246 caller. */
247 unsigned grp_not_necessarilly_dereferenced : 1;
250 typedef struct access *access_p;
252 DEF_VEC_P (access_p);
253 DEF_VEC_ALLOC_P (access_p, heap);
255 /* Alloc pool for allocating access structures. */
256 static alloc_pool access_pool;
258 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
259 are used to propagate subaccesses from rhs to lhs as long as they don't
260 conflict with what is already there. */
261 struct assign_link
263 struct access *lacc, *racc;
264 struct assign_link *next;
267 /* Alloc pool for allocating assign link structures. */
268 static alloc_pool link_pool;
270 /* Base (tree) -> Vector (VEC(access_p,heap) *) map. */
271 static struct pointer_map_t *base_access_vec;
273 /* Bitmap of candidates. */
274 static bitmap candidate_bitmap;
276 /* Bitmap of candidates which we should try to entirely scalarize away and
277 those which cannot be (because they are and need be used as a whole). */
278 static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
280 /* Obstack for creation of fancy names. */
281 static struct obstack name_obstack;
283 /* Head of a linked list of accesses that need to have its subaccesses
284 propagated to their assignment counterparts. */
285 static struct access *work_queue_head;
287 /* Number of parameters of the analyzed function when doing early ipa SRA. */
288 static int func_param_count;
290 /* scan_function sets the following to true if it encounters a call to
291 __builtin_apply_args. */
292 static bool encountered_apply_args;
294 /* Set by scan_function when it finds a recursive call. */
295 static bool encountered_recursive_call;
297 /* Set by scan_function when it finds a recursive call with less actual
298 arguments than formal parameters.. */
299 static bool encountered_unchangable_recursive_call;
301 /* This is a table in which for each basic block and parameter there is a
302 distance (offset + size) in that parameter which is dereferenced and
303 accessed in that BB. */
304 static HOST_WIDE_INT *bb_dereferences;
305 /* Bitmap of BBs that can cause the function to "stop" progressing by
306 returning, throwing externally, looping infinitely or calling a function
307 which might abort etc.. */
308 static bitmap final_bbs;
310 /* Representative of no accesses at all. */
311 static struct access no_accesses_representant;
313 /* Predicate to test the special value. */
315 static inline bool
316 no_accesses_p (struct access *access)
318 return access == &no_accesses_representant;
321 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
322 representative fields are dumped, otherwise those which only describe the
323 individual access are. */
325 static struct
327 /* Number of processed aggregates is readily available in
328 analyze_all_variable_accesses and so is not stored here. */
330 /* Number of created scalar replacements. */
331 int replacements;
333 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
334 expression. */
335 int exprs;
337 /* Number of statements created by generate_subtree_copies. */
338 int subtree_copies;
340 /* Number of statements created by load_assign_lhs_subreplacements. */
341 int subreplacements;
343 /* Number of times sra_modify_assign has deleted a statement. */
344 int deleted;
346 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
347 RHS reparately due to type conversions or nonexistent matching
348 references. */
349 int separate_lhs_rhs_handling;
351 /* Number of parameters that were removed because they were unused. */
352 int deleted_unused_parameters;
354 /* Number of scalars passed as parameters by reference that have been
355 converted to be passed by value. */
356 int scalar_by_ref_to_by_val;
358 /* Number of aggregate parameters that were replaced by one or more of their
359 components. */
360 int aggregate_params_reduced;
362 /* Numbber of components created when splitting aggregate parameters. */
363 int param_reductions_created;
364 } sra_stats;
366 static void
367 dump_access (FILE *f, struct access *access, bool grp)
369 fprintf (f, "access { ");
370 fprintf (f, "base = (%d)'", DECL_UID (access->base));
371 print_generic_expr (f, access->base, 0);
372 fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
373 fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
374 fprintf (f, ", expr = ");
375 print_generic_expr (f, access->expr, 0);
376 fprintf (f, ", type = ");
377 print_generic_expr (f, access->type, 0);
378 if (grp)
379 fprintf (f, ", total_scalarization = %d, grp_read = %d, grp_write = %d, "
380 "grp_assignment_read = %d, grp_assignment_write = %d, "
381 "grp_scalar_read = %d, grp_scalar_write = %d, "
382 "grp_hint = %d, grp_covered = %d, "
383 "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
384 "grp_partial_lhs = %d, grp_to_be_replaced = %d, "
385 "grp_maybe_modified = %d, "
386 "grp_not_necessarilly_dereferenced = %d\n",
387 access->total_scalarization, access->grp_read, access->grp_write,
388 access->grp_assignment_read, access->grp_assignment_write,
389 access->grp_scalar_read, access->grp_scalar_write,
390 access->grp_hint, access->grp_covered,
391 access->grp_unscalarizable_region, access->grp_unscalarized_data,
392 access->grp_partial_lhs, access->grp_to_be_replaced,
393 access->grp_maybe_modified,
394 access->grp_not_necessarilly_dereferenced);
395 else
396 fprintf (f, ", write = %d, total_scalarization = %d, "
397 "grp_partial_lhs = %d\n",
398 access->write, access->total_scalarization,
399 access->grp_partial_lhs);
402 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
404 static void
405 dump_access_tree_1 (FILE *f, struct access *access, int level)
409 int i;
411 for (i = 0; i < level; i++)
412 fputs ("* ", dump_file);
414 dump_access (f, access, true);
416 if (access->first_child)
417 dump_access_tree_1 (f, access->first_child, level + 1);
419 access = access->next_sibling;
421 while (access);
424 /* Dump all access trees for a variable, given the pointer to the first root in
425 ACCESS. */
427 static void
428 dump_access_tree (FILE *f, struct access *access)
430 for (; access; access = access->next_grp)
431 dump_access_tree_1 (f, access, 0);
434 /* Return true iff ACC is non-NULL and has subaccesses. */
436 static inline bool
437 access_has_children_p (struct access *acc)
439 return acc && acc->first_child;
442 /* Return a vector of pointers to accesses for the variable given in BASE or
443 NULL if there is none. */
445 static VEC (access_p, heap) *
446 get_base_access_vector (tree base)
448 void **slot;
450 slot = pointer_map_contains (base_access_vec, base);
451 if (!slot)
452 return NULL;
453 else
454 return *(VEC (access_p, heap) **) slot;
457 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
458 in ACCESS. Return NULL if it cannot be found. */
460 static struct access *
461 find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
462 HOST_WIDE_INT size)
464 while (access && (access->offset != offset || access->size != size))
466 struct access *child = access->first_child;
468 while (child && (child->offset + child->size <= offset))
469 child = child->next_sibling;
470 access = child;
473 return access;
476 /* Return the first group representative for DECL or NULL if none exists. */
478 static struct access *
479 get_first_repr_for_decl (tree base)
481 VEC (access_p, heap) *access_vec;
483 access_vec = get_base_access_vector (base);
484 if (!access_vec)
485 return NULL;
487 return VEC_index (access_p, access_vec, 0);
490 /* Find an access representative for the variable BASE and given OFFSET and
491 SIZE. Requires that access trees have already been built. Return NULL if
492 it cannot be found. */
494 static struct access *
495 get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
496 HOST_WIDE_INT size)
498 struct access *access;
500 access = get_first_repr_for_decl (base);
501 while (access && (access->offset + access->size <= offset))
502 access = access->next_grp;
503 if (!access)
504 return NULL;
506 return find_access_in_subtree (access, offset, size);
509 /* Add LINK to the linked list of assign links of RACC. */
510 static void
511 add_link_to_rhs (struct access *racc, struct assign_link *link)
513 gcc_assert (link->racc == racc);
515 if (!racc->first_link)
517 gcc_assert (!racc->last_link);
518 racc->first_link = link;
520 else
521 racc->last_link->next = link;
523 racc->last_link = link;
524 link->next = NULL;
527 /* Move all link structures in their linked list in OLD_RACC to the linked list
528 in NEW_RACC. */
529 static void
530 relink_to_new_repr (struct access *new_racc, struct access *old_racc)
532 if (!old_racc->first_link)
534 gcc_assert (!old_racc->last_link);
535 return;
538 if (new_racc->first_link)
540 gcc_assert (!new_racc->last_link->next);
541 gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
543 new_racc->last_link->next = old_racc->first_link;
544 new_racc->last_link = old_racc->last_link;
546 else
548 gcc_assert (!new_racc->last_link);
550 new_racc->first_link = old_racc->first_link;
551 new_racc->last_link = old_racc->last_link;
553 old_racc->first_link = old_racc->last_link = NULL;
556 /* Add ACCESS to the work queue (which is actually a stack). */
558 static void
559 add_access_to_work_queue (struct access *access)
561 if (!access->grp_queued)
563 gcc_assert (!access->next_queued);
564 access->next_queued = work_queue_head;
565 access->grp_queued = 1;
566 work_queue_head = access;
570 /* Pop an access from the work queue, and return it, assuming there is one. */
572 static struct access *
573 pop_access_from_work_queue (void)
575 struct access *access = work_queue_head;
577 work_queue_head = access->next_queued;
578 access->next_queued = NULL;
579 access->grp_queued = 0;
580 return access;
584 /* Allocate necessary structures. */
586 static void
587 sra_initialize (void)
589 candidate_bitmap = BITMAP_ALLOC (NULL);
590 should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
591 cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
592 gcc_obstack_init (&name_obstack);
593 access_pool = create_alloc_pool ("SRA accesses", sizeof (struct access), 16);
594 link_pool = create_alloc_pool ("SRA links", sizeof (struct assign_link), 16);
595 base_access_vec = pointer_map_create ();
596 memset (&sra_stats, 0, sizeof (sra_stats));
597 encountered_apply_args = false;
598 encountered_recursive_call = false;
599 encountered_unchangable_recursive_call = false;
602 /* Hook fed to pointer_map_traverse, deallocate stored vectors. */
604 static bool
605 delete_base_accesses (const void *key ATTRIBUTE_UNUSED, void **value,
606 void *data ATTRIBUTE_UNUSED)
608 VEC (access_p, heap) *access_vec;
609 access_vec = (VEC (access_p, heap) *) *value;
610 VEC_free (access_p, heap, access_vec);
612 return true;
615 /* Deallocate all general structures. */
617 static void
618 sra_deinitialize (void)
620 BITMAP_FREE (candidate_bitmap);
621 BITMAP_FREE (should_scalarize_away_bitmap);
622 BITMAP_FREE (cannot_scalarize_away_bitmap);
623 free_alloc_pool (access_pool);
624 free_alloc_pool (link_pool);
625 obstack_free (&name_obstack, NULL);
627 pointer_map_traverse (base_access_vec, delete_base_accesses, NULL);
628 pointer_map_destroy (base_access_vec);
631 /* Remove DECL from candidates for SRA and write REASON to the dump file if
632 there is one. */
633 static void
634 disqualify_candidate (tree decl, const char *reason)
636 bitmap_clear_bit (candidate_bitmap, DECL_UID (decl));
638 if (dump_file && (dump_flags & TDF_DETAILS))
640 fprintf (dump_file, "! Disqualifying ");
641 print_generic_expr (dump_file, decl, 0);
642 fprintf (dump_file, " - %s\n", reason);
646 /* Return true iff the type contains a field or an element which does not allow
647 scalarization. */
649 static bool
650 type_internals_preclude_sra_p (tree type)
652 tree fld;
653 tree et;
655 switch (TREE_CODE (type))
657 case RECORD_TYPE:
658 case UNION_TYPE:
659 case QUAL_UNION_TYPE:
660 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
661 if (TREE_CODE (fld) == FIELD_DECL)
663 tree ft = TREE_TYPE (fld);
665 if (TREE_THIS_VOLATILE (fld)
666 || !DECL_FIELD_OFFSET (fld) || !DECL_SIZE (fld)
667 || !host_integerp (DECL_FIELD_OFFSET (fld), 1)
668 || !host_integerp (DECL_SIZE (fld), 1)
669 || (AGGREGATE_TYPE_P (ft)
670 && int_bit_position (fld) % BITS_PER_UNIT != 0))
671 return true;
673 if (AGGREGATE_TYPE_P (ft)
674 && type_internals_preclude_sra_p (ft))
675 return true;
678 return false;
680 case ARRAY_TYPE:
681 et = TREE_TYPE (type);
683 if (AGGREGATE_TYPE_P (et))
684 return type_internals_preclude_sra_p (et);
685 else
686 return false;
688 default:
689 return false;
693 /* If T is an SSA_NAME, return NULL if it is not a default def or return its
694 base variable if it is. Return T if it is not an SSA_NAME. */
696 static tree
697 get_ssa_base_param (tree t)
699 if (TREE_CODE (t) == SSA_NAME)
701 if (SSA_NAME_IS_DEFAULT_DEF (t))
702 return SSA_NAME_VAR (t);
703 else
704 return NULL_TREE;
706 return t;
709 /* Mark a dereference of BASE of distance DIST in a basic block tht STMT
710 belongs to, unless the BB has already been marked as a potentially
711 final. */
713 static void
714 mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple stmt)
716 basic_block bb = gimple_bb (stmt);
717 int idx, parm_index = 0;
718 tree parm;
720 if (bitmap_bit_p (final_bbs, bb->index))
721 return;
723 for (parm = DECL_ARGUMENTS (current_function_decl);
724 parm && parm != base;
725 parm = DECL_CHAIN (parm))
726 parm_index++;
728 gcc_assert (parm_index < func_param_count);
730 idx = bb->index * func_param_count + parm_index;
731 if (bb_dereferences[idx] < dist)
732 bb_dereferences[idx] = dist;
735 /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
736 the three fields. Also add it to the vector of accesses corresponding to
737 the base. Finally, return the new access. */
739 static struct access *
740 create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
742 VEC (access_p, heap) *vec;
743 struct access *access;
744 void **slot;
746 access = (struct access *) pool_alloc (access_pool);
747 memset (access, 0, sizeof (struct access));
748 access->base = base;
749 access->offset = offset;
750 access->size = size;
752 slot = pointer_map_contains (base_access_vec, base);
753 if (slot)
754 vec = (VEC (access_p, heap) *) *slot;
755 else
756 vec = VEC_alloc (access_p, heap, 32);
758 VEC_safe_push (access_p, heap, vec, access);
760 *((struct VEC (access_p,heap) **)
761 pointer_map_insert (base_access_vec, base)) = vec;
763 return access;
766 /* Create and insert access for EXPR. Return created access, or NULL if it is
767 not possible. */
769 static struct access *
770 create_access (tree expr, gimple stmt, bool write)
772 struct access *access;
773 HOST_WIDE_INT offset, size, max_size;
774 tree base = expr;
775 bool ptr, unscalarizable_region = false;
777 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
779 if (sra_mode == SRA_MODE_EARLY_IPA
780 && TREE_CODE (base) == MEM_REF)
782 base = get_ssa_base_param (TREE_OPERAND (base, 0));
783 if (!base)
784 return NULL;
785 ptr = true;
787 else
788 ptr = false;
790 if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
791 return NULL;
793 if (sra_mode == SRA_MODE_EARLY_IPA)
795 if (size < 0 || size != max_size)
797 disqualify_candidate (base, "Encountered a variable sized access.");
798 return NULL;
800 if (TREE_CODE (expr) == COMPONENT_REF
801 && DECL_BIT_FIELD (TREE_OPERAND (expr, 1)))
803 disqualify_candidate (base, "Encountered a bit-field access.");
804 return NULL;
806 gcc_checking_assert ((offset % BITS_PER_UNIT) == 0);
808 if (ptr)
809 mark_parm_dereference (base, offset + size, stmt);
811 else
813 if (size != max_size)
815 size = max_size;
816 unscalarizable_region = true;
818 if (size < 0)
820 disqualify_candidate (base, "Encountered an unconstrained access.");
821 return NULL;
825 access = create_access_1 (base, offset, size);
826 access->expr = expr;
827 access->type = TREE_TYPE (expr);
828 access->write = write;
829 access->grp_unscalarizable_region = unscalarizable_region;
830 access->stmt = stmt;
832 if (TREE_CODE (expr) == COMPONENT_REF
833 && DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1)))
834 access->non_addressable = 1;
836 return access;
840 /* Return true iff TYPE is a RECORD_TYPE with fields that are either of gimple
841 register types or (recursively) records with only these two kinds of fields.
842 It also returns false if any of these records contains a bit-field. */
844 static bool
845 type_consists_of_records_p (tree type)
847 tree fld;
849 if (TREE_CODE (type) != RECORD_TYPE)
850 return false;
852 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
853 if (TREE_CODE (fld) == FIELD_DECL)
855 tree ft = TREE_TYPE (fld);
857 if (DECL_BIT_FIELD (fld))
858 return false;
860 if (!is_gimple_reg_type (ft)
861 && !type_consists_of_records_p (ft))
862 return false;
865 return true;
868 /* Create total_scalarization accesses for all scalar type fields in DECL that
869 must be of a RECORD_TYPE conforming to type_consists_of_records_p. BASE
870 must be the top-most VAR_DECL representing the variable, OFFSET must be the
871 offset of DECL within BASE. REF must be the memory reference expression for
872 the given decl. */
874 static void
875 completely_scalarize_record (tree base, tree decl, HOST_WIDE_INT offset,
876 tree ref)
878 tree fld, decl_type = TREE_TYPE (decl);
880 for (fld = TYPE_FIELDS (decl_type); fld; fld = DECL_CHAIN (fld))
881 if (TREE_CODE (fld) == FIELD_DECL)
883 HOST_WIDE_INT pos = offset + int_bit_position (fld);
884 tree ft = TREE_TYPE (fld);
885 tree nref = build3 (COMPONENT_REF, TREE_TYPE (fld), ref, fld,
886 NULL_TREE);
888 if (is_gimple_reg_type (ft))
890 struct access *access;
891 HOST_WIDE_INT size;
893 size = tree_low_cst (DECL_SIZE (fld), 1);
894 access = create_access_1 (base, pos, size);
895 access->expr = nref;
896 access->type = ft;
897 access->total_scalarization = 1;
898 /* Accesses for intraprocedural SRA can have their stmt NULL. */
900 else
901 completely_scalarize_record (base, fld, pos, nref);
906 /* Search the given tree for a declaration by skipping handled components and
907 exclude it from the candidates. */
909 static void
910 disqualify_base_of_expr (tree t, const char *reason)
912 t = get_base_address (t);
913 if (sra_mode == SRA_MODE_EARLY_IPA
914 && TREE_CODE (t) == MEM_REF)
915 t = get_ssa_base_param (TREE_OPERAND (t, 0));
917 if (t && DECL_P (t))
918 disqualify_candidate (t, reason);
921 /* Scan expression EXPR and create access structures for all accesses to
922 candidates for scalarization. Return the created access or NULL if none is
923 created. */
925 static struct access *
926 build_access_from_expr_1 (tree expr, gimple stmt, bool write)
928 struct access *ret = NULL;
929 bool partial_ref;
931 if (TREE_CODE (expr) == BIT_FIELD_REF
932 || TREE_CODE (expr) == IMAGPART_EXPR
933 || TREE_CODE (expr) == REALPART_EXPR)
935 expr = TREE_OPERAND (expr, 0);
936 partial_ref = true;
938 else
939 partial_ref = false;
941 /* We need to dive through V_C_Es in order to get the size of its parameter
942 and not the result type. Ada produces such statements. We are also
943 capable of handling the topmost V_C_E but not any of those buried in other
944 handled components. */
945 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
946 expr = TREE_OPERAND (expr, 0);
948 if (contains_view_convert_expr_p (expr))
950 disqualify_base_of_expr (expr, "V_C_E under a different handled "
951 "component.");
952 return NULL;
955 switch (TREE_CODE (expr))
957 case MEM_REF:
958 if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR
959 && sra_mode != SRA_MODE_EARLY_IPA)
960 return NULL;
961 /* fall through */
962 case VAR_DECL:
963 case PARM_DECL:
964 case RESULT_DECL:
965 case COMPONENT_REF:
966 case ARRAY_REF:
967 case ARRAY_RANGE_REF:
968 ret = create_access (expr, stmt, write);
969 break;
971 default:
972 break;
975 if (write && partial_ref && ret)
976 ret->grp_partial_lhs = 1;
978 return ret;
981 /* Scan expression EXPR and create access structures for all accesses to
982 candidates for scalarization. Return true if any access has been inserted.
983 STMT must be the statement from which the expression is taken, WRITE must be
984 true if the expression is a store and false otherwise. */
986 static bool
987 build_access_from_expr (tree expr, gimple stmt, bool write)
989 struct access *access;
991 access = build_access_from_expr_1 (expr, stmt, write);
992 if (access)
994 /* This means the aggregate is accesses as a whole in a way other than an
995 assign statement and thus cannot be removed even if we had a scalar
996 replacement for everything. */
997 if (cannot_scalarize_away_bitmap)
998 bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
999 return true;
1001 return false;
1004 /* Disqualify LHS and RHS for scalarization if STMT must end its basic block in
1005 modes in which it matters, return true iff they have been disqualified. RHS
1006 may be NULL, in that case ignore it. If we scalarize an aggregate in
1007 intra-SRA we may need to add statements after each statement. This is not
1008 possible if a statement unconditionally has to end the basic block. */
1009 static bool
1010 disqualify_ops_if_throwing_stmt (gimple stmt, tree lhs, tree rhs)
1012 if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1013 && (stmt_can_throw_internal (stmt) || stmt_ends_bb_p (stmt)))
1015 disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
1016 if (rhs)
1017 disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
1018 return true;
1020 return false;
1023 /* Scan expressions occuring in STMT, create access structures for all accesses
1024 to candidates for scalarization and remove those candidates which occur in
1025 statements or expressions that prevent them from being split apart. Return
1026 true if any access has been inserted. */
1028 static bool
1029 build_accesses_from_assign (gimple stmt)
1031 tree lhs, rhs;
1032 struct access *lacc, *racc;
1034 if (!gimple_assign_single_p (stmt))
1035 return false;
1037 lhs = gimple_assign_lhs (stmt);
1038 rhs = gimple_assign_rhs1 (stmt);
1040 if (disqualify_ops_if_throwing_stmt (stmt, lhs, rhs))
1041 return false;
1043 racc = build_access_from_expr_1 (rhs, stmt, false);
1044 lacc = build_access_from_expr_1 (lhs, stmt, true);
1046 if (lacc)
1047 lacc->grp_assignment_write = 1;
1049 if (racc)
1051 racc->grp_assignment_read = 1;
1052 if (should_scalarize_away_bitmap && !gimple_has_volatile_ops (stmt)
1053 && !is_gimple_reg_type (racc->type))
1054 bitmap_set_bit (should_scalarize_away_bitmap, DECL_UID (racc->base));
1057 if (lacc && racc
1058 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1059 && !lacc->grp_unscalarizable_region
1060 && !racc->grp_unscalarizable_region
1061 && AGGREGATE_TYPE_P (TREE_TYPE (lhs))
1062 /* FIXME: Turn the following line into an assert after PR 40058 is
1063 fixed. */
1064 && lacc->size == racc->size
1065 && useless_type_conversion_p (lacc->type, racc->type))
1067 struct assign_link *link;
1069 link = (struct assign_link *) pool_alloc (link_pool);
1070 memset (link, 0, sizeof (struct assign_link));
1072 link->lacc = lacc;
1073 link->racc = racc;
1075 add_link_to_rhs (racc, link);
1078 return lacc || racc;
1081 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1082 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
1084 static bool
1085 asm_visit_addr (gimple stmt ATTRIBUTE_UNUSED, tree op,
1086 void *data ATTRIBUTE_UNUSED)
1088 op = get_base_address (op);
1089 if (op
1090 && DECL_P (op))
1091 disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
1093 return false;
1096 /* Return true iff callsite CALL has at least as many actual arguments as there
1097 are formal parameters of the function currently processed by IPA-SRA. */
1099 static inline bool
1100 callsite_has_enough_arguments_p (gimple call)
1102 return gimple_call_num_args (call) >= (unsigned) func_param_count;
1105 /* Scan function and look for interesting expressions and create access
1106 structures for them. Return true iff any access is created. */
1108 static bool
1109 scan_function (void)
1111 basic_block bb;
1112 bool ret = false;
1114 FOR_EACH_BB (bb)
1116 gimple_stmt_iterator gsi;
1117 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1119 gimple stmt = gsi_stmt (gsi);
1120 tree t;
1121 unsigned i;
1123 if (final_bbs && stmt_can_throw_external (stmt))
1124 bitmap_set_bit (final_bbs, bb->index);
1125 switch (gimple_code (stmt))
1127 case GIMPLE_RETURN:
1128 t = gimple_return_retval (stmt);
1129 if (t != NULL_TREE)
1130 ret |= build_access_from_expr (t, stmt, false);
1131 if (final_bbs)
1132 bitmap_set_bit (final_bbs, bb->index);
1133 break;
1135 case GIMPLE_ASSIGN:
1136 ret |= build_accesses_from_assign (stmt);
1137 break;
1139 case GIMPLE_CALL:
1140 for (i = 0; i < gimple_call_num_args (stmt); i++)
1141 ret |= build_access_from_expr (gimple_call_arg (stmt, i),
1142 stmt, false);
1144 if (sra_mode == SRA_MODE_EARLY_IPA)
1146 tree dest = gimple_call_fndecl (stmt);
1147 int flags = gimple_call_flags (stmt);
1149 if (dest)
1151 if (DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL
1152 && DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS)
1153 encountered_apply_args = true;
1154 if (cgraph_get_node (dest)
1155 == cgraph_get_node (current_function_decl))
1157 encountered_recursive_call = true;
1158 if (!callsite_has_enough_arguments_p (stmt))
1159 encountered_unchangable_recursive_call = true;
1163 if (final_bbs
1164 && (flags & (ECF_CONST | ECF_PURE)) == 0)
1165 bitmap_set_bit (final_bbs, bb->index);
1168 t = gimple_call_lhs (stmt);
1169 if (t && !disqualify_ops_if_throwing_stmt (stmt, t, NULL))
1170 ret |= build_access_from_expr (t, stmt, true);
1171 break;
1173 case GIMPLE_ASM:
1174 walk_stmt_load_store_addr_ops (stmt, NULL, NULL, NULL,
1175 asm_visit_addr);
1176 if (final_bbs)
1177 bitmap_set_bit (final_bbs, bb->index);
1179 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
1181 t = TREE_VALUE (gimple_asm_input_op (stmt, i));
1182 ret |= build_access_from_expr (t, stmt, false);
1184 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
1186 t = TREE_VALUE (gimple_asm_output_op (stmt, i));
1187 ret |= build_access_from_expr (t, stmt, true);
1189 break;
1191 default:
1192 break;
1197 return ret;
1200 /* Helper of QSORT function. There are pointers to accesses in the array. An
1201 access is considered smaller than another if it has smaller offset or if the
1202 offsets are the same but is size is bigger. */
1204 static int
1205 compare_access_positions (const void *a, const void *b)
1207 const access_p *fp1 = (const access_p *) a;
1208 const access_p *fp2 = (const access_p *) b;
1209 const access_p f1 = *fp1;
1210 const access_p f2 = *fp2;
1212 if (f1->offset != f2->offset)
1213 return f1->offset < f2->offset ? -1 : 1;
1215 if (f1->size == f2->size)
1217 if (f1->type == f2->type)
1218 return 0;
1219 /* Put any non-aggregate type before any aggregate type. */
1220 else if (!is_gimple_reg_type (f1->type)
1221 && is_gimple_reg_type (f2->type))
1222 return 1;
1223 else if (is_gimple_reg_type (f1->type)
1224 && !is_gimple_reg_type (f2->type))
1225 return -1;
1226 /* Put any complex or vector type before any other scalar type. */
1227 else if (TREE_CODE (f1->type) != COMPLEX_TYPE
1228 && TREE_CODE (f1->type) != VECTOR_TYPE
1229 && (TREE_CODE (f2->type) == COMPLEX_TYPE
1230 || TREE_CODE (f2->type) == VECTOR_TYPE))
1231 return 1;
1232 else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
1233 || TREE_CODE (f1->type) == VECTOR_TYPE)
1234 && TREE_CODE (f2->type) != COMPLEX_TYPE
1235 && TREE_CODE (f2->type) != VECTOR_TYPE)
1236 return -1;
1237 /* Put the integral type with the bigger precision first. */
1238 else if (INTEGRAL_TYPE_P (f1->type)
1239 && INTEGRAL_TYPE_P (f2->type))
1240 return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
1241 /* Put any integral type with non-full precision last. */
1242 else if (INTEGRAL_TYPE_P (f1->type)
1243 && (TREE_INT_CST_LOW (TYPE_SIZE (f1->type))
1244 != TYPE_PRECISION (f1->type)))
1245 return 1;
1246 else if (INTEGRAL_TYPE_P (f2->type)
1247 && (TREE_INT_CST_LOW (TYPE_SIZE (f2->type))
1248 != TYPE_PRECISION (f2->type)))
1249 return -1;
1250 /* Stabilize the sort. */
1251 return TYPE_UID (f1->type) - TYPE_UID (f2->type);
1254 /* We want the bigger accesses first, thus the opposite operator in the next
1255 line: */
1256 return f1->size > f2->size ? -1 : 1;
1260 /* Append a name of the declaration to the name obstack. A helper function for
1261 make_fancy_name. */
1263 static void
1264 make_fancy_decl_name (tree decl)
1266 char buffer[32];
1268 tree name = DECL_NAME (decl);
1269 if (name)
1270 obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
1271 IDENTIFIER_LENGTH (name));
1272 else
1274 sprintf (buffer, "D%u", DECL_UID (decl));
1275 obstack_grow (&name_obstack, buffer, strlen (buffer));
1279 /* Helper for make_fancy_name. */
1281 static void
1282 make_fancy_name_1 (tree expr)
1284 char buffer[32];
1285 tree index;
1287 if (DECL_P (expr))
1289 make_fancy_decl_name (expr);
1290 return;
1293 switch (TREE_CODE (expr))
1295 case COMPONENT_REF:
1296 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1297 obstack_1grow (&name_obstack, '$');
1298 make_fancy_decl_name (TREE_OPERAND (expr, 1));
1299 break;
1301 case ARRAY_REF:
1302 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1303 obstack_1grow (&name_obstack, '$');
1304 /* Arrays with only one element may not have a constant as their
1305 index. */
1306 index = TREE_OPERAND (expr, 1);
1307 if (TREE_CODE (index) != INTEGER_CST)
1308 break;
1309 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
1310 obstack_grow (&name_obstack, buffer, strlen (buffer));
1311 break;
1313 case ADDR_EXPR:
1314 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1315 break;
1317 case MEM_REF:
1318 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1319 if (!integer_zerop (TREE_OPERAND (expr, 1)))
1321 obstack_1grow (&name_obstack, '$');
1322 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
1323 TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
1324 obstack_grow (&name_obstack, buffer, strlen (buffer));
1326 break;
1328 case BIT_FIELD_REF:
1329 case REALPART_EXPR:
1330 case IMAGPART_EXPR:
1331 gcc_unreachable (); /* we treat these as scalars. */
1332 break;
1333 default:
1334 break;
1338 /* Create a human readable name for replacement variable of ACCESS. */
1340 static char *
1341 make_fancy_name (tree expr)
1343 make_fancy_name_1 (expr);
1344 obstack_1grow (&name_obstack, '\0');
1345 return XOBFINISH (&name_obstack, char *);
1348 /* Construct a MEM_REF that would reference a part of aggregate BASE of type
1349 EXP_TYPE at the given OFFSET. If BASE is something for which
1350 get_addr_base_and_unit_offset returns NULL, gsi must be non-NULL and is used
1351 to insert new statements either before or below the current one as specified
1352 by INSERT_AFTER. This function is not capable of handling bitfields. */
1354 tree
1355 build_ref_for_offset (location_t loc, tree base, HOST_WIDE_INT offset,
1356 tree exp_type, gimple_stmt_iterator *gsi,
1357 bool insert_after)
1359 tree prev_base = base;
1360 tree off;
1361 HOST_WIDE_INT base_offset;
1363 gcc_checking_assert (offset % BITS_PER_UNIT == 0);
1365 base = get_addr_base_and_unit_offset (base, &base_offset);
1367 /* get_addr_base_and_unit_offset returns NULL for references with a variable
1368 offset such as array[var_index]. */
1369 if (!base)
1371 gimple stmt;
1372 tree tmp, addr;
1374 gcc_checking_assert (gsi);
1375 tmp = create_tmp_reg (build_pointer_type (TREE_TYPE (prev_base)), NULL);
1376 add_referenced_var (tmp);
1377 tmp = make_ssa_name (tmp, NULL);
1378 addr = build_fold_addr_expr (unshare_expr (prev_base));
1379 STRIP_USELESS_TYPE_CONVERSION (addr);
1380 stmt = gimple_build_assign (tmp, addr);
1381 gimple_set_location (stmt, loc);
1382 SSA_NAME_DEF_STMT (tmp) = stmt;
1383 if (insert_after)
1384 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
1385 else
1386 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1387 update_stmt (stmt);
1389 off = build_int_cst (reference_alias_ptr_type (prev_base),
1390 offset / BITS_PER_UNIT);
1391 base = tmp;
1393 else if (TREE_CODE (base) == MEM_REF)
1395 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1396 base_offset + offset / BITS_PER_UNIT);
1397 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off, 0);
1398 base = unshare_expr (TREE_OPERAND (base, 0));
1400 else
1402 off = build_int_cst (reference_alias_ptr_type (base),
1403 base_offset + offset / BITS_PER_UNIT);
1404 base = build_fold_addr_expr (unshare_expr (base));
1407 return fold_build2_loc (loc, MEM_REF, exp_type, base, off);
1410 /* Construct a memory reference to a part of an aggregate BASE at the given
1411 OFFSET and of the same type as MODEL. In case this is a reference to a
1412 component, the function will replicate the last COMPONENT_REF of model's
1413 expr to access it. GSI and INSERT_AFTER have the same meaning as in
1414 build_ref_for_offset. */
1416 static tree
1417 build_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1418 struct access *model, gimple_stmt_iterator *gsi,
1419 bool insert_after)
1421 if (TREE_CODE (model->expr) == COMPONENT_REF)
1423 tree t, exp_type;
1424 offset -= int_bit_position (TREE_OPERAND (model->expr, 1));
1425 exp_type = TREE_TYPE (TREE_OPERAND (model->expr, 0));
1426 t = build_ref_for_offset (loc, base, offset, exp_type, gsi, insert_after);
1427 return fold_build3_loc (loc, COMPONENT_REF, model->type, t,
1428 TREE_OPERAND (model->expr, 1), NULL_TREE);
1430 else
1431 return build_ref_for_offset (loc, base, offset, model->type,
1432 gsi, insert_after);
1435 /* Construct a memory reference consisting of component_refs and array_refs to
1436 a part of an aggregate *RES (which is of type TYPE). The requested part
1437 should have type EXP_TYPE at be the given OFFSET. This function might not
1438 succeed, it returns true when it does and only then *RES points to something
1439 meaningful. This function should be used only to build expressions that we
1440 might need to present to user (e.g. in warnings). In all other situations,
1441 build_ref_for_model or build_ref_for_offset should be used instead. */
1443 static bool
1444 build_user_friendly_ref_for_offset (tree *res, tree type, HOST_WIDE_INT offset,
1445 tree exp_type)
1447 while (1)
1449 tree fld;
1450 tree tr_size, index, minidx;
1451 HOST_WIDE_INT el_size;
1453 if (offset == 0 && exp_type
1454 && types_compatible_p (exp_type, type))
1455 return true;
1457 switch (TREE_CODE (type))
1459 case UNION_TYPE:
1460 case QUAL_UNION_TYPE:
1461 case RECORD_TYPE:
1462 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
1464 HOST_WIDE_INT pos, size;
1465 tree expr, *expr_ptr;
1467 if (TREE_CODE (fld) != FIELD_DECL)
1468 continue;
1470 pos = int_bit_position (fld);
1471 gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
1472 tr_size = DECL_SIZE (fld);
1473 if (!tr_size || !host_integerp (tr_size, 1))
1474 continue;
1475 size = tree_low_cst (tr_size, 1);
1476 if (size == 0)
1478 if (pos != offset)
1479 continue;
1481 else if (pos > offset || (pos + size) <= offset)
1482 continue;
1484 expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
1485 NULL_TREE);
1486 expr_ptr = &expr;
1487 if (build_user_friendly_ref_for_offset (expr_ptr, TREE_TYPE (fld),
1488 offset - pos, exp_type))
1490 *res = expr;
1491 return true;
1494 return false;
1496 case ARRAY_TYPE:
1497 tr_size = TYPE_SIZE (TREE_TYPE (type));
1498 if (!tr_size || !host_integerp (tr_size, 1))
1499 return false;
1500 el_size = tree_low_cst (tr_size, 1);
1502 minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1503 if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
1504 return false;
1505 index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
1506 if (!integer_zerop (minidx))
1507 index = int_const_binop (PLUS_EXPR, index, minidx, 0);
1508 *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
1509 NULL_TREE, NULL_TREE);
1510 offset = offset % el_size;
1511 type = TREE_TYPE (type);
1512 break;
1514 default:
1515 if (offset != 0)
1516 return false;
1518 if (exp_type)
1519 return false;
1520 else
1521 return true;
1526 /* Return true iff TYPE is stdarg va_list type. */
1528 static inline bool
1529 is_va_list_type (tree type)
1531 return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node);
1534 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1535 those with type which is suitable for scalarization. */
1537 static bool
1538 find_var_candidates (void)
1540 tree var, type;
1541 referenced_var_iterator rvi;
1542 bool ret = false;
1544 FOR_EACH_REFERENCED_VAR (cfun, var, rvi)
1546 if (TREE_CODE (var) != VAR_DECL && TREE_CODE (var) != PARM_DECL)
1547 continue;
1548 type = TREE_TYPE (var);
1550 if (!AGGREGATE_TYPE_P (type)
1551 || needs_to_live_in_memory (var)
1552 || TREE_THIS_VOLATILE (var)
1553 || !COMPLETE_TYPE_P (type)
1554 || !host_integerp (TYPE_SIZE (type), 1)
1555 || tree_low_cst (TYPE_SIZE (type), 1) == 0
1556 || type_internals_preclude_sra_p (type)
1557 /* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1558 we also want to schedule it rather late. Thus we ignore it in
1559 the early pass. */
1560 || (sra_mode == SRA_MODE_EARLY_INTRA
1561 && is_va_list_type (type)))
1562 continue;
1564 bitmap_set_bit (candidate_bitmap, DECL_UID (var));
1566 if (dump_file && (dump_flags & TDF_DETAILS))
1568 fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
1569 print_generic_expr (dump_file, var, 0);
1570 fprintf (dump_file, "\n");
1572 ret = true;
1575 return ret;
1578 /* Sort all accesses for the given variable, check for partial overlaps and
1579 return NULL if there are any. If there are none, pick a representative for
1580 each combination of offset and size and create a linked list out of them.
1581 Return the pointer to the first representative and make sure it is the first
1582 one in the vector of accesses. */
1584 static struct access *
1585 sort_and_splice_var_accesses (tree var)
1587 int i, j, access_count;
1588 struct access *res, **prev_acc_ptr = &res;
1589 VEC (access_p, heap) *access_vec;
1590 bool first = true;
1591 HOST_WIDE_INT low = -1, high = 0;
1593 access_vec = get_base_access_vector (var);
1594 if (!access_vec)
1595 return NULL;
1596 access_count = VEC_length (access_p, access_vec);
1598 /* Sort by <OFFSET, SIZE>. */
1599 VEC_qsort (access_p, access_vec, compare_access_positions);
1601 i = 0;
1602 while (i < access_count)
1604 struct access *access = VEC_index (access_p, access_vec, i);
1605 bool grp_write = access->write;
1606 bool grp_read = !access->write;
1607 bool grp_scalar_write = access->write
1608 && is_gimple_reg_type (access->type);
1609 bool grp_scalar_read = !access->write
1610 && is_gimple_reg_type (access->type);
1611 bool grp_assignment_read = access->grp_assignment_read;
1612 bool grp_assignment_write = access->grp_assignment_write;
1613 bool multiple_scalar_reads = false;
1614 bool total_scalarization = access->total_scalarization;
1615 bool grp_partial_lhs = access->grp_partial_lhs;
1616 bool first_scalar = is_gimple_reg_type (access->type);
1617 bool unscalarizable_region = access->grp_unscalarizable_region;
1619 if (first || access->offset >= high)
1621 first = false;
1622 low = access->offset;
1623 high = access->offset + access->size;
1625 else if (access->offset > low && access->offset + access->size > high)
1626 return NULL;
1627 else
1628 gcc_assert (access->offset >= low
1629 && access->offset + access->size <= high);
1631 j = i + 1;
1632 while (j < access_count)
1634 struct access *ac2 = VEC_index (access_p, access_vec, j);
1635 if (ac2->offset != access->offset || ac2->size != access->size)
1636 break;
1637 if (ac2->write)
1639 grp_write = true;
1640 grp_scalar_write = (grp_scalar_write
1641 || is_gimple_reg_type (ac2->type));
1643 else
1645 grp_read = true;
1646 if (is_gimple_reg_type (ac2->type))
1648 if (grp_scalar_read)
1649 multiple_scalar_reads = true;
1650 else
1651 grp_scalar_read = true;
1654 grp_assignment_read |= ac2->grp_assignment_read;
1655 grp_assignment_write |= ac2->grp_assignment_write;
1656 grp_partial_lhs |= ac2->grp_partial_lhs;
1657 unscalarizable_region |= ac2->grp_unscalarizable_region;
1658 total_scalarization |= ac2->total_scalarization;
1659 relink_to_new_repr (access, ac2);
1661 /* If there are both aggregate-type and scalar-type accesses with
1662 this combination of size and offset, the comparison function
1663 should have put the scalars first. */
1664 gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
1665 ac2->group_representative = access;
1666 j++;
1669 i = j;
1671 access->group_representative = access;
1672 access->grp_write = grp_write;
1673 access->grp_read = grp_read;
1674 access->grp_scalar_read = grp_scalar_read;
1675 access->grp_scalar_write = grp_scalar_write;
1676 access->grp_assignment_read = grp_assignment_read;
1677 access->grp_assignment_write = grp_assignment_write;
1678 access->grp_hint = multiple_scalar_reads || total_scalarization;
1679 access->grp_partial_lhs = grp_partial_lhs;
1680 access->grp_unscalarizable_region = unscalarizable_region;
1681 if (access->first_link)
1682 add_access_to_work_queue (access);
1684 *prev_acc_ptr = access;
1685 prev_acc_ptr = &access->next_grp;
1688 gcc_assert (res == VEC_index (access_p, access_vec, 0));
1689 return res;
1692 /* Create a variable for the given ACCESS which determines the type, name and a
1693 few other properties. Return the variable declaration and store it also to
1694 ACCESS->replacement. */
1696 static tree
1697 create_access_replacement (struct access *access, bool rename)
1699 tree repl;
1701 repl = create_tmp_var (access->type, "SR");
1702 get_var_ann (repl);
1703 add_referenced_var (repl);
1704 if (rename)
1705 mark_sym_for_renaming (repl);
1707 if (!access->grp_partial_lhs
1708 && (TREE_CODE (access->type) == COMPLEX_TYPE
1709 || TREE_CODE (access->type) == VECTOR_TYPE))
1710 DECL_GIMPLE_REG_P (repl) = 1;
1712 DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
1713 DECL_ARTIFICIAL (repl) = 1;
1714 DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
1716 if (DECL_NAME (access->base)
1717 && !DECL_IGNORED_P (access->base)
1718 && !DECL_ARTIFICIAL (access->base))
1720 char *pretty_name = make_fancy_name (access->expr);
1721 tree debug_expr = unshare_expr (access->expr), d;
1723 DECL_NAME (repl) = get_identifier (pretty_name);
1724 obstack_free (&name_obstack, pretty_name);
1726 /* Get rid of any SSA_NAMEs embedded in debug_expr,
1727 as DECL_DEBUG_EXPR isn't considered when looking for still
1728 used SSA_NAMEs and thus they could be freed. All debug info
1729 generation cares is whether something is constant or variable
1730 and that get_ref_base_and_extent works properly on the
1731 expression. */
1732 for (d = debug_expr; handled_component_p (d); d = TREE_OPERAND (d, 0))
1733 switch (TREE_CODE (d))
1735 case ARRAY_REF:
1736 case ARRAY_RANGE_REF:
1737 if (TREE_OPERAND (d, 1)
1738 && TREE_CODE (TREE_OPERAND (d, 1)) == SSA_NAME)
1739 TREE_OPERAND (d, 1) = SSA_NAME_VAR (TREE_OPERAND (d, 1));
1740 if (TREE_OPERAND (d, 3)
1741 && TREE_CODE (TREE_OPERAND (d, 3)) == SSA_NAME)
1742 TREE_OPERAND (d, 3) = SSA_NAME_VAR (TREE_OPERAND (d, 3));
1743 /* FALLTHRU */
1744 case COMPONENT_REF:
1745 if (TREE_OPERAND (d, 2)
1746 && TREE_CODE (TREE_OPERAND (d, 2)) == SSA_NAME)
1747 TREE_OPERAND (d, 2) = SSA_NAME_VAR (TREE_OPERAND (d, 2));
1748 break;
1749 default:
1750 break;
1752 SET_DECL_DEBUG_EXPR (repl, debug_expr);
1753 DECL_DEBUG_EXPR_IS_FROM (repl) = 1;
1754 if (access->grp_no_warning)
1755 TREE_NO_WARNING (repl) = 1;
1756 else
1757 TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
1759 else
1760 TREE_NO_WARNING (repl) = 1;
1762 if (dump_file)
1764 fprintf (dump_file, "Created a replacement for ");
1765 print_generic_expr (dump_file, access->base, 0);
1766 fprintf (dump_file, " offset: %u, size: %u: ",
1767 (unsigned) access->offset, (unsigned) access->size);
1768 print_generic_expr (dump_file, repl, 0);
1769 fprintf (dump_file, "\n");
1771 sra_stats.replacements++;
1773 return repl;
1776 /* Return ACCESS scalar replacement, create it if it does not exist yet. */
1778 static inline tree
1779 get_access_replacement (struct access *access)
1781 gcc_assert (access->grp_to_be_replaced);
1783 if (!access->replacement_decl)
1784 access->replacement_decl = create_access_replacement (access, true);
1785 return access->replacement_decl;
1788 /* Return ACCESS scalar replacement, create it if it does not exist yet but do
1789 not mark it for renaming. */
1791 static inline tree
1792 get_unrenamed_access_replacement (struct access *access)
1794 gcc_assert (!access->grp_to_be_replaced);
1796 if (!access->replacement_decl)
1797 access->replacement_decl = create_access_replacement (access, false);
1798 return access->replacement_decl;
1802 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
1803 linked list along the way. Stop when *ACCESS is NULL or the access pointed
1804 to it is not "within" the root. Return false iff some accesses partially
1805 overlap. */
1807 static bool
1808 build_access_subtree (struct access **access)
1810 struct access *root = *access, *last_child = NULL;
1811 HOST_WIDE_INT limit = root->offset + root->size;
1813 *access = (*access)->next_grp;
1814 while (*access && (*access)->offset + (*access)->size <= limit)
1816 if (!last_child)
1817 root->first_child = *access;
1818 else
1819 last_child->next_sibling = *access;
1820 last_child = *access;
1822 if (!build_access_subtree (access))
1823 return false;
1826 if (*access && (*access)->offset < limit)
1827 return false;
1829 return true;
1832 /* Build a tree of access representatives, ACCESS is the pointer to the first
1833 one, others are linked in a list by the next_grp field. Return false iff
1834 some accesses partially overlap. */
1836 static bool
1837 build_access_trees (struct access *access)
1839 while (access)
1841 struct access *root = access;
1843 if (!build_access_subtree (&access))
1844 return false;
1845 root->next_grp = access;
1847 return true;
1850 /* Return true if expr contains some ARRAY_REFs into a variable bounded
1851 array. */
1853 static bool
1854 expr_with_var_bounded_array_refs_p (tree expr)
1856 while (handled_component_p (expr))
1858 if (TREE_CODE (expr) == ARRAY_REF
1859 && !host_integerp (array_ref_low_bound (expr), 0))
1860 return true;
1861 expr = TREE_OPERAND (expr, 0);
1863 return false;
1866 enum mark_rw_status { SRA_MRRW_NOTHING, SRA_MRRW_DIRECT, SRA_MRRW_ASSIGN};
1868 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
1869 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
1870 sorts of access flags appropriately along the way, notably always set
1871 grp_read and grp_assign_read according to MARK_READ and grp_write when
1872 MARK_WRITE is true.
1874 Creating a replacement for a scalar access is considered beneficial if its
1875 grp_hint is set (this means we are either attempting total scalarization or
1876 there is more than one direct read access) or according to the following
1877 table:
1879 Access written to through a scalar type (once or more times)
1881 | Written to in an assignment statement
1883 | | Access read as scalar _once_
1884 | | |
1885 | | | Read in an assignment statement
1886 | | | |
1887 | | | | Scalarize Comment
1888 -----------------------------------------------------------------------------
1889 0 0 0 0 No access for the scalar
1890 0 0 0 1 No access for the scalar
1891 0 0 1 0 No Single read - won't help
1892 0 0 1 1 No The same case
1893 0 1 0 0 No access for the scalar
1894 0 1 0 1 No access for the scalar
1895 0 1 1 0 Yes s = *g; return s.i;
1896 0 1 1 1 Yes The same case as above
1897 1 0 0 0 No Won't help
1898 1 0 0 1 Yes s.i = 1; *g = s;
1899 1 0 1 0 Yes s.i = 5; g = s.i;
1900 1 0 1 1 Yes The same case as above
1901 1 1 0 0 No Won't help.
1902 1 1 0 1 Yes s.i = 1; *g = s;
1903 1 1 1 0 Yes s = *g; return s.i;
1904 1 1 1 1 Yes Any of the above yeses */
1906 static bool
1907 analyze_access_subtree (struct access *root, bool allow_replacements,
1908 enum mark_rw_status mark_read,
1909 enum mark_rw_status mark_write)
1911 struct access *child;
1912 HOST_WIDE_INT limit = root->offset + root->size;
1913 HOST_WIDE_INT covered_to = root->offset;
1914 bool scalar = is_gimple_reg_type (root->type);
1915 bool hole = false, sth_created = false;
1917 if (root->grp_assignment_read)
1918 mark_read = SRA_MRRW_ASSIGN;
1919 else if (mark_read == SRA_MRRW_ASSIGN)
1921 root->grp_read = 1;
1922 root->grp_assignment_read = 1;
1924 else if (mark_read == SRA_MRRW_DIRECT)
1925 root->grp_read = 1;
1926 else if (root->grp_read)
1927 mark_read = SRA_MRRW_DIRECT;
1929 if (root->grp_assignment_write)
1930 mark_write = SRA_MRRW_ASSIGN;
1931 else if (mark_write == SRA_MRRW_ASSIGN)
1933 root->grp_write = 1;
1934 root->grp_assignment_write = 1;
1936 else if (mark_write == SRA_MRRW_DIRECT)
1937 root->grp_write = 1;
1938 else if (root->grp_write)
1939 mark_write = SRA_MRRW_DIRECT;
1941 if (root->grp_unscalarizable_region)
1942 allow_replacements = false;
1944 if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
1945 allow_replacements = false;
1947 for (child = root->first_child; child; child = child->next_sibling)
1949 if (!hole && child->offset < covered_to)
1950 hole = true;
1951 else
1952 covered_to += child->size;
1954 sth_created |= analyze_access_subtree (child,
1955 allow_replacements && !scalar,
1956 mark_read, mark_write);
1958 root->grp_unscalarized_data |= child->grp_unscalarized_data;
1959 hole |= !child->grp_covered;
1962 if (allow_replacements && scalar && !root->first_child
1963 && (root->grp_hint
1964 || ((root->grp_scalar_read || root->grp_assignment_read)
1965 && (root->grp_scalar_write || root->grp_assignment_write))))
1967 if (dump_file && (dump_flags & TDF_DETAILS))
1969 fprintf (dump_file, "Marking ");
1970 print_generic_expr (dump_file, root->base, 0);
1971 fprintf (dump_file, " offset: %u, size: %u: ",
1972 (unsigned) root->offset, (unsigned) root->size);
1973 fprintf (dump_file, " to be replaced.\n");
1976 root->grp_to_be_replaced = 1;
1977 sth_created = true;
1978 hole = false;
1980 else if (covered_to < limit)
1981 hole = true;
1983 if (sth_created && !hole)
1985 root->grp_covered = 1;
1986 return true;
1988 if (root->grp_write || TREE_CODE (root->base) == PARM_DECL)
1989 root->grp_unscalarized_data = 1; /* not covered and written to */
1990 if (sth_created)
1991 return true;
1992 return false;
1995 /* Analyze all access trees linked by next_grp by the means of
1996 analyze_access_subtree. */
1997 static bool
1998 analyze_access_trees (struct access *access)
2000 bool ret = false;
2002 while (access)
2004 if (analyze_access_subtree (access, true,
2005 SRA_MRRW_NOTHING, SRA_MRRW_NOTHING))
2006 ret = true;
2007 access = access->next_grp;
2010 return ret;
2013 /* Return true iff a potential new child of LACC at offset OFFSET and with size
2014 SIZE would conflict with an already existing one. If exactly such a child
2015 already exists in LACC, store a pointer to it in EXACT_MATCH. */
2017 static bool
2018 child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
2019 HOST_WIDE_INT size, struct access **exact_match)
2021 struct access *child;
2023 for (child = lacc->first_child; child; child = child->next_sibling)
2025 if (child->offset == norm_offset && child->size == size)
2027 *exact_match = child;
2028 return true;
2031 if (child->offset < norm_offset + size
2032 && child->offset + child->size > norm_offset)
2033 return true;
2036 return false;
2039 /* Create a new child access of PARENT, with all properties just like MODEL
2040 except for its offset and with its grp_write false and grp_read true.
2041 Return the new access or NULL if it cannot be created. Note that this access
2042 is created long after all splicing and sorting, it's not located in any
2043 access vector and is automatically a representative of its group. */
2045 static struct access *
2046 create_artificial_child_access (struct access *parent, struct access *model,
2047 HOST_WIDE_INT new_offset)
2049 struct access *access;
2050 struct access **child;
2051 tree expr = parent->base;
2053 gcc_assert (!model->grp_unscalarizable_region);
2055 access = (struct access *) pool_alloc (access_pool);
2056 memset (access, 0, sizeof (struct access));
2057 if (!build_user_friendly_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
2058 model->type))
2060 access->grp_no_warning = true;
2061 expr = build_ref_for_model (EXPR_LOCATION (parent->base), parent->base,
2062 new_offset, model, NULL, false);
2065 access->base = parent->base;
2066 access->expr = expr;
2067 access->offset = new_offset;
2068 access->size = model->size;
2069 access->type = model->type;
2070 access->grp_write = true;
2071 access->grp_read = false;
2073 child = &parent->first_child;
2074 while (*child && (*child)->offset < new_offset)
2075 child = &(*child)->next_sibling;
2077 access->next_sibling = *child;
2078 *child = access;
2080 return access;
2084 /* Propagate all subaccesses of RACC across an assignment link to LACC. Return
2085 true if any new subaccess was created. Additionally, if RACC is a scalar
2086 access but LACC is not, change the type of the latter, if possible. */
2088 static bool
2089 propagate_subaccesses_across_link (struct access *lacc, struct access *racc)
2091 struct access *rchild;
2092 HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
2093 bool ret = false;
2095 if (is_gimple_reg_type (lacc->type)
2096 || lacc->grp_unscalarizable_region
2097 || racc->grp_unscalarizable_region)
2098 return false;
2100 if (!lacc->first_child && !racc->first_child
2101 && is_gimple_reg_type (racc->type))
2103 tree t = lacc->base;
2105 lacc->type = racc->type;
2106 if (build_user_friendly_ref_for_offset (&t, TREE_TYPE (t), lacc->offset,
2107 racc->type))
2108 lacc->expr = t;
2109 else
2111 lacc->expr = build_ref_for_model (EXPR_LOCATION (lacc->base),
2112 lacc->base, lacc->offset,
2113 racc, NULL, false);
2114 lacc->grp_no_warning = true;
2116 return false;
2119 for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
2121 struct access *new_acc = NULL;
2122 HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
2124 if (rchild->grp_unscalarizable_region)
2125 continue;
2127 if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
2128 &new_acc))
2130 if (new_acc)
2132 rchild->grp_hint = 1;
2133 new_acc->grp_hint |= new_acc->grp_read;
2134 if (rchild->first_child)
2135 ret |= propagate_subaccesses_across_link (new_acc, rchild);
2137 continue;
2140 rchild->grp_hint = 1;
2141 new_acc = create_artificial_child_access (lacc, rchild, norm_offset);
2142 if (new_acc)
2144 ret = true;
2145 if (racc->first_child)
2146 propagate_subaccesses_across_link (new_acc, rchild);
2150 return ret;
2153 /* Propagate all subaccesses across assignment links. */
2155 static void
2156 propagate_all_subaccesses (void)
2158 while (work_queue_head)
2160 struct access *racc = pop_access_from_work_queue ();
2161 struct assign_link *link;
2163 gcc_assert (racc->first_link);
2165 for (link = racc->first_link; link; link = link->next)
2167 struct access *lacc = link->lacc;
2169 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
2170 continue;
2171 lacc = lacc->group_representative;
2172 if (propagate_subaccesses_across_link (lacc, racc)
2173 && lacc->first_link)
2174 add_access_to_work_queue (lacc);
2179 /* Go through all accesses collected throughout the (intraprocedural) analysis
2180 stage, exclude overlapping ones, identify representatives and build trees
2181 out of them, making decisions about scalarization on the way. Return true
2182 iff there are any to-be-scalarized variables after this stage. */
2184 static bool
2185 analyze_all_variable_accesses (void)
2187 int res = 0;
2188 bitmap tmp = BITMAP_ALLOC (NULL);
2189 bitmap_iterator bi;
2190 unsigned i, max_total_scalarization_size;
2192 max_total_scalarization_size = UNITS_PER_WORD * BITS_PER_UNIT
2193 * MOVE_RATIO (optimize_function_for_speed_p (cfun));
2195 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
2196 if (bitmap_bit_p (should_scalarize_away_bitmap, i)
2197 && !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
2199 tree var = referenced_var (i);
2201 if (TREE_CODE (var) == VAR_DECL
2202 && ((unsigned) tree_low_cst (TYPE_SIZE (TREE_TYPE (var)), 1)
2203 <= max_total_scalarization_size)
2204 && type_consists_of_records_p (TREE_TYPE (var)))
2206 completely_scalarize_record (var, var, 0, var);
2207 if (dump_file && (dump_flags & TDF_DETAILS))
2209 fprintf (dump_file, "Will attempt to totally scalarize ");
2210 print_generic_expr (dump_file, var, 0);
2211 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2216 bitmap_copy (tmp, candidate_bitmap);
2217 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2219 tree var = referenced_var (i);
2220 struct access *access;
2222 access = sort_and_splice_var_accesses (var);
2223 if (!access || !build_access_trees (access))
2224 disqualify_candidate (var,
2225 "No or inhibitingly overlapping accesses.");
2228 propagate_all_subaccesses ();
2230 bitmap_copy (tmp, candidate_bitmap);
2231 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2233 tree var = referenced_var (i);
2234 struct access *access = get_first_repr_for_decl (var);
2236 if (analyze_access_trees (access))
2238 res++;
2239 if (dump_file && (dump_flags & TDF_DETAILS))
2241 fprintf (dump_file, "\nAccess trees for ");
2242 print_generic_expr (dump_file, var, 0);
2243 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2244 dump_access_tree (dump_file, access);
2245 fprintf (dump_file, "\n");
2248 else
2249 disqualify_candidate (var, "No scalar replacements to be created.");
2252 BITMAP_FREE (tmp);
2254 if (res)
2256 statistics_counter_event (cfun, "Scalarized aggregates", res);
2257 return true;
2259 else
2260 return false;
2263 /* Generate statements copying scalar replacements of accesses within a subtree
2264 into or out of AGG. ACCESS, all its children, siblings and their children
2265 are to be processed. AGG is an aggregate type expression (can be a
2266 declaration but does not have to be, it can for example also be a mem_ref or
2267 a series of handled components). TOP_OFFSET is the offset of the processed
2268 subtree which has to be subtracted from offsets of individual accesses to
2269 get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only
2270 replacements in the interval <start_offset, start_offset + chunk_size>,
2271 otherwise copy all. GSI is a statement iterator used to place the new
2272 statements. WRITE should be true when the statements should write from AGG
2273 to the replacement and false if vice versa. if INSERT_AFTER is true, new
2274 statements will be added after the current statement in GSI, they will be
2275 added before the statement otherwise. */
2277 static void
2278 generate_subtree_copies (struct access *access, tree agg,
2279 HOST_WIDE_INT top_offset,
2280 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
2281 gimple_stmt_iterator *gsi, bool write,
2282 bool insert_after, location_t loc)
2286 if (chunk_size && access->offset >= start_offset + chunk_size)
2287 return;
2289 if (access->grp_to_be_replaced
2290 && (chunk_size == 0
2291 || access->offset + access->size > start_offset))
2293 tree expr, repl = get_access_replacement (access);
2294 gimple stmt;
2296 expr = build_ref_for_model (loc, agg, access->offset - top_offset,
2297 access, gsi, insert_after);
2299 if (write)
2301 if (access->grp_partial_lhs)
2302 expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
2303 !insert_after,
2304 insert_after ? GSI_NEW_STMT
2305 : GSI_SAME_STMT);
2306 stmt = gimple_build_assign (repl, expr);
2308 else
2310 TREE_NO_WARNING (repl) = 1;
2311 if (access->grp_partial_lhs)
2312 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2313 !insert_after,
2314 insert_after ? GSI_NEW_STMT
2315 : GSI_SAME_STMT);
2316 stmt = gimple_build_assign (expr, repl);
2318 gimple_set_location (stmt, loc);
2320 if (insert_after)
2321 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2322 else
2323 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2324 update_stmt (stmt);
2325 sra_stats.subtree_copies++;
2328 if (access->first_child)
2329 generate_subtree_copies (access->first_child, agg, top_offset,
2330 start_offset, chunk_size, gsi,
2331 write, insert_after, loc);
2333 access = access->next_sibling;
2335 while (access);
2338 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
2339 the root of the subtree to be processed. GSI is the statement iterator used
2340 for inserting statements which are added after the current statement if
2341 INSERT_AFTER is true or before it otherwise. */
2343 static void
2344 init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
2345 bool insert_after, location_t loc)
2348 struct access *child;
2350 if (access->grp_to_be_replaced)
2352 gimple stmt;
2354 stmt = gimple_build_assign (get_access_replacement (access),
2355 build_zero_cst (access->type));
2356 if (insert_after)
2357 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2358 else
2359 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2360 update_stmt (stmt);
2361 gimple_set_location (stmt, loc);
2364 for (child = access->first_child; child; child = child->next_sibling)
2365 init_subtree_with_zero (child, gsi, insert_after, loc);
2368 /* Search for an access representative for the given expression EXPR and
2369 return it or NULL if it cannot be found. */
2371 static struct access *
2372 get_access_for_expr (tree expr)
2374 HOST_WIDE_INT offset, size, max_size;
2375 tree base;
2377 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
2378 a different size than the size of its argument and we need the latter
2379 one. */
2380 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2381 expr = TREE_OPERAND (expr, 0);
2383 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
2384 if (max_size == -1 || !DECL_P (base))
2385 return NULL;
2387 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
2388 return NULL;
2390 return get_var_base_offset_size_access (base, offset, max_size);
2393 /* Replace the expression EXPR with a scalar replacement if there is one and
2394 generate other statements to do type conversion or subtree copying if
2395 necessary. GSI is used to place newly created statements, WRITE is true if
2396 the expression is being written to (it is on a LHS of a statement or output
2397 in an assembly statement). */
2399 static bool
2400 sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write)
2402 location_t loc;
2403 struct access *access;
2404 tree type, bfr;
2406 if (TREE_CODE (*expr) == BIT_FIELD_REF)
2408 bfr = *expr;
2409 expr = &TREE_OPERAND (*expr, 0);
2411 else
2412 bfr = NULL_TREE;
2414 if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
2415 expr = &TREE_OPERAND (*expr, 0);
2416 access = get_access_for_expr (*expr);
2417 if (!access)
2418 return false;
2419 type = TREE_TYPE (*expr);
2421 loc = gimple_location (gsi_stmt (*gsi));
2422 if (access->grp_to_be_replaced)
2424 tree repl = get_access_replacement (access);
2425 /* If we replace a non-register typed access simply use the original
2426 access expression to extract the scalar component afterwards.
2427 This happens if scalarizing a function return value or parameter
2428 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
2429 gcc.c-torture/compile/20011217-1.c.
2431 We also want to use this when accessing a complex or vector which can
2432 be accessed as a different type too, potentially creating a need for
2433 type conversion (see PR42196) and when scalarized unions are involved
2434 in assembler statements (see PR42398). */
2435 if (!useless_type_conversion_p (type, access->type))
2437 tree ref;
2439 ref = build_ref_for_model (loc, access->base, access->offset, access,
2440 NULL, false);
2442 if (write)
2444 gimple stmt;
2446 if (access->grp_partial_lhs)
2447 ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
2448 false, GSI_NEW_STMT);
2449 stmt = gimple_build_assign (repl, ref);
2450 gimple_set_location (stmt, loc);
2451 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2453 else
2455 gimple stmt;
2457 if (access->grp_partial_lhs)
2458 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2459 true, GSI_SAME_STMT);
2460 stmt = gimple_build_assign (ref, repl);
2461 gimple_set_location (stmt, loc);
2462 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2465 else
2466 *expr = repl;
2467 sra_stats.exprs++;
2470 if (access->first_child)
2472 HOST_WIDE_INT start_offset, chunk_size;
2473 if (bfr
2474 && host_integerp (TREE_OPERAND (bfr, 1), 1)
2475 && host_integerp (TREE_OPERAND (bfr, 2), 1))
2477 chunk_size = tree_low_cst (TREE_OPERAND (bfr, 1), 1);
2478 start_offset = access->offset
2479 + tree_low_cst (TREE_OPERAND (bfr, 2), 1);
2481 else
2482 start_offset = chunk_size = 0;
2484 generate_subtree_copies (access->first_child, access->base, 0,
2485 start_offset, chunk_size, gsi, write, write,
2486 loc);
2488 return true;
2491 /* Where scalar replacements of the RHS have been written to when a replacement
2492 of a LHS of an assigments cannot be direclty loaded from a replacement of
2493 the RHS. */
2494 enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
2495 SRA_UDH_RIGHT, /* Data flushed to the RHS. */
2496 SRA_UDH_LEFT }; /* Data flushed to the LHS. */
2498 /* Store all replacements in the access tree rooted in TOP_RACC either to their
2499 base aggregate if there are unscalarized data or directly to LHS of the
2500 statement that is pointed to by GSI otherwise. */
2502 static enum unscalarized_data_handling
2503 handle_unscalarized_data_in_subtree (struct access *top_racc,
2504 gimple_stmt_iterator *gsi)
2506 if (top_racc->grp_unscalarized_data)
2508 generate_subtree_copies (top_racc->first_child, top_racc->base, 0, 0, 0,
2509 gsi, false, false,
2510 gimple_location (gsi_stmt (*gsi)));
2511 return SRA_UDH_RIGHT;
2513 else
2515 tree lhs = gimple_assign_lhs (gsi_stmt (*gsi));
2516 generate_subtree_copies (top_racc->first_child, lhs, top_racc->offset,
2517 0, 0, gsi, false, false,
2518 gimple_location (gsi_stmt (*gsi)));
2519 return SRA_UDH_LEFT;
2524 /* Try to generate statements to load all sub-replacements in an access subtree
2525 formed by children of LACC from scalar replacements in the TOP_RACC subtree.
2526 If that is not possible, refresh the TOP_RACC base aggregate and load the
2527 accesses from it. LEFT_OFFSET is the offset of the left whole subtree being
2528 copied. NEW_GSI is stmt iterator used for statement insertions after the
2529 original assignment, OLD_GSI is used to insert statements before the
2530 assignment. *REFRESHED keeps the information whether we have needed to
2531 refresh replacements of the LHS and from which side of the assignments this
2532 takes place. */
2534 static void
2535 load_assign_lhs_subreplacements (struct access *lacc, struct access *top_racc,
2536 HOST_WIDE_INT left_offset,
2537 gimple_stmt_iterator *old_gsi,
2538 gimple_stmt_iterator *new_gsi,
2539 enum unscalarized_data_handling *refreshed)
2541 location_t loc = gimple_location (gsi_stmt (*old_gsi));
2542 for (lacc = lacc->first_child; lacc; lacc = lacc->next_sibling)
2544 if (lacc->grp_to_be_replaced)
2546 struct access *racc;
2547 HOST_WIDE_INT offset = lacc->offset - left_offset + top_racc->offset;
2548 gimple stmt;
2549 tree rhs;
2551 racc = find_access_in_subtree (top_racc, offset, lacc->size);
2552 if (racc && racc->grp_to_be_replaced)
2554 rhs = get_access_replacement (racc);
2555 if (!useless_type_conversion_p (lacc->type, racc->type))
2556 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, lacc->type, rhs);
2558 else
2560 /* No suitable access on the right hand side, need to load from
2561 the aggregate. See if we have to update it first... */
2562 if (*refreshed == SRA_UDH_NONE)
2563 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2564 old_gsi);
2566 if (*refreshed == SRA_UDH_LEFT)
2567 rhs = build_ref_for_model (loc, lacc->base, lacc->offset, lacc,
2568 new_gsi, true);
2569 else
2570 rhs = build_ref_for_model (loc, top_racc->base, offset, lacc,
2571 new_gsi, true);
2574 stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
2575 gsi_insert_after (new_gsi, stmt, GSI_NEW_STMT);
2576 gimple_set_location (stmt, loc);
2577 update_stmt (stmt);
2578 sra_stats.subreplacements++;
2580 else if (*refreshed == SRA_UDH_NONE
2581 && lacc->grp_read && !lacc->grp_covered)
2582 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2583 old_gsi);
2585 if (lacc->first_child)
2586 load_assign_lhs_subreplacements (lacc, top_racc, left_offset,
2587 old_gsi, new_gsi, refreshed);
2591 /* Result code for SRA assignment modification. */
2592 enum assignment_mod_result { SRA_AM_NONE, /* nothing done for the stmt */
2593 SRA_AM_MODIFIED, /* stmt changed but not
2594 removed */
2595 SRA_AM_REMOVED }; /* stmt eliminated */
2597 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
2598 to the assignment and GSI is the statement iterator pointing at it. Returns
2599 the same values as sra_modify_assign. */
2601 static enum assignment_mod_result
2602 sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2604 tree lhs = gimple_assign_lhs (*stmt);
2605 struct access *acc;
2606 location_t loc;
2608 acc = get_access_for_expr (lhs);
2609 if (!acc)
2610 return SRA_AM_NONE;
2612 loc = gimple_location (*stmt);
2613 if (VEC_length (constructor_elt,
2614 CONSTRUCTOR_ELTS (gimple_assign_rhs1 (*stmt))) > 0)
2616 /* I have never seen this code path trigger but if it can happen the
2617 following should handle it gracefully. */
2618 if (access_has_children_p (acc))
2619 generate_subtree_copies (acc->first_child, acc->base, 0, 0, 0, gsi,
2620 true, true, loc);
2621 return SRA_AM_MODIFIED;
2624 if (acc->grp_covered)
2626 init_subtree_with_zero (acc, gsi, false, loc);
2627 unlink_stmt_vdef (*stmt);
2628 gsi_remove (gsi, true);
2629 return SRA_AM_REMOVED;
2631 else
2633 init_subtree_with_zero (acc, gsi, true, loc);
2634 return SRA_AM_MODIFIED;
2638 /* Create and return a new suitable default definition SSA_NAME for RACC which
2639 is an access describing an uninitialized part of an aggregate that is being
2640 loaded. */
2642 static tree
2643 get_repl_default_def_ssa_name (struct access *racc)
2645 tree repl, decl;
2647 decl = get_unrenamed_access_replacement (racc);
2649 repl = gimple_default_def (cfun, decl);
2650 if (!repl)
2652 repl = make_ssa_name (decl, gimple_build_nop ());
2653 set_default_def (decl, repl);
2656 return repl;
2659 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
2660 somewhere in it. */
2662 static inline bool
2663 contains_bitfld_comp_ref_p (const_tree ref)
2665 while (handled_component_p (ref))
2667 if (TREE_CODE (ref) == COMPONENT_REF
2668 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
2669 return true;
2670 ref = TREE_OPERAND (ref, 0);
2673 return false;
2676 /* Return true if REF has an VIEW_CONVERT_EXPR or a COMPONENT_REF with a
2677 bit-field field declaration somewhere in it. */
2679 static inline bool
2680 contains_vce_or_bfcref_p (const_tree ref)
2682 while (handled_component_p (ref))
2684 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR
2685 || (TREE_CODE (ref) == COMPONENT_REF
2686 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))))
2687 return true;
2688 ref = TREE_OPERAND (ref, 0);
2691 return false;
2694 /* Examine both sides of the assignment statement pointed to by STMT, replace
2695 them with a scalare replacement if there is one and generate copying of
2696 replacements if scalarized aggregates have been used in the assignment. GSI
2697 is used to hold generated statements for type conversions and subtree
2698 copying. */
2700 static enum assignment_mod_result
2701 sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2703 struct access *lacc, *racc;
2704 tree lhs, rhs;
2705 bool modify_this_stmt = false;
2706 bool force_gimple_rhs = false;
2707 location_t loc;
2708 gimple_stmt_iterator orig_gsi = *gsi;
2710 if (!gimple_assign_single_p (*stmt))
2711 return SRA_AM_NONE;
2712 lhs = gimple_assign_lhs (*stmt);
2713 rhs = gimple_assign_rhs1 (*stmt);
2715 if (TREE_CODE (rhs) == CONSTRUCTOR)
2716 return sra_modify_constructor_assign (stmt, gsi);
2718 if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
2719 || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
2720 || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
2722 modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (*stmt),
2723 gsi, false);
2724 modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (*stmt),
2725 gsi, true);
2726 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
2729 lacc = get_access_for_expr (lhs);
2730 racc = get_access_for_expr (rhs);
2731 if (!lacc && !racc)
2732 return SRA_AM_NONE;
2734 loc = gimple_location (*stmt);
2735 if (lacc && lacc->grp_to_be_replaced)
2737 lhs = get_access_replacement (lacc);
2738 gimple_assign_set_lhs (*stmt, lhs);
2739 modify_this_stmt = true;
2740 if (lacc->grp_partial_lhs)
2741 force_gimple_rhs = true;
2742 sra_stats.exprs++;
2745 if (racc && racc->grp_to_be_replaced)
2747 rhs = get_access_replacement (racc);
2748 modify_this_stmt = true;
2749 if (racc->grp_partial_lhs)
2750 force_gimple_rhs = true;
2751 sra_stats.exprs++;
2754 if (modify_this_stmt)
2756 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2758 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
2759 ??? This should move to fold_stmt which we simply should
2760 call after building a VIEW_CONVERT_EXPR here. */
2761 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
2762 && !contains_bitfld_comp_ref_p (lhs)
2763 && !access_has_children_p (lacc))
2765 lhs = build_ref_for_model (loc, lhs, 0, racc, gsi, false);
2766 gimple_assign_set_lhs (*stmt, lhs);
2768 else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs))
2769 && !contains_vce_or_bfcref_p (rhs)
2770 && !access_has_children_p (racc))
2771 rhs = build_ref_for_model (loc, rhs, 0, lacc, gsi, false);
2773 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2775 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
2776 rhs);
2777 if (is_gimple_reg_type (TREE_TYPE (lhs))
2778 && TREE_CODE (lhs) != SSA_NAME)
2779 force_gimple_rhs = true;
2784 /* From this point on, the function deals with assignments in between
2785 aggregates when at least one has scalar reductions of some of its
2786 components. There are three possible scenarios: Both the LHS and RHS have
2787 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
2789 In the first case, we would like to load the LHS components from RHS
2790 components whenever possible. If that is not possible, we would like to
2791 read it directly from the RHS (after updating it by storing in it its own
2792 components). If there are some necessary unscalarized data in the LHS,
2793 those will be loaded by the original assignment too. If neither of these
2794 cases happen, the original statement can be removed. Most of this is done
2795 by load_assign_lhs_subreplacements.
2797 In the second case, we would like to store all RHS scalarized components
2798 directly into LHS and if they cover the aggregate completely, remove the
2799 statement too. In the third case, we want the LHS components to be loaded
2800 directly from the RHS (DSE will remove the original statement if it
2801 becomes redundant).
2803 This is a bit complex but manageable when types match and when unions do
2804 not cause confusion in a way that we cannot really load a component of LHS
2805 from the RHS or vice versa (the access representing this level can have
2806 subaccesses that are accessible only through a different union field at a
2807 higher level - different from the one used in the examined expression).
2808 Unions are fun.
2810 Therefore, I specially handle a fourth case, happening when there is a
2811 specific type cast or it is impossible to locate a scalarized subaccess on
2812 the other side of the expression. If that happens, I simply "refresh" the
2813 RHS by storing in it is scalarized components leave the original statement
2814 there to do the copying and then load the scalar replacements of the LHS.
2815 This is what the first branch does. */
2817 if (gimple_has_volatile_ops (*stmt)
2818 || contains_vce_or_bfcref_p (rhs)
2819 || contains_vce_or_bfcref_p (lhs))
2821 if (access_has_children_p (racc))
2822 generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0,
2823 gsi, false, false, loc);
2824 if (access_has_children_p (lacc))
2825 generate_subtree_copies (lacc->first_child, lacc->base, 0, 0, 0,
2826 gsi, true, true, loc);
2827 sra_stats.separate_lhs_rhs_handling++;
2829 else
2831 if (access_has_children_p (lacc) && access_has_children_p (racc))
2833 gimple_stmt_iterator orig_gsi = *gsi;
2834 enum unscalarized_data_handling refreshed;
2836 if (lacc->grp_read && !lacc->grp_covered)
2837 refreshed = handle_unscalarized_data_in_subtree (racc, gsi);
2838 else
2839 refreshed = SRA_UDH_NONE;
2841 load_assign_lhs_subreplacements (lacc, racc, lacc->offset,
2842 &orig_gsi, gsi, &refreshed);
2843 if (refreshed != SRA_UDH_RIGHT)
2845 gsi_next (gsi);
2846 unlink_stmt_vdef (*stmt);
2847 gsi_remove (&orig_gsi, true);
2848 sra_stats.deleted++;
2849 return SRA_AM_REMOVED;
2852 else
2854 if (racc)
2856 if (!racc->grp_to_be_replaced && !racc->grp_unscalarized_data)
2858 if (dump_file)
2860 fprintf (dump_file, "Removing load: ");
2861 print_gimple_stmt (dump_file, *stmt, 0, 0);
2864 if (TREE_CODE (lhs) == SSA_NAME)
2866 rhs = get_repl_default_def_ssa_name (racc);
2867 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2868 TREE_TYPE (rhs)))
2869 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR,
2870 TREE_TYPE (lhs), rhs);
2872 else
2874 if (racc->first_child)
2875 generate_subtree_copies (racc->first_child, lhs,
2876 racc->offset, 0, 0, gsi,
2877 false, false, loc);
2879 gcc_assert (*stmt == gsi_stmt (*gsi));
2880 unlink_stmt_vdef (*stmt);
2881 gsi_remove (gsi, true);
2882 sra_stats.deleted++;
2883 return SRA_AM_REMOVED;
2886 else if (racc->first_child)
2887 generate_subtree_copies (racc->first_child, lhs, racc->offset,
2888 0, 0, gsi, false, true, loc);
2890 if (access_has_children_p (lacc))
2891 generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
2892 0, 0, gsi, true, true, loc);
2896 /* This gimplification must be done after generate_subtree_copies, lest we
2897 insert the subtree copies in the middle of the gimplified sequence. */
2898 if (force_gimple_rhs)
2899 rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
2900 true, GSI_SAME_STMT);
2901 if (gimple_assign_rhs1 (*stmt) != rhs)
2903 modify_this_stmt = true;
2904 gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
2905 gcc_assert (*stmt == gsi_stmt (orig_gsi));
2908 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
2911 /* Traverse the function body and all modifications as decided in
2912 analyze_all_variable_accesses. Return true iff the CFG has been
2913 changed. */
2915 static bool
2916 sra_modify_function_body (void)
2918 bool cfg_changed = false;
2919 basic_block bb;
2921 FOR_EACH_BB (bb)
2923 gimple_stmt_iterator gsi = gsi_start_bb (bb);
2924 while (!gsi_end_p (gsi))
2926 gimple stmt = gsi_stmt (gsi);
2927 enum assignment_mod_result assign_result;
2928 bool modified = false, deleted = false;
2929 tree *t;
2930 unsigned i;
2932 switch (gimple_code (stmt))
2934 case GIMPLE_RETURN:
2935 t = gimple_return_retval_ptr (stmt);
2936 if (*t != NULL_TREE)
2937 modified |= sra_modify_expr (t, &gsi, false);
2938 break;
2940 case GIMPLE_ASSIGN:
2941 assign_result = sra_modify_assign (&stmt, &gsi);
2942 modified |= assign_result == SRA_AM_MODIFIED;
2943 deleted = assign_result == SRA_AM_REMOVED;
2944 break;
2946 case GIMPLE_CALL:
2947 /* Operands must be processed before the lhs. */
2948 for (i = 0; i < gimple_call_num_args (stmt); i++)
2950 t = gimple_call_arg_ptr (stmt, i);
2951 modified |= sra_modify_expr (t, &gsi, false);
2954 if (gimple_call_lhs (stmt))
2956 t = gimple_call_lhs_ptr (stmt);
2957 modified |= sra_modify_expr (t, &gsi, true);
2959 break;
2961 case GIMPLE_ASM:
2962 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
2964 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
2965 modified |= sra_modify_expr (t, &gsi, false);
2967 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
2969 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
2970 modified |= sra_modify_expr (t, &gsi, true);
2972 break;
2974 default:
2975 break;
2978 if (modified)
2980 update_stmt (stmt);
2981 if (maybe_clean_eh_stmt (stmt)
2982 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
2983 cfg_changed = true;
2985 if (!deleted)
2986 gsi_next (&gsi);
2990 return cfg_changed;
2993 /* Generate statements initializing scalar replacements of parts of function
2994 parameters. */
2996 static void
2997 initialize_parameter_reductions (void)
2999 gimple_stmt_iterator gsi;
3000 gimple_seq seq = NULL;
3001 tree parm;
3003 for (parm = DECL_ARGUMENTS (current_function_decl);
3004 parm;
3005 parm = DECL_CHAIN (parm))
3007 VEC (access_p, heap) *access_vec;
3008 struct access *access;
3010 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3011 continue;
3012 access_vec = get_base_access_vector (parm);
3013 if (!access_vec)
3014 continue;
3016 if (!seq)
3018 seq = gimple_seq_alloc ();
3019 gsi = gsi_start (seq);
3022 for (access = VEC_index (access_p, access_vec, 0);
3023 access;
3024 access = access->next_grp)
3025 generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true,
3026 EXPR_LOCATION (parm));
3029 if (seq)
3030 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR), seq);
3033 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
3034 it reveals there are components of some aggregates to be scalarized, it runs
3035 the required transformations. */
3036 static unsigned int
3037 perform_intra_sra (void)
3039 int ret = 0;
3040 sra_initialize ();
3042 if (!find_var_candidates ())
3043 goto out;
3045 if (!scan_function ())
3046 goto out;
3048 if (!analyze_all_variable_accesses ())
3049 goto out;
3051 if (sra_modify_function_body ())
3052 ret = TODO_update_ssa | TODO_cleanup_cfg;
3053 else
3054 ret = TODO_update_ssa;
3055 initialize_parameter_reductions ();
3057 statistics_counter_event (cfun, "Scalar replacements created",
3058 sra_stats.replacements);
3059 statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
3060 statistics_counter_event (cfun, "Subtree copy stmts",
3061 sra_stats.subtree_copies);
3062 statistics_counter_event (cfun, "Subreplacement stmts",
3063 sra_stats.subreplacements);
3064 statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
3065 statistics_counter_event (cfun, "Separate LHS and RHS handling",
3066 sra_stats.separate_lhs_rhs_handling);
3068 out:
3069 sra_deinitialize ();
3070 return ret;
3073 /* Perform early intraprocedural SRA. */
3074 static unsigned int
3075 early_intra_sra (void)
3077 sra_mode = SRA_MODE_EARLY_INTRA;
3078 return perform_intra_sra ();
3081 /* Perform "late" intraprocedural SRA. */
3082 static unsigned int
3083 late_intra_sra (void)
3085 sra_mode = SRA_MODE_INTRA;
3086 return perform_intra_sra ();
3090 static bool
3091 gate_intra_sra (void)
3093 return flag_tree_sra != 0 && dbg_cnt (tree_sra);
3097 struct gimple_opt_pass pass_sra_early =
3100 GIMPLE_PASS,
3101 "esra", /* name */
3102 gate_intra_sra, /* gate */
3103 early_intra_sra, /* execute */
3104 NULL, /* sub */
3105 NULL, /* next */
3106 0, /* static_pass_number */
3107 TV_TREE_SRA, /* tv_id */
3108 PROP_cfg | PROP_ssa, /* properties_required */
3109 0, /* properties_provided */
3110 0, /* properties_destroyed */
3111 0, /* todo_flags_start */
3112 TODO_dump_func
3113 | TODO_update_ssa
3114 | TODO_ggc_collect
3115 | TODO_verify_ssa /* todo_flags_finish */
3119 struct gimple_opt_pass pass_sra =
3122 GIMPLE_PASS,
3123 "sra", /* name */
3124 gate_intra_sra, /* gate */
3125 late_intra_sra, /* execute */
3126 NULL, /* sub */
3127 NULL, /* next */
3128 0, /* static_pass_number */
3129 TV_TREE_SRA, /* tv_id */
3130 PROP_cfg | PROP_ssa, /* properties_required */
3131 0, /* properties_provided */
3132 0, /* properties_destroyed */
3133 TODO_update_address_taken, /* todo_flags_start */
3134 TODO_dump_func
3135 | TODO_update_ssa
3136 | TODO_ggc_collect
3137 | TODO_verify_ssa /* todo_flags_finish */
3142 /* Return true iff PARM (which must be a parm_decl) is an unused scalar
3143 parameter. */
3145 static bool
3146 is_unused_scalar_param (tree parm)
3148 tree name;
3149 return (is_gimple_reg (parm)
3150 && (!(name = gimple_default_def (cfun, parm))
3151 || has_zero_uses (name)));
3154 /* Scan immediate uses of a default definition SSA name of a parameter PARM and
3155 examine whether there are any direct or otherwise infeasible ones. If so,
3156 return true, otherwise return false. PARM must be a gimple register with a
3157 non-NULL default definition. */
3159 static bool
3160 ptr_parm_has_direct_uses (tree parm)
3162 imm_use_iterator ui;
3163 gimple stmt;
3164 tree name = gimple_default_def (cfun, parm);
3165 bool ret = false;
3167 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
3169 int uses_ok = 0;
3170 use_operand_p use_p;
3172 if (is_gimple_debug (stmt))
3173 continue;
3175 /* Valid uses include dereferences on the lhs and the rhs. */
3176 if (gimple_has_lhs (stmt))
3178 tree lhs = gimple_get_lhs (stmt);
3179 while (handled_component_p (lhs))
3180 lhs = TREE_OPERAND (lhs, 0);
3181 if (TREE_CODE (lhs) == MEM_REF
3182 && TREE_OPERAND (lhs, 0) == name
3183 && integer_zerop (TREE_OPERAND (lhs, 1))
3184 && types_compatible_p (TREE_TYPE (lhs),
3185 TREE_TYPE (TREE_TYPE (name))))
3186 uses_ok++;
3188 if (gimple_assign_single_p (stmt))
3190 tree rhs = gimple_assign_rhs1 (stmt);
3191 while (handled_component_p (rhs))
3192 rhs = TREE_OPERAND (rhs, 0);
3193 if (TREE_CODE (rhs) == MEM_REF
3194 && TREE_OPERAND (rhs, 0) == name
3195 && integer_zerop (TREE_OPERAND (rhs, 1))
3196 && types_compatible_p (TREE_TYPE (rhs),
3197 TREE_TYPE (TREE_TYPE (name))))
3198 uses_ok++;
3200 else if (is_gimple_call (stmt))
3202 unsigned i;
3203 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3205 tree arg = gimple_call_arg (stmt, i);
3206 while (handled_component_p (arg))
3207 arg = TREE_OPERAND (arg, 0);
3208 if (TREE_CODE (arg) == MEM_REF
3209 && TREE_OPERAND (arg, 0) == name
3210 && integer_zerop (TREE_OPERAND (arg, 1))
3211 && types_compatible_p (TREE_TYPE (arg),
3212 TREE_TYPE (TREE_TYPE (name))))
3213 uses_ok++;
3217 /* If the number of valid uses does not match the number of
3218 uses in this stmt there is an unhandled use. */
3219 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
3220 --uses_ok;
3222 if (uses_ok != 0)
3223 ret = true;
3225 if (ret)
3226 BREAK_FROM_IMM_USE_STMT (ui);
3229 return ret;
3232 /* Identify candidates for reduction for IPA-SRA based on their type and mark
3233 them in candidate_bitmap. Note that these do not necessarily include
3234 parameter which are unused and thus can be removed. Return true iff any
3235 such candidate has been found. */
3237 static bool
3238 find_param_candidates (void)
3240 tree parm;
3241 int count = 0;
3242 bool ret = false;
3244 for (parm = DECL_ARGUMENTS (current_function_decl);
3245 parm;
3246 parm = DECL_CHAIN (parm))
3248 tree type = TREE_TYPE (parm);
3250 count++;
3252 if (TREE_THIS_VOLATILE (parm)
3253 || TREE_ADDRESSABLE (parm)
3254 || (!is_gimple_reg_type (type) && is_va_list_type (type)))
3255 continue;
3257 if (is_unused_scalar_param (parm))
3259 ret = true;
3260 continue;
3263 if (POINTER_TYPE_P (type))
3265 type = TREE_TYPE (type);
3267 if (TREE_CODE (type) == FUNCTION_TYPE
3268 || TYPE_VOLATILE (type)
3269 || (TREE_CODE (type) == ARRAY_TYPE
3270 && TYPE_NONALIASED_COMPONENT (type))
3271 || !is_gimple_reg (parm)
3272 || is_va_list_type (type)
3273 || ptr_parm_has_direct_uses (parm))
3274 continue;
3276 else if (!AGGREGATE_TYPE_P (type))
3277 continue;
3279 if (!COMPLETE_TYPE_P (type)
3280 || !host_integerp (TYPE_SIZE (type), 1)
3281 || tree_low_cst (TYPE_SIZE (type), 1) == 0
3282 || (AGGREGATE_TYPE_P (type)
3283 && type_internals_preclude_sra_p (type)))
3284 continue;
3286 bitmap_set_bit (candidate_bitmap, DECL_UID (parm));
3287 ret = true;
3288 if (dump_file && (dump_flags & TDF_DETAILS))
3290 fprintf (dump_file, "Candidate (%d): ", DECL_UID (parm));
3291 print_generic_expr (dump_file, parm, 0);
3292 fprintf (dump_file, "\n");
3296 func_param_count = count;
3297 return ret;
3300 /* Callback of walk_aliased_vdefs, marks the access passed as DATA as
3301 maybe_modified. */
3303 static bool
3304 mark_maybe_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
3305 void *data)
3307 struct access *repr = (struct access *) data;
3309 repr->grp_maybe_modified = 1;
3310 return true;
3313 /* Analyze what representatives (in linked lists accessible from
3314 REPRESENTATIVES) can be modified by side effects of statements in the
3315 current function. */
3317 static void
3318 analyze_modified_params (VEC (access_p, heap) *representatives)
3320 int i;
3322 for (i = 0; i < func_param_count; i++)
3324 struct access *repr;
3326 for (repr = VEC_index (access_p, representatives, i);
3327 repr;
3328 repr = repr->next_grp)
3330 struct access *access;
3331 bitmap visited;
3332 ao_ref ar;
3334 if (no_accesses_p (repr))
3335 continue;
3336 if (!POINTER_TYPE_P (TREE_TYPE (repr->base))
3337 || repr->grp_maybe_modified)
3338 continue;
3340 ao_ref_init (&ar, repr->expr);
3341 visited = BITMAP_ALLOC (NULL);
3342 for (access = repr; access; access = access->next_sibling)
3344 /* All accesses are read ones, otherwise grp_maybe_modified would
3345 be trivially set. */
3346 walk_aliased_vdefs (&ar, gimple_vuse (access->stmt),
3347 mark_maybe_modified, repr, &visited);
3348 if (repr->grp_maybe_modified)
3349 break;
3351 BITMAP_FREE (visited);
3356 /* Propagate distances in bb_dereferences in the opposite direction than the
3357 control flow edges, in each step storing the maximum of the current value
3358 and the minimum of all successors. These steps are repeated until the table
3359 stabilizes. Note that BBs which might terminate the functions (according to
3360 final_bbs bitmap) never updated in this way. */
3362 static void
3363 propagate_dereference_distances (void)
3365 VEC (basic_block, heap) *queue;
3366 basic_block bb;
3368 queue = VEC_alloc (basic_block, heap, last_basic_block_for_function (cfun));
3369 VEC_quick_push (basic_block, queue, ENTRY_BLOCK_PTR);
3370 FOR_EACH_BB (bb)
3372 VEC_quick_push (basic_block, queue, bb);
3373 bb->aux = bb;
3376 while (!VEC_empty (basic_block, queue))
3378 edge_iterator ei;
3379 edge e;
3380 bool change = false;
3381 int i;
3383 bb = VEC_pop (basic_block, queue);
3384 bb->aux = NULL;
3386 if (bitmap_bit_p (final_bbs, bb->index))
3387 continue;
3389 for (i = 0; i < func_param_count; i++)
3391 int idx = bb->index * func_param_count + i;
3392 bool first = true;
3393 HOST_WIDE_INT inh = 0;
3395 FOR_EACH_EDGE (e, ei, bb->succs)
3397 int succ_idx = e->dest->index * func_param_count + i;
3399 if (e->src == EXIT_BLOCK_PTR)
3400 continue;
3402 if (first)
3404 first = false;
3405 inh = bb_dereferences [succ_idx];
3407 else if (bb_dereferences [succ_idx] < inh)
3408 inh = bb_dereferences [succ_idx];
3411 if (!first && bb_dereferences[idx] < inh)
3413 bb_dereferences[idx] = inh;
3414 change = true;
3418 if (change && !bitmap_bit_p (final_bbs, bb->index))
3419 FOR_EACH_EDGE (e, ei, bb->preds)
3421 if (e->src->aux)
3422 continue;
3424 e->src->aux = e->src;
3425 VEC_quick_push (basic_block, queue, e->src);
3429 VEC_free (basic_block, heap, queue);
3432 /* Dump a dereferences TABLE with heading STR to file F. */
3434 static void
3435 dump_dereferences_table (FILE *f, const char *str, HOST_WIDE_INT *table)
3437 basic_block bb;
3439 fprintf (dump_file, str);
3440 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
3442 fprintf (f, "%4i %i ", bb->index, bitmap_bit_p (final_bbs, bb->index));
3443 if (bb != EXIT_BLOCK_PTR)
3445 int i;
3446 for (i = 0; i < func_param_count; i++)
3448 int idx = bb->index * func_param_count + i;
3449 fprintf (f, " %4" HOST_WIDE_INT_PRINT "d", table[idx]);
3452 fprintf (f, "\n");
3454 fprintf (dump_file, "\n");
3457 /* Determine what (parts of) parameters passed by reference that are not
3458 assigned to are not certainly dereferenced in this function and thus the
3459 dereferencing cannot be safely moved to the caller without potentially
3460 introducing a segfault. Mark such REPRESENTATIVES as
3461 grp_not_necessarilly_dereferenced.
3463 The dereferenced maximum "distance," i.e. the offset + size of the accessed
3464 part is calculated rather than simple booleans are calculated for each
3465 pointer parameter to handle cases when only a fraction of the whole
3466 aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for
3467 an example).
3469 The maximum dereference distances for each pointer parameter and BB are
3470 already stored in bb_dereference. This routine simply propagates these
3471 values upwards by propagate_dereference_distances and then compares the
3472 distances of individual parameters in the ENTRY BB to the equivalent
3473 distances of each representative of a (fraction of a) parameter. */
3475 static void
3476 analyze_caller_dereference_legality (VEC (access_p, heap) *representatives)
3478 int i;
3480 if (dump_file && (dump_flags & TDF_DETAILS))
3481 dump_dereferences_table (dump_file,
3482 "Dereference table before propagation:\n",
3483 bb_dereferences);
3485 propagate_dereference_distances ();
3487 if (dump_file && (dump_flags & TDF_DETAILS))
3488 dump_dereferences_table (dump_file,
3489 "Dereference table after propagation:\n",
3490 bb_dereferences);
3492 for (i = 0; i < func_param_count; i++)
3494 struct access *repr = VEC_index (access_p, representatives, i);
3495 int idx = ENTRY_BLOCK_PTR->index * func_param_count + i;
3497 if (!repr || no_accesses_p (repr))
3498 continue;
3502 if ((repr->offset + repr->size) > bb_dereferences[idx])
3503 repr->grp_not_necessarilly_dereferenced = 1;
3504 repr = repr->next_grp;
3506 while (repr);
3510 /* Return the representative access for the parameter declaration PARM if it is
3511 a scalar passed by reference which is not written to and the pointer value
3512 is not used directly. Thus, if it is legal to dereference it in the caller
3513 and we can rule out modifications through aliases, such parameter should be
3514 turned into one passed by value. Return NULL otherwise. */
3516 static struct access *
3517 unmodified_by_ref_scalar_representative (tree parm)
3519 int i, access_count;
3520 struct access *repr;
3521 VEC (access_p, heap) *access_vec;
3523 access_vec = get_base_access_vector (parm);
3524 gcc_assert (access_vec);
3525 repr = VEC_index (access_p, access_vec, 0);
3526 if (repr->write)
3527 return NULL;
3528 repr->group_representative = repr;
3530 access_count = VEC_length (access_p, access_vec);
3531 for (i = 1; i < access_count; i++)
3533 struct access *access = VEC_index (access_p, access_vec, i);
3534 if (access->write)
3535 return NULL;
3536 access->group_representative = repr;
3537 access->next_sibling = repr->next_sibling;
3538 repr->next_sibling = access;
3541 repr->grp_read = 1;
3542 repr->grp_scalar_ptr = 1;
3543 return repr;
3546 /* Return true iff this access precludes IPA-SRA of the parameter it is
3547 associated with. */
3549 static bool
3550 access_precludes_ipa_sra_p (struct access *access)
3552 /* Avoid issues such as the second simple testcase in PR 42025. The problem
3553 is incompatible assign in a call statement (and possibly even in asm
3554 statements). This can be relaxed by using a new temporary but only for
3555 non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In
3556 intraprocedural SRA we deal with this by keeping the old aggregate around,
3557 something we cannot do in IPA-SRA.) */
3558 if (access->write
3559 && (is_gimple_call (access->stmt)
3560 || gimple_code (access->stmt) == GIMPLE_ASM))
3561 return true;
3563 return false;
3567 /* Sort collected accesses for parameter PARM, identify representatives for
3568 each accessed region and link them together. Return NULL if there are
3569 different but overlapping accesses, return the special ptr value meaning
3570 there are no accesses for this parameter if that is the case and return the
3571 first representative otherwise. Set *RO_GRP if there is a group of accesses
3572 with only read (i.e. no write) accesses. */
3574 static struct access *
3575 splice_param_accesses (tree parm, bool *ro_grp)
3577 int i, j, access_count, group_count;
3578 int agg_size, total_size = 0;
3579 struct access *access, *res, **prev_acc_ptr = &res;
3580 VEC (access_p, heap) *access_vec;
3582 access_vec = get_base_access_vector (parm);
3583 if (!access_vec)
3584 return &no_accesses_representant;
3585 access_count = VEC_length (access_p, access_vec);
3587 VEC_qsort (access_p, access_vec, compare_access_positions);
3589 i = 0;
3590 total_size = 0;
3591 group_count = 0;
3592 while (i < access_count)
3594 bool modification;
3595 tree a1_alias_type;
3596 access = VEC_index (access_p, access_vec, i);
3597 modification = access->write;
3598 if (access_precludes_ipa_sra_p (access))
3599 return NULL;
3600 a1_alias_type = reference_alias_ptr_type (access->expr);
3602 /* Access is about to become group representative unless we find some
3603 nasty overlap which would preclude us from breaking this parameter
3604 apart. */
3606 j = i + 1;
3607 while (j < access_count)
3609 struct access *ac2 = VEC_index (access_p, access_vec, j);
3610 if (ac2->offset != access->offset)
3612 /* All or nothing law for parameters. */
3613 if (access->offset + access->size > ac2->offset)
3614 return NULL;
3615 else
3616 break;
3618 else if (ac2->size != access->size)
3619 return NULL;
3621 if (access_precludes_ipa_sra_p (ac2)
3622 || (ac2->type != access->type
3623 && (TREE_ADDRESSABLE (ac2->type)
3624 || TREE_ADDRESSABLE (access->type)))
3625 || (reference_alias_ptr_type (ac2->expr) != a1_alias_type))
3626 return NULL;
3628 modification |= ac2->write;
3629 ac2->group_representative = access;
3630 ac2->next_sibling = access->next_sibling;
3631 access->next_sibling = ac2;
3632 j++;
3635 group_count++;
3636 access->grp_maybe_modified = modification;
3637 if (!modification)
3638 *ro_grp = true;
3639 *prev_acc_ptr = access;
3640 prev_acc_ptr = &access->next_grp;
3641 total_size += access->size;
3642 i = j;
3645 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3646 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3647 else
3648 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3649 if (total_size >= agg_size)
3650 return NULL;
3652 gcc_assert (group_count > 0);
3653 return res;
3656 /* Decide whether parameters with representative accesses given by REPR should
3657 be reduced into components. */
3659 static int
3660 decide_one_param_reduction (struct access *repr)
3662 int total_size, cur_parm_size, agg_size, new_param_count, parm_size_limit;
3663 bool by_ref;
3664 tree parm;
3666 parm = repr->base;
3667 cur_parm_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3668 gcc_assert (cur_parm_size > 0);
3670 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3672 by_ref = true;
3673 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3675 else
3677 by_ref = false;
3678 agg_size = cur_parm_size;
3681 if (dump_file)
3683 struct access *acc;
3684 fprintf (dump_file, "Evaluating PARAM group sizes for ");
3685 print_generic_expr (dump_file, parm, 0);
3686 fprintf (dump_file, " (UID: %u): \n", DECL_UID (parm));
3687 for (acc = repr; acc; acc = acc->next_grp)
3688 dump_access (dump_file, acc, true);
3691 total_size = 0;
3692 new_param_count = 0;
3694 for (; repr; repr = repr->next_grp)
3696 gcc_assert (parm == repr->base);
3698 /* Taking the address of a non-addressable field is verboten. */
3699 if (by_ref && repr->non_addressable)
3700 return 0;
3702 if (!by_ref || (!repr->grp_maybe_modified
3703 && !repr->grp_not_necessarilly_dereferenced))
3704 total_size += repr->size;
3705 else
3706 total_size += cur_parm_size;
3708 new_param_count++;
3711 gcc_assert (new_param_count > 0);
3713 if (optimize_function_for_size_p (cfun))
3714 parm_size_limit = cur_parm_size;
3715 else
3716 parm_size_limit = (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR)
3717 * cur_parm_size);
3719 if (total_size < agg_size
3720 && total_size <= parm_size_limit)
3722 if (dump_file)
3723 fprintf (dump_file, " ....will be split into %i components\n",
3724 new_param_count);
3725 return new_param_count;
3727 else
3728 return 0;
3731 /* The order of the following enums is important, we need to do extra work for
3732 UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */
3733 enum ipa_splicing_result { NO_GOOD_ACCESS, UNUSED_PARAMS, BY_VAL_ACCESSES,
3734 MODIF_BY_REF_ACCESSES, UNMODIF_BY_REF_ACCESSES };
3736 /* Identify representatives of all accesses to all candidate parameters for
3737 IPA-SRA. Return result based on what representatives have been found. */
3739 static enum ipa_splicing_result
3740 splice_all_param_accesses (VEC (access_p, heap) **representatives)
3742 enum ipa_splicing_result result = NO_GOOD_ACCESS;
3743 tree parm;
3744 struct access *repr;
3746 *representatives = VEC_alloc (access_p, heap, func_param_count);
3748 for (parm = DECL_ARGUMENTS (current_function_decl);
3749 parm;
3750 parm = DECL_CHAIN (parm))
3752 if (is_unused_scalar_param (parm))
3754 VEC_quick_push (access_p, *representatives,
3755 &no_accesses_representant);
3756 if (result == NO_GOOD_ACCESS)
3757 result = UNUSED_PARAMS;
3759 else if (POINTER_TYPE_P (TREE_TYPE (parm))
3760 && is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm)))
3761 && bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3763 repr = unmodified_by_ref_scalar_representative (parm);
3764 VEC_quick_push (access_p, *representatives, repr);
3765 if (repr)
3766 result = UNMODIF_BY_REF_ACCESSES;
3768 else if (bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3770 bool ro_grp = false;
3771 repr = splice_param_accesses (parm, &ro_grp);
3772 VEC_quick_push (access_p, *representatives, repr);
3774 if (repr && !no_accesses_p (repr))
3776 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3778 if (ro_grp)
3779 result = UNMODIF_BY_REF_ACCESSES;
3780 else if (result < MODIF_BY_REF_ACCESSES)
3781 result = MODIF_BY_REF_ACCESSES;
3783 else if (result < BY_VAL_ACCESSES)
3784 result = BY_VAL_ACCESSES;
3786 else if (no_accesses_p (repr) && (result == NO_GOOD_ACCESS))
3787 result = UNUSED_PARAMS;
3789 else
3790 VEC_quick_push (access_p, *representatives, NULL);
3793 if (result == NO_GOOD_ACCESS)
3795 VEC_free (access_p, heap, *representatives);
3796 *representatives = NULL;
3797 return NO_GOOD_ACCESS;
3800 return result;
3803 /* Return the index of BASE in PARMS. Abort if it is not found. */
3805 static inline int
3806 get_param_index (tree base, VEC(tree, heap) *parms)
3808 int i, len;
3810 len = VEC_length (tree, parms);
3811 for (i = 0; i < len; i++)
3812 if (VEC_index (tree, parms, i) == base)
3813 return i;
3814 gcc_unreachable ();
3817 /* Convert the decisions made at the representative level into compact
3818 parameter adjustments. REPRESENTATIVES are pointers to first
3819 representatives of each param accesses, ADJUSTMENTS_COUNT is the expected
3820 final number of adjustments. */
3822 static ipa_parm_adjustment_vec
3823 turn_representatives_into_adjustments (VEC (access_p, heap) *representatives,
3824 int adjustments_count)
3826 VEC (tree, heap) *parms;
3827 ipa_parm_adjustment_vec adjustments;
3828 tree parm;
3829 int i;
3831 gcc_assert (adjustments_count > 0);
3832 parms = ipa_get_vector_of_formal_parms (current_function_decl);
3833 adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, adjustments_count);
3834 parm = DECL_ARGUMENTS (current_function_decl);
3835 for (i = 0; i < func_param_count; i++, parm = DECL_CHAIN (parm))
3837 struct access *repr = VEC_index (access_p, representatives, i);
3839 if (!repr || no_accesses_p (repr))
3841 struct ipa_parm_adjustment *adj;
3843 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
3844 memset (adj, 0, sizeof (*adj));
3845 adj->base_index = get_param_index (parm, parms);
3846 adj->base = parm;
3847 if (!repr)
3848 adj->copy_param = 1;
3849 else
3850 adj->remove_param = 1;
3852 else
3854 struct ipa_parm_adjustment *adj;
3855 int index = get_param_index (parm, parms);
3857 for (; repr; repr = repr->next_grp)
3859 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
3860 memset (adj, 0, sizeof (*adj));
3861 gcc_assert (repr->base == parm);
3862 adj->base_index = index;
3863 adj->base = repr->base;
3864 adj->type = repr->type;
3865 adj->alias_ptr_type = reference_alias_ptr_type (repr->expr);
3866 adj->offset = repr->offset;
3867 adj->by_ref = (POINTER_TYPE_P (TREE_TYPE (repr->base))
3868 && (repr->grp_maybe_modified
3869 || repr->grp_not_necessarilly_dereferenced));
3874 VEC_free (tree, heap, parms);
3875 return adjustments;
3878 /* Analyze the collected accesses and produce a plan what to do with the
3879 parameters in the form of adjustments, NULL meaning nothing. */
3881 static ipa_parm_adjustment_vec
3882 analyze_all_param_acesses (void)
3884 enum ipa_splicing_result repr_state;
3885 bool proceed = false;
3886 int i, adjustments_count = 0;
3887 VEC (access_p, heap) *representatives;
3888 ipa_parm_adjustment_vec adjustments;
3890 repr_state = splice_all_param_accesses (&representatives);
3891 if (repr_state == NO_GOOD_ACCESS)
3892 return NULL;
3894 /* If there are any parameters passed by reference which are not modified
3895 directly, we need to check whether they can be modified indirectly. */
3896 if (repr_state == UNMODIF_BY_REF_ACCESSES)
3898 analyze_caller_dereference_legality (representatives);
3899 analyze_modified_params (representatives);
3902 for (i = 0; i < func_param_count; i++)
3904 struct access *repr = VEC_index (access_p, representatives, i);
3906 if (repr && !no_accesses_p (repr))
3908 if (repr->grp_scalar_ptr)
3910 adjustments_count++;
3911 if (repr->grp_not_necessarilly_dereferenced
3912 || repr->grp_maybe_modified)
3913 VEC_replace (access_p, representatives, i, NULL);
3914 else
3916 proceed = true;
3917 sra_stats.scalar_by_ref_to_by_val++;
3920 else
3922 int new_components = decide_one_param_reduction (repr);
3924 if (new_components == 0)
3926 VEC_replace (access_p, representatives, i, NULL);
3927 adjustments_count++;
3929 else
3931 adjustments_count += new_components;
3932 sra_stats.aggregate_params_reduced++;
3933 sra_stats.param_reductions_created += new_components;
3934 proceed = true;
3938 else
3940 if (no_accesses_p (repr))
3942 proceed = true;
3943 sra_stats.deleted_unused_parameters++;
3945 adjustments_count++;
3949 if (!proceed && dump_file)
3950 fprintf (dump_file, "NOT proceeding to change params.\n");
3952 if (proceed)
3953 adjustments = turn_representatives_into_adjustments (representatives,
3954 adjustments_count);
3955 else
3956 adjustments = NULL;
3958 VEC_free (access_p, heap, representatives);
3959 return adjustments;
3962 /* If a parameter replacement identified by ADJ does not yet exist in the form
3963 of declaration, create it and record it, otherwise return the previously
3964 created one. */
3966 static tree
3967 get_replaced_param_substitute (struct ipa_parm_adjustment *adj)
3969 tree repl;
3970 if (!adj->new_ssa_base)
3972 char *pretty_name = make_fancy_name (adj->base);
3974 repl = create_tmp_reg (TREE_TYPE (adj->base), "ISR");
3975 DECL_NAME (repl) = get_identifier (pretty_name);
3976 obstack_free (&name_obstack, pretty_name);
3978 get_var_ann (repl);
3979 add_referenced_var (repl);
3980 adj->new_ssa_base = repl;
3982 else
3983 repl = adj->new_ssa_base;
3984 return repl;
3987 /* Find the first adjustment for a particular parameter BASE in a vector of
3988 ADJUSTMENTS which is not a copy_param. Return NULL if there is no such
3989 adjustment. */
3991 static struct ipa_parm_adjustment *
3992 get_adjustment_for_base (ipa_parm_adjustment_vec adjustments, tree base)
3994 int i, len;
3996 len = VEC_length (ipa_parm_adjustment_t, adjustments);
3997 for (i = 0; i < len; i++)
3999 struct ipa_parm_adjustment *adj;
4001 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4002 if (!adj->copy_param && adj->base == base)
4003 return adj;
4006 return NULL;
4009 /* If the statement STMT defines an SSA_NAME of a parameter which is to be
4010 removed because its value is not used, replace the SSA_NAME with a one
4011 relating to a created VAR_DECL together all of its uses and return true.
4012 ADJUSTMENTS is a pointer to an adjustments vector. */
4014 static bool
4015 replace_removed_params_ssa_names (gimple stmt,
4016 ipa_parm_adjustment_vec adjustments)
4018 struct ipa_parm_adjustment *adj;
4019 tree lhs, decl, repl, name;
4021 if (gimple_code (stmt) == GIMPLE_PHI)
4022 lhs = gimple_phi_result (stmt);
4023 else if (is_gimple_assign (stmt))
4024 lhs = gimple_assign_lhs (stmt);
4025 else if (is_gimple_call (stmt))
4026 lhs = gimple_call_lhs (stmt);
4027 else
4028 gcc_unreachable ();
4030 if (TREE_CODE (lhs) != SSA_NAME)
4031 return false;
4032 decl = SSA_NAME_VAR (lhs);
4033 if (TREE_CODE (decl) != PARM_DECL)
4034 return false;
4036 adj = get_adjustment_for_base (adjustments, decl);
4037 if (!adj)
4038 return false;
4040 repl = get_replaced_param_substitute (adj);
4041 name = make_ssa_name (repl, stmt);
4043 if (dump_file)
4045 fprintf (dump_file, "replacing an SSA name of a removed param ");
4046 print_generic_expr (dump_file, lhs, 0);
4047 fprintf (dump_file, " with ");
4048 print_generic_expr (dump_file, name, 0);
4049 fprintf (dump_file, "\n");
4052 if (is_gimple_assign (stmt))
4053 gimple_assign_set_lhs (stmt, name);
4054 else if (is_gimple_call (stmt))
4055 gimple_call_set_lhs (stmt, name);
4056 else
4057 gimple_phi_set_result (stmt, name);
4059 replace_uses_by (lhs, name);
4060 release_ssa_name (lhs);
4061 return true;
4064 /* If the expression *EXPR should be replaced by a reduction of a parameter, do
4065 so. ADJUSTMENTS is a pointer to a vector of adjustments. CONVERT
4066 specifies whether the function should care about type incompatibility the
4067 current and new expressions. If it is false, the function will leave
4068 incompatibility issues to the caller. Return true iff the expression
4069 was modified. */
4071 static bool
4072 sra_ipa_modify_expr (tree *expr, bool convert,
4073 ipa_parm_adjustment_vec adjustments)
4075 int i, len;
4076 struct ipa_parm_adjustment *adj, *cand = NULL;
4077 HOST_WIDE_INT offset, size, max_size;
4078 tree base, src;
4080 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4082 if (TREE_CODE (*expr) == BIT_FIELD_REF
4083 || TREE_CODE (*expr) == IMAGPART_EXPR
4084 || TREE_CODE (*expr) == REALPART_EXPR)
4086 expr = &TREE_OPERAND (*expr, 0);
4087 convert = true;
4090 base = get_ref_base_and_extent (*expr, &offset, &size, &max_size);
4091 if (!base || size == -1 || max_size == -1)
4092 return false;
4094 if (TREE_CODE (base) == MEM_REF)
4096 offset += mem_ref_offset (base).low * BITS_PER_UNIT;
4097 base = TREE_OPERAND (base, 0);
4100 base = get_ssa_base_param (base);
4101 if (!base || TREE_CODE (base) != PARM_DECL)
4102 return false;
4104 for (i = 0; i < len; i++)
4106 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4108 if (adj->base == base &&
4109 (adj->offset == offset || adj->remove_param))
4111 cand = adj;
4112 break;
4115 if (!cand || cand->copy_param || cand->remove_param)
4116 return false;
4118 if (cand->by_ref)
4119 src = build_simple_mem_ref (cand->reduction);
4120 else
4121 src = cand->reduction;
4123 if (dump_file && (dump_flags & TDF_DETAILS))
4125 fprintf (dump_file, "About to replace expr ");
4126 print_generic_expr (dump_file, *expr, 0);
4127 fprintf (dump_file, " with ");
4128 print_generic_expr (dump_file, src, 0);
4129 fprintf (dump_file, "\n");
4132 if (convert && !useless_type_conversion_p (TREE_TYPE (*expr), cand->type))
4134 tree vce = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (*expr), src);
4135 *expr = vce;
4137 else
4138 *expr = src;
4139 return true;
4142 /* If the statement pointed to by STMT_PTR contains any expressions that need
4143 to replaced with a different one as noted by ADJUSTMENTS, do so. Handle any
4144 potential type incompatibilities (GSI is used to accommodate conversion
4145 statements and must point to the statement). Return true iff the statement
4146 was modified. */
4148 static bool
4149 sra_ipa_modify_assign (gimple *stmt_ptr, gimple_stmt_iterator *gsi,
4150 ipa_parm_adjustment_vec adjustments)
4152 gimple stmt = *stmt_ptr;
4153 tree *lhs_p, *rhs_p;
4154 bool any;
4156 if (!gimple_assign_single_p (stmt))
4157 return false;
4159 rhs_p = gimple_assign_rhs1_ptr (stmt);
4160 lhs_p = gimple_assign_lhs_ptr (stmt);
4162 any = sra_ipa_modify_expr (rhs_p, false, adjustments);
4163 any |= sra_ipa_modify_expr (lhs_p, false, adjustments);
4164 if (any)
4166 tree new_rhs = NULL_TREE;
4168 if (!useless_type_conversion_p (TREE_TYPE (*lhs_p), TREE_TYPE (*rhs_p)))
4170 if (TREE_CODE (*rhs_p) == CONSTRUCTOR)
4172 /* V_C_Es of constructors can cause trouble (PR 42714). */
4173 if (is_gimple_reg_type (TREE_TYPE (*lhs_p)))
4174 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
4175 else
4176 *rhs_p = build_constructor (TREE_TYPE (*lhs_p), 0);
4178 else
4179 new_rhs = fold_build1_loc (gimple_location (stmt),
4180 VIEW_CONVERT_EXPR, TREE_TYPE (*lhs_p),
4181 *rhs_p);
4183 else if (REFERENCE_CLASS_P (*rhs_p)
4184 && is_gimple_reg_type (TREE_TYPE (*lhs_p))
4185 && !is_gimple_reg (*lhs_p))
4186 /* This can happen when an assignment in between two single field
4187 structures is turned into an assignment in between two pointers to
4188 scalars (PR 42237). */
4189 new_rhs = *rhs_p;
4191 if (new_rhs)
4193 tree tmp = force_gimple_operand_gsi (gsi, new_rhs, true, NULL_TREE,
4194 true, GSI_SAME_STMT);
4196 gimple_assign_set_rhs_from_tree (gsi, tmp);
4199 return true;
4202 return false;
4205 /* Traverse the function body and all modifications as described in
4206 ADJUSTMENTS. Return true iff the CFG has been changed. */
4208 static bool
4209 ipa_sra_modify_function_body (ipa_parm_adjustment_vec adjustments)
4211 bool cfg_changed = false;
4212 basic_block bb;
4214 FOR_EACH_BB (bb)
4216 gimple_stmt_iterator gsi;
4218 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4219 replace_removed_params_ssa_names (gsi_stmt (gsi), adjustments);
4221 gsi = gsi_start_bb (bb);
4222 while (!gsi_end_p (gsi))
4224 gimple stmt = gsi_stmt (gsi);
4225 bool modified = false;
4226 tree *t;
4227 unsigned i;
4229 switch (gimple_code (stmt))
4231 case GIMPLE_RETURN:
4232 t = gimple_return_retval_ptr (stmt);
4233 if (*t != NULL_TREE)
4234 modified |= sra_ipa_modify_expr (t, true, adjustments);
4235 break;
4237 case GIMPLE_ASSIGN:
4238 modified |= sra_ipa_modify_assign (&stmt, &gsi, adjustments);
4239 modified |= replace_removed_params_ssa_names (stmt, adjustments);
4240 break;
4242 case GIMPLE_CALL:
4243 /* Operands must be processed before the lhs. */
4244 for (i = 0; i < gimple_call_num_args (stmt); i++)
4246 t = gimple_call_arg_ptr (stmt, i);
4247 modified |= sra_ipa_modify_expr (t, true, adjustments);
4250 if (gimple_call_lhs (stmt))
4252 t = gimple_call_lhs_ptr (stmt);
4253 modified |= sra_ipa_modify_expr (t, false, adjustments);
4254 modified |= replace_removed_params_ssa_names (stmt,
4255 adjustments);
4257 break;
4259 case GIMPLE_ASM:
4260 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
4262 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
4263 modified |= sra_ipa_modify_expr (t, true, adjustments);
4265 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
4267 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
4268 modified |= sra_ipa_modify_expr (t, false, adjustments);
4270 break;
4272 default:
4273 break;
4276 if (modified)
4278 update_stmt (stmt);
4279 if (maybe_clean_eh_stmt (stmt)
4280 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
4281 cfg_changed = true;
4283 gsi_next (&gsi);
4287 return cfg_changed;
4290 /* Call gimple_debug_bind_reset_value on all debug statements describing
4291 gimple register parameters that are being removed or replaced. */
4293 static void
4294 sra_ipa_reset_debug_stmts (ipa_parm_adjustment_vec adjustments)
4296 int i, len;
4298 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4299 for (i = 0; i < len; i++)
4301 struct ipa_parm_adjustment *adj;
4302 imm_use_iterator ui;
4303 gimple stmt;
4304 tree name;
4306 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4307 if (adj->copy_param || !is_gimple_reg (adj->base))
4308 continue;
4309 name = gimple_default_def (cfun, adj->base);
4310 if (!name)
4311 continue;
4312 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
4314 /* All other users must have been removed by
4315 ipa_sra_modify_function_body. */
4316 gcc_assert (is_gimple_debug (stmt));
4317 gimple_debug_bind_reset_value (stmt);
4318 update_stmt (stmt);
4323 /* Return true iff all callers have at least as many actual arguments as there
4324 are formal parameters in the current function. */
4326 static bool
4327 all_callers_have_enough_arguments_p (struct cgraph_node *node)
4329 struct cgraph_edge *cs;
4330 for (cs = node->callers; cs; cs = cs->next_caller)
4331 if (!callsite_has_enough_arguments_p (cs->call_stmt))
4332 return false;
4334 return true;
4338 /* Convert all callers of NODE to pass parameters as given in ADJUSTMENTS. */
4340 static void
4341 convert_callers (struct cgraph_node *node, tree old_decl,
4342 ipa_parm_adjustment_vec adjustments)
4344 tree old_cur_fndecl = current_function_decl;
4345 struct cgraph_edge *cs;
4346 basic_block this_block;
4347 bitmap recomputed_callers = BITMAP_ALLOC (NULL);
4349 for (cs = node->callers; cs; cs = cs->next_caller)
4351 current_function_decl = cs->caller->decl;
4352 push_cfun (DECL_STRUCT_FUNCTION (cs->caller->decl));
4354 if (dump_file)
4355 fprintf (dump_file, "Adjusting call (%i -> %i) %s -> %s\n",
4356 cs->caller->uid, cs->callee->uid,
4357 cgraph_node_name (cs->caller),
4358 cgraph_node_name (cs->callee));
4360 ipa_modify_call_arguments (cs, cs->call_stmt, adjustments);
4362 pop_cfun ();
4365 for (cs = node->callers; cs; cs = cs->next_caller)
4366 if (bitmap_set_bit (recomputed_callers, cs->caller->uid)
4367 && gimple_in_ssa_p (DECL_STRUCT_FUNCTION (cs->caller->decl)))
4368 compute_inline_parameters (cs->caller);
4369 BITMAP_FREE (recomputed_callers);
4371 current_function_decl = old_cur_fndecl;
4373 if (!encountered_recursive_call)
4374 return;
4376 FOR_EACH_BB (this_block)
4378 gimple_stmt_iterator gsi;
4380 for (gsi = gsi_start_bb (this_block); !gsi_end_p (gsi); gsi_next (&gsi))
4382 gimple stmt = gsi_stmt (gsi);
4383 tree call_fndecl;
4384 if (gimple_code (stmt) != GIMPLE_CALL)
4385 continue;
4386 call_fndecl = gimple_call_fndecl (stmt);
4387 if (call_fndecl == old_decl)
4389 if (dump_file)
4390 fprintf (dump_file, "Adjusting recursive call");
4391 gimple_call_set_fndecl (stmt, node->decl);
4392 ipa_modify_call_arguments (NULL, stmt, adjustments);
4397 return;
4400 /* Perform all the modification required in IPA-SRA for NODE to have parameters
4401 as given in ADJUSTMENTS. Return true iff the CFG has been changed. */
4403 static bool
4404 modify_function (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments)
4406 struct cgraph_node *new_node;
4407 struct cgraph_edge *cs;
4408 bool cfg_changed;
4409 VEC (cgraph_edge_p, heap) * redirect_callers;
4410 int node_callers;
4412 node_callers = 0;
4413 for (cs = node->callers; cs != NULL; cs = cs->next_caller)
4414 node_callers++;
4415 redirect_callers = VEC_alloc (cgraph_edge_p, heap, node_callers);
4416 for (cs = node->callers; cs != NULL; cs = cs->next_caller)
4417 VEC_quick_push (cgraph_edge_p, redirect_callers, cs);
4419 rebuild_cgraph_edges ();
4420 pop_cfun ();
4421 current_function_decl = NULL_TREE;
4423 new_node = cgraph_function_versioning (node, redirect_callers, NULL, NULL,
4424 NULL, NULL, "isra");
4425 current_function_decl = new_node->decl;
4426 push_cfun (DECL_STRUCT_FUNCTION (new_node->decl));
4428 ipa_modify_formal_parameters (current_function_decl, adjustments, "ISRA");
4429 cfg_changed = ipa_sra_modify_function_body (adjustments);
4430 sra_ipa_reset_debug_stmts (adjustments);
4431 convert_callers (new_node, node->decl, adjustments);
4432 cgraph_make_node_local (new_node);
4433 return cfg_changed;
4436 /* Return false the function is apparently unsuitable for IPA-SRA based on it's
4437 attributes, return true otherwise. NODE is the cgraph node of the current
4438 function. */
4440 static bool
4441 ipa_sra_preliminary_function_checks (struct cgraph_node *node)
4443 if (!cgraph_node_can_be_local_p (node))
4445 if (dump_file)
4446 fprintf (dump_file, "Function not local to this compilation unit.\n");
4447 return false;
4450 if (!node->local.can_change_signature)
4452 if (dump_file)
4453 fprintf (dump_file, "Function can not change signature.\n");
4454 return false;
4457 if (!tree_versionable_function_p (node->decl))
4459 if (dump_file)
4460 fprintf (dump_file, "Function is not versionable.\n");
4461 return false;
4464 if (DECL_VIRTUAL_P (current_function_decl))
4466 if (dump_file)
4467 fprintf (dump_file, "Function is a virtual method.\n");
4468 return false;
4471 if ((DECL_COMDAT (node->decl) || DECL_EXTERNAL (node->decl))
4472 && node->global.size >= MAX_INLINE_INSNS_AUTO)
4474 if (dump_file)
4475 fprintf (dump_file, "Function too big to be made truly local.\n");
4476 return false;
4479 if (!node->callers)
4481 if (dump_file)
4482 fprintf (dump_file,
4483 "Function has no callers in this compilation unit.\n");
4484 return false;
4487 if (cfun->stdarg)
4489 if (dump_file)
4490 fprintf (dump_file, "Function uses stdarg. \n");
4491 return false;
4494 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
4495 return false;
4497 return true;
4500 /* Perform early interprocedural SRA. */
4502 static unsigned int
4503 ipa_early_sra (void)
4505 struct cgraph_node *node = cgraph_get_node (current_function_decl);
4506 ipa_parm_adjustment_vec adjustments;
4507 int ret = 0;
4509 if (!ipa_sra_preliminary_function_checks (node))
4510 return 0;
4512 sra_initialize ();
4513 sra_mode = SRA_MODE_EARLY_IPA;
4515 if (!find_param_candidates ())
4517 if (dump_file)
4518 fprintf (dump_file, "Function has no IPA-SRA candidates.\n");
4519 goto simple_out;
4522 if (!all_callers_have_enough_arguments_p (node))
4524 if (dump_file)
4525 fprintf (dump_file, "There are callers with insufficient number of "
4526 "arguments.\n");
4527 goto simple_out;
4530 bb_dereferences = XCNEWVEC (HOST_WIDE_INT,
4531 func_param_count
4532 * last_basic_block_for_function (cfun));
4533 final_bbs = BITMAP_ALLOC (NULL);
4535 scan_function ();
4536 if (encountered_apply_args)
4538 if (dump_file)
4539 fprintf (dump_file, "Function calls __builtin_apply_args().\n");
4540 goto out;
4543 if (encountered_unchangable_recursive_call)
4545 if (dump_file)
4546 fprintf (dump_file, "Function calls itself with insufficient "
4547 "number of arguments.\n");
4548 goto out;
4551 adjustments = analyze_all_param_acesses ();
4552 if (!adjustments)
4553 goto out;
4554 if (dump_file)
4555 ipa_dump_param_adjustments (dump_file, adjustments, current_function_decl);
4557 if (modify_function (node, adjustments))
4558 ret = TODO_update_ssa | TODO_cleanup_cfg;
4559 else
4560 ret = TODO_update_ssa;
4561 VEC_free (ipa_parm_adjustment_t, heap, adjustments);
4563 statistics_counter_event (cfun, "Unused parameters deleted",
4564 sra_stats.deleted_unused_parameters);
4565 statistics_counter_event (cfun, "Scalar parameters converted to by-value",
4566 sra_stats.scalar_by_ref_to_by_val);
4567 statistics_counter_event (cfun, "Aggregate parameters broken up",
4568 sra_stats.aggregate_params_reduced);
4569 statistics_counter_event (cfun, "Aggregate parameter components created",
4570 sra_stats.param_reductions_created);
4572 out:
4573 BITMAP_FREE (final_bbs);
4574 free (bb_dereferences);
4575 simple_out:
4576 sra_deinitialize ();
4577 return ret;
4580 /* Return if early ipa sra shall be performed. */
4581 static bool
4582 ipa_early_sra_gate (void)
4584 return flag_ipa_sra && dbg_cnt (eipa_sra);
4587 struct gimple_opt_pass pass_early_ipa_sra =
4590 GIMPLE_PASS,
4591 "eipa_sra", /* name */
4592 ipa_early_sra_gate, /* gate */
4593 ipa_early_sra, /* execute */
4594 NULL, /* sub */
4595 NULL, /* next */
4596 0, /* static_pass_number */
4597 TV_IPA_SRA, /* tv_id */
4598 0, /* properties_required */
4599 0, /* properties_provided */
4600 0, /* properties_destroyed */
4601 0, /* todo_flags_start */
4602 TODO_dump_func | TODO_dump_cgraph /* todo_flags_finish */