1 /* IRA processing allocno lives to build allocno live ranges.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "insn-config.h"
36 #include "diagnostic-core.h"
40 #include "sparseset.h"
43 /* The code in this file is similar to one in global but the code
44 works on the allocno basis and creates live ranges instead of
45 pseudo-register conflicts. */
47 /* Program points are enumerated by numbers from range
48 0..IRA_MAX_POINT-1. There are approximately two times more program
49 points than insns. Program points are places in the program where
50 liveness info can be changed. In most general case (there are more
51 complicated cases too) some program points correspond to places
52 where input operand dies and other ones correspond to places where
53 output operands are born. */
56 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
57 live ranges with given start/finish point. */
58 live_range_t
*ira_start_point_ranges
, *ira_finish_point_ranges
;
60 /* Number of the current program point. */
61 static int curr_point
;
63 /* Point where register pressure excess started or -1 if there is no
64 register pressure excess. Excess pressure for a register class at
65 some point means that there are more allocnos of given register
66 class living at the point than number of hard-registers of the
67 class available for the allocation. It is defined only for
69 static int high_pressure_start_point
[N_REG_CLASSES
];
71 /* Objects live at current point in the scan. */
72 static sparseset objects_live
;
74 /* A temporary bitmap used in functions that wish to avoid visiting an allocno
76 static sparseset allocnos_processed
;
78 /* Set of hard regs (except eliminable ones) currently live. */
79 static HARD_REG_SET hard_regs_live
;
81 /* The loop tree node corresponding to the current basic block. */
82 static ira_loop_tree_node_t curr_bb_node
;
84 /* The number of the last processed call. */
85 static int last_call_num
;
86 /* The number of last call at which given allocno was saved. */
87 static int *allocno_saved_at_call
;
89 /* Record the birth of hard register REGNO, updating hard_regs_live and
90 hard reg conflict information for living allocnos. */
92 make_hard_regno_born (int regno
)
96 SET_HARD_REG_BIT (hard_regs_live
, regno
);
97 EXECUTE_IF_SET_IN_SPARSESET (objects_live
, i
)
99 ira_object_t obj
= ira_object_id_map
[i
];
101 SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj
), regno
);
102 SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
), regno
);
106 /* Process the death of hard register REGNO. This updates
109 make_hard_regno_dead (int regno
)
111 CLEAR_HARD_REG_BIT (hard_regs_live
, regno
);
114 /* Record the birth of object OBJ. Set a bit for it in objects_live,
115 start a new live range for it if necessary and update hard register
118 make_object_born (ira_object_t obj
)
120 live_range_t lr
= OBJECT_LIVE_RANGES (obj
);
122 sparseset_set_bit (objects_live
, OBJECT_CONFLICT_ID (obj
));
123 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj
), hard_regs_live
);
124 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
), hard_regs_live
);
127 || (lr
->finish
!= curr_point
&& lr
->finish
+ 1 != curr_point
))
128 ira_add_live_range_to_object (obj
, curr_point
, -1);
131 /* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for the allocno
132 associated with object OBJ. */
134 update_allocno_pressure_excess_length (ira_object_t obj
)
136 ira_allocno_t a
= OBJECT_ALLOCNO (obj
);
138 enum reg_class aclass
, pclass
, cl
;
141 aclass
= ALLOCNO_CLASS (a
);
142 pclass
= ira_pressure_class_translate
[aclass
];
144 (cl
= ira_reg_class_super_classes
[pclass
][i
]) != LIM_REG_CLASSES
;
147 if (! ira_reg_pressure_class_p
[cl
])
149 if (high_pressure_start_point
[cl
] < 0)
151 p
= OBJECT_LIVE_RANGES (obj
);
152 ira_assert (p
!= NULL
);
153 start
= (high_pressure_start_point
[cl
] > p
->start
154 ? high_pressure_start_point
[cl
] : p
->start
);
155 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a
) += curr_point
- start
+ 1;
159 /* Process the death of object OBJ, which is associated with allocno
160 A. This finishes the current live range for it. */
162 make_object_dead (ira_object_t obj
)
166 sparseset_clear_bit (objects_live
, OBJECT_CONFLICT_ID (obj
));
167 lr
= OBJECT_LIVE_RANGES (obj
);
168 ira_assert (lr
!= NULL
);
169 lr
->finish
= curr_point
;
170 update_allocno_pressure_excess_length (obj
);
173 /* The current register pressures for each pressure class for the current
175 static int curr_reg_pressure
[N_REG_CLASSES
];
177 /* Record that register pressure for PCLASS increased by N registers.
178 Update the current register pressure, maximal register pressure for
179 the current BB and the start point of the register pressure
182 inc_register_pressure (enum reg_class pclass
, int n
)
188 (cl
= ira_reg_class_super_classes
[pclass
][i
]) != LIM_REG_CLASSES
;
191 if (! ira_reg_pressure_class_p
[cl
])
193 curr_reg_pressure
[cl
] += n
;
194 if (high_pressure_start_point
[cl
] < 0
195 && (curr_reg_pressure
[cl
] > ira_available_class_regs
[cl
]))
196 high_pressure_start_point
[cl
] = curr_point
;
197 if (curr_bb_node
->reg_pressure
[cl
] < curr_reg_pressure
[cl
])
198 curr_bb_node
->reg_pressure
[cl
] = curr_reg_pressure
[cl
];
202 /* Record that register pressure for PCLASS has decreased by NREGS
203 registers; update current register pressure, start point of the
204 register pressure excess, and register pressure excess length for
208 dec_register_pressure (enum reg_class pclass
, int nregs
)
216 (cl
= ira_reg_class_super_classes
[pclass
][i
]) != LIM_REG_CLASSES
;
219 if (! ira_reg_pressure_class_p
[cl
])
221 curr_reg_pressure
[cl
] -= nregs
;
222 ira_assert (curr_reg_pressure
[cl
] >= 0);
223 if (high_pressure_start_point
[cl
] >= 0
224 && curr_reg_pressure
[cl
] <= ira_available_class_regs
[cl
])
229 EXECUTE_IF_SET_IN_SPARSESET (objects_live
, j
)
230 update_allocno_pressure_excess_length (ira_object_id_map
[j
]);
232 (cl
= ira_reg_class_super_classes
[pclass
][i
]) != LIM_REG_CLASSES
;
235 if (! ira_reg_pressure_class_p
[cl
])
237 if (high_pressure_start_point
[cl
] >= 0
238 && curr_reg_pressure
[cl
] <= ira_available_class_regs
[cl
])
239 high_pressure_start_point
[cl
] = -1;
244 /* Mark the pseudo register REGNO as live. Update all information about
245 live ranges and register pressure. */
247 mark_pseudo_regno_live (int regno
)
249 ira_allocno_t a
= ira_curr_regno_allocno_map
[regno
];
250 enum reg_class pclass
;
256 /* Invalidate because it is referenced. */
257 allocno_saved_at_call
[ALLOCNO_NUM (a
)] = 0;
259 n
= ALLOCNO_NUM_OBJECTS (a
);
260 pclass
= ira_pressure_class_translate
[ALLOCNO_CLASS (a
)];
261 nregs
= ira_reg_class_max_nregs
[ALLOCNO_CLASS (a
)][ALLOCNO_MODE (a
)];
264 /* We track every subobject separately. */
265 gcc_assert (nregs
== n
);
269 for (i
= 0; i
< n
; i
++)
271 ira_object_t obj
= ALLOCNO_OBJECT (a
, i
);
273 if (sparseset_bit_p (objects_live
, OBJECT_CONFLICT_ID (obj
)))
276 inc_register_pressure (pclass
, nregs
);
277 make_object_born (obj
);
281 /* Like mark_pseudo_regno_live, but try to only mark one subword of
282 the pseudo as live. SUBWORD indicates which; a value of 0
283 indicates the low part. */
285 mark_pseudo_regno_subword_live (int regno
, int subword
)
287 ira_allocno_t a
= ira_curr_regno_allocno_map
[regno
];
289 enum reg_class pclass
;
295 /* Invalidate because it is referenced. */
296 allocno_saved_at_call
[ALLOCNO_NUM (a
)] = 0;
298 n
= ALLOCNO_NUM_OBJECTS (a
);
301 mark_pseudo_regno_live (regno
);
305 pclass
= ira_pressure_class_translate
[ALLOCNO_CLASS (a
)];
306 nregs
= ira_reg_class_max_nregs
[pclass
][ALLOCNO_MODE (a
)];
307 gcc_assert (nregs
== n
);
308 obj
= ALLOCNO_OBJECT (a
, subword
);
310 if (sparseset_bit_p (objects_live
, OBJECT_CONFLICT_ID (obj
)))
313 inc_register_pressure (pclass
, nregs
);
314 make_object_born (obj
);
317 /* Mark the register REG as live. Store a 1 in hard_regs_live for
318 this register, record how many consecutive hardware registers it
321 mark_hard_reg_live (rtx reg
)
323 int regno
= REGNO (reg
);
325 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs
, regno
))
327 int last
= regno
+ hard_regno_nregs
[regno
][GET_MODE (reg
)];
328 enum reg_class aclass
, pclass
;
332 if (! TEST_HARD_REG_BIT (hard_regs_live
, regno
)
333 && ! TEST_HARD_REG_BIT (eliminable_regset
, regno
))
335 aclass
= ira_hard_regno_allocno_class
[regno
];
336 pclass
= ira_pressure_class_translate
[aclass
];
337 inc_register_pressure (pclass
, 1);
338 make_hard_regno_born (regno
);
345 /* Mark a pseudo, or one of its subwords, as live. REGNO is the pseudo's
346 register number; ORIG_REG is the access in the insn, which may be a
349 mark_pseudo_reg_live (rtx orig_reg
, unsigned regno
)
351 if (df_read_modify_subreg_p (orig_reg
))
353 mark_pseudo_regno_subword_live (regno
,
354 subreg_lowpart_p (orig_reg
) ? 0 : 1);
357 mark_pseudo_regno_live (regno
);
360 /* Mark the register referenced by use or def REF as live. */
362 mark_ref_live (df_ref ref
)
364 rtx reg
= DF_REF_REG (ref
);
367 if (GET_CODE (reg
) == SUBREG
)
368 reg
= SUBREG_REG (reg
);
370 if (REGNO (reg
) >= FIRST_PSEUDO_REGISTER
)
371 mark_pseudo_reg_live (orig_reg
, REGNO (reg
));
373 mark_hard_reg_live (reg
);
376 /* Mark the pseudo register REGNO as dead. Update all information about
377 live ranges and register pressure. */
379 mark_pseudo_regno_dead (int regno
)
381 ira_allocno_t a
= ira_curr_regno_allocno_map
[regno
];
388 /* Invalidate because it is referenced. */
389 allocno_saved_at_call
[ALLOCNO_NUM (a
)] = 0;
391 n
= ALLOCNO_NUM_OBJECTS (a
);
392 cl
= ira_pressure_class_translate
[ALLOCNO_CLASS (a
)];
393 nregs
= ira_reg_class_max_nregs
[ALLOCNO_CLASS (a
)][ALLOCNO_MODE (a
)];
396 /* We track every subobject separately. */
397 gcc_assert (nregs
== n
);
400 for (i
= 0; i
< n
; i
++)
402 ira_object_t obj
= ALLOCNO_OBJECT (a
, i
);
403 if (!sparseset_bit_p (objects_live
, OBJECT_CONFLICT_ID (obj
)))
406 dec_register_pressure (cl
, nregs
);
407 make_object_dead (obj
);
411 /* Like mark_pseudo_regno_dead, but called when we know that only part of the
412 register dies. SUBWORD indicates which; a value of 0 indicates the low part. */
414 mark_pseudo_regno_subword_dead (int regno
, int subword
)
416 ira_allocno_t a
= ira_curr_regno_allocno_map
[regno
];
424 /* Invalidate because it is referenced. */
425 allocno_saved_at_call
[ALLOCNO_NUM (a
)] = 0;
427 n
= ALLOCNO_NUM_OBJECTS (a
);
429 /* The allocno as a whole doesn't die in this case. */
432 cl
= ira_pressure_class_translate
[ALLOCNO_CLASS (a
)];
433 nregs
= ira_reg_class_max_nregs
[cl
][ALLOCNO_MODE (a
)];
434 gcc_assert (nregs
== n
);
436 obj
= ALLOCNO_OBJECT (a
, subword
);
437 if (!sparseset_bit_p (objects_live
, OBJECT_CONFLICT_ID (obj
)))
440 dec_register_pressure (cl
, 1);
441 make_object_dead (obj
);
444 /* Mark the hard register REG as dead. Store a 0 in hard_regs_live for the
447 mark_hard_reg_dead (rtx reg
)
449 int regno
= REGNO (reg
);
451 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs
, regno
))
453 int last
= regno
+ hard_regno_nregs
[regno
][GET_MODE (reg
)];
454 enum reg_class aclass
, pclass
;
458 if (TEST_HARD_REG_BIT (hard_regs_live
, regno
))
460 aclass
= ira_hard_regno_allocno_class
[regno
];
461 pclass
= ira_pressure_class_translate
[aclass
];
462 dec_register_pressure (pclass
, 1);
463 make_hard_regno_dead (regno
);
470 /* Mark a pseudo, or one of its subwords, as dead. REGNO is the pseudo's
471 register number; ORIG_REG is the access in the insn, which may be a
474 mark_pseudo_reg_dead (rtx orig_reg
, unsigned regno
)
476 if (df_read_modify_subreg_p (orig_reg
))
478 mark_pseudo_regno_subword_dead (regno
,
479 subreg_lowpart_p (orig_reg
) ? 0 : 1);
482 mark_pseudo_regno_dead (regno
);
485 /* Mark the register referenced by definition DEF as dead, if the
486 definition is a total one. */
488 mark_ref_dead (df_ref def
)
490 rtx reg
= DF_REF_REG (def
);
493 if (DF_REF_FLAGS_IS_SET (def
, DF_REF_CONDITIONAL
))
496 if (GET_CODE (reg
) == SUBREG
)
497 reg
= SUBREG_REG (reg
);
499 if (DF_REF_FLAGS_IS_SET (def
, DF_REF_PARTIAL
)
500 && (GET_CODE (orig_reg
) != SUBREG
501 || REGNO (reg
) < FIRST_PSEUDO_REGISTER
502 || !df_read_modify_subreg_p (orig_reg
)))
505 if (REGNO (reg
) >= FIRST_PSEUDO_REGISTER
)
506 mark_pseudo_reg_dead (orig_reg
, REGNO (reg
));
508 mark_hard_reg_dead (reg
);
511 /* If REG is a pseudo or a subreg of it, and the class of its allocno
512 intersects CL, make a conflict with pseudo DREG. ORIG_DREG is the
513 rtx actually accessed, it may be indentical to DREG or a subreg of it.
514 Advance the current program point before making the conflict if
515 ADVANCE_P. Return TRUE if we will need to advance the current
518 make_pseudo_conflict (rtx reg
, enum reg_class cl
, rtx dreg
, rtx orig_dreg
,
524 if (GET_CODE (reg
) == SUBREG
)
525 reg
= SUBREG_REG (reg
);
527 if (! REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
530 a
= ira_curr_regno_allocno_map
[REGNO (reg
)];
531 if (! reg_classes_intersect_p (cl
, ALLOCNO_CLASS (a
)))
537 mark_pseudo_reg_live (orig_reg
, REGNO (reg
));
538 mark_pseudo_reg_live (orig_dreg
, REGNO (dreg
));
539 mark_pseudo_reg_dead (orig_reg
, REGNO (reg
));
540 mark_pseudo_reg_dead (orig_dreg
, REGNO (dreg
));
545 /* Check and make if necessary conflicts for pseudo DREG of class
546 DEF_CL of the current insn with input operand USE of class USE_CL.
547 ORIG_DREG is the rtx actually accessed, it may be indentical to
548 DREG or a subreg of it. Advance the current program point before
549 making the conflict if ADVANCE_P. Return TRUE if we will need to
550 advance the current program point. */
552 check_and_make_def_use_conflict (rtx dreg
, rtx orig_dreg
,
553 enum reg_class def_cl
, int use
,
554 enum reg_class use_cl
, bool advance_p
)
556 if (! reg_classes_intersect_p (def_cl
, use_cl
))
559 advance_p
= make_pseudo_conflict (recog_data
.operand
[use
],
560 use_cl
, dreg
, orig_dreg
, advance_p
);
562 /* Reload may end up swapping commutative operands, so you
563 have to take both orderings into account. The
564 constraints for the two operands can be completely
565 different. (Indeed, if the constraints for the two
566 operands are the same for all alternatives, there's no
567 point marking them as commutative.) */
568 if (use
< recog_data
.n_operands
- 1
569 && recog_data
.constraints
[use
][0] == '%')
571 = make_pseudo_conflict (recog_data
.operand
[use
+ 1],
572 use_cl
, dreg
, orig_dreg
, advance_p
);
574 && recog_data
.constraints
[use
- 1][0] == '%')
576 = make_pseudo_conflict (recog_data
.operand
[use
- 1],
577 use_cl
, dreg
, orig_dreg
, advance_p
);
581 /* Check and make if necessary conflicts for definition DEF of class
582 DEF_CL of the current insn with input operands. Process only
583 constraints of alternative ALT. */
585 check_and_make_def_conflict (int alt
, int def
, enum reg_class def_cl
)
589 enum reg_class use_cl
, acl
;
591 rtx dreg
= recog_data
.operand
[def
];
592 rtx orig_dreg
= dreg
;
594 if (def_cl
== NO_REGS
)
597 if (GET_CODE (dreg
) == SUBREG
)
598 dreg
= SUBREG_REG (dreg
);
600 if (! REG_P (dreg
) || REGNO (dreg
) < FIRST_PSEUDO_REGISTER
)
603 a
= ira_curr_regno_allocno_map
[REGNO (dreg
)];
604 acl
= ALLOCNO_CLASS (a
);
605 if (! reg_classes_intersect_p (acl
, def_cl
))
610 for (use
= 0; use
< recog_data
.n_operands
; use
++)
614 if (use
== def
|| recog_data
.operand_type
[use
] == OP_OUT
)
617 if (recog_op_alt
[use
][alt
].anything_ok
)
620 use_cl
= recog_op_alt
[use
][alt
].cl
;
622 /* If there's any alternative that allows USE to match DEF, do not
623 record a conflict. If that causes us to create an invalid
624 instruction due to the earlyclobber, reload must fix it up. */
625 for (alt1
= 0; alt1
< recog_data
.n_alternatives
; alt1
++)
626 if (recog_op_alt
[use
][alt1
].matches
== def
627 || (use
< recog_data
.n_operands
- 1
628 && recog_data
.constraints
[use
][0] == '%'
629 && recog_op_alt
[use
+ 1][alt1
].matches
== def
)
631 && recog_data
.constraints
[use
- 1][0] == '%'
632 && recog_op_alt
[use
- 1][alt1
].matches
== def
))
635 if (alt1
< recog_data
.n_alternatives
)
638 advance_p
= check_and_make_def_use_conflict (dreg
, orig_dreg
, def_cl
,
639 use
, use_cl
, advance_p
);
641 if ((use_match
= recog_op_alt
[use
][alt
].matches
) >= 0)
643 if (use_match
== def
)
646 if (recog_op_alt
[use_match
][alt
].anything_ok
)
649 use_cl
= recog_op_alt
[use_match
][alt
].cl
;
650 advance_p
= check_and_make_def_use_conflict (dreg
, orig_dreg
, def_cl
,
651 use
, use_cl
, advance_p
);
656 /* Make conflicts of early clobber pseudo registers of the current
657 insn with its inputs. Avoid introducing unnecessary conflicts by
658 checking classes of the constraints and pseudos because otherwise
659 significant code degradation is possible for some targets. */
661 make_early_clobber_and_input_conflicts (void)
665 enum reg_class def_cl
;
667 for (alt
= 0; alt
< recog_data
.n_alternatives
; alt
++)
668 for (def
= 0; def
< recog_data
.n_operands
; def
++)
671 if (recog_op_alt
[def
][alt
].earlyclobber
)
673 if (recog_op_alt
[def
][alt
].anything_ok
)
676 def_cl
= recog_op_alt
[def
][alt
].cl
;
677 check_and_make_def_conflict (alt
, def
, def_cl
);
679 if ((def_match
= recog_op_alt
[def
][alt
].matches
) >= 0
680 && (recog_op_alt
[def_match
][alt
].earlyclobber
681 || recog_op_alt
[def
][alt
].earlyclobber
))
683 if (recog_op_alt
[def_match
][alt
].anything_ok
)
686 def_cl
= recog_op_alt
[def_match
][alt
].cl
;
687 check_and_make_def_conflict (alt
, def
, def_cl
);
692 /* Mark early clobber hard registers of the current INSN as live (if
693 LIVE_P) or dead. Return true if there are such registers. */
695 mark_hard_reg_early_clobbers (rtx insn
, bool live_p
)
700 for (def_rec
= DF_INSN_DEFS (insn
); *def_rec
; def_rec
++)
701 if (DF_REF_FLAGS_IS_SET (*def_rec
, DF_REF_MUST_CLOBBER
))
703 rtx dreg
= DF_REF_REG (*def_rec
);
705 if (GET_CODE (dreg
) == SUBREG
)
706 dreg
= SUBREG_REG (dreg
);
707 if (! REG_P (dreg
) || REGNO (dreg
) >= FIRST_PSEUDO_REGISTER
)
710 /* Hard register clobbers are believed to be early clobber
711 because there is no way to say that non-operand hard
712 register clobbers are not early ones. */
714 mark_ref_live (*def_rec
);
716 mark_ref_dead (*def_rec
);
723 /* Checks that CONSTRAINTS permits to use only one hard register. If
724 it is so, the function returns the class of the hard register.
725 Otherwise it returns NO_REGS. */
726 static enum reg_class
727 single_reg_class (const char *constraints
, rtx op
, rtx equiv_const
)
730 enum reg_class cl
, next_cl
;
734 for (ignore_p
= false;
736 constraints
+= CONSTRAINT_LEN (c
, constraints
))
756 || (equiv_const
!= NULL_RTX
&& CONSTANT_P (equiv_const
)))
762 || (GET_CODE (op
) == CONST_DOUBLE
&& GET_MODE (op
) == VOIDmode
)
763 || (equiv_const
!= NULL_RTX
764 && (CONST_INT_P (equiv_const
)
765 || (GET_CODE (equiv_const
) == CONST_DOUBLE
766 && GET_MODE (equiv_const
) == VOIDmode
))))
771 if ((CONSTANT_P (op
) && !CONST_INT_P (op
)
772 && (GET_CODE (op
) != CONST_DOUBLE
|| GET_MODE (op
) != VOIDmode
))
773 || (equiv_const
!= NULL_RTX
774 && CONSTANT_P (equiv_const
)
775 && !CONST_INT_P (equiv_const
)
776 && (GET_CODE (equiv_const
) != CONST_DOUBLE
777 || GET_MODE (equiv_const
) != VOIDmode
)))
789 if ((CONST_INT_P (op
)
790 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), c
, constraints
))
791 || (equiv_const
!= NULL_RTX
792 && CONST_INT_P (equiv_const
)
793 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (equiv_const
),
800 if (GET_CODE (op
) == CONST_DOUBLE
801 || (GET_CODE (op
) == CONST_VECTOR
802 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
)
803 || (equiv_const
!= NULL_RTX
804 && (GET_CODE (equiv_const
) == CONST_DOUBLE
805 || (GET_CODE (equiv_const
) == CONST_VECTOR
806 && (GET_MODE_CLASS (GET_MODE (equiv_const
))
807 == MODE_VECTOR_FLOAT
)))))
813 if ((GET_CODE (op
) == CONST_DOUBLE
814 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, c
, constraints
))
815 || (equiv_const
!= NULL_RTX
816 && GET_CODE (equiv_const
) == CONST_DOUBLE
817 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (equiv_const
,
820 /* ??? what about memory */
822 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
823 case 'h': case 'j': case 'k': case 'l':
824 case 'q': case 't': case 'u':
825 case 'v': case 'w': case 'x': case 'y': case 'z':
826 case 'A': case 'B': case 'C': case 'D':
827 case 'Q': case 'R': case 'S': case 'T': case 'U':
828 case 'W': case 'Y': case 'Z':
831 : REG_CLASS_FROM_CONSTRAINT (c
, constraints
));
832 if ((cl
!= NO_REGS
&& next_cl
!= cl
)
833 || (ira_available_class_regs
[next_cl
]
834 > ira_reg_class_max_nregs
[next_cl
][GET_MODE (op
)]))
839 case '0': case '1': case '2': case '3': case '4':
840 case '5': case '6': case '7': case '8': case '9':
842 = single_reg_class (recog_data
.constraints
[c
- '0'],
843 recog_data
.operand
[c
- '0'], NULL_RTX
);
844 if ((cl
!= NO_REGS
&& next_cl
!= cl
)
845 || next_cl
== NO_REGS
846 || (ira_available_class_regs
[next_cl
]
847 > ira_reg_class_max_nregs
[next_cl
][GET_MODE (op
)]))
858 /* The function checks that operand OP_NUM of the current insn can use
859 only one hard register. If it is so, the function returns the
860 class of the hard register. Otherwise it returns NO_REGS. */
861 static enum reg_class
862 single_reg_operand_class (int op_num
)
864 if (op_num
< 0 || recog_data
.n_alternatives
== 0)
866 return single_reg_class (recog_data
.constraints
[op_num
],
867 recog_data
.operand
[op_num
], NULL_RTX
);
870 /* The function sets up hard register set *SET to hard registers which
871 might be used by insn reloads because the constraints are too
874 ira_implicitly_set_insn_hard_regs (HARD_REG_SET
*set
)
880 enum machine_mode mode
;
882 CLEAR_HARD_REG_SET (*set
);
883 for (i
= 0; i
< recog_data
.n_operands
; i
++)
885 op
= recog_data
.operand
[i
];
887 if (GET_CODE (op
) == SUBREG
)
888 op
= SUBREG_REG (op
);
890 if (GET_CODE (op
) == SCRATCH
891 || (REG_P (op
) && (regno
= REGNO (op
)) >= FIRST_PSEUDO_REGISTER
))
893 const char *p
= recog_data
.constraints
[i
];
895 mode
= (GET_CODE (op
) == SCRATCH
896 ? GET_MODE (op
) : PSEUDO_REGNO_MODE (regno
));
898 for (ignore_p
= false; (c
= *p
); p
+= CONSTRAINT_LEN (c
, p
))
907 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
908 case 'h': case 'j': case 'k': case 'l':
909 case 'q': case 't': case 'u':
910 case 'v': case 'w': case 'x': case 'y': case 'z':
911 case 'A': case 'B': case 'C': case 'D':
912 case 'Q': case 'R': case 'S': case 'T': case 'U':
913 case 'W': case 'Y': case 'Z':
916 : REG_CLASS_FROM_CONSTRAINT (c
, p
));
918 /* There is no register pressure problem if all of the
919 regs in this class are fixed. */
920 && ira_available_class_regs
[cl
] != 0
921 && (ira_available_class_regs
[cl
]
922 <= ira_reg_class_max_nregs
[cl
][mode
]))
923 IOR_HARD_REG_SET (*set
, reg_class_contents
[cl
]);
929 /* Processes input operands, if IN_P, or output operands otherwise of
930 the current insn with FREQ to find allocno which can use only one
931 hard register and makes other currently living allocnos conflicting
932 with the hard register. */
934 process_single_reg_class_operands (bool in_p
, int freq
)
940 ira_allocno_t operand_a
, a
;
942 for (i
= 0; i
< recog_data
.n_operands
; i
++)
944 operand
= recog_data
.operand
[i
];
945 if (in_p
&& recog_data
.operand_type
[i
] != OP_IN
946 && recog_data
.operand_type
[i
] != OP_INOUT
)
948 if (! in_p
&& recog_data
.operand_type
[i
] != OP_OUT
949 && recog_data
.operand_type
[i
] != OP_INOUT
)
951 cl
= single_reg_operand_class (i
);
957 if (GET_CODE (operand
) == SUBREG
)
958 operand
= SUBREG_REG (operand
);
961 && (regno
= REGNO (operand
)) >= FIRST_PSEUDO_REGISTER
)
963 enum reg_class aclass
;
965 operand_a
= ira_curr_regno_allocno_map
[regno
];
966 aclass
= ALLOCNO_CLASS (operand_a
);
967 if (ira_class_subset_p
[cl
][aclass
]
968 && ira_class_hard_regs_num
[cl
] != 0)
970 /* View the desired allocation of OPERAND as:
976 (subreg:YMODE (reg:XMODE XREGNO) OFFSET). */
977 enum machine_mode ymode
, xmode
;
979 HOST_WIDE_INT offset
;
981 xmode
= recog_data
.operand_mode
[i
];
982 xregno
= ira_class_hard_regs
[cl
][0];
983 ymode
= ALLOCNO_MODE (operand_a
);
984 offset
= subreg_lowpart_offset (ymode
, xmode
);
985 yregno
= simplify_subreg_regno (xregno
, xmode
, offset
, ymode
);
987 && ira_class_hard_reg_index
[aclass
][yregno
] >= 0)
991 ira_allocate_and_set_costs
992 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a
),
994 ira_init_register_move_cost_if_necessary (xmode
);
996 ? ira_register_move_cost
[xmode
][aclass
][cl
]
997 : ira_register_move_cost
[xmode
][cl
][aclass
]);
998 ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a
)
999 [ira_class_hard_reg_index
[aclass
][yregno
]] -= cost
;
1004 EXECUTE_IF_SET_IN_SPARSESET (objects_live
, px
)
1006 ira_object_t obj
= ira_object_id_map
[px
];
1007 a
= OBJECT_ALLOCNO (obj
);
1010 /* We could increase costs of A instead of making it
1011 conflicting with the hard register. But it works worse
1012 because it will be spilled in reload in anyway. */
1013 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj
),
1014 reg_class_contents
[cl
]);
1015 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
),
1016 reg_class_contents
[cl
]);
1022 /* Return true when one of the predecessor edges of BB is marked with
1023 EDGE_ABNORMAL_CALL or EDGE_EH. */
1025 bb_has_abnormal_call_pred (basic_block bb
)
1030 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1032 if (e
->flags
& (EDGE_ABNORMAL_CALL
| EDGE_EH
))
1038 /* Process insns of the basic block given by its LOOP_TREE_NODE to
1039 update allocno live ranges, allocno hard register conflicts,
1040 intersected calls, and register pressure info for allocnos for the
1041 basic block for and regions containing the basic block. */
1043 process_bb_node_lives (ira_loop_tree_node_t loop_tree_node
)
1050 bitmap reg_live_out
;
1054 bb
= loop_tree_node
->bb
;
1057 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
1059 curr_reg_pressure
[ira_pressure_classes
[i
]] = 0;
1060 high_pressure_start_point
[ira_pressure_classes
[i
]] = -1;
1062 curr_bb_node
= loop_tree_node
;
1063 reg_live_out
= DF_LR_OUT (bb
);
1064 sparseset_clear (objects_live
);
1065 REG_SET_TO_HARD_REG_SET (hard_regs_live
, reg_live_out
);
1066 AND_COMPL_HARD_REG_SET (hard_regs_live
, eliminable_regset
);
1067 AND_COMPL_HARD_REG_SET (hard_regs_live
, ira_no_alloc_regs
);
1068 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1069 if (TEST_HARD_REG_BIT (hard_regs_live
, i
))
1071 enum reg_class aclass
, pclass
, cl
;
1073 aclass
= ira_allocno_class_translate
[REGNO_REG_CLASS (i
)];
1074 pclass
= ira_pressure_class_translate
[aclass
];
1076 (cl
= ira_reg_class_super_classes
[pclass
][j
])
1080 if (! ira_reg_pressure_class_p
[cl
])
1082 curr_reg_pressure
[cl
]++;
1083 if (curr_bb_node
->reg_pressure
[cl
] < curr_reg_pressure
[cl
])
1084 curr_bb_node
->reg_pressure
[cl
] = curr_reg_pressure
[cl
];
1085 ira_assert (curr_reg_pressure
[cl
]
1086 <= ira_available_class_regs
[cl
]);
1089 EXECUTE_IF_SET_IN_BITMAP (reg_live_out
, FIRST_PSEUDO_REGISTER
, j
, bi
)
1090 mark_pseudo_regno_live (j
);
1092 freq
= REG_FREQ_FROM_BB (bb
);
1096 /* Invalidate all allocno_saved_at_call entries. */
1099 /* Scan the code of this basic block, noting which allocnos and
1100 hard regs are born or die.
1102 Note that this loop treats uninitialized values as live until
1103 the beginning of the block. For example, if an instruction
1104 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
1105 set, FOO will remain live until the beginning of the block.
1106 Likewise if FOO is not set at all. This is unnecessarily
1107 pessimistic, but it probably doesn't matter much in practice. */
1108 FOR_BB_INSNS_REVERSE (bb
, insn
)
1110 df_ref
*def_rec
, *use_rec
;
1113 if (!NONDEBUG_INSN_P (insn
))
1116 if (internal_flag_ira_verbose
> 2 && ira_dump_file
!= NULL
)
1117 fprintf (ira_dump_file
, " Insn %u(l%d): point = %d\n",
1118 INSN_UID (insn
), loop_tree_node
->parent
->loop
->num
,
1121 /* Mark each defined value as live. We need to do this for
1122 unused values because they still conflict with quantities
1123 that are live at the time of the definition.
1125 Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
1126 references represent the effect of the called function
1127 on a call-clobbered register. Marking the register as
1128 live would stop us from allocating it to a call-crossing
1130 call_p
= CALL_P (insn
);
1131 for (def_rec
= DF_INSN_DEFS (insn
); *def_rec
; def_rec
++)
1132 if (!call_p
|| !DF_REF_FLAGS_IS_SET (*def_rec
, DF_REF_MAY_CLOBBER
))
1133 mark_ref_live (*def_rec
);
1135 /* If INSN has multiple outputs, then any value used in one
1136 of the outputs conflicts with the other outputs. Model this
1137 by making the used value live during the output phase.
1139 It is unsafe to use !single_set here since it will ignore
1140 an unused output. Just because an output is unused does
1141 not mean the compiler can assume the side effect will not
1142 occur. Consider if ALLOCNO appears in the address of an
1143 output and we reload the output. If we allocate ALLOCNO
1144 to the same hard register as an unused output we could
1145 set the hard register before the output reload insn. */
1146 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
1147 for (use_rec
= DF_INSN_USES (insn
); *use_rec
; use_rec
++)
1152 reg
= DF_REF_REG (*use_rec
);
1153 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
1157 set
= XVECEXP (PATTERN (insn
), 0, i
);
1158 if (GET_CODE (set
) == SET
1159 && reg_overlap_mentioned_p (reg
, SET_DEST (set
)))
1161 /* After the previous loop, this is a no-op if
1162 REG is contained within SET_DEST (SET). */
1163 mark_ref_live (*use_rec
);
1169 extract_insn (insn
);
1170 preprocess_constraints ();
1171 process_single_reg_class_operands (false, freq
);
1173 /* See which defined values die here. */
1174 for (def_rec
= DF_INSN_DEFS (insn
); *def_rec
; def_rec
++)
1175 if (!call_p
|| !DF_REF_FLAGS_IS_SET (*def_rec
, DF_REF_MAY_CLOBBER
))
1176 mark_ref_dead (*def_rec
);
1181 sparseset_clear (allocnos_processed
);
1182 /* The current set of live allocnos are live across the call. */
1183 EXECUTE_IF_SET_IN_SPARSESET (objects_live
, i
)
1185 ira_object_t obj
= ira_object_id_map
[i
];
1186 ira_allocno_t a
= OBJECT_ALLOCNO (obj
);
1187 int num
= ALLOCNO_NUM (a
);
1189 /* Don't allocate allocnos that cross setjmps or any
1190 call, if this function receives a nonlocal
1192 if (cfun
->has_nonlocal_label
1193 || find_reg_note (insn
, REG_SETJMP
,
1194 NULL_RTX
) != NULL_RTX
)
1196 SET_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj
));
1197 SET_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
));
1199 if (can_throw_internal (insn
))
1201 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj
),
1203 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj
),
1207 if (sparseset_bit_p (allocnos_processed
, num
))
1209 sparseset_set_bit (allocnos_processed
, num
);
1211 if (allocno_saved_at_call
[num
] != last_call_num
)
1212 /* Here we are mimicking caller-save.c behaviour
1213 which does not save hard register at a call if
1214 it was saved on previous call in the same basic
1215 block and the hard register was not mentioned
1216 between the two calls. */
1217 ALLOCNO_CALL_FREQ (a
) += freq
;
1218 /* Mark it as saved at the next call. */
1219 allocno_saved_at_call
[num
] = last_call_num
+ 1;
1220 ALLOCNO_CALLS_CROSSED_NUM (a
)++;
1224 make_early_clobber_and_input_conflicts ();
1228 /* Mark each used value as live. */
1229 for (use_rec
= DF_INSN_USES (insn
); *use_rec
; use_rec
++)
1230 mark_ref_live (*use_rec
);
1232 process_single_reg_class_operands (true, freq
);
1234 set_p
= mark_hard_reg_early_clobbers (insn
, true);
1238 mark_hard_reg_early_clobbers (insn
, false);
1240 /* Mark each hard reg as live again. For example, a
1241 hard register can be in clobber and in an insn
1243 for (use_rec
= DF_INSN_USES (insn
); *use_rec
; use_rec
++)
1245 rtx ureg
= DF_REF_REG (*use_rec
);
1247 if (GET_CODE (ureg
) == SUBREG
)
1248 ureg
= SUBREG_REG (ureg
);
1249 if (! REG_P (ureg
) || REGNO (ureg
) >= FIRST_PSEUDO_REGISTER
)
1252 mark_ref_live (*use_rec
);
1259 #ifdef EH_RETURN_DATA_REGNO
1260 if (bb_has_eh_pred (bb
))
1263 unsigned int regno
= EH_RETURN_DATA_REGNO (j
);
1264 if (regno
== INVALID_REGNUM
)
1266 make_hard_regno_born (regno
);
1270 /* Allocnos can't go in stack regs at the start of a basic block
1271 that is reached by an abnormal edge. Likewise for call
1272 clobbered regs, because caller-save, fixup_abnormal_edges and
1273 possibly the table driven EH machinery are not quite ready to
1274 handle such allocnos live across such edges. */
1275 if (bb_has_abnormal_pred (bb
))
1278 EXECUTE_IF_SET_IN_SPARSESET (objects_live
, px
)
1280 ira_allocno_t a
= OBJECT_ALLOCNO (ira_object_id_map
[px
]);
1282 ALLOCNO_NO_STACK_REG_P (a
) = true;
1283 ALLOCNO_TOTAL_NO_STACK_REG_P (a
) = true;
1285 for (px
= FIRST_STACK_REG
; px
<= LAST_STACK_REG
; px
++)
1286 make_hard_regno_born (px
);
1288 /* No need to record conflicts for call clobbered regs if we
1289 have nonlocal labels around, as we don't ever try to
1290 allocate such regs in this case. */
1291 if (!cfun
->has_nonlocal_label
&& bb_has_abnormal_call_pred (bb
))
1292 for (px
= 0; px
< FIRST_PSEUDO_REGISTER
; px
++)
1293 if (call_used_regs
[px
])
1294 make_hard_regno_born (px
);
1297 EXECUTE_IF_SET_IN_SPARSESET (objects_live
, i
)
1298 make_object_dead (ira_object_id_map
[i
]);
1303 /* Propagate register pressure to upper loop tree nodes: */
1304 if (loop_tree_node
!= ira_loop_tree_root
)
1305 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
1307 enum reg_class pclass
;
1309 pclass
= ira_pressure_classes
[i
];
1310 if (loop_tree_node
->reg_pressure
[pclass
]
1311 > loop_tree_node
->parent
->reg_pressure
[pclass
])
1312 loop_tree_node
->parent
->reg_pressure
[pclass
]
1313 = loop_tree_node
->reg_pressure
[pclass
];
1317 /* Create and set up IRA_START_POINT_RANGES and
1318 IRA_FINISH_POINT_RANGES. */
1320 create_start_finish_chains (void)
1323 ira_object_iterator oi
;
1326 ira_start_point_ranges
1327 = (live_range_t
*) ira_allocate (ira_max_point
* sizeof (live_range_t
));
1328 memset (ira_start_point_ranges
, 0, ira_max_point
* sizeof (live_range_t
));
1329 ira_finish_point_ranges
1330 = (live_range_t
*) ira_allocate (ira_max_point
* sizeof (live_range_t
));
1331 memset (ira_finish_point_ranges
, 0, ira_max_point
* sizeof (live_range_t
));
1332 FOR_EACH_OBJECT (obj
, oi
)
1333 for (r
= OBJECT_LIVE_RANGES (obj
); r
!= NULL
; r
= r
->next
)
1335 r
->start_next
= ira_start_point_ranges
[r
->start
];
1336 ira_start_point_ranges
[r
->start
] = r
;
1337 r
->finish_next
= ira_finish_point_ranges
[r
->finish
];
1338 ira_finish_point_ranges
[r
->finish
] = r
;
1342 /* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
1343 new live ranges and program points were added as a result if new
1346 ira_rebuild_start_finish_chains (void)
1348 ira_free (ira_finish_point_ranges
);
1349 ira_free (ira_start_point_ranges
);
1350 create_start_finish_chains ();
1353 /* Compress allocno live ranges by removing program points where
1356 remove_some_program_points_and_update_live_ranges (void)
1362 ira_object_iterator oi
;
1364 sbitmap born_or_dead
, born
, dead
;
1365 sbitmap_iterator sbi
;
1366 bool born_p
, dead_p
, prev_born_p
, prev_dead_p
;
1368 born
= sbitmap_alloc (ira_max_point
);
1369 dead
= sbitmap_alloc (ira_max_point
);
1370 sbitmap_zero (born
);
1371 sbitmap_zero (dead
);
1372 FOR_EACH_OBJECT (obj
, oi
)
1373 for (r
= OBJECT_LIVE_RANGES (obj
); r
!= NULL
; r
= r
->next
)
1375 ira_assert (r
->start
<= r
->finish
);
1376 SET_BIT (born
, r
->start
);
1377 SET_BIT (dead
, r
->finish
);
1380 born_or_dead
= sbitmap_alloc (ira_max_point
);
1381 sbitmap_a_or_b (born_or_dead
, born
, dead
);
1382 map
= (int *) ira_allocate (sizeof (int) * ira_max_point
);
1384 prev_born_p
= prev_dead_p
= false;
1385 EXECUTE_IF_SET_IN_SBITMAP (born_or_dead
, 0, i
, sbi
)
1387 born_p
= TEST_BIT (born
, i
);
1388 dead_p
= TEST_BIT (dead
, i
);
1389 if ((prev_born_p
&& ! prev_dead_p
&& born_p
&& ! dead_p
)
1390 || (prev_dead_p
&& ! prev_born_p
&& dead_p
&& ! born_p
))
1394 prev_born_p
= born_p
;
1395 prev_dead_p
= dead_p
;
1397 sbitmap_free (born_or_dead
);
1398 sbitmap_free (born
);
1399 sbitmap_free (dead
);
1401 if (internal_flag_ira_verbose
> 1 && ira_dump_file
!= NULL
)
1402 fprintf (ira_dump_file
, "Compressing live ranges: from %d to %d - %d%%\n",
1403 ira_max_point
, n
, 100 * n
/ ira_max_point
);
1406 FOR_EACH_OBJECT (obj
, oi
)
1407 for (r
= OBJECT_LIVE_RANGES (obj
); r
!= NULL
; r
= r
->next
)
1409 r
->start
= map
[r
->start
];
1410 r
->finish
= map
[r
->finish
];
1416 /* Print live ranges R to file F. */
1418 ira_print_live_range_list (FILE *f
, live_range_t r
)
1420 for (; r
!= NULL
; r
= r
->next
)
1421 fprintf (f
, " [%d..%d]", r
->start
, r
->finish
);
1425 /* Print live ranges R to stderr. */
1427 ira_debug_live_range_list (live_range_t r
)
1429 ira_print_live_range_list (stderr
, r
);
1432 /* Print live ranges of object OBJ to file F. */
1434 print_object_live_ranges (FILE *f
, ira_object_t obj
)
1436 ira_print_live_range_list (f
, OBJECT_LIVE_RANGES (obj
));
1439 /* Print live ranges of allocno A to file F. */
1441 print_allocno_live_ranges (FILE *f
, ira_allocno_t a
)
1443 int n
= ALLOCNO_NUM_OBJECTS (a
);
1446 for (i
= 0; i
< n
; i
++)
1448 fprintf (f
, " a%d(r%d", ALLOCNO_NUM (a
), ALLOCNO_REGNO (a
));
1450 fprintf (f
, " [%d]", i
);
1452 print_object_live_ranges (f
, ALLOCNO_OBJECT (a
, i
));
1456 /* Print live ranges of allocno A to stderr. */
1458 ira_debug_allocno_live_ranges (ira_allocno_t a
)
1460 print_allocno_live_ranges (stderr
, a
);
1463 /* Print live ranges of all allocnos to file F. */
1465 print_live_ranges (FILE *f
)
1468 ira_allocno_iterator ai
;
1470 FOR_EACH_ALLOCNO (a
, ai
)
1471 print_allocno_live_ranges (f
, a
);
1474 /* Print live ranges of all allocnos to stderr. */
1476 ira_debug_live_ranges (void)
1478 print_live_ranges (stderr
);
1481 /* The main entry function creates live ranges, set up
1482 CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and
1483 calculate register pressure info. */
1485 ira_create_allocno_live_ranges (void)
1487 objects_live
= sparseset_alloc (ira_objects_num
);
1488 allocnos_processed
= sparseset_alloc (ira_allocnos_num
);
1491 allocno_saved_at_call
1492 = (int *) ira_allocate (ira_allocnos_num
* sizeof (int));
1493 memset (allocno_saved_at_call
, 0, ira_allocnos_num
* sizeof (int));
1494 ira_traverse_loop_tree (true, ira_loop_tree_root
, NULL
,
1495 process_bb_node_lives
);
1496 ira_max_point
= curr_point
;
1497 create_start_finish_chains ();
1498 if (internal_flag_ira_verbose
> 2 && ira_dump_file
!= NULL
)
1499 print_live_ranges (ira_dump_file
);
1501 ira_free (allocno_saved_at_call
);
1502 sparseset_free (objects_live
);
1503 sparseset_free (allocnos_processed
);
1506 /* Compress allocno live ranges. */
1508 ira_compress_allocno_live_ranges (void)
1510 remove_some_program_points_and_update_live_ranges ();
1511 ira_rebuild_start_finish_chains ();
1512 if (internal_flag_ira_verbose
> 2 && ira_dump_file
!= NULL
)
1514 fprintf (ira_dump_file
, "Ranges after the compression:\n");
1515 print_live_ranges (ira_dump_file
);
1519 /* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
1521 ira_finish_allocno_live_ranges (void)
1523 ira_free (ira_finish_point_ranges
);
1524 ira_free (ira_start_point_ranges
);