1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
24 #include "insn-codes.h"
28 #include "optabs-tree.h"
29 #include "gimple-pretty-print.h"
30 #include "diagnostic-core.h"
32 #include "fold-const.h"
35 #include "gimple-iterator.h"
36 #include "gimple-fold.h"
38 #include "tree-ssa-loop-niter.h"
39 #include "tree-ssa-loop.h"
42 #include "tree-scalar-evolution.h"
43 #include "tree-ssa-propagate.h"
44 #include "tree-chrec.h"
45 #include "omp-general.h"
46 #include "case-cfn-macros.h"
47 #include "alloc-pool.h"
50 #include "vr-values.h"
53 #include "gimple-range.h"
55 /* Return true if op is in a boolean [0, 1] value-range. */
58 simplify_using_ranges::op_with_boolean_value_range_p (tree op
, gimple
*s
)
60 if (TYPE_PRECISION (TREE_TYPE (op
)) == 1)
63 if (integer_zerop (op
)
67 if (TREE_CODE (op
) != SSA_NAME
)
70 /* ?? Errr, this should probably check for [0,0] and [1,1] as well
73 return (query
->range_of_expr (vr
, op
, s
)
74 && vr
== range_true_and_false (TREE_TYPE (op
)));
77 /* Helper function for simplify_internal_call_using_ranges and
78 extract_range_basic. Return true if OP0 SUBCODE OP1 for
79 SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
80 always overflow. Set *OVF to true if it is known to always
84 check_for_binary_op_overflow (range_query
*query
,
85 enum tree_code subcode
, tree type
,
86 tree op0
, tree op1
, bool *ovf
, gimple
*s
= NULL
)
89 if (!query
->range_of_expr (vr0
, op0
, s
) || vr0
.undefined_p ())
90 vr0
.set_varying (TREE_TYPE (op0
));
91 if (!query
->range_of_expr (vr1
, op1
, s
) || vr1
.undefined_p ())
92 vr1
.set_varying (TREE_TYPE (op1
));
94 tree vr0min
= wide_int_to_tree (TREE_TYPE (op0
), vr0
.lower_bound ());
95 tree vr0max
= wide_int_to_tree (TREE_TYPE (op0
), vr0
.upper_bound ());
96 tree vr1min
= wide_int_to_tree (TREE_TYPE (op1
), vr1
.lower_bound ());
97 tree vr1max
= wide_int_to_tree (TREE_TYPE (op1
), vr1
.upper_bound ());
99 *ovf
= arith_overflowed_p (subcode
, type
, vr0min
,
100 subcode
== MINUS_EXPR
? vr1max
: vr1min
);
101 if (arith_overflowed_p (subcode
, type
, vr0max
,
102 subcode
== MINUS_EXPR
? vr1min
: vr1max
) != *ovf
)
104 if (subcode
== MULT_EXPR
)
106 if (arith_overflowed_p (subcode
, type
, vr0min
, vr1max
) != *ovf
107 || arith_overflowed_p (subcode
, type
, vr0max
, vr1min
) != *ovf
)
112 /* So far we found that there is an overflow on the boundaries.
113 That doesn't prove that there is an overflow even for all values
114 in between the boundaries. For that compute widest2_int range
115 of the result and see if it doesn't overlap the range of
117 widest2_int wmin
, wmax
;
120 signop sign0
= TYPE_SIGN (TREE_TYPE (op0
));
121 signop sign1
= TYPE_SIGN (TREE_TYPE (op1
));
122 w
[0] = widest2_int::from (vr0
.lower_bound (), sign0
);
123 w
[1] = widest2_int::from (vr0
.upper_bound (), sign0
);
124 w
[2] = widest2_int::from (vr1
.lower_bound (), sign1
);
125 w
[3] = widest2_int::from (vr1
.upper_bound (), sign1
);
126 for (i
= 0; i
< 4; i
++)
132 wt
= wi::add (w
[i
& 1], w
[2 + (i
& 2) / 2]);
135 wt
= wi::sub (w
[i
& 1], w
[2 + (i
& 2) / 2]);
138 wt
= wi::mul (w
[i
& 1], w
[2 + (i
& 2) / 2]);
150 wmin
= wi::smin (wmin
, wt
);
151 wmax
= wi::smax (wmax
, wt
);
154 /* The result of op0 CODE op1 is known to be in range
157 = widest2_int::from (irange_val_min (type
), TYPE_SIGN (type
));
159 = widest2_int::from (irange_val_max (type
), TYPE_SIGN (type
));
160 /* If all values in [wmin, wmax] are smaller than
161 [wtmin, wtmax] or all are larger than [wtmin, wtmax],
162 the arithmetic operation will always overflow. */
163 if (wmax
< wtmin
|| wmin
> wtmax
)
170 /* Set INIT, STEP, and DIRECTION the the corresponding values of NAME
171 within LOOP, and return TRUE. Otherwise return FALSE, and set R to
172 the conservative range of NAME within the loop. */
175 get_scev_info (vrange
&r
, tree name
, gimple
*stmt
, class loop
*l
,
176 tree
&init
, tree
&step
, enum ev_direction
&dir
)
178 tree ev
= analyze_scalar_evolution (l
, name
);
179 tree chrec
= instantiate_parameters (l
, ev
);
180 tree type
= TREE_TYPE (name
);
181 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
183 r
.set_varying (type
);
186 if (is_gimple_min_invariant (chrec
))
188 if (is_gimple_constant (chrec
))
189 r
.set (chrec
, chrec
);
191 r
.set_varying (type
);
195 init
= initial_condition_in_loop_num (chrec
, l
->num
);
196 step
= evolution_part_in_loop_num (chrec
, l
->num
);
199 r
.set_varying (type
);
202 dir
= scev_direction (chrec
);
203 if (dir
== EV_DIR_UNKNOWN
204 || scev_probably_wraps_p (NULL
, init
, step
, stmt
,
205 get_chrec_loop (chrec
), true))
207 r
.set_varying (type
);
213 /* Return TRUE if STEP * NIT may overflow when calculated in TYPE. */
216 induction_variable_may_overflow_p (tree type
,
217 const wide_int
&step
, const widest_int
&nit
)
219 wi::overflow_type ovf
;
220 signop sign
= TYPE_SIGN (type
);
221 widest_int max_step
= wi::mul (widest_int::from (step
, sign
),
224 if (ovf
|| !wi::fits_to_tree_p (max_step
, type
))
227 /* For a signed type we have to check whether the result has the
228 expected signedness which is that of the step as number of
229 iterations is unsigned. */
230 return (sign
== SIGNED
231 && wi::gts_p (max_step
, 0) != wi::gts_p (step
, 0));
234 /* Set R to the range from BEGIN to END, assuming the direction of the
238 range_from_loop_direction (irange
&r
, tree type
,
239 const irange
&begin
, const irange
&end
,
242 signop sign
= TYPE_SIGN (type
);
244 if (begin
.undefined_p () || end
.undefined_p ())
245 r
.set_varying (type
);
246 else if (dir
== EV_DIR_GROWS
)
248 if (wi::gt_p (begin
.lower_bound (), end
.upper_bound (), sign
))
249 r
.set_varying (type
);
251 r
= int_range
<1> (type
, begin
.lower_bound (), end
.upper_bound ());
255 if (wi::gt_p (end
.lower_bound (), begin
.upper_bound (), sign
))
256 r
.set_varying (type
);
258 r
= int_range
<1> (type
, end
.lower_bound (), begin
.upper_bound ());
262 /* Set V to the range of NAME in STMT within LOOP. Return TRUE if a
266 range_of_var_in_loop (vrange
&v
, tree name
, class loop
*l
, gimple
*stmt
,
270 enum ev_direction dir
;
271 if (!get_scev_info (v
, name
, stmt
, l
, init
, step
, dir
))
274 // Calculate ranges for the values from SCEV.
275 irange
&r
= as_a
<irange
> (v
);
276 tree type
= TREE_TYPE (init
);
277 int_range
<2> rinit (type
), rstep (type
), max_init (type
);
278 if (!query
->range_of_expr (rinit
, init
, stmt
)
279 || !query
->range_of_expr (rstep
, step
, stmt
))
282 // Calculate the final range of NAME if possible.
283 if (rinit
.singleton_p () && rstep
.singleton_p ())
286 if (!max_loop_iterations (l
, &nit
))
289 if (!induction_variable_may_overflow_p (type
, rstep
.lower_bound (), nit
))
291 // Calculate the max bounds for init (init + niter * step).
292 wide_int w
= wide_int::from (nit
, TYPE_PRECISION (type
), TYPE_SIGN (type
));
293 int_range
<1> niter (type
, w
, w
);
294 int_range_max max_step
;
295 range_op_handler
mult_handler (MULT_EXPR
);
296 range_op_handler
plus_handler (PLUS_EXPR
);
297 if (!mult_handler
.fold_range (max_step
, type
, niter
, rstep
)
298 || !plus_handler
.fold_range (max_init
, type
, rinit
, max_step
))
302 range_from_loop_direction (r
, type
, rinit
, max_init
, dir
);
306 /* Helper function for vrp_evaluate_conditional_warnv & other
310 simplify_using_ranges::fold_cond_with_ops (enum tree_code code
,
311 tree op0
, tree op1
, gimple
*s
)
313 int_range_max r0
, r1
;
314 if (!query
->range_of_expr (r0
, op0
, s
)
315 || !query
->range_of_expr (r1
, op1
, s
))
318 tree type
= TREE_TYPE (op0
);
320 range_op_handler
handler (code
);
321 if (handler
&& handler
.fold_range (res
, type
, r0
, r1
))
323 if (res
== range_true (type
))
324 return boolean_true_node
;
325 if (res
== range_false (type
))
326 return boolean_false_node
;
331 /* Helper function for legacy_fold_cond. */
334 simplify_using_ranges::legacy_fold_cond_overflow (gimple
*stmt
)
337 tree_code code
= gimple_cond_code (stmt
);
338 tree op0
= gimple_cond_lhs (stmt
);
339 tree op1
= gimple_cond_rhs (stmt
);
341 /* We only deal with integral and pointer types. */
342 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
343 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
346 /* If OP0 CODE OP1 is an overflow comparison, if it can be expressed
347 as a simple equality test, then prefer that over its current form
350 An overflow test which collapses to an equality test can always be
351 expressed as a comparison of one argument against zero. Overflow
352 occurs when the chosen argument is zero and does not occur if the
353 chosen argument is not zero. */
355 if (overflow_comparison_p (code
, op0
, op1
, &x
))
357 wide_int max
= wi::max_value (TYPE_PRECISION (TREE_TYPE (op0
)), UNSIGNED
);
358 /* B = A - 1; if (A < B) -> B = A - 1; if (A == 0)
359 B = A - 1; if (A > B) -> B = A - 1; if (A != 0)
360 B = A + 1; if (B < A) -> B = A + 1; if (B == 0)
361 B = A + 1; if (B > A) -> B = A + 1; if (B != 0) */
362 if (integer_zerop (x
))
365 code
= (code
== LT_EXPR
|| code
== LE_EXPR
) ? EQ_EXPR
: NE_EXPR
;
367 /* B = A + 1; if (A > B) -> B = A + 1; if (B == 0)
368 B = A + 1; if (A < B) -> B = A + 1; if (B != 0)
369 B = A - 1; if (B > A) -> B = A - 1; if (A == 0)
370 B = A - 1; if (B < A) -> B = A - 1; if (A != 0) */
371 else if (wi::to_wide (x
) == max
- 1)
374 op1
= wide_int_to_tree (TREE_TYPE (op0
), 0);
375 code
= (code
== GT_EXPR
|| code
== GE_EXPR
) ? EQ_EXPR
: NE_EXPR
;
379 value_range vro
, vri
;
380 tree type
= TREE_TYPE (op0
);
381 if (code
== GT_EXPR
|| code
== GE_EXPR
)
384 wi::to_wide (TYPE_MIN_VALUE (type
)),
385 wi::to_wide (x
), VR_ANTI_RANGE
);
387 wi::to_wide (TYPE_MIN_VALUE (type
)),
390 else if (code
== LT_EXPR
|| code
== LE_EXPR
)
393 wi::to_wide (TYPE_MIN_VALUE (type
)),
396 wi::to_wide (TYPE_MIN_VALUE (type
)),
403 if (!query
->range_of_expr (vr0
, op0
, stmt
))
404 vr0
.set_varying (TREE_TYPE (op0
));
405 /* If vro, the range for OP0 to pass the overflow test, has
406 no intersection with *vr0, OP0's known range, then the
407 overflow test can't pass, so return the node for false.
408 If it is the inverted range, vri, that has no
409 intersection, then the overflow test must pass, so return
410 the node for true. In other cases, we could proceed with
411 a simplified condition comparing OP0 and X, with LE_EXPR
412 for previously LE_ or LT_EXPR and GT_EXPR otherwise, but
413 the comments next to the enclosing if suggest it's not
414 generally profitable to do so. */
416 if (vro
.undefined_p ())
417 return boolean_false_node
;
419 if (vri
.undefined_p ())
420 return boolean_true_node
;
424 if ((ret
= fold_cond_with_ops (code
, op0
, op1
, stmt
)))
429 /* Visit conditional statement STMT. If we can determine which edge
430 will be taken out of STMT's basic block, record it in
431 *TAKEN_EDGE_P. Otherwise, set *TAKEN_EDGE_P to NULL. */
434 simplify_using_ranges::legacy_fold_cond (gcond
*stmt
, edge
*taken_edge_p
)
438 *taken_edge_p
= NULL
;
440 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
445 fprintf (dump_file
, "\nVisiting conditional with predicate: ");
446 print_gimple_stmt (dump_file
, stmt
, 0);
447 fprintf (dump_file
, "\nWith known ranges\n");
449 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
451 fprintf (dump_file
, "\t");
452 print_generic_expr (dump_file
, use
);
453 fprintf (dump_file
, ": ");
454 Value_Range
r (TREE_TYPE (use
));
455 query
->range_of_expr (r
, use
, stmt
);
459 fprintf (dump_file
, "\n");
462 val
= legacy_fold_cond_overflow (stmt
);
464 *taken_edge_p
= find_taken_edge (gimple_bb (stmt
), val
);
466 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
468 fprintf (dump_file
, "\nPredicate evaluates to: ");
469 if (val
== NULL_TREE
)
470 fprintf (dump_file
, "DON'T KNOW\n");
472 print_generic_stmt (dump_file
, val
);
476 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
477 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
478 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
479 Returns true if the default label is not needed. */
482 find_case_label_ranges (gswitch
*stmt
, const value_range
*vr
,
483 size_t *min_idx1
, size_t *max_idx1
,
484 size_t *min_idx2
, size_t *max_idx2
)
487 unsigned int n
= gimple_switch_num_labels (stmt
);
489 tree case_low
, case_high
;
491 value_range_kind kind
= get_legacy_range (*vr
, min
, max
);
493 gcc_checking_assert (!vr
->varying_p () && !vr
->undefined_p ());
495 take_default
= !find_case_label_range (stmt
, min
, max
, &i
, &j
);
497 /* Set second range to empty. */
501 if (kind
== VR_RANGE
)
505 return !take_default
;
508 /* Set first range to all case labels. */
515 /* Make sure all the values of case labels [i , j] are contained in
517 case_low
= CASE_LOW (gimple_switch_label (stmt
, i
));
518 case_high
= CASE_HIGH (gimple_switch_label (stmt
, j
));
519 if (tree_int_cst_compare (case_low
, min
) < 0)
521 if (case_high
!= NULL_TREE
522 && tree_int_cst_compare (max
, case_high
) < 0)
528 /* If the range spans case labels [i, j], the corresponding anti-range spans
529 the labels [1, i - 1] and [j + 1, n - 1]. */
555 /* Simplify boolean operations if the source is known
556 to be already a boolean. */
558 simplify_using_ranges::simplify_truth_ops_using_ranges
559 (gimple_stmt_iterator
*gsi
,
562 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
564 bool need_conversion
;
566 /* We handle only !=/== case here. */
567 gcc_assert (rhs_code
== EQ_EXPR
|| rhs_code
== NE_EXPR
);
569 op0
= gimple_assign_rhs1 (stmt
);
570 if (!op_with_boolean_value_range_p (op0
, stmt
))
573 op1
= gimple_assign_rhs2 (stmt
);
574 if (!op_with_boolean_value_range_p (op1
, stmt
))
577 /* Reduce number of cases to handle to NE_EXPR. As there is no
578 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
579 if (rhs_code
== EQ_EXPR
)
581 if (TREE_CODE (op1
) == INTEGER_CST
)
582 op1
= int_const_binop (BIT_XOR_EXPR
, op1
,
583 build_int_cst (TREE_TYPE (op1
), 1));
588 lhs
= gimple_assign_lhs (stmt
);
590 = !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (op0
));
592 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
594 && !TYPE_UNSIGNED (TREE_TYPE (op0
))
595 && TYPE_PRECISION (TREE_TYPE (op0
)) == 1
596 && TYPE_PRECISION (TREE_TYPE (lhs
)) > 1)
599 /* For A != 0 we can substitute A itself. */
600 if (integer_zerop (op1
))
601 gimple_assign_set_rhs_with_ops (gsi
,
603 ? NOP_EXPR
: TREE_CODE (op0
), op0
);
604 /* For A != B we substitute A ^ B. Either with conversion. */
605 else if (need_conversion
)
607 tree tem
= make_ssa_name (TREE_TYPE (op0
));
609 = gimple_build_assign (tem
, BIT_XOR_EXPR
, op0
, op1
);
610 gsi_insert_before (gsi
, newop
, GSI_SAME_STMT
);
611 if (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
612 && TYPE_PRECISION (TREE_TYPE (tem
)) > 1)
614 value_range
vr (TREE_TYPE (tem
),
615 wi::zero (TYPE_PRECISION (TREE_TYPE (tem
))),
616 wi::one (TYPE_PRECISION (TREE_TYPE (tem
))));
617 set_range_info (tem
, vr
);
619 gimple_assign_set_rhs_with_ops (gsi
, NOP_EXPR
, tem
);
623 gimple_assign_set_rhs_with_ops (gsi
, BIT_XOR_EXPR
, op0
, op1
);
624 update_stmt (gsi_stmt (*gsi
));
625 fold_stmt (gsi
, follow_single_use_edges
);
630 /* Simplify a division or modulo operator to a right shift or bitwise and
631 if the first operand is unsigned or is greater than zero and the second
632 operand is an exact power of two. For TRUNC_MOD_EXPR op0 % op1 with
633 constant op1 (op1min = op1) or with op1 in [op1min, op1max] range,
634 optimize it into just op0 if op0's range is known to be a subset of
635 [-op1min + 1, op1min - 1] for signed and [0, op1min - 1] for unsigned
639 simplify_using_ranges::simplify_div_or_mod_using_ranges
640 (gimple_stmt_iterator
*gsi
,
643 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
645 tree op0
= gimple_assign_rhs1 (stmt
);
646 tree op1
= gimple_assign_rhs2 (stmt
);
647 tree op0min
= NULL_TREE
, op0max
= NULL_TREE
;
651 if (TREE_CODE (op0
) == INTEGER_CST
)
658 if (!query
->range_of_expr (vr
, op0
, stmt
))
659 vr
.set_varying (TREE_TYPE (op0
));
660 if (!vr
.varying_p () && !vr
.undefined_p ())
662 tree type
= vr
.type ();
663 op0min
= wide_int_to_tree (type
, vr
.lower_bound ());
664 op0max
= wide_int_to_tree (type
, vr
.upper_bound ());
668 if (rhs_code
== TRUNC_MOD_EXPR
669 && TREE_CODE (op1
) == SSA_NAME
)
672 if (!query
->range_of_expr (vr1
, op1
, stmt
))
673 vr1
.set_varying (TREE_TYPE (op1
));
674 if (!vr1
.varying_p () && !vr1
.undefined_p ())
675 op1min
= wide_int_to_tree (vr1
.type (), vr1
.lower_bound ());
677 if (rhs_code
== TRUNC_MOD_EXPR
678 && TREE_CODE (op1min
) == INTEGER_CST
679 && tree_int_cst_sgn (op1min
) == 1
681 && tree_int_cst_lt (op0max
, op1min
))
683 if (TYPE_UNSIGNED (TREE_TYPE (op0
))
684 || tree_int_cst_sgn (op0min
) >= 0
685 || tree_int_cst_lt (fold_unary (NEGATE_EXPR
, TREE_TYPE (op1min
), op1min
),
688 /* If op0 already has the range op0 % op1 has,
689 then TRUNC_MOD_EXPR won't change anything. */
690 gimple_assign_set_rhs_from_tree (gsi
, op0
);
695 if (TREE_CODE (op0
) != SSA_NAME
)
698 if (!integer_pow2p (op1
))
700 /* X % -Y can be only optimized into X % Y either if
701 X is not INT_MIN, or Y is not -1. Fold it now, as after
702 remove_range_assertions the range info might be not available
704 if (rhs_code
== TRUNC_MOD_EXPR
705 && fold_stmt (gsi
, follow_single_use_edges
))
710 if (TYPE_UNSIGNED (TREE_TYPE (op0
)))
711 val
= integer_one_node
;
714 tree zero
= build_zero_cst (TREE_TYPE (op0
));
715 val
= fold_cond_with_ops (GE_EXPR
, op0
, zero
, stmt
);
718 if (val
&& integer_onep (val
))
722 if (rhs_code
== TRUNC_DIV_EXPR
)
724 t
= build_int_cst (integer_type_node
, tree_log2 (op1
));
725 gimple_assign_set_rhs_code (stmt
, RSHIFT_EXPR
);
726 gimple_assign_set_rhs1 (stmt
, op0
);
727 gimple_assign_set_rhs2 (stmt
, t
);
731 t
= build_int_cst (TREE_TYPE (op1
), 1);
732 t
= int_const_binop (MINUS_EXPR
, op1
, t
);
733 t
= fold_convert (TREE_TYPE (op0
), t
);
735 gimple_assign_set_rhs_code (stmt
, BIT_AND_EXPR
);
736 gimple_assign_set_rhs1 (stmt
, op0
);
737 gimple_assign_set_rhs2 (stmt
, t
);
741 fold_stmt (gsi
, follow_single_use_edges
);
748 /* Simplify a min or max if the ranges of the two operands are
749 disjoint. Return true if we do simplify. */
752 simplify_using_ranges::simplify_min_or_max_using_ranges
753 (gimple_stmt_iterator
*gsi
,
756 tree op0
= gimple_assign_rhs1 (stmt
);
757 tree op1
= gimple_assign_rhs2 (stmt
);
760 val
= fold_cond_with_ops (LE_EXPR
, op0
, op1
, stmt
);
762 val
= fold_cond_with_ops (LT_EXPR
, op0
, op1
, stmt
);
766 /* VAL == TRUE -> OP0 < or <= op1
767 VAL == FALSE -> OP0 > or >= op1. */
768 tree res
= ((gimple_assign_rhs_code (stmt
) == MAX_EXPR
)
769 == integer_zerop (val
)) ? op0
: op1
;
770 gimple_assign_set_rhs_from_tree (gsi
, res
);
777 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
778 ABS_EXPR. If the operand is <= 0, then simplify the
779 ABS_EXPR into a NEGATE_EXPR. */
782 simplify_using_ranges::simplify_abs_using_ranges (gimple_stmt_iterator
*gsi
,
785 tree op
= gimple_assign_rhs1 (stmt
);
786 tree zero
= build_zero_cst (TREE_TYPE (op
));
787 tree val
= fold_cond_with_ops (LE_EXPR
, op
, zero
, stmt
);
791 /* The range is neither <= 0 nor > 0. Now see if it is
792 either < 0 or >= 0. */
793 val
= fold_cond_with_ops (LT_EXPR
, op
, zero
, stmt
);
797 gimple_assign_set_rhs1 (stmt
, op
);
798 if (integer_zerop (val
))
799 gimple_assign_set_rhs_code (stmt
, SSA_NAME
);
801 gimple_assign_set_rhs_code (stmt
, NEGATE_EXPR
);
803 fold_stmt (gsi
, follow_single_use_edges
);
809 /* value_range wrapper for wi_set_zero_nonzero_bits.
811 Return TRUE if VR was a constant range and we were able to compute
815 vr_set_zero_nonzero_bits (const tree expr_type
,
817 wide_int
*may_be_nonzero
,
818 wide_int
*must_be_nonzero
)
820 if (vr
->varying_p () || vr
->undefined_p ())
822 *may_be_nonzero
= wi::minus_one (TYPE_PRECISION (expr_type
));
823 *must_be_nonzero
= wi::zero (TYPE_PRECISION (expr_type
));
826 wi_set_zero_nonzero_bits (expr_type
, vr
->lower_bound (), vr
->upper_bound (),
827 *may_be_nonzero
, *must_be_nonzero
);
831 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
832 If all the bits that are being cleared by & are already
833 known to be zero from VR, or all the bits that are being
834 set by | are already known to be one from VR, the bit
835 operation is redundant. */
838 simplify_using_ranges::simplify_bit_ops_using_ranges
839 (gimple_stmt_iterator
*gsi
,
842 tree op0
= gimple_assign_rhs1 (stmt
);
843 tree op1
= gimple_assign_rhs2 (stmt
);
845 value_range vr0
, vr1
;
846 wide_int may_be_nonzero0
, may_be_nonzero1
;
847 wide_int must_be_nonzero0
, must_be_nonzero1
;
850 if (!query
->range_of_expr (vr0
, op0
, stmt
)
851 || vr0
.undefined_p ())
853 if (!query
->range_of_expr (vr1
, op1
, stmt
)
854 || vr1
.undefined_p ())
857 if (!vr_set_zero_nonzero_bits (TREE_TYPE (op0
), &vr0
, &may_be_nonzero0
,
860 if (!vr_set_zero_nonzero_bits (TREE_TYPE (op1
), &vr1
, &may_be_nonzero1
,
864 switch (gimple_assign_rhs_code (stmt
))
867 mask
= wi::bit_and_not (may_be_nonzero0
, must_be_nonzero1
);
873 mask
= wi::bit_and_not (may_be_nonzero1
, must_be_nonzero0
);
881 mask
= wi::bit_and_not (may_be_nonzero0
, must_be_nonzero1
);
887 mask
= wi::bit_and_not (may_be_nonzero1
, must_be_nonzero0
);
901 gimple_assign_set_rhs_with_ops (gsi
, TREE_CODE (op
), op
);
902 update_stmt (gsi_stmt (*gsi
));
906 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
907 a known value range VR.
909 If there is one and only one value which will satisfy the
910 conditional, then return that value. Else return NULL.
912 If signed overflow must be undefined for the value to satisfy
913 the conditional, then set *STRICT_OVERFLOW_P to true. */
916 test_for_singularity (enum tree_code cond_code
, tree op0
,
917 tree op1
, const value_range
*vr
)
922 /* Extract minimum/maximum values which satisfy the conditional as it was
924 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
926 min
= TYPE_MIN_VALUE (TREE_TYPE (op0
));
929 if (cond_code
== LT_EXPR
)
931 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
932 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (op0
), max
, one
);
933 /* Signal to compare_values_warnv this expr doesn't overflow. */
935 suppress_warning (max
, OPT_Woverflow
);
938 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
940 max
= TYPE_MAX_VALUE (TREE_TYPE (op0
));
943 if (cond_code
== GT_EXPR
)
945 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
946 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (op0
), min
, one
);
947 /* Signal to compare_values_warnv this expr doesn't overflow. */
949 suppress_warning (min
, OPT_Woverflow
);
953 /* Now refine the minimum and maximum values using any
954 value range information we have for op0. */
957 tree type
= TREE_TYPE (op0
);
958 tree tmin
= wide_int_to_tree (type
, vr
->lower_bound ());
959 tree tmax
= wide_int_to_tree (type
, vr
->upper_bound ());
960 if (compare_values (tmin
, min
) == 1)
962 if (compare_values (tmax
, max
) == -1)
965 /* If the new min/max values have converged to a single value,
966 then there is only one value which can satisfy the condition,
967 return that value. */
968 if (operand_equal_p (min
, max
, 0) && is_gimple_min_invariant (min
))
974 /* Return whether the value range *VR fits in an integer type specified
975 by PRECISION and UNSIGNED_P. */
978 range_fits_type_p (const irange
*vr
,
979 unsigned dest_precision
, signop dest_sgn
)
982 unsigned src_precision
;
986 /* We can only handle integral and pointer types. */
987 src_type
= vr
->type ();
988 if (!INTEGRAL_TYPE_P (src_type
)
989 && !POINTER_TYPE_P (src_type
))
992 /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
993 and so is an identity transform. */
994 src_precision
= TYPE_PRECISION (vr
->type ());
995 src_sgn
= TYPE_SIGN (src_type
);
996 if ((src_precision
< dest_precision
997 && !(dest_sgn
== UNSIGNED
&& src_sgn
== SIGNED
))
998 || (src_precision
== dest_precision
&& src_sgn
== dest_sgn
))
1001 /* Now we can only handle ranges with constant bounds. */
1002 if (vr
->undefined_p () || vr
->varying_p ())
1005 wide_int vrmin
= vr
->lower_bound ();
1006 wide_int vrmax
= vr
->upper_bound ();
1008 /* For sign changes, the MSB of the wide_int has to be clear.
1009 An unsigned value with its MSB set cannot be represented by
1010 a signed wide_int, while a negative value cannot be represented
1011 by an unsigned wide_int. */
1012 if (src_sgn
!= dest_sgn
1013 && (wi::lts_p (vrmin
, 0) || wi::lts_p (vrmax
, 0)))
1016 /* Then we can perform the conversion on both ends and compare
1017 the result for equality. */
1018 signop sign
= TYPE_SIGN (vr
->type ());
1019 tem
= wi::ext (widest_int::from (vrmin
, sign
), dest_precision
, dest_sgn
);
1020 if (tem
!= widest_int::from (vrmin
, sign
))
1022 tem
= wi::ext (widest_int::from (vrmax
, sign
), dest_precision
, dest_sgn
);
1023 if (tem
!= widest_int::from (vrmax
, sign
))
1029 // Clear edge E of EDGE_EXECUTABLE (it is unexecutable). If it wasn't
1030 // previously clear, propagate to successor blocks if appropriate.
1033 simplify_using_ranges::set_and_propagate_unexecutable (edge e
)
1035 // If not_executable is already set, we're done.
1036 // This works in the absence of a flag as well.
1037 if ((e
->flags
& m_not_executable_flag
) == m_not_executable_flag
)
1040 e
->flags
|= m_not_executable_flag
;
1041 m_flag_set_edges
.safe_push (e
);
1043 // Check if the destination block needs to propagate the property.
1044 basic_block bb
= e
->dest
;
1046 // If any incoming edge is executable, we are done.
1048 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1049 if ((e
->flags
& m_not_executable_flag
) == 0)
1052 // This block is also unexecutable, propagate to all exit edges as well.
1053 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1054 set_and_propagate_unexecutable (e
);
1057 /* If COND can be folded entirely as TRUE or FALSE, rewrite the
1058 conditional as such, and return TRUE. */
1061 simplify_using_ranges::fold_cond (gcond
*cond
)
1064 if (query
->range_of_stmt (r
, cond
) && r
.singleton_p ())
1066 // COND has already been folded if arguments are constant.
1067 if (TREE_CODE (gimple_cond_lhs (cond
)) != SSA_NAME
1068 && TREE_CODE (gimple_cond_rhs (cond
)) != SSA_NAME
)
1072 fprintf (dump_file
, "Folding predicate ");
1073 print_gimple_expr (dump_file
, cond
, 0);
1074 fprintf (dump_file
, " to ");
1076 edge e0
= EDGE_SUCC (gimple_bb (cond
), 0);
1077 edge e1
= EDGE_SUCC (gimple_bb (cond
), 1);
1081 fprintf (dump_file
, "0\n");
1082 gimple_cond_make_false (cond
);
1083 if (e0
->flags
& EDGE_TRUE_VALUE
)
1084 set_and_propagate_unexecutable (e0
);
1086 set_and_propagate_unexecutable (e1
);
1091 fprintf (dump_file
, "1\n");
1092 gimple_cond_make_true (cond
);
1093 if (e0
->flags
& EDGE_FALSE_VALUE
)
1094 set_and_propagate_unexecutable (e0
);
1096 set_and_propagate_unexecutable (e1
);
1102 // FIXME: Audit the code below and make sure it never finds anything.
1104 legacy_fold_cond (cond
, &taken_edge
);
1108 if (taken_edge
->flags
& EDGE_TRUE_VALUE
)
1110 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1111 fprintf (dump_file
, "\nVRP Predicate evaluates to: 1\n");
1112 gimple_cond_make_true (cond
);
1114 else if (taken_edge
->flags
& EDGE_FALSE_VALUE
)
1116 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1117 fprintf (dump_file
, "\nVRP Predicate evaluates to: 0\n");
1118 gimple_cond_make_false (cond
);
1128 /* Simplify a conditional using a relational operator to an equality
1129 test if the range information indicates only one value can satisfy
1130 the original conditional. */
1133 simplify_using_ranges::simplify_cond_using_ranges_1 (gcond
*stmt
)
1135 tree op0
= gimple_cond_lhs (stmt
);
1136 tree op1
= gimple_cond_rhs (stmt
);
1137 enum tree_code cond_code
= gimple_cond_code (stmt
);
1139 if (fold_cond (stmt
))
1142 if (simplify_compare_using_ranges_1 (cond_code
, op0
, op1
, stmt
))
1146 fprintf (dump_file
, "Simplified relational ");
1147 print_gimple_stmt (dump_file
, stmt
, 0);
1148 fprintf (dump_file
, " into ");
1151 gimple_cond_set_code (stmt
, cond_code
);
1152 gimple_cond_set_lhs (stmt
, op0
);
1153 gimple_cond_set_rhs (stmt
, op1
);
1159 print_gimple_stmt (dump_file
, stmt
, 0);
1160 fprintf (dump_file
, "\n");
1167 /* Like simplify_cond_using_ranges_1 but for assignments rather
1168 than GIMPLE_COND. */
1171 simplify_using_ranges::simplify_compare_assign_using_ranges_1
1172 (gimple_stmt_iterator
*gsi
,
1175 enum tree_code code
= gimple_assign_rhs_code (stmt
);
1176 tree op0
= gimple_assign_rhs1 (stmt
);
1177 tree op1
= gimple_assign_rhs2 (stmt
);
1178 gcc_assert (TREE_CODE_CLASS (code
) == tcc_comparison
);
1179 bool happened
= false;
1181 if (simplify_compare_using_ranges_1 (code
, op0
, op1
, stmt
))
1185 fprintf (dump_file
, "Simplified relational ");
1186 print_gimple_stmt (dump_file
, stmt
, 0);
1187 fprintf (dump_file
, " into ");
1190 gimple_assign_set_rhs_code (stmt
, code
);
1191 gimple_assign_set_rhs1 (stmt
, op0
);
1192 gimple_assign_set_rhs2 (stmt
, op1
);
1198 print_gimple_stmt (dump_file
, stmt
, 0);
1199 fprintf (dump_file
, "\n");
1204 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
1205 if the RHS is zero or one, and the LHS are known to be boolean
1207 if ((code
== EQ_EXPR
|| code
== NE_EXPR
)
1208 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
1209 && simplify_truth_ops_using_ranges (gsi
, stmt
))
1215 /* Try to simplify OP0 COND_CODE OP1 using a relational operator to an
1216 equality test if the range information indicates only one value can
1217 satisfy the original conditional. */
1220 simplify_using_ranges::simplify_compare_using_ranges_1 (tree_code
&cond_code
, tree
&op0
, tree
&op1
, gimple
*stmt
)
1222 bool happened
= false;
1223 if (cond_code
!= NE_EXPR
1224 && cond_code
!= EQ_EXPR
1225 && TREE_CODE (op0
) == SSA_NAME
1226 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
1227 && is_gimple_min_invariant (op1
))
1231 if (!query
->range_of_expr (vr
, op0
, stmt
))
1232 vr
.set_undefined ();
1234 /* If we have range information for OP0, then we might be
1235 able to simplify this conditional. */
1236 if (!vr
.undefined_p () && !vr
.varying_p ())
1238 tree new_tree
= test_for_singularity (cond_code
, op0
, op1
, &vr
);
1241 cond_code
= EQ_EXPR
;
1246 /* Try again after inverting the condition. We only deal
1247 with integral types here, so no need to worry about
1248 issues with inverting FP comparisons. */
1249 new_tree
= test_for_singularity
1250 (invert_tree_comparison (cond_code
, false),
1254 cond_code
= NE_EXPR
;
1260 // Try to simplify casted conditions.
1261 if (simplify_casted_compare (cond_code
, op0
, op1
))
1266 /* Simplify OP0 code OP1 when OP1 is a constant and OP0 was a SSA_NAME
1267 defined by a type conversion. Replacing OP0 with RHS of the type conversion.
1268 Doing so makes the conversion dead which helps subsequent passes. */
1271 simplify_using_ranges::simplify_casted_compare (tree_code
&, tree
&op0
, tree
&op1
)
1274 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
1275 see if OP0 was set by a type conversion where the source of
1276 the conversion is another SSA_NAME with a range that fits
1277 into the range of OP0's type.
1279 If so, the conversion is redundant as the earlier SSA_NAME can be
1280 used for the comparison directly if we just massage the constant in the
1282 if (TREE_CODE (op0
) == SSA_NAME
1283 && TREE_CODE (op1
) == INTEGER_CST
)
1285 gimple
*def_stmt
= SSA_NAME_DEF_STMT (op0
);
1288 if (!is_gimple_assign (def_stmt
))
1291 switch (gimple_assign_rhs_code (def_stmt
))
1294 innerop
= gimple_assign_rhs1 (def_stmt
);
1296 case VIEW_CONVERT_EXPR
:
1297 innerop
= TREE_OPERAND (gimple_assign_rhs1 (def_stmt
), 0);
1298 if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop
)))
1305 if (TREE_CODE (innerop
) == SSA_NAME
1306 && !POINTER_TYPE_P (TREE_TYPE (innerop
))
1307 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop
)
1308 && desired_pro_or_demotion_p (TREE_TYPE (innerop
), TREE_TYPE (op0
)))
1312 if (query
->range_of_expr (vr
, innerop
)
1314 && !vr
.undefined_p ()
1315 && range_fits_type_p (&vr
,
1316 TYPE_PRECISION (TREE_TYPE (op0
)),
1317 TYPE_SIGN (TREE_TYPE (op0
)))
1318 && int_fits_type_p (op1
, TREE_TYPE (innerop
)))
1320 tree newconst
= fold_convert (TREE_TYPE (innerop
), op1
);
1330 /* Simplify a switch statement using the value range of the switch
1334 simplify_using_ranges::simplify_switch_using_ranges (gswitch
*stmt
)
1336 tree op
= gimple_switch_index (stmt
);
1341 size_t i
= 0, j
= 0, n
, n2
;
1344 size_t k
= 1, l
= 0;
1346 if (TREE_CODE (op
) == SSA_NAME
)
1348 if (!query
->range_of_expr (vr
, op
, stmt
)
1349 || vr
.varying_p () || vr
.undefined_p ())
1352 /* Find case label for min/max of the value range. */
1353 take_default
= !find_case_label_ranges (stmt
, &vr
, &i
, &j
, &k
, &l
);
1355 else if (TREE_CODE (op
) == INTEGER_CST
)
1357 take_default
= !find_case_label_index (stmt
, 1, op
, &i
);
1371 n
= gimple_switch_num_labels (stmt
);
1373 /* We can truncate the case label ranges that partially overlap with OP's
1375 size_t min_idx
= 1, max_idx
= 0;
1377 value_range_kind kind
= get_legacy_range (vr
, min
, max
);
1378 if (!vr
.undefined_p ())
1379 find_case_label_range (stmt
, min
, max
, &min_idx
, &max_idx
);
1380 if (min_idx
<= max_idx
)
1382 tree min_label
= gimple_switch_label (stmt
, min_idx
);
1383 tree max_label
= gimple_switch_label (stmt
, max_idx
);
1385 /* Avoid changing the type of the case labels when truncating. */
1386 tree case_label_type
= TREE_TYPE (CASE_LOW (min_label
));
1387 tree vr_min
= fold_convert (case_label_type
, min
);
1388 tree vr_max
= fold_convert (case_label_type
, max
);
1390 if (kind
== VR_RANGE
)
1392 /* If OP's value range is [2,8] and the low label range is
1393 0 ... 3, truncate the label's range to 2 .. 3. */
1394 if (tree_int_cst_compare (CASE_LOW (min_label
), vr_min
) < 0
1395 && CASE_HIGH (min_label
) != NULL_TREE
1396 && tree_int_cst_compare (CASE_HIGH (min_label
), vr_min
) >= 0)
1397 CASE_LOW (min_label
) = vr_min
;
1399 /* If OP's value range is [2,8] and the high label range is
1400 7 ... 10, truncate the label's range to 7 .. 8. */
1401 if (tree_int_cst_compare (CASE_LOW (max_label
), vr_max
) <= 0
1402 && CASE_HIGH (max_label
) != NULL_TREE
1403 && tree_int_cst_compare (CASE_HIGH (max_label
), vr_max
) > 0)
1404 CASE_HIGH (max_label
) = vr_max
;
1406 else if (kind
== VR_ANTI_RANGE
)
1408 tree one_cst
= build_one_cst (case_label_type
);
1410 if (min_label
== max_label
)
1412 /* If OP's value range is ~[7,8] and the label's range is
1413 7 ... 10, truncate the label's range to 9 ... 10. */
1414 if (tree_int_cst_compare (CASE_LOW (min_label
), vr_min
) == 0
1415 && CASE_HIGH (min_label
) != NULL_TREE
1416 && tree_int_cst_compare (CASE_HIGH (min_label
), vr_max
) > 0)
1417 CASE_LOW (min_label
)
1418 = int_const_binop (PLUS_EXPR
, vr_max
, one_cst
);
1420 /* If OP's value range is ~[7,8] and the label's range is
1421 5 ... 8, truncate the label's range to 5 ... 6. */
1422 if (tree_int_cst_compare (CASE_LOW (min_label
), vr_min
) < 0
1423 && CASE_HIGH (min_label
) != NULL_TREE
1424 && tree_int_cst_compare (CASE_HIGH (min_label
), vr_max
) == 0)
1425 CASE_HIGH (min_label
)
1426 = int_const_binop (MINUS_EXPR
, vr_min
, one_cst
);
1430 /* If OP's value range is ~[2,8] and the low label range is
1431 0 ... 3, truncate the label's range to 0 ... 1. */
1432 if (tree_int_cst_compare (CASE_LOW (min_label
), vr_min
) < 0
1433 && CASE_HIGH (min_label
) != NULL_TREE
1434 && tree_int_cst_compare (CASE_HIGH (min_label
), vr_min
) >= 0)
1435 CASE_HIGH (min_label
)
1436 = int_const_binop (MINUS_EXPR
, vr_min
, one_cst
);
1438 /* If OP's value range is ~[2,8] and the high label range is
1439 7 ... 10, truncate the label's range to 9 ... 10. */
1440 if (tree_int_cst_compare (CASE_LOW (max_label
), vr_max
) <= 0
1441 && CASE_HIGH (max_label
) != NULL_TREE
1442 && tree_int_cst_compare (CASE_HIGH (max_label
), vr_max
) > 0)
1443 CASE_LOW (max_label
)
1444 = int_const_binop (PLUS_EXPR
, vr_max
, one_cst
);
1448 /* Canonicalize singleton case ranges. */
1449 if (tree_int_cst_equal (CASE_LOW (min_label
), CASE_HIGH (min_label
)))
1450 CASE_HIGH (min_label
) = NULL_TREE
;
1451 if (tree_int_cst_equal (CASE_LOW (max_label
), CASE_HIGH (max_label
)))
1452 CASE_HIGH (max_label
) = NULL_TREE
;
1455 /* We can also eliminate case labels that lie completely outside OP's value
1458 /* Bail out if this is just all edges taken. */
1464 /* Build a new vector of taken case labels. */
1465 vec2
= make_tree_vec (j
- i
+ 1 + l
- k
+ 1 + (int)take_default
);
1468 /* Add the default edge, if necessary. */
1470 TREE_VEC_ELT (vec2
, n2
++) = gimple_switch_default_label (stmt
);
1472 for (; i
<= j
; ++i
, ++n2
)
1473 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, i
);
1475 for (; k
<= l
; ++k
, ++n2
)
1476 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, k
);
1478 /* Mark needed edges. */
1479 for (i
= 0; i
< n2
; ++i
)
1481 e
= find_edge (gimple_bb (stmt
),
1482 label_to_block (cfun
,
1483 CASE_LABEL (TREE_VEC_ELT (vec2
, i
))));
1484 e
->aux
= (void *)-1;
1487 /* Queue not needed edges for later removal. */
1488 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
1490 if (e
->aux
== (void *)-1)
1496 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1498 fprintf (dump_file
, "removing unreachable case label\n");
1500 to_remove_edges
.safe_push (e
);
1501 set_and_propagate_unexecutable (e
);
1502 e
->flags
&= ~EDGE_EXECUTABLE
;
1503 e
->flags
|= EDGE_IGNORE
;
1506 /* And queue an update for the stmt. */
1509 to_update_switch_stmts
.safe_push (su
);
1514 simplify_using_ranges::cleanup_edges_and_switches (void)
1520 /* Clear any edges marked as not executable. */
1521 if (m_not_executable_flag
)
1523 FOR_EACH_VEC_ELT (m_flag_set_edges
, i
, e
)
1524 e
->flags
&= ~m_not_executable_flag
;
1526 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
1527 CFG in a broken state and requires a cfg_cleanup run. */
1528 FOR_EACH_VEC_ELT (to_remove_edges
, i
, e
)
1531 /* Update SWITCH_EXPR case label vector. */
1532 FOR_EACH_VEC_ELT (to_update_switch_stmts
, i
, su
)
1535 size_t n
= TREE_VEC_LENGTH (su
->vec
);
1537 gimple_switch_set_num_labels (su
->stmt
, n
);
1538 for (j
= 0; j
< n
; j
++)
1539 gimple_switch_set_label (su
->stmt
, j
, TREE_VEC_ELT (su
->vec
, j
));
1540 /* As we may have replaced the default label with a regular one
1541 make sure to make it a real default label again. This ensures
1542 optimal expansion. */
1543 label
= gimple_switch_label (su
->stmt
, 0);
1544 CASE_LOW (label
) = NULL_TREE
;
1545 CASE_HIGH (label
) = NULL_TREE
;
1548 if (!to_remove_edges
.is_empty ())
1550 free_dominance_info (CDI_DOMINATORS
);
1551 loops_state_set (LOOPS_NEED_FIXUP
);
1554 to_remove_edges
.release ();
1555 to_update_switch_stmts
.release ();
1558 /* Simplify an integral conversion from an SSA name in STMT. */
1561 simplify_conversion_using_ranges (gimple_stmt_iterator
*gsi
, gimple
*stmt
)
1563 tree innerop
, middleop
, finaltype
;
1565 signop inner_sgn
, middle_sgn
, final_sgn
;
1566 unsigned inner_prec
, middle_prec
, final_prec
;
1567 widest_int innermin
, innermed
, innermax
, middlemin
, middlemed
, middlemax
;
1569 finaltype
= TREE_TYPE (gimple_assign_lhs (stmt
));
1570 if (!INTEGRAL_TYPE_P (finaltype
))
1572 middleop
= gimple_assign_rhs1 (stmt
);
1573 def_stmt
= SSA_NAME_DEF_STMT (middleop
);
1574 if (!is_gimple_assign (def_stmt
)
1575 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
)))
1577 innerop
= gimple_assign_rhs1 (def_stmt
);
1578 if (TREE_CODE (innerop
) != SSA_NAME
1579 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop
))
1582 /* Get the value-range of the inner operand. Use global ranges in
1583 case innerop was created during substitute-and-fold. */
1584 wide_int imin
, imax
;
1586 if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop
)))
1588 get_range_query (cfun
)->range_of_expr (vr
, innerop
, stmt
);
1589 if (vr
.undefined_p () || vr
.varying_p ())
1591 innermin
= widest_int::from (vr
.lower_bound (), TYPE_SIGN (TREE_TYPE (innerop
)));
1592 innermax
= widest_int::from (vr
.upper_bound (), TYPE_SIGN (TREE_TYPE (innerop
)));
1594 /* Simulate the conversion chain to check if the result is equal if
1595 the middle conversion is removed. */
1596 inner_prec
= TYPE_PRECISION (TREE_TYPE (innerop
));
1597 middle_prec
= TYPE_PRECISION (TREE_TYPE (middleop
));
1598 final_prec
= TYPE_PRECISION (finaltype
);
1600 /* If the first conversion is not injective, the second must not
1602 if (wi::gtu_p (innermax
- innermin
,
1603 wi::mask
<widest_int
> (middle_prec
, false))
1604 && middle_prec
< final_prec
)
1606 /* We also want a medium value so that we can track the effect that
1607 narrowing conversions with sign change have. */
1608 inner_sgn
= TYPE_SIGN (TREE_TYPE (innerop
));
1609 if (inner_sgn
== UNSIGNED
)
1610 innermed
= wi::shifted_mask
<widest_int
> (1, inner_prec
- 1, false);
1613 if (wi::cmp (innermin
, innermed
, inner_sgn
) >= 0
1614 || wi::cmp (innermed
, innermax
, inner_sgn
) >= 0)
1615 innermed
= innermin
;
1617 middle_sgn
= TYPE_SIGN (TREE_TYPE (middleop
));
1618 middlemin
= wi::ext (innermin
, middle_prec
, middle_sgn
);
1619 middlemed
= wi::ext (innermed
, middle_prec
, middle_sgn
);
1620 middlemax
= wi::ext (innermax
, middle_prec
, middle_sgn
);
1622 /* Require that the final conversion applied to both the original
1623 and the intermediate range produces the same result. */
1624 final_sgn
= TYPE_SIGN (finaltype
);
1625 if (wi::ext (middlemin
, final_prec
, final_sgn
)
1626 != wi::ext (innermin
, final_prec
, final_sgn
)
1627 || wi::ext (middlemed
, final_prec
, final_sgn
)
1628 != wi::ext (innermed
, final_prec
, final_sgn
)
1629 || wi::ext (middlemax
, final_prec
, final_sgn
)
1630 != wi::ext (innermax
, final_prec
, final_sgn
))
1633 gimple_assign_set_rhs1 (stmt
, innerop
);
1634 fold_stmt (gsi
, follow_single_use_edges
);
1638 /* Simplify a conversion from integral SSA name to float in STMT. */
1641 simplify_using_ranges::simplify_float_conversion_using_ranges
1642 (gimple_stmt_iterator
*gsi
,
1645 tree rhs1
= gimple_assign_rhs1 (stmt
);
1647 scalar_float_mode fltmode
1648 = SCALAR_FLOAT_TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt
)));
1649 scalar_int_mode mode
;
1653 /* We can only handle constant ranges. */
1654 if (!query
->range_of_expr (vr
, rhs1
, stmt
)
1656 || vr
.undefined_p ())
1659 /* The code below doesn't work for large/huge _BitInt, nor is really
1660 needed for those, bitint lowering does use ranges already. */
1661 if (TREE_CODE (TREE_TYPE (rhs1
)) == BITINT_TYPE
1662 && TYPE_MODE (TREE_TYPE (rhs1
)) == BLKmode
)
1664 /* First check if we can use a signed type in place of an unsigned. */
1665 scalar_int_mode rhs_mode
= SCALAR_INT_TYPE_MODE (TREE_TYPE (rhs1
));
1666 if (TYPE_UNSIGNED (TREE_TYPE (rhs1
))
1667 && can_float_p (fltmode
, rhs_mode
, 0) != CODE_FOR_nothing
1668 && range_fits_type_p (&vr
, TYPE_PRECISION (TREE_TYPE (rhs1
)), SIGNED
))
1670 /* If we can do the conversion in the current input mode do nothing. */
1671 else if (can_float_p (fltmode
, rhs_mode
,
1672 TYPE_UNSIGNED (TREE_TYPE (rhs1
))) != CODE_FOR_nothing
)
1674 /* Otherwise search for a mode we can use, starting from the narrowest
1675 integer mode available. */
1678 mode
= NARROWEST_INT_MODE
;
1681 /* If we cannot do a signed conversion to float from mode
1682 or if the value-range does not fit in the signed type
1683 try with a wider mode. */
1684 if (can_float_p (fltmode
, mode
, 0) != CODE_FOR_nothing
1685 && range_fits_type_p (&vr
, GET_MODE_PRECISION (mode
), SIGNED
))
1688 /* But do not widen the input. Instead leave that to the
1689 optabs expansion code. */
1690 if (!GET_MODE_WIDER_MODE (mode
).exists (&mode
)
1691 || GET_MODE_PRECISION (mode
) > TYPE_PRECISION (TREE_TYPE (rhs1
)))
1696 /* It works, insert a truncation or sign-change before the
1697 float conversion. */
1698 tem
= make_ssa_name (build_nonstandard_integer_type
1699 (GET_MODE_PRECISION (mode
), 0));
1700 conv
= gimple_build_assign (tem
, NOP_EXPR
, rhs1
);
1701 gsi_insert_before (gsi
, conv
, GSI_SAME_STMT
);
1702 gimple_assign_set_rhs1 (stmt
, tem
);
1703 fold_stmt (gsi
, follow_single_use_edges
);
1708 /* Simplify an internal fn call using ranges if possible. */
1711 simplify_using_ranges::simplify_internal_call_using_ranges
1712 (gimple_stmt_iterator
*gsi
,
1715 enum tree_code subcode
;
1716 bool is_ubsan
= false;
1718 switch (gimple_call_internal_fn (stmt
))
1720 case IFN_UBSAN_CHECK_ADD
:
1721 subcode
= PLUS_EXPR
;
1724 case IFN_UBSAN_CHECK_SUB
:
1725 subcode
= MINUS_EXPR
;
1728 case IFN_UBSAN_CHECK_MUL
:
1729 subcode
= MULT_EXPR
;
1732 case IFN_ADD_OVERFLOW
:
1733 subcode
= PLUS_EXPR
;
1735 case IFN_SUB_OVERFLOW
:
1736 subcode
= MINUS_EXPR
;
1738 case IFN_MUL_OVERFLOW
:
1739 subcode
= MULT_EXPR
;
1745 tree op0
= gimple_call_arg (stmt
, 0);
1746 tree op1
= gimple_call_arg (stmt
, 1);
1750 type
= TREE_TYPE (op0
);
1751 if (VECTOR_TYPE_P (type
))
1754 else if (gimple_call_lhs (stmt
) == NULL_TREE
)
1757 type
= TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt
)));
1758 if (!check_for_binary_op_overflow (query
, subcode
, type
, op0
, op1
, &ovf
, stmt
)
1759 || (is_ubsan
&& ovf
))
1763 location_t loc
= gimple_location (stmt
);
1765 g
= gimple_build_assign (gimple_call_lhs (stmt
), subcode
, op0
, op1
);
1770 || !useless_type_conversion_p (type
, TREE_TYPE (op0
))
1771 || !useless_type_conversion_p (type
, TREE_TYPE (op1
)))
1772 utype
= unsigned_type_for (type
);
1773 if (TREE_CODE (op0
) == INTEGER_CST
)
1774 op0
= fold_convert (utype
, op0
);
1775 else if (!useless_type_conversion_p (utype
, TREE_TYPE (op0
)))
1777 g
= gimple_build_assign (make_ssa_name (utype
), NOP_EXPR
, op0
);
1778 gimple_set_location (g
, loc
);
1779 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
1780 op0
= gimple_assign_lhs (g
);
1782 if (TREE_CODE (op1
) == INTEGER_CST
)
1783 op1
= fold_convert (utype
, op1
);
1784 else if (!useless_type_conversion_p (utype
, TREE_TYPE (op1
)))
1786 g
= gimple_build_assign (make_ssa_name (utype
), NOP_EXPR
, op1
);
1787 gimple_set_location (g
, loc
);
1788 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
1789 op1
= gimple_assign_lhs (g
);
1791 g
= gimple_build_assign (make_ssa_name (utype
), subcode
, op0
, op1
);
1792 gimple_set_location (g
, loc
);
1793 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
1796 g
= gimple_build_assign (make_ssa_name (type
), NOP_EXPR
,
1797 gimple_assign_lhs (g
));
1798 gimple_set_location (g
, loc
);
1799 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
1801 g
= gimple_build_assign (gimple_call_lhs (stmt
), COMPLEX_EXPR
,
1802 gimple_assign_lhs (g
),
1803 build_int_cst (type
, ovf
));
1805 gimple_set_location (g
, loc
);
1806 gsi_replace (gsi
, g
, false);
1810 /* Return true if VAR is a two-valued variable. Set a and b with the
1811 two-values when it is true. Return false otherwise. */
1814 simplify_using_ranges::two_valued_val_range_p (tree var
, tree
*a
, tree
*b
,
1818 if (!query
->range_of_expr (vr
, var
, s
))
1820 if (vr
.varying_p () || vr
.undefined_p ())
1823 if ((vr
.num_pairs () == 1 && vr
.upper_bound () - vr
.lower_bound () == 1)
1824 || (vr
.num_pairs () == 2
1825 && vr
.lower_bound (0) == vr
.upper_bound (0)
1826 && vr
.lower_bound (1) == vr
.upper_bound (1)))
1828 *a
= wide_int_to_tree (TREE_TYPE (var
), vr
.lower_bound ());
1829 *b
= wide_int_to_tree (TREE_TYPE (var
), vr
.upper_bound ());
1835 simplify_using_ranges::simplify_using_ranges (range_query
*query
,
1836 int not_executable_flag
)
1839 to_remove_edges
= vNULL
;
1840 to_update_switch_stmts
= vNULL
;
1841 m_not_executable_flag
= not_executable_flag
;
1842 m_flag_set_edges
= vNULL
;
1845 simplify_using_ranges::~simplify_using_ranges ()
1847 cleanup_edges_and_switches ();
1848 m_flag_set_edges
.release ();
1851 /* Simplify STMT using ranges if possible. */
1854 simplify_using_ranges::simplify (gimple_stmt_iterator
*gsi
)
1856 gcc_checking_assert (query
);
1858 gimple
*stmt
= gsi_stmt (*gsi
);
1859 if (is_gimple_assign (stmt
))
1861 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
1862 tree rhs1
= gimple_assign_rhs1 (stmt
);
1863 tree rhs2
= gimple_assign_rhs2 (stmt
);
1864 tree lhs
= gimple_assign_lhs (stmt
);
1865 tree val1
= NULL_TREE
, val2
= NULL_TREE
;
1866 use_operand_p use_p
;
1871 Where VAR is two-valued and LHS is used in GIMPLE_COND only
1873 LHS = VAR == VAL1 ? (CST BINOP VAL1) : (CST BINOP VAL2)
1877 Where VAR is two-valued and LHS is used in GIMPLE_COND only
1879 LHS = VAR == VAL1 ? (VAL1 BINOP CST) : (VAL2 BINOP CST) */
1881 if (TREE_CODE_CLASS (rhs_code
) == tcc_binary
1882 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1883 && ((TREE_CODE (rhs1
) == INTEGER_CST
1884 && TREE_CODE (rhs2
) == SSA_NAME
)
1885 || (TREE_CODE (rhs2
) == INTEGER_CST
1886 && TREE_CODE (rhs1
) == SSA_NAME
))
1887 && single_imm_use (lhs
, &use_p
, &use_stmt
)
1888 && gimple_code (use_stmt
) == GIMPLE_COND
)
1891 tree new_rhs1
= NULL_TREE
;
1892 tree new_rhs2
= NULL_TREE
;
1893 tree cmp_var
= NULL_TREE
;
1895 if (TREE_CODE (rhs2
) == SSA_NAME
1896 && two_valued_val_range_p (rhs2
, &val1
, &val2
, stmt
))
1898 /* Optimize RHS1 OP [VAL1, VAL2]. */
1899 new_rhs1
= int_const_binop (rhs_code
, rhs1
, val1
);
1900 new_rhs2
= int_const_binop (rhs_code
, rhs1
, val2
);
1903 else if (TREE_CODE (rhs1
) == SSA_NAME
1904 && two_valued_val_range_p (rhs1
, &val1
, &val2
, stmt
))
1906 /* Optimize [VAL1, VAL2] OP RHS2. */
1907 new_rhs1
= int_const_binop (rhs_code
, val1
, rhs2
);
1908 new_rhs2
= int_const_binop (rhs_code
, val2
, rhs2
);
1912 /* If we could not find two-vals or the optimzation is invalid as
1913 in divide by zero, new_rhs1 / new_rhs will be NULL_TREE. */
1914 if (new_rhs1
&& new_rhs2
)
1916 tree cond
= gimple_build (gsi
, true, GSI_SAME_STMT
,
1918 EQ_EXPR
, boolean_type_node
,
1920 gimple_assign_set_rhs_with_ops (gsi
,
1924 update_stmt (gsi_stmt (*gsi
));
1925 fold_stmt (gsi
, follow_single_use_edges
);
1930 if (TREE_CODE_CLASS (rhs_code
) == tcc_comparison
)
1931 return simplify_compare_assign_using_ranges_1 (gsi
, stmt
);
1936 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
1937 and BIT_AND_EXPR respectively if the first operand is greater
1938 than zero and the second operand is an exact power of two.
1939 Also optimize TRUNC_MOD_EXPR away if the second operand is
1940 constant and the first operand already has the right value
1942 case TRUNC_DIV_EXPR
:
1943 case TRUNC_MOD_EXPR
:
1944 if ((TREE_CODE (rhs1
) == SSA_NAME
1945 || TREE_CODE (rhs1
) == INTEGER_CST
)
1946 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
1947 return simplify_div_or_mod_using_ranges (gsi
, stmt
);
1950 /* Transform ABS (X) into X or -X as appropriate. */
1952 if (TREE_CODE (rhs1
) == SSA_NAME
1953 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
1954 return simplify_abs_using_ranges (gsi
, stmt
);
1959 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
1960 if all the bits being cleared are already cleared or
1961 all the bits being set are already set. */
1962 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
1963 return simplify_bit_ops_using_ranges (gsi
, stmt
);
1967 if (TREE_CODE (rhs1
) == SSA_NAME
1968 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
1969 return simplify_conversion_using_ranges (gsi
, stmt
);
1973 if (TREE_CODE (rhs1
) == SSA_NAME
1974 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
1975 return simplify_float_conversion_using_ranges (gsi
, stmt
);
1980 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
1981 return simplify_min_or_max_using_ranges (gsi
, stmt
);
1986 tree op0
= gimple_assign_rhs1 (stmt
);
1987 tree type
= TREE_TYPE (op0
);
1988 int_range_max range
;
1989 if (TYPE_SIGN (type
) == SIGNED
1990 && query
->range_of_expr (range
, op0
, stmt
))
1992 unsigned prec
= TYPE_PRECISION (TREE_TYPE (op0
));
1993 int_range
<2> nzm1 (type
, wi::minus_one (prec
), wi::zero (prec
),
1995 range
.intersect (nzm1
);
1996 // If there are no ranges other than [-1, 0] remove the shift.
1997 if (range
.undefined_p ())
1999 gimple_assign_set_rhs_from_tree (gsi
, op0
);
2010 else if (gimple_code (stmt
) == GIMPLE_COND
)
2011 return simplify_cond_using_ranges_1 (as_a
<gcond
*> (stmt
));
2012 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
2013 return simplify_switch_using_ranges (as_a
<gswitch
*> (stmt
));
2014 else if (is_gimple_call (stmt
)
2015 && gimple_call_internal_p (stmt
))
2016 return simplify_internal_call_using_ranges (gsi
, stmt
);