Skip several gcc.dg/builtin-dynamic-object-size tests on hppa*-*-hpux*
[official-gcc.git] / gcc / ada / libgnarl / s-tassta.adb
blob5be6253a978f232f39ab132e36eab9e30af4e141
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K I N G . S T A G E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 pragma Partition_Elaboration_Policy (Concurrent);
33 -- This package only implements the concurrent elaboration policy. This pragma
34 -- will enforce it (and detect conflicts with user specified policy).
36 with Ada.Exceptions;
37 with Ada.Unchecked_Deallocation;
38 with Ada.Task_Initialization;
40 with System.Interrupt_Management;
41 with System.Tasking.Debug;
42 with System.Address_Image;
43 with System.Task_Primitives;
44 with System.Task_Primitives.Operations;
45 with System.Tasking.Utilities;
46 with System.Tasking.Queuing;
47 with System.Tasking.Rendezvous;
48 with System.OS_Primitives;
49 with System.Secondary_Stack;
50 with System.Restrictions;
51 with System.Standard_Library;
52 with System.Stack_Usage;
53 with System.Storage_Elements;
55 with System.Soft_Links;
56 -- These are procedure pointers to non-tasking routines that use task
57 -- specific data. In the absence of tasking, these routines refer to global
58 -- data. In the presence of tasking, they must be replaced with pointers to
59 -- task-specific versions. Also used for Create_TSD, Destroy_TSD, Get_Current
60 -- _Excep, Finalize_Library_Objects, Task_Termination, Handler.
62 with System.Tasking.Initialization;
63 pragma Elaborate_All (System.Tasking.Initialization);
64 -- This insures that tasking is initialized if any tasks are created
66 package body System.Tasking.Stages is
68 package STPO renames System.Task_Primitives.Operations;
69 package SSL renames System.Soft_Links;
70 package SSE renames System.Storage_Elements;
72 use Ada.Exceptions;
74 use Secondary_Stack;
75 use Task_Primitives;
76 use Task_Primitives.Operations;
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 procedure Free is new
83 Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
85 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id);
86 -- This procedure outputs the task specific message for exception
87 -- tracing purposes.
89 procedure Task_Wrapper (Self_ID : Task_Id);
90 pragma Convention (C, Task_Wrapper);
91 -- This is the procedure that is called by the GNULL from the new context
92 -- when a task is created. It waits for activation and then calls the task
93 -- body procedure. When the task body procedure completes, it terminates
94 -- the task.
96 -- The Task_Wrapper's address will be provided to the underlying threads
97 -- library as the task entry point. Convention C is what makes most sense
98 -- for that purpose (Export C would make the function globally visible,
99 -- and affect the link name on which GDB depends). This will in addition
100 -- trigger an automatic stack alignment suitable for GCC's assumptions if
101 -- need be.
103 -- "Vulnerable_..." in the procedure names below means they must be called
104 -- with abort deferred.
106 procedure Vulnerable_Complete_Task (Self_ID : Task_Id);
107 -- Complete the calling task. This procedure must be called with
108 -- abort deferred. It should only be called by Complete_Task and
109 -- Finalize_Global_Tasks (for the environment task).
111 procedure Vulnerable_Complete_Master (Self_ID : Task_Id);
112 -- Complete the current master of the calling task. This procedure
113 -- must be called with abort deferred. It should only be called by
114 -- Vulnerable_Complete_Task and Complete_Master.
116 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id);
117 -- Signal to Self_ID's activator that Self_ID has completed activation.
118 -- This procedure must be called with abort deferred.
120 procedure Abort_Dependents (Self_ID : Task_Id);
121 -- Abort all the direct dependents of Self at its current master nesting
122 -- level, plus all of their dependents, transitively. RTS_Lock should be
123 -- locked by the caller.
125 procedure Vulnerable_Free_Task (T : Task_Id);
126 -- Recover all runtime system storage associated with the task T. This
127 -- should only be called after T has terminated and will no longer be
128 -- referenced.
130 -- For tasks created by an allocator that fails, due to an exception, it is
131 -- called from Expunge_Unactivated_Tasks.
133 -- Different code is used at master completion, in Terminate_Dependents,
134 -- due to a need for tighter synchronization with the master.
136 ----------------------
137 -- Abort_Dependents --
138 ----------------------
140 procedure Abort_Dependents (Self_ID : Task_Id) is
141 C : Task_Id;
142 P : Task_Id;
144 -- Each task C will take care of its own dependents, so there is no
145 -- need to worry about them here. In fact, it would be wrong to abort
146 -- indirect dependents here, because we can't distinguish between
147 -- duplicate master ids. For example, suppose we have three nested
148 -- task bodies T1,T2,T3. And suppose T1 also calls P which calls Q (and
149 -- both P and Q are task masters). Q will have the same master id as
150 -- Master_Of_Task of T3. Previous versions of this would abort T3 when
151 -- Q calls Complete_Master, which was completely wrong.
153 begin
154 C := All_Tasks_List;
155 while C /= null loop
156 P := C.Common.Parent;
158 if P = Self_ID then
159 if C.Master_Of_Task = Self_ID.Master_Within then
160 pragma Debug
161 (Debug.Trace (Self_ID, "Aborting", 'X', C));
162 Utilities.Abort_One_Task (Self_ID, C);
163 C.Dependents_Aborted := True;
164 end if;
165 end if;
167 C := C.Common.All_Tasks_Link;
168 end loop;
170 Self_ID.Dependents_Aborted := True;
171 end Abort_Dependents;
173 -----------------
174 -- Abort_Tasks --
175 -----------------
177 procedure Abort_Tasks (Tasks : Task_List) is
178 begin
179 Utilities.Abort_Tasks (Tasks);
180 end Abort_Tasks;
182 --------------------
183 -- Activate_Tasks --
184 --------------------
186 -- Note that locks of activator and activated task are both locked here.
187 -- This is necessary because C.Common.State and Self.Common.Wait_Count have
188 -- to be synchronized. This is safe from deadlock because the activator is
189 -- always created before the activated task. That satisfies our
190 -- in-order-of-creation ATCB locking policy.
192 -- At one point, we may also lock the parent, if the parent is different
193 -- from the activator. That is also consistent with the lock ordering
194 -- policy, since the activator cannot be created before the parent.
196 -- Since we are holding both the activator's lock, and Task_Wrapper locks
197 -- that before it does anything more than initialize the low-level ATCB
198 -- components, it should be safe to wait to update the counts until we see
199 -- that the thread creation is successful.
201 -- If the thread creation fails, we do need to close the entries of the
202 -- task. The first phase, of dequeuing calls, only requires locking the
203 -- acceptor's ATCB, but the waking up of the callers requires locking the
204 -- caller's ATCB. We cannot safely do this while we are holding other
205 -- locks. Therefore, the queue-clearing operation is done in a separate
206 -- pass over the activation chain.
208 procedure Activate_Tasks (Chain_Access : Activation_Chain_Access) is
209 Self_ID : constant Task_Id := STPO.Self;
210 P : Task_Id;
211 C : Task_Id;
212 Next_C, Last_C : Task_Id;
213 Activate_Prio : System.Any_Priority;
214 Success : Boolean;
215 All_Elaborated : Boolean := True;
217 begin
218 -- If pragma Detect_Blocking is active, then we must check whether this
219 -- potentially blocking operation is called from a protected action.
221 if System.Tasking.Detect_Blocking
222 and then Self_ID.Common.Protected_Action_Nesting > 0
223 then
224 raise Program_Error with "potentially blocking operation";
225 end if;
227 pragma Debug
228 (Debug.Trace (Self_ID, "Activate_Tasks", 'C'));
230 Initialization.Defer_Abort_Nestable (Self_ID);
232 pragma Assert (Self_ID.Common.Wait_Count = 0);
234 -- Lock RTS_Lock, to prevent activated tasks from racing ahead before
235 -- we finish activating the chain.
237 Lock_RTS;
239 -- Check that all task bodies have been elaborated
241 C := Chain_Access.T_ID;
242 Last_C := null;
243 while C /= null loop
244 if C.Common.Elaborated /= null
245 and then not C.Common.Elaborated.all
246 then
247 All_Elaborated := False;
248 end if;
250 -- Reverse the activation chain so that tasks are activated in the
251 -- same order they're declared.
253 Next_C := C.Common.Activation_Link;
254 C.Common.Activation_Link := Last_C;
255 Last_C := C;
256 C := Next_C;
257 end loop;
259 Chain_Access.T_ID := Last_C;
261 if not All_Elaborated then
262 Unlock_RTS;
263 Initialization.Undefer_Abort_Nestable (Self_ID);
264 raise Program_Error with "Some tasks have not been elaborated";
265 end if;
267 -- Activate all the tasks in the chain. Creation of the thread of
268 -- control was deferred until activation. So create it now.
270 C := Chain_Access.T_ID;
271 while C /= null loop
272 if C.Common.State /= Terminated then
273 pragma Assert (C.Common.State = Unactivated);
275 P := C.Common.Parent;
276 Write_Lock (P);
277 Write_Lock (C);
279 Activate_Prio :=
280 (if C.Common.Base_Priority < Get_Priority (Self_ID)
281 then Get_Priority (Self_ID)
282 else C.Common.Base_Priority);
284 System.Task_Primitives.Operations.Create_Task
285 (C, Task_Wrapper'Address,
286 Parameters.Size_Type
287 (C.Common.Compiler_Data.Pri_Stack_Info.Size),
288 Activate_Prio, Success);
290 -- There would be a race between the created task and the creator
291 -- to do the following initialization, if we did not have a
292 -- Lock/Unlock_RTS pair in the task wrapper to prevent it from
293 -- racing ahead.
295 if Success then
296 C.Common.State := Activating;
297 C.Awake_Count := 1;
298 C.Alive_Count := 1;
299 P.Awake_Count := P.Awake_Count + 1;
300 P.Alive_Count := P.Alive_Count + 1;
302 if P.Common.State = Master_Completion_Sleep and then
303 C.Master_Of_Task = P.Master_Within
304 then
305 pragma Assert (Self_ID /= P);
306 P.Common.Wait_Count := P.Common.Wait_Count + 1;
307 end if;
309 for J in System.Tasking.Debug.Known_Tasks'Range loop
310 if System.Tasking.Debug.Known_Tasks (J) = null then
311 System.Tasking.Debug.Known_Tasks (J) := C;
312 C.Known_Tasks_Index := J;
313 exit;
314 end if;
315 end loop;
317 if Global_Task_Debug_Event_Set then
318 Debug.Signal_Debug_Event
319 (Debug.Debug_Event_Activating, C);
320 end if;
322 C.Common.State := Runnable;
324 Unlock (C);
325 Unlock (P);
327 else
328 -- No need to set Awake_Count, State, etc. here since the loop
329 -- below will do that for any Unactivated tasks.
331 Unlock (C);
332 Unlock (P);
333 Self_ID.Common.Activation_Failed := True;
334 end if;
335 end if;
337 C := C.Common.Activation_Link;
338 end loop;
340 Unlock_RTS;
342 -- Close the entries of any tasks that failed thread creation, and count
343 -- those that have not finished activation.
345 Write_Lock (Self_ID);
346 Self_ID.Common.State := Activator_Sleep;
348 C := Chain_Access.T_ID;
349 while C /= null loop
350 Write_Lock (C);
352 if C.Common.State = Unactivated then
353 C.Common.Activator := null;
354 C.Common.State := Terminated;
355 C.Callable := False;
356 Utilities.Cancel_Queued_Entry_Calls (C);
358 elsif C.Common.Activator /= null then
359 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
360 end if;
362 Unlock (C);
363 P := C.Common.Activation_Link;
364 C.Common.Activation_Link := null;
365 C := P;
366 end loop;
368 -- Wait for the activated tasks to complete activation. It is
369 -- unsafe to abort any of these tasks until the count goes to zero.
371 loop
372 exit when Self_ID.Common.Wait_Count = 0;
373 Sleep (Self_ID, Activator_Sleep);
374 end loop;
376 Self_ID.Common.State := Runnable;
377 Unlock (Self_ID);
379 -- Remove the tasks from the chain
381 Chain_Access.T_ID := null;
382 Initialization.Undefer_Abort_Nestable (Self_ID);
384 if Self_ID.Common.Activation_Failed then
385 Self_ID.Common.Activation_Failed := False;
386 raise Tasking_Error with "Failure during activation";
387 end if;
388 end Activate_Tasks;
390 -------------------------
391 -- Complete_Activation --
392 -------------------------
394 procedure Complete_Activation is
395 Self_ID : constant Task_Id := STPO.Self;
397 begin
398 Initialization.Defer_Abort_Nestable (Self_ID);
399 Vulnerable_Complete_Activation (Self_ID);
400 Initialization.Undefer_Abort_Nestable (Self_ID);
402 -- ??? Why do we need to allow for nested deferral here?
404 end Complete_Activation;
406 ---------------------
407 -- Complete_Master --
408 ---------------------
410 procedure Complete_Master is
411 Self_ID : constant Task_Id := STPO.Self;
412 begin
413 pragma Assert
414 (Self_ID.Deferral_Level > 0
415 or else not System.Restrictions.Abort_Allowed);
416 Vulnerable_Complete_Master (Self_ID);
417 end Complete_Master;
419 -------------------
420 -- Complete_Task --
421 -------------------
423 -- See comments on Vulnerable_Complete_Task for details
425 procedure Complete_Task is
426 Self_ID : constant Task_Id := STPO.Self;
428 begin
429 pragma Assert
430 (Self_ID.Deferral_Level > 0
431 or else not System.Restrictions.Abort_Allowed);
433 Vulnerable_Complete_Task (Self_ID);
435 -- All of our dependents have terminated, never undefer abort again
437 end Complete_Task;
439 -----------------
440 -- Create_Task --
441 -----------------
443 -- Compiler interface only. Do not call from within the RTS. This must be
444 -- called to create a new task.
446 procedure Create_Task
447 (Priority : Integer;
448 Stack_Size : System.Parameters.Size_Type;
449 Secondary_Stack_Size : System.Parameters.Size_Type;
450 Task_Info : System.Task_Info.Task_Info_Type;
451 CPU : Integer;
452 Relative_Deadline : Ada.Real_Time.Time_Span;
453 Domain : Dispatching_Domain_Access;
454 Num_Entries : Task_Entry_Index;
455 Master : Master_Level;
456 State : Task_Procedure_Access;
457 Discriminants : System.Address;
458 Elaborated : Access_Boolean;
459 Chain : in out Activation_Chain;
460 Task_Image : String;
461 Created_Task : out Task_Id)
463 T, P : Task_Id;
464 Self_ID : constant Task_Id := STPO.Self;
465 Success : Boolean;
466 Base_Priority : System.Any_Priority;
467 Len : Natural;
468 Base_CPU : System.Multiprocessors.CPU_Range;
470 use type System.Multiprocessors.CPU_Range;
472 pragma Unreferenced (Relative_Deadline);
473 -- EDF scheduling is not supported by any of the target platforms so
474 -- this parameter is not passed any further.
476 begin
477 -- If Master is greater than the current master, it means that Master
478 -- has already awaited its dependent tasks. This raises Program_Error,
479 -- by 4.8(10.3/2). See AI-280. Ignore this check for foreign threads.
481 if Self_ID.Master_Of_Task /= Foreign_Task_Level
482 and then Master > Self_ID.Master_Within
483 then
484 raise Program_Error with
485 "create task after awaiting termination";
486 end if;
488 -- If pragma Detect_Blocking is active must be checked whether this
489 -- potentially blocking operation is called from a protected action.
491 if System.Tasking.Detect_Blocking
492 and then Self_ID.Common.Protected_Action_Nesting > 0
493 then
494 raise Program_Error with "potentially blocking operation";
495 end if;
497 pragma Debug (Debug.Trace (Self_ID, "Create_Task", 'C'));
499 Base_Priority :=
500 (if Priority = Unspecified_Priority
501 then Self_ID.Common.Base_Priority
502 else System.Any_Priority (Priority));
504 -- Legal values of CPU are the special Unspecified_CPU value which is
505 -- inserted by the compiler for tasks without CPU aspect, and those in
506 -- the range of CPU_Range but no greater than Number_Of_CPUs. Otherwise
507 -- the task is defined to have failed, and it becomes a completed task
508 -- (RM D.16(14/3)).
510 if CPU /= Unspecified_CPU
511 and then (CPU < Integer (System.Multiprocessors.CPU_Range'First)
512 or else
513 CPU > Integer (System.Multiprocessors.Number_Of_CPUs))
514 then
515 raise Tasking_Error with "CPU not in range";
517 -- Normal CPU affinity
519 else
520 -- When the application code says nothing about the task affinity
521 -- (task without CPU aspect) then the compiler inserts the value
522 -- Unspecified_CPU which indicates to the run-time library that
523 -- the task will activate and execute on the same processor as its
524 -- activating task if the activating task is assigned a processor
525 -- (RM D.16(14/3)).
527 Base_CPU :=
528 (if CPU = Unspecified_CPU
529 then Self_ID.Common.Base_CPU
530 else System.Multiprocessors.CPU_Range (CPU));
531 end if;
533 -- Find parent P of new Task, via master level number. Independent
534 -- tasks should have Parent = Environment_Task, and all tasks created
535 -- by independent tasks are also independent. See, for example,
536 -- s-interr.adb, where Interrupt_Manager does "new Server_Task". The
537 -- access type is at library level, so the parent of the Server_Task
538 -- is Environment_Task.
540 P := Self_ID;
542 if P.Master_Of_Task <= Independent_Task_Level then
543 P := Environment_Task;
544 else
545 while P /= null and then P.Master_Of_Task >= Master loop
546 P := P.Common.Parent;
547 end loop;
548 end if;
550 Initialization.Defer_Abort_Nestable (Self_ID);
552 begin
553 T := New_ATCB (Num_Entries);
554 exception
555 when others =>
556 Initialization.Undefer_Abort_Nestable (Self_ID);
557 raise Storage_Error with "Cannot allocate task";
558 end;
560 -- RTS_Lock is used by Abort_Dependents and Abort_Tasks. Up to this
561 -- point, it is possible that we may be part of a family of tasks that
562 -- is being aborted.
564 Lock_RTS;
565 Write_Lock (Self_ID);
567 -- Now, we must check that we have not been aborted. If so, we should
568 -- give up on creating this task, and simply return.
570 if not Self_ID.Callable then
571 pragma Assert (Self_ID.Pending_ATC_Level = Level_Completed_Task);
572 pragma Assert (Self_ID.Pending_Action);
573 pragma Assert
574 (Chain.T_ID = null or else Chain.T_ID.Common.State = Unactivated);
576 Unlock (Self_ID);
577 Unlock_RTS;
578 Initialization.Undefer_Abort_Nestable (Self_ID);
580 -- ??? Should never get here
582 pragma Assert (Standard.False);
583 raise Standard'Abort_Signal;
584 end if;
586 Initialize_ATCB (Self_ID, State, Discriminants, P, Elaborated,
587 Base_Priority, Base_CPU, Domain, Task_Info, Stack_Size, T, Success);
589 if not Success then
590 Free (T);
591 Unlock (Self_ID);
592 Unlock_RTS;
593 Initialization.Undefer_Abort_Nestable (Self_ID);
594 raise Storage_Error with "Failed to initialize task";
595 end if;
597 if Master = Foreign_Task_Level + 2 then
599 -- This should not happen, except when a foreign task creates non
600 -- library-level Ada tasks. In this case, we pretend the master is
601 -- a regular library level task, otherwise the run-time will get
602 -- confused when waiting for these tasks to terminate.
604 T.Master_Of_Task := Library_Task_Level;
606 else
607 T.Master_Of_Task := Master;
608 end if;
610 T.Master_Within := T.Master_Of_Task + 1;
612 for L in T.Entry_Calls'Range loop
613 T.Entry_Calls (L).Self := T;
614 T.Entry_Calls (L).Level := L;
615 end loop;
617 if Task_Image'Length = 0 then
618 T.Common.Task_Image_Len := 0;
619 else
620 Len := 1;
621 T.Common.Task_Image (1) := Task_Image (Task_Image'First);
623 -- Remove unwanted blank space generated by 'Image
625 for J in Task_Image'First + 1 .. Task_Image'Last loop
626 if Task_Image (J) /= ' '
627 or else Task_Image (J - 1) /= '('
628 then
629 Len := Len + 1;
630 T.Common.Task_Image (Len) := Task_Image (J);
631 exit when Len = T.Common.Task_Image'Last;
632 end if;
633 end loop;
635 T.Common.Task_Image_Len := Len;
636 end if;
638 -- Note: we used to have code here to initialize T.Common.Domain, but
639 -- that is not needed, since this is initialized in System.Tasking.
641 Unlock (Self_ID);
642 Unlock_RTS;
644 -- The CPU associated to the task (if any) must belong to the
645 -- dispatching domain.
647 if Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
648 and then
649 (Base_CPU not in T.Common.Domain'Range
650 or else not T.Common.Domain (Base_CPU))
651 then
652 Initialization.Undefer_Abort_Nestable (Self_ID);
653 raise Tasking_Error with "CPU not in dispatching domain";
654 end if;
656 -- To handle the interaction between pragma CPU and dispatching domains
657 -- we need to signal that this task is being allocated to a processor.
658 -- This is needed only for tasks belonging to the system domain (the
659 -- creation of new dispatching domains can only take processors from the
660 -- system domain) and only before the environment task calls the main
661 -- procedure (dispatching domains cannot be created after this).
663 if Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
664 and then T.Common.Domain = System.Tasking.System_Domain
665 and then not System.Tasking.Dispatching_Domains_Frozen
666 then
667 -- Increase the number of tasks attached to the CPU to which this
668 -- task is being moved.
670 Dispatching_Domain_Tasks (Base_CPU) :=
671 Dispatching_Domain_Tasks (Base_CPU) + 1;
672 end if;
674 -- Create the secondary stack for the task as early as possible during
675 -- in the creation of a task, since it may be used by the operation of
676 -- Ada code within the task.
678 begin
679 SSL.Create_TSD (T.Common.Compiler_Data, null, Secondary_Stack_Size);
680 exception
681 when others =>
682 Initialization.Undefer_Abort_Nestable (Self_ID);
683 raise Storage_Error with "Secondary stack could not be allocated";
684 end;
686 T.Common.Activation_Link := Chain.T_ID;
687 Chain.T_ID := T;
688 Created_Task := T;
689 Initialization.Undefer_Abort_Nestable (Self_ID);
691 pragma Debug
692 (Debug.Trace
693 (Self_ID, "Created task in " & T.Master_Of_Task'Img, 'C', T));
694 end Create_Task;
696 --------------------
697 -- Current_Master --
698 --------------------
700 function Current_Master return Master_Level is
701 begin
702 return STPO.Self.Master_Within;
703 end Current_Master;
705 ------------------
706 -- Enter_Master --
707 ------------------
709 procedure Enter_Master is
710 Self_ID : constant Task_Id := STPO.Self;
711 begin
712 Self_ID.Master_Within := Self_ID.Master_Within + 1;
713 pragma Debug
714 (Debug.Trace
715 (Self_ID, "Enter_Master ->" & Self_ID.Master_Within'Img, 'M'));
716 end Enter_Master;
718 -------------------------------
719 -- Expunge_Unactivated_Tasks --
720 -------------------------------
722 -- See procedure Close_Entries for the general case
724 procedure Expunge_Unactivated_Tasks (Chain : in out Activation_Chain) is
725 Self_ID : constant Task_Id := STPO.Self;
726 C : Task_Id;
727 Call : Entry_Call_Link;
728 Temp : Task_Id;
730 begin
731 pragma Debug
732 (Debug.Trace (Self_ID, "Expunge_Unactivated_Tasks", 'C'));
734 Initialization.Defer_Abort_Nestable (Self_ID);
736 -- ???
737 -- Experimentation has shown that abort is sometimes (but not always)
738 -- already deferred when this is called.
740 -- That may indicate an error. Find out what is going on
742 C := Chain.T_ID;
743 while C /= null loop
744 pragma Assert (C.Common.State = Unactivated);
746 Temp := C.Common.Activation_Link;
748 if C.Common.State = Unactivated then
749 Lock_RTS;
750 Write_Lock (C);
752 for J in 1 .. C.Entry_Num loop
753 Queuing.Dequeue_Head (C.Entry_Queues (J), Call);
754 pragma Assert (Call = null);
755 end loop;
757 Unlock (C);
759 Initialization.Remove_From_All_Tasks_List (C);
760 Unlock_RTS;
762 Vulnerable_Free_Task (C);
763 C := Temp;
764 end if;
765 end loop;
767 Chain.T_ID := null;
768 Initialization.Undefer_Abort_Nestable (Self_ID);
769 end Expunge_Unactivated_Tasks;
771 ---------------------------
772 -- Finalize_Global_Tasks --
773 ---------------------------
775 -- ???
776 -- We have a potential problem here if finalization of global objects does
777 -- anything with signals or the timer server, since by that time those
778 -- servers have terminated.
780 -- It is hard to see how that would occur
782 -- However, a better solution might be to do all this finalization
783 -- using the global finalization chain.
785 procedure Finalize_Global_Tasks is
786 Self_ID : constant Task_Id := STPO.Self;
788 Ignore_1 : Boolean;
789 Ignore_2 : Boolean;
791 function State
792 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
793 pragma Import (C, State, "__gnat_get_interrupt_state");
794 -- Get interrupt state for interrupt number Int. Defined in init.c
796 Default : constant Character := 's';
797 -- 's' Interrupt_State pragma set state to System (use "default"
798 -- system handler)
800 begin
801 if Self_ID.Deferral_Level = 0 then
802 -- ???
803 -- In principle, we should be able to predict whether abort is
804 -- already deferred here (and it should not be deferred yet but in
805 -- practice it seems Finalize_Global_Tasks is being called sometimes,
806 -- from RTS code for exceptions, with abort already deferred.
808 Initialization.Defer_Abort_Nestable (Self_ID);
810 -- Never undefer again
811 end if;
813 -- This code is only executed by the environment task
815 pragma Assert (Self_ID = Environment_Task);
817 -- Set Environment_Task'Callable to false to notify library-level tasks
818 -- that it is waiting for them.
820 Self_ID.Callable := False;
822 -- Exit level 2 master, for normal tasks in library-level packages
824 Complete_Master;
826 -- Force termination of "independent" library-level server tasks
828 Lock_RTS;
829 Abort_Dependents (Self_ID);
830 Unlock_RTS;
832 -- We need to explicitly wait for the task to be terminated here
833 -- because on true concurrent system, we may end this procedure before
834 -- the tasks are really terminated.
836 Write_Lock (Self_ID);
838 -- If the Abort_Task signal is set to system, it means that we may
839 -- not have been able to abort all independent tasks (in particular,
840 -- Server_Task may be blocked, waiting for a signal), in which case, do
841 -- not wait for Independent_Task_Count to go down to 0. We arbitrarily
842 -- limit the number of loop iterations; if an independent task does not
843 -- terminate, we do not want to hang here. In that case, the thread will
844 -- be terminated when the process exits.
846 if State (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
847 then
848 for J in 1 .. 10 loop
849 exit when Utilities.Independent_Task_Count = 0;
851 -- We used to yield here, but this did not take into account low
852 -- priority tasks that would cause dead lock in some cases (true
853 -- FIFO scheduling).
855 Timed_Sleep
856 (Self_ID, 0.01, System.OS_Primitives.Relative,
857 Self_ID.Common.State, Ignore_1, Ignore_2);
858 end loop;
859 end if;
861 -- ??? On multi-processor environments, it seems that the above loop
862 -- isn't sufficient, so we need to add an additional delay.
864 Timed_Sleep
865 (Self_ID, 0.01, System.OS_Primitives.Relative,
866 Self_ID.Common.State, Ignore_1, Ignore_2);
868 Unlock (Self_ID);
870 -- Complete the environment task
872 Vulnerable_Complete_Task (Self_ID);
874 -- Handle normal task termination by the environment task, but only
875 -- for the normal task termination. In the case of Abnormal and
876 -- Unhandled_Exception they must have been handled before, and the
877 -- task termination soft link must have been changed so the task
878 -- termination routine is not executed twice.
880 SSL.Task_Termination_Handler.all (Ada.Exceptions.Null_Occurrence);
882 -- Finalize all library-level controlled objects
884 if not SSL."=" (SSL.Finalize_Library_Objects, null) then
885 SSL.Finalize_Library_Objects.all;
886 end if;
888 -- Reset the soft links to non-tasking
890 SSL.Abort_Defer := SSL.Abort_Defer_NT'Access;
891 SSL.Abort_Undefer := SSL.Abort_Undefer_NT'Access;
892 SSL.Lock_Task := SSL.Task_Lock_NT'Access;
893 SSL.Unlock_Task := SSL.Task_Unlock_NT'Access;
894 SSL.Get_Jmpbuf_Address := SSL.Get_Jmpbuf_Address_NT'Access;
895 SSL.Set_Jmpbuf_Address := SSL.Set_Jmpbuf_Address_NT'Access;
896 SSL.Get_Sec_Stack := SSL.Get_Sec_Stack_NT'Access;
897 SSL.Set_Sec_Stack := SSL.Set_Sec_Stack_NT'Access;
898 SSL.Check_Abort_Status := SSL.Check_Abort_Status_NT'Access;
899 SSL.Get_Stack_Info := SSL.Get_Stack_Info_NT'Access;
901 -- Don't bother trying to finalize Initialization.Global_Task_Lock
902 -- and System.Task_Primitives.RTS_Lock.
904 end Finalize_Global_Tasks;
906 ---------------
907 -- Free_Task --
908 ---------------
910 procedure Free_Task (T : Task_Id) is
911 Self_Id : constant Task_Id := Self;
913 begin
914 Initialization.Task_Lock (Self_Id);
916 if T.Common.State = Terminated then
918 -- It is not safe to call Abort_Defer or Write_Lock at this stage
920 Lock_RTS;
921 Initialization.Finalize_Attributes (T);
922 Initialization.Remove_From_All_Tasks_List (T);
923 Unlock_RTS;
925 Initialization.Task_Unlock (Self_Id);
927 System.Task_Primitives.Operations.Finalize_TCB (T);
929 else
930 -- If the task is not terminated, then mark the task as to be freed
931 -- upon termination.
933 T.Free_On_Termination := True;
934 Initialization.Task_Unlock (Self_Id);
935 end if;
936 end Free_Task;
938 ---------------------------
939 -- Move_Activation_Chain --
940 ---------------------------
942 procedure Move_Activation_Chain
943 (From, To : Activation_Chain_Access;
944 New_Master : Master_ID)
946 Self_ID : constant Task_Id := STPO.Self;
947 C : Task_Id;
949 begin
950 pragma Debug
951 (Debug.Trace (Self_ID, "Move_Activation_Chain", 'C'));
953 -- Nothing to do if From is empty, and we can check that without
954 -- deferring aborts.
956 C := From.all.T_ID;
958 if C = null then
959 return;
960 end if;
962 Initialization.Defer_Abort_Nestable (Self_ID);
964 -- Loop through the From chain, changing their Master_Of_Task fields,
965 -- and to find the end of the chain.
967 loop
968 C.Master_Of_Task := New_Master;
969 exit when C.Common.Activation_Link = null;
970 C := C.Common.Activation_Link;
971 end loop;
973 -- Hook From in at the start of To
975 C.Common.Activation_Link := To.all.T_ID;
976 To.all.T_ID := From.all.T_ID;
978 -- Set From to empty
980 From.all.T_ID := null;
982 Initialization.Undefer_Abort_Nestable (Self_ID);
983 end Move_Activation_Chain;
985 ------------------
986 -- Task_Wrapper --
987 ------------------
989 -- The task wrapper is a procedure that is called first for each task body
990 -- and which in turn calls the compiler-generated task body procedure.
991 -- The wrapper's main job is to do initialization for the task. It also
992 -- has some locally declared objects that serve as per-task local data.
993 -- Task finalization is done by Complete_Task, which is called from an
994 -- at-end handler that the compiler generates.
996 procedure Task_Wrapper (Self_ID : Task_Id) is
997 use System.Standard_Library;
998 use System.Stack_Usage;
1000 Bottom_Of_Stack : aliased Integer;
1002 Task_Alternate_Stack :
1003 aliased SSE.Storage_Array (1 .. Alternate_Stack_Size);
1004 -- The alternate signal stack for this task, if any
1006 Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0;
1007 -- Whether to use above alternate signal stack for stack overflows
1009 SEH_Table : aliased SSE.Storage_Array (1 .. 8);
1010 -- Structured Exception Registration table (2 words)
1012 procedure Install_SEH_Handler (Addr : System.Address);
1013 pragma Import (C, Install_SEH_Handler, "__gnat_install_SEH_handler");
1014 -- Install the SEH (Structured Exception Handling) handler
1016 Cause : Cause_Of_Termination := Normal;
1017 -- Indicates the reason why this task terminates. Normal corresponds to
1018 -- a task terminating due to completing the last statement of its body,
1019 -- or as a result of waiting on a terminate alternative. If the task
1020 -- terminates because it is being aborted then Cause will be set
1021 -- to Abnormal. If the task terminates because of an exception
1022 -- raised by the execution of its task body, then Cause is set
1023 -- to Unhandled_Exception.
1025 EO : Exception_Occurrence;
1026 -- If the task terminates because of an exception raised by the
1027 -- execution of its task body, then EO will contain the associated
1028 -- exception occurrence. Otherwise, it will contain Null_Occurrence.
1030 TH : Termination_Handler := null;
1031 -- Pointer to the protected procedure to be executed upon task
1032 -- termination.
1034 procedure Search_Fall_Back_Handler (ID : Task_Id);
1035 -- Procedure that searches recursively a fall-back handler through the
1036 -- master relationship. If the handler is found, its pointer is stored
1037 -- in TH. It stops when the handler is found or when the ID is null.
1039 ------------------------------
1040 -- Search_Fall_Back_Handler --
1041 ------------------------------
1043 procedure Search_Fall_Back_Handler (ID : Task_Id) is
1044 begin
1045 -- A null Task_Id indicates that we have reached the root of the
1046 -- task hierarchy and no handler has been found.
1048 if ID = null then
1049 return;
1051 -- If there is a fall back handler, store its pointer for later
1052 -- execution.
1054 elsif ID.Common.Fall_Back_Handler /= null then
1055 TH := ID.Common.Fall_Back_Handler;
1057 -- Otherwise look for a fall back handler in the parent
1059 else
1060 Search_Fall_Back_Handler (ID.Common.Parent);
1061 end if;
1062 end Search_Fall_Back_Handler;
1064 -- Start of processing for Task_Wrapper
1066 begin
1067 pragma Assert (Self_ID.Deferral_Level = 1);
1069 Debug.Master_Hook
1070 (Self_ID, Self_ID.Common.Parent, Self_ID.Master_Of_Task);
1072 if Use_Alternate_Stack then
1073 Self_ID.Common.Task_Alternate_Stack := Task_Alternate_Stack'Address;
1074 end if;
1076 -- Set the guard page at the bottom of the stack. The call to unprotect
1077 -- the page is done in Terminate_Task
1079 Stack_Guard (Self_ID, True);
1081 -- Initialize low-level TCB components, that cannot be initialized by
1082 -- the creator. Enter_Task sets Self_ID.LL.Thread.
1084 Enter_Task (Self_ID);
1086 -- Initialize dynamic stack usage
1088 if System.Stack_Usage.Is_Enabled then
1089 declare
1090 Guard_Page_Size : constant := 16 * 1024;
1091 -- Part of the stack used as a guard page. This is an OS dependent
1092 -- value, so we need to use the maximum. This value is only used
1093 -- when the stack address is known, that is currently Windows.
1095 Small_Overflow_Guard : constant := 12 * 1024;
1096 -- Note: this used to be 4K, but was changed to 12K, since
1097 -- smaller values resulted in segmentation faults from dynamic
1098 -- stack analysis.
1100 Big_Overflow_Guard : constant := 64 * 1024 + 8 * 1024;
1101 -- These two values are experimental, and seem to work on most
1102 -- platforms. They still need to be analyzed further. They also
1103 -- need documentation, what are they and why does the logic differ
1104 -- depending on whether the stack is large or small???
1106 Pattern_Size : Natural :=
1107 Natural (Self_ID.Common.
1108 Compiler_Data.Pri_Stack_Info.Size);
1109 -- Size of the pattern
1111 Stack_Base : Address;
1112 -- Address of the base of the stack
1114 begin
1115 Stack_Base := Self_ID.Common.Compiler_Data.Pri_Stack_Info.Base;
1117 if Stack_Base = Null_Address then
1119 -- On many platforms, we don't know the real stack base
1120 -- address. Estimate it using an address in the frame.
1122 Stack_Base := Bottom_Of_Stack'Address;
1124 -- Adjustments for inner frames
1126 Pattern_Size := Pattern_Size -
1127 (if Pattern_Size < Big_Overflow_Guard
1128 then Small_Overflow_Guard
1129 else Big_Overflow_Guard);
1130 else
1131 -- Reduce by the size of the final guard page
1133 Pattern_Size := Pattern_Size - Guard_Page_Size;
1134 end if;
1136 STPO.Lock_RTS;
1137 Initialize_Analyzer
1138 (Self_ID.Common.Analyzer,
1139 Self_ID.Common.Task_Image (1 .. Self_ID.Common.Task_Image_Len),
1140 Natural (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size),
1141 SSE.To_Integer (Stack_Base),
1142 Pattern_Size);
1143 STPO.Unlock_RTS;
1144 Fill_Stack (Self_ID.Common.Analyzer);
1145 end;
1146 end if;
1148 -- We setup the SEH (Structured Exception Handling) handler if supported
1149 -- on the target.
1151 Install_SEH_Handler (SEH_Table'Address);
1153 -- Initialize exception occurrence
1155 Save_Occurrence (EO, Ada.Exceptions.Null_Occurrence);
1157 -- We lock RTS_Lock to wait for activator to finish activating the rest
1158 -- of the chain, so that everyone in the chain comes out in priority
1159 -- order.
1161 -- This also protects the value of
1162 -- Self_ID.Common.Activator.Common.Wait_Count.
1164 Lock_RTS;
1165 Unlock_RTS;
1167 if not System.Restrictions.Abort_Allowed then
1169 -- If Abort is not allowed, reset the deferral level since it will
1170 -- not get changed by the generated code. Keeping a default value
1171 -- of one would prevent some operations (e.g. select or delay) to
1172 -- proceed successfully.
1174 Self_ID.Deferral_Level := 0;
1175 end if;
1177 if Global_Task_Debug_Event_Set then
1178 Debug.Signal_Debug_Event (Debug.Debug_Event_Run, Self_ID);
1179 end if;
1181 declare
1182 use Ada.Task_Initialization;
1184 Global_Initialization_Handler : Initialization_Handler;
1185 pragma Atomic (Global_Initialization_Handler);
1186 pragma Import (Ada, Global_Initialization_Handler,
1187 "__gnat_global_initialization_handler");
1189 begin
1190 -- We are separating the following portion of the code in order to
1191 -- place the exception handlers in a different block. In this way,
1192 -- we do not call Set_Jmpbuf_Address (which needs Self) before we
1193 -- set Self in Enter_Task
1195 -- Call the initialization hook if any
1197 if Global_Initialization_Handler /= null then
1198 Global_Initialization_Handler.all;
1199 end if;
1201 -- Call the task body procedure
1203 -- The task body is called with abort still deferred. That
1204 -- eliminates a dangerous window, for which we had to patch-up in
1205 -- Terminate_Task.
1207 -- During the expansion of the task body, we insert an RTS-call
1208 -- to Abort_Undefer, at the first point where abort should be
1209 -- allowed.
1211 Self_ID.Common.Task_Entry_Point (Self_ID.Common.Task_Arg);
1212 Initialization.Defer_Abort_Nestable (Self_ID);
1214 exception
1215 -- We can't call Terminate_Task in the exception handlers below,
1216 -- since there may be (e.g. in the case of GCC exception handling)
1217 -- clean ups associated with the exception handler that need to
1218 -- access task specific data.
1220 -- Defer abort so that this task can't be aborted while exiting
1222 when Standard'Abort_Signal =>
1223 Initialization.Defer_Abort_Nestable (Self_ID);
1225 -- Update the cause that motivated the task termination so that
1226 -- the appropriate information is passed to the task termination
1227 -- procedure. Task termination as a result of waiting on a
1228 -- terminate alternative is a normal termination, although it is
1229 -- implemented using the abort mechanisms.
1231 if Self_ID.Terminate_Alternative then
1232 Cause := Normal;
1234 if Global_Task_Debug_Event_Set then
1235 Debug.Signal_Debug_Event
1236 (Debug.Debug_Event_Terminated, Self_ID);
1237 end if;
1238 else
1239 Cause := Abnormal;
1241 if Global_Task_Debug_Event_Set then
1242 Debug.Signal_Debug_Event
1243 (Debug.Debug_Event_Abort_Terminated, Self_ID);
1244 end if;
1245 end if;
1247 when others =>
1248 -- ??? Using an E : others here causes CD2C11A to fail on Tru64
1250 Initialization.Defer_Abort_Nestable (Self_ID);
1252 -- Perform the task specific exception tracing duty. We handle
1253 -- these outputs here and not in the common notification routine
1254 -- because we need access to tasking related data and we don't
1255 -- want to drag dependencies against tasking related units in the
1256 -- the common notification units. Additionally, no trace is ever
1257 -- triggered from the common routine for the Unhandled_Raise case
1258 -- in tasks, since an exception never appears unhandled in this
1259 -- context because of this handler.
1261 if Exception_Trace = Unhandled_Raise then
1262 Trace_Unhandled_Exception_In_Task (Self_ID);
1263 end if;
1265 -- Update the cause that motivated the task termination so that
1266 -- the appropriate information is passed to the task termination
1267 -- procedure, as well as the associated Exception_Occurrence.
1269 Cause := Unhandled_Exception;
1271 Save_Occurrence (EO, SSL.Get_Current_Excep.all.all);
1273 if Global_Task_Debug_Event_Set then
1274 Debug.Signal_Debug_Event
1275 (Debug.Debug_Event_Exception_Terminated, Self_ID);
1276 end if;
1277 end;
1279 -- Look for a task termination handler. This code is for all tasks but
1280 -- the environment task. The task termination code for the environment
1281 -- task is executed by SSL.Task_Termination_Handler.
1283 Write_Lock (Self_ID);
1285 if Self_ID.Common.Specific_Handler /= null then
1286 TH := Self_ID.Common.Specific_Handler;
1288 -- Independent tasks should not call the Fall_Back_Handler (of the
1289 -- environment task), because they are implementation artifacts that
1290 -- should be invisible to Ada programs.
1292 elsif Self_ID.Master_Of_Task /= Independent_Task_Level then
1294 -- Look for a fall-back handler following the master relationship
1295 -- for the task. As specified in ARM C.7.3 par. 9/2, "the fall-back
1296 -- handler applies only to the dependent tasks of the task". Hence,
1297 -- if the terminating tasks (Self_ID) had a fall-back handler, it
1298 -- would not apply to itself, so we start the search with the parent.
1300 Search_Fall_Back_Handler (Self_ID.Common.Parent);
1301 end if;
1303 Unlock (Self_ID);
1305 -- Execute the task termination handler if we found it
1307 if TH /= null then
1308 begin
1309 TH.all (Cause, Self_ID, EO);
1310 exception
1311 -- RM-C.7.3(16) requires all exceptions raised here to be ignored
1313 when others =>
1314 null;
1315 end;
1316 end if;
1318 if System.Stack_Usage.Is_Enabled then
1319 Compute_Result (Self_ID.Common.Analyzer);
1320 Report_Result (Self_ID.Common.Analyzer);
1321 end if;
1323 Terminate_Task (Self_ID);
1324 end Task_Wrapper;
1326 --------------------
1327 -- Terminate_Task --
1328 --------------------
1330 -- Before we allow the thread to exit, we must clean up. This is a delicate
1331 -- job. We must wake up the task's master, who may immediately try to
1332 -- deallocate the ATCB from the current task WHILE IT IS STILL EXECUTING.
1334 -- To avoid this, the parent task must be blocked up to the latest
1335 -- statement executed. The trouble is that we have another step that we
1336 -- also want to postpone to the very end, i.e., calling SSL.Destroy_TSD.
1337 -- We have to postpone that until the end because compiler-generated code
1338 -- is likely to try to access that data at just about any point.
1340 -- We can't call Destroy_TSD while we are holding any other locks, because
1341 -- it locks Global_Task_Lock, and our deadlock prevention rules require
1342 -- that to be the outermost lock. Our first "solution" was to just lock
1343 -- Global_Task_Lock in addition to the other locks, and force the parent to
1344 -- also lock this lock between its wakeup and its freeing of the ATCB. See
1345 -- Complete_Task for the parent-side of the code that has the matching
1346 -- calls to Task_Lock and Task_Unlock. That was not really a solution,
1347 -- since the operation Task_Unlock continued to access the ATCB after
1348 -- unlocking, after which the parent was observed to race ahead, deallocate
1349 -- the ATCB, and then reallocate it to another task. The call to
1350 -- Undefer_Abort in Task_Unlock by the "terminated" task was overwriting
1351 -- the data of the new task that reused the ATCB. To solve this problem, we
1352 -- introduced the new operation Final_Task_Unlock.
1354 procedure Terminate_Task (Self_ID : Task_Id) is
1355 Environment_Task : constant Task_Id := STPO.Environment_Task;
1356 Master_Of_Task : Integer;
1357 Deallocate : Boolean;
1359 begin
1360 Debug.Task_Termination_Hook;
1362 -- Since GCC cannot allocate stack chunks efficiently without reordering
1363 -- some of the allocations, we have to handle this unexpected situation
1364 -- here. Normally we never have to call Vulnerable_Complete_Task here.
1366 if Self_ID.Common.Activator /= null then
1367 Vulnerable_Complete_Task (Self_ID);
1368 end if;
1370 Initialization.Task_Lock (Self_ID);
1372 Master_Of_Task := Self_ID.Master_Of_Task;
1374 -- Check if the current task is an independent task If so, decrement
1375 -- the Independent_Task_Count value.
1377 if Master_Of_Task = Independent_Task_Level then
1378 Write_Lock (Environment_Task);
1379 Utilities.Independent_Task_Count :=
1380 Utilities.Independent_Task_Count - 1;
1381 Unlock (Environment_Task);
1382 end if;
1384 -- Unprotect the guard page if needed
1386 Stack_Guard (Self_ID, False);
1388 Utilities.Make_Passive (Self_ID, Task_Completed => True);
1389 Deallocate := Self_ID.Free_On_Termination;
1391 pragma Assert (Check_Exit (Self_ID));
1393 SSL.Destroy_TSD (Self_ID.Common.Compiler_Data);
1394 Initialization.Final_Task_Unlock (Self_ID);
1396 -- WARNING: past this point, this thread must assume that the ATCB has
1397 -- been deallocated, and can't access it anymore (which is why we have
1398 -- saved the Free_On_Termination flag in a temporary variable).
1400 if Deallocate then
1401 Free_Task (Self_ID);
1402 end if;
1404 if Master_Of_Task > 0 then
1405 STPO.Exit_Task;
1406 end if;
1407 end Terminate_Task;
1409 ----------------
1410 -- Terminated --
1411 ----------------
1413 function Terminated (T : Task_Id) return Boolean is
1414 Self_ID : constant Task_Id := STPO.Self;
1415 Result : Boolean;
1417 begin
1418 Initialization.Defer_Abort_Nestable (Self_ID);
1419 Write_Lock (T);
1420 Result := T.Common.State = Terminated;
1421 Unlock (T);
1422 Initialization.Undefer_Abort_Nestable (Self_ID);
1424 return Result;
1425 end Terminated;
1427 ----------------------------------------
1428 -- Trace_Unhandled_Exception_In_Task --
1429 ----------------------------------------
1431 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id) is
1432 procedure To_Stderr (S : String);
1433 pragma Import (Ada, To_Stderr, "__gnat_to_stderr");
1435 use System.Soft_Links;
1437 function To_Address is new
1438 Ada.Unchecked_Conversion
1439 (Task_Id, System.Task_Primitives.Task_Address);
1441 Excep : constant Exception_Occurrence_Access :=
1442 SSL.Get_Current_Excep.all;
1444 begin
1445 -- This procedure is called by the task outermost handler in
1446 -- Task_Wrapper below, so only once the task stack has been fully
1447 -- unwound. The common notification routine has been called at the
1448 -- raise point already.
1450 -- Lock to prevent unsynchronized output
1452 Initialization.Task_Lock (Self_Id);
1453 To_Stderr ("task ");
1455 if Self_Id.Common.Task_Image_Len /= 0 then
1456 To_Stderr
1457 (Self_Id.Common.Task_Image (1 .. Self_Id.Common.Task_Image_Len));
1458 To_Stderr ("_");
1459 end if;
1461 To_Stderr (System.Address_Image (To_Address (Self_Id)));
1462 To_Stderr (" terminated by unhandled exception");
1463 To_Stderr ([ASCII.LF]);
1464 To_Stderr (Exception_Information (Excep.all));
1465 Initialization.Task_Unlock (Self_Id);
1466 end Trace_Unhandled_Exception_In_Task;
1468 ------------------------------------
1469 -- Vulnerable_Complete_Activation --
1470 ------------------------------------
1472 -- As in several other places, the locks of the activator and activated
1473 -- task are both locked here. This follows our deadlock prevention lock
1474 -- ordering policy, since the activated task must be created after the
1475 -- activator.
1477 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id) is
1478 Activator : constant Task_Id := Self_ID.Common.Activator;
1480 begin
1481 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Activation", 'C'));
1483 Write_Lock (Activator);
1484 Write_Lock (Self_ID);
1486 pragma Assert (Self_ID.Common.Activator /= null);
1488 -- Remove dangling reference to Activator, since a task may outlive its
1489 -- activator.
1491 Self_ID.Common.Activator := null;
1493 -- Wake up the activator, if it is waiting for a chain of tasks to
1494 -- activate, and we are the last in the chain to complete activation.
1496 if Activator.Common.State = Activator_Sleep then
1497 Activator.Common.Wait_Count := Activator.Common.Wait_Count - 1;
1499 if Activator.Common.Wait_Count = 0 then
1500 Wakeup (Activator, Activator_Sleep);
1501 end if;
1502 end if;
1504 -- The activator raises a Tasking_Error if any task it is activating
1505 -- is completed before the activation is done. However, if the reason
1506 -- for the task completion is an abort, we do not raise an exception.
1507 -- See RM 9.2(5).
1509 if not Self_ID.Callable
1510 and then Self_ID.Pending_ATC_Level /= Level_Completed_Task
1511 then
1512 Activator.Common.Activation_Failed := True;
1513 end if;
1515 Unlock (Self_ID);
1516 Unlock (Activator);
1518 -- After the activation, active priority should be the same as base
1519 -- priority. We must unlock the Activator first, though, since it
1520 -- should not wait if we have lower priority.
1522 if Get_Priority (Self_ID) /= Self_ID.Common.Base_Priority then
1523 Write_Lock (Self_ID);
1524 Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
1525 Unlock (Self_ID);
1526 end if;
1527 end Vulnerable_Complete_Activation;
1529 --------------------------------
1530 -- Vulnerable_Complete_Master --
1531 --------------------------------
1533 procedure Vulnerable_Complete_Master (Self_ID : Task_Id) is
1534 C : Task_Id;
1535 P : Task_Id;
1536 CM : constant Master_Level := Self_ID.Master_Within;
1537 T : aliased Task_Id;
1539 To_Be_Freed : Task_Id;
1540 -- This is a list of ATCBs to be freed, after we have released all RTS
1541 -- locks. This is necessary because of the locking order rules, since
1542 -- the storage manager uses Global_Task_Lock.
1544 pragma Warnings (Off);
1545 function Check_Unactivated_Tasks return Boolean;
1546 pragma Warnings (On);
1547 -- Temporary error-checking code below. This is part of the checks
1548 -- added in the new run time. Call it only inside a pragma Assert.
1550 -----------------------------
1551 -- Check_Unactivated_Tasks --
1552 -----------------------------
1554 function Check_Unactivated_Tasks return Boolean is
1555 begin
1556 Lock_RTS;
1557 Write_Lock (Self_ID);
1559 C := All_Tasks_List;
1560 while C /= null loop
1561 if C.Common.Activator = Self_ID and then C.Master_Of_Task = CM then
1562 return False;
1563 end if;
1565 if C.Common.Parent = Self_ID and then C.Master_Of_Task = CM then
1566 Write_Lock (C);
1568 if C.Common.State = Unactivated then
1569 return False;
1570 end if;
1572 Unlock (C);
1573 end if;
1575 C := C.Common.All_Tasks_Link;
1576 end loop;
1578 Unlock (Self_ID);
1579 Unlock_RTS;
1581 return True;
1582 end Check_Unactivated_Tasks;
1584 -- Start of processing for Vulnerable_Complete_Master
1586 begin
1587 pragma Debug
1588 (Debug.Trace (Self_ID, "V_Complete_Master(" & CM'Img & ")", 'C'));
1590 pragma Assert (Self_ID.Common.Wait_Count = 0);
1591 pragma Assert
1592 (Self_ID.Deferral_Level > 0
1593 or else not System.Restrictions.Abort_Allowed);
1595 -- Count how many active dependent tasks this master currently has, and
1596 -- record this in Wait_Count.
1598 -- This count should start at zero, since it is initialized to zero for
1599 -- new tasks, and the task should not exit the sleep-loops that use this
1600 -- count until the count reaches zero.
1602 -- While we're counting, if we run across any unactivated tasks that
1603 -- belong to this master, we summarily terminate them as required by
1604 -- RM-9.2(6).
1606 Lock_RTS;
1607 Write_Lock (Self_ID);
1609 C := All_Tasks_List;
1610 while C /= null loop
1612 -- Terminate unactivated (never-to-be activated) tasks
1614 if C.Common.Activator = Self_ID and then C.Master_Of_Task = CM then
1616 -- Usually, C.Common.Activator = Self_ID implies C.Master_Of_Task
1617 -- = CM. The only case where C is pending activation by this
1618 -- task, but the master of C is not CM is when C is part of a
1619 -- return object of a build-in-place function.
1621 pragma Assert (C.Common.State = Unactivated);
1623 Write_Lock (C);
1624 C.Common.Activator := null;
1625 C.Common.State := Terminated;
1626 C.Callable := False;
1627 Utilities.Cancel_Queued_Entry_Calls (C);
1628 Unlock (C);
1629 end if;
1631 -- Count it if directly dependent on this master
1633 if C.Common.Parent = Self_ID and then C.Master_Of_Task = CM then
1634 Write_Lock (C);
1636 if C.Awake_Count /= 0 then
1637 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1638 end if;
1640 Unlock (C);
1641 end if;
1643 C := C.Common.All_Tasks_Link;
1644 end loop;
1646 Self_ID.Common.State := Master_Completion_Sleep;
1647 Unlock (Self_ID);
1648 Unlock_RTS;
1650 -- Wait until dependent tasks are all terminated or ready to terminate.
1651 -- While waiting, the task may be awakened if the task's priority needs
1652 -- changing, or this master is aborted. In the latter case, we abort the
1653 -- dependents, and resume waiting until Wait_Count goes to zero.
1655 Write_Lock (Self_ID);
1657 loop
1658 exit when Self_ID.Common.Wait_Count = 0;
1660 -- Here is a difference as compared to Complete_Master
1662 if Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
1663 and then not Self_ID.Dependents_Aborted
1664 then
1665 Unlock (Self_ID);
1666 Lock_RTS;
1667 Abort_Dependents (Self_ID);
1668 Unlock_RTS;
1669 Write_Lock (Self_ID);
1670 else
1671 pragma Debug
1672 (Debug.Trace (Self_ID, "master_completion_sleep", 'C'));
1673 Sleep (Self_ID, Master_Completion_Sleep);
1674 end if;
1675 end loop;
1677 Self_ID.Common.State := Runnable;
1678 Unlock (Self_ID);
1680 -- Dependents are all terminated or on terminate alternatives. Now,
1681 -- force those on terminate alternatives to terminate, by aborting them.
1683 pragma Assert (Check_Unactivated_Tasks);
1685 if Self_ID.Alive_Count > 1 then
1686 -- ???
1687 -- Consider finding a way to skip the following extra steps if there
1688 -- are no dependents with terminate alternatives. This could be done
1689 -- by adding another count to the ATCB, similar to Awake_Count, but
1690 -- keeping track of tasks that are on terminate alternatives.
1692 pragma Assert (Self_ID.Common.Wait_Count = 0);
1694 -- Force any remaining dependents to terminate by aborting them
1696 Lock_RTS;
1697 Abort_Dependents (Self_ID);
1699 -- Above, when we "abort" the dependents we are simply using this
1700 -- operation for convenience. We are not required to support the full
1701 -- abort-statement semantics; in particular, we are not required to
1702 -- immediately cancel any queued or in-service entry calls. That is
1703 -- good, because if we tried to cancel a call we would need to lock
1704 -- the caller, in order to wake the caller up. Our anti-deadlock
1705 -- rules prevent us from doing that without releasing the locks on C
1706 -- and Self_ID. Releasing and retaking those locks would be wasteful
1707 -- at best, and should not be considered further without more
1708 -- detailed analysis of potential concurrent accesses to the ATCBs
1709 -- of C and Self_ID.
1711 -- Count how many "alive" dependent tasks this master currently has,
1712 -- and record this in Wait_Count. This count should start at zero,
1713 -- since it is initialized to zero for new tasks, and the task should
1714 -- not exit the sleep-loops that use this count until the count
1715 -- reaches zero.
1717 pragma Assert (Self_ID.Common.Wait_Count = 0);
1719 Write_Lock (Self_ID);
1721 C := All_Tasks_List;
1722 while C /= null loop
1723 if C.Common.Parent = Self_ID and then C.Master_Of_Task = CM then
1724 Write_Lock (C);
1726 pragma Assert (C.Awake_Count = 0);
1728 if C.Alive_Count > 0 then
1729 pragma Assert (C.Terminate_Alternative);
1730 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1731 end if;
1733 Unlock (C);
1734 end if;
1736 C := C.Common.All_Tasks_Link;
1737 end loop;
1739 Self_ID.Common.State := Master_Phase_2_Sleep;
1740 Unlock (Self_ID);
1741 Unlock_RTS;
1743 -- Wait for all counted tasks to finish terminating themselves
1745 Write_Lock (Self_ID);
1747 loop
1748 exit when Self_ID.Common.Wait_Count = 0;
1749 Sleep (Self_ID, Master_Phase_2_Sleep);
1750 end loop;
1752 Self_ID.Common.State := Runnable;
1753 Unlock (Self_ID);
1754 end if;
1756 -- We don't wake up for abort here. We are already terminating just as
1757 -- fast as we can, so there is no point.
1759 -- Remove terminated tasks from the list of Self_ID's dependents, but
1760 -- don't free their ATCBs yet, because of lock order restrictions, which
1761 -- don't allow us to call "free" or "malloc" while holding any other
1762 -- locks. Instead, we put those ATCBs to be freed onto a temporary list,
1763 -- called To_Be_Freed.
1765 Lock_RTS;
1766 C := All_Tasks_List;
1767 P := null;
1768 while C /= null loop
1770 -- If Free_On_Termination is set, do nothing here, and let the
1771 -- task free itself if not already done, otherwise we risk a race
1772 -- condition where Vulnerable_Free_Task is called in the loop below,
1773 -- while the task calls Free_Task itself, in Terminate_Task.
1775 if C.Common.Parent = Self_ID
1776 and then C.Master_Of_Task >= CM
1777 and then not C.Free_On_Termination
1778 then
1779 if P /= null then
1780 P.Common.All_Tasks_Link := C.Common.All_Tasks_Link;
1781 else
1782 All_Tasks_List := C.Common.All_Tasks_Link;
1783 end if;
1785 T := C.Common.All_Tasks_Link;
1786 C.Common.All_Tasks_Link := To_Be_Freed;
1787 To_Be_Freed := C;
1788 C := T;
1790 else
1791 P := C;
1792 C := C.Common.All_Tasks_Link;
1793 end if;
1794 end loop;
1796 Unlock_RTS;
1798 -- Free all the ATCBs on the list To_Be_Freed
1800 -- The ATCBs in the list are no longer in All_Tasks_List, and after
1801 -- any interrupt entries are detached from them they should no longer
1802 -- be referenced.
1804 -- Global_Task_Lock (Task_Lock/Unlock) is locked in the loop below to
1805 -- avoid a race between a terminating task and its parent. The parent
1806 -- might try to deallocate the ACTB out from underneath the exiting
1807 -- task. Note that Free will also lock Global_Task_Lock, but that is
1808 -- OK, since this is the *one* lock for which we have a mechanism to
1809 -- support nested locking. See Task_Wrapper and its finalizer for more
1810 -- explanation.
1812 -- ???
1813 -- The check "T.Common.Parent /= null ..." below is to prevent dangling
1814 -- references to terminated library-level tasks, which could otherwise
1815 -- occur during finalization of library-level objects. A better solution
1816 -- might be to hook task objects into the finalization chain and
1817 -- deallocate the ATCB when the task object is deallocated. However,
1818 -- this change is not likely to gain anything significant, since all
1819 -- this storage should be recovered en-masse when the process exits.
1821 while To_Be_Freed /= null loop
1822 T := To_Be_Freed;
1823 To_Be_Freed := T.Common.All_Tasks_Link;
1825 -- ??? On SGI there is currently no Interrupt_Manager, that's why we
1826 -- need to check if the Interrupt_Manager_ID is null.
1828 if T.Interrupt_Entry and then Interrupt_Manager_ID /= null then
1829 declare
1830 Detach_Interrupt_Entries_Index : constant Task_Entry_Index := 1;
1831 -- Corresponds to the entry index of System.Interrupts.
1832 -- Interrupt_Manager.Detach_Interrupt_Entries. Be sure
1833 -- to update this value when changing Interrupt_Manager specs.
1835 type Param_Type is access all Task_Id;
1837 Param : aliased Param_Type := T'Access;
1839 begin
1840 System.Tasking.Rendezvous.Call_Simple
1841 (Interrupt_Manager_ID, Detach_Interrupt_Entries_Index,
1842 Param'Address);
1843 end;
1844 end if;
1846 if (T.Common.Parent /= null
1847 and then T.Common.Parent.Common.Parent /= null)
1848 or else T.Master_Of_Task > Library_Task_Level
1849 then
1850 Initialization.Task_Lock (Self_ID);
1852 -- If Sec_Stack_Ptr is not null, it means that Destroy_TSD
1853 -- has not been called yet (case of an unactivated task).
1855 if T.Common.Compiler_Data.Sec_Stack_Ptr /= null then
1856 SSL.Destroy_TSD (T.Common.Compiler_Data);
1857 end if;
1859 Vulnerable_Free_Task (T);
1860 Initialization.Task_Unlock (Self_ID);
1861 end if;
1862 end loop;
1864 -- It might seem nice to let the terminated task deallocate its own
1865 -- ATCB. That would not cover the case of unactivated tasks. It also
1866 -- would force us to keep the underlying thread around past termination,
1867 -- since references to the ATCB are possible past termination.
1869 -- Currently, we get rid of the thread as soon as the task terminates,
1870 -- and let the parent recover the ATCB later.
1872 -- Some day, if we want to recover the ATCB earlier, at task
1873 -- termination, we could consider using "fat task IDs", that include the
1874 -- serial number with the ATCB pointer, to catch references to tasks
1875 -- that no longer have ATCBs. It is not clear how much this would gain,
1876 -- since the user-level task object would still be occupying storage.
1878 -- Make next master level up active. We don't need to lock the ATCB,
1879 -- since the value is only updated by each task for itself.
1881 Self_ID.Master_Within := CM - 1;
1883 Debug.Master_Completed_Hook (Self_ID, CM);
1884 end Vulnerable_Complete_Master;
1886 ------------------------------
1887 -- Vulnerable_Complete_Task --
1888 ------------------------------
1890 -- Complete the calling task
1892 -- This procedure must be called with abort deferred. It should only be
1893 -- called by Complete_Task and Finalize_Global_Tasks (for the environment
1894 -- task).
1896 -- The effect is similar to that of Complete_Master. Differences include
1897 -- the closing of entries here, and computation of the number of active
1898 -- dependent tasks in Complete_Master.
1900 -- We don't lock Self_ID before the call to Vulnerable_Complete_Activation,
1901 -- because that does its own locking, and because we do not need the lock
1902 -- to test Self_ID.Common.Activator. That value should only be read and
1903 -- modified by Self.
1905 procedure Vulnerable_Complete_Task (Self_ID : Task_Id) is
1906 begin
1907 pragma Assert
1908 (Self_ID.Deferral_Level > 0
1909 or else not System.Restrictions.Abort_Allowed);
1910 pragma Assert (Self_ID = Self);
1911 pragma Assert
1912 (Self_ID.Master_Within in
1913 Self_ID.Master_Of_Task .. Self_ID.Master_Of_Task + 3);
1914 pragma Assert (Self_ID.Common.Wait_Count = 0);
1915 pragma Assert (Self_ID.Open_Accepts = null);
1916 pragma Assert (Self_ID.ATC_Nesting_Level = Level_No_ATC_Occurring);
1918 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Task", 'C'));
1920 Write_Lock (Self_ID);
1921 Self_ID.Callable := False;
1923 -- In theory, Self should have no pending entry calls left on its
1924 -- call-stack. Each async. select statement should clean its own call,
1925 -- and blocking entry calls should defer abort until the calls are
1926 -- cancelled, then clean up.
1928 Utilities.Cancel_Queued_Entry_Calls (Self_ID);
1929 Unlock (Self_ID);
1931 if Self_ID.Common.Activator /= null then
1932 Vulnerable_Complete_Activation (Self_ID);
1933 end if;
1935 -- If Self_ID.Master_Within = Self_ID.Master_Of_Task + 2 we may have
1936 -- dependent tasks for which we need to wait. Otherwise we just exit.
1938 if Self_ID.Master_Within = Self_ID.Master_Of_Task + 2 then
1939 Vulnerable_Complete_Master (Self_ID);
1940 end if;
1941 end Vulnerable_Complete_Task;
1943 --------------------------
1944 -- Vulnerable_Free_Task --
1945 --------------------------
1947 -- Recover all runtime system storage associated with the task T. This
1948 -- should only be called after T has terminated and will no longer be
1949 -- referenced.
1951 -- For tasks created by an allocator that fails, due to an exception, it
1952 -- is called from Expunge_Unactivated_Tasks.
1954 -- For tasks created by elaboration of task object declarations it is
1955 -- called from the finalization code of the Task_Wrapper procedure.
1957 procedure Vulnerable_Free_Task (T : Task_Id) is
1958 begin
1959 pragma Debug (Debug.Trace (Self, "Vulnerable_Free_Task", 'C', T));
1961 Write_Lock (T);
1962 Initialization.Finalize_Attributes (T);
1963 Unlock (T);
1965 System.Task_Primitives.Operations.Finalize_TCB (T);
1966 end Vulnerable_Free_Task;
1968 -- Package elaboration code
1970 begin
1971 -- Establish the Adafinal softlink
1973 -- This is not done inside the central RTS initialization routine
1974 -- to avoid with'ing this package from System.Tasking.Initialization.
1976 SSL.Adafinal := Finalize_Global_Tasks'Access;
1978 -- Establish soft links for subprograms that manipulate master_id's.
1979 -- This cannot be done when the RTS is initialized, because of various
1980 -- elaboration constraints.
1982 SSL.Current_Master := Stages.Current_Master'Access;
1983 SSL.Enter_Master := Stages.Enter_Master'Access;
1984 SSL.Complete_Master := Stages.Complete_Master'Access;
1985 end System.Tasking.Stages;