Skip several gcc.dg/builtin-dynamic-object-size tests on hppa*-*-hpux*
[official-gcc.git] / gcc / ada / libgnarl / s-taprop__posix.adb
blob0c1543260e7ddcfbe4777ea46168f837316d8575
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- This is a POSIX-like version of this package
34 -- This package contains all the GNULL primitives that interface directly with
35 -- the underlying OS.
37 -- Note: this file can only be used for POSIX compliant systems that implement
38 -- SCHED_FIFO and Ceiling Locking correctly.
40 -- For configurations where SCHED_FIFO and priority ceiling are not a
41 -- requirement, this file can also be used (e.g AiX threads)
43 with Ada.Unchecked_Conversion;
45 with Interfaces.C;
47 with System.Tasking.Debug;
48 with System.Interrupt_Management;
49 with System.OS_Constants;
50 with System.OS_Primitives;
51 with System.Task_Info;
53 with System.Soft_Links;
54 -- We use System.Soft_Links instead of System.Tasking.Initialization
55 -- because the later is a higher level package that we shouldn't depend on.
56 -- For example when using the restricted run time, it is replaced by
57 -- System.Tasking.Restricted.Stages.
59 package body System.Task_Primitives.Operations is
61 package OSC renames System.OS_Constants;
62 package SSL renames System.Soft_Links;
64 use System.Tasking.Debug;
65 use System.Tasking;
66 use Interfaces.C;
67 use System.OS_Interface;
68 use System.Parameters;
69 use System.OS_Primitives;
71 ----------------
72 -- Local Data --
73 ----------------
75 -- The followings are logically constants, but need to be initialized
76 -- at run time.
78 Single_RTS_Lock : aliased RTS_Lock;
79 -- This is a lock to allow only one thread of control in the RTS at
80 -- a time; it is used to execute in mutual exclusion from all other tasks.
81 -- Used to protect All_Tasks_List
83 Environment_Task_Id : Task_Id;
84 -- A variable to hold Task_Id for the environment task
86 Locking_Policy : constant Character;
87 pragma Import (C, Locking_Policy, "__gl_locking_policy");
88 -- Value of the pragma Locking_Policy:
89 -- 'C' for Ceiling_Locking
90 -- 'I' for Inherit_Locking
91 -- ' ' for none.
93 Unblocked_Signal_Mask : aliased sigset_t;
94 -- The set of signals that should unblocked in all tasks
96 -- The followings are internal configuration constants needed
98 Next_Serial_Number : Task_Serial_Number := 100;
99 -- We start at 100, to reserve some special values for
100 -- using in error checking.
102 Time_Slice_Val : constant Integer;
103 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
105 Dispatching_Policy : constant Character;
106 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
108 Foreign_Task_Elaborated : aliased Boolean := True;
109 -- Used to identified fake tasks (i.e., non-Ada Threads)
111 Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0;
112 -- Whether to use an alternate signal stack for stack overflows
114 Abort_Handler_Installed : Boolean := False;
115 -- True if a handler for the abort signal is installed
117 --------------------
118 -- Local Packages --
119 --------------------
121 package Specific is
123 procedure Initialize (Environment_Task : Task_Id);
124 pragma Inline (Initialize);
125 -- Initialize various data needed by this package
127 function Is_Valid_Task return Boolean;
128 pragma Inline (Is_Valid_Task);
129 -- Does executing thread have a TCB?
131 procedure Set (Self_Id : Task_Id);
132 pragma Inline (Set);
133 -- Set the self id for the current task
135 function Self return Task_Id;
136 pragma Inline (Self);
137 -- Return a pointer to the Ada Task Control Block of the calling task
139 end Specific;
141 package body Specific is separate;
142 -- The body of this package is target specific
144 package Monotonic is
146 function Monotonic_Clock return Duration;
147 pragma Inline (Monotonic_Clock);
148 -- Returns an absolute time, represented as an offset relative to some
149 -- unspecified starting point, typically system boot time. This clock
150 -- is not affected by discontinuous jumps in the system time.
152 function RT_Resolution return Duration;
153 pragma Inline (RT_Resolution);
154 -- Returns resolution of the underlying clock used to implement RT_Clock
156 procedure Timed_Sleep
157 (Self_ID : ST.Task_Id;
158 Time : Duration;
159 Mode : ST.Delay_Modes;
160 Reason : System.Tasking.Task_States;
161 Timedout : out Boolean;
162 Yielded : out Boolean);
163 -- Combination of Sleep (above) and Timed_Delay
165 procedure Timed_Delay
166 (Self_ID : ST.Task_Id;
167 Time : Duration;
168 Mode : ST.Delay_Modes);
169 -- Implement the semantics of the delay statement.
170 -- The caller should be abort-deferred and should not hold any locks.
172 end Monotonic;
174 package body Monotonic is separate;
176 ----------------------------------
177 -- ATCB allocation/deallocation --
178 ----------------------------------
180 package body ATCB_Allocation is separate;
181 -- The body of this package is shared across several targets
183 ---------------------------------
184 -- Support for foreign threads --
185 ---------------------------------
187 function Register_Foreign_Thread
188 (Thread : Thread_Id;
189 Sec_Stack_Size : Size_Type := Unspecified_Size) return Task_Id;
190 -- Allocate and initialize a new ATCB for the current Thread. The size of
191 -- the secondary stack can be optionally specified.
193 function Register_Foreign_Thread
194 (Thread : Thread_Id;
195 Sec_Stack_Size : Size_Type := Unspecified_Size)
196 return Task_Id is separate;
198 -----------------------
199 -- Local Subprograms --
200 -----------------------
202 procedure Abort_Handler (Sig : Signal);
203 -- Signal handler used to implement asynchronous abort.
204 -- See also comment before body, below.
206 function To_Address is
207 new Ada.Unchecked_Conversion (Task_Id, System.Address);
209 function GNAT_pthread_condattr_setup
210 (attr : access pthread_condattr_t) return int;
211 pragma Import (C,
212 GNAT_pthread_condattr_setup, "__gnat_pthread_condattr_setup");
214 -------------------
215 -- Abort_Handler --
216 -------------------
218 -- Target-dependent binding of inter-thread Abort signal to the raising of
219 -- the Abort_Signal exception.
221 -- The technical issues and alternatives here are essentially the
222 -- same as for raising exceptions in response to other signals
223 -- (e.g. Storage_Error). See code and comments in the package body
224 -- System.Interrupt_Management.
226 -- Some implementations may not allow an exception to be propagated out of
227 -- a handler, and others might leave the signal or interrupt that invoked
228 -- this handler masked after the exceptional return to the application
229 -- code.
231 -- GNAT exceptions are originally implemented using setjmp()/longjmp(). On
232 -- most UNIX systems, this will allow transfer out of a signal handler,
233 -- which is usually the only mechanism available for implementing
234 -- asynchronous handlers of this kind. However, some systems do not
235 -- restore the signal mask on longjmp(), leaving the abort signal masked.
237 procedure Abort_Handler (Sig : Signal) is
238 pragma Unreferenced (Sig);
240 T : constant Task_Id := Self;
241 Old_Set : aliased sigset_t;
243 Result : Interfaces.C.int;
244 pragma Warnings (Off, Result);
246 begin
247 -- It's not safe to raise an exception when using GCC ZCX mechanism.
248 -- Note that we still need to install a signal handler, since in some
249 -- cases (e.g. shutdown of the Server_Task in System.Interrupts) we
250 -- need to send the Abort signal to a task.
252 if ZCX_By_Default then
253 return;
254 end if;
256 if T.Deferral_Level = 0
257 and then T.Pending_ATC_Level < T.ATC_Nesting_Level and then
258 not T.Aborting
259 then
260 T.Aborting := True;
262 -- Make sure signals used for RTS internal purpose are unmasked
264 Result := pthread_sigmask (SIG_UNBLOCK,
265 Unblocked_Signal_Mask'Access, Old_Set'Access);
266 pragma Assert (Result = 0);
268 raise Standard'Abort_Signal;
269 end if;
270 end Abort_Handler;
272 -----------------
273 -- Stack_Guard --
274 -----------------
276 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
277 Stack_Base : constant Address := Get_Stack_Base (T.Common.LL.Thread);
278 Page_Size : Address;
279 Res : Interfaces.C.int;
281 begin
282 if Stack_Base_Available then
284 -- Compute the guard page address
286 Page_Size := Address (Get_Page_Size);
287 Res :=
288 mprotect
289 (Stack_Base - (Stack_Base mod Page_Size) + Page_Size,
290 size_t (Page_Size),
291 prot => (if On then PROT_ON else PROT_OFF));
292 pragma Assert (Res = 0);
293 end if;
294 end Stack_Guard;
296 --------------------
297 -- Get_Thread_Id --
298 --------------------
300 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
301 begin
302 return T.Common.LL.Thread;
303 end Get_Thread_Id;
305 ----------
306 -- Self --
307 ----------
309 function Self return Task_Id renames Specific.Self;
311 ---------------------
312 -- Initialize_Lock --
313 ---------------------
315 -- Note: mutexes and cond_variables needed per-task basis are initialized
316 -- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
317 -- as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
318 -- status change of RTS. Therefore raising Storage_Error in the following
319 -- routines should be able to be handled safely.
321 procedure Initialize_Lock
322 (Prio : System.Any_Priority;
323 L : not null access Lock)
325 Attributes : aliased pthread_mutexattr_t;
326 Result : Interfaces.C.int;
328 begin
329 Result := pthread_mutexattr_init (Attributes'Access);
330 pragma Assert (Result = 0 or else Result = ENOMEM);
332 if Result = ENOMEM then
333 raise Storage_Error;
334 end if;
336 if Locking_Policy = 'C' then
337 Result := pthread_mutexattr_setprotocol
338 (Attributes'Access, PTHREAD_PRIO_PROTECT);
339 pragma Assert (Result = 0);
341 Result := pthread_mutexattr_setprioceiling
342 (Attributes'Access, Interfaces.C.int (Prio));
343 pragma Assert (Result = 0);
345 elsif Locking_Policy = 'I' then
346 Result := pthread_mutexattr_setprotocol
347 (Attributes'Access, PTHREAD_PRIO_INHERIT);
348 pragma Assert (Result = 0);
349 end if;
351 Result := pthread_mutex_init (L.WO'Access, Attributes'Access);
352 pragma Assert (Result = 0 or else Result = ENOMEM);
354 if Result = ENOMEM then
355 Result := pthread_mutexattr_destroy (Attributes'Access);
356 raise Storage_Error;
357 end if;
359 Result := pthread_mutexattr_destroy (Attributes'Access);
360 pragma Assert (Result = 0);
361 end Initialize_Lock;
363 procedure Initialize_Lock
364 (L : not null access RTS_Lock; Level : Lock_Level)
366 pragma Unreferenced (Level);
368 Attributes : aliased pthread_mutexattr_t;
369 Result : Interfaces.C.int;
371 begin
372 Result := pthread_mutexattr_init (Attributes'Access);
373 pragma Assert (Result = 0 or else Result = ENOMEM);
375 if Result = ENOMEM then
376 raise Storage_Error;
377 end if;
379 if Locking_Policy = 'C' then
380 Result := pthread_mutexattr_setprotocol
381 (Attributes'Access, PTHREAD_PRIO_PROTECT);
382 pragma Assert (Result = 0);
384 Result := pthread_mutexattr_setprioceiling
385 (Attributes'Access, Interfaces.C.int (System.Any_Priority'Last));
386 pragma Assert (Result = 0);
388 elsif Locking_Policy = 'I' then
389 Result := pthread_mutexattr_setprotocol
390 (Attributes'Access, PTHREAD_PRIO_INHERIT);
391 pragma Assert (Result = 0);
392 end if;
394 Result := pthread_mutex_init (L, Attributes'Access);
395 pragma Assert (Result = 0 or else Result = ENOMEM);
397 if Result = ENOMEM then
398 Result := pthread_mutexattr_destroy (Attributes'Access);
399 raise Storage_Error;
400 end if;
402 Result := pthread_mutexattr_destroy (Attributes'Access);
403 pragma Assert (Result = 0);
404 end Initialize_Lock;
406 -------------------
407 -- Finalize_Lock --
408 -------------------
410 procedure Finalize_Lock (L : not null access Lock) is
411 Result : Interfaces.C.int;
412 begin
413 Result := pthread_mutex_destroy (L.WO'Access);
414 pragma Assert (Result = 0);
415 end Finalize_Lock;
417 procedure Finalize_Lock (L : not null access RTS_Lock) is
418 Result : Interfaces.C.int;
419 begin
420 Result := pthread_mutex_destroy (L);
421 pragma Assert (Result = 0);
422 end Finalize_Lock;
424 ----------------
425 -- Write_Lock --
426 ----------------
428 procedure Write_Lock
429 (L : not null access Lock; Ceiling_Violation : out Boolean)
431 Result : Interfaces.C.int;
433 begin
434 Result := pthread_mutex_lock (L.WO'Access);
436 -- The cause of EINVAL is a priority ceiling violation
438 Ceiling_Violation := Result = EINVAL;
439 pragma Assert (Result = 0 or else Ceiling_Violation);
440 end Write_Lock;
442 procedure Write_Lock (L : not null access RTS_Lock) is
443 Result : Interfaces.C.int;
444 begin
445 Result := pthread_mutex_lock (L);
446 pragma Assert (Result = 0);
447 end Write_Lock;
449 procedure Write_Lock (T : Task_Id) is
450 Result : Interfaces.C.int;
451 begin
452 Result := pthread_mutex_lock (T.Common.LL.L'Access);
453 pragma Assert (Result = 0);
454 end Write_Lock;
456 ---------------
457 -- Read_Lock --
458 ---------------
460 procedure Read_Lock
461 (L : not null access Lock; Ceiling_Violation : out Boolean) is
462 begin
463 Write_Lock (L, Ceiling_Violation);
464 end Read_Lock;
466 ------------
467 -- Unlock --
468 ------------
470 procedure Unlock (L : not null access Lock) is
471 Result : Interfaces.C.int;
472 begin
473 Result := pthread_mutex_unlock (L.WO'Access);
474 pragma Assert (Result = 0);
475 end Unlock;
477 procedure Unlock (L : not null access RTS_Lock) is
478 Result : Interfaces.C.int;
479 begin
480 Result := pthread_mutex_unlock (L);
481 pragma Assert (Result = 0);
482 end Unlock;
484 procedure Unlock (T : Task_Id) is
485 Result : Interfaces.C.int;
486 begin
487 Result := pthread_mutex_unlock (T.Common.LL.L'Access);
488 pragma Assert (Result = 0);
489 end Unlock;
491 -----------------
492 -- Set_Ceiling --
493 -----------------
495 -- Dynamic priority ceilings are not supported by the underlying system
497 procedure Set_Ceiling
498 (L : not null access Lock;
499 Prio : System.Any_Priority)
501 pragma Unreferenced (L, Prio);
502 begin
503 null;
504 end Set_Ceiling;
506 -----------
507 -- Sleep --
508 -----------
510 procedure Sleep
511 (Self_ID : Task_Id;
512 Reason : System.Tasking.Task_States)
514 pragma Unreferenced (Reason);
516 Result : Interfaces.C.int;
518 begin
519 Result :=
520 pthread_cond_wait
521 (cond => Self_ID.Common.LL.CV'Access,
522 mutex => Self_ID.Common.LL.L'Access);
524 -- EINTR is not considered a failure
526 pragma Assert (Result = 0 or else Result = EINTR);
527 end Sleep;
529 -----------------
530 -- Timed_Sleep --
531 -----------------
533 -- This is for use within the run-time system, so abort is
534 -- assumed to be already deferred, and the caller should be
535 -- holding its own ATCB lock.
537 procedure Timed_Sleep
538 (Self_ID : Task_Id;
539 Time : Duration;
540 Mode : ST.Delay_Modes;
541 Reason : Task_States;
542 Timedout : out Boolean;
543 Yielded : out Boolean) renames Monotonic.Timed_Sleep;
545 -----------------
546 -- Timed_Delay --
547 -----------------
549 -- This is for use in implementing delay statements, so we assume the
550 -- caller is abort-deferred but is holding no locks.
552 procedure Timed_Delay
553 (Self_ID : Task_Id;
554 Time : Duration;
555 Mode : ST.Delay_Modes) renames Monotonic.Timed_Delay;
557 ---------------------
558 -- Monotonic_Clock --
559 ---------------------
561 function Monotonic_Clock return Duration renames Monotonic.Monotonic_Clock;
563 -------------------
564 -- RT_Resolution --
565 -------------------
567 function RT_Resolution return Duration renames Monotonic.RT_Resolution;
569 ------------
570 -- Wakeup --
571 ------------
573 procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
574 pragma Unreferenced (Reason);
575 Result : Interfaces.C.int;
576 begin
577 Result := pthread_cond_signal (T.Common.LL.CV'Access);
578 pragma Assert (Result = 0);
579 end Wakeup;
581 -----------
582 -- Yield --
583 -----------
585 procedure Yield (Do_Yield : Boolean := True) is
586 Result : Interfaces.C.int;
587 pragma Unreferenced (Result);
588 begin
589 if Do_Yield then
590 Result := sched_yield;
591 end if;
592 end Yield;
594 ------------------
595 -- Set_Priority --
596 ------------------
598 procedure Set_Priority
599 (T : Task_Id;
600 Prio : System.Any_Priority;
601 Loss_Of_Inheritance : Boolean := False)
603 pragma Unreferenced (Loss_Of_Inheritance);
605 Result : Interfaces.C.int;
606 Param : aliased struct_sched_param;
608 function Get_Policy (Prio : System.Any_Priority) return Character;
609 pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
610 -- Get priority specific dispatching policy
612 Priority_Specific_Policy : constant Character := Get_Policy (Prio);
613 -- Upper case first character of the policy name corresponding to the
614 -- task as set by a Priority_Specific_Dispatching pragma.
616 begin
617 T.Common.Current_Priority := Prio;
618 Param.sched_priority := To_Target_Priority (Prio);
620 if Time_Slice_Supported
621 and then (Dispatching_Policy = 'R'
622 or else Priority_Specific_Policy = 'R'
623 or else Time_Slice_Val > 0)
624 then
625 Result := pthread_setschedparam
626 (T.Common.LL.Thread, SCHED_RR, Param'Access);
628 elsif Dispatching_Policy = 'F'
629 or else Priority_Specific_Policy = 'F'
630 or else Time_Slice_Val = 0
631 then
632 Result := pthread_setschedparam
633 (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
635 else
636 Result := pthread_setschedparam
637 (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
638 end if;
640 pragma Assert (Result = 0);
641 end Set_Priority;
643 ------------------
644 -- Get_Priority --
645 ------------------
647 function Get_Priority (T : Task_Id) return System.Any_Priority is
648 begin
649 return T.Common.Current_Priority;
650 end Get_Priority;
652 ----------------
653 -- Enter_Task --
654 ----------------
656 procedure Enter_Task (Self_ID : Task_Id) is
657 begin
658 Self_ID.Common.LL.Thread := pthread_self;
659 Self_ID.Common.LL.LWP := lwp_self;
661 Specific.Set (Self_ID);
663 if Use_Alternate_Stack then
664 declare
665 Stack : aliased stack_t;
666 Result : Interfaces.C.int;
667 begin
668 Stack.ss_sp := Self_ID.Common.Task_Alternate_Stack;
669 Stack.ss_size := Alternate_Stack_Size;
670 Stack.ss_flags := 0;
671 Result := sigaltstack (Stack'Access, null);
672 pragma Assert (Result = 0);
673 end;
674 end if;
675 end Enter_Task;
677 -------------------
678 -- Is_Valid_Task --
679 -------------------
681 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
683 -----------------------------
684 -- Register_Foreign_Thread --
685 -----------------------------
687 function Register_Foreign_Thread return Task_Id is
688 begin
689 if Is_Valid_Task then
690 return Self;
691 else
692 return Register_Foreign_Thread (pthread_self);
693 end if;
694 end Register_Foreign_Thread;
696 --------------------
697 -- Initialize_TCB --
698 --------------------
700 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
701 Mutex_Attr : aliased pthread_mutexattr_t;
702 Result : Interfaces.C.int;
703 Cond_Attr : aliased pthread_condattr_t;
705 begin
706 -- Give the task a unique serial number
708 Self_ID.Serial_Number := Next_Serial_Number;
709 Next_Serial_Number := Next_Serial_Number + 1;
710 pragma Assert (Next_Serial_Number /= 0);
712 Result := pthread_mutexattr_init (Mutex_Attr'Access);
713 pragma Assert (Result = 0 or else Result = ENOMEM);
715 if Result = 0 then
716 if Locking_Policy = 'C' then
717 Result :=
718 pthread_mutexattr_setprotocol
719 (Mutex_Attr'Access,
720 PTHREAD_PRIO_PROTECT);
721 pragma Assert (Result = 0);
723 Result :=
724 pthread_mutexattr_setprioceiling
725 (Mutex_Attr'Access,
726 Interfaces.C.int (System.Any_Priority'Last));
727 pragma Assert (Result = 0);
729 elsif Locking_Policy = 'I' then
730 Result :=
731 pthread_mutexattr_setprotocol
732 (Mutex_Attr'Access,
733 PTHREAD_PRIO_INHERIT);
734 pragma Assert (Result = 0);
735 end if;
737 Result :=
738 pthread_mutex_init
739 (Self_ID.Common.LL.L'Access,
740 Mutex_Attr'Access);
741 pragma Assert (Result = 0 or else Result = ENOMEM);
742 end if;
744 if Result /= 0 then
745 Succeeded := False;
746 return;
747 end if;
749 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
750 pragma Assert (Result = 0);
752 Result := pthread_condattr_init (Cond_Attr'Access);
753 pragma Assert (Result = 0 or else Result = ENOMEM);
755 if Result = 0 then
756 Result := GNAT_pthread_condattr_setup (Cond_Attr'Access);
757 pragma Assert (Result = 0);
759 Result :=
760 pthread_cond_init
761 (Self_ID.Common.LL.CV'Access, Cond_Attr'Access);
762 pragma Assert (Result = 0 or else Result = ENOMEM);
763 end if;
765 if Result = 0 then
766 Succeeded := True;
767 else
768 Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
769 pragma Assert (Result = 0);
770 Succeeded := False;
771 end if;
773 Result := pthread_condattr_destroy (Cond_Attr'Access);
774 pragma Assert (Result = 0);
775 end Initialize_TCB;
777 -----------------
778 -- Create_Task --
779 -----------------
781 procedure Create_Task
782 (T : Task_Id;
783 Wrapper : System.Address;
784 Stack_Size : System.Parameters.Size_Type;
785 Priority : System.Any_Priority;
786 Succeeded : out Boolean)
788 Attributes : aliased pthread_attr_t;
789 Adjusted_Stack_Size : Interfaces.C.size_t;
790 Page_Size : constant Interfaces.C.size_t :=
791 Interfaces.C.size_t (Get_Page_Size);
792 Result : Interfaces.C.int;
794 function Thread_Body_Access is new
795 Ada.Unchecked_Conversion (System.Address, Thread_Body);
797 use System.Task_Info;
799 begin
800 Adjusted_Stack_Size :=
801 Interfaces.C.size_t (Stack_Size + Alternate_Stack_Size);
803 if Stack_Base_Available then
805 -- If Stack Checking is supported then allocate 2 additional pages:
807 -- In the worst case, stack is allocated at something like
808 -- N * Get_Page_Size - epsilon, we need to add the size for 2 pages
809 -- to be sure the effective stack size is greater than what
810 -- has been asked.
812 Adjusted_Stack_Size := Adjusted_Stack_Size + 2 * Page_Size;
813 end if;
815 -- Round stack size as this is required by some OSes (Darwin)
817 Adjusted_Stack_Size := Adjusted_Stack_Size + Page_Size - 1;
818 Adjusted_Stack_Size :=
819 Adjusted_Stack_Size - Adjusted_Stack_Size mod Page_Size;
821 Result := pthread_attr_init (Attributes'Access);
822 pragma Assert (Result = 0 or else Result = ENOMEM);
824 if Result /= 0 then
825 Succeeded := False;
826 return;
827 end if;
829 Result :=
830 pthread_attr_setdetachstate
831 (Attributes'Access, PTHREAD_CREATE_DETACHED);
832 pragma Assert (Result = 0);
834 Result :=
835 pthread_attr_setstacksize
836 (Attributes'Access, Adjusted_Stack_Size);
837 pragma Assert (Result = 0);
839 if T.Common.Task_Info /= Default_Scope then
840 case T.Common.Task_Info is
841 when System.Task_Info.Process_Scope =>
842 Result :=
843 pthread_attr_setscope
844 (Attributes'Access, PTHREAD_SCOPE_PROCESS);
846 when System.Task_Info.System_Scope =>
847 Result :=
848 pthread_attr_setscope
849 (Attributes'Access, PTHREAD_SCOPE_SYSTEM);
851 when System.Task_Info.Default_Scope =>
852 Result := 0;
853 end case;
855 pragma Assert (Result = 0);
856 end if;
858 -- Since the initial signal mask of a thread is inherited from the
859 -- creator, and the Environment task has all its signals masked, we
860 -- do not need to manipulate caller's signal mask at this point.
861 -- All tasks in RTS will have All_Tasks_Mask initially.
863 -- Note: the use of Unrestricted_Access in the following call is needed
864 -- because otherwise we have an error of getting a access-to-volatile
865 -- value which points to a non-volatile object. But in this case it is
866 -- safe to do this, since we know we have no problems with aliasing and
867 -- Unrestricted_Access bypasses this check.
869 Result := pthread_create
870 (T.Common.LL.Thread'Unrestricted_Access,
871 Attributes'Access,
872 Thread_Body_Access (Wrapper),
873 To_Address (T));
874 pragma Assert (Result = 0 or else Result = EAGAIN);
876 Succeeded := Result = 0;
878 Result := pthread_attr_destroy (Attributes'Access);
879 pragma Assert (Result = 0);
881 if Succeeded then
882 Set_Priority (T, Priority);
883 end if;
884 end Create_Task;
886 ------------------
887 -- Finalize_TCB --
888 ------------------
890 procedure Finalize_TCB (T : Task_Id) is
891 Result : Interfaces.C.int;
893 begin
894 Result := pthread_mutex_destroy (T.Common.LL.L'Access);
895 pragma Assert (Result = 0);
897 Result := pthread_cond_destroy (T.Common.LL.CV'Access);
898 pragma Assert (Result = 0);
900 if T.Known_Tasks_Index /= -1 then
901 Known_Tasks (T.Known_Tasks_Index) := null;
902 end if;
904 ATCB_Allocation.Free_ATCB (T);
905 end Finalize_TCB;
907 ---------------
908 -- Exit_Task --
909 ---------------
911 procedure Exit_Task is
912 begin
913 -- Mark this task as unknown, so that if Self is called, it won't
914 -- return a dangling pointer.
916 Specific.Set (null);
917 end Exit_Task;
919 ----------------
920 -- Abort_Task --
921 ----------------
923 procedure Abort_Task (T : Task_Id) is
924 Result : Interfaces.C.int;
925 begin
926 if Abort_Handler_Installed then
927 Result :=
928 pthread_kill
929 (T.Common.LL.Thread,
930 Signal (System.Interrupt_Management.Abort_Task_Interrupt));
931 pragma Assert (Result = 0);
932 end if;
933 end Abort_Task;
935 ----------------
936 -- Initialize --
937 ----------------
939 procedure Initialize (S : in out Suspension_Object) is
940 Mutex_Attr : aliased pthread_mutexattr_t;
941 Cond_Attr : aliased pthread_condattr_t;
942 Result : Interfaces.C.int;
944 begin
945 -- Initialize internal state (always to False (RM D.10 (6)))
947 S.State := False;
948 S.Waiting := False;
950 -- Initialize internal mutex
952 Result := pthread_mutexattr_init (Mutex_Attr'Access);
953 pragma Assert (Result = 0 or else Result = ENOMEM);
955 if Result = ENOMEM then
956 raise Storage_Error;
957 end if;
959 Result := pthread_mutex_init (S.L'Access, Mutex_Attr'Access);
960 pragma Assert (Result = 0 or else Result = ENOMEM);
962 if Result = ENOMEM then
963 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
964 pragma Assert (Result = 0);
966 raise Storage_Error;
967 end if;
969 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
970 pragma Assert (Result = 0);
972 -- Initialize internal condition variable
974 Result := pthread_condattr_init (Cond_Attr'Access);
975 pragma Assert (Result = 0 or else Result = ENOMEM);
977 if Result /= 0 then
978 Result := pthread_mutex_destroy (S.L'Access);
979 pragma Assert (Result = 0);
981 -- Storage_Error is propagated as intended if the allocation of the
982 -- underlying OS entities fails.
984 raise Storage_Error;
986 else
987 Result := GNAT_pthread_condattr_setup (Cond_Attr'Access);
988 pragma Assert (Result = 0);
989 end if;
991 Result := pthread_cond_init (S.CV'Access, Cond_Attr'Access);
992 pragma Assert (Result = 0 or else Result = ENOMEM);
994 if Result /= 0 then
995 Result := pthread_mutex_destroy (S.L'Access);
996 pragma Assert (Result = 0);
998 Result := pthread_condattr_destroy (Cond_Attr'Access);
999 pragma Assert (Result = 0);
1001 -- Storage_Error is propagated as intended if the allocation of the
1002 -- underlying OS entities fails.
1004 raise Storage_Error;
1005 end if;
1007 Result := pthread_condattr_destroy (Cond_Attr'Access);
1008 pragma Assert (Result = 0);
1009 end Initialize;
1011 --------------
1012 -- Finalize --
1013 --------------
1015 procedure Finalize (S : in out Suspension_Object) is
1016 Result : Interfaces.C.int;
1018 begin
1019 -- Destroy internal mutex
1021 Result := pthread_mutex_destroy (S.L'Access);
1022 pragma Assert (Result = 0);
1024 -- Destroy internal condition variable
1026 Result := pthread_cond_destroy (S.CV'Access);
1027 pragma Assert (Result = 0);
1028 end Finalize;
1030 -------------------
1031 -- Current_State --
1032 -------------------
1034 function Current_State (S : Suspension_Object) return Boolean is
1035 begin
1036 -- We do not want to use lock on this read operation. State is marked
1037 -- as Atomic so that we ensure that the value retrieved is correct.
1039 return S.State;
1040 end Current_State;
1042 ---------------
1043 -- Set_False --
1044 ---------------
1046 procedure Set_False (S : in out Suspension_Object) is
1047 Result : Interfaces.C.int;
1049 begin
1050 SSL.Abort_Defer.all;
1052 Result := pthread_mutex_lock (S.L'Access);
1053 pragma Assert (Result = 0);
1055 S.State := False;
1057 Result := pthread_mutex_unlock (S.L'Access);
1058 pragma Assert (Result = 0);
1060 SSL.Abort_Undefer.all;
1061 end Set_False;
1063 --------------
1064 -- Set_True --
1065 --------------
1067 procedure Set_True (S : in out Suspension_Object) is
1068 Result : Interfaces.C.int;
1070 begin
1071 SSL.Abort_Defer.all;
1073 Result := pthread_mutex_lock (S.L'Access);
1074 pragma Assert (Result = 0);
1076 -- If there is already a task waiting on this suspension object then
1077 -- we resume it, leaving the state of the suspension object to False,
1078 -- as it is specified in (RM D.10(9)). Otherwise, it just leaves
1079 -- the state to True.
1081 if S.Waiting then
1082 S.Waiting := False;
1083 S.State := False;
1085 Result := pthread_cond_signal (S.CV'Access);
1086 pragma Assert (Result = 0);
1088 else
1089 S.State := True;
1090 end if;
1092 Result := pthread_mutex_unlock (S.L'Access);
1093 pragma Assert (Result = 0);
1095 SSL.Abort_Undefer.all;
1096 end Set_True;
1098 ------------------------
1099 -- Suspend_Until_True --
1100 ------------------------
1102 procedure Suspend_Until_True (S : in out Suspension_Object) is
1103 Result : Interfaces.C.int;
1105 begin
1106 SSL.Abort_Defer.all;
1108 Result := pthread_mutex_lock (S.L'Access);
1109 pragma Assert (Result = 0);
1111 if S.Waiting then
1113 -- Program_Error must be raised upon calling Suspend_Until_True
1114 -- if another task is already waiting on that suspension object
1115 -- (RM D.10(10)).
1117 Result := pthread_mutex_unlock (S.L'Access);
1118 pragma Assert (Result = 0);
1120 SSL.Abort_Undefer.all;
1122 raise Program_Error;
1124 else
1125 -- Suspend the task if the state is False. Otherwise, the task
1126 -- continues its execution, and the state of the suspension object
1127 -- is set to False (ARM D.10 par. 9).
1129 if S.State then
1130 S.State := False;
1131 else
1132 S.Waiting := True;
1134 loop
1135 -- Loop in case pthread_cond_wait returns earlier than expected
1136 -- (e.g. in case of EINTR caused by a signal).
1138 Result := pthread_cond_wait (S.CV'Access, S.L'Access);
1139 pragma Assert (Result = 0 or else Result = EINTR);
1141 exit when not S.Waiting;
1142 end loop;
1143 end if;
1145 Result := pthread_mutex_unlock (S.L'Access);
1146 pragma Assert (Result = 0);
1148 SSL.Abort_Undefer.all;
1149 end if;
1150 end Suspend_Until_True;
1152 ----------------
1153 -- Check_Exit --
1154 ----------------
1156 -- Dummy version
1158 function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1159 pragma Unreferenced (Self_ID);
1160 begin
1161 return True;
1162 end Check_Exit;
1164 --------------------
1165 -- Check_No_Locks --
1166 --------------------
1168 function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1169 pragma Unreferenced (Self_ID);
1170 begin
1171 return True;
1172 end Check_No_Locks;
1174 ----------------------
1175 -- Environment_Task --
1176 ----------------------
1178 function Environment_Task return Task_Id is
1179 begin
1180 return Environment_Task_Id;
1181 end Environment_Task;
1183 --------------
1184 -- Lock_RTS --
1185 --------------
1187 procedure Lock_RTS is
1188 begin
1189 Write_Lock (Single_RTS_Lock'Access);
1190 end Lock_RTS;
1192 ----------------
1193 -- Unlock_RTS --
1194 ----------------
1196 procedure Unlock_RTS is
1197 begin
1198 Unlock (Single_RTS_Lock'Access);
1199 end Unlock_RTS;
1201 ------------------
1202 -- Suspend_Task --
1203 ------------------
1205 function Suspend_Task
1206 (T : ST.Task_Id;
1207 Thread_Self : Thread_Id) return Boolean
1209 pragma Unreferenced (T, Thread_Self);
1210 begin
1211 return False;
1212 end Suspend_Task;
1214 -----------------
1215 -- Resume_Task --
1216 -----------------
1218 function Resume_Task
1219 (T : ST.Task_Id;
1220 Thread_Self : Thread_Id) return Boolean
1222 pragma Unreferenced (T, Thread_Self);
1223 begin
1224 return False;
1225 end Resume_Task;
1227 --------------------
1228 -- Stop_All_Tasks --
1229 --------------------
1231 procedure Stop_All_Tasks is
1232 begin
1233 null;
1234 end Stop_All_Tasks;
1236 ---------------
1237 -- Stop_Task --
1238 ---------------
1240 function Stop_Task (T : ST.Task_Id) return Boolean is
1241 pragma Unreferenced (T);
1242 begin
1243 return False;
1244 end Stop_Task;
1246 -------------------
1247 -- Continue_Task --
1248 -------------------
1250 function Continue_Task (T : ST.Task_Id) return Boolean is
1251 pragma Unreferenced (T);
1252 begin
1253 return False;
1254 end Continue_Task;
1256 ----------------
1257 -- Initialize --
1258 ----------------
1260 procedure Initialize (Environment_Task : Task_Id) is
1261 act : aliased struct_sigaction;
1262 old_act : aliased struct_sigaction;
1263 Tmp_Set : aliased sigset_t;
1264 Result : Interfaces.C.int;
1266 function State
1267 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
1268 pragma Import (C, State, "__gnat_get_interrupt_state");
1269 -- Get interrupt state. Defined in a-init.c
1270 -- The input argument is the interrupt number,
1271 -- and the result is one of the following:
1273 Default : constant Character := 's';
1274 -- 'n' this interrupt not set by any Interrupt_State pragma
1275 -- 'u' Interrupt_State pragma set state to User
1276 -- 'r' Interrupt_State pragma set state to Runtime
1277 -- 's' Interrupt_State pragma set state to System (use "default"
1278 -- system handler)
1280 begin
1281 Environment_Task_Id := Environment_Task;
1283 Interrupt_Management.Initialize;
1285 -- Prepare the set of signals that should unblocked in all tasks
1287 Result := sigemptyset (Unblocked_Signal_Mask'Access);
1288 pragma Assert (Result = 0);
1290 for J in Interrupt_Management.Interrupt_ID loop
1291 if System.Interrupt_Management.Keep_Unmasked (J) then
1292 Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
1293 pragma Assert (Result = 0);
1294 end if;
1295 end loop;
1297 -- Initialize the lock used to synchronize chain of all ATCBs
1299 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1301 Specific.Initialize (Environment_Task);
1303 if Use_Alternate_Stack then
1304 Environment_Task.Common.Task_Alternate_Stack :=
1305 Alternate_Stack'Address;
1306 end if;
1308 -- Make environment task known here because it doesn't go through
1309 -- Activate_Tasks, which does it for all other tasks.
1311 Known_Tasks (Known_Tasks'First) := Environment_Task;
1312 Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1314 Enter_Task (Environment_Task);
1316 if State
1317 (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
1318 then
1319 act.sa_flags := 0;
1320 act.sa_handler := Abort_Handler'Address;
1322 Result := sigemptyset (Tmp_Set'Access);
1323 pragma Assert (Result = 0);
1324 act.sa_mask := Tmp_Set;
1326 Result :=
1327 sigaction
1328 (Signal (System.Interrupt_Management.Abort_Task_Interrupt),
1329 act'Unchecked_Access,
1330 old_act'Unchecked_Access);
1331 pragma Assert (Result = 0);
1332 Abort_Handler_Installed := True;
1333 end if;
1334 end Initialize;
1336 -----------------------
1337 -- Set_Task_Affinity --
1338 -----------------------
1340 procedure Set_Task_Affinity (T : ST.Task_Id) is
1341 pragma Unreferenced (T);
1343 begin
1344 -- Setting task affinity is not supported by the underlying system
1346 null;
1347 end Set_Task_Affinity;
1349 end System.Task_Primitives.Operations;