1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Ch6
; use Exp_Ch6
;
34 with Exp_Ch7
; use Exp_Ch7
;
35 with Exp_Tss
; use Exp_Tss
;
36 with Exp_Util
; use Exp_Util
;
37 with Fname
; use Fname
;
38 with Fname
.UF
; use Fname
.UF
;
40 with Namet
; use Namet
;
41 with Nmake
; use Nmake
;
42 with Nlists
; use Nlists
;
43 with Output
; use Output
;
44 with Sem_Aux
; use Sem_Aux
;
45 with Sem_Ch8
; use Sem_Ch8
;
46 with Sem_Ch10
; use Sem_Ch10
;
47 with Sem_Ch12
; use Sem_Ch12
;
48 with Sem_Prag
; use Sem_Prag
;
49 with Sem_Util
; use Sem_Util
;
50 with Sinfo
; use Sinfo
;
51 with Sinput
; use Sinput
;
52 with Snames
; use Snames
;
53 with Stand
; use Stand
;
54 with Uname
; use Uname
;
55 with Tbuild
; use Tbuild
;
57 package body Inline
is
59 Check_Inlining_Restrictions
: constant Boolean := True;
60 -- In the following cases the frontend rejects inlining because they
61 -- are not handled well by the backend. This variable facilitates
62 -- disabling these restrictions to evaluate future versions of the
63 -- GCC backend in which some of the restrictions may be supported.
65 -- - subprograms that have:
66 -- - nested subprograms
68 -- - package declarations
69 -- - task or protected object declarations
70 -- - some of the following statements:
72 -- - asynchronous-select
73 -- - conditional-entry-call
79 Inlined_Calls
: Elist_Id
;
80 -- List of frontend inlined calls
82 Backend_Calls
: Elist_Id
;
83 -- List of inline calls passed to the backend
85 Backend_Inlined_Subps
: Elist_Id
;
86 -- List of subprograms inlined by the backend
88 Backend_Not_Inlined_Subps
: Elist_Id
;
89 -- List of subprograms that cannot be inlined by the backend
95 -- Inlined functions are actually placed in line by the backend if the
96 -- corresponding bodies are available (i.e. compiled). Whenever we find
97 -- a call to an inlined subprogram, we add the name of the enclosing
98 -- compilation unit to a worklist. After all compilation, and after
99 -- expansion of generic bodies, we traverse the list of pending bodies
100 -- and compile them as well.
102 package Inlined_Bodies
is new Table
.Table
(
103 Table_Component_Type
=> Entity_Id
,
104 Table_Index_Type
=> Int
,
105 Table_Low_Bound
=> 0,
106 Table_Initial
=> Alloc
.Inlined_Bodies_Initial
,
107 Table_Increment
=> Alloc
.Inlined_Bodies_Increment
,
108 Table_Name
=> "Inlined_Bodies");
110 -----------------------
111 -- Inline Processing --
112 -----------------------
114 -- For each call to an inlined subprogram, we make entries in a table
115 -- that stores caller and callee, and indicates the call direction from
116 -- one to the other. We also record the compilation unit that contains
117 -- the callee. After analyzing the bodies of all such compilation units,
118 -- we compute the transitive closure of inlined subprograms called from
119 -- the main compilation unit and make it available to the code generator
120 -- in no particular order, thus allowing cycles in the call graph.
122 Last_Inlined
: Entity_Id
:= Empty
;
124 -- For each entry in the table we keep a list of successors in topological
125 -- order, i.e. callers of the current subprogram.
127 type Subp_Index
is new Nat
;
128 No_Subp
: constant Subp_Index
:= 0;
130 -- The subprogram entities are hashed into the Inlined table
132 Num_Hash_Headers
: constant := 512;
134 Hash_Headers
: array (Subp_Index
range 0 .. Num_Hash_Headers
- 1)
137 type Succ_Index
is new Nat
;
138 No_Succ
: constant Succ_Index
:= 0;
140 type Succ_Info
is record
145 -- The following table stores list elements for the successor lists. These
146 -- lists cannot be chained directly through entries in the Inlined table,
147 -- because a given subprogram can appear in several such lists.
149 package Successors
is new Table
.Table
(
150 Table_Component_Type
=> Succ_Info
,
151 Table_Index_Type
=> Succ_Index
,
152 Table_Low_Bound
=> 1,
153 Table_Initial
=> Alloc
.Successors_Initial
,
154 Table_Increment
=> Alloc
.Successors_Increment
,
155 Table_Name
=> "Successors");
157 type Subp_Info
is record
158 Name
: Entity_Id
:= Empty
;
159 Next
: Subp_Index
:= No_Subp
;
160 First_Succ
: Succ_Index
:= No_Succ
;
161 Main_Call
: Boolean := False;
162 Processed
: Boolean := False;
165 package Inlined
is new Table
.Table
(
166 Table_Component_Type
=> Subp_Info
,
167 Table_Index_Type
=> Subp_Index
,
168 Table_Low_Bound
=> 1,
169 Table_Initial
=> Alloc
.Inlined_Initial
,
170 Table_Increment
=> Alloc
.Inlined_Increment
,
171 Table_Name
=> "Inlined");
173 -----------------------
174 -- Local Subprograms --
175 -----------------------
177 procedure Add_Call
(Called
: Entity_Id
; Caller
: Entity_Id
:= Empty
);
178 -- Make two entries in Inlined table, for an inlined subprogram being
179 -- called, and for the inlined subprogram that contains the call. If
180 -- the call is in the main compilation unit, Caller is Empty.
182 procedure Add_Inlined_Subprogram
(E
: Entity_Id
);
183 -- Add subprogram E to the list of inlined subprogram for the unit
185 function Add_Subp
(E
: Entity_Id
) return Subp_Index
;
186 -- Make entry in Inlined table for subprogram E, or return table index
187 -- that already holds E.
189 function Get_Code_Unit_Entity
(E
: Entity_Id
) return Entity_Id
;
190 pragma Inline
(Get_Code_Unit_Entity
);
191 -- Return the entity node for the unit containing E. Always return the spec
194 function Has_Initialized_Type
(E
: Entity_Id
) return Boolean;
195 -- If a candidate for inlining contains type declarations for types with
196 -- nontrivial initialization procedures, they are not worth inlining.
198 function Has_Single_Return
(N
: Node_Id
) return Boolean;
199 -- In general we cannot inline functions that return unconstrained type.
200 -- However, we can handle such functions if all return statements return a
201 -- local variable that is the only declaration in the body of the function.
202 -- In that case the call can be replaced by that local variable as is done
203 -- for other inlined calls.
205 function In_Main_Unit_Or_Subunit
(E
: Entity_Id
) return Boolean;
206 -- Return True if E is in the main unit or its spec or in a subunit
208 function Is_Nested
(E
: Entity_Id
) return Boolean;
209 -- If the function is nested inside some other function, it will always
210 -- be compiled if that function is, so don't add it to the inline list.
211 -- We cannot compile a nested function outside the scope of the containing
212 -- function anyway. This is also the case if the function is defined in a
213 -- task body or within an entry (for example, an initialization procedure).
215 procedure Remove_Aspects_And_Pragmas
(Body_Decl
: Node_Id
);
216 -- Remove all aspects and/or pragmas that have no meaning in inlined body
217 -- Body_Decl. The analysis of these items is performed on the non-inlined
218 -- body. The items currently removed are:
231 ------------------------------
232 -- Deferred Cleanup Actions --
233 ------------------------------
235 -- The cleanup actions for scopes that contain instantiations is delayed
236 -- until after expansion of those instantiations, because they may contain
237 -- finalizable objects or tasks that affect the cleanup code. A scope
238 -- that contains instantiations only needs to be finalized once, even
239 -- if it contains more than one instance. We keep a list of scopes
240 -- that must still be finalized, and call cleanup_actions after all
241 -- the instantiations have been completed.
245 procedure Add_Scope_To_Clean
(Inst
: Entity_Id
);
246 -- Build set of scopes on which cleanup actions must be performed
248 procedure Cleanup_Scopes
;
249 -- Complete cleanup actions on scopes that need it
255 procedure Add_Call
(Called
: Entity_Id
; Caller
: Entity_Id
:= Empty
) is
256 P1
: constant Subp_Index
:= Add_Subp
(Called
);
261 if Present
(Caller
) then
262 P2
:= Add_Subp
(Caller
);
264 -- Add P1 to the list of successors of P2, if not already there.
265 -- Note that P2 may contain more than one call to P1, and only
266 -- one needs to be recorded.
268 J
:= Inlined
.Table
(P2
).First_Succ
;
269 while J
/= No_Succ
loop
270 if Successors
.Table
(J
).Subp
= P1
then
274 J
:= Successors
.Table
(J
).Next
;
277 -- On exit, make a successor entry for P1
279 Successors
.Increment_Last
;
280 Successors
.Table
(Successors
.Last
).Subp
:= P1
;
281 Successors
.Table
(Successors
.Last
).Next
:=
282 Inlined
.Table
(P2
).First_Succ
;
283 Inlined
.Table
(P2
).First_Succ
:= Successors
.Last
;
285 Inlined
.Table
(P1
).Main_Call
:= True;
289 ----------------------
290 -- Add_Inlined_Body --
291 ----------------------
293 procedure Add_Inlined_Body
(E
: Entity_Id
; N
: Node_Id
) is
295 type Inline_Level_Type
is (Dont_Inline
, Inline_Call
, Inline_Package
);
296 -- Level of inlining for the call: Dont_Inline means no inlining,
297 -- Inline_Call means that only the call is considered for inlining,
298 -- Inline_Package means that the call is considered for inlining and
299 -- its package compiled and scanned for more inlining opportunities.
301 function Must_Inline
return Inline_Level_Type
;
302 -- Inlining is only done if the call statement N is in the main unit,
303 -- or within the body of another inlined subprogram.
309 function Must_Inline
return Inline_Level_Type
is
314 -- Check if call is in main unit
316 Scop
:= Current_Scope
;
318 -- Do not try to inline if scope is standard. This could happen, for
319 -- example, for a call to Add_Global_Declaration, and it causes
320 -- trouble to try to inline at this level.
322 if Scop
= Standard_Standard
then
326 -- Otherwise lookup scope stack to outer scope
328 while Scope
(Scop
) /= Standard_Standard
329 and then not Is_Child_Unit
(Scop
)
331 Scop
:= Scope
(Scop
);
334 Comp
:= Parent
(Scop
);
335 while Nkind
(Comp
) /= N_Compilation_Unit
loop
336 Comp
:= Parent
(Comp
);
339 -- If the call is in the main unit, inline the call and compile the
340 -- package of the subprogram to find more calls to be inlined.
342 if Comp
= Cunit
(Main_Unit
)
343 or else Comp
= Library_Unit
(Cunit
(Main_Unit
))
346 return Inline_Package
;
349 -- The call is not in the main unit. See if it is in some subprogram
350 -- that can be inlined outside its unit. If so, inline the call and,
351 -- if the inlining level is set to 1, stop there; otherwise also
352 -- compile the package as above.
354 Scop
:= Current_Scope
;
355 while Scope
(Scop
) /= Standard_Standard
356 and then not Is_Child_Unit
(Scop
)
358 if Is_Overloadable
(Scop
)
359 and then Is_Inlined
(Scop
)
360 and then not Is_Nested
(Scop
)
364 if Inline_Level
= 1 then
367 return Inline_Package
;
371 Scop
:= Scope
(Scop
);
377 Level
: Inline_Level_Type
;
379 -- Start of processing for Add_Inlined_Body
382 Append_New_Elmt
(N
, To
=> Backend_Calls
);
384 -- Skip subprograms that cannot be inlined outside their unit
386 if Is_Abstract_Subprogram
(E
)
387 or else Convention
(E
) = Convention_Protected
388 or else Is_Nested
(E
)
393 -- Find out whether the call must be inlined. Unless the result is
394 -- Dont_Inline, Must_Inline also creates an edge for the call in the
395 -- callgraph; however, it will not be activated until after Is_Called
396 -- is set on the subprogram.
398 Level
:= Must_Inline
;
400 if Level
= Dont_Inline
then
404 -- If the call was generated by the compiler and is to a subprogram in
405 -- a run-time unit, we need to suppress debugging information for it,
406 -- so that the code that is eventually inlined will not affect the
407 -- debugging of the program. We do not do it if the call comes from
408 -- source because, even if the call is inlined, the user may expect it
409 -- to be present in the debugging information.
411 if not Comes_From_Source
(N
)
412 and then In_Extended_Main_Source_Unit
(N
)
414 Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(E
)))
416 Set_Needs_Debug_Info
(E
, False);
419 -- If the subprogram is an expression function, then there is no need to
420 -- load any package body since the body of the function is in the spec.
422 if Is_Expression_Function
(E
) then
427 -- Find unit containing E, and add to list of inlined bodies if needed.
428 -- If the body is already present, no need to load any other unit. This
429 -- is the case for an initialization procedure, which appears in the
430 -- package declaration that contains the type. It is also the case if
431 -- the body has already been analyzed. Finally, if the unit enclosing
432 -- E is an instance, the instance body will be analyzed in any case,
433 -- and there is no need to add the enclosing unit (whose body might not
436 -- Library-level functions must be handled specially, because there is
437 -- no enclosing package to retrieve. In this case, it is the body of
438 -- the function that will have to be loaded.
441 Pack
: constant Entity_Id
:= Get_Code_Unit_Entity
(E
);
446 Inlined_Bodies
.Increment_Last
;
447 Inlined_Bodies
.Table
(Inlined_Bodies
.Last
) := E
;
449 elsif Ekind
(Pack
) = E_Package
then
452 if Is_Generic_Instance
(Pack
) then
455 -- Do not inline the package if the subprogram is an init proc
456 -- or other internally generated subprogram, because in that
457 -- case the subprogram body appears in the same unit that
458 -- declares the type, and that body is visible to the back end.
459 -- Do not inline it either if it is in the main unit.
460 -- Extend the -gnatn2 processing to -gnatn1 for Inline_Always
461 -- calls if the back-end takes care of inlining the call.
462 -- Note that Level in Inline_Package | Inline_Call here.
464 elsif ((Level
= Inline_Call
465 and then Has_Pragma_Inline_Always
(E
)
466 and then Back_End_Inlining
)
467 or else Level
= Inline_Package
)
468 and then not Is_Inlined
(Pack
)
469 and then not Is_Internal
(E
)
470 and then not In_Main_Unit_Or_Subunit
(Pack
)
472 Set_Is_Inlined
(Pack
);
473 Inlined_Bodies
.Increment_Last
;
474 Inlined_Bodies
.Table
(Inlined_Bodies
.Last
) := Pack
;
478 -- Ensure that Analyze_Inlined_Bodies will be invoked after
479 -- completing the analysis of the current unit.
481 Inline_Processing_Required
:= True;
483 end Add_Inlined_Body
;
485 ----------------------------
486 -- Add_Inlined_Subprogram --
487 ----------------------------
489 procedure Add_Inlined_Subprogram
(E
: Entity_Id
) is
490 Decl
: constant Node_Id
:= Parent
(Declaration_Node
(E
));
491 Pack
: constant Entity_Id
:= Get_Code_Unit_Entity
(E
);
493 procedure Register_Backend_Inlined_Subprogram
(Subp
: Entity_Id
);
494 -- Append Subp to the list of subprograms inlined by the backend
496 procedure Register_Backend_Not_Inlined_Subprogram
(Subp
: Entity_Id
);
497 -- Append Subp to the list of subprograms that cannot be inlined by
500 -----------------------------------------
501 -- Register_Backend_Inlined_Subprogram --
502 -----------------------------------------
504 procedure Register_Backend_Inlined_Subprogram
(Subp
: Entity_Id
) is
506 Append_New_Elmt
(Subp
, To
=> Backend_Inlined_Subps
);
507 end Register_Backend_Inlined_Subprogram
;
509 ---------------------------------------------
510 -- Register_Backend_Not_Inlined_Subprogram --
511 ---------------------------------------------
513 procedure Register_Backend_Not_Inlined_Subprogram
(Subp
: Entity_Id
) is
515 Append_New_Elmt
(Subp
, To
=> Backend_Not_Inlined_Subps
);
516 end Register_Backend_Not_Inlined_Subprogram
;
518 -- Start of processing for Add_Inlined_Subprogram
521 -- If the subprogram is to be inlined, and if its unit is known to be
522 -- inlined or is an instance whose body will be analyzed anyway or the
523 -- subprogram was generated as a body by the compiler (for example an
524 -- initialization procedure) or its declaration was provided along with
525 -- the body (for example an expression function), and if it is declared
526 -- at the library level not in the main unit, and if it can be inlined
527 -- by the back-end, then insert it in the list of inlined subprograms.
530 and then (Is_Inlined
(Pack
)
531 or else Is_Generic_Instance
(Pack
)
532 or else Nkind
(Decl
) = N_Subprogram_Body
533 or else Present
(Corresponding_Body
(Decl
)))
534 and then not In_Main_Unit_Or_Subunit
(E
)
535 and then not Is_Nested
(E
)
536 and then not Has_Initialized_Type
(E
)
538 Register_Backend_Inlined_Subprogram
(E
);
540 if No
(Last_Inlined
) then
541 Set_First_Inlined_Subprogram
(Cunit
(Main_Unit
), E
);
543 Set_Next_Inlined_Subprogram
(Last_Inlined
, E
);
549 Register_Backend_Not_Inlined_Subprogram
(E
);
551 end Add_Inlined_Subprogram
;
553 ------------------------
554 -- Add_Scope_To_Clean --
555 ------------------------
557 procedure Add_Scope_To_Clean
(Inst
: Entity_Id
) is
558 Scop
: constant Entity_Id
:= Enclosing_Dynamic_Scope
(Inst
);
562 -- If the instance appears in a library-level package declaration,
563 -- all finalization is global, and nothing needs doing here.
565 if Scop
= Standard_Standard
then
569 -- If the instance is within a generic unit, no finalization code
570 -- can be generated. Note that at this point all bodies have been
571 -- analyzed, and the scope stack itself is not present, and the flag
572 -- Inside_A_Generic is not set.
579 while Present
(S
) and then S
/= Standard_Standard
loop
580 if Is_Generic_Unit
(S
) then
588 Elmt
:= First_Elmt
(To_Clean
);
589 while Present
(Elmt
) loop
590 if Node
(Elmt
) = Scop
then
594 Elmt
:= Next_Elmt
(Elmt
);
597 Append_Elmt
(Scop
, To_Clean
);
598 end Add_Scope_To_Clean
;
604 function Add_Subp
(E
: Entity_Id
) return Subp_Index
is
605 Index
: Subp_Index
:= Subp_Index
(E
) mod Num_Hash_Headers
;
609 -- Initialize entry in Inlined table
611 procedure New_Entry
is
613 Inlined
.Increment_Last
;
614 Inlined
.Table
(Inlined
.Last
).Name
:= E
;
615 Inlined
.Table
(Inlined
.Last
).Next
:= No_Subp
;
616 Inlined
.Table
(Inlined
.Last
).First_Succ
:= No_Succ
;
617 Inlined
.Table
(Inlined
.Last
).Main_Call
:= False;
618 Inlined
.Table
(Inlined
.Last
).Processed
:= False;
621 -- Start of processing for Add_Subp
624 if Hash_Headers
(Index
) = No_Subp
then
626 Hash_Headers
(Index
) := Inlined
.Last
;
630 J
:= Hash_Headers
(Index
);
631 while J
/= No_Subp
loop
632 if Inlined
.Table
(J
).Name
= E
then
636 J
:= Inlined
.Table
(J
).Next
;
640 -- On exit, subprogram was not found. Enter in table. Index is
641 -- the current last entry on the hash chain.
644 Inlined
.Table
(Index
).Next
:= Inlined
.Last
;
649 ----------------------------
650 -- Analyze_Inlined_Bodies --
651 ----------------------------
653 procedure Analyze_Inlined_Bodies
is
660 type Pending_Index
is new Nat
;
662 package Pending_Inlined
is new Table
.Table
(
663 Table_Component_Type
=> Subp_Index
,
664 Table_Index_Type
=> Pending_Index
,
665 Table_Low_Bound
=> 1,
666 Table_Initial
=> Alloc
.Inlined_Initial
,
667 Table_Increment
=> Alloc
.Inlined_Increment
,
668 Table_Name
=> "Pending_Inlined");
669 -- The workpile used to compute the transitive closure
671 function Is_Ancestor_Of_Main
673 Nam
: Node_Id
) return Boolean;
674 -- Determine whether the unit whose body is loaded is an ancestor of
675 -- the main unit, and has a with_clause on it. The body is not
676 -- analyzed yet, so the check is purely lexical: the name of the with
677 -- clause is a selected component, and names of ancestors must match.
679 -------------------------
680 -- Is_Ancestor_Of_Main --
681 -------------------------
683 function Is_Ancestor_Of_Main
685 Nam
: Node_Id
) return Boolean
690 if Nkind
(Nam
) /= N_Selected_Component
then
694 if Chars
(Selector_Name
(Nam
)) /=
695 Chars
(Cunit_Entity
(Main_Unit
))
700 Pref
:= Prefix
(Nam
);
701 if Nkind
(Pref
) = N_Identifier
then
703 -- Par is an ancestor of Par.Child.
705 return Chars
(Pref
) = Chars
(U_Name
);
707 elsif Nkind
(Pref
) = N_Selected_Component
708 and then Chars
(Selector_Name
(Pref
)) = Chars
(U_Name
)
710 -- Par.Child is an ancestor of Par.Child.Grand.
712 return True; -- should check that ancestor match
715 -- A is an ancestor of A.B.C if it is an ancestor of A.B
717 return Is_Ancestor_Of_Main
(U_Name
, Pref
);
720 end Is_Ancestor_Of_Main
;
722 -- Start of processing for Analyze_Inlined_Bodies
725 if Serious_Errors_Detected
= 0 then
726 Push_Scope
(Standard_Standard
);
729 while J
<= Inlined_Bodies
.Last
730 and then Serious_Errors_Detected
= 0
732 Pack
:= Inlined_Bodies
.Table
(J
);
734 and then Scope
(Pack
) /= Standard_Standard
735 and then not Is_Child_Unit
(Pack
)
737 Pack
:= Scope
(Pack
);
740 Comp_Unit
:= Parent
(Pack
);
741 while Present
(Comp_Unit
)
742 and then Nkind
(Comp_Unit
) /= N_Compilation_Unit
744 Comp_Unit
:= Parent
(Comp_Unit
);
747 -- Load the body, unless it is the main unit, or is an instance
748 -- whose body has already been analyzed.
750 if Present
(Comp_Unit
)
751 and then Comp_Unit
/= Cunit
(Main_Unit
)
752 and then Body_Required
(Comp_Unit
)
753 and then (Nkind
(Unit
(Comp_Unit
)) /= N_Package_Declaration
754 or else No
(Corresponding_Body
(Unit
(Comp_Unit
))))
757 Bname
: constant Unit_Name_Type
:=
758 Get_Body_Name
(Get_Unit_Name
(Unit
(Comp_Unit
)));
763 if not Is_Loaded
(Bname
) then
764 Style_Check
:= False;
765 Load_Needed_Body
(Comp_Unit
, OK
, Do_Analyze
=> False);
769 -- Warn that a body was not available for inlining
772 Error_Msg_Unit_1
:= Bname
;
774 ("one or more inlined subprograms accessed in $!??",
777 Get_File_Name
(Bname
, Subunit
=> False);
778 Error_Msg_N
("\but file{ was not found!??", Comp_Unit
);
781 -- If the package to be inlined is an ancestor unit of
782 -- the main unit, and it has a semantic dependence on
783 -- it, the inlining cannot take place to prevent an
784 -- elaboration circularity. The desired body is not
785 -- analyzed yet, to prevent the completion of Taft
786 -- amendment types that would lead to elaboration
787 -- circularities in gigi.
790 U_Id
: constant Entity_Id
:=
791 Defining_Entity
(Unit
(Comp_Unit
));
792 Body_Unit
: constant Node_Id
:=
793 Library_Unit
(Comp_Unit
);
797 Item
:= First
(Context_Items
(Body_Unit
));
798 while Present
(Item
) loop
799 if Nkind
(Item
) = N_With_Clause
801 Is_Ancestor_Of_Main
(U_Id
, Name
(Item
))
803 Set_Is_Inlined
(U_Id
, False);
810 -- If no suspicious with_clauses, analyze the body.
812 if Is_Inlined
(U_Id
) then
813 Semantics
(Body_Unit
);
823 if J
> Inlined_Bodies
.Last
then
825 -- The analysis of required bodies may have produced additional
826 -- generic instantiations. To obtain further inlining, we need
827 -- to perform another round of generic body instantiations.
831 -- Symmetrically, the instantiation of required generic bodies
832 -- may have caused additional bodies to be inlined. To obtain
833 -- further inlining, we keep looping over the inlined bodies.
837 -- The list of inlined subprograms is an overestimate, because it
838 -- includes inlined functions called from functions that are compiled
839 -- as part of an inlined package, but are not themselves called. An
840 -- accurate computation of just those subprograms that are needed
841 -- requires that we perform a transitive closure over the call graph,
842 -- starting from calls in the main compilation unit.
844 for Index
in Inlined
.First
.. Inlined
.Last
loop
845 if not Is_Called
(Inlined
.Table
(Index
).Name
) then
847 -- This means that Add_Inlined_Body added the subprogram to the
848 -- table but wasn't able to handle its code unit. Do nothing.
850 Inlined
.Table
(Index
).Processed
:= True;
852 elsif Inlined
.Table
(Index
).Main_Call
then
853 Pending_Inlined
.Increment_Last
;
854 Pending_Inlined
.Table
(Pending_Inlined
.Last
) := Index
;
855 Inlined
.Table
(Index
).Processed
:= True;
858 Set_Is_Called
(Inlined
.Table
(Index
).Name
, False);
862 -- Iterate over the workpile until it is emptied, propagating the
863 -- Is_Called flag to the successors of the processed subprogram.
865 while Pending_Inlined
.Last
>= Pending_Inlined
.First
loop
866 Subp
:= Pending_Inlined
.Table
(Pending_Inlined
.Last
);
867 Pending_Inlined
.Decrement_Last
;
869 S
:= Inlined
.Table
(Subp
).First_Succ
;
871 while S
/= No_Succ
loop
872 Subp
:= Successors
.Table
(S
).Subp
;
874 if not Inlined
.Table
(Subp
).Processed
then
875 Set_Is_Called
(Inlined
.Table
(Subp
).Name
);
876 Pending_Inlined
.Increment_Last
;
877 Pending_Inlined
.Table
(Pending_Inlined
.Last
) := Subp
;
878 Inlined
.Table
(Subp
).Processed
:= True;
881 S
:= Successors
.Table
(S
).Next
;
885 -- Finally add the called subprograms to the list of inlined
886 -- subprograms for the unit.
888 for Index
in Inlined
.First
.. Inlined
.Last
loop
889 if Is_Called
(Inlined
.Table
(Index
).Name
) then
890 Add_Inlined_Subprogram
(Inlined
.Table
(Index
).Name
);
896 end Analyze_Inlined_Bodies
;
898 --------------------------
899 -- Build_Body_To_Inline --
900 --------------------------
902 procedure Build_Body_To_Inline
(N
: Node_Id
; Spec_Id
: Entity_Id
) is
903 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Spec_Id
);
904 Analysis_Status
: constant Boolean := Full_Analysis
;
905 Original_Body
: Node_Id
;
906 Body_To_Analyze
: Node_Id
;
907 Max_Size
: constant := 10;
909 function Has_Pending_Instantiation
return Boolean;
910 -- If some enclosing body contains instantiations that appear before
911 -- the corresponding generic body, the enclosing body has a freeze node
912 -- so that it can be elaborated after the generic itself. This might
913 -- conflict with subsequent inlinings, so that it is unsafe to try to
914 -- inline in such a case.
916 function Has_Single_Return_In_GNATprove_Mode
return Boolean;
917 -- This function is called only in GNATprove mode, and it returns
918 -- True if the subprogram has no return statement or a single return
919 -- statement as last statement. It returns False for subprogram with
920 -- a single return as last statement inside one or more blocks, as
921 -- inlining would generate gotos in that case as well (although the
922 -- goto is useless in that case).
924 function Uses_Secondary_Stack
(Bod
: Node_Id
) return Boolean;
925 -- If the body of the subprogram includes a call that returns an
926 -- unconstrained type, the secondary stack is involved, and it
927 -- is not worth inlining.
929 -------------------------------
930 -- Has_Pending_Instantiation --
931 -------------------------------
933 function Has_Pending_Instantiation
return Boolean is
938 while Present
(S
) loop
939 if Is_Compilation_Unit
(S
)
940 or else Is_Child_Unit
(S
)
944 elsif Ekind
(S
) = E_Package
945 and then Has_Forward_Instantiation
(S
)
954 end Has_Pending_Instantiation
;
956 -----------------------------------------
957 -- Has_Single_Return_In_GNATprove_Mode --
958 -----------------------------------------
960 function Has_Single_Return_In_GNATprove_Mode
return Boolean is
961 Last_Statement
: Node_Id
:= Empty
;
963 function Check_Return
(N
: Node_Id
) return Traverse_Result
;
964 -- Returns OK on node N if this is not a return statement different
965 -- from the last statement in the subprogram.
971 function Check_Return
(N
: Node_Id
) return Traverse_Result
is
973 if Nkind_In
(N
, N_Simple_Return_Statement
,
974 N_Extended_Return_Statement
)
976 if N
= Last_Statement
then
987 function Check_All_Returns
is new Traverse_Func
(Check_Return
);
989 -- Start of processing for Has_Single_Return_In_GNATprove_Mode
992 -- Retrieve the last statement
994 Last_Statement
:= Last
(Statements
(Handled_Statement_Sequence
(N
)));
996 -- Check that the last statement is the only possible return
997 -- statement in the subprogram.
999 return Check_All_Returns
(N
) = OK
;
1000 end Has_Single_Return_In_GNATprove_Mode
;
1002 --------------------------
1003 -- Uses_Secondary_Stack --
1004 --------------------------
1006 function Uses_Secondary_Stack
(Bod
: Node_Id
) return Boolean is
1007 function Check_Call
(N
: Node_Id
) return Traverse_Result
;
1008 -- Look for function calls that return an unconstrained type
1014 function Check_Call
(N
: Node_Id
) return Traverse_Result
is
1016 if Nkind
(N
) = N_Function_Call
1017 and then Is_Entity_Name
(Name
(N
))
1018 and then Is_Composite_Type
(Etype
(Entity
(Name
(N
))))
1019 and then not Is_Constrained
(Etype
(Entity
(Name
(N
))))
1022 ("cannot inline & (call returns unconstrained type)?",
1030 function Check_Calls
is new Traverse_Func
(Check_Call
);
1033 return Check_Calls
(Bod
) = Abandon
;
1034 end Uses_Secondary_Stack
;
1036 -- Start of processing for Build_Body_To_Inline
1039 -- Return immediately if done already
1041 if Nkind
(Decl
) = N_Subprogram_Declaration
1042 and then Present
(Body_To_Inline
(Decl
))
1046 -- Subprograms that have return statements in the middle of the body are
1047 -- inlined with gotos. GNATprove does not currently support gotos, so
1048 -- we prevent such inlining.
1050 elsif GNATprove_Mode
1051 and then not Has_Single_Return_In_GNATprove_Mode
1053 Cannot_Inline
("cannot inline & (multiple returns)?", N
, Spec_Id
);
1056 -- Functions that return unconstrained composite types require
1057 -- secondary stack handling, and cannot currently be inlined, unless
1058 -- all return statements return a local variable that is the first
1059 -- local declaration in the body.
1061 elsif Ekind
(Spec_Id
) = E_Function
1062 and then not Is_Scalar_Type
(Etype
(Spec_Id
))
1063 and then not Is_Access_Type
(Etype
(Spec_Id
))
1064 and then not Is_Constrained
(Etype
(Spec_Id
))
1066 if not Has_Single_Return
(N
) then
1068 ("cannot inline & (unconstrained return type)?", N
, Spec_Id
);
1072 -- Ditto for functions that return controlled types, where controlled
1073 -- actions interfere in complex ways with inlining.
1075 elsif Ekind
(Spec_Id
) = E_Function
1076 and then Needs_Finalization
(Etype
(Spec_Id
))
1079 ("cannot inline & (controlled return type)?", N
, Spec_Id
);
1083 if Present
(Declarations
(N
))
1084 and then Has_Excluded_Declaration
(Spec_Id
, Declarations
(N
))
1089 if Present
(Handled_Statement_Sequence
(N
)) then
1090 if Present
(Exception_Handlers
(Handled_Statement_Sequence
(N
))) then
1092 ("cannot inline& (exception handler)?",
1093 First
(Exception_Handlers
(Handled_Statement_Sequence
(N
))),
1097 elsif Has_Excluded_Statement
1098 (Spec_Id
, Statements
(Handled_Statement_Sequence
(N
)))
1104 -- We do not inline a subprogram that is too large, unless it is marked
1105 -- Inline_Always or we are in GNATprove mode. This pragma does not
1106 -- suppress the other checks on inlining (forbidden declarations,
1109 if not (Has_Pragma_Inline_Always
(Spec_Id
) or else GNATprove_Mode
)
1110 and then List_Length
1111 (Statements
(Handled_Statement_Sequence
(N
))) > Max_Size
1113 Cannot_Inline
("cannot inline& (body too large)?", N
, Spec_Id
);
1117 if Has_Pending_Instantiation
then
1119 ("cannot inline& (forward instance within enclosing body)?",
1124 -- Within an instance, the body to inline must be treated as a nested
1125 -- generic, so that the proper global references are preserved.
1127 -- Note that we do not do this at the library level, because it is not
1128 -- needed, and furthermore this causes trouble if front end inlining
1129 -- is activated (-gnatN).
1131 if In_Instance
and then Scope
(Current_Scope
) /= Standard_Standard
then
1132 Save_Env
(Scope
(Current_Scope
), Scope
(Current_Scope
));
1133 Original_Body
:= Copy_Generic_Node
(N
, Empty
, True);
1135 Original_Body
:= Copy_Separate_Tree
(N
);
1138 -- We need to capture references to the formals in order to substitute
1139 -- the actuals at the point of inlining, i.e. instantiation. To treat
1140 -- the formals as globals to the body to inline, we nest it within a
1141 -- dummy parameterless subprogram, declared within the real one. To
1142 -- avoid generating an internal name (which is never public, and which
1143 -- affects serial numbers of other generated names), we use an internal
1144 -- symbol that cannot conflict with user declarations.
1146 Set_Parameter_Specifications
(Specification
(Original_Body
), No_List
);
1147 Set_Defining_Unit_Name
1148 (Specification
(Original_Body
),
1149 Make_Defining_Identifier
(Sloc
(N
), Name_uParent
));
1150 Set_Corresponding_Spec
(Original_Body
, Empty
);
1152 -- Remove all aspects/pragmas that have no meaning in an inlined body
1154 Remove_Aspects_And_Pragmas
(Original_Body
);
1156 Body_To_Analyze
:= Copy_Generic_Node
(Original_Body
, Empty
, False);
1158 -- Set return type of function, which is also global and does not need
1161 if Ekind
(Spec_Id
) = E_Function
then
1162 Set_Result_Definition
1163 (Specification
(Body_To_Analyze
),
1164 New_Occurrence_Of
(Etype
(Spec_Id
), Sloc
(N
)));
1167 if No
(Declarations
(N
)) then
1168 Set_Declarations
(N
, New_List
(Body_To_Analyze
));
1170 Append
(Body_To_Analyze
, Declarations
(N
));
1173 -- The body to inline is pre-analyzed. In GNATprove mode we must disable
1174 -- full analysis as well so that light expansion does not take place
1175 -- either, and name resolution is unaffected.
1177 Expander_Mode_Save_And_Set
(False);
1178 Full_Analysis
:= False;
1180 Analyze
(Body_To_Analyze
);
1181 Push_Scope
(Defining_Entity
(Body_To_Analyze
));
1182 Save_Global_References
(Original_Body
);
1184 Remove
(Body_To_Analyze
);
1186 Expander_Mode_Restore
;
1187 Full_Analysis
:= Analysis_Status
;
1189 -- Restore environment if previously saved
1191 if In_Instance
and then Scope
(Current_Scope
) /= Standard_Standard
then
1195 -- If secondary stack is used, there is no point in inlining. We have
1196 -- already issued the warning in this case, so nothing to do.
1198 if Uses_Secondary_Stack
(Body_To_Analyze
) then
1202 Set_Body_To_Inline
(Decl
, Original_Body
);
1203 Set_Ekind
(Defining_Entity
(Original_Body
), Ekind
(Spec_Id
));
1204 Set_Is_Inlined
(Spec_Id
);
1205 end Build_Body_To_Inline
;
1207 -------------------------------------------
1208 -- Call_Can_Be_Inlined_In_GNATprove_Mode --
1209 -------------------------------------------
1211 function Call_Can_Be_Inlined_In_GNATprove_Mode
1213 Subp
: Entity_Id
) return Boolean
1219 F
:= First_Formal
(Subp
);
1220 A
:= First_Actual
(N
);
1221 while Present
(F
) loop
1222 if Ekind
(F
) /= E_Out_Parameter
1223 and then not Same_Type
(Etype
(F
), Etype
(A
))
1225 (Is_By_Reference_Type
(Etype
(A
))
1226 or else Is_Limited_Type
(Etype
(A
)))
1236 end Call_Can_Be_Inlined_In_GNATprove_Mode
;
1238 --------------------------------------
1239 -- Can_Be_Inlined_In_GNATprove_Mode --
1240 --------------------------------------
1242 function Can_Be_Inlined_In_GNATprove_Mode
1243 (Spec_Id
: Entity_Id
;
1244 Body_Id
: Entity_Id
) return Boolean
1246 function Has_Formal_With_Discriminant_Dependent_Fields
1247 (Id
: Entity_Id
) return Boolean;
1248 -- Returns true if the subprogram has at least one formal parameter of
1249 -- an unconstrained record type with per-object constraints on component
1252 function Has_Some_Contract
(Id
: Entity_Id
) return Boolean;
1253 -- Returns True if subprogram Id has any contract (Pre, Post, Global,
1256 function Is_Unit_Subprogram
(Id
: Entity_Id
) return Boolean;
1257 -- Returns True if subprogram Id defines a compilation unit
1258 -- Shouldn't this be in Sem_Aux???
1260 function In_Package_Visible_Spec
(Id
: Node_Id
) return Boolean;
1261 -- Returns True if subprogram Id is defined in the visible part of a
1262 -- package specification.
1264 ---------------------------------------------------
1265 -- Has_Formal_With_Discriminant_Dependent_Fields --
1266 ---------------------------------------------------
1268 function Has_Formal_With_Discriminant_Dependent_Fields
1269 (Id
: Entity_Id
) return Boolean is
1271 function Has_Discriminant_Dependent_Component
1272 (Typ
: Entity_Id
) return Boolean;
1273 -- Determine whether unconstrained record type Typ has at least
1274 -- one component that depends on a discriminant.
1276 ------------------------------------------
1277 -- Has_Discriminant_Dependent_Component --
1278 ------------------------------------------
1280 function Has_Discriminant_Dependent_Component
1281 (Typ
: Entity_Id
) return Boolean
1286 -- Inspect all components of the record type looking for one
1287 -- that depends on a discriminant.
1289 Comp
:= First_Component
(Typ
);
1290 while Present
(Comp
) loop
1291 if Has_Discriminant_Dependent_Constraint
(Comp
) then
1295 Next_Component
(Comp
);
1299 end Has_Discriminant_Dependent_Component
;
1303 Subp_Id
: constant Entity_Id
:= Ultimate_Alias
(Id
);
1305 Formal_Typ
: Entity_Id
;
1307 -- Start of processing for
1308 -- Has_Formal_With_Discriminant_Dependent_Fields
1311 -- Inspect all parameters of the subprogram looking for a formal
1312 -- of an unconstrained record type with at least one discriminant
1313 -- dependent component.
1315 Formal
:= First_Formal
(Subp_Id
);
1316 while Present
(Formal
) loop
1317 Formal_Typ
:= Etype
(Formal
);
1319 if Is_Record_Type
(Formal_Typ
)
1320 and then not Is_Constrained
(Formal_Typ
)
1321 and then Has_Discriminant_Dependent_Component
(Formal_Typ
)
1326 Next_Formal
(Formal
);
1330 end Has_Formal_With_Discriminant_Dependent_Fields
;
1332 -----------------------
1333 -- Has_Some_Contract --
1334 -----------------------
1336 function Has_Some_Contract
(Id
: Entity_Id
) return Boolean is
1340 -- A call to an expression function may precede the actual body which
1341 -- is inserted at the end of the enclosing declarations. Ensure that
1342 -- the related entity is decorated before inspecting the contract.
1344 if Is_Subprogram_Or_Generic_Subprogram
(Id
) then
1345 Items
:= Contract
(Id
);
1347 return Present
(Items
)
1348 and then (Present
(Pre_Post_Conditions
(Items
)) or else
1349 Present
(Contract_Test_Cases
(Items
)) or else
1350 Present
(Classifications
(Items
)));
1354 end Has_Some_Contract
;
1356 -----------------------------
1357 -- In_Package_Visible_Spec --
1358 -----------------------------
1360 function In_Package_Visible_Spec
(Id
: Node_Id
) return Boolean is
1361 Decl
: Node_Id
:= Parent
(Parent
(Id
));
1365 if Nkind
(Parent
(Id
)) = N_Defining_Program_Unit_Name
then
1366 Decl
:= Parent
(Decl
);
1371 return Nkind
(P
) = N_Package_Specification
1372 and then List_Containing
(Decl
) = Visible_Declarations
(P
);
1373 end In_Package_Visible_Spec
;
1375 ------------------------
1376 -- Is_Unit_Subprogram --
1377 ------------------------
1379 function Is_Unit_Subprogram
(Id
: Entity_Id
) return Boolean is
1380 Decl
: Node_Id
:= Parent
(Parent
(Id
));
1382 if Nkind
(Parent
(Id
)) = N_Defining_Program_Unit_Name
then
1383 Decl
:= Parent
(Decl
);
1386 return Nkind
(Parent
(Decl
)) = N_Compilation_Unit
;
1387 end Is_Unit_Subprogram
;
1389 -- Local declarations
1392 -- Procedure or function entity for the subprogram
1394 -- Start of processing for Can_Be_Inlined_In_GNATprove_Mode
1397 pragma Assert
(Present
(Spec_Id
) or else Present
(Body_Id
));
1399 if Present
(Spec_Id
) then
1405 -- Only local subprograms without contracts are inlined in GNATprove
1406 -- mode, as these are the subprograms which a user is not interested in
1407 -- analyzing in isolation, but rather in the context of their call. This
1408 -- is a convenient convention, that could be changed for an explicit
1409 -- pragma/aspect one day.
1411 -- In a number of special cases, inlining is not desirable or not
1412 -- possible, see below.
1414 -- Do not inline unit-level subprograms
1416 if Is_Unit_Subprogram
(Id
) then
1419 -- Do not inline subprograms declared in the visible part of a package
1421 elsif In_Package_Visible_Spec
(Id
) then
1424 -- Do not inline subprograms marked No_Return, possibly used for
1425 -- signaling errors, which GNATprove handles specially.
1427 elsif No_Return
(Id
) then
1430 -- Do not inline subprograms that have a contract on the spec or the
1431 -- body. Use the contract(s) instead in GNATprove.
1433 elsif (Present
(Spec_Id
) and then Has_Some_Contract
(Spec_Id
))
1435 (Present
(Body_Id
) and then Has_Some_Contract
(Body_Id
))
1439 -- Do not inline expression functions, which are directly inlined at the
1442 elsif (Present
(Spec_Id
) and then Is_Expression_Function
(Spec_Id
))
1444 (Present
(Body_Id
) and then Is_Expression_Function
(Body_Id
))
1448 -- Do not inline generic subprogram instances. The visibility rules of
1449 -- generic instances plays badly with inlining.
1451 elsif Is_Generic_Instance
(Spec_Id
) then
1454 -- Only inline subprograms whose spec is marked SPARK_Mode On. For
1455 -- the subprogram body, a similar check is performed after the body
1456 -- is analyzed, as this is where a pragma SPARK_Mode might be inserted.
1458 elsif Present
(Spec_Id
)
1460 (No
(SPARK_Pragma
(Spec_Id
))
1462 Get_SPARK_Mode_From_Annotation
(SPARK_Pragma
(Spec_Id
)) /= On
)
1466 -- Subprograms in generic instances are currently not inlined, to avoid
1467 -- problems with inlining of standard library subprograms.
1469 elsif Instantiation_Location
(Sloc
(Id
)) /= No_Location
then
1472 -- Do not inline predicate functions (treated specially by GNATprove)
1474 elsif Is_Predicate_Function
(Id
) then
1477 -- Do not inline subprograms with a parameter of an unconstrained
1478 -- record type if it has discrimiant dependent fields. Indeed, with
1479 -- such parameters, the frontend cannot always ensure type compliance
1480 -- in record component accesses (in particular with records containing
1483 elsif Has_Formal_With_Discriminant_Dependent_Fields
(Id
) then
1486 -- Otherwise, this is a subprogram declared inside the private part of a
1487 -- package, or inside a package body, or locally in a subprogram, and it
1488 -- does not have any contract. Inline it.
1493 end Can_Be_Inlined_In_GNATprove_Mode
;
1499 procedure Cannot_Inline
1503 Is_Serious
: Boolean := False)
1506 -- In GNATprove mode, inlining is the technical means by which the
1507 -- higher-level goal of contextual analysis is reached, so issue
1508 -- messages about failure to apply contextual analysis to a
1509 -- subprogram, rather than failure to inline it.
1512 and then Msg
(Msg
'First .. Msg
'First + 12) = "cannot inline"
1515 Len1
: constant Positive :=
1516 String (String'("cannot inline"))'Length;
1517 Len2 : constant Positive :=
1518 String (String'("info: no contextual analysis of"))'Length;
1520 New_Msg
: String (1 .. Msg
'Length + Len2
- Len1
);
1523 New_Msg
(1 .. Len2
) := "info: no contextual analysis of";
1524 New_Msg
(Len2
+ 1 .. Msg
'Length + Len2
- Len1
) :=
1525 Msg
(Msg
'First + Len1
.. Msg
'Last);
1526 Cannot_Inline
(New_Msg
, N
, Subp
, Is_Serious
);
1531 pragma Assert
(Msg
(Msg
'Last) = '?');
1533 -- Legacy front end inlining model
1535 if not Back_End_Inlining
then
1537 -- Do not emit warning if this is a predefined unit which is not
1538 -- the main unit. With validity checks enabled, some predefined
1539 -- subprograms may contain nested subprograms and become ineligible
1542 if Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(Subp
)))
1543 and then not In_Extended_Main_Source_Unit
(Subp
)
1547 -- In GNATprove mode, issue a warning, and indicate that the
1548 -- subprogram is not always inlined by setting flag Is_Inlined_Always
1551 elsif GNATprove_Mode
then
1552 Set_Is_Inlined_Always
(Subp
, False);
1553 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1555 elsif Has_Pragma_Inline_Always
(Subp
) then
1557 -- Remove last character (question mark) to make this into an
1558 -- error, because the Inline_Always pragma cannot be obeyed.
1560 Error_Msg_NE
(Msg
(Msg
'First .. Msg
'Last - 1), N
, Subp
);
1562 elsif Ineffective_Inline_Warnings
then
1563 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1566 -- New semantics relying on back end inlining
1568 elsif Is_Serious
then
1570 -- Remove last character (question mark) to make this into an error.
1572 Error_Msg_NE
(Msg
(Msg
'First .. Msg
'Last - 1), N
, Subp
);
1574 -- In GNATprove mode, issue a warning, and indicate that the subprogram
1575 -- is not always inlined by setting flag Is_Inlined_Always to False.
1577 elsif GNATprove_Mode
then
1578 Set_Is_Inlined_Always
(Subp
, False);
1579 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1583 -- Do not emit warning if this is a predefined unit which is not
1584 -- the main unit. This behavior is currently provided for backward
1585 -- compatibility but it will be removed when we enforce the
1586 -- strictness of the new rules.
1588 if Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(Subp
)))
1589 and then not In_Extended_Main_Source_Unit
(Subp
)
1593 elsif Has_Pragma_Inline_Always
(Subp
) then
1595 -- Emit a warning if this is a call to a runtime subprogram
1596 -- which is located inside a generic. Previously this call
1597 -- was silently skipped.
1599 if Is_Generic_Instance
(Subp
) then
1601 Gen_P
: constant Entity_Id
:= Generic_Parent
(Parent
(Subp
));
1603 if Is_Predefined_File_Name
1604 (Unit_File_Name
(Get_Source_Unit
(Gen_P
)))
1606 Set_Is_Inlined
(Subp
, False);
1607 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1613 -- Remove last character (question mark) to make this into an
1614 -- error, because the Inline_Always pragma cannot be obeyed.
1616 Error_Msg_NE
(Msg
(Msg
'First .. Msg
'Last - 1), N
, Subp
);
1619 Set_Is_Inlined
(Subp
, False);
1621 if Ineffective_Inline_Warnings
then
1622 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1628 --------------------------------------------
1629 -- Check_And_Split_Unconstrained_Function --
1630 --------------------------------------------
1632 procedure Check_And_Split_Unconstrained_Function
1634 Spec_Id
: Entity_Id
;
1635 Body_Id
: Entity_Id
)
1637 procedure Build_Body_To_Inline
(N
: Node_Id
; Spec_Id
: Entity_Id
);
1638 -- Use generic machinery to build an unexpanded body for the subprogram.
1639 -- This body is subsequently used for inline expansions at call sites.
1641 function Can_Split_Unconstrained_Function
(N
: Node_Id
) return Boolean;
1642 -- Return true if we generate code for the function body N, the function
1643 -- body N has no local declarations and its unique statement is a single
1644 -- extended return statement with a handled statements sequence.
1646 procedure Generate_Subprogram_Body
1648 Body_To_Inline
: out Node_Id
);
1649 -- Generate a parameterless duplicate of subprogram body N. Occurrences
1650 -- of pragmas referencing the formals are removed since they have no
1651 -- meaning when the body is inlined and the formals are rewritten (the
1652 -- analysis of the non-inlined body will handle these pragmas properly).
1653 -- A new internal name is associated with Body_To_Inline.
1655 procedure Split_Unconstrained_Function
1657 Spec_Id
: Entity_Id
);
1658 -- N is an inlined function body that returns an unconstrained type and
1659 -- has a single extended return statement. Split N in two subprograms:
1660 -- a procedure P' and a function F'. The formals of P' duplicate the
1661 -- formals of N plus an extra formal which is used return a value;
1662 -- its body is composed by the declarations and list of statements
1663 -- of the extended return statement of N.
1665 --------------------------
1666 -- Build_Body_To_Inline --
1667 --------------------------
1669 procedure Build_Body_To_Inline
(N
: Node_Id
; Spec_Id
: Entity_Id
) is
1670 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Spec_Id
);
1671 Original_Body
: Node_Id
;
1672 Body_To_Analyze
: Node_Id
;
1675 pragma Assert
(Current_Scope
= Spec_Id
);
1677 -- Within an instance, the body to inline must be treated as a nested
1678 -- generic, so that the proper global references are preserved. We
1679 -- do not do this at the library level, because it is not needed, and
1680 -- furthermore this causes trouble if front end inlining is activated
1684 and then Scope
(Current_Scope
) /= Standard_Standard
1686 Save_Env
(Scope
(Current_Scope
), Scope
(Current_Scope
));
1689 -- We need to capture references to the formals in order
1690 -- to substitute the actuals at the point of inlining, i.e.
1691 -- instantiation. To treat the formals as globals to the body to
1692 -- inline, we nest it within a dummy parameterless subprogram,
1693 -- declared within the real one.
1695 Generate_Subprogram_Body
(N
, Original_Body
);
1696 Body_To_Analyze
:= Copy_Generic_Node
(Original_Body
, Empty
, False);
1698 -- Set return type of function, which is also global and does not
1699 -- need to be resolved.
1701 if Ekind
(Spec_Id
) = E_Function
then
1702 Set_Result_Definition
(Specification
(Body_To_Analyze
),
1703 New_Occurrence_Of
(Etype
(Spec_Id
), Sloc
(N
)));
1706 if No
(Declarations
(N
)) then
1707 Set_Declarations
(N
, New_List
(Body_To_Analyze
));
1709 Append_To
(Declarations
(N
), Body_To_Analyze
);
1712 Preanalyze
(Body_To_Analyze
);
1714 Push_Scope
(Defining_Entity
(Body_To_Analyze
));
1715 Save_Global_References
(Original_Body
);
1717 Remove
(Body_To_Analyze
);
1719 -- Restore environment if previously saved
1722 and then Scope
(Current_Scope
) /= Standard_Standard
1727 pragma Assert
(No
(Body_To_Inline
(Decl
)));
1728 Set_Body_To_Inline
(Decl
, Original_Body
);
1729 Set_Ekind
(Defining_Entity
(Original_Body
), Ekind
(Spec_Id
));
1730 end Build_Body_To_Inline
;
1732 --------------------------------------
1733 -- Can_Split_Unconstrained_Function --
1734 --------------------------------------
1736 function Can_Split_Unconstrained_Function
(N
: Node_Id
) return Boolean
1738 Ret_Node
: constant Node_Id
:=
1739 First
(Statements
(Handled_Statement_Sequence
(N
)));
1743 -- No user defined declarations allowed in the function except inside
1744 -- the unique return statement; implicit labels are the only allowed
1747 if not Is_Empty_List
(Declarations
(N
)) then
1748 D
:= First
(Declarations
(N
));
1749 while Present
(D
) loop
1750 if Nkind
(D
) /= N_Implicit_Label_Declaration
then
1758 -- We only split the inlined function when we are generating the code
1759 -- of its body; otherwise we leave duplicated split subprograms in
1760 -- the tree which (if referenced) generate wrong references at link
1763 return In_Extended_Main_Code_Unit
(N
)
1764 and then Present
(Ret_Node
)
1765 and then Nkind
(Ret_Node
) = N_Extended_Return_Statement
1766 and then No
(Next
(Ret_Node
))
1767 and then Present
(Handled_Statement_Sequence
(Ret_Node
));
1768 end Can_Split_Unconstrained_Function
;
1770 -----------------------------
1771 -- Generate_Body_To_Inline --
1772 -----------------------------
1774 procedure Generate_Subprogram_Body
1776 Body_To_Inline
: out Node_Id
)
1779 -- Within an instance, the body to inline must be treated as a nested
1780 -- generic, so that the proper global references are preserved.
1782 -- Note that we do not do this at the library level, because it
1783 -- is not needed, and furthermore this causes trouble if front
1784 -- end inlining is activated (-gnatN).
1787 and then Scope
(Current_Scope
) /= Standard_Standard
1789 Body_To_Inline
:= Copy_Generic_Node
(N
, Empty
, True);
1791 Body_To_Inline
:= Copy_Separate_Tree
(N
);
1794 -- Remove all aspects/pragmas that have no meaning in an inlined body
1796 Remove_Aspects_And_Pragmas
(Body_To_Inline
);
1798 -- We need to capture references to the formals in order
1799 -- to substitute the actuals at the point of inlining, i.e.
1800 -- instantiation. To treat the formals as globals to the body to
1801 -- inline, we nest it within a dummy parameterless subprogram,
1802 -- declared within the real one.
1804 Set_Parameter_Specifications
1805 (Specification
(Body_To_Inline
), No_List
);
1807 -- A new internal name is associated with Body_To_Inline to avoid
1808 -- conflicts when the non-inlined body N is analyzed.
1810 Set_Defining_Unit_Name
(Specification
(Body_To_Inline
),
1811 Make_Defining_Identifier
(Sloc
(N
), New_Internal_Name
('P')));
1812 Set_Corresponding_Spec
(Body_To_Inline
, Empty
);
1813 end Generate_Subprogram_Body
;
1815 ----------------------------------
1816 -- Split_Unconstrained_Function --
1817 ----------------------------------
1819 procedure Split_Unconstrained_Function
1821 Spec_Id
: Entity_Id
)
1823 Loc
: constant Source_Ptr
:= Sloc
(N
);
1824 Ret_Node
: constant Node_Id
:=
1825 First
(Statements
(Handled_Statement_Sequence
(N
)));
1826 Ret_Obj
: constant Node_Id
:=
1827 First
(Return_Object_Declarations
(Ret_Node
));
1829 procedure Build_Procedure
1830 (Proc_Id
: out Entity_Id
;
1831 Decl_List
: out List_Id
);
1832 -- Build a procedure containing the statements found in the extended
1833 -- return statement of the unconstrained function body N.
1835 ---------------------
1836 -- Build_Procedure --
1837 ---------------------
1839 procedure Build_Procedure
1840 (Proc_Id
: out Entity_Id
;
1841 Decl_List
: out List_Id
)
1844 Formal_List
: constant List_Id
:= New_List
;
1845 Proc_Spec
: Node_Id
;
1846 Proc_Body
: Node_Id
;
1847 Subp_Name
: constant Name_Id
:= New_Internal_Name
('F');
1848 Body_Decl_List
: List_Id
:= No_List
;
1849 Param_Type
: Node_Id
;
1852 if Nkind
(Object_Definition
(Ret_Obj
)) = N_Identifier
then
1854 New_Copy
(Object_Definition
(Ret_Obj
));
1857 New_Copy
(Subtype_Mark
(Object_Definition
(Ret_Obj
)));
1860 Append_To
(Formal_List
,
1861 Make_Parameter_Specification
(Loc
,
1862 Defining_Identifier
=>
1863 Make_Defining_Identifier
(Loc
,
1864 Chars
=> Chars
(Defining_Identifier
(Ret_Obj
))),
1865 In_Present
=> False,
1866 Out_Present
=> True,
1867 Null_Exclusion_Present
=> False,
1868 Parameter_Type
=> Param_Type
));
1870 Formal
:= First_Formal
(Spec_Id
);
1872 -- Note that we copy the parameter type rather than creating
1873 -- a reference to it, because it may be a class-wide entity
1874 -- that will not be retrieved by name.
1876 while Present
(Formal
) loop
1877 Append_To
(Formal_List
,
1878 Make_Parameter_Specification
(Loc
,
1879 Defining_Identifier
=>
1880 Make_Defining_Identifier
(Sloc
(Formal
),
1881 Chars
=> Chars
(Formal
)),
1882 In_Present
=> In_Present
(Parent
(Formal
)),
1883 Out_Present
=> Out_Present
(Parent
(Formal
)),
1884 Null_Exclusion_Present
=>
1885 Null_Exclusion_Present
(Parent
(Formal
)),
1887 New_Copy_Tree
(Parameter_Type
(Parent
(Formal
))),
1889 Copy_Separate_Tree
(Expression
(Parent
(Formal
)))));
1891 Next_Formal
(Formal
);
1894 Proc_Id
:= Make_Defining_Identifier
(Loc
, Chars
=> Subp_Name
);
1897 Make_Procedure_Specification
(Loc
,
1898 Defining_Unit_Name
=> Proc_Id
,
1899 Parameter_Specifications
=> Formal_List
);
1901 Decl_List
:= New_List
;
1903 Append_To
(Decl_List
,
1904 Make_Subprogram_Declaration
(Loc
, Proc_Spec
));
1906 -- Can_Convert_Unconstrained_Function checked that the function
1907 -- has no local declarations except implicit label declarations.
1908 -- Copy these declarations to the built procedure.
1910 if Present
(Declarations
(N
)) then
1911 Body_Decl_List
:= New_List
;
1918 D
:= First
(Declarations
(N
));
1919 while Present
(D
) loop
1920 pragma Assert
(Nkind
(D
) = N_Implicit_Label_Declaration
);
1923 Make_Implicit_Label_Declaration
(Loc
,
1924 Make_Defining_Identifier
(Loc
,
1925 Chars
=> Chars
(Defining_Identifier
(D
))),
1926 Label_Construct
=> Empty
);
1927 Append_To
(Body_Decl_List
, New_D
);
1934 pragma Assert
(Present
(Handled_Statement_Sequence
(Ret_Node
)));
1937 Make_Subprogram_Body
(Loc
,
1938 Specification
=> Copy_Separate_Tree
(Proc_Spec
),
1939 Declarations
=> Body_Decl_List
,
1940 Handled_Statement_Sequence
=>
1941 Copy_Separate_Tree
(Handled_Statement_Sequence
(Ret_Node
)));
1943 Set_Defining_Unit_Name
(Specification
(Proc_Body
),
1944 Make_Defining_Identifier
(Loc
, Subp_Name
));
1946 Append_To
(Decl_List
, Proc_Body
);
1947 end Build_Procedure
;
1951 New_Obj
: constant Node_Id
:= Copy_Separate_Tree
(Ret_Obj
);
1953 Proc_Id
: Entity_Id
;
1954 Proc_Call
: Node_Id
;
1956 -- Start of processing for Split_Unconstrained_Function
1959 -- Build the associated procedure, analyze it and insert it before
1960 -- the function body N.
1963 Scope
: constant Entity_Id
:= Current_Scope
;
1964 Decl_List
: List_Id
;
1967 Build_Procedure
(Proc_Id
, Decl_List
);
1968 Insert_Actions
(N
, Decl_List
);
1972 -- Build the call to the generated procedure
1975 Actual_List
: constant List_Id
:= New_List
;
1979 Append_To
(Actual_List
,
1980 New_Occurrence_Of
(Defining_Identifier
(New_Obj
), Loc
));
1982 Formal
:= First_Formal
(Spec_Id
);
1983 while Present
(Formal
) loop
1984 Append_To
(Actual_List
, New_Occurrence_Of
(Formal
, Loc
));
1986 -- Avoid spurious warning on unreferenced formals
1988 Set_Referenced
(Formal
);
1989 Next_Formal
(Formal
);
1993 Make_Procedure_Call_Statement
(Loc
,
1994 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
1995 Parameter_Associations
=> Actual_List
);
2003 -- main_1__F1b (New_Obj, ...);
2008 Make_Block_Statement
(Loc
,
2009 Declarations
=> New_List
(New_Obj
),
2010 Handled_Statement_Sequence
=>
2011 Make_Handled_Sequence_Of_Statements
(Loc
,
2012 Statements
=> New_List
(
2016 Make_Simple_Return_Statement
(Loc
,
2019 (Defining_Identifier
(New_Obj
), Loc
)))));
2021 Rewrite
(Ret_Node
, Blk_Stmt
);
2022 end Split_Unconstrained_Function
;
2026 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Spec_Id
);
2028 -- Start of processing for Check_And_Split_Unconstrained_Function
2031 pragma Assert
(Back_End_Inlining
2032 and then Ekind
(Spec_Id
) = E_Function
2033 and then Returns_Unconstrained_Type
(Spec_Id
)
2034 and then Comes_From_Source
(Body_Id
)
2035 and then (Has_Pragma_Inline_Always
(Spec_Id
)
2036 or else Optimization_Level
> 0));
2038 -- This routine must not be used in GNATprove mode since GNATprove
2039 -- relies on frontend inlining
2041 pragma Assert
(not GNATprove_Mode
);
2043 -- No need to split the function if we cannot generate the code
2045 if Serious_Errors_Detected
/= 0 then
2049 -- No action needed in stubs since the attribute Body_To_Inline
2052 if Nkind
(Decl
) = N_Subprogram_Body_Stub
then
2055 -- Cannot build the body to inline if the attribute is already set.
2056 -- This attribute may have been set if this is a subprogram renaming
2057 -- declarations (see Freeze.Build_Renamed_Body).
2059 elsif Present
(Body_To_Inline
(Decl
)) then
2062 -- Check excluded declarations
2064 elsif Present
(Declarations
(N
))
2065 and then Has_Excluded_Declaration
(Spec_Id
, Declarations
(N
))
2069 -- Check excluded statements. There is no need to protect us against
2070 -- exception handlers since they are supported by the GCC backend.
2072 elsif Present
(Handled_Statement_Sequence
(N
))
2073 and then Has_Excluded_Statement
2074 (Spec_Id
, Statements
(Handled_Statement_Sequence
(N
)))
2079 -- Build the body to inline only if really needed
2081 if Can_Split_Unconstrained_Function
(N
) then
2082 Split_Unconstrained_Function
(N
, Spec_Id
);
2083 Build_Body_To_Inline
(N
, Spec_Id
);
2084 Set_Is_Inlined
(Spec_Id
);
2086 end Check_And_Split_Unconstrained_Function
;
2088 -------------------------------------
2089 -- Check_Package_Body_For_Inlining --
2090 -------------------------------------
2092 procedure Check_Package_Body_For_Inlining
(N
: Node_Id
; P
: Entity_Id
) is
2093 Bname
: Unit_Name_Type
;
2098 -- Legacy implementation (relying on frontend inlining)
2100 if not Back_End_Inlining
2101 and then Is_Compilation_Unit
(P
)
2102 and then not Is_Generic_Instance
(P
)
2104 Bname
:= Get_Body_Name
(Get_Unit_Name
(Unit
(N
)));
2106 E
:= First_Entity
(P
);
2107 while Present
(E
) loop
2108 if Has_Pragma_Inline_Always
(E
)
2109 or else (Has_Pragma_Inline
(E
) and Front_End_Inlining
)
2111 if not Is_Loaded
(Bname
) then
2112 Load_Needed_Body
(N
, OK
);
2116 -- Check we are not trying to inline a parent whose body
2117 -- depends on a child, when we are compiling the body of
2118 -- the child. Otherwise we have a potential elaboration
2119 -- circularity with inlined subprograms and with
2120 -- Taft-Amendment types.
2123 Comp
: Node_Id
; -- Body just compiled
2124 Child_Spec
: Entity_Id
; -- Spec of main unit
2125 Ent
: Entity_Id
; -- For iteration
2126 With_Clause
: Node_Id
; -- Context of body.
2129 if Nkind
(Unit
(Cunit
(Main_Unit
))) = N_Package_Body
2130 and then Present
(Body_Entity
(P
))
2134 ((Unit
(Library_Unit
(Cunit
(Main_Unit
)))));
2137 Parent
(Unit_Declaration_Node
(Body_Entity
(P
)));
2139 -- Check whether the context of the body just
2140 -- compiled includes a child of itself, and that
2141 -- child is the spec of the main compilation.
2143 With_Clause
:= First
(Context_Items
(Comp
));
2144 while Present
(With_Clause
) loop
2145 if Nkind
(With_Clause
) = N_With_Clause
2147 Scope
(Entity
(Name
(With_Clause
))) = P
2149 Entity
(Name
(With_Clause
)) = Child_Spec
2151 Error_Msg_Node_2
:= Child_Spec
;
2153 ("body of & depends on child unit&??",
2156 ("\subprograms in body cannot be inlined??",
2159 -- Disable further inlining from this unit,
2160 -- and keep Taft-amendment types incomplete.
2162 Ent
:= First_Entity
(P
);
2163 while Present
(Ent
) loop
2165 and then Has_Completion_In_Body
(Ent
)
2167 Set_Full_View
(Ent
, Empty
);
2169 elsif Is_Subprogram
(Ent
) then
2170 Set_Is_Inlined
(Ent
, False);
2184 elsif Ineffective_Inline_Warnings
then
2185 Error_Msg_Unit_1
:= Bname
;
2187 ("unable to inline subprograms defined in $??", P
);
2188 Error_Msg_N
("\body not found??", P
);
2199 end Check_Package_Body_For_Inlining
;
2201 --------------------
2202 -- Cleanup_Scopes --
2203 --------------------
2205 procedure Cleanup_Scopes
is
2211 Elmt
:= First_Elmt
(To_Clean
);
2212 while Present
(Elmt
) loop
2213 Scop
:= Node
(Elmt
);
2215 if Ekind
(Scop
) = E_Entry
then
2216 Scop
:= Protected_Body_Subprogram
(Scop
);
2218 elsif Is_Subprogram
(Scop
)
2219 and then Is_Protected_Type
(Scope
(Scop
))
2220 and then Present
(Protected_Body_Subprogram
(Scop
))
2222 -- If a protected operation contains an instance, its cleanup
2223 -- operations have been delayed, and the subprogram has been
2224 -- rewritten in the expansion of the enclosing protected body. It
2225 -- is the corresponding subprogram that may require the cleanup
2226 -- operations, so propagate the information that triggers cleanup
2230 (Protected_Body_Subprogram
(Scop
),
2231 Uses_Sec_Stack
(Scop
));
2233 Scop
:= Protected_Body_Subprogram
(Scop
);
2236 if Ekind
(Scop
) = E_Block
then
2237 Decl
:= Parent
(Block_Node
(Scop
));
2240 Decl
:= Unit_Declaration_Node
(Scop
);
2242 if Nkind_In
(Decl
, N_Subprogram_Declaration
,
2243 N_Task_Type_Declaration
,
2244 N_Subprogram_Body_Stub
)
2246 Decl
:= Unit_Declaration_Node
(Corresponding_Body
(Decl
));
2251 Expand_Cleanup_Actions
(Decl
);
2254 Elmt
:= Next_Elmt
(Elmt
);
2258 -------------------------
2259 -- Expand_Inlined_Call --
2260 -------------------------
2262 procedure Expand_Inlined_Call
2265 Orig_Subp
: Entity_Id
)
2267 Loc
: constant Source_Ptr
:= Sloc
(N
);
2268 Is_Predef
: constant Boolean :=
2269 Is_Predefined_File_Name
2270 (Unit_File_Name
(Get_Source_Unit
(Subp
)));
2271 Orig_Bod
: constant Node_Id
:=
2272 Body_To_Inline
(Unit_Declaration_Node
(Subp
));
2276 Decls
: constant List_Id
:= New_List
;
2277 Exit_Lab
: Entity_Id
:= Empty
;
2284 Ret_Type
: Entity_Id
;
2287 -- The target of the call. If context is an assignment statement then
2288 -- this is the left-hand side of the assignment, else it is a temporary
2289 -- to which the return value is assigned prior to rewriting the call.
2292 -- A separate target used when the return type is unconstrained
2295 Temp_Typ
: Entity_Id
;
2297 Return_Object
: Entity_Id
:= Empty
;
2298 -- Entity in declaration in an extended_return_statement
2301 Is_Unc_Decl
: Boolean;
2302 -- If the type returned by the function is unconstrained and the call
2303 -- can be inlined, special processing is required.
2305 procedure Declare_Postconditions_Result
;
2306 -- When generating C code, declare _Result, which may be used in the
2307 -- inlined _Postconditions procedure to verify the return value.
2309 procedure Make_Exit_Label
;
2310 -- Build declaration for exit label to be used in Return statements,
2311 -- sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
2312 -- declaration). Does nothing if Exit_Lab already set.
2314 function Process_Formals
(N
: Node_Id
) return Traverse_Result
;
2315 -- Replace occurrence of a formal with the corresponding actual, or the
2316 -- thunk generated for it. Replace a return statement with an assignment
2317 -- to the target of the call, with appropriate conversions if needed.
2319 function Process_Sloc
(Nod
: Node_Id
) return Traverse_Result
;
2320 -- If the call being expanded is that of an internal subprogram, set the
2321 -- sloc of the generated block to that of the call itself, so that the
2322 -- expansion is skipped by the "next" command in gdb. Same processing
2323 -- for a subprogram in a predefined file, e.g. Ada.Tags. If
2324 -- Debug_Generated_Code is true, suppress this change to simplify our
2325 -- own development. Same in GNATprove mode, to ensure that warnings and
2326 -- diagnostics point to the proper location.
2328 procedure Reset_Dispatching_Calls
(N
: Node_Id
);
2329 -- In subtree N search for occurrences of dispatching calls that use the
2330 -- Ada 2005 Object.Operation notation and the object is a formal of the
2331 -- inlined subprogram. Reset the entity associated with Operation in all
2332 -- the found occurrences.
2334 procedure Rewrite_Function_Call
(N
: Node_Id
; Blk
: Node_Id
);
2335 -- If the function body is a single expression, replace call with
2336 -- expression, else insert block appropriately.
2338 procedure Rewrite_Procedure_Call
(N
: Node_Id
; Blk
: Node_Id
);
2339 -- If procedure body has no local variables, inline body without
2340 -- creating block, otherwise rewrite call with block.
2342 function Formal_Is_Used_Once
(Formal
: Entity_Id
) return Boolean;
2343 -- Determine whether a formal parameter is used only once in Orig_Bod
2345 -----------------------------------
2346 -- Declare_Postconditions_Result --
2347 -----------------------------------
2349 procedure Declare_Postconditions_Result
is
2350 Enclosing_Subp
: constant Entity_Id
:= Scope
(Subp
);
2355 and then Is_Subprogram
(Enclosing_Subp
)
2356 and then Present
(Postconditions_Proc
(Enclosing_Subp
)));
2358 if Ekind
(Enclosing_Subp
) = E_Function
then
2359 if Nkind
(First
(Parameter_Associations
(N
))) in
2360 N_Numeric_Or_String_Literal
2362 Append_To
(Declarations
(Blk
),
2363 Make_Object_Declaration
(Loc
,
2364 Defining_Identifier
=>
2365 Make_Defining_Identifier
(Loc
, Name_uResult
),
2366 Constant_Present
=> True,
2367 Object_Definition
=>
2368 New_Occurrence_Of
(Etype
(Enclosing_Subp
), Loc
),
2370 New_Copy_Tree
(First
(Parameter_Associations
(N
)))));
2372 Append_To
(Declarations
(Blk
),
2373 Make_Object_Renaming_Declaration
(Loc
,
2374 Defining_Identifier
=>
2375 Make_Defining_Identifier
(Loc
, Name_uResult
),
2377 New_Occurrence_Of
(Etype
(Enclosing_Subp
), Loc
),
2379 New_Copy_Tree
(First
(Parameter_Associations
(N
)))));
2382 end Declare_Postconditions_Result
;
2384 ---------------------
2385 -- Make_Exit_Label --
2386 ---------------------
2388 procedure Make_Exit_Label
is
2389 Lab_Ent
: Entity_Id
;
2391 if No
(Exit_Lab
) then
2392 Lab_Ent
:= Make_Temporary
(Loc
, 'L');
2393 Lab_Id
:= New_Occurrence_Of
(Lab_Ent
, Loc
);
2394 Exit_Lab
:= Make_Label
(Loc
, Lab_Id
);
2396 Make_Implicit_Label_Declaration
(Loc
,
2397 Defining_Identifier
=> Lab_Ent
,
2398 Label_Construct
=> Exit_Lab
);
2400 end Make_Exit_Label
;
2402 ---------------------
2403 -- Process_Formals --
2404 ---------------------
2406 function Process_Formals
(N
: Node_Id
) return Traverse_Result
is
2412 if Is_Entity_Name
(N
) and then Present
(Entity
(N
)) then
2415 if Is_Formal
(E
) and then Scope
(E
) = Subp
then
2416 A
:= Renamed_Object
(E
);
2418 -- Rewrite the occurrence of the formal into an occurrence of
2419 -- the actual. Also establish visibility on the proper view of
2420 -- the actual's subtype for the body's context (if the actual's
2421 -- subtype is private at the call point but its full view is
2422 -- visible to the body, then the inlined tree here must be
2423 -- analyzed with the full view).
2425 if Is_Entity_Name
(A
) then
2426 Rewrite
(N
, New_Occurrence_Of
(Entity
(A
), Sloc
(N
)));
2427 Check_Private_View
(N
);
2429 elsif Nkind
(A
) = N_Defining_Identifier
then
2430 Rewrite
(N
, New_Occurrence_Of
(A
, Sloc
(N
)));
2431 Check_Private_View
(N
);
2436 Rewrite
(N
, New_Copy
(A
));
2442 elsif Is_Entity_Name
(N
)
2443 and then Present
(Return_Object
)
2444 and then Chars
(N
) = Chars
(Return_Object
)
2446 -- Occurrence within an extended return statement. The return
2447 -- object is local to the body been inlined, and thus the generic
2448 -- copy is not analyzed yet, so we match by name, and replace it
2449 -- with target of call.
2451 if Nkind
(Targ
) = N_Defining_Identifier
then
2452 Rewrite
(N
, New_Occurrence_Of
(Targ
, Loc
));
2454 Rewrite
(N
, New_Copy_Tree
(Targ
));
2459 elsif Nkind
(N
) = N_Simple_Return_Statement
then
2460 if No
(Expression
(N
)) then
2461 Num_Ret
:= Num_Ret
+ 1;
2464 Make_Goto_Statement
(Loc
, Name
=> New_Copy
(Lab_Id
)));
2467 if Nkind
(Parent
(N
)) = N_Handled_Sequence_Of_Statements
2468 and then Nkind
(Parent
(Parent
(N
))) = N_Subprogram_Body
2470 -- Function body is a single expression. No need for
2476 Num_Ret
:= Num_Ret
+ 1;
2480 -- Because of the presence of private types, the views of the
2481 -- expression and the context may be different, so place an
2482 -- unchecked conversion to the context type to avoid spurious
2483 -- errors, e.g. when the expression is a numeric literal and
2484 -- the context is private. If the expression is an aggregate,
2485 -- use a qualified expression, because an aggregate is not a
2486 -- legal argument of a conversion. Ditto for numeric literals,
2487 -- which must be resolved to a specific type.
2489 if Nkind_In
(Expression
(N
), N_Aggregate
,
2495 Make_Qualified_Expression
(Sloc
(N
),
2496 Subtype_Mark
=> New_Occurrence_Of
(Ret_Type
, Sloc
(N
)),
2497 Expression
=> Relocate_Node
(Expression
(N
)));
2500 Unchecked_Convert_To
2501 (Ret_Type
, Relocate_Node
(Expression
(N
)));
2504 if Nkind
(Targ
) = N_Defining_Identifier
then
2506 Make_Assignment_Statement
(Loc
,
2507 Name
=> New_Occurrence_Of
(Targ
, Loc
),
2508 Expression
=> Ret
));
2511 Make_Assignment_Statement
(Loc
,
2512 Name
=> New_Copy
(Targ
),
2513 Expression
=> Ret
));
2516 Set_Assignment_OK
(Name
(N
));
2518 if Present
(Exit_Lab
) then
2520 Make_Goto_Statement
(Loc
, Name
=> New_Copy
(Lab_Id
)));
2526 -- An extended return becomes a block whose first statement is the
2527 -- assignment of the initial expression of the return object to the
2528 -- target of the call itself.
2530 elsif Nkind
(N
) = N_Extended_Return_Statement
then
2532 Return_Decl
: constant Entity_Id
:=
2533 First
(Return_Object_Declarations
(N
));
2537 Return_Object
:= Defining_Identifier
(Return_Decl
);
2539 if Present
(Expression
(Return_Decl
)) then
2540 if Nkind
(Targ
) = N_Defining_Identifier
then
2542 Make_Assignment_Statement
(Loc
,
2543 Name
=> New_Occurrence_Of
(Targ
, Loc
),
2544 Expression
=> Expression
(Return_Decl
));
2547 Make_Assignment_Statement
(Loc
,
2548 Name
=> New_Copy
(Targ
),
2549 Expression
=> Expression
(Return_Decl
));
2552 Set_Assignment_OK
(Name
(Assign
));
2554 if No
(Handled_Statement_Sequence
(N
)) then
2555 Set_Handled_Statement_Sequence
(N
,
2556 Make_Handled_Sequence_Of_Statements
(Loc
,
2557 Statements
=> New_List
));
2561 Statements
(Handled_Statement_Sequence
(N
)));
2565 Make_Block_Statement
(Loc
,
2566 Handled_Statement_Sequence
=>
2567 Handled_Statement_Sequence
(N
)));
2572 -- Remove pragma Unreferenced since it may refer to formals that
2573 -- are not visible in the inlined body, and in any case we will
2574 -- not be posting warnings on the inlined body so it is unneeded.
2576 elsif Nkind
(N
) = N_Pragma
2577 and then Pragma_Name
(N
) = Name_Unreferenced
2579 Rewrite
(N
, Make_Null_Statement
(Sloc
(N
)));
2585 end Process_Formals
;
2587 procedure Replace_Formals
is new Traverse_Proc
(Process_Formals
);
2593 function Process_Sloc
(Nod
: Node_Id
) return Traverse_Result
is
2595 if not Debug_Generated_Code
then
2596 Set_Sloc
(Nod
, Sloc
(N
));
2597 Set_Comes_From_Source
(Nod
, False);
2603 procedure Reset_Slocs
is new Traverse_Proc
(Process_Sloc
);
2605 ------------------------------
2606 -- Reset_Dispatching_Calls --
2607 ------------------------------
2609 procedure Reset_Dispatching_Calls
(N
: Node_Id
) is
2611 function Do_Reset
(N
: Node_Id
) return Traverse_Result
;
2612 -- Comment required ???
2618 function Do_Reset
(N
: Node_Id
) return Traverse_Result
is
2620 if Nkind
(N
) = N_Procedure_Call_Statement
2621 and then Nkind
(Name
(N
)) = N_Selected_Component
2622 and then Nkind
(Prefix
(Name
(N
))) = N_Identifier
2623 and then Is_Formal
(Entity
(Prefix
(Name
(N
))))
2624 and then Is_Dispatching_Operation
2625 (Entity
(Selector_Name
(Name
(N
))))
2627 Set_Entity
(Selector_Name
(Name
(N
)), Empty
);
2633 function Do_Reset_Calls
is new Traverse_Func
(Do_Reset
);
2637 Dummy
: constant Traverse_Result
:= Do_Reset_Calls
(N
);
2638 pragma Unreferenced
(Dummy
);
2640 -- Start of processing for Reset_Dispatching_Calls
2644 end Reset_Dispatching_Calls
;
2646 ---------------------------
2647 -- Rewrite_Function_Call --
2648 ---------------------------
2650 procedure Rewrite_Function_Call
(N
: Node_Id
; Blk
: Node_Id
) is
2651 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(Blk
);
2652 Fst
: constant Node_Id
:= First
(Statements
(HSS
));
2655 -- Optimize simple case: function body is a single return statement,
2656 -- which has been expanded into an assignment.
2658 if Is_Empty_List
(Declarations
(Blk
))
2659 and then Nkind
(Fst
) = N_Assignment_Statement
2660 and then No
(Next
(Fst
))
2662 -- The function call may have been rewritten as the temporary
2663 -- that holds the result of the call, in which case remove the
2664 -- now useless declaration.
2666 if Nkind
(N
) = N_Identifier
2667 and then Nkind
(Parent
(Entity
(N
))) = N_Object_Declaration
2669 Rewrite
(Parent
(Entity
(N
)), Make_Null_Statement
(Loc
));
2672 Rewrite
(N
, Expression
(Fst
));
2674 elsif Nkind
(N
) = N_Identifier
2675 and then Nkind
(Parent
(Entity
(N
))) = N_Object_Declaration
2677 -- The block assigns the result of the call to the temporary
2679 Insert_After
(Parent
(Entity
(N
)), Blk
);
2681 -- If the context is an assignment, and the left-hand side is free of
2682 -- side-effects, the replacement is also safe.
2683 -- Can this be generalized further???
2685 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
2687 (Is_Entity_Name
(Name
(Parent
(N
)))
2689 (Nkind
(Name
(Parent
(N
))) = N_Explicit_Dereference
2690 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
)))))
2693 (Nkind
(Name
(Parent
(N
))) = N_Selected_Component
2694 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
))))))
2696 -- Replace assignment with the block
2699 Original_Assignment
: constant Node_Id
:= Parent
(N
);
2702 -- Preserve the original assignment node to keep the complete
2703 -- assignment subtree consistent enough for Analyze_Assignment
2704 -- to proceed (specifically, the original Lhs node must still
2705 -- have an assignment statement as its parent).
2707 -- We cannot rely on Original_Node to go back from the block
2708 -- node to the assignment node, because the assignment might
2709 -- already be a rewrite substitution.
2711 Discard_Node
(Relocate_Node
(Original_Assignment
));
2712 Rewrite
(Original_Assignment
, Blk
);
2715 elsif Nkind
(Parent
(N
)) = N_Object_Declaration
then
2717 -- A call to a function which returns an unconstrained type
2718 -- found in the expression initializing an object-declaration is
2719 -- expanded into a procedure call which must be added after the
2720 -- object declaration.
2722 if Is_Unc_Decl
and Back_End_Inlining
then
2723 Insert_Action_After
(Parent
(N
), Blk
);
2725 Set_Expression
(Parent
(N
), Empty
);
2726 Insert_After
(Parent
(N
), Blk
);
2729 elsif Is_Unc
and then not Back_End_Inlining
then
2730 Insert_Before
(Parent
(N
), Blk
);
2732 end Rewrite_Function_Call
;
2734 ----------------------------
2735 -- Rewrite_Procedure_Call --
2736 ----------------------------
2738 procedure Rewrite_Procedure_Call
(N
: Node_Id
; Blk
: Node_Id
) is
2739 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(Blk
);
2742 -- If there is a transient scope for N, this will be the scope of the
2743 -- actions for N, and the statements in Blk need to be within this
2744 -- scope. For example, they need to have visibility on the constant
2745 -- declarations created for the formals.
2747 -- If N needs no transient scope, and if there are no declarations in
2748 -- the inlined body, we can do a little optimization and insert the
2749 -- statements for the body directly after N, and rewrite N to a
2750 -- null statement, instead of rewriting N into a full-blown block
2753 if not Scope_Is_Transient
2754 and then Is_Empty_List
(Declarations
(Blk
))
2756 Insert_List_After
(N
, Statements
(HSS
));
2757 Rewrite
(N
, Make_Null_Statement
(Loc
));
2761 end Rewrite_Procedure_Call
;
2763 -------------------------
2764 -- Formal_Is_Used_Once --
2765 -------------------------
2767 function Formal_Is_Used_Once
(Formal
: Entity_Id
) return Boolean is
2768 Use_Counter
: Int
:= 0;
2770 function Count_Uses
(N
: Node_Id
) return Traverse_Result
;
2771 -- Traverse the tree and count the uses of the formal parameter.
2772 -- In this case, for optimization purposes, we do not need to
2773 -- continue the traversal once more than one use is encountered.
2779 function Count_Uses
(N
: Node_Id
) return Traverse_Result
is
2781 -- The original node is an identifier
2783 if Nkind
(N
) = N_Identifier
2784 and then Present
(Entity
(N
))
2786 -- Original node's entity points to the one in the copied body
2788 and then Nkind
(Entity
(N
)) = N_Identifier
2789 and then Present
(Entity
(Entity
(N
)))
2791 -- The entity of the copied node is the formal parameter
2793 and then Entity
(Entity
(N
)) = Formal
2795 Use_Counter
:= Use_Counter
+ 1;
2797 if Use_Counter
> 1 then
2799 -- Denote more than one use and abandon the traversal
2810 procedure Count_Formal_Uses
is new Traverse_Proc
(Count_Uses
);
2812 -- Start of processing for Formal_Is_Used_Once
2815 Count_Formal_Uses
(Orig_Bod
);
2816 return Use_Counter
= 1;
2817 end Formal_Is_Used_Once
;
2819 -- Start of processing for Expand_Inlined_Call
2822 -- Initializations for old/new semantics
2824 if not Back_End_Inlining
then
2825 Is_Unc
:= Is_Array_Type
(Etype
(Subp
))
2826 and then not Is_Constrained
(Etype
(Subp
));
2827 Is_Unc_Decl
:= False;
2829 Is_Unc
:= Returns_Unconstrained_Type
(Subp
)
2830 and then Optimization_Level
> 0;
2831 Is_Unc_Decl
:= Nkind
(Parent
(N
)) = N_Object_Declaration
2835 -- Check for an illegal attempt to inline a recursive procedure. If the
2836 -- subprogram has parameters this is detected when trying to supply a
2837 -- binding for parameters that already have one. For parameterless
2838 -- subprograms this must be done explicitly.
2840 if In_Open_Scopes
(Subp
) then
2842 ("cannot inline call to recursive subprogram?", N
, Subp
);
2843 Set_Is_Inlined
(Subp
, False);
2846 -- Skip inlining if this is not a true inlining since the attribute
2847 -- Body_To_Inline is also set for renamings (see sinfo.ads). For a
2848 -- true inlining, Orig_Bod has code rather than being an entity.
2850 elsif Nkind
(Orig_Bod
) in N_Entity
then
2853 -- Skip inlining if the function returns an unconstrained type using
2854 -- an extended return statement since this part of the new inlining
2855 -- model which is not yet supported by the current implementation. ???
2859 Nkind
(First
(Statements
(Handled_Statement_Sequence
(Orig_Bod
)))) =
2860 N_Extended_Return_Statement
2861 and then not Back_End_Inlining
2866 if Nkind
(Orig_Bod
) = N_Defining_Identifier
2867 or else Nkind
(Orig_Bod
) = N_Defining_Operator_Symbol
2869 -- Subprogram is renaming_as_body. Calls occurring after the renaming
2870 -- can be replaced with calls to the renamed entity directly, because
2871 -- the subprograms are subtype conformant. If the renamed subprogram
2872 -- is an inherited operation, we must redo the expansion because
2873 -- implicit conversions may be needed. Similarly, if the renamed
2874 -- entity is inlined, expand the call for further optimizations.
2876 Set_Name
(N
, New_Occurrence_Of
(Orig_Bod
, Loc
));
2878 if Present
(Alias
(Orig_Bod
)) or else Is_Inlined
(Orig_Bod
) then
2885 -- Register the call in the list of inlined calls
2887 Append_New_Elmt
(N
, To
=> Inlined_Calls
);
2889 -- Use generic machinery to copy body of inlined subprogram, as if it
2890 -- were an instantiation, resetting source locations appropriately, so
2891 -- that nested inlined calls appear in the main unit.
2893 Save_Env
(Subp
, Empty
);
2894 Set_Copied_Sloc_For_Inlined_Body
(N
, Defining_Entity
(Orig_Bod
));
2898 if not Back_End_Inlining
then
2903 Bod
:= Copy_Generic_Node
(Orig_Bod
, Empty
, Instantiating
=> True);
2905 Make_Block_Statement
(Loc
,
2906 Declarations
=> Declarations
(Bod
),
2907 Handled_Statement_Sequence
=>
2908 Handled_Statement_Sequence
(Bod
));
2910 if No
(Declarations
(Bod
)) then
2911 Set_Declarations
(Blk
, New_List
);
2914 -- When generating C code, declare _Result, which may be used to
2915 -- verify the return value.
2917 if Modify_Tree_For_C
2918 and then Nkind
(N
) = N_Procedure_Call_Statement
2919 and then Chars
(Name
(N
)) = Name_uPostconditions
2921 Declare_Postconditions_Result
;
2924 -- For the unconstrained case, capture the name of the local
2925 -- variable that holds the result. This must be the first
2926 -- declaration in the block, because its bounds cannot depend
2927 -- on local variables. Otherwise there is no way to declare the
2928 -- result outside of the block. Needless to say, in general the
2929 -- bounds will depend on the actuals in the call.
2931 -- If the context is an assignment statement, as is the case
2932 -- for the expansion of an extended return, the left-hand side
2933 -- provides bounds even if the return type is unconstrained.
2937 First_Decl
: Node_Id
;
2940 First_Decl
:= First
(Declarations
(Blk
));
2942 if Nkind
(First_Decl
) /= N_Object_Declaration
then
2946 if Nkind
(Parent
(N
)) /= N_Assignment_Statement
then
2947 Targ1
:= Defining_Identifier
(First_Decl
);
2949 Targ1
:= Name
(Parent
(N
));
2966 Copy_Generic_Node
(Orig_Bod
, Empty
, Instantiating
=> True);
2968 Make_Block_Statement
(Loc
,
2969 Declarations
=> Declarations
(Bod
),
2970 Handled_Statement_Sequence
=>
2971 Handled_Statement_Sequence
(Bod
));
2973 -- Inline a call to a function that returns an unconstrained type.
2974 -- The semantic analyzer checked that frontend-inlined functions
2975 -- returning unconstrained types have no declarations and have
2976 -- a single extended return statement. As part of its processing
2977 -- the function was split in two subprograms: a procedure P and
2978 -- a function F that has a block with a call to procedure P (see
2979 -- Split_Unconstrained_Function).
2985 (Statements
(Handled_Statement_Sequence
(Orig_Bod
)))) =
2989 Blk_Stmt
: constant Node_Id
:=
2990 First
(Statements
(Handled_Statement_Sequence
(Orig_Bod
)));
2991 First_Stmt
: constant Node_Id
:=
2992 First
(Statements
(Handled_Statement_Sequence
(Blk_Stmt
)));
2993 Second_Stmt
: constant Node_Id
:= Next
(First_Stmt
);
2997 (Nkind
(First_Stmt
) = N_Procedure_Call_Statement
2998 and then Nkind
(Second_Stmt
) = N_Simple_Return_Statement
2999 and then No
(Next
(Second_Stmt
)));
3004 (Statements
(Handled_Statement_Sequence
(Orig_Bod
))),
3005 Empty
, Instantiating
=> True);
3008 -- Capture the name of the local variable that holds the
3009 -- result. This must be the first declaration in the block,
3010 -- because its bounds cannot depend on local variables.
3011 -- Otherwise there is no way to declare the result outside
3012 -- of the block. Needless to say, in general the bounds will
3013 -- depend on the actuals in the call.
3015 if Nkind
(Parent
(N
)) /= N_Assignment_Statement
then
3016 Targ1
:= Defining_Identifier
(First
(Declarations
(Blk
)));
3018 -- If the context is an assignment statement, as is the case
3019 -- for the expansion of an extended return, the left-hand
3020 -- side provides bounds even if the return type is
3024 Targ1
:= Name
(Parent
(N
));
3029 if No
(Declarations
(Bod
)) then
3030 Set_Declarations
(Blk
, New_List
);
3035 -- If this is a derived function, establish the proper return type
3037 if Present
(Orig_Subp
) and then Orig_Subp
/= Subp
then
3038 Ret_Type
:= Etype
(Orig_Subp
);
3040 Ret_Type
:= Etype
(Subp
);
3043 -- Create temporaries for the actuals that are expressions, or that are
3044 -- scalars and require copying to preserve semantics.
3046 F
:= First_Formal
(Subp
);
3047 A
:= First_Actual
(N
);
3048 while Present
(F
) loop
3049 if Present
(Renamed_Object
(F
)) then
3051 -- If expander is active, it is an error to try to inline a
3052 -- recursive program. In GNATprove mode, just indicate that the
3053 -- inlining will not happen, and mark the subprogram as not always
3056 if GNATprove_Mode
then
3058 ("cannot inline call to recursive subprogram?", N
, Subp
);
3059 Set_Is_Inlined_Always
(Subp
, False);
3062 ("cannot inline call to recursive subprogram", N
);
3068 -- Reset Last_Assignment for any parameters of mode out or in out, to
3069 -- prevent spurious warnings about overwriting for assignments to the
3070 -- formal in the inlined code.
3072 if Is_Entity_Name
(A
) and then Ekind
(F
) /= E_In_Parameter
then
3073 Set_Last_Assignment
(Entity
(A
), Empty
);
3076 -- If the argument may be a controlling argument in a call within
3077 -- the inlined body, we must preserve its classwide nature to insure
3078 -- that dynamic dispatching take place subsequently. If the formal
3079 -- has a constraint it must be preserved to retain the semantics of
3082 if Is_Class_Wide_Type
(Etype
(F
))
3083 or else (Is_Access_Type
(Etype
(F
))
3084 and then Is_Class_Wide_Type
(Designated_Type
(Etype
(F
))))
3086 Temp_Typ
:= Etype
(F
);
3088 elsif Base_Type
(Etype
(F
)) = Base_Type
(Etype
(A
))
3089 and then Etype
(F
) /= Base_Type
(Etype
(F
))
3091 Temp_Typ
:= Etype
(F
);
3093 Temp_Typ
:= Etype
(A
);
3096 -- If the actual is a simple name or a literal, no need to
3097 -- create a temporary, object can be used directly.
3099 -- If the actual is a literal and the formal has its address taken,
3100 -- we cannot pass the literal itself as an argument, so its value
3101 -- must be captured in a temporary. Skip this optimization in
3102 -- GNATprove mode, to make sure any check on a type conversion
3105 if (Is_Entity_Name
(A
)
3107 (not Is_Scalar_Type
(Etype
(A
))
3108 or else Ekind
(Entity
(A
)) = E_Enumeration_Literal
)
3109 and then not GNATprove_Mode
)
3111 -- When the actual is an identifier and the corresponding formal is
3112 -- used only once in the original body, the formal can be substituted
3113 -- directly with the actual parameter. Skip this optimization in
3114 -- GNATprove mode, to make sure any check on a type conversion
3118 (Nkind
(A
) = N_Identifier
3119 and then Formal_Is_Used_Once
(F
)
3120 and then not GNATprove_Mode
)
3123 (Nkind_In
(A
, N_Real_Literal
,
3125 N_Character_Literal
)
3126 and then not Address_Taken
(F
))
3128 if Etype
(F
) /= Etype
(A
) then
3130 (F
, Unchecked_Convert_To
(Etype
(F
), Relocate_Node
(A
)));
3132 Set_Renamed_Object
(F
, A
);
3136 Temp
:= Make_Temporary
(Loc
, 'C');
3138 -- If the actual for an in/in-out parameter is a view conversion,
3139 -- make it into an unchecked conversion, given that an untagged
3140 -- type conversion is not a proper object for a renaming.
3142 -- In-out conversions that involve real conversions have already
3143 -- been transformed in Expand_Actuals.
3145 if Nkind
(A
) = N_Type_Conversion
3146 and then Ekind
(F
) /= E_In_Parameter
3149 Make_Unchecked_Type_Conversion
(Loc
,
3150 Subtype_Mark
=> New_Occurrence_Of
(Etype
(F
), Loc
),
3151 Expression
=> Relocate_Node
(Expression
(A
)));
3153 elsif Etype
(F
) /= Etype
(A
) then
3154 New_A
:= Unchecked_Convert_To
(Etype
(F
), Relocate_Node
(A
));
3155 Temp_Typ
:= Etype
(F
);
3158 New_A
:= Relocate_Node
(A
);
3161 Set_Sloc
(New_A
, Sloc
(N
));
3163 -- If the actual has a by-reference type, it cannot be copied,
3164 -- so its value is captured in a renaming declaration. Otherwise
3165 -- declare a local constant initialized with the actual.
3167 -- We also use a renaming declaration for expressions of an array
3168 -- type that is not bit-packed, both for efficiency reasons and to
3169 -- respect the semantics of the call: in most cases the original
3170 -- call will pass the parameter by reference, and thus the inlined
3171 -- code will have the same semantics.
3173 -- Finally, we need a renaming declaration in the case of limited
3174 -- types for which initialization cannot be by copy either.
3176 if Ekind
(F
) = E_In_Parameter
3177 and then not Is_By_Reference_Type
(Etype
(A
))
3178 and then not Is_Limited_Type
(Etype
(A
))
3180 (not Is_Array_Type
(Etype
(A
))
3181 or else not Is_Object_Reference
(A
)
3182 or else Is_Bit_Packed_Array
(Etype
(A
)))
3185 Make_Object_Declaration
(Loc
,
3186 Defining_Identifier
=> Temp
,
3187 Constant_Present
=> True,
3188 Object_Definition
=> New_Occurrence_Of
(Temp_Typ
, Loc
),
3189 Expression
=> New_A
);
3192 -- In GNATprove mode, make an explicit copy of input
3193 -- parameters when formal and actual types differ, to make
3194 -- sure any check on the type conversion will be issued.
3195 -- The legality of the copy is ensured by calling first
3196 -- Call_Can_Be_Inlined_In_GNATprove_Mode.
3199 and then Ekind
(F
) /= E_Out_Parameter
3200 and then not Same_Type
(Etype
(F
), Etype
(A
))
3202 pragma Assert
(not (Is_By_Reference_Type
(Etype
(A
))));
3203 pragma Assert
(not (Is_Limited_Type
(Etype
(A
))));
3206 Make_Object_Declaration
(Loc
,
3207 Defining_Identifier
=> Make_Temporary
(Loc
, 'C'),
3208 Constant_Present
=> True,
3209 Object_Definition
=> New_Occurrence_Of
(Temp_Typ
, Loc
),
3210 Expression
=> New_Copy_Tree
(New_A
)));
3214 Make_Object_Renaming_Declaration
(Loc
,
3215 Defining_Identifier
=> Temp
,
3216 Subtype_Mark
=> New_Occurrence_Of
(Temp_Typ
, Loc
),
3220 Append
(Decl
, Decls
);
3221 Set_Renamed_Object
(F
, Temp
);
3228 -- Establish target of function call. If context is not assignment or
3229 -- declaration, create a temporary as a target. The declaration for the
3230 -- temporary may be subsequently optimized away if the body is a single
3231 -- expression, or if the left-hand side of the assignment is simple
3232 -- enough, i.e. an entity or an explicit dereference of one.
3234 if Ekind
(Subp
) = E_Function
then
3235 if Nkind
(Parent
(N
)) = N_Assignment_Statement
3236 and then Is_Entity_Name
(Name
(Parent
(N
)))
3238 Targ
:= Name
(Parent
(N
));
3240 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
3241 and then Nkind
(Name
(Parent
(N
))) = N_Explicit_Dereference
3242 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
))))
3244 Targ
:= Name
(Parent
(N
));
3246 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
3247 and then Nkind
(Name
(Parent
(N
))) = N_Selected_Component
3248 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
))))
3250 Targ
:= New_Copy_Tree
(Name
(Parent
(N
)));
3252 elsif Nkind
(Parent
(N
)) = N_Object_Declaration
3253 and then Is_Limited_Type
(Etype
(Subp
))
3255 Targ
:= Defining_Identifier
(Parent
(N
));
3257 -- New semantics: In an object declaration avoid an extra copy
3258 -- of the result of a call to an inlined function that returns
3259 -- an unconstrained type
3261 elsif Back_End_Inlining
3262 and then Nkind
(Parent
(N
)) = N_Object_Declaration
3265 Targ
:= Defining_Identifier
(Parent
(N
));
3268 -- Replace call with temporary and create its declaration
3270 Temp
:= Make_Temporary
(Loc
, 'C');
3271 Set_Is_Internal
(Temp
);
3273 -- For the unconstrained case, the generated temporary has the
3274 -- same constrained declaration as the result variable. It may
3275 -- eventually be possible to remove that temporary and use the
3276 -- result variable directly.
3278 if Is_Unc
and then Nkind
(Parent
(N
)) /= N_Assignment_Statement
3281 Make_Object_Declaration
(Loc
,
3282 Defining_Identifier
=> Temp
,
3283 Object_Definition
=>
3284 New_Copy_Tree
(Object_Definition
(Parent
(Targ1
))));
3286 Replace_Formals
(Decl
);
3290 Make_Object_Declaration
(Loc
,
3291 Defining_Identifier
=> Temp
,
3292 Object_Definition
=> New_Occurrence_Of
(Ret_Type
, Loc
));
3294 Set_Etype
(Temp
, Ret_Type
);
3297 Set_No_Initialization
(Decl
);
3298 Append
(Decl
, Decls
);
3299 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
3304 Insert_Actions
(N
, Decls
);
3308 -- Special management for inlining a call to a function that returns
3309 -- an unconstrained type and initializes an object declaration: we
3310 -- avoid generating undesired extra calls and goto statements.
3313 -- function Func (...) return ...
3316 -- Result : String (1 .. 4);
3318 -- Proc (Result, ...);
3323 -- Result : String := Func (...);
3325 -- Replace this object declaration by:
3327 -- Result : String (1 .. 4);
3328 -- Proc (Result, ...);
3330 Remove_Homonym
(Targ
);
3333 Make_Object_Declaration
3335 Defining_Identifier
=> Targ
,
3336 Object_Definition
=>
3337 New_Copy_Tree
(Object_Definition
(Parent
(Targ1
))));
3338 Replace_Formals
(Decl
);
3339 Rewrite
(Parent
(N
), Decl
);
3340 Analyze
(Parent
(N
));
3342 -- Avoid spurious warnings since we know that this declaration is
3343 -- referenced by the procedure call.
3345 Set_Never_Set_In_Source
(Targ
, False);
3347 -- Remove the local declaration of the extended return stmt from the
3350 Remove
(Parent
(Targ1
));
3352 -- Update the reference to the result (since we have rewriten the
3353 -- object declaration)
3356 Blk_Call_Stmt
: Node_Id
;
3359 -- Capture the call to the procedure
3362 First
(Statements
(Handled_Statement_Sequence
(Blk
)));
3364 (Nkind
(Blk_Call_Stmt
) = N_Procedure_Call_Statement
);
3366 Remove
(First
(Parameter_Associations
(Blk_Call_Stmt
)));
3367 Prepend_To
(Parameter_Associations
(Blk_Call_Stmt
),
3368 New_Occurrence_Of
(Targ
, Loc
));
3371 -- Remove the return statement
3374 (Nkind
(Last
(Statements
(Handled_Statement_Sequence
(Blk
)))) =
3375 N_Simple_Return_Statement
);
3377 Remove
(Last
(Statements
(Handled_Statement_Sequence
(Blk
))));
3380 -- Traverse the tree and replace formals with actuals or their thunks.
3381 -- Attach block to tree before analysis and rewriting.
3383 Replace_Formals
(Blk
);
3384 Set_Parent
(Blk
, N
);
3386 if GNATprove_Mode
then
3389 elsif not Comes_From_Source
(Subp
) or else Is_Predef
then
3395 -- No action needed since return statement has been already removed
3399 elsif Present
(Exit_Lab
) then
3401 -- If there's a single return statement at the end of the subprogram,
3402 -- the corresponding goto statement and the corresponding label are
3407 Nkind
(Last
(Statements
(Handled_Statement_Sequence
(Blk
)))) =
3410 Remove
(Last
(Statements
(Handled_Statement_Sequence
(Blk
))));
3412 Append
(Lab_Decl
, (Declarations
(Blk
)));
3413 Append
(Exit_Lab
, Statements
(Handled_Statement_Sequence
(Blk
)));
3417 -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors
3418 -- on conflicting private views that Gigi would ignore. If this is a
3419 -- predefined unit, analyze with checks off, as is done in the non-
3420 -- inlined run-time units.
3423 I_Flag
: constant Boolean := In_Inlined_Body
;
3426 In_Inlined_Body
:= True;
3430 Style
: constant Boolean := Style_Check
;
3433 Style_Check
:= False;
3435 -- Search for dispatching calls that use the Object.Operation
3436 -- notation using an Object that is a parameter of the inlined
3437 -- function. We reset the decoration of Operation to force
3438 -- the reanalysis of the inlined dispatching call because
3439 -- the actual object has been inlined.
3441 Reset_Dispatching_Calls
(Blk
);
3443 Analyze
(Blk
, Suppress
=> All_Checks
);
3444 Style_Check
:= Style
;
3451 In_Inlined_Body
:= I_Flag
;
3454 if Ekind
(Subp
) = E_Procedure
then
3455 Rewrite_Procedure_Call
(N
, Blk
);
3458 Rewrite_Function_Call
(N
, Blk
);
3463 -- For the unconstrained case, the replacement of the call has been
3464 -- made prior to the complete analysis of the generated declarations.
3465 -- Propagate the proper type now.
3468 if Nkind
(N
) = N_Identifier
then
3469 Set_Etype
(N
, Etype
(Entity
(N
)));
3471 Set_Etype
(N
, Etype
(Targ1
));
3478 -- Cleanup mapping between formals and actuals for other expansions
3480 F
:= First_Formal
(Subp
);
3481 while Present
(F
) loop
3482 Set_Renamed_Object
(F
, Empty
);
3485 end Expand_Inlined_Call
;
3487 --------------------------
3488 -- Get_Code_Unit_Entity --
3489 --------------------------
3491 function Get_Code_Unit_Entity
(E
: Entity_Id
) return Entity_Id
is
3492 Unit
: Entity_Id
:= Cunit_Entity
(Get_Code_Unit
(E
));
3495 if Ekind
(Unit
) = E_Package_Body
then
3496 Unit
:= Spec_Entity
(Unit
);
3500 end Get_Code_Unit_Entity
;
3502 ------------------------------
3503 -- Has_Excluded_Declaration --
3504 ------------------------------
3506 function Has_Excluded_Declaration
3508 Decls
: List_Id
) return Boolean
3512 function Is_Unchecked_Conversion
(D
: Node_Id
) return Boolean;
3513 -- Nested subprograms make a given body ineligible for inlining, but
3514 -- we make an exception for instantiations of unchecked conversion.
3515 -- The body has not been analyzed yet, so check the name, and verify
3516 -- that the visible entity with that name is the predefined unit.
3518 -----------------------------
3519 -- Is_Unchecked_Conversion --
3520 -----------------------------
3522 function Is_Unchecked_Conversion
(D
: Node_Id
) return Boolean is
3523 Id
: constant Node_Id
:= Name
(D
);
3527 if Nkind
(Id
) = N_Identifier
3528 and then Chars
(Id
) = Name_Unchecked_Conversion
3530 Conv
:= Current_Entity
(Id
);
3532 elsif Nkind_In
(Id
, N_Selected_Component
, N_Expanded_Name
)
3533 and then Chars
(Selector_Name
(Id
)) = Name_Unchecked_Conversion
3535 Conv
:= Current_Entity
(Selector_Name
(Id
));
3540 return Present
(Conv
)
3541 and then Is_Predefined_File_Name
3542 (Unit_File_Name
(Get_Source_Unit
(Conv
)))
3543 and then Is_Intrinsic_Subprogram
(Conv
);
3544 end Is_Unchecked_Conversion
;
3546 -- Start of processing for Has_Excluded_Declaration
3549 -- No action needed if the check is not needed
3551 if not Check_Inlining_Restrictions
then
3556 while Present
(D
) loop
3558 -- First declarations universally excluded
3560 if Nkind
(D
) = N_Package_Declaration
then
3562 ("cannot inline & (nested package declaration)?", D
, Subp
);
3565 elsif Nkind
(D
) = N_Package_Instantiation
then
3567 ("cannot inline & (nested package instantiation)?", D
, Subp
);
3571 -- Then declarations excluded only for front end inlining
3573 if Back_End_Inlining
then
3576 elsif Nkind
(D
) = N_Task_Type_Declaration
3577 or else Nkind
(D
) = N_Single_Task_Declaration
3580 ("cannot inline & (nested task type declaration)?", D
, Subp
);
3583 elsif Nkind
(D
) = N_Protected_Type_Declaration
3584 or else Nkind
(D
) = N_Single_Protected_Declaration
3587 ("cannot inline & (nested protected type declaration)?",
3591 elsif Nkind
(D
) = N_Subprogram_Body
then
3593 ("cannot inline & (nested subprogram)?", D
, Subp
);
3596 elsif Nkind
(D
) = N_Function_Instantiation
3597 and then not Is_Unchecked_Conversion
(D
)
3600 ("cannot inline & (nested function instantiation)?", D
, Subp
);
3603 elsif Nkind
(D
) = N_Procedure_Instantiation
then
3605 ("cannot inline & (nested procedure instantiation)?", D
, Subp
);
3608 -- Subtype declarations with predicates will generate predicate
3609 -- functions, i.e. nested subprogram bodies, so inlining is not
3612 elsif Nkind
(D
) = N_Subtype_Declaration
3613 and then Present
(Aspect_Specifications
(D
))
3620 A
:= First
(Aspect_Specifications
(D
));
3621 while Present
(A
) loop
3622 A_Id
:= Get_Aspect_Id
(Chars
(Identifier
(A
)));
3624 if A_Id
= Aspect_Predicate
3625 or else A_Id
= Aspect_Static_Predicate
3626 or else A_Id
= Aspect_Dynamic_Predicate
3629 ("cannot inline & (subtype declaration with "
3630 & "predicate)?", D
, Subp
);
3643 end Has_Excluded_Declaration
;
3645 ----------------------------
3646 -- Has_Excluded_Statement --
3647 ----------------------------
3649 function Has_Excluded_Statement
3651 Stats
: List_Id
) return Boolean
3657 -- No action needed if the check is not needed
3659 if not Check_Inlining_Restrictions
then
3664 while Present
(S
) loop
3665 if Nkind_In
(S
, N_Abort_Statement
,
3666 N_Asynchronous_Select
,
3667 N_Conditional_Entry_Call
,
3668 N_Delay_Relative_Statement
,
3669 N_Delay_Until_Statement
,
3674 ("cannot inline & (non-allowed statement)?", S
, Subp
);
3677 elsif Nkind
(S
) = N_Block_Statement
then
3678 if Present
(Declarations
(S
))
3679 and then Has_Excluded_Declaration
(Subp
, Declarations
(S
))
3683 elsif Present
(Handled_Statement_Sequence
(S
)) then
3684 if not Back_End_Inlining
3687 (Exception_Handlers
(Handled_Statement_Sequence
(S
)))
3690 ("cannot inline& (exception handler)?",
3691 First
(Exception_Handlers
3692 (Handled_Statement_Sequence
(S
))),
3696 elsif Has_Excluded_Statement
3697 (Subp
, Statements
(Handled_Statement_Sequence
(S
)))
3703 elsif Nkind
(S
) = N_Case_Statement
then
3704 E
:= First
(Alternatives
(S
));
3705 while Present
(E
) loop
3706 if Has_Excluded_Statement
(Subp
, Statements
(E
)) then
3713 elsif Nkind
(S
) = N_If_Statement
then
3714 if Has_Excluded_Statement
(Subp
, Then_Statements
(S
)) then
3718 if Present
(Elsif_Parts
(S
)) then
3719 E
:= First
(Elsif_Parts
(S
));
3720 while Present
(E
) loop
3721 if Has_Excluded_Statement
(Subp
, Then_Statements
(E
)) then
3729 if Present
(Else_Statements
(S
))
3730 and then Has_Excluded_Statement
(Subp
, Else_Statements
(S
))
3735 elsif Nkind
(S
) = N_Loop_Statement
3736 and then Has_Excluded_Statement
(Subp
, Statements
(S
))
3740 elsif Nkind
(S
) = N_Extended_Return_Statement
then
3741 if Present
(Handled_Statement_Sequence
(S
))
3743 Has_Excluded_Statement
3744 (Subp
, Statements
(Handled_Statement_Sequence
(S
)))
3748 elsif not Back_End_Inlining
3749 and then Present
(Handled_Statement_Sequence
(S
))
3751 Present
(Exception_Handlers
3752 (Handled_Statement_Sequence
(S
)))
3755 ("cannot inline& (exception handler)?",
3756 First
(Exception_Handlers
(Handled_Statement_Sequence
(S
))),
3766 end Has_Excluded_Statement
;
3768 --------------------------
3769 -- Has_Initialized_Type --
3770 --------------------------
3772 function Has_Initialized_Type
(E
: Entity_Id
) return Boolean is
3773 E_Body
: constant Node_Id
:= Subprogram_Body
(E
);
3777 if No
(E_Body
) then -- imported subprogram
3781 Decl
:= First
(Declarations
(E_Body
));
3782 while Present
(Decl
) loop
3783 if Nkind
(Decl
) = N_Full_Type_Declaration
3784 and then Present
(Init_Proc
(Defining_Identifier
(Decl
)))
3794 end Has_Initialized_Type
;
3796 -----------------------
3797 -- Has_Single_Return --
3798 -----------------------
3800 function Has_Single_Return
(N
: Node_Id
) return Boolean is
3801 Return_Statement
: Node_Id
:= Empty
;
3803 function Check_Return
(N
: Node_Id
) return Traverse_Result
;
3809 function Check_Return
(N
: Node_Id
) return Traverse_Result
is
3811 if Nkind
(N
) = N_Simple_Return_Statement
then
3812 if Present
(Expression
(N
))
3813 and then Is_Entity_Name
(Expression
(N
))
3815 if No
(Return_Statement
) then
3816 Return_Statement
:= N
;
3819 elsif Chars
(Expression
(N
)) =
3820 Chars
(Expression
(Return_Statement
))
3828 -- A return statement within an extended return is a noop
3831 elsif No
(Expression
(N
))
3833 Nkind
(Parent
(Parent
(N
))) = N_Extended_Return_Statement
3838 -- Expression has wrong form
3843 -- We can only inline a build-in-place function if it has a single
3846 elsif Nkind
(N
) = N_Extended_Return_Statement
then
3847 if No
(Return_Statement
) then
3848 Return_Statement
:= N
;
3860 function Check_All_Returns
is new Traverse_Func
(Check_Return
);
3862 -- Start of processing for Has_Single_Return
3865 if Check_All_Returns
(N
) /= OK
then
3868 elsif Nkind
(Return_Statement
) = N_Extended_Return_Statement
then
3872 return Present
(Declarations
(N
))
3873 and then Present
(First
(Declarations
(N
)))
3874 and then Chars
(Expression
(Return_Statement
)) =
3875 Chars
(Defining_Identifier
(First
(Declarations
(N
))));
3877 end Has_Single_Return
;
3879 -----------------------------
3880 -- In_Main_Unit_Or_Subunit --
3881 -----------------------------
3883 function In_Main_Unit_Or_Subunit
(E
: Entity_Id
) return Boolean is
3884 Comp
: Node_Id
:= Cunit
(Get_Code_Unit
(E
));
3887 -- Check whether the subprogram or package to inline is within the main
3888 -- unit or its spec or within a subunit. In either case there are no
3889 -- additional bodies to process. If the subprogram appears in a parent
3890 -- of the current unit, the check on whether inlining is possible is
3891 -- done in Analyze_Inlined_Bodies.
3893 while Nkind
(Unit
(Comp
)) = N_Subunit
loop
3894 Comp
:= Library_Unit
(Comp
);
3897 return Comp
= Cunit
(Main_Unit
)
3898 or else Comp
= Library_Unit
(Cunit
(Main_Unit
));
3899 end In_Main_Unit_Or_Subunit
;
3905 procedure Initialize
is
3907 Pending_Descriptor
.Init
;
3908 Pending_Instantiations
.Init
;
3909 Inlined_Bodies
.Init
;
3913 for J
in Hash_Headers
'Range loop
3914 Hash_Headers
(J
) := No_Subp
;
3917 Inlined_Calls
:= No_Elist
;
3918 Backend_Calls
:= No_Elist
;
3919 Backend_Inlined_Subps
:= No_Elist
;
3920 Backend_Not_Inlined_Subps
:= No_Elist
;
3923 ------------------------
3924 -- Instantiate_Bodies --
3925 ------------------------
3927 -- Generic bodies contain all the non-local references, so an
3928 -- instantiation does not need any more context than Standard
3929 -- itself, even if the instantiation appears in an inner scope.
3930 -- Generic associations have verified that the contract model is
3931 -- satisfied, so that any error that may occur in the analysis of
3932 -- the body is an internal error.
3934 procedure Instantiate_Bodies
is
3936 Info
: Pending_Body_Info
;
3939 if Serious_Errors_Detected
= 0 then
3940 Expander_Active
:= (Operating_Mode
= Opt
.Generate_Code
);
3941 Push_Scope
(Standard_Standard
);
3942 To_Clean
:= New_Elmt_List
;
3944 if Is_Generic_Unit
(Cunit_Entity
(Main_Unit
)) then
3948 -- A body instantiation may generate additional instantiations, so
3949 -- the following loop must scan to the end of a possibly expanding
3950 -- set (that's why we can't simply use a FOR loop here).
3953 while J
<= Pending_Instantiations
.Last
3954 and then Serious_Errors_Detected
= 0
3956 Info
:= Pending_Instantiations
.Table
(J
);
3958 -- If the instantiation node is absent, it has been removed
3959 -- as part of unreachable code.
3961 if No
(Info
.Inst_Node
) then
3964 elsif Nkind
(Info
.Act_Decl
) = N_Package_Declaration
then
3965 Instantiate_Package_Body
(Info
);
3966 Add_Scope_To_Clean
(Defining_Entity
(Info
.Act_Decl
));
3969 Instantiate_Subprogram_Body
(Info
);
3975 -- Reset the table of instantiations. Additional instantiations
3976 -- may be added through inlining, when additional bodies are
3979 Pending_Instantiations
.Init
;
3981 -- We can now complete the cleanup actions of scopes that contain
3982 -- pending instantiations (skipped for generic units, since we
3983 -- never need any cleanups in generic units).
3986 and then not Is_Generic_Unit
(Main_Unit_Entity
)
3989 elsif Is_Generic_Unit
(Cunit_Entity
(Main_Unit
)) then
3995 end Instantiate_Bodies
;
4001 function Is_Nested
(E
: Entity_Id
) return Boolean is
4006 while Scop
/= Standard_Standard
loop
4007 if Ekind
(Scop
) in Subprogram_Kind
then
4010 elsif Ekind
(Scop
) = E_Task_Type
4011 or else Ekind
(Scop
) = E_Entry
4012 or else Ekind
(Scop
) = E_Entry_Family
4017 Scop
:= Scope
(Scop
);
4023 ------------------------
4024 -- List_Inlining_Info --
4025 ------------------------
4027 procedure List_Inlining_Info
is
4033 if not Debug_Flag_Dot_J
then
4037 -- Generate listing of calls inlined by the frontend
4039 if Present
(Inlined_Calls
) then
4041 Elmt
:= First_Elmt
(Inlined_Calls
);
4042 while Present
(Elmt
) loop
4045 if In_Extended_Main_Code_Unit
(Nod
) then
4049 Write_Str
("List of calls inlined by the frontend");
4056 Write_Location
(Sloc
(Nod
));
4065 -- Generate listing of calls passed to the backend
4067 if Present
(Backend_Calls
) then
4070 Elmt
:= First_Elmt
(Backend_Calls
);
4071 while Present
(Elmt
) loop
4074 if In_Extended_Main_Code_Unit
(Nod
) then
4078 Write_Str
("List of inlined calls passed to the backend");
4085 Write_Location
(Sloc
(Nod
));
4093 -- Generate listing of subprograms passed to the backend
4095 if Present
(Backend_Inlined_Subps
) and then Back_End_Inlining
then
4098 Elmt
:= First_Elmt
(Backend_Inlined_Subps
);
4099 while Present
(Elmt
) loop
4106 ("List of inlined subprograms passed to the backend");
4113 Write_Name
(Chars
(Nod
));
4115 Write_Location
(Sloc
(Nod
));
4123 -- Generate listing of subprograms that cannot be inlined by the backend
4125 if Present
(Backend_Not_Inlined_Subps
) and then Back_End_Inlining
then
4128 Elmt
:= First_Elmt
(Backend_Not_Inlined_Subps
);
4129 while Present
(Elmt
) loop
4136 ("List of subprograms that cannot be inlined by the backend");
4143 Write_Name
(Chars
(Nod
));
4145 Write_Location
(Sloc
(Nod
));
4152 end List_Inlining_Info
;
4160 Pending_Instantiations
.Locked
:= True;
4161 Inlined_Bodies
.Locked
:= True;
4162 Successors
.Locked
:= True;
4163 Inlined
.Locked
:= True;
4164 Pending_Instantiations
.Release
;
4165 Inlined_Bodies
.Release
;
4170 --------------------------------
4171 -- Remove_Aspects_And_Pragmas --
4172 --------------------------------
4174 procedure Remove_Aspects_And_Pragmas
(Body_Decl
: Node_Id
) is
4175 procedure Remove_Items
(List
: List_Id
);
4176 -- Remove all useless aspects/pragmas from a particular list
4182 procedure Remove_Items
(List
: List_Id
) is
4185 Next_Item
: Node_Id
;
4188 -- Traverse the list looking for an aspect specification or a pragma
4190 Item
:= First
(List
);
4191 while Present
(Item
) loop
4192 Next_Item
:= Next
(Item
);
4194 if Nkind
(Item
) = N_Aspect_Specification
then
4195 Item_Id
:= Identifier
(Item
);
4196 elsif Nkind
(Item
) = N_Pragma
then
4197 Item_Id
:= Pragma_Identifier
(Item
);
4202 if Present
(Item_Id
)
4203 and then Nam_In
(Chars
(Item_Id
), Name_Contract_Cases
,
4208 Name_Refined_Global
,
4209 Name_Refined_Depends
,
4223 -- Start of processing for Remove_Aspects_And_Pragmas
4226 Remove_Items
(Aspect_Specifications
(Body_Decl
));
4227 Remove_Items
(Declarations
(Body_Decl
));
4229 -- Pragmas Unmodified, Unreferenced, and Unused may additionally appear
4230 -- in the body of the subprogram.
4232 Remove_Items
(Statements
(Handled_Statement_Sequence
(Body_Decl
)));
4233 end Remove_Aspects_And_Pragmas
;
4235 --------------------------
4236 -- Remove_Dead_Instance --
4237 --------------------------
4239 procedure Remove_Dead_Instance
(N
: Node_Id
) is
4244 while J
<= Pending_Instantiations
.Last
loop
4245 if Pending_Instantiations
.Table
(J
).Inst_Node
= N
then
4246 Pending_Instantiations
.Table
(J
).Inst_Node
:= Empty
;
4252 end Remove_Dead_Instance
;