Daily bump.
[official-gcc.git] / gcc / tree-vect-loop-manip.c
bloba318a7ee044742fd268bca9da7204cbcd9607151
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "vec.h"
30 #include "hashtab.h"
31 #include "hash-set.h"
32 #include "machmode.h"
33 #include "hard-reg-set.h"
34 #include "input.h"
35 #include "function.h"
36 #include "dominance.h"
37 #include "cfg.h"
38 #include "cfganal.h"
39 #include "basic-block.h"
40 #include "gimple-pretty-print.h"
41 #include "tree-ssa-alias.h"
42 #include "internal-fn.h"
43 #include "gimple-expr.h"
44 #include "is-a.h"
45 #include "gimple.h"
46 #include "gimplify.h"
47 #include "gimple-iterator.h"
48 #include "gimplify-me.h"
49 #include "gimple-ssa.h"
50 #include "tree-cfg.h"
51 #include "tree-phinodes.h"
52 #include "ssa-iterators.h"
53 #include "stringpool.h"
54 #include "tree-ssanames.h"
55 #include "tree-ssa-loop-manip.h"
56 #include "tree-into-ssa.h"
57 #include "tree-ssa.h"
58 #include "tree-pass.h"
59 #include "cfgloop.h"
60 #include "diagnostic-core.h"
61 #include "tree-scalar-evolution.h"
62 #include "tree-vectorizer.h"
63 #include "langhooks.h"
65 /*************************************************************************
66 Simple Loop Peeling Utilities
68 Utilities to support loop peeling for vectorization purposes.
69 *************************************************************************/
72 /* Renames the use *OP_P. */
74 static void
75 rename_use_op (use_operand_p op_p)
77 tree new_name;
79 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
80 return;
82 new_name = get_current_def (USE_FROM_PTR (op_p));
84 /* Something defined outside of the loop. */
85 if (!new_name)
86 return;
88 /* An ordinary ssa name defined in the loop. */
90 SET_USE (op_p, new_name);
94 /* Renames the variables in basic block BB. */
96 static void
97 rename_variables_in_bb (basic_block bb)
99 gimple stmt;
100 use_operand_p use_p;
101 ssa_op_iter iter;
102 edge e;
103 edge_iterator ei;
104 struct loop *loop = bb->loop_father;
106 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
107 gsi_next (&gsi))
109 stmt = gsi_stmt (gsi);
110 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
111 rename_use_op (use_p);
114 FOR_EACH_EDGE (e, ei, bb->preds)
116 if (!flow_bb_inside_loop_p (loop, e->src))
117 continue;
118 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
119 gsi_next (&gsi))
120 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
125 typedef struct
127 tree from, to;
128 basic_block bb;
129 } adjust_info;
131 /* A stack of values to be adjusted in debug stmts. We have to
132 process them LIFO, so that the closest substitution applies. If we
133 processed them FIFO, without the stack, we might substitute uses
134 with a PHI DEF that would soon become non-dominant, and when we got
135 to the suitable one, it wouldn't have anything to substitute any
136 more. */
137 static vec<adjust_info, va_heap> adjust_vec;
139 /* Adjust any debug stmts that referenced AI->from values to use the
140 loop-closed AI->to, if the references are dominated by AI->bb and
141 not by the definition of AI->from. */
143 static void
144 adjust_debug_stmts_now (adjust_info *ai)
146 basic_block bbphi = ai->bb;
147 tree orig_def = ai->from;
148 tree new_def = ai->to;
149 imm_use_iterator imm_iter;
150 gimple stmt;
151 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
153 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
155 /* Adjust any debug stmts that held onto non-loop-closed
156 references. */
157 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
159 use_operand_p use_p;
160 basic_block bbuse;
162 if (!is_gimple_debug (stmt))
163 continue;
165 gcc_assert (gimple_debug_bind_p (stmt));
167 bbuse = gimple_bb (stmt);
169 if ((bbuse == bbphi
170 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
171 && !(bbuse == bbdef
172 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
174 if (new_def)
175 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
176 SET_USE (use_p, new_def);
177 else
179 gimple_debug_bind_reset_value (stmt);
180 update_stmt (stmt);
186 /* Adjust debug stmts as scheduled before. */
188 static void
189 adjust_vec_debug_stmts (void)
191 if (!MAY_HAVE_DEBUG_STMTS)
192 return;
194 gcc_assert (adjust_vec.exists ());
196 while (!adjust_vec.is_empty ())
198 adjust_debug_stmts_now (&adjust_vec.last ());
199 adjust_vec.pop ();
202 adjust_vec.release ();
205 /* Adjust any debug stmts that referenced FROM values to use the
206 loop-closed TO, if the references are dominated by BB and not by
207 the definition of FROM. If adjust_vec is non-NULL, adjustments
208 will be postponed until adjust_vec_debug_stmts is called. */
210 static void
211 adjust_debug_stmts (tree from, tree to, basic_block bb)
213 adjust_info ai;
215 if (MAY_HAVE_DEBUG_STMTS
216 && TREE_CODE (from) == SSA_NAME
217 && ! SSA_NAME_IS_DEFAULT_DEF (from)
218 && ! virtual_operand_p (from))
220 ai.from = from;
221 ai.to = to;
222 ai.bb = bb;
224 if (adjust_vec.exists ())
225 adjust_vec.safe_push (ai);
226 else
227 adjust_debug_stmts_now (&ai);
231 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
232 to adjust any debug stmts that referenced the old phi arg,
233 presumably non-loop-closed references left over from other
234 transformations. */
236 static void
237 adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
239 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
241 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
243 if (MAY_HAVE_DEBUG_STMTS)
244 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
245 gimple_bb (update_phi));
249 /* Update PHI nodes for a guard of the LOOP.
251 Input:
252 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
253 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
254 originates from the guard-bb, skips LOOP and reaches the (unique) exit
255 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
256 We denote this bb NEW_MERGE_BB because before the guard code was added
257 it had a single predecessor (the LOOP header), and now it became a merge
258 point of two paths - the path that ends with the LOOP exit-edge, and
259 the path that ends with GUARD_EDGE.
260 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
261 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
263 ===> The CFG before the guard-code was added:
264 LOOP_header_bb:
265 loop_body
266 if (exit_loop) goto update_bb
267 else goto LOOP_header_bb
268 update_bb:
270 ==> The CFG after the guard-code was added:
271 guard_bb:
272 if (LOOP_guard_condition) goto new_merge_bb
273 else goto LOOP_header_bb
274 LOOP_header_bb:
275 loop_body
276 if (exit_loop_condition) goto new_merge_bb
277 else goto LOOP_header_bb
278 new_merge_bb:
279 goto update_bb
280 update_bb:
282 ==> The CFG after this function:
283 guard_bb:
284 if (LOOP_guard_condition) goto new_merge_bb
285 else goto LOOP_header_bb
286 LOOP_header_bb:
287 loop_body
288 if (exit_loop_condition) goto new_exit_bb
289 else goto LOOP_header_bb
290 new_exit_bb:
291 new_merge_bb:
292 goto update_bb
293 update_bb:
295 This function:
296 1. creates and updates the relevant phi nodes to account for the new
297 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
298 1.1. Create phi nodes at NEW_MERGE_BB.
299 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
300 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
301 2. preserves loop-closed-ssa-form by creating the required phi nodes
302 at the exit of LOOP (i.e, in NEW_EXIT_BB).
304 There are two flavors to this function:
306 slpeel_update_phi_nodes_for_guard1:
307 Here the guard controls whether we enter or skip LOOP, where LOOP is a
308 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
309 for variables that have phis in the loop header.
311 slpeel_update_phi_nodes_for_guard2:
312 Here the guard controls whether we enter or skip LOOP, where LOOP is an
313 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
314 for variables that have phis in the loop exit.
316 I.E., the overall structure is:
318 loop1_preheader_bb:
319 guard1 (goto loop1/merge1_bb)
320 loop1
321 loop1_exit_bb:
322 guard2 (goto merge1_bb/merge2_bb)
323 merge1_bb
324 loop2
325 loop2_exit_bb
326 merge2_bb
327 next_bb
329 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
330 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
331 that have phis in loop1->header).
333 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
334 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
335 that have phis in next_bb). It also adds some of these phis to
336 loop1_exit_bb.
338 slpeel_update_phi_nodes_for_guard1 is always called before
339 slpeel_update_phi_nodes_for_guard2. They are both needed in order
340 to create correct data-flow and loop-closed-ssa-form.
342 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
343 that change between iterations of a loop (and therefore have a phi-node
344 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
345 phis for variables that are used out of the loop (and therefore have
346 loop-closed exit phis). Some variables may be both updated between
347 iterations and used after the loop. This is why in loop1_exit_bb we
348 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
349 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
351 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
352 an original loop. i.e., we have:
354 orig_loop
355 guard_bb (goto LOOP/new_merge)
356 new_loop <-- LOOP
357 new_exit
358 new_merge
359 next_bb
361 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
362 have:
364 new_loop
365 guard_bb (goto LOOP/new_merge)
366 orig_loop <-- LOOP
367 new_exit
368 new_merge
369 next_bb
371 The SSA names defined in the original loop have a current
372 reaching definition that that records the corresponding new
373 ssa-name used in the new duplicated loop copy.
376 /* Function slpeel_update_phi_nodes_for_guard1
378 Input:
379 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
380 - DEFS - a bitmap of ssa names to mark new names for which we recorded
381 information.
383 In the context of the overall structure, we have:
385 loop1_preheader_bb:
386 guard1 (goto loop1/merge1_bb)
387 LOOP-> loop1
388 loop1_exit_bb:
389 guard2 (goto merge1_bb/merge2_bb)
390 merge1_bb
391 loop2
392 loop2_exit_bb
393 merge2_bb
394 next_bb
396 For each name updated between loop iterations (i.e - for each name that has
397 an entry (loop-header) phi in LOOP) we create a new phi in:
398 1. merge1_bb (to account for the edge from guard1)
399 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
402 static void
403 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
404 bool is_new_loop, basic_block *new_exit_bb)
406 gphi *orig_phi, *new_phi;
407 gphi *update_phi, *update_phi2;
408 tree guard_arg, loop_arg;
409 basic_block new_merge_bb = guard_edge->dest;
410 edge e = EDGE_SUCC (new_merge_bb, 0);
411 basic_block update_bb = e->dest;
412 basic_block orig_bb = loop->header;
413 edge new_exit_e;
414 tree current_new_name;
415 gphi_iterator gsi_orig, gsi_update;
417 /* Create new bb between loop and new_merge_bb. */
418 *new_exit_bb = split_edge (single_exit (loop));
420 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
422 for (gsi_orig = gsi_start_phis (orig_bb),
423 gsi_update = gsi_start_phis (update_bb);
424 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
425 gsi_next (&gsi_orig), gsi_next (&gsi_update))
427 source_location loop_locus, guard_locus;
428 tree new_res;
429 orig_phi = gsi_orig.phi ();
430 update_phi = gsi_update.phi ();
432 /** 1. Handle new-merge-point phis **/
434 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
435 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
436 new_phi = create_phi_node (new_res, new_merge_bb);
438 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
439 of LOOP. Set the two phi args in NEW_PHI for these edges: */
440 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
441 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
442 EDGE_SUCC (loop->latch,
443 0));
444 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
445 guard_locus
446 = gimple_phi_arg_location_from_edge (orig_phi,
447 loop_preheader_edge (loop));
449 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
450 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
452 /* 1.3. Update phi in successor block. */
453 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
454 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
455 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
456 update_phi2 = new_phi;
459 /** 2. Handle loop-closed-ssa-form phis **/
461 if (virtual_operand_p (PHI_RESULT (orig_phi)))
462 continue;
464 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
465 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
466 new_phi = create_phi_node (new_res, *new_exit_bb);
468 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
469 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
471 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
472 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
473 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
474 PHI_RESULT (new_phi));
476 /* 2.4. Record the newly created name with set_current_def.
477 We want to find a name such that
478 name = get_current_def (orig_loop_name)
479 and to set its current definition as follows:
480 set_current_def (name, new_phi_name)
482 If LOOP is a new loop then loop_arg is already the name we're
483 looking for. If LOOP is the original loop, then loop_arg is
484 the orig_loop_name and the relevant name is recorded in its
485 current reaching definition. */
486 if (is_new_loop)
487 current_new_name = loop_arg;
488 else
490 current_new_name = get_current_def (loop_arg);
491 /* current_def is not available only if the variable does not
492 change inside the loop, in which case we also don't care
493 about recording a current_def for it because we won't be
494 trying to create loop-exit-phis for it. */
495 if (!current_new_name)
496 continue;
498 tree new_name = get_current_def (current_new_name);
499 /* Because of peeled_chrec optimization it is possible that we have
500 set this earlier. Verify the PHI has the same value. */
501 if (new_name)
503 gimple phi = SSA_NAME_DEF_STMT (new_name);
504 gcc_assert (gimple_code (phi) == GIMPLE_PHI
505 && gimple_bb (phi) == *new_exit_bb
506 && (PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop))
507 == loop_arg));
508 continue;
511 set_current_def (current_new_name, PHI_RESULT (new_phi));
516 /* Function slpeel_update_phi_nodes_for_guard2
518 Input:
519 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
521 In the context of the overall structure, we have:
523 loop1_preheader_bb:
524 guard1 (goto loop1/merge1_bb)
525 loop1
526 loop1_exit_bb:
527 guard2 (goto merge1_bb/merge2_bb)
528 merge1_bb
529 LOOP-> loop2
530 loop2_exit_bb
531 merge2_bb
532 next_bb
534 For each name used out side the loop (i.e - for each name that has an exit
535 phi in next_bb) we create a new phi in:
536 1. merge2_bb (to account for the edge from guard_bb)
537 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
538 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
539 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
542 static void
543 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
544 bool is_new_loop, basic_block *new_exit_bb)
546 gphi *orig_phi, *new_phi;
547 gphi *update_phi, *update_phi2;
548 tree guard_arg, loop_arg;
549 basic_block new_merge_bb = guard_edge->dest;
550 edge e = EDGE_SUCC (new_merge_bb, 0);
551 basic_block update_bb = e->dest;
552 edge new_exit_e;
553 tree orig_def, orig_def_new_name;
554 tree new_name, new_name2;
555 tree arg;
556 gphi_iterator gsi;
558 /* Create new bb between loop and new_merge_bb. */
559 *new_exit_bb = split_edge (single_exit (loop));
561 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
563 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
565 tree new_res;
566 update_phi = gsi.phi ();
567 orig_phi = update_phi;
568 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
569 /* This loop-closed-phi actually doesn't represent a use
570 out of the loop - the phi arg is a constant. */
571 if (TREE_CODE (orig_def) != SSA_NAME)
572 continue;
573 orig_def_new_name = get_current_def (orig_def);
574 arg = NULL_TREE;
576 /** 1. Handle new-merge-point phis **/
578 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
579 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
580 new_phi = create_phi_node (new_res, new_merge_bb);
582 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
583 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
584 new_name = orig_def;
585 new_name2 = NULL_TREE;
586 if (orig_def_new_name)
588 new_name = orig_def_new_name;
589 /* Some variables have both loop-entry-phis and loop-exit-phis.
590 Such variables were given yet newer names by phis placed in
591 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
592 new_name2 = get_current_def (get_current_def (orig_name)). */
593 new_name2 = get_current_def (new_name);
596 if (is_new_loop)
598 guard_arg = orig_def;
599 loop_arg = new_name;
601 else
603 guard_arg = new_name;
604 loop_arg = orig_def;
606 if (new_name2)
607 guard_arg = new_name2;
609 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
610 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
612 /* 1.3. Update phi in successor block. */
613 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
614 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
615 update_phi2 = new_phi;
618 /** 2. Handle loop-closed-ssa-form phis **/
620 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
621 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
622 new_phi = create_phi_node (new_res, *new_exit_bb);
624 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
625 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
627 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
628 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
629 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
630 PHI_RESULT (new_phi));
633 /** 3. Handle loop-closed-ssa-form phis for first loop **/
635 /* 3.1. Find the relevant names that need an exit-phi in
636 GUARD_BB, i.e. names for which
637 slpeel_update_phi_nodes_for_guard1 had not already created a
638 phi node. This is the case for names that are used outside
639 the loop (and therefore need an exit phi) but are not updated
640 across loop iterations (and therefore don't have a
641 loop-header-phi).
643 slpeel_update_phi_nodes_for_guard1 is responsible for
644 creating loop-exit phis in GUARD_BB for names that have a
645 loop-header-phi. When such a phi is created we also record
646 the new name in its current definition. If this new name
647 exists, then guard_arg was set to this new name (see 1.2
648 above). Therefore, if guard_arg is not this new name, this
649 is an indication that an exit-phi in GUARD_BB was not yet
650 created, so we take care of it here. */
651 if (guard_arg == new_name2)
652 continue;
653 arg = guard_arg;
655 /* 3.2. Generate new phi node in GUARD_BB: */
656 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
657 new_phi = create_phi_node (new_res, guard_edge->src);
659 /* 3.3. GUARD_BB has one incoming edge: */
660 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
661 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
662 UNKNOWN_LOCATION);
664 /* 3.4. Update phi in successor of GUARD_BB: */
665 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
666 == guard_arg);
667 adjust_phi_and_debug_stmts (update_phi2, guard_edge,
668 PHI_RESULT (new_phi));
673 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
674 that starts at zero, increases by one and its limit is NITERS.
676 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
678 void
679 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
681 tree indx_before_incr, indx_after_incr;
682 gcond *cond_stmt;
683 gcond *orig_cond;
684 edge exit_edge = single_exit (loop);
685 gimple_stmt_iterator loop_cond_gsi;
686 gimple_stmt_iterator incr_gsi;
687 bool insert_after;
688 tree init = build_int_cst (TREE_TYPE (niters), 0);
689 tree step = build_int_cst (TREE_TYPE (niters), 1);
690 source_location loop_loc;
691 enum tree_code code;
693 orig_cond = get_loop_exit_condition (loop);
694 gcc_assert (orig_cond);
695 loop_cond_gsi = gsi_for_stmt (orig_cond);
697 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
698 create_iv (init, step, NULL_TREE, loop,
699 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
701 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
702 true, NULL_TREE, true,
703 GSI_SAME_STMT);
704 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
705 true, GSI_SAME_STMT);
707 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
708 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
709 NULL_TREE);
711 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
713 /* Remove old loop exit test: */
714 gsi_remove (&loop_cond_gsi, true);
715 free_stmt_vec_info (orig_cond);
717 loop_loc = find_loop_location (loop);
718 if (dump_enabled_p ())
720 if (LOCATION_LOCUS (loop_loc) != UNKNOWN_LOCATION)
721 dump_printf (MSG_NOTE, "\nloop at %s:%d: ", LOCATION_FILE (loop_loc),
722 LOCATION_LINE (loop_loc));
723 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
724 dump_printf (MSG_NOTE, "\n");
726 loop->nb_iterations = niters;
729 /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
730 For all PHI arguments in FROM->dest and TO->dest from those
731 edges ensure that TO->dest PHI arguments have current_def
732 to that in from. */
734 static void
735 slpeel_duplicate_current_defs_from_edges (edge from, edge to)
737 gimple_stmt_iterator gsi_from, gsi_to;
739 for (gsi_from = gsi_start_phis (from->dest),
740 gsi_to = gsi_start_phis (to->dest);
741 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
742 gsi_next (&gsi_from), gsi_next (&gsi_to))
744 gimple from_phi = gsi_stmt (gsi_from);
745 gimple to_phi = gsi_stmt (gsi_to);
746 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
747 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
748 if (TREE_CODE (from_arg) == SSA_NAME
749 && TREE_CODE (to_arg) == SSA_NAME
750 && get_current_def (to_arg) == NULL_TREE)
751 set_current_def (to_arg, get_current_def (from_arg));
756 /* Given LOOP this function generates a new copy of it and puts it
757 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
758 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
759 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
760 entry or exit of LOOP. */
762 struct loop *
763 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop,
764 struct loop *scalar_loop, edge e)
766 struct loop *new_loop;
767 basic_block *new_bbs, *bbs;
768 bool at_exit;
769 bool was_imm_dom;
770 basic_block exit_dest;
771 edge exit, new_exit;
773 exit = single_exit (loop);
774 at_exit = (e == exit);
775 if (!at_exit && e != loop_preheader_edge (loop))
776 return NULL;
778 if (scalar_loop == NULL)
779 scalar_loop = loop;
781 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
782 get_loop_body_with_size (scalar_loop, bbs, scalar_loop->num_nodes);
784 /* Check whether duplication is possible. */
785 if (!can_copy_bbs_p (bbs, scalar_loop->num_nodes))
787 free (bbs);
788 return NULL;
791 /* Generate new loop structure. */
792 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
793 duplicate_subloops (scalar_loop, new_loop);
795 exit_dest = exit->dest;
796 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
797 exit_dest) == loop->header ?
798 true : false);
800 /* Also copy the pre-header, this avoids jumping through hoops to
801 duplicate the loop entry PHI arguments. Create an empty
802 pre-header unconditionally for this. */
803 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
804 edge entry_e = single_pred_edge (preheader);
805 bbs[scalar_loop->num_nodes] = preheader;
806 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
808 exit = single_exit (scalar_loop);
809 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
810 &exit, 1, &new_exit, NULL,
811 e->src, true);
812 exit = single_exit (loop);
813 basic_block new_preheader = new_bbs[scalar_loop->num_nodes];
815 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
817 if (scalar_loop != loop)
819 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
820 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
821 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
822 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
823 header) to have current_def set, so copy them over. */
824 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
825 exit);
826 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
828 EDGE_SUCC (loop->latch, 0));
831 if (at_exit) /* Add the loop copy at exit. */
833 if (scalar_loop != loop)
835 gphi_iterator gsi;
836 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
838 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
839 gsi_next (&gsi))
841 gphi *phi = gsi.phi ();
842 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
843 location_t orig_locus
844 = gimple_phi_arg_location_from_edge (phi, e);
846 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
849 redirect_edge_and_branch_force (e, new_preheader);
850 flush_pending_stmts (e);
851 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
852 if (was_imm_dom)
853 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
855 /* And remove the non-necessary forwarder again. Keep the other
856 one so we have a proper pre-header for the loop at the exit edge. */
857 redirect_edge_pred (single_succ_edge (preheader),
858 single_pred (preheader));
859 delete_basic_block (preheader);
860 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
861 loop_preheader_edge (scalar_loop)->src);
863 else /* Add the copy at entry. */
865 if (scalar_loop != loop)
867 /* Remove the non-necessary forwarder of scalar_loop again. */
868 redirect_edge_pred (single_succ_edge (preheader),
869 single_pred (preheader));
870 delete_basic_block (preheader);
871 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
872 loop_preheader_edge (scalar_loop)->src);
873 preheader = split_edge (loop_preheader_edge (loop));
874 entry_e = single_pred_edge (preheader);
877 redirect_edge_and_branch_force (entry_e, new_preheader);
878 flush_pending_stmts (entry_e);
879 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
881 redirect_edge_and_branch_force (new_exit, preheader);
882 flush_pending_stmts (new_exit);
883 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
885 /* And remove the non-necessary forwarder again. Keep the other
886 one so we have a proper pre-header for the loop at the exit edge. */
887 redirect_edge_pred (single_succ_edge (new_preheader),
888 single_pred (new_preheader));
889 delete_basic_block (new_preheader);
890 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
891 loop_preheader_edge (new_loop)->src);
894 for (unsigned i = 0; i < scalar_loop->num_nodes + 1; i++)
895 rename_variables_in_bb (new_bbs[i]);
897 if (scalar_loop != loop)
899 /* Update new_loop->header PHIs, so that on the preheader
900 edge they are the ones from loop rather than scalar_loop. */
901 gphi_iterator gsi_orig, gsi_new;
902 edge orig_e = loop_preheader_edge (loop);
903 edge new_e = loop_preheader_edge (new_loop);
905 for (gsi_orig = gsi_start_phis (loop->header),
906 gsi_new = gsi_start_phis (new_loop->header);
907 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
908 gsi_next (&gsi_orig), gsi_next (&gsi_new))
910 gphi *orig_phi = gsi_orig.phi ();
911 gphi *new_phi = gsi_new.phi ();
912 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
913 location_t orig_locus
914 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
916 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
920 free (new_bbs);
921 free (bbs);
923 #ifdef ENABLE_CHECKING
924 verify_dominators (CDI_DOMINATORS);
925 #endif
927 return new_loop;
931 /* Given the condition statement COND, put it as the last statement
932 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
933 Assumes that this is the single exit of the guarded loop.
934 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
936 static edge
937 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
938 gimple_seq cond_expr_stmt_list,
939 basic_block exit_bb, basic_block dom_bb,
940 int probability)
942 gimple_stmt_iterator gsi;
943 edge new_e, enter_e;
944 gcond *cond_stmt;
945 gimple_seq gimplify_stmt_list = NULL;
947 enter_e = EDGE_SUCC (guard_bb, 0);
948 enter_e->flags &= ~EDGE_FALLTHRU;
949 enter_e->flags |= EDGE_FALSE_VALUE;
950 gsi = gsi_last_bb (guard_bb);
952 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
953 NULL_TREE);
954 if (gimplify_stmt_list)
955 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
956 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
957 if (cond_expr_stmt_list)
958 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
960 gsi = gsi_last_bb (guard_bb);
961 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
963 /* Add new edge to connect guard block to the merge/loop-exit block. */
964 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
966 new_e->count = guard_bb->count;
967 new_e->probability = probability;
968 new_e->count = apply_probability (enter_e->count, probability);
969 enter_e->count -= new_e->count;
970 enter_e->probability = inverse_probability (probability);
971 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
972 return new_e;
976 /* This function verifies that the following restrictions apply to LOOP:
977 (1) it is innermost
978 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
979 (3) it is single entry, single exit
980 (4) its exit condition is the last stmt in the header
981 (5) E is the entry/exit edge of LOOP.
984 bool
985 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
987 edge exit_e = single_exit (loop);
988 edge entry_e = loop_preheader_edge (loop);
989 gcond *orig_cond = get_loop_exit_condition (loop);
990 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
992 if (loop->inner
993 /* All loops have an outer scope; the only case loop->outer is NULL is for
994 the function itself. */
995 || !loop_outer (loop)
996 || loop->num_nodes != 2
997 || !empty_block_p (loop->latch)
998 || !single_exit (loop)
999 /* Verify that new loop exit condition can be trivially modified. */
1000 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
1001 || (e != exit_e && e != entry_e))
1002 return false;
1004 return true;
1007 #ifdef ENABLE_CHECKING
1008 static void
1009 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
1010 struct loop *second_loop)
1012 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
1013 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1014 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1016 /* A guard that controls whether the second_loop is to be executed or skipped
1017 is placed in first_loop->exit. first_loop->exit therefore has two
1018 successors - one is the preheader of second_loop, and the other is a bb
1019 after second_loop.
1021 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1023 /* 1. Verify that one of the successors of first_loop->exit is the preheader
1024 of second_loop. */
1026 /* The preheader of new_loop is expected to have two predecessors:
1027 first_loop->exit and the block that precedes first_loop. */
1029 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
1030 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1031 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1032 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1033 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1035 /* Verify that the other successor of first_loop->exit is after the
1036 second_loop. */
1037 /* TODO */
1039 #endif
1041 /* If the run time cost model check determines that vectorization is
1042 not profitable and hence scalar loop should be generated then set
1043 FIRST_NITERS to prologue peeled iterations. This will allow all the
1044 iterations to be executed in the prologue peeled scalar loop. */
1046 static void
1047 set_prologue_iterations (basic_block bb_before_first_loop,
1048 tree *first_niters,
1049 struct loop *loop,
1050 unsigned int th,
1051 int probability)
1053 edge e;
1054 basic_block cond_bb, then_bb;
1055 tree var, prologue_after_cost_adjust_name;
1056 gimple_stmt_iterator gsi;
1057 gphi *newphi;
1058 edge e_true, e_false, e_fallthru;
1059 gcond *cond_stmt;
1060 gimple_seq stmts = NULL;
1061 tree cost_pre_condition = NULL_TREE;
1062 tree scalar_loop_iters =
1063 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
1065 e = single_pred_edge (bb_before_first_loop);
1066 cond_bb = split_edge (e);
1068 e = single_pred_edge (bb_before_first_loop);
1069 then_bb = split_edge (e);
1070 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1072 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
1073 EDGE_FALSE_VALUE);
1074 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
1076 e_true = EDGE_PRED (then_bb, 0);
1077 e_true->flags &= ~EDGE_FALLTHRU;
1078 e_true->flags |= EDGE_TRUE_VALUE;
1080 e_true->probability = probability;
1081 e_false->probability = inverse_probability (probability);
1082 e_true->count = apply_probability (cond_bb->count, probability);
1083 e_false->count = cond_bb->count - e_true->count;
1084 then_bb->frequency = EDGE_FREQUENCY (e_true);
1085 then_bb->count = e_true->count;
1087 e_fallthru = EDGE_SUCC (then_bb, 0);
1088 e_fallthru->count = then_bb->count;
1090 gsi = gsi_last_bb (cond_bb);
1091 cost_pre_condition =
1092 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1093 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1094 cost_pre_condition =
1095 force_gimple_operand_gsi_1 (&gsi, cost_pre_condition, is_gimple_condexpr,
1096 NULL_TREE, false, GSI_CONTINUE_LINKING);
1097 cond_stmt = gimple_build_cond_from_tree (cost_pre_condition,
1098 NULL_TREE, NULL_TREE);
1099 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1101 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
1102 "prologue_after_cost_adjust");
1103 prologue_after_cost_adjust_name =
1104 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
1106 gsi = gsi_last_bb (then_bb);
1107 if (stmts)
1108 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
1110 newphi = create_phi_node (var, bb_before_first_loop);
1111 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
1112 UNKNOWN_LOCATION);
1113 add_phi_arg (newphi, *first_niters, e_false, UNKNOWN_LOCATION);
1115 *first_niters = PHI_RESULT (newphi);
1118 /* Function slpeel_tree_peel_loop_to_edge.
1120 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1121 that is placed on the entry (exit) edge E of LOOP. After this transformation
1122 we have two loops one after the other - first-loop iterates FIRST_NITERS
1123 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1124 If the cost model indicates that it is profitable to emit a scalar
1125 loop instead of the vector one, then the prolog (epilog) loop will iterate
1126 for the entire unchanged scalar iterations of the loop.
1128 Input:
1129 - LOOP: the loop to be peeled.
1130 - SCALAR_LOOP: if non-NULL, the alternate loop from which basic blocks
1131 should be copied.
1132 - E: the exit or entry edge of LOOP.
1133 If it is the entry edge, we peel the first iterations of LOOP. In this
1134 case first-loop is LOOP, and second-loop is the newly created loop.
1135 If it is the exit edge, we peel the last iterations of LOOP. In this
1136 case, first-loop is the newly created loop, and second-loop is LOOP.
1137 - NITERS: the number of iterations that LOOP iterates.
1138 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1139 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1140 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1141 is false, the caller of this function may want to take care of this
1142 (this can be useful if we don't want new stmts added to first-loop).
1143 - TH: cost model profitability threshold of iterations for vectorization.
1144 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1145 during versioning and hence needs to occur during
1146 prologue generation or whether cost model check
1147 has not occurred during prologue generation and hence
1148 needs to occur during epilogue generation.
1149 - BOUND1 is the upper bound on number of iterations of the first loop (if known)
1150 - BOUND2 is the upper bound on number of iterations of the second loop (if known)
1153 Output:
1154 The function returns a pointer to the new loop-copy, or NULL if it failed
1155 to perform the transformation.
1157 The function generates two if-then-else guards: one before the first loop,
1158 and the other before the second loop:
1159 The first guard is:
1160 if (FIRST_NITERS == 0) then skip the first loop,
1161 and go directly to the second loop.
1162 The second guard is:
1163 if (FIRST_NITERS == NITERS) then skip the second loop.
1165 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1166 then the generated condition is combined with COND_EXPR and the
1167 statements in COND_EXPR_STMT_LIST are emitted together with it.
1169 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1170 FORNOW the resulting code will not be in loop-closed-ssa form.
1173 static struct loop *
1174 slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loop *scalar_loop,
1175 edge e, tree *first_niters,
1176 tree niters, bool update_first_loop_count,
1177 unsigned int th, bool check_profitability,
1178 tree cond_expr, gimple_seq cond_expr_stmt_list,
1179 int bound1, int bound2)
1181 struct loop *new_loop = NULL, *first_loop, *second_loop;
1182 edge skip_e;
1183 tree pre_condition = NULL_TREE;
1184 basic_block bb_before_second_loop, bb_after_second_loop;
1185 basic_block bb_before_first_loop;
1186 basic_block bb_between_loops;
1187 basic_block new_exit_bb;
1188 gphi_iterator gsi;
1189 edge exit_e = single_exit (loop);
1190 source_location loop_loc;
1191 /* There are many aspects to how likely the first loop is going to be executed.
1192 Without histogram we can't really do good job. Simply set it to
1193 2/3, so the first loop is not reordered to the end of function and
1194 the hot path through stays short. */
1195 int first_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1196 int second_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1197 int probability_of_second_loop;
1199 if (!slpeel_can_duplicate_loop_p (loop, e))
1200 return NULL;
1202 /* We might have a queued need to update virtual SSA form. As we
1203 delete the update SSA machinery below after doing a regular
1204 incremental SSA update during loop copying make sure we don't
1205 lose that fact.
1206 ??? Needing to update virtual SSA form by renaming is unfortunate
1207 but not all of the vectorizer code inserting new loads / stores
1208 properly assigns virtual operands to those statements. */
1209 update_ssa (TODO_update_ssa_only_virtuals);
1211 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1212 in the exit bb and rename all the uses after the loop. This simplifies
1213 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1214 (but normally loop closed SSA form doesn't require virtual PHIs to be
1215 in the same form). Doing this early simplifies the checking what
1216 uses should be renamed. */
1217 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1218 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1220 gphi *phi = gsi.phi ();
1221 for (gsi = gsi_start_phis (exit_e->dest);
1222 !gsi_end_p (gsi); gsi_next (&gsi))
1223 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1224 break;
1225 if (gsi_end_p (gsi))
1227 tree new_vop = copy_ssa_name (PHI_RESULT (phi));
1228 gphi *new_phi = create_phi_node (new_vop, exit_e->dest);
1229 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
1230 imm_use_iterator imm_iter;
1231 gimple stmt;
1232 use_operand_p use_p;
1234 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
1235 gimple_phi_set_result (new_phi, new_vop);
1236 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
1237 if (stmt != new_phi && gimple_bb (stmt) != loop->header)
1238 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1239 SET_USE (use_p, new_vop);
1241 break;
1244 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1245 Resulting CFG would be:
1247 first_loop:
1248 do {
1249 } while ...
1251 second_loop:
1252 do {
1253 } while ...
1255 orig_exit_bb:
1258 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop,
1259 e)))
1261 loop_loc = find_loop_location (loop);
1262 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1263 "tree_duplicate_loop_to_edge_cfg failed.\n");
1264 return NULL;
1267 if (MAY_HAVE_DEBUG_STMTS)
1269 gcc_assert (!adjust_vec.exists ());
1270 adjust_vec.create (32);
1273 if (e == exit_e)
1275 /* NEW_LOOP was placed after LOOP. */
1276 first_loop = loop;
1277 second_loop = new_loop;
1279 else
1281 /* NEW_LOOP was placed before LOOP. */
1282 first_loop = new_loop;
1283 second_loop = loop;
1286 /* 2. Add the guard code in one of the following ways:
1288 2.a Add the guard that controls whether the first loop is executed.
1289 This occurs when this function is invoked for prologue or epilogue
1290 generation and when the cost model check can be done at compile time.
1292 Resulting CFG would be:
1294 bb_before_first_loop:
1295 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1296 GOTO first-loop
1298 first_loop:
1299 do {
1300 } while ...
1302 bb_before_second_loop:
1304 second_loop:
1305 do {
1306 } while ...
1308 orig_exit_bb:
1310 2.b Add the cost model check that allows the prologue
1311 to iterate for the entire unchanged scalar
1312 iterations of the loop in the event that the cost
1313 model indicates that the scalar loop is more
1314 profitable than the vector one. This occurs when
1315 this function is invoked for prologue generation
1316 and the cost model check needs to be done at run
1317 time.
1319 Resulting CFG after prologue peeling would be:
1321 if (scalar_loop_iterations <= th)
1322 FIRST_NITERS = scalar_loop_iterations
1324 bb_before_first_loop:
1325 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1326 GOTO first-loop
1328 first_loop:
1329 do {
1330 } while ...
1332 bb_before_second_loop:
1334 second_loop:
1335 do {
1336 } while ...
1338 orig_exit_bb:
1340 2.c Add the cost model check that allows the epilogue
1341 to iterate for the entire unchanged scalar
1342 iterations of the loop in the event that the cost
1343 model indicates that the scalar loop is more
1344 profitable than the vector one. This occurs when
1345 this function is invoked for epilogue generation
1346 and the cost model check needs to be done at run
1347 time. This check is combined with any pre-existing
1348 check in COND_EXPR to avoid versioning.
1350 Resulting CFG after prologue peeling would be:
1352 bb_before_first_loop:
1353 if ((scalar_loop_iterations <= th)
1355 FIRST_NITERS == 0) GOTO bb_before_second_loop
1356 GOTO first-loop
1358 first_loop:
1359 do {
1360 } while ...
1362 bb_before_second_loop:
1364 second_loop:
1365 do {
1366 } while ...
1368 orig_exit_bb:
1371 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1372 /* Loop copying insterted a forwarder block for us here. */
1373 bb_before_second_loop = single_exit (first_loop)->dest;
1375 probability_of_second_loop = (inverse_probability (first_guard_probability)
1376 + combine_probabilities (second_guard_probability,
1377 first_guard_probability));
1378 /* Theoretically preheader edge of first loop and exit edge should have
1379 same frequencies. Loop exit probablities are however easy to get wrong.
1380 It is safer to copy value from original loop entry. */
1381 bb_before_second_loop->frequency
1382 = combine_probabilities (bb_before_first_loop->frequency,
1383 probability_of_second_loop);
1384 bb_before_second_loop->count
1385 = apply_probability (bb_before_first_loop->count,
1386 probability_of_second_loop);
1387 single_succ_edge (bb_before_second_loop)->count
1388 = bb_before_second_loop->count;
1390 /* Epilogue peeling. */
1391 if (!update_first_loop_count)
1393 loop_vec_info loop_vinfo = loop_vec_info_for_loop (loop);
1394 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
1395 unsigned limit = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1;
1396 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1397 limit = limit + 1;
1398 if (check_profitability
1399 && th > limit)
1400 limit = th;
1401 pre_condition =
1402 fold_build2 (LT_EXPR, boolean_type_node, scalar_loop_iters,
1403 build_int_cst (TREE_TYPE (scalar_loop_iters), limit));
1404 if (cond_expr)
1406 pre_condition =
1407 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1408 pre_condition,
1409 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1410 cond_expr));
1414 /* Prologue peeling. */
1415 else
1417 if (check_profitability)
1418 set_prologue_iterations (bb_before_first_loop, first_niters,
1419 loop, th, first_guard_probability);
1421 pre_condition =
1422 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1423 build_int_cst (TREE_TYPE (*first_niters), 0));
1426 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1427 cond_expr_stmt_list,
1428 bb_before_second_loop, bb_before_first_loop,
1429 inverse_probability (first_guard_probability));
1430 scale_loop_profile (first_loop, first_guard_probability,
1431 check_profitability && (int)th > bound1 ? th : bound1);
1432 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1433 first_loop == new_loop,
1434 &new_exit_bb);
1437 /* 3. Add the guard that controls whether the second loop is executed.
1438 Resulting CFG would be:
1440 bb_before_first_loop:
1441 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1442 GOTO first-loop
1444 first_loop:
1445 do {
1446 } while ...
1448 bb_between_loops:
1449 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1450 GOTO bb_before_second_loop
1452 bb_before_second_loop:
1454 second_loop:
1455 do {
1456 } while ...
1458 bb_after_second_loop:
1460 orig_exit_bb:
1463 bb_between_loops = new_exit_bb;
1464 bb_after_second_loop = split_edge (single_exit (second_loop));
1466 pre_condition =
1467 fold_build2 (EQ_EXPR, boolean_type_node, *first_niters, niters);
1468 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
1469 bb_after_second_loop, bb_before_first_loop,
1470 inverse_probability (second_guard_probability));
1471 scale_loop_profile (second_loop, probability_of_second_loop, bound2);
1472 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1473 second_loop == new_loop, &new_exit_bb);
1475 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1477 if (update_first_loop_count)
1478 slpeel_make_loop_iterate_ntimes (first_loop, *first_niters);
1480 delete_update_ssa ();
1482 adjust_vec_debug_stmts ();
1484 return new_loop;
1487 /* Function vect_get_loop_location.
1489 Extract the location of the loop in the source code.
1490 If the loop is not well formed for vectorization, an estimated
1491 location is calculated.
1492 Return the loop location if succeed and NULL if not. */
1494 source_location
1495 find_loop_location (struct loop *loop)
1497 gimple stmt = NULL;
1498 basic_block bb;
1499 gimple_stmt_iterator si;
1501 if (!loop)
1502 return UNKNOWN_LOCATION;
1504 stmt = get_loop_exit_condition (loop);
1506 if (stmt
1507 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1508 return gimple_location (stmt);
1510 /* If we got here the loop is probably not "well formed",
1511 try to estimate the loop location */
1513 if (!loop->header)
1514 return UNKNOWN_LOCATION;
1516 bb = loop->header;
1518 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1520 stmt = gsi_stmt (si);
1521 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1522 return gimple_location (stmt);
1525 return UNKNOWN_LOCATION;
1529 /* Function vect_can_advance_ivs_p
1531 In case the number of iterations that LOOP iterates is unknown at compile
1532 time, an epilog loop will be generated, and the loop induction variables
1533 (IVs) will be "advanced" to the value they are supposed to take just before
1534 the epilog loop. Here we check that the access function of the loop IVs
1535 and the expression that represents the loop bound are simple enough.
1536 These restrictions will be relaxed in the future. */
1538 bool
1539 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1541 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1542 basic_block bb = loop->header;
1543 gimple phi;
1544 gphi_iterator gsi;
1546 /* Analyze phi functions of the loop header. */
1548 if (dump_enabled_p ())
1549 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
1550 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1552 tree evolution_part;
1554 phi = gsi.phi ();
1555 if (dump_enabled_p ())
1557 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
1558 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1559 dump_printf (MSG_NOTE, "\n");
1562 /* Skip virtual phi's. The data dependences that are associated with
1563 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1565 if (virtual_operand_p (PHI_RESULT (phi)))
1567 if (dump_enabled_p ())
1568 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1569 "virtual phi. skip.\n");
1570 continue;
1573 /* Skip reduction phis. */
1575 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1577 if (dump_enabled_p ())
1578 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1579 "reduc phi. skip.\n");
1580 continue;
1583 /* Analyze the evolution function. */
1585 evolution_part
1586 = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
1587 if (evolution_part == NULL_TREE)
1589 if (dump_enabled_p ())
1590 dump_printf (MSG_MISSED_OPTIMIZATION,
1591 "No access function or evolution.\n");
1592 return false;
1595 /* FORNOW: We do not transform initial conditions of IVs
1596 which evolution functions are a polynomial of degree >= 2. */
1598 if (tree_is_chrec (evolution_part))
1599 return false;
1602 return true;
1606 /* Function vect_update_ivs_after_vectorizer.
1608 "Advance" the induction variables of LOOP to the value they should take
1609 after the execution of LOOP. This is currently necessary because the
1610 vectorizer does not handle induction variables that are used after the
1611 loop. Such a situation occurs when the last iterations of LOOP are
1612 peeled, because:
1613 1. We introduced new uses after LOOP for IVs that were not originally used
1614 after LOOP: the IVs of LOOP are now used by an epilog loop.
1615 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1616 times, whereas the loop IVs should be bumped N times.
1618 Input:
1619 - LOOP - a loop that is going to be vectorized. The last few iterations
1620 of LOOP were peeled.
1621 - NITERS - the number of iterations that LOOP executes (before it is
1622 vectorized). i.e, the number of times the ivs should be bumped.
1623 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1624 coming out from LOOP on which there are uses of the LOOP ivs
1625 (this is the path from LOOP->exit to epilog_loop->preheader).
1627 The new definitions of the ivs are placed in LOOP->exit.
1628 The phi args associated with the edge UPDATE_E in the bb
1629 UPDATE_E->dest are updated accordingly.
1631 Assumption 1: Like the rest of the vectorizer, this function assumes
1632 a single loop exit that has a single predecessor.
1634 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1635 organized in the same order.
1637 Assumption 3: The access function of the ivs is simple enough (see
1638 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1640 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1641 coming out of LOOP on which the ivs of LOOP are used (this is the path
1642 that leads to the epilog loop; other paths skip the epilog loop). This
1643 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1644 needs to have its phis updated.
1647 static void
1648 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
1649 edge update_e)
1651 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1652 basic_block exit_bb = single_exit (loop)->dest;
1653 gphi *phi, *phi1;
1654 gphi_iterator gsi, gsi1;
1655 basic_block update_bb = update_e->dest;
1657 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
1659 /* Make sure there exists a single-predecessor exit bb: */
1660 gcc_assert (single_pred_p (exit_bb));
1662 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1663 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1664 gsi_next (&gsi), gsi_next (&gsi1))
1666 tree init_expr;
1667 tree step_expr, off;
1668 tree type;
1669 tree var, ni, ni_name;
1670 gimple_stmt_iterator last_gsi;
1671 stmt_vec_info stmt_info;
1673 phi = gsi.phi ();
1674 phi1 = gsi1.phi ();
1675 if (dump_enabled_p ())
1677 dump_printf_loc (MSG_NOTE, vect_location,
1678 "vect_update_ivs_after_vectorizer: phi: ");
1679 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1680 dump_printf (MSG_NOTE, "\n");
1683 /* Skip virtual phi's. */
1684 if (virtual_operand_p (PHI_RESULT (phi)))
1686 if (dump_enabled_p ())
1687 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1688 "virtual phi. skip.\n");
1689 continue;
1692 /* Skip reduction phis. */
1693 stmt_info = vinfo_for_stmt (phi);
1694 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
1696 if (dump_enabled_p ())
1697 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1698 "reduc phi. skip.\n");
1699 continue;
1702 type = TREE_TYPE (gimple_phi_result (phi));
1703 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
1704 step_expr = unshare_expr (step_expr);
1706 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1707 of degree >= 2 or exponential. */
1708 gcc_assert (!tree_is_chrec (step_expr));
1710 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1712 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1713 fold_convert (TREE_TYPE (step_expr), niters),
1714 step_expr);
1715 if (POINTER_TYPE_P (type))
1716 ni = fold_build_pointer_plus (init_expr, off);
1717 else
1718 ni = fold_build2 (PLUS_EXPR, type,
1719 init_expr, fold_convert (type, off));
1721 var = create_tmp_var (type, "tmp");
1723 last_gsi = gsi_last_bb (exit_bb);
1724 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1725 true, GSI_SAME_STMT);
1727 /* Fix phi expressions in the successor bb. */
1728 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1732 /* Function vect_do_peeling_for_loop_bound
1734 Peel the last iterations of the loop represented by LOOP_VINFO.
1735 The peeled iterations form a new epilog loop. Given that the loop now
1736 iterates NITERS times, the new epilog loop iterates
1737 NITERS % VECTORIZATION_FACTOR times.
1739 The original loop will later be made to iterate
1740 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1742 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1743 test. */
1745 void
1746 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo,
1747 tree ni_name, tree ratio_mult_vf_name,
1748 unsigned int th, bool check_profitability)
1750 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1751 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
1752 struct loop *new_loop;
1753 edge update_e;
1754 basic_block preheader;
1755 int loop_num;
1756 int max_iter;
1757 tree cond_expr = NULL_TREE;
1758 gimple_seq cond_expr_stmt_list = NULL;
1760 if (dump_enabled_p ())
1761 dump_printf_loc (MSG_NOTE, vect_location,
1762 "=== vect_do_peeling_for_loop_bound ===\n");
1764 initialize_original_copy_tables ();
1766 loop_num = loop->num;
1768 new_loop
1769 = slpeel_tree_peel_loop_to_edge (loop, scalar_loop, single_exit (loop),
1770 &ratio_mult_vf_name, ni_name, false,
1771 th, check_profitability,
1772 cond_expr, cond_expr_stmt_list,
1773 0, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1774 gcc_assert (new_loop);
1775 gcc_assert (loop_num == loop->num);
1776 #ifdef ENABLE_CHECKING
1777 slpeel_verify_cfg_after_peeling (loop, new_loop);
1778 #endif
1780 /* A guard that controls whether the new_loop is to be executed or skipped
1781 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1782 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1783 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1784 is on the path where the LOOP IVs are used and need to be updated. */
1786 preheader = loop_preheader_edge (new_loop)->src;
1787 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1788 update_e = EDGE_PRED (preheader, 0);
1789 else
1790 update_e = EDGE_PRED (preheader, 1);
1792 /* Update IVs of original loop as if they were advanced
1793 by ratio_mult_vf_name steps. */
1794 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
1796 /* For vectorization factor N, we need to copy last N-1 values in epilogue
1797 and this means N-2 loopback edge executions.
1799 PEELING_FOR_GAPS works by subtracting last iteration and thus the epilogue
1800 will execute at least LOOP_VINFO_VECT_FACTOR times. */
1801 max_iter = (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
1802 ? LOOP_VINFO_VECT_FACTOR (loop_vinfo) * 2
1803 : LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 2;
1804 if (check_profitability)
1805 max_iter = MAX (max_iter, (int) th - 1);
1806 record_niter_bound (new_loop, max_iter, false, true);
1807 dump_printf (MSG_NOTE,
1808 "Setting upper bound of nb iterations for epilogue "
1809 "loop to %d\n", max_iter);
1811 /* After peeling we have to reset scalar evolution analyzer. */
1812 scev_reset ();
1814 free_original_copy_tables ();
1818 /* Function vect_gen_niters_for_prolog_loop
1820 Set the number of iterations for the loop represented by LOOP_VINFO
1821 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1822 and the misalignment of DR - the data reference recorded in
1823 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1824 this loop, the data reference DR will refer to an aligned location.
1826 The following computation is generated:
1828 If the misalignment of DR is known at compile time:
1829 addr_mis = int mis = DR_MISALIGNMENT (dr);
1830 Else, compute address misalignment in bytes:
1831 addr_mis = addr & (vectype_align - 1)
1833 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1835 (elem_size = element type size; an element is the scalar element whose type
1836 is the inner type of the vectype)
1838 When the step of the data-ref in the loop is not 1 (as in interleaved data
1839 and SLP), the number of iterations of the prolog must be divided by the step
1840 (which is equal to the size of interleaved group).
1842 The above formulas assume that VF == number of elements in the vector. This
1843 may not hold when there are multiple-types in the loop.
1844 In this case, for some data-references in the loop the VF does not represent
1845 the number of elements that fit in the vector. Therefore, instead of VF we
1846 use TYPE_VECTOR_SUBPARTS. */
1848 static tree
1849 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters, int *bound)
1851 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1852 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1853 tree var;
1854 gimple_seq stmts;
1855 tree iters, iters_name;
1856 edge pe;
1857 basic_block new_bb;
1858 gimple dr_stmt = DR_STMT (dr);
1859 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
1860 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1861 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
1862 tree niters_type = TREE_TYPE (loop_niters);
1863 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1865 pe = loop_preheader_edge (loop);
1867 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1869 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1871 if (dump_enabled_p ())
1872 dump_printf_loc (MSG_NOTE, vect_location,
1873 "known peeling = %d.\n", npeel);
1875 iters = build_int_cst (niters_type, npeel);
1876 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1878 else
1880 gimple_seq new_stmts = NULL;
1881 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1882 tree offset = negative
1883 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
1884 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
1885 &new_stmts, offset, loop);
1886 tree type = unsigned_type_for (TREE_TYPE (start_addr));
1887 tree vectype_align_minus_1 = build_int_cst (type, vectype_align - 1);
1888 HOST_WIDE_INT elem_size =
1889 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1890 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
1891 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
1892 tree nelements_tree = build_int_cst (type, nelements);
1893 tree byte_misalign;
1894 tree elem_misalign;
1896 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
1897 gcc_assert (!new_bb);
1899 /* Create: byte_misalign = addr & (vectype_align - 1) */
1900 byte_misalign =
1901 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
1902 vectype_align_minus_1);
1904 /* Create: elem_misalign = byte_misalign / element_size */
1905 elem_misalign =
1906 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
1908 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
1909 if (negative)
1910 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
1911 else
1912 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
1913 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
1914 iters = fold_convert (niters_type, iters);
1915 *bound = nelements;
1918 /* Create: prolog_loop_niters = min (iters, loop_niters) */
1919 /* If the loop bound is known at compile time we already verified that it is
1920 greater than vf; since the misalignment ('iters') is at most vf, there's
1921 no need to generate the MIN_EXPR in this case. */
1922 if (TREE_CODE (loop_niters) != INTEGER_CST)
1923 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
1925 if (dump_enabled_p ())
1927 dump_printf_loc (MSG_NOTE, vect_location,
1928 "niters for prolog loop: ");
1929 dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
1930 dump_printf (MSG_NOTE, "\n");
1933 var = create_tmp_var (niters_type, "prolog_loop_niters");
1934 stmts = NULL;
1935 iters_name = force_gimple_operand (iters, &stmts, false, var);
1937 /* Insert stmt on loop preheader edge. */
1938 if (stmts)
1940 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1941 gcc_assert (!new_bb);
1944 return iters_name;
1948 /* Function vect_update_init_of_dr
1950 NITERS iterations were peeled from LOOP. DR represents a data reference
1951 in LOOP. This function updates the information recorded in DR to
1952 account for the fact that the first NITERS iterations had already been
1953 executed. Specifically, it updates the OFFSET field of DR. */
1955 static void
1956 vect_update_init_of_dr (struct data_reference *dr, tree niters)
1958 tree offset = DR_OFFSET (dr);
1960 niters = fold_build2 (MULT_EXPR, sizetype,
1961 fold_convert (sizetype, niters),
1962 fold_convert (sizetype, DR_STEP (dr)));
1963 offset = fold_build2 (PLUS_EXPR, sizetype,
1964 fold_convert (sizetype, offset), niters);
1965 DR_OFFSET (dr) = offset;
1969 /* Function vect_update_inits_of_drs
1971 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
1972 This function updates the information recorded for the data references in
1973 the loop to account for the fact that the first NITERS iterations had
1974 already been executed. Specifically, it updates the initial_condition of
1975 the access_function of all the data_references in the loop. */
1977 static void
1978 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
1980 unsigned int i;
1981 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1982 struct data_reference *dr;
1984 if (dump_enabled_p ())
1985 dump_printf_loc (MSG_NOTE, vect_location,
1986 "=== vect_update_inits_of_dr ===\n");
1988 FOR_EACH_VEC_ELT (datarefs, i, dr)
1989 vect_update_init_of_dr (dr, niters);
1993 /* Function vect_do_peeling_for_alignment
1995 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
1996 'niters' is set to the misalignment of one of the data references in the
1997 loop, thereby forcing it to refer to an aligned location at the beginning
1998 of the execution of this loop. The data reference for which we are
1999 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
2001 void
2002 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, tree ni_name,
2003 unsigned int th, bool check_profitability)
2005 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2006 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2007 tree niters_of_prolog_loop;
2008 tree wide_prolog_niters;
2009 struct loop *new_loop;
2010 int max_iter;
2011 int bound = 0;
2013 if (dump_enabled_p ())
2014 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2015 "loop peeled for vectorization to enhance"
2016 " alignment\n");
2018 initialize_original_copy_tables ();
2020 gimple_seq stmts = NULL;
2021 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2022 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo,
2023 ni_name,
2024 &bound);
2026 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2027 new_loop =
2028 slpeel_tree_peel_loop_to_edge (loop, scalar_loop,
2029 loop_preheader_edge (loop),
2030 &niters_of_prolog_loop, ni_name, true,
2031 th, check_profitability, NULL_TREE, NULL,
2032 bound, 0);
2034 gcc_assert (new_loop);
2035 #ifdef ENABLE_CHECKING
2036 slpeel_verify_cfg_after_peeling (new_loop, loop);
2037 #endif
2038 /* For vectorization factor N, we need to copy at most N-1 values
2039 for alignment and this means N-2 loopback edge executions. */
2040 max_iter = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 2;
2041 if (check_profitability)
2042 max_iter = MAX (max_iter, (int) th - 1);
2043 record_niter_bound (new_loop, max_iter, false, true);
2044 dump_printf (MSG_NOTE,
2045 "Setting upper bound of nb iterations for prologue "
2046 "loop to %d\n", max_iter);
2048 /* Update number of times loop executes. */
2049 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2050 TREE_TYPE (ni_name), ni_name, niters_of_prolog_loop);
2051 LOOP_VINFO_NITERSM1 (loop_vinfo) = fold_build2 (MINUS_EXPR,
2052 TREE_TYPE (ni_name),
2053 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_of_prolog_loop);
2055 if (types_compatible_p (sizetype, TREE_TYPE (niters_of_prolog_loop)))
2056 wide_prolog_niters = niters_of_prolog_loop;
2057 else
2059 gimple_seq seq = NULL;
2060 edge pe = loop_preheader_edge (loop);
2061 tree wide_iters = fold_convert (sizetype, niters_of_prolog_loop);
2062 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
2063 wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2064 var);
2065 if (seq)
2067 /* Insert stmt on loop preheader edge. */
2068 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
2069 gcc_assert (!new_bb);
2073 /* Update the init conditions of the access functions of all data refs. */
2074 vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
2076 /* After peeling we have to reset scalar evolution analyzer. */
2077 scev_reset ();
2079 free_original_copy_tables ();
2083 /* Function vect_create_cond_for_align_checks.
2085 Create a conditional expression that represents the alignment checks for
2086 all of data references (array element references) whose alignment must be
2087 checked at runtime.
2089 Input:
2090 COND_EXPR - input conditional expression. New conditions will be chained
2091 with logical AND operation.
2092 LOOP_VINFO - two fields of the loop information are used.
2093 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2094 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2096 Output:
2097 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2098 expression.
2099 The returned value is the conditional expression to be used in the if
2100 statement that controls which version of the loop gets executed at runtime.
2102 The algorithm makes two assumptions:
2103 1) The number of bytes "n" in a vector is a power of 2.
2104 2) An address "a" is aligned if a%n is zero and that this
2105 test can be done as a&(n-1) == 0. For example, for 16
2106 byte vectors the test is a&0xf == 0. */
2108 static void
2109 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2110 tree *cond_expr,
2111 gimple_seq *cond_expr_stmt_list)
2113 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2114 vec<gimple> may_misalign_stmts
2115 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2116 gimple ref_stmt;
2117 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2118 tree mask_cst;
2119 unsigned int i;
2120 tree int_ptrsize_type;
2121 char tmp_name[20];
2122 tree or_tmp_name = NULL_TREE;
2123 tree and_tmp_name;
2124 gimple and_stmt;
2125 tree ptrsize_zero;
2126 tree part_cond_expr;
2128 /* Check that mask is one less than a power of 2, i.e., mask is
2129 all zeros followed by all ones. */
2130 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2132 int_ptrsize_type = signed_type_for (ptr_type_node);
2134 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2135 of the first vector of the i'th data reference. */
2137 FOR_EACH_VEC_ELT (may_misalign_stmts, i, ref_stmt)
2139 gimple_seq new_stmt_list = NULL;
2140 tree addr_base;
2141 tree addr_tmp_name;
2142 tree new_or_tmp_name;
2143 gimple addr_stmt, or_stmt;
2144 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2145 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2146 bool negative = tree_int_cst_compare
2147 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2148 tree offset = negative
2149 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
2151 /* create: addr_tmp = (int)(address_of_first_vector) */
2152 addr_base =
2153 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2154 offset, loop);
2155 if (new_stmt_list != NULL)
2156 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2158 sprintf (tmp_name, "addr2int%d", i);
2159 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2160 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
2161 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2163 /* The addresses are OR together. */
2165 if (or_tmp_name != NULL_TREE)
2167 /* create: or_tmp = or_tmp | addr_tmp */
2168 sprintf (tmp_name, "orptrs%d", i);
2169 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2170 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
2171 or_tmp_name, addr_tmp_name);
2172 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2173 or_tmp_name = new_or_tmp_name;
2175 else
2176 or_tmp_name = addr_tmp_name;
2178 } /* end for i */
2180 mask_cst = build_int_cst (int_ptrsize_type, mask);
2182 /* create: and_tmp = or_tmp & mask */
2183 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
2185 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
2186 or_tmp_name, mask_cst);
2187 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2189 /* Make and_tmp the left operand of the conditional test against zero.
2190 if and_tmp has a nonzero bit then some address is unaligned. */
2191 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2192 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2193 and_tmp_name, ptrsize_zero);
2194 if (*cond_expr)
2195 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2196 *cond_expr, part_cond_expr);
2197 else
2198 *cond_expr = part_cond_expr;
2201 /* Function vect_create_cond_for_alias_checks.
2203 Create a conditional expression that represents the run-time checks for
2204 overlapping of address ranges represented by a list of data references
2205 relations passed as input.
2207 Input:
2208 COND_EXPR - input conditional expression. New conditions will be chained
2209 with logical AND operation. If it is NULL, then the function
2210 is used to return the number of alias checks.
2211 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2212 to be checked.
2214 Output:
2215 COND_EXPR - conditional expression.
2217 The returned COND_EXPR is the conditional expression to be used in the if
2218 statement that controls which version of the loop gets executed at runtime.
2221 void
2222 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
2224 vec<dr_with_seg_len_pair_t> comp_alias_ddrs =
2225 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2226 tree part_cond_expr;
2228 /* Create expression
2229 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2230 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2234 ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
2235 || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
2237 if (comp_alias_ddrs.is_empty ())
2238 return;
2240 for (size_t i = 0, s = comp_alias_ddrs.length (); i < s; ++i)
2242 const dr_with_seg_len& dr_a = comp_alias_ddrs[i].first;
2243 const dr_with_seg_len& dr_b = comp_alias_ddrs[i].second;
2244 tree segment_length_a = dr_a.seg_len;
2245 tree segment_length_b = dr_b.seg_len;
2247 tree addr_base_a
2248 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_a.dr), dr_a.offset);
2249 tree addr_base_b
2250 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_b.dr), dr_b.offset);
2252 if (dump_enabled_p ())
2254 dump_printf_loc (MSG_NOTE, vect_location,
2255 "create runtime check for data references ");
2256 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a.dr));
2257 dump_printf (MSG_NOTE, " and ");
2258 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b.dr));
2259 dump_printf (MSG_NOTE, "\n");
2262 tree seg_a_min = addr_base_a;
2263 tree seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
2264 /* For negative step, we need to adjust address range by TYPE_SIZE_UNIT
2265 bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of
2266 [a, a+12) */
2267 if (tree_int_cst_compare (DR_STEP (dr_a.dr), size_zero_node) < 0)
2269 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a.dr)));
2270 seg_a_min = fold_build_pointer_plus (seg_a_max, unit_size);
2271 seg_a_max = fold_build_pointer_plus (addr_base_a, unit_size);
2274 tree seg_b_min = addr_base_b;
2275 tree seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
2276 if (tree_int_cst_compare (DR_STEP (dr_b.dr), size_zero_node) < 0)
2278 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b.dr)));
2279 seg_b_min = fold_build_pointer_plus (seg_b_max, unit_size);
2280 seg_b_max = fold_build_pointer_plus (addr_base_b, unit_size);
2283 part_cond_expr =
2284 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
2285 fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
2286 fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
2288 if (*cond_expr)
2289 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2290 *cond_expr, part_cond_expr);
2291 else
2292 *cond_expr = part_cond_expr;
2295 if (dump_enabled_p ())
2296 dump_printf_loc (MSG_NOTE, vect_location,
2297 "created %u versioning for alias checks.\n",
2298 comp_alias_ddrs.length ());
2300 comp_alias_ddrs.release ();
2304 /* Function vect_loop_versioning.
2306 If the loop has data references that may or may not be aligned or/and
2307 has data reference relations whose independence was not proven then
2308 two versions of the loop need to be generated, one which is vectorized
2309 and one which isn't. A test is then generated to control which of the
2310 loops is executed. The test checks for the alignment of all of the
2311 data references that may or may not be aligned. An additional
2312 sequence of runtime tests is generated for each pairs of DDRs whose
2313 independence was not proven. The vectorized version of loop is
2314 executed only if both alias and alignment tests are passed.
2316 The test generated to check which version of loop is executed
2317 is modified to also check for profitability as indicated by the
2318 cost model initially.
2320 The versioning precondition(s) are placed in *COND_EXPR and
2321 *COND_EXPR_STMT_LIST. */
2323 void
2324 vect_loop_versioning (loop_vec_info loop_vinfo,
2325 unsigned int th, bool check_profitability)
2327 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2328 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2329 basic_block condition_bb;
2330 gphi_iterator gsi;
2331 gimple_stmt_iterator cond_exp_gsi;
2332 basic_block merge_bb;
2333 basic_block new_exit_bb;
2334 edge new_exit_e, e;
2335 gphi *orig_phi, *new_phi;
2336 tree cond_expr = NULL_TREE;
2337 gimple_seq cond_expr_stmt_list = NULL;
2338 tree arg;
2339 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2340 gimple_seq gimplify_stmt_list = NULL;
2341 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2342 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
2343 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
2345 if (check_profitability)
2347 cond_expr = fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2348 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2349 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
2350 is_gimple_condexpr, NULL_TREE);
2353 if (version_align)
2354 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
2355 &cond_expr_stmt_list);
2357 if (version_alias)
2358 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
2360 cond_expr = force_gimple_operand_1 (cond_expr, &gimplify_stmt_list,
2361 is_gimple_condexpr, NULL_TREE);
2362 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
2364 initialize_original_copy_tables ();
2365 if (scalar_loop)
2367 edge scalar_e;
2368 basic_block preheader, scalar_preheader;
2370 /* We don't want to scale SCALAR_LOOP's frequencies, we need to
2371 scale LOOP's frequencies instead. */
2372 loop_version (scalar_loop, cond_expr, &condition_bb,
2373 prob, REG_BR_PROB_BASE, REG_BR_PROB_BASE - prob, true);
2374 scale_loop_frequencies (loop, prob, REG_BR_PROB_BASE);
2375 /* CONDITION_BB was created above SCALAR_LOOP's preheader,
2376 while we need to move it above LOOP's preheader. */
2377 e = loop_preheader_edge (loop);
2378 scalar_e = loop_preheader_edge (scalar_loop);
2379 gcc_assert (empty_block_p (e->src)
2380 && single_pred_p (e->src));
2381 gcc_assert (empty_block_p (scalar_e->src)
2382 && single_pred_p (scalar_e->src));
2383 gcc_assert (single_pred_p (condition_bb));
2384 preheader = e->src;
2385 scalar_preheader = scalar_e->src;
2386 scalar_e = find_edge (condition_bb, scalar_preheader);
2387 e = single_pred_edge (preheader);
2388 redirect_edge_and_branch_force (single_pred_edge (condition_bb),
2389 scalar_preheader);
2390 redirect_edge_and_branch_force (scalar_e, preheader);
2391 redirect_edge_and_branch_force (e, condition_bb);
2392 set_immediate_dominator (CDI_DOMINATORS, condition_bb,
2393 single_pred (condition_bb));
2394 set_immediate_dominator (CDI_DOMINATORS, scalar_preheader,
2395 single_pred (scalar_preheader));
2396 set_immediate_dominator (CDI_DOMINATORS, preheader,
2397 condition_bb);
2399 else
2400 loop_version (loop, cond_expr, &condition_bb,
2401 prob, prob, REG_BR_PROB_BASE - prob, true);
2403 if (LOCATION_LOCUS (vect_location) != UNKNOWN_LOCATION
2404 && dump_enabled_p ())
2406 if (version_alias)
2407 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2408 "loop versioned for vectorization because of "
2409 "possible aliasing\n");
2410 if (version_align)
2411 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2412 "loop versioned for vectorization to enhance "
2413 "alignment\n");
2416 free_original_copy_tables ();
2418 /* Loop versioning violates an assumption we try to maintain during
2419 vectorization - that the loop exit block has a single predecessor.
2420 After versioning, the exit block of both loop versions is the same
2421 basic block (i.e. it has two predecessors). Just in order to simplify
2422 following transformations in the vectorizer, we fix this situation
2423 here by adding a new (empty) block on the exit-edge of the loop,
2424 with the proper loop-exit phis to maintain loop-closed-form.
2425 If loop versioning wasn't done from loop, but scalar_loop instead,
2426 merge_bb will have already just a single successor. */
2428 merge_bb = single_exit (loop)->dest;
2429 if (scalar_loop == NULL || EDGE_COUNT (merge_bb->preds) >= 2)
2431 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
2432 new_exit_bb = split_edge (single_exit (loop));
2433 new_exit_e = single_exit (loop);
2434 e = EDGE_SUCC (new_exit_bb, 0);
2436 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2438 tree new_res;
2439 orig_phi = gsi.phi ();
2440 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2441 new_phi = create_phi_node (new_res, new_exit_bb);
2442 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2443 add_phi_arg (new_phi, arg, new_exit_e,
2444 gimple_phi_arg_location_from_edge (orig_phi, e));
2445 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2449 /* End loop-exit-fixes after versioning. */
2451 if (cond_expr_stmt_list)
2453 cond_exp_gsi = gsi_last_bb (condition_bb);
2454 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
2455 GSI_SAME_STMT);
2457 update_ssa (TODO_update_ssa);