Daily bump.
[official-gcc.git] / gcc / ira-costs.c
blob72c00cccdd2ff8cec4066f96044bde5ca32c641f
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hash-table.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "expr.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "predict.h"
32 #include "vec.h"
33 #include "hashtab.h"
34 #include "hash-set.h"
35 #include "machmode.h"
36 #include "input.h"
37 #include "function.h"
38 #include "dominance.h"
39 #include "cfg.h"
40 #include "basic-block.h"
41 #include "regs.h"
42 #include "addresses.h"
43 #include "insn-config.h"
44 #include "recog.h"
45 #include "reload.h"
46 #include "diagnostic-core.h"
47 #include "target.h"
48 #include "params.h"
49 #include "ira-int.h"
51 /* The flags is set up every time when we calculate pseudo register
52 classes through function ira_set_pseudo_classes. */
53 static bool pseudo_classes_defined_p = false;
55 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
56 static bool allocno_p;
58 /* Number of elements in array `costs'. */
59 static int cost_elements_num;
61 /* The `costs' struct records the cost of using hard registers of each
62 class considered for the calculation and of using memory for each
63 allocno or pseudo. */
64 struct costs
66 int mem_cost;
67 /* Costs for register classes start here. We process only some
68 allocno classes. */
69 int cost[1];
72 #define max_struct_costs_size \
73 (this_target_ira_int->x_max_struct_costs_size)
74 #define init_cost \
75 (this_target_ira_int->x_init_cost)
76 #define temp_costs \
77 (this_target_ira_int->x_temp_costs)
78 #define op_costs \
79 (this_target_ira_int->x_op_costs)
80 #define this_op_costs \
81 (this_target_ira_int->x_this_op_costs)
83 /* Costs of each class for each allocno or pseudo. */
84 static struct costs *costs;
86 /* Accumulated costs of each class for each allocno. */
87 static struct costs *total_allocno_costs;
89 /* It is the current size of struct costs. */
90 static int struct_costs_size;
92 /* Return pointer to structure containing costs of allocno or pseudo
93 with given NUM in array ARR. */
94 #define COSTS(arr, num) \
95 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
97 /* Return index in COSTS when processing reg with REGNO. */
98 #define COST_INDEX(regno) (allocno_p \
99 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
100 : (int) regno)
102 /* Record register class preferences of each allocno or pseudo. Null
103 value means no preferences. It happens on the 1st iteration of the
104 cost calculation. */
105 static enum reg_class *pref;
107 /* Allocated buffers for pref. */
108 static enum reg_class *pref_buffer;
110 /* Record allocno class of each allocno with the same regno. */
111 static enum reg_class *regno_aclass;
113 /* Record cost gains for not allocating a register with an invariant
114 equivalence. */
115 static int *regno_equiv_gains;
117 /* Execution frequency of the current insn. */
118 static int frequency;
122 /* Info about reg classes whose costs are calculated for a pseudo. */
123 struct cost_classes
125 /* Number of the cost classes in the subsequent array. */
126 int num;
127 /* Container of the cost classes. */
128 enum reg_class classes[N_REG_CLASSES];
129 /* Map reg class -> index of the reg class in the previous array.
130 -1 if it is not a cost class. */
131 int index[N_REG_CLASSES];
132 /* Map hard regno index of first class in array CLASSES containing
133 the hard regno, -1 otherwise. */
134 int hard_regno_index[FIRST_PSEUDO_REGISTER];
137 /* Types of pointers to the structure above. */
138 typedef struct cost_classes *cost_classes_t;
139 typedef const struct cost_classes *const_cost_classes_t;
141 /* Info about cost classes for each pseudo. */
142 static cost_classes_t *regno_cost_classes;
144 /* Helper for cost_classes hashing. */
146 struct cost_classes_hasher
148 typedef cost_classes value_type;
149 typedef cost_classes compare_type;
150 static inline hashval_t hash (const value_type *);
151 static inline bool equal (const value_type *, const compare_type *);
152 static inline void remove (value_type *);
155 /* Returns hash value for cost classes info HV. */
156 inline hashval_t
157 cost_classes_hasher::hash (const value_type *hv)
159 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
162 /* Compares cost classes info HV1 and HV2. */
163 inline bool
164 cost_classes_hasher::equal (const value_type *hv1, const compare_type *hv2)
166 return (hv1->num == hv2->num
167 && memcmp (hv1->classes, hv2->classes,
168 sizeof (enum reg_class) * hv1->num) == 0);
171 /* Delete cost classes info V from the hash table. */
172 inline void
173 cost_classes_hasher::remove (value_type *v)
175 ira_free (v);
178 /* Hash table of unique cost classes. */
179 static hash_table<cost_classes_hasher> *cost_classes_htab;
181 /* Map allocno class -> cost classes for pseudo of given allocno
182 class. */
183 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
185 /* Map mode -> cost classes for pseudo of give mode. */
186 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
188 /* Cost classes that include all classes in ira_important_classes. */
189 static cost_classes all_cost_classes;
191 /* Use the array of classes in CLASSES_PTR to fill out the rest of
192 the structure. */
193 static void
194 complete_cost_classes (cost_classes_t classes_ptr)
196 for (int i = 0; i < N_REG_CLASSES; i++)
197 classes_ptr->index[i] = -1;
198 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
199 classes_ptr->hard_regno_index[i] = -1;
200 for (int i = 0; i < classes_ptr->num; i++)
202 enum reg_class cl = classes_ptr->classes[i];
203 classes_ptr->index[cl] = i;
204 for (int j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
206 unsigned int hard_regno = ira_class_hard_regs[cl][j];
207 if (classes_ptr->hard_regno_index[hard_regno] < 0)
208 classes_ptr->hard_regno_index[hard_regno] = i;
213 /* Initialize info about the cost classes for each pseudo. */
214 static void
215 initiate_regno_cost_classes (void)
217 int size = sizeof (cost_classes_t) * max_reg_num ();
219 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
220 memset (regno_cost_classes, 0, size);
221 memset (cost_classes_aclass_cache, 0,
222 sizeof (cost_classes_t) * N_REG_CLASSES);
223 memset (cost_classes_mode_cache, 0,
224 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
225 cost_classes_htab = new hash_table<cost_classes_hasher> (200);
226 all_cost_classes.num = ira_important_classes_num;
227 for (int i = 0; i < ira_important_classes_num; i++)
228 all_cost_classes.classes[i] = ira_important_classes[i];
229 complete_cost_classes (&all_cost_classes);
232 /* Create new cost classes from cost classes FROM and set up members
233 index and hard_regno_index. Return the new classes. The function
234 implements some common code of two functions
235 setup_regno_cost_classes_by_aclass and
236 setup_regno_cost_classes_by_mode. */
237 static cost_classes_t
238 setup_cost_classes (cost_classes_t from)
240 cost_classes_t classes_ptr;
242 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
243 classes_ptr->num = from->num;
244 for (int i = 0; i < from->num; i++)
245 classes_ptr->classes[i] = from->classes[i];
246 complete_cost_classes (classes_ptr);
247 return classes_ptr;
250 /* Return a version of FULL that only considers registers in REGS that are
251 valid for mode MODE. Both FULL and the returned class are globally
252 allocated. */
253 static cost_classes_t
254 restrict_cost_classes (cost_classes_t full, machine_mode mode,
255 const HARD_REG_SET &regs)
257 static struct cost_classes narrow;
258 int map[N_REG_CLASSES];
259 narrow.num = 0;
260 for (int i = 0; i < full->num; i++)
262 /* Assume that we'll drop the class. */
263 map[i] = -1;
265 /* Ignore classes that are too small for the mode. */
266 enum reg_class cl = full->classes[i];
267 if (!contains_reg_of_mode[cl][mode])
268 continue;
270 /* Calculate the set of registers in CL that belong to REGS and
271 are valid for MODE. */
272 HARD_REG_SET valid_for_cl;
273 COPY_HARD_REG_SET (valid_for_cl, reg_class_contents[cl]);
274 AND_HARD_REG_SET (valid_for_cl, regs);
275 AND_COMPL_HARD_REG_SET (valid_for_cl,
276 ira_prohibited_class_mode_regs[cl][mode]);
277 AND_COMPL_HARD_REG_SET (valid_for_cl, ira_no_alloc_regs);
278 if (hard_reg_set_empty_p (valid_for_cl))
279 continue;
281 /* Don't use this class if the set of valid registers is a subset
282 of an existing class. For example, suppose we have two classes
283 GR_REGS and FR_REGS and a union class GR_AND_FR_REGS. Suppose
284 that the mode changes allowed by FR_REGS are not as general as
285 the mode changes allowed by GR_REGS.
287 In this situation, the mode changes for GR_AND_FR_REGS could
288 either be seen as the union or the intersection of the mode
289 changes allowed by the two subclasses. The justification for
290 the union-based definition would be that, if you want a mode
291 change that's only allowed by GR_REGS, you can pick a register
292 from the GR_REGS subclass. The justification for the
293 intersection-based definition would be that every register
294 from the class would allow the mode change.
296 However, if we have a register that needs to be in GR_REGS,
297 using GR_AND_FR_REGS with the intersection-based definition
298 would be too pessimistic, since it would bring in restrictions
299 that only apply to FR_REGS. Conversely, if we have a register
300 that needs to be in FR_REGS, using GR_AND_FR_REGS with the
301 union-based definition would lose the extra restrictions
302 placed on FR_REGS. GR_AND_FR_REGS is therefore only useful
303 for cases where GR_REGS and FP_REGS are both valid. */
304 int pos;
305 for (pos = 0; pos < narrow.num; ++pos)
307 enum reg_class cl2 = narrow.classes[pos];
308 if (hard_reg_set_subset_p (valid_for_cl, reg_class_contents[cl2]))
309 break;
311 map[i] = pos;
312 if (pos == narrow.num)
314 /* If several classes are equivalent, prefer to use the one
315 that was chosen as the allocno class. */
316 enum reg_class cl2 = ira_allocno_class_translate[cl];
317 if (ira_class_hard_regs_num[cl] == ira_class_hard_regs_num[cl2])
318 cl = cl2;
319 narrow.classes[narrow.num++] = cl;
322 if (narrow.num == full->num)
323 return full;
325 cost_classes **slot = cost_classes_htab->find_slot (&narrow, INSERT);
326 if (*slot == NULL)
328 cost_classes_t classes = setup_cost_classes (&narrow);
329 /* Map equivalent classes to the representative that we chose above. */
330 for (int i = 0; i < ira_important_classes_num; i++)
332 enum reg_class cl = ira_important_classes[i];
333 int index = full->index[cl];
334 if (index >= 0)
335 classes->index[cl] = map[index];
337 *slot = classes;
339 return *slot;
342 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
343 This function is used when we know an initial approximation of
344 allocno class of the pseudo already, e.g. on the second iteration
345 of class cost calculation or after class cost calculation in
346 register-pressure sensitive insn scheduling or register-pressure
347 sensitive loop-invariant motion. */
348 static void
349 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
351 static struct cost_classes classes;
352 cost_classes_t classes_ptr;
353 enum reg_class cl;
354 int i;
355 cost_classes **slot;
356 HARD_REG_SET temp, temp2;
357 bool exclude_p;
359 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
361 COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
362 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
363 /* We exclude classes from consideration which are subsets of
364 ACLASS only if ACLASS is an uniform class. */
365 exclude_p = ira_uniform_class_p[aclass];
366 classes.num = 0;
367 for (i = 0; i < ira_important_classes_num; i++)
369 cl = ira_important_classes[i];
370 if (exclude_p)
372 /* Exclude non-uniform classes which are subsets of
373 ACLASS. */
374 COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
375 AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
376 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
377 continue;
379 classes.classes[classes.num++] = cl;
381 slot = cost_classes_htab->find_slot (&classes, INSERT);
382 if (*slot == NULL)
384 classes_ptr = setup_cost_classes (&classes);
385 *slot = classes_ptr;
387 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
389 if (regno_reg_rtx[regno] != NULL_RTX)
391 /* Restrict the classes to those that are valid for REGNO's mode
392 (which might for example exclude singleton classes if the mode
393 requires two registers). Also restrict the classes to those that
394 are valid for subregs of REGNO. */
395 const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno);
396 if (!valid_regs)
397 valid_regs = &reg_class_contents[ALL_REGS];
398 classes_ptr = restrict_cost_classes (classes_ptr,
399 PSEUDO_REGNO_MODE (regno),
400 *valid_regs);
402 regno_cost_classes[regno] = classes_ptr;
405 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
406 decrease number of cost classes for the pseudo, if hard registers
407 of some important classes can not hold a value of MODE. So the
408 pseudo can not get hard register of some important classes and cost
409 calculation for such important classes is only wasting CPU
410 time. */
411 static void
412 setup_regno_cost_classes_by_mode (int regno, machine_mode mode)
414 if (const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno))
415 regno_cost_classes[regno] = restrict_cost_classes (&all_cost_classes,
416 mode, *valid_regs);
417 else
419 if (cost_classes_mode_cache[mode] == NULL)
420 cost_classes_mode_cache[mode]
421 = restrict_cost_classes (&all_cost_classes, mode,
422 reg_class_contents[ALL_REGS]);
423 regno_cost_classes[regno] = cost_classes_mode_cache[mode];
427 /* Finalize info about the cost classes for each pseudo. */
428 static void
429 finish_regno_cost_classes (void)
431 ira_free (regno_cost_classes);
432 delete cost_classes_htab;
433 cost_classes_htab = NULL;
438 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
439 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
440 be a pseudo register. */
441 static int
442 copy_cost (rtx x, machine_mode mode, reg_class_t rclass, bool to_p,
443 secondary_reload_info *prev_sri)
445 secondary_reload_info sri;
446 reg_class_t secondary_class = NO_REGS;
448 /* If X is a SCRATCH, there is actually nothing to move since we are
449 assuming optimal allocation. */
450 if (GET_CODE (x) == SCRATCH)
451 return 0;
453 /* Get the class we will actually use for a reload. */
454 rclass = targetm.preferred_reload_class (x, rclass);
456 /* If we need a secondary reload for an intermediate, the cost is
457 that to load the input into the intermediate register, then to
458 copy it. */
459 sri.prev_sri = prev_sri;
460 sri.extra_cost = 0;
461 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
463 if (secondary_class != NO_REGS)
465 ira_init_register_move_cost_if_necessary (mode);
466 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
467 + sri.extra_cost
468 + copy_cost (x, mode, secondary_class, to_p, &sri));
471 /* For memory, use the memory move cost, for (hard) registers, use
472 the cost to move between the register classes, and use 2 for
473 everything else (constants). */
474 if (MEM_P (x) || rclass == NO_REGS)
475 return sri.extra_cost
476 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
477 else if (REG_P (x))
479 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
481 ira_init_register_move_cost_if_necessary (mode);
482 return (sri.extra_cost
483 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
485 else
486 /* If this is a constant, we may eventually want to call rtx_cost
487 here. */
488 return sri.extra_cost + COSTS_N_INSNS (1);
493 /* Record the cost of using memory or hard registers of various
494 classes for the operands in INSN.
496 N_ALTS is the number of alternatives.
497 N_OPS is the number of operands.
498 OPS is an array of the operands.
499 MODES are the modes of the operands, in case any are VOIDmode.
500 CONSTRAINTS are the constraints to use for the operands. This array
501 is modified by this procedure.
503 This procedure works alternative by alternative. For each
504 alternative we assume that we will be able to allocate all allocnos
505 to their ideal register class and calculate the cost of using that
506 alternative. Then we compute, for each operand that is a
507 pseudo-register, the cost of having the allocno allocated to each
508 register class and using it in that alternative. To this cost is
509 added the cost of the alternative.
511 The cost of each class for this insn is its lowest cost among all
512 the alternatives. */
513 static void
514 record_reg_classes (int n_alts, int n_ops, rtx *ops,
515 machine_mode *modes, const char **constraints,
516 rtx_insn *insn, enum reg_class *pref)
518 int alt;
519 int i, j, k;
520 int insn_allows_mem[MAX_RECOG_OPERANDS];
521 move_table *move_in_cost, *move_out_cost;
522 short (*mem_cost)[2];
524 for (i = 0; i < n_ops; i++)
525 insn_allows_mem[i] = 0;
527 /* Process each alternative, each time minimizing an operand's cost
528 with the cost for each operand in that alternative. */
529 alternative_mask preferred = get_preferred_alternatives (insn);
530 for (alt = 0; alt < n_alts; alt++)
532 enum reg_class classes[MAX_RECOG_OPERANDS];
533 int allows_mem[MAX_RECOG_OPERANDS];
534 enum reg_class rclass;
535 int alt_fail = 0;
536 int alt_cost = 0, op_cost_add;
538 if (!TEST_BIT (preferred, alt))
540 for (i = 0; i < recog_data.n_operands; i++)
541 constraints[i] = skip_alternative (constraints[i]);
543 continue;
546 for (i = 0; i < n_ops; i++)
548 unsigned char c;
549 const char *p = constraints[i];
550 rtx op = ops[i];
551 machine_mode mode = modes[i];
552 int allows_addr = 0;
553 int win = 0;
555 /* Initially show we know nothing about the register class. */
556 classes[i] = NO_REGS;
557 allows_mem[i] = 0;
559 /* If this operand has no constraints at all, we can
560 conclude nothing about it since anything is valid. */
561 if (*p == 0)
563 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
564 memset (this_op_costs[i], 0, struct_costs_size);
565 continue;
568 /* If this alternative is only relevant when this operand
569 matches a previous operand, we do different things
570 depending on whether this operand is a allocno-reg or not.
571 We must process any modifiers for the operand before we
572 can make this test. */
573 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
574 p++;
576 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
578 /* Copy class and whether memory is allowed from the
579 matching alternative. Then perform any needed cost
580 computations and/or adjustments. */
581 j = p[0] - '0';
582 classes[i] = classes[j];
583 allows_mem[i] = allows_mem[j];
584 if (allows_mem[i])
585 insn_allows_mem[i] = 1;
587 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
589 /* If this matches the other operand, we have no
590 added cost and we win. */
591 if (rtx_equal_p (ops[j], op))
592 win = 1;
593 /* If we can put the other operand into a register,
594 add to the cost of this alternative the cost to
595 copy this operand to the register used for the
596 other operand. */
597 else if (classes[j] != NO_REGS)
599 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
600 win = 1;
603 else if (! REG_P (ops[j])
604 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
606 /* This op is an allocno but the one it matches is
607 not. */
609 /* If we can't put the other operand into a
610 register, this alternative can't be used. */
612 if (classes[j] == NO_REGS)
613 alt_fail = 1;
614 /* Otherwise, add to the cost of this alternative
615 the cost to copy the other operand to the hard
616 register used for this operand. */
617 else
618 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
620 else
622 /* The costs of this operand are not the same as the
623 other operand since move costs are not symmetric.
624 Moreover, if we cannot tie them, this alternative
625 needs to do a copy, which is one insn. */
626 struct costs *pp = this_op_costs[i];
627 int *pp_costs = pp->cost;
628 cost_classes_t cost_classes_ptr
629 = regno_cost_classes[REGNO (op)];
630 enum reg_class *cost_classes = cost_classes_ptr->classes;
631 bool in_p = recog_data.operand_type[i] != OP_OUT;
632 bool out_p = recog_data.operand_type[i] != OP_IN;
633 enum reg_class op_class = classes[i];
635 ira_init_register_move_cost_if_necessary (mode);
636 if (! in_p)
638 ira_assert (out_p);
639 if (op_class == NO_REGS)
641 mem_cost = ira_memory_move_cost[mode];
642 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
644 rclass = cost_classes[k];
645 pp_costs[k] = mem_cost[rclass][0] * frequency;
648 else
650 move_out_cost = ira_may_move_out_cost[mode];
651 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
653 rclass = cost_classes[k];
654 pp_costs[k]
655 = move_out_cost[op_class][rclass] * frequency;
659 else if (! out_p)
661 ira_assert (in_p);
662 if (op_class == NO_REGS)
664 mem_cost = ira_memory_move_cost[mode];
665 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
667 rclass = cost_classes[k];
668 pp_costs[k] = mem_cost[rclass][1] * frequency;
671 else
673 move_in_cost = ira_may_move_in_cost[mode];
674 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
676 rclass = cost_classes[k];
677 pp_costs[k]
678 = move_in_cost[rclass][op_class] * frequency;
682 else
684 if (op_class == NO_REGS)
686 mem_cost = ira_memory_move_cost[mode];
687 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
689 rclass = cost_classes[k];
690 pp_costs[k] = ((mem_cost[rclass][0]
691 + mem_cost[rclass][1])
692 * frequency);
695 else
697 move_in_cost = ira_may_move_in_cost[mode];
698 move_out_cost = ira_may_move_out_cost[mode];
699 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
701 rclass = cost_classes[k];
702 pp_costs[k] = ((move_in_cost[rclass][op_class]
703 + move_out_cost[op_class][rclass])
704 * frequency);
709 /* If the alternative actually allows memory, make
710 things a bit cheaper since we won't need an extra
711 insn to load it. */
712 pp->mem_cost
713 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
714 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
715 - allows_mem[i]) * frequency;
717 /* If we have assigned a class to this allocno in
718 our first pass, add a cost to this alternative
719 corresponding to what we would add if this
720 allocno were not in the appropriate class. */
721 if (pref)
723 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
725 if (pref_class == NO_REGS)
726 alt_cost
727 += ((out_p
728 ? ira_memory_move_cost[mode][op_class][0] : 0)
729 + (in_p
730 ? ira_memory_move_cost[mode][op_class][1]
731 : 0));
732 else if (ira_reg_class_intersect
733 [pref_class][op_class] == NO_REGS)
734 alt_cost
735 += ira_register_move_cost[mode][pref_class][op_class];
737 if (REGNO (ops[i]) != REGNO (ops[j])
738 && ! find_reg_note (insn, REG_DEAD, op))
739 alt_cost += 2;
741 /* This is in place of ordinary cost computation for
742 this operand, so skip to the end of the
743 alternative (should be just one character). */
744 while (*p && *p++ != ',')
747 constraints[i] = p;
748 continue;
752 /* Scan all the constraint letters. See if the operand
753 matches any of the constraints. Collect the valid
754 register classes and see if this operand accepts
755 memory. */
756 while ((c = *p))
758 switch (c)
760 case '*':
761 /* Ignore the next letter for this pass. */
762 c = *++p;
763 break;
765 case '?':
766 alt_cost += 2;
767 break;
769 case 'g':
770 if (MEM_P (op)
771 || (CONSTANT_P (op)
772 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
773 win = 1;
774 insn_allows_mem[i] = allows_mem[i] = 1;
775 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
776 break;
778 default:
779 enum constraint_num cn = lookup_constraint (p);
780 enum reg_class cl;
781 switch (get_constraint_type (cn))
783 case CT_REGISTER:
784 cl = reg_class_for_constraint (cn);
785 if (cl != NO_REGS)
786 classes[i] = ira_reg_class_subunion[classes[i]][cl];
787 break;
789 case CT_CONST_INT:
790 if (CONST_INT_P (op)
791 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
792 win = 1;
793 break;
795 case CT_MEMORY:
796 /* Every MEM can be reloaded to fit. */
797 insn_allows_mem[i] = allows_mem[i] = 1;
798 if (MEM_P (op))
799 win = 1;
800 break;
802 case CT_ADDRESS:
803 /* Every address can be reloaded to fit. */
804 allows_addr = 1;
805 if (address_operand (op, GET_MODE (op))
806 || constraint_satisfied_p (op, cn))
807 win = 1;
808 /* We know this operand is an address, so we
809 want it to be allocated to a hard register
810 that can be the base of an address,
811 i.e. BASE_REG_CLASS. */
812 classes[i]
813 = ira_reg_class_subunion[classes[i]]
814 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
815 ADDRESS, SCRATCH)];
816 break;
818 case CT_FIXED_FORM:
819 if (constraint_satisfied_p (op, cn))
820 win = 1;
821 break;
823 break;
825 p += CONSTRAINT_LEN (c, p);
826 if (c == ',')
827 break;
830 constraints[i] = p;
832 /* How we account for this operand now depends on whether it
833 is a pseudo register or not. If it is, we first check if
834 any register classes are valid. If not, we ignore this
835 alternative, since we want to assume that all allocnos get
836 allocated for register preferencing. If some register
837 class is valid, compute the costs of moving the allocno
838 into that class. */
839 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
841 if (classes[i] == NO_REGS && ! allows_mem[i])
843 /* We must always fail if the operand is a REG, but
844 we did not find a suitable class and memory is
845 not allowed.
847 Otherwise we may perform an uninitialized read
848 from this_op_costs after the `continue' statement
849 below. */
850 alt_fail = 1;
852 else
854 unsigned int regno = REGNO (op);
855 struct costs *pp = this_op_costs[i];
856 int *pp_costs = pp->cost;
857 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
858 enum reg_class *cost_classes = cost_classes_ptr->classes;
859 bool in_p = recog_data.operand_type[i] != OP_OUT;
860 bool out_p = recog_data.operand_type[i] != OP_IN;
861 enum reg_class op_class = classes[i];
863 ira_init_register_move_cost_if_necessary (mode);
864 if (! in_p)
866 ira_assert (out_p);
867 if (op_class == NO_REGS)
869 mem_cost = ira_memory_move_cost[mode];
870 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
872 rclass = cost_classes[k];
873 pp_costs[k] = mem_cost[rclass][0] * frequency;
876 else
878 move_out_cost = ira_may_move_out_cost[mode];
879 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
881 rclass = cost_classes[k];
882 pp_costs[k]
883 = move_out_cost[op_class][rclass] * frequency;
887 else if (! out_p)
889 ira_assert (in_p);
890 if (op_class == NO_REGS)
892 mem_cost = ira_memory_move_cost[mode];
893 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
895 rclass = cost_classes[k];
896 pp_costs[k] = mem_cost[rclass][1] * frequency;
899 else
901 move_in_cost = ira_may_move_in_cost[mode];
902 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
904 rclass = cost_classes[k];
905 pp_costs[k]
906 = move_in_cost[rclass][op_class] * frequency;
910 else
912 if (op_class == NO_REGS)
914 mem_cost = ira_memory_move_cost[mode];
915 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
917 rclass = cost_classes[k];
918 pp_costs[k] = ((mem_cost[rclass][0]
919 + mem_cost[rclass][1])
920 * frequency);
923 else
925 move_in_cost = ira_may_move_in_cost[mode];
926 move_out_cost = ira_may_move_out_cost[mode];
927 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
929 rclass = cost_classes[k];
930 pp_costs[k] = ((move_in_cost[rclass][op_class]
931 + move_out_cost[op_class][rclass])
932 * frequency);
937 if (op_class == NO_REGS)
938 /* Although we don't need insn to reload from
939 memory, still accessing memory is usually more
940 expensive than a register. */
941 pp->mem_cost = frequency;
942 else
943 /* If the alternative actually allows memory, make
944 things a bit cheaper since we won't need an
945 extra insn to load it. */
946 pp->mem_cost
947 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
948 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
949 - allows_mem[i]) * frequency;
950 /* If we have assigned a class to this allocno in
951 our first pass, add a cost to this alternative
952 corresponding to what we would add if this
953 allocno were not in the appropriate class. */
954 if (pref)
956 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
958 if (pref_class == NO_REGS)
960 if (op_class != NO_REGS)
961 alt_cost
962 += ((out_p
963 ? ira_memory_move_cost[mode][op_class][0]
964 : 0)
965 + (in_p
966 ? ira_memory_move_cost[mode][op_class][1]
967 : 0));
969 else if (op_class == NO_REGS)
970 alt_cost
971 += ((out_p
972 ? ira_memory_move_cost[mode][pref_class][1]
973 : 0)
974 + (in_p
975 ? ira_memory_move_cost[mode][pref_class][0]
976 : 0));
977 else if (ira_reg_class_intersect[pref_class][op_class]
978 == NO_REGS)
979 alt_cost += (ira_register_move_cost
980 [mode][pref_class][op_class]);
985 /* Otherwise, if this alternative wins, either because we
986 have already determined that or if we have a hard
987 register of the proper class, there is no cost for this
988 alternative. */
989 else if (win || (REG_P (op)
990 && reg_fits_class_p (op, classes[i],
991 0, GET_MODE (op))))
994 /* If registers are valid, the cost of this alternative
995 includes copying the object to and/or from a
996 register. */
997 else if (classes[i] != NO_REGS)
999 if (recog_data.operand_type[i] != OP_OUT)
1000 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
1002 if (recog_data.operand_type[i] != OP_IN)
1003 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
1005 /* The only other way this alternative can be used is if
1006 this is a constant that could be placed into memory. */
1007 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1008 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
1009 else
1010 alt_fail = 1;
1013 if (alt_fail)
1014 continue;
1016 op_cost_add = alt_cost * frequency;
1017 /* Finally, update the costs with the information we've
1018 calculated about this alternative. */
1019 for (i = 0; i < n_ops; i++)
1020 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1022 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
1023 int *pp_costs = pp->cost, *qq_costs = qq->cost;
1024 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1025 cost_classes_t cost_classes_ptr
1026 = regno_cost_classes[REGNO (ops[i])];
1028 pp->mem_cost = MIN (pp->mem_cost,
1029 (qq->mem_cost + op_cost_add) * scale);
1031 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1032 pp_costs[k]
1033 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
1037 if (allocno_p)
1038 for (i = 0; i < n_ops; i++)
1040 ira_allocno_t a;
1041 rtx op = ops[i];
1043 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1044 continue;
1045 a = ira_curr_regno_allocno_map [REGNO (op)];
1046 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
1047 ALLOCNO_BAD_SPILL_P (a) = true;
1054 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
1055 static inline bool
1056 ok_for_index_p_nonstrict (rtx reg)
1058 unsigned regno = REGNO (reg);
1060 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
1063 /* A version of regno_ok_for_base_p for use here, when all
1064 pseudo-registers should count as OK. Arguments as for
1065 regno_ok_for_base_p. */
1066 static inline bool
1067 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
1068 enum rtx_code outer_code, enum rtx_code index_code)
1070 unsigned regno = REGNO (reg);
1072 if (regno >= FIRST_PSEUDO_REGISTER)
1073 return true;
1074 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
1077 /* Record the pseudo registers we must reload into hard registers in a
1078 subexpression of a memory address, X.
1080 If CONTEXT is 0, we are looking at the base part of an address,
1081 otherwise we are looking at the index part.
1083 MODE and AS are the mode and address space of the memory reference;
1084 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1085 These four arguments are passed down to base_reg_class.
1087 SCALE is twice the amount to multiply the cost by (it is twice so
1088 we can represent half-cost adjustments). */
1089 static void
1090 record_address_regs (machine_mode mode, addr_space_t as, rtx x,
1091 int context, enum rtx_code outer_code,
1092 enum rtx_code index_code, int scale)
1094 enum rtx_code code = GET_CODE (x);
1095 enum reg_class rclass;
1097 if (context == 1)
1098 rclass = INDEX_REG_CLASS;
1099 else
1100 rclass = base_reg_class (mode, as, outer_code, index_code);
1102 switch (code)
1104 case CONST_INT:
1105 case CONST:
1106 case CC0:
1107 case PC:
1108 case SYMBOL_REF:
1109 case LABEL_REF:
1110 return;
1112 case PLUS:
1113 /* When we have an address that is a sum, we must determine
1114 whether registers are "base" or "index" regs. If there is a
1115 sum of two registers, we must choose one to be the "base".
1116 Luckily, we can use the REG_POINTER to make a good choice
1117 most of the time. We only need to do this on machines that
1118 can have two registers in an address and where the base and
1119 index register classes are different.
1121 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1122 but that seems bogus since it should only be set when we are
1123 sure the register is being used as a pointer. */
1125 rtx arg0 = XEXP (x, 0);
1126 rtx arg1 = XEXP (x, 1);
1127 enum rtx_code code0 = GET_CODE (arg0);
1128 enum rtx_code code1 = GET_CODE (arg1);
1130 /* Look inside subregs. */
1131 if (code0 == SUBREG)
1132 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1133 if (code1 == SUBREG)
1134 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1136 /* If this machine only allows one register per address, it
1137 must be in the first operand. */
1138 if (MAX_REGS_PER_ADDRESS == 1)
1139 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1141 /* If index and base registers are the same on this machine,
1142 just record registers in any non-constant operands. We
1143 assume here, as well as in the tests below, that all
1144 addresses are in canonical form. */
1145 else if (INDEX_REG_CLASS
1146 == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1148 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1149 if (! CONSTANT_P (arg1))
1150 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1153 /* If the second operand is a constant integer, it doesn't
1154 change what class the first operand must be. */
1155 else if (CONST_SCALAR_INT_P (arg1))
1156 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1157 /* If the second operand is a symbolic constant, the first
1158 operand must be an index register. */
1159 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1160 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1161 /* If both operands are registers but one is already a hard
1162 register of index or reg-base class, give the other the
1163 class that the hard register is not. */
1164 else if (code0 == REG && code1 == REG
1165 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1166 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1167 || ok_for_index_p_nonstrict (arg0)))
1168 record_address_regs (mode, as, arg1,
1169 ok_for_base_p_nonstrict (arg0, mode, as,
1170 PLUS, REG) ? 1 : 0,
1171 PLUS, REG, scale);
1172 else if (code0 == REG && code1 == REG
1173 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1174 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1175 || ok_for_index_p_nonstrict (arg1)))
1176 record_address_regs (mode, as, arg0,
1177 ok_for_base_p_nonstrict (arg1, mode, as,
1178 PLUS, REG) ? 1 : 0,
1179 PLUS, REG, scale);
1180 /* If one operand is known to be a pointer, it must be the
1181 base with the other operand the index. Likewise if the
1182 other operand is a MULT. */
1183 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1185 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1186 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1188 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1190 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1191 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1193 /* Otherwise, count equal chances that each might be a base or
1194 index register. This case should be rare. */
1195 else
1197 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1198 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1199 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1200 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1203 break;
1205 /* Double the importance of an allocno that is incremented or
1206 decremented, since it would take two extra insns if it ends
1207 up in the wrong place. */
1208 case POST_MODIFY:
1209 case PRE_MODIFY:
1210 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1211 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1212 if (REG_P (XEXP (XEXP (x, 1), 1)))
1213 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1214 2 * scale);
1215 break;
1217 case POST_INC:
1218 case PRE_INC:
1219 case POST_DEC:
1220 case PRE_DEC:
1221 /* Double the importance of an allocno that is incremented or
1222 decremented, since it would take two extra insns if it ends
1223 up in the wrong place. */
1224 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1225 break;
1227 case REG:
1229 struct costs *pp;
1230 int *pp_costs;
1231 enum reg_class i;
1232 int k, regno, add_cost;
1233 cost_classes_t cost_classes_ptr;
1234 enum reg_class *cost_classes;
1235 move_table *move_in_cost;
1237 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1238 break;
1240 regno = REGNO (x);
1241 if (allocno_p)
1242 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1243 pp = COSTS (costs, COST_INDEX (regno));
1244 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1245 if (INT_MAX - add_cost < pp->mem_cost)
1246 pp->mem_cost = INT_MAX;
1247 else
1248 pp->mem_cost += add_cost;
1249 cost_classes_ptr = regno_cost_classes[regno];
1250 cost_classes = cost_classes_ptr->classes;
1251 pp_costs = pp->cost;
1252 ira_init_register_move_cost_if_necessary (Pmode);
1253 move_in_cost = ira_may_move_in_cost[Pmode];
1254 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1256 i = cost_classes[k];
1257 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1258 if (INT_MAX - add_cost < pp_costs[k])
1259 pp_costs[k] = INT_MAX;
1260 else
1261 pp_costs[k] += add_cost;
1264 break;
1266 default:
1268 const char *fmt = GET_RTX_FORMAT (code);
1269 int i;
1270 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1271 if (fmt[i] == 'e')
1272 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1273 scale);
1280 /* Calculate the costs of insn operands. */
1281 static void
1282 record_operand_costs (rtx_insn *insn, enum reg_class *pref)
1284 const char *constraints[MAX_RECOG_OPERANDS];
1285 machine_mode modes[MAX_RECOG_OPERANDS];
1286 rtx ops[MAX_RECOG_OPERANDS];
1287 rtx set;
1288 int i;
1290 for (i = 0; i < recog_data.n_operands; i++)
1292 constraints[i] = recog_data.constraints[i];
1293 modes[i] = recog_data.operand_mode[i];
1296 /* If we get here, we are set up to record the costs of all the
1297 operands for this insn. Start by initializing the costs. Then
1298 handle any address registers. Finally record the desired classes
1299 for any allocnos, doing it twice if some pair of operands are
1300 commutative. */
1301 for (i = 0; i < recog_data.n_operands; i++)
1303 memcpy (op_costs[i], init_cost, struct_costs_size);
1305 ops[i] = recog_data.operand[i];
1306 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1307 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1309 if (MEM_P (recog_data.operand[i]))
1310 record_address_regs (GET_MODE (recog_data.operand[i]),
1311 MEM_ADDR_SPACE (recog_data.operand[i]),
1312 XEXP (recog_data.operand[i], 0),
1313 0, MEM, SCRATCH, frequency * 2);
1314 else if (constraints[i][0] == 'p'
1315 || (insn_extra_address_constraint
1316 (lookup_constraint (constraints[i]))))
1317 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1318 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1319 frequency * 2);
1322 /* Check for commutative in a separate loop so everything will have
1323 been initialized. We must do this even if one operand is a
1324 constant--see addsi3 in m68k.md. */
1325 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1326 if (constraints[i][0] == '%')
1328 const char *xconstraints[MAX_RECOG_OPERANDS];
1329 int j;
1331 /* Handle commutative operands by swapping the constraints.
1332 We assume the modes are the same. */
1333 for (j = 0; j < recog_data.n_operands; j++)
1334 xconstraints[j] = constraints[j];
1336 xconstraints[i] = constraints[i+1];
1337 xconstraints[i+1] = constraints[i];
1338 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1339 recog_data.operand, modes,
1340 xconstraints, insn, pref);
1342 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1343 recog_data.operand, modes,
1344 constraints, insn, pref);
1346 /* If this insn is a single set copying operand 1 to operand 0 and
1347 one operand is an allocno with the other a hard reg or an allocno
1348 that prefers a hard register that is in its own register class
1349 then we may want to adjust the cost of that register class to -1.
1351 Avoid the adjustment if the source does not die to avoid
1352 stressing of register allocator by preferencing two colliding
1353 registers into single class.
1355 Also avoid the adjustment if a copy between hard registers of the
1356 class is expensive (ten times the cost of a default copy is
1357 considered arbitrarily expensive). This avoids losing when the
1358 preferred class is very expensive as the source of a copy
1359 instruction. */
1360 if ((set = single_set (insn)) != NULL_RTX
1361 /* In rare cases the single set insn might have less 2 operands
1362 as the source can be a fixed special reg. */
1363 && recog_data.n_operands > 1
1364 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set))
1366 int regno, other_regno;
1367 rtx dest = SET_DEST (set);
1368 rtx src = SET_SRC (set);
1370 dest = SET_DEST (set);
1371 src = SET_SRC (set);
1372 if (GET_CODE (dest) == SUBREG
1373 && (GET_MODE_SIZE (GET_MODE (dest))
1374 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1375 dest = SUBREG_REG (dest);
1376 if (GET_CODE (src) == SUBREG
1377 && (GET_MODE_SIZE (GET_MODE (src))
1378 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1379 src = SUBREG_REG (src);
1380 if (REG_P (src) && REG_P (dest)
1381 && find_regno_note (insn, REG_DEAD, REGNO (src))
1382 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1383 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1384 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1385 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1387 machine_mode mode = GET_MODE (src);
1388 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1389 enum reg_class *cost_classes = cost_classes_ptr->classes;
1390 reg_class_t rclass;
1391 int k, nr;
1393 i = regno == (int) REGNO (src) ? 1 : 0;
1394 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1396 rclass = cost_classes[k];
1397 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1398 && (reg_class_size[(int) rclass]
1399 == ira_reg_class_max_nregs [(int) rclass][(int) mode]))
1401 if (reg_class_size[rclass] == 1)
1402 op_costs[i]->cost[k] = -frequency;
1403 else
1405 for (nr = 0;
1406 nr < hard_regno_nregs[other_regno][mode];
1407 nr++)
1408 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
1409 other_regno + nr))
1410 break;
1412 if (nr == hard_regno_nregs[other_regno][mode])
1413 op_costs[i]->cost[k] = -frequency;
1423 /* Process one insn INSN. Scan it and record each time it would save
1424 code to put a certain allocnos in a certain class. Return the last
1425 insn processed, so that the scan can be continued from there. */
1426 static rtx_insn *
1427 scan_one_insn (rtx_insn *insn)
1429 enum rtx_code pat_code;
1430 rtx set, note;
1431 int i, k;
1432 bool counted_mem;
1434 if (!NONDEBUG_INSN_P (insn))
1435 return insn;
1437 pat_code = GET_CODE (PATTERN (insn));
1438 if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT)
1439 return insn;
1441 counted_mem = false;
1442 set = single_set (insn);
1443 extract_insn (insn);
1445 /* If this insn loads a parameter from its stack slot, then it
1446 represents a savings, rather than a cost, if the parameter is
1447 stored in memory. Record this fact.
1449 Similarly if we're loading other constants from memory (constant
1450 pool, TOC references, small data areas, etc) and this is the only
1451 assignment to the destination pseudo.
1453 Don't do this if SET_SRC (set) isn't a general operand, if it is
1454 a memory requiring special instructions to load it, decreasing
1455 mem_cost might result in it being loaded using the specialized
1456 instruction into a register, then stored into stack and loaded
1457 again from the stack. See PR52208.
1459 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1460 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1461 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1462 && ((MEM_P (XEXP (note, 0))
1463 && !side_effects_p (SET_SRC (set)))
1464 || (CONSTANT_P (XEXP (note, 0))
1465 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))
1466 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1467 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set))))
1469 enum reg_class cl = ALL_REGS;
1470 rtx reg = SET_DEST (set);
1471 int num = COST_INDEX (REGNO (reg));
1473 COSTS (costs, num)->mem_cost
1474 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1475 record_address_regs (GET_MODE (SET_SRC (set)),
1476 MEM_ADDR_SPACE (SET_SRC (set)),
1477 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1478 frequency * 2);
1479 counted_mem = true;
1482 record_operand_costs (insn, pref);
1484 /* Now add the cost for each operand to the total costs for its
1485 allocno. */
1486 for (i = 0; i < recog_data.n_operands; i++)
1487 if (REG_P (recog_data.operand[i])
1488 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1490 int regno = REGNO (recog_data.operand[i]);
1491 struct costs *p = COSTS (costs, COST_INDEX (regno));
1492 struct costs *q = op_costs[i];
1493 int *p_costs = p->cost, *q_costs = q->cost;
1494 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1495 int add_cost;
1497 /* If the already accounted for the memory "cost" above, don't
1498 do so again. */
1499 if (!counted_mem)
1501 add_cost = q->mem_cost;
1502 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1503 p->mem_cost = INT_MAX;
1504 else
1505 p->mem_cost += add_cost;
1507 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1509 add_cost = q_costs[k];
1510 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1511 p_costs[k] = INT_MAX;
1512 else
1513 p_costs[k] += add_cost;
1517 return insn;
1522 /* Print allocnos costs to file F. */
1523 static void
1524 print_allocno_costs (FILE *f)
1526 int k;
1527 ira_allocno_t a;
1528 ira_allocno_iterator ai;
1530 ira_assert (allocno_p);
1531 fprintf (f, "\n");
1532 FOR_EACH_ALLOCNO (a, ai)
1534 int i, rclass;
1535 basic_block bb;
1536 int regno = ALLOCNO_REGNO (a);
1537 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1538 enum reg_class *cost_classes = cost_classes_ptr->classes;
1540 i = ALLOCNO_NUM (a);
1541 fprintf (f, " a%d(r%d,", i, regno);
1542 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1543 fprintf (f, "b%d", bb->index);
1544 else
1545 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1546 fprintf (f, ") costs:");
1547 for (k = 0; k < cost_classes_ptr->num; k++)
1549 rclass = cost_classes[k];
1550 fprintf (f, " %s:%d", reg_class_names[rclass],
1551 COSTS (costs, i)->cost[k]);
1552 if (flag_ira_region == IRA_REGION_ALL
1553 || flag_ira_region == IRA_REGION_MIXED)
1554 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1556 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1557 if (flag_ira_region == IRA_REGION_ALL
1558 || flag_ira_region == IRA_REGION_MIXED)
1559 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1560 fprintf (f, "\n");
1564 /* Print pseudo costs to file F. */
1565 static void
1566 print_pseudo_costs (FILE *f)
1568 int regno, k;
1569 int rclass;
1570 cost_classes_t cost_classes_ptr;
1571 enum reg_class *cost_classes;
1573 ira_assert (! allocno_p);
1574 fprintf (f, "\n");
1575 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1577 if (REG_N_REFS (regno) <= 0)
1578 continue;
1579 cost_classes_ptr = regno_cost_classes[regno];
1580 cost_classes = cost_classes_ptr->classes;
1581 fprintf (f, " r%d costs:", regno);
1582 for (k = 0; k < cost_classes_ptr->num; k++)
1584 rclass = cost_classes[k];
1585 fprintf (f, " %s:%d", reg_class_names[rclass],
1586 COSTS (costs, regno)->cost[k]);
1588 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1592 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1593 costs. */
1594 static void
1595 process_bb_for_costs (basic_block bb)
1597 rtx_insn *insn;
1599 frequency = REG_FREQ_FROM_BB (bb);
1600 if (frequency == 0)
1601 frequency = 1;
1602 FOR_BB_INSNS (bb, insn)
1603 insn = scan_one_insn (insn);
1606 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1607 costs. */
1608 static void
1609 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1611 basic_block bb;
1613 bb = loop_tree_node->bb;
1614 if (bb != NULL)
1615 process_bb_for_costs (bb);
1618 /* Find costs of register classes and memory for allocnos or pseudos
1619 and their best costs. Set up preferred, alternative and allocno
1620 classes for pseudos. */
1621 static void
1622 find_costs_and_classes (FILE *dump_file)
1624 int i, k, start, max_cost_classes_num;
1625 int pass;
1626 basic_block bb;
1627 enum reg_class *regno_best_class;
1629 init_recog ();
1630 regno_best_class
1631 = (enum reg_class *) ira_allocate (max_reg_num ()
1632 * sizeof (enum reg_class));
1633 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1634 regno_best_class[i] = NO_REGS;
1635 if (!resize_reg_info () && allocno_p
1636 && pseudo_classes_defined_p && flag_expensive_optimizations)
1638 ira_allocno_t a;
1639 ira_allocno_iterator ai;
1641 pref = pref_buffer;
1642 max_cost_classes_num = 1;
1643 FOR_EACH_ALLOCNO (a, ai)
1645 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1646 setup_regno_cost_classes_by_aclass
1647 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1648 max_cost_classes_num
1649 = MAX (max_cost_classes_num,
1650 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1652 start = 1;
1654 else
1656 pref = NULL;
1657 max_cost_classes_num = ira_important_classes_num;
1658 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1659 if (regno_reg_rtx[i] != NULL_RTX)
1660 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1661 else
1662 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1663 start = 0;
1665 if (allocno_p)
1666 /* Clear the flag for the next compiled function. */
1667 pseudo_classes_defined_p = false;
1668 /* Normally we scan the insns once and determine the best class to
1669 use for each allocno. However, if -fexpensive-optimizations are
1670 on, we do so twice, the second time using the tentative best
1671 classes to guide the selection. */
1672 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1674 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1675 fprintf (dump_file,
1676 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1678 if (pass != start)
1680 max_cost_classes_num = 1;
1681 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1683 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1684 max_cost_classes_num
1685 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1689 struct_costs_size
1690 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1691 /* Zero out our accumulation of the cost of each class for each
1692 allocno. */
1693 memset (costs, 0, cost_elements_num * struct_costs_size);
1695 if (allocno_p)
1697 /* Scan the instructions and record each time it would save code
1698 to put a certain allocno in a certain class. */
1699 ira_traverse_loop_tree (true, ira_loop_tree_root,
1700 process_bb_node_for_costs, NULL);
1702 memcpy (total_allocno_costs, costs,
1703 max_struct_costs_size * ira_allocnos_num);
1705 else
1707 basic_block bb;
1709 FOR_EACH_BB_FN (bb, cfun)
1710 process_bb_for_costs (bb);
1713 if (pass == 0)
1714 pref = pref_buffer;
1716 /* Now for each allocno look at how desirable each class is and
1717 find which class is preferred. */
1718 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1720 ira_allocno_t a, parent_a;
1721 int rclass, a_num, parent_a_num, add_cost;
1722 ira_loop_tree_node_t parent;
1723 int best_cost, allocno_cost;
1724 enum reg_class best, alt_class;
1725 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1726 enum reg_class *cost_classes = cost_classes_ptr->classes;
1727 int *i_costs = temp_costs->cost;
1728 int i_mem_cost;
1729 int equiv_savings = regno_equiv_gains[i];
1731 if (! allocno_p)
1733 if (regno_reg_rtx[i] == NULL_RTX)
1734 continue;
1735 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1736 i_mem_cost = temp_costs->mem_cost;
1738 else
1740 if (ira_regno_allocno_map[i] == NULL)
1741 continue;
1742 memset (temp_costs, 0, struct_costs_size);
1743 i_mem_cost = 0;
1744 /* Find cost of all allocnos with the same regno. */
1745 for (a = ira_regno_allocno_map[i];
1746 a != NULL;
1747 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1749 int *a_costs, *p_costs;
1751 a_num = ALLOCNO_NUM (a);
1752 if ((flag_ira_region == IRA_REGION_ALL
1753 || flag_ira_region == IRA_REGION_MIXED)
1754 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1755 && (parent_a = parent->regno_allocno_map[i]) != NULL
1756 /* There are no caps yet. */
1757 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1758 (a)->border_allocnos,
1759 ALLOCNO_NUM (a)))
1761 /* Propagate costs to upper levels in the region
1762 tree. */
1763 parent_a_num = ALLOCNO_NUM (parent_a);
1764 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1765 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1766 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1768 add_cost = a_costs[k];
1769 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1770 p_costs[k] = INT_MAX;
1771 else
1772 p_costs[k] += add_cost;
1774 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1775 if (add_cost > 0
1776 && (INT_MAX - add_cost
1777 < COSTS (total_allocno_costs,
1778 parent_a_num)->mem_cost))
1779 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1780 = INT_MAX;
1781 else
1782 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1783 += add_cost;
1785 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1786 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1788 a_costs = COSTS (costs, a_num)->cost;
1789 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1791 add_cost = a_costs[k];
1792 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1793 i_costs[k] = INT_MAX;
1794 else
1795 i_costs[k] += add_cost;
1797 add_cost = COSTS (costs, a_num)->mem_cost;
1798 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1799 i_mem_cost = INT_MAX;
1800 else
1801 i_mem_cost += add_cost;
1804 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1805 i_mem_cost = 0;
1806 else if (equiv_savings < 0)
1807 i_mem_cost = -equiv_savings;
1808 else if (equiv_savings > 0)
1810 i_mem_cost = 0;
1811 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1812 i_costs[k] += equiv_savings;
1815 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1816 best = ALL_REGS;
1817 alt_class = NO_REGS;
1818 /* Find best common class for all allocnos with the same
1819 regno. */
1820 for (k = 0; k < cost_classes_ptr->num; k++)
1822 rclass = cost_classes[k];
1823 if (i_costs[k] < best_cost)
1825 best_cost = i_costs[k];
1826 best = (enum reg_class) rclass;
1828 else if (i_costs[k] == best_cost)
1829 best = ira_reg_class_subunion[best][rclass];
1830 if (pass == flag_expensive_optimizations
1831 /* We still prefer registers to memory even at this
1832 stage if their costs are the same. We will make
1833 a final decision during assigning hard registers
1834 when we have all info including more accurate
1835 costs which might be affected by assigning hard
1836 registers to other pseudos because the pseudos
1837 involved in moves can be coalesced. */
1838 && i_costs[k] <= i_mem_cost
1839 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1840 > reg_class_size[alt_class]))
1841 alt_class = reg_class_subunion[alt_class][rclass];
1843 alt_class = ira_allocno_class_translate[alt_class];
1844 if (best_cost > i_mem_cost)
1845 regno_aclass[i] = NO_REGS;
1846 else if (!optimize && !targetm.class_likely_spilled_p (best))
1847 /* Registers in the alternative class are likely to need
1848 longer or slower sequences than registers in the best class.
1849 When optimizing we make some effort to use the best class
1850 over the alternative class where possible, but at -O0 we
1851 effectively give the alternative class equal weight.
1852 We then run the risk of using slower alternative registers
1853 when plenty of registers from the best class are still free.
1854 This is especially true because live ranges tend to be very
1855 short in -O0 code and so register pressure tends to be low.
1857 Avoid that by ignoring the alternative class if the best
1858 class has plenty of registers. */
1859 regno_aclass[i] = best;
1860 else
1862 /* Make the common class the biggest class of best and
1863 alt_class. */
1864 regno_aclass[i]
1865 = ira_reg_class_superunion[best][alt_class];
1866 ira_assert (regno_aclass[i] != NO_REGS
1867 && ira_reg_allocno_class_p[regno_aclass[i]]);
1869 if (pass == flag_expensive_optimizations)
1871 if (best_cost > i_mem_cost)
1872 best = alt_class = NO_REGS;
1873 else if (best == alt_class)
1874 alt_class = NO_REGS;
1875 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1876 if ((!allocno_p || internal_flag_ira_verbose > 2)
1877 && dump_file != NULL)
1878 fprintf (dump_file,
1879 " r%d: preferred %s, alternative %s, allocno %s\n",
1880 i, reg_class_names[best], reg_class_names[alt_class],
1881 reg_class_names[regno_aclass[i]]);
1883 regno_best_class[i] = best;
1884 if (! allocno_p)
1886 pref[i] = best_cost > i_mem_cost ? NO_REGS : best;
1887 continue;
1889 for (a = ira_regno_allocno_map[i];
1890 a != NULL;
1891 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1893 enum reg_class aclass = regno_aclass[i];
1894 int a_num = ALLOCNO_NUM (a);
1895 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1896 int *a_costs = COSTS (costs, a_num)->cost;
1898 if (aclass == NO_REGS)
1899 best = NO_REGS;
1900 else
1902 /* Finding best class which is subset of the common
1903 class. */
1904 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1905 allocno_cost = best_cost;
1906 best = ALL_REGS;
1907 for (k = 0; k < cost_classes_ptr->num; k++)
1909 rclass = cost_classes[k];
1910 if (! ira_class_subset_p[rclass][aclass])
1911 continue;
1912 if (total_a_costs[k] < best_cost)
1914 best_cost = total_a_costs[k];
1915 allocno_cost = a_costs[k];
1916 best = (enum reg_class) rclass;
1918 else if (total_a_costs[k] == best_cost)
1920 best = ira_reg_class_subunion[best][rclass];
1921 allocno_cost = MAX (allocno_cost, a_costs[k]);
1924 ALLOCNO_CLASS_COST (a) = allocno_cost;
1926 if (internal_flag_ira_verbose > 2 && dump_file != NULL
1927 && (pass == 0 || pref[a_num] != best))
1929 fprintf (dump_file, " a%d (r%d,", a_num, i);
1930 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1931 fprintf (dump_file, "b%d", bb->index);
1932 else
1933 fprintf (dump_file, "l%d",
1934 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1935 fprintf (dump_file, ") best %s, allocno %s\n",
1936 reg_class_names[best],
1937 reg_class_names[aclass]);
1939 pref[a_num] = best;
1940 if (pass == flag_expensive_optimizations && best != aclass
1941 && ira_class_hard_regs_num[best] > 0
1942 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
1943 >= ira_class_hard_regs_num[best]))
1945 int ind = cost_classes_ptr->index[aclass];
1947 ira_assert (ind >= 0);
1948 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
1949 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
1950 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
1951 / (ira_register_move_cost
1952 [ALLOCNO_MODE (a)][best][aclass]));
1953 for (k = 0; k < cost_classes_ptr->num; k++)
1954 if (ira_class_subset_p[cost_classes[k]][best])
1955 a_costs[k] = a_costs[ind];
1960 if (internal_flag_ira_verbose > 4 && dump_file)
1962 if (allocno_p)
1963 print_allocno_costs (dump_file);
1964 else
1965 print_pseudo_costs (dump_file);
1966 fprintf (dump_file,"\n");
1969 ira_free (regno_best_class);
1974 /* Process moves involving hard regs to modify allocno hard register
1975 costs. We can do this only after determining allocno class. If a
1976 hard register forms a register class, then moves with the hard
1977 register are already taken into account in class costs for the
1978 allocno. */
1979 static void
1980 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
1982 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
1983 bool to_p;
1984 ira_allocno_t a, curr_a;
1985 ira_loop_tree_node_t curr_loop_tree_node;
1986 enum reg_class rclass;
1987 basic_block bb;
1988 rtx_insn *insn;
1989 rtx set, src, dst;
1991 bb = loop_tree_node->bb;
1992 if (bb == NULL)
1993 return;
1994 freq = REG_FREQ_FROM_BB (bb);
1995 if (freq == 0)
1996 freq = 1;
1997 FOR_BB_INSNS (bb, insn)
1999 if (!NONDEBUG_INSN_P (insn))
2000 continue;
2001 set = single_set (insn);
2002 if (set == NULL_RTX)
2003 continue;
2004 dst = SET_DEST (set);
2005 src = SET_SRC (set);
2006 if (! REG_P (dst) || ! REG_P (src))
2007 continue;
2008 dst_regno = REGNO (dst);
2009 src_regno = REGNO (src);
2010 if (dst_regno >= FIRST_PSEUDO_REGISTER
2011 && src_regno < FIRST_PSEUDO_REGISTER)
2013 hard_regno = src_regno;
2014 a = ira_curr_regno_allocno_map[dst_regno];
2015 to_p = true;
2017 else if (src_regno >= FIRST_PSEUDO_REGISTER
2018 && dst_regno < FIRST_PSEUDO_REGISTER)
2020 hard_regno = dst_regno;
2021 a = ira_curr_regno_allocno_map[src_regno];
2022 to_p = false;
2024 else
2025 continue;
2026 rclass = ALLOCNO_CLASS (a);
2027 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
2028 continue;
2029 i = ira_class_hard_reg_index[rclass][hard_regno];
2030 if (i < 0)
2031 continue;
2032 a_regno = ALLOCNO_REGNO (a);
2033 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2034 curr_loop_tree_node != NULL;
2035 curr_loop_tree_node = curr_loop_tree_node->parent)
2036 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
2037 ira_add_allocno_pref (curr_a, hard_regno, freq);
2039 int cost;
2040 enum reg_class hard_reg_class;
2041 machine_mode mode;
2043 mode = ALLOCNO_MODE (a);
2044 hard_reg_class = REGNO_REG_CLASS (hard_regno);
2045 ira_init_register_move_cost_if_necessary (mode);
2046 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
2047 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
2048 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
2049 ALLOCNO_CLASS_COST (a));
2050 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2051 rclass, 0);
2052 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
2053 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
2054 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
2055 ALLOCNO_HARD_REG_COSTS (a)[i]);
2060 /* After we find hard register and memory costs for allocnos, define
2061 its class and modify hard register cost because insns moving
2062 allocno to/from hard registers. */
2063 static void
2064 setup_allocno_class_and_costs (void)
2066 int i, j, n, regno, hard_regno, num;
2067 int *reg_costs;
2068 enum reg_class aclass, rclass;
2069 ira_allocno_t a;
2070 ira_allocno_iterator ai;
2071 cost_classes_t cost_classes_ptr;
2073 ira_assert (allocno_p);
2074 FOR_EACH_ALLOCNO (a, ai)
2076 i = ALLOCNO_NUM (a);
2077 regno = ALLOCNO_REGNO (a);
2078 aclass = regno_aclass[regno];
2079 cost_classes_ptr = regno_cost_classes[regno];
2080 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
2081 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
2082 ira_set_allocno_class (a, aclass);
2083 if (aclass == NO_REGS)
2084 continue;
2085 if (optimize && ALLOCNO_CLASS (a) != pref[i])
2087 n = ira_class_hard_regs_num[aclass];
2088 ALLOCNO_HARD_REG_COSTS (a)
2089 = reg_costs = ira_allocate_cost_vector (aclass);
2090 for (j = n - 1; j >= 0; j--)
2092 hard_regno = ira_class_hard_regs[aclass][j];
2093 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
2094 reg_costs[j] = ALLOCNO_CLASS_COST (a);
2095 else
2097 rclass = REGNO_REG_CLASS (hard_regno);
2098 num = cost_classes_ptr->index[rclass];
2099 if (num < 0)
2101 num = cost_classes_ptr->hard_regno_index[hard_regno];
2102 ira_assert (num >= 0);
2104 reg_costs[j] = COSTS (costs, i)->cost[num];
2109 if (optimize)
2110 ira_traverse_loop_tree (true, ira_loop_tree_root,
2111 process_bb_node_for_hard_reg_moves, NULL);
2116 /* Function called once during compiler work. */
2117 void
2118 ira_init_costs_once (void)
2120 int i;
2122 init_cost = NULL;
2123 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2125 op_costs[i] = NULL;
2126 this_op_costs[i] = NULL;
2128 temp_costs = NULL;
2131 /* Free allocated temporary cost vectors. */
2132 void
2133 target_ira_int::free_ira_costs ()
2135 int i;
2137 free (x_init_cost);
2138 x_init_cost = NULL;
2139 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2141 free (x_op_costs[i]);
2142 free (x_this_op_costs[i]);
2143 x_op_costs[i] = x_this_op_costs[i] = NULL;
2145 free (x_temp_costs);
2146 x_temp_costs = NULL;
2149 /* This is called each time register related information is
2150 changed. */
2151 void
2152 ira_init_costs (void)
2154 int i;
2156 this_target_ira_int->free_ira_costs ();
2157 max_struct_costs_size
2158 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2159 /* Don't use ira_allocate because vectors live through several IRA
2160 calls. */
2161 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2162 init_cost->mem_cost = 1000000;
2163 for (i = 0; i < ira_important_classes_num; i++)
2164 init_cost->cost[i] = 1000000;
2165 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2167 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2168 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2170 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2175 /* Common initialization function for ira_costs and
2176 ira_set_pseudo_classes. */
2177 static void
2178 init_costs (void)
2180 init_subregs_of_mode ();
2181 costs = (struct costs *) ira_allocate (max_struct_costs_size
2182 * cost_elements_num);
2183 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2184 * cost_elements_num);
2185 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2186 * max_reg_num ());
2187 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2188 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2191 /* Common finalization function for ira_costs and
2192 ira_set_pseudo_classes. */
2193 static void
2194 finish_costs (void)
2196 finish_subregs_of_mode ();
2197 ira_free (regno_equiv_gains);
2198 ira_free (regno_aclass);
2199 ira_free (pref_buffer);
2200 ira_free (costs);
2203 /* Entry function which defines register class, memory and hard
2204 register costs for each allocno. */
2205 void
2206 ira_costs (void)
2208 allocno_p = true;
2209 cost_elements_num = ira_allocnos_num;
2210 init_costs ();
2211 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2212 * ira_allocnos_num);
2213 initiate_regno_cost_classes ();
2214 calculate_elim_costs_all_insns ();
2215 find_costs_and_classes (ira_dump_file);
2216 setup_allocno_class_and_costs ();
2217 finish_regno_cost_classes ();
2218 finish_costs ();
2219 ira_free (total_allocno_costs);
2222 /* Entry function which defines classes for pseudos.
2223 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2224 void
2225 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2227 allocno_p = false;
2228 internal_flag_ira_verbose = flag_ira_verbose;
2229 cost_elements_num = max_reg_num ();
2230 init_costs ();
2231 initiate_regno_cost_classes ();
2232 find_costs_and_classes (dump_file);
2233 finish_regno_cost_classes ();
2234 if (define_pseudo_classes)
2235 pseudo_classes_defined_p = true;
2237 finish_costs ();
2242 /* Change hard register costs for allocnos which lives through
2243 function calls. This is called only when we found all intersected
2244 calls during building allocno live ranges. */
2245 void
2246 ira_tune_allocno_costs (void)
2248 int j, n, regno;
2249 int cost, min_cost, *reg_costs;
2250 enum reg_class aclass, rclass;
2251 machine_mode mode;
2252 ira_allocno_t a;
2253 ira_allocno_iterator ai;
2254 ira_allocno_object_iterator oi;
2255 ira_object_t obj;
2256 bool skip_p;
2257 HARD_REG_SET *crossed_calls_clobber_regs;
2259 FOR_EACH_ALLOCNO (a, ai)
2261 aclass = ALLOCNO_CLASS (a);
2262 if (aclass == NO_REGS)
2263 continue;
2264 mode = ALLOCNO_MODE (a);
2265 n = ira_class_hard_regs_num[aclass];
2266 min_cost = INT_MAX;
2267 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2268 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2270 ira_allocate_and_set_costs
2271 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2272 ALLOCNO_CLASS_COST (a));
2273 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2274 for (j = n - 1; j >= 0; j--)
2276 regno = ira_class_hard_regs[aclass][j];
2277 skip_p = false;
2278 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2280 if (ira_hard_reg_set_intersection_p (regno, mode,
2281 OBJECT_CONFLICT_HARD_REGS
2282 (obj)))
2284 skip_p = true;
2285 break;
2288 if (skip_p)
2289 continue;
2290 rclass = REGNO_REG_CLASS (regno);
2291 cost = 0;
2292 crossed_calls_clobber_regs
2293 = &(ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
2294 if (ira_hard_reg_set_intersection_p (regno, mode,
2295 *crossed_calls_clobber_regs)
2296 && (ira_hard_reg_set_intersection_p (regno, mode,
2297 call_used_reg_set)
2298 || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2299 cost += (ALLOCNO_CALL_FREQ (a)
2300 * (ira_memory_move_cost[mode][rclass][0]
2301 + ira_memory_move_cost[mode][rclass][1]));
2302 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2303 cost += ((ira_memory_move_cost[mode][rclass][0]
2304 + ira_memory_move_cost[mode][rclass][1])
2305 * ALLOCNO_FREQ (a)
2306 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2307 #endif
2308 if (INT_MAX - cost < reg_costs[j])
2309 reg_costs[j] = INT_MAX;
2310 else
2311 reg_costs[j] += cost;
2312 if (min_cost > reg_costs[j])
2313 min_cost = reg_costs[j];
2316 if (min_cost != INT_MAX)
2317 ALLOCNO_CLASS_COST (a) = min_cost;
2319 /* Some targets allow pseudos to be allocated to unaligned sequences
2320 of hard registers. However, selecting an unaligned sequence can
2321 unnecessarily restrict later allocations. So increase the cost of
2322 unaligned hard regs to encourage the use of aligned hard regs. */
2324 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2326 if (nregs > 1)
2328 ira_allocate_and_set_costs
2329 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2330 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2331 for (j = n - 1; j >= 0; j--)
2333 regno = ira_non_ordered_class_hard_regs[aclass][j];
2334 if ((regno % nregs) != 0)
2336 int index = ira_class_hard_reg_index[aclass][regno];
2337 ira_assert (index != -1);
2338 reg_costs[index] += ALLOCNO_FREQ (a);
2346 /* Add COST to the estimated gain for eliminating REGNO with its
2347 equivalence. If COST is zero, record that no such elimination is
2348 possible. */
2350 void
2351 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2353 if (cost == 0)
2354 regno_equiv_gains[regno] = 0;
2355 else
2356 regno_equiv_gains[regno] += cost;
2359 void
2360 ira_costs_c_finalize (void)
2362 this_target_ira_int->free_ira_costs ();