Preparatory work for PR target/21623:
[official-gcc.git] / gcc / config / pa / pa.h
blob17870385cf5d09b48e6123df42ce3b10752e28e7
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
5 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
6 Software Science at the University of Utah.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to
22 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
25 enum cmp_type /* comparison type */
27 CMP_SI, /* compare integers */
28 CMP_SF, /* compare single precision floats */
29 CMP_DF, /* compare double precision floats */
30 CMP_MAX /* max comparison type */
33 /* For long call handling. */
34 extern unsigned long total_code_bytes;
36 /* Which processor to schedule for. */
38 enum processor_type
40 PROCESSOR_700,
41 PROCESSOR_7100,
42 PROCESSOR_7100LC,
43 PROCESSOR_7200,
44 PROCESSOR_7300,
45 PROCESSOR_8000
48 /* For -mschedule= option. */
49 extern enum processor_type pa_cpu;
51 /* For -munix= option. */
52 extern int flag_pa_unix;
54 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
56 /* Print subsidiary information on the compiler version in use. */
58 #define TARGET_VERSION fputs (" (hppa)", stderr);
60 #define TARGET_PA_10 (!TARGET_PA_11 && !TARGET_PA_20)
62 /* Generate code for the HPPA 2.0 architecture in 64bit mode. */
63 #ifndef TARGET_64BIT
64 #define TARGET_64BIT 0
65 #endif
67 /* Generate code for ELF32 ABI. */
68 #ifndef TARGET_ELF32
69 #define TARGET_ELF32 0
70 #endif
72 /* Generate code for SOM 32bit ABI. */
73 #ifndef TARGET_SOM
74 #define TARGET_SOM 0
75 #endif
77 /* HP-UX UNIX features. */
78 #ifndef TARGET_HPUX
79 #define TARGET_HPUX 0
80 #endif
82 /* HP-UX 10.10 UNIX 95 features. */
83 #ifndef TARGET_HPUX_10_10
84 #define TARGET_HPUX_10_10 0
85 #endif
87 /* HP-UX 11i multibyte and UNIX 98 extensions. */
88 #ifndef TARGET_HPUX_11_11
89 #define TARGET_HPUX_11_11 0
90 #endif
92 /* The following three defines are potential target switches. The current
93 defines are optimal given the current capabilities of GAS and GNU ld. */
95 /* Define to a C expression evaluating to true to use long absolute calls.
96 Currently, only the HP assembler and SOM linker support long absolute
97 calls. They are used only in non-pic code. */
98 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
100 /* Define to a C expression evaluating to true to use long pic symbol
101 difference calls. This is a call variant similar to the long pic
102 pc-relative call. Long pic symbol difference calls are only used with
103 the HP SOM linker. Currently, only the HP assembler supports these
104 calls. GAS doesn't allow an arbitrary difference of two symbols. */
105 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS)
107 /* Define to a C expression evaluating to true to use long pic
108 pc-relative calls. Long pic pc-relative calls are only used with
109 GAS. Currently, they are usable for calls within a module but
110 not for external calls. */
111 #define TARGET_LONG_PIC_PCREL_CALL 0
113 /* Define to a C expression evaluating to true to use SOM secondary
114 definition symbols for weak support. Linker support for secondary
115 definition symbols is buggy prior to HP-UX 11.X. */
116 #define TARGET_SOM_SDEF 0
118 /* Define to a C expression evaluating to true to save the entry value
119 of SP in the current frame marker. This is normally unnecessary.
120 However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
121 HP compilers don't use this flag but it is supported by the assembler.
122 We set this flag to indicate that register %r3 has been saved at the
123 start of the frame. Thus, when the HP unwind library is used, we
124 need to generate additional code to save SP into the frame marker. */
125 #define TARGET_HPUX_UNWIND_LIBRARY 0
127 #ifndef TARGET_DEFAULT
128 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY | MASK_BIG_SWITCH)
129 #endif
131 #ifndef TARGET_CPU_DEFAULT
132 #define TARGET_CPU_DEFAULT 0
133 #endif
135 #ifndef TARGET_SCHED_DEFAULT
136 #define TARGET_SCHED_DEFAULT PROCESSOR_8000
137 #endif
139 /* Support for a compile-time default CPU, et cetera. The rules are:
140 --with-schedule is ignored if -mschedule is specified.
141 --with-arch is ignored if -march is specified. */
142 #define OPTION_DEFAULT_SPECS \
143 {"arch", "%{!march=*:-march=%(VALUE)}" }, \
144 {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
146 /* Specify the dialect of assembler to use. New mnemonics is dialect one
147 and the old mnemonics are dialect zero. */
148 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
150 #define OVERRIDE_OPTIONS override_options ()
152 /* Override some settings from dbxelf.h. */
154 /* We do not have to be compatible with dbx, so we enable gdb extensions
155 by default. */
156 #define DEFAULT_GDB_EXTENSIONS 1
158 /* This used to be zero (no max length), but big enums and such can
159 cause huge strings which killed gas.
161 We also have to avoid lossage in dbxout.c -- it does not compute the
162 string size accurately, so we are real conservative here. */
163 #undef DBX_CONTIN_LENGTH
164 #define DBX_CONTIN_LENGTH 3000
166 /* GDB always assumes the current function's frame begins at the value
167 of the stack pointer upon entry to the current function. Accessing
168 local variables and parameters passed on the stack is done using the
169 base of the frame + an offset provided by GCC.
171 For functions which have frame pointers this method works fine;
172 the (frame pointer) == (stack pointer at function entry) and GCC provides
173 an offset relative to the frame pointer.
175 This loses for functions without a frame pointer; GCC provides an offset
176 which is relative to the stack pointer after adjusting for the function's
177 frame size. GDB would prefer the offset to be relative to the value of
178 the stack pointer at the function's entry. Yuk! */
179 #define DEBUGGER_AUTO_OFFSET(X) \
180 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
181 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
183 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
184 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
185 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
187 #define TARGET_CPU_CPP_BUILTINS() \
188 do { \
189 builtin_assert("cpu=hppa"); \
190 builtin_assert("machine=hppa"); \
191 builtin_define("__hppa"); \
192 builtin_define("__hppa__"); \
193 if (TARGET_PA_20) \
194 builtin_define("_PA_RISC2_0"); \
195 else if (TARGET_PA_11) \
196 builtin_define("_PA_RISC1_1"); \
197 else \
198 builtin_define("_PA_RISC1_0"); \
199 } while (0)
201 /* An old set of OS defines for various BSD-like systems. */
202 #define TARGET_OS_CPP_BUILTINS() \
203 do \
205 builtin_define_std ("REVARGV"); \
206 builtin_define_std ("hp800"); \
207 builtin_define_std ("hp9000"); \
208 builtin_define_std ("hp9k8"); \
209 if (!c_dialect_cxx () && !flag_iso) \
210 builtin_define ("hppa"); \
211 builtin_define_std ("spectrum"); \
212 builtin_define_std ("unix"); \
213 builtin_assert ("system=bsd"); \
214 builtin_assert ("system=unix"); \
216 while (0)
218 #define CC1_SPEC "%{pg:} %{p:}"
220 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
222 /* We don't want -lg. */
223 #ifndef LIB_SPEC
224 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
225 #endif
227 /* This macro defines command-line switches that modify the default
228 target name.
230 The definition is be an initializer for an array of structures. Each
231 array element has have three elements: the switch name, one of the
232 enumeration codes ADD or DELETE to indicate whether the string should be
233 inserted or deleted, and the string to be inserted or deleted. */
234 #define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
236 /* Make gcc agree with <machine/ansi.h> */
238 #define SIZE_TYPE "unsigned int"
239 #define PTRDIFF_TYPE "int"
240 #define WCHAR_TYPE "unsigned int"
241 #define WCHAR_TYPE_SIZE 32
243 /* Show we can debug even without a frame pointer. */
244 #define CAN_DEBUG_WITHOUT_FP
246 /* target machine storage layout */
247 typedef struct machine_function GTY(())
249 /* Flag indicating that a .NSUBSPA directive has been output for
250 this function. */
251 int in_nsubspa;
252 } machine_function;
254 /* Define this macro if it is advisable to hold scalars in registers
255 in a wider mode than that declared by the program. In such cases,
256 the value is constrained to be within the bounds of the declared
257 type, but kept valid in the wider mode. The signedness of the
258 extension may differ from that of the type. */
260 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
261 if (GET_MODE_CLASS (MODE) == MODE_INT \
262 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
263 (MODE) = word_mode;
265 /* Define this if most significant bit is lowest numbered
266 in instructions that operate on numbered bit-fields. */
267 #define BITS_BIG_ENDIAN 1
269 /* Define this if most significant byte of a word is the lowest numbered. */
270 /* That is true on the HP-PA. */
271 #define BYTES_BIG_ENDIAN 1
273 /* Define this if most significant word of a multiword number is lowest
274 numbered. */
275 #define WORDS_BIG_ENDIAN 1
277 #define MAX_BITS_PER_WORD 64
279 /* Width of a word, in units (bytes). */
280 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
282 /* Minimum number of units in a word. If this is undefined, the default
283 is UNITS_PER_WORD. Otherwise, it is the constant value that is the
284 smallest value that UNITS_PER_WORD can have at run-time.
286 FIXME: This needs to be 4 when TARGET_64BIT is true to suppress the
287 building of various TImode routines in libgcc. The HP runtime
288 specification doesn't provide the alignment requirements and calling
289 conventions for TImode variables. */
290 #define MIN_UNITS_PER_WORD 4
292 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
293 #define PARM_BOUNDARY BITS_PER_WORD
295 /* Largest alignment required for any stack parameter, in bits.
296 Don't define this if it is equal to PARM_BOUNDARY */
297 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
299 /* Boundary (in *bits*) on which stack pointer is always aligned;
300 certain optimizations in combine depend on this.
302 The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
303 the stack on the 32 and 64-bit ports, respectively. However, we
304 are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
305 in main. Thus, we treat the former as the preferred alignment. */
306 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
307 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
309 /* Allocation boundary (in *bits*) for the code of a function. */
310 #define FUNCTION_BOUNDARY BITS_PER_WORD
312 /* Alignment of field after `int : 0' in a structure. */
313 #define EMPTY_FIELD_BOUNDARY 32
315 /* Every structure's size must be a multiple of this. */
316 #define STRUCTURE_SIZE_BOUNDARY 8
318 /* A bit-field declared as `int' forces `int' alignment for the struct. */
319 #define PCC_BITFIELD_TYPE_MATTERS 1
321 /* No data type wants to be aligned rounder than this. */
322 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
324 /* Get around hp-ux assembler bug, and make strcpy of constants fast. */
325 #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
326 ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
328 /* Make arrays of chars word-aligned for the same reasons. */
329 #define DATA_ALIGNMENT(TYPE, ALIGN) \
330 (TREE_CODE (TYPE) == ARRAY_TYPE \
331 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
332 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
334 /* Set this nonzero if move instructions will actually fail to work
335 when given unaligned data. */
336 #define STRICT_ALIGNMENT 1
338 /* Value is 1 if it is a good idea to tie two pseudo registers
339 when one has mode MODE1 and one has mode MODE2.
340 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
341 for any hard reg, then this must be 0 for correct output. */
342 #define MODES_TIEABLE_P(MODE1, MODE2) \
343 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
345 /* Specify the registers used for certain standard purposes.
346 The values of these macros are register numbers. */
348 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
349 /* #define PC_REGNUM */
351 /* Register to use for pushing function arguments. */
352 #define STACK_POINTER_REGNUM 30
354 /* Base register for access to local variables of the function. */
355 #define FRAME_POINTER_REGNUM 3
357 /* Value should be nonzero if functions must have frame pointers. */
358 #define FRAME_POINTER_REQUIRED \
359 (current_function_calls_alloca)
361 /* Don't allow hard registers to be renamed into r2 unless r2
362 is already live or already being saved (due to eh). */
364 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
365 ((NEW_REG) != 2 || regs_ever_live[2] || current_function_calls_eh_return)
367 /* C statement to store the difference between the frame pointer
368 and the stack pointer values immediately after the function prologue.
370 Note, we always pretend that this is a leaf function because if
371 it's not, there's no point in trying to eliminate the
372 frame pointer. If it is a leaf function, we guessed right! */
373 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
374 do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
376 /* Base register for access to arguments of the function. */
377 #define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3)
379 /* Register in which static-chain is passed to a function. */
380 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29)
382 /* Register used to address the offset table for position-independent
383 data references. */
384 #define PIC_OFFSET_TABLE_REGNUM \
385 (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
387 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
389 /* Function to return the rtx used to save the pic offset table register
390 across function calls. */
391 extern struct rtx_def *hppa_pic_save_rtx (void);
393 #define DEFAULT_PCC_STRUCT_RETURN 0
395 /* Register in which address to store a structure value
396 is passed to a function. */
397 #define PA_STRUCT_VALUE_REGNUM 28
399 /* Describe how we implement __builtin_eh_return. */
400 #define EH_RETURN_DATA_REGNO(N) \
401 ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
402 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 29)
403 #define EH_RETURN_HANDLER_RTX \
404 gen_rtx_MEM (word_mode, \
405 gen_rtx_PLUS (word_mode, frame_pointer_rtx, \
406 TARGET_64BIT ? GEN_INT (-16) : GEN_INT (-20)))
408 /* Offset from the frame pointer register value to the top of stack. */
409 #define FRAME_POINTER_CFA_OFFSET(FNDECL) 0
411 /* A C expression whose value is RTL representing the location of the
412 incoming return address at the beginning of any function, before the
413 prologue. You only need to define this macro if you want to support
414 call frame debugging information like that provided by DWARF 2. */
415 #define INCOMING_RETURN_ADDR_RTX (gen_rtx_REG (word_mode, 2))
416 #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (2))
418 /* A C expression whose value is an integer giving a DWARF 2 column
419 number that may be used as an alternate return column. This should
420 be defined only if DWARF_FRAME_RETURN_COLUMN is set to a general
421 register, but an alternate column needs to be used for signal frames.
423 Column 0 is not used but unfortunately its register size is set to
424 4 bytes (sizeof CCmode) so it can't be used on 64-bit targets. */
425 #define DWARF_ALT_FRAME_RETURN_COLUMN FIRST_PSEUDO_REGISTER
427 /* This macro chooses the encoding of pointers embedded in the exception
428 handling sections. If at all possible, this should be defined such
429 that the exception handling section will not require dynamic relocations,
430 and so may be read-only.
432 Because the HP assembler auto aligns, it is necessary to use
433 DW_EH_PE_aligned. It's not possible to make the data read-only
434 on the HP-UX SOM port since the linker requires fixups for label
435 differences in different sections to be word aligned. However,
436 the SOM linker can do unaligned fixups for absolute pointers.
437 We also need aligned pointers for global and function pointers.
439 Although the HP-UX 64-bit ELF linker can handle unaligned pc-relative
440 fixups, the runtime doesn't have a consistent relationship between
441 text and data for dynamically loaded objects. Thus, it's not possible
442 to use pc-relative encoding for pointers on this target. It may be
443 possible to use segment relative encodings but GAS doesn't currently
444 have a mechanism to generate these encodings. For other targets, we
445 use pc-relative encoding for pointers. If the pointer might require
446 dynamic relocation, we make it indirect. */
447 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
448 (TARGET_GAS && !TARGET_HPUX \
449 ? (DW_EH_PE_pcrel \
450 | ((GLOBAL) || (CODE) == 2 ? DW_EH_PE_indirect : 0) \
451 | (TARGET_64BIT ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4)) \
452 : (!TARGET_GAS || (GLOBAL) || (CODE) == 2 \
453 ? DW_EH_PE_aligned : DW_EH_PE_absptr))
455 /* Handle special EH pointer encodings. Absolute, pc-relative, and
456 indirect are handled automatically. We output pc-relative, and
457 indirect pc-relative ourself since we need some special magic to
458 generate pc-relative relocations, and to handle indirect function
459 pointers. */
460 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
461 do { \
462 if (((ENCODING) & 0x70) == DW_EH_PE_pcrel) \
464 fputs (integer_asm_op (SIZE, FALSE), FILE); \
465 if ((ENCODING) & DW_EH_PE_indirect) \
466 output_addr_const (FILE, get_deferred_plabel (ADDR)); \
467 else \
468 assemble_name (FILE, XSTR ((ADDR), 0)); \
469 fputs ("+8-$PIC_pcrel$0", FILE); \
470 goto DONE; \
472 } while (0)
474 /* The letters I, J, K, L and M in a register constraint string
475 can be used to stand for particular ranges of immediate operands.
476 This macro defines what the ranges are.
477 C is the letter, and VALUE is a constant value.
478 Return 1 if VALUE is in the range specified by C.
480 `I' is used for the 11 bit constants.
481 `J' is used for the 14 bit constants.
482 `K' is used for values that can be moved with a zdepi insn.
483 `L' is used for the 5 bit constants.
484 `M' is used for 0.
485 `N' is used for values with the least significant 11 bits equal to zero
486 and when sign extended from 32 to 64 bits the
487 value does not change.
488 `O' is used for numbers n such that n+1 is a power of 2.
491 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
492 ((C) == 'I' ? VAL_11_BITS_P (VALUE) \
493 : (C) == 'J' ? VAL_14_BITS_P (VALUE) \
494 : (C) == 'K' ? zdepi_cint_p (VALUE) \
495 : (C) == 'L' ? VAL_5_BITS_P (VALUE) \
496 : (C) == 'M' ? (VALUE) == 0 \
497 : (C) == 'N' ? (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) == 0 \
498 || (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) \
499 == (HOST_WIDE_INT) -1 << 31)) \
500 : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0) \
501 : (C) == 'P' ? and_mask_p (VALUE) \
502 : 0)
504 /* Similar, but for floating or large integer constants, and defining letters
505 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
507 For PA, `G' is the floating-point constant zero. `H' is undefined. */
509 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
510 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
511 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
512 : 0)
514 /* The class value for index registers, and the one for base regs. */
515 #define INDEX_REG_CLASS GENERAL_REGS
516 #define BASE_REG_CLASS GENERAL_REGS
518 #define FP_REG_CLASS_P(CLASS) \
519 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
521 /* True if register is floating-point. */
522 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
524 /* Given an rtx X being reloaded into a reg required to be
525 in class CLASS, return the class of reg to actually use.
526 In general this is just CLASS; but on some machines
527 in some cases it is preferable to use a more restrictive class. */
528 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
530 /* Return the register class of a scratch register needed to copy
531 IN into a register in CLASS in MODE, or a register in CLASS in MODE
532 to IN. If it can be done directly NO_REGS is returned.
534 Avoid doing any work for the common case calls. */
535 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
536 ((CLASS == BASE_REG_CLASS && GET_CODE (IN) == REG \
537 && REGNO (IN) < FIRST_PSEUDO_REGISTER) \
538 ? NO_REGS : pa_secondary_reload_class (CLASS, MODE, IN))
540 #define MAYBE_FP_REG_CLASS_P(CLASS) \
541 reg_classes_intersect_p ((CLASS), FP_REGS)
543 /* On the PA it is not possible to directly move data between
544 GENERAL_REGS and FP_REGS. */
545 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
546 (MAYBE_FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2) \
547 || MAYBE_FP_REG_CLASS_P (CLASS2) != FP_REG_CLASS_P (CLASS1))
549 /* Return the stack location to use for secondary memory needed reloads. */
550 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
551 gen_rtx_MEM (MODE, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-16)))
554 /* Stack layout; function entry, exit and calling. */
556 /* Define this if pushing a word on the stack
557 makes the stack pointer a smaller address. */
558 /* #define STACK_GROWS_DOWNWARD */
560 /* Believe it or not. */
561 #define ARGS_GROW_DOWNWARD
563 /* Define this to nonzero if the nominal address of the stack frame
564 is at the high-address end of the local variables;
565 that is, each additional local variable allocated
566 goes at a more negative offset in the frame. */
567 #define FRAME_GROWS_DOWNWARD 0
569 /* Offset within stack frame to start allocating local variables at.
570 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
571 first local allocated. Otherwise, it is the offset to the BEGINNING
572 of the first local allocated.
574 On the 32-bit ports, we reserve one slot for the previous frame
575 pointer and one fill slot. The fill slot is for compatibility
576 with HP compiled programs. On the 64-bit ports, we reserve one
577 slot for the previous frame pointer. */
578 #define STARTING_FRAME_OFFSET 8
580 /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
581 of the stack. The default is to align it to STACK_BOUNDARY. */
582 #define STACK_ALIGNMENT_NEEDED 0
584 /* If we generate an insn to push BYTES bytes,
585 this says how many the stack pointer really advances by.
586 On the HP-PA, don't define this because there are no push insns. */
587 /* #define PUSH_ROUNDING(BYTES) */
589 /* Offset of first parameter from the argument pointer register value.
590 This value will be negated because the arguments grow down.
591 Also note that on STACK_GROWS_UPWARD machines (such as this one)
592 this is the distance from the frame pointer to the end of the first
593 argument, not it's beginning. To get the real offset of the first
594 argument, the size of the argument must be added. */
596 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
598 /* When a parameter is passed in a register, stack space is still
599 allocated for it. */
600 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
602 /* Define this if the above stack space is to be considered part of the
603 space allocated by the caller. */
604 #define OUTGOING_REG_PARM_STACK_SPACE
606 /* Keep the stack pointer constant throughout the function.
607 This is both an optimization and a necessity: longjmp
608 doesn't behave itself when the stack pointer moves within
609 the function! */
610 #define ACCUMULATE_OUTGOING_ARGS 1
612 /* The weird HPPA calling conventions require a minimum of 48 bytes on
613 the stack: 16 bytes for register saves, and 32 bytes for magic.
614 This is the difference between the logical top of stack and the
615 actual sp.
617 On the 64-bit port, the HP C compiler allocates a 48-byte frame
618 marker, although the runtime documentation only describes a 16
619 byte marker. For compatibility, we allocate 48 bytes. */
620 #define STACK_POINTER_OFFSET \
621 (TARGET_64BIT ? -(current_function_outgoing_args_size + 48): -32)
623 #define STACK_DYNAMIC_OFFSET(FNDECL) \
624 (TARGET_64BIT \
625 ? (STACK_POINTER_OFFSET) \
626 : ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size))
628 /* Value is 1 if returning from a function call automatically
629 pops the arguments described by the number-of-args field in the call.
630 FUNDECL is the declaration node of the function (as a tree),
631 FUNTYPE is the data type of the function (as a tree),
632 or for a library call it is an identifier node for the subroutine name. */
634 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
636 /* Define how to find the value returned by a function.
637 VALTYPE is the data type of the value (as a tree).
638 If the precise function being called is known, FUNC is its FUNCTION_DECL;
639 otherwise, FUNC is 0. */
641 #define FUNCTION_VALUE(VALTYPE, FUNC) function_value (VALTYPE, FUNC)
643 /* Define how to find the value returned by a library function
644 assuming the value has mode MODE. */
646 #define LIBCALL_VALUE(MODE) \
647 gen_rtx_REG (MODE, \
648 (! TARGET_SOFT_FLOAT \
649 && ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
651 /* 1 if N is a possible register number for a function value
652 as seen by the caller. */
654 #define FUNCTION_VALUE_REGNO_P(N) \
655 ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
658 /* Define a data type for recording info about an argument list
659 during the scan of that argument list. This data type should
660 hold all necessary information about the function itself
661 and about the args processed so far, enough to enable macros
662 such as FUNCTION_ARG to determine where the next arg should go.
664 On the HP-PA, the WORDS field holds the number of words
665 of arguments scanned so far (including the invisible argument,
666 if any, which holds the structure-value-address). Thus, 4 or
667 more means all following args should go on the stack.
669 The INCOMING field tracks whether this is an "incoming" or
670 "outgoing" argument.
672 The INDIRECT field indicates whether this is is an indirect
673 call or not.
675 The NARGS_PROTOTYPE field indicates that an argument does not
676 have a prototype when it less than or equal to 0. */
678 struct hppa_args {int words, nargs_prototype, incoming, indirect; };
680 #define CUMULATIVE_ARGS struct hppa_args
682 /* Initialize a variable CUM of type CUMULATIVE_ARGS
683 for a call to a function whose data type is FNTYPE.
684 For a library call, FNTYPE is 0. */
686 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
687 (CUM).words = 0, \
688 (CUM).incoming = 0, \
689 (CUM).indirect = (FNTYPE) && !(FNDECL), \
690 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
691 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
692 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
693 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
694 : 0)
698 /* Similar, but when scanning the definition of a procedure. We always
699 set NARGS_PROTOTYPE large so we never return a PARALLEL. */
701 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
702 (CUM).words = 0, \
703 (CUM).incoming = 1, \
704 (CUM).indirect = 0, \
705 (CUM).nargs_prototype = 1000
707 /* Figure out the size in words of the function argument. The size
708 returned by this macro should always be greater than zero because
709 we pass variable and zero sized objects by reference. */
711 #define FUNCTION_ARG_SIZE(MODE, TYPE) \
712 ((((MODE) != BLKmode \
713 ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
714 : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
716 /* Update the data in CUM to advance over an argument
717 of mode MODE and data type TYPE.
718 (TYPE is null for libcalls where that information may not be available.) */
720 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
721 { (CUM).nargs_prototype--; \
722 (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE) \
723 + (((CUM).words & 01) && (TYPE) != 0 \
724 && FUNCTION_ARG_SIZE(MODE, TYPE) > 1); \
727 /* Determine where to put an argument to a function.
728 Value is zero to push the argument on the stack,
729 or a hard register in which to store the argument.
731 MODE is the argument's machine mode.
732 TYPE is the data type of the argument (as a tree).
733 This is null for libcalls where that information may
734 not be available.
735 CUM is a variable of type CUMULATIVE_ARGS which gives info about
736 the preceding args and about the function being called.
737 NAMED is nonzero if this argument is a named parameter
738 (otherwise it is an extra parameter matching an ellipsis).
740 On the HP-PA the first four words of args are normally in registers
741 and the rest are pushed. But any arg that won't entirely fit in regs
742 is pushed.
744 Arguments passed in registers are either 1 or 2 words long.
746 The caller must make a distinction between calls to explicitly named
747 functions and calls through pointers to functions -- the conventions
748 are different! Calls through pointers to functions only use general
749 registers for the first four argument words.
751 Of course all this is different for the portable runtime model
752 HP wants everyone to use for ELF. Ugh. Here's a quick description
753 of how it's supposed to work.
755 1) callee side remains unchanged. It expects integer args to be
756 in the integer registers, float args in the float registers and
757 unnamed args in integer registers.
759 2) caller side now depends on if the function being called has
760 a prototype in scope (rather than if it's being called indirectly).
762 2a) If there is a prototype in scope, then arguments are passed
763 according to their type (ints in integer registers, floats in float
764 registers, unnamed args in integer registers.
766 2b) If there is no prototype in scope, then floating point arguments
767 are passed in both integer and float registers. egad.
769 FYI: The portable parameter passing conventions are almost exactly like
770 the standard parameter passing conventions on the RS6000. That's why
771 you'll see lots of similar code in rs6000.h. */
773 /* If defined, a C expression which determines whether, and in which
774 direction, to pad out an argument with extra space. */
775 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
777 /* Specify padding for the last element of a block move between registers
778 and memory.
780 The 64-bit runtime specifies that objects need to be left justified
781 (i.e., the normal justification for a big endian target). The 32-bit
782 runtime specifies right justification for objects smaller than 64 bits.
783 We use a DImode register in the parallel for 5 to 7 byte structures
784 so that there is only one element. This allows the object to be
785 correctly padded. */
786 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
787 function_arg_padding ((MODE), (TYPE))
789 /* Do not expect to understand this without reading it several times. I'm
790 tempted to try and simply it, but I worry about breaking something. */
792 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
793 function_arg (&CUM, MODE, TYPE, NAMED)
795 /* If defined, a C expression that gives the alignment boundary, in
796 bits, of an argument with the specified mode and type. If it is
797 not defined, `PARM_BOUNDARY' is used for all arguments. */
799 /* Arguments larger than one word are double word aligned. */
801 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
802 (((TYPE) \
803 ? (integer_zerop (TYPE_SIZE (TYPE)) \
804 || !TREE_CONSTANT (TYPE_SIZE (TYPE)) \
805 || int_size_in_bytes (TYPE) <= UNITS_PER_WORD) \
806 : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD) \
807 ? PARM_BOUNDARY : MAX_PARM_BOUNDARY)
810 extern GTY(()) rtx hppa_compare_op0;
811 extern GTY(()) rtx hppa_compare_op1;
812 extern enum cmp_type hppa_branch_type;
814 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
815 as assembly via FUNCTION_PROFILER. Just output a local label.
816 We can't use the function label because the GAS SOM target can't
817 handle the difference of a global symbol and a local symbol. */
819 #ifndef FUNC_BEGIN_PROLOG_LABEL
820 #define FUNC_BEGIN_PROLOG_LABEL "LFBP"
821 #endif
823 #define FUNCTION_PROFILER(FILE, LABEL) \
824 (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
826 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
827 void hppa_profile_hook (int label_no);
829 /* The profile counter if emitted must come before the prologue. */
830 #define PROFILE_BEFORE_PROLOGUE 1
832 /* We never want final.c to emit profile counters. When profile
833 counters are required, we have to defer emitting them to the end
834 of the current file. */
835 #define NO_PROFILE_COUNTERS 1
837 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
838 the stack pointer does not matter. The value is tested only in
839 functions that have frame pointers.
840 No definition is equivalent to always zero. */
842 extern int may_call_alloca;
844 #define EXIT_IGNORE_STACK \
845 (get_frame_size () != 0 \
846 || current_function_calls_alloca || current_function_outgoing_args_size)
848 /* Output assembler code for a block containing the constant parts
849 of a trampoline, leaving space for the variable parts.\
851 The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
852 and then branches to the specified routine.
854 This code template is copied from text segment to stack location
855 and then patched with INITIALIZE_TRAMPOLINE to contain
856 valid values, and then entered as a subroutine.
858 It is best to keep this as small as possible to avoid having to
859 flush multiple lines in the cache. */
861 #define TRAMPOLINE_TEMPLATE(FILE) \
863 if (!TARGET_64BIT) \
865 fputs ("\tldw 36(%r22),%r21\n", FILE); \
866 fputs ("\tbb,>=,n %r21,30,.+16\n", FILE); \
867 if (ASSEMBLER_DIALECT == 0) \
868 fputs ("\tdepi 0,31,2,%r21\n", FILE); \
869 else \
870 fputs ("\tdepwi 0,31,2,%r21\n", FILE); \
871 fputs ("\tldw 4(%r21),%r19\n", FILE); \
872 fputs ("\tldw 0(%r21),%r21\n", FILE); \
873 if (TARGET_PA_20) \
875 fputs ("\tbve (%r21)\n", FILE); \
876 fputs ("\tldw 40(%r22),%r29\n", FILE); \
877 fputs ("\t.word 0\n", FILE); \
878 fputs ("\t.word 0\n", FILE); \
880 else \
882 fputs ("\tldsid (%r21),%r1\n", FILE); \
883 fputs ("\tmtsp %r1,%sr0\n", FILE); \
884 fputs ("\tbe 0(%sr0,%r21)\n", FILE); \
885 fputs ("\tldw 40(%r22),%r29\n", FILE); \
887 fputs ("\t.word 0\n", FILE); \
888 fputs ("\t.word 0\n", FILE); \
889 fputs ("\t.word 0\n", FILE); \
890 fputs ("\t.word 0\n", FILE); \
892 else \
894 fputs ("\t.dword 0\n", FILE); \
895 fputs ("\t.dword 0\n", FILE); \
896 fputs ("\t.dword 0\n", FILE); \
897 fputs ("\t.dword 0\n", FILE); \
898 fputs ("\tmfia %r31\n", FILE); \
899 fputs ("\tldd 24(%r31),%r1\n", FILE); \
900 fputs ("\tldd 24(%r1),%r27\n", FILE); \
901 fputs ("\tldd 16(%r1),%r1\n", FILE); \
902 fputs ("\tbve (%r1)\n", FILE); \
903 fputs ("\tldd 32(%r31),%r31\n", FILE); \
904 fputs ("\t.dword 0 ; fptr\n", FILE); \
905 fputs ("\t.dword 0 ; static link\n", FILE); \
909 /* Length in units of the trampoline for entering a nested function. */
911 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
913 /* Length in units of the trampoline instruction code. */
915 #define TRAMPOLINE_CODE_SIZE (TARGET_64BIT ? 24 : (TARGET_PA_20 ? 32 : 40))
917 /* Minimum length of a cache line. A length of 16 will work on all
918 PA-RISC processors. All PA 1.1 processors have a cache line of
919 32 bytes. Most but not all PA 2.0 processors have a cache line
920 of 64 bytes. As cache flushes are expensive and we don't support
921 PA 1.0, we use a minimum length of 32. */
923 #define MIN_CACHELINE_SIZE 32
925 /* Emit RTL insns to initialize the variable parts of a trampoline.
926 FNADDR is an RTX for the address of the function's pure code.
927 CXT is an RTX for the static chain value for the function.
929 Move the function address to the trampoline template at offset 36.
930 Move the static chain value to trampoline template at offset 40.
931 Move the trampoline address to trampoline template at offset 44.
932 Move r19 to trampoline template at offset 48. The latter two
933 words create a plabel for the indirect call to the trampoline.
935 A similar sequence is used for the 64-bit port but the plabel is
936 at the beginning of the trampoline.
938 Finally, the cache entries for the trampoline code are flushed.
939 This is necessary to ensure that the trampoline instruction sequence
940 is written to memory prior to any attempts at prefetching the code
941 sequence. */
943 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
945 rtx start_addr = gen_reg_rtx (Pmode); \
946 rtx end_addr = gen_reg_rtx (Pmode); \
947 rtx line_length = gen_reg_rtx (Pmode); \
948 rtx tmp; \
950 if (!TARGET_64BIT) \
952 tmp = memory_address (Pmode, plus_constant ((TRAMP), 36)); \
953 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR)); \
954 tmp = memory_address (Pmode, plus_constant ((TRAMP), 40)); \
955 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT)); \
957 /* Create a fat pointer for the trampoline. */ \
958 tmp = memory_address (Pmode, plus_constant ((TRAMP), 44)); \
959 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (TRAMP)); \
960 tmp = memory_address (Pmode, plus_constant ((TRAMP), 48)); \
961 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
962 gen_rtx_REG (Pmode, 19)); \
964 /* fdc and fic only use registers for the address to flush, \
965 they do not accept integer displacements. We align the \
966 start and end addresses to the beginning of their respective \
967 cache lines to minimize the number of lines flushed. */ \
968 tmp = force_reg (Pmode, (TRAMP)); \
969 emit_insn (gen_andsi3 (start_addr, tmp, \
970 GEN_INT (-MIN_CACHELINE_SIZE))); \
971 tmp = force_reg (Pmode, \
972 plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1)); \
973 emit_insn (gen_andsi3 (end_addr, tmp, \
974 GEN_INT (-MIN_CACHELINE_SIZE))); \
975 emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE)); \
976 emit_insn (gen_dcacheflush (start_addr, end_addr, line_length)); \
977 emit_insn (gen_icacheflush (start_addr, end_addr, line_length, \
978 gen_reg_rtx (Pmode), \
979 gen_reg_rtx (Pmode))); \
981 else \
983 tmp = memory_address (Pmode, plus_constant ((TRAMP), 56)); \
984 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR)); \
985 tmp = memory_address (Pmode, plus_constant ((TRAMP), 64)); \
986 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT)); \
988 /* Create a fat pointer for the trampoline. */ \
989 tmp = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
990 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
991 force_reg (Pmode, plus_constant ((TRAMP), 32))); \
992 tmp = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
993 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
994 gen_rtx_REG (Pmode, 27)); \
996 /* fdc and fic only use registers for the address to flush, \
997 they do not accept integer displacements. We align the \
998 start and end addresses to the beginning of their respective \
999 cache lines to minimize the number of lines flushed. */ \
1000 tmp = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
1001 emit_insn (gen_anddi3 (start_addr, tmp, \
1002 GEN_INT (-MIN_CACHELINE_SIZE))); \
1003 tmp = force_reg (Pmode, \
1004 plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1)); \
1005 emit_insn (gen_anddi3 (end_addr, tmp, \
1006 GEN_INT (-MIN_CACHELINE_SIZE))); \
1007 emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE)); \
1008 emit_insn (gen_dcacheflush (start_addr, end_addr, line_length)); \
1009 emit_insn (gen_icacheflush (start_addr, end_addr, line_length, \
1010 gen_reg_rtx (Pmode), \
1011 gen_reg_rtx (Pmode))); \
1015 /* Perform any machine-specific adjustment in the address of the trampoline.
1016 ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE.
1017 Adjust the trampoline address to point to the plabel at offset 44. */
1019 #define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \
1020 if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46))
1022 /* Implement `va_start' for varargs and stdarg. */
1024 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1025 hppa_va_start (valist, nextarg)
1027 /* Addressing modes, and classification of registers for them.
1029 Using autoincrement addressing modes on PA8000 class machines is
1030 not profitable. */
1032 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
1033 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
1035 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
1036 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
1038 /* Macros to check register numbers against specific register classes. */
1040 /* The following macros assume that X is a hard or pseudo reg number.
1041 They give nonzero only if X is a hard reg of the suitable class
1042 or a pseudo reg currently allocated to a suitable hard reg.
1043 Since they use reg_renumber, they are safe only once reg_renumber
1044 has been allocated, which happens in local-alloc.c. */
1046 #define REGNO_OK_FOR_INDEX_P(X) \
1047 ((X) && ((X) < 32 \
1048 || (X >= FIRST_PSEUDO_REGISTER \
1049 && reg_renumber \
1050 && (unsigned) reg_renumber[X] < 32)))
1051 #define REGNO_OK_FOR_BASE_P(X) \
1052 ((X) && ((X) < 32 \
1053 || (X >= FIRST_PSEUDO_REGISTER \
1054 && reg_renumber \
1055 && (unsigned) reg_renumber[X] < 32)))
1056 #define REGNO_OK_FOR_FP_P(X) \
1057 (FP_REGNO_P (X) \
1058 || (X >= FIRST_PSEUDO_REGISTER \
1059 && reg_renumber \
1060 && FP_REGNO_P (reg_renumber[X])))
1062 /* Now macros that check whether X is a register and also,
1063 strictly, whether it is in a specified class.
1065 These macros are specific to the HP-PA, and may be used only
1066 in code for printing assembler insns and in conditions for
1067 define_optimization. */
1069 /* 1 if X is an fp register. */
1071 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1073 /* Maximum number of registers that can appear in a valid memory address. */
1075 #define MAX_REGS_PER_ADDRESS 2
1077 /* Non-TLS symbolic references. */
1078 #define PA_SYMBOL_REF_TLS_P(RTX) \
1079 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
1081 /* Recognize any constant value that is a valid address except
1082 for symbolic addresses. We get better CSE by rejecting them
1083 here and allowing hppa_legitimize_address to break them up. We
1084 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
1086 #define CONSTANT_ADDRESS_P(X) \
1087 ((GET_CODE (X) == LABEL_REF \
1088 || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (X)) \
1089 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1090 || GET_CODE (X) == HIGH) \
1091 && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1093 /* A C expression that is nonzero if we are using the new HP assembler. */
1095 #ifndef NEW_HP_ASSEMBLER
1096 #define NEW_HP_ASSEMBLER 0
1097 #endif
1099 /* The macros below define the immediate range for CONST_INTS on
1100 the 64-bit port. Constants in this range can be loaded in three
1101 instructions using a ldil/ldo/depdi sequence. Constants outside
1102 this range are forced to the constant pool prior to reload. */
1104 #define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
1105 #define MIN_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) -32 << 31)
1106 #define LEGITIMATE_64BIT_CONST_INT_P(X) \
1107 ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
1109 /* A C expression that is nonzero if X is a legitimate constant for an
1110 immediate operand.
1112 We include all constant integers and constant doubles, but not
1113 floating-point, except for floating-point zero. We reject LABEL_REFs
1114 if we're not using gas or the new HP assembler.
1116 In 64-bit mode, we reject CONST_DOUBLES. We also reject CONST_INTS
1117 that need more than three instructions to load prior to reload. This
1118 limit is somewhat arbitrary. It takes three instructions to load a
1119 CONST_INT from memory but two are memory accesses. It may be better
1120 to increase the allowed range for CONST_INTS. We may also be able
1121 to handle CONST_DOUBLES. */
1123 #define LEGITIMATE_CONSTANT_P(X) \
1124 ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1125 || (X) == CONST0_RTX (GET_MODE (X))) \
1126 && (NEW_HP_ASSEMBLER || TARGET_GAS || GET_CODE (X) != LABEL_REF) \
1127 && !(TARGET_64BIT && GET_CODE (X) == CONST_DOUBLE) \
1128 && !(TARGET_64BIT && GET_CODE (X) == CONST_INT \
1129 && !(HOST_BITS_PER_WIDE_INT <= 32 \
1130 || (reload_in_progress || reload_completed) \
1131 || LEGITIMATE_64BIT_CONST_INT_P (INTVAL (X)) \
1132 || cint_ok_for_move (INTVAL (X)))) \
1133 && !function_label_operand (X, VOIDmode))
1135 /* Target flags set on a symbol_ref. */
1137 /* Set by ASM_OUTPUT_SYMBOL_REF when a symbol_ref is output. */
1138 #define SYMBOL_FLAG_REFERENCED (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
1139 #define SYMBOL_REF_REFERENCED_P(RTX) \
1140 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_REFERENCED) != 0)
1142 /* Subroutines for EXTRA_CONSTRAINT.
1144 Return 1 iff OP is a pseudo which did not get a hard register and
1145 we are running the reload pass. */
1146 #define IS_RELOADING_PSEUDO_P(OP) \
1147 ((reload_in_progress \
1148 && GET_CODE (OP) == REG \
1149 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1150 && reg_renumber [REGNO (OP)] < 0))
1152 /* Return 1 iff OP is a scaled or unscaled index address. */
1153 #define IS_INDEX_ADDR_P(OP) \
1154 (GET_CODE (OP) == PLUS \
1155 && GET_MODE (OP) == Pmode \
1156 && (GET_CODE (XEXP (OP, 0)) == MULT \
1157 || GET_CODE (XEXP (OP, 1)) == MULT \
1158 || (REG_P (XEXP (OP, 0)) \
1159 && REG_P (XEXP (OP, 1)))))
1161 /* Return 1 iff OP is a LO_SUM DLT address. */
1162 #define IS_LO_SUM_DLT_ADDR_P(OP) \
1163 (GET_CODE (OP) == LO_SUM \
1164 && GET_MODE (OP) == Pmode \
1165 && REG_P (XEXP (OP, 0)) \
1166 && REG_OK_FOR_BASE_P (XEXP (OP, 0)) \
1167 && GET_CODE (XEXP (OP, 1)) == UNSPEC)
1169 /* Optional extra constraints for this machine. Borrowed from sparc.h.
1171 `A' is a LO_SUM DLT memory operand.
1173 `Q' is any memory operand that isn't a symbolic, indexed or lo_sum
1174 memory operand. Note that an unassigned pseudo register is such a
1175 memory operand. Needed because reload will generate these things
1176 and then not re-recognize the insn, causing constrain_operands to
1177 fail.
1179 `R' is a scaled/unscaled indexed memory operand.
1181 `S' is the constant 31.
1183 `T' is for floating-point loads and stores.
1185 `U' is the constant 63.
1187 `W' is a register indirect memory operand. We could allow short
1188 displacements but GO_IF_LEGITIMATE_ADDRESS can't tell when a
1189 long displacement is valid. This is only used for prefetch
1190 instructions with the `sl' completer. */
1192 #define EXTRA_CONSTRAINT(OP, C) \
1193 ((C) == 'Q' ? \
1194 (IS_RELOADING_PSEUDO_P (OP) \
1195 || (GET_CODE (OP) == MEM \
1196 && (reload_in_progress \
1197 || memory_address_p (GET_MODE (OP), XEXP (OP, 0))) \
1198 && !symbolic_memory_operand (OP, VOIDmode) \
1199 && !IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0)) \
1200 && !IS_INDEX_ADDR_P (XEXP (OP, 0)))) \
1201 : ((C) == 'W' ? \
1202 (GET_CODE (OP) == MEM \
1203 && REG_P (XEXP (OP, 0)) \
1204 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1205 : ((C) == 'A' ? \
1206 (GET_CODE (OP) == MEM \
1207 && IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0))) \
1208 : ((C) == 'R' ? \
1209 (GET_CODE (OP) == MEM \
1210 && IS_INDEX_ADDR_P (XEXP (OP, 0))) \
1211 : ((C) == 'T' ? \
1212 (GET_CODE (OP) == MEM \
1213 && !IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0)) \
1214 && !IS_INDEX_ADDR_P (XEXP (OP, 0)) \
1215 /* Floating-point loads and stores are used to load \
1216 integer values as well as floating-point values. \
1217 They don't have the same set of REG+D address modes \
1218 as integer loads and stores. PA 1.x supports only \
1219 short displacements. PA 2.0 supports long displacements \
1220 but the base register needs to be aligned. \
1222 The checks in GO_IF_LEGITIMATE_ADDRESS for SFmode and \
1223 DFmode test the validity of an address for use in a \
1224 floating point load or store. So, we use SFmode/DFmode \
1225 to see if the address is valid for a floating-point \
1226 load/store operation. */ \
1227 && memory_address_p ((GET_MODE_SIZE (GET_MODE (OP)) == 4 \
1228 ? SFmode \
1229 : DFmode), \
1230 XEXP (OP, 0))) \
1231 : ((C) == 'S' ? \
1232 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 31) \
1233 : ((C) == 'U' ? \
1234 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 63) : 0)))))))
1237 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1238 and check its validity for a certain class.
1239 We have two alternate definitions for each of them.
1240 The usual definition accepts all pseudo regs; the other rejects
1241 them unless they have been allocated suitable hard regs.
1242 The symbol REG_OK_STRICT causes the latter definition to be used.
1244 Most source files want to accept pseudo regs in the hope that
1245 they will get allocated to the class that the insn wants them to be in.
1246 Source files for reload pass need to be strict.
1247 After reload, it makes no difference, since pseudo regs have
1248 been eliminated by then. */
1250 #ifndef REG_OK_STRICT
1252 /* Nonzero if X is a hard reg that can be used as an index
1253 or if it is a pseudo reg. */
1254 #define REG_OK_FOR_INDEX_P(X) \
1255 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1256 /* Nonzero if X is a hard reg that can be used as a base reg
1257 or if it is a pseudo reg. */
1258 #define REG_OK_FOR_BASE_P(X) \
1259 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1261 #else
1263 /* Nonzero if X is a hard reg that can be used as an index. */
1264 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1265 /* Nonzero if X is a hard reg that can be used as a base reg. */
1266 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1268 #endif
1270 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1271 valid memory address for an instruction. The MODE argument is the
1272 machine mode for the MEM expression that wants to use this address.
1274 On HP PA-RISC, the legitimate address forms are REG+SMALLINT,
1275 REG+REG, and REG+(REG*SCALE). The indexed address forms are only
1276 available with floating point loads and stores, and integer loads.
1277 We get better code by allowing indexed addresses in the initial
1278 RTL generation.
1280 The acceptance of indexed addresses as legitimate implies that we
1281 must provide patterns for doing indexed integer stores, or the move
1282 expanders must force the address of an indexed store to a register.
1283 We have adopted the latter approach.
1285 Another function of GO_IF_LEGITIMATE_ADDRESS is to ensure that
1286 the base register is a valid pointer for indexed instructions.
1287 On targets that have non-equivalent space registers, we have to
1288 know at the time of assembler output which register in a REG+REG
1289 pair is the base register. The REG_POINTER flag is sometimes lost
1290 in reload and the following passes, so it can't be relied on during
1291 code generation. Thus, we either have to canonicalize the order
1292 of the registers in REG+REG indexed addresses, or treat REG+REG
1293 addresses separately and provide patterns for both permutations.
1295 The latter approach requires several hundred additional lines of
1296 code in pa.md. The downside to canonicalizing is that a PLUS
1297 in the wrong order can't combine to form to make a scaled indexed
1298 memory operand. As we won't need to canonicalize the operands if
1299 the REG_POINTER lossage can be fixed, it seems better canonicalize.
1301 We initially break out scaled indexed addresses in canonical order
1302 in emit_move_sequence. LEGITIMIZE_ADDRESS also canonicalizes
1303 scaled indexed addresses during RTL generation. However, fold_rtx
1304 has its own opinion on how the operands of a PLUS should be ordered.
1305 If one of the operands is equivalent to a constant, it will make
1306 that operand the second operand. As the base register is likely to
1307 be equivalent to a SYMBOL_REF, we have made it the second operand.
1309 GO_IF_LEGITIMATE_ADDRESS accepts REG+REG as legitimate when the
1310 operands are in the order INDEX+BASE on targets with non-equivalent
1311 space registers, and in any order on targets with equivalent space
1312 registers. It accepts both MULT+BASE and BASE+MULT for scaled indexing.
1314 We treat a SYMBOL_REF as legitimate if it is part of the current
1315 function's constant-pool, because such addresses can actually be
1316 output as REG+SMALLINT.
1318 Note we only allow 5 bit immediates for access to a constant address;
1319 doing so avoids losing for loading/storing a FP register at an address
1320 which will not fit in 5 bits. */
1322 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1323 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1325 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1326 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1328 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1329 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1331 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1332 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1334 #if HOST_BITS_PER_WIDE_INT > 32
1335 #define VAL_32_BITS_P(X) \
1336 ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31) \
1337 < (unsigned HOST_WIDE_INT) 2 << 31)
1338 #else
1339 #define VAL_32_BITS_P(X) 1
1340 #endif
1341 #define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
1343 /* These are the modes that we allow for scaled indexing. */
1344 #define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
1345 ((TARGET_64BIT && (MODE) == DImode) \
1346 || (MODE) == SImode \
1347 || (MODE) == HImode \
1348 || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode)))
1350 /* These are the modes that we allow for unscaled indexing. */
1351 #define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
1352 ((TARGET_64BIT && (MODE) == DImode) \
1353 || (MODE) == SImode \
1354 || (MODE) == HImode \
1355 || (MODE) == QImode \
1356 || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode)))
1358 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1360 if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1361 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
1362 || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
1363 && REG_P (XEXP (X, 0)) \
1364 && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
1365 goto ADDR; \
1366 else if (GET_CODE (X) == PLUS) \
1368 rtx base = 0, index = 0; \
1369 if (REG_P (XEXP (X, 1)) \
1370 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1371 base = XEXP (X, 1), index = XEXP (X, 0); \
1372 else if (REG_P (XEXP (X, 0)) \
1373 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1374 base = XEXP (X, 0), index = XEXP (X, 1); \
1375 if (base \
1376 && GET_CODE (index) == CONST_INT \
1377 && ((INT_14_BITS (index) \
1378 && (((MODE) != DImode \
1379 && (MODE) != SFmode \
1380 && (MODE) != DFmode) \
1381 /* The base register for DImode loads and stores \
1382 with long displacements must be aligned because \
1383 the lower three bits in the displacement are \
1384 assumed to be zero. */ \
1385 || ((MODE) == DImode \
1386 && (!TARGET_64BIT \
1387 || (INTVAL (index) % 8) == 0)) \
1388 /* Similarly, the base register for SFmode/DFmode \
1389 loads and stores with long displacements must \
1390 be aligned. \
1392 FIXME: the ELF32 linker clobbers the LSB of \
1393 the FP register number in PA 2.0 floating-point \
1394 insns with long displacements. This is because \
1395 R_PARISC_DPREL14WR and other relocations like \
1396 it are not supported. For now, we reject long \
1397 displacements on this target. */ \
1398 || (((MODE) == SFmode || (MODE) == DFmode) \
1399 && (TARGET_SOFT_FLOAT \
1400 || (TARGET_PA_20 \
1401 && !TARGET_ELF32 \
1402 && (INTVAL (index) \
1403 % GET_MODE_SIZE (MODE)) == 0))))) \
1404 || INT_5_BITS (index))) \
1405 goto ADDR; \
1406 if (!TARGET_DISABLE_INDEXING \
1407 /* Only accept the "canonical" INDEX+BASE operand order \
1408 on targets with non-equivalent space registers. */ \
1409 && (TARGET_NO_SPACE_REGS \
1410 ? (base && REG_P (index)) \
1411 : (base == XEXP (X, 1) && REG_P (index) \
1412 && (reload_completed \
1413 || (reload_in_progress && HARD_REGISTER_P (base)) \
1414 || REG_POINTER (base)) \
1415 && (reload_completed \
1416 || (reload_in_progress && HARD_REGISTER_P (index)) \
1417 || !REG_POINTER (index)))) \
1418 && MODE_OK_FOR_UNSCALED_INDEXING_P (MODE) \
1419 && REG_OK_FOR_INDEX_P (index) \
1420 && borx_reg_operand (base, Pmode) \
1421 && borx_reg_operand (index, Pmode)) \
1422 goto ADDR; \
1423 if (!TARGET_DISABLE_INDEXING \
1424 && base \
1425 && GET_CODE (index) == MULT \
1426 && MODE_OK_FOR_SCALED_INDEXING_P (MODE) \
1427 && REG_P (XEXP (index, 0)) \
1428 && GET_MODE (XEXP (index, 0)) == Pmode \
1429 && REG_OK_FOR_INDEX_P (XEXP (index, 0)) \
1430 && GET_CODE (XEXP (index, 1)) == CONST_INT \
1431 && INTVAL (XEXP (index, 1)) \
1432 == (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
1433 && borx_reg_operand (base, Pmode)) \
1434 goto ADDR; \
1436 else if (GET_CODE (X) == LO_SUM \
1437 && GET_CODE (XEXP (X, 0)) == REG \
1438 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1439 && CONSTANT_P (XEXP (X, 1)) \
1440 && (TARGET_SOFT_FLOAT \
1441 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \
1442 || (TARGET_PA_20 \
1443 && !TARGET_ELF32 \
1444 && GET_CODE (XEXP (X, 1)) != CONST_INT) \
1445 || ((MODE) != SFmode \
1446 && (MODE) != DFmode))) \
1447 goto ADDR; \
1448 else if (GET_CODE (X) == LO_SUM \
1449 && GET_CODE (XEXP (X, 0)) == SUBREG \
1450 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG \
1451 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0))) \
1452 && CONSTANT_P (XEXP (X, 1)) \
1453 && (TARGET_SOFT_FLOAT \
1454 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \
1455 || (TARGET_PA_20 \
1456 && !TARGET_ELF32 \
1457 && GET_CODE (XEXP (X, 1)) != CONST_INT) \
1458 || ((MODE) != SFmode \
1459 && (MODE) != DFmode))) \
1460 goto ADDR; \
1461 else if (GET_CODE (X) == LABEL_REF \
1462 || (GET_CODE (X) == CONST_INT \
1463 && INT_5_BITS (X))) \
1464 goto ADDR; \
1465 /* Needed for -fPIC */ \
1466 else if (GET_CODE (X) == LO_SUM \
1467 && GET_CODE (XEXP (X, 0)) == REG \
1468 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1469 && GET_CODE (XEXP (X, 1)) == UNSPEC \
1470 && (TARGET_SOFT_FLOAT \
1471 || (TARGET_PA_20 && !TARGET_ELF32) \
1472 || ((MODE) != SFmode \
1473 && (MODE) != DFmode))) \
1474 goto ADDR; \
1477 /* Look for machine dependent ways to make the invalid address AD a
1478 valid address.
1480 For the PA, transform:
1482 memory(X + <large int>)
1484 into:
1486 if (<large int> & mask) >= 16
1487 Y = (<large int> & ~mask) + mask + 1 Round up.
1488 else
1489 Y = (<large int> & ~mask) Round down.
1490 Z = X + Y
1491 memory (Z + (<large int> - Y));
1493 This makes reload inheritance and reload_cse work better since Z
1494 can be reused.
1496 There may be more opportunities to improve code with this hook. */
1497 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
1498 do { \
1499 long offset, newoffset, mask; \
1500 rtx new, temp = NULL_RTX; \
1502 mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1503 ? (TARGET_PA_20 && !TARGET_ELF32 ? 0x3fff : 0x1f) : 0x3fff); \
1505 if (optimize && GET_CODE (AD) == PLUS) \
1506 temp = simplify_binary_operation (PLUS, Pmode, \
1507 XEXP (AD, 0), XEXP (AD, 1)); \
1509 new = temp ? temp : AD; \
1511 if (optimize \
1512 && GET_CODE (new) == PLUS \
1513 && GET_CODE (XEXP (new, 0)) == REG \
1514 && GET_CODE (XEXP (new, 1)) == CONST_INT) \
1516 offset = INTVAL (XEXP ((new), 1)); \
1518 /* Choose rounding direction. Round up if we are >= halfway. */ \
1519 if ((offset & mask) >= ((mask + 1) / 2)) \
1520 newoffset = (offset & ~mask) + mask + 1; \
1521 else \
1522 newoffset = offset & ~mask; \
1524 /* Ensure that long displacements are aligned. */ \
1525 if (!VAL_5_BITS_P (newoffset) \
1526 && GET_MODE_CLASS (MODE) == MODE_FLOAT) \
1527 newoffset &= ~(GET_MODE_SIZE (MODE) -1); \
1529 if (newoffset != 0 && VAL_14_BITS_P (newoffset)) \
1531 temp = gen_rtx_PLUS (Pmode, XEXP (new, 0), \
1532 GEN_INT (newoffset)); \
1533 AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1534 push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0, \
1535 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, \
1536 (OPNUM), (TYPE)); \
1537 goto WIN; \
1540 } while (0)
1545 /* Try machine-dependent ways of modifying an illegitimate address
1546 to be legitimate. If we find one, return the new, valid address.
1547 This macro is used in only one place: `memory_address' in explow.c.
1549 OLDX is the address as it was before break_out_memory_refs was called.
1550 In some cases it is useful to look at this to decide what needs to be done.
1552 MODE and WIN are passed so that this macro can use
1553 GO_IF_LEGITIMATE_ADDRESS.
1555 It is always safe for this macro to do nothing. It exists to recognize
1556 opportunities to optimize the output. */
1558 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1559 { rtx orig_x = (X); \
1560 (X) = hppa_legitimize_address (X, OLDX, MODE); \
1561 if ((X) != orig_x && memory_address_p (MODE, X)) \
1562 goto WIN; }
1564 /* Go to LABEL if ADDR (a legitimate address expression)
1565 has an effect that depends on the machine mode it is used for. */
1567 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1568 if (GET_CODE (ADDR) == PRE_DEC \
1569 || GET_CODE (ADDR) == POST_DEC \
1570 || GET_CODE (ADDR) == PRE_INC \
1571 || GET_CODE (ADDR) == POST_INC) \
1572 goto LABEL
1574 #define TARGET_ASM_SELECT_SECTION pa_select_section
1576 /* Return a nonzero value if DECL has a section attribute. */
1577 #define IN_NAMED_SECTION_P(DECL) \
1578 ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
1579 && DECL_SECTION_NAME (DECL) != NULL_TREE)
1581 /* The following extra sections and extra section functions are only used
1582 for SOM, but they must be provided unconditionally because pa.c's calls
1583 to the functions might not get optimized out when other object formats
1584 are in use. */
1586 #define EXTRA_SECTIONS \
1587 in_som_readonly_data, \
1588 in_som_one_only_readonly_data, \
1589 in_som_one_only_data
1591 #define EXTRA_SECTION_FUNCTIONS \
1592 SOM_READONLY_DATA_SECTION_FUNCTION \
1593 SOM_ONE_ONLY_READONLY_DATA_SECTION_FUNCTION \
1594 SOM_ONE_ONLY_DATA_SECTION_FUNCTION \
1595 FORGET_SECTION_FUNCTION
1597 /* SOM puts readonly data in the default $LIT$ subspace when PIC code
1598 is not being generated. */
1599 #define SOM_READONLY_DATA_SECTION_FUNCTION \
1600 void \
1601 som_readonly_data_section (void) \
1603 if (!TARGET_SOM) \
1604 return; \
1605 if (in_section != in_som_readonly_data) \
1607 in_section = in_som_readonly_data; \
1608 fputs ("\t.SPACE $TEXT$\n\t.SUBSPA $LIT$\n", asm_out_file); \
1612 /* When secondary definitions are not supported, SOM makes readonly data one
1613 only by creating a new $LIT$ subspace in $TEXT$ with the comdat flag. */
1614 #define SOM_ONE_ONLY_READONLY_DATA_SECTION_FUNCTION \
1615 void \
1616 som_one_only_readonly_data_section (void) \
1618 if (!TARGET_SOM) \
1619 return; \
1620 in_section = in_som_one_only_readonly_data; \
1621 fputs ("\t.SPACE $TEXT$\n" \
1622 "\t.NSUBSPA $LIT$,QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=16,COMDAT\n",\
1623 asm_out_file); \
1626 /* When secondary definitions are not supported, SOM makes data one only by
1627 creating a new $DATA$ subspace in $PRIVATE$ with the comdat flag. */
1628 #define SOM_ONE_ONLY_DATA_SECTION_FUNCTION \
1629 void \
1630 som_one_only_data_section (void) \
1632 if (!TARGET_SOM) \
1633 return; \
1634 in_section = in_som_one_only_data; \
1635 fputs ("\t.SPACE $PRIVATE$\n" \
1636 "\t.NSUBSPA $DATA$,QUAD=1,ALIGN=8,ACCESS=31,SORT=24,COMDAT\n", \
1637 asm_out_file); \
1640 #define FORGET_SECTION_FUNCTION \
1641 void \
1642 forget_section (void) \
1644 in_section = no_section; \
1647 /* Define this macro if references to a symbol must be treated
1648 differently depending on something about the variable or
1649 function named by the symbol (such as what section it is in).
1651 The macro definition, if any, is executed immediately after the
1652 rtl for DECL or other node is created.
1653 The value of the rtl will be a `mem' whose address is a
1654 `symbol_ref'.
1656 The usual thing for this macro to do is to a flag in the
1657 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1658 name string in the `symbol_ref' (if one bit is not enough
1659 information).
1661 On the HP-PA we use this to indicate if a symbol is in text or
1662 data space. Also, function labels need special treatment. */
1664 #define TEXT_SPACE_P(DECL)\
1665 (TREE_CODE (DECL) == FUNCTION_DECL \
1666 || (TREE_CODE (DECL) == VAR_DECL \
1667 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
1668 && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1669 && !flag_pic) \
1670 || CONSTANT_CLASS_P (DECL))
1672 #define FUNCTION_NAME_P(NAME) (*(NAME) == '@')
1674 /* Specify the machine mode that this machine uses for the index in the
1675 tablejump instruction. For small tables, an element consists of a
1676 ia-relative branch and its delay slot. When -mbig-switch is specified,
1677 we use a 32-bit absolute address for non-pic code, and a 32-bit offset
1678 for both 32 and 64-bit pic code. */
1679 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : DImode)
1681 /* Jump tables must be 32-bit aligned, no matter the size of the element. */
1682 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
1684 /* Define this as 1 if `char' should by default be signed; else as 0. */
1685 #define DEFAULT_SIGNED_CHAR 1
1687 /* Max number of bytes we can move from memory to memory
1688 in one reasonably fast instruction. */
1689 #define MOVE_MAX 8
1691 /* Higher than the default as we prefer to use simple move insns
1692 (better scheduling and delay slot filling) and because our
1693 built-in block move is really a 2X unrolled loop.
1695 Believe it or not, this has to be big enough to allow for copying all
1696 arguments passed in registers to avoid infinite recursion during argument
1697 setup for a function call. Why? Consider how we copy the stack slots
1698 reserved for parameters when they may be trashed by a call. */
1699 #define MOVE_RATIO (TARGET_64BIT ? 8 : 4)
1701 /* Define if operations between registers always perform the operation
1702 on the full register even if a narrower mode is specified. */
1703 #define WORD_REGISTER_OPERATIONS
1705 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1706 will either zero-extend or sign-extend. The value of this macro should
1707 be the code that says which one of the two operations is implicitly
1708 done, UNKNOWN if none. */
1709 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1711 /* Nonzero if access to memory by bytes is slow and undesirable. */
1712 #define SLOW_BYTE_ACCESS 1
1714 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1715 is done just by pretending it is already truncated. */
1716 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1718 /* Specify the machine mode that pointers have.
1719 After generation of rtl, the compiler makes no further distinction
1720 between pointers and any other objects of this machine mode. */
1721 #define Pmode word_mode
1723 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1724 return the mode to be used for the comparison. For floating-point, CCFPmode
1725 should be used. CC_NOOVmode should be used when the first operand is a
1726 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1727 needed. */
1728 #define SELECT_CC_MODE(OP,X,Y) \
1729 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1731 /* A function address in a call instruction
1732 is a byte address (for indexing purposes)
1733 so give the MEM rtx a byte's mode. */
1734 #define FUNCTION_MODE SImode
1736 /* Define this if addresses of constant functions
1737 shouldn't be put through pseudo regs where they can be cse'd.
1738 Desirable on machines where ordinary constants are expensive
1739 but a CALL with constant address is cheap. */
1740 #define NO_FUNCTION_CSE
1742 /* Define this to be nonzero if shift instructions ignore all but the low-order
1743 few bits. */
1744 #define SHIFT_COUNT_TRUNCATED 1
1746 /* Compute extra cost of moving data between one register class
1747 and another.
1749 Make moves from SAR so expensive they should never happen. We used to
1750 have 0xffff here, but that generates overflow in rare cases.
1752 Copies involving a FP register and a non-FP register are relatively
1753 expensive because they must go through memory.
1755 Other copies are reasonably cheap. */
1756 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1757 (CLASS1 == SHIFT_REGS ? 0x100 \
1758 : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \
1759 : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \
1760 : 2)
1762 /* Adjust the cost of branches. */
1763 #define BRANCH_COST (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1765 /* Handling the special cases is going to get too complicated for a macro,
1766 just call `pa_adjust_insn_length' to do the real work. */
1767 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1768 LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1770 /* Millicode insns are actually function calls with some special
1771 constraints on arguments and register usage.
1773 Millicode calls always expect their arguments in the integer argument
1774 registers, and always return their result in %r29 (ret1). They
1775 are expected to clobber their arguments, %r1, %r29, and the return
1776 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1778 This macro tells reorg that the references to arguments and
1779 millicode calls do not appear to happen until after the millicode call.
1780 This allows reorg to put insns which set the argument registers into the
1781 delay slot of the millicode call -- thus they act more like traditional
1782 CALL_INSNs.
1784 Note we cannot consider side effects of the insn to be delayed because
1785 the branch and link insn will clobber the return pointer. If we happened
1786 to use the return pointer in the delay slot of the call, then we lose.
1788 get_attr_type will try to recognize the given insn, so make sure to
1789 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1790 in particular. */
1791 #define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1794 /* Control the assembler format that we output. */
1796 /* A C string constant describing how to begin a comment in the target
1797 assembler language. The compiler assumes that the comment will end at
1798 the end of the line. */
1800 #define ASM_COMMENT_START ";"
1802 /* Output to assembler file text saying following lines
1803 may contain character constants, extra white space, comments, etc. */
1805 #define ASM_APP_ON ""
1807 /* Output to assembler file text saying following lines
1808 no longer contain unusual constructs. */
1810 #define ASM_APP_OFF ""
1812 /* This is how to output the definition of a user-level label named NAME,
1813 such as the label on a static function or variable NAME. */
1815 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1816 do { assemble_name (FILE, NAME); \
1817 fputc ('\n', FILE); } while (0)
1819 /* This is how to output a reference to a user-level label named NAME.
1820 `assemble_name' uses this. */
1822 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1823 do { \
1824 const char *xname = (NAME); \
1825 if (FUNCTION_NAME_P (NAME)) \
1826 xname += 1; \
1827 if (xname[0] == '*') \
1828 xname += 1; \
1829 else \
1830 fputs (user_label_prefix, FILE); \
1831 fputs (xname, FILE); \
1832 } while (0)
1834 /* This how we output the symbol_ref X. */
1836 #define ASM_OUTPUT_SYMBOL_REF(FILE,X) \
1837 do { \
1838 SYMBOL_REF_FLAGS (X) |= SYMBOL_FLAG_REFERENCED; \
1839 assemble_name (FILE, XSTR (X, 0)); \
1840 } while (0)
1842 /* This is how to store into the string LABEL
1843 the symbol_ref name of an internal numbered label where
1844 PREFIX is the class of label and NUM is the number within the class.
1845 This is suitable for output with `assemble_name'. */
1847 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1848 sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1850 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1852 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1853 output_ascii ((FILE), (P), (SIZE))
1855 /* Jump tables are always placed in the text section. Technically, it
1856 is possible to put them in the readonly data section when -mbig-switch
1857 is specified. This has the benefit of getting the table out of .text
1858 and reducing branch lengths as a result. The downside is that an
1859 additional insn (addil) is needed to access the table when generating
1860 PIC code. The address difference table also has to use 32-bit
1861 pc-relative relocations. Currently, GAS does not support these
1862 relocations, although it is easily modified to do this operation.
1863 The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1864 when using ELF GAS. A simple difference can be used when using
1865 SOM GAS or the HP assembler. The final downside is GDB complains
1866 about the nesting of the label for the table when debugging. */
1868 #define JUMP_TABLES_IN_TEXT_SECTION 1
1870 /* This is how to output an element of a case-vector that is absolute. */
1872 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1873 if (TARGET_BIG_SWITCH) \
1874 fprintf (FILE, "\t.word L$%04d\n", VALUE); \
1875 else \
1876 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1878 /* This is how to output an element of a case-vector that is relative.
1879 Since we always place jump tables in the text section, the difference
1880 is absolute and requires no relocation. */
1882 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1883 if (TARGET_BIG_SWITCH) \
1884 fprintf (FILE, "\t.word L$%04d-L$%04d\n", VALUE, REL); \
1885 else \
1886 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1888 /* This is how to output an assembler line that says to advance the
1889 location counter to a multiple of 2**LOG bytes. */
1891 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1892 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1894 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1895 fprintf (FILE, "\t.blockz "HOST_WIDE_INT_PRINT_UNSIGNED"\n", \
1896 (unsigned HOST_WIDE_INT)(SIZE))
1898 /* This says how to output an assembler line to define an uninitialized
1899 global variable with size SIZE (in bytes) and alignment ALIGN (in bits).
1900 This macro exists to properly support languages like C++ which do not
1901 have common data. */
1903 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1904 pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN)
1906 /* This says how to output an assembler line to define a global common symbol
1907 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1909 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
1910 pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN)
1912 /* This says how to output an assembler line to define a local common symbol
1913 with size SIZE (in bytes) and alignment ALIGN (in bits). This macro
1914 controls how the assembler definitions of uninitialized static variables
1915 are output. */
1917 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1918 pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN)
1921 #define ASM_PN_FORMAT "%s___%lu"
1923 /* All HP assemblers use "!" to separate logical lines. */
1924 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!')
1926 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1927 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1929 /* Print operand X (an rtx) in assembler syntax to file FILE.
1930 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1931 For `%' followed by punctuation, CODE is the punctuation and X is null.
1933 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1934 and an immediate zero should be represented as `r0'.
1936 Several % codes are defined:
1937 O an operation
1938 C compare conditions
1939 N extract conditions
1940 M modifier to handle preincrement addressing for memory refs.
1941 F modifier to handle preincrement addressing for fp memory refs */
1943 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1946 /* Print a memory address as an operand to reference that memory location. */
1948 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1949 { rtx addr = ADDR; \
1950 switch (GET_CODE (addr)) \
1952 case REG: \
1953 fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \
1954 break; \
1955 case PLUS: \
1956 gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT); \
1957 fprintf (FILE, "%d(%s)", (int)INTVAL (XEXP (addr, 1)), \
1958 reg_names [REGNO (XEXP (addr, 0))]); \
1959 break; \
1960 case LO_SUM: \
1961 if (!symbolic_operand (XEXP (addr, 1), VOIDmode)) \
1962 fputs ("R'", FILE); \
1963 else if (flag_pic == 0) \
1964 fputs ("RR'", FILE); \
1965 else \
1966 fputs ("RT'", FILE); \
1967 output_global_address (FILE, XEXP (addr, 1), 0); \
1968 fputs ("(", FILE); \
1969 output_operand (XEXP (addr, 0), 0); \
1970 fputs (")", FILE); \
1971 break; \
1972 case CONST_INT: \
1973 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr)); \
1974 break; \
1975 default: \
1976 output_addr_const (FILE, addr); \
1980 /* Find the return address associated with the frame given by
1981 FRAMEADDR. */
1982 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
1983 (return_addr_rtx (COUNT, FRAMEADDR))
1985 /* Used to mask out junk bits from the return address, such as
1986 processor state, interrupt status, condition codes and the like. */
1987 #define MASK_RETURN_ADDR \
1988 /* The privilege level is in the two low order bits, mask em out \
1989 of the return address. */ \
1990 (GEN_INT (-4))
1992 /* The number of Pmode words for the setjmp buffer. */
1993 #define JMP_BUF_SIZE 50
1995 /* We need a libcall to canonicalize function pointers on TARGET_ELF32. */
1996 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
1997 "__canonicalize_funcptr_for_compare"
1999 #ifdef HAVE_AS_TLS
2000 #undef TARGET_HAVE_TLS
2001 #define TARGET_HAVE_TLS true
2002 #endif