Preparatory work for PR target/21623:
[official-gcc.git] / gcc / config / mn10300 / mn10300.c
blobf63d77846db5b99d74e3f6ff479abe4b4cf6d226
1 /* Subroutines for insn-output.c for Matsushita MN10300 series
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by Jeff Law (law@cygnus.com).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "real.h"
32 #include "insn-config.h"
33 #include "conditions.h"
34 #include "output.h"
35 #include "insn-attr.h"
36 #include "flags.h"
37 #include "recog.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "tm_p.h"
44 #include "target.h"
45 #include "target-def.h"
47 /* This is used by GOTaddr2picreg to uniquely identify
48 UNSPEC_INT_LABELs. */
49 int mn10300_unspec_int_label_counter;
51 /* This is used in the am33_2.0-linux-gnu port, in which global symbol
52 names are not prefixed by underscores, to tell whether to prefix a
53 label with a plus sign or not, so that the assembler can tell
54 symbol names from register names. */
55 int mn10300_protect_label;
57 /* The selected processor. */
58 enum processor_type mn10300_processor = PROCESSOR_DEFAULT;
60 /* The size of the callee register save area. Right now we save everything
61 on entry since it costs us nothing in code size. It does cost us from a
62 speed standpoint, so we want to optimize this sooner or later. */
63 #define REG_SAVE_BYTES (4 * regs_ever_live[2] \
64 + 4 * regs_ever_live[3] \
65 + 4 * regs_ever_live[6] \
66 + 4 * regs_ever_live[7] \
67 + 16 * (regs_ever_live[14] || regs_ever_live[15] \
68 || regs_ever_live[16] || regs_ever_live[17]))
71 static bool mn10300_handle_option (size_t, const char *, int);
72 static int mn10300_address_cost_1 (rtx, int *);
73 static int mn10300_address_cost (rtx);
74 static bool mn10300_rtx_costs (rtx, int, int, int *);
75 static void mn10300_file_start (void);
76 static bool mn10300_return_in_memory (tree, tree);
77 static rtx mn10300_builtin_saveregs (void);
78 static bool mn10300_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
79 tree, bool);
80 static int mn10300_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
81 tree, bool);
83 /* Initialize the GCC target structure. */
84 #undef TARGET_ASM_ALIGNED_HI_OP
85 #define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"
87 #undef TARGET_RTX_COSTS
88 #define TARGET_RTX_COSTS mn10300_rtx_costs
89 #undef TARGET_ADDRESS_COST
90 #define TARGET_ADDRESS_COST mn10300_address_cost
92 #undef TARGET_ASM_FILE_START
93 #define TARGET_ASM_FILE_START mn10300_file_start
94 #undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
95 #define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
97 #undef TARGET_DEFAULT_TARGET_FLAGS
98 #define TARGET_DEFAULT_TARGET_FLAGS MASK_MULT_BUG | MASK_PTR_A0D0
99 #undef TARGET_HANDLE_OPTION
100 #define TARGET_HANDLE_OPTION mn10300_handle_option
102 #undef TARGET_ENCODE_SECTION_INFO
103 #define TARGET_ENCODE_SECTION_INFO mn10300_encode_section_info
105 #undef TARGET_PROMOTE_PROTOTYPES
106 #define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
107 #undef TARGET_RETURN_IN_MEMORY
108 #define TARGET_RETURN_IN_MEMORY mn10300_return_in_memory
109 #undef TARGET_PASS_BY_REFERENCE
110 #define TARGET_PASS_BY_REFERENCE mn10300_pass_by_reference
111 #undef TARGET_CALLEE_COPIES
112 #define TARGET_CALLEE_COPIES hook_bool_CUMULATIVE_ARGS_mode_tree_bool_true
113 #undef TARGET_ARG_PARTIAL_BYTES
114 #define TARGET_ARG_PARTIAL_BYTES mn10300_arg_partial_bytes
116 #undef TARGET_EXPAND_BUILTIN_SAVEREGS
117 #define TARGET_EXPAND_BUILTIN_SAVEREGS mn10300_builtin_saveregs
119 static void mn10300_encode_section_info (tree, rtx, int);
120 struct gcc_target targetm = TARGET_INITIALIZER;
122 /* Implement TARGET_HANDLE_OPTION. */
124 static bool
125 mn10300_handle_option (size_t code,
126 const char *arg ATTRIBUTE_UNUSED,
127 int value)
129 switch (code)
131 case OPT_mam33:
132 mn10300_processor = value ? PROCESSOR_AM33 : PROCESSOR_MN10300;
133 return true;
134 case OPT_mam33_2:
135 mn10300_processor = (value
136 ? PROCESSOR_AM33_2
137 : MIN (PROCESSOR_AM33, PROCESSOR_DEFAULT));
138 return true;
139 default:
140 return true;
144 /* Implement OVERRIDE_OPTIONS. */
146 void
147 mn10300_override_options (void)
149 if (TARGET_AM33)
150 target_flags &= ~MASK_MULT_BUG;
153 static void
154 mn10300_file_start (void)
156 default_file_start ();
158 if (TARGET_AM33_2)
159 fprintf (asm_out_file, "\t.am33_2\n");
160 else if (TARGET_AM33)
161 fprintf (asm_out_file, "\t.am33\n");
165 /* Print operand X using operand code CODE to assembly language output file
166 FILE. */
168 void
169 print_operand (FILE *file, rtx x, int code)
171 switch (code)
173 case 'b':
174 case 'B':
175 if (cc_status.mdep.fpCC)
177 switch (code == 'b' ? GET_CODE (x)
178 : reverse_condition_maybe_unordered (GET_CODE (x)))
180 case NE:
181 fprintf (file, "ne");
182 break;
183 case EQ:
184 fprintf (file, "eq");
185 break;
186 case GE:
187 fprintf (file, "ge");
188 break;
189 case GT:
190 fprintf (file, "gt");
191 break;
192 case LE:
193 fprintf (file, "le");
194 break;
195 case LT:
196 fprintf (file, "lt");
197 break;
198 case ORDERED:
199 fprintf (file, "lge");
200 break;
201 case UNORDERED:
202 fprintf (file, "uo");
203 break;
204 case LTGT:
205 fprintf (file, "lg");
206 break;
207 case UNEQ:
208 fprintf (file, "ue");
209 break;
210 case UNGE:
211 fprintf (file, "uge");
212 break;
213 case UNGT:
214 fprintf (file, "ug");
215 break;
216 case UNLE:
217 fprintf (file, "ule");
218 break;
219 case UNLT:
220 fprintf (file, "ul");
221 break;
222 default:
223 gcc_unreachable ();
225 break;
227 /* These are normal and reversed branches. */
228 switch (code == 'b' ? GET_CODE (x) : reverse_condition (GET_CODE (x)))
230 case NE:
231 fprintf (file, "ne");
232 break;
233 case EQ:
234 fprintf (file, "eq");
235 break;
236 case GE:
237 fprintf (file, "ge");
238 break;
239 case GT:
240 fprintf (file, "gt");
241 break;
242 case LE:
243 fprintf (file, "le");
244 break;
245 case LT:
246 fprintf (file, "lt");
247 break;
248 case GEU:
249 fprintf (file, "cc");
250 break;
251 case GTU:
252 fprintf (file, "hi");
253 break;
254 case LEU:
255 fprintf (file, "ls");
256 break;
257 case LTU:
258 fprintf (file, "cs");
259 break;
260 default:
261 gcc_unreachable ();
263 break;
264 case 'C':
265 /* This is used for the operand to a call instruction;
266 if it's a REG, enclose it in parens, else output
267 the operand normally. */
268 if (GET_CODE (x) == REG)
270 fputc ('(', file);
271 print_operand (file, x, 0);
272 fputc (')', file);
274 else
275 print_operand (file, x, 0);
276 break;
278 case 'D':
279 switch (GET_CODE (x))
281 case MEM:
282 fputc ('(', file);
283 output_address (XEXP (x, 0));
284 fputc (')', file);
285 break;
287 case REG:
288 fprintf (file, "fd%d", REGNO (x) - 18);
289 break;
291 default:
292 gcc_unreachable ();
294 break;
296 /* These are the least significant word in a 64bit value. */
297 case 'L':
298 switch (GET_CODE (x))
300 case MEM:
301 fputc ('(', file);
302 output_address (XEXP (x, 0));
303 fputc (')', file);
304 break;
306 case REG:
307 fprintf (file, "%s", reg_names[REGNO (x)]);
308 break;
310 case SUBREG:
311 fprintf (file, "%s", reg_names[subreg_regno (x)]);
312 break;
314 case CONST_DOUBLE:
316 long val[2];
317 REAL_VALUE_TYPE rv;
319 switch (GET_MODE (x))
321 case DFmode:
322 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
323 REAL_VALUE_TO_TARGET_DOUBLE (rv, val);
324 fprintf (file, "0x%lx", val[0]);
325 break;;
326 case SFmode:
327 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
328 REAL_VALUE_TO_TARGET_SINGLE (rv, val[0]);
329 fprintf (file, "0x%lx", val[0]);
330 break;;
331 case VOIDmode:
332 case DImode:
333 print_operand_address (file,
334 GEN_INT (CONST_DOUBLE_LOW (x)));
335 break;
336 default:
337 break;
339 break;
342 case CONST_INT:
344 rtx low, high;
345 split_double (x, &low, &high);
346 fprintf (file, "%ld", (long)INTVAL (low));
347 break;
350 default:
351 gcc_unreachable ();
353 break;
355 /* Similarly, but for the most significant word. */
356 case 'H':
357 switch (GET_CODE (x))
359 case MEM:
360 fputc ('(', file);
361 x = adjust_address (x, SImode, 4);
362 output_address (XEXP (x, 0));
363 fputc (')', file);
364 break;
366 case REG:
367 fprintf (file, "%s", reg_names[REGNO (x) + 1]);
368 break;
370 case SUBREG:
371 fprintf (file, "%s", reg_names[subreg_regno (x) + 1]);
372 break;
374 case CONST_DOUBLE:
376 long val[2];
377 REAL_VALUE_TYPE rv;
379 switch (GET_MODE (x))
381 case DFmode:
382 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
383 REAL_VALUE_TO_TARGET_DOUBLE (rv, val);
384 fprintf (file, "0x%lx", val[1]);
385 break;;
386 case SFmode:
387 gcc_unreachable ();
388 case VOIDmode:
389 case DImode:
390 print_operand_address (file,
391 GEN_INT (CONST_DOUBLE_HIGH (x)));
392 break;
393 default:
394 break;
396 break;
399 case CONST_INT:
401 rtx low, high;
402 split_double (x, &low, &high);
403 fprintf (file, "%ld", (long)INTVAL (high));
404 break;
407 default:
408 gcc_unreachable ();
410 break;
412 case 'A':
413 fputc ('(', file);
414 if (GET_CODE (XEXP (x, 0)) == REG)
415 output_address (gen_rtx_PLUS (SImode, XEXP (x, 0), const0_rtx));
416 else
417 output_address (XEXP (x, 0));
418 fputc (')', file);
419 break;
421 case 'N':
422 gcc_assert (INTVAL (x) >= -128 && INTVAL (x) <= 255);
423 fprintf (file, "%d", (int)((~INTVAL (x)) & 0xff));
424 break;
426 case 'U':
427 gcc_assert (INTVAL (x) >= -128 && INTVAL (x) <= 255);
428 fprintf (file, "%d", (int)(INTVAL (x) & 0xff));
429 break;
431 /* For shift counts. The hardware ignores the upper bits of
432 any immediate, but the assembler will flag an out of range
433 shift count as an error. So we mask off the high bits
434 of the immediate here. */
435 case 'S':
436 if (GET_CODE (x) == CONST_INT)
438 fprintf (file, "%d", (int)(INTVAL (x) & 0x1f));
439 break;
441 /* FALL THROUGH */
443 default:
444 switch (GET_CODE (x))
446 case MEM:
447 fputc ('(', file);
448 output_address (XEXP (x, 0));
449 fputc (')', file);
450 break;
452 case PLUS:
453 output_address (x);
454 break;
456 case REG:
457 fprintf (file, "%s", reg_names[REGNO (x)]);
458 break;
460 case SUBREG:
461 fprintf (file, "%s", reg_names[subreg_regno (x)]);
462 break;
464 /* This will only be single precision.... */
465 case CONST_DOUBLE:
467 unsigned long val;
468 REAL_VALUE_TYPE rv;
470 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
471 REAL_VALUE_TO_TARGET_SINGLE (rv, val);
472 fprintf (file, "0x%lx", val);
473 break;
476 case CONST_INT:
477 case SYMBOL_REF:
478 case CONST:
479 case LABEL_REF:
480 case CODE_LABEL:
481 case UNSPEC:
482 print_operand_address (file, x);
483 break;
484 default:
485 gcc_unreachable ();
487 break;
491 /* Output assembly language output for the address ADDR to FILE. */
493 void
494 print_operand_address (FILE *file, rtx addr)
496 switch (GET_CODE (addr))
498 case POST_INC:
499 print_operand_address (file, XEXP (addr, 0));
500 fputc ('+', file);
501 break;
502 case REG:
503 print_operand (file, addr, 0);
504 break;
505 case PLUS:
507 rtx base, index;
508 if (REG_P (XEXP (addr, 0))
509 && REG_OK_FOR_BASE_P (XEXP (addr, 0)))
510 base = XEXP (addr, 0), index = XEXP (addr, 1);
511 else if (REG_P (XEXP (addr, 1))
512 && REG_OK_FOR_BASE_P (XEXP (addr, 1)))
513 base = XEXP (addr, 1), index = XEXP (addr, 0);
514 else
515 gcc_unreachable ();
516 print_operand (file, index, 0);
517 fputc (',', file);
518 print_operand (file, base, 0);;
519 break;
521 case SYMBOL_REF:
522 output_addr_const (file, addr);
523 break;
524 default:
525 output_addr_const (file, addr);
526 break;
530 /* Count the number of FP registers that have to be saved. */
531 static int
532 fp_regs_to_save (void)
534 int i, n = 0;
536 if (! TARGET_AM33_2)
537 return 0;
539 for (i = FIRST_FP_REGNUM; i <= LAST_FP_REGNUM; ++i)
540 if (regs_ever_live[i] && ! call_used_regs[i])
541 ++n;
543 return n;
546 /* Print a set of registers in the format required by "movm" and "ret".
547 Register K is saved if bit K of MASK is set. The data and address
548 registers can be stored individually, but the extended registers cannot.
549 We assume that the mask alread takes that into account. For instance,
550 bits 14 to 17 must have the same value. */
552 void
553 mn10300_print_reg_list (FILE *file, int mask)
555 int need_comma;
556 int i;
558 need_comma = 0;
559 fputc ('[', file);
561 for (i = 0; i < FIRST_EXTENDED_REGNUM; i++)
562 if ((mask & (1 << i)) != 0)
564 if (need_comma)
565 fputc (',', file);
566 fputs (reg_names [i], file);
567 need_comma = 1;
570 if ((mask & 0x3c000) != 0)
572 gcc_assert ((mask & 0x3c000) == 0x3c000);
573 if (need_comma)
574 fputc (',', file);
575 fputs ("exreg1", file);
576 need_comma = 1;
579 fputc (']', file);
583 can_use_return_insn (void)
585 /* size includes the fixed stack space needed for function calls. */
586 int size = get_frame_size () + current_function_outgoing_args_size;
588 /* And space for the return pointer. */
589 size += current_function_outgoing_args_size ? 4 : 0;
591 return (reload_completed
592 && size == 0
593 && !regs_ever_live[2]
594 && !regs_ever_live[3]
595 && !regs_ever_live[6]
596 && !regs_ever_live[7]
597 && !regs_ever_live[14]
598 && !regs_ever_live[15]
599 && !regs_ever_live[16]
600 && !regs_ever_live[17]
601 && fp_regs_to_save () == 0
602 && !frame_pointer_needed);
605 /* Returns the set of live, callee-saved registers as a bitmask. The
606 callee-saved extended registers cannot be stored individually, so
607 all of them will be included in the mask if any one of them is used. */
610 mn10300_get_live_callee_saved_regs (void)
612 int mask;
613 int i;
615 mask = 0;
616 for (i = 0; i <= LAST_EXTENDED_REGNUM; i++)
617 if (regs_ever_live[i] && ! call_used_regs[i])
618 mask |= (1 << i);
619 if ((mask & 0x3c000) != 0)
620 mask |= 0x3c000;
622 return mask;
625 /* Generate an instruction that pushes several registers onto the stack.
626 Register K will be saved if bit K in MASK is set. The function does
627 nothing if MASK is zero.
629 To be compatible with the "movm" instruction, the lowest-numbered
630 register must be stored in the lowest slot. If MASK is the set
631 { R1,...,RN }, where R1...RN are ordered least first, the generated
632 instruction will have the form:
634 (parallel
635 (set (reg:SI 9) (plus:SI (reg:SI 9) (const_int -N*4)))
636 (set (mem:SI (plus:SI (reg:SI 9)
637 (const_int -1*4)))
638 (reg:SI RN))
640 (set (mem:SI (plus:SI (reg:SI 9)
641 (const_int -N*4)))
642 (reg:SI R1))) */
644 void
645 mn10300_gen_multiple_store (int mask)
647 if (mask != 0)
649 int i;
650 int count;
651 rtx par;
652 int pari;
654 /* Count how many registers need to be saved. */
655 count = 0;
656 for (i = 0; i <= LAST_EXTENDED_REGNUM; i++)
657 if ((mask & (1 << i)) != 0)
658 count += 1;
660 /* We need one PARALLEL element to update the stack pointer and
661 an additional element for each register that is stored. */
662 par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count + 1));
664 /* Create the instruction that updates the stack pointer. */
665 XVECEXP (par, 0, 0)
666 = gen_rtx_SET (SImode,
667 stack_pointer_rtx,
668 gen_rtx_PLUS (SImode,
669 stack_pointer_rtx,
670 GEN_INT (-count * 4)));
672 /* Create each store. */
673 pari = 1;
674 for (i = LAST_EXTENDED_REGNUM; i >= 0; i--)
675 if ((mask & (1 << i)) != 0)
677 rtx address = gen_rtx_PLUS (SImode,
678 stack_pointer_rtx,
679 GEN_INT (-pari * 4));
680 XVECEXP(par, 0, pari)
681 = gen_rtx_SET (VOIDmode,
682 gen_rtx_MEM (SImode, address),
683 gen_rtx_REG (SImode, i));
684 pari += 1;
687 par = emit_insn (par);
688 RTX_FRAME_RELATED_P (par) = 1;
692 void
693 expand_prologue (void)
695 HOST_WIDE_INT size;
697 /* SIZE includes the fixed stack space needed for function calls. */
698 size = get_frame_size () + current_function_outgoing_args_size;
699 size += (current_function_outgoing_args_size ? 4 : 0);
701 /* If we use any of the callee-saved registers, save them now. */
702 mn10300_gen_multiple_store (mn10300_get_live_callee_saved_regs ());
704 if (TARGET_AM33_2 && fp_regs_to_save ())
706 int num_regs_to_save = fp_regs_to_save (), i;
707 HOST_WIDE_INT xsize;
708 enum { save_sp_merge,
709 save_sp_no_merge,
710 save_sp_partial_merge,
711 save_a0_merge,
712 save_a0_no_merge } strategy;
713 unsigned int strategy_size = (unsigned)-1, this_strategy_size;
714 rtx reg;
715 rtx insn;
717 /* We have several different strategies to save FP registers.
718 We can store them using SP offsets, which is beneficial if
719 there are just a few registers to save, or we can use `a0' in
720 post-increment mode (`a0' is the only call-clobbered address
721 register that is never used to pass information to a
722 function). Furthermore, if we don't need a frame pointer, we
723 can merge the two SP adds into a single one, but this isn't
724 always beneficial; sometimes we can just split the two adds
725 so that we don't exceed a 16-bit constant size. The code
726 below will select which strategy to use, so as to generate
727 smallest code. Ties are broken in favor or shorter sequences
728 (in terms of number of instructions). */
730 #define SIZE_ADD_AX(S) ((((S) >= (1 << 15)) || ((S) < -(1 << 15))) ? 6 \
731 : (((S) >= (1 << 7)) || ((S) < -(1 << 7))) ? 4 : 2)
732 #define SIZE_ADD_SP(S) ((((S) >= (1 << 15)) || ((S) < -(1 << 15))) ? 6 \
733 : (((S) >= (1 << 7)) || ((S) < -(1 << 7))) ? 4 : 3)
734 #define SIZE_FMOV_LIMIT(S,N,L,SIZE1,SIZE2,ELSE) \
735 (((S) >= (L)) ? (SIZE1) * (N) \
736 : ((S) + 4 * (N) >= (L)) ? (((L) - (S)) / 4 * (SIZE2) \
737 + ((S) + 4 * (N) - (L)) / 4 * (SIZE1)) \
738 : (ELSE))
739 #define SIZE_FMOV_SP_(S,N) \
740 (SIZE_FMOV_LIMIT ((S), (N), (1 << 24), 7, 6, \
741 SIZE_FMOV_LIMIT ((S), (N), (1 << 8), 6, 4, \
742 (S) ? 4 * (N) : 3 + 4 * ((N) - 1))))
743 #define SIZE_FMOV_SP(S,N) (SIZE_FMOV_SP_ ((unsigned HOST_WIDE_INT)(S), (N)))
745 /* Consider alternative save_sp_merge only if we don't need the
746 frame pointer and size is nonzero. */
747 if (! frame_pointer_needed && size)
749 /* Insn: add -(size + 4 * num_regs_to_save), sp. */
750 this_strategy_size = SIZE_ADD_SP (-(size + 4 * num_regs_to_save));
751 /* Insn: fmov fs#, (##, sp), for each fs# to be saved. */
752 this_strategy_size += SIZE_FMOV_SP (size, num_regs_to_save);
754 if (this_strategy_size < strategy_size)
756 strategy = save_sp_merge;
757 strategy_size = this_strategy_size;
761 /* Consider alternative save_sp_no_merge unconditionally. */
762 /* Insn: add -4 * num_regs_to_save, sp. */
763 this_strategy_size = SIZE_ADD_SP (-4 * num_regs_to_save);
764 /* Insn: fmov fs#, (##, sp), for each fs# to be saved. */
765 this_strategy_size += SIZE_FMOV_SP (0, num_regs_to_save);
766 if (size)
768 /* Insn: add -size, sp. */
769 this_strategy_size += SIZE_ADD_SP (-size);
772 if (this_strategy_size < strategy_size)
774 strategy = save_sp_no_merge;
775 strategy_size = this_strategy_size;
778 /* Consider alternative save_sp_partial_merge only if we don't
779 need a frame pointer and size is reasonably large. */
780 if (! frame_pointer_needed && size + 4 * num_regs_to_save > 128)
782 /* Insn: add -128, sp. */
783 this_strategy_size = SIZE_ADD_SP (-128);
784 /* Insn: fmov fs#, (##, sp), for each fs# to be saved. */
785 this_strategy_size += SIZE_FMOV_SP (128 - 4 * num_regs_to_save,
786 num_regs_to_save);
787 if (size)
789 /* Insn: add 128-size, sp. */
790 this_strategy_size += SIZE_ADD_SP (128 - size);
793 if (this_strategy_size < strategy_size)
795 strategy = save_sp_partial_merge;
796 strategy_size = this_strategy_size;
800 /* Consider alternative save_a0_merge only if we don't need a
801 frame pointer, size is nonzero and the user hasn't
802 changed the calling conventions of a0. */
803 if (! frame_pointer_needed && size
804 && call_used_regs[FIRST_ADDRESS_REGNUM]
805 && ! fixed_regs[FIRST_ADDRESS_REGNUM])
807 /* Insn: add -(size + 4 * num_regs_to_save), sp. */
808 this_strategy_size = SIZE_ADD_SP (-(size + 4 * num_regs_to_save));
809 /* Insn: mov sp, a0. */
810 this_strategy_size++;
811 if (size)
813 /* Insn: add size, a0. */
814 this_strategy_size += SIZE_ADD_AX (size);
816 /* Insn: fmov fs#, (a0+), for each fs# to be saved. */
817 this_strategy_size += 3 * num_regs_to_save;
819 if (this_strategy_size < strategy_size)
821 strategy = save_a0_merge;
822 strategy_size = this_strategy_size;
826 /* Consider alternative save_a0_no_merge if the user hasn't
827 changed the calling conventions of a0. */
828 if (call_used_regs[FIRST_ADDRESS_REGNUM]
829 && ! fixed_regs[FIRST_ADDRESS_REGNUM])
831 /* Insn: add -4 * num_regs_to_save, sp. */
832 this_strategy_size = SIZE_ADD_SP (-4 * num_regs_to_save);
833 /* Insn: mov sp, a0. */
834 this_strategy_size++;
835 /* Insn: fmov fs#, (a0+), for each fs# to be saved. */
836 this_strategy_size += 3 * num_regs_to_save;
837 if (size)
839 /* Insn: add -size, sp. */
840 this_strategy_size += SIZE_ADD_SP (-size);
843 if (this_strategy_size < strategy_size)
845 strategy = save_a0_no_merge;
846 strategy_size = this_strategy_size;
850 /* Emit the initial SP add, common to all strategies. */
851 switch (strategy)
853 case save_sp_no_merge:
854 case save_a0_no_merge:
855 emit_insn (gen_addsi3 (stack_pointer_rtx,
856 stack_pointer_rtx,
857 GEN_INT (-4 * num_regs_to_save)));
858 xsize = 0;
859 break;
861 case save_sp_partial_merge:
862 emit_insn (gen_addsi3 (stack_pointer_rtx,
863 stack_pointer_rtx,
864 GEN_INT (-128)));
865 xsize = 128 - 4 * num_regs_to_save;
866 size -= xsize;
867 break;
869 case save_sp_merge:
870 case save_a0_merge:
871 emit_insn (gen_addsi3 (stack_pointer_rtx,
872 stack_pointer_rtx,
873 GEN_INT (-(size + 4 * num_regs_to_save))));
874 /* We'll have to adjust FP register saves according to the
875 frame size. */
876 xsize = size;
877 /* Since we've already created the stack frame, don't do it
878 again at the end of the function. */
879 size = 0;
880 break;
882 default:
883 gcc_unreachable ();
886 /* Now prepare register a0, if we have decided to use it. */
887 switch (strategy)
889 case save_sp_merge:
890 case save_sp_no_merge:
891 case save_sp_partial_merge:
892 reg = 0;
893 break;
895 case save_a0_merge:
896 case save_a0_no_merge:
897 reg = gen_rtx_REG (SImode, FIRST_ADDRESS_REGNUM);
898 emit_insn (gen_movsi (reg, stack_pointer_rtx));
899 if (xsize)
900 emit_insn (gen_addsi3 (reg, reg, GEN_INT (xsize)));
901 reg = gen_rtx_POST_INC (SImode, reg);
902 break;
904 default:
905 gcc_unreachable ();
908 /* Now actually save the FP registers. */
909 for (i = FIRST_FP_REGNUM; i <= LAST_FP_REGNUM; ++i)
910 if (regs_ever_live[i] && ! call_used_regs[i])
912 rtx addr;
914 if (reg)
915 addr = reg;
916 else
918 /* If we aren't using `a0', use an SP offset. */
919 if (xsize)
921 addr = gen_rtx_PLUS (SImode,
922 stack_pointer_rtx,
923 GEN_INT (xsize));
925 else
926 addr = stack_pointer_rtx;
928 xsize += 4;
931 insn = emit_insn (gen_movsi (gen_rtx_MEM (SImode, addr),
932 gen_rtx_REG (SImode, i)));
934 RTX_FRAME_RELATED_P (insn) = 1;
938 /* Now put the frame pointer into the frame pointer register. */
939 if (frame_pointer_needed)
940 emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
942 /* Allocate stack for this frame. */
943 if (size)
944 emit_insn (gen_addsi3 (stack_pointer_rtx,
945 stack_pointer_rtx,
946 GEN_INT (-size)));
947 if (flag_pic && regs_ever_live[PIC_OFFSET_TABLE_REGNUM])
949 rtx insn = get_last_insn ();
950 rtx last = emit_insn (gen_GOTaddr2picreg ());
952 /* Mark these insns as possibly dead. Sometimes, flow2 may
953 delete all uses of the PIC register. In this case, let it
954 delete the initialization too. */
957 insn = NEXT_INSN (insn);
959 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD,
960 const0_rtx,
961 REG_NOTES (insn));
963 while (insn != last);
967 void
968 expand_epilogue (void)
970 HOST_WIDE_INT size;
972 /* SIZE includes the fixed stack space needed for function calls. */
973 size = get_frame_size () + current_function_outgoing_args_size;
974 size += (current_function_outgoing_args_size ? 4 : 0);
976 if (TARGET_AM33_2 && fp_regs_to_save ())
978 int num_regs_to_save = fp_regs_to_save (), i;
979 rtx reg = 0;
981 /* We have several options to restore FP registers. We could
982 load them from SP offsets, but, if there are enough FP
983 registers to restore, we win if we use a post-increment
984 addressing mode. */
986 /* If we have a frame pointer, it's the best option, because we
987 already know it has the value we want. */
988 if (frame_pointer_needed)
989 reg = gen_rtx_REG (SImode, FRAME_POINTER_REGNUM);
990 /* Otherwise, we may use `a1', since it's call-clobbered and
991 it's never used for return values. But only do so if it's
992 smaller than using SP offsets. */
993 else
995 enum { restore_sp_post_adjust,
996 restore_sp_pre_adjust,
997 restore_sp_partial_adjust,
998 restore_a1 } strategy;
999 unsigned int this_strategy_size, strategy_size = (unsigned)-1;
1001 /* Consider using sp offsets before adjusting sp. */
1002 /* Insn: fmov (##,sp),fs#, for each fs# to be restored. */
1003 this_strategy_size = SIZE_FMOV_SP (size, num_regs_to_save);
1004 /* If size is too large, we'll have to adjust SP with an
1005 add. */
1006 if (size + 4 * num_regs_to_save + REG_SAVE_BYTES > 255)
1008 /* Insn: add size + 4 * num_regs_to_save, sp. */
1009 this_strategy_size += SIZE_ADD_SP (size + 4 * num_regs_to_save);
1011 /* If we don't have to restore any non-FP registers,
1012 we'll be able to save one byte by using rets. */
1013 if (! REG_SAVE_BYTES)
1014 this_strategy_size--;
1016 if (this_strategy_size < strategy_size)
1018 strategy = restore_sp_post_adjust;
1019 strategy_size = this_strategy_size;
1022 /* Consider using sp offsets after adjusting sp. */
1023 /* Insn: add size, sp. */
1024 this_strategy_size = SIZE_ADD_SP (size);
1025 /* Insn: fmov (##,sp),fs#, for each fs# to be restored. */
1026 this_strategy_size += SIZE_FMOV_SP (0, num_regs_to_save);
1027 /* We're going to use ret to release the FP registers
1028 save area, so, no savings. */
1030 if (this_strategy_size < strategy_size)
1032 strategy = restore_sp_pre_adjust;
1033 strategy_size = this_strategy_size;
1036 /* Consider using sp offsets after partially adjusting sp.
1037 When size is close to 32Kb, we may be able to adjust SP
1038 with an imm16 add instruction while still using fmov
1039 (d8,sp). */
1040 if (size + 4 * num_regs_to_save + REG_SAVE_BYTES > 255)
1042 /* Insn: add size + 4 * num_regs_to_save
1043 + REG_SAVE_BYTES - 252,sp. */
1044 this_strategy_size = SIZE_ADD_SP (size + 4 * num_regs_to_save
1045 + REG_SAVE_BYTES - 252);
1046 /* Insn: fmov (##,sp),fs#, fo each fs# to be restored. */
1047 this_strategy_size += SIZE_FMOV_SP (252 - REG_SAVE_BYTES
1048 - 4 * num_regs_to_save,
1049 num_regs_to_save);
1050 /* We're going to use ret to release the FP registers
1051 save area, so, no savings. */
1053 if (this_strategy_size < strategy_size)
1055 strategy = restore_sp_partial_adjust;
1056 strategy_size = this_strategy_size;
1060 /* Consider using a1 in post-increment mode, as long as the
1061 user hasn't changed the calling conventions of a1. */
1062 if (call_used_regs[FIRST_ADDRESS_REGNUM+1]
1063 && ! fixed_regs[FIRST_ADDRESS_REGNUM+1])
1065 /* Insn: mov sp,a1. */
1066 this_strategy_size = 1;
1067 if (size)
1069 /* Insn: add size,a1. */
1070 this_strategy_size += SIZE_ADD_AX (size);
1072 /* Insn: fmov (a1+),fs#, for each fs# to be restored. */
1073 this_strategy_size += 3 * num_regs_to_save;
1074 /* If size is large enough, we may be able to save a
1075 couple of bytes. */
1076 if (size + 4 * num_regs_to_save + REG_SAVE_BYTES > 255)
1078 /* Insn: mov a1,sp. */
1079 this_strategy_size += 2;
1081 /* If we don't have to restore any non-FP registers,
1082 we'll be able to save one byte by using rets. */
1083 if (! REG_SAVE_BYTES)
1084 this_strategy_size--;
1086 if (this_strategy_size < strategy_size)
1088 strategy = restore_a1;
1089 strategy_size = this_strategy_size;
1093 switch (strategy)
1095 case restore_sp_post_adjust:
1096 break;
1098 case restore_sp_pre_adjust:
1099 emit_insn (gen_addsi3 (stack_pointer_rtx,
1100 stack_pointer_rtx,
1101 GEN_INT (size)));
1102 size = 0;
1103 break;
1105 case restore_sp_partial_adjust:
1106 emit_insn (gen_addsi3 (stack_pointer_rtx,
1107 stack_pointer_rtx,
1108 GEN_INT (size + 4 * num_regs_to_save
1109 + REG_SAVE_BYTES - 252)));
1110 size = 252 - REG_SAVE_BYTES - 4 * num_regs_to_save;
1111 break;
1113 case restore_a1:
1114 reg = gen_rtx_REG (SImode, FIRST_ADDRESS_REGNUM + 1);
1115 emit_insn (gen_movsi (reg, stack_pointer_rtx));
1116 if (size)
1117 emit_insn (gen_addsi3 (reg, reg, GEN_INT (size)));
1118 break;
1120 default:
1121 gcc_unreachable ();
1125 /* Adjust the selected register, if any, for post-increment. */
1126 if (reg)
1127 reg = gen_rtx_POST_INC (SImode, reg);
1129 for (i = FIRST_FP_REGNUM; i <= LAST_FP_REGNUM; ++i)
1130 if (regs_ever_live[i] && ! call_used_regs[i])
1132 rtx addr;
1134 if (reg)
1135 addr = reg;
1136 else if (size)
1138 /* If we aren't using a post-increment register, use an
1139 SP offset. */
1140 addr = gen_rtx_PLUS (SImode,
1141 stack_pointer_rtx,
1142 GEN_INT (size));
1144 else
1145 addr = stack_pointer_rtx;
1147 size += 4;
1149 emit_insn (gen_movsi (gen_rtx_REG (SImode, i),
1150 gen_rtx_MEM (SImode, addr)));
1153 /* If we were using the restore_a1 strategy and the number of
1154 bytes to be released won't fit in the `ret' byte, copy `a1'
1155 to `sp', to avoid having to use `add' to adjust it. */
1156 if (! frame_pointer_needed && reg && size + REG_SAVE_BYTES > 255)
1158 emit_move_insn (stack_pointer_rtx, XEXP (reg, 0));
1159 size = 0;
1163 /* Maybe cut back the stack, except for the register save area.
1165 If the frame pointer exists, then use the frame pointer to
1166 cut back the stack.
1168 If the stack size + register save area is more than 255 bytes,
1169 then the stack must be cut back here since the size + register
1170 save size is too big for a ret/retf instruction.
1172 Else leave it alone, it will be cut back as part of the
1173 ret/retf instruction, or there wasn't any stack to begin with.
1175 Under no circumstances should the register save area be
1176 deallocated here, that would leave a window where an interrupt
1177 could occur and trash the register save area. */
1178 if (frame_pointer_needed)
1180 emit_move_insn (stack_pointer_rtx, frame_pointer_rtx);
1181 size = 0;
1183 else if (size + REG_SAVE_BYTES > 255)
1185 emit_insn (gen_addsi3 (stack_pointer_rtx,
1186 stack_pointer_rtx,
1187 GEN_INT (size)));
1188 size = 0;
1191 /* Adjust the stack and restore callee-saved registers, if any. */
1192 if (size || regs_ever_live[2] || regs_ever_live[3]
1193 || regs_ever_live[6] || regs_ever_live[7]
1194 || regs_ever_live[14] || regs_ever_live[15]
1195 || regs_ever_live[16] || regs_ever_live[17]
1196 || frame_pointer_needed)
1197 emit_jump_insn (gen_return_internal_regs
1198 (GEN_INT (size + REG_SAVE_BYTES)));
1199 else
1200 emit_jump_insn (gen_return_internal ());
1203 /* Update the condition code from the insn. */
1205 void
1206 notice_update_cc (rtx body, rtx insn)
1208 switch (get_attr_cc (insn))
1210 case CC_NONE:
1211 /* Insn does not affect CC at all. */
1212 break;
1214 case CC_NONE_0HIT:
1215 /* Insn does not change CC, but the 0'th operand has been changed. */
1216 if (cc_status.value1 != 0
1217 && reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value1))
1218 cc_status.value1 = 0;
1219 break;
1221 case CC_SET_ZN:
1222 /* Insn sets the Z,N flags of CC to recog_data.operand[0].
1223 V,C are unusable. */
1224 CC_STATUS_INIT;
1225 cc_status.flags |= CC_NO_CARRY | CC_OVERFLOW_UNUSABLE;
1226 cc_status.value1 = recog_data.operand[0];
1227 break;
1229 case CC_SET_ZNV:
1230 /* Insn sets the Z,N,V flags of CC to recog_data.operand[0].
1231 C is unusable. */
1232 CC_STATUS_INIT;
1233 cc_status.flags |= CC_NO_CARRY;
1234 cc_status.value1 = recog_data.operand[0];
1235 break;
1237 case CC_COMPARE:
1238 /* The insn is a compare instruction. */
1239 CC_STATUS_INIT;
1240 cc_status.value1 = SET_SRC (body);
1241 if (GET_CODE (cc_status.value1) == COMPARE
1242 && GET_MODE (XEXP (cc_status.value1, 0)) == SFmode)
1243 cc_status.mdep.fpCC = 1;
1244 break;
1246 case CC_CLOBBER:
1247 /* Insn doesn't leave CC in a usable state. */
1248 CC_STATUS_INIT;
1249 break;
1251 default:
1252 gcc_unreachable ();
1256 /* Recognize the PARALLEL rtx generated by mn10300_gen_multiple_store().
1257 This function is for MATCH_PARALLEL and so assumes OP is known to be
1258 parallel. If OP is a multiple store, return a mask indicating which
1259 registers it saves. Return 0 otherwise. */
1262 store_multiple_operation (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1264 int count;
1265 int mask;
1266 int i;
1267 unsigned int last;
1268 rtx elt;
1270 count = XVECLEN (op, 0);
1271 if (count < 2)
1272 return 0;
1274 /* Check that first instruction has the form (set (sp) (plus A B)) */
1275 elt = XVECEXP (op, 0, 0);
1276 if (GET_CODE (elt) != SET
1277 || GET_CODE (SET_DEST (elt)) != REG
1278 || REGNO (SET_DEST (elt)) != STACK_POINTER_REGNUM
1279 || GET_CODE (SET_SRC (elt)) != PLUS)
1280 return 0;
1282 /* Check that A is the stack pointer and B is the expected stack size.
1283 For OP to match, each subsequent instruction should push a word onto
1284 the stack. We therefore expect the first instruction to create
1285 COUNT-1 stack slots. */
1286 elt = SET_SRC (elt);
1287 if (GET_CODE (XEXP (elt, 0)) != REG
1288 || REGNO (XEXP (elt, 0)) != STACK_POINTER_REGNUM
1289 || GET_CODE (XEXP (elt, 1)) != CONST_INT
1290 || INTVAL (XEXP (elt, 1)) != -(count - 1) * 4)
1291 return 0;
1293 /* Now go through the rest of the vector elements. They must be
1294 ordered so that the first instruction stores the highest-numbered
1295 register to the highest stack slot and that subsequent instructions
1296 store a lower-numbered register to the slot below.
1298 LAST keeps track of the smallest-numbered register stored so far.
1299 MASK is the set of stored registers. */
1300 last = LAST_EXTENDED_REGNUM + 1;
1301 mask = 0;
1302 for (i = 1; i < count; i++)
1304 /* Check that element i is a (set (mem M) R) and that R is valid. */
1305 elt = XVECEXP (op, 0, i);
1306 if (GET_CODE (elt) != SET
1307 || GET_CODE (SET_DEST (elt)) != MEM
1308 || GET_CODE (SET_SRC (elt)) != REG
1309 || REGNO (SET_SRC (elt)) >= last)
1310 return 0;
1312 /* R was OK, so provisionally add it to MASK. We return 0 in any
1313 case if the rest of the instruction has a flaw. */
1314 last = REGNO (SET_SRC (elt));
1315 mask |= (1 << last);
1317 /* Check that M has the form (plus (sp) (const_int -I*4)) */
1318 elt = XEXP (SET_DEST (elt), 0);
1319 if (GET_CODE (elt) != PLUS
1320 || GET_CODE (XEXP (elt, 0)) != REG
1321 || REGNO (XEXP (elt, 0)) != STACK_POINTER_REGNUM
1322 || GET_CODE (XEXP (elt, 1)) != CONST_INT
1323 || INTVAL (XEXP (elt, 1)) != -i * 4)
1324 return 0;
1327 /* All or none of the callee-saved extended registers must be in the set. */
1328 if ((mask & 0x3c000) != 0
1329 && (mask & 0x3c000) != 0x3c000)
1330 return 0;
1332 return mask;
1335 /* What (if any) secondary registers are needed to move IN with mode
1336 MODE into a register in register class CLASS.
1338 We might be able to simplify this. */
1339 enum reg_class
1340 mn10300_secondary_reload_class (enum reg_class class, enum machine_mode mode,
1341 rtx in)
1343 /* Memory loads less than a full word wide can't have an
1344 address or stack pointer destination. They must use
1345 a data register as an intermediate register. */
1346 if ((GET_CODE (in) == MEM
1347 || (GET_CODE (in) == REG
1348 && REGNO (in) >= FIRST_PSEUDO_REGISTER)
1349 || (GET_CODE (in) == SUBREG
1350 && GET_CODE (SUBREG_REG (in)) == REG
1351 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER))
1352 && (mode == QImode || mode == HImode)
1353 && (class == ADDRESS_REGS || class == SP_REGS
1354 || class == SP_OR_ADDRESS_REGS))
1356 if (TARGET_AM33)
1357 return DATA_OR_EXTENDED_REGS;
1358 return DATA_REGS;
1361 /* We can't directly load sp + const_int into a data register;
1362 we must use an address register as an intermediate. */
1363 if (class != SP_REGS
1364 && class != ADDRESS_REGS
1365 && class != SP_OR_ADDRESS_REGS
1366 && class != SP_OR_EXTENDED_REGS
1367 && class != ADDRESS_OR_EXTENDED_REGS
1368 && class != SP_OR_ADDRESS_OR_EXTENDED_REGS
1369 && (in == stack_pointer_rtx
1370 || (GET_CODE (in) == PLUS
1371 && (XEXP (in, 0) == stack_pointer_rtx
1372 || XEXP (in, 1) == stack_pointer_rtx))))
1373 return ADDRESS_REGS;
1375 if (GET_CODE (in) == PLUS
1376 && (XEXP (in, 0) == stack_pointer_rtx
1377 || XEXP (in, 1) == stack_pointer_rtx))
1379 if (TARGET_AM33)
1380 return DATA_OR_EXTENDED_REGS;
1381 return DATA_REGS;
1384 if (TARGET_AM33_2 && class == FP_REGS
1385 && GET_CODE (in) == MEM && ! OK_FOR_Q (in))
1387 if (TARGET_AM33)
1388 return DATA_OR_EXTENDED_REGS;
1389 return DATA_REGS;
1392 /* Otherwise assume no secondary reloads are needed. */
1393 return NO_REGS;
1397 initial_offset (int from, int to)
1399 /* The difference between the argument pointer and the frame pointer
1400 is the size of the callee register save area. */
1401 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
1403 if (regs_ever_live[2] || regs_ever_live[3]
1404 || regs_ever_live[6] || regs_ever_live[7]
1405 || regs_ever_live[14] || regs_ever_live[15]
1406 || regs_ever_live[16] || regs_ever_live[17]
1407 || fp_regs_to_save ()
1408 || frame_pointer_needed)
1409 return REG_SAVE_BYTES
1410 + 4 * fp_regs_to_save ();
1411 else
1412 return 0;
1415 /* The difference between the argument pointer and the stack pointer is
1416 the sum of the size of this function's frame, the callee register save
1417 area, and the fixed stack space needed for function calls (if any). */
1418 if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
1420 if (regs_ever_live[2] || regs_ever_live[3]
1421 || regs_ever_live[6] || regs_ever_live[7]
1422 || regs_ever_live[14] || regs_ever_live[15]
1423 || regs_ever_live[16] || regs_ever_live[17]
1424 || fp_regs_to_save ()
1425 || frame_pointer_needed)
1426 return (get_frame_size () + REG_SAVE_BYTES
1427 + 4 * fp_regs_to_save ()
1428 + (current_function_outgoing_args_size
1429 ? current_function_outgoing_args_size + 4 : 0));
1430 else
1431 return (get_frame_size ()
1432 + (current_function_outgoing_args_size
1433 ? current_function_outgoing_args_size + 4 : 0));
1436 /* The difference between the frame pointer and stack pointer is the sum
1437 of the size of this function's frame and the fixed stack space needed
1438 for function calls (if any). */
1439 if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
1440 return (get_frame_size ()
1441 + (current_function_outgoing_args_size
1442 ? current_function_outgoing_args_size + 4 : 0));
1444 gcc_unreachable ();
1447 /* Worker function for TARGET_RETURN_IN_MEMORY. */
1449 static bool
1450 mn10300_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED)
1452 /* Return values > 8 bytes in length in memory. */
1453 return (int_size_in_bytes (type) > 8
1454 || int_size_in_bytes (type) == 0
1455 || TYPE_MODE (type) == BLKmode);
1458 /* Flush the argument registers to the stack for a stdarg function;
1459 return the new argument pointer. */
1460 static rtx
1461 mn10300_builtin_saveregs (void)
1463 rtx offset, mem;
1464 tree fntype = TREE_TYPE (current_function_decl);
1465 int argadj = ((!(TYPE_ARG_TYPES (fntype) != 0
1466 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
1467 != void_type_node)))
1468 ? UNITS_PER_WORD : 0);
1469 int set = get_varargs_alias_set ();
1471 if (argadj)
1472 offset = plus_constant (current_function_arg_offset_rtx, argadj);
1473 else
1474 offset = current_function_arg_offset_rtx;
1476 mem = gen_rtx_MEM (SImode, current_function_internal_arg_pointer);
1477 set_mem_alias_set (mem, set);
1478 emit_move_insn (mem, gen_rtx_REG (SImode, 0));
1480 mem = gen_rtx_MEM (SImode,
1481 plus_constant (current_function_internal_arg_pointer, 4));
1482 set_mem_alias_set (mem, set);
1483 emit_move_insn (mem, gen_rtx_REG (SImode, 1));
1485 return copy_to_reg (expand_binop (Pmode, add_optab,
1486 current_function_internal_arg_pointer,
1487 offset, 0, 0, OPTAB_LIB_WIDEN));
1490 void
1491 mn10300_va_start (tree valist, rtx nextarg)
1493 nextarg = expand_builtin_saveregs ();
1494 std_expand_builtin_va_start (valist, nextarg);
1497 /* Return true when a parameter should be passed by reference. */
1499 static bool
1500 mn10300_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
1501 enum machine_mode mode, tree type,
1502 bool named ATTRIBUTE_UNUSED)
1504 unsigned HOST_WIDE_INT size;
1506 if (type)
1507 size = int_size_in_bytes (type);
1508 else
1509 size = GET_MODE_SIZE (mode);
1511 return (size > 8 || size == 0);
1514 /* Return an RTX to represent where a value with mode MODE will be returned
1515 from a function. If the result is 0, the argument is pushed. */
1518 function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
1519 tree type, int named ATTRIBUTE_UNUSED)
1521 rtx result = 0;
1522 int size, align;
1524 /* We only support using 2 data registers as argument registers. */
1525 int nregs = 2;
1527 /* Figure out the size of the object to be passed. */
1528 if (mode == BLKmode)
1529 size = int_size_in_bytes (type);
1530 else
1531 size = GET_MODE_SIZE (mode);
1533 /* Figure out the alignment of the object to be passed. */
1534 align = size;
1536 cum->nbytes = (cum->nbytes + 3) & ~3;
1538 /* Don't pass this arg via a register if all the argument registers
1539 are used up. */
1540 if (cum->nbytes > nregs * UNITS_PER_WORD)
1541 return 0;
1543 /* Don't pass this arg via a register if it would be split between
1544 registers and memory. */
1545 if (type == NULL_TREE
1546 && cum->nbytes + size > nregs * UNITS_PER_WORD)
1547 return 0;
1549 switch (cum->nbytes / UNITS_PER_WORD)
1551 case 0:
1552 result = gen_rtx_REG (mode, 0);
1553 break;
1554 case 1:
1555 result = gen_rtx_REG (mode, 1);
1556 break;
1557 default:
1558 result = 0;
1561 return result;
1564 /* Return the number of bytes of registers to use for an argument passed
1565 partially in registers and partially in memory. */
1567 static int
1568 mn10300_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
1569 tree type, bool named ATTRIBUTE_UNUSED)
1571 int size, align;
1573 /* We only support using 2 data registers as argument registers. */
1574 int nregs = 2;
1576 /* Figure out the size of the object to be passed. */
1577 if (mode == BLKmode)
1578 size = int_size_in_bytes (type);
1579 else
1580 size = GET_MODE_SIZE (mode);
1582 /* Figure out the alignment of the object to be passed. */
1583 align = size;
1585 cum->nbytes = (cum->nbytes + 3) & ~3;
1587 /* Don't pass this arg via a register if all the argument registers
1588 are used up. */
1589 if (cum->nbytes > nregs * UNITS_PER_WORD)
1590 return 0;
1592 if (cum->nbytes + size <= nregs * UNITS_PER_WORD)
1593 return 0;
1595 /* Don't pass this arg via a register if it would be split between
1596 registers and memory. */
1597 if (type == NULL_TREE
1598 && cum->nbytes + size > nregs * UNITS_PER_WORD)
1599 return 0;
1601 return nregs * UNITS_PER_WORD - cum->nbytes;
1604 /* Return the location of the function's value. This will be either
1605 $d0 for integer functions, $a0 for pointers, or a PARALLEL of both
1606 $d0 and $a0 if the -mreturn-pointer-on-do flag is set. Note that
1607 we only return the PARALLEL for outgoing values; we do not want
1608 callers relying on this extra copy. */
1611 mn10300_function_value (tree valtype, tree func, int outgoing)
1613 rtx rv;
1614 enum machine_mode mode = TYPE_MODE (valtype);
1616 if (! POINTER_TYPE_P (valtype))
1617 return gen_rtx_REG (mode, FIRST_DATA_REGNUM);
1618 else if (! TARGET_PTR_A0D0 || ! outgoing
1619 || current_function_returns_struct)
1620 return gen_rtx_REG (mode, FIRST_ADDRESS_REGNUM);
1622 rv = gen_rtx_PARALLEL (mode, rtvec_alloc (2));
1623 XVECEXP (rv, 0, 0)
1624 = gen_rtx_EXPR_LIST (VOIDmode,
1625 gen_rtx_REG (mode, FIRST_ADDRESS_REGNUM),
1626 GEN_INT (0));
1628 XVECEXP (rv, 0, 1)
1629 = gen_rtx_EXPR_LIST (VOIDmode,
1630 gen_rtx_REG (mode, FIRST_DATA_REGNUM),
1631 GEN_INT (0));
1632 return rv;
1635 /* Output a tst insn. */
1636 const char *
1637 output_tst (rtx operand, rtx insn)
1639 rtx temp;
1640 int past_call = 0;
1642 /* We can save a byte if we can find a register which has the value
1643 zero in it. */
1644 temp = PREV_INSN (insn);
1645 while (optimize && temp)
1647 rtx set;
1649 /* We allow the search to go through call insns. We record
1650 the fact that we've past a CALL_INSN and reject matches which
1651 use call clobbered registers. */
1652 if (GET_CODE (temp) == CODE_LABEL
1653 || GET_CODE (temp) == JUMP_INSN
1654 || GET_CODE (temp) == BARRIER)
1655 break;
1657 if (GET_CODE (temp) == CALL_INSN)
1658 past_call = 1;
1660 if (GET_CODE (temp) == NOTE)
1662 temp = PREV_INSN (temp);
1663 continue;
1666 /* It must be an insn, see if it is a simple set. */
1667 set = single_set (temp);
1668 if (!set)
1670 temp = PREV_INSN (temp);
1671 continue;
1674 /* Are we setting a data register to zero (this does not win for
1675 address registers)?
1677 If it's a call clobbered register, have we past a call?
1679 Make sure the register we find isn't the same as ourself;
1680 the mn10300 can't encode that.
1682 ??? reg_set_between_p return nonzero anytime we pass a CALL_INSN
1683 so the code to detect calls here isn't doing anything useful. */
1684 if (REG_P (SET_DEST (set))
1685 && SET_SRC (set) == CONST0_RTX (GET_MODE (SET_DEST (set)))
1686 && !reg_set_between_p (SET_DEST (set), temp, insn)
1687 && (REGNO_REG_CLASS (REGNO (SET_DEST (set)))
1688 == REGNO_REG_CLASS (REGNO (operand)))
1689 && REGNO_REG_CLASS (REGNO (SET_DEST (set))) != EXTENDED_REGS
1690 && REGNO (SET_DEST (set)) != REGNO (operand)
1691 && (!past_call
1692 || !call_used_regs[REGNO (SET_DEST (set))]))
1694 rtx xoperands[2];
1695 xoperands[0] = operand;
1696 xoperands[1] = SET_DEST (set);
1698 output_asm_insn ("cmp %1,%0", xoperands);
1699 return "";
1702 if (REGNO_REG_CLASS (REGNO (operand)) == EXTENDED_REGS
1703 && REG_P (SET_DEST (set))
1704 && SET_SRC (set) == CONST0_RTX (GET_MODE (SET_DEST (set)))
1705 && !reg_set_between_p (SET_DEST (set), temp, insn)
1706 && (REGNO_REG_CLASS (REGNO (SET_DEST (set)))
1707 != REGNO_REG_CLASS (REGNO (operand)))
1708 && REGNO_REG_CLASS (REGNO (SET_DEST (set))) == EXTENDED_REGS
1709 && REGNO (SET_DEST (set)) != REGNO (operand)
1710 && (!past_call
1711 || !call_used_regs[REGNO (SET_DEST (set))]))
1713 rtx xoperands[2];
1714 xoperands[0] = operand;
1715 xoperands[1] = SET_DEST (set);
1717 output_asm_insn ("cmp %1,%0", xoperands);
1718 return "";
1720 temp = PREV_INSN (temp);
1722 return "cmp 0,%0";
1726 impossible_plus_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1728 if (GET_CODE (op) != PLUS)
1729 return 0;
1731 if (XEXP (op, 0) == stack_pointer_rtx
1732 || XEXP (op, 1) == stack_pointer_rtx)
1733 return 1;
1735 return 0;
1738 /* Similarly, but when using a zero_extract pattern for a btst where
1739 the source operand might end up in memory. */
1741 mask_ok_for_mem_btst (int len, int bit)
1743 unsigned int mask = 0;
1745 while (len > 0)
1747 mask |= (1 << bit);
1748 bit++;
1749 len--;
1752 /* MASK must bit into an 8bit value. */
1753 return (((mask & 0xff) == mask)
1754 || ((mask & 0xff00) == mask)
1755 || ((mask & 0xff0000) == mask)
1756 || ((mask & 0xff000000) == mask));
1759 /* Return 1 if X contains a symbolic expression. We know these
1760 expressions will have one of a few well defined forms, so
1761 we need only check those forms. */
1763 symbolic_operand (register rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1765 switch (GET_CODE (op))
1767 case SYMBOL_REF:
1768 case LABEL_REF:
1769 return 1;
1770 case CONST:
1771 op = XEXP (op, 0);
1772 return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
1773 || GET_CODE (XEXP (op, 0)) == LABEL_REF)
1774 && GET_CODE (XEXP (op, 1)) == CONST_INT);
1775 default:
1776 return 0;
1780 /* Try machine dependent ways of modifying an illegitimate address
1781 to be legitimate. If we find one, return the new valid address.
1782 This macro is used in only one place: `memory_address' in explow.c.
1784 OLDX is the address as it was before break_out_memory_refs was called.
1785 In some cases it is useful to look at this to decide what needs to be done.
1787 MODE and WIN are passed so that this macro can use
1788 GO_IF_LEGITIMATE_ADDRESS.
1790 Normally it is always safe for this macro to do nothing. It exists to
1791 recognize opportunities to optimize the output.
1793 But on a few ports with segmented architectures and indexed addressing
1794 (mn10300, hppa) it is used to rewrite certain problematical addresses. */
1796 legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
1797 enum machine_mode mode ATTRIBUTE_UNUSED)
1799 if (flag_pic && ! legitimate_pic_operand_p (x))
1800 x = legitimize_pic_address (oldx, NULL_RTX);
1802 /* Uh-oh. We might have an address for x[n-100000]. This needs
1803 special handling to avoid creating an indexed memory address
1804 with x-100000 as the base. */
1805 if (GET_CODE (x) == PLUS
1806 && symbolic_operand (XEXP (x, 1), VOIDmode))
1808 /* Ugly. We modify things here so that the address offset specified
1809 by the index expression is computed first, then added to x to form
1810 the entire address. */
1812 rtx regx1, regy1, regy2, y;
1814 /* Strip off any CONST. */
1815 y = XEXP (x, 1);
1816 if (GET_CODE (y) == CONST)
1817 y = XEXP (y, 0);
1819 if (GET_CODE (y) == PLUS || GET_CODE (y) == MINUS)
1821 regx1 = force_reg (Pmode, force_operand (XEXP (x, 0), 0));
1822 regy1 = force_reg (Pmode, force_operand (XEXP (y, 0), 0));
1823 regy2 = force_reg (Pmode, force_operand (XEXP (y, 1), 0));
1824 regx1 = force_reg (Pmode,
1825 gen_rtx_fmt_ee (GET_CODE (y), Pmode, regx1, regy2));
1826 return force_reg (Pmode, gen_rtx_PLUS (Pmode, regx1, regy1));
1829 return x;
1832 /* Convert a non-PIC address in `orig' to a PIC address using @GOT or
1833 @GOTOFF in `reg'. */
1835 legitimize_pic_address (rtx orig, rtx reg)
1837 if (GET_CODE (orig) == LABEL_REF
1838 || (GET_CODE (orig) == SYMBOL_REF
1839 && (CONSTANT_POOL_ADDRESS_P (orig)
1840 || ! MN10300_GLOBAL_P (orig))))
1842 if (reg == 0)
1843 reg = gen_reg_rtx (Pmode);
1845 emit_insn (gen_symGOTOFF2reg (reg, orig));
1846 return reg;
1848 else if (GET_CODE (orig) == SYMBOL_REF)
1850 if (reg == 0)
1851 reg = gen_reg_rtx (Pmode);
1853 emit_insn (gen_symGOT2reg (reg, orig));
1854 return reg;
1856 return orig;
1859 /* Return zero if X references a SYMBOL_REF or LABEL_REF whose symbol
1860 isn't protected by a PIC unspec; nonzero otherwise. */
1862 legitimate_pic_operand_p (rtx x)
1864 register const char *fmt;
1865 register int i;
1867 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
1868 return 0;
1870 if (GET_CODE (x) == UNSPEC
1871 && (XINT (x, 1) == UNSPEC_PIC
1872 || XINT (x, 1) == UNSPEC_GOT
1873 || XINT (x, 1) == UNSPEC_GOTOFF
1874 || XINT (x, 1) == UNSPEC_PLT))
1875 return 1;
1877 fmt = GET_RTX_FORMAT (GET_CODE (x));
1878 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
1880 if (fmt[i] == 'E')
1882 register int j;
1884 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1885 if (! legitimate_pic_operand_p (XVECEXP (x, i, j)))
1886 return 0;
1888 else if (fmt[i] == 'e' && ! legitimate_pic_operand_p (XEXP (x, i)))
1889 return 0;
1892 return 1;
1895 /* Return TRUE if the address X, taken from a (MEM:MODE X) rtx, is
1896 legitimate, and FALSE otherwise. */
1897 bool
1898 legitimate_address_p (enum machine_mode mode, rtx x, int strict)
1900 if (CONSTANT_ADDRESS_P (x)
1901 && (! flag_pic || legitimate_pic_operand_p (x)))
1902 return TRUE;
1904 if (RTX_OK_FOR_BASE_P (x, strict))
1905 return TRUE;
1907 if (TARGET_AM33
1908 && GET_CODE (x) == POST_INC
1909 && RTX_OK_FOR_BASE_P (XEXP (x, 0), strict)
1910 && (mode == SImode || mode == SFmode || mode == HImode))
1911 return TRUE;
1913 if (GET_CODE (x) == PLUS)
1915 rtx base = 0, index = 0;
1917 if (REG_P (XEXP (x, 0))
1918 && REGNO_STRICT_OK_FOR_BASE_P (REGNO (XEXP (x, 0)), strict))
1920 base = XEXP (x, 0);
1921 index = XEXP (x, 1);
1924 if (REG_P (XEXP (x, 1))
1925 && REGNO_STRICT_OK_FOR_BASE_P (REGNO (XEXP (x, 1)), strict))
1927 base = XEXP (x, 1);
1928 index = XEXP (x, 0);
1931 if (base != 0 && index != 0)
1933 if (GET_CODE (index) == CONST_INT)
1934 return TRUE;
1935 if (GET_CODE (index) == CONST
1936 && GET_CODE (XEXP (index, 0)) != PLUS
1937 && (! flag_pic
1938 || legitimate_pic_operand_p (index)))
1939 return TRUE;
1943 return FALSE;
1946 static int
1947 mn10300_address_cost_1 (rtx x, int *unsig)
1949 switch (GET_CODE (x))
1951 case REG:
1952 switch (REGNO_REG_CLASS (REGNO (x)))
1954 case SP_REGS:
1955 *unsig = 1;
1956 return 0;
1958 case ADDRESS_REGS:
1959 return 1;
1961 case DATA_REGS:
1962 case EXTENDED_REGS:
1963 case FP_REGS:
1964 return 3;
1966 case NO_REGS:
1967 return 5;
1969 default:
1970 gcc_unreachable ();
1973 case PLUS:
1974 case MINUS:
1975 case ASHIFT:
1976 case AND:
1977 case IOR:
1978 return (mn10300_address_cost_1 (XEXP (x, 0), unsig)
1979 + mn10300_address_cost_1 (XEXP (x, 1), unsig));
1981 case EXPR_LIST:
1982 case SUBREG:
1983 case MEM:
1984 return mn10300_address_cost (XEXP (x, 0));
1986 case ZERO_EXTEND:
1987 *unsig = 1;
1988 return mn10300_address_cost_1 (XEXP (x, 0), unsig);
1990 case CONST_INT:
1991 if (INTVAL (x) == 0)
1992 return 0;
1993 if (INTVAL (x) + (*unsig ? 0 : 0x80) < 0x100)
1994 return 1;
1995 if (INTVAL (x) + (*unsig ? 0 : 0x8000) < 0x10000)
1996 return 3;
1997 if (INTVAL (x) + (*unsig ? 0 : 0x800000) < 0x1000000)
1998 return 5;
1999 return 7;
2001 case CONST:
2002 case SYMBOL_REF:
2003 case LABEL_REF:
2004 return 8;
2006 default:
2007 gcc_unreachable ();
2012 static int
2013 mn10300_address_cost (rtx x)
2015 int s = 0;
2016 return mn10300_address_cost_1 (x, &s);
2019 static bool
2020 mn10300_rtx_costs (rtx x, int code, int outer_code, int *total)
2022 switch (code)
2024 case CONST_INT:
2025 /* Zeros are extremely cheap. */
2026 if (INTVAL (x) == 0 && outer_code == SET)
2027 *total = 0;
2028 /* If it fits in 8 bits, then it's still relatively cheap. */
2029 else if (INT_8_BITS (INTVAL (x)))
2030 *total = 1;
2031 /* This is the "base" cost, includes constants where either the
2032 upper or lower 16bits are all zeros. */
2033 else if (INT_16_BITS (INTVAL (x))
2034 || (INTVAL (x) & 0xffff) == 0
2035 || (INTVAL (x) & 0xffff0000) == 0)
2036 *total = 2;
2037 else
2038 *total = 4;
2039 return true;
2041 case CONST:
2042 case LABEL_REF:
2043 case SYMBOL_REF:
2044 /* These are more costly than a CONST_INT, but we can relax them,
2045 so they're less costly than a CONST_DOUBLE. */
2046 *total = 6;
2047 return true;
2049 case CONST_DOUBLE:
2050 /* We don't optimize CONST_DOUBLEs well nor do we relax them well,
2051 so their cost is very high. */
2052 *total = 8;
2053 return true;
2055 /* ??? This probably needs more work. */
2056 case MOD:
2057 case DIV:
2058 case MULT:
2059 *total = 8;
2060 return true;
2062 default:
2063 return false;
2067 /* Check whether a constant used to initialize a DImode or DFmode can
2068 use a clr instruction. The code here must be kept in sync with
2069 movdf and movdi. */
2071 bool
2072 mn10300_wide_const_load_uses_clr (rtx operands[2])
2074 long val[2];
2076 if (GET_CODE (operands[0]) != REG
2077 || REGNO_REG_CLASS (REGNO (operands[0])) != DATA_REGS)
2078 return false;
2080 switch (GET_CODE (operands[1]))
2082 case CONST_INT:
2084 rtx low, high;
2085 split_double (operands[1], &low, &high);
2086 val[0] = INTVAL (low);
2087 val[1] = INTVAL (high);
2089 break;
2091 case CONST_DOUBLE:
2092 if (GET_MODE (operands[1]) == DFmode)
2094 REAL_VALUE_TYPE rv;
2096 REAL_VALUE_FROM_CONST_DOUBLE (rv, operands[1]);
2097 REAL_VALUE_TO_TARGET_DOUBLE (rv, val);
2099 else if (GET_MODE (operands[1]) == VOIDmode
2100 || GET_MODE (operands[1]) == DImode)
2102 val[0] = CONST_DOUBLE_LOW (operands[1]);
2103 val[1] = CONST_DOUBLE_HIGH (operands[1]);
2105 break;
2107 default:
2108 return false;
2111 return val[0] == 0 || val[1] == 0;
2113 /* If using PIC, mark a SYMBOL_REF for a non-global symbol so that we
2114 may access it using GOTOFF instead of GOT. */
2116 static void
2117 mn10300_encode_section_info (tree decl, rtx rtl, int first ATTRIBUTE_UNUSED)
2119 rtx symbol;
2121 if (GET_CODE (rtl) != MEM)
2122 return;
2123 symbol = XEXP (rtl, 0);
2124 if (GET_CODE (symbol) != SYMBOL_REF)
2125 return;
2127 if (flag_pic)
2128 SYMBOL_REF_FLAG (symbol) = (*targetm.binds_local_p) (decl);