1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Inlining decision heuristics
23 The implementation of inliner is organized as follows:
25 inlining heuristics limits
27 can_inline_edge_p allow to check that particular inlining is allowed
28 by the limits specified by user (allowed function growth, growth and so
31 Functions are inlined when it is obvious the result is profitable (such
32 as functions called once or when inlining reduce code size).
33 In addition to that we perform inlining of small functions and recursive
38 The inliner itself is split into two passes:
42 Simple local inlining pass inlining callees into current function.
43 This pass makes no use of whole unit analysis and thus it can do only
44 very simple decisions based on local properties.
46 The strength of the pass is that it is run in topological order
47 (reverse postorder) on the callgraph. Functions are converted into SSA
48 form just before this pass and optimized subsequently. As a result, the
49 callees of the function seen by the early inliner was already optimized
50 and results of early inlining adds a lot of optimization opportunities
51 for the local optimization.
53 The pass handle the obvious inlining decisions within the compilation
54 unit - inlining auto inline functions, inlining for size and
57 main strength of the pass is the ability to eliminate abstraction
58 penalty in C++ code (via combination of inlining and early
59 optimization) and thus improve quality of analysis done by real IPA
62 Because of lack of whole unit knowledge, the pass can not really make
63 good code size/performance tradeoffs. It however does very simple
64 speculative inlining allowing code size to grow by
65 EARLY_INLINING_INSNS when callee is leaf function. In this case the
66 optimizations performed later are very likely to eliminate the cost.
70 This is the real inliner able to handle inlining with whole program
71 knowledge. It performs following steps:
73 1) inlining of small functions. This is implemented by greedy
74 algorithm ordering all inlinable cgraph edges by their badness and
75 inlining them in this order as long as inline limits allows doing so.
77 This heuristics is not very good on inlining recursive calls. Recursive
78 calls can be inlined with results similar to loop unrolling. To do so,
79 special purpose recursive inliner is executed on function when
80 recursive edge is met as viable candidate.
82 2) Unreachable functions are removed from callgraph. Inlining leads
83 to devirtualization and other modification of callgraph so functions
84 may become unreachable during the process. Also functions declared as
85 extern inline or virtual functions are removed, since after inlining
86 we no longer need the offline bodies.
88 3) Functions called once and not exported from the unit are inlined.
89 This should almost always lead to reduction of code size by eliminating
90 the need for offline copy of the function. */
94 #include "coretypes.h"
100 #include "alloc-pool.h"
101 #include "tree-pass.h"
102 #include "gimple-ssa.h"
104 #include "lto-streamer.h"
105 #include "trans-mem.h"
107 #include "tree-inline.h"
110 #include "symbol-summary.h"
111 #include "tree-vrp.h"
112 #include "ipa-prop.h"
113 #include "ipa-fnsummary.h"
114 #include "ipa-inline.h"
115 #include "ipa-utils.h"
117 #include "auto-profile.h"
118 #include "builtins.h"
119 #include "fibonacci_heap.h"
122 typedef fibonacci_heap
<sreal
, cgraph_edge
> edge_heap_t
;
123 typedef fibonacci_node
<sreal
, cgraph_edge
> edge_heap_node_t
;
125 /* Statistics we collect about inlining algorithm. */
126 static int overall_size
;
127 static profile_count max_count
;
128 static profile_count spec_rem
;
130 /* Pre-computed constants 1/CGRAPH_FREQ_BASE and 1/100. */
131 static sreal cgraph_freq_base_rec
, percent_rec
;
133 /* Return false when inlining edge E would lead to violating
134 limits on function unit growth or stack usage growth.
136 The relative function body growth limit is present generally
137 to avoid problems with non-linear behavior of the compiler.
138 To allow inlining huge functions into tiny wrapper, the limit
139 is always based on the bigger of the two functions considered.
141 For stack growth limits we always base the growth in stack usage
142 of the callers. We want to prevent applications from segfaulting
143 on stack overflow when functions with huge stack frames gets
147 caller_growth_limits (struct cgraph_edge
*e
)
149 struct cgraph_node
*to
= e
->caller
;
150 struct cgraph_node
*what
= e
->callee
->ultimate_alias_target ();
153 HOST_WIDE_INT stack_size_limit
= 0, inlined_stack
;
154 ipa_fn_summary
*info
, *what_info
, *outer_info
= ipa_fn_summaries
->get (to
);
156 /* Look for function e->caller is inlined to. While doing
157 so work out the largest function body on the way. As
158 described above, we want to base our function growth
159 limits based on that. Not on the self size of the
160 outer function, not on the self size of inline code
161 we immediately inline to. This is the most relaxed
162 interpretation of the rule "do not grow large functions
163 too much in order to prevent compiler from exploding". */
166 info
= ipa_fn_summaries
->get (to
);
167 if (limit
< info
->self_size
)
168 limit
= info
->self_size
;
169 if (stack_size_limit
< info
->estimated_self_stack_size
)
170 stack_size_limit
= info
->estimated_self_stack_size
;
171 if (to
->global
.inlined_to
)
172 to
= to
->callers
->caller
;
177 what_info
= ipa_fn_summaries
->get (what
);
179 if (limit
< what_info
->self_size
)
180 limit
= what_info
->self_size
;
182 limit
+= limit
* PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH
) / 100;
184 /* Check the size after inlining against the function limits. But allow
185 the function to shrink if it went over the limits by forced inlining. */
186 newsize
= estimate_size_after_inlining (to
, e
);
187 if (newsize
>= info
->size
188 && newsize
> PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS
)
191 e
->inline_failed
= CIF_LARGE_FUNCTION_GROWTH_LIMIT
;
195 if (!what_info
->estimated_stack_size
)
198 /* FIXME: Stack size limit often prevents inlining in Fortran programs
199 due to large i/o datastructures used by the Fortran front-end.
200 We ought to ignore this limit when we know that the edge is executed
201 on every invocation of the caller (i.e. its call statement dominates
202 exit block). We do not track this information, yet. */
203 stack_size_limit
+= ((gcov_type
)stack_size_limit
204 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH
) / 100);
206 inlined_stack
= (outer_info
->stack_frame_offset
207 + outer_info
->estimated_self_stack_size
208 + what_info
->estimated_stack_size
);
209 /* Check new stack consumption with stack consumption at the place
211 if (inlined_stack
> stack_size_limit
212 /* If function already has large stack usage from sibling
213 inline call, we can inline, too.
214 This bit overoptimistically assume that we are good at stack
216 && inlined_stack
> info
->estimated_stack_size
217 && inlined_stack
> PARAM_VALUE (PARAM_LARGE_STACK_FRAME
))
219 e
->inline_failed
= CIF_LARGE_STACK_FRAME_GROWTH_LIMIT
;
225 /* Dump info about why inlining has failed. */
228 report_inline_failed_reason (struct cgraph_edge
*e
)
232 fprintf (dump_file
, " not inlinable: %s -> %s, %s\n",
233 e
->caller
->dump_name (),
234 e
->callee
->dump_name (),
235 cgraph_inline_failed_string (e
->inline_failed
));
236 if ((e
->inline_failed
== CIF_TARGET_OPTION_MISMATCH
237 || e
->inline_failed
== CIF_OPTIMIZATION_MISMATCH
)
238 && e
->caller
->lto_file_data
239 && e
->callee
->ultimate_alias_target ()->lto_file_data
)
241 fprintf (dump_file
, " LTO objects: %s, %s\n",
242 e
->caller
->lto_file_data
->file_name
,
243 e
->callee
->ultimate_alias_target ()->lto_file_data
->file_name
);
245 if (e
->inline_failed
== CIF_TARGET_OPTION_MISMATCH
)
246 cl_target_option_print_diff
247 (dump_file
, 2, target_opts_for_fn (e
->caller
->decl
),
248 target_opts_for_fn (e
->callee
->ultimate_alias_target ()->decl
));
249 if (e
->inline_failed
== CIF_OPTIMIZATION_MISMATCH
)
250 cl_optimization_print_diff
251 (dump_file
, 2, opts_for_fn (e
->caller
->decl
),
252 opts_for_fn (e
->callee
->ultimate_alias_target ()->decl
));
256 /* Decide whether sanitizer-related attributes allow inlining. */
259 sanitize_attrs_match_for_inline_p (const_tree caller
, const_tree callee
)
261 if (!caller
|| !callee
)
264 return sanitize_flags_p (SANITIZE_ADDRESS
, caller
)
265 == sanitize_flags_p (SANITIZE_ADDRESS
, callee
);
268 /* Used for flags where it is safe to inline when caller's value is
269 grater than callee's. */
270 #define check_maybe_up(flag) \
271 (opts_for_fn (caller->decl)->x_##flag \
272 != opts_for_fn (callee->decl)->x_##flag \
274 || opts_for_fn (caller->decl)->x_##flag \
275 < opts_for_fn (callee->decl)->x_##flag))
276 /* Used for flags where it is safe to inline when caller's value is
277 smaller than callee's. */
278 #define check_maybe_down(flag) \
279 (opts_for_fn (caller->decl)->x_##flag \
280 != opts_for_fn (callee->decl)->x_##flag \
282 || opts_for_fn (caller->decl)->x_##flag \
283 > opts_for_fn (callee->decl)->x_##flag))
284 /* Used for flags where exact match is needed for correctness. */
285 #define check_match(flag) \
286 (opts_for_fn (caller->decl)->x_##flag \
287 != opts_for_fn (callee->decl)->x_##flag)
289 /* Decide if we can inline the edge and possibly update
290 inline_failed reason.
291 We check whether inlining is possible at all and whether
292 caller growth limits allow doing so.
294 if REPORT is true, output reason to the dump file.
296 if DISREGARD_LIMITS is true, ignore size limits.*/
299 can_inline_edge_p (struct cgraph_edge
*e
, bool report
,
300 bool disregard_limits
= false, bool early
= false)
302 gcc_checking_assert (e
->inline_failed
);
304 if (cgraph_inline_failed_type (e
->inline_failed
) == CIF_FINAL_ERROR
)
307 report_inline_failed_reason (e
);
311 bool inlinable
= true;
312 enum availability avail
;
313 cgraph_node
*caller
= e
->caller
->global
.inlined_to
314 ? e
->caller
->global
.inlined_to
: e
->caller
;
315 cgraph_node
*callee
= e
->callee
->ultimate_alias_target (&avail
, caller
);
316 tree caller_tree
= DECL_FUNCTION_SPECIFIC_OPTIMIZATION (caller
->decl
);
318 = callee
? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee
->decl
) : NULL
;
320 if (!callee
->definition
)
322 e
->inline_failed
= CIF_BODY_NOT_AVAILABLE
;
325 else if (callee
->calls_comdat_local
)
327 e
->inline_failed
= CIF_USES_COMDAT_LOCAL
;
330 else if (avail
<= AVAIL_INTERPOSABLE
)
332 e
->inline_failed
= CIF_OVERWRITABLE
;
335 /* All edges with call_stmt_cannot_inline_p should have inline_failed
336 initialized to one of FINAL_ERROR reasons. */
337 else if (e
->call_stmt_cannot_inline_p
)
339 /* Don't inline if the functions have different EH personalities. */
340 else if (DECL_FUNCTION_PERSONALITY (caller
->decl
)
341 && DECL_FUNCTION_PERSONALITY (callee
->decl
)
342 && (DECL_FUNCTION_PERSONALITY (caller
->decl
)
343 != DECL_FUNCTION_PERSONALITY (callee
->decl
)))
345 e
->inline_failed
= CIF_EH_PERSONALITY
;
348 /* TM pure functions should not be inlined into non-TM_pure
350 else if (is_tm_pure (callee
->decl
) && !is_tm_pure (caller
->decl
))
352 e
->inline_failed
= CIF_UNSPECIFIED
;
355 /* Check compatibility of target optimization options. */
356 else if (!targetm
.target_option
.can_inline_p (caller
->decl
,
359 e
->inline_failed
= CIF_TARGET_OPTION_MISMATCH
;
362 else if (!ipa_fn_summaries
->get (callee
)->inlinable
)
364 e
->inline_failed
= CIF_FUNCTION_NOT_INLINABLE
;
367 /* Don't inline a function with mismatched sanitization attributes. */
368 else if (!sanitize_attrs_match_for_inline_p (caller
->decl
, callee
->decl
))
370 e
->inline_failed
= CIF_ATTRIBUTE_MISMATCH
;
373 /* Check if caller growth allows the inlining. */
374 else if (!DECL_DISREGARD_INLINE_LIMITS (callee
->decl
)
376 && !lookup_attribute ("flatten",
377 DECL_ATTRIBUTES (caller
->decl
))
378 && !caller_growth_limits (e
))
380 /* Don't inline a function with a higher optimization level than the
381 caller. FIXME: this is really just tip of iceberg of handling
382 optimization attribute. */
383 else if (caller_tree
!= callee_tree
)
386 (DECL_DISREGARD_INLINE_LIMITS (callee
->decl
)
387 && lookup_attribute ("always_inline",
388 DECL_ATTRIBUTES (callee
->decl
)));
389 ipa_fn_summary
*caller_info
= ipa_fn_summaries
->get (caller
);
390 ipa_fn_summary
*callee_info
= ipa_fn_summaries
->get (callee
);
392 /* Until GCC 4.9 we did not check the semantics alterning flags
393 bellow and inline across optimization boundry.
394 Enabling checks bellow breaks several packages by refusing
395 to inline library always_inline functions. See PR65873.
396 Disable the check for early inlining for now until better solution
398 if (always_inline
&& early
)
400 /* There are some options that change IL semantics which means
401 we cannot inline in these cases for correctness reason.
402 Not even for always_inline declared functions. */
403 else if (check_match (flag_wrapv
)
404 || check_match (flag_trapv
)
405 /* When caller or callee does FP math, be sure FP codegen flags
407 || ((caller_info
->fp_expressions
&& callee_info
->fp_expressions
)
408 && (check_maybe_up (flag_rounding_math
)
409 || check_maybe_up (flag_trapping_math
)
410 || check_maybe_down (flag_unsafe_math_optimizations
)
411 || check_maybe_down (flag_finite_math_only
)
412 || check_maybe_up (flag_signaling_nans
)
413 || check_maybe_down (flag_cx_limited_range
)
414 || check_maybe_up (flag_signed_zeros
)
415 || check_maybe_down (flag_associative_math
)
416 || check_maybe_down (flag_reciprocal_math
)
417 || check_maybe_down (flag_fp_int_builtin_inexact
)
418 /* Strictly speaking only when the callee contains function
419 calls that may end up setting errno. */
420 || check_maybe_up (flag_errno_math
)))
421 /* We do not want to make code compiled with exceptions to be
422 brought into a non-EH function unless we know that the callee
424 This is tracked by DECL_FUNCTION_PERSONALITY. */
425 || (check_maybe_up (flag_non_call_exceptions
)
426 && DECL_FUNCTION_PERSONALITY (callee
->decl
))
427 || (check_maybe_up (flag_exceptions
)
428 && DECL_FUNCTION_PERSONALITY (callee
->decl
))
429 /* When devirtualization is diabled for callee, it is not safe
430 to inline it as we possibly mangled the type info.
431 Allow early inlining of always inlines. */
432 || (!early
&& check_maybe_down (flag_devirtualize
)))
434 e
->inline_failed
= CIF_OPTIMIZATION_MISMATCH
;
437 /* gcc.dg/pr43564.c. Apply user-forced inline even at -O0. */
438 else if (always_inline
)
440 /* When user added an attribute to the callee honor it. */
441 else if (lookup_attribute ("optimize", DECL_ATTRIBUTES (callee
->decl
))
442 && opts_for_fn (caller
->decl
) != opts_for_fn (callee
->decl
))
444 e
->inline_failed
= CIF_OPTIMIZATION_MISMATCH
;
447 /* If explicit optimize attribute are not used, the mismatch is caused
448 by different command line options used to build different units.
449 Do not care about COMDAT functions - those are intended to be
450 optimized with the optimization flags of module they are used in.
451 Also do not care about mixing up size/speed optimization when
452 DECL_DISREGARD_INLINE_LIMITS is set. */
453 else if ((callee
->merged_comdat
454 && !lookup_attribute ("optimize",
455 DECL_ATTRIBUTES (caller
->decl
)))
456 || DECL_DISREGARD_INLINE_LIMITS (callee
->decl
))
458 /* If mismatch is caused by merging two LTO units with different
459 optimizationflags we want to be bit nicer. However never inline
460 if one of functions is not optimized at all. */
461 else if (!opt_for_fn (callee
->decl
, optimize
)
462 || !opt_for_fn (caller
->decl
, optimize
))
464 e
->inline_failed
= CIF_OPTIMIZATION_MISMATCH
;
467 /* If callee is optimized for size and caller is not, allow inlining if
468 code shrinks or we are in MAX_INLINE_INSNS_SINGLE limit and callee
469 is inline (and thus likely an unified comdat). This will allow caller
471 else if (opt_for_fn (callee
->decl
, optimize_size
)
472 > opt_for_fn (caller
->decl
, optimize_size
))
474 int growth
= estimate_edge_growth (e
);
476 && (!DECL_DECLARED_INLINE_P (callee
->decl
)
477 && growth
>= MAX (MAX_INLINE_INSNS_SINGLE
,
478 MAX_INLINE_INSNS_AUTO
)))
480 e
->inline_failed
= CIF_OPTIMIZATION_MISMATCH
;
484 /* If callee is more aggressively optimized for performance than caller,
485 we generally want to inline only cheap (runtime wise) functions. */
486 else if (opt_for_fn (callee
->decl
, optimize_size
)
487 < opt_for_fn (caller
->decl
, optimize_size
)
488 || (opt_for_fn (callee
->decl
, optimize
)
489 > opt_for_fn (caller
->decl
, optimize
)))
491 if (estimate_edge_time (e
)
492 >= 20 + ipa_call_summaries
->get (e
)->call_stmt_time
)
494 e
->inline_failed
= CIF_OPTIMIZATION_MISMATCH
;
501 if (!inlinable
&& report
)
502 report_inline_failed_reason (e
);
507 /* Return true if the edge E is inlinable during early inlining. */
510 can_early_inline_edge_p (struct cgraph_edge
*e
)
512 struct cgraph_node
*callee
= e
->callee
->ultimate_alias_target ();
513 /* Early inliner might get called at WPA stage when IPA pass adds new
514 function. In this case we can not really do any of early inlining
515 because function bodies are missing. */
516 if (cgraph_inline_failed_type (e
->inline_failed
) == CIF_FINAL_ERROR
)
518 if (!gimple_has_body_p (callee
->decl
))
520 e
->inline_failed
= CIF_BODY_NOT_AVAILABLE
;
523 /* In early inliner some of callees may not be in SSA form yet
524 (i.e. the callgraph is cyclic and we did not process
525 the callee by early inliner, yet). We don't have CIF code for this
526 case; later we will re-do the decision in the real inliner. */
527 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e
->caller
->decl
))
528 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee
->decl
)))
531 fprintf (dump_file
, " edge not inlinable: not in SSA form\n");
534 if (!can_inline_edge_p (e
, true, false, true))
540 /* Return number of calls in N. Ignore cheap builtins. */
543 num_calls (struct cgraph_node
*n
)
545 struct cgraph_edge
*e
;
548 for (e
= n
->callees
; e
; e
= e
->next_callee
)
549 if (!is_inexpensive_builtin (e
->callee
->decl
))
555 /* Return true if we are interested in inlining small function. */
558 want_early_inline_function_p (struct cgraph_edge
*e
)
560 bool want_inline
= true;
561 struct cgraph_node
*callee
= e
->callee
->ultimate_alias_target ();
563 if (DECL_DISREGARD_INLINE_LIMITS (callee
->decl
))
565 /* For AutoFDO, we need to make sure that before profile summary, all
566 hot paths' IR look exactly the same as profiled binary. As a result,
567 in einliner, we will disregard size limit and inline those callsites
569 * inlined in the profiled binary, and
570 * the cloned callee has enough samples to be considered "hot". */
571 else if (flag_auto_profile
&& afdo_callsite_hot_enough_for_early_inline (e
))
573 else if (!DECL_DECLARED_INLINE_P (callee
->decl
)
574 && !opt_for_fn (e
->caller
->decl
, flag_inline_small_functions
))
576 e
->inline_failed
= CIF_FUNCTION_NOT_INLINE_CANDIDATE
;
577 report_inline_failed_reason (e
);
582 int growth
= estimate_edge_growth (e
);
587 else if (!e
->maybe_hot_p ()
591 fprintf (dump_file
, " will not early inline: %s->%s, "
592 "call is cold and code would grow by %i\n",
593 e
->caller
->dump_name (),
594 callee
->dump_name (),
598 else if (growth
> PARAM_VALUE (PARAM_EARLY_INLINING_INSNS
))
601 fprintf (dump_file
, " will not early inline: %s->%s, "
602 "growth %i exceeds --param early-inlining-insns\n",
603 e
->caller
->dump_name (),
604 callee
->dump_name (),
608 else if ((n
= num_calls (callee
)) != 0
609 && growth
* (n
+ 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS
))
612 fprintf (dump_file
, " will not early inline: %s->%s, "
613 "growth %i exceeds --param early-inlining-insns "
614 "divided by number of calls\n",
615 e
->caller
->dump_name (),
616 callee
->dump_name (),
624 /* Compute time of the edge->caller + edge->callee execution when inlining
628 compute_uninlined_call_time (struct cgraph_edge
*edge
,
629 sreal uninlined_call_time
)
631 cgraph_node
*caller
= (edge
->caller
->global
.inlined_to
632 ? edge
->caller
->global
.inlined_to
635 if (edge
->count
> profile_count::zero ()
636 && caller
->count
> profile_count::zero ())
637 uninlined_call_time
*= (sreal
)edge
->count
.to_gcov_type ()
638 / caller
->count
.to_gcov_type ();
640 uninlined_call_time
*= cgraph_freq_base_rec
* edge
->frequency
;
642 uninlined_call_time
= uninlined_call_time
>> 11;
644 sreal caller_time
= ipa_fn_summaries
->get (caller
)->time
;
645 return uninlined_call_time
+ caller_time
;
648 /* Same as compute_uinlined_call_time but compute time when inlining
652 compute_inlined_call_time (struct cgraph_edge
*edge
,
655 cgraph_node
*caller
= (edge
->caller
->global
.inlined_to
656 ? edge
->caller
->global
.inlined_to
658 sreal caller_time
= ipa_fn_summaries
->get (caller
)->time
;
660 if (edge
->count
> profile_count::zero ()
661 && caller
->count
> profile_count::zero ())
662 time
*= (sreal
)edge
->count
.to_gcov_type () / caller
->count
.to_gcov_type ();
664 time
*= cgraph_freq_base_rec
* edge
->frequency
;
668 /* This calculation should match one in ipa-inline-analysis.c
669 (estimate_edge_size_and_time). */
670 time
-= (sreal
) edge
->frequency
671 * ipa_call_summaries
->get (edge
)->call_stmt_time
/ CGRAPH_FREQ_BASE
;
674 time
= ((sreal
) 1) >> 8;
675 gcc_checking_assert (time
>= 0);
679 /* Return true if the speedup for inlining E is bigger than
680 PARAM_MAX_INLINE_MIN_SPEEDUP. */
683 big_speedup_p (struct cgraph_edge
*e
)
686 sreal spec_time
= estimate_edge_time (e
, &unspec_time
);
687 sreal time
= compute_uninlined_call_time (e
, unspec_time
);
688 sreal inlined_time
= compute_inlined_call_time (e
, spec_time
);
690 if (time
- inlined_time
691 > (sreal
) (time
* PARAM_VALUE (PARAM_INLINE_MIN_SPEEDUP
))
697 /* Return true if we are interested in inlining small function.
698 When REPORT is true, report reason to dump file. */
701 want_inline_small_function_p (struct cgraph_edge
*e
, bool report
)
703 bool want_inline
= true;
704 struct cgraph_node
*callee
= e
->callee
->ultimate_alias_target ();
706 if (DECL_DISREGARD_INLINE_LIMITS (callee
->decl
))
708 else if (!DECL_DECLARED_INLINE_P (callee
->decl
)
709 && !opt_for_fn (e
->caller
->decl
, flag_inline_small_functions
))
711 e
->inline_failed
= CIF_FUNCTION_NOT_INLINE_CANDIDATE
;
714 /* Do fast and conservative check if the function can be good
715 inline candidate. At the moment we allow inline hints to
716 promote non-inline functions to inline and we increase
717 MAX_INLINE_INSNS_SINGLE 16-fold for inline functions. */
718 else if ((!DECL_DECLARED_INLINE_P (callee
->decl
)
719 && (!e
->count
.initialized_p () || !e
->maybe_hot_p ()))
720 && ipa_fn_summaries
->get (callee
)->min_size
721 - ipa_call_summaries
->get (e
)->call_stmt_size
722 > MAX (MAX_INLINE_INSNS_SINGLE
, MAX_INLINE_INSNS_AUTO
))
724 e
->inline_failed
= CIF_MAX_INLINE_INSNS_AUTO_LIMIT
;
727 else if ((DECL_DECLARED_INLINE_P (callee
->decl
)
728 || e
->count
> profile_count::zero ())
729 && ipa_fn_summaries
->get (callee
)->min_size
730 - ipa_call_summaries
->get (e
)->call_stmt_size
731 > 16 * MAX_INLINE_INSNS_SINGLE
)
733 e
->inline_failed
= (DECL_DECLARED_INLINE_P (callee
->decl
)
734 ? CIF_MAX_INLINE_INSNS_SINGLE_LIMIT
735 : CIF_MAX_INLINE_INSNS_AUTO_LIMIT
);
740 int growth
= estimate_edge_growth (e
);
741 ipa_hints hints
= estimate_edge_hints (e
);
742 bool big_speedup
= big_speedup_p (e
);
746 /* Apply MAX_INLINE_INSNS_SINGLE limit. Do not do so when
747 hints suggests that inlining given function is very profitable. */
748 else if (DECL_DECLARED_INLINE_P (callee
->decl
)
749 && growth
>= MAX_INLINE_INSNS_SINGLE
751 && !(hints
& (INLINE_HINT_indirect_call
752 | INLINE_HINT_known_hot
753 | INLINE_HINT_loop_iterations
754 | INLINE_HINT_array_index
755 | INLINE_HINT_loop_stride
)))
756 || growth
>= MAX_INLINE_INSNS_SINGLE
* 16))
758 e
->inline_failed
= CIF_MAX_INLINE_INSNS_SINGLE_LIMIT
;
761 else if (!DECL_DECLARED_INLINE_P (callee
->decl
)
762 && !opt_for_fn (e
->caller
->decl
, flag_inline_functions
))
764 /* growth_likely_positive is expensive, always test it last. */
765 if (growth
>= MAX_INLINE_INSNS_SINGLE
766 || growth_likely_positive (callee
, growth
))
768 e
->inline_failed
= CIF_NOT_DECLARED_INLINED
;
772 /* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline
773 Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that
774 inlining given function is very profitable. */
775 else if (!DECL_DECLARED_INLINE_P (callee
->decl
)
777 && !(hints
& INLINE_HINT_known_hot
)
778 && growth
>= ((hints
& (INLINE_HINT_indirect_call
779 | INLINE_HINT_loop_iterations
780 | INLINE_HINT_array_index
781 | INLINE_HINT_loop_stride
))
782 ? MAX (MAX_INLINE_INSNS_AUTO
,
783 MAX_INLINE_INSNS_SINGLE
)
784 : MAX_INLINE_INSNS_AUTO
))
786 /* growth_likely_positive is expensive, always test it last. */
787 if (growth
>= MAX_INLINE_INSNS_SINGLE
788 || growth_likely_positive (callee
, growth
))
790 e
->inline_failed
= CIF_MAX_INLINE_INSNS_AUTO_LIMIT
;
794 /* If call is cold, do not inline when function body would grow. */
795 else if (!e
->maybe_hot_p ()
796 && (growth
>= MAX_INLINE_INSNS_SINGLE
797 || growth_likely_positive (callee
, growth
)))
799 e
->inline_failed
= CIF_UNLIKELY_CALL
;
803 if (!want_inline
&& report
)
804 report_inline_failed_reason (e
);
808 /* EDGE is self recursive edge.
809 We hand two cases - when function A is inlining into itself
810 or when function A is being inlined into another inliner copy of function
813 In first case OUTER_NODE points to the toplevel copy of A, while
814 in the second case OUTER_NODE points to the outermost copy of A in B.
816 In both cases we want to be extra selective since
817 inlining the call will just introduce new recursive calls to appear. */
820 want_inline_self_recursive_call_p (struct cgraph_edge
*edge
,
821 struct cgraph_node
*outer_node
,
825 char const *reason
= NULL
;
826 bool want_inline
= true;
827 int caller_freq
= CGRAPH_FREQ_BASE
;
828 int max_depth
= PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO
);
830 if (DECL_DECLARED_INLINE_P (edge
->caller
->decl
))
831 max_depth
= PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH
);
833 if (!edge
->maybe_hot_p ())
835 reason
= "recursive call is cold";
838 else if (outer_node
->count
== profile_count::zero ())
840 reason
= "not executed in profile";
843 else if (depth
> max_depth
)
845 reason
= "--param max-inline-recursive-depth exceeded.";
849 if (outer_node
->global
.inlined_to
)
850 caller_freq
= outer_node
->callers
->frequency
;
854 reason
= "function is inlined and unlikely";
860 /* Inlining of self recursive function into copy of itself within other function
861 is transformation similar to loop peeling.
863 Peeling is profitable if we can inline enough copies to make probability
864 of actual call to the self recursive function very small. Be sure that
865 the probability of recursion is small.
867 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
868 This way the expected number of recision is at most max_depth. */
871 int max_prob
= CGRAPH_FREQ_BASE
- ((CGRAPH_FREQ_BASE
+ max_depth
- 1)
874 for (i
= 1; i
< depth
; i
++)
875 max_prob
= max_prob
* max_prob
/ CGRAPH_FREQ_BASE
;
876 if (max_count
> profile_count::zero () && edge
->count
> profile_count::zero ()
877 && (edge
->count
.to_gcov_type () * CGRAPH_FREQ_BASE
878 / outer_node
->count
.to_gcov_type ()
881 reason
= "profile of recursive call is too large";
884 if (max_count
== profile_count::zero ()
885 && (edge
->frequency
* CGRAPH_FREQ_BASE
/ caller_freq
888 reason
= "frequency of recursive call is too large";
892 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
893 depth is large. We reduce function call overhead and increase chances that
894 things fit in hardware return predictor.
896 Recursive inlining might however increase cost of stack frame setup
897 actually slowing down functions whose recursion tree is wide rather than
900 Deciding reliably on when to do recursive inlining without profile feedback
901 is tricky. For now we disable recursive inlining when probability of self
904 Recursive inlining of self recursive call within loop also results in large loop
905 depths that generally optimize badly. We may want to throttle down inlining
906 in those cases. In particular this seems to happen in one of libstdc++ rb tree
910 if (max_count
> profile_count::zero () && edge
->count
.initialized_p ()
911 && (edge
->count
.to_gcov_type () * 100
912 / outer_node
->count
.to_gcov_type ()
913 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY
)))
915 reason
= "profile of recursive call is too small";
918 else if ((max_count
== profile_count::zero ()
919 || !edge
->count
.initialized_p ())
920 && (edge
->frequency
* 100 / caller_freq
921 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY
)))
923 reason
= "frequency of recursive call is too small";
927 if (!want_inline
&& dump_file
)
928 fprintf (dump_file
, " not inlining recursively: %s\n", reason
);
932 /* Return true when NODE has uninlinable caller;
933 set HAS_HOT_CALL if it has hot call.
934 Worker for cgraph_for_node_and_aliases. */
937 check_callers (struct cgraph_node
*node
, void *has_hot_call
)
939 struct cgraph_edge
*e
;
940 for (e
= node
->callers
; e
; e
= e
->next_caller
)
942 if (!opt_for_fn (e
->caller
->decl
, flag_inline_functions_called_once
))
944 if (!can_inline_edge_p (e
, true))
946 if (e
->recursive_p ())
948 if (!(*(bool *)has_hot_call
) && e
->maybe_hot_p ())
949 *(bool *)has_hot_call
= true;
954 /* If NODE has a caller, return true. */
957 has_caller_p (struct cgraph_node
*node
, void *data ATTRIBUTE_UNUSED
)
964 /* Decide if inlining NODE would reduce unit size by eliminating
965 the offline copy of function.
966 When COLD is true the cold calls are considered, too. */
969 want_inline_function_to_all_callers_p (struct cgraph_node
*node
, bool cold
)
971 bool has_hot_call
= false;
973 /* Aliases gets inlined along with the function they alias. */
976 /* Already inlined? */
977 if (node
->global
.inlined_to
)
979 /* Does it have callers? */
980 if (!node
->call_for_symbol_and_aliases (has_caller_p
, NULL
, true))
982 /* Inlining into all callers would increase size? */
983 if (estimate_growth (node
) > 0)
985 /* All inlines must be possible. */
986 if (node
->call_for_symbol_and_aliases (check_callers
, &has_hot_call
,
989 if (!cold
&& !has_hot_call
)
994 /* A cost model driving the inlining heuristics in a way so the edges with
995 smallest badness are inlined first. After each inlining is performed
996 the costs of all caller edges of nodes affected are recomputed so the
997 metrics may accurately depend on values such as number of inlinable callers
998 of the function or function body size. */
1001 edge_badness (struct cgraph_edge
*edge
, bool dump
)
1005 sreal edge_time
, unspec_edge_time
;
1006 struct cgraph_node
*callee
= edge
->callee
->ultimate_alias_target ();
1007 struct ipa_fn_summary
*callee_info
= ipa_fn_summaries
->get (callee
);
1009 cgraph_node
*caller
= (edge
->caller
->global
.inlined_to
1010 ? edge
->caller
->global
.inlined_to
1013 growth
= estimate_edge_growth (edge
);
1014 edge_time
= estimate_edge_time (edge
, &unspec_edge_time
);
1015 hints
= estimate_edge_hints (edge
);
1016 gcc_checking_assert (edge_time
>= 0);
1017 /* Check that inlined time is better, but tolerate some roundoff issues. */
1018 gcc_checking_assert ((edge_time
- callee_info
->time
).to_int () <= 0);
1019 gcc_checking_assert (growth
<= callee_info
->size
);
1023 fprintf (dump_file
, " Badness calculation for %s -> %s\n",
1024 edge
->caller
->dump_name (),
1025 edge
->callee
->dump_name ());
1026 fprintf (dump_file
, " size growth %i, time %f unspec %f ",
1028 edge_time
.to_double (),
1029 unspec_edge_time
.to_double ());
1030 ipa_dump_hints (dump_file
, hints
);
1031 if (big_speedup_p (edge
))
1032 fprintf (dump_file
, " big_speedup");
1033 fprintf (dump_file
, "\n");
1036 /* Always prefer inlining saving code size. */
1039 badness
= (sreal
) (-SREAL_MIN_SIG
+ growth
) << (SREAL_MAX_EXP
/ 256);
1041 fprintf (dump_file
, " %f: Growth %d <= 0\n", badness
.to_double (),
1044 /* Inlining into EXTERNAL functions is not going to change anything unless
1045 they are themselves inlined. */
1046 else if (DECL_EXTERNAL (caller
->decl
))
1049 fprintf (dump_file
, " max: function is external\n");
1050 return sreal::max ();
1052 /* When profile is available. Compute badness as:
1054 time_saved * caller_count
1055 goodness = -------------------------------------------------
1056 growth_of_caller * overall_growth * combined_size
1058 badness = - goodness
1060 Again use negative value to make calls with profile appear hotter
1063 else if (opt_for_fn (caller
->decl
, flag_guess_branch_prob
)
1064 || caller
->count
> profile_count::zero ())
1066 sreal numerator
, denominator
;
1068 sreal inlined_time
= compute_inlined_call_time (edge
, edge_time
);
1070 numerator
= (compute_uninlined_call_time (edge
, unspec_edge_time
)
1073 numerator
= ((sreal
) 1 >> 8);
1074 if (caller
->count
> profile_count::zero ())
1075 numerator
*= caller
->count
.to_gcov_type ();
1076 else if (caller
->count
.initialized_p ())
1077 numerator
= numerator
>> 11;
1078 denominator
= growth
;
1080 overall_growth
= callee_info
->growth
;
1082 /* Look for inliner wrappers of the form:
1088 noninline_callee ();
1090 Withhout panilizing this case, we usually inline noninline_callee
1091 into the inline_caller because overall_growth is small preventing
1092 further inlining of inline_caller.
1094 Penalize only callgraph edges to functions with small overall
1097 if (growth
> overall_growth
1098 /* ... and having only one caller which is not inlined ... */
1099 && callee_info
->single_caller
1100 && !edge
->caller
->global
.inlined_to
1101 /* ... and edges executed only conditionally ... */
1102 && edge
->frequency
< CGRAPH_FREQ_BASE
1103 /* ... consider case where callee is not inline but caller is ... */
1104 && ((!DECL_DECLARED_INLINE_P (edge
->callee
->decl
)
1105 && DECL_DECLARED_INLINE_P (caller
->decl
))
1106 /* ... or when early optimizers decided to split and edge
1107 frequency still indicates splitting is a win ... */
1108 || (callee
->split_part
&& !caller
->split_part
1112 (PARAM_PARTIAL_INLINING_ENTRY_PROBABILITY
) / 100
1113 /* ... and do not overwrite user specified hints. */
1114 && (!DECL_DECLARED_INLINE_P (edge
->callee
->decl
)
1115 || DECL_DECLARED_INLINE_P (caller
->decl
)))))
1117 struct ipa_fn_summary
*caller_info
= ipa_fn_summaries
->get (caller
);
1118 int caller_growth
= caller_info
->growth
;
1120 /* Only apply the penalty when caller looks like inline candidate,
1121 and it is not called once and. */
1122 if (!caller_info
->single_caller
&& overall_growth
< caller_growth
1123 && caller_info
->inlinable
1124 && caller_info
->size
1125 < (DECL_DECLARED_INLINE_P (caller
->decl
)
1126 ? MAX_INLINE_INSNS_SINGLE
: MAX_INLINE_INSNS_AUTO
))
1130 " Wrapper penalty. Increasing growth %i to %i\n",
1131 overall_growth
, caller_growth
);
1132 overall_growth
= caller_growth
;
1135 if (overall_growth
> 0)
1137 /* Strongly preffer functions with few callers that can be inlined
1138 fully. The square root here leads to smaller binaries at average.
1139 Watch however for extreme cases and return to linear function
1140 when growth is large. */
1141 if (overall_growth
< 256)
1142 overall_growth
*= overall_growth
;
1144 overall_growth
+= 256 * 256 - 256;
1145 denominator
*= overall_growth
;
1147 denominator
*= inlined_time
;
1149 badness
= - numerator
/ denominator
;
1154 " %f: guessed profile. frequency %f, count %" PRId64
1155 " caller count %" PRId64
1156 " time w/o inlining %f, time with inlining %f"
1157 " overall growth %i (current) %i (original)"
1158 " %i (compensated)\n",
1159 badness
.to_double (),
1160 (double)edge
->frequency
/ CGRAPH_FREQ_BASE
,
1161 edge
->count
.initialized_p () ? edge
->count
.to_gcov_type () : -1,
1162 caller
->count
.initialized_p () ? caller
->count
.to_gcov_type () : -1,
1163 compute_uninlined_call_time (edge
,
1164 unspec_edge_time
).to_double (),
1165 compute_inlined_call_time (edge
, edge_time
).to_double (),
1166 estimate_growth (callee
),
1167 callee_info
->growth
, overall_growth
);
1170 /* When function local profile is not available or it does not give
1171 useful information (ie frequency is zero), base the cost on
1172 loop nest and overall size growth, so we optimize for overall number
1173 of functions fully inlined in program. */
1176 int nest
= MIN (ipa_call_summaries
->get (edge
)->loop_depth
, 8);
1179 /* Decrease badness if call is nested. */
1181 badness
= badness
>> nest
;
1183 badness
= badness
<< nest
;
1185 fprintf (dump_file
, " %f: no profile. nest %i\n",
1186 badness
.to_double (), nest
);
1188 gcc_checking_assert (badness
!= 0);
1190 if (edge
->recursive_p ())
1191 badness
= badness
.shift (badness
> 0 ? 4 : -4);
1192 if ((hints
& (INLINE_HINT_indirect_call
1193 | INLINE_HINT_loop_iterations
1194 | INLINE_HINT_array_index
1195 | INLINE_HINT_loop_stride
))
1196 || callee_info
->growth
<= 0)
1197 badness
= badness
.shift (badness
> 0 ? -2 : 2);
1198 if (hints
& (INLINE_HINT_same_scc
))
1199 badness
= badness
.shift (badness
> 0 ? 3 : -3);
1200 else if (hints
& (INLINE_HINT_in_scc
))
1201 badness
= badness
.shift (badness
> 0 ? 2 : -2);
1202 else if (hints
& (INLINE_HINT_cross_module
))
1203 badness
= badness
.shift (badness
> 0 ? 1 : -1);
1204 if (DECL_DISREGARD_INLINE_LIMITS (callee
->decl
))
1205 badness
= badness
.shift (badness
> 0 ? -4 : 4);
1206 else if ((hints
& INLINE_HINT_declared_inline
))
1207 badness
= badness
.shift (badness
> 0 ? -3 : 3);
1209 fprintf (dump_file
, " Adjusted by hints %f\n", badness
.to_double ());
1213 /* Recompute badness of EDGE and update its key in HEAP if needed. */
1215 update_edge_key (edge_heap_t
*heap
, struct cgraph_edge
*edge
)
1217 sreal badness
= edge_badness (edge
, false);
1220 edge_heap_node_t
*n
= (edge_heap_node_t
*) edge
->aux
;
1221 gcc_checking_assert (n
->get_data () == edge
);
1223 /* fibonacci_heap::replace_key does busy updating of the
1224 heap that is unnecesarily expensive.
1225 We do lazy increases: after extracting minimum if the key
1226 turns out to be out of date, it is re-inserted into heap
1227 with correct value. */
1228 if (badness
< n
->get_key ())
1230 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1233 " decreasing badness %s -> %s, %f to %f\n",
1234 edge
->caller
->dump_name (),
1235 edge
->callee
->dump_name (),
1236 n
->get_key ().to_double (),
1237 badness
.to_double ());
1239 heap
->decrease_key (n
, badness
);
1244 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1247 " enqueuing call %s -> %s, badness %f\n",
1248 edge
->caller
->dump_name (),
1249 edge
->callee
->dump_name (),
1250 badness
.to_double ());
1252 edge
->aux
= heap
->insert (badness
, edge
);
1257 /* NODE was inlined.
1258 All caller edges needs to be resetted because
1259 size estimates change. Similarly callees needs reset
1260 because better context may be known. */
1263 reset_edge_caches (struct cgraph_node
*node
)
1265 struct cgraph_edge
*edge
;
1266 struct cgraph_edge
*e
= node
->callees
;
1267 struct cgraph_node
*where
= node
;
1268 struct ipa_ref
*ref
;
1270 if (where
->global
.inlined_to
)
1271 where
= where
->global
.inlined_to
;
1273 for (edge
= where
->callers
; edge
; edge
= edge
->next_caller
)
1274 if (edge
->inline_failed
)
1275 reset_edge_growth_cache (edge
);
1277 FOR_EACH_ALIAS (where
, ref
)
1278 reset_edge_caches (dyn_cast
<cgraph_node
*> (ref
->referring
));
1284 if (!e
->inline_failed
&& e
->callee
->callees
)
1285 e
= e
->callee
->callees
;
1288 if (e
->inline_failed
)
1289 reset_edge_growth_cache (e
);
1296 if (e
->caller
== node
)
1298 e
= e
->caller
->callers
;
1300 while (!e
->next_callee
);
1306 /* Recompute HEAP nodes for each of caller of NODE.
1307 UPDATED_NODES track nodes we already visited, to avoid redundant work.
1308 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
1309 it is inlinable. Otherwise check all edges. */
1312 update_caller_keys (edge_heap_t
*heap
, struct cgraph_node
*node
,
1313 bitmap updated_nodes
,
1314 struct cgraph_edge
*check_inlinablity_for
)
1316 struct cgraph_edge
*edge
;
1317 struct ipa_ref
*ref
;
1319 if ((!node
->alias
&& !ipa_fn_summaries
->get (node
)->inlinable
)
1320 || node
->global
.inlined_to
)
1322 if (!bitmap_set_bit (updated_nodes
, node
->uid
))
1325 FOR_EACH_ALIAS (node
, ref
)
1327 struct cgraph_node
*alias
= dyn_cast
<cgraph_node
*> (ref
->referring
);
1328 update_caller_keys (heap
, alias
, updated_nodes
, check_inlinablity_for
);
1331 for (edge
= node
->callers
; edge
; edge
= edge
->next_caller
)
1332 if (edge
->inline_failed
)
1334 if (!check_inlinablity_for
1335 || check_inlinablity_for
== edge
)
1337 if (can_inline_edge_p (edge
, false)
1338 && want_inline_small_function_p (edge
, false))
1339 update_edge_key (heap
, edge
);
1342 report_inline_failed_reason (edge
);
1343 heap
->delete_node ((edge_heap_node_t
*) edge
->aux
);
1348 update_edge_key (heap
, edge
);
1352 /* Recompute HEAP nodes for each uninlined call in NODE.
1353 This is used when we know that edge badnesses are going only to increase
1354 (we introduced new call site) and thus all we need is to insert newly
1355 created edges into heap. */
1358 update_callee_keys (edge_heap_t
*heap
, struct cgraph_node
*node
,
1359 bitmap updated_nodes
)
1361 struct cgraph_edge
*e
= node
->callees
;
1366 if (!e
->inline_failed
&& e
->callee
->callees
)
1367 e
= e
->callee
->callees
;
1370 enum availability avail
;
1371 struct cgraph_node
*callee
;
1372 /* We do not reset callee growth cache here. Since we added a new call,
1373 growth chould have just increased and consequentely badness metric
1374 don't need updating. */
1375 if (e
->inline_failed
1376 && (callee
= e
->callee
->ultimate_alias_target (&avail
, e
->caller
))
1377 && ipa_fn_summaries
->get (callee
)->inlinable
1378 && avail
>= AVAIL_AVAILABLE
1379 && !bitmap_bit_p (updated_nodes
, callee
->uid
))
1381 if (can_inline_edge_p (e
, false)
1382 && want_inline_small_function_p (e
, false))
1383 update_edge_key (heap
, e
);
1386 report_inline_failed_reason (e
);
1387 heap
->delete_node ((edge_heap_node_t
*) e
->aux
);
1397 if (e
->caller
== node
)
1399 e
= e
->caller
->callers
;
1401 while (!e
->next_callee
);
1407 /* Enqueue all recursive calls from NODE into priority queue depending on
1408 how likely we want to recursively inline the call. */
1411 lookup_recursive_calls (struct cgraph_node
*node
, struct cgraph_node
*where
,
1414 struct cgraph_edge
*e
;
1415 enum availability avail
;
1417 for (e
= where
->callees
; e
; e
= e
->next_callee
)
1418 if (e
->callee
== node
1419 || (e
->callee
->ultimate_alias_target (&avail
, e
->caller
) == node
1420 && avail
> AVAIL_INTERPOSABLE
))
1422 /* When profile feedback is available, prioritize by expected number
1424 heap
->insert (!(max_count
> 0) || !e
->count
.initialized_p () ? -e
->frequency
1425 : -(e
->count
.to_gcov_type ()
1426 / ((max_count
.to_gcov_type () + (1<<24) - 1)
1430 for (e
= where
->callees
; e
; e
= e
->next_callee
)
1431 if (!e
->inline_failed
)
1432 lookup_recursive_calls (node
, e
->callee
, heap
);
1435 /* Decide on recursive inlining: in the case function has recursive calls,
1436 inline until body size reaches given argument. If any new indirect edges
1437 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1441 recursive_inlining (struct cgraph_edge
*edge
,
1442 vec
<cgraph_edge
*> *new_edges
)
1444 int limit
= PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO
);
1445 edge_heap_t
heap (sreal::min ());
1446 struct cgraph_node
*node
;
1447 struct cgraph_edge
*e
;
1448 struct cgraph_node
*master_clone
= NULL
, *next
;
1452 node
= edge
->caller
;
1453 if (node
->global
.inlined_to
)
1454 node
= node
->global
.inlined_to
;
1456 if (DECL_DECLARED_INLINE_P (node
->decl
))
1457 limit
= PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE
);
1459 /* Make sure that function is small enough to be considered for inlining. */
1460 if (estimate_size_after_inlining (node
, edge
) >= limit
)
1462 lookup_recursive_calls (node
, node
, &heap
);
1468 " Performing recursive inlining on %s\n",
1471 /* Do the inlining and update list of recursive call during process. */
1472 while (!heap
.empty ())
1474 struct cgraph_edge
*curr
= heap
.extract_min ();
1475 struct cgraph_node
*cnode
, *dest
= curr
->callee
;
1477 if (!can_inline_edge_p (curr
, true))
1480 /* MASTER_CLONE is produced in the case we already started modified
1481 the function. Be sure to redirect edge to the original body before
1482 estimating growths otherwise we will be seeing growths after inlining
1483 the already modified body. */
1486 curr
->redirect_callee (master_clone
);
1487 reset_edge_growth_cache (curr
);
1490 if (estimate_size_after_inlining (node
, curr
) > limit
)
1492 curr
->redirect_callee (dest
);
1493 reset_edge_growth_cache (curr
);
1498 for (cnode
= curr
->caller
;
1499 cnode
->global
.inlined_to
; cnode
= cnode
->callers
->caller
)
1501 == curr
->callee
->ultimate_alias_target ()->decl
)
1504 if (!want_inline_self_recursive_call_p (curr
, node
, false, depth
))
1506 curr
->redirect_callee (dest
);
1507 reset_edge_growth_cache (curr
);
1514 " Inlining call of depth %i", depth
);
1515 if (node
->count
> profile_count::zero ())
1517 fprintf (dump_file
, " called approx. %.2f times per call",
1518 (double)curr
->count
.to_gcov_type ()
1519 / node
->count
.to_gcov_type ());
1521 fprintf (dump_file
, "\n");
1525 /* We need original clone to copy around. */
1526 master_clone
= node
->create_clone (node
->decl
, node
->count
,
1527 CGRAPH_FREQ_BASE
, false, vNULL
,
1529 for (e
= master_clone
->callees
; e
; e
= e
->next_callee
)
1530 if (!e
->inline_failed
)
1531 clone_inlined_nodes (e
, true, false, NULL
, CGRAPH_FREQ_BASE
);
1532 curr
->redirect_callee (master_clone
);
1533 reset_edge_growth_cache (curr
);
1536 inline_call (curr
, false, new_edges
, &overall_size
, true);
1537 lookup_recursive_calls (node
, curr
->callee
, &heap
);
1541 if (!heap
.empty () && dump_file
)
1542 fprintf (dump_file
, " Recursive inlining growth limit met.\n");
1549 "\n Inlined %i times, "
1550 "body grown from size %i to %i, time %f to %f\n", n
,
1551 ipa_fn_summaries
->get (master_clone
)->size
,
1552 ipa_fn_summaries
->get (node
)->size
,
1553 ipa_fn_summaries
->get (master_clone
)->time
.to_double (),
1554 ipa_fn_summaries
->get (node
)->time
.to_double ());
1556 /* Remove master clone we used for inlining. We rely that clones inlined
1557 into master clone gets queued just before master clone so we don't
1559 for (node
= symtab
->first_function (); node
!= master_clone
;
1562 next
= symtab
->next_function (node
);
1563 if (node
->global
.inlined_to
== master_clone
)
1566 master_clone
->remove ();
1571 /* Given whole compilation unit estimate of INSNS, compute how large we can
1572 allow the unit to grow. */
1575 compute_max_insns (int insns
)
1577 int max_insns
= insns
;
1578 if (max_insns
< PARAM_VALUE (PARAM_LARGE_UNIT_INSNS
))
1579 max_insns
= PARAM_VALUE (PARAM_LARGE_UNIT_INSNS
);
1581 return ((int64_t) max_insns
1582 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH
)) / 100);
1586 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1589 add_new_edges_to_heap (edge_heap_t
*heap
, vec
<cgraph_edge
*> new_edges
)
1591 while (new_edges
.length () > 0)
1593 struct cgraph_edge
*edge
= new_edges
.pop ();
1595 gcc_assert (!edge
->aux
);
1596 if (edge
->inline_failed
1597 && can_inline_edge_p (edge
, true)
1598 && want_inline_small_function_p (edge
, true))
1599 edge
->aux
= heap
->insert (edge_badness (edge
, false), edge
);
1603 /* Remove EDGE from the fibheap. */
1606 heap_edge_removal_hook (struct cgraph_edge
*e
, void *data
)
1610 ((edge_heap_t
*)data
)->delete_node ((edge_heap_node_t
*)e
->aux
);
1615 /* Return true if speculation of edge E seems useful.
1616 If ANTICIPATE_INLINING is true, be conservative and hope that E
1620 speculation_useful_p (struct cgraph_edge
*e
, bool anticipate_inlining
)
1622 enum availability avail
;
1623 struct cgraph_node
*target
= e
->callee
->ultimate_alias_target (&avail
,
1625 struct cgraph_edge
*direct
, *indirect
;
1626 struct ipa_ref
*ref
;
1628 gcc_assert (e
->speculative
&& !e
->indirect_unknown_callee
);
1630 if (!e
->maybe_hot_p ())
1633 /* See if IP optimizations found something potentially useful about the
1634 function. For now we look only for CONST/PURE flags. Almost everything
1635 else we propagate is useless. */
1636 if (avail
>= AVAIL_AVAILABLE
)
1638 int ecf_flags
= flags_from_decl_or_type (target
->decl
);
1639 if (ecf_flags
& ECF_CONST
)
1641 e
->speculative_call_info (direct
, indirect
, ref
);
1642 if (!(indirect
->indirect_info
->ecf_flags
& ECF_CONST
))
1645 else if (ecf_flags
& ECF_PURE
)
1647 e
->speculative_call_info (direct
, indirect
, ref
);
1648 if (!(indirect
->indirect_info
->ecf_flags
& ECF_PURE
))
1652 /* If we did not managed to inline the function nor redirect
1653 to an ipa-cp clone (that are seen by having local flag set),
1654 it is probably pointless to inline it unless hardware is missing
1655 indirect call predictor. */
1656 if (!anticipate_inlining
&& e
->inline_failed
&& !target
->local
.local
)
1658 /* For overwritable targets there is not much to do. */
1659 if (e
->inline_failed
&& !can_inline_edge_p (e
, false, true))
1661 /* OK, speculation seems interesting. */
1665 /* We know that EDGE is not going to be inlined.
1666 See if we can remove speculation. */
1669 resolve_noninline_speculation (edge_heap_t
*edge_heap
, struct cgraph_edge
*edge
)
1671 if (edge
->speculative
&& !speculation_useful_p (edge
, false))
1673 struct cgraph_node
*node
= edge
->caller
;
1674 struct cgraph_node
*where
= node
->global
.inlined_to
1675 ? node
->global
.inlined_to
: node
;
1676 auto_bitmap updated_nodes
;
1678 spec_rem
+= edge
->count
;
1679 edge
->resolve_speculation ();
1680 reset_edge_caches (where
);
1681 ipa_update_overall_fn_summary (where
);
1682 update_caller_keys (edge_heap
, where
,
1683 updated_nodes
, NULL
);
1684 update_callee_keys (edge_heap
, where
,
1689 /* Return true if NODE should be accounted for overall size estimate.
1690 Skip all nodes optimized for size so we can measure the growth of hot
1691 part of program no matter of the padding. */
1694 inline_account_function_p (struct cgraph_node
*node
)
1696 return (!DECL_EXTERNAL (node
->decl
)
1697 && !opt_for_fn (node
->decl
, optimize_size
)
1698 && node
->frequency
!= NODE_FREQUENCY_UNLIKELY_EXECUTED
);
1701 /* Count number of callers of NODE and store it into DATA (that
1702 points to int. Worker for cgraph_for_node_and_aliases. */
1705 sum_callers (struct cgraph_node
*node
, void *data
)
1707 struct cgraph_edge
*e
;
1708 int *num_calls
= (int *)data
;
1710 for (e
= node
->callers
; e
; e
= e
->next_caller
)
1715 /* We use greedy algorithm for inlining of small functions:
1716 All inline candidates are put into prioritized heap ordered in
1719 The inlining of small functions is bounded by unit growth parameters. */
1722 inline_small_functions (void)
1724 struct cgraph_node
*node
;
1725 struct cgraph_edge
*edge
;
1726 edge_heap_t
edge_heap (sreal::min ());
1727 auto_bitmap updated_nodes
;
1728 int min_size
, max_size
;
1729 auto_vec
<cgraph_edge
*> new_indirect_edges
;
1730 int initial_size
= 0;
1731 struct cgraph_node
**order
= XCNEWVEC (cgraph_node
*, symtab
->cgraph_count
);
1732 struct cgraph_edge_hook_list
*edge_removal_hook_holder
;
1733 new_indirect_edges
.create (8);
1735 edge_removal_hook_holder
1736 = symtab
->add_edge_removal_hook (&heap_edge_removal_hook
, &edge_heap
);
1738 /* Compute overall unit size and other global parameters used by badness
1741 max_count
= profile_count::uninitialized ();
1742 ipa_reduced_postorder (order
, true, true, NULL
);
1745 FOR_EACH_DEFINED_FUNCTION (node
)
1746 if (!node
->global
.inlined_to
)
1748 if (!node
->alias
&& node
->analyzed
1749 && (node
->has_gimple_body_p () || node
->thunk
.thunk_p
))
1751 struct ipa_fn_summary
*info
= ipa_fn_summaries
->get (node
);
1752 struct ipa_dfs_info
*dfs
= (struct ipa_dfs_info
*) node
->aux
;
1754 /* Do not account external functions, they will be optimized out
1755 if not inlined. Also only count the non-cold portion of program. */
1756 if (inline_account_function_p (node
))
1757 initial_size
+= info
->size
;
1758 info
->growth
= estimate_growth (node
);
1761 node
->call_for_symbol_and_aliases (sum_callers
, &num_calls
,
1764 info
->single_caller
= true;
1765 if (dfs
&& dfs
->next_cycle
)
1767 struct cgraph_node
*n2
;
1768 int id
= dfs
->scc_no
+ 1;
1770 n2
= ((struct ipa_dfs_info
*) node
->aux
)->next_cycle
)
1772 struct ipa_fn_summary
*info2
= ipa_fn_summaries
->get (n2
);
1780 for (edge
= node
->callers
; edge
; edge
= edge
->next_caller
)
1781 if (!(max_count
>= edge
->count
))
1782 max_count
= edge
->count
;
1784 ipa_free_postorder_info ();
1785 initialize_growth_caches ();
1789 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1792 overall_size
= initial_size
;
1793 max_size
= compute_max_insns (overall_size
);
1794 min_size
= overall_size
;
1796 /* Populate the heap with all edges we might inline. */
1798 FOR_EACH_DEFINED_FUNCTION (node
)
1800 bool update
= false;
1801 struct cgraph_edge
*next
= NULL
;
1802 bool has_speculative
= false;
1805 fprintf (dump_file
, "Enqueueing calls in %s.\n", node
->dump_name ());
1807 for (edge
= node
->callees
; edge
; edge
= next
)
1809 next
= edge
->next_callee
;
1810 if (edge
->inline_failed
1812 && can_inline_edge_p (edge
, true)
1813 && want_inline_small_function_p (edge
, true)
1814 && edge
->inline_failed
)
1816 gcc_assert (!edge
->aux
);
1817 update_edge_key (&edge_heap
, edge
);
1819 if (edge
->speculative
)
1820 has_speculative
= true;
1822 if (has_speculative
)
1823 for (edge
= node
->callees
; edge
; edge
= next
)
1824 if (edge
->speculative
&& !speculation_useful_p (edge
,
1827 edge
->resolve_speculation ();
1832 struct cgraph_node
*where
= node
->global
.inlined_to
1833 ? node
->global
.inlined_to
: node
;
1834 ipa_update_overall_fn_summary (where
);
1835 reset_edge_caches (where
);
1836 update_caller_keys (&edge_heap
, where
,
1837 updated_nodes
, NULL
);
1838 update_callee_keys (&edge_heap
, where
,
1840 bitmap_clear (updated_nodes
);
1844 gcc_assert (in_lto_p
1846 || (profile_info
&& flag_branch_probabilities
));
1848 while (!edge_heap
.empty ())
1850 int old_size
= overall_size
;
1851 struct cgraph_node
*where
, *callee
;
1852 sreal badness
= edge_heap
.min_key ();
1853 sreal current_badness
;
1856 edge
= edge_heap
.extract_min ();
1857 gcc_assert (edge
->aux
);
1859 if (!edge
->inline_failed
|| !edge
->callee
->analyzed
)
1863 /* Be sure that caches are maintained consistent. */
1864 sreal cached_badness
= edge_badness (edge
, false);
1866 int old_size_est
= estimate_edge_size (edge
);
1867 sreal old_time_est
= estimate_edge_time (edge
);
1868 int old_hints_est
= estimate_edge_hints (edge
);
1870 reset_edge_growth_cache (edge
);
1871 gcc_assert (old_size_est
== estimate_edge_size (edge
));
1872 gcc_assert (old_time_est
== estimate_edge_time (edge
));
1875 gcc_assert (old_hints_est == estimate_edge_hints (edge));
1877 fails with profile feedback because some hints depends on
1878 maybe_hot_edge_p predicate and because callee gets inlined to other
1879 calls, the edge may become cold.
1880 This ought to be fixed by computing relative probabilities
1881 for given invocation but that will be better done once whole
1882 code is converted to sreals. Disable for now and revert to "wrong"
1883 value so enable/disable checking paths agree. */
1884 edge_growth_cache
[edge
->uid
].hints
= old_hints_est
+ 1;
1886 /* When updating the edge costs, we only decrease badness in the keys.
1887 Increases of badness are handled lazilly; when we see key with out
1888 of date value on it, we re-insert it now. */
1889 current_badness
= edge_badness (edge
, false);
1890 gcc_assert (cached_badness
== current_badness
);
1891 gcc_assert (current_badness
>= badness
);
1893 current_badness
= edge_badness (edge
, false);
1895 if (current_badness
!= badness
)
1897 if (edge_heap
.min () && current_badness
> edge_heap
.min_key ())
1899 edge
->aux
= edge_heap
.insert (current_badness
, edge
);
1903 badness
= current_badness
;
1906 if (!can_inline_edge_p (edge
, true))
1908 resolve_noninline_speculation (&edge_heap
, edge
);
1912 callee
= edge
->callee
->ultimate_alias_target ();
1913 growth
= estimate_edge_growth (edge
);
1917 "\nConsidering %s with %i size\n",
1918 callee
->dump_name (),
1919 ipa_fn_summaries
->get (callee
)->size
);
1921 " to be inlined into %s in %s:%i\n"
1922 " Estimated badness is %f, frequency %.2f.\n",
1923 edge
->caller
->dump_name (),
1925 && (LOCATION_LOCUS (gimple_location ((const gimple
*)
1927 > BUILTINS_LOCATION
)
1928 ? gimple_filename ((const gimple
*) edge
->call_stmt
)
1931 ? gimple_lineno ((const gimple
*) edge
->call_stmt
)
1933 badness
.to_double (),
1934 edge
->frequency
/ (double)CGRAPH_FREQ_BASE
);
1935 if (edge
->count
.initialized_p ())
1937 fprintf (dump_file
, " Called ");
1938 edge
->count
.dump (dump_file
);
1939 fprintf (dump_file
, "times\n");
1941 if (dump_flags
& TDF_DETAILS
)
1942 edge_badness (edge
, true);
1945 if (overall_size
+ growth
> max_size
1946 && !DECL_DISREGARD_INLINE_LIMITS (callee
->decl
))
1948 edge
->inline_failed
= CIF_INLINE_UNIT_GROWTH_LIMIT
;
1949 report_inline_failed_reason (edge
);
1950 resolve_noninline_speculation (&edge_heap
, edge
);
1954 if (!want_inline_small_function_p (edge
, true))
1956 resolve_noninline_speculation (&edge_heap
, edge
);
1960 /* Heuristics for inlining small functions work poorly for
1961 recursive calls where we do effects similar to loop unrolling.
1962 When inlining such edge seems profitable, leave decision on
1963 specific inliner. */
1964 if (edge
->recursive_p ())
1966 where
= edge
->caller
;
1967 if (where
->global
.inlined_to
)
1968 where
= where
->global
.inlined_to
;
1969 if (!recursive_inlining (edge
,
1970 opt_for_fn (edge
->caller
->decl
,
1971 flag_indirect_inlining
)
1972 ? &new_indirect_edges
: NULL
))
1974 edge
->inline_failed
= CIF_RECURSIVE_INLINING
;
1975 resolve_noninline_speculation (&edge_heap
, edge
);
1978 reset_edge_caches (where
);
1979 /* Recursive inliner inlines all recursive calls of the function
1980 at once. Consequently we need to update all callee keys. */
1981 if (opt_for_fn (edge
->caller
->decl
, flag_indirect_inlining
))
1982 add_new_edges_to_heap (&edge_heap
, new_indirect_edges
);
1983 update_callee_keys (&edge_heap
, where
, updated_nodes
);
1984 bitmap_clear (updated_nodes
);
1988 struct cgraph_node
*outer_node
= NULL
;
1991 /* Consider the case where self recursive function A is inlined
1992 into B. This is desired optimization in some cases, since it
1993 leads to effect similar of loop peeling and we might completely
1994 optimize out the recursive call. However we must be extra
1997 where
= edge
->caller
;
1998 while (where
->global
.inlined_to
)
2000 if (where
->decl
== callee
->decl
)
2001 outer_node
= where
, depth
++;
2002 where
= where
->callers
->caller
;
2005 && !want_inline_self_recursive_call_p (edge
, outer_node
,
2009 = (DECL_DISREGARD_INLINE_LIMITS (edge
->callee
->decl
)
2010 ? CIF_RECURSIVE_INLINING
: CIF_UNSPECIFIED
);
2011 resolve_noninline_speculation (&edge_heap
, edge
);
2014 else if (depth
&& dump_file
)
2015 fprintf (dump_file
, " Peeling recursion with depth %i\n", depth
);
2017 gcc_checking_assert (!callee
->global
.inlined_to
);
2018 inline_call (edge
, true, &new_indirect_edges
, &overall_size
, true);
2019 add_new_edges_to_heap (&edge_heap
, new_indirect_edges
);
2021 reset_edge_caches (edge
->callee
);
2023 update_callee_keys (&edge_heap
, where
, updated_nodes
);
2025 where
= edge
->caller
;
2026 if (where
->global
.inlined_to
)
2027 where
= where
->global
.inlined_to
;
2029 /* Our profitability metric can depend on local properties
2030 such as number of inlinable calls and size of the function body.
2031 After inlining these properties might change for the function we
2032 inlined into (since it's body size changed) and for the functions
2033 called by function we inlined (since number of it inlinable callers
2035 update_caller_keys (&edge_heap
, where
, updated_nodes
, NULL
);
2036 /* Offline copy count has possibly changed, recompute if profile is
2038 if (max_count
> profile_count::zero ())
2040 struct cgraph_node
*n
= cgraph_node::get (edge
->callee
->decl
);
2041 if (n
!= edge
->callee
&& n
->analyzed
)
2042 update_callee_keys (&edge_heap
, n
, updated_nodes
);
2044 bitmap_clear (updated_nodes
);
2049 " Inlined %s into %s which now has time %f and size %i, "
2050 "net change of %+i.\n",
2051 xstrdup_for_dump (edge
->callee
->name ()),
2052 xstrdup_for_dump (edge
->caller
->name ()),
2053 ipa_fn_summaries
->get (edge
->caller
)->time
.to_double (),
2054 ipa_fn_summaries
->get (edge
->caller
)->size
,
2055 overall_size
- old_size
);
2057 if (min_size
> overall_size
)
2059 min_size
= overall_size
;
2060 max_size
= compute_max_insns (min_size
);
2063 fprintf (dump_file
, "New minimal size reached: %i\n", min_size
);
2067 free_growth_caches ();
2070 "Unit growth for small function inlining: %i->%i (%i%%)\n",
2071 initial_size
, overall_size
,
2072 initial_size
? overall_size
* 100 / (initial_size
) - 100: 0);
2073 symtab
->remove_edge_removal_hook (edge_removal_hook_holder
);
2076 /* Flatten NODE. Performed both during early inlining and
2077 at IPA inlining time. */
2080 flatten_function (struct cgraph_node
*node
, bool early
)
2082 struct cgraph_edge
*e
;
2084 /* We shouldn't be called recursively when we are being processed. */
2085 gcc_assert (node
->aux
== NULL
);
2087 node
->aux
= (void *) node
;
2089 for (e
= node
->callees
; e
; e
= e
->next_callee
)
2091 struct cgraph_node
*orig_callee
;
2092 struct cgraph_node
*callee
= e
->callee
->ultimate_alias_target ();
2094 /* We've hit cycle? It is time to give up. */
2099 "Not inlining %s into %s to avoid cycle.\n",
2100 xstrdup_for_dump (callee
->name ()),
2101 xstrdup_for_dump (e
->caller
->name ()));
2102 e
->inline_failed
= CIF_RECURSIVE_INLINING
;
2106 /* When the edge is already inlined, we just need to recurse into
2107 it in order to fully flatten the leaves. */
2108 if (!e
->inline_failed
)
2110 flatten_function (callee
, early
);
2114 /* Flatten attribute needs to be processed during late inlining. For
2115 extra code quality we however do flattening during early optimization,
2118 ? !can_inline_edge_p (e
, true)
2119 : !can_early_inline_edge_p (e
))
2122 if (e
->recursive_p ())
2125 fprintf (dump_file
, "Not inlining: recursive call.\n");
2129 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node
->decl
))
2130 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee
->decl
)))
2133 fprintf (dump_file
, "Not inlining: SSA form does not match.\n");
2137 /* Inline the edge and flatten the inline clone. Avoid
2138 recursing through the original node if the node was cloned. */
2140 fprintf (dump_file
, " Inlining %s into %s.\n",
2141 xstrdup_for_dump (callee
->name ()),
2142 xstrdup_for_dump (e
->caller
->name ()));
2143 orig_callee
= callee
;
2144 inline_call (e
, true, NULL
, NULL
, false);
2145 if (e
->callee
!= orig_callee
)
2146 orig_callee
->aux
= (void *) node
;
2147 flatten_function (e
->callee
, early
);
2148 if (e
->callee
!= orig_callee
)
2149 orig_callee
->aux
= NULL
;
2153 if (!node
->global
.inlined_to
)
2154 ipa_update_overall_fn_summary (node
);
2157 /* Inline NODE to all callers. Worker for cgraph_for_node_and_aliases.
2158 DATA points to number of calls originally found so we avoid infinite
2162 inline_to_all_callers_1 (struct cgraph_node
*node
, void *data
,
2163 hash_set
<cgraph_node
*> *callers
)
2165 int *num_calls
= (int *)data
;
2166 bool callee_removed
= false;
2168 while (node
->callers
&& !node
->global
.inlined_to
)
2170 struct cgraph_node
*caller
= node
->callers
->caller
;
2172 if (!can_inline_edge_p (node
->callers
, true)
2173 || node
->callers
->recursive_p ())
2176 fprintf (dump_file
, "Uninlinable call found; giving up.\n");
2184 "\nInlining %s size %i.\n",
2186 ipa_fn_summaries
->get (node
)->size
);
2188 " Called once from %s %i insns.\n",
2189 node
->callers
->caller
->name (),
2190 ipa_fn_summaries
->get (node
->callers
->caller
)->size
);
2193 /* Remember which callers we inlined to, delaying updating the
2195 callers
->add (node
->callers
->caller
);
2196 inline_call (node
->callers
, true, NULL
, NULL
, false, &callee_removed
);
2199 " Inlined into %s which now has %i size\n",
2201 ipa_fn_summaries
->get (caller
)->size
);
2202 if (!(*num_calls
)--)
2205 fprintf (dump_file
, "New calls found; giving up.\n");
2206 return callee_removed
;
2214 /* Wrapper around inline_to_all_callers_1 doing delayed overall summary
2218 inline_to_all_callers (struct cgraph_node
*node
, void *data
)
2220 hash_set
<cgraph_node
*> callers
;
2221 bool res
= inline_to_all_callers_1 (node
, data
, &callers
);
2222 /* Perform the delayed update of the overall summary of all callers
2223 processed. This avoids quadratic behavior in the cases where
2224 we have a lot of calls to the same function. */
2225 for (hash_set
<cgraph_node
*>::iterator i
= callers
.begin ();
2226 i
!= callers
.end (); ++i
)
2227 ipa_update_overall_fn_summary (*i
);
2231 /* Output overall time estimate. */
2233 dump_overall_stats (void)
2235 sreal sum_weighted
= 0, sum
= 0;
2236 struct cgraph_node
*node
;
2238 FOR_EACH_DEFINED_FUNCTION (node
)
2239 if (!node
->global
.inlined_to
2242 sreal time
= ipa_fn_summaries
->get (node
)->time
;
2244 if (node
->count
.initialized_p ())
2245 sum_weighted
+= time
* node
->count
.to_gcov_type ();
2247 fprintf (dump_file
, "Overall time estimate: "
2248 "%f weighted by profile: "
2249 "%f\n", sum
.to_double (), sum_weighted
.to_double ());
2252 /* Output some useful stats about inlining. */
2255 dump_inline_stats (void)
2257 int64_t inlined_cnt
= 0, inlined_indir_cnt
= 0;
2258 int64_t inlined_virt_cnt
= 0, inlined_virt_indir_cnt
= 0;
2259 int64_t noninlined_cnt
= 0, noninlined_indir_cnt
= 0;
2260 int64_t noninlined_virt_cnt
= 0, noninlined_virt_indir_cnt
= 0;
2261 int64_t inlined_speculative
= 0, inlined_speculative_ply
= 0;
2262 int64_t indirect_poly_cnt
= 0, indirect_cnt
= 0;
2263 int64_t reason
[CIF_N_REASONS
][3];
2265 struct cgraph_node
*node
;
2267 memset (reason
, 0, sizeof (reason
));
2268 FOR_EACH_DEFINED_FUNCTION (node
)
2270 struct cgraph_edge
*e
;
2271 for (e
= node
->callees
; e
; e
= e
->next_callee
)
2273 if (e
->inline_failed
)
2275 if (e
->count
.initialized_p ())
2276 reason
[(int) e
->inline_failed
][0] += e
->count
.to_gcov_type ();
2277 reason
[(int) e
->inline_failed
][1] += e
->frequency
;
2278 reason
[(int) e
->inline_failed
][2] ++;
2279 if (DECL_VIRTUAL_P (e
->callee
->decl
)
2280 && e
->count
.initialized_p ())
2282 if (e
->indirect_inlining_edge
)
2283 noninlined_virt_indir_cnt
+= e
->count
.to_gcov_type ();
2285 noninlined_virt_cnt
+= e
->count
.to_gcov_type ();
2287 else if (e
->count
.initialized_p ())
2289 if (e
->indirect_inlining_edge
)
2290 noninlined_indir_cnt
+= e
->count
.to_gcov_type ();
2292 noninlined_cnt
+= e
->count
.to_gcov_type ();
2295 else if (e
->count
.initialized_p ())
2299 if (DECL_VIRTUAL_P (e
->callee
->decl
))
2300 inlined_speculative_ply
+= e
->count
.to_gcov_type ();
2302 inlined_speculative
+= e
->count
.to_gcov_type ();
2304 else if (DECL_VIRTUAL_P (e
->callee
->decl
))
2306 if (e
->indirect_inlining_edge
)
2307 inlined_virt_indir_cnt
+= e
->count
.to_gcov_type ();
2309 inlined_virt_cnt
+= e
->count
.to_gcov_type ();
2313 if (e
->indirect_inlining_edge
)
2314 inlined_indir_cnt
+= e
->count
.to_gcov_type ();
2316 inlined_cnt
+= e
->count
.to_gcov_type ();
2320 for (e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
2321 if (e
->indirect_info
->polymorphic
2322 & e
->count
.initialized_p ())
2323 indirect_poly_cnt
+= e
->count
.to_gcov_type ();
2324 else if (e
->count
.initialized_p ())
2325 indirect_cnt
+= e
->count
.to_gcov_type ();
2327 if (max_count
.initialized_p ())
2330 "Inlined %" PRId64
" + speculative "
2331 "%" PRId64
" + speculative polymorphic "
2332 "%" PRId64
" + previously indirect "
2333 "%" PRId64
" + virtual "
2334 "%" PRId64
" + virtual and previously indirect "
2335 "%" PRId64
"\n" "Not inlined "
2336 "%" PRId64
" + previously indirect "
2337 "%" PRId64
" + virtual "
2338 "%" PRId64
" + virtual and previously indirect "
2339 "%" PRId64
" + stil indirect "
2340 "%" PRId64
" + still indirect polymorphic "
2341 "%" PRId64
"\n", inlined_cnt
,
2342 inlined_speculative
, inlined_speculative_ply
,
2343 inlined_indir_cnt
, inlined_virt_cnt
, inlined_virt_indir_cnt
,
2344 noninlined_cnt
, noninlined_indir_cnt
, noninlined_virt_cnt
,
2345 noninlined_virt_indir_cnt
, indirect_cnt
, indirect_poly_cnt
);
2346 fprintf (dump_file
, "Removed speculations ");
2347 spec_rem
.dump (dump_file
);
2348 fprintf (dump_file
, "\n");
2350 dump_overall_stats ();
2351 fprintf (dump_file
, "\nWhy inlining failed?\n");
2352 for (i
= 0; i
< CIF_N_REASONS
; i
++)
2354 fprintf (dump_file
, "%-50s: %8i calls, %8i freq, %" PRId64
" count\n",
2355 cgraph_inline_failed_string ((cgraph_inline_failed_t
) i
),
2356 (int) reason
[i
][2], (int) reason
[i
][1], reason
[i
][0]);
2359 /* Decide on the inlining. We do so in the topological order to avoid
2360 expenses on updating data structures. */
2365 struct cgraph_node
*node
;
2367 struct cgraph_node
**order
;
2370 bool remove_functions
= false;
2375 cgraph_freq_base_rec
= (sreal
) 1 / (sreal
) CGRAPH_FREQ_BASE
;
2376 percent_rec
= (sreal
) 1 / (sreal
) 100;
2378 order
= XCNEWVEC (struct cgraph_node
*, symtab
->cgraph_count
);
2381 ipa_dump_fn_summaries (dump_file
);
2383 nnodes
= ipa_reverse_postorder (order
);
2385 FOR_EACH_FUNCTION (node
)
2389 /* Recompute the default reasons for inlining because they may have
2390 changed during merging. */
2393 for (cgraph_edge
*e
= node
->callees
; e
; e
= e
->next_callee
)
2395 gcc_assert (e
->inline_failed
);
2396 initialize_inline_failed (e
);
2398 for (cgraph_edge
*e
= node
->indirect_calls
; e
; e
= e
->next_callee
)
2399 initialize_inline_failed (e
);
2404 fprintf (dump_file
, "\nFlattening functions:\n");
2406 /* In the first pass handle functions to be flattened. Do this with
2407 a priority so none of our later choices will make this impossible. */
2408 for (i
= nnodes
- 1; i
>= 0; i
--)
2412 /* Handle nodes to be flattened.
2413 Ideally when processing callees we stop inlining at the
2414 entry of cycles, possibly cloning that entry point and
2415 try to flatten itself turning it into a self-recursive
2417 if (lookup_attribute ("flatten",
2418 DECL_ATTRIBUTES (node
->decl
)) != NULL
)
2422 "Flattening %s\n", node
->name ());
2423 flatten_function (node
, false);
2427 dump_overall_stats ();
2429 inline_small_functions ();
2431 gcc_assert (symtab
->state
== IPA_SSA
);
2432 symtab
->state
= IPA_SSA_AFTER_INLINING
;
2433 /* Do first after-inlining removal. We want to remove all "stale" extern
2434 inline functions and virtual functions so we really know what is called
2436 symtab
->remove_unreachable_nodes (dump_file
);
2439 /* Inline functions with a property that after inlining into all callers the
2440 code size will shrink because the out-of-line copy is eliminated.
2441 We do this regardless on the callee size as long as function growth limits
2445 "\nDeciding on functions to be inlined into all callers and "
2446 "removing useless speculations:\n");
2448 /* Inlining one function called once has good chance of preventing
2449 inlining other function into the same callee. Ideally we should
2450 work in priority order, but probably inlining hot functions first
2451 is good cut without the extra pain of maintaining the queue.
2453 ??? this is not really fitting the bill perfectly: inlining function
2454 into callee often leads to better optimization of callee due to
2455 increased context for optimization.
2456 For example if main() function calls a function that outputs help
2457 and then function that does the main optmization, we should inline
2458 the second with priority even if both calls are cold by themselves.
2460 We probably want to implement new predicate replacing our use of
2461 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
2463 for (cold
= 0; cold
<= 1; cold
++)
2465 FOR_EACH_DEFINED_FUNCTION (node
)
2467 struct cgraph_edge
*edge
, *next
;
2470 for (edge
= node
->callees
; edge
; edge
= next
)
2472 next
= edge
->next_callee
;
2473 if (edge
->speculative
&& !speculation_useful_p (edge
, false))
2475 edge
->resolve_speculation ();
2476 spec_rem
+= edge
->count
;
2478 remove_functions
= true;
2483 struct cgraph_node
*where
= node
->global
.inlined_to
2484 ? node
->global
.inlined_to
: node
;
2485 reset_edge_caches (where
);
2486 ipa_update_overall_fn_summary (where
);
2488 if (want_inline_function_to_all_callers_p (node
, cold
))
2491 node
->call_for_symbol_and_aliases (sum_callers
, &num_calls
,
2493 while (node
->call_for_symbol_and_aliases
2494 (inline_to_all_callers
, &num_calls
, true))
2496 remove_functions
= true;
2501 /* Free ipa-prop structures if they are no longer needed. */
2503 ipa_free_all_structures_after_iinln ();
2508 "\nInlined %i calls, eliminated %i functions\n\n",
2509 ncalls_inlined
, nfunctions_inlined
);
2510 dump_inline_stats ();
2514 ipa_dump_fn_summaries (dump_file
);
2515 /* In WPA we use inline summaries for partitioning process. */
2517 ipa_free_fn_summary ();
2518 return remove_functions
? TODO_remove_functions
: 0;
2521 /* Inline always-inline function calls in NODE. */
2524 inline_always_inline_functions (struct cgraph_node
*node
)
2526 struct cgraph_edge
*e
;
2527 bool inlined
= false;
2529 for (e
= node
->callees
; e
; e
= e
->next_callee
)
2531 struct cgraph_node
*callee
= e
->callee
->ultimate_alias_target ();
2532 if (!DECL_DISREGARD_INLINE_LIMITS (callee
->decl
))
2535 if (e
->recursive_p ())
2538 fprintf (dump_file
, " Not inlining recursive call to %s.\n",
2539 e
->callee
->name ());
2540 e
->inline_failed
= CIF_RECURSIVE_INLINING
;
2544 if (!can_early_inline_edge_p (e
))
2546 /* Set inlined to true if the callee is marked "always_inline" but
2547 is not inlinable. This will allow flagging an error later in
2548 expand_call_inline in tree-inline.c. */
2549 if (lookup_attribute ("always_inline",
2550 DECL_ATTRIBUTES (callee
->decl
)) != NULL
)
2556 fprintf (dump_file
, " Inlining %s into %s (always_inline).\n",
2557 xstrdup_for_dump (e
->callee
->name ()),
2558 xstrdup_for_dump (e
->caller
->name ()));
2559 inline_call (e
, true, NULL
, NULL
, false);
2563 ipa_update_overall_fn_summary (node
);
2568 /* Decide on the inlining. We do so in the topological order to avoid
2569 expenses on updating data structures. */
2572 early_inline_small_functions (struct cgraph_node
*node
)
2574 struct cgraph_edge
*e
;
2575 bool inlined
= false;
2577 for (e
= node
->callees
; e
; e
= e
->next_callee
)
2579 struct cgraph_node
*callee
= e
->callee
->ultimate_alias_target ();
2580 if (!ipa_fn_summaries
->get (callee
)->inlinable
2581 || !e
->inline_failed
)
2584 /* Do not consider functions not declared inline. */
2585 if (!DECL_DECLARED_INLINE_P (callee
->decl
)
2586 && !opt_for_fn (node
->decl
, flag_inline_small_functions
)
2587 && !opt_for_fn (node
->decl
, flag_inline_functions
))
2591 fprintf (dump_file
, "Considering inline candidate %s.\n",
2594 if (!can_early_inline_edge_p (e
))
2597 if (e
->recursive_p ())
2600 fprintf (dump_file
, " Not inlining: recursive call.\n");
2604 if (!want_early_inline_function_p (e
))
2608 fprintf (dump_file
, " Inlining %s into %s.\n",
2609 xstrdup_for_dump (callee
->name ()),
2610 xstrdup_for_dump (e
->caller
->name ()));
2611 inline_call (e
, true, NULL
, NULL
, false);
2616 ipa_update_overall_fn_summary (node
);
2622 early_inliner (function
*fun
)
2624 struct cgraph_node
*node
= cgraph_node::get (current_function_decl
);
2625 struct cgraph_edge
*edge
;
2626 unsigned int todo
= 0;
2628 bool inlined
= false;
2633 /* Do nothing if datastructures for ipa-inliner are already computed. This
2634 happens when some pass decides to construct new function and
2635 cgraph_add_new_function calls lowering passes and early optimization on
2636 it. This may confuse ourself when early inliner decide to inline call to
2637 function clone, because function clones don't have parameter list in
2638 ipa-prop matching their signature. */
2639 if (ipa_node_params_sum
)
2644 node
->remove_all_references ();
2646 /* Rebuild this reference because it dosn't depend on
2647 function's body and it's required to pass cgraph_node
2649 if (node
->instrumented_version
2650 && !node
->instrumentation_clone
)
2651 node
->create_reference (node
->instrumented_version
, IPA_REF_CHKP
, NULL
);
2653 /* Even when not optimizing or not inlining inline always-inline
2655 inlined
= inline_always_inline_functions (node
);
2659 || !flag_early_inlining
2660 /* Never inline regular functions into always-inline functions
2661 during incremental inlining. This sucks as functions calling
2662 always inline functions will get less optimized, but at the
2663 same time inlining of functions calling always inline
2664 function into an always inline function might introduce
2665 cycles of edges to be always inlined in the callgraph.
2667 We might want to be smarter and just avoid this type of inlining. */
2668 || (DECL_DISREGARD_INLINE_LIMITS (node
->decl
)
2669 && lookup_attribute ("always_inline",
2670 DECL_ATTRIBUTES (node
->decl
))))
2672 else if (lookup_attribute ("flatten",
2673 DECL_ATTRIBUTES (node
->decl
)) != NULL
)
2675 /* When the function is marked to be flattened, recursively inline
2679 "Flattening %s\n", node
->name ());
2680 flatten_function (node
, true);
2685 /* If some always_inline functions was inlined, apply the changes.
2686 This way we will not account always inline into growth limits and
2687 moreover we will inline calls from always inlines that we skipped
2688 previously because of conditional above. */
2691 timevar_push (TV_INTEGRATION
);
2692 todo
|= optimize_inline_calls (current_function_decl
);
2693 /* optimize_inline_calls call above might have introduced new
2694 statements that don't have inline parameters computed. */
2695 for (edge
= node
->callees
; edge
; edge
= edge
->next_callee
)
2697 struct ipa_call_summary
*es
= ipa_call_summaries
->get (edge
);
2699 = estimate_num_insns (edge
->call_stmt
, &eni_size_weights
);
2701 = estimate_num_insns (edge
->call_stmt
, &eni_time_weights
);
2703 ipa_update_overall_fn_summary (node
);
2705 timevar_pop (TV_INTEGRATION
);
2707 /* We iterate incremental inlining to get trivial cases of indirect
2709 while (iterations
< PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS
)
2710 && early_inline_small_functions (node
))
2712 timevar_push (TV_INTEGRATION
);
2713 todo
|= optimize_inline_calls (current_function_decl
);
2715 /* Technically we ought to recompute inline parameters so the new
2716 iteration of early inliner works as expected. We however have
2717 values approximately right and thus we only need to update edge
2718 info that might be cleared out for newly discovered edges. */
2719 for (edge
= node
->callees
; edge
; edge
= edge
->next_callee
)
2721 /* We have no summary for new bound store calls yet. */
2722 struct ipa_call_summary
*es
= ipa_call_summaries
->get (edge
);
2724 = estimate_num_insns (edge
->call_stmt
, &eni_size_weights
);
2726 = estimate_num_insns (edge
->call_stmt
, &eni_time_weights
);
2728 if (edge
->callee
->decl
2729 && !gimple_check_call_matching_types (
2730 edge
->call_stmt
, edge
->callee
->decl
, false))
2732 edge
->inline_failed
= CIF_MISMATCHED_ARGUMENTS
;
2733 edge
->call_stmt_cannot_inline_p
= true;
2736 if (iterations
< PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS
) - 1)
2737 ipa_update_overall_fn_summary (node
);
2738 timevar_pop (TV_INTEGRATION
);
2743 fprintf (dump_file
, "Iterations: %i\n", iterations
);
2748 timevar_push (TV_INTEGRATION
);
2749 todo
|= optimize_inline_calls (current_function_decl
);
2750 timevar_pop (TV_INTEGRATION
);
2753 fun
->always_inline_functions_inlined
= true;
2758 /* Do inlining of small functions. Doing so early helps profiling and other
2759 passes to be somewhat more effective and avoids some code duplication in
2760 later real inlining pass for testcases with very many function calls. */
2764 const pass_data pass_data_early_inline
=
2766 GIMPLE_PASS
, /* type */
2767 "einline", /* name */
2768 OPTGROUP_INLINE
, /* optinfo_flags */
2769 TV_EARLY_INLINING
, /* tv_id */
2770 PROP_ssa
, /* properties_required */
2771 0, /* properties_provided */
2772 0, /* properties_destroyed */
2773 0, /* todo_flags_start */
2774 0, /* todo_flags_finish */
2777 class pass_early_inline
: public gimple_opt_pass
2780 pass_early_inline (gcc::context
*ctxt
)
2781 : gimple_opt_pass (pass_data_early_inline
, ctxt
)
2784 /* opt_pass methods: */
2785 virtual unsigned int execute (function
*);
2787 }; // class pass_early_inline
2790 pass_early_inline::execute (function
*fun
)
2792 return early_inliner (fun
);
2798 make_pass_early_inline (gcc::context
*ctxt
)
2800 return new pass_early_inline (ctxt
);
2805 const pass_data pass_data_ipa_inline
=
2807 IPA_PASS
, /* type */
2808 "inline", /* name */
2809 OPTGROUP_INLINE
, /* optinfo_flags */
2810 TV_IPA_INLINING
, /* tv_id */
2811 0, /* properties_required */
2812 0, /* properties_provided */
2813 0, /* properties_destroyed */
2814 0, /* todo_flags_start */
2815 ( TODO_dump_symtab
), /* todo_flags_finish */
2818 class pass_ipa_inline
: public ipa_opt_pass_d
2821 pass_ipa_inline (gcc::context
*ctxt
)
2822 : ipa_opt_pass_d (pass_data_ipa_inline
, ctxt
,
2823 NULL
, /* generate_summary */
2824 NULL
, /* write_summary */
2825 NULL
, /* read_summary */
2826 NULL
, /* write_optimization_summary */
2827 NULL
, /* read_optimization_summary */
2828 NULL
, /* stmt_fixup */
2829 0, /* function_transform_todo_flags_start */
2830 inline_transform
, /* function_transform */
2831 NULL
) /* variable_transform */
2834 /* opt_pass methods: */
2835 virtual unsigned int execute (function
*) { return ipa_inline (); }
2837 }; // class pass_ipa_inline
2842 make_pass_ipa_inline (gcc::context
*ctxt
)
2844 return new pass_ipa_inline (ctxt
);