extend jump thread for finite state automata
[official-gcc.git] / gcc / tree-ssa-loop-im.c
blob2c676e379407f9e5ab67f330090cf8de891442f8
1 /* Loop invariant motion.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "predict.h"
27 #include "vec.h"
28 #include "hashtab.h"
29 #include "hash-set.h"
30 #include "machmode.h"
31 #include "hard-reg-set.h"
32 #include "input.h"
33 #include "function.h"
34 #include "dominance.h"
35 #include "cfg.h"
36 #include "cfganal.h"
37 #include "basic-block.h"
38 #include "gimple-pretty-print.h"
39 #include "hash-map.h"
40 #include "hash-table.h"
41 #include "tree-ssa-alias.h"
42 #include "internal-fn.h"
43 #include "tree-eh.h"
44 #include "gimple-expr.h"
45 #include "is-a.h"
46 #include "gimple.h"
47 #include "gimplify.h"
48 #include "gimple-iterator.h"
49 #include "gimple-ssa.h"
50 #include "tree-cfg.h"
51 #include "tree-phinodes.h"
52 #include "ssa-iterators.h"
53 #include "stringpool.h"
54 #include "tree-ssanames.h"
55 #include "tree-ssa-loop-manip.h"
56 #include "tree-ssa-loop.h"
57 #include "tree-into-ssa.h"
58 #include "cfgloop.h"
59 #include "domwalk.h"
60 #include "params.h"
61 #include "tree-pass.h"
62 #include "flags.h"
63 #include "tree-affine.h"
64 #include "tree-ssa-propagate.h"
65 #include "trans-mem.h"
66 #include "gimple-fold.h"
68 /* TODO: Support for predicated code motion. I.e.
70 while (1)
72 if (cond)
74 a = inv;
75 something;
79 Where COND and INV are invariants, but evaluating INV may trap or be
80 invalid from some other reason if !COND. This may be transformed to
82 if (cond)
83 a = inv;
84 while (1)
86 if (cond)
87 something;
88 } */
90 /* The auxiliary data kept for each statement. */
92 struct lim_aux_data
94 struct loop *max_loop; /* The outermost loop in that the statement
95 is invariant. */
97 struct loop *tgt_loop; /* The loop out of that we want to move the
98 invariant. */
100 struct loop *always_executed_in;
101 /* The outermost loop for that we are sure
102 the statement is executed if the loop
103 is entered. */
105 unsigned cost; /* Cost of the computation performed by the
106 statement. */
108 vec<gimple> depends; /* Vector of statements that must be also
109 hoisted out of the loop when this statement
110 is hoisted; i.e. those that define the
111 operands of the statement and are inside of
112 the MAX_LOOP loop. */
115 /* Maps statements to their lim_aux_data. */
117 static hash_map<gimple, lim_aux_data *> *lim_aux_data_map;
119 /* Description of a memory reference location. */
121 typedef struct mem_ref_loc
123 tree *ref; /* The reference itself. */
124 gimple stmt; /* The statement in that it occurs. */
125 } *mem_ref_loc_p;
128 /* Description of a memory reference. */
130 typedef struct im_mem_ref
132 unsigned id; /* ID assigned to the memory reference
133 (its index in memory_accesses.refs_list) */
134 hashval_t hash; /* Its hash value. */
136 /* The memory access itself and associated caching of alias-oracle
137 query meta-data. */
138 ao_ref mem;
140 bitmap stored; /* The set of loops in that this memory location
141 is stored to. */
142 vec<mem_ref_loc> accesses_in_loop;
143 /* The locations of the accesses. Vector
144 indexed by the loop number. */
146 /* The following sets are computed on demand. We keep both set and
147 its complement, so that we know whether the information was
148 already computed or not. */
149 bitmap_head indep_loop; /* The set of loops in that the memory
150 reference is independent, meaning:
151 If it is stored in the loop, this store
152 is independent on all other loads and
153 stores.
154 If it is only loaded, then it is independent
155 on all stores in the loop. */
156 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
157 } *mem_ref_p;
159 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
160 to record (in)dependence against stores in the loop and its subloops, the
161 second to record (in)dependence against all references in the loop
162 and its subloops. */
163 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
165 /* Mem_ref hashtable helpers. */
167 struct mem_ref_hasher : typed_noop_remove <im_mem_ref>
169 typedef im_mem_ref value_type;
170 typedef tree_node compare_type;
171 static inline hashval_t hash (const value_type *);
172 static inline bool equal (const value_type *, const compare_type *);
175 /* A hash function for struct im_mem_ref object OBJ. */
177 inline hashval_t
178 mem_ref_hasher::hash (const value_type *mem)
180 return mem->hash;
183 /* An equality function for struct im_mem_ref object MEM1 with
184 memory reference OBJ2. */
186 inline bool
187 mem_ref_hasher::equal (const value_type *mem1, const compare_type *obj2)
189 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0);
193 /* Description of memory accesses in loops. */
195 static struct
197 /* The hash table of memory references accessed in loops. */
198 hash_table<mem_ref_hasher> *refs;
200 /* The list of memory references. */
201 vec<mem_ref_p> refs_list;
203 /* The set of memory references accessed in each loop. */
204 vec<bitmap_head> refs_in_loop;
206 /* The set of memory references stored in each loop. */
207 vec<bitmap_head> refs_stored_in_loop;
209 /* The set of memory references stored in each loop, including subloops . */
210 vec<bitmap_head> all_refs_stored_in_loop;
212 /* Cache for expanding memory addresses. */
213 hash_map<tree, name_expansion *> *ttae_cache;
214 } memory_accesses;
216 /* Obstack for the bitmaps in the above data structures. */
217 static bitmap_obstack lim_bitmap_obstack;
218 static obstack mem_ref_obstack;
220 static bool ref_indep_loop_p (struct loop *, mem_ref_p);
222 /* Minimum cost of an expensive expression. */
223 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
225 /* The outermost loop for which execution of the header guarantees that the
226 block will be executed. */
227 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
228 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
230 /* ID of the shared unanalyzable mem. */
231 #define UNANALYZABLE_MEM_ID 0
233 /* Whether the reference was analyzable. */
234 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
236 static struct lim_aux_data *
237 init_lim_data (gimple stmt)
239 lim_aux_data *p = XCNEW (struct lim_aux_data);
240 lim_aux_data_map->put (stmt, p);
242 return p;
245 static struct lim_aux_data *
246 get_lim_data (gimple stmt)
248 lim_aux_data **p = lim_aux_data_map->get (stmt);
249 if (!p)
250 return NULL;
252 return *p;
255 /* Releases the memory occupied by DATA. */
257 static void
258 free_lim_aux_data (struct lim_aux_data *data)
260 data->depends.release ();
261 free (data);
264 static void
265 clear_lim_data (gimple stmt)
267 lim_aux_data **p = lim_aux_data_map->get (stmt);
268 if (!p)
269 return;
271 free_lim_aux_data (*p);
272 *p = NULL;
276 /* The possibilities of statement movement. */
277 enum move_pos
279 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
280 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
281 become executed -- memory accesses, ... */
282 MOVE_POSSIBLE /* Unlimited movement. */
286 /* If it is possible to hoist the statement STMT unconditionally,
287 returns MOVE_POSSIBLE.
288 If it is possible to hoist the statement STMT, but we must avoid making
289 it executed if it would not be executed in the original program (e.g.
290 because it may trap), return MOVE_PRESERVE_EXECUTION.
291 Otherwise return MOVE_IMPOSSIBLE. */
293 enum move_pos
294 movement_possibility (gimple stmt)
296 tree lhs;
297 enum move_pos ret = MOVE_POSSIBLE;
299 if (flag_unswitch_loops
300 && gimple_code (stmt) == GIMPLE_COND)
302 /* If we perform unswitching, force the operands of the invariant
303 condition to be moved out of the loop. */
304 return MOVE_POSSIBLE;
307 if (gimple_code (stmt) == GIMPLE_PHI
308 && gimple_phi_num_args (stmt) <= 2
309 && !virtual_operand_p (gimple_phi_result (stmt))
310 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
311 return MOVE_POSSIBLE;
313 if (gimple_get_lhs (stmt) == NULL_TREE)
314 return MOVE_IMPOSSIBLE;
316 if (gimple_vdef (stmt))
317 return MOVE_IMPOSSIBLE;
319 if (stmt_ends_bb_p (stmt)
320 || gimple_has_volatile_ops (stmt)
321 || gimple_has_side_effects (stmt)
322 || stmt_could_throw_p (stmt))
323 return MOVE_IMPOSSIBLE;
325 if (is_gimple_call (stmt))
327 /* While pure or const call is guaranteed to have no side effects, we
328 cannot move it arbitrarily. Consider code like
330 char *s = something ();
332 while (1)
334 if (s)
335 t = strlen (s);
336 else
337 t = 0;
340 Here the strlen call cannot be moved out of the loop, even though
341 s is invariant. In addition to possibly creating a call with
342 invalid arguments, moving out a function call that is not executed
343 may cause performance regressions in case the call is costly and
344 not executed at all. */
345 ret = MOVE_PRESERVE_EXECUTION;
346 lhs = gimple_call_lhs (stmt);
348 else if (is_gimple_assign (stmt))
349 lhs = gimple_assign_lhs (stmt);
350 else
351 return MOVE_IMPOSSIBLE;
353 if (TREE_CODE (lhs) == SSA_NAME
354 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
355 return MOVE_IMPOSSIBLE;
357 if (TREE_CODE (lhs) != SSA_NAME
358 || gimple_could_trap_p (stmt))
359 return MOVE_PRESERVE_EXECUTION;
361 /* Non local loads in a transaction cannot be hoisted out. Well,
362 unless the load happens on every path out of the loop, but we
363 don't take this into account yet. */
364 if (flag_tm
365 && gimple_in_transaction (stmt)
366 && gimple_assign_single_p (stmt))
368 tree rhs = gimple_assign_rhs1 (stmt);
369 if (DECL_P (rhs) && is_global_var (rhs))
371 if (dump_file)
373 fprintf (dump_file, "Cannot hoist conditional load of ");
374 print_generic_expr (dump_file, rhs, TDF_SLIM);
375 fprintf (dump_file, " because it is in a transaction.\n");
377 return MOVE_IMPOSSIBLE;
381 return ret;
384 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
385 loop to that we could move the expression using DEF if it did not have
386 other operands, i.e. the outermost loop enclosing LOOP in that the value
387 of DEF is invariant. */
389 static struct loop *
390 outermost_invariant_loop (tree def, struct loop *loop)
392 gimple def_stmt;
393 basic_block def_bb;
394 struct loop *max_loop;
395 struct lim_aux_data *lim_data;
397 if (!def)
398 return superloop_at_depth (loop, 1);
400 if (TREE_CODE (def) != SSA_NAME)
402 gcc_assert (is_gimple_min_invariant (def));
403 return superloop_at_depth (loop, 1);
406 def_stmt = SSA_NAME_DEF_STMT (def);
407 def_bb = gimple_bb (def_stmt);
408 if (!def_bb)
409 return superloop_at_depth (loop, 1);
411 max_loop = find_common_loop (loop, def_bb->loop_father);
413 lim_data = get_lim_data (def_stmt);
414 if (lim_data != NULL && lim_data->max_loop != NULL)
415 max_loop = find_common_loop (max_loop,
416 loop_outer (lim_data->max_loop));
417 if (max_loop == loop)
418 return NULL;
419 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
421 return max_loop;
424 /* DATA is a structure containing information associated with a statement
425 inside LOOP. DEF is one of the operands of this statement.
427 Find the outermost loop enclosing LOOP in that value of DEF is invariant
428 and record this in DATA->max_loop field. If DEF itself is defined inside
429 this loop as well (i.e. we need to hoist it out of the loop if we want
430 to hoist the statement represented by DATA), record the statement in that
431 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
432 add the cost of the computation of DEF to the DATA->cost.
434 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
436 static bool
437 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
438 bool add_cost)
440 gimple def_stmt = SSA_NAME_DEF_STMT (def);
441 basic_block def_bb = gimple_bb (def_stmt);
442 struct loop *max_loop;
443 struct lim_aux_data *def_data;
445 if (!def_bb)
446 return true;
448 max_loop = outermost_invariant_loop (def, loop);
449 if (!max_loop)
450 return false;
452 if (flow_loop_nested_p (data->max_loop, max_loop))
453 data->max_loop = max_loop;
455 def_data = get_lim_data (def_stmt);
456 if (!def_data)
457 return true;
459 if (add_cost
460 /* Only add the cost if the statement defining DEF is inside LOOP,
461 i.e. if it is likely that by moving the invariants dependent
462 on it, we will be able to avoid creating a new register for
463 it (since it will be only used in these dependent invariants). */
464 && def_bb->loop_father == loop)
465 data->cost += def_data->cost;
467 data->depends.safe_push (def_stmt);
469 return true;
472 /* Returns an estimate for a cost of statement STMT. The values here
473 are just ad-hoc constants, similar to costs for inlining. */
475 static unsigned
476 stmt_cost (gimple stmt)
478 /* Always try to create possibilities for unswitching. */
479 if (gimple_code (stmt) == GIMPLE_COND
480 || gimple_code (stmt) == GIMPLE_PHI)
481 return LIM_EXPENSIVE;
483 /* We should be hoisting calls if possible. */
484 if (is_gimple_call (stmt))
486 tree fndecl;
488 /* Unless the call is a builtin_constant_p; this always folds to a
489 constant, so moving it is useless. */
490 fndecl = gimple_call_fndecl (stmt);
491 if (fndecl
492 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
493 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
494 return 0;
496 return LIM_EXPENSIVE;
499 /* Hoisting memory references out should almost surely be a win. */
500 if (gimple_references_memory_p (stmt))
501 return LIM_EXPENSIVE;
503 if (gimple_code (stmt) != GIMPLE_ASSIGN)
504 return 1;
506 switch (gimple_assign_rhs_code (stmt))
508 case MULT_EXPR:
509 case WIDEN_MULT_EXPR:
510 case WIDEN_MULT_PLUS_EXPR:
511 case WIDEN_MULT_MINUS_EXPR:
512 case DOT_PROD_EXPR:
513 case FMA_EXPR:
514 case TRUNC_DIV_EXPR:
515 case CEIL_DIV_EXPR:
516 case FLOOR_DIV_EXPR:
517 case ROUND_DIV_EXPR:
518 case EXACT_DIV_EXPR:
519 case CEIL_MOD_EXPR:
520 case FLOOR_MOD_EXPR:
521 case ROUND_MOD_EXPR:
522 case TRUNC_MOD_EXPR:
523 case RDIV_EXPR:
524 /* Division and multiplication are usually expensive. */
525 return LIM_EXPENSIVE;
527 case LSHIFT_EXPR:
528 case RSHIFT_EXPR:
529 case WIDEN_LSHIFT_EXPR:
530 case LROTATE_EXPR:
531 case RROTATE_EXPR:
532 /* Shifts and rotates are usually expensive. */
533 return LIM_EXPENSIVE;
535 case CONSTRUCTOR:
536 /* Make vector construction cost proportional to the number
537 of elements. */
538 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
540 case SSA_NAME:
541 case PAREN_EXPR:
542 /* Whether or not something is wrapped inside a PAREN_EXPR
543 should not change move cost. Nor should an intermediate
544 unpropagated SSA name copy. */
545 return 0;
547 default:
548 return 1;
552 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
553 REF is independent. If REF is not independent in LOOP, NULL is returned
554 instead. */
556 static struct loop *
557 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
559 struct loop *aloop;
561 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
562 return NULL;
564 for (aloop = outer;
565 aloop != loop;
566 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
567 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
568 && ref_indep_loop_p (aloop, ref))
569 return aloop;
571 if (ref_indep_loop_p (loop, ref))
572 return loop;
573 else
574 return NULL;
577 /* If there is a simple load or store to a memory reference in STMT, returns
578 the location of the memory reference, and sets IS_STORE according to whether
579 it is a store or load. Otherwise, returns NULL. */
581 static tree *
582 simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
584 tree *lhs, *rhs;
586 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
587 if (!gimple_assign_single_p (stmt))
588 return NULL;
590 lhs = gimple_assign_lhs_ptr (stmt);
591 rhs = gimple_assign_rhs1_ptr (stmt);
593 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
595 *is_store = false;
596 return rhs;
598 else if (gimple_vdef (stmt)
599 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
601 *is_store = true;
602 return lhs;
604 else
605 return NULL;
608 /* Returns the memory reference contained in STMT. */
610 static mem_ref_p
611 mem_ref_in_stmt (gimple stmt)
613 bool store;
614 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
615 hashval_t hash;
616 mem_ref_p ref;
618 if (!mem)
619 return NULL;
620 gcc_assert (!store);
622 hash = iterative_hash_expr (*mem, 0);
623 ref = memory_accesses.refs->find_with_hash (*mem, hash);
625 gcc_assert (ref != NULL);
626 return ref;
629 /* From a controlling predicate in DOM determine the arguments from
630 the PHI node PHI that are chosen if the predicate evaluates to
631 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
632 they are non-NULL. Returns true if the arguments can be determined,
633 else return false. */
635 static bool
636 extract_true_false_args_from_phi (basic_block dom, gphi *phi,
637 tree *true_arg_p, tree *false_arg_p)
639 basic_block bb = gimple_bb (phi);
640 edge true_edge, false_edge, tem;
641 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
643 /* We have to verify that one edge into the PHI node is dominated
644 by the true edge of the predicate block and the other edge
645 dominated by the false edge. This ensures that the PHI argument
646 we are going to take is completely determined by the path we
647 take from the predicate block.
648 We can only use BB dominance checks below if the destination of
649 the true/false edges are dominated by their edge, thus only
650 have a single predecessor. */
651 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
652 tem = EDGE_PRED (bb, 0);
653 if (tem == true_edge
654 || (single_pred_p (true_edge->dest)
655 && (tem->src == true_edge->dest
656 || dominated_by_p (CDI_DOMINATORS,
657 tem->src, true_edge->dest))))
658 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
659 else if (tem == false_edge
660 || (single_pred_p (false_edge->dest)
661 && (tem->src == false_edge->dest
662 || dominated_by_p (CDI_DOMINATORS,
663 tem->src, false_edge->dest))))
664 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
665 else
666 return false;
667 tem = EDGE_PRED (bb, 1);
668 if (tem == true_edge
669 || (single_pred_p (true_edge->dest)
670 && (tem->src == true_edge->dest
671 || dominated_by_p (CDI_DOMINATORS,
672 tem->src, true_edge->dest))))
673 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
674 else if (tem == false_edge
675 || (single_pred_p (false_edge->dest)
676 && (tem->src == false_edge->dest
677 || dominated_by_p (CDI_DOMINATORS,
678 tem->src, false_edge->dest))))
679 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
680 else
681 return false;
682 if (!arg0 || !arg1)
683 return false;
685 if (true_arg_p)
686 *true_arg_p = arg0;
687 if (false_arg_p)
688 *false_arg_p = arg1;
690 return true;
693 /* Determine the outermost loop to that it is possible to hoist a statement
694 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
695 the outermost loop in that the value computed by STMT is invariant.
696 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
697 we preserve the fact whether STMT is executed. It also fills other related
698 information to LIM_DATA (STMT).
700 The function returns false if STMT cannot be hoisted outside of the loop it
701 is defined in, and true otherwise. */
703 static bool
704 determine_max_movement (gimple stmt, bool must_preserve_exec)
706 basic_block bb = gimple_bb (stmt);
707 struct loop *loop = bb->loop_father;
708 struct loop *level;
709 struct lim_aux_data *lim_data = get_lim_data (stmt);
710 tree val;
711 ssa_op_iter iter;
713 if (must_preserve_exec)
714 level = ALWAYS_EXECUTED_IN (bb);
715 else
716 level = superloop_at_depth (loop, 1);
717 lim_data->max_loop = level;
719 if (gphi *phi = dyn_cast <gphi *> (stmt))
721 use_operand_p use_p;
722 unsigned min_cost = UINT_MAX;
723 unsigned total_cost = 0;
724 struct lim_aux_data *def_data;
726 /* We will end up promoting dependencies to be unconditionally
727 evaluated. For this reason the PHI cost (and thus the
728 cost we remove from the loop by doing the invariant motion)
729 is that of the cheapest PHI argument dependency chain. */
730 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
732 val = USE_FROM_PTR (use_p);
734 if (TREE_CODE (val) != SSA_NAME)
736 /* Assign const 1 to constants. */
737 min_cost = MIN (min_cost, 1);
738 total_cost += 1;
739 continue;
741 if (!add_dependency (val, lim_data, loop, false))
742 return false;
744 gimple def_stmt = SSA_NAME_DEF_STMT (val);
745 if (gimple_bb (def_stmt)
746 && gimple_bb (def_stmt)->loop_father == loop)
748 def_data = get_lim_data (def_stmt);
749 if (def_data)
751 min_cost = MIN (min_cost, def_data->cost);
752 total_cost += def_data->cost;
757 min_cost = MIN (min_cost, total_cost);
758 lim_data->cost += min_cost;
760 if (gimple_phi_num_args (phi) > 1)
762 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
763 gimple cond;
764 if (gsi_end_p (gsi_last_bb (dom)))
765 return false;
766 cond = gsi_stmt (gsi_last_bb (dom));
767 if (gimple_code (cond) != GIMPLE_COND)
768 return false;
769 /* Verify that this is an extended form of a diamond and
770 the PHI arguments are completely controlled by the
771 predicate in DOM. */
772 if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
773 return false;
775 /* Fold in dependencies and cost of the condition. */
776 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
778 if (!add_dependency (val, lim_data, loop, false))
779 return false;
780 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
781 if (def_data)
782 total_cost += def_data->cost;
785 /* We want to avoid unconditionally executing very expensive
786 operations. As costs for our dependencies cannot be
787 negative just claim we are not invariand for this case.
788 We also are not sure whether the control-flow inside the
789 loop will vanish. */
790 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
791 && !(min_cost != 0
792 && total_cost / min_cost <= 2))
793 return false;
795 /* Assume that the control-flow in the loop will vanish.
796 ??? We should verify this and not artificially increase
797 the cost if that is not the case. */
798 lim_data->cost += stmt_cost (stmt);
801 return true;
803 else
804 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
805 if (!add_dependency (val, lim_data, loop, true))
806 return false;
808 if (gimple_vuse (stmt))
810 mem_ref_p ref = mem_ref_in_stmt (stmt);
812 if (ref)
814 lim_data->max_loop
815 = outermost_indep_loop (lim_data->max_loop, loop, ref);
816 if (!lim_data->max_loop)
817 return false;
819 else
821 if ((val = gimple_vuse (stmt)) != NULL_TREE)
823 if (!add_dependency (val, lim_data, loop, false))
824 return false;
829 lim_data->cost += stmt_cost (stmt);
831 return true;
834 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
835 and that one of the operands of this statement is computed by STMT.
836 Ensure that STMT (together with all the statements that define its
837 operands) is hoisted at least out of the loop LEVEL. */
839 static void
840 set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
842 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
843 struct lim_aux_data *lim_data;
844 gimple dep_stmt;
845 unsigned i;
847 stmt_loop = find_common_loop (orig_loop, stmt_loop);
848 lim_data = get_lim_data (stmt);
849 if (lim_data != NULL && lim_data->tgt_loop != NULL)
850 stmt_loop = find_common_loop (stmt_loop,
851 loop_outer (lim_data->tgt_loop));
852 if (flow_loop_nested_p (stmt_loop, level))
853 return;
855 gcc_assert (level == lim_data->max_loop
856 || flow_loop_nested_p (lim_data->max_loop, level));
858 lim_data->tgt_loop = level;
859 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
860 set_level (dep_stmt, orig_loop, level);
863 /* Determines an outermost loop from that we want to hoist the statement STMT.
864 For now we chose the outermost possible loop. TODO -- use profiling
865 information to set it more sanely. */
867 static void
868 set_profitable_level (gimple stmt)
870 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
873 /* Returns true if STMT is a call that has side effects. */
875 static bool
876 nonpure_call_p (gimple stmt)
878 if (gimple_code (stmt) != GIMPLE_CALL)
879 return false;
881 return gimple_has_side_effects (stmt);
884 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
886 static gimple
887 rewrite_reciprocal (gimple_stmt_iterator *bsi)
889 gassign *stmt, *stmt1, *stmt2;
890 tree name, lhs, type;
891 tree real_one;
892 gimple_stmt_iterator gsi;
894 stmt = as_a <gassign *> (gsi_stmt (*bsi));
895 lhs = gimple_assign_lhs (stmt);
896 type = TREE_TYPE (lhs);
898 real_one = build_one_cst (type);
900 name = make_temp_ssa_name (type, NULL, "reciptmp");
901 stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one,
902 gimple_assign_rhs2 (stmt));
903 stmt2 = gimple_build_assign (lhs, MULT_EXPR, name,
904 gimple_assign_rhs1 (stmt));
906 /* Replace division stmt with reciprocal and multiply stmts.
907 The multiply stmt is not invariant, so update iterator
908 and avoid rescanning. */
909 gsi = *bsi;
910 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
911 gsi_replace (&gsi, stmt2, true);
913 /* Continue processing with invariant reciprocal statement. */
914 return stmt1;
917 /* Check if the pattern at *BSI is a bittest of the form
918 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
920 static gimple
921 rewrite_bittest (gimple_stmt_iterator *bsi)
923 gassign *stmt;
924 gimple stmt1;
925 gassign *stmt2;
926 gimple use_stmt;
927 gcond *cond_stmt;
928 tree lhs, name, t, a, b;
929 use_operand_p use;
931 stmt = as_a <gassign *> (gsi_stmt (*bsi));
932 lhs = gimple_assign_lhs (stmt);
934 /* Verify that the single use of lhs is a comparison against zero. */
935 if (TREE_CODE (lhs) != SSA_NAME
936 || !single_imm_use (lhs, &use, &use_stmt))
937 return stmt;
938 cond_stmt = dyn_cast <gcond *> (use_stmt);
939 if (!cond_stmt)
940 return stmt;
941 if (gimple_cond_lhs (cond_stmt) != lhs
942 || (gimple_cond_code (cond_stmt) != NE_EXPR
943 && gimple_cond_code (cond_stmt) != EQ_EXPR)
944 || !integer_zerop (gimple_cond_rhs (cond_stmt)))
945 return stmt;
947 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
948 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
949 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
950 return stmt;
952 /* There is a conversion in between possibly inserted by fold. */
953 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
955 t = gimple_assign_rhs1 (stmt1);
956 if (TREE_CODE (t) != SSA_NAME
957 || !has_single_use (t))
958 return stmt;
959 stmt1 = SSA_NAME_DEF_STMT (t);
960 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
961 return stmt;
964 /* Verify that B is loop invariant but A is not. Verify that with
965 all the stmt walking we are still in the same loop. */
966 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
967 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
968 return stmt;
970 a = gimple_assign_rhs1 (stmt1);
971 b = gimple_assign_rhs2 (stmt1);
973 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
974 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
976 gimple_stmt_iterator rsi;
978 /* 1 << B */
979 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
980 build_int_cst (TREE_TYPE (a), 1), b);
981 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
982 stmt1 = gimple_build_assign (name, t);
984 /* A & (1 << B) */
985 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
986 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
987 stmt2 = gimple_build_assign (name, t);
989 /* Replace the SSA_NAME we compare against zero. Adjust
990 the type of zero accordingly. */
991 SET_USE (use, name);
992 gimple_cond_set_rhs (cond_stmt,
993 build_int_cst_type (TREE_TYPE (name),
994 0));
996 /* Don't use gsi_replace here, none of the new assignments sets
997 the variable originally set in stmt. Move bsi to stmt1, and
998 then remove the original stmt, so that we get a chance to
999 retain debug info for it. */
1000 rsi = *bsi;
1001 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
1002 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
1003 gsi_remove (&rsi, true);
1005 return stmt1;
1008 return stmt;
1011 /* For each statement determines the outermost loop in that it is invariant,
1012 - statements on whose motion it depends and the cost of the computation.
1013 - This information is stored to the LIM_DATA structure associated with
1014 - each statement. */
1015 class invariantness_dom_walker : public dom_walker
1017 public:
1018 invariantness_dom_walker (cdi_direction direction)
1019 : dom_walker (direction) {}
1021 virtual void before_dom_children (basic_block);
1024 /* Determine the outermost loops in that statements in basic block BB are
1025 invariant, and record them to the LIM_DATA associated with the statements.
1026 Callback for dom_walker. */
1028 void
1029 invariantness_dom_walker::before_dom_children (basic_block bb)
1031 enum move_pos pos;
1032 gimple_stmt_iterator bsi;
1033 gimple stmt;
1034 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1035 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
1036 struct lim_aux_data *lim_data;
1038 if (!loop_outer (bb->loop_father))
1039 return;
1041 if (dump_file && (dump_flags & TDF_DETAILS))
1042 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1043 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1045 /* Look at PHI nodes, but only if there is at most two.
1046 ??? We could relax this further by post-processing the inserted
1047 code and transforming adjacent cond-exprs with the same predicate
1048 to control flow again. */
1049 bsi = gsi_start_phis (bb);
1050 if (!gsi_end_p (bsi)
1051 && ((gsi_next (&bsi), gsi_end_p (bsi))
1052 || (gsi_next (&bsi), gsi_end_p (bsi))))
1053 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1055 stmt = gsi_stmt (bsi);
1057 pos = movement_possibility (stmt);
1058 if (pos == MOVE_IMPOSSIBLE)
1059 continue;
1061 lim_data = init_lim_data (stmt);
1062 lim_data->always_executed_in = outermost;
1064 if (!determine_max_movement (stmt, false))
1066 lim_data->max_loop = NULL;
1067 continue;
1070 if (dump_file && (dump_flags & TDF_DETAILS))
1072 print_gimple_stmt (dump_file, stmt, 2, 0);
1073 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1074 loop_depth (lim_data->max_loop),
1075 lim_data->cost);
1078 if (lim_data->cost >= LIM_EXPENSIVE)
1079 set_profitable_level (stmt);
1082 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1084 stmt = gsi_stmt (bsi);
1086 pos = movement_possibility (stmt);
1087 if (pos == MOVE_IMPOSSIBLE)
1089 if (nonpure_call_p (stmt))
1091 maybe_never = true;
1092 outermost = NULL;
1094 /* Make sure to note always_executed_in for stores to make
1095 store-motion work. */
1096 else if (stmt_makes_single_store (stmt))
1098 struct lim_aux_data *lim_data = init_lim_data (stmt);
1099 lim_data->always_executed_in = outermost;
1101 continue;
1104 if (is_gimple_assign (stmt)
1105 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1106 == GIMPLE_BINARY_RHS))
1108 tree op0 = gimple_assign_rhs1 (stmt);
1109 tree op1 = gimple_assign_rhs2 (stmt);
1110 struct loop *ol1 = outermost_invariant_loop (op1,
1111 loop_containing_stmt (stmt));
1113 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1114 to be hoisted out of loop, saving expensive divide. */
1115 if (pos == MOVE_POSSIBLE
1116 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1117 && flag_unsafe_math_optimizations
1118 && !flag_trapping_math
1119 && ol1 != NULL
1120 && outermost_invariant_loop (op0, ol1) == NULL)
1121 stmt = rewrite_reciprocal (&bsi);
1123 /* If the shift count is invariant, convert (A >> B) & 1 to
1124 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1125 saving an expensive shift. */
1126 if (pos == MOVE_POSSIBLE
1127 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1128 && integer_onep (op1)
1129 && TREE_CODE (op0) == SSA_NAME
1130 && has_single_use (op0))
1131 stmt = rewrite_bittest (&bsi);
1134 lim_data = init_lim_data (stmt);
1135 lim_data->always_executed_in = outermost;
1137 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1138 continue;
1140 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1142 lim_data->max_loop = NULL;
1143 continue;
1146 if (dump_file && (dump_flags & TDF_DETAILS))
1148 print_gimple_stmt (dump_file, stmt, 2, 0);
1149 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1150 loop_depth (lim_data->max_loop),
1151 lim_data->cost);
1154 if (lim_data->cost >= LIM_EXPENSIVE)
1155 set_profitable_level (stmt);
1159 class move_computations_dom_walker : public dom_walker
1161 public:
1162 move_computations_dom_walker (cdi_direction direction)
1163 : dom_walker (direction), todo_ (0) {}
1165 virtual void before_dom_children (basic_block);
1167 unsigned int todo_;
1170 /* Hoist the statements in basic block BB out of the loops prescribed by
1171 data stored in LIM_DATA structures associated with each statement. Callback
1172 for walk_dominator_tree. */
1174 void
1175 move_computations_dom_walker::before_dom_children (basic_block bb)
1177 struct loop *level;
1178 unsigned cost = 0;
1179 struct lim_aux_data *lim_data;
1181 if (!loop_outer (bb->loop_father))
1182 return;
1184 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1186 gassign *new_stmt;
1187 gphi *stmt = bsi.phi ();
1189 lim_data = get_lim_data (stmt);
1190 if (lim_data == NULL)
1192 gsi_next (&bsi);
1193 continue;
1196 cost = lim_data->cost;
1197 level = lim_data->tgt_loop;
1198 clear_lim_data (stmt);
1200 if (!level)
1202 gsi_next (&bsi);
1203 continue;
1206 if (dump_file && (dump_flags & TDF_DETAILS))
1208 fprintf (dump_file, "Moving PHI node\n");
1209 print_gimple_stmt (dump_file, stmt, 0, 0);
1210 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1211 cost, level->num);
1214 if (gimple_phi_num_args (stmt) == 1)
1216 tree arg = PHI_ARG_DEF (stmt, 0);
1217 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1218 TREE_CODE (arg), arg);
1220 else
1222 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1223 gimple cond = gsi_stmt (gsi_last_bb (dom));
1224 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1225 /* Get the PHI arguments corresponding to the true and false
1226 edges of COND. */
1227 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1228 gcc_assert (arg0 && arg1);
1229 t = build2 (gimple_cond_code (cond), boolean_type_node,
1230 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1231 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1232 COND_EXPR, t, arg0, arg1);
1233 todo_ |= TODO_cleanup_cfg;
1235 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1236 remove_phi_node (&bsi, false);
1239 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1241 edge e;
1243 gimple stmt = gsi_stmt (bsi);
1245 lim_data = get_lim_data (stmt);
1246 if (lim_data == NULL)
1248 gsi_next (&bsi);
1249 continue;
1252 cost = lim_data->cost;
1253 level = lim_data->tgt_loop;
1254 clear_lim_data (stmt);
1256 if (!level)
1258 gsi_next (&bsi);
1259 continue;
1262 /* We do not really want to move conditionals out of the loop; we just
1263 placed it here to force its operands to be moved if necessary. */
1264 if (gimple_code (stmt) == GIMPLE_COND)
1265 continue;
1267 if (dump_file && (dump_flags & TDF_DETAILS))
1269 fprintf (dump_file, "Moving statement\n");
1270 print_gimple_stmt (dump_file, stmt, 0, 0);
1271 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1272 cost, level->num);
1275 e = loop_preheader_edge (level);
1276 gcc_assert (!gimple_vdef (stmt));
1277 if (gimple_vuse (stmt))
1279 /* The new VUSE is the one from the virtual PHI in the loop
1280 header or the one already present. */
1281 gphi_iterator gsi2;
1282 for (gsi2 = gsi_start_phis (e->dest);
1283 !gsi_end_p (gsi2); gsi_next (&gsi2))
1285 gphi *phi = gsi2.phi ();
1286 if (virtual_operand_p (gimple_phi_result (phi)))
1288 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1289 break;
1293 gsi_remove (&bsi, false);
1294 /* In case this is a stmt that is not unconditionally executed
1295 when the target loop header is executed and the stmt may
1296 invoke undefined integer or pointer overflow rewrite it to
1297 unsigned arithmetic. */
1298 if (is_gimple_assign (stmt)
1299 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1300 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1301 && arith_code_with_undefined_signed_overflow
1302 (gimple_assign_rhs_code (stmt))
1303 && (!ALWAYS_EXECUTED_IN (bb)
1304 || !(ALWAYS_EXECUTED_IN (bb) == level
1305 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1306 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1307 else
1308 gsi_insert_on_edge (e, stmt);
1312 /* Hoist the statements out of the loops prescribed by data stored in
1313 LIM_DATA structures associated with each statement.*/
1315 static unsigned int
1316 move_computations (void)
1318 move_computations_dom_walker walker (CDI_DOMINATORS);
1319 walker.walk (cfun->cfg->x_entry_block_ptr);
1321 gsi_commit_edge_inserts ();
1322 if (need_ssa_update_p (cfun))
1323 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1325 return walker.todo_;
1328 /* Checks whether the statement defining variable *INDEX can be hoisted
1329 out of the loop passed in DATA. Callback for for_each_index. */
1331 static bool
1332 may_move_till (tree ref, tree *index, void *data)
1334 struct loop *loop = (struct loop *) data, *max_loop;
1336 /* If REF is an array reference, check also that the step and the lower
1337 bound is invariant in LOOP. */
1338 if (TREE_CODE (ref) == ARRAY_REF)
1340 tree step = TREE_OPERAND (ref, 3);
1341 tree lbound = TREE_OPERAND (ref, 2);
1343 max_loop = outermost_invariant_loop (step, loop);
1344 if (!max_loop)
1345 return false;
1347 max_loop = outermost_invariant_loop (lbound, loop);
1348 if (!max_loop)
1349 return false;
1352 max_loop = outermost_invariant_loop (*index, loop);
1353 if (!max_loop)
1354 return false;
1356 return true;
1359 /* If OP is SSA NAME, force the statement that defines it to be
1360 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1362 static void
1363 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1365 gimple stmt;
1367 if (!op
1368 || is_gimple_min_invariant (op))
1369 return;
1371 gcc_assert (TREE_CODE (op) == SSA_NAME);
1373 stmt = SSA_NAME_DEF_STMT (op);
1374 if (gimple_nop_p (stmt))
1375 return;
1377 set_level (stmt, orig_loop, loop);
1380 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1381 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1382 for_each_index. */
1384 struct fmt_data
1386 struct loop *loop;
1387 struct loop *orig_loop;
1390 static bool
1391 force_move_till (tree ref, tree *index, void *data)
1393 struct fmt_data *fmt_data = (struct fmt_data *) data;
1395 if (TREE_CODE (ref) == ARRAY_REF)
1397 tree step = TREE_OPERAND (ref, 3);
1398 tree lbound = TREE_OPERAND (ref, 2);
1400 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1401 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1404 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1406 return true;
1409 /* A function to free the mem_ref object OBJ. */
1411 static void
1412 memref_free (struct im_mem_ref *mem)
1414 mem->accesses_in_loop.release ();
1417 /* Allocates and returns a memory reference description for MEM whose hash
1418 value is HASH and id is ID. */
1420 static mem_ref_p
1421 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1423 mem_ref_p ref = XOBNEW (&mem_ref_obstack, struct im_mem_ref);
1424 ao_ref_init (&ref->mem, mem);
1425 ref->id = id;
1426 ref->hash = hash;
1427 ref->stored = NULL;
1428 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1429 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1430 ref->accesses_in_loop.create (1);
1432 return ref;
1435 /* Records memory reference location *LOC in LOOP to the memory reference
1436 description REF. The reference occurs in statement STMT. */
1438 static void
1439 record_mem_ref_loc (mem_ref_p ref, gimple stmt, tree *loc)
1441 mem_ref_loc aref;
1442 aref.stmt = stmt;
1443 aref.ref = loc;
1444 ref->accesses_in_loop.safe_push (aref);
1447 /* Set the LOOP bit in REF stored bitmap and allocate that if
1448 necessary. Return whether a bit was changed. */
1450 static bool
1451 set_ref_stored_in_loop (mem_ref_p ref, struct loop *loop)
1453 if (!ref->stored)
1454 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1455 return bitmap_set_bit (ref->stored, loop->num);
1458 /* Marks reference REF as stored in LOOP. */
1460 static void
1461 mark_ref_stored (mem_ref_p ref, struct loop *loop)
1463 while (loop != current_loops->tree_root
1464 && set_ref_stored_in_loop (ref, loop))
1465 loop = loop_outer (loop);
1468 /* Gathers memory references in statement STMT in LOOP, storing the
1469 information about them in the memory_accesses structure. Marks
1470 the vops accessed through unrecognized statements there as
1471 well. */
1473 static void
1474 gather_mem_refs_stmt (struct loop *loop, gimple stmt)
1476 tree *mem = NULL;
1477 hashval_t hash;
1478 im_mem_ref **slot;
1479 mem_ref_p ref;
1480 bool is_stored;
1481 unsigned id;
1483 if (!gimple_vuse (stmt))
1484 return;
1486 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1487 if (!mem)
1489 /* We use the shared mem_ref for all unanalyzable refs. */
1490 id = UNANALYZABLE_MEM_ID;
1491 ref = memory_accesses.refs_list[id];
1492 if (dump_file && (dump_flags & TDF_DETAILS))
1494 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1495 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1497 is_stored = gimple_vdef (stmt);
1499 else
1501 hash = iterative_hash_expr (*mem, 0);
1502 slot = memory_accesses.refs->find_slot_with_hash (*mem, hash, INSERT);
1503 if (*slot)
1505 ref = (mem_ref_p) *slot;
1506 id = ref->id;
1508 else
1510 id = memory_accesses.refs_list.length ();
1511 ref = mem_ref_alloc (*mem, hash, id);
1512 memory_accesses.refs_list.safe_push (ref);
1513 *slot = ref;
1515 if (dump_file && (dump_flags & TDF_DETAILS))
1517 fprintf (dump_file, "Memory reference %u: ", id);
1518 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1519 fprintf (dump_file, "\n");
1523 record_mem_ref_loc (ref, stmt, mem);
1525 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1526 if (is_stored)
1528 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1529 mark_ref_stored (ref, loop);
1531 return;
1534 static unsigned *bb_loop_postorder;
1536 /* qsort sort function to sort blocks after their loop fathers postorder. */
1538 static int
1539 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_)
1541 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_);
1542 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_);
1543 struct loop *loop1 = bb1->loop_father;
1544 struct loop *loop2 = bb2->loop_father;
1545 if (loop1->num == loop2->num)
1546 return 0;
1547 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1550 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1552 static int
1553 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_)
1555 mem_ref_loc *loc1 = (mem_ref_loc *)const_cast<void *>(loc1_);
1556 mem_ref_loc *loc2 = (mem_ref_loc *)const_cast<void *>(loc2_);
1557 struct loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1558 struct loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1559 if (loop1->num == loop2->num)
1560 return 0;
1561 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1564 /* Gathers memory references in loops. */
1566 static void
1567 analyze_memory_references (void)
1569 gimple_stmt_iterator bsi;
1570 basic_block bb, *bbs;
1571 struct loop *loop, *outer;
1572 unsigned i, n;
1574 /* Collect all basic-blocks in loops and sort them after their
1575 loops postorder. */
1576 i = 0;
1577 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1578 FOR_EACH_BB_FN (bb, cfun)
1579 if (bb->loop_father != current_loops->tree_root)
1580 bbs[i++] = bb;
1581 n = i;
1582 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp);
1584 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1585 That results in better locality for all the bitmaps. */
1586 for (i = 0; i < n; ++i)
1588 basic_block bb = bbs[i];
1589 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1590 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1593 /* Sort the location list of gathered memory references after their
1594 loop postorder number. */
1595 im_mem_ref *ref;
1596 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1597 ref->accesses_in_loop.qsort (sort_locs_in_loop_postorder_cmp);
1599 free (bbs);
1600 // free (bb_loop_postorder);
1602 /* Propagate the information about accessed memory references up
1603 the loop hierarchy. */
1604 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1606 /* Finalize the overall touched references (including subloops). */
1607 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1608 &memory_accesses.refs_stored_in_loop[loop->num]);
1610 /* Propagate the information about accessed memory references up
1611 the loop hierarchy. */
1612 outer = loop_outer (loop);
1613 if (outer == current_loops->tree_root)
1614 continue;
1616 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1617 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1621 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1622 tree_to_aff_combination_expand. */
1624 static bool
1625 mem_refs_may_alias_p (mem_ref_p mem1, mem_ref_p mem2,
1626 hash_map<tree, name_expansion *> **ttae_cache)
1628 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1629 object and their offset differ in such a way that the locations cannot
1630 overlap, then they cannot alias. */
1631 widest_int size1, size2;
1632 aff_tree off1, off2;
1634 /* Perform basic offset and type-based disambiguation. */
1635 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1636 return false;
1638 /* The expansion of addresses may be a bit expensive, thus we only do
1639 the check at -O2 and higher optimization levels. */
1640 if (optimize < 2)
1641 return true;
1643 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1644 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1645 aff_combination_expand (&off1, ttae_cache);
1646 aff_combination_expand (&off2, ttae_cache);
1647 aff_combination_scale (&off1, -1);
1648 aff_combination_add (&off2, &off1);
1650 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1651 return false;
1653 return true;
1656 /* Compare function for bsearch searching for reference locations
1657 in a loop. */
1659 static int
1660 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_)
1662 struct loop *loop = (struct loop *)const_cast<void *>(loop_);
1663 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1664 struct loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1665 if (loop->num == loc_loop->num
1666 || flow_loop_nested_p (loop, loc_loop))
1667 return 0;
1668 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1669 ? -1 : 1);
1672 /* Iterates over all locations of REF in LOOP and its subloops calling
1673 fn.operator() with the location as argument. When that operator
1674 returns true the iteration is stopped and true is returned.
1675 Otherwise false is returned. */
1677 template <typename FN>
1678 static bool
1679 for_all_locs_in_loop (struct loop *loop, mem_ref_p ref, FN fn)
1681 unsigned i;
1682 mem_ref_loc_p loc;
1684 /* Search for the cluster of locs in the accesses_in_loop vector
1685 which is sorted after postorder index of the loop father. */
1686 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp);
1687 if (!loc)
1688 return false;
1690 /* We have found one location inside loop or its sub-loops. Iterate
1691 both forward and backward to cover the whole cluster. */
1692 i = loc - ref->accesses_in_loop.address ();
1693 while (i > 0)
1695 --i;
1696 mem_ref_loc_p l = &ref->accesses_in_loop[i];
1697 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1698 break;
1699 if (fn (l))
1700 return true;
1702 for (i = loc - ref->accesses_in_loop.address ();
1703 i < ref->accesses_in_loop.length (); ++i)
1705 mem_ref_loc_p l = &ref->accesses_in_loop[i];
1706 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1707 break;
1708 if (fn (l))
1709 return true;
1712 return false;
1715 /* Rewrites location LOC by TMP_VAR. */
1717 struct rewrite_mem_ref_loc
1719 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1720 bool operator () (mem_ref_loc_p loc);
1721 tree tmp_var;
1724 bool
1725 rewrite_mem_ref_loc::operator () (mem_ref_loc_p loc)
1727 *loc->ref = tmp_var;
1728 update_stmt (loc->stmt);
1729 return false;
1732 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1734 static void
1735 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
1737 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1740 /* Stores the first reference location in LOCP. */
1742 struct first_mem_ref_loc_1
1744 first_mem_ref_loc_1 (mem_ref_loc_p *locp_) : locp (locp_) {}
1745 bool operator () (mem_ref_loc_p loc);
1746 mem_ref_loc_p *locp;
1749 bool
1750 first_mem_ref_loc_1::operator () (mem_ref_loc_p loc)
1752 *locp = loc;
1753 return true;
1756 /* Returns the first reference location to REF in LOOP. */
1758 static mem_ref_loc_p
1759 first_mem_ref_loc (struct loop *loop, mem_ref_p ref)
1761 mem_ref_loc_p locp = NULL;
1762 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1763 return locp;
1766 struct prev_flag_edges {
1767 /* Edge to insert new flag comparison code. */
1768 edge append_cond_position;
1770 /* Edge for fall through from previous flag comparison. */
1771 edge last_cond_fallthru;
1774 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1775 MEM along edge EX.
1777 The store is only done if MEM has changed. We do this so no
1778 changes to MEM occur on code paths that did not originally store
1779 into it.
1781 The common case for execute_sm will transform:
1783 for (...) {
1784 if (foo)
1785 stuff;
1786 else
1787 MEM = TMP_VAR;
1790 into:
1792 lsm = MEM;
1793 for (...) {
1794 if (foo)
1795 stuff;
1796 else
1797 lsm = TMP_VAR;
1799 MEM = lsm;
1801 This function will generate:
1803 lsm = MEM;
1805 lsm_flag = false;
1807 for (...) {
1808 if (foo)
1809 stuff;
1810 else {
1811 lsm = TMP_VAR;
1812 lsm_flag = true;
1815 if (lsm_flag) <--
1816 MEM = lsm; <--
1819 static void
1820 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag)
1822 basic_block new_bb, then_bb, old_dest;
1823 bool loop_has_only_one_exit;
1824 edge then_old_edge, orig_ex = ex;
1825 gimple_stmt_iterator gsi;
1826 gimple stmt;
1827 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1828 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
1830 /* ?? Insert store after previous store if applicable. See note
1831 below. */
1832 if (prev_edges)
1833 ex = prev_edges->append_cond_position;
1835 loop_has_only_one_exit = single_pred_p (ex->dest);
1837 if (loop_has_only_one_exit)
1838 ex = split_block_after_labels (ex->dest);
1840 old_dest = ex->dest;
1841 new_bb = split_edge (ex);
1842 then_bb = create_empty_bb (new_bb);
1843 if (irr)
1844 then_bb->flags = BB_IRREDUCIBLE_LOOP;
1845 add_bb_to_loop (then_bb, new_bb->loop_father);
1847 gsi = gsi_start_bb (new_bb);
1848 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1849 NULL_TREE, NULL_TREE);
1850 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1852 gsi = gsi_start_bb (then_bb);
1853 /* Insert actual store. */
1854 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1855 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1857 make_edge (new_bb, then_bb,
1858 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1859 make_edge (new_bb, old_dest,
1860 EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1861 then_old_edge = make_edge (then_bb, old_dest,
1862 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1864 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1866 if (prev_edges)
1868 basic_block prevbb = prev_edges->last_cond_fallthru->src;
1869 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
1870 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
1871 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1872 recompute_dominator (CDI_DOMINATORS, old_dest));
1875 /* ?? Because stores may alias, they must happen in the exact
1876 sequence they originally happened. Save the position right after
1877 the (_lsm) store we just created so we can continue appending after
1878 it and maintain the original order. */
1880 struct prev_flag_edges *p;
1882 if (orig_ex->aux)
1883 orig_ex->aux = NULL;
1884 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1885 p = (struct prev_flag_edges *) orig_ex->aux;
1886 p->append_cond_position = then_old_edge;
1887 p->last_cond_fallthru = find_edge (new_bb, old_dest);
1888 orig_ex->aux = (void *) p;
1891 if (!loop_has_only_one_exit)
1892 for (gphi_iterator gpi = gsi_start_phis (old_dest);
1893 !gsi_end_p (gpi); gsi_next (&gpi))
1895 gphi *phi = gpi.phi ();
1896 unsigned i;
1898 for (i = 0; i < gimple_phi_num_args (phi); i++)
1899 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
1901 tree arg = gimple_phi_arg_def (phi, i);
1902 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
1903 update_stmt (phi);
1906 /* Remove the original fall through edge. This was the
1907 single_succ_edge (new_bb). */
1908 EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU;
1911 /* When REF is set on the location, set flag indicating the store. */
1913 struct sm_set_flag_if_changed
1915 sm_set_flag_if_changed (tree flag_) : flag (flag_) {}
1916 bool operator () (mem_ref_loc_p loc);
1917 tree flag;
1920 bool
1921 sm_set_flag_if_changed::operator () (mem_ref_loc_p loc)
1923 /* Only set the flag for writes. */
1924 if (is_gimple_assign (loc->stmt)
1925 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
1927 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
1928 gimple stmt = gimple_build_assign (flag, boolean_true_node);
1929 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1931 return false;
1934 /* Helper function for execute_sm. On every location where REF is
1935 set, set an appropriate flag indicating the store. */
1937 static tree
1938 execute_sm_if_changed_flag_set (struct loop *loop, mem_ref_p ref)
1940 tree flag;
1941 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
1942 flag = create_tmp_reg (boolean_type_node, str);
1943 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag));
1944 return flag;
1947 /* Executes store motion of memory reference REF from LOOP.
1948 Exits from the LOOP are stored in EXITS. The initialization of the
1949 temporary variable is put to the preheader of the loop, and assignments
1950 to the reference from the temporary variable are emitted to exits. */
1952 static void
1953 execute_sm (struct loop *loop, vec<edge> exits, mem_ref_p ref)
1955 tree tmp_var, store_flag = NULL_TREE;
1956 unsigned i;
1957 gassign *load;
1958 struct fmt_data fmt_data;
1959 edge ex;
1960 struct lim_aux_data *lim_data;
1961 bool multi_threaded_model_p = false;
1962 gimple_stmt_iterator gsi;
1964 if (dump_file && (dump_flags & TDF_DETAILS))
1966 fprintf (dump_file, "Executing store motion of ");
1967 print_generic_expr (dump_file, ref->mem.ref, 0);
1968 fprintf (dump_file, " from loop %d\n", loop->num);
1971 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
1972 get_lsm_tmp_name (ref->mem.ref, ~0));
1974 fmt_data.loop = loop;
1975 fmt_data.orig_loop = loop;
1976 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
1978 if (bb_in_transaction (loop_preheader_edge (loop)->src)
1979 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES))
1980 multi_threaded_model_p = true;
1982 if (multi_threaded_model_p)
1983 store_flag = execute_sm_if_changed_flag_set (loop, ref);
1985 rewrite_mem_refs (loop, ref, tmp_var);
1987 /* Emit the load code on a random exit edge or into the latch if
1988 the loop does not exit, so that we are sure it will be processed
1989 by move_computations after all dependencies. */
1990 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
1992 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
1993 load altogether, since the store is predicated by a flag. We
1994 could, do the load only if it was originally in the loop. */
1995 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
1996 lim_data = init_lim_data (load);
1997 lim_data->max_loop = loop;
1998 lim_data->tgt_loop = loop;
1999 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2001 if (multi_threaded_model_p)
2003 load = gimple_build_assign (store_flag, boolean_false_node);
2004 lim_data = init_lim_data (load);
2005 lim_data->max_loop = loop;
2006 lim_data->tgt_loop = loop;
2007 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2010 /* Sink the store to every exit from the loop. */
2011 FOR_EACH_VEC_ELT (exits, i, ex)
2012 if (!multi_threaded_model_p)
2014 gassign *store;
2015 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
2016 gsi_insert_on_edge (ex, store);
2018 else
2019 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag);
2022 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2023 edges of the LOOP. */
2025 static void
2026 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2027 vec<edge> exits)
2029 mem_ref_p ref;
2030 unsigned i;
2031 bitmap_iterator bi;
2033 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2035 ref = memory_accesses.refs_list[i];
2036 execute_sm (loop, exits, ref);
2040 struct ref_always_accessed
2042 ref_always_accessed (struct loop *loop_, bool stored_p_)
2043 : loop (loop_), stored_p (stored_p_) {}
2044 bool operator () (mem_ref_loc_p loc);
2045 struct loop *loop;
2046 bool stored_p;
2049 bool
2050 ref_always_accessed::operator () (mem_ref_loc_p loc)
2052 struct loop *must_exec;
2054 if (!get_lim_data (loc->stmt))
2055 return false;
2057 /* If we require an always executed store make sure the statement
2058 stores to the reference. */
2059 if (stored_p)
2061 tree lhs = gimple_get_lhs (loc->stmt);
2062 if (!lhs
2063 || lhs != *loc->ref)
2064 return false;
2067 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2068 if (!must_exec)
2069 return false;
2071 if (must_exec == loop
2072 || flow_loop_nested_p (must_exec, loop))
2073 return true;
2075 return false;
2078 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2079 make sure REF is always stored to in LOOP. */
2081 static bool
2082 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
2084 return for_all_locs_in_loop (loop, ref,
2085 ref_always_accessed (loop, stored_p));
2088 /* Returns true if REF1 and REF2 are independent. */
2090 static bool
2091 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
2093 if (ref1 == ref2)
2094 return true;
2096 if (dump_file && (dump_flags & TDF_DETAILS))
2097 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2098 ref1->id, ref2->id);
2100 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2102 if (dump_file && (dump_flags & TDF_DETAILS))
2103 fprintf (dump_file, "dependent.\n");
2104 return false;
2106 else
2108 if (dump_file && (dump_flags & TDF_DETAILS))
2109 fprintf (dump_file, "independent.\n");
2110 return true;
2114 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2115 and its super-loops. */
2117 static void
2118 record_dep_loop (struct loop *loop, mem_ref_p ref, bool stored_p)
2120 /* We can propagate dependent-in-loop bits up the loop
2121 hierarchy to all outer loops. */
2122 while (loop != current_loops->tree_root
2123 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2124 loop = loop_outer (loop);
2127 /* Returns true if REF is independent on all other memory references in
2128 LOOP. */
2130 static bool
2131 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref, bool stored_p)
2133 bitmap refs_to_check;
2134 unsigned i;
2135 bitmap_iterator bi;
2136 mem_ref_p aref;
2138 if (stored_p)
2139 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2140 else
2141 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2143 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2144 return false;
2146 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2148 aref = memory_accesses.refs_list[i];
2149 if (!refs_independent_p (ref, aref))
2150 return false;
2153 return true;
2156 /* Returns true if REF is independent on all other memory references in
2157 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2159 static bool
2160 ref_indep_loop_p_2 (struct loop *loop, mem_ref_p ref, bool stored_p)
2162 stored_p |= (ref->stored && bitmap_bit_p (ref->stored, loop->num));
2164 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2165 return true;
2166 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2167 return false;
2169 struct loop *inner = loop->inner;
2170 while (inner)
2172 if (!ref_indep_loop_p_2 (inner, ref, stored_p))
2173 return false;
2174 inner = inner->next;
2177 bool indep_p = ref_indep_loop_p_1 (loop, ref, stored_p);
2179 if (dump_file && (dump_flags & TDF_DETAILS))
2180 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2181 ref->id, loop->num, indep_p ? "independent" : "dependent");
2183 /* Record the computed result in the cache. */
2184 if (indep_p)
2186 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2187 && stored_p)
2189 /* If it's independend against all refs then it's independent
2190 against stores, too. */
2191 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2194 else
2196 record_dep_loop (loop, ref, stored_p);
2197 if (!stored_p)
2199 /* If it's dependent against stores it's dependent against
2200 all refs, too. */
2201 record_dep_loop (loop, ref, true);
2205 return indep_p;
2208 /* Returns true if REF is independent on all other memory references in
2209 LOOP. */
2211 static bool
2212 ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
2214 gcc_checking_assert (MEM_ANALYZABLE (ref));
2216 return ref_indep_loop_p_2 (loop, ref, false);
2219 /* Returns true if we can perform store motion of REF from LOOP. */
2221 static bool
2222 can_sm_ref_p (struct loop *loop, mem_ref_p ref)
2224 tree base;
2226 /* Can't hoist unanalyzable refs. */
2227 if (!MEM_ANALYZABLE (ref))
2228 return false;
2230 /* It should be movable. */
2231 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2232 || TREE_THIS_VOLATILE (ref->mem.ref)
2233 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2234 return false;
2236 /* If it can throw fail, we do not properly update EH info. */
2237 if (tree_could_throw_p (ref->mem.ref))
2238 return false;
2240 /* If it can trap, it must be always executed in LOOP.
2241 Readonly memory locations may trap when storing to them, but
2242 tree_could_trap_p is a predicate for rvalues, so check that
2243 explicitly. */
2244 base = get_base_address (ref->mem.ref);
2245 if ((tree_could_trap_p (ref->mem.ref)
2246 || (DECL_P (base) && TREE_READONLY (base)))
2247 && !ref_always_accessed_p (loop, ref, true))
2248 return false;
2250 /* And it must be independent on all other memory references
2251 in LOOP. */
2252 if (!ref_indep_loop_p (loop, ref))
2253 return false;
2255 return true;
2258 /* Marks the references in LOOP for that store motion should be performed
2259 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2260 motion was performed in one of the outer loops. */
2262 static void
2263 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2265 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2266 unsigned i;
2267 bitmap_iterator bi;
2268 mem_ref_p ref;
2270 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2272 ref = memory_accesses.refs_list[i];
2273 if (can_sm_ref_p (loop, ref))
2274 bitmap_set_bit (refs_to_sm, i);
2278 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2279 for a store motion optimization (i.e. whether we can insert statement
2280 on its exits). */
2282 static bool
2283 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2284 vec<edge> exits)
2286 unsigned i;
2287 edge ex;
2289 FOR_EACH_VEC_ELT (exits, i, ex)
2290 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2291 return false;
2293 return true;
2296 /* Try to perform store motion for all memory references modified inside
2297 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2298 store motion was executed in one of the outer loops. */
2300 static void
2301 store_motion_loop (struct loop *loop, bitmap sm_executed)
2303 vec<edge> exits = get_loop_exit_edges (loop);
2304 struct loop *subloop;
2305 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2307 if (loop_suitable_for_sm (loop, exits))
2309 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2310 hoist_memory_references (loop, sm_in_loop, exits);
2312 exits.release ();
2314 bitmap_ior_into (sm_executed, sm_in_loop);
2315 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2316 store_motion_loop (subloop, sm_executed);
2317 bitmap_and_compl_into (sm_executed, sm_in_loop);
2318 BITMAP_FREE (sm_in_loop);
2321 /* Try to perform store motion for all memory references modified inside
2322 loops. */
2324 static void
2325 store_motion (void)
2327 struct loop *loop;
2328 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2330 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2331 store_motion_loop (loop, sm_executed);
2333 BITMAP_FREE (sm_executed);
2334 gsi_commit_edge_inserts ();
2337 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2338 for each such basic block bb records the outermost loop for that execution
2339 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2340 blocks that contain a nonpure call. */
2342 static void
2343 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call)
2345 basic_block bb = NULL, *bbs, last = NULL;
2346 unsigned i;
2347 edge e;
2348 struct loop *inn_loop = loop;
2350 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2352 bbs = get_loop_body_in_dom_order (loop);
2354 for (i = 0; i < loop->num_nodes; i++)
2356 edge_iterator ei;
2357 bb = bbs[i];
2359 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2360 last = bb;
2362 if (bitmap_bit_p (contains_call, bb->index))
2363 break;
2365 FOR_EACH_EDGE (e, ei, bb->succs)
2366 if (!flow_bb_inside_loop_p (loop, e->dest))
2367 break;
2368 if (e)
2369 break;
2371 /* A loop might be infinite (TODO use simple loop analysis
2372 to disprove this if possible). */
2373 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2374 break;
2376 if (!flow_bb_inside_loop_p (inn_loop, bb))
2377 break;
2379 if (bb->loop_father->header == bb)
2381 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2382 break;
2384 /* In a loop that is always entered we may proceed anyway.
2385 But record that we entered it and stop once we leave it. */
2386 inn_loop = bb->loop_father;
2390 while (1)
2392 SET_ALWAYS_EXECUTED_IN (last, loop);
2393 if (last == loop->header)
2394 break;
2395 last = get_immediate_dominator (CDI_DOMINATORS, last);
2398 free (bbs);
2401 for (loop = loop->inner; loop; loop = loop->next)
2402 fill_always_executed_in_1 (loop, contains_call);
2405 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2406 for each such basic block bb records the outermost loop for that execution
2407 of its header implies execution of bb. */
2409 static void
2410 fill_always_executed_in (void)
2412 sbitmap contains_call = sbitmap_alloc (last_basic_block_for_fn (cfun));
2413 basic_block bb;
2414 struct loop *loop;
2416 bitmap_clear (contains_call);
2417 FOR_EACH_BB_FN (bb, cfun)
2419 gimple_stmt_iterator gsi;
2420 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2422 if (nonpure_call_p (gsi_stmt (gsi)))
2423 break;
2426 if (!gsi_end_p (gsi))
2427 bitmap_set_bit (contains_call, bb->index);
2430 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2431 fill_always_executed_in_1 (loop, contains_call);
2433 sbitmap_free (contains_call);
2437 /* Compute the global information needed by the loop invariant motion pass. */
2439 static void
2440 tree_ssa_lim_initialize (void)
2442 struct loop *loop;
2443 unsigned i;
2445 bitmap_obstack_initialize (&lim_bitmap_obstack);
2446 gcc_obstack_init (&mem_ref_obstack);
2447 lim_aux_data_map = new hash_map<gimple, lim_aux_data *>;
2449 if (flag_tm)
2450 compute_transaction_bits ();
2452 alloc_aux_for_edges (0);
2454 memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
2455 memory_accesses.refs_list.create (100);
2456 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2457 memory_accesses.refs_list.quick_push
2458 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID));
2460 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2461 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2462 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2463 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2464 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2465 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2467 for (i = 0; i < number_of_loops (cfun); i++)
2469 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2470 &lim_bitmap_obstack);
2471 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2472 &lim_bitmap_obstack);
2473 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2474 &lim_bitmap_obstack);
2477 memory_accesses.ttae_cache = NULL;
2479 /* Initialize bb_loop_postorder with a mapping from loop->num to
2480 its postorder index. */
2481 i = 0;
2482 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
2483 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2484 bb_loop_postorder[loop->num] = i++;
2487 /* Cleans up after the invariant motion pass. */
2489 static void
2490 tree_ssa_lim_finalize (void)
2492 basic_block bb;
2493 unsigned i;
2494 mem_ref_p ref;
2496 free_aux_for_edges ();
2498 FOR_EACH_BB_FN (bb, cfun)
2499 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2501 bitmap_obstack_release (&lim_bitmap_obstack);
2502 delete lim_aux_data_map;
2504 delete memory_accesses.refs;
2505 memory_accesses.refs = NULL;
2507 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2508 memref_free (ref);
2509 memory_accesses.refs_list.release ();
2510 obstack_free (&mem_ref_obstack, NULL);
2512 memory_accesses.refs_in_loop.release ();
2513 memory_accesses.refs_stored_in_loop.release ();
2514 memory_accesses.all_refs_stored_in_loop.release ();
2516 if (memory_accesses.ttae_cache)
2517 free_affine_expand_cache (&memory_accesses.ttae_cache);
2519 free (bb_loop_postorder);
2522 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2523 i.e. those that are likely to be win regardless of the register pressure. */
2525 unsigned int
2526 tree_ssa_lim (void)
2528 unsigned int todo;
2530 tree_ssa_lim_initialize ();
2532 /* Gathers information about memory accesses in the loops. */
2533 analyze_memory_references ();
2535 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2536 fill_always_executed_in ();
2538 /* For each statement determine the outermost loop in that it is
2539 invariant and cost for computing the invariant. */
2540 invariantness_dom_walker (CDI_DOMINATORS)
2541 .walk (cfun->cfg->x_entry_block_ptr);
2543 /* Execute store motion. Force the necessary invariants to be moved
2544 out of the loops as well. */
2545 store_motion ();
2547 /* Move the expressions that are expensive enough. */
2548 todo = move_computations ();
2550 tree_ssa_lim_finalize ();
2552 return todo;
2555 /* Loop invariant motion pass. */
2557 namespace {
2559 const pass_data pass_data_lim =
2561 GIMPLE_PASS, /* type */
2562 "lim", /* name */
2563 OPTGROUP_LOOP, /* optinfo_flags */
2564 TV_LIM, /* tv_id */
2565 PROP_cfg, /* properties_required */
2566 0, /* properties_provided */
2567 0, /* properties_destroyed */
2568 0, /* todo_flags_start */
2569 0, /* todo_flags_finish */
2572 class pass_lim : public gimple_opt_pass
2574 public:
2575 pass_lim (gcc::context *ctxt)
2576 : gimple_opt_pass (pass_data_lim, ctxt)
2579 /* opt_pass methods: */
2580 opt_pass * clone () { return new pass_lim (m_ctxt); }
2581 virtual bool gate (function *) { return flag_tree_loop_im != 0; }
2582 virtual unsigned int execute (function *);
2584 }; // class pass_lim
2586 unsigned int
2587 pass_lim::execute (function *fun)
2589 if (number_of_loops (fun) <= 1)
2590 return 0;
2592 return tree_ssa_lim ();
2595 } // anon namespace
2597 gimple_opt_pass *
2598 make_pass_lim (gcc::context *ctxt)
2600 return new pass_lim (ctxt);