1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
36 #include "coretypes.h"
38 #include "diagnostic-core.h"
46 #include "hard-reg-set.h"
48 #include "insn-config.h"
51 #include "basic-block.h"
54 #include "langhooks.h"
59 struct target_rtl default_target_rtl
;
61 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
64 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
66 /* Commonly used modes. */
68 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
69 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
70 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
71 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
73 /* Datastructures maintained for currently processed function in RTL form. */
75 struct rtl_data x_rtl
;
77 /* Indexed by pseudo register number, gives the rtx for that pseudo.
78 Allocated in parallel with regno_pointer_align.
79 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
80 with length attribute nested in top level structures. */
84 /* This is *not* reset after each function. It gives each CODE_LABEL
85 in the entire compilation a unique label number. */
87 static GTY(()) int label_num
= 1;
89 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
91 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
92 is set only for MODE_INT and MODE_VECTOR_INT modes. */
94 rtx const_tiny_rtx
[4][(int) MAX_MACHINE_MODE
];
98 REAL_VALUE_TYPE dconst0
;
99 REAL_VALUE_TYPE dconst1
;
100 REAL_VALUE_TYPE dconst2
;
101 REAL_VALUE_TYPE dconstm1
;
102 REAL_VALUE_TYPE dconsthalf
;
104 /* Record fixed-point constant 0 and 1. */
105 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
106 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
108 /* We make one copy of (const_int C) where C is in
109 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
110 to save space during the compilation and simplify comparisons of
113 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
115 /* Standard pieces of rtx, to be substituted directly into things. */
118 rtx simple_return_rtx
;
121 /* A hash table storing CONST_INTs whose absolute value is greater
122 than MAX_SAVED_CONST_INT. */
124 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
125 htab_t const_int_htab
;
127 /* A hash table storing memory attribute structures. */
128 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
129 htab_t mem_attrs_htab
;
131 /* A hash table storing register attribute structures. */
132 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
133 htab_t reg_attrs_htab
;
135 /* A hash table storing all CONST_DOUBLEs. */
136 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
137 htab_t const_double_htab
;
139 /* A hash table storing all CONST_FIXEDs. */
140 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
141 htab_t const_fixed_htab
;
143 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
144 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
145 #define first_label_num (crtl->emit.x_first_label_num)
147 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
148 static void set_used_decls (tree
);
149 static void mark_label_nuses (rtx
);
150 static hashval_t
const_int_htab_hash (const void *);
151 static int const_int_htab_eq (const void *, const void *);
152 static hashval_t
const_double_htab_hash (const void *);
153 static int const_double_htab_eq (const void *, const void *);
154 static rtx
lookup_const_double (rtx
);
155 static hashval_t
const_fixed_htab_hash (const void *);
156 static int const_fixed_htab_eq (const void *, const void *);
157 static rtx
lookup_const_fixed (rtx
);
158 static hashval_t
mem_attrs_htab_hash (const void *);
159 static int mem_attrs_htab_eq (const void *, const void *);
160 static hashval_t
reg_attrs_htab_hash (const void *);
161 static int reg_attrs_htab_eq (const void *, const void *);
162 static reg_attrs
*get_reg_attrs (tree
, int);
163 static rtx
gen_const_vector (enum machine_mode
, int);
164 static void copy_rtx_if_shared_1 (rtx
*orig
);
166 /* Probability of the conditional branch currently proceeded by try_split.
167 Set to -1 otherwise. */
168 int split_branch_probability
= -1;
170 /* Returns a hash code for X (which is a really a CONST_INT). */
173 const_int_htab_hash (const void *x
)
175 return (hashval_t
) INTVAL ((const_rtx
) x
);
178 /* Returns nonzero if the value represented by X (which is really a
179 CONST_INT) is the same as that given by Y (which is really a
183 const_int_htab_eq (const void *x
, const void *y
)
185 return (INTVAL ((const_rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
188 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
190 const_double_htab_hash (const void *x
)
192 const_rtx
const value
= (const_rtx
) x
;
195 if (GET_MODE (value
) == VOIDmode
)
196 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
199 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
200 /* MODE is used in the comparison, so it should be in the hash. */
201 h
^= GET_MODE (value
);
206 /* Returns nonzero if the value represented by X (really a ...)
207 is the same as that represented by Y (really a ...) */
209 const_double_htab_eq (const void *x
, const void *y
)
211 const_rtx
const a
= (const_rtx
)x
, b
= (const_rtx
)y
;
213 if (GET_MODE (a
) != GET_MODE (b
))
215 if (GET_MODE (a
) == VOIDmode
)
216 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
217 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
219 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
220 CONST_DOUBLE_REAL_VALUE (b
));
223 /* Returns a hash code for X (which is really a CONST_FIXED). */
226 const_fixed_htab_hash (const void *x
)
228 const_rtx
const value
= (const_rtx
) x
;
231 h
= fixed_hash (CONST_FIXED_VALUE (value
));
232 /* MODE is used in the comparison, so it should be in the hash. */
233 h
^= GET_MODE (value
);
237 /* Returns nonzero if the value represented by X (really a ...)
238 is the same as that represented by Y (really a ...). */
241 const_fixed_htab_eq (const void *x
, const void *y
)
243 const_rtx
const a
= (const_rtx
) x
, b
= (const_rtx
) y
;
245 if (GET_MODE (a
) != GET_MODE (b
))
247 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
250 /* Returns a hash code for X (which is a really a mem_attrs *). */
253 mem_attrs_htab_hash (const void *x
)
255 const mem_attrs
*const p
= (const mem_attrs
*) x
;
257 return (p
->alias
^ (p
->align
* 1000)
258 ^ (p
->addrspace
* 4000)
259 ^ ((p
->offset_known_p
? p
->offset
: 0) * 50000)
260 ^ ((p
->size_known_p
? p
->size
: 0) * 2500000)
261 ^ (size_t) iterative_hash_expr (p
->expr
, 0));
264 /* Return true if the given memory attributes are equal. */
267 mem_attrs_eq_p (const struct mem_attrs
*p
, const struct mem_attrs
*q
)
269 return (p
->alias
== q
->alias
270 && p
->offset_known_p
== q
->offset_known_p
271 && (!p
->offset_known_p
|| p
->offset
== q
->offset
)
272 && p
->size_known_p
== q
->size_known_p
273 && (!p
->size_known_p
|| p
->size
== q
->size
)
274 && p
->align
== q
->align
275 && p
->addrspace
== q
->addrspace
276 && (p
->expr
== q
->expr
277 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
278 && operand_equal_p (p
->expr
, q
->expr
, 0))));
281 /* Returns nonzero if the value represented by X (which is really a
282 mem_attrs *) is the same as that given by Y (which is also really a
286 mem_attrs_htab_eq (const void *x
, const void *y
)
288 return mem_attrs_eq_p ((const mem_attrs
*) x
, (const mem_attrs
*) y
);
291 /* Set MEM's memory attributes so that they are the same as ATTRS. */
294 set_mem_attrs (rtx mem
, mem_attrs
*attrs
)
298 /* If everything is the default, we can just clear the attributes. */
299 if (mem_attrs_eq_p (attrs
, mode_mem_attrs
[(int) GET_MODE (mem
)]))
305 slot
= htab_find_slot (mem_attrs_htab
, attrs
, INSERT
);
308 *slot
= ggc_alloc_mem_attrs ();
309 memcpy (*slot
, attrs
, sizeof (mem_attrs
));
312 MEM_ATTRS (mem
) = (mem_attrs
*) *slot
;
315 /* Returns a hash code for X (which is a really a reg_attrs *). */
318 reg_attrs_htab_hash (const void *x
)
320 const reg_attrs
*const p
= (const reg_attrs
*) x
;
322 return ((p
->offset
* 1000) ^ (intptr_t) p
->decl
);
325 /* Returns nonzero if the value represented by X (which is really a
326 reg_attrs *) is the same as that given by Y (which is also really a
330 reg_attrs_htab_eq (const void *x
, const void *y
)
332 const reg_attrs
*const p
= (const reg_attrs
*) x
;
333 const reg_attrs
*const q
= (const reg_attrs
*) y
;
335 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
337 /* Allocate a new reg_attrs structure and insert it into the hash table if
338 one identical to it is not already in the table. We are doing this for
342 get_reg_attrs (tree decl
, int offset
)
347 /* If everything is the default, we can just return zero. */
348 if (decl
== 0 && offset
== 0)
352 attrs
.offset
= offset
;
354 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
357 *slot
= ggc_alloc_reg_attrs ();
358 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
361 return (reg_attrs
*) *slot
;
366 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
367 and to block register equivalences to be seen across this insn. */
372 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
373 MEM_VOLATILE_P (x
) = true;
379 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
380 don't attempt to share with the various global pieces of rtl (such as
381 frame_pointer_rtx). */
384 gen_raw_REG (enum machine_mode mode
, int regno
)
386 rtx x
= gen_rtx_raw_REG (mode
, regno
);
387 ORIGINAL_REGNO (x
) = regno
;
391 /* There are some RTL codes that require special attention; the generation
392 functions do the raw handling. If you add to this list, modify
393 special_rtx in gengenrtl.c as well. */
396 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
400 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
401 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
403 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
404 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
405 return const_true_rtx
;
408 /* Look up the CONST_INT in the hash table. */
409 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
410 (hashval_t
) arg
, INSERT
);
412 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
418 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
420 return GEN_INT (trunc_int_for_mode (c
, mode
));
423 /* CONST_DOUBLEs might be created from pairs of integers, or from
424 REAL_VALUE_TYPEs. Also, their length is known only at run time,
425 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
427 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
428 hash table. If so, return its counterpart; otherwise add it
429 to the hash table and return it. */
431 lookup_const_double (rtx real
)
433 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
440 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
441 VALUE in mode MODE. */
443 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
445 rtx real
= rtx_alloc (CONST_DOUBLE
);
446 PUT_MODE (real
, mode
);
450 return lookup_const_double (real
);
453 /* Determine whether FIXED, a CONST_FIXED, already exists in the
454 hash table. If so, return its counterpart; otherwise add it
455 to the hash table and return it. */
458 lookup_const_fixed (rtx fixed
)
460 void **slot
= htab_find_slot (const_fixed_htab
, fixed
, INSERT
);
467 /* Return a CONST_FIXED rtx for a fixed-point value specified by
468 VALUE in mode MODE. */
471 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, enum machine_mode mode
)
473 rtx fixed
= rtx_alloc (CONST_FIXED
);
474 PUT_MODE (fixed
, mode
);
478 return lookup_const_fixed (fixed
);
481 /* Constructs double_int from rtx CST. */
484 rtx_to_double_int (const_rtx cst
)
488 if (CONST_INT_P (cst
))
489 r
= double_int::from_shwi (INTVAL (cst
));
490 else if (CONST_DOUBLE_AS_INT_P (cst
))
492 r
.low
= CONST_DOUBLE_LOW (cst
);
493 r
.high
= CONST_DOUBLE_HIGH (cst
);
502 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
506 immed_double_int_const (double_int i
, enum machine_mode mode
)
508 return immed_double_const (i
.low
, i
.high
, mode
);
511 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
512 of ints: I0 is the low-order word and I1 is the high-order word.
513 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
514 implied upper bits are copies of the high bit of i1. The value
515 itself is neither signed nor unsigned. Do not use this routine for
516 non-integer modes; convert to REAL_VALUE_TYPE and use
517 CONST_DOUBLE_FROM_REAL_VALUE. */
520 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
525 /* There are the following cases (note that there are no modes with
526 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
528 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
530 2) If the value of the integer fits into HOST_WIDE_INT anyway
531 (i.e., i1 consists only from copies of the sign bit, and sign
532 of i0 and i1 are the same), then we return a CONST_INT for i0.
533 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
534 if (mode
!= VOIDmode
)
536 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
537 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
538 /* We can get a 0 for an error mark. */
539 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
540 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
542 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
543 return gen_int_mode (i0
, mode
);
546 /* If this integer fits in one word, return a CONST_INT. */
547 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
550 /* We use VOIDmode for integers. */
551 value
= rtx_alloc (CONST_DOUBLE
);
552 PUT_MODE (value
, VOIDmode
);
554 CONST_DOUBLE_LOW (value
) = i0
;
555 CONST_DOUBLE_HIGH (value
) = i1
;
557 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
558 XWINT (value
, i
) = 0;
560 return lookup_const_double (value
);
564 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
566 /* In case the MD file explicitly references the frame pointer, have
567 all such references point to the same frame pointer. This is
568 used during frame pointer elimination to distinguish the explicit
569 references to these registers from pseudos that happened to be
572 If we have eliminated the frame pointer or arg pointer, we will
573 be using it as a normal register, for example as a spill
574 register. In such cases, we might be accessing it in a mode that
575 is not Pmode and therefore cannot use the pre-allocated rtx.
577 Also don't do this when we are making new REGs in reload, since
578 we don't want to get confused with the real pointers. */
580 if (mode
== Pmode
&& !reload_in_progress
&& !lra_in_progress
)
582 if (regno
== FRAME_POINTER_REGNUM
583 && (!reload_completed
|| frame_pointer_needed
))
584 return frame_pointer_rtx
;
585 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
586 if (regno
== HARD_FRAME_POINTER_REGNUM
587 && (!reload_completed
|| frame_pointer_needed
))
588 return hard_frame_pointer_rtx
;
590 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
591 if (regno
== ARG_POINTER_REGNUM
)
592 return arg_pointer_rtx
;
594 #ifdef RETURN_ADDRESS_POINTER_REGNUM
595 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
596 return return_address_pointer_rtx
;
598 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
599 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
600 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
601 return pic_offset_table_rtx
;
602 if (regno
== STACK_POINTER_REGNUM
)
603 return stack_pointer_rtx
;
607 /* If the per-function register table has been set up, try to re-use
608 an existing entry in that table to avoid useless generation of RTL.
610 This code is disabled for now until we can fix the various backends
611 which depend on having non-shared hard registers in some cases. Long
612 term we want to re-enable this code as it can significantly cut down
613 on the amount of useless RTL that gets generated.
615 We'll also need to fix some code that runs after reload that wants to
616 set ORIGINAL_REGNO. */
621 && regno
< FIRST_PSEUDO_REGISTER
622 && reg_raw_mode
[regno
] == mode
)
623 return regno_reg_rtx
[regno
];
626 return gen_raw_REG (mode
, regno
);
630 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
632 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
634 /* This field is not cleared by the mere allocation of the rtx, so
641 /* Generate a memory referring to non-trapping constant memory. */
644 gen_const_mem (enum machine_mode mode
, rtx addr
)
646 rtx mem
= gen_rtx_MEM (mode
, addr
);
647 MEM_READONLY_P (mem
) = 1;
648 MEM_NOTRAP_P (mem
) = 1;
652 /* Generate a MEM referring to fixed portions of the frame, e.g., register
656 gen_frame_mem (enum machine_mode mode
, rtx addr
)
658 rtx mem
= gen_rtx_MEM (mode
, addr
);
659 MEM_NOTRAP_P (mem
) = 1;
660 set_mem_alias_set (mem
, get_frame_alias_set ());
664 /* Generate a MEM referring to a temporary use of the stack, not part
665 of the fixed stack frame. For example, something which is pushed
666 by a target splitter. */
668 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
670 rtx mem
= gen_rtx_MEM (mode
, addr
);
671 MEM_NOTRAP_P (mem
) = 1;
672 if (!cfun
->calls_alloca
)
673 set_mem_alias_set (mem
, get_frame_alias_set ());
677 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
678 this construct would be valid, and false otherwise. */
681 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
682 const_rtx reg
, unsigned int offset
)
684 unsigned int isize
= GET_MODE_SIZE (imode
);
685 unsigned int osize
= GET_MODE_SIZE (omode
);
687 /* All subregs must be aligned. */
688 if (offset
% osize
!= 0)
691 /* The subreg offset cannot be outside the inner object. */
695 /* ??? This should not be here. Temporarily continue to allow word_mode
696 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
697 Generally, backends are doing something sketchy but it'll take time to
699 if (omode
== word_mode
)
701 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
702 is the culprit here, and not the backends. */
703 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
705 /* Allow component subregs of complex and vector. Though given the below
706 extraction rules, it's not always clear what that means. */
707 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
708 && GET_MODE_INNER (imode
) == omode
)
710 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
711 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
712 represent this. It's questionable if this ought to be represented at
713 all -- why can't this all be hidden in post-reload splitters that make
714 arbitrarily mode changes to the registers themselves. */
715 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
717 /* Subregs involving floating point modes are not allowed to
718 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
719 (subreg:SI (reg:DF) 0) isn't. */
720 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
722 if (! (isize
== osize
723 /* LRA can use subreg to store a floating point value in
724 an integer mode. Although the floating point and the
725 integer modes need the same number of hard registers,
726 the size of floating point mode can be less than the
727 integer mode. LRA also uses subregs for a register
728 should be used in different mode in on insn. */
733 /* Paradoxical subregs must have offset zero. */
737 /* This is a normal subreg. Verify that the offset is representable. */
739 /* For hard registers, we already have most of these rules collected in
740 subreg_offset_representable_p. */
741 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
743 unsigned int regno
= REGNO (reg
);
745 #ifdef CANNOT_CHANGE_MODE_CLASS
746 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
747 && GET_MODE_INNER (imode
) == omode
)
749 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
753 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
756 /* For pseudo registers, we want most of the same checks. Namely:
757 If the register no larger than a word, the subreg must be lowpart.
758 If the register is larger than a word, the subreg must be the lowpart
759 of a subword. A subreg does *not* perform arbitrary bit extraction.
760 Given that we've already checked mode/offset alignment, we only have
761 to check subword subregs here. */
762 if (osize
< UNITS_PER_WORD
763 && ! (lra_in_progress
&& (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))))
765 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
766 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
767 if (offset
% UNITS_PER_WORD
!= low_off
)
774 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
776 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
777 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
780 /* Generate a SUBREG representing the least-significant part of REG if MODE
781 is smaller than mode of REG, otherwise paradoxical SUBREG. */
784 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
786 enum machine_mode inmode
;
788 inmode
= GET_MODE (reg
);
789 if (inmode
== VOIDmode
)
791 return gen_rtx_SUBREG (mode
, reg
,
792 subreg_lowpart_offset (mode
, inmode
));
796 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
799 gen_rtvec (int n
, ...)
807 /* Don't allocate an empty rtvec... */
814 rt_val
= rtvec_alloc (n
);
816 for (i
= 0; i
< n
; i
++)
817 rt_val
->elem
[i
] = va_arg (p
, rtx
);
824 gen_rtvec_v (int n
, rtx
*argp
)
829 /* Don't allocate an empty rtvec... */
833 rt_val
= rtvec_alloc (n
);
835 for (i
= 0; i
< n
; i
++)
836 rt_val
->elem
[i
] = *argp
++;
841 /* Return the number of bytes between the start of an OUTER_MODE
842 in-memory value and the start of an INNER_MODE in-memory value,
843 given that the former is a lowpart of the latter. It may be a
844 paradoxical lowpart, in which case the offset will be negative
845 on big-endian targets. */
848 byte_lowpart_offset (enum machine_mode outer_mode
,
849 enum machine_mode inner_mode
)
851 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
852 return subreg_lowpart_offset (outer_mode
, inner_mode
);
854 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
857 /* Generate a REG rtx for a new pseudo register of mode MODE.
858 This pseudo is assigned the next sequential register number. */
861 gen_reg_rtx (enum machine_mode mode
)
864 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
866 gcc_assert (can_create_pseudo_p ());
868 /* If a virtual register with bigger mode alignment is generated,
869 increase stack alignment estimation because it might be spilled
871 if (SUPPORTS_STACK_ALIGNMENT
872 && crtl
->stack_alignment_estimated
< align
873 && !crtl
->stack_realign_processed
)
875 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
876 if (crtl
->stack_alignment_estimated
< min_align
)
877 crtl
->stack_alignment_estimated
= min_align
;
880 if (generating_concat_p
881 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
882 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
884 /* For complex modes, don't make a single pseudo.
885 Instead, make a CONCAT of two pseudos.
886 This allows noncontiguous allocation of the real and imaginary parts,
887 which makes much better code. Besides, allocating DCmode
888 pseudos overstrains reload on some machines like the 386. */
889 rtx realpart
, imagpart
;
890 enum machine_mode partmode
= GET_MODE_INNER (mode
);
892 realpart
= gen_reg_rtx (partmode
);
893 imagpart
= gen_reg_rtx (partmode
);
894 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
897 /* Make sure regno_pointer_align, and regno_reg_rtx are large
898 enough to have an element for this pseudo reg number. */
900 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
902 int old_size
= crtl
->emit
.regno_pointer_align_length
;
906 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
907 memset (tmp
+ old_size
, 0, old_size
);
908 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
910 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
911 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
912 regno_reg_rtx
= new1
;
914 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
917 val
= gen_raw_REG (mode
, reg_rtx_no
);
918 regno_reg_rtx
[reg_rtx_no
++] = val
;
922 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
925 reg_is_parm_p (rtx reg
)
929 gcc_assert (REG_P (reg
));
930 decl
= REG_EXPR (reg
);
931 return (decl
&& TREE_CODE (decl
) == PARM_DECL
);
934 /* Update NEW with the same attributes as REG, but with OFFSET added
935 to the REG_OFFSET. */
938 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
940 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
941 REG_OFFSET (reg
) + offset
);
944 /* Generate a register with same attributes as REG, but with OFFSET
945 added to the REG_OFFSET. */
948 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
,
951 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
953 update_reg_offset (new_rtx
, reg
, offset
);
957 /* Generate a new pseudo-register with the same attributes as REG, but
958 with OFFSET added to the REG_OFFSET. */
961 gen_reg_rtx_offset (rtx reg
, enum machine_mode mode
, int offset
)
963 rtx new_rtx
= gen_reg_rtx (mode
);
965 update_reg_offset (new_rtx
, reg
, offset
);
969 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
970 new register is a (possibly paradoxical) lowpart of the old one. */
973 adjust_reg_mode (rtx reg
, enum machine_mode mode
)
975 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
976 PUT_MODE (reg
, mode
);
979 /* Copy REG's attributes from X, if X has any attributes. If REG and X
980 have different modes, REG is a (possibly paradoxical) lowpart of X. */
983 set_reg_attrs_from_value (rtx reg
, rtx x
)
986 bool can_be_reg_pointer
= true;
988 /* Don't call mark_reg_pointer for incompatible pointer sign
990 while (GET_CODE (x
) == SIGN_EXTEND
991 || GET_CODE (x
) == ZERO_EXTEND
992 || GET_CODE (x
) == TRUNCATE
993 || (GET_CODE (x
) == SUBREG
&& subreg_lowpart_p (x
)))
995 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
996 if ((GET_CODE (x
) == SIGN_EXTEND
&& POINTERS_EXTEND_UNSIGNED
)
997 || (GET_CODE (x
) != SIGN_EXTEND
&& ! POINTERS_EXTEND_UNSIGNED
))
998 can_be_reg_pointer
= false;
1003 /* Hard registers can be reused for multiple purposes within the same
1004 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1005 on them is wrong. */
1006 if (HARD_REGISTER_P (reg
))
1009 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
1012 if (MEM_OFFSET_KNOWN_P (x
))
1013 REG_ATTRS (reg
) = get_reg_attrs (MEM_EXPR (x
),
1014 MEM_OFFSET (x
) + offset
);
1015 if (can_be_reg_pointer
&& MEM_POINTER (x
))
1016 mark_reg_pointer (reg
, 0);
1021 update_reg_offset (reg
, x
, offset
);
1022 if (can_be_reg_pointer
&& REG_POINTER (x
))
1023 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
1027 /* Generate a REG rtx for a new pseudo register, copying the mode
1028 and attributes from X. */
1031 gen_reg_rtx_and_attrs (rtx x
)
1033 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1034 set_reg_attrs_from_value (reg
, x
);
1038 /* Set the register attributes for registers contained in PARM_RTX.
1039 Use needed values from memory attributes of MEM. */
1042 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1044 if (REG_P (parm_rtx
))
1045 set_reg_attrs_from_value (parm_rtx
, mem
);
1046 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1048 /* Check for a NULL entry in the first slot, used to indicate that the
1049 parameter goes both on the stack and in registers. */
1050 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1051 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1053 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1054 if (REG_P (XEXP (x
, 0)))
1055 REG_ATTRS (XEXP (x
, 0))
1056 = get_reg_attrs (MEM_EXPR (mem
),
1057 INTVAL (XEXP (x
, 1)));
1062 /* Set the REG_ATTRS for registers in value X, given that X represents
1066 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1068 if (GET_CODE (x
) == SUBREG
)
1070 gcc_assert (subreg_lowpart_p (x
));
1075 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1077 if (GET_CODE (x
) == CONCAT
)
1079 if (REG_P (XEXP (x
, 0)))
1080 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1081 if (REG_P (XEXP (x
, 1)))
1082 REG_ATTRS (XEXP (x
, 1))
1083 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1085 if (GET_CODE (x
) == PARALLEL
)
1089 /* Check for a NULL entry, used to indicate that the parameter goes
1090 both on the stack and in registers. */
1091 if (XEXP (XVECEXP (x
, 0, 0), 0))
1096 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1098 rtx y
= XVECEXP (x
, 0, i
);
1099 if (REG_P (XEXP (y
, 0)))
1100 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1105 /* Assign the RTX X to declaration T. */
1108 set_decl_rtl (tree t
, rtx x
)
1110 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1112 set_reg_attrs_for_decl_rtl (t
, x
);
1115 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1116 if the ABI requires the parameter to be passed by reference. */
1119 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1121 DECL_INCOMING_RTL (t
) = x
;
1122 if (x
&& !by_reference_p
)
1123 set_reg_attrs_for_decl_rtl (t
, x
);
1126 /* Identify REG (which may be a CONCAT) as a user register. */
1129 mark_user_reg (rtx reg
)
1131 if (GET_CODE (reg
) == CONCAT
)
1133 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1134 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1138 gcc_assert (REG_P (reg
));
1139 REG_USERVAR_P (reg
) = 1;
1143 /* Identify REG as a probable pointer register and show its alignment
1144 as ALIGN, if nonzero. */
1147 mark_reg_pointer (rtx reg
, int align
)
1149 if (! REG_POINTER (reg
))
1151 REG_POINTER (reg
) = 1;
1154 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1156 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1157 /* We can no-longer be sure just how aligned this pointer is. */
1158 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1161 /* Return 1 plus largest pseudo reg number used in the current function. */
1169 /* Return 1 + the largest label number used so far in the current function. */
1172 max_label_num (void)
1177 /* Return first label number used in this function (if any were used). */
1180 get_first_label_num (void)
1182 return first_label_num
;
1185 /* If the rtx for label was created during the expansion of a nested
1186 function, then first_label_num won't include this label number.
1187 Fix this now so that array indices work later. */
1190 maybe_set_first_label_num (rtx x
)
1192 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1193 first_label_num
= CODE_LABEL_NUMBER (x
);
1196 /* Return a value representing some low-order bits of X, where the number
1197 of low-order bits is given by MODE. Note that no conversion is done
1198 between floating-point and fixed-point values, rather, the bit
1199 representation is returned.
1201 This function handles the cases in common between gen_lowpart, below,
1202 and two variants in cse.c and combine.c. These are the cases that can
1203 be safely handled at all points in the compilation.
1205 If this is not a case we can handle, return 0. */
1208 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1210 int msize
= GET_MODE_SIZE (mode
);
1213 enum machine_mode innermode
;
1215 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1216 so we have to make one up. Yuk. */
1217 innermode
= GET_MODE (x
);
1219 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1220 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1221 else if (innermode
== VOIDmode
)
1222 innermode
= mode_for_size (HOST_BITS_PER_DOUBLE_INT
, MODE_INT
, 0);
1224 xsize
= GET_MODE_SIZE (innermode
);
1226 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1228 if (innermode
== mode
)
1231 /* MODE must occupy no more words than the mode of X. */
1232 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1233 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1236 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1237 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1240 offset
= subreg_lowpart_offset (mode
, innermode
);
1242 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1243 && (GET_MODE_CLASS (mode
) == MODE_INT
1244 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1246 /* If we are getting the low-order part of something that has been
1247 sign- or zero-extended, we can either just use the object being
1248 extended or make a narrower extension. If we want an even smaller
1249 piece than the size of the object being extended, call ourselves
1252 This case is used mostly by combine and cse. */
1254 if (GET_MODE (XEXP (x
, 0)) == mode
)
1256 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1257 return gen_lowpart_common (mode
, XEXP (x
, 0));
1258 else if (msize
< xsize
)
1259 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1261 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1262 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1263 || CONST_DOUBLE_AS_FLOAT_P (x
) || CONST_SCALAR_INT_P (x
))
1264 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1266 /* Otherwise, we can't do this. */
1271 gen_highpart (enum machine_mode mode
, rtx x
)
1273 unsigned int msize
= GET_MODE_SIZE (mode
);
1276 /* This case loses if X is a subreg. To catch bugs early,
1277 complain if an invalid MODE is used even in other cases. */
1278 gcc_assert (msize
<= UNITS_PER_WORD
1279 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1281 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1282 subreg_highpart_offset (mode
, GET_MODE (x
)));
1283 gcc_assert (result
);
1285 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1286 the target if we have a MEM. gen_highpart must return a valid operand,
1287 emitting code if necessary to do so. */
1290 result
= validize_mem (result
);
1291 gcc_assert (result
);
1297 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1298 be VOIDmode constant. */
1300 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1302 if (GET_MODE (exp
) != VOIDmode
)
1304 gcc_assert (GET_MODE (exp
) == innermode
);
1305 return gen_highpart (outermode
, exp
);
1307 return simplify_gen_subreg (outermode
, exp
, innermode
,
1308 subreg_highpart_offset (outermode
, innermode
));
1311 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1314 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1316 unsigned int offset
= 0;
1317 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1321 if (WORDS_BIG_ENDIAN
)
1322 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1323 if (BYTES_BIG_ENDIAN
)
1324 offset
+= difference
% UNITS_PER_WORD
;
1330 /* Return offset in bytes to get OUTERMODE high part
1331 of the value in mode INNERMODE stored in memory in target format. */
1333 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1335 unsigned int offset
= 0;
1336 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1338 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1342 if (! WORDS_BIG_ENDIAN
)
1343 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1344 if (! BYTES_BIG_ENDIAN
)
1345 offset
+= difference
% UNITS_PER_WORD
;
1351 /* Return 1 iff X, assumed to be a SUBREG,
1352 refers to the least significant part of its containing reg.
1353 If X is not a SUBREG, always return 1 (it is its own low part!). */
1356 subreg_lowpart_p (const_rtx x
)
1358 if (GET_CODE (x
) != SUBREG
)
1360 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1363 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1364 == SUBREG_BYTE (x
));
1367 /* Return true if X is a paradoxical subreg, false otherwise. */
1369 paradoxical_subreg_p (const_rtx x
)
1371 if (GET_CODE (x
) != SUBREG
)
1373 return (GET_MODE_PRECISION (GET_MODE (x
))
1374 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))));
1377 /* Return subword OFFSET of operand OP.
1378 The word number, OFFSET, is interpreted as the word number starting
1379 at the low-order address. OFFSET 0 is the low-order word if not
1380 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1382 If we cannot extract the required word, we return zero. Otherwise,
1383 an rtx corresponding to the requested word will be returned.
1385 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1386 reload has completed, a valid address will always be returned. After
1387 reload, if a valid address cannot be returned, we return zero.
1389 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1390 it is the responsibility of the caller.
1392 MODE is the mode of OP in case it is a CONST_INT.
1394 ??? This is still rather broken for some cases. The problem for the
1395 moment is that all callers of this thing provide no 'goal mode' to
1396 tell us to work with. This exists because all callers were written
1397 in a word based SUBREG world.
1398 Now use of this function can be deprecated by simplify_subreg in most
1403 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1405 if (mode
== VOIDmode
)
1406 mode
= GET_MODE (op
);
1408 gcc_assert (mode
!= VOIDmode
);
1410 /* If OP is narrower than a word, fail. */
1412 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1415 /* If we want a word outside OP, return zero. */
1417 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1420 /* Form a new MEM at the requested address. */
1423 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1425 if (! validate_address
)
1428 else if (reload_completed
)
1430 if (! strict_memory_address_addr_space_p (word_mode
,
1432 MEM_ADDR_SPACE (op
)))
1436 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1439 /* Rest can be handled by simplify_subreg. */
1440 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1443 /* Similar to `operand_subword', but never return 0. If we can't
1444 extract the required subword, put OP into a register and try again.
1445 The second attempt must succeed. We always validate the address in
1448 MODE is the mode of OP, in case it is CONST_INT. */
1451 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1453 rtx result
= operand_subword (op
, offset
, 1, mode
);
1458 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1460 /* If this is a register which can not be accessed by words, copy it
1461 to a pseudo register. */
1463 op
= copy_to_reg (op
);
1465 op
= force_reg (mode
, op
);
1468 result
= operand_subword (op
, offset
, 1, mode
);
1469 gcc_assert (result
);
1474 /* Returns 1 if both MEM_EXPR can be considered equal
1478 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1483 if (! expr1
|| ! expr2
)
1486 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1489 return operand_equal_p (expr1
, expr2
, 0);
1492 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1493 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1497 get_mem_align_offset (rtx mem
, unsigned int align
)
1500 unsigned HOST_WIDE_INT offset
;
1502 /* This function can't use
1503 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1504 || (MAX (MEM_ALIGN (mem),
1505 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1509 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1511 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1512 for <variable>. get_inner_reference doesn't handle it and
1513 even if it did, the alignment in that case needs to be determined
1514 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1515 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1516 isn't sufficiently aligned, the object it is in might be. */
1517 gcc_assert (MEM_P (mem
));
1518 expr
= MEM_EXPR (mem
);
1519 if (expr
== NULL_TREE
|| !MEM_OFFSET_KNOWN_P (mem
))
1522 offset
= MEM_OFFSET (mem
);
1525 if (DECL_ALIGN (expr
) < align
)
1528 else if (INDIRECT_REF_P (expr
))
1530 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1533 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1537 tree inner
= TREE_OPERAND (expr
, 0);
1538 tree field
= TREE_OPERAND (expr
, 1);
1539 tree byte_offset
= component_ref_field_offset (expr
);
1540 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1543 || !host_integerp (byte_offset
, 1)
1544 || !host_integerp (bit_offset
, 1))
1547 offset
+= tree_low_cst (byte_offset
, 1);
1548 offset
+= tree_low_cst (bit_offset
, 1) / BITS_PER_UNIT
;
1550 if (inner
== NULL_TREE
)
1552 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1553 < (unsigned int) align
)
1557 else if (DECL_P (inner
))
1559 if (DECL_ALIGN (inner
) < align
)
1563 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1571 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1574 /* Given REF (a MEM) and T, either the type of X or the expression
1575 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1576 if we are making a new object of this type. BITPOS is nonzero if
1577 there is an offset outstanding on T that will be applied later. */
1580 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1581 HOST_WIDE_INT bitpos
)
1583 HOST_WIDE_INT apply_bitpos
= 0;
1585 struct mem_attrs attrs
, *defattrs
, *refattrs
;
1588 /* It can happen that type_for_mode was given a mode for which there
1589 is no language-level type. In which case it returns NULL, which
1594 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1595 if (type
== error_mark_node
)
1598 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1599 wrong answer, as it assumes that DECL_RTL already has the right alias
1600 info. Callers should not set DECL_RTL until after the call to
1601 set_mem_attributes. */
1602 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1604 memset (&attrs
, 0, sizeof (attrs
));
1606 /* Get the alias set from the expression or type (perhaps using a
1607 front-end routine) and use it. */
1608 attrs
.alias
= get_alias_set (t
);
1610 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1611 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1613 /* Default values from pre-existing memory attributes if present. */
1614 refattrs
= MEM_ATTRS (ref
);
1617 /* ??? Can this ever happen? Calling this routine on a MEM that
1618 already carries memory attributes should probably be invalid. */
1619 attrs
.expr
= refattrs
->expr
;
1620 attrs
.offset_known_p
= refattrs
->offset_known_p
;
1621 attrs
.offset
= refattrs
->offset
;
1622 attrs
.size_known_p
= refattrs
->size_known_p
;
1623 attrs
.size
= refattrs
->size
;
1624 attrs
.align
= refattrs
->align
;
1627 /* Otherwise, default values from the mode of the MEM reference. */
1630 defattrs
= mode_mem_attrs
[(int) GET_MODE (ref
)];
1631 gcc_assert (!defattrs
->expr
);
1632 gcc_assert (!defattrs
->offset_known_p
);
1634 /* Respect mode size. */
1635 attrs
.size_known_p
= defattrs
->size_known_p
;
1636 attrs
.size
= defattrs
->size
;
1637 /* ??? Is this really necessary? We probably should always get
1638 the size from the type below. */
1640 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1641 if T is an object, always compute the object alignment below. */
1643 attrs
.align
= defattrs
->align
;
1645 attrs
.align
= BITS_PER_UNIT
;
1646 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1647 e.g. if the type carries an alignment attribute. Should we be
1648 able to simply always use TYPE_ALIGN? */
1651 /* We can set the alignment from the type if we are making an object,
1652 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1653 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
|| TYPE_ALIGN_OK (type
))
1654 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1656 /* If the size is known, we can set that. */
1657 tree new_size
= TYPE_SIZE_UNIT (type
);
1659 /* The address-space is that of the type. */
1660 as
= TYPE_ADDR_SPACE (type
);
1662 /* If T is not a type, we may be able to deduce some more information about
1668 if (TREE_THIS_VOLATILE (t
))
1669 MEM_VOLATILE_P (ref
) = 1;
1671 /* Now remove any conversions: they don't change what the underlying
1672 object is. Likewise for SAVE_EXPR. */
1673 while (CONVERT_EXPR_P (t
)
1674 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1675 || TREE_CODE (t
) == SAVE_EXPR
)
1676 t
= TREE_OPERAND (t
, 0);
1678 /* Note whether this expression can trap. */
1679 MEM_NOTRAP_P (ref
) = !tree_could_trap_p (t
);
1681 base
= get_base_address (t
);
1685 && TREE_READONLY (base
)
1686 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
))
1687 && !TREE_THIS_VOLATILE (base
))
1688 MEM_READONLY_P (ref
) = 1;
1690 /* Mark static const strings readonly as well. */
1691 if (TREE_CODE (base
) == STRING_CST
1692 && TREE_READONLY (base
)
1693 && TREE_STATIC (base
))
1694 MEM_READONLY_P (ref
) = 1;
1696 /* Address-space information is on the base object. */
1697 if (TREE_CODE (base
) == MEM_REF
1698 || TREE_CODE (base
) == TARGET_MEM_REF
)
1699 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base
,
1702 as
= TYPE_ADDR_SPACE (TREE_TYPE (base
));
1705 /* If this expression uses it's parent's alias set, mark it such
1706 that we won't change it. */
1707 if (component_uses_parent_alias_set (t
))
1708 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1710 /* If this is a decl, set the attributes of the MEM from it. */
1714 attrs
.offset_known_p
= true;
1716 apply_bitpos
= bitpos
;
1717 new_size
= DECL_SIZE_UNIT (t
);
1720 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1721 else if (CONSTANT_CLASS_P (t
))
1724 /* If this is a field reference, record it. */
1725 else if (TREE_CODE (t
) == COMPONENT_REF
)
1728 attrs
.offset_known_p
= true;
1730 apply_bitpos
= bitpos
;
1731 if (DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1732 new_size
= DECL_SIZE_UNIT (TREE_OPERAND (t
, 1));
1735 /* If this is an array reference, look for an outer field reference. */
1736 else if (TREE_CODE (t
) == ARRAY_REF
)
1738 tree off_tree
= size_zero_node
;
1739 /* We can't modify t, because we use it at the end of the
1745 tree index
= TREE_OPERAND (t2
, 1);
1746 tree low_bound
= array_ref_low_bound (t2
);
1747 tree unit_size
= array_ref_element_size (t2
);
1749 /* We assume all arrays have sizes that are a multiple of a byte.
1750 First subtract the lower bound, if any, in the type of the
1751 index, then convert to sizetype and multiply by the size of
1752 the array element. */
1753 if (! integer_zerop (low_bound
))
1754 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1757 off_tree
= size_binop (PLUS_EXPR
,
1758 size_binop (MULT_EXPR
,
1759 fold_convert (sizetype
,
1763 t2
= TREE_OPERAND (t2
, 0);
1765 while (TREE_CODE (t2
) == ARRAY_REF
);
1768 || TREE_CODE (t2
) == COMPONENT_REF
)
1771 attrs
.offset_known_p
= false;
1772 if (host_integerp (off_tree
, 1))
1774 attrs
.offset_known_p
= true;
1775 attrs
.offset
= tree_low_cst (off_tree
, 1);
1776 apply_bitpos
= bitpos
;
1779 /* Else do not record a MEM_EXPR. */
1782 /* If this is an indirect reference, record it. */
1783 else if (TREE_CODE (t
) == MEM_REF
1784 || TREE_CODE (t
) == TARGET_MEM_REF
)
1787 attrs
.offset_known_p
= true;
1789 apply_bitpos
= bitpos
;
1792 /* Compute the alignment. */
1793 unsigned int obj_align
;
1794 unsigned HOST_WIDE_INT obj_bitpos
;
1795 get_object_alignment_1 (t
, &obj_align
, &obj_bitpos
);
1796 obj_bitpos
= (obj_bitpos
- bitpos
) & (obj_align
- 1);
1797 if (obj_bitpos
!= 0)
1798 obj_align
= (obj_bitpos
& -obj_bitpos
);
1799 attrs
.align
= MAX (attrs
.align
, obj_align
);
1802 if (host_integerp (new_size
, 1))
1804 attrs
.size_known_p
= true;
1805 attrs
.size
= tree_low_cst (new_size
, 1);
1808 /* If we modified OFFSET based on T, then subtract the outstanding
1809 bit position offset. Similarly, increase the size of the accessed
1810 object to contain the negative offset. */
1813 gcc_assert (attrs
.offset_known_p
);
1814 attrs
.offset
-= apply_bitpos
/ BITS_PER_UNIT
;
1815 if (attrs
.size_known_p
)
1816 attrs
.size
+= apply_bitpos
/ BITS_PER_UNIT
;
1819 /* Now set the attributes we computed above. */
1820 attrs
.addrspace
= as
;
1821 set_mem_attrs (ref
, &attrs
);
1825 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1827 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1830 /* Set the alias set of MEM to SET. */
1833 set_mem_alias_set (rtx mem
, alias_set_type set
)
1835 struct mem_attrs attrs
;
1837 /* If the new and old alias sets don't conflict, something is wrong. */
1838 gcc_checking_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1839 attrs
= *get_mem_attrs (mem
);
1841 set_mem_attrs (mem
, &attrs
);
1844 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1847 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
1849 struct mem_attrs attrs
;
1851 attrs
= *get_mem_attrs (mem
);
1852 attrs
.addrspace
= addrspace
;
1853 set_mem_attrs (mem
, &attrs
);
1856 /* Set the alignment of MEM to ALIGN bits. */
1859 set_mem_align (rtx mem
, unsigned int align
)
1861 struct mem_attrs attrs
;
1863 attrs
= *get_mem_attrs (mem
);
1864 attrs
.align
= align
;
1865 set_mem_attrs (mem
, &attrs
);
1868 /* Set the expr for MEM to EXPR. */
1871 set_mem_expr (rtx mem
, tree expr
)
1873 struct mem_attrs attrs
;
1875 attrs
= *get_mem_attrs (mem
);
1877 set_mem_attrs (mem
, &attrs
);
1880 /* Set the offset of MEM to OFFSET. */
1883 set_mem_offset (rtx mem
, HOST_WIDE_INT offset
)
1885 struct mem_attrs attrs
;
1887 attrs
= *get_mem_attrs (mem
);
1888 attrs
.offset_known_p
= true;
1889 attrs
.offset
= offset
;
1890 set_mem_attrs (mem
, &attrs
);
1893 /* Clear the offset of MEM. */
1896 clear_mem_offset (rtx mem
)
1898 struct mem_attrs attrs
;
1900 attrs
= *get_mem_attrs (mem
);
1901 attrs
.offset_known_p
= false;
1902 set_mem_attrs (mem
, &attrs
);
1905 /* Set the size of MEM to SIZE. */
1908 set_mem_size (rtx mem
, HOST_WIDE_INT size
)
1910 struct mem_attrs attrs
;
1912 attrs
= *get_mem_attrs (mem
);
1913 attrs
.size_known_p
= true;
1915 set_mem_attrs (mem
, &attrs
);
1918 /* Clear the size of MEM. */
1921 clear_mem_size (rtx mem
)
1923 struct mem_attrs attrs
;
1925 attrs
= *get_mem_attrs (mem
);
1926 attrs
.size_known_p
= false;
1927 set_mem_attrs (mem
, &attrs
);
1930 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1931 and its address changed to ADDR. (VOIDmode means don't change the mode.
1932 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1933 returned memory location is required to be valid. The memory
1934 attributes are not changed. */
1937 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1942 gcc_assert (MEM_P (memref
));
1943 as
= MEM_ADDR_SPACE (memref
);
1944 if (mode
== VOIDmode
)
1945 mode
= GET_MODE (memref
);
1947 addr
= XEXP (memref
, 0);
1948 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1949 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
1954 if (reload_in_progress
|| reload_completed
)
1955 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
1957 addr
= memory_address_addr_space (mode
, addr
, as
);
1960 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1963 new_rtx
= gen_rtx_MEM (mode
, addr
);
1964 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1968 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1969 way we are changing MEMREF, so we only preserve the alias set. */
1972 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
1974 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1);
1975 enum machine_mode mmode
= GET_MODE (new_rtx
);
1976 struct mem_attrs attrs
, *defattrs
;
1978 attrs
= *get_mem_attrs (memref
);
1979 defattrs
= mode_mem_attrs
[(int) mmode
];
1980 attrs
.expr
= NULL_TREE
;
1981 attrs
.offset_known_p
= false;
1982 attrs
.size_known_p
= defattrs
->size_known_p
;
1983 attrs
.size
= defattrs
->size
;
1984 attrs
.align
= defattrs
->align
;
1986 /* If there are no changes, just return the original memory reference. */
1987 if (new_rtx
== memref
)
1989 if (mem_attrs_eq_p (get_mem_attrs (memref
), &attrs
))
1992 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
1993 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1996 set_mem_attrs (new_rtx
, &attrs
);
2000 /* Return a memory reference like MEMREF, but with its mode changed
2001 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2002 nonzero, the memory address is forced to be valid.
2003 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2004 and the caller is responsible for adjusting MEMREF base register.
2005 If ADJUST_OBJECT is zero, the underlying object associated with the
2006 memory reference is left unchanged and the caller is responsible for
2007 dealing with it. Otherwise, if the new memory reference is outside
2008 the underlying object, even partially, then the object is dropped.
2009 SIZE, if nonzero, is the size of an access in cases where MODE
2010 has no inherent size. */
2013 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
2014 int validate
, int adjust_address
, int adjust_object
,
2017 rtx addr
= XEXP (memref
, 0);
2019 enum machine_mode address_mode
;
2021 struct mem_attrs attrs
= *get_mem_attrs (memref
), *defattrs
;
2022 unsigned HOST_WIDE_INT max_align
;
2023 #ifdef POINTERS_EXTEND_UNSIGNED
2024 enum machine_mode pointer_mode
2025 = targetm
.addr_space
.pointer_mode (attrs
.addrspace
);
2028 /* VOIDmode means no mode change for change_address_1. */
2029 if (mode
== VOIDmode
)
2030 mode
= GET_MODE (memref
);
2032 /* Take the size of non-BLKmode accesses from the mode. */
2033 defattrs
= mode_mem_attrs
[(int) mode
];
2034 if (defattrs
->size_known_p
)
2035 size
= defattrs
->size
;
2037 /* If there are no changes, just return the original memory reference. */
2038 if (mode
== GET_MODE (memref
) && !offset
2039 && (size
== 0 || (attrs
.size_known_p
&& attrs
.size
== size
))
2040 && (!validate
|| memory_address_addr_space_p (mode
, addr
,
2044 /* ??? Prefer to create garbage instead of creating shared rtl.
2045 This may happen even if offset is nonzero -- consider
2046 (plus (plus reg reg) const_int) -- so do this always. */
2047 addr
= copy_rtx (addr
);
2049 /* Convert a possibly large offset to a signed value within the
2050 range of the target address space. */
2051 address_mode
= get_address_mode (memref
);
2052 pbits
= GET_MODE_BITSIZE (address_mode
);
2053 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2055 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2056 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2062 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2063 object, we can merge it into the LO_SUM. */
2064 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2066 && (unsigned HOST_WIDE_INT
) offset
2067 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2068 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2069 plus_constant (address_mode
,
2070 XEXP (addr
, 1), offset
));
2071 #ifdef POINTERS_EXTEND_UNSIGNED
2072 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2073 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2074 the fact that pointers are not allowed to overflow. */
2075 else if (POINTERS_EXTEND_UNSIGNED
> 0
2076 && GET_CODE (addr
) == ZERO_EXTEND
2077 && GET_MODE (XEXP (addr
, 0)) == pointer_mode
2078 && trunc_int_for_mode (offset
, pointer_mode
) == offset
)
2079 addr
= gen_rtx_ZERO_EXTEND (address_mode
,
2080 plus_constant (pointer_mode
,
2081 XEXP (addr
, 0), offset
));
2084 addr
= plus_constant (address_mode
, addr
, offset
);
2087 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
);
2089 /* If the address is a REG, change_address_1 rightfully returns memref,
2090 but this would destroy memref's MEM_ATTRS. */
2091 if (new_rtx
== memref
&& offset
!= 0)
2092 new_rtx
= copy_rtx (new_rtx
);
2094 /* Conservatively drop the object if we don't know where we start from. */
2095 if (adjust_object
&& (!attrs
.offset_known_p
|| !attrs
.size_known_p
))
2097 attrs
.expr
= NULL_TREE
;
2101 /* Compute the new values of the memory attributes due to this adjustment.
2102 We add the offsets and update the alignment. */
2103 if (attrs
.offset_known_p
)
2105 attrs
.offset
+= offset
;
2107 /* Drop the object if the new left end is not within its bounds. */
2108 if (adjust_object
&& attrs
.offset
< 0)
2110 attrs
.expr
= NULL_TREE
;
2115 /* Compute the new alignment by taking the MIN of the alignment and the
2116 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2120 max_align
= (offset
& -offset
) * BITS_PER_UNIT
;
2121 attrs
.align
= MIN (attrs
.align
, max_align
);
2126 /* Drop the object if the new right end is not within its bounds. */
2127 if (adjust_object
&& (offset
+ size
) > attrs
.size
)
2129 attrs
.expr
= NULL_TREE
;
2132 attrs
.size_known_p
= true;
2135 else if (attrs
.size_known_p
)
2137 gcc_assert (!adjust_object
);
2138 attrs
.size
-= offset
;
2139 /* ??? The store_by_pieces machinery generates negative sizes,
2140 so don't assert for that here. */
2143 set_mem_attrs (new_rtx
, &attrs
);
2148 /* Return a memory reference like MEMREF, but with its mode changed
2149 to MODE and its address changed to ADDR, which is assumed to be
2150 MEMREF offset by OFFSET bytes. If VALIDATE is
2151 nonzero, the memory address is forced to be valid. */
2154 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
2155 HOST_WIDE_INT offset
, int validate
)
2157 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
2158 return adjust_address_1 (memref
, mode
, offset
, validate
, 0, 0, 0);
2161 /* Return a memory reference like MEMREF, but whose address is changed by
2162 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2163 known to be in OFFSET (possibly 1). */
2166 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2168 rtx new_rtx
, addr
= XEXP (memref
, 0);
2169 enum machine_mode address_mode
;
2170 struct mem_attrs attrs
, *defattrs
;
2172 attrs
= *get_mem_attrs (memref
);
2173 address_mode
= get_address_mode (memref
);
2174 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2176 /* At this point we don't know _why_ the address is invalid. It
2177 could have secondary memory references, multiplies or anything.
2179 However, if we did go and rearrange things, we can wind up not
2180 being able to recognize the magic around pic_offset_table_rtx.
2181 This stuff is fragile, and is yet another example of why it is
2182 bad to expose PIC machinery too early. */
2183 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
,
2185 && GET_CODE (addr
) == PLUS
2186 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2188 addr
= force_reg (GET_MODE (addr
), addr
);
2189 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2192 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2193 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1);
2195 /* If there are no changes, just return the original memory reference. */
2196 if (new_rtx
== memref
)
2199 /* Update the alignment to reflect the offset. Reset the offset, which
2201 defattrs
= mode_mem_attrs
[(int) GET_MODE (new_rtx
)];
2202 attrs
.offset_known_p
= false;
2203 attrs
.size_known_p
= defattrs
->size_known_p
;
2204 attrs
.size
= defattrs
->size
;
2205 attrs
.align
= MIN (attrs
.align
, pow2
* BITS_PER_UNIT
);
2206 set_mem_attrs (new_rtx
, &attrs
);
2210 /* Return a memory reference like MEMREF, but with its address changed to
2211 ADDR. The caller is asserting that the actual piece of memory pointed
2212 to is the same, just the form of the address is being changed, such as
2213 by putting something into a register. */
2216 replace_equiv_address (rtx memref
, rtx addr
)
2218 /* change_address_1 copies the memory attribute structure without change
2219 and that's exactly what we want here. */
2220 update_temp_slot_address (XEXP (memref
, 0), addr
);
2221 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2224 /* Likewise, but the reference is not required to be valid. */
2227 replace_equiv_address_nv (rtx memref
, rtx addr
)
2229 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2232 /* Return a memory reference like MEMREF, but with its mode widened to
2233 MODE and offset by OFFSET. This would be used by targets that e.g.
2234 cannot issue QImode memory operations and have to use SImode memory
2235 operations plus masking logic. */
2238 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2240 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1, 0, 0);
2241 struct mem_attrs attrs
;
2242 unsigned int size
= GET_MODE_SIZE (mode
);
2244 /* If there are no changes, just return the original memory reference. */
2245 if (new_rtx
== memref
)
2248 attrs
= *get_mem_attrs (new_rtx
);
2250 /* If we don't know what offset we were at within the expression, then
2251 we can't know if we've overstepped the bounds. */
2252 if (! attrs
.offset_known_p
)
2253 attrs
.expr
= NULL_TREE
;
2257 if (TREE_CODE (attrs
.expr
) == COMPONENT_REF
)
2259 tree field
= TREE_OPERAND (attrs
.expr
, 1);
2260 tree offset
= component_ref_field_offset (attrs
.expr
);
2262 if (! DECL_SIZE_UNIT (field
))
2264 attrs
.expr
= NULL_TREE
;
2268 /* Is the field at least as large as the access? If so, ok,
2269 otherwise strip back to the containing structure. */
2270 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2271 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2272 && attrs
.offset
>= 0)
2275 if (! host_integerp (offset
, 1))
2277 attrs
.expr
= NULL_TREE
;
2281 attrs
.expr
= TREE_OPERAND (attrs
.expr
, 0);
2282 attrs
.offset
+= tree_low_cst (offset
, 1);
2283 attrs
.offset
+= (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2286 /* Similarly for the decl. */
2287 else if (DECL_P (attrs
.expr
)
2288 && DECL_SIZE_UNIT (attrs
.expr
)
2289 && TREE_CODE (DECL_SIZE_UNIT (attrs
.expr
)) == INTEGER_CST
2290 && compare_tree_int (DECL_SIZE_UNIT (attrs
.expr
), size
) >= 0
2291 && (! attrs
.offset_known_p
|| attrs
.offset
>= 0))
2295 /* The widened memory access overflows the expression, which means
2296 that it could alias another expression. Zap it. */
2297 attrs
.expr
= NULL_TREE
;
2303 attrs
.offset_known_p
= false;
2305 /* The widened memory may alias other stuff, so zap the alias set. */
2306 /* ??? Maybe use get_alias_set on any remaining expression. */
2308 attrs
.size_known_p
= true;
2310 set_mem_attrs (new_rtx
, &attrs
);
2314 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2315 static GTY(()) tree spill_slot_decl
;
2318 get_spill_slot_decl (bool force_build_p
)
2320 tree d
= spill_slot_decl
;
2322 struct mem_attrs attrs
;
2324 if (d
|| !force_build_p
)
2327 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2328 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2329 DECL_ARTIFICIAL (d
) = 1;
2330 DECL_IGNORED_P (d
) = 1;
2332 spill_slot_decl
= d
;
2334 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2335 MEM_NOTRAP_P (rd
) = 1;
2336 attrs
= *mode_mem_attrs
[(int) BLKmode
];
2337 attrs
.alias
= new_alias_set ();
2339 set_mem_attrs (rd
, &attrs
);
2340 SET_DECL_RTL (d
, rd
);
2345 /* Given MEM, a result from assign_stack_local, fill in the memory
2346 attributes as appropriate for a register allocator spill slot.
2347 These slots are not aliasable by other memory. We arrange for
2348 them all to use a single MEM_EXPR, so that the aliasing code can
2349 work properly in the case of shared spill slots. */
2352 set_mem_attrs_for_spill (rtx mem
)
2354 struct mem_attrs attrs
;
2357 attrs
= *get_mem_attrs (mem
);
2358 attrs
.expr
= get_spill_slot_decl (true);
2359 attrs
.alias
= MEM_ALIAS_SET (DECL_RTL (attrs
.expr
));
2360 attrs
.addrspace
= ADDR_SPACE_GENERIC
;
2362 /* We expect the incoming memory to be of the form:
2363 (mem:MODE (plus (reg sfp) (const_int offset)))
2364 with perhaps the plus missing for offset = 0. */
2365 addr
= XEXP (mem
, 0);
2366 attrs
.offset_known_p
= true;
2368 if (GET_CODE (addr
) == PLUS
2369 && CONST_INT_P (XEXP (addr
, 1)))
2370 attrs
.offset
= INTVAL (XEXP (addr
, 1));
2372 set_mem_attrs (mem
, &attrs
);
2373 MEM_NOTRAP_P (mem
) = 1;
2376 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2379 gen_label_rtx (void)
2381 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2382 NULL
, label_num
++, NULL
);
2385 /* For procedure integration. */
2387 /* Install new pointers to the first and last insns in the chain.
2388 Also, set cur_insn_uid to one higher than the last in use.
2389 Used for an inline-procedure after copying the insn chain. */
2392 set_new_first_and_last_insn (rtx first
, rtx last
)
2396 set_first_insn (first
);
2397 set_last_insn (last
);
2400 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2402 int debug_count
= 0;
2404 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2405 cur_debug_insn_uid
= 0;
2407 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2408 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2409 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2412 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2413 if (DEBUG_INSN_P (insn
))
2418 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2420 cur_debug_insn_uid
++;
2423 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2424 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2429 /* Go through all the RTL insn bodies and copy any invalid shared
2430 structure. This routine should only be called once. */
2433 unshare_all_rtl_1 (rtx insn
)
2435 /* Unshare just about everything else. */
2436 unshare_all_rtl_in_chain (insn
);
2438 /* Make sure the addresses of stack slots found outside the insn chain
2439 (such as, in DECL_RTL of a variable) are not shared
2440 with the insn chain.
2442 This special care is necessary when the stack slot MEM does not
2443 actually appear in the insn chain. If it does appear, its address
2444 is unshared from all else at that point. */
2445 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2448 /* Go through all the RTL insn bodies and copy any invalid shared
2449 structure, again. This is a fairly expensive thing to do so it
2450 should be done sparingly. */
2453 unshare_all_rtl_again (rtx insn
)
2458 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2461 reset_used_flags (PATTERN (p
));
2462 reset_used_flags (REG_NOTES (p
));
2464 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2467 /* Make sure that virtual stack slots are not shared. */
2468 set_used_decls (DECL_INITIAL (cfun
->decl
));
2470 /* Make sure that virtual parameters are not shared. */
2471 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2472 set_used_flags (DECL_RTL (decl
));
2474 reset_used_flags (stack_slot_list
);
2476 unshare_all_rtl_1 (insn
);
2480 unshare_all_rtl (void)
2482 unshare_all_rtl_1 (get_insns ());
2487 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2488 Recursively does the same for subexpressions. */
2491 verify_rtx_sharing (rtx orig
, rtx insn
)
2496 const char *format_ptr
;
2501 code
= GET_CODE (x
);
2503 /* These types may be freely shared. */
2519 /* SCRATCH must be shared because they represent distinct values. */
2522 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2523 clobbers or clobbers of hard registers that originated as pseudos.
2524 This is needed to allow safe register renaming. */
2525 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2526 && ORIGINAL_REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 0)))
2531 if (shared_const_p (orig
))
2536 /* A MEM is allowed to be shared if its address is constant. */
2537 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2538 || reload_completed
|| reload_in_progress
)
2547 /* This rtx may not be shared. If it has already been seen,
2548 replace it with a copy of itself. */
2549 #ifdef ENABLE_CHECKING
2550 if (RTX_FLAG (x
, used
))
2552 error ("invalid rtl sharing found in the insn");
2554 error ("shared rtx");
2556 internal_error ("internal consistency failure");
2559 gcc_assert (!RTX_FLAG (x
, used
));
2561 RTX_FLAG (x
, used
) = 1;
2563 /* Now scan the subexpressions recursively. */
2565 format_ptr
= GET_RTX_FORMAT (code
);
2567 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2569 switch (*format_ptr
++)
2572 verify_rtx_sharing (XEXP (x
, i
), insn
);
2576 if (XVEC (x
, i
) != NULL
)
2579 int len
= XVECLEN (x
, i
);
2581 for (j
= 0; j
< len
; j
++)
2583 /* We allow sharing of ASM_OPERANDS inside single
2585 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2586 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2588 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2590 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2599 /* Reset used-flags for INSN. */
2602 reset_insn_used_flags (rtx insn
)
2604 gcc_assert (INSN_P (insn
));
2605 reset_used_flags (PATTERN (insn
));
2606 reset_used_flags (REG_NOTES (insn
));
2608 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2611 /* Go through all the RTL insn bodies and clear all the USED bits. */
2614 reset_all_used_flags (void)
2618 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2621 rtx pat
= PATTERN (p
);
2622 if (GET_CODE (pat
) != SEQUENCE
)
2623 reset_insn_used_flags (p
);
2626 gcc_assert (REG_NOTES (p
) == NULL
);
2627 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2628 reset_insn_used_flags (XVECEXP (pat
, 0, i
));
2633 /* Verify sharing in INSN. */
2636 verify_insn_sharing (rtx insn
)
2638 gcc_assert (INSN_P (insn
));
2639 reset_used_flags (PATTERN (insn
));
2640 reset_used_flags (REG_NOTES (insn
));
2642 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2645 /* Go through all the RTL insn bodies and check that there is no unexpected
2646 sharing in between the subexpressions. */
2649 verify_rtl_sharing (void)
2653 timevar_push (TV_VERIFY_RTL_SHARING
);
2655 reset_all_used_flags ();
2657 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2660 rtx pat
= PATTERN (p
);
2661 if (GET_CODE (pat
) != SEQUENCE
)
2662 verify_insn_sharing (p
);
2664 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2665 verify_insn_sharing (XVECEXP (pat
, 0, i
));
2668 reset_all_used_flags ();
2670 timevar_pop (TV_VERIFY_RTL_SHARING
);
2673 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2674 Assumes the mark bits are cleared at entry. */
2677 unshare_all_rtl_in_chain (rtx insn
)
2679 for (; insn
; insn
= NEXT_INSN (insn
))
2682 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2683 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2685 CALL_INSN_FUNCTION_USAGE (insn
)
2686 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn
));
2690 /* Go through all virtual stack slots of a function and mark them as
2691 shared. We never replace the DECL_RTLs themselves with a copy,
2692 but expressions mentioned into a DECL_RTL cannot be shared with
2693 expressions in the instruction stream.
2695 Note that reload may convert pseudo registers into memories in-place.
2696 Pseudo registers are always shared, but MEMs never are. Thus if we
2697 reset the used flags on MEMs in the instruction stream, we must set
2698 them again on MEMs that appear in DECL_RTLs. */
2701 set_used_decls (tree blk
)
2706 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
2707 if (DECL_RTL_SET_P (t
))
2708 set_used_flags (DECL_RTL (t
));
2710 /* Now process sub-blocks. */
2711 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2715 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2716 Recursively does the same for subexpressions. Uses
2717 copy_rtx_if_shared_1 to reduce stack space. */
2720 copy_rtx_if_shared (rtx orig
)
2722 copy_rtx_if_shared_1 (&orig
);
2726 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2727 use. Recursively does the same for subexpressions. */
2730 copy_rtx_if_shared_1 (rtx
*orig1
)
2736 const char *format_ptr
;
2740 /* Repeat is used to turn tail-recursion into iteration. */
2747 code
= GET_CODE (x
);
2749 /* These types may be freely shared. */
2765 /* SCRATCH must be shared because they represent distinct values. */
2768 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2769 clobbers or clobbers of hard registers that originated as pseudos.
2770 This is needed to allow safe register renaming. */
2771 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2772 && ORIGINAL_REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 0)))
2777 if (shared_const_p (x
))
2787 /* The chain of insns is not being copied. */
2794 /* This rtx may not be shared. If it has already been seen,
2795 replace it with a copy of itself. */
2797 if (RTX_FLAG (x
, used
))
2799 x
= shallow_copy_rtx (x
);
2802 RTX_FLAG (x
, used
) = 1;
2804 /* Now scan the subexpressions recursively.
2805 We can store any replaced subexpressions directly into X
2806 since we know X is not shared! Any vectors in X
2807 must be copied if X was copied. */
2809 format_ptr
= GET_RTX_FORMAT (code
);
2810 length
= GET_RTX_LENGTH (code
);
2813 for (i
= 0; i
< length
; i
++)
2815 switch (*format_ptr
++)
2819 copy_rtx_if_shared_1 (last_ptr
);
2820 last_ptr
= &XEXP (x
, i
);
2824 if (XVEC (x
, i
) != NULL
)
2827 int len
= XVECLEN (x
, i
);
2829 /* Copy the vector iff I copied the rtx and the length
2831 if (copied
&& len
> 0)
2832 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2834 /* Call recursively on all inside the vector. */
2835 for (j
= 0; j
< len
; j
++)
2838 copy_rtx_if_shared_1 (last_ptr
);
2839 last_ptr
= &XVECEXP (x
, i
, j
);
2854 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2857 mark_used_flags (rtx x
, int flag
)
2861 const char *format_ptr
;
2864 /* Repeat is used to turn tail-recursion into iteration. */
2869 code
= GET_CODE (x
);
2871 /* These types may be freely shared so we needn't do any resetting
2895 /* The chain of insns is not being copied. */
2902 RTX_FLAG (x
, used
) = flag
;
2904 format_ptr
= GET_RTX_FORMAT (code
);
2905 length
= GET_RTX_LENGTH (code
);
2907 for (i
= 0; i
< length
; i
++)
2909 switch (*format_ptr
++)
2917 mark_used_flags (XEXP (x
, i
), flag
);
2921 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2922 mark_used_flags (XVECEXP (x
, i
, j
), flag
);
2928 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2929 to look for shared sub-parts. */
2932 reset_used_flags (rtx x
)
2934 mark_used_flags (x
, 0);
2937 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2938 to look for shared sub-parts. */
2941 set_used_flags (rtx x
)
2943 mark_used_flags (x
, 1);
2946 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2947 Return X or the rtx for the pseudo reg the value of X was copied into.
2948 OTHER must be valid as a SET_DEST. */
2951 make_safe_from (rtx x
, rtx other
)
2954 switch (GET_CODE (other
))
2957 other
= SUBREG_REG (other
);
2959 case STRICT_LOW_PART
:
2962 other
= XEXP (other
, 0);
2971 && GET_CODE (x
) != SUBREG
)
2973 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2974 || reg_mentioned_p (other
, x
))))
2976 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2977 emit_move_insn (temp
, x
);
2983 /* Emission of insns (adding them to the doubly-linked list). */
2985 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2988 get_last_insn_anywhere (void)
2990 struct sequence_stack
*stack
;
2991 if (get_last_insn ())
2992 return get_last_insn ();
2993 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2994 if (stack
->last
!= 0)
2999 /* Return the first nonnote insn emitted in current sequence or current
3000 function. This routine looks inside SEQUENCEs. */
3003 get_first_nonnote_insn (void)
3005 rtx insn
= get_insns ();
3010 for (insn
= next_insn (insn
);
3011 insn
&& NOTE_P (insn
);
3012 insn
= next_insn (insn
))
3016 if (NONJUMP_INSN_P (insn
)
3017 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3018 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3025 /* Return the last nonnote insn emitted in current sequence or current
3026 function. This routine looks inside SEQUENCEs. */
3029 get_last_nonnote_insn (void)
3031 rtx insn
= get_last_insn ();
3036 for (insn
= previous_insn (insn
);
3037 insn
&& NOTE_P (insn
);
3038 insn
= previous_insn (insn
))
3042 if (NONJUMP_INSN_P (insn
)
3043 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3044 insn
= XVECEXP (PATTERN (insn
), 0,
3045 XVECLEN (PATTERN (insn
), 0) - 1);
3052 /* Return the number of actual (non-debug) insns emitted in this
3056 get_max_insn_count (void)
3058 int n
= cur_insn_uid
;
3060 /* The table size must be stable across -g, to avoid codegen
3061 differences due to debug insns, and not be affected by
3062 -fmin-insn-uid, to avoid excessive table size and to simplify
3063 debugging of -fcompare-debug failures. */
3064 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3065 n
-= cur_debug_insn_uid
;
3067 n
-= MIN_NONDEBUG_INSN_UID
;
3073 /* Return the next insn. If it is a SEQUENCE, return the first insn
3077 next_insn (rtx insn
)
3081 insn
= NEXT_INSN (insn
);
3082 if (insn
&& NONJUMP_INSN_P (insn
)
3083 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3084 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3090 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3094 previous_insn (rtx insn
)
3098 insn
= PREV_INSN (insn
);
3099 if (insn
&& NONJUMP_INSN_P (insn
)
3100 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3101 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
3107 /* Return the next insn after INSN that is not a NOTE. This routine does not
3108 look inside SEQUENCEs. */
3111 next_nonnote_insn (rtx insn
)
3115 insn
= NEXT_INSN (insn
);
3116 if (insn
== 0 || !NOTE_P (insn
))
3123 /* Return the next insn after INSN that is not a NOTE, but stop the
3124 search before we enter another basic block. This routine does not
3125 look inside SEQUENCEs. */
3128 next_nonnote_insn_bb (rtx insn
)
3132 insn
= NEXT_INSN (insn
);
3133 if (insn
== 0 || !NOTE_P (insn
))
3135 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3142 /* Return the previous insn before INSN that is not a NOTE. This routine does
3143 not look inside SEQUENCEs. */
3146 prev_nonnote_insn (rtx insn
)
3150 insn
= PREV_INSN (insn
);
3151 if (insn
== 0 || !NOTE_P (insn
))
3158 /* Return the previous insn before INSN that is not a NOTE, but stop
3159 the search before we enter another basic block. This routine does
3160 not look inside SEQUENCEs. */
3163 prev_nonnote_insn_bb (rtx insn
)
3167 insn
= PREV_INSN (insn
);
3168 if (insn
== 0 || !NOTE_P (insn
))
3170 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3177 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3178 routine does not look inside SEQUENCEs. */
3181 next_nondebug_insn (rtx insn
)
3185 insn
= NEXT_INSN (insn
);
3186 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3193 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3194 This routine does not look inside SEQUENCEs. */
3197 prev_nondebug_insn (rtx insn
)
3201 insn
= PREV_INSN (insn
);
3202 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3209 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3210 This routine does not look inside SEQUENCEs. */
3213 next_nonnote_nondebug_insn (rtx insn
)
3217 insn
= NEXT_INSN (insn
);
3218 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3225 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3226 This routine does not look inside SEQUENCEs. */
3229 prev_nonnote_nondebug_insn (rtx insn
)
3233 insn
= PREV_INSN (insn
);
3234 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3241 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3242 or 0, if there is none. This routine does not look inside
3246 next_real_insn (rtx insn
)
3250 insn
= NEXT_INSN (insn
);
3251 if (insn
== 0 || INSN_P (insn
))
3258 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3259 or 0, if there is none. This routine does not look inside
3263 prev_real_insn (rtx insn
)
3267 insn
= PREV_INSN (insn
);
3268 if (insn
== 0 || INSN_P (insn
))
3275 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3276 This routine does not look inside SEQUENCEs. */
3279 last_call_insn (void)
3283 for (insn
= get_last_insn ();
3284 insn
&& !CALL_P (insn
);
3285 insn
= PREV_INSN (insn
))
3291 /* Find the next insn after INSN that really does something. This routine
3292 does not look inside SEQUENCEs. After reload this also skips over
3293 standalone USE and CLOBBER insn. */
3296 active_insn_p (const_rtx insn
)
3298 return (CALL_P (insn
) || JUMP_P (insn
)
3299 || JUMP_TABLE_DATA_P (insn
) /* FIXME */
3300 || (NONJUMP_INSN_P (insn
)
3301 && (! reload_completed
3302 || (GET_CODE (PATTERN (insn
)) != USE
3303 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3307 next_active_insn (rtx insn
)
3311 insn
= NEXT_INSN (insn
);
3312 if (insn
== 0 || active_insn_p (insn
))
3319 /* Find the last insn before INSN that really does something. This routine
3320 does not look inside SEQUENCEs. After reload this also skips over
3321 standalone USE and CLOBBER insn. */
3324 prev_active_insn (rtx insn
)
3328 insn
= PREV_INSN (insn
);
3329 if (insn
== 0 || active_insn_p (insn
))
3337 /* Return the next insn that uses CC0 after INSN, which is assumed to
3338 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3339 applied to the result of this function should yield INSN).
3341 Normally, this is simply the next insn. However, if a REG_CC_USER note
3342 is present, it contains the insn that uses CC0.
3344 Return 0 if we can't find the insn. */
3347 next_cc0_user (rtx insn
)
3349 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3352 return XEXP (note
, 0);
3354 insn
= next_nonnote_insn (insn
);
3355 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3356 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3358 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3364 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3365 note, it is the previous insn. */
3368 prev_cc0_setter (rtx insn
)
3370 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3373 return XEXP (note
, 0);
3375 insn
= prev_nonnote_insn (insn
);
3376 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3383 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3386 find_auto_inc (rtx
*xp
, void *data
)
3389 rtx reg
= (rtx
) data
;
3391 if (GET_RTX_CLASS (GET_CODE (x
)) != RTX_AUTOINC
)
3394 switch (GET_CODE (x
))
3402 if (rtx_equal_p (reg
, XEXP (x
, 0)))
3413 /* Increment the label uses for all labels present in rtx. */
3416 mark_label_nuses (rtx x
)
3422 code
= GET_CODE (x
);
3423 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3424 LABEL_NUSES (XEXP (x
, 0))++;
3426 fmt
= GET_RTX_FORMAT (code
);
3427 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3430 mark_label_nuses (XEXP (x
, i
));
3431 else if (fmt
[i
] == 'E')
3432 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3433 mark_label_nuses (XVECEXP (x
, i
, j
));
3438 /* Try splitting insns that can be split for better scheduling.
3439 PAT is the pattern which might split.
3440 TRIAL is the insn providing PAT.
3441 LAST is nonzero if we should return the last insn of the sequence produced.
3443 If this routine succeeds in splitting, it returns the first or last
3444 replacement insn depending on the value of LAST. Otherwise, it
3445 returns TRIAL. If the insn to be returned can be split, it will be. */
3448 try_split (rtx pat
, rtx trial
, int last
)
3450 rtx before
= PREV_INSN (trial
);
3451 rtx after
= NEXT_INSN (trial
);
3452 int has_barrier
= 0;
3455 rtx insn_last
, insn
;
3458 /* We're not good at redistributing frame information. */
3459 if (RTX_FRAME_RELATED_P (trial
))
3462 if (any_condjump_p (trial
)
3463 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3464 split_branch_probability
= INTVAL (XEXP (note
, 0));
3465 probability
= split_branch_probability
;
3467 seq
= split_insns (pat
, trial
);
3469 split_branch_probability
= -1;
3471 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3472 We may need to handle this specially. */
3473 if (after
&& BARRIER_P (after
))
3476 after
= NEXT_INSN (after
);
3482 /* Avoid infinite loop if any insn of the result matches
3483 the original pattern. */
3487 if (INSN_P (insn_last
)
3488 && rtx_equal_p (PATTERN (insn_last
), pat
))
3490 if (!NEXT_INSN (insn_last
))
3492 insn_last
= NEXT_INSN (insn_last
);
3495 /* We will be adding the new sequence to the function. The splitters
3496 may have introduced invalid RTL sharing, so unshare the sequence now. */
3497 unshare_all_rtl_in_chain (seq
);
3500 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3504 mark_jump_label (PATTERN (insn
), insn
, 0);
3506 if (probability
!= -1
3507 && any_condjump_p (insn
)
3508 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3510 /* We can preserve the REG_BR_PROB notes only if exactly
3511 one jump is created, otherwise the machine description
3512 is responsible for this step using
3513 split_branch_probability variable. */
3514 gcc_assert (njumps
== 1);
3515 add_reg_note (insn
, REG_BR_PROB
, GEN_INT (probability
));
3520 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3521 in SEQ and copy any additional information across. */
3524 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3529 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3530 target may have explicitly specified. */
3531 p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3534 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3536 /* If the old call was a sibling call, the new one must
3538 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3540 /* If the new call is the last instruction in the sequence,
3541 it will effectively replace the old call in-situ. Otherwise
3542 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3543 so that it comes immediately after the new call. */
3544 if (NEXT_INSN (insn
))
3545 for (next
= NEXT_INSN (trial
);
3546 next
&& NOTE_P (next
);
3547 next
= NEXT_INSN (next
))
3548 if (NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
3551 add_insn_after (next
, insn
, NULL
);
3557 /* Copy notes, particularly those related to the CFG. */
3558 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3560 switch (REG_NOTE_KIND (note
))
3563 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3569 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3572 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3576 case REG_NON_LOCAL_GOTO
:
3577 case REG_CROSSING_JUMP
:
3578 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3581 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3587 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3589 rtx reg
= XEXP (note
, 0);
3590 if (!FIND_REG_INC_NOTE (insn
, reg
)
3591 && for_each_rtx (&PATTERN (insn
), find_auto_inc
, reg
) > 0)
3592 add_reg_note (insn
, REG_INC
, reg
);
3598 fixup_args_size_notes (NULL_RTX
, insn_last
, INTVAL (XEXP (note
, 0)));
3606 /* If there are LABELS inside the split insns increment the
3607 usage count so we don't delete the label. */
3611 while (insn
!= NULL_RTX
)
3613 /* JUMP_P insns have already been "marked" above. */
3614 if (NONJUMP_INSN_P (insn
))
3615 mark_label_nuses (PATTERN (insn
));
3617 insn
= PREV_INSN (insn
);
3621 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATION (trial
));
3623 delete_insn (trial
);
3625 emit_barrier_after (tem
);
3627 /* Recursively call try_split for each new insn created; by the
3628 time control returns here that insn will be fully split, so
3629 set LAST and continue from the insn after the one returned.
3630 We can't use next_active_insn here since AFTER may be a note.
3631 Ignore deleted insns, which can be occur if not optimizing. */
3632 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3633 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3634 tem
= try_split (PATTERN (tem
), tem
, 1);
3636 /* Return either the first or the last insn, depending on which was
3639 ? (after
? PREV_INSN (after
) : get_last_insn ())
3640 : NEXT_INSN (before
);
3643 /* Make and return an INSN rtx, initializing all its slots.
3644 Store PATTERN in the pattern slots. */
3647 make_insn_raw (rtx pattern
)
3651 insn
= rtx_alloc (INSN
);
3653 INSN_UID (insn
) = cur_insn_uid
++;
3654 PATTERN (insn
) = pattern
;
3655 INSN_CODE (insn
) = -1;
3656 REG_NOTES (insn
) = NULL
;
3657 INSN_LOCATION (insn
) = curr_insn_location ();
3658 BLOCK_FOR_INSN (insn
) = NULL
;
3660 #ifdef ENABLE_RTL_CHECKING
3663 && (returnjump_p (insn
)
3664 || (GET_CODE (insn
) == SET
3665 && SET_DEST (insn
) == pc_rtx
)))
3667 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3675 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3678 make_debug_insn_raw (rtx pattern
)
3682 insn
= rtx_alloc (DEBUG_INSN
);
3683 INSN_UID (insn
) = cur_debug_insn_uid
++;
3684 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3685 INSN_UID (insn
) = cur_insn_uid
++;
3687 PATTERN (insn
) = pattern
;
3688 INSN_CODE (insn
) = -1;
3689 REG_NOTES (insn
) = NULL
;
3690 INSN_LOCATION (insn
) = curr_insn_location ();
3691 BLOCK_FOR_INSN (insn
) = NULL
;
3696 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3699 make_jump_insn_raw (rtx pattern
)
3703 insn
= rtx_alloc (JUMP_INSN
);
3704 INSN_UID (insn
) = cur_insn_uid
++;
3706 PATTERN (insn
) = pattern
;
3707 INSN_CODE (insn
) = -1;
3708 REG_NOTES (insn
) = NULL
;
3709 JUMP_LABEL (insn
) = NULL
;
3710 INSN_LOCATION (insn
) = curr_insn_location ();
3711 BLOCK_FOR_INSN (insn
) = NULL
;
3716 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3719 make_call_insn_raw (rtx pattern
)
3723 insn
= rtx_alloc (CALL_INSN
);
3724 INSN_UID (insn
) = cur_insn_uid
++;
3726 PATTERN (insn
) = pattern
;
3727 INSN_CODE (insn
) = -1;
3728 REG_NOTES (insn
) = NULL
;
3729 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3730 INSN_LOCATION (insn
) = curr_insn_location ();
3731 BLOCK_FOR_INSN (insn
) = NULL
;
3736 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3739 make_note_raw (enum insn_note subtype
)
3741 /* Some notes are never created this way at all. These notes are
3742 only created by patching out insns. */
3743 gcc_assert (subtype
!= NOTE_INSN_DELETED_LABEL
3744 && subtype
!= NOTE_INSN_DELETED_DEBUG_LABEL
);
3746 rtx note
= rtx_alloc (NOTE
);
3747 INSN_UID (note
) = cur_insn_uid
++;
3748 NOTE_KIND (note
) = subtype
;
3749 BLOCK_FOR_INSN (note
) = NULL
;
3750 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
3754 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3755 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3756 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3759 link_insn_into_chain (rtx insn
, rtx prev
, rtx next
)
3761 PREV_INSN (insn
) = prev
;
3762 NEXT_INSN (insn
) = next
;
3765 NEXT_INSN (prev
) = insn
;
3766 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3768 rtx sequence
= PATTERN (prev
);
3769 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3774 PREV_INSN (next
) = insn
;
3775 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3776 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3779 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3781 rtx sequence
= PATTERN (insn
);
3782 PREV_INSN (XVECEXP (sequence
, 0, 0)) = prev
;
3783 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3787 /* Add INSN to the end of the doubly-linked list.
3788 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3793 rtx prev
= get_last_insn ();
3794 link_insn_into_chain (insn
, prev
, NULL
);
3795 if (NULL
== get_insns ())
3796 set_first_insn (insn
);
3797 set_last_insn (insn
);
3800 /* Add INSN into the doubly-linked list after insn AFTER. */
3803 add_insn_after_nobb (rtx insn
, rtx after
)
3805 rtx next
= NEXT_INSN (after
);
3807 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3809 link_insn_into_chain (insn
, after
, next
);
3813 if (get_last_insn () == after
)
3814 set_last_insn (insn
);
3817 struct sequence_stack
*stack
= seq_stack
;
3818 /* Scan all pending sequences too. */
3819 for (; stack
; stack
= stack
->next
)
3820 if (after
== stack
->last
)
3829 /* Add INSN into the doubly-linked list before insn BEFORE. */
3832 add_insn_before_nobb (rtx insn
, rtx before
)
3834 rtx prev
= PREV_INSN (before
);
3836 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3838 link_insn_into_chain (insn
, prev
, before
);
3842 if (get_insns () == before
)
3843 set_first_insn (insn
);
3846 struct sequence_stack
*stack
= seq_stack
;
3847 /* Scan all pending sequences too. */
3848 for (; stack
; stack
= stack
->next
)
3849 if (before
== stack
->first
)
3851 stack
->first
= insn
;
3860 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
3861 If BB is NULL, an attempt is made to infer the bb from before.
3863 This and the next function should be the only functions called
3864 to insert an insn once delay slots have been filled since only
3865 they know how to update a SEQUENCE. */
3868 add_insn_after (rtx insn
, rtx after
, basic_block bb
)
3870 add_insn_after_nobb (insn
, after
);
3871 if (!BARRIER_P (after
)
3872 && !BARRIER_P (insn
)
3873 && (bb
= BLOCK_FOR_INSN (after
)))
3875 set_block_for_insn (insn
, bb
);
3877 df_insn_rescan (insn
);
3878 /* Should not happen as first in the BB is always
3879 either NOTE or LABEL. */
3880 if (BB_END (bb
) == after
3881 /* Avoid clobbering of structure when creating new BB. */
3882 && !BARRIER_P (insn
)
3883 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
3888 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
3889 If BB is NULL, an attempt is made to infer the bb from before.
3891 This and the previous function should be the only functions called
3892 to insert an insn once delay slots have been filled since only
3893 they know how to update a SEQUENCE. */
3896 add_insn_before (rtx insn
, rtx before
, basic_block bb
)
3898 add_insn_before_nobb (insn
, before
);
3901 && !BARRIER_P (before
)
3902 && !BARRIER_P (insn
))
3903 bb
= BLOCK_FOR_INSN (before
);
3907 set_block_for_insn (insn
, bb
);
3909 df_insn_rescan (insn
);
3910 /* Should not happen as first in the BB is always either NOTE or
3912 gcc_assert (BB_HEAD (bb
) != insn
3913 /* Avoid clobbering of structure when creating new BB. */
3915 || NOTE_INSN_BASIC_BLOCK_P (insn
));
3919 /* Replace insn with an deleted instruction note. */
3922 set_insn_deleted (rtx insn
)
3925 df_insn_delete (insn
);
3926 PUT_CODE (insn
, NOTE
);
3927 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
3931 /* Unlink INSN from the insn chain.
3933 This function knows how to handle sequences.
3935 This function does not invalidate data flow information associated with
3936 INSN (i.e. does not call df_insn_delete). That makes this function
3937 usable for only disconnecting an insn from the chain, and re-emit it
3940 To later insert INSN elsewhere in the insn chain via add_insn and
3941 similar functions, PREV_INSN and NEXT_INSN must be nullified by
3942 the caller. Nullifying them here breaks many insn chain walks.
3944 To really delete an insn and related DF information, use delete_insn. */
3947 remove_insn (rtx insn
)
3949 rtx next
= NEXT_INSN (insn
);
3950 rtx prev
= PREV_INSN (insn
);
3955 NEXT_INSN (prev
) = next
;
3956 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3958 rtx sequence
= PATTERN (prev
);
3959 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3962 else if (get_insns () == insn
)
3965 PREV_INSN (next
) = NULL
;
3966 set_first_insn (next
);
3970 struct sequence_stack
*stack
= seq_stack
;
3971 /* Scan all pending sequences too. */
3972 for (; stack
; stack
= stack
->next
)
3973 if (insn
== stack
->first
)
3975 stack
->first
= next
;
3984 PREV_INSN (next
) = prev
;
3985 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3986 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3988 else if (get_last_insn () == insn
)
3989 set_last_insn (prev
);
3992 struct sequence_stack
*stack
= seq_stack
;
3993 /* Scan all pending sequences too. */
3994 for (; stack
; stack
= stack
->next
)
3995 if (insn
== stack
->last
)
4004 /* Fix up basic block boundaries, if necessary. */
4005 if (!BARRIER_P (insn
)
4006 && (bb
= BLOCK_FOR_INSN (insn
)))
4008 if (BB_HEAD (bb
) == insn
)
4010 /* Never ever delete the basic block note without deleting whole
4012 gcc_assert (!NOTE_P (insn
));
4013 BB_HEAD (bb
) = next
;
4015 if (BB_END (bb
) == insn
)
4020 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4023 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
4025 gcc_assert (call_insn
&& CALL_P (call_insn
));
4027 /* Put the register usage information on the CALL. If there is already
4028 some usage information, put ours at the end. */
4029 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
4033 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
4034 link
= XEXP (link
, 1))
4037 XEXP (link
, 1) = call_fusage
;
4040 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
4043 /* Delete all insns made since FROM.
4044 FROM becomes the new last instruction. */
4047 delete_insns_since (rtx from
)
4052 NEXT_INSN (from
) = 0;
4053 set_last_insn (from
);
4056 /* This function is deprecated, please use sequences instead.
4058 Move a consecutive bunch of insns to a different place in the chain.
4059 The insns to be moved are those between FROM and TO.
4060 They are moved to a new position after the insn AFTER.
4061 AFTER must not be FROM or TO or any insn in between.
4063 This function does not know about SEQUENCEs and hence should not be
4064 called after delay-slot filling has been done. */
4067 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
4069 #ifdef ENABLE_CHECKING
4071 for (x
= from
; x
!= to
; x
= NEXT_INSN (x
))
4072 gcc_assert (after
!= x
);
4073 gcc_assert (after
!= to
);
4076 /* Splice this bunch out of where it is now. */
4077 if (PREV_INSN (from
))
4078 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
4080 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
4081 if (get_last_insn () == to
)
4082 set_last_insn (PREV_INSN (from
));
4083 if (get_insns () == from
)
4084 set_first_insn (NEXT_INSN (to
));
4086 /* Make the new neighbors point to it and it to them. */
4087 if (NEXT_INSN (after
))
4088 PREV_INSN (NEXT_INSN (after
)) = to
;
4090 NEXT_INSN (to
) = NEXT_INSN (after
);
4091 PREV_INSN (from
) = after
;
4092 NEXT_INSN (after
) = from
;
4093 if (after
== get_last_insn())
4097 /* Same as function above, but take care to update BB boundaries. */
4099 reorder_insns (rtx from
, rtx to
, rtx after
)
4101 rtx prev
= PREV_INSN (from
);
4102 basic_block bb
, bb2
;
4104 reorder_insns_nobb (from
, to
, after
);
4106 if (!BARRIER_P (after
)
4107 && (bb
= BLOCK_FOR_INSN (after
)))
4110 df_set_bb_dirty (bb
);
4112 if (!BARRIER_P (from
)
4113 && (bb2
= BLOCK_FOR_INSN (from
)))
4115 if (BB_END (bb2
) == to
)
4116 BB_END (bb2
) = prev
;
4117 df_set_bb_dirty (bb2
);
4120 if (BB_END (bb
) == after
)
4123 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4125 df_insn_change_bb (x
, bb
);
4130 /* Emit insn(s) of given code and pattern
4131 at a specified place within the doubly-linked list.
4133 All of the emit_foo global entry points accept an object
4134 X which is either an insn list or a PATTERN of a single
4137 There are thus a few canonical ways to generate code and
4138 emit it at a specific place in the instruction stream. For
4139 example, consider the instruction named SPOT and the fact that
4140 we would like to emit some instructions before SPOT. We might
4144 ... emit the new instructions ...
4145 insns_head = get_insns ();
4148 emit_insn_before (insns_head, SPOT);
4150 It used to be common to generate SEQUENCE rtl instead, but that
4151 is a relic of the past which no longer occurs. The reason is that
4152 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4153 generated would almost certainly die right after it was created. */
4156 emit_pattern_before_noloc (rtx x
, rtx before
, rtx last
, basic_block bb
,
4157 rtx (*make_raw
) (rtx
))
4161 gcc_assert (before
);
4166 switch (GET_CODE (x
))
4178 rtx next
= NEXT_INSN (insn
);
4179 add_insn_before (insn
, before
, bb
);
4185 #ifdef ENABLE_RTL_CHECKING
4192 last
= (*make_raw
) (x
);
4193 add_insn_before (last
, before
, bb
);
4200 /* Make X be output before the instruction BEFORE. */
4203 emit_insn_before_noloc (rtx x
, rtx before
, basic_block bb
)
4205 return emit_pattern_before_noloc (x
, before
, before
, bb
, make_insn_raw
);
4208 /* Make an instruction with body X and code JUMP_INSN
4209 and output it before the instruction BEFORE. */
4212 emit_jump_insn_before_noloc (rtx x
, rtx before
)
4214 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4215 make_jump_insn_raw
);
4218 /* Make an instruction with body X and code CALL_INSN
4219 and output it before the instruction BEFORE. */
4222 emit_call_insn_before_noloc (rtx x
, rtx before
)
4224 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4225 make_call_insn_raw
);
4228 /* Make an instruction with body X and code DEBUG_INSN
4229 and output it before the instruction BEFORE. */
4232 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4234 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4235 make_debug_insn_raw
);
4238 /* Make an insn of code BARRIER
4239 and output it before the insn BEFORE. */
4242 emit_barrier_before (rtx before
)
4244 rtx insn
= rtx_alloc (BARRIER
);
4246 INSN_UID (insn
) = cur_insn_uid
++;
4248 add_insn_before (insn
, before
, NULL
);
4252 /* Emit the label LABEL before the insn BEFORE. */
4255 emit_label_before (rtx label
, rtx before
)
4257 gcc_checking_assert (INSN_UID (label
) == 0);
4258 INSN_UID (label
) = cur_insn_uid
++;
4259 add_insn_before (label
, before
, NULL
);
4263 /* Helper for emit_insn_after, handles lists of instructions
4267 emit_insn_after_1 (rtx first
, rtx after
, basic_block bb
)
4271 if (!bb
&& !BARRIER_P (after
))
4272 bb
= BLOCK_FOR_INSN (after
);
4276 df_set_bb_dirty (bb
);
4277 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4278 if (!BARRIER_P (last
))
4280 set_block_for_insn (last
, bb
);
4281 df_insn_rescan (last
);
4283 if (!BARRIER_P (last
))
4285 set_block_for_insn (last
, bb
);
4286 df_insn_rescan (last
);
4288 if (BB_END (bb
) == after
)
4292 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4295 after_after
= NEXT_INSN (after
);
4297 NEXT_INSN (after
) = first
;
4298 PREV_INSN (first
) = after
;
4299 NEXT_INSN (last
) = after_after
;
4301 PREV_INSN (after_after
) = last
;
4303 if (after
== get_last_insn())
4304 set_last_insn (last
);
4310 emit_pattern_after_noloc (rtx x
, rtx after
, basic_block bb
,
4311 rtx (*make_raw
)(rtx
))
4320 switch (GET_CODE (x
))
4329 last
= emit_insn_after_1 (x
, after
, bb
);
4332 #ifdef ENABLE_RTL_CHECKING
4339 last
= (*make_raw
) (x
);
4340 add_insn_after (last
, after
, bb
);
4347 /* Make X be output after the insn AFTER and set the BB of insn. If
4348 BB is NULL, an attempt is made to infer the BB from AFTER. */
4351 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4353 return emit_pattern_after_noloc (x
, after
, bb
, make_insn_raw
);
4357 /* Make an insn of code JUMP_INSN with body X
4358 and output it after the insn AFTER. */
4361 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4363 return emit_pattern_after_noloc (x
, after
, NULL
, make_jump_insn_raw
);
4366 /* Make an instruction with body X and code CALL_INSN
4367 and output it after the instruction AFTER. */
4370 emit_call_insn_after_noloc (rtx x
, rtx after
)
4372 return emit_pattern_after_noloc (x
, after
, NULL
, make_call_insn_raw
);
4375 /* Make an instruction with body X and code CALL_INSN
4376 and output it after the instruction AFTER. */
4379 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4381 return emit_pattern_after_noloc (x
, after
, NULL
, make_debug_insn_raw
);
4384 /* Make an insn of code BARRIER
4385 and output it after the insn AFTER. */
4388 emit_barrier_after (rtx after
)
4390 rtx insn
= rtx_alloc (BARRIER
);
4392 INSN_UID (insn
) = cur_insn_uid
++;
4394 add_insn_after (insn
, after
, NULL
);
4398 /* Emit the label LABEL after the insn AFTER. */
4401 emit_label_after (rtx label
, rtx after
)
4403 gcc_checking_assert (INSN_UID (label
) == 0);
4404 INSN_UID (label
) = cur_insn_uid
++;
4405 add_insn_after (label
, after
, NULL
);
4409 /* Notes require a bit of special handling: Some notes need to have their
4410 BLOCK_FOR_INSN set, others should never have it set, and some should
4411 have it set or clear depending on the context. */
4413 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4414 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4415 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4418 note_outside_basic_block_p (enum insn_note subtype
, bool on_bb_boundary_p
)
4422 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4423 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
4426 /* Notes for var tracking and EH region markers can appear between or
4427 inside basic blocks. If the caller is emitting on the basic block
4428 boundary, do not set BLOCK_FOR_INSN on the new note. */
4429 case NOTE_INSN_VAR_LOCATION
:
4430 case NOTE_INSN_CALL_ARG_LOCATION
:
4431 case NOTE_INSN_EH_REGION_BEG
:
4432 case NOTE_INSN_EH_REGION_END
:
4433 return on_bb_boundary_p
;
4435 /* Otherwise, BLOCK_FOR_INSN must be set. */
4441 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4444 emit_note_after (enum insn_note subtype
, rtx after
)
4446 rtx note
= make_note_raw (subtype
);
4447 basic_block bb
= BARRIER_P (after
) ? NULL
: BLOCK_FOR_INSN (after
);
4448 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_END (bb
) == after
);
4450 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4451 add_insn_after_nobb (note
, after
);
4453 add_insn_after (note
, after
, bb
);
4457 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4460 emit_note_before (enum insn_note subtype
, rtx before
)
4462 rtx note
= make_note_raw (subtype
);
4463 basic_block bb
= BARRIER_P (before
) ? NULL
: BLOCK_FOR_INSN (before
);
4464 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_HEAD (bb
) == before
);
4466 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4467 add_insn_before_nobb (note
, before
);
4469 add_insn_before (note
, before
, bb
);
4473 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4474 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4477 emit_pattern_after_setloc (rtx pattern
, rtx after
, int loc
,
4478 rtx (*make_raw
) (rtx
))
4480 rtx last
= emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4482 if (pattern
== NULL_RTX
|| !loc
)
4485 after
= NEXT_INSN (after
);
4488 if (active_insn_p (after
) && !INSN_LOCATION (after
))
4489 INSN_LOCATION (after
) = loc
;
4492 after
= NEXT_INSN (after
);
4497 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4498 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4502 emit_pattern_after (rtx pattern
, rtx after
, bool skip_debug_insns
,
4503 rtx (*make_raw
) (rtx
))
4507 if (skip_debug_insns
)
4508 while (DEBUG_INSN_P (prev
))
4509 prev
= PREV_INSN (prev
);
4512 return emit_pattern_after_setloc (pattern
, after
, INSN_LOCATION (prev
),
4515 return emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4518 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4520 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4522 return emit_pattern_after_setloc (pattern
, after
, loc
, make_insn_raw
);
4525 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4527 emit_insn_after (rtx pattern
, rtx after
)
4529 return emit_pattern_after (pattern
, after
, true, make_insn_raw
);
4532 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4534 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4536 return emit_pattern_after_setloc (pattern
, after
, loc
, make_jump_insn_raw
);
4539 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4541 emit_jump_insn_after (rtx pattern
, rtx after
)
4543 return emit_pattern_after (pattern
, after
, true, make_jump_insn_raw
);
4546 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4548 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4550 return emit_pattern_after_setloc (pattern
, after
, loc
, make_call_insn_raw
);
4553 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4555 emit_call_insn_after (rtx pattern
, rtx after
)
4557 return emit_pattern_after (pattern
, after
, true, make_call_insn_raw
);
4560 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4562 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4564 return emit_pattern_after_setloc (pattern
, after
, loc
, make_debug_insn_raw
);
4567 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4569 emit_debug_insn_after (rtx pattern
, rtx after
)
4571 return emit_pattern_after (pattern
, after
, false, make_debug_insn_raw
);
4574 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4575 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4576 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4580 emit_pattern_before_setloc (rtx pattern
, rtx before
, int loc
, bool insnp
,
4581 rtx (*make_raw
) (rtx
))
4583 rtx first
= PREV_INSN (before
);
4584 rtx last
= emit_pattern_before_noloc (pattern
, before
,
4585 insnp
? before
: NULL_RTX
,
4588 if (pattern
== NULL_RTX
|| !loc
)
4592 first
= get_insns ();
4594 first
= NEXT_INSN (first
);
4597 if (active_insn_p (first
) && !INSN_LOCATION (first
))
4598 INSN_LOCATION (first
) = loc
;
4601 first
= NEXT_INSN (first
);
4606 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4607 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4608 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4609 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4612 emit_pattern_before (rtx pattern
, rtx before
, bool skip_debug_insns
,
4613 bool insnp
, rtx (*make_raw
) (rtx
))
4617 if (skip_debug_insns
)
4618 while (DEBUG_INSN_P (next
))
4619 next
= PREV_INSN (next
);
4622 return emit_pattern_before_setloc (pattern
, before
, INSN_LOCATION (next
),
4625 return emit_pattern_before_noloc (pattern
, before
,
4626 insnp
? before
: NULL_RTX
,
4630 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4632 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4634 return emit_pattern_before_setloc (pattern
, before
, loc
, true,
4638 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4640 emit_insn_before (rtx pattern
, rtx before
)
4642 return emit_pattern_before (pattern
, before
, true, true, make_insn_raw
);
4645 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4647 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4649 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4650 make_jump_insn_raw
);
4653 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4655 emit_jump_insn_before (rtx pattern
, rtx before
)
4657 return emit_pattern_before (pattern
, before
, true, false,
4658 make_jump_insn_raw
);
4661 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4663 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4665 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4666 make_call_insn_raw
);
4669 /* Like emit_call_insn_before_noloc,
4670 but set insn_location according to BEFORE. */
4672 emit_call_insn_before (rtx pattern
, rtx before
)
4674 return emit_pattern_before (pattern
, before
, true, false,
4675 make_call_insn_raw
);
4678 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4680 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4682 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
4683 make_debug_insn_raw
);
4686 /* Like emit_debug_insn_before_noloc,
4687 but set insn_location according to BEFORE. */
4689 emit_debug_insn_before (rtx pattern
, rtx before
)
4691 return emit_pattern_before (pattern
, before
, false, false,
4692 make_debug_insn_raw
);
4695 /* Take X and emit it at the end of the doubly-linked
4698 Returns the last insn emitted. */
4703 rtx last
= get_last_insn();
4709 switch (GET_CODE (x
))
4721 rtx next
= NEXT_INSN (insn
);
4728 #ifdef ENABLE_RTL_CHECKING
4729 case JUMP_TABLE_DATA
:
4736 last
= make_insn_raw (x
);
4744 /* Make an insn of code DEBUG_INSN with pattern X
4745 and add it to the end of the doubly-linked list. */
4748 emit_debug_insn (rtx x
)
4750 rtx last
= get_last_insn();
4756 switch (GET_CODE (x
))
4768 rtx next
= NEXT_INSN (insn
);
4775 #ifdef ENABLE_RTL_CHECKING
4776 case JUMP_TABLE_DATA
:
4783 last
= make_debug_insn_raw (x
);
4791 /* Make an insn of code JUMP_INSN with pattern X
4792 and add it to the end of the doubly-linked list. */
4795 emit_jump_insn (rtx x
)
4797 rtx last
= NULL_RTX
, insn
;
4799 switch (GET_CODE (x
))
4811 rtx next
= NEXT_INSN (insn
);
4818 #ifdef ENABLE_RTL_CHECKING
4819 case JUMP_TABLE_DATA
:
4826 last
= make_jump_insn_raw (x
);
4834 /* Make an insn of code CALL_INSN with pattern X
4835 and add it to the end of the doubly-linked list. */
4838 emit_call_insn (rtx x
)
4842 switch (GET_CODE (x
))
4851 insn
= emit_insn (x
);
4854 #ifdef ENABLE_RTL_CHECKING
4856 case JUMP_TABLE_DATA
:
4862 insn
= make_call_insn_raw (x
);
4870 /* Add the label LABEL to the end of the doubly-linked list. */
4873 emit_label (rtx label
)
4875 gcc_checking_assert (INSN_UID (label
) == 0);
4876 INSN_UID (label
) = cur_insn_uid
++;
4881 /* Make an insn of code JUMP_TABLE_DATA
4882 and add it to the end of the doubly-linked list. */
4885 emit_jump_table_data (rtx table
)
4887 rtx jump_table_data
= rtx_alloc (JUMP_TABLE_DATA
);
4888 INSN_UID (jump_table_data
) = cur_insn_uid
++;
4889 PATTERN (jump_table_data
) = table
;
4890 BLOCK_FOR_INSN (jump_table_data
) = NULL
;
4891 add_insn (jump_table_data
);
4892 return jump_table_data
;
4895 /* Make an insn of code BARRIER
4896 and add it to the end of the doubly-linked list. */
4901 rtx barrier
= rtx_alloc (BARRIER
);
4902 INSN_UID (barrier
) = cur_insn_uid
++;
4907 /* Emit a copy of note ORIG. */
4910 emit_note_copy (rtx orig
)
4912 enum insn_note kind
= (enum insn_note
) NOTE_KIND (orig
);
4913 rtx note
= make_note_raw (kind
);
4914 NOTE_DATA (note
) = NOTE_DATA (orig
);
4919 /* Make an insn of code NOTE or type NOTE_NO
4920 and add it to the end of the doubly-linked list. */
4923 emit_note (enum insn_note kind
)
4925 rtx note
= make_note_raw (kind
);
4930 /* Emit a clobber of lvalue X. */
4933 emit_clobber (rtx x
)
4935 /* CONCATs should not appear in the insn stream. */
4936 if (GET_CODE (x
) == CONCAT
)
4938 emit_clobber (XEXP (x
, 0));
4939 return emit_clobber (XEXP (x
, 1));
4941 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
4944 /* Return a sequence of insns to clobber lvalue X. */
4958 /* Emit a use of rvalue X. */
4963 /* CONCATs should not appear in the insn stream. */
4964 if (GET_CODE (x
) == CONCAT
)
4966 emit_use (XEXP (x
, 0));
4967 return emit_use (XEXP (x
, 1));
4969 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
4972 /* Return a sequence of insns to use rvalue X. */
4986 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4987 note of this type already exists, remove it first. */
4990 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
4992 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4998 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4999 has multiple sets (some callers assume single_set
5000 means the insn only has one set, when in fact it
5001 means the insn only has one * useful * set). */
5002 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
5008 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5009 It serves no useful purpose and breaks eliminate_regs. */
5010 if (GET_CODE (datum
) == ASM_OPERANDS
)
5015 XEXP (note
, 0) = datum
;
5016 df_notes_rescan (insn
);
5024 XEXP (note
, 0) = datum
;
5030 add_reg_note (insn
, kind
, datum
);
5036 df_notes_rescan (insn
);
5042 return REG_NOTES (insn
);
5045 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5047 set_dst_reg_note (rtx insn
, enum reg_note kind
, rtx datum
, rtx dst
)
5049 rtx set
= single_set (insn
);
5051 if (set
&& SET_DEST (set
) == dst
)
5052 return set_unique_reg_note (insn
, kind
, datum
);
5056 /* Return an indication of which type of insn should have X as a body.
5057 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5059 static enum rtx_code
5060 classify_insn (rtx x
)
5064 if (GET_CODE (x
) == CALL
)
5066 if (ANY_RETURN_P (x
))
5068 if (GET_CODE (x
) == SET
)
5070 if (SET_DEST (x
) == pc_rtx
)
5072 else if (GET_CODE (SET_SRC (x
)) == CALL
)
5077 if (GET_CODE (x
) == PARALLEL
)
5080 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
5081 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
5083 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5084 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
5086 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5087 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
5093 /* Emit the rtl pattern X as an appropriate kind of insn.
5094 If X is a label, it is simply added into the insn chain. */
5099 enum rtx_code code
= classify_insn (x
);
5104 return emit_label (x
);
5106 return emit_insn (x
);
5109 rtx insn
= emit_jump_insn (x
);
5110 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
5111 return emit_barrier ();
5115 return emit_call_insn (x
);
5117 return emit_debug_insn (x
);
5123 /* Space for free sequence stack entries. */
5124 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5126 /* Begin emitting insns to a sequence. If this sequence will contain
5127 something that might cause the compiler to pop arguments to function
5128 calls (because those pops have previously been deferred; see
5129 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5130 before calling this function. That will ensure that the deferred
5131 pops are not accidentally emitted in the middle of this sequence. */
5134 start_sequence (void)
5136 struct sequence_stack
*tem
;
5138 if (free_sequence_stack
!= NULL
)
5140 tem
= free_sequence_stack
;
5141 free_sequence_stack
= tem
->next
;
5144 tem
= ggc_alloc_sequence_stack ();
5146 tem
->next
= seq_stack
;
5147 tem
->first
= get_insns ();
5148 tem
->last
= get_last_insn ();
5156 /* Set up the insn chain starting with FIRST as the current sequence,
5157 saving the previously current one. See the documentation for
5158 start_sequence for more information about how to use this function. */
5161 push_to_sequence (rtx first
)
5167 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
))
5170 set_first_insn (first
);
5171 set_last_insn (last
);
5174 /* Like push_to_sequence, but take the last insn as an argument to avoid
5175 looping through the list. */
5178 push_to_sequence2 (rtx first
, rtx last
)
5182 set_first_insn (first
);
5183 set_last_insn (last
);
5186 /* Set up the outer-level insn chain
5187 as the current sequence, saving the previously current one. */
5190 push_topmost_sequence (void)
5192 struct sequence_stack
*stack
, *top
= NULL
;
5196 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5199 set_first_insn (top
->first
);
5200 set_last_insn (top
->last
);
5203 /* After emitting to the outer-level insn chain, update the outer-level
5204 insn chain, and restore the previous saved state. */
5207 pop_topmost_sequence (void)
5209 struct sequence_stack
*stack
, *top
= NULL
;
5211 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5214 top
->first
= get_insns ();
5215 top
->last
= get_last_insn ();
5220 /* After emitting to a sequence, restore previous saved state.
5222 To get the contents of the sequence just made, you must call
5223 `get_insns' *before* calling here.
5225 If the compiler might have deferred popping arguments while
5226 generating this sequence, and this sequence will not be immediately
5227 inserted into the instruction stream, use do_pending_stack_adjust
5228 before calling get_insns. That will ensure that the deferred
5229 pops are inserted into this sequence, and not into some random
5230 location in the instruction stream. See INHIBIT_DEFER_POP for more
5231 information about deferred popping of arguments. */
5236 struct sequence_stack
*tem
= seq_stack
;
5238 set_first_insn (tem
->first
);
5239 set_last_insn (tem
->last
);
5240 seq_stack
= tem
->next
;
5242 memset (tem
, 0, sizeof (*tem
));
5243 tem
->next
= free_sequence_stack
;
5244 free_sequence_stack
= tem
;
5247 /* Return 1 if currently emitting into a sequence. */
5250 in_sequence_p (void)
5252 return seq_stack
!= 0;
5255 /* Put the various virtual registers into REGNO_REG_RTX. */
5258 init_virtual_regs (void)
5260 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5261 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5262 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5263 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5264 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5265 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5266 = virtual_preferred_stack_boundary_rtx
;
5270 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5271 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5272 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5273 static int copy_insn_n_scratches
;
5275 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5276 copied an ASM_OPERANDS.
5277 In that case, it is the original input-operand vector. */
5278 static rtvec orig_asm_operands_vector
;
5280 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5281 copied an ASM_OPERANDS.
5282 In that case, it is the copied input-operand vector. */
5283 static rtvec copy_asm_operands_vector
;
5285 /* Likewise for the constraints vector. */
5286 static rtvec orig_asm_constraints_vector
;
5287 static rtvec copy_asm_constraints_vector
;
5289 /* Recursively create a new copy of an rtx for copy_insn.
5290 This function differs from copy_rtx in that it handles SCRATCHes and
5291 ASM_OPERANDs properly.
5292 Normally, this function is not used directly; use copy_insn as front end.
5293 However, you could first copy an insn pattern with copy_insn and then use
5294 this function afterwards to properly copy any REG_NOTEs containing
5298 copy_insn_1 (rtx orig
)
5303 const char *format_ptr
;
5308 code
= GET_CODE (orig
);
5323 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5324 clobbers or clobbers of hard registers that originated as pseudos.
5325 This is needed to allow safe register renaming. */
5326 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
5327 && ORIGINAL_REGNO (XEXP (orig
, 0)) == REGNO (XEXP (orig
, 0)))
5332 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5333 if (copy_insn_scratch_in
[i
] == orig
)
5334 return copy_insn_scratch_out
[i
];
5338 if (shared_const_p (orig
))
5342 /* A MEM with a constant address is not sharable. The problem is that
5343 the constant address may need to be reloaded. If the mem is shared,
5344 then reloading one copy of this mem will cause all copies to appear
5345 to have been reloaded. */
5351 /* Copy the various flags, fields, and other information. We assume
5352 that all fields need copying, and then clear the fields that should
5353 not be copied. That is the sensible default behavior, and forces
5354 us to explicitly document why we are *not* copying a flag. */
5355 copy
= shallow_copy_rtx (orig
);
5357 /* We do not copy the USED flag, which is used as a mark bit during
5358 walks over the RTL. */
5359 RTX_FLAG (copy
, used
) = 0;
5361 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5364 RTX_FLAG (copy
, jump
) = 0;
5365 RTX_FLAG (copy
, call
) = 0;
5366 RTX_FLAG (copy
, frame_related
) = 0;
5369 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5371 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5372 switch (*format_ptr
++)
5375 if (XEXP (orig
, i
) != NULL
)
5376 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5381 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5382 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5383 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5384 XVEC (copy
, i
) = copy_asm_operands_vector
;
5385 else if (XVEC (orig
, i
) != NULL
)
5387 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5388 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5389 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5400 /* These are left unchanged. */
5407 if (code
== SCRATCH
)
5409 i
= copy_insn_n_scratches
++;
5410 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5411 copy_insn_scratch_in
[i
] = orig
;
5412 copy_insn_scratch_out
[i
] = copy
;
5414 else if (code
== ASM_OPERANDS
)
5416 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5417 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5418 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5419 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5425 /* Create a new copy of an rtx.
5426 This function differs from copy_rtx in that it handles SCRATCHes and
5427 ASM_OPERANDs properly.
5428 INSN doesn't really have to be a full INSN; it could be just the
5431 copy_insn (rtx insn
)
5433 copy_insn_n_scratches
= 0;
5434 orig_asm_operands_vector
= 0;
5435 orig_asm_constraints_vector
= 0;
5436 copy_asm_operands_vector
= 0;
5437 copy_asm_constraints_vector
= 0;
5438 return copy_insn_1 (insn
);
5441 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5442 on that assumption that INSN itself remains in its original place. */
5445 copy_delay_slot_insn (rtx insn
)
5447 /* Copy INSN with its rtx_code, all its notes, location etc. */
5448 insn
= copy_rtx (insn
);
5449 INSN_UID (insn
) = cur_insn_uid
++;
5453 /* Initialize data structures and variables in this file
5454 before generating rtl for each function. */
5459 set_first_insn (NULL
);
5460 set_last_insn (NULL
);
5461 if (MIN_NONDEBUG_INSN_UID
)
5462 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5465 cur_debug_insn_uid
= 1;
5466 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5467 first_label_num
= label_num
;
5470 /* Init the tables that describe all the pseudo regs. */
5472 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5474 crtl
->emit
.regno_pointer_align
5475 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5477 regno_reg_rtx
= ggc_alloc_vec_rtx (crtl
->emit
.regno_pointer_align_length
);
5479 /* Put copies of all the hard registers into regno_reg_rtx. */
5480 memcpy (regno_reg_rtx
,
5481 initial_regno_reg_rtx
,
5482 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5484 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5485 init_virtual_regs ();
5487 /* Indicate that the virtual registers and stack locations are
5489 REG_POINTER (stack_pointer_rtx
) = 1;
5490 REG_POINTER (frame_pointer_rtx
) = 1;
5491 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5492 REG_POINTER (arg_pointer_rtx
) = 1;
5494 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5495 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5496 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5497 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5498 REG_POINTER (virtual_cfa_rtx
) = 1;
5500 #ifdef STACK_BOUNDARY
5501 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5502 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5503 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5504 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5506 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5507 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5508 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5509 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5510 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5513 #ifdef INIT_EXPANDERS
5518 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5521 gen_const_vector (enum machine_mode mode
, int constant
)
5526 enum machine_mode inner
;
5528 units
= GET_MODE_NUNITS (mode
);
5529 inner
= GET_MODE_INNER (mode
);
5531 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5533 v
= rtvec_alloc (units
);
5535 /* We need to call this function after we set the scalar const_tiny_rtx
5537 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5539 for (i
= 0; i
< units
; ++i
)
5540 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5542 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5546 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5547 all elements are zero, and the one vector when all elements are one. */
5549 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5551 enum machine_mode inner
= GET_MODE_INNER (mode
);
5552 int nunits
= GET_MODE_NUNITS (mode
);
5556 /* Check to see if all of the elements have the same value. */
5557 x
= RTVEC_ELT (v
, nunits
- 1);
5558 for (i
= nunits
- 2; i
>= 0; i
--)
5559 if (RTVEC_ELT (v
, i
) != x
)
5562 /* If the values are all the same, check to see if we can use one of the
5563 standard constant vectors. */
5566 if (x
== CONST0_RTX (inner
))
5567 return CONST0_RTX (mode
);
5568 else if (x
== CONST1_RTX (inner
))
5569 return CONST1_RTX (mode
);
5570 else if (x
== CONSTM1_RTX (inner
))
5571 return CONSTM1_RTX (mode
);
5574 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5577 /* Initialise global register information required by all functions. */
5580 init_emit_regs (void)
5583 enum machine_mode mode
;
5586 /* Reset register attributes */
5587 htab_empty (reg_attrs_htab
);
5589 /* We need reg_raw_mode, so initialize the modes now. */
5590 init_reg_modes_target ();
5592 /* Assign register numbers to the globally defined register rtx. */
5593 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5594 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5595 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5596 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5597 virtual_incoming_args_rtx
=
5598 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5599 virtual_stack_vars_rtx
=
5600 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5601 virtual_stack_dynamic_rtx
=
5602 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5603 virtual_outgoing_args_rtx
=
5604 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5605 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5606 virtual_preferred_stack_boundary_rtx
=
5607 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
5609 /* Initialize RTL for commonly used hard registers. These are
5610 copied into regno_reg_rtx as we begin to compile each function. */
5611 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5612 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5614 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5615 return_address_pointer_rtx
5616 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5619 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5620 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5622 pic_offset_table_rtx
= NULL_RTX
;
5624 for (i
= 0; i
< (int) MAX_MACHINE_MODE
; i
++)
5626 mode
= (enum machine_mode
) i
;
5627 attrs
= ggc_alloc_cleared_mem_attrs ();
5628 attrs
->align
= BITS_PER_UNIT
;
5629 attrs
->addrspace
= ADDR_SPACE_GENERIC
;
5630 if (mode
!= BLKmode
)
5632 attrs
->size_known_p
= true;
5633 attrs
->size
= GET_MODE_SIZE (mode
);
5634 if (STRICT_ALIGNMENT
)
5635 attrs
->align
= GET_MODE_ALIGNMENT (mode
);
5637 mode_mem_attrs
[i
] = attrs
;
5641 /* Create some permanent unique rtl objects shared between all functions. */
5644 init_emit_once (void)
5647 enum machine_mode mode
;
5648 enum machine_mode double_mode
;
5650 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5652 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5653 const_int_htab_eq
, NULL
);
5655 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5656 const_double_htab_eq
, NULL
);
5658 const_fixed_htab
= htab_create_ggc (37, const_fixed_htab_hash
,
5659 const_fixed_htab_eq
, NULL
);
5661 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5662 mem_attrs_htab_eq
, NULL
);
5663 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5664 reg_attrs_htab_eq
, NULL
);
5666 /* Compute the word and byte modes. */
5668 byte_mode
= VOIDmode
;
5669 word_mode
= VOIDmode
;
5670 double_mode
= VOIDmode
;
5672 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5674 mode
= GET_MODE_WIDER_MODE (mode
))
5676 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5677 && byte_mode
== VOIDmode
)
5680 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5681 && word_mode
== VOIDmode
)
5685 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5687 mode
= GET_MODE_WIDER_MODE (mode
))
5689 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5690 && double_mode
== VOIDmode
)
5694 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5696 #ifdef INIT_EXPANDERS
5697 /* This is to initialize {init|mark|free}_machine_status before the first
5698 call to push_function_context_to. This is needed by the Chill front
5699 end which calls push_function_context_to before the first call to
5700 init_function_start. */
5704 /* Create the unique rtx's for certain rtx codes and operand values. */
5706 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5707 tries to use these variables. */
5708 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5709 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5710 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5712 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5713 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5714 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5716 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5718 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5719 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5720 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5725 dconsthalf
= dconst1
;
5726 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5728 for (i
= 0; i
< 3; i
++)
5730 const REAL_VALUE_TYPE
*const r
=
5731 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5733 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5735 mode
= GET_MODE_WIDER_MODE (mode
))
5736 const_tiny_rtx
[i
][(int) mode
] =
5737 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5739 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5741 mode
= GET_MODE_WIDER_MODE (mode
))
5742 const_tiny_rtx
[i
][(int) mode
] =
5743 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5745 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5747 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5749 mode
= GET_MODE_WIDER_MODE (mode
))
5750 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5752 for (mode
= MIN_MODE_PARTIAL_INT
;
5753 mode
<= MAX_MODE_PARTIAL_INT
;
5754 mode
= (enum machine_mode
)((int)(mode
) + 1))
5755 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5758 const_tiny_rtx
[3][(int) VOIDmode
] = constm1_rtx
;
5760 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5762 mode
= GET_MODE_WIDER_MODE (mode
))
5763 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5765 for (mode
= MIN_MODE_PARTIAL_INT
;
5766 mode
<= MAX_MODE_PARTIAL_INT
;
5767 mode
= (enum machine_mode
)((int)(mode
) + 1))
5768 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
5770 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5772 mode
= GET_MODE_WIDER_MODE (mode
))
5774 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5775 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5778 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5780 mode
= GET_MODE_WIDER_MODE (mode
))
5782 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5783 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5786 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5788 mode
= GET_MODE_WIDER_MODE (mode
))
5790 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5791 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5792 const_tiny_rtx
[3][(int) mode
] = gen_const_vector (mode
, 3);
5795 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5797 mode
= GET_MODE_WIDER_MODE (mode
))
5799 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5800 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5803 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
5805 mode
= GET_MODE_WIDER_MODE (mode
))
5807 FCONST0(mode
).data
.high
= 0;
5808 FCONST0(mode
).data
.low
= 0;
5809 FCONST0(mode
).mode
= mode
;
5810 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5811 FCONST0 (mode
), mode
);
5814 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
5816 mode
= GET_MODE_WIDER_MODE (mode
))
5818 FCONST0(mode
).data
.high
= 0;
5819 FCONST0(mode
).data
.low
= 0;
5820 FCONST0(mode
).mode
= mode
;
5821 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5822 FCONST0 (mode
), mode
);
5825 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
5827 mode
= GET_MODE_WIDER_MODE (mode
))
5829 FCONST0(mode
).data
.high
= 0;
5830 FCONST0(mode
).data
.low
= 0;
5831 FCONST0(mode
).mode
= mode
;
5832 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5833 FCONST0 (mode
), mode
);
5835 /* We store the value 1. */
5836 FCONST1(mode
).data
.high
= 0;
5837 FCONST1(mode
).data
.low
= 0;
5838 FCONST1(mode
).mode
= mode
;
5840 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5841 HOST_BITS_PER_DOUBLE_INT
,
5842 SIGNED_FIXED_POINT_MODE_P (mode
));
5843 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5844 FCONST1 (mode
), mode
);
5847 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
5849 mode
= GET_MODE_WIDER_MODE (mode
))
5851 FCONST0(mode
).data
.high
= 0;
5852 FCONST0(mode
).data
.low
= 0;
5853 FCONST0(mode
).mode
= mode
;
5854 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5855 FCONST0 (mode
), mode
);
5857 /* We store the value 1. */
5858 FCONST1(mode
).data
.high
= 0;
5859 FCONST1(mode
).data
.low
= 0;
5860 FCONST1(mode
).mode
= mode
;
5862 = double_int_one
.lshift (GET_MODE_FBIT (mode
),
5863 HOST_BITS_PER_DOUBLE_INT
,
5864 SIGNED_FIXED_POINT_MODE_P (mode
));
5865 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5866 FCONST1 (mode
), mode
);
5869 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
5871 mode
= GET_MODE_WIDER_MODE (mode
))
5873 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5876 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
5878 mode
= GET_MODE_WIDER_MODE (mode
))
5880 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5883 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
5885 mode
= GET_MODE_WIDER_MODE (mode
))
5887 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5888 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5891 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
5893 mode
= GET_MODE_WIDER_MODE (mode
))
5895 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5896 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5899 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5900 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5901 const_tiny_rtx
[0][i
] = const0_rtx
;
5903 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5904 if (STORE_FLAG_VALUE
== 1)
5905 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5907 pc_rtx
= gen_rtx_fmt_ (PC
, VOIDmode
);
5908 ret_rtx
= gen_rtx_fmt_ (RETURN
, VOIDmode
);
5909 simple_return_rtx
= gen_rtx_fmt_ (SIMPLE_RETURN
, VOIDmode
);
5910 cc0_rtx
= gen_rtx_fmt_ (CC0
, VOIDmode
);
5913 /* Produce exact duplicate of insn INSN after AFTER.
5914 Care updating of libcall regions if present. */
5917 emit_copy_of_insn_after (rtx insn
, rtx after
)
5921 switch (GET_CODE (insn
))
5924 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5928 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5932 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
5936 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5937 if (CALL_INSN_FUNCTION_USAGE (insn
))
5938 CALL_INSN_FUNCTION_USAGE (new_rtx
)
5939 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5940 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
5941 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
5942 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
5943 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
5944 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
5951 /* Update LABEL_NUSES. */
5952 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
5954 INSN_LOCATION (new_rtx
) = INSN_LOCATION (insn
);
5956 /* If the old insn is frame related, then so is the new one. This is
5957 primarily needed for IA-64 unwind info which marks epilogue insns,
5958 which may be duplicated by the basic block reordering code. */
5959 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
5961 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5962 will make them. REG_LABEL_TARGETs are created there too, but are
5963 supposed to be sticky, so we copy them. */
5964 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5965 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
5967 if (GET_CODE (link
) == EXPR_LIST
)
5968 add_reg_note (new_rtx
, REG_NOTE_KIND (link
),
5969 copy_insn_1 (XEXP (link
, 0)));
5971 add_reg_note (new_rtx
, REG_NOTE_KIND (link
), XEXP (link
, 0));
5974 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
5978 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
5980 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
5982 if (hard_reg_clobbers
[mode
][regno
])
5983 return hard_reg_clobbers
[mode
][regno
];
5985 return (hard_reg_clobbers
[mode
][regno
] =
5986 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
5989 location_t prologue_location
;
5990 location_t epilogue_location
;
5992 /* Hold current location information and last location information, so the
5993 datastructures are built lazily only when some instructions in given
5994 place are needed. */
5995 static location_t curr_location
;
5997 /* Allocate insn location datastructure. */
5999 insn_locations_init (void)
6001 prologue_location
= epilogue_location
= 0;
6002 curr_location
= UNKNOWN_LOCATION
;
6005 /* At the end of emit stage, clear current location. */
6007 insn_locations_finalize (void)
6009 epilogue_location
= curr_location
;
6010 curr_location
= UNKNOWN_LOCATION
;
6013 /* Set current location. */
6015 set_curr_insn_location (location_t location
)
6017 curr_location
= location
;
6020 /* Get current location. */
6022 curr_insn_location (void)
6024 return curr_location
;
6027 /* Return lexical scope block insn belongs to. */
6029 insn_scope (const_rtx insn
)
6031 return LOCATION_BLOCK (INSN_LOCATION (insn
));
6034 /* Return line number of the statement that produced this insn. */
6036 insn_line (const_rtx insn
)
6038 return LOCATION_LINE (INSN_LOCATION (insn
));
6041 /* Return source file of the statement that produced this insn. */
6043 insn_file (const_rtx insn
)
6045 return LOCATION_FILE (INSN_LOCATION (insn
));
6048 /* Return true if memory model MODEL requires a pre-operation (release-style)
6049 barrier or a post-operation (acquire-style) barrier. While not universal,
6050 this function matches behavior of several targets. */
6053 need_atomic_barrier_p (enum memmodel model
, bool pre
)
6055 switch (model
& MEMMODEL_MASK
)
6057 case MEMMODEL_RELAXED
:
6058 case MEMMODEL_CONSUME
:
6060 case MEMMODEL_RELEASE
:
6062 case MEMMODEL_ACQUIRE
:
6064 case MEMMODEL_ACQ_REL
:
6065 case MEMMODEL_SEQ_CST
:
6072 #include "gt-emit-rtl.h"