1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
29 #include "pointer-set.h"
30 #include "tree-flow.h"
31 #include "tree-dump.h"
32 #include "tree-inline.h"
33 #include "tree-iterator.h"
34 #include "tree-pass.h"
36 #include "langhooks.h"
38 #include "diagnostic-core.h"
42 /* In some instances a tree and a gimple need to be stored in a same table,
43 i.e. in hash tables. This is a structure to do this. */
44 typedef union {tree
*tp
; tree t
; gimple g
;} treemple
;
46 /* Nonzero if we are using EH to handle cleanups. */
47 static int using_eh_for_cleanups_p
= 0;
50 using_eh_for_cleanups (void)
52 using_eh_for_cleanups_p
= 1;
55 /* Misc functions used in this file. */
57 /* Compare and hash for any structure which begins with a canonical
58 pointer. Assumes all pointers are interchangeable, which is sort
59 of already assumed by gcc elsewhere IIRC. */
62 struct_ptr_eq (const void *a
, const void *b
)
64 const void * const * x
= (const void * const *) a
;
65 const void * const * y
= (const void * const *) b
;
70 struct_ptr_hash (const void *a
)
72 const void * const * x
= (const void * const *) a
;
73 return (size_t)*x
>> 4;
77 /* Remember and lookup EH landing pad data for arbitrary statements.
78 Really this means any statement that could_throw_p. We could
79 stuff this information into the stmt_ann data structure, but:
81 (1) We absolutely rely on this information being kept until
82 we get to rtl. Once we're done with lowering here, if we lose
83 the information there's no way to recover it!
85 (2) There are many more statements that *cannot* throw as
86 compared to those that can. We should be saving some amount
87 of space by only allocating memory for those that can throw. */
89 /* Add statement T in function IFUN to landing pad NUM. */
92 add_stmt_to_eh_lp_fn (struct function
*ifun
, gimple t
, int num
)
94 struct throw_stmt_node
*n
;
97 gcc_assert (num
!= 0);
99 n
= ggc_alloc_throw_stmt_node ();
103 if (!get_eh_throw_stmt_table (ifun
))
104 set_eh_throw_stmt_table (ifun
, htab_create_ggc (31, struct_ptr_hash
,
108 slot
= htab_find_slot (get_eh_throw_stmt_table (ifun
), n
, INSERT
);
113 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
116 add_stmt_to_eh_lp (gimple t
, int num
)
118 add_stmt_to_eh_lp_fn (cfun
, t
, num
);
121 /* Add statement T to the single EH landing pad in REGION. */
124 record_stmt_eh_region (eh_region region
, gimple t
)
128 if (region
->type
== ERT_MUST_NOT_THROW
)
129 add_stmt_to_eh_lp_fn (cfun
, t
, -region
->index
);
132 eh_landing_pad lp
= region
->landing_pads
;
134 lp
= gen_eh_landing_pad (region
);
136 gcc_assert (lp
->next_lp
== NULL
);
137 add_stmt_to_eh_lp_fn (cfun
, t
, lp
->index
);
142 /* Remove statement T in function IFUN from its EH landing pad. */
145 remove_stmt_from_eh_lp_fn (struct function
*ifun
, gimple t
)
147 struct throw_stmt_node dummy
;
150 if (!get_eh_throw_stmt_table (ifun
))
154 slot
= htab_find_slot (get_eh_throw_stmt_table (ifun
), &dummy
,
158 htab_clear_slot (get_eh_throw_stmt_table (ifun
), slot
);
166 /* Remove statement T in the current function (cfun) from its
170 remove_stmt_from_eh_lp (gimple t
)
172 return remove_stmt_from_eh_lp_fn (cfun
, t
);
175 /* Determine if statement T is inside an EH region in function IFUN.
176 Positive numbers indicate a landing pad index; negative numbers
177 indicate a MUST_NOT_THROW region index; zero indicates that the
178 statement is not recorded in the region table. */
181 lookup_stmt_eh_lp_fn (struct function
*ifun
, gimple t
)
183 struct throw_stmt_node
*p
, n
;
185 if (ifun
->eh
->throw_stmt_table
== NULL
)
189 p
= (struct throw_stmt_node
*) htab_find (ifun
->eh
->throw_stmt_table
, &n
);
190 return p
? p
->lp_nr
: 0;
193 /* Likewise, but always use the current function. */
196 lookup_stmt_eh_lp (gimple t
)
198 /* We can get called from initialized data when -fnon-call-exceptions
199 is on; prevent crash. */
202 return lookup_stmt_eh_lp_fn (cfun
, t
);
205 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
206 nodes and LABEL_DECL nodes. We will use this during the second phase to
207 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
209 struct finally_tree_node
211 /* When storing a GIMPLE_TRY, we have to record a gimple. However
212 when deciding whether a GOTO to a certain LABEL_DECL (which is a
213 tree) leaves the TRY block, its necessary to record a tree in
214 this field. Thus a treemple is used. */
219 /* Note that this table is *not* marked GTY. It is short-lived. */
220 static htab_t finally_tree
;
223 record_in_finally_tree (treemple child
, gimple parent
)
225 struct finally_tree_node
*n
;
228 n
= XNEW (struct finally_tree_node
);
232 slot
= htab_find_slot (finally_tree
, n
, INSERT
);
238 collect_finally_tree (gimple stmt
, gimple region
);
240 /* Go through the gimple sequence. Works with collect_finally_tree to
241 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
244 collect_finally_tree_1 (gimple_seq seq
, gimple region
)
246 gimple_stmt_iterator gsi
;
248 for (gsi
= gsi_start (seq
); !gsi_end_p (gsi
); gsi_next (&gsi
))
249 collect_finally_tree (gsi_stmt (gsi
), region
);
253 collect_finally_tree (gimple stmt
, gimple region
)
257 switch (gimple_code (stmt
))
260 temp
.t
= gimple_label_label (stmt
);
261 record_in_finally_tree (temp
, region
);
265 if (gimple_try_kind (stmt
) == GIMPLE_TRY_FINALLY
)
268 record_in_finally_tree (temp
, region
);
269 collect_finally_tree_1 (gimple_try_eval (stmt
), stmt
);
270 collect_finally_tree_1 (gimple_try_cleanup (stmt
), region
);
272 else if (gimple_try_kind (stmt
) == GIMPLE_TRY_CATCH
)
274 collect_finally_tree_1 (gimple_try_eval (stmt
), region
);
275 collect_finally_tree_1 (gimple_try_cleanup (stmt
), region
);
280 collect_finally_tree_1 (gimple_catch_handler (stmt
), region
);
283 case GIMPLE_EH_FILTER
:
284 collect_finally_tree_1 (gimple_eh_filter_failure (stmt
), region
);
288 /* A type, a decl, or some kind of statement that we're not
289 interested in. Don't walk them. */
295 /* Use the finally tree to determine if a jump from START to TARGET
296 would leave the try_finally node that START lives in. */
299 outside_finally_tree (treemple start
, gimple target
)
301 struct finally_tree_node n
, *p
;
306 p
= (struct finally_tree_node
*) htab_find (finally_tree
, &n
);
311 while (start
.g
!= target
);
316 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
317 nodes into a set of gotos, magic labels, and eh regions.
318 The eh region creation is straight-forward, but frobbing all the gotos
319 and such into shape isn't. */
321 /* The sequence into which we record all EH stuff. This will be
322 placed at the end of the function when we're all done. */
323 static gimple_seq eh_seq
;
325 /* Record whether an EH region contains something that can throw,
326 indexed by EH region number. */
327 static bitmap eh_region_may_contain_throw_map
;
329 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
330 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
331 The idea is to record a gimple statement for everything except for
332 the conditionals, which get their labels recorded. Since labels are
333 of type 'tree', we need this node to store both gimple and tree
334 objects. REPL_STMT is the sequence used to replace the goto/return
335 statement. CONT_STMT is used to store the statement that allows
336 the return/goto to jump to the original destination. */
338 struct goto_queue_node
341 gimple_seq repl_stmt
;
344 /* This is used when index >= 0 to indicate that stmt is a label (as
345 opposed to a goto stmt). */
349 /* State of the world while lowering. */
353 /* What's "current" while constructing the eh region tree. These
354 correspond to variables of the same name in cfun->eh, which we
355 don't have easy access to. */
356 eh_region cur_region
;
358 /* What's "current" for the purposes of __builtin_eh_pointer. For
359 a CATCH, this is the associated TRY. For an EH_FILTER, this is
360 the associated ALLOWED_EXCEPTIONS, etc. */
361 eh_region ehp_region
;
363 /* Processing of TRY_FINALLY requires a bit more state. This is
364 split out into a separate structure so that we don't have to
365 copy so much when processing other nodes. */
366 struct leh_tf_state
*tf
;
371 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
372 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
373 this so that outside_finally_tree can reliably reference the tree used
374 in the collect_finally_tree data structures. */
375 gimple try_finally_expr
;
378 /* While lowering a top_p usually it is expanded into multiple statements,
379 thus we need the following field to store them. */
380 gimple_seq top_p_seq
;
382 /* The state outside this try_finally node. */
383 struct leh_state
*outer
;
385 /* The exception region created for it. */
388 /* The goto queue. */
389 struct goto_queue_node
*goto_queue
;
390 size_t goto_queue_size
;
391 size_t goto_queue_active
;
393 /* Pointer map to help in searching goto_queue when it is large. */
394 struct pointer_map_t
*goto_queue_map
;
396 /* The set of unique labels seen as entries in the goto queue. */
397 VEC(tree
,heap
) *dest_array
;
399 /* A label to be added at the end of the completed transformed
400 sequence. It will be set if may_fallthru was true *at one time*,
401 though subsequent transformations may have cleared that flag. */
404 /* True if it is possible to fall out the bottom of the try block.
405 Cleared if the fallthru is converted to a goto. */
408 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
411 /* True if the finally block can receive an exception edge.
412 Cleared if the exception case is handled by code duplication. */
416 static gimple_seq
lower_eh_must_not_throw (struct leh_state
*, gimple
);
418 /* Search for STMT in the goto queue. Return the replacement,
419 or null if the statement isn't in the queue. */
421 #define LARGE_GOTO_QUEUE 20
423 static void lower_eh_constructs_1 (struct leh_state
*state
, gimple_seq seq
);
426 find_goto_replacement (struct leh_tf_state
*tf
, treemple stmt
)
431 if (tf
->goto_queue_active
< LARGE_GOTO_QUEUE
)
433 for (i
= 0; i
< tf
->goto_queue_active
; i
++)
434 if ( tf
->goto_queue
[i
].stmt
.g
== stmt
.g
)
435 return tf
->goto_queue
[i
].repl_stmt
;
439 /* If we have a large number of entries in the goto_queue, create a
440 pointer map and use that for searching. */
442 if (!tf
->goto_queue_map
)
444 tf
->goto_queue_map
= pointer_map_create ();
445 for (i
= 0; i
< tf
->goto_queue_active
; i
++)
447 slot
= pointer_map_insert (tf
->goto_queue_map
,
448 tf
->goto_queue
[i
].stmt
.g
);
449 gcc_assert (*slot
== NULL
);
450 *slot
= &tf
->goto_queue
[i
];
454 slot
= pointer_map_contains (tf
->goto_queue_map
, stmt
.g
);
456 return (((struct goto_queue_node
*) *slot
)->repl_stmt
);
461 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
462 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
463 then we can just splat it in, otherwise we add the new stmts immediately
464 after the GIMPLE_COND and redirect. */
467 replace_goto_queue_cond_clause (tree
*tp
, struct leh_tf_state
*tf
,
468 gimple_stmt_iterator
*gsi
)
473 location_t loc
= gimple_location (gsi_stmt (*gsi
));
476 new_seq
= find_goto_replacement (tf
, temp
);
480 if (gimple_seq_singleton_p (new_seq
)
481 && gimple_code (gimple_seq_first_stmt (new_seq
)) == GIMPLE_GOTO
)
483 *tp
= gimple_goto_dest (gimple_seq_first_stmt (new_seq
));
487 label
= create_artificial_label (loc
);
488 /* Set the new label for the GIMPLE_COND */
491 gsi_insert_after (gsi
, gimple_build_label (label
), GSI_CONTINUE_LINKING
);
492 gsi_insert_seq_after (gsi
, gimple_seq_copy (new_seq
), GSI_CONTINUE_LINKING
);
495 /* The real work of replace_goto_queue. Returns with TSI updated to
496 point to the next statement. */
498 static void replace_goto_queue_stmt_list (gimple_seq
, struct leh_tf_state
*);
501 replace_goto_queue_1 (gimple stmt
, struct leh_tf_state
*tf
,
502 gimple_stmt_iterator
*gsi
)
508 switch (gimple_code (stmt
))
513 seq
= find_goto_replacement (tf
, temp
);
516 gsi_insert_seq_before (gsi
, gimple_seq_copy (seq
), GSI_SAME_STMT
);
517 gsi_remove (gsi
, false);
523 replace_goto_queue_cond_clause (gimple_op_ptr (stmt
, 2), tf
, gsi
);
524 replace_goto_queue_cond_clause (gimple_op_ptr (stmt
, 3), tf
, gsi
);
528 replace_goto_queue_stmt_list (gimple_try_eval (stmt
), tf
);
529 replace_goto_queue_stmt_list (gimple_try_cleanup (stmt
), tf
);
532 replace_goto_queue_stmt_list (gimple_catch_handler (stmt
), tf
);
534 case GIMPLE_EH_FILTER
:
535 replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt
), tf
);
539 /* These won't have gotos in them. */
546 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
549 replace_goto_queue_stmt_list (gimple_seq seq
, struct leh_tf_state
*tf
)
551 gimple_stmt_iterator gsi
= gsi_start (seq
);
553 while (!gsi_end_p (gsi
))
554 replace_goto_queue_1 (gsi_stmt (gsi
), tf
, &gsi
);
557 /* Replace all goto queue members. */
560 replace_goto_queue (struct leh_tf_state
*tf
)
562 if (tf
->goto_queue_active
== 0)
564 replace_goto_queue_stmt_list (tf
->top_p_seq
, tf
);
565 replace_goto_queue_stmt_list (eh_seq
, tf
);
568 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
569 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
573 record_in_goto_queue (struct leh_tf_state
*tf
,
579 struct goto_queue_node
*q
;
581 gcc_assert (!tf
->goto_queue_map
);
583 active
= tf
->goto_queue_active
;
584 size
= tf
->goto_queue_size
;
587 size
= (size
? size
* 2 : 32);
588 tf
->goto_queue_size
= size
;
590 = XRESIZEVEC (struct goto_queue_node
, tf
->goto_queue
, size
);
593 q
= &tf
->goto_queue
[active
];
594 tf
->goto_queue_active
= active
+ 1;
596 memset (q
, 0, sizeof (*q
));
599 q
->is_label
= is_label
;
602 /* Record the LABEL label in the goto queue contained in TF.
606 record_in_goto_queue_label (struct leh_tf_state
*tf
, treemple stmt
, tree label
)
609 treemple temp
, new_stmt
;
614 /* Computed and non-local gotos do not get processed. Given
615 their nature we can neither tell whether we've escaped the
616 finally block nor redirect them if we knew. */
617 if (TREE_CODE (label
) != LABEL_DECL
)
620 /* No need to record gotos that don't leave the try block. */
622 if (!outside_finally_tree (temp
, tf
->try_finally_expr
))
625 if (! tf
->dest_array
)
627 tf
->dest_array
= VEC_alloc (tree
, heap
, 10);
628 VEC_quick_push (tree
, tf
->dest_array
, label
);
633 int n
= VEC_length (tree
, tf
->dest_array
);
634 for (index
= 0; index
< n
; ++index
)
635 if (VEC_index (tree
, tf
->dest_array
, index
) == label
)
638 VEC_safe_push (tree
, heap
, tf
->dest_array
, label
);
641 /* In the case of a GOTO we want to record the destination label,
642 since with a GIMPLE_COND we have an easy access to the then/else
645 record_in_goto_queue (tf
, new_stmt
, index
, true);
648 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
649 node, and if so record that fact in the goto queue associated with that
653 maybe_record_in_goto_queue (struct leh_state
*state
, gimple stmt
)
655 struct leh_tf_state
*tf
= state
->tf
;
661 switch (gimple_code (stmt
))
664 new_stmt
.tp
= gimple_op_ptr (stmt
, 2);
665 record_in_goto_queue_label (tf
, new_stmt
, gimple_cond_true_label (stmt
));
666 new_stmt
.tp
= gimple_op_ptr (stmt
, 3);
667 record_in_goto_queue_label (tf
, new_stmt
, gimple_cond_false_label (stmt
));
671 record_in_goto_queue_label (tf
, new_stmt
, gimple_goto_dest (stmt
));
675 tf
->may_return
= true;
677 record_in_goto_queue (tf
, new_stmt
, -1, false);
686 #ifdef ENABLE_CHECKING
687 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
688 was in fact structured, and we've not yet done jump threading, then none
689 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
692 verify_norecord_switch_expr (struct leh_state
*state
, gimple switch_expr
)
694 struct leh_tf_state
*tf
= state
->tf
;
700 n
= gimple_switch_num_labels (switch_expr
);
702 for (i
= 0; i
< n
; ++i
)
705 tree lab
= CASE_LABEL (gimple_switch_label (switch_expr
, i
));
707 gcc_assert (!outside_finally_tree (temp
, tf
->try_finally_expr
));
711 #define verify_norecord_switch_expr(state, switch_expr)
714 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
715 non-null, insert it before the new branch. */
718 do_return_redirection (struct goto_queue_node
*q
, tree finlab
, gimple_seq mod
)
722 /* In the case of a return, the queue node must be a gimple statement. */
723 gcc_assert (!q
->is_label
);
725 /* Note that the return value may have already been computed, e.g.,
738 should return 0, not 1. We don't have to do anything to make
739 this happens because the return value has been placed in the
740 RESULT_DECL already. */
742 q
->cont_stmt
= q
->stmt
.g
;
745 q
->repl_stmt
= gimple_seq_alloc ();
748 gimple_seq_add_seq (&q
->repl_stmt
, mod
);
750 x
= gimple_build_goto (finlab
);
751 gimple_seq_add_stmt (&q
->repl_stmt
, x
);
754 /* Similar, but easier, for GIMPLE_GOTO. */
757 do_goto_redirection (struct goto_queue_node
*q
, tree finlab
, gimple_seq mod
,
758 struct leh_tf_state
*tf
)
762 gcc_assert (q
->is_label
);
764 q
->repl_stmt
= gimple_seq_alloc ();
766 q
->cont_stmt
= gimple_build_goto (VEC_index (tree
, tf
->dest_array
, q
->index
));
769 gimple_seq_add_seq (&q
->repl_stmt
, mod
);
771 x
= gimple_build_goto (finlab
);
772 gimple_seq_add_stmt (&q
->repl_stmt
, x
);
775 /* Emit a standard landing pad sequence into SEQ for REGION. */
778 emit_post_landing_pad (gimple_seq
*seq
, eh_region region
)
780 eh_landing_pad lp
= region
->landing_pads
;
784 lp
= gen_eh_landing_pad (region
);
786 lp
->post_landing_pad
= create_artificial_label (UNKNOWN_LOCATION
);
787 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = lp
->index
;
789 x
= gimple_build_label (lp
->post_landing_pad
);
790 gimple_seq_add_stmt (seq
, x
);
793 /* Emit a RESX statement into SEQ for REGION. */
796 emit_resx (gimple_seq
*seq
, eh_region region
)
798 gimple x
= gimple_build_resx (region
->index
);
799 gimple_seq_add_stmt (seq
, x
);
801 record_stmt_eh_region (region
->outer
, x
);
804 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
807 emit_eh_dispatch (gimple_seq
*seq
, eh_region region
)
809 gimple x
= gimple_build_eh_dispatch (region
->index
);
810 gimple_seq_add_stmt (seq
, x
);
813 /* Note that the current EH region may contain a throw, or a
814 call to a function which itself may contain a throw. */
817 note_eh_region_may_contain_throw (eh_region region
)
819 while (bitmap_set_bit (eh_region_may_contain_throw_map
, region
->index
))
821 if (region
->type
== ERT_MUST_NOT_THROW
)
823 region
= region
->outer
;
829 /* Check if REGION has been marked as containing a throw. If REGION is
830 NULL, this predicate is false. */
833 eh_region_may_contain_throw (eh_region r
)
835 return r
&& bitmap_bit_p (eh_region_may_contain_throw_map
, r
->index
);
838 /* We want to transform
839 try { body; } catch { stuff; }
849 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
850 should be placed before the second operand, or NULL. OVER is
851 an existing label that should be put at the exit, or NULL. */
854 frob_into_branch_around (gimple tp
, eh_region region
, tree over
)
857 gimple_seq cleanup
, result
;
858 location_t loc
= gimple_location (tp
);
860 cleanup
= gimple_try_cleanup (tp
);
861 result
= gimple_try_eval (tp
);
864 emit_post_landing_pad (&eh_seq
, region
);
866 if (gimple_seq_may_fallthru (cleanup
))
869 over
= create_artificial_label (loc
);
870 x
= gimple_build_goto (over
);
871 gimple_seq_add_stmt (&cleanup
, x
);
873 gimple_seq_add_seq (&eh_seq
, cleanup
);
877 x
= gimple_build_label (over
);
878 gimple_seq_add_stmt (&result
, x
);
883 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
884 Make sure to record all new labels found. */
887 lower_try_finally_dup_block (gimple_seq seq
, struct leh_state
*outer_state
)
889 gimple region
= NULL
;
892 new_seq
= copy_gimple_seq_and_replace_locals (seq
);
895 region
= outer_state
->tf
->try_finally_expr
;
896 collect_finally_tree_1 (new_seq
, region
);
901 /* A subroutine of lower_try_finally. Create a fallthru label for
902 the given try_finally state. The only tricky bit here is that
903 we have to make sure to record the label in our outer context. */
906 lower_try_finally_fallthru_label (struct leh_tf_state
*tf
)
908 tree label
= tf
->fallthru_label
;
913 label
= create_artificial_label (gimple_location (tf
->try_finally_expr
));
914 tf
->fallthru_label
= label
;
918 record_in_finally_tree (temp
, tf
->outer
->tf
->try_finally_expr
);
924 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
925 langhook returns non-null, then the language requires that the exception
926 path out of a try_finally be treated specially. To wit: the code within
927 the finally block may not itself throw an exception. We have two choices
928 here. First we can duplicate the finally block and wrap it in a
929 must_not_throw region. Second, we can generate code like
934 if (fintmp == eh_edge)
935 protect_cleanup_actions;
938 where "fintmp" is the temporary used in the switch statement generation
939 alternative considered below. For the nonce, we always choose the first
942 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
945 honor_protect_cleanup_actions (struct leh_state
*outer_state
,
946 struct leh_state
*this_state
,
947 struct leh_tf_state
*tf
)
949 tree protect_cleanup_actions
;
950 gimple_stmt_iterator gsi
;
951 bool finally_may_fallthru
;
955 /* First check for nothing to do. */
956 if (lang_hooks
.eh_protect_cleanup_actions
== NULL
)
958 protect_cleanup_actions
= lang_hooks
.eh_protect_cleanup_actions ();
959 if (protect_cleanup_actions
== NULL
)
962 finally
= gimple_try_cleanup (tf
->top_p
);
963 finally_may_fallthru
= gimple_seq_may_fallthru (finally
);
965 /* Duplicate the FINALLY block. Only need to do this for try-finally,
966 and not for cleanups. */
968 finally
= lower_try_finally_dup_block (finally
, outer_state
);
970 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
971 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
972 to be in an enclosing scope, but needs to be implemented at this level
973 to avoid a nesting violation (see wrap_temporary_cleanups in
974 cp/decl.c). Since it's logically at an outer level, we should call
975 terminate before we get to it, so strip it away before adding the
976 MUST_NOT_THROW filter. */
977 gsi
= gsi_start (finally
);
979 if (gimple_code (x
) == GIMPLE_TRY
980 && gimple_try_kind (x
) == GIMPLE_TRY_CATCH
981 && gimple_try_catch_is_cleanup (x
))
983 gsi_insert_seq_before (&gsi
, gimple_try_eval (x
), GSI_SAME_STMT
);
984 gsi_remove (&gsi
, false);
987 /* Wrap the block with protect_cleanup_actions as the action. */
988 x
= gimple_build_eh_must_not_throw (protect_cleanup_actions
);
989 x
= gimple_build_try (finally
, gimple_seq_alloc_with_stmt (x
),
991 finally
= lower_eh_must_not_throw (outer_state
, x
);
993 /* Drop all of this into the exception sequence. */
994 emit_post_landing_pad (&eh_seq
, tf
->region
);
995 gimple_seq_add_seq (&eh_seq
, finally
);
996 if (finally_may_fallthru
)
997 emit_resx (&eh_seq
, tf
->region
);
999 /* Having now been handled, EH isn't to be considered with
1000 the rest of the outgoing edges. */
1001 tf
->may_throw
= false;
1004 /* A subroutine of lower_try_finally. We have determined that there is
1005 no fallthru edge out of the finally block. This means that there is
1006 no outgoing edge corresponding to any incoming edge. Restructure the
1007 try_finally node for this special case. */
1010 lower_try_finally_nofallthru (struct leh_state
*state
,
1011 struct leh_tf_state
*tf
)
1016 struct goto_queue_node
*q
, *qe
;
1018 lab
= create_artificial_label (gimple_location (tf
->try_finally_expr
));
1020 /* We expect that tf->top_p is a GIMPLE_TRY. */
1021 finally
= gimple_try_cleanup (tf
->top_p
);
1022 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1024 x
= gimple_build_label (lab
);
1025 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1028 qe
= q
+ tf
->goto_queue_active
;
1031 do_return_redirection (q
, lab
, NULL
);
1033 do_goto_redirection (q
, lab
, NULL
, tf
);
1035 replace_goto_queue (tf
);
1037 lower_eh_constructs_1 (state
, finally
);
1038 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1042 emit_post_landing_pad (&eh_seq
, tf
->region
);
1044 x
= gimple_build_goto (lab
);
1045 gimple_seq_add_stmt (&eh_seq
, x
);
1049 /* A subroutine of lower_try_finally. We have determined that there is
1050 exactly one destination of the finally block. Restructure the
1051 try_finally node for this special case. */
1054 lower_try_finally_onedest (struct leh_state
*state
, struct leh_tf_state
*tf
)
1056 struct goto_queue_node
*q
, *qe
;
1060 location_t loc
= gimple_location (tf
->try_finally_expr
);
1062 finally
= gimple_try_cleanup (tf
->top_p
);
1063 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1065 lower_eh_constructs_1 (state
, finally
);
1069 /* Only reachable via the exception edge. Add the given label to
1070 the head of the FINALLY block. Append a RESX at the end. */
1071 emit_post_landing_pad (&eh_seq
, tf
->region
);
1072 gimple_seq_add_seq (&eh_seq
, finally
);
1073 emit_resx (&eh_seq
, tf
->region
);
1077 if (tf
->may_fallthru
)
1079 /* Only reachable via the fallthru edge. Do nothing but let
1080 the two blocks run together; we'll fall out the bottom. */
1081 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1085 finally_label
= create_artificial_label (loc
);
1086 x
= gimple_build_label (finally_label
);
1087 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1089 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1092 qe
= q
+ tf
->goto_queue_active
;
1096 /* Reachable by return expressions only. Redirect them. */
1098 do_return_redirection (q
, finally_label
, NULL
);
1099 replace_goto_queue (tf
);
1103 /* Reachable by goto expressions only. Redirect them. */
1105 do_goto_redirection (q
, finally_label
, NULL
, tf
);
1106 replace_goto_queue (tf
);
1108 if (VEC_index (tree
, tf
->dest_array
, 0) == tf
->fallthru_label
)
1110 /* Reachable by goto to fallthru label only. Redirect it
1111 to the new label (already created, sadly), and do not
1112 emit the final branch out, or the fallthru label. */
1113 tf
->fallthru_label
= NULL
;
1118 /* Place the original return/goto to the original destination
1119 immediately after the finally block. */
1120 x
= tf
->goto_queue
[0].cont_stmt
;
1121 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1122 maybe_record_in_goto_queue (state
, x
);
1125 /* A subroutine of lower_try_finally. There are multiple edges incoming
1126 and outgoing from the finally block. Implement this by duplicating the
1127 finally block for every destination. */
1130 lower_try_finally_copy (struct leh_state
*state
, struct leh_tf_state
*tf
)
1133 gimple_seq new_stmt
;
1137 location_t tf_loc
= gimple_location (tf
->try_finally_expr
);
1139 finally
= gimple_try_cleanup (tf
->top_p
);
1140 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1143 if (tf
->may_fallthru
)
1145 seq
= lower_try_finally_dup_block (finally
, state
);
1146 lower_eh_constructs_1 (state
, seq
);
1147 gimple_seq_add_seq (&new_stmt
, seq
);
1149 tmp
= lower_try_finally_fallthru_label (tf
);
1150 x
= gimple_build_goto (tmp
);
1151 gimple_seq_add_stmt (&new_stmt
, x
);
1156 seq
= lower_try_finally_dup_block (finally
, state
);
1157 lower_eh_constructs_1 (state
, seq
);
1159 emit_post_landing_pad (&eh_seq
, tf
->region
);
1160 gimple_seq_add_seq (&eh_seq
, seq
);
1161 emit_resx (&eh_seq
, tf
->region
);
1166 struct goto_queue_node
*q
, *qe
;
1167 int return_index
, index
;
1170 struct goto_queue_node
*q
;
1174 return_index
= VEC_length (tree
, tf
->dest_array
);
1175 labels
= XCNEWVEC (struct labels_s
, return_index
+ 1);
1178 qe
= q
+ tf
->goto_queue_active
;
1181 index
= q
->index
< 0 ? return_index
: q
->index
;
1183 if (!labels
[index
].q
)
1184 labels
[index
].q
= q
;
1187 for (index
= 0; index
< return_index
+ 1; index
++)
1191 q
= labels
[index
].q
;
1195 lab
= labels
[index
].label
1196 = create_artificial_label (tf_loc
);
1198 if (index
== return_index
)
1199 do_return_redirection (q
, lab
, NULL
);
1201 do_goto_redirection (q
, lab
, NULL
, tf
);
1203 x
= gimple_build_label (lab
);
1204 gimple_seq_add_stmt (&new_stmt
, x
);
1206 seq
= lower_try_finally_dup_block (finally
, state
);
1207 lower_eh_constructs_1 (state
, seq
);
1208 gimple_seq_add_seq (&new_stmt
, seq
);
1210 gimple_seq_add_stmt (&new_stmt
, q
->cont_stmt
);
1211 maybe_record_in_goto_queue (state
, q
->cont_stmt
);
1214 for (q
= tf
->goto_queue
; q
< qe
; q
++)
1218 index
= q
->index
< 0 ? return_index
: q
->index
;
1220 if (labels
[index
].q
== q
)
1223 lab
= labels
[index
].label
;
1225 if (index
== return_index
)
1226 do_return_redirection (q
, lab
, NULL
);
1228 do_goto_redirection (q
, lab
, NULL
, tf
);
1231 replace_goto_queue (tf
);
1235 /* Need to link new stmts after running replace_goto_queue due
1236 to not wanting to process the same goto stmts twice. */
1237 gimple_seq_add_seq (&tf
->top_p_seq
, new_stmt
);
1240 /* A subroutine of lower_try_finally. There are multiple edges incoming
1241 and outgoing from the finally block. Implement this by instrumenting
1242 each incoming edge and creating a switch statement at the end of the
1243 finally block that branches to the appropriate destination. */
1246 lower_try_finally_switch (struct leh_state
*state
, struct leh_tf_state
*tf
)
1248 struct goto_queue_node
*q
, *qe
;
1249 tree finally_tmp
, finally_label
;
1250 int return_index
, eh_index
, fallthru_index
;
1251 int nlabels
, ndests
, j
, last_case_index
;
1253 VEC (tree
,heap
) *case_label_vec
;
1254 gimple_seq switch_body
;
1259 struct pointer_map_t
*cont_map
= NULL
;
1260 /* The location of the TRY_FINALLY stmt. */
1261 location_t tf_loc
= gimple_location (tf
->try_finally_expr
);
1262 /* The location of the finally block. */
1263 location_t finally_loc
;
1265 switch_body
= gimple_seq_alloc ();
1267 /* Mash the TRY block to the head of the chain. */
1268 finally
= gimple_try_cleanup (tf
->top_p
);
1269 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1271 /* The location of the finally is either the last stmt in the finally
1272 block or the location of the TRY_FINALLY itself. */
1273 finally_loc
= gimple_seq_last_stmt (tf
->top_p_seq
) != NULL
?
1274 gimple_location (gimple_seq_last_stmt (tf
->top_p_seq
))
1277 /* Lower the finally block itself. */
1278 lower_eh_constructs_1 (state
, finally
);
1280 /* Prepare for switch statement generation. */
1281 nlabels
= VEC_length (tree
, tf
->dest_array
);
1282 return_index
= nlabels
;
1283 eh_index
= return_index
+ tf
->may_return
;
1284 fallthru_index
= eh_index
+ tf
->may_throw
;
1285 ndests
= fallthru_index
+ tf
->may_fallthru
;
1287 finally_tmp
= create_tmp_var (integer_type_node
, "finally_tmp");
1288 finally_label
= create_artificial_label (finally_loc
);
1290 /* We use VEC_quick_push on case_label_vec throughout this function,
1291 since we know the size in advance and allocate precisely as muce
1293 case_label_vec
= VEC_alloc (tree
, heap
, ndests
);
1295 last_case_index
= 0;
1297 /* Begin inserting code for getting to the finally block. Things
1298 are done in this order to correspond to the sequence the code is
1301 if (tf
->may_fallthru
)
1303 x
= gimple_build_assign (finally_tmp
,
1304 build_int_cst (integer_type_node
,
1306 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1308 tmp
= build_int_cst (integer_type_node
, fallthru_index
);
1309 last_case
= build_case_label (tmp
, NULL
,
1310 create_artificial_label (tf_loc
));
1311 VEC_quick_push (tree
, case_label_vec
, last_case
);
1314 x
= gimple_build_label (CASE_LABEL (last_case
));
1315 gimple_seq_add_stmt (&switch_body
, x
);
1317 tmp
= lower_try_finally_fallthru_label (tf
);
1318 x
= gimple_build_goto (tmp
);
1319 gimple_seq_add_stmt (&switch_body
, x
);
1324 emit_post_landing_pad (&eh_seq
, tf
->region
);
1326 x
= gimple_build_assign (finally_tmp
,
1327 build_int_cst (integer_type_node
, eh_index
));
1328 gimple_seq_add_stmt (&eh_seq
, x
);
1330 x
= gimple_build_goto (finally_label
);
1331 gimple_seq_add_stmt (&eh_seq
, x
);
1333 tmp
= build_int_cst (integer_type_node
, eh_index
);
1334 last_case
= build_case_label (tmp
, NULL
,
1335 create_artificial_label (tf_loc
));
1336 VEC_quick_push (tree
, case_label_vec
, last_case
);
1339 x
= gimple_build_label (CASE_LABEL (last_case
));
1340 gimple_seq_add_stmt (&eh_seq
, x
);
1341 emit_resx (&eh_seq
, tf
->region
);
1344 x
= gimple_build_label (finally_label
);
1345 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1347 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1349 /* Redirect each incoming goto edge. */
1351 qe
= q
+ tf
->goto_queue_active
;
1352 j
= last_case_index
+ tf
->may_return
;
1353 /* Prepare the assignments to finally_tmp that are executed upon the
1354 entrance through a particular edge. */
1359 unsigned int case_index
;
1361 mod
= gimple_seq_alloc ();
1365 x
= gimple_build_assign (finally_tmp
,
1366 build_int_cst (integer_type_node
,
1368 gimple_seq_add_stmt (&mod
, x
);
1369 do_return_redirection (q
, finally_label
, mod
);
1370 switch_id
= return_index
;
1374 x
= gimple_build_assign (finally_tmp
,
1375 build_int_cst (integer_type_node
, q
->index
));
1376 gimple_seq_add_stmt (&mod
, x
);
1377 do_goto_redirection (q
, finally_label
, mod
, tf
);
1378 switch_id
= q
->index
;
1381 case_index
= j
+ q
->index
;
1382 if (VEC_length (tree
, case_label_vec
) <= case_index
1383 || !VEC_index (tree
, case_label_vec
, case_index
))
1387 tmp
= build_int_cst (integer_type_node
, switch_id
);
1388 case_lab
= build_case_label (tmp
, NULL
,
1389 create_artificial_label (tf_loc
));
1390 /* We store the cont_stmt in the pointer map, so that we can recover
1391 it in the loop below. */
1393 cont_map
= pointer_map_create ();
1394 slot
= pointer_map_insert (cont_map
, case_lab
);
1395 *slot
= q
->cont_stmt
;
1396 VEC_quick_push (tree
, case_label_vec
, case_lab
);
1399 for (j
= last_case_index
; j
< last_case_index
+ nlabels
; j
++)
1404 last_case
= VEC_index (tree
, case_label_vec
, j
);
1406 gcc_assert (last_case
);
1407 gcc_assert (cont_map
);
1409 slot
= pointer_map_contains (cont_map
, last_case
);
1411 cont_stmt
= *(gimple
*) slot
;
1413 x
= gimple_build_label (CASE_LABEL (last_case
));
1414 gimple_seq_add_stmt (&switch_body
, x
);
1415 gimple_seq_add_stmt (&switch_body
, cont_stmt
);
1416 maybe_record_in_goto_queue (state
, cont_stmt
);
1419 pointer_map_destroy (cont_map
);
1421 replace_goto_queue (tf
);
1423 /* Make sure that the last case is the default label, as one is required.
1424 Then sort the labels, which is also required in GIMPLE. */
1425 CASE_LOW (last_case
) = NULL
;
1426 sort_case_labels (case_label_vec
);
1428 /* Build the switch statement, setting last_case to be the default
1430 switch_stmt
= gimple_build_switch_vec (finally_tmp
, last_case
,
1432 gimple_set_location (switch_stmt
, finally_loc
);
1434 /* Need to link SWITCH_STMT after running replace_goto_queue
1435 due to not wanting to process the same goto stmts twice. */
1436 gimple_seq_add_stmt (&tf
->top_p_seq
, switch_stmt
);
1437 gimple_seq_add_seq (&tf
->top_p_seq
, switch_body
);
1440 /* Decide whether or not we are going to duplicate the finally block.
1441 There are several considerations.
1443 First, if this is Java, then the finally block contains code
1444 written by the user. It has line numbers associated with it,
1445 so duplicating the block means it's difficult to set a breakpoint.
1446 Since controlling code generation via -g is verboten, we simply
1447 never duplicate code without optimization.
1449 Second, we'd like to prevent egregious code growth. One way to
1450 do this is to estimate the size of the finally block, multiply
1451 that by the number of copies we'd need to make, and compare against
1452 the estimate of the size of the switch machinery we'd have to add. */
1455 decide_copy_try_finally (int ndests
, gimple_seq finally
)
1457 int f_estimate
, sw_estimate
;
1462 /* Finally estimate N times, plus N gotos. */
1463 f_estimate
= count_insns_seq (finally
, &eni_size_weights
);
1464 f_estimate
= (f_estimate
+ 1) * ndests
;
1466 /* Switch statement (cost 10), N variable assignments, N gotos. */
1467 sw_estimate
= 10 + 2 * ndests
;
1469 /* Optimize for size clearly wants our best guess. */
1470 if (optimize_function_for_size_p (cfun
))
1471 return f_estimate
< sw_estimate
;
1473 /* ??? These numbers are completely made up so far. */
1475 return f_estimate
< 100 || f_estimate
< sw_estimate
* 2;
1477 return f_estimate
< 40 || f_estimate
* 2 < sw_estimate
* 3;
1480 /* REG is the enclosing region for a possible cleanup region, or the region
1481 itself. Returns TRUE if such a region would be unreachable.
1483 Cleanup regions within a must-not-throw region aren't actually reachable
1484 even if there are throwing stmts within them, because the personality
1485 routine will call terminate before unwinding. */
1488 cleanup_is_dead_in (eh_region reg
)
1490 while (reg
&& reg
->type
== ERT_CLEANUP
)
1492 return (reg
&& reg
->type
== ERT_MUST_NOT_THROW
);
1495 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1496 to a sequence of labels and blocks, plus the exception region trees
1497 that record all the magic. This is complicated by the need to
1498 arrange for the FINALLY block to be executed on all exits. */
1501 lower_try_finally (struct leh_state
*state
, gimple tp
)
1503 struct leh_tf_state this_tf
;
1504 struct leh_state this_state
;
1506 gimple_seq old_eh_seq
;
1508 /* Process the try block. */
1510 memset (&this_tf
, 0, sizeof (this_tf
));
1511 this_tf
.try_finally_expr
= tp
;
1513 this_tf
.outer
= state
;
1514 if (using_eh_for_cleanups_p
&& !cleanup_is_dead_in (state
->cur_region
))
1516 this_tf
.region
= gen_eh_region_cleanup (state
->cur_region
);
1517 this_state
.cur_region
= this_tf
.region
;
1521 this_tf
.region
= NULL
;
1522 this_state
.cur_region
= state
->cur_region
;
1525 this_state
.ehp_region
= state
->ehp_region
;
1526 this_state
.tf
= &this_tf
;
1528 old_eh_seq
= eh_seq
;
1531 lower_eh_constructs_1 (&this_state
, gimple_try_eval(tp
));
1533 /* Determine if the try block is escaped through the bottom. */
1534 this_tf
.may_fallthru
= gimple_seq_may_fallthru (gimple_try_eval (tp
));
1536 /* Determine if any exceptions are possible within the try block. */
1538 this_tf
.may_throw
= eh_region_may_contain_throw (this_tf
.region
);
1539 if (this_tf
.may_throw
)
1540 honor_protect_cleanup_actions (state
, &this_state
, &this_tf
);
1542 /* Determine how many edges (still) reach the finally block. Or rather,
1543 how many destinations are reached by the finally block. Use this to
1544 determine how we process the finally block itself. */
1546 ndests
= VEC_length (tree
, this_tf
.dest_array
);
1547 ndests
+= this_tf
.may_fallthru
;
1548 ndests
+= this_tf
.may_return
;
1549 ndests
+= this_tf
.may_throw
;
1551 /* If the FINALLY block is not reachable, dike it out. */
1554 gimple_seq_add_seq (&this_tf
.top_p_seq
, gimple_try_eval (tp
));
1555 gimple_try_set_cleanup (tp
, NULL
);
1557 /* If the finally block doesn't fall through, then any destination
1558 we might try to impose there isn't reached either. There may be
1559 some minor amount of cleanup and redirection still needed. */
1560 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp
)))
1561 lower_try_finally_nofallthru (state
, &this_tf
);
1563 /* We can easily special-case redirection to a single destination. */
1564 else if (ndests
== 1)
1565 lower_try_finally_onedest (state
, &this_tf
);
1566 else if (decide_copy_try_finally (ndests
, gimple_try_cleanup (tp
)))
1567 lower_try_finally_copy (state
, &this_tf
);
1569 lower_try_finally_switch (state
, &this_tf
);
1571 /* If someone requested we add a label at the end of the transformed
1573 if (this_tf
.fallthru_label
)
1575 /* This must be reached only if ndests == 0. */
1576 gimple x
= gimple_build_label (this_tf
.fallthru_label
);
1577 gimple_seq_add_stmt (&this_tf
.top_p_seq
, x
);
1580 VEC_free (tree
, heap
, this_tf
.dest_array
);
1581 free (this_tf
.goto_queue
);
1582 if (this_tf
.goto_queue_map
)
1583 pointer_map_destroy (this_tf
.goto_queue_map
);
1585 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1586 If there was no old eh_seq, then the append is trivially already done. */
1590 eh_seq
= old_eh_seq
;
1593 gimple_seq new_eh_seq
= eh_seq
;
1594 eh_seq
= old_eh_seq
;
1595 gimple_seq_add_seq(&eh_seq
, new_eh_seq
);
1599 return this_tf
.top_p_seq
;
1602 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1603 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1604 exception region trees that records all the magic. */
1607 lower_catch (struct leh_state
*state
, gimple tp
)
1609 eh_region try_region
= NULL
;
1610 struct leh_state this_state
= *state
;
1611 gimple_stmt_iterator gsi
;
1615 location_t try_catch_loc
= gimple_location (tp
);
1617 if (flag_exceptions
)
1619 try_region
= gen_eh_region_try (state
->cur_region
);
1620 this_state
.cur_region
= try_region
;
1623 lower_eh_constructs_1 (&this_state
, gimple_try_eval (tp
));
1625 if (!eh_region_may_contain_throw (try_region
))
1626 return gimple_try_eval (tp
);
1629 emit_eh_dispatch (&new_seq
, try_region
);
1630 emit_resx (&new_seq
, try_region
);
1632 this_state
.cur_region
= state
->cur_region
;
1633 this_state
.ehp_region
= try_region
;
1636 for (gsi
= gsi_start (gimple_try_cleanup (tp
));
1644 gcatch
= gsi_stmt (gsi
);
1645 c
= gen_eh_region_catch (try_region
, gimple_catch_types (gcatch
));
1647 handler
= gimple_catch_handler (gcatch
);
1648 lower_eh_constructs_1 (&this_state
, handler
);
1650 c
->label
= create_artificial_label (UNKNOWN_LOCATION
);
1651 x
= gimple_build_label (c
->label
);
1652 gimple_seq_add_stmt (&new_seq
, x
);
1654 gimple_seq_add_seq (&new_seq
, handler
);
1656 if (gimple_seq_may_fallthru (new_seq
))
1659 out_label
= create_artificial_label (try_catch_loc
);
1661 x
= gimple_build_goto (out_label
);
1662 gimple_seq_add_stmt (&new_seq
, x
);
1668 gimple_try_set_cleanup (tp
, new_seq
);
1670 return frob_into_branch_around (tp
, try_region
, out_label
);
1673 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1674 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1675 region trees that record all the magic. */
1678 lower_eh_filter (struct leh_state
*state
, gimple tp
)
1680 struct leh_state this_state
= *state
;
1681 eh_region this_region
= NULL
;
1685 inner
= gimple_seq_first_stmt (gimple_try_cleanup (tp
));
1687 if (flag_exceptions
)
1689 this_region
= gen_eh_region_allowed (state
->cur_region
,
1690 gimple_eh_filter_types (inner
));
1691 this_state
.cur_region
= this_region
;
1694 lower_eh_constructs_1 (&this_state
, gimple_try_eval (tp
));
1696 if (!eh_region_may_contain_throw (this_region
))
1697 return gimple_try_eval (tp
);
1700 this_state
.cur_region
= state
->cur_region
;
1701 this_state
.ehp_region
= this_region
;
1703 emit_eh_dispatch (&new_seq
, this_region
);
1704 emit_resx (&new_seq
, this_region
);
1706 this_region
->u
.allowed
.label
= create_artificial_label (UNKNOWN_LOCATION
);
1707 x
= gimple_build_label (this_region
->u
.allowed
.label
);
1708 gimple_seq_add_stmt (&new_seq
, x
);
1710 lower_eh_constructs_1 (&this_state
, gimple_eh_filter_failure (inner
));
1711 gimple_seq_add_seq (&new_seq
, gimple_eh_filter_failure (inner
));
1713 gimple_try_set_cleanup (tp
, new_seq
);
1715 return frob_into_branch_around (tp
, this_region
, NULL
);
1718 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1719 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1720 plus the exception region trees that record all the magic. */
1723 lower_eh_must_not_throw (struct leh_state
*state
, gimple tp
)
1725 struct leh_state this_state
= *state
;
1727 if (flag_exceptions
)
1729 gimple inner
= gimple_seq_first_stmt (gimple_try_cleanup (tp
));
1730 eh_region this_region
;
1732 this_region
= gen_eh_region_must_not_throw (state
->cur_region
);
1733 this_region
->u
.must_not_throw
.failure_decl
1734 = gimple_eh_must_not_throw_fndecl (inner
);
1735 this_region
->u
.must_not_throw
.failure_loc
= gimple_location (tp
);
1737 /* In order to get mangling applied to this decl, we must mark it
1738 used now. Otherwise, pass_ipa_free_lang_data won't think it
1740 TREE_USED (this_region
->u
.must_not_throw
.failure_decl
) = 1;
1742 this_state
.cur_region
= this_region
;
1745 lower_eh_constructs_1 (&this_state
, gimple_try_eval (tp
));
1747 return gimple_try_eval (tp
);
1750 /* Implement a cleanup expression. This is similar to try-finally,
1751 except that we only execute the cleanup block for exception edges. */
1754 lower_cleanup (struct leh_state
*state
, gimple tp
)
1756 struct leh_state this_state
= *state
;
1757 eh_region this_region
= NULL
;
1758 struct leh_tf_state fake_tf
;
1760 bool cleanup_dead
= cleanup_is_dead_in (state
->cur_region
);
1762 if (flag_exceptions
&& !cleanup_dead
)
1764 this_region
= gen_eh_region_cleanup (state
->cur_region
);
1765 this_state
.cur_region
= this_region
;
1768 lower_eh_constructs_1 (&this_state
, gimple_try_eval (tp
));
1770 if (cleanup_dead
|| !eh_region_may_contain_throw (this_region
))
1771 return gimple_try_eval (tp
);
1773 /* Build enough of a try-finally state so that we can reuse
1774 honor_protect_cleanup_actions. */
1775 memset (&fake_tf
, 0, sizeof (fake_tf
));
1776 fake_tf
.top_p
= fake_tf
.try_finally_expr
= tp
;
1777 fake_tf
.outer
= state
;
1778 fake_tf
.region
= this_region
;
1779 fake_tf
.may_fallthru
= gimple_seq_may_fallthru (gimple_try_eval (tp
));
1780 fake_tf
.may_throw
= true;
1782 honor_protect_cleanup_actions (state
, NULL
, &fake_tf
);
1784 if (fake_tf
.may_throw
)
1786 /* In this case honor_protect_cleanup_actions had nothing to do,
1787 and we should process this normally. */
1788 lower_eh_constructs_1 (state
, gimple_try_cleanup (tp
));
1789 result
= frob_into_branch_around (tp
, this_region
,
1790 fake_tf
.fallthru_label
);
1794 /* In this case honor_protect_cleanup_actions did nearly all of
1795 the work. All we have left is to append the fallthru_label. */
1797 result
= gimple_try_eval (tp
);
1798 if (fake_tf
.fallthru_label
)
1800 gimple x
= gimple_build_label (fake_tf
.fallthru_label
);
1801 gimple_seq_add_stmt (&result
, x
);
1807 /* Main loop for lowering eh constructs. Also moves gsi to the next
1811 lower_eh_constructs_2 (struct leh_state
*state
, gimple_stmt_iterator
*gsi
)
1815 gimple stmt
= gsi_stmt (*gsi
);
1817 switch (gimple_code (stmt
))
1821 tree fndecl
= gimple_call_fndecl (stmt
);
1824 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
1825 switch (DECL_FUNCTION_CODE (fndecl
))
1827 case BUILT_IN_EH_POINTER
:
1828 /* The front end may have generated a call to
1829 __builtin_eh_pointer (0) within a catch region. Replace
1830 this zero argument with the current catch region number. */
1831 if (state
->ehp_region
)
1833 tree nr
= build_int_cst (integer_type_node
,
1834 state
->ehp_region
->index
);
1835 gimple_call_set_arg (stmt
, 0, nr
);
1839 /* The user has dome something silly. Remove it. */
1840 rhs
= null_pointer_node
;
1845 case BUILT_IN_EH_FILTER
:
1846 /* ??? This should never appear, but since it's a builtin it
1847 is accessible to abuse by users. Just remove it and
1848 replace the use with the arbitrary value zero. */
1849 rhs
= build_int_cst (TREE_TYPE (TREE_TYPE (fndecl
)), 0);
1851 lhs
= gimple_call_lhs (stmt
);
1852 x
= gimple_build_assign (lhs
, rhs
);
1853 gsi_insert_before (gsi
, x
, GSI_SAME_STMT
);
1856 case BUILT_IN_EH_COPY_VALUES
:
1857 /* Likewise this should not appear. Remove it. */
1858 gsi_remove (gsi
, true);
1868 /* If the stmt can throw use a new temporary for the assignment
1869 to a LHS. This makes sure the old value of the LHS is
1870 available on the EH edge. Only do so for statements that
1871 potentially fall thru (no noreturn calls e.g.), otherwise
1872 this new assignment might create fake fallthru regions. */
1873 if (stmt_could_throw_p (stmt
)
1874 && gimple_has_lhs (stmt
)
1875 && gimple_stmt_may_fallthru (stmt
)
1876 && !tree_could_throw_p (gimple_get_lhs (stmt
))
1877 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
1879 tree lhs
= gimple_get_lhs (stmt
);
1880 tree tmp
= create_tmp_var (TREE_TYPE (lhs
), NULL
);
1881 gimple s
= gimple_build_assign (lhs
, tmp
);
1882 gimple_set_location (s
, gimple_location (stmt
));
1883 gimple_set_block (s
, gimple_block (stmt
));
1884 gimple_set_lhs (stmt
, tmp
);
1885 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
1886 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
1887 DECL_GIMPLE_REG_P (tmp
) = 1;
1888 gsi_insert_after (gsi
, s
, GSI_SAME_STMT
);
1890 /* Look for things that can throw exceptions, and record them. */
1891 if (state
->cur_region
&& stmt_could_throw_p (stmt
))
1893 record_stmt_eh_region (state
->cur_region
, stmt
);
1894 note_eh_region_may_contain_throw (state
->cur_region
);
1901 maybe_record_in_goto_queue (state
, stmt
);
1905 verify_norecord_switch_expr (state
, stmt
);
1909 if (gimple_try_kind (stmt
) == GIMPLE_TRY_FINALLY
)
1910 replace
= lower_try_finally (state
, stmt
);
1913 x
= gimple_seq_first_stmt (gimple_try_cleanup (stmt
));
1916 replace
= gimple_try_eval (stmt
);
1917 lower_eh_constructs_1 (state
, replace
);
1920 switch (gimple_code (x
))
1923 replace
= lower_catch (state
, stmt
);
1925 case GIMPLE_EH_FILTER
:
1926 replace
= lower_eh_filter (state
, stmt
);
1928 case GIMPLE_EH_MUST_NOT_THROW
:
1929 replace
= lower_eh_must_not_throw (state
, stmt
);
1932 replace
= lower_cleanup (state
, stmt
);
1937 /* Remove the old stmt and insert the transformed sequence
1939 gsi_insert_seq_before (gsi
, replace
, GSI_SAME_STMT
);
1940 gsi_remove (gsi
, true);
1942 /* Return since we don't want gsi_next () */
1946 /* A type, a decl, or some kind of statement that we're not
1947 interested in. Don't walk them. */
1954 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
1957 lower_eh_constructs_1 (struct leh_state
*state
, gimple_seq seq
)
1959 gimple_stmt_iterator gsi
;
1960 for (gsi
= gsi_start (seq
); !gsi_end_p (gsi
);)
1961 lower_eh_constructs_2 (state
, &gsi
);
1965 lower_eh_constructs (void)
1967 struct leh_state null_state
;
1970 bodyp
= gimple_body (current_function_decl
);
1974 finally_tree
= htab_create (31, struct_ptr_hash
, struct_ptr_eq
, free
);
1975 eh_region_may_contain_throw_map
= BITMAP_ALLOC (NULL
);
1976 memset (&null_state
, 0, sizeof (null_state
));
1978 collect_finally_tree_1 (bodyp
, NULL
);
1979 lower_eh_constructs_1 (&null_state
, bodyp
);
1981 /* We assume there's a return statement, or something, at the end of
1982 the function, and thus ploping the EH sequence afterward won't
1984 gcc_assert (!gimple_seq_may_fallthru (bodyp
));
1985 gimple_seq_add_seq (&bodyp
, eh_seq
);
1987 /* We assume that since BODYP already existed, adding EH_SEQ to it
1988 didn't change its value, and we don't have to re-set the function. */
1989 gcc_assert (bodyp
== gimple_body (current_function_decl
));
1991 htab_delete (finally_tree
);
1992 BITMAP_FREE (eh_region_may_contain_throw_map
);
1995 /* If this function needs a language specific EH personality routine
1996 and the frontend didn't already set one do so now. */
1997 if (function_needs_eh_personality (cfun
) == eh_personality_lang
1998 && !DECL_FUNCTION_PERSONALITY (current_function_decl
))
1999 DECL_FUNCTION_PERSONALITY (current_function_decl
)
2000 = lang_hooks
.eh_personality ();
2005 struct gimple_opt_pass pass_lower_eh
=
2011 lower_eh_constructs
, /* execute */
2014 0, /* static_pass_number */
2015 TV_TREE_EH
, /* tv_id */
2016 PROP_gimple_lcf
, /* properties_required */
2017 PROP_gimple_leh
, /* properties_provided */
2018 0, /* properties_destroyed */
2019 0, /* todo_flags_start */
2020 0 /* todo_flags_finish */
2024 /* Create the multiple edges from an EH_DISPATCH statement to all of
2025 the possible handlers for its EH region. Return true if there's
2026 no fallthru edge; false if there is. */
2029 make_eh_dispatch_edges (gimple stmt
)
2033 basic_block src
, dst
;
2035 r
= get_eh_region_from_number (gimple_eh_dispatch_region (stmt
));
2036 src
= gimple_bb (stmt
);
2041 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
2043 dst
= label_to_block (c
->label
);
2044 make_edge (src
, dst
, 0);
2046 /* A catch-all handler doesn't have a fallthru. */
2047 if (c
->type_list
== NULL
)
2052 case ERT_ALLOWED_EXCEPTIONS
:
2053 dst
= label_to_block (r
->u
.allowed
.label
);
2054 make_edge (src
, dst
, 0);
2064 /* Create the single EH edge from STMT to its nearest landing pad,
2065 if there is such a landing pad within the current function. */
2068 make_eh_edges (gimple stmt
)
2070 basic_block src
, dst
;
2074 lp_nr
= lookup_stmt_eh_lp (stmt
);
2078 lp
= get_eh_landing_pad_from_number (lp_nr
);
2079 gcc_assert (lp
!= NULL
);
2081 src
= gimple_bb (stmt
);
2082 dst
= label_to_block (lp
->post_landing_pad
);
2083 make_edge (src
, dst
, EDGE_EH
);
2086 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2087 do not actually perform the final edge redirection.
2089 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2090 we intend to change the destination EH region as well; this means
2091 EH_LANDING_PAD_NR must already be set on the destination block label.
2092 If false, we're being called from generic cfg manipulation code and we
2093 should preserve our place within the region tree. */
2096 redirect_eh_edge_1 (edge edge_in
, basic_block new_bb
, bool change_region
)
2098 eh_landing_pad old_lp
, new_lp
;
2101 int old_lp_nr
, new_lp_nr
;
2102 tree old_label
, new_label
;
2106 old_bb
= edge_in
->dest
;
2107 old_label
= gimple_block_label (old_bb
);
2108 old_lp_nr
= EH_LANDING_PAD_NR (old_label
);
2109 gcc_assert (old_lp_nr
> 0);
2110 old_lp
= get_eh_landing_pad_from_number (old_lp_nr
);
2112 throw_stmt
= last_stmt (edge_in
->src
);
2113 gcc_assert (lookup_stmt_eh_lp (throw_stmt
) == old_lp_nr
);
2115 new_label
= gimple_block_label (new_bb
);
2117 /* Look for an existing region that might be using NEW_BB already. */
2118 new_lp_nr
= EH_LANDING_PAD_NR (new_label
);
2121 new_lp
= get_eh_landing_pad_from_number (new_lp_nr
);
2122 gcc_assert (new_lp
);
2124 /* Unless CHANGE_REGION is true, the new and old landing pad
2125 had better be associated with the same EH region. */
2126 gcc_assert (change_region
|| new_lp
->region
== old_lp
->region
);
2131 gcc_assert (!change_region
);
2134 /* Notice when we redirect the last EH edge away from OLD_BB. */
2135 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
2136 if (e
!= edge_in
&& (e
->flags
& EDGE_EH
))
2141 /* NEW_LP already exists. If there are still edges into OLD_LP,
2142 there's nothing to do with the EH tree. If there are no more
2143 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2144 If CHANGE_REGION is true, then our caller is expecting to remove
2146 if (e
== NULL
&& !change_region
)
2147 remove_eh_landing_pad (old_lp
);
2151 /* No correct landing pad exists. If there are no more edges
2152 into OLD_LP, then we can simply re-use the existing landing pad.
2153 Otherwise, we have to create a new landing pad. */
2156 EH_LANDING_PAD_NR (old_lp
->post_landing_pad
) = 0;
2160 new_lp
= gen_eh_landing_pad (old_lp
->region
);
2161 new_lp
->post_landing_pad
= new_label
;
2162 EH_LANDING_PAD_NR (new_label
) = new_lp
->index
;
2165 /* Maybe move the throwing statement to the new region. */
2166 if (old_lp
!= new_lp
)
2168 remove_stmt_from_eh_lp (throw_stmt
);
2169 add_stmt_to_eh_lp (throw_stmt
, new_lp
->index
);
2173 /* Redirect EH edge E to NEW_BB. */
2176 redirect_eh_edge (edge edge_in
, basic_block new_bb
)
2178 redirect_eh_edge_1 (edge_in
, new_bb
, false);
2179 return ssa_redirect_edge (edge_in
, new_bb
);
2182 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2183 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2184 The actual edge update will happen in the caller. */
2187 redirect_eh_dispatch_edge (gimple stmt
, edge e
, basic_block new_bb
)
2189 tree new_lab
= gimple_block_label (new_bb
);
2190 bool any_changed
= false;
2195 r
= get_eh_region_from_number (gimple_eh_dispatch_region (stmt
));
2199 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
2201 old_bb
= label_to_block (c
->label
);
2202 if (old_bb
== e
->dest
)
2210 case ERT_ALLOWED_EXCEPTIONS
:
2211 old_bb
= label_to_block (r
->u
.allowed
.label
);
2212 gcc_assert (old_bb
== e
->dest
);
2213 r
->u
.allowed
.label
= new_lab
;
2221 gcc_assert (any_changed
);
2224 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2227 operation_could_trap_helper_p (enum tree_code op
,
2238 case TRUNC_DIV_EXPR
:
2240 case FLOOR_DIV_EXPR
:
2241 case ROUND_DIV_EXPR
:
2242 case EXACT_DIV_EXPR
:
2244 case FLOOR_MOD_EXPR
:
2245 case ROUND_MOD_EXPR
:
2246 case TRUNC_MOD_EXPR
:
2248 if (honor_snans
|| honor_trapv
)
2251 return flag_trapping_math
;
2252 if (!TREE_CONSTANT (divisor
) || integer_zerop (divisor
))
2261 /* Some floating point comparisons may trap. */
2266 case UNORDERED_EXPR
:
2276 case FIX_TRUNC_EXPR
:
2277 /* Conversion of floating point might trap. */
2283 /* These operations don't trap with floating point. */
2291 /* Any floating arithmetic may trap. */
2292 if (fp_operation
&& flag_trapping_math
)
2300 /* Constructing an object cannot trap. */
2304 /* Any floating arithmetic may trap. */
2305 if (fp_operation
&& flag_trapping_math
)
2313 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2314 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2315 type operands that may trap. If OP is a division operator, DIVISOR contains
2316 the value of the divisor. */
2319 operation_could_trap_p (enum tree_code op
, bool fp_operation
, bool honor_trapv
,
2322 bool honor_nans
= (fp_operation
&& flag_trapping_math
2323 && !flag_finite_math_only
);
2324 bool honor_snans
= fp_operation
&& flag_signaling_nans
!= 0;
2327 if (TREE_CODE_CLASS (op
) != tcc_comparison
2328 && TREE_CODE_CLASS (op
) != tcc_unary
2329 && TREE_CODE_CLASS (op
) != tcc_binary
)
2332 return operation_could_trap_helper_p (op
, fp_operation
, honor_trapv
,
2333 honor_nans
, honor_snans
, divisor
,
2337 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2338 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2339 This routine expects only GIMPLE lhs or rhs input. */
2342 tree_could_trap_p (tree expr
)
2344 enum tree_code code
;
2345 bool fp_operation
= false;
2346 bool honor_trapv
= false;
2347 tree t
, base
, div
= NULL_TREE
;
2352 code
= TREE_CODE (expr
);
2353 t
= TREE_TYPE (expr
);
2357 if (COMPARISON_CLASS_P (expr
))
2358 fp_operation
= FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 0)));
2360 fp_operation
= FLOAT_TYPE_P (t
);
2361 honor_trapv
= INTEGRAL_TYPE_P (t
) && TYPE_OVERFLOW_TRAPS (t
);
2364 if (TREE_CODE_CLASS (code
) == tcc_binary
)
2365 div
= TREE_OPERAND (expr
, 1);
2366 if (operation_could_trap_p (code
, fp_operation
, honor_trapv
, div
))
2372 case TARGET_MEM_REF
:
2373 if (TREE_CODE (TMR_BASE (expr
)) == ADDR_EXPR
2374 && !TMR_INDEX (expr
) && !TMR_INDEX2 (expr
))
2376 return !TREE_THIS_NOTRAP (expr
);
2382 case VIEW_CONVERT_EXPR
:
2383 case WITH_SIZE_EXPR
:
2384 expr
= TREE_OPERAND (expr
, 0);
2385 code
= TREE_CODE (expr
);
2388 case ARRAY_RANGE_REF
:
2389 base
= TREE_OPERAND (expr
, 0);
2390 if (tree_could_trap_p (base
))
2392 if (TREE_THIS_NOTRAP (expr
))
2394 return !range_in_array_bounds_p (expr
);
2397 base
= TREE_OPERAND (expr
, 0);
2398 if (tree_could_trap_p (base
))
2400 if (TREE_THIS_NOTRAP (expr
))
2402 return !in_array_bounds_p (expr
);
2405 if (TREE_CODE (TREE_OPERAND (expr
, 0)) == ADDR_EXPR
)
2409 return !TREE_THIS_NOTRAP (expr
);
2412 return TREE_THIS_VOLATILE (expr
);
2415 t
= get_callee_fndecl (expr
);
2416 /* Assume that calls to weak functions may trap. */
2417 if (!t
|| !DECL_P (t
))
2420 return tree_could_trap_p (t
);
2424 /* Assume that accesses to weak functions may trap, unless we know
2425 they are certainly defined in current TU or in some other
2427 if (DECL_WEAK (expr
))
2429 struct cgraph_node
*node
;
2430 if (!DECL_EXTERNAL (expr
))
2432 node
= cgraph_function_node (cgraph_get_node (expr
), NULL
);
2433 if (node
&& node
->in_other_partition
)
2440 /* Assume that accesses to weak vars may trap, unless we know
2441 they are certainly defined in current TU or in some other
2443 if (DECL_WEAK (expr
))
2445 struct varpool_node
*node
;
2446 if (!DECL_EXTERNAL (expr
))
2448 node
= varpool_variable_node (varpool_get_node (expr
), NULL
);
2449 if (node
&& node
->in_other_partition
)
2461 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2462 an assignment or a conditional) may throw. */
2465 stmt_could_throw_1_p (gimple stmt
)
2467 enum tree_code code
= gimple_expr_code (stmt
);
2468 bool honor_nans
= false;
2469 bool honor_snans
= false;
2470 bool fp_operation
= false;
2471 bool honor_trapv
= false;
2476 if (TREE_CODE_CLASS (code
) == tcc_comparison
2477 || TREE_CODE_CLASS (code
) == tcc_unary
2478 || TREE_CODE_CLASS (code
) == tcc_binary
)
2480 if (is_gimple_assign (stmt
)
2481 && TREE_CODE_CLASS (code
) == tcc_comparison
)
2482 t
= TREE_TYPE (gimple_assign_rhs1 (stmt
));
2483 else if (gimple_code (stmt
) == GIMPLE_COND
)
2484 t
= TREE_TYPE (gimple_cond_lhs (stmt
));
2486 t
= gimple_expr_type (stmt
);
2487 fp_operation
= FLOAT_TYPE_P (t
);
2490 honor_nans
= flag_trapping_math
&& !flag_finite_math_only
;
2491 honor_snans
= flag_signaling_nans
!= 0;
2493 else if (INTEGRAL_TYPE_P (t
) && TYPE_OVERFLOW_TRAPS (t
))
2497 /* Check if the main expression may trap. */
2498 t
= is_gimple_assign (stmt
) ? gimple_assign_rhs2 (stmt
) : NULL
;
2499 ret
= operation_could_trap_helper_p (code
, fp_operation
, honor_trapv
,
2500 honor_nans
, honor_snans
, t
,
2505 /* If the expression does not trap, see if any of the individual operands may
2507 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
2508 if (tree_could_trap_p (gimple_op (stmt
, i
)))
2515 /* Return true if statement STMT could throw an exception. */
2518 stmt_could_throw_p (gimple stmt
)
2520 if (!flag_exceptions
)
2523 /* The only statements that can throw an exception are assignments,
2524 conditionals, calls, resx, and asms. */
2525 switch (gimple_code (stmt
))
2531 return !gimple_call_nothrow_p (stmt
);
2535 if (!cfun
->can_throw_non_call_exceptions
)
2537 return stmt_could_throw_1_p (stmt
);
2540 if (!cfun
->can_throw_non_call_exceptions
)
2542 return gimple_asm_volatile_p (stmt
);
2550 /* Return true if expression T could throw an exception. */
2553 tree_could_throw_p (tree t
)
2555 if (!flag_exceptions
)
2557 if (TREE_CODE (t
) == MODIFY_EXPR
)
2559 if (cfun
->can_throw_non_call_exceptions
2560 && tree_could_trap_p (TREE_OPERAND (t
, 0)))
2562 t
= TREE_OPERAND (t
, 1);
2565 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
2566 t
= TREE_OPERAND (t
, 0);
2567 if (TREE_CODE (t
) == CALL_EXPR
)
2568 return (call_expr_flags (t
) & ECF_NOTHROW
) == 0;
2569 if (cfun
->can_throw_non_call_exceptions
)
2570 return tree_could_trap_p (t
);
2574 /* Return true if STMT can throw an exception that is not caught within
2575 the current function (CFUN). */
2578 stmt_can_throw_external (gimple stmt
)
2582 if (!stmt_could_throw_p (stmt
))
2585 lp_nr
= lookup_stmt_eh_lp (stmt
);
2589 /* Return true if STMT can throw an exception that is caught within
2590 the current function (CFUN). */
2593 stmt_can_throw_internal (gimple stmt
)
2597 if (!stmt_could_throw_p (stmt
))
2600 lp_nr
= lookup_stmt_eh_lp (stmt
);
2604 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2605 remove any entry it might have from the EH table. Return true if
2606 any change was made. */
2609 maybe_clean_eh_stmt_fn (struct function
*ifun
, gimple stmt
)
2611 if (stmt_could_throw_p (stmt
))
2613 return remove_stmt_from_eh_lp_fn (ifun
, stmt
);
2616 /* Likewise, but always use the current function. */
2619 maybe_clean_eh_stmt (gimple stmt
)
2621 return maybe_clean_eh_stmt_fn (cfun
, stmt
);
2624 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2625 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2626 in the table if it should be in there. Return TRUE if a replacement was
2627 done that my require an EH edge purge. */
2630 maybe_clean_or_replace_eh_stmt (gimple old_stmt
, gimple new_stmt
)
2632 int lp_nr
= lookup_stmt_eh_lp (old_stmt
);
2636 bool new_stmt_could_throw
= stmt_could_throw_p (new_stmt
);
2638 if (new_stmt
== old_stmt
&& new_stmt_could_throw
)
2641 remove_stmt_from_eh_lp (old_stmt
);
2642 if (new_stmt_could_throw
)
2644 add_stmt_to_eh_lp (new_stmt
, lp_nr
);
2654 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT
2655 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2656 operand is the return value of duplicate_eh_regions. */
2659 maybe_duplicate_eh_stmt_fn (struct function
*new_fun
, gimple new_stmt
,
2660 struct function
*old_fun
, gimple old_stmt
,
2661 struct pointer_map_t
*map
, int default_lp_nr
)
2663 int old_lp_nr
, new_lp_nr
;
2666 if (!stmt_could_throw_p (new_stmt
))
2669 old_lp_nr
= lookup_stmt_eh_lp_fn (old_fun
, old_stmt
);
2672 if (default_lp_nr
== 0)
2674 new_lp_nr
= default_lp_nr
;
2676 else if (old_lp_nr
> 0)
2678 eh_landing_pad old_lp
, new_lp
;
2680 old_lp
= VEC_index (eh_landing_pad
, old_fun
->eh
->lp_array
, old_lp_nr
);
2681 slot
= pointer_map_contains (map
, old_lp
);
2682 new_lp
= (eh_landing_pad
) *slot
;
2683 new_lp_nr
= new_lp
->index
;
2687 eh_region old_r
, new_r
;
2689 old_r
= VEC_index (eh_region
, old_fun
->eh
->region_array
, -old_lp_nr
);
2690 slot
= pointer_map_contains (map
, old_r
);
2691 new_r
= (eh_region
) *slot
;
2692 new_lp_nr
= -new_r
->index
;
2695 add_stmt_to_eh_lp_fn (new_fun
, new_stmt
, new_lp_nr
);
2699 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2700 and thus no remapping is required. */
2703 maybe_duplicate_eh_stmt (gimple new_stmt
, gimple old_stmt
)
2707 if (!stmt_could_throw_p (new_stmt
))
2710 lp_nr
= lookup_stmt_eh_lp (old_stmt
);
2714 add_stmt_to_eh_lp (new_stmt
, lp_nr
);
2718 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2719 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2720 this only handles handlers consisting of a single call, as that's the
2721 important case for C++: a destructor call for a particular object showing
2722 up in multiple handlers. */
2725 same_handler_p (gimple_seq oneh
, gimple_seq twoh
)
2727 gimple_stmt_iterator gsi
;
2731 gsi
= gsi_start (oneh
);
2732 if (!gsi_one_before_end_p (gsi
))
2734 ones
= gsi_stmt (gsi
);
2736 gsi
= gsi_start (twoh
);
2737 if (!gsi_one_before_end_p (gsi
))
2739 twos
= gsi_stmt (gsi
);
2741 if (!is_gimple_call (ones
)
2742 || !is_gimple_call (twos
)
2743 || gimple_call_lhs (ones
)
2744 || gimple_call_lhs (twos
)
2745 || gimple_call_chain (ones
)
2746 || gimple_call_chain (twos
)
2747 || !gimple_call_same_target_p (ones
, twos
)
2748 || gimple_call_num_args (ones
) != gimple_call_num_args (twos
))
2751 for (ai
= 0; ai
< gimple_call_num_args (ones
); ++ai
)
2752 if (!operand_equal_p (gimple_call_arg (ones
, ai
),
2753 gimple_call_arg (twos
, ai
), 0))
2760 try { A() } finally { try { ~B() } catch { ~A() } }
2761 try { ... } finally { ~A() }
2763 try { A() } catch { ~B() }
2764 try { ~B() ... } finally { ~A() }
2766 This occurs frequently in C++, where A is a local variable and B is a
2767 temporary used in the initializer for A. */
2770 optimize_double_finally (gimple one
, gimple two
)
2773 gimple_stmt_iterator gsi
;
2775 gsi
= gsi_start (gimple_try_cleanup (one
));
2776 if (!gsi_one_before_end_p (gsi
))
2779 oneh
= gsi_stmt (gsi
);
2780 if (gimple_code (oneh
) != GIMPLE_TRY
2781 || gimple_try_kind (oneh
) != GIMPLE_TRY_CATCH
)
2784 if (same_handler_p (gimple_try_cleanup (oneh
), gimple_try_cleanup (two
)))
2786 gimple_seq seq
= gimple_try_eval (oneh
);
2788 gimple_try_set_cleanup (one
, seq
);
2789 gimple_try_set_kind (one
, GIMPLE_TRY_CATCH
);
2790 seq
= copy_gimple_seq_and_replace_locals (seq
);
2791 gimple_seq_add_seq (&seq
, gimple_try_eval (two
));
2792 gimple_try_set_eval (two
, seq
);
2796 /* Perform EH refactoring optimizations that are simpler to do when code
2797 flow has been lowered but EH structures haven't. */
2800 refactor_eh_r (gimple_seq seq
)
2802 gimple_stmt_iterator gsi
;
2807 gsi
= gsi_start (seq
);
2811 if (gsi_end_p (gsi
))
2814 two
= gsi_stmt (gsi
);
2817 && gimple_code (one
) == GIMPLE_TRY
2818 && gimple_code (two
) == GIMPLE_TRY
2819 && gimple_try_kind (one
) == GIMPLE_TRY_FINALLY
2820 && gimple_try_kind (two
) == GIMPLE_TRY_FINALLY
)
2821 optimize_double_finally (one
, two
);
2823 switch (gimple_code (one
))
2826 refactor_eh_r (gimple_try_eval (one
));
2827 refactor_eh_r (gimple_try_cleanup (one
));
2830 refactor_eh_r (gimple_catch_handler (one
));
2832 case GIMPLE_EH_FILTER
:
2833 refactor_eh_r (gimple_eh_filter_failure (one
));
2848 refactor_eh_r (gimple_body (current_function_decl
));
2853 gate_refactor_eh (void)
2855 return flag_exceptions
!= 0;
2858 struct gimple_opt_pass pass_refactor_eh
=
2863 gate_refactor_eh
, /* gate */
2864 refactor_eh
, /* execute */
2867 0, /* static_pass_number */
2868 TV_TREE_EH
, /* tv_id */
2869 PROP_gimple_lcf
, /* properties_required */
2870 0, /* properties_provided */
2871 0, /* properties_destroyed */
2872 0, /* todo_flags_start */
2873 0 /* todo_flags_finish */
2877 /* At the end of gimple optimization, we can lower RESX. */
2880 lower_resx (basic_block bb
, gimple stmt
, struct pointer_map_t
*mnt_map
)
2883 eh_region src_r
, dst_r
;
2884 gimple_stmt_iterator gsi
;
2889 lp_nr
= lookup_stmt_eh_lp (stmt
);
2891 dst_r
= get_eh_region_from_lp_number (lp_nr
);
2895 src_r
= get_eh_region_from_number (gimple_resx_region (stmt
));
2896 gsi
= gsi_last_bb (bb
);
2900 /* We can wind up with no source region when pass_cleanup_eh shows
2901 that there are no entries into an eh region and deletes it, but
2902 then the block that contains the resx isn't removed. This can
2903 happen without optimization when the switch statement created by
2904 lower_try_finally_switch isn't simplified to remove the eh case.
2906 Resolve this by expanding the resx node to an abort. */
2908 fn
= builtin_decl_implicit (BUILT_IN_TRAP
);
2909 x
= gimple_build_call (fn
, 0);
2910 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
2912 while (EDGE_COUNT (bb
->succs
) > 0)
2913 remove_edge (EDGE_SUCC (bb
, 0));
2917 /* When we have a destination region, we resolve this by copying
2918 the excptr and filter values into place, and changing the edge
2919 to immediately after the landing pad. */
2928 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
2929 the failure decl into a new block, if needed. */
2930 gcc_assert (dst_r
->type
== ERT_MUST_NOT_THROW
);
2932 slot
= pointer_map_contains (mnt_map
, dst_r
);
2935 gimple_stmt_iterator gsi2
;
2937 new_bb
= create_empty_bb (bb
);
2938 lab
= gimple_block_label (new_bb
);
2939 gsi2
= gsi_start_bb (new_bb
);
2941 fn
= dst_r
->u
.must_not_throw
.failure_decl
;
2942 x
= gimple_build_call (fn
, 0);
2943 gimple_set_location (x
, dst_r
->u
.must_not_throw
.failure_loc
);
2944 gsi_insert_after (&gsi2
, x
, GSI_CONTINUE_LINKING
);
2946 slot
= pointer_map_insert (mnt_map
, dst_r
);
2952 new_bb
= label_to_block (lab
);
2955 gcc_assert (EDGE_COUNT (bb
->succs
) == 0);
2956 e
= make_edge (bb
, new_bb
, EDGE_FALLTHRU
);
2957 e
->count
= bb
->count
;
2958 e
->probability
= REG_BR_PROB_BASE
;
2963 tree dst_nr
= build_int_cst (integer_type_node
, dst_r
->index
);
2965 fn
= builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES
);
2966 src_nr
= build_int_cst (integer_type_node
, src_r
->index
);
2967 x
= gimple_build_call (fn
, 2, dst_nr
, src_nr
);
2968 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
2970 /* Update the flags for the outgoing edge. */
2971 e
= single_succ_edge (bb
);
2972 gcc_assert (e
->flags
& EDGE_EH
);
2973 e
->flags
= (e
->flags
& ~EDGE_EH
) | EDGE_FALLTHRU
;
2975 /* If there are no more EH users of the landing pad, delete it. */
2976 FOR_EACH_EDGE (e
, ei
, e
->dest
->preds
)
2977 if (e
->flags
& EDGE_EH
)
2981 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
2982 remove_eh_landing_pad (lp
);
2992 /* When we don't have a destination region, this exception escapes
2993 up the call chain. We resolve this by generating a call to the
2994 _Unwind_Resume library function. */
2996 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
2997 with no arguments for C++ and Java. Check for that. */
2998 if (src_r
->use_cxa_end_cleanup
)
3000 fn
= builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP
);
3001 x
= gimple_build_call (fn
, 0);
3002 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3006 fn
= builtin_decl_implicit (BUILT_IN_EH_POINTER
);
3007 src_nr
= build_int_cst (integer_type_node
, src_r
->index
);
3008 x
= gimple_build_call (fn
, 1, src_nr
);
3009 var
= create_tmp_var (ptr_type_node
, NULL
);
3010 var
= make_ssa_name (var
, x
);
3011 gimple_call_set_lhs (x
, var
);
3012 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3014 fn
= builtin_decl_implicit (BUILT_IN_UNWIND_RESUME
);
3015 x
= gimple_build_call (fn
, 1, var
);
3016 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3019 gcc_assert (EDGE_COUNT (bb
->succs
) == 0);
3022 gsi_remove (&gsi
, true);
3028 execute_lower_resx (void)
3031 struct pointer_map_t
*mnt_map
;
3032 bool dominance_invalidated
= false;
3033 bool any_rewritten
= false;
3035 mnt_map
= pointer_map_create ();
3039 gimple last
= last_stmt (bb
);
3040 if (last
&& is_gimple_resx (last
))
3042 dominance_invalidated
|= lower_resx (bb
, last
, mnt_map
);
3043 any_rewritten
= true;
3047 pointer_map_destroy (mnt_map
);
3049 if (dominance_invalidated
)
3051 free_dominance_info (CDI_DOMINATORS
);
3052 free_dominance_info (CDI_POST_DOMINATORS
);
3055 return any_rewritten
? TODO_update_ssa_only_virtuals
: 0;
3059 gate_lower_resx (void)
3061 return flag_exceptions
!= 0;
3064 struct gimple_opt_pass pass_lower_resx
=
3069 gate_lower_resx
, /* gate */
3070 execute_lower_resx
, /* execute */
3073 0, /* static_pass_number */
3074 TV_TREE_EH
, /* tv_id */
3075 PROP_gimple_lcf
, /* properties_required */
3076 0, /* properties_provided */
3077 0, /* properties_destroyed */
3078 0, /* todo_flags_start */
3079 TODO_verify_flow
/* todo_flags_finish */
3084 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3085 we have found some duplicate labels and removed some edges. */
3088 lower_eh_dispatch (basic_block src
, gimple stmt
)
3090 gimple_stmt_iterator gsi
;
3095 bool redirected
= false;
3097 region_nr
= gimple_eh_dispatch_region (stmt
);
3098 r
= get_eh_region_from_number (region_nr
);
3100 gsi
= gsi_last_bb (src
);
3106 VEC (tree
, heap
) *labels
= NULL
;
3107 tree default_label
= NULL
;
3111 struct pointer_set_t
*seen_values
= pointer_set_create ();
3113 /* Collect the labels for a switch. Zero the post_landing_pad
3114 field becase we'll no longer have anything keeping these labels
3115 in existance and the optimizer will be free to merge these
3117 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
3119 tree tp_node
, flt_node
, lab
= c
->label
;
3120 bool have_label
= false;
3123 tp_node
= c
->type_list
;
3124 flt_node
= c
->filter_list
;
3126 if (tp_node
== NULL
)
3128 default_label
= lab
;
3133 /* Filter out duplicate labels that arise when this handler
3134 is shadowed by an earlier one. When no labels are
3135 attached to the handler anymore, we remove
3136 the corresponding edge and then we delete unreachable
3137 blocks at the end of this pass. */
3138 if (! pointer_set_contains (seen_values
, TREE_VALUE (flt_node
)))
3140 tree t
= build_case_label (TREE_VALUE (flt_node
),
3142 VEC_safe_push (tree
, heap
, labels
, t
);
3143 pointer_set_insert (seen_values
, TREE_VALUE (flt_node
));
3147 tp_node
= TREE_CHAIN (tp_node
);
3148 flt_node
= TREE_CHAIN (flt_node
);
3153 remove_edge (find_edge (src
, label_to_block (lab
)));
3158 /* Clean up the edge flags. */
3159 FOR_EACH_EDGE (e
, ei
, src
->succs
)
3161 if (e
->flags
& EDGE_FALLTHRU
)
3163 /* If there was no catch-all, use the fallthru edge. */
3164 if (default_label
== NULL
)
3165 default_label
= gimple_block_label (e
->dest
);
3166 e
->flags
&= ~EDGE_FALLTHRU
;
3169 gcc_assert (default_label
!= NULL
);
3171 /* Don't generate a switch if there's only a default case.
3172 This is common in the form of try { A; } catch (...) { B; }. */
3175 e
= single_succ_edge (src
);
3176 e
->flags
|= EDGE_FALLTHRU
;
3180 fn
= builtin_decl_implicit (BUILT_IN_EH_FILTER
);
3181 x
= gimple_build_call (fn
, 1, build_int_cst (integer_type_node
,
3183 filter
= create_tmp_var (TREE_TYPE (TREE_TYPE (fn
)), NULL
);
3184 filter
= make_ssa_name (filter
, x
);
3185 gimple_call_set_lhs (x
, filter
);
3186 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3188 /* Turn the default label into a default case. */
3189 default_label
= build_case_label (NULL
, NULL
, default_label
);
3190 sort_case_labels (labels
);
3192 x
= gimple_build_switch_vec (filter
, default_label
, labels
);
3193 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3195 VEC_free (tree
, heap
, labels
);
3197 pointer_set_destroy (seen_values
);
3201 case ERT_ALLOWED_EXCEPTIONS
:
3203 edge b_e
= BRANCH_EDGE (src
);
3204 edge f_e
= FALLTHRU_EDGE (src
);
3206 fn
= builtin_decl_implicit (BUILT_IN_EH_FILTER
);
3207 x
= gimple_build_call (fn
, 1, build_int_cst (integer_type_node
,
3209 filter
= create_tmp_var (TREE_TYPE (TREE_TYPE (fn
)), NULL
);
3210 filter
= make_ssa_name (filter
, x
);
3211 gimple_call_set_lhs (x
, filter
);
3212 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3214 r
->u
.allowed
.label
= NULL
;
3215 x
= gimple_build_cond (EQ_EXPR
, filter
,
3216 build_int_cst (TREE_TYPE (filter
),
3217 r
->u
.allowed
.filter
),
3218 NULL_TREE
, NULL_TREE
);
3219 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3221 b_e
->flags
= b_e
->flags
| EDGE_TRUE_VALUE
;
3222 f_e
->flags
= (f_e
->flags
& ~EDGE_FALLTHRU
) | EDGE_FALSE_VALUE
;
3230 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3231 gsi_remove (&gsi
, true);
3236 execute_lower_eh_dispatch (void)
3239 bool any_rewritten
= false;
3240 bool redirected
= false;
3242 assign_filter_values ();
3246 gimple last
= last_stmt (bb
);
3247 if (last
&& gimple_code (last
) == GIMPLE_EH_DISPATCH
)
3249 redirected
|= lower_eh_dispatch (bb
, last
);
3250 any_rewritten
= true;
3255 delete_unreachable_blocks ();
3256 return any_rewritten
? TODO_update_ssa_only_virtuals
: 0;
3260 gate_lower_eh_dispatch (void)
3262 return cfun
->eh
->region_tree
!= NULL
;
3265 struct gimple_opt_pass pass_lower_eh_dispatch
=
3269 "ehdisp", /* name */
3270 gate_lower_eh_dispatch
, /* gate */
3271 execute_lower_eh_dispatch
, /* execute */
3274 0, /* static_pass_number */
3275 TV_TREE_EH
, /* tv_id */
3276 PROP_gimple_lcf
, /* properties_required */
3277 0, /* properties_provided */
3278 0, /* properties_destroyed */
3279 0, /* todo_flags_start */
3280 TODO_verify_flow
/* todo_flags_finish */
3284 /* Walk statements, see what regions are really referenced and remove
3285 those that are unused. */
3288 remove_unreachable_handlers (void)
3290 sbitmap r_reachable
, lp_reachable
;
3296 r_reachable
= sbitmap_alloc (VEC_length (eh_region
, cfun
->eh
->region_array
));
3298 = sbitmap_alloc (VEC_length (eh_landing_pad
, cfun
->eh
->lp_array
));
3299 sbitmap_zero (r_reachable
);
3300 sbitmap_zero (lp_reachable
);
3304 gimple_stmt_iterator gsi
;
3306 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3308 gimple stmt
= gsi_stmt (gsi
);
3309 lp_nr
= lookup_stmt_eh_lp (stmt
);
3311 /* Negative LP numbers are MUST_NOT_THROW regions which
3312 are not considered BB enders. */
3314 SET_BIT (r_reachable
, -lp_nr
);
3316 /* Positive LP numbers are real landing pads, are are BB enders. */
3319 gcc_assert (gsi_one_before_end_p (gsi
));
3320 region
= get_eh_region_from_lp_number (lp_nr
);
3321 SET_BIT (r_reachable
, region
->index
);
3322 SET_BIT (lp_reachable
, lp_nr
);
3325 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3326 switch (gimple_code (stmt
))
3329 SET_BIT (r_reachable
, gimple_resx_region (stmt
));
3331 case GIMPLE_EH_DISPATCH
:
3332 SET_BIT (r_reachable
, gimple_eh_dispatch_region (stmt
));
3342 fprintf (dump_file
, "Before removal of unreachable regions:\n");
3343 dump_eh_tree (dump_file
, cfun
);
3344 fprintf (dump_file
, "Reachable regions: ");
3345 dump_sbitmap_file (dump_file
, r_reachable
);
3346 fprintf (dump_file
, "Reachable landing pads: ");
3347 dump_sbitmap_file (dump_file
, lp_reachable
);
3351 VEC_iterate (eh_region
, cfun
->eh
->region_array
, r_nr
, region
); ++r_nr
)
3352 if (region
&& !TEST_BIT (r_reachable
, r_nr
))
3355 fprintf (dump_file
, "Removing unreachable region %d\n", r_nr
);
3356 remove_eh_handler (region
);
3360 VEC_iterate (eh_landing_pad
, cfun
->eh
->lp_array
, lp_nr
, lp
); ++lp_nr
)
3361 if (lp
&& !TEST_BIT (lp_reachable
, lp_nr
))
3364 fprintf (dump_file
, "Removing unreachable landing pad %d\n", lp_nr
);
3365 remove_eh_landing_pad (lp
);
3370 fprintf (dump_file
, "\n\nAfter removal of unreachable regions:\n");
3371 dump_eh_tree (dump_file
, cfun
);
3372 fprintf (dump_file
, "\n\n");
3375 sbitmap_free (r_reachable
);
3376 sbitmap_free (lp_reachable
);
3378 #ifdef ENABLE_CHECKING
3379 verify_eh_tree (cfun
);
3383 /* Remove regions that do not have landing pads. This assumes
3384 that remove_unreachable_handlers has already been run, and
3385 that we've just manipulated the landing pads since then. */
3388 remove_unreachable_handlers_no_lp (void)
3393 for (i
= 1; VEC_iterate (eh_region
, cfun
->eh
->region_array
, i
, r
); ++i
)
3394 if (r
&& r
->landing_pads
== NULL
&& r
->type
!= ERT_MUST_NOT_THROW
)
3397 fprintf (dump_file
, "Removing unreachable region %d\n", i
);
3398 remove_eh_handler (r
);
3402 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3403 optimisticaly split all sorts of edges, including EH edges. The
3404 optimization passes in between may not have needed them; if not,
3405 we should undo the split.
3407 Recognize this case by having one EH edge incoming to the BB and
3408 one normal edge outgoing; BB should be empty apart from the
3409 post_landing_pad label.
3411 Note that this is slightly different from the empty handler case
3412 handled by cleanup_empty_eh, in that the actual handler may yet
3413 have actual code but the landing pad has been separated from the
3414 handler. As such, cleanup_empty_eh relies on this transformation
3415 having been done first. */
3418 unsplit_eh (eh_landing_pad lp
)
3420 basic_block bb
= label_to_block (lp
->post_landing_pad
);
3421 gimple_stmt_iterator gsi
;
3424 /* Quickly check the edge counts on BB for singularity. */
3425 if (EDGE_COUNT (bb
->preds
) != 1 || EDGE_COUNT (bb
->succs
) != 1)
3427 e_in
= EDGE_PRED (bb
, 0);
3428 e_out
= EDGE_SUCC (bb
, 0);
3430 /* Input edge must be EH and output edge must be normal. */
3431 if ((e_in
->flags
& EDGE_EH
) == 0 || (e_out
->flags
& EDGE_EH
) != 0)
3434 /* The block must be empty except for the labels and debug insns. */
3435 gsi
= gsi_after_labels (bb
);
3436 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
3437 gsi_next_nondebug (&gsi
);
3438 if (!gsi_end_p (gsi
))
3441 /* The destination block must not already have a landing pad
3442 for a different region. */
3443 for (gsi
= gsi_start_bb (e_out
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3445 gimple stmt
= gsi_stmt (gsi
);
3449 if (gimple_code (stmt
) != GIMPLE_LABEL
)
3451 lab
= gimple_label_label (stmt
);
3452 lp_nr
= EH_LANDING_PAD_NR (lab
);
3453 if (lp_nr
&& get_eh_region_from_lp_number (lp_nr
) != lp
->region
)
3457 /* The new destination block must not already be a destination of
3458 the source block, lest we merge fallthru and eh edges and get
3459 all sorts of confused. */
3460 if (find_edge (e_in
->src
, e_out
->dest
))
3463 /* ??? We can get degenerate phis due to cfg cleanups. I would have
3464 thought this should have been cleaned up by a phicprop pass, but
3465 that doesn't appear to handle virtuals. Propagate by hand. */
3466 if (!gimple_seq_empty_p (phi_nodes (bb
)))
3468 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); )
3470 gimple use_stmt
, phi
= gsi_stmt (gsi
);
3471 tree lhs
= gimple_phi_result (phi
);
3472 tree rhs
= gimple_phi_arg_def (phi
, 0);
3473 use_operand_p use_p
;
3474 imm_use_iterator iter
;
3476 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
3478 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
3479 SET_USE (use_p
, rhs
);
3482 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
3483 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs
) = 1;
3485 remove_phi_node (&gsi
, true);
3489 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3490 fprintf (dump_file
, "Unsplit EH landing pad %d to block %i.\n",
3491 lp
->index
, e_out
->dest
->index
);
3493 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
3494 a successor edge, humor it. But do the real CFG change with the
3495 predecessor of E_OUT in order to preserve the ordering of arguments
3496 to the PHI nodes in E_OUT->DEST. */
3497 redirect_eh_edge_1 (e_in
, e_out
->dest
, false);
3498 redirect_edge_pred (e_out
, e_in
->src
);
3499 e_out
->flags
= e_in
->flags
;
3500 e_out
->probability
= e_in
->probability
;
3501 e_out
->count
= e_in
->count
;
3507 /* Examine each landing pad block and see if it matches unsplit_eh. */
3510 unsplit_all_eh (void)
3512 bool changed
= false;
3516 for (i
= 1; VEC_iterate (eh_landing_pad
, cfun
->eh
->lp_array
, i
, lp
); ++i
)
3518 changed
|= unsplit_eh (lp
);
3523 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
3524 to OLD_BB to NEW_BB; return true on success, false on failure.
3526 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3527 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3528 Virtual PHIs may be deleted and marked for renaming. */
3531 cleanup_empty_eh_merge_phis (basic_block new_bb
, basic_block old_bb
,
3532 edge old_bb_out
, bool change_region
)
3534 gimple_stmt_iterator ngsi
, ogsi
;
3537 bitmap rename_virts
;
3538 bitmap ophi_handled
;
3540 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
3541 redirect_edge_var_map_clear (e
);
3543 ophi_handled
= BITMAP_ALLOC (NULL
);
3544 rename_virts
= BITMAP_ALLOC (NULL
);
3546 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3547 for the edges we're going to move. */
3548 for (ngsi
= gsi_start_phis (new_bb
); !gsi_end_p (ngsi
); gsi_next (&ngsi
))
3550 gimple ophi
, nphi
= gsi_stmt (ngsi
);
3553 nresult
= gimple_phi_result (nphi
);
3554 nop
= gimple_phi_arg_def (nphi
, old_bb_out
->dest_idx
);
3556 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3557 the source ssa_name. */
3559 for (ogsi
= gsi_start_phis (old_bb
); !gsi_end_p (ogsi
); gsi_next (&ogsi
))
3561 ophi
= gsi_stmt (ogsi
);
3562 if (gimple_phi_result (ophi
) == nop
)
3567 /* If we did find the corresponding PHI, copy those inputs. */
3570 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
3571 if (!has_single_use (nop
))
3573 imm_use_iterator imm_iter
;
3574 use_operand_p use_p
;
3576 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, nop
)
3578 if (!gimple_debug_bind_p (USE_STMT (use_p
))
3579 && (gimple_code (USE_STMT (use_p
)) != GIMPLE_PHI
3580 || gimple_bb (USE_STMT (use_p
)) != new_bb
))
3584 bitmap_set_bit (ophi_handled
, SSA_NAME_VERSION (nop
));
3585 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
3590 if ((e
->flags
& EDGE_EH
) == 0)
3592 oop
= gimple_phi_arg_def (ophi
, e
->dest_idx
);
3593 oloc
= gimple_phi_arg_location (ophi
, e
->dest_idx
);
3594 redirect_edge_var_map_add (e
, nresult
, oop
, oloc
);
3597 /* If we didn't find the PHI, but it's a VOP, remember to rename
3598 it later, assuming all other tests succeed. */
3599 else if (!is_gimple_reg (nresult
))
3600 bitmap_set_bit (rename_virts
, SSA_NAME_VERSION (nresult
));
3601 /* If we didn't find the PHI, and it's a real variable, we know
3602 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3603 variable is unchanged from input to the block and we can simply
3604 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
3608 = gimple_phi_arg_location (nphi
, old_bb_out
->dest_idx
);
3609 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
3610 redirect_edge_var_map_add (e
, nresult
, nop
, nloc
);
3614 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
3615 we don't know what values from the other edges into NEW_BB to use. */
3616 for (ogsi
= gsi_start_phis (old_bb
); !gsi_end_p (ogsi
); gsi_next (&ogsi
))
3618 gimple ophi
= gsi_stmt (ogsi
);
3619 tree oresult
= gimple_phi_result (ophi
);
3620 if (!bitmap_bit_p (ophi_handled
, SSA_NAME_VERSION (oresult
)))
3624 /* At this point we know that the merge will succeed. Remove the PHI
3625 nodes for the virtuals that we want to rename. */
3626 if (!bitmap_empty_p (rename_virts
))
3628 for (ngsi
= gsi_start_phis (new_bb
); !gsi_end_p (ngsi
); )
3630 gimple nphi
= gsi_stmt (ngsi
);
3631 tree nresult
= gimple_phi_result (nphi
);
3632 if (bitmap_bit_p (rename_virts
, SSA_NAME_VERSION (nresult
)))
3634 mark_virtual_phi_result_for_renaming (nphi
);
3635 remove_phi_node (&ngsi
, true);
3642 /* Finally, move the edges and update the PHIs. */
3643 for (ei
= ei_start (old_bb
->preds
); (e
= ei_safe_edge (ei
)); )
3644 if (e
->flags
& EDGE_EH
)
3646 redirect_eh_edge_1 (e
, new_bb
, change_region
);
3647 redirect_edge_succ (e
, new_bb
);
3648 flush_pending_stmts (e
);
3653 BITMAP_FREE (ophi_handled
);
3654 BITMAP_FREE (rename_virts
);
3658 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
3659 redirect_edge_var_map_clear (e
);
3660 BITMAP_FREE (ophi_handled
);
3661 BITMAP_FREE (rename_virts
);
3665 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
3666 old region to NEW_REGION at BB. */
3669 cleanup_empty_eh_move_lp (basic_block bb
, edge e_out
,
3670 eh_landing_pad lp
, eh_region new_region
)
3672 gimple_stmt_iterator gsi
;
3675 for (pp
= &lp
->region
->landing_pads
; *pp
!= lp
; pp
= &(*pp
)->next_lp
)
3679 lp
->region
= new_region
;
3680 lp
->next_lp
= new_region
->landing_pads
;
3681 new_region
->landing_pads
= lp
;
3683 /* Delete the RESX that was matched within the empty handler block. */
3684 gsi
= gsi_last_bb (bb
);
3685 mark_virtual_ops_for_renaming (gsi_stmt (gsi
));
3686 gsi_remove (&gsi
, true);
3688 /* Clean up E_OUT for the fallthru. */
3689 e_out
->flags
= (e_out
->flags
& ~EDGE_EH
) | EDGE_FALLTHRU
;
3690 e_out
->probability
= REG_BR_PROB_BASE
;
3693 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
3694 unsplitting than unsplit_eh was prepared to handle, e.g. when
3695 multiple incoming edges and phis are involved. */
3698 cleanup_empty_eh_unsplit (basic_block bb
, edge e_out
, eh_landing_pad lp
)
3700 gimple_stmt_iterator gsi
;
3705 /* We really ought not have totally lost everything following
3706 a landing pad label. Given that BB is empty, there had better
3708 gcc_assert (e_out
!= NULL
);
3710 /* The destination block must not already have a landing pad
3711 for a different region. */
3713 for (gsi
= gsi_start_bb (e_out
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3715 gimple stmt
= gsi_stmt (gsi
);
3718 if (gimple_code (stmt
) != GIMPLE_LABEL
)
3720 lab
= gimple_label_label (stmt
);
3721 lp_nr
= EH_LANDING_PAD_NR (lab
);
3722 if (lp_nr
&& get_eh_region_from_lp_number (lp_nr
) != lp
->region
)
3726 /* The destination block must not be a regular successor for any
3727 of the preds of the landing pad. Thus, avoid turning
3737 which CFG verification would choke on. See PR45172. */
3738 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3739 if (find_edge (e
->src
, e_out
->dest
))
3742 /* Attempt to move the PHIs into the successor block. */
3743 if (cleanup_empty_eh_merge_phis (e_out
->dest
, bb
, e_out
, false))
3745 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3747 "Unsplit EH landing pad %d to block %i "
3748 "(via cleanup_empty_eh).\n",
3749 lp
->index
, e_out
->dest
->index
);
3756 /* Return true if edge E_FIRST is part of an empty infinite loop
3757 or leads to such a loop through a series of single successor
3761 infinite_empty_loop_p (edge e_first
)
3763 bool inf_loop
= false;
3766 if (e_first
->dest
== e_first
->src
)
3769 e_first
->src
->aux
= (void *) 1;
3770 for (e
= e_first
; single_succ_p (e
->dest
); e
= single_succ_edge (e
->dest
))
3772 gimple_stmt_iterator gsi
;
3778 e
->dest
->aux
= (void *) 1;
3779 gsi
= gsi_after_labels (e
->dest
);
3780 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
3781 gsi_next_nondebug (&gsi
);
3782 if (!gsi_end_p (gsi
))
3785 e_first
->src
->aux
= NULL
;
3786 for (e
= e_first
; e
->dest
->aux
; e
= single_succ_edge (e
->dest
))
3787 e
->dest
->aux
= NULL
;
3792 /* Examine the block associated with LP to determine if it's an empty
3793 handler for its EH region. If so, attempt to redirect EH edges to
3794 an outer region. Return true the CFG was updated in any way. This
3795 is similar to jump forwarding, just across EH edges. */
3798 cleanup_empty_eh (eh_landing_pad lp
)
3800 basic_block bb
= label_to_block (lp
->post_landing_pad
);
3801 gimple_stmt_iterator gsi
;
3803 eh_region new_region
;
3806 bool has_non_eh_pred
;
3809 /* There can be zero or one edges out of BB. This is the quickest test. */
3810 switch (EDGE_COUNT (bb
->succs
))
3816 e_out
= EDGE_SUCC (bb
, 0);
3821 gsi
= gsi_after_labels (bb
);
3823 /* Make sure to skip debug statements. */
3824 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
3825 gsi_next_nondebug (&gsi
);
3827 /* If the block is totally empty, look for more unsplitting cases. */
3828 if (gsi_end_p (gsi
))
3830 /* For the degenerate case of an infinite loop bail out. */
3831 if (infinite_empty_loop_p (e_out
))
3834 return cleanup_empty_eh_unsplit (bb
, e_out
, lp
);
3837 /* The block should consist only of a single RESX statement, modulo a
3838 preceding call to __builtin_stack_restore if there is no outgoing
3839 edge, since the call can be eliminated in this case. */
3840 resx
= gsi_stmt (gsi
);
3841 if (!e_out
&& gimple_call_builtin_p (resx
, BUILT_IN_STACK_RESTORE
))
3844 resx
= gsi_stmt (gsi
);
3846 if (!is_gimple_resx (resx
))
3848 gcc_assert (gsi_one_before_end_p (gsi
));
3850 /* Determine if there are non-EH edges, or resx edges into the handler. */
3851 has_non_eh_pred
= false;
3852 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3853 if (!(e
->flags
& EDGE_EH
))
3854 has_non_eh_pred
= true;
3856 /* Find the handler that's outer of the empty handler by looking at
3857 where the RESX instruction was vectored. */
3858 new_lp_nr
= lookup_stmt_eh_lp (resx
);
3859 new_region
= get_eh_region_from_lp_number (new_lp_nr
);
3861 /* If there's no destination region within the current function,
3862 redirection is trivial via removing the throwing statements from
3863 the EH region, removing the EH edges, and allowing the block
3864 to go unreachable. */
3865 if (new_region
== NULL
)
3867 gcc_assert (e_out
== NULL
);
3868 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
3869 if (e
->flags
& EDGE_EH
)
3871 gimple stmt
= last_stmt (e
->src
);
3872 remove_stmt_from_eh_lp (stmt
);
3880 /* If the destination region is a MUST_NOT_THROW, allow the runtime
3881 to handle the abort and allow the blocks to go unreachable. */
3882 if (new_region
->type
== ERT_MUST_NOT_THROW
)
3884 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
3885 if (e
->flags
& EDGE_EH
)
3887 gimple stmt
= last_stmt (e
->src
);
3888 remove_stmt_from_eh_lp (stmt
);
3889 add_stmt_to_eh_lp (stmt
, new_lp_nr
);
3897 /* Try to redirect the EH edges and merge the PHIs into the destination
3898 landing pad block. If the merge succeeds, we'll already have redirected
3899 all the EH edges. The handler itself will go unreachable if there were
3901 if (cleanup_empty_eh_merge_phis (e_out
->dest
, bb
, e_out
, true))
3904 /* Finally, if all input edges are EH edges, then we can (potentially)
3905 reduce the number of transfers from the runtime by moving the landing
3906 pad from the original region to the new region. This is a win when
3907 we remove the last CLEANUP region along a particular exception
3908 propagation path. Since nothing changes except for the region with
3909 which the landing pad is associated, the PHI nodes do not need to be
3911 if (!has_non_eh_pred
)
3913 cleanup_empty_eh_move_lp (bb
, e_out
, lp
, new_region
);
3914 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3915 fprintf (dump_file
, "Empty EH handler %i moved to EH region %i.\n",
3916 lp
->index
, new_region
->index
);
3918 /* ??? The CFG didn't change, but we may have rendered the
3919 old EH region unreachable. Trigger a cleanup there. */
3926 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3927 fprintf (dump_file
, "Empty EH handler %i removed.\n", lp
->index
);
3928 remove_eh_landing_pad (lp
);
3932 /* Do a post-order traversal of the EH region tree. Examine each
3933 post_landing_pad block and see if we can eliminate it as empty. */
3936 cleanup_all_empty_eh (void)
3938 bool changed
= false;
3942 for (i
= 1; VEC_iterate (eh_landing_pad
, cfun
->eh
->lp_array
, i
, lp
); ++i
)
3944 changed
|= cleanup_empty_eh (lp
);
3949 /* Perform cleanups and lowering of exception handling
3950 1) cleanups regions with handlers doing nothing are optimized out
3951 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
3952 3) Info about regions that are containing instructions, and regions
3953 reachable via local EH edges is collected
3954 4) Eh tree is pruned for regions no longer neccesary.
3956 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
3957 Unify those that have the same failure decl and locus.
3961 execute_cleanup_eh_1 (void)
3963 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
3964 looking up unreachable landing pads. */
3965 remove_unreachable_handlers ();
3967 /* Watch out for the region tree vanishing due to all unreachable. */
3968 if (cfun
->eh
->region_tree
&& optimize
)
3970 bool changed
= false;
3972 changed
|= unsplit_all_eh ();
3973 changed
|= cleanup_all_empty_eh ();
3977 free_dominance_info (CDI_DOMINATORS
);
3978 free_dominance_info (CDI_POST_DOMINATORS
);
3980 /* We delayed all basic block deletion, as we may have performed
3981 cleanups on EH edges while non-EH edges were still present. */
3982 delete_unreachable_blocks ();
3984 /* We manipulated the landing pads. Remove any region that no
3985 longer has a landing pad. */
3986 remove_unreachable_handlers_no_lp ();
3988 return TODO_cleanup_cfg
| TODO_update_ssa_only_virtuals
;
3996 execute_cleanup_eh (void)
3998 int ret
= execute_cleanup_eh_1 ();
4000 /* If the function no longer needs an EH personality routine
4001 clear it. This exposes cross-language inlining opportunities
4002 and avoids references to a never defined personality routine. */
4003 if (DECL_FUNCTION_PERSONALITY (current_function_decl
)
4004 && function_needs_eh_personality (cfun
) != eh_personality_lang
)
4005 DECL_FUNCTION_PERSONALITY (current_function_decl
) = NULL_TREE
;
4011 gate_cleanup_eh (void)
4013 return cfun
->eh
!= NULL
&& cfun
->eh
->region_tree
!= NULL
;
4016 struct gimple_opt_pass pass_cleanup_eh
= {
4019 "ehcleanup", /* name */
4020 gate_cleanup_eh
, /* gate */
4021 execute_cleanup_eh
, /* execute */
4024 0, /* static_pass_number */
4025 TV_TREE_EH
, /* tv_id */
4026 PROP_gimple_lcf
, /* properties_required */
4027 0, /* properties_provided */
4028 0, /* properties_destroyed */
4029 0, /* todo_flags_start */
4030 0 /* todo_flags_finish */
4034 /* Verify that BB containing STMT as the last statement, has precisely the
4035 edge that make_eh_edges would create. */
4038 verify_eh_edges (gimple stmt
)
4040 basic_block bb
= gimple_bb (stmt
);
4041 eh_landing_pad lp
= NULL
;
4046 lp_nr
= lookup_stmt_eh_lp (stmt
);
4048 lp
= get_eh_landing_pad_from_number (lp_nr
);
4051 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4053 if (e
->flags
& EDGE_EH
)
4057 error ("BB %i has multiple EH edges", bb
->index
);
4069 error ("BB %i can not throw but has an EH edge", bb
->index
);
4075 if (!stmt_could_throw_p (stmt
))
4077 error ("BB %i last statement has incorrectly set lp", bb
->index
);
4081 if (eh_edge
== NULL
)
4083 error ("BB %i is missing an EH edge", bb
->index
);
4087 if (eh_edge
->dest
!= label_to_block (lp
->post_landing_pad
))
4089 error ("Incorrect EH edge %i->%i", bb
->index
, eh_edge
->dest
->index
);
4096 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4099 verify_eh_dispatch_edge (gimple stmt
)
4103 basic_block src
, dst
;
4104 bool want_fallthru
= true;
4108 r
= get_eh_region_from_number (gimple_eh_dispatch_region (stmt
));
4109 src
= gimple_bb (stmt
);
4111 FOR_EACH_EDGE (e
, ei
, src
->succs
)
4112 gcc_assert (e
->aux
== NULL
);
4117 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
4119 dst
= label_to_block (c
->label
);
4120 e
= find_edge (src
, dst
);
4123 error ("BB %i is missing an edge", src
->index
);
4128 /* A catch-all handler doesn't have a fallthru. */
4129 if (c
->type_list
== NULL
)
4131 want_fallthru
= false;
4137 case ERT_ALLOWED_EXCEPTIONS
:
4138 dst
= label_to_block (r
->u
.allowed
.label
);
4139 e
= find_edge (src
, dst
);
4142 error ("BB %i is missing an edge", src
->index
);
4153 FOR_EACH_EDGE (e
, ei
, src
->succs
)
4155 if (e
->flags
& EDGE_FALLTHRU
)
4157 if (fall_edge
!= NULL
)
4159 error ("BB %i too many fallthru edges", src
->index
);
4168 error ("BB %i has incorrect edge", src
->index
);
4172 if ((fall_edge
!= NULL
) ^ want_fallthru
)
4174 error ("BB %i has incorrect fallthru edge", src
->index
);