tm.texi (LEGITIMIZE_ADDRESS): Revise documentation.
[official-gcc.git] / gcc / config / m32c / m32c.c
blob6d386e3d8fd5e438957837ba37491f088c419b5d
1 /* Target Code for R8C/M16C/M32C
2 Copyright (C) 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Red Hat.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published
10 by the Free Software Foundation; either version 3, or (at your
11 option) any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "hard-reg-set.h"
29 #include "real.h"
30 #include "insn-config.h"
31 #include "conditions.h"
32 #include "insn-flags.h"
33 #include "output.h"
34 #include "insn-attr.h"
35 #include "flags.h"
36 #include "recog.h"
37 #include "reload.h"
38 #include "toplev.h"
39 #include "obstack.h"
40 #include "tree.h"
41 #include "expr.h"
42 #include "optabs.h"
43 #include "except.h"
44 #include "function.h"
45 #include "ggc.h"
46 #include "target.h"
47 #include "target-def.h"
48 #include "tm_p.h"
49 #include "langhooks.h"
50 #include "gimple.h"
51 #include "df.h"
53 /* Prototypes */
55 /* Used by m32c_pushm_popm. */
56 typedef enum
58 PP_pushm,
59 PP_popm,
60 PP_justcount
61 } Push_Pop_Type;
63 static tree interrupt_handler (tree *, tree, tree, int, bool *);
64 static tree function_vector_handler (tree *, tree, tree, int, bool *);
65 static int interrupt_p (tree node);
66 static bool m32c_asm_integer (rtx, unsigned int, int);
67 static int m32c_comp_type_attributes (const_tree, const_tree);
68 static bool m32c_fixed_condition_code_regs (unsigned int *, unsigned int *);
69 static struct machine_function *m32c_init_machine_status (void);
70 static void m32c_insert_attributes (tree, tree *);
71 static bool m32c_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
72 const_tree, bool);
73 static bool m32c_promote_prototypes (const_tree);
74 static int m32c_pushm_popm (Push_Pop_Type);
75 static bool m32c_strict_argument_naming (CUMULATIVE_ARGS *);
76 static rtx m32c_struct_value_rtx (tree, int);
77 static rtx m32c_subreg (enum machine_mode, rtx, enum machine_mode, int);
78 static int need_to_save (int);
79 int current_function_special_page_vector (rtx);
81 #define SYMBOL_FLAG_FUNCVEC_FUNCTION (SYMBOL_FLAG_MACH_DEP << 0)
83 #define streq(a,b) (strcmp ((a), (b)) == 0)
85 /* Internal support routines */
87 /* Debugging statements are tagged with DEBUG0 only so that they can
88 be easily enabled individually, by replacing the '0' with '1' as
89 needed. */
90 #define DEBUG0 0
91 #define DEBUG1 1
93 #if DEBUG0
94 /* This is needed by some of the commented-out debug statements
95 below. */
96 static char const *class_names[LIM_REG_CLASSES] = REG_CLASS_NAMES;
97 #endif
98 static int class_contents[LIM_REG_CLASSES][1] = REG_CLASS_CONTENTS;
100 /* These are all to support encode_pattern(). */
101 static char pattern[30], *patternp;
102 static GTY(()) rtx patternr[30];
103 #define RTX_IS(x) (streq (pattern, x))
105 /* Some macros to simplify the logic throughout this file. */
106 #define IS_MEM_REGNO(regno) ((regno) >= MEM0_REGNO && (regno) <= MEM7_REGNO)
107 #define IS_MEM_REG(rtx) (GET_CODE (rtx) == REG && IS_MEM_REGNO (REGNO (rtx)))
109 #define IS_CR_REGNO(regno) ((regno) >= SB_REGNO && (regno) <= PC_REGNO)
110 #define IS_CR_REG(rtx) (GET_CODE (rtx) == REG && IS_CR_REGNO (REGNO (rtx)))
112 /* We do most RTX matching by converting the RTX into a string, and
113 using string compares. This vastly simplifies the logic in many of
114 the functions in this file.
116 On exit, pattern[] has the encoded string (use RTX_IS("...") to
117 compare it) and patternr[] has pointers to the nodes in the RTX
118 corresponding to each character in the encoded string. The latter
119 is mostly used by print_operand().
121 Unrecognized patterns have '?' in them; this shows up when the
122 assembler complains about syntax errors.
125 static void
126 encode_pattern_1 (rtx x)
128 int i;
130 if (patternp == pattern + sizeof (pattern) - 2)
132 patternp[-1] = '?';
133 return;
136 patternr[patternp - pattern] = x;
138 switch (GET_CODE (x))
140 case REG:
141 *patternp++ = 'r';
142 break;
143 case SUBREG:
144 if (GET_MODE_SIZE (GET_MODE (x)) !=
145 GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
146 *patternp++ = 'S';
147 encode_pattern_1 (XEXP (x, 0));
148 break;
149 case MEM:
150 *patternp++ = 'm';
151 case CONST:
152 encode_pattern_1 (XEXP (x, 0));
153 break;
154 case PLUS:
155 *patternp++ = '+';
156 encode_pattern_1 (XEXP (x, 0));
157 encode_pattern_1 (XEXP (x, 1));
158 break;
159 case PRE_DEC:
160 *patternp++ = '>';
161 encode_pattern_1 (XEXP (x, 0));
162 break;
163 case POST_INC:
164 *patternp++ = '<';
165 encode_pattern_1 (XEXP (x, 0));
166 break;
167 case LO_SUM:
168 *patternp++ = 'L';
169 encode_pattern_1 (XEXP (x, 0));
170 encode_pattern_1 (XEXP (x, 1));
171 break;
172 case HIGH:
173 *patternp++ = 'H';
174 encode_pattern_1 (XEXP (x, 0));
175 break;
176 case SYMBOL_REF:
177 *patternp++ = 's';
178 break;
179 case LABEL_REF:
180 *patternp++ = 'l';
181 break;
182 case CODE_LABEL:
183 *patternp++ = 'c';
184 break;
185 case CONST_INT:
186 case CONST_DOUBLE:
187 *patternp++ = 'i';
188 break;
189 case UNSPEC:
190 *patternp++ = 'u';
191 *patternp++ = '0' + XCINT (x, 1, UNSPEC);
192 for (i = 0; i < XVECLEN (x, 0); i++)
193 encode_pattern_1 (XVECEXP (x, 0, i));
194 break;
195 case USE:
196 *patternp++ = 'U';
197 break;
198 case PARALLEL:
199 *patternp++ = '|';
200 for (i = 0; i < XVECLEN (x, 0); i++)
201 encode_pattern_1 (XVECEXP (x, 0, i));
202 break;
203 case EXPR_LIST:
204 *patternp++ = 'E';
205 encode_pattern_1 (XEXP (x, 0));
206 if (XEXP (x, 1))
207 encode_pattern_1 (XEXP (x, 1));
208 break;
209 default:
210 *patternp++ = '?';
211 #if DEBUG0
212 fprintf (stderr, "can't encode pattern %s\n",
213 GET_RTX_NAME (GET_CODE (x)));
214 debug_rtx (x);
215 gcc_unreachable ();
216 #endif
217 break;
221 static void
222 encode_pattern (rtx x)
224 patternp = pattern;
225 encode_pattern_1 (x);
226 *patternp = 0;
229 /* Since register names indicate the mode they're used in, we need a
230 way to determine which name to refer to the register with. Called
231 by print_operand(). */
233 static const char *
234 reg_name_with_mode (int regno, enum machine_mode mode)
236 int mlen = GET_MODE_SIZE (mode);
237 if (regno == R0_REGNO && mlen == 1)
238 return "r0l";
239 if (regno == R0_REGNO && (mlen == 3 || mlen == 4))
240 return "r2r0";
241 if (regno == R0_REGNO && mlen == 6)
242 return "r2r1r0";
243 if (regno == R0_REGNO && mlen == 8)
244 return "r3r1r2r0";
245 if (regno == R1_REGNO && mlen == 1)
246 return "r1l";
247 if (regno == R1_REGNO && (mlen == 3 || mlen == 4))
248 return "r3r1";
249 if (regno == A0_REGNO && TARGET_A16 && (mlen == 3 || mlen == 4))
250 return "a1a0";
251 return reg_names[regno];
254 /* How many bytes a register uses on stack when it's pushed. We need
255 to know this because the push opcode needs to explicitly indicate
256 the size of the register, even though the name of the register
257 already tells it that. Used by m32c_output_reg_{push,pop}, which
258 is only used through calls to ASM_OUTPUT_REG_{PUSH,POP}. */
260 static int
261 reg_push_size (int regno)
263 switch (regno)
265 case R0_REGNO:
266 case R1_REGNO:
267 return 2;
268 case R2_REGNO:
269 case R3_REGNO:
270 case FLG_REGNO:
271 return 2;
272 case A0_REGNO:
273 case A1_REGNO:
274 case SB_REGNO:
275 case FB_REGNO:
276 case SP_REGNO:
277 if (TARGET_A16)
278 return 2;
279 else
280 return 3;
281 default:
282 gcc_unreachable ();
286 static int *class_sizes = 0;
288 /* Given two register classes, find the largest intersection between
289 them. If there is no intersection, return RETURNED_IF_EMPTY
290 instead. */
291 static int
292 reduce_class (int original_class, int limiting_class, int returned_if_empty)
294 int cc = class_contents[original_class][0];
295 int i, best = NO_REGS;
296 int best_size = 0;
298 if (original_class == limiting_class)
299 return original_class;
301 if (!class_sizes)
303 int r;
304 class_sizes = (int *) xmalloc (LIM_REG_CLASSES * sizeof (int));
305 for (i = 0; i < LIM_REG_CLASSES; i++)
307 class_sizes[i] = 0;
308 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
309 if (class_contents[i][0] & (1 << r))
310 class_sizes[i]++;
314 cc &= class_contents[limiting_class][0];
315 for (i = 0; i < LIM_REG_CLASSES; i++)
317 int ic = class_contents[i][0];
319 if ((~cc & ic) == 0)
320 if (best_size < class_sizes[i])
322 best = i;
323 best_size = class_sizes[i];
327 if (best == NO_REGS)
328 return returned_if_empty;
329 return best;
332 /* Returns TRUE If there are any registers that exist in both register
333 classes. */
334 static int
335 classes_intersect (int class1, int class2)
337 return class_contents[class1][0] & class_contents[class2][0];
340 /* Used by m32c_register_move_cost to determine if a move is
341 impossibly expensive. */
342 static int
343 class_can_hold_mode (int rclass, enum machine_mode mode)
345 /* Cache the results: 0=untested 1=no 2=yes */
346 static char results[LIM_REG_CLASSES][MAX_MACHINE_MODE];
347 if (results[rclass][mode] == 0)
349 int r, n, i;
350 results[rclass][mode] = 1;
351 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
352 if (class_contents[rclass][0] & (1 << r)
353 && HARD_REGNO_MODE_OK (r, mode))
355 int ok = 1;
356 n = HARD_REGNO_NREGS (r, mode);
357 for (i = 1; i < n; i++)
358 if (!(class_contents[rclass][0] & (1 << (r + i))))
359 ok = 0;
360 if (ok)
362 results[rclass][mode] = 2;
363 break;
367 #if DEBUG0
368 fprintf (stderr, "class %s can hold %s? %s\n",
369 class_names[rclass], mode_name[mode],
370 (results[rclass][mode] == 2) ? "yes" : "no");
371 #endif
372 return results[rclass][mode] == 2;
375 /* Run-time Target Specification. */
377 /* Memregs are memory locations that gcc treats like general
378 registers, as there are a limited number of true registers and the
379 m32c families can use memory in most places that registers can be
380 used.
382 However, since memory accesses are more expensive than registers,
383 we allow the user to limit the number of memregs available, in
384 order to try to persuade gcc to try harder to use real registers.
386 Memregs are provided by m32c-lib1.S.
389 int target_memregs = 16;
390 static bool target_memregs_set = FALSE;
391 int ok_to_change_target_memregs = TRUE;
393 #undef TARGET_HANDLE_OPTION
394 #define TARGET_HANDLE_OPTION m32c_handle_option
395 static bool
396 m32c_handle_option (size_t code,
397 const char *arg ATTRIBUTE_UNUSED,
398 int value ATTRIBUTE_UNUSED)
400 if (code == OPT_memregs_)
402 target_memregs_set = TRUE;
403 target_memregs = atoi (arg);
405 return TRUE;
408 /* Implements OVERRIDE_OPTIONS. We limit memregs to 0..16, and
409 provide a default. */
410 void
411 m32c_override_options (void)
413 if (target_memregs_set)
415 if (target_memregs < 0 || target_memregs > 16)
416 error ("invalid target memregs value '%d'", target_memregs);
418 else
419 target_memregs = 16;
422 /* Defining data structures for per-function information */
424 /* The usual; we set up our machine_function data. */
425 static struct machine_function *
426 m32c_init_machine_status (void)
428 struct machine_function *machine;
429 machine =
430 (machine_function *) ggc_alloc_cleared (sizeof (machine_function));
432 return machine;
435 /* Implements INIT_EXPANDERS. We just set up to call the above
436 function. */
437 void
438 m32c_init_expanders (void)
440 init_machine_status = m32c_init_machine_status;
443 /* Storage Layout */
445 /* Register Basics */
447 /* Basic Characteristics of Registers */
449 /* Whether a mode fits in a register is complex enough to warrant a
450 table. */
451 static struct
453 char qi_regs;
454 char hi_regs;
455 char pi_regs;
456 char si_regs;
457 char di_regs;
458 } nregs_table[FIRST_PSEUDO_REGISTER] =
460 { 1, 1, 2, 2, 4 }, /* r0 */
461 { 0, 1, 0, 0, 0 }, /* r2 */
462 { 1, 1, 2, 2, 0 }, /* r1 */
463 { 0, 1, 0, 0, 0 }, /* r3 */
464 { 0, 1, 1, 0, 0 }, /* a0 */
465 { 0, 1, 1, 0, 0 }, /* a1 */
466 { 0, 1, 1, 0, 0 }, /* sb */
467 { 0, 1, 1, 0, 0 }, /* fb */
468 { 0, 1, 1, 0, 0 }, /* sp */
469 { 1, 1, 1, 0, 0 }, /* pc */
470 { 0, 0, 0, 0, 0 }, /* fl */
471 { 1, 1, 1, 0, 0 }, /* ap */
472 { 1, 1, 2, 2, 4 }, /* mem0 */
473 { 1, 1, 2, 2, 4 }, /* mem1 */
474 { 1, 1, 2, 2, 4 }, /* mem2 */
475 { 1, 1, 2, 2, 4 }, /* mem3 */
476 { 1, 1, 2, 2, 4 }, /* mem4 */
477 { 1, 1, 2, 2, 0 }, /* mem5 */
478 { 1, 1, 2, 2, 0 }, /* mem6 */
479 { 1, 1, 0, 0, 0 }, /* mem7 */
482 /* Implements CONDITIONAL_REGISTER_USAGE. We adjust the number of
483 available memregs, and select which registers need to be preserved
484 across calls based on the chip family. */
486 void
487 m32c_conditional_register_usage (void)
489 int i;
491 if (0 <= target_memregs && target_memregs <= 16)
493 /* The command line option is bytes, but our "registers" are
494 16-bit words. */
495 for (i = target_memregs/2; i < 8; i++)
497 fixed_regs[MEM0_REGNO + i] = 1;
498 CLEAR_HARD_REG_BIT (reg_class_contents[MEM_REGS], MEM0_REGNO + i);
502 /* M32CM and M32C preserve more registers across function calls. */
503 if (TARGET_A24)
505 call_used_regs[R1_REGNO] = 0;
506 call_used_regs[R2_REGNO] = 0;
507 call_used_regs[R3_REGNO] = 0;
508 call_used_regs[A0_REGNO] = 0;
509 call_used_regs[A1_REGNO] = 0;
513 /* How Values Fit in Registers */
515 /* Implements HARD_REGNO_NREGS. This is complicated by the fact that
516 different registers are different sizes from each other, *and* may
517 be different sizes in different chip families. */
518 static int
519 m32c_hard_regno_nregs_1 (int regno, enum machine_mode mode)
521 if (regno == FLG_REGNO && mode == CCmode)
522 return 1;
523 if (regno >= FIRST_PSEUDO_REGISTER)
524 return ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD);
526 if (regno >= MEM0_REGNO && regno <= MEM7_REGNO)
527 return (GET_MODE_SIZE (mode) + 1) / 2;
529 if (GET_MODE_SIZE (mode) <= 1)
530 return nregs_table[regno].qi_regs;
531 if (GET_MODE_SIZE (mode) <= 2)
532 return nregs_table[regno].hi_regs;
533 if (regno == A0_REGNO && mode == PSImode && TARGET_A16)
534 return 2;
535 if ((GET_MODE_SIZE (mode) <= 3 || mode == PSImode) && TARGET_A24)
536 return nregs_table[regno].pi_regs;
537 if (GET_MODE_SIZE (mode) <= 4)
538 return nregs_table[regno].si_regs;
539 if (GET_MODE_SIZE (mode) <= 8)
540 return nregs_table[regno].di_regs;
541 return 0;
545 m32c_hard_regno_nregs (int regno, enum machine_mode mode)
547 int rv = m32c_hard_regno_nregs_1 (regno, mode);
548 return rv ? rv : 1;
551 /* Implements HARD_REGNO_MODE_OK. The above function does the work
552 already; just test its return value. */
554 m32c_hard_regno_ok (int regno, enum machine_mode mode)
556 return m32c_hard_regno_nregs_1 (regno, mode) != 0;
559 /* Implements MODES_TIEABLE_P. In general, modes aren't tieable since
560 registers are all different sizes. However, since most modes are
561 bigger than our registers anyway, it's easier to implement this
562 function that way, leaving QImode as the only unique case. */
564 m32c_modes_tieable_p (enum machine_mode m1, enum machine_mode m2)
566 if (GET_MODE_SIZE (m1) == GET_MODE_SIZE (m2))
567 return 1;
569 #if 0
570 if (m1 == QImode || m2 == QImode)
571 return 0;
572 #endif
574 return 1;
577 /* Register Classes */
579 /* Implements REGNO_REG_CLASS. */
580 enum machine_mode
581 m32c_regno_reg_class (int regno)
583 switch (regno)
585 case R0_REGNO:
586 return R0_REGS;
587 case R1_REGNO:
588 return R1_REGS;
589 case R2_REGNO:
590 return R2_REGS;
591 case R3_REGNO:
592 return R3_REGS;
593 case A0_REGNO:
594 case A1_REGNO:
595 return A_REGS;
596 case SB_REGNO:
597 return SB_REGS;
598 case FB_REGNO:
599 return FB_REGS;
600 case SP_REGNO:
601 return SP_REGS;
602 case FLG_REGNO:
603 return FLG_REGS;
604 default:
605 if (IS_MEM_REGNO (regno))
606 return MEM_REGS;
607 return ALL_REGS;
611 /* Implements REG_CLASS_FROM_CONSTRAINT. Note that some constraints only match
612 for certain chip families. */
614 m32c_reg_class_from_constraint (char c ATTRIBUTE_UNUSED, const char *s)
616 if (memcmp (s, "Rsp", 3) == 0)
617 return SP_REGS;
618 if (memcmp (s, "Rfb", 3) == 0)
619 return FB_REGS;
620 if (memcmp (s, "Rsb", 3) == 0)
621 return SB_REGS;
622 if (memcmp (s, "Rcr", 3) == 0)
623 return TARGET_A16 ? CR_REGS : NO_REGS;
624 if (memcmp (s, "Rcl", 3) == 0)
625 return TARGET_A24 ? CR_REGS : NO_REGS;
626 if (memcmp (s, "R0w", 3) == 0)
627 return R0_REGS;
628 if (memcmp (s, "R1w", 3) == 0)
629 return R1_REGS;
630 if (memcmp (s, "R2w", 3) == 0)
631 return R2_REGS;
632 if (memcmp (s, "R3w", 3) == 0)
633 return R3_REGS;
634 if (memcmp (s, "R02", 3) == 0)
635 return R02_REGS;
636 if (memcmp (s, "R03", 3) == 0)
637 return R03_REGS;
638 if (memcmp (s, "Rdi", 3) == 0)
639 return DI_REGS;
640 if (memcmp (s, "Rhl", 3) == 0)
641 return HL_REGS;
642 if (memcmp (s, "R23", 3) == 0)
643 return R23_REGS;
644 if (memcmp (s, "Ra0", 3) == 0)
645 return A0_REGS;
646 if (memcmp (s, "Ra1", 3) == 0)
647 return A1_REGS;
648 if (memcmp (s, "Raa", 3) == 0)
649 return A_REGS;
650 if (memcmp (s, "Raw", 3) == 0)
651 return TARGET_A16 ? A_REGS : NO_REGS;
652 if (memcmp (s, "Ral", 3) == 0)
653 return TARGET_A24 ? A_REGS : NO_REGS;
654 if (memcmp (s, "Rqi", 3) == 0)
655 return QI_REGS;
656 if (memcmp (s, "Rad", 3) == 0)
657 return AD_REGS;
658 if (memcmp (s, "Rsi", 3) == 0)
659 return SI_REGS;
660 if (memcmp (s, "Rhi", 3) == 0)
661 return HI_REGS;
662 if (memcmp (s, "Rhc", 3) == 0)
663 return HC_REGS;
664 if (memcmp (s, "Rra", 3) == 0)
665 return RA_REGS;
666 if (memcmp (s, "Rfl", 3) == 0)
667 return FLG_REGS;
668 if (memcmp (s, "Rmm", 3) == 0)
670 if (fixed_regs[MEM0_REGNO])
671 return NO_REGS;
672 return MEM_REGS;
675 /* PSImode registers - i.e. whatever can hold a pointer. */
676 if (memcmp (s, "Rpi", 3) == 0)
678 if (TARGET_A16)
679 return HI_REGS;
680 else
681 return RA_REGS; /* r2r0 and r3r1 can hold pointers. */
684 /* We handle this one as an EXTRA_CONSTRAINT. */
685 if (memcmp (s, "Rpa", 3) == 0)
686 return NO_REGS;
688 if (*s == 'R')
690 fprintf(stderr, "unrecognized R constraint: %.3s\n", s);
691 gcc_unreachable();
694 return NO_REGS;
697 /* Implements REGNO_OK_FOR_BASE_P. */
699 m32c_regno_ok_for_base_p (int regno)
701 if (regno == A0_REGNO
702 || regno == A1_REGNO || regno >= FIRST_PSEUDO_REGISTER)
703 return 1;
704 return 0;
707 #define DEBUG_RELOAD 0
709 /* Implements PREFERRED_RELOAD_CLASS. In general, prefer general
710 registers of the appropriate size. */
712 m32c_preferred_reload_class (rtx x, int rclass)
714 int newclass = rclass;
716 #if DEBUG_RELOAD
717 fprintf (stderr, "\npreferred_reload_class for %s is ",
718 class_names[rclass]);
719 #endif
720 if (rclass == NO_REGS)
721 rclass = GET_MODE (x) == QImode ? HL_REGS : R03_REGS;
723 if (classes_intersect (rclass, CR_REGS))
725 switch (GET_MODE (x))
727 case QImode:
728 newclass = HL_REGS;
729 break;
730 default:
731 /* newclass = HI_REGS; */
732 break;
736 else if (newclass == QI_REGS && GET_MODE_SIZE (GET_MODE (x)) > 2)
737 newclass = SI_REGS;
738 else if (GET_MODE_SIZE (GET_MODE (x)) > 4
739 && ~class_contents[rclass][0] & 0x000f)
740 newclass = DI_REGS;
742 rclass = reduce_class (rclass, newclass, rclass);
744 if (GET_MODE (x) == QImode)
745 rclass = reduce_class (rclass, HL_REGS, rclass);
747 #if DEBUG_RELOAD
748 fprintf (stderr, "%s\n", class_names[rclass]);
749 debug_rtx (x);
751 if (GET_CODE (x) == MEM
752 && GET_CODE (XEXP (x, 0)) == PLUS
753 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS)
754 fprintf (stderr, "Glorm!\n");
755 #endif
756 return rclass;
759 /* Implements PREFERRED_OUTPUT_RELOAD_CLASS. */
761 m32c_preferred_output_reload_class (rtx x, int rclass)
763 return m32c_preferred_reload_class (x, rclass);
766 /* Implements LIMIT_RELOAD_CLASS. We basically want to avoid using
767 address registers for reloads since they're needed for address
768 reloads. */
770 m32c_limit_reload_class (enum machine_mode mode, int rclass)
772 #if DEBUG_RELOAD
773 fprintf (stderr, "limit_reload_class for %s: %s ->",
774 mode_name[mode], class_names[rclass]);
775 #endif
777 if (mode == QImode)
778 rclass = reduce_class (rclass, HL_REGS, rclass);
779 else if (mode == HImode)
780 rclass = reduce_class (rclass, HI_REGS, rclass);
781 else if (mode == SImode)
782 rclass = reduce_class (rclass, SI_REGS, rclass);
784 if (rclass != A_REGS)
785 rclass = reduce_class (rclass, DI_REGS, rclass);
787 #if DEBUG_RELOAD
788 fprintf (stderr, " %s\n", class_names[rclass]);
789 #endif
790 return rclass;
793 /* Implements SECONDARY_RELOAD_CLASS. QImode have to be reloaded in
794 r0 or r1, as those are the only real QImode registers. CR regs get
795 reloaded through appropriately sized general or address
796 registers. */
798 m32c_secondary_reload_class (int rclass, enum machine_mode mode, rtx x)
800 int cc = class_contents[rclass][0];
801 #if DEBUG0
802 fprintf (stderr, "\nsecondary reload class %s %s\n",
803 class_names[rclass], mode_name[mode]);
804 debug_rtx (x);
805 #endif
806 if (mode == QImode
807 && GET_CODE (x) == MEM && (cc & ~class_contents[R23_REGS][0]) == 0)
808 return QI_REGS;
809 if (classes_intersect (rclass, CR_REGS)
810 && GET_CODE (x) == REG
811 && REGNO (x) >= SB_REGNO && REGNO (x) <= SP_REGNO)
812 return TARGET_A16 ? HI_REGS : A_REGS;
813 return NO_REGS;
816 /* Implements CLASS_LIKELY_SPILLED_P. A_REGS is needed for address
817 reloads. */
819 m32c_class_likely_spilled_p (int regclass)
821 if (regclass == A_REGS)
822 return 1;
823 return reg_class_size[regclass] == 1;
826 /* Implements CLASS_MAX_NREGS. We calculate this according to its
827 documented meaning, to avoid potential inconsistencies with actual
828 class definitions. */
830 m32c_class_max_nregs (int regclass, enum machine_mode mode)
832 int rn, max = 0;
834 for (rn = 0; rn < FIRST_PSEUDO_REGISTER; rn++)
835 if (class_contents[regclass][0] & (1 << rn))
837 int n = m32c_hard_regno_nregs (rn, mode);
838 if (max < n)
839 max = n;
841 return max;
844 /* Implements CANNOT_CHANGE_MODE_CLASS. Only r0 and r1 can change to
845 QI (r0l, r1l) because the chip doesn't support QI ops on other
846 registers (well, it does on a0/a1 but if we let gcc do that, reload
847 suffers). Otherwise, we allow changes to larger modes. */
849 m32c_cannot_change_mode_class (enum machine_mode from,
850 enum machine_mode to, int rclass)
852 int rn;
853 #if DEBUG0
854 fprintf (stderr, "cannot change from %s to %s in %s\n",
855 mode_name[from], mode_name[to], class_names[rclass]);
856 #endif
858 /* If the larger mode isn't allowed in any of these registers, we
859 can't allow the change. */
860 for (rn = 0; rn < FIRST_PSEUDO_REGISTER; rn++)
861 if (class_contents[rclass][0] & (1 << rn))
862 if (! m32c_hard_regno_ok (rn, to))
863 return 1;
865 if (to == QImode)
866 return (class_contents[rclass][0] & 0x1ffa);
868 if (class_contents[rclass][0] & 0x0005 /* r0, r1 */
869 && GET_MODE_SIZE (from) > 1)
870 return 0;
871 if (GET_MODE_SIZE (from) > 2) /* all other regs */
872 return 0;
874 return 1;
877 /* Helpers for the rest of the file. */
878 /* TRUE if the rtx is a REG rtx for the given register. */
879 #define IS_REG(rtx,regno) (GET_CODE (rtx) == REG \
880 && REGNO (rtx) == regno)
881 /* TRUE if the rtx is a pseudo - specifically, one we can use as a
882 base register in address calculations (hence the "strict"
883 argument). */
884 #define IS_PSEUDO(rtx,strict) (!strict && GET_CODE (rtx) == REG \
885 && (REGNO (rtx) == AP_REGNO \
886 || REGNO (rtx) >= FIRST_PSEUDO_REGISTER))
888 /* Implements CONST_OK_FOR_CONSTRAINT_P. Currently, all constant
889 constraints start with 'I', with the next two characters indicating
890 the type and size of the range allowed. */
892 m32c_const_ok_for_constraint_p (HOST_WIDE_INT value,
893 char c ATTRIBUTE_UNUSED, const char *str)
895 /* s=signed u=unsigned n=nonzero m=minus l=log2able,
896 [sun] bits [SUN] bytes, p=pointer size
897 I[-0-9][0-9] matches that number */
898 if (memcmp (str, "Is3", 3) == 0)
900 return (-8 <= value && value <= 7);
902 if (memcmp (str, "IS1", 3) == 0)
904 return (-128 <= value && value <= 127);
906 if (memcmp (str, "IS2", 3) == 0)
908 return (-32768 <= value && value <= 32767);
910 if (memcmp (str, "IU2", 3) == 0)
912 return (0 <= value && value <= 65535);
914 if (memcmp (str, "IU3", 3) == 0)
916 return (0 <= value && value <= 0x00ffffff);
918 if (memcmp (str, "In4", 3) == 0)
920 return (-8 <= value && value && value <= 8);
922 if (memcmp (str, "In5", 3) == 0)
924 return (-16 <= value && value && value <= 16);
926 if (memcmp (str, "In6", 3) == 0)
928 return (-32 <= value && value && value <= 32);
930 if (memcmp (str, "IM2", 3) == 0)
932 return (-65536 <= value && value && value <= -1);
934 if (memcmp (str, "Ilb", 3) == 0)
936 int b = exact_log2 (value);
937 return (b >= 0 && b <= 7);
939 if (memcmp (str, "Imb", 3) == 0)
941 int b = exact_log2 ((value ^ 0xff) & 0xff);
942 return (b >= 0 && b <= 7);
944 if (memcmp (str, "ImB", 3) == 0)
946 int b = exact_log2 ((value ^ 0xffff) & 0xffff);
947 return (b >= 0 && b <= 7);
949 if (memcmp (str, "Ilw", 3) == 0)
951 int b = exact_log2 (value);
952 return (b >= 0 && b <= 15);
954 if (memcmp (str, "Imw", 3) == 0)
956 int b = exact_log2 ((value ^ 0xffff) & 0xffff);
957 return (b >= 0 && b <= 15);
959 if (memcmp (str, "I00", 3) == 0)
961 return (value == 0);
963 return 0;
966 /* Implements EXTRA_CONSTRAINT_STR (see next function too). 'S' is
967 for memory constraints, plus "Rpa" for PARALLEL rtx's we use for
968 call return values. */
970 m32c_extra_constraint_p2 (rtx value, char c ATTRIBUTE_UNUSED, const char *str)
972 encode_pattern (value);
973 if (memcmp (str, "Sd", 2) == 0)
975 /* This is the common "src/dest" address */
976 rtx r;
977 if (GET_CODE (value) == MEM && CONSTANT_P (XEXP (value, 0)))
978 return 1;
979 if (RTX_IS ("ms") || RTX_IS ("m+si"))
980 return 1;
981 if (RTX_IS ("m++rii"))
983 if (REGNO (patternr[3]) == FB_REGNO
984 && INTVAL (patternr[4]) == 0)
985 return 1;
987 if (RTX_IS ("mr"))
988 r = patternr[1];
989 else if (RTX_IS ("m+ri") || RTX_IS ("m+rs") || RTX_IS ("m+r+si"))
990 r = patternr[2];
991 else
992 return 0;
993 if (REGNO (r) == SP_REGNO)
994 return 0;
995 return m32c_legitimate_address_p (GET_MODE (value), XEXP (value, 0), 1);
997 else if (memcmp (str, "Sa", 2) == 0)
999 rtx r;
1000 if (RTX_IS ("mr"))
1001 r = patternr[1];
1002 else if (RTX_IS ("m+ri"))
1003 r = patternr[2];
1004 else
1005 return 0;
1006 return (IS_REG (r, A0_REGNO) || IS_REG (r, A1_REGNO));
1008 else if (memcmp (str, "Si", 2) == 0)
1010 return (RTX_IS ("mi") || RTX_IS ("ms") || RTX_IS ("m+si"));
1012 else if (memcmp (str, "Ss", 2) == 0)
1014 return ((RTX_IS ("mr")
1015 && (IS_REG (patternr[1], SP_REGNO)))
1016 || (RTX_IS ("m+ri") && (IS_REG (patternr[2], SP_REGNO))));
1018 else if (memcmp (str, "Sf", 2) == 0)
1020 return ((RTX_IS ("mr")
1021 && (IS_REG (patternr[1], FB_REGNO)))
1022 || (RTX_IS ("m+ri") && (IS_REG (patternr[2], FB_REGNO))));
1024 else if (memcmp (str, "Sb", 2) == 0)
1026 return ((RTX_IS ("mr")
1027 && (IS_REG (patternr[1], SB_REGNO)))
1028 || (RTX_IS ("m+ri") && (IS_REG (patternr[2], SB_REGNO))));
1030 else if (memcmp (str, "Sp", 2) == 0)
1032 /* Absolute addresses 0..0x1fff used for bit addressing (I/O ports) */
1033 return (RTX_IS ("mi")
1034 && !(INTVAL (patternr[1]) & ~0x1fff));
1036 else if (memcmp (str, "S1", 2) == 0)
1038 return r1h_operand (value, QImode);
1041 gcc_assert (str[0] != 'S');
1043 if (memcmp (str, "Rpa", 2) == 0)
1044 return GET_CODE (value) == PARALLEL;
1046 return 0;
1049 /* This is for when we're debugging the above. */
1051 m32c_extra_constraint_p (rtx value, char c, const char *str)
1053 int rv = m32c_extra_constraint_p2 (value, c, str);
1054 #if DEBUG0
1055 fprintf (stderr, "\nconstraint %.*s: %d\n", CONSTRAINT_LEN (c, str), str,
1056 rv);
1057 debug_rtx (value);
1058 #endif
1059 return rv;
1062 /* Implements EXTRA_MEMORY_CONSTRAINT. Currently, we only use strings
1063 starting with 'S'. */
1065 m32c_extra_memory_constraint (char c, const char *str ATTRIBUTE_UNUSED)
1067 return c == 'S';
1070 /* Implements EXTRA_ADDRESS_CONSTRAINT. We reserve 'A' strings for these,
1071 but don't currently define any. */
1073 m32c_extra_address_constraint (char c, const char *str ATTRIBUTE_UNUSED)
1075 return c == 'A';
1078 /* STACK AND CALLING */
1080 /* Frame Layout */
1082 /* Implements RETURN_ADDR_RTX. Note that R8C and M16C push 24 bits
1083 (yes, THREE bytes) onto the stack for the return address, but we
1084 don't support pointers bigger than 16 bits on those chips. This
1085 will likely wreak havoc with exception unwinding. FIXME. */
1087 m32c_return_addr_rtx (int count)
1089 enum machine_mode mode;
1090 int offset;
1091 rtx ra_mem;
1093 if (count)
1094 return NULL_RTX;
1095 /* we want 2[$fb] */
1097 if (TARGET_A24)
1099 /* It's four bytes */
1100 mode = PSImode;
1101 offset = 4;
1103 else
1105 /* FIXME: it's really 3 bytes */
1106 mode = HImode;
1107 offset = 2;
1110 ra_mem =
1111 gen_rtx_MEM (mode, plus_constant (gen_rtx_REG (Pmode, FP_REGNO), offset));
1112 return copy_to_mode_reg (mode, ra_mem);
1115 /* Implements INCOMING_RETURN_ADDR_RTX. See comment above. */
1117 m32c_incoming_return_addr_rtx (void)
1119 /* we want [sp] */
1120 return gen_rtx_MEM (PSImode, gen_rtx_REG (PSImode, SP_REGNO));
1123 /* Exception Handling Support */
1125 /* Implements EH_RETURN_DATA_REGNO. Choose registers able to hold
1126 pointers. */
1128 m32c_eh_return_data_regno (int n)
1130 switch (n)
1132 case 0:
1133 return A0_REGNO;
1134 case 1:
1135 if (TARGET_A16)
1136 return R3_REGNO;
1137 else
1138 return R1_REGNO;
1139 default:
1140 return INVALID_REGNUM;
1144 /* Implements EH_RETURN_STACKADJ_RTX. Saved and used later in
1145 m32c_emit_eh_epilogue. */
1147 m32c_eh_return_stackadj_rtx (void)
1149 if (!cfun->machine->eh_stack_adjust)
1151 rtx sa;
1153 sa = gen_rtx_REG (Pmode, R0_REGNO);
1154 cfun->machine->eh_stack_adjust = sa;
1156 return cfun->machine->eh_stack_adjust;
1159 /* Registers That Address the Stack Frame */
1161 /* Implements DWARF_FRAME_REGNUM and DBX_REGISTER_NUMBER. Note that
1162 the original spec called for dwarf numbers to vary with register
1163 width as well, for example, r0l, r0, and r2r0 would each have
1164 different dwarf numbers. GCC doesn't support this, and we don't do
1165 it, and gdb seems to like it this way anyway. */
1166 unsigned int
1167 m32c_dwarf_frame_regnum (int n)
1169 switch (n)
1171 case R0_REGNO:
1172 return 5;
1173 case R1_REGNO:
1174 return 6;
1175 case R2_REGNO:
1176 return 7;
1177 case R3_REGNO:
1178 return 8;
1179 case A0_REGNO:
1180 return 9;
1181 case A1_REGNO:
1182 return 10;
1183 case FB_REGNO:
1184 return 11;
1185 case SB_REGNO:
1186 return 19;
1188 case SP_REGNO:
1189 return 12;
1190 case PC_REGNO:
1191 return 13;
1192 default:
1193 return DWARF_FRAME_REGISTERS + 1;
1197 /* The frame looks like this:
1199 ap -> +------------------------------
1200 | Return address (3 or 4 bytes)
1201 | Saved FB (2 or 4 bytes)
1202 fb -> +------------------------------
1203 | local vars
1204 | register saves fb
1205 | through r0 as needed
1206 sp -> +------------------------------
1209 /* We use this to wrap all emitted insns in the prologue. */
1210 static rtx
1211 F (rtx x)
1213 RTX_FRAME_RELATED_P (x) = 1;
1214 return x;
1217 /* This maps register numbers to the PUSHM/POPM bitfield, and tells us
1218 how much the stack pointer moves for each, for each cpu family. */
1219 static struct
1221 int reg1;
1222 int bit;
1223 int a16_bytes;
1224 int a24_bytes;
1225 } pushm_info[] =
1227 /* These are in reverse push (nearest-to-sp) order. */
1228 { R0_REGNO, 0x80, 2, 2 },
1229 { R1_REGNO, 0x40, 2, 2 },
1230 { R2_REGNO, 0x20, 2, 2 },
1231 { R3_REGNO, 0x10, 2, 2 },
1232 { A0_REGNO, 0x08, 2, 4 },
1233 { A1_REGNO, 0x04, 2, 4 },
1234 { SB_REGNO, 0x02, 2, 4 },
1235 { FB_REGNO, 0x01, 2, 4 }
1238 #define PUSHM_N (sizeof(pushm_info)/sizeof(pushm_info[0]))
1240 /* Returns TRUE if we need to save/restore the given register. We
1241 save everything for exception handlers, so that any register can be
1242 unwound. For interrupt handlers, we save everything if the handler
1243 calls something else (because we don't know what *that* function
1244 might do), but try to be a bit smarter if the handler is a leaf
1245 function. We always save $a0, though, because we use that in the
1246 epilogue to copy $fb to $sp. */
1247 static int
1248 need_to_save (int regno)
1250 if (fixed_regs[regno])
1251 return 0;
1252 if (crtl->calls_eh_return)
1253 return 1;
1254 if (regno == FP_REGNO)
1255 return 0;
1256 if (cfun->machine->is_interrupt
1257 && (!cfun->machine->is_leaf || regno == A0_REGNO))
1258 return 1;
1259 if (df_regs_ever_live_p (regno)
1260 && (!call_used_regs[regno] || cfun->machine->is_interrupt))
1261 return 1;
1262 return 0;
1265 /* This function contains all the intelligence about saving and
1266 restoring registers. It always figures out the register save set.
1267 When called with PP_justcount, it merely returns the size of the
1268 save set (for eliminating the frame pointer, for example). When
1269 called with PP_pushm or PP_popm, it emits the appropriate
1270 instructions for saving (pushm) or restoring (popm) the
1271 registers. */
1272 static int
1273 m32c_pushm_popm (Push_Pop_Type ppt)
1275 int reg_mask = 0;
1276 int byte_count = 0, bytes;
1277 int i;
1278 rtx dwarf_set[PUSHM_N];
1279 int n_dwarfs = 0;
1280 int nosave_mask = 0;
1282 if (crtl->return_rtx
1283 && GET_CODE (crtl->return_rtx) == PARALLEL
1284 && !(crtl->calls_eh_return || cfun->machine->is_interrupt))
1286 rtx exp = XVECEXP (crtl->return_rtx, 0, 0);
1287 rtx rv = XEXP (exp, 0);
1288 int rv_bytes = GET_MODE_SIZE (GET_MODE (rv));
1290 if (rv_bytes > 2)
1291 nosave_mask |= 0x20; /* PSI, SI */
1292 else
1293 nosave_mask |= 0xf0; /* DF */
1294 if (rv_bytes > 4)
1295 nosave_mask |= 0x50; /* DI */
1298 for (i = 0; i < (int) PUSHM_N; i++)
1300 /* Skip if neither register needs saving. */
1301 if (!need_to_save (pushm_info[i].reg1))
1302 continue;
1304 if (pushm_info[i].bit & nosave_mask)
1305 continue;
1307 reg_mask |= pushm_info[i].bit;
1308 bytes = TARGET_A16 ? pushm_info[i].a16_bytes : pushm_info[i].a24_bytes;
1310 if (ppt == PP_pushm)
1312 enum machine_mode mode = (bytes == 2) ? HImode : SImode;
1313 rtx addr;
1315 /* Always use stack_pointer_rtx instead of calling
1316 rtx_gen_REG ourselves. Code elsewhere in GCC assumes
1317 that there is a single rtx representing the stack pointer,
1318 namely stack_pointer_rtx, and uses == to recognize it. */
1319 addr = stack_pointer_rtx;
1321 if (byte_count != 0)
1322 addr = gen_rtx_PLUS (GET_MODE (addr), addr, GEN_INT (byte_count));
1324 dwarf_set[n_dwarfs++] =
1325 gen_rtx_SET (VOIDmode,
1326 gen_rtx_MEM (mode, addr),
1327 gen_rtx_REG (mode, pushm_info[i].reg1));
1328 F (dwarf_set[n_dwarfs - 1]);
1331 byte_count += bytes;
1334 if (cfun->machine->is_interrupt)
1336 cfun->machine->intr_pushm = reg_mask & 0xfe;
1337 reg_mask = 0;
1338 byte_count = 0;
1341 if (cfun->machine->is_interrupt)
1342 for (i = MEM0_REGNO; i <= MEM7_REGNO; i++)
1343 if (need_to_save (i))
1345 byte_count += 2;
1346 cfun->machine->intr_pushmem[i - MEM0_REGNO] = 1;
1349 if (ppt == PP_pushm && byte_count)
1351 rtx note = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (n_dwarfs + 1));
1352 rtx pushm;
1354 if (reg_mask)
1356 XVECEXP (note, 0, 0)
1357 = gen_rtx_SET (VOIDmode,
1358 stack_pointer_rtx,
1359 gen_rtx_PLUS (GET_MODE (stack_pointer_rtx),
1360 stack_pointer_rtx,
1361 GEN_INT (-byte_count)));
1362 F (XVECEXP (note, 0, 0));
1364 for (i = 0; i < n_dwarfs; i++)
1365 XVECEXP (note, 0, i + 1) = dwarf_set[i];
1367 pushm = F (emit_insn (gen_pushm (GEN_INT (reg_mask))));
1369 REG_NOTES (pushm) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, note,
1370 REG_NOTES (pushm));
1373 if (cfun->machine->is_interrupt)
1374 for (i = MEM0_REGNO; i <= MEM7_REGNO; i++)
1375 if (cfun->machine->intr_pushmem[i - MEM0_REGNO])
1377 if (TARGET_A16)
1378 pushm = emit_insn (gen_pushhi_16 (gen_rtx_REG (HImode, i)));
1379 else
1380 pushm = emit_insn (gen_pushhi_24 (gen_rtx_REG (HImode, i)));
1381 F (pushm);
1384 if (ppt == PP_popm && byte_count)
1386 if (cfun->machine->is_interrupt)
1387 for (i = MEM7_REGNO; i >= MEM0_REGNO; i--)
1388 if (cfun->machine->intr_pushmem[i - MEM0_REGNO])
1390 if (TARGET_A16)
1391 emit_insn (gen_pophi_16 (gen_rtx_REG (HImode, i)));
1392 else
1393 emit_insn (gen_pophi_24 (gen_rtx_REG (HImode, i)));
1395 if (reg_mask)
1396 emit_insn (gen_popm (GEN_INT (reg_mask)));
1399 return byte_count;
1402 /* Implements INITIAL_ELIMINATION_OFFSET. See the comment above that
1403 diagrams our call frame. */
1405 m32c_initial_elimination_offset (int from, int to)
1407 int ofs = 0;
1409 if (from == AP_REGNO)
1411 if (TARGET_A16)
1412 ofs += 5;
1413 else
1414 ofs += 8;
1417 if (to == SP_REGNO)
1419 ofs += m32c_pushm_popm (PP_justcount);
1420 ofs += get_frame_size ();
1423 /* Account for push rounding. */
1424 if (TARGET_A24)
1425 ofs = (ofs + 1) & ~1;
1426 #if DEBUG0
1427 fprintf (stderr, "initial_elimination_offset from=%d to=%d, ofs=%d\n", from,
1428 to, ofs);
1429 #endif
1430 return ofs;
1433 /* Passing Function Arguments on the Stack */
1435 /* Implements PUSH_ROUNDING. The R8C and M16C have byte stacks, the
1436 M32C has word stacks. */
1438 m32c_push_rounding (int n)
1440 if (TARGET_R8C || TARGET_M16C)
1441 return n;
1442 return (n + 1) & ~1;
1445 /* Passing Arguments in Registers */
1447 /* Implements FUNCTION_ARG. Arguments are passed partly in registers,
1448 partly on stack. If our function returns a struct, a pointer to a
1449 buffer for it is at the top of the stack (last thing pushed). The
1450 first few real arguments may be in registers as follows:
1452 R8C/M16C: arg1 in r1 if it's QI or HI (else it's pushed on stack)
1453 arg2 in r2 if it's HI (else pushed on stack)
1454 rest on stack
1455 M32C: arg1 in r0 if it's QI or HI (else it's pushed on stack)
1456 rest on stack
1458 Structs are not passed in registers, even if they fit. Only
1459 integer and pointer types are passed in registers.
1461 Note that when arg1 doesn't fit in r1, arg2 may still be passed in
1462 r2 if it fits. */
1464 m32c_function_arg (CUMULATIVE_ARGS * ca,
1465 enum machine_mode mode, tree type, int named)
1467 /* Can return a reg, parallel, or 0 for stack */
1468 rtx rv = NULL_RTX;
1469 #if DEBUG0
1470 fprintf (stderr, "func_arg %d (%s, %d)\n",
1471 ca->parm_num, mode_name[mode], named);
1472 debug_tree (type);
1473 #endif
1475 if (mode == VOIDmode)
1476 return GEN_INT (0);
1478 if (ca->force_mem || !named)
1480 #if DEBUG0
1481 fprintf (stderr, "func arg: force %d named %d, mem\n", ca->force_mem,
1482 named);
1483 #endif
1484 return NULL_RTX;
1487 if (type && INTEGRAL_TYPE_P (type) && POINTER_TYPE_P (type))
1488 return NULL_RTX;
1490 if (type && AGGREGATE_TYPE_P (type))
1491 return NULL_RTX;
1493 switch (ca->parm_num)
1495 case 1:
1496 if (GET_MODE_SIZE (mode) == 1 || GET_MODE_SIZE (mode) == 2)
1497 rv = gen_rtx_REG (mode, TARGET_A16 ? R1_REGNO : R0_REGNO);
1498 break;
1500 case 2:
1501 if (TARGET_A16 && GET_MODE_SIZE (mode) == 2)
1502 rv = gen_rtx_REG (mode, R2_REGNO);
1503 break;
1506 #if DEBUG0
1507 debug_rtx (rv);
1508 #endif
1509 return rv;
1512 #undef TARGET_PASS_BY_REFERENCE
1513 #define TARGET_PASS_BY_REFERENCE m32c_pass_by_reference
1514 static bool
1515 m32c_pass_by_reference (CUMULATIVE_ARGS * ca ATTRIBUTE_UNUSED,
1516 enum machine_mode mode ATTRIBUTE_UNUSED,
1517 const_tree type ATTRIBUTE_UNUSED,
1518 bool named ATTRIBUTE_UNUSED)
1520 return 0;
1523 /* Implements INIT_CUMULATIVE_ARGS. */
1524 void
1525 m32c_init_cumulative_args (CUMULATIVE_ARGS * ca,
1526 tree fntype,
1527 rtx libname ATTRIBUTE_UNUSED,
1528 tree fndecl,
1529 int n_named_args ATTRIBUTE_UNUSED)
1531 if (fntype && aggregate_value_p (TREE_TYPE (fntype), fndecl))
1532 ca->force_mem = 1;
1533 else
1534 ca->force_mem = 0;
1535 ca->parm_num = 1;
1538 /* Implements FUNCTION_ARG_ADVANCE. force_mem is set for functions
1539 returning structures, so we always reset that. Otherwise, we only
1540 need to know the sequence number of the argument to know what to do
1541 with it. */
1542 void
1543 m32c_function_arg_advance (CUMULATIVE_ARGS * ca,
1544 enum machine_mode mode ATTRIBUTE_UNUSED,
1545 tree type ATTRIBUTE_UNUSED,
1546 int named ATTRIBUTE_UNUSED)
1548 if (ca->force_mem)
1549 ca->force_mem = 0;
1550 else
1551 ca->parm_num++;
1554 /* Implements FUNCTION_ARG_REGNO_P. */
1556 m32c_function_arg_regno_p (int r)
1558 if (TARGET_A24)
1559 return (r == R0_REGNO);
1560 return (r == R1_REGNO || r == R2_REGNO);
1563 /* HImode and PSImode are the two "native" modes as far as GCC is
1564 concerned, but the chips also support a 32-bit mode which is used
1565 for some opcodes in R8C/M16C and for reset vectors and such. */
1566 #undef TARGET_VALID_POINTER_MODE
1567 #define TARGET_VALID_POINTER_MODE m32c_valid_pointer_mode
1568 static bool
1569 m32c_valid_pointer_mode (enum machine_mode mode)
1571 if (mode == HImode
1572 || mode == PSImode
1573 || mode == SImode
1575 return 1;
1576 return 0;
1579 /* How Scalar Function Values Are Returned */
1581 /* Implements LIBCALL_VALUE. Most values are returned in $r0, or some
1582 combination of registers starting there (r2r0 for longs, r3r1r2r0
1583 for long long, r3r2r1r0 for doubles), except that that ABI
1584 currently doesn't work because it ends up using all available
1585 general registers and gcc often can't compile it. So, instead, we
1586 return anything bigger than 16 bits in "mem0" (effectively, a
1587 memory location). */
1589 m32c_libcall_value (enum machine_mode mode)
1591 /* return reg or parallel */
1592 #if 0
1593 /* FIXME: GCC has difficulty returning large values in registers,
1594 because that ties up most of the general registers and gives the
1595 register allocator little to work with. Until we can resolve
1596 this, large values are returned in memory. */
1597 if (mode == DFmode)
1599 rtx rv;
1601 rv = gen_rtx_PARALLEL (mode, rtvec_alloc (4));
1602 XVECEXP (rv, 0, 0) = gen_rtx_EXPR_LIST (VOIDmode,
1603 gen_rtx_REG (HImode,
1604 R0_REGNO),
1605 GEN_INT (0));
1606 XVECEXP (rv, 0, 1) = gen_rtx_EXPR_LIST (VOIDmode,
1607 gen_rtx_REG (HImode,
1608 R1_REGNO),
1609 GEN_INT (2));
1610 XVECEXP (rv, 0, 2) = gen_rtx_EXPR_LIST (VOIDmode,
1611 gen_rtx_REG (HImode,
1612 R2_REGNO),
1613 GEN_INT (4));
1614 XVECEXP (rv, 0, 3) = gen_rtx_EXPR_LIST (VOIDmode,
1615 gen_rtx_REG (HImode,
1616 R3_REGNO),
1617 GEN_INT (6));
1618 return rv;
1621 if (TARGET_A24 && GET_MODE_SIZE (mode) > 2)
1623 rtx rv;
1625 rv = gen_rtx_PARALLEL (mode, rtvec_alloc (1));
1626 XVECEXP (rv, 0, 0) = gen_rtx_EXPR_LIST (VOIDmode,
1627 gen_rtx_REG (mode,
1628 R0_REGNO),
1629 GEN_INT (0));
1630 return rv;
1632 #endif
1634 if (GET_MODE_SIZE (mode) > 2)
1635 return gen_rtx_REG (mode, MEM0_REGNO);
1636 return gen_rtx_REG (mode, R0_REGNO);
1639 /* Implements FUNCTION_VALUE. Functions and libcalls have the same
1640 conventions. */
1642 m32c_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
1644 /* return reg or parallel */
1645 const enum machine_mode mode = TYPE_MODE (valtype);
1646 return m32c_libcall_value (mode);
1649 /* How Large Values Are Returned */
1651 /* We return structures by pushing the address on the stack, even if
1652 we use registers for the first few "real" arguments. */
1653 #undef TARGET_STRUCT_VALUE_RTX
1654 #define TARGET_STRUCT_VALUE_RTX m32c_struct_value_rtx
1655 static rtx
1656 m32c_struct_value_rtx (tree fndecl ATTRIBUTE_UNUSED,
1657 int incoming ATTRIBUTE_UNUSED)
1659 return 0;
1662 /* Function Entry and Exit */
1664 /* Implements EPILOGUE_USES. Interrupts restore all registers. */
1666 m32c_epilogue_uses (int regno ATTRIBUTE_UNUSED)
1668 if (cfun->machine->is_interrupt)
1669 return 1;
1670 return 0;
1673 /* Implementing the Varargs Macros */
1675 #undef TARGET_STRICT_ARGUMENT_NAMING
1676 #define TARGET_STRICT_ARGUMENT_NAMING m32c_strict_argument_naming
1677 static bool
1678 m32c_strict_argument_naming (CUMULATIVE_ARGS * ca ATTRIBUTE_UNUSED)
1680 return 1;
1683 /* Trampolines for Nested Functions */
1686 m16c:
1687 1 0000 75C43412 mov.w #0x1234,a0
1688 2 0004 FC000000 jmp.a label
1690 m32c:
1691 1 0000 BC563412 mov.l:s #0x123456,a0
1692 2 0004 CC000000 jmp.a label
1695 /* Implements TRAMPOLINE_SIZE. */
1697 m32c_trampoline_size (void)
1699 /* Allocate extra space so we can avoid the messy shifts when we
1700 initialize the trampoline; we just write past the end of the
1701 opcode. */
1702 return TARGET_A16 ? 8 : 10;
1705 /* Implements TRAMPOLINE_ALIGNMENT. */
1707 m32c_trampoline_alignment (void)
1709 return 2;
1712 /* Implements INITIALIZE_TRAMPOLINE. */
1713 void
1714 m32c_initialize_trampoline (rtx tramp, rtx function, rtx chainval)
1716 #define A0(m,i) gen_rtx_MEM (m, plus_constant (tramp, i))
1717 if (TARGET_A16)
1719 /* Note: we subtract a "word" because the moves want signed
1720 constants, not unsigned constants. */
1721 emit_move_insn (A0 (HImode, 0), GEN_INT (0xc475 - 0x10000));
1722 emit_move_insn (A0 (HImode, 2), chainval);
1723 emit_move_insn (A0 (QImode, 4), GEN_INT (0xfc - 0x100));
1724 /* We use 16-bit addresses here, but store the zero to turn it
1725 into a 24-bit offset. */
1726 emit_move_insn (A0 (HImode, 5), function);
1727 emit_move_insn (A0 (QImode, 7), GEN_INT (0x00));
1729 else
1731 /* Note that the PSI moves actually write 4 bytes. Make sure we
1732 write stuff out in the right order, and leave room for the
1733 extra byte at the end. */
1734 emit_move_insn (A0 (QImode, 0), GEN_INT (0xbc - 0x100));
1735 emit_move_insn (A0 (PSImode, 1), chainval);
1736 emit_move_insn (A0 (QImode, 4), GEN_INT (0xcc - 0x100));
1737 emit_move_insn (A0 (PSImode, 5), function);
1739 #undef A0
1742 /* Implicit Calls to Library Routines */
1744 #undef TARGET_INIT_LIBFUNCS
1745 #define TARGET_INIT_LIBFUNCS m32c_init_libfuncs
1746 static void
1747 m32c_init_libfuncs (void)
1749 if (TARGET_A24)
1751 /* We do this because the M32C has an HImode operand, but the
1752 M16C has an 8-bit operand. Since gcc looks at the match data
1753 and not the expanded rtl, we have to reset the array so that
1754 the right modes are found. */
1755 setcc_gen_code[EQ] = CODE_FOR_seq_24;
1756 setcc_gen_code[NE] = CODE_FOR_sne_24;
1757 setcc_gen_code[GT] = CODE_FOR_sgt_24;
1758 setcc_gen_code[GE] = CODE_FOR_sge_24;
1759 setcc_gen_code[LT] = CODE_FOR_slt_24;
1760 setcc_gen_code[LE] = CODE_FOR_sle_24;
1761 setcc_gen_code[GTU] = CODE_FOR_sgtu_24;
1762 setcc_gen_code[GEU] = CODE_FOR_sgeu_24;
1763 setcc_gen_code[LTU] = CODE_FOR_sltu_24;
1764 setcc_gen_code[LEU] = CODE_FOR_sleu_24;
1768 /* Addressing Modes */
1770 /* Used by GO_IF_LEGITIMATE_ADDRESS. The r8c/m32c family supports a
1771 wide range of non-orthogonal addressing modes, including the
1772 ability to double-indirect on *some* of them. Not all insns
1773 support all modes, either, but we rely on predicates and
1774 constraints to deal with that. */
1776 m32c_legitimate_address_p (enum machine_mode mode, rtx x, int strict)
1778 int mode_adjust;
1779 if (CONSTANT_P (x))
1780 return 1;
1782 /* Wide references to memory will be split after reload, so we must
1783 ensure that all parts of such splits remain legitimate
1784 addresses. */
1785 mode_adjust = GET_MODE_SIZE (mode) - 1;
1787 /* allowing PLUS yields mem:HI(plus:SI(mem:SI(plus:SI in m32c_split_move */
1788 if (GET_CODE (x) == PRE_DEC
1789 || GET_CODE (x) == POST_INC || GET_CODE (x) == PRE_MODIFY)
1791 return (GET_CODE (XEXP (x, 0)) == REG
1792 && REGNO (XEXP (x, 0)) == SP_REGNO);
1795 #if 0
1796 /* This is the double indirection detection, but it currently
1797 doesn't work as cleanly as this code implies, so until we've had
1798 a chance to debug it, leave it disabled. */
1799 if (TARGET_A24 && GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) != PLUS)
1801 #if DEBUG_DOUBLE
1802 fprintf (stderr, "double indirect\n");
1803 #endif
1804 x = XEXP (x, 0);
1806 #endif
1808 encode_pattern (x);
1809 if (RTX_IS ("r"))
1811 /* Most indexable registers can be used without displacements,
1812 although some of them will be emitted with an explicit zero
1813 to please the assembler. */
1814 switch (REGNO (patternr[0]))
1816 case A0_REGNO:
1817 case A1_REGNO:
1818 case SB_REGNO:
1819 case FB_REGNO:
1820 case SP_REGNO:
1821 return 1;
1823 default:
1824 if (IS_PSEUDO (patternr[0], strict))
1825 return 1;
1826 return 0;
1829 if (RTX_IS ("+ri"))
1831 /* This is more interesting, because different base registers
1832 allow for different displacements - both range and signedness
1833 - and it differs from chip series to chip series too. */
1834 int rn = REGNO (patternr[1]);
1835 HOST_WIDE_INT offs = INTVAL (patternr[2]);
1836 switch (rn)
1838 case A0_REGNO:
1839 case A1_REGNO:
1840 case SB_REGNO:
1841 /* The syntax only allows positive offsets, but when the
1842 offsets span the entire memory range, we can simulate
1843 negative offsets by wrapping. */
1844 if (TARGET_A16)
1845 return (offs >= -65536 && offs <= 65535 - mode_adjust);
1846 if (rn == SB_REGNO)
1847 return (offs >= 0 && offs <= 65535 - mode_adjust);
1848 /* A0 or A1 */
1849 return (offs >= -16777216 && offs <= 16777215);
1851 case FB_REGNO:
1852 if (TARGET_A16)
1853 return (offs >= -128 && offs <= 127 - mode_adjust);
1854 return (offs >= -65536 && offs <= 65535 - mode_adjust);
1856 case SP_REGNO:
1857 return (offs >= -128 && offs <= 127 - mode_adjust);
1859 default:
1860 if (IS_PSEUDO (patternr[1], strict))
1861 return 1;
1862 return 0;
1865 if (RTX_IS ("+rs") || RTX_IS ("+r+si"))
1867 rtx reg = patternr[1];
1869 /* We don't know where the symbol is, so only allow base
1870 registers which support displacements spanning the whole
1871 address range. */
1872 switch (REGNO (reg))
1874 case A0_REGNO:
1875 case A1_REGNO:
1876 /* $sb needs a secondary reload, but since it's involved in
1877 memory address reloads too, we don't deal with it very
1878 well. */
1879 /* case SB_REGNO: */
1880 return 1;
1881 default:
1882 if (IS_PSEUDO (reg, strict))
1883 return 1;
1884 return 0;
1887 return 0;
1890 /* Implements REG_OK_FOR_BASE_P. */
1892 m32c_reg_ok_for_base_p (rtx x, int strict)
1894 if (GET_CODE (x) != REG)
1895 return 0;
1896 switch (REGNO (x))
1898 case A0_REGNO:
1899 case A1_REGNO:
1900 case SB_REGNO:
1901 case FB_REGNO:
1902 case SP_REGNO:
1903 return 1;
1904 default:
1905 if (IS_PSEUDO (x, strict))
1906 return 1;
1907 return 0;
1911 /* We have three choices for choosing fb->aN offsets. If we choose -128,
1912 we need one MOVA -128[fb],aN opcode and 16-bit aN displacements,
1913 like this:
1914 EB 4B FF mova -128[$fb],$a0
1915 D8 0C FF FF mov.w:Q #0,-1[$a0]
1917 Alternately, we subtract the frame size, and hopefully use 8-bit aN
1918 displacements:
1919 7B F4 stc $fb,$a0
1920 77 54 00 01 sub #256,$a0
1921 D8 08 01 mov.w:Q #0,1[$a0]
1923 If we don't offset (i.e. offset by zero), we end up with:
1924 7B F4 stc $fb,$a0
1925 D8 0C 00 FF mov.w:Q #0,-256[$a0]
1927 We have to subtract *something* so that we have a PLUS rtx to mark
1928 that we've done this reload. The -128 offset will never result in
1929 an 8-bit aN offset, and the payoff for the second case is five
1930 loads *if* those loads are within 256 bytes of the other end of the
1931 frame, so the third case seems best. Note that we subtract the
1932 zero, but detect that in the addhi3 pattern. */
1934 #define BIG_FB_ADJ 0
1936 /* Implements LEGITIMIZE_ADDRESS. The only address we really have to
1937 worry about is frame base offsets, as $fb has a limited
1938 displacement range. We deal with this by attempting to reload $fb
1939 itself into an address register; that seems to result in the best
1940 code. */
1941 #undef TARGET_LEGITIMIZE_ADDRESS
1942 #define TARGET_LEGITIMIZE_ADDRESS m32c_legitimize_address
1943 static rtx
1944 m32c_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
1945 enum machine_mode mode)
1947 #if DEBUG0
1948 fprintf (stderr, "m32c_legitimize_address for mode %s\n", mode_name[mode]);
1949 debug_rtx (x);
1950 fprintf (stderr, "\n");
1951 #endif
1953 if (GET_CODE (x) == PLUS
1954 && GET_CODE (XEXP (x, 0)) == REG
1955 && REGNO (XEXP (x, 0)) == FB_REGNO
1956 && GET_CODE (XEXP (x, 1)) == CONST_INT
1957 && (INTVAL (XEXP (x, 1)) < -128
1958 || INTVAL (XEXP (x, 1)) > (128 - GET_MODE_SIZE (mode))))
1960 /* reload FB to A_REGS */
1961 rtx temp = gen_reg_rtx (Pmode);
1962 x = copy_rtx (x);
1963 emit_insn (gen_rtx_SET (VOIDmode, temp, XEXP (x, 0)));
1964 XEXP (x, 0) = temp;
1967 return x;
1970 /* Implements LEGITIMIZE_RELOAD_ADDRESS. See comment above. */
1972 m32c_legitimize_reload_address (rtx * x,
1973 enum machine_mode mode,
1974 int opnum,
1975 int type, int ind_levels ATTRIBUTE_UNUSED)
1977 #if DEBUG0
1978 fprintf (stderr, "\nm32c_legitimize_reload_address for mode %s\n",
1979 mode_name[mode]);
1980 debug_rtx (*x);
1981 #endif
1983 /* At one point, this function tried to get $fb copied to an address
1984 register, which in theory would maximize sharing, but gcc was
1985 *also* still trying to reload the whole address, and we'd run out
1986 of address registers. So we let gcc do the naive (but safe)
1987 reload instead, when the above function doesn't handle it for
1990 The code below is a second attempt at the above. */
1992 if (GET_CODE (*x) == PLUS
1993 && GET_CODE (XEXP (*x, 0)) == REG
1994 && REGNO (XEXP (*x, 0)) == FB_REGNO
1995 && GET_CODE (XEXP (*x, 1)) == CONST_INT
1996 && (INTVAL (XEXP (*x, 1)) < -128
1997 || INTVAL (XEXP (*x, 1)) > (128 - GET_MODE_SIZE (mode))))
1999 rtx sum;
2000 int offset = INTVAL (XEXP (*x, 1));
2001 int adjustment = -BIG_FB_ADJ;
2003 sum = gen_rtx_PLUS (Pmode, XEXP (*x, 0),
2004 GEN_INT (adjustment));
2005 *x = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - adjustment));
2006 if (type == RELOAD_OTHER)
2007 type = RELOAD_FOR_OTHER_ADDRESS;
2008 push_reload (sum, NULL_RTX, &XEXP (*x, 0), NULL,
2009 A_REGS, Pmode, VOIDmode, 0, 0, opnum,
2010 type);
2011 return 1;
2014 if (GET_CODE (*x) == PLUS
2015 && GET_CODE (XEXP (*x, 0)) == PLUS
2016 && GET_CODE (XEXP (XEXP (*x, 0), 0)) == REG
2017 && REGNO (XEXP (XEXP (*x, 0), 0)) == FB_REGNO
2018 && GET_CODE (XEXP (XEXP (*x, 0), 1)) == CONST_INT
2019 && GET_CODE (XEXP (*x, 1)) == CONST_INT
2022 if (type == RELOAD_OTHER)
2023 type = RELOAD_FOR_OTHER_ADDRESS;
2024 push_reload (XEXP (*x, 0), NULL_RTX, &XEXP (*x, 0), NULL,
2025 A_REGS, Pmode, VOIDmode, 0, 0, opnum,
2026 type);
2027 return 1;
2030 return 0;
2033 /* Implements LEGITIMATE_CONSTANT_P. We split large constants anyway,
2034 so we can allow anything. */
2036 m32c_legitimate_constant_p (rtx x ATTRIBUTE_UNUSED)
2038 return 1;
2042 /* Condition Code Status */
2044 #undef TARGET_FIXED_CONDITION_CODE_REGS
2045 #define TARGET_FIXED_CONDITION_CODE_REGS m32c_fixed_condition_code_regs
2046 static bool
2047 m32c_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
2049 *p1 = FLG_REGNO;
2050 *p2 = INVALID_REGNUM;
2051 return true;
2054 /* Describing Relative Costs of Operations */
2056 /* Implements REGISTER_MOVE_COST. We make impossible moves
2057 prohibitively expensive, like trying to put QIs in r2/r3 (there are
2058 no opcodes to do that). We also discourage use of mem* registers
2059 since they're really memory. */
2061 m32c_register_move_cost (enum machine_mode mode, int from, int to)
2063 int cost = COSTS_N_INSNS (3);
2064 int cc = class_contents[from][0] | class_contents[to][0];
2065 /* FIXME: pick real values, but not 2 for now. */
2066 if (mode == QImode && (cc & class_contents[R23_REGS][0]))
2068 if (!(cc & ~class_contents[R23_REGS][0]))
2069 cost = COSTS_N_INSNS (1000);
2070 else
2071 cost = COSTS_N_INSNS (80);
2074 if (!class_can_hold_mode (from, mode) || !class_can_hold_mode (to, mode))
2075 cost = COSTS_N_INSNS (1000);
2077 if (classes_intersect (from, CR_REGS))
2078 cost += COSTS_N_INSNS (5);
2080 if (classes_intersect (to, CR_REGS))
2081 cost += COSTS_N_INSNS (5);
2083 if (from == MEM_REGS || to == MEM_REGS)
2084 cost += COSTS_N_INSNS (50);
2085 else if (classes_intersect (from, MEM_REGS)
2086 || classes_intersect (to, MEM_REGS))
2087 cost += COSTS_N_INSNS (10);
2089 #if DEBUG0
2090 fprintf (stderr, "register_move_cost %s from %s to %s = %d\n",
2091 mode_name[mode], class_names[from], class_names[to], cost);
2092 #endif
2093 return cost;
2096 /* Implements MEMORY_MOVE_COST. */
2098 m32c_memory_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
2099 int reg_class ATTRIBUTE_UNUSED,
2100 int in ATTRIBUTE_UNUSED)
2102 /* FIXME: pick real values. */
2103 return COSTS_N_INSNS (10);
2106 /* Here we try to describe when we use multiple opcodes for one RTX so
2107 that gcc knows when to use them. */
2108 #undef TARGET_RTX_COSTS
2109 #define TARGET_RTX_COSTS m32c_rtx_costs
2110 static bool
2111 m32c_rtx_costs (rtx x, int code, int outer_code, int *total,
2112 bool speed ATTRIBUTE_UNUSED)
2114 switch (code)
2116 case REG:
2117 if (REGNO (x) >= MEM0_REGNO && REGNO (x) <= MEM7_REGNO)
2118 *total += COSTS_N_INSNS (500);
2119 else
2120 *total += COSTS_N_INSNS (1);
2121 return true;
2123 case ASHIFT:
2124 case LSHIFTRT:
2125 case ASHIFTRT:
2126 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
2128 /* mov.b r1l, r1h */
2129 *total += COSTS_N_INSNS (1);
2130 return true;
2132 if (INTVAL (XEXP (x, 1)) > 8
2133 || INTVAL (XEXP (x, 1)) < -8)
2135 /* mov.b #N, r1l */
2136 /* mov.b r1l, r1h */
2137 *total += COSTS_N_INSNS (2);
2138 return true;
2140 return true;
2142 case LE:
2143 case LEU:
2144 case LT:
2145 case LTU:
2146 case GT:
2147 case GTU:
2148 case GE:
2149 case GEU:
2150 case NE:
2151 case EQ:
2152 if (outer_code == SET)
2154 *total += COSTS_N_INSNS (2);
2155 return true;
2157 break;
2159 case ZERO_EXTRACT:
2161 rtx dest = XEXP (x, 0);
2162 rtx addr = XEXP (dest, 0);
2163 switch (GET_CODE (addr))
2165 case CONST_INT:
2166 *total += COSTS_N_INSNS (1);
2167 break;
2168 case SYMBOL_REF:
2169 *total += COSTS_N_INSNS (3);
2170 break;
2171 default:
2172 *total += COSTS_N_INSNS (2);
2173 break;
2175 return true;
2177 break;
2179 default:
2180 /* Reasonable default. */
2181 if (TARGET_A16 && GET_MODE(x) == SImode)
2182 *total += COSTS_N_INSNS (2);
2183 break;
2185 return false;
2188 #undef TARGET_ADDRESS_COST
2189 #define TARGET_ADDRESS_COST m32c_address_cost
2190 static int
2191 m32c_address_cost (rtx addr, bool speed ATTRIBUTE_UNUSED)
2193 int i;
2194 /* fprintf(stderr, "\naddress_cost\n");
2195 debug_rtx(addr);*/
2196 switch (GET_CODE (addr))
2198 case CONST_INT:
2199 i = INTVAL (addr);
2200 if (i == 0)
2201 return COSTS_N_INSNS(1);
2202 if (0 < i && i <= 255)
2203 return COSTS_N_INSNS(2);
2204 if (0 < i && i <= 65535)
2205 return COSTS_N_INSNS(3);
2206 return COSTS_N_INSNS(4);
2207 case SYMBOL_REF:
2208 return COSTS_N_INSNS(4);
2209 case REG:
2210 return COSTS_N_INSNS(1);
2211 case PLUS:
2212 if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
2214 i = INTVAL (XEXP (addr, 1));
2215 if (i == 0)
2216 return COSTS_N_INSNS(1);
2217 if (0 < i && i <= 255)
2218 return COSTS_N_INSNS(2);
2219 if (0 < i && i <= 65535)
2220 return COSTS_N_INSNS(3);
2222 return COSTS_N_INSNS(4);
2223 default:
2224 return 0;
2228 /* Defining the Output Assembler Language */
2230 /* The Overall Framework of an Assembler File */
2232 #undef TARGET_HAVE_NAMED_SECTIONS
2233 #define TARGET_HAVE_NAMED_SECTIONS true
2235 /* Output of Data */
2237 /* We may have 24 bit sizes, which is the native address size.
2238 Currently unused, but provided for completeness. */
2239 #undef TARGET_ASM_INTEGER
2240 #define TARGET_ASM_INTEGER m32c_asm_integer
2241 static bool
2242 m32c_asm_integer (rtx x, unsigned int size, int aligned_p)
2244 switch (size)
2246 case 3:
2247 fprintf (asm_out_file, "\t.3byte\t");
2248 output_addr_const (asm_out_file, x);
2249 fputc ('\n', asm_out_file);
2250 return true;
2251 case 4:
2252 if (GET_CODE (x) == SYMBOL_REF)
2254 fprintf (asm_out_file, "\t.long\t");
2255 output_addr_const (asm_out_file, x);
2256 fputc ('\n', asm_out_file);
2257 return true;
2259 break;
2261 return default_assemble_integer (x, size, aligned_p);
2264 /* Output of Assembler Instructions */
2266 /* We use a lookup table because the addressing modes are non-orthogonal. */
2268 static struct
2270 char code;
2271 char const *pattern;
2272 char const *format;
2274 const conversions[] = {
2275 { 0, "r", "0" },
2277 { 0, "mr", "z[1]" },
2278 { 0, "m+ri", "3[2]" },
2279 { 0, "m+rs", "3[2]" },
2280 { 0, "m+r+si", "4+5[2]" },
2281 { 0, "ms", "1" },
2282 { 0, "mi", "1" },
2283 { 0, "m+si", "2+3" },
2285 { 0, "mmr", "[z[2]]" },
2286 { 0, "mm+ri", "[4[3]]" },
2287 { 0, "mm+rs", "[4[3]]" },
2288 { 0, "mm+r+si", "[5+6[3]]" },
2289 { 0, "mms", "[[2]]" },
2290 { 0, "mmi", "[[2]]" },
2291 { 0, "mm+si", "[4[3]]" },
2293 { 0, "i", "#0" },
2294 { 0, "s", "#0" },
2295 { 0, "+si", "#1+2" },
2296 { 0, "l", "#0" },
2298 { 'l', "l", "0" },
2299 { 'd', "i", "0" },
2300 { 'd', "s", "0" },
2301 { 'd', "+si", "1+2" },
2302 { 'D', "i", "0" },
2303 { 'D', "s", "0" },
2304 { 'D', "+si", "1+2" },
2305 { 'x', "i", "#0" },
2306 { 'X', "i", "#0" },
2307 { 'm', "i", "#0" },
2308 { 'b', "i", "#0" },
2309 { 'B', "i", "0" },
2310 { 'p', "i", "0" },
2312 { 0, 0, 0 }
2315 /* This is in order according to the bitfield that pushm/popm use. */
2316 static char const *pushm_regs[] = {
2317 "fb", "sb", "a1", "a0", "r3", "r2", "r1", "r0"
2320 /* Implements PRINT_OPERAND. */
2321 void
2322 m32c_print_operand (FILE * file, rtx x, int code)
2324 int i, j, b;
2325 const char *comma;
2326 HOST_WIDE_INT ival;
2327 int unsigned_const = 0;
2328 int force_sign;
2330 /* Multiplies; constants are converted to sign-extended format but
2331 we need unsigned, so 'u' and 'U' tell us what size unsigned we
2332 need. */
2333 if (code == 'u')
2335 unsigned_const = 2;
2336 code = 0;
2338 if (code == 'U')
2340 unsigned_const = 1;
2341 code = 0;
2343 /* This one is only for debugging; you can put it in a pattern to
2344 force this error. */
2345 if (code == '!')
2347 fprintf (stderr, "dj: unreviewed pattern:");
2348 if (current_output_insn)
2349 debug_rtx (current_output_insn);
2350 gcc_unreachable ();
2352 /* PSImode operations are either .w or .l depending on the target. */
2353 if (code == '&')
2355 if (TARGET_A16)
2356 fprintf (file, "w");
2357 else
2358 fprintf (file, "l");
2359 return;
2361 /* Inverted conditionals. */
2362 if (code == 'C')
2364 switch (GET_CODE (x))
2366 case LE:
2367 fputs ("gt", file);
2368 break;
2369 case LEU:
2370 fputs ("gtu", file);
2371 break;
2372 case LT:
2373 fputs ("ge", file);
2374 break;
2375 case LTU:
2376 fputs ("geu", file);
2377 break;
2378 case GT:
2379 fputs ("le", file);
2380 break;
2381 case GTU:
2382 fputs ("leu", file);
2383 break;
2384 case GE:
2385 fputs ("lt", file);
2386 break;
2387 case GEU:
2388 fputs ("ltu", file);
2389 break;
2390 case NE:
2391 fputs ("eq", file);
2392 break;
2393 case EQ:
2394 fputs ("ne", file);
2395 break;
2396 default:
2397 gcc_unreachable ();
2399 return;
2401 /* Regular conditionals. */
2402 if (code == 'c')
2404 switch (GET_CODE (x))
2406 case LE:
2407 fputs ("le", file);
2408 break;
2409 case LEU:
2410 fputs ("leu", file);
2411 break;
2412 case LT:
2413 fputs ("lt", file);
2414 break;
2415 case LTU:
2416 fputs ("ltu", file);
2417 break;
2418 case GT:
2419 fputs ("gt", file);
2420 break;
2421 case GTU:
2422 fputs ("gtu", file);
2423 break;
2424 case GE:
2425 fputs ("ge", file);
2426 break;
2427 case GEU:
2428 fputs ("geu", file);
2429 break;
2430 case NE:
2431 fputs ("ne", file);
2432 break;
2433 case EQ:
2434 fputs ("eq", file);
2435 break;
2436 default:
2437 gcc_unreachable ();
2439 return;
2441 /* Used in negsi2 to do HImode ops on the two parts of an SImode
2442 operand. */
2443 if (code == 'h' && GET_MODE (x) == SImode)
2445 x = m32c_subreg (HImode, x, SImode, 0);
2446 code = 0;
2448 if (code == 'H' && GET_MODE (x) == SImode)
2450 x = m32c_subreg (HImode, x, SImode, 2);
2451 code = 0;
2453 if (code == 'h' && GET_MODE (x) == HImode)
2455 x = m32c_subreg (QImode, x, HImode, 0);
2456 code = 0;
2458 if (code == 'H' && GET_MODE (x) == HImode)
2460 /* We can't actually represent this as an rtx. Do it here. */
2461 if (GET_CODE (x) == REG)
2463 switch (REGNO (x))
2465 case R0_REGNO:
2466 fputs ("r0h", file);
2467 return;
2468 case R1_REGNO:
2469 fputs ("r1h", file);
2470 return;
2471 default:
2472 gcc_unreachable();
2475 /* This should be a MEM. */
2476 x = m32c_subreg (QImode, x, HImode, 1);
2477 code = 0;
2479 /* This is for BMcond, which always wants word register names. */
2480 if (code == 'h' && GET_MODE (x) == QImode)
2482 if (GET_CODE (x) == REG)
2483 x = gen_rtx_REG (HImode, REGNO (x));
2484 code = 0;
2486 /* 'x' and 'X' need to be ignored for non-immediates. */
2487 if ((code == 'x' || code == 'X') && GET_CODE (x) != CONST_INT)
2488 code = 0;
2490 encode_pattern (x);
2491 force_sign = 0;
2492 for (i = 0; conversions[i].pattern; i++)
2493 if (conversions[i].code == code
2494 && streq (conversions[i].pattern, pattern))
2496 for (j = 0; conversions[i].format[j]; j++)
2497 /* backslash quotes the next character in the output pattern. */
2498 if (conversions[i].format[j] == '\\')
2500 fputc (conversions[i].format[j + 1], file);
2501 j++;
2503 /* Digits in the output pattern indicate that the
2504 corresponding RTX is to be output at that point. */
2505 else if (ISDIGIT (conversions[i].format[j]))
2507 rtx r = patternr[conversions[i].format[j] - '0'];
2508 switch (GET_CODE (r))
2510 case REG:
2511 fprintf (file, "%s",
2512 reg_name_with_mode (REGNO (r), GET_MODE (r)));
2513 break;
2514 case CONST_INT:
2515 switch (code)
2517 case 'b':
2518 case 'B':
2520 int v = INTVAL (r);
2521 int i = (int) exact_log2 (v);
2522 if (i == -1)
2523 i = (int) exact_log2 ((v ^ 0xffff) & 0xffff);
2524 if (i == -1)
2525 i = (int) exact_log2 ((v ^ 0xff) & 0xff);
2526 /* Bit position. */
2527 fprintf (file, "%d", i);
2529 break;
2530 case 'x':
2531 /* Unsigned byte. */
2532 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
2533 INTVAL (r) & 0xff);
2534 break;
2535 case 'X':
2536 /* Unsigned word. */
2537 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
2538 INTVAL (r) & 0xffff);
2539 break;
2540 case 'p':
2541 /* pushm and popm encode a register set into a single byte. */
2542 comma = "";
2543 for (b = 7; b >= 0; b--)
2544 if (INTVAL (r) & (1 << b))
2546 fprintf (file, "%s%s", comma, pushm_regs[b]);
2547 comma = ",";
2549 break;
2550 case 'm':
2551 /* "Minus". Output -X */
2552 ival = (-INTVAL (r) & 0xffff);
2553 if (ival & 0x8000)
2554 ival = ival - 0x10000;
2555 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ival);
2556 break;
2557 default:
2558 ival = INTVAL (r);
2559 if (conversions[i].format[j + 1] == '[' && ival < 0)
2561 /* We can simulate negative displacements by
2562 taking advantage of address space
2563 wrapping when the offset can span the
2564 entire address range. */
2565 rtx base =
2566 patternr[conversions[i].format[j + 2] - '0'];
2567 if (GET_CODE (base) == REG)
2568 switch (REGNO (base))
2570 case A0_REGNO:
2571 case A1_REGNO:
2572 if (TARGET_A24)
2573 ival = 0x1000000 + ival;
2574 else
2575 ival = 0x10000 + ival;
2576 break;
2577 case SB_REGNO:
2578 if (TARGET_A16)
2579 ival = 0x10000 + ival;
2580 break;
2583 else if (code == 'd' && ival < 0 && j == 0)
2584 /* The "mova" opcode is used to do addition by
2585 computing displacements, but again, we need
2586 displacements to be unsigned *if* they're
2587 the only component of the displacement
2588 (i.e. no "symbol-4" type displacement). */
2589 ival = (TARGET_A24 ? 0x1000000 : 0x10000) + ival;
2591 if (conversions[i].format[j] == '0')
2593 /* More conversions to unsigned. */
2594 if (unsigned_const == 2)
2595 ival &= 0xffff;
2596 if (unsigned_const == 1)
2597 ival &= 0xff;
2599 if (streq (conversions[i].pattern, "mi")
2600 || streq (conversions[i].pattern, "mmi"))
2602 /* Integers used as addresses are unsigned. */
2603 ival &= (TARGET_A24 ? 0xffffff : 0xffff);
2605 if (force_sign && ival >= 0)
2606 fputc ('+', file);
2607 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ival);
2608 break;
2610 break;
2611 case CONST_DOUBLE:
2612 /* We don't have const_double constants. If it
2613 happens, make it obvious. */
2614 fprintf (file, "[const_double 0x%lx]",
2615 (unsigned long) CONST_DOUBLE_HIGH (r));
2616 break;
2617 case SYMBOL_REF:
2618 assemble_name (file, XSTR (r, 0));
2619 break;
2620 case LABEL_REF:
2621 output_asm_label (r);
2622 break;
2623 default:
2624 fprintf (stderr, "don't know how to print this operand:");
2625 debug_rtx (r);
2626 gcc_unreachable ();
2629 else
2631 if (conversions[i].format[j] == 'z')
2633 /* Some addressing modes *must* have a displacement,
2634 so insert a zero here if needed. */
2635 int k;
2636 for (k = j + 1; conversions[i].format[k]; k++)
2637 if (ISDIGIT (conversions[i].format[k]))
2639 rtx reg = patternr[conversions[i].format[k] - '0'];
2640 if (GET_CODE (reg) == REG
2641 && (REGNO (reg) == SB_REGNO
2642 || REGNO (reg) == FB_REGNO
2643 || REGNO (reg) == SP_REGNO))
2644 fputc ('0', file);
2646 continue;
2648 /* Signed displacements off symbols need to have signs
2649 blended cleanly. */
2650 if (conversions[i].format[j] == '+'
2651 && (!code || code == 'D' || code == 'd')
2652 && ISDIGIT (conversions[i].format[j + 1])
2653 && (GET_CODE (patternr[conversions[i].format[j + 1] - '0'])
2654 == CONST_INT))
2656 force_sign = 1;
2657 continue;
2659 fputc (conversions[i].format[j], file);
2661 break;
2663 if (!conversions[i].pattern)
2665 fprintf (stderr, "unconvertible operand %c `%s'", code ? code : '-',
2666 pattern);
2667 debug_rtx (x);
2668 fprintf (file, "[%c.%s]", code ? code : '-', pattern);
2671 return;
2674 /* Implements PRINT_OPERAND_PUNCT_VALID_P. See m32c_print_operand
2675 above for descriptions of what these do. */
2677 m32c_print_operand_punct_valid_p (int c)
2679 if (c == '&' || c == '!')
2680 return 1;
2681 return 0;
2684 /* Implements PRINT_OPERAND_ADDRESS. Nothing unusual here. */
2685 void
2686 m32c_print_operand_address (FILE * stream, rtx address)
2688 if (GET_CODE (address) == MEM)
2689 address = XEXP (address, 0);
2690 else
2691 /* cf: gcc.dg/asm-4.c. */
2692 gcc_assert (GET_CODE (address) == REG);
2694 m32c_print_operand (stream, address, 0);
2697 /* Implements ASM_OUTPUT_REG_PUSH. Control registers are pushed
2698 differently than general registers. */
2699 void
2700 m32c_output_reg_push (FILE * s, int regno)
2702 if (regno == FLG_REGNO)
2703 fprintf (s, "\tpushc\tflg\n");
2704 else
2705 fprintf (s, "\tpush.%c\t%s\n",
2706 " bwll"[reg_push_size (regno)], reg_names[regno]);
2709 /* Likewise for ASM_OUTPUT_REG_POP. */
2710 void
2711 m32c_output_reg_pop (FILE * s, int regno)
2713 if (regno == FLG_REGNO)
2714 fprintf (s, "\tpopc\tflg\n");
2715 else
2716 fprintf (s, "\tpop.%c\t%s\n",
2717 " bwll"[reg_push_size (regno)], reg_names[regno]);
2720 /* Defining target-specific uses of `__attribute__' */
2722 /* Used to simplify the logic below. Find the attributes wherever
2723 they may be. */
2724 #define M32C_ATTRIBUTES(decl) \
2725 (TYPE_P (decl)) ? TYPE_ATTRIBUTES (decl) \
2726 : DECL_ATTRIBUTES (decl) \
2727 ? (DECL_ATTRIBUTES (decl)) \
2728 : TYPE_ATTRIBUTES (TREE_TYPE (decl))
2730 /* Returns TRUE if the given tree has the "interrupt" attribute. */
2731 static int
2732 interrupt_p (tree node ATTRIBUTE_UNUSED)
2734 tree list = M32C_ATTRIBUTES (node);
2735 while (list)
2737 if (is_attribute_p ("interrupt", TREE_PURPOSE (list)))
2738 return 1;
2739 list = TREE_CHAIN (list);
2741 return 0;
2744 static tree
2745 interrupt_handler (tree * node ATTRIBUTE_UNUSED,
2746 tree name ATTRIBUTE_UNUSED,
2747 tree args ATTRIBUTE_UNUSED,
2748 int flags ATTRIBUTE_UNUSED,
2749 bool * no_add_attrs ATTRIBUTE_UNUSED)
2751 return NULL_TREE;
2754 /* Returns TRUE if given tree has the "function_vector" attribute. */
2756 m32c_special_page_vector_p (tree func)
2758 tree list;
2760 if (TREE_CODE (func) != FUNCTION_DECL)
2761 return 0;
2763 list = M32C_ATTRIBUTES (func);
2764 while (list)
2766 if (is_attribute_p ("function_vector", TREE_PURPOSE (list)))
2767 return 1;
2768 list = TREE_CHAIN (list);
2770 return 0;
2773 static tree
2774 function_vector_handler (tree * node ATTRIBUTE_UNUSED,
2775 tree name ATTRIBUTE_UNUSED,
2776 tree args ATTRIBUTE_UNUSED,
2777 int flags ATTRIBUTE_UNUSED,
2778 bool * no_add_attrs ATTRIBUTE_UNUSED)
2780 if (TARGET_R8C)
2782 /* The attribute is not supported for R8C target. */
2783 warning (OPT_Wattributes,
2784 "`%s' attribute is not supported for R8C target",
2785 IDENTIFIER_POINTER (name));
2786 *no_add_attrs = true;
2788 else if (TREE_CODE (*node) != FUNCTION_DECL)
2790 /* The attribute must be applied to functions only. */
2791 warning (OPT_Wattributes,
2792 "`%s' attribute applies only to functions",
2793 IDENTIFIER_POINTER (name));
2794 *no_add_attrs = true;
2796 else if (TREE_CODE (TREE_VALUE (args)) != INTEGER_CST)
2798 /* The argument must be a constant integer. */
2799 warning (OPT_Wattributes,
2800 "`%s' attribute argument not an integer constant",
2801 IDENTIFIER_POINTER (name));
2802 *no_add_attrs = true;
2804 else if (TREE_INT_CST_LOW (TREE_VALUE (args)) < 18
2805 || TREE_INT_CST_LOW (TREE_VALUE (args)) > 255)
2807 /* The argument value must be between 18 to 255. */
2808 warning (OPT_Wattributes,
2809 "`%s' attribute argument should be between 18 to 255",
2810 IDENTIFIER_POINTER (name));
2811 *no_add_attrs = true;
2813 return NULL_TREE;
2816 /* If the function is assigned the attribute 'function_vector', it
2817 returns the function vector number, otherwise returns zero. */
2819 current_function_special_page_vector (rtx x)
2821 int num;
2823 if ((GET_CODE(x) == SYMBOL_REF)
2824 && (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_FUNCVEC_FUNCTION))
2826 tree list;
2827 tree t = SYMBOL_REF_DECL (x);
2829 if (TREE_CODE (t) != FUNCTION_DECL)
2830 return 0;
2832 list = M32C_ATTRIBUTES (t);
2833 while (list)
2835 if (is_attribute_p ("function_vector", TREE_PURPOSE (list)))
2837 num = TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (list)));
2838 return num;
2841 list = TREE_CHAIN (list);
2844 return 0;
2846 else
2847 return 0;
2850 #undef TARGET_ATTRIBUTE_TABLE
2851 #define TARGET_ATTRIBUTE_TABLE m32c_attribute_table
2852 static const struct attribute_spec m32c_attribute_table[] = {
2853 {"interrupt", 0, 0, false, false, false, interrupt_handler},
2854 {"function_vector", 1, 1, true, false, false, function_vector_handler},
2855 {0, 0, 0, 0, 0, 0, 0}
2858 #undef TARGET_COMP_TYPE_ATTRIBUTES
2859 #define TARGET_COMP_TYPE_ATTRIBUTES m32c_comp_type_attributes
2860 static int
2861 m32c_comp_type_attributes (const_tree type1 ATTRIBUTE_UNUSED,
2862 const_tree type2 ATTRIBUTE_UNUSED)
2864 /* 0=incompatible 1=compatible 2=warning */
2865 return 1;
2868 #undef TARGET_INSERT_ATTRIBUTES
2869 #define TARGET_INSERT_ATTRIBUTES m32c_insert_attributes
2870 static void
2871 m32c_insert_attributes (tree node ATTRIBUTE_UNUSED,
2872 tree * attr_ptr ATTRIBUTE_UNUSED)
2874 /* Nothing to do here. */
2877 /* Predicates */
2879 /* This is a list of legal subregs of hard regs. */
2880 static const struct {
2881 unsigned char outer_mode_size;
2882 unsigned char inner_mode_size;
2883 unsigned char byte_mask;
2884 unsigned char legal_when;
2885 unsigned int regno;
2886 } legal_subregs[] = {
2887 {1, 2, 0x03, 1, R0_REGNO}, /* r0h r0l */
2888 {1, 2, 0x03, 1, R1_REGNO}, /* r1h r1l */
2889 {1, 2, 0x01, 1, A0_REGNO},
2890 {1, 2, 0x01, 1, A1_REGNO},
2892 {1, 4, 0x01, 1, A0_REGNO},
2893 {1, 4, 0x01, 1, A1_REGNO},
2895 {2, 4, 0x05, 1, R0_REGNO}, /* r2 r0 */
2896 {2, 4, 0x05, 1, R1_REGNO}, /* r3 r1 */
2897 {2, 4, 0x05, 16, A0_REGNO}, /* a1 a0 */
2898 {2, 4, 0x01, 24, A0_REGNO}, /* a1 a0 */
2899 {2, 4, 0x01, 24, A1_REGNO}, /* a1 a0 */
2901 {4, 8, 0x55, 1, R0_REGNO}, /* r3 r1 r2 r0 */
2904 /* Returns TRUE if OP is a subreg of a hard reg which we don't
2905 support. */
2906 bool
2907 m32c_illegal_subreg_p (rtx op)
2909 int offset;
2910 unsigned int i;
2911 int src_mode, dest_mode;
2913 if (GET_CODE (op) != SUBREG)
2914 return false;
2916 dest_mode = GET_MODE (op);
2917 offset = SUBREG_BYTE (op);
2918 op = SUBREG_REG (op);
2919 src_mode = GET_MODE (op);
2921 if (GET_MODE_SIZE (dest_mode) == GET_MODE_SIZE (src_mode))
2922 return false;
2923 if (GET_CODE (op) != REG)
2924 return false;
2925 if (REGNO (op) >= MEM0_REGNO)
2926 return false;
2928 offset = (1 << offset);
2930 for (i = 0; i < ARRAY_SIZE (legal_subregs); i ++)
2931 if (legal_subregs[i].outer_mode_size == GET_MODE_SIZE (dest_mode)
2932 && legal_subregs[i].regno == REGNO (op)
2933 && legal_subregs[i].inner_mode_size == GET_MODE_SIZE (src_mode)
2934 && legal_subregs[i].byte_mask & offset)
2936 switch (legal_subregs[i].legal_when)
2938 case 1:
2939 return false;
2940 case 16:
2941 if (TARGET_A16)
2942 return false;
2943 break;
2944 case 24:
2945 if (TARGET_A24)
2946 return false;
2947 break;
2950 return true;
2953 /* Returns TRUE if we support a move between the first two operands.
2954 At the moment, we just want to discourage mem to mem moves until
2955 after reload, because reload has a hard time with our limited
2956 number of address registers, and we can get into a situation where
2957 we need three of them when we only have two. */
2958 bool
2959 m32c_mov_ok (rtx * operands, enum machine_mode mode ATTRIBUTE_UNUSED)
2961 rtx op0 = operands[0];
2962 rtx op1 = operands[1];
2964 if (TARGET_A24)
2965 return true;
2967 #define DEBUG_MOV_OK 0
2968 #if DEBUG_MOV_OK
2969 fprintf (stderr, "m32c_mov_ok %s\n", mode_name[mode]);
2970 debug_rtx (op0);
2971 debug_rtx (op1);
2972 #endif
2974 if (GET_CODE (op0) == SUBREG)
2975 op0 = XEXP (op0, 0);
2976 if (GET_CODE (op1) == SUBREG)
2977 op1 = XEXP (op1, 0);
2979 if (GET_CODE (op0) == MEM
2980 && GET_CODE (op1) == MEM
2981 && ! reload_completed)
2983 #if DEBUG_MOV_OK
2984 fprintf (stderr, " - no, mem to mem\n");
2985 #endif
2986 return false;
2989 #if DEBUG_MOV_OK
2990 fprintf (stderr, " - ok\n");
2991 #endif
2992 return true;
2995 /* Returns TRUE if two consecutive HImode mov instructions, generated
2996 for moving an immediate double data to a double data type variable
2997 location, can be combined into single SImode mov instruction. */
2998 bool
2999 m32c_immd_dbl_mov (rtx * operands,
3000 enum machine_mode mode ATTRIBUTE_UNUSED)
3002 int flag = 0, okflag = 0, offset1 = 0, offset2 = 0, offsetsign = 0;
3003 const char *str1;
3004 const char *str2;
3006 if (GET_CODE (XEXP (operands[0], 0)) == SYMBOL_REF
3007 && MEM_SCALAR_P (operands[0])
3008 && !MEM_IN_STRUCT_P (operands[0])
3009 && GET_CODE (XEXP (operands[2], 0)) == CONST
3010 && GET_CODE (XEXP (XEXP (operands[2], 0), 0)) == PLUS
3011 && GET_CODE (XEXP (XEXP (XEXP (operands[2], 0), 0), 0)) == SYMBOL_REF
3012 && GET_CODE (XEXP (XEXP (XEXP (operands[2], 0), 0), 1)) == CONST_INT
3013 && MEM_SCALAR_P (operands[2])
3014 && !MEM_IN_STRUCT_P (operands[2]))
3015 flag = 1;
3017 else if (GET_CODE (XEXP (operands[0], 0)) == CONST
3018 && GET_CODE (XEXP (XEXP (operands[0], 0), 0)) == PLUS
3019 && GET_CODE (XEXP (XEXP (XEXP (operands[0], 0), 0), 0)) == SYMBOL_REF
3020 && MEM_SCALAR_P (operands[0])
3021 && !MEM_IN_STRUCT_P (operands[0])
3022 && !(INTVAL (XEXP (XEXP (XEXP (operands[0], 0), 0), 1)) %4)
3023 && GET_CODE (XEXP (operands[2], 0)) == CONST
3024 && GET_CODE (XEXP (XEXP (operands[2], 0), 0)) == PLUS
3025 && GET_CODE (XEXP (XEXP (XEXP (operands[2], 0), 0), 0)) == SYMBOL_REF
3026 && MEM_SCALAR_P (operands[2])
3027 && !MEM_IN_STRUCT_P (operands[2]))
3028 flag = 2;
3030 else if (GET_CODE (XEXP (operands[0], 0)) == PLUS
3031 && GET_CODE (XEXP (XEXP (operands[0], 0), 0)) == REG
3032 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == FB_REGNO
3033 && GET_CODE (XEXP (XEXP (operands[0], 0), 1)) == CONST_INT
3034 && MEM_SCALAR_P (operands[0])
3035 && !MEM_IN_STRUCT_P (operands[0])
3036 && !(INTVAL (XEXP (XEXP (operands[0], 0), 1)) %4)
3037 && REGNO (XEXP (XEXP (operands[2], 0), 0)) == FB_REGNO
3038 && GET_CODE (XEXP (XEXP (operands[2], 0), 1)) == CONST_INT
3039 && MEM_SCALAR_P (operands[2])
3040 && !MEM_IN_STRUCT_P (operands[2]))
3041 flag = 3;
3043 else
3044 return false;
3046 switch (flag)
3048 case 1:
3049 str1 = XSTR (XEXP (operands[0], 0), 0);
3050 str2 = XSTR (XEXP (XEXP (XEXP (operands[2], 0), 0), 0), 0);
3051 if (strcmp (str1, str2) == 0)
3052 okflag = 1;
3053 else
3054 okflag = 0;
3055 break;
3056 case 2:
3057 str1 = XSTR (XEXP (XEXP (XEXP (operands[0], 0), 0), 0), 0);
3058 str2 = XSTR (XEXP (XEXP (XEXP (operands[2], 0), 0), 0), 0);
3059 if (strcmp(str1,str2) == 0)
3060 okflag = 1;
3061 else
3062 okflag = 0;
3063 break;
3064 case 3:
3065 offset1 = INTVAL (XEXP (XEXP (operands[0], 0), 1));
3066 offset2 = INTVAL (XEXP (XEXP (operands[2], 0), 1));
3067 offsetsign = offset1 >> ((sizeof (offset1) * 8) -1);
3068 if (((offset2-offset1) == 2) && offsetsign != 0)
3069 okflag = 1;
3070 else
3071 okflag = 0;
3072 break;
3073 default:
3074 okflag = 0;
3077 if (okflag == 1)
3079 HOST_WIDE_INT val;
3080 operands[4] = gen_rtx_MEM (SImode, XEXP (operands[0], 0));
3082 val = (INTVAL (operands[3]) << 16) + (INTVAL (operands[1]) & 0xFFFF);
3083 operands[5] = gen_rtx_CONST_INT (VOIDmode, val);
3085 return true;
3088 return false;
3091 /* Expanders */
3093 /* Subregs are non-orthogonal for us, because our registers are all
3094 different sizes. */
3095 static rtx
3096 m32c_subreg (enum machine_mode outer,
3097 rtx x, enum machine_mode inner, int byte)
3099 int r, nr = -1;
3101 /* Converting MEMs to different types that are the same size, we
3102 just rewrite them. */
3103 if (GET_CODE (x) == SUBREG
3104 && SUBREG_BYTE (x) == 0
3105 && GET_CODE (SUBREG_REG (x)) == MEM
3106 && (GET_MODE_SIZE (GET_MODE (x))
3107 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
3109 rtx oldx = x;
3110 x = gen_rtx_MEM (GET_MODE (x), XEXP (SUBREG_REG (x), 0));
3111 MEM_COPY_ATTRIBUTES (x, SUBREG_REG (oldx));
3114 /* Push/pop get done as smaller push/pops. */
3115 if (GET_CODE (x) == MEM
3116 && (GET_CODE (XEXP (x, 0)) == PRE_DEC
3117 || GET_CODE (XEXP (x, 0)) == POST_INC))
3118 return gen_rtx_MEM (outer, XEXP (x, 0));
3119 if (GET_CODE (x) == SUBREG
3120 && GET_CODE (XEXP (x, 0)) == MEM
3121 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == PRE_DEC
3122 || GET_CODE (XEXP (XEXP (x, 0), 0)) == POST_INC))
3123 return gen_rtx_MEM (outer, XEXP (XEXP (x, 0), 0));
3125 if (GET_CODE (x) != REG)
3126 return simplify_gen_subreg (outer, x, inner, byte);
3128 r = REGNO (x);
3129 if (r >= FIRST_PSEUDO_REGISTER || r == AP_REGNO)
3130 return simplify_gen_subreg (outer, x, inner, byte);
3132 if (IS_MEM_REGNO (r))
3133 return simplify_gen_subreg (outer, x, inner, byte);
3135 /* This is where the complexities of our register layout are
3136 described. */
3137 if (byte == 0)
3138 nr = r;
3139 else if (outer == HImode)
3141 if (r == R0_REGNO && byte == 2)
3142 nr = R2_REGNO;
3143 else if (r == R0_REGNO && byte == 4)
3144 nr = R1_REGNO;
3145 else if (r == R0_REGNO && byte == 6)
3146 nr = R3_REGNO;
3147 else if (r == R1_REGNO && byte == 2)
3148 nr = R3_REGNO;
3149 else if (r == A0_REGNO && byte == 2)
3150 nr = A1_REGNO;
3152 else if (outer == SImode)
3154 if (r == R0_REGNO && byte == 0)
3155 nr = R0_REGNO;
3156 else if (r == R0_REGNO && byte == 4)
3157 nr = R1_REGNO;
3159 if (nr == -1)
3161 fprintf (stderr, "m32c_subreg %s %s %d\n",
3162 mode_name[outer], mode_name[inner], byte);
3163 debug_rtx (x);
3164 gcc_unreachable ();
3166 return gen_rtx_REG (outer, nr);
3169 /* Used to emit move instructions. We split some moves,
3170 and avoid mem-mem moves. */
3172 m32c_prepare_move (rtx * operands, enum machine_mode mode)
3174 if (TARGET_A16 && mode == PSImode)
3175 return m32c_split_move (operands, mode, 1);
3176 if ((GET_CODE (operands[0]) == MEM)
3177 && (GET_CODE (XEXP (operands[0], 0)) == PRE_MODIFY))
3179 rtx pmv = XEXP (operands[0], 0);
3180 rtx dest_reg = XEXP (pmv, 0);
3181 rtx dest_mod = XEXP (pmv, 1);
3183 emit_insn (gen_rtx_SET (Pmode, dest_reg, dest_mod));
3184 operands[0] = gen_rtx_MEM (mode, dest_reg);
3186 if (can_create_pseudo_p () && MEM_P (operands[0]) && MEM_P (operands[1]))
3187 operands[1] = copy_to_mode_reg (mode, operands[1]);
3188 return 0;
3191 #define DEBUG_SPLIT 0
3193 /* Returns TRUE if the given PSImode move should be split. We split
3194 for all r8c/m16c moves, since it doesn't support them, and for
3195 POP.L as we can only *push* SImode. */
3197 m32c_split_psi_p (rtx * operands)
3199 #if DEBUG_SPLIT
3200 fprintf (stderr, "\nm32c_split_psi_p\n");
3201 debug_rtx (operands[0]);
3202 debug_rtx (operands[1]);
3203 #endif
3204 if (TARGET_A16)
3206 #if DEBUG_SPLIT
3207 fprintf (stderr, "yes, A16\n");
3208 #endif
3209 return 1;
3211 if (GET_CODE (operands[1]) == MEM
3212 && GET_CODE (XEXP (operands[1], 0)) == POST_INC)
3214 #if DEBUG_SPLIT
3215 fprintf (stderr, "yes, pop.l\n");
3216 #endif
3217 return 1;
3219 #if DEBUG_SPLIT
3220 fprintf (stderr, "no, default\n");
3221 #endif
3222 return 0;
3225 /* Split the given move. SPLIT_ALL is 0 if splitting is optional
3226 (define_expand), 1 if it is not optional (define_insn_and_split),
3227 and 3 for define_split (alternate api). */
3229 m32c_split_move (rtx * operands, enum machine_mode mode, int split_all)
3231 rtx s[4], d[4];
3232 int parts, si, di, rev = 0;
3233 int rv = 0, opi = 2;
3234 enum machine_mode submode = HImode;
3235 rtx *ops, local_ops[10];
3237 /* define_split modifies the existing operands, but the other two
3238 emit new insns. OPS is where we store the operand pairs, which
3239 we emit later. */
3240 if (split_all == 3)
3241 ops = operands;
3242 else
3243 ops = local_ops;
3245 /* Else HImode. */
3246 if (mode == DImode)
3247 submode = SImode;
3249 /* Before splitting mem-mem moves, force one operand into a
3250 register. */
3251 if (can_create_pseudo_p () && MEM_P (operands[0]) && MEM_P (operands[1]))
3253 #if DEBUG0
3254 fprintf (stderr, "force_reg...\n");
3255 debug_rtx (operands[1]);
3256 #endif
3257 operands[1] = force_reg (mode, operands[1]);
3258 #if DEBUG0
3259 debug_rtx (operands[1]);
3260 #endif
3263 parts = 2;
3265 #if DEBUG_SPLIT
3266 fprintf (stderr, "\nsplit_move %d all=%d\n", !can_create_pseudo_p (),
3267 split_all);
3268 debug_rtx (operands[0]);
3269 debug_rtx (operands[1]);
3270 #endif
3272 /* Note that split_all is not used to select the api after this
3273 point, so it's safe to set it to 3 even with define_insn. */
3274 /* None of the chips can move SI operands to sp-relative addresses,
3275 so we always split those. */
3276 if (m32c_extra_constraint_p (operands[0], 'S', "Ss"))
3277 split_all = 3;
3279 /* We don't need to split these. */
3280 if (TARGET_A24
3281 && split_all != 3
3282 && (mode == SImode || mode == PSImode)
3283 && !(GET_CODE (operands[1]) == MEM
3284 && GET_CODE (XEXP (operands[1], 0)) == POST_INC))
3285 return 0;
3287 /* First, enumerate the subregs we'll be dealing with. */
3288 for (si = 0; si < parts; si++)
3290 d[si] =
3291 m32c_subreg (submode, operands[0], mode,
3292 si * GET_MODE_SIZE (submode));
3293 s[si] =
3294 m32c_subreg (submode, operands[1], mode,
3295 si * GET_MODE_SIZE (submode));
3298 /* Split pushes by emitting a sequence of smaller pushes. */
3299 if (GET_CODE (d[0]) == MEM && GET_CODE (XEXP (d[0], 0)) == PRE_DEC)
3301 for (si = parts - 1; si >= 0; si--)
3303 ops[opi++] = gen_rtx_MEM (submode,
3304 gen_rtx_PRE_DEC (Pmode,
3305 gen_rtx_REG (Pmode,
3306 SP_REGNO)));
3307 ops[opi++] = s[si];
3310 rv = 1;
3312 /* Likewise for pops. */
3313 else if (GET_CODE (s[0]) == MEM && GET_CODE (XEXP (s[0], 0)) == POST_INC)
3315 for (di = 0; di < parts; di++)
3317 ops[opi++] = d[di];
3318 ops[opi++] = gen_rtx_MEM (submode,
3319 gen_rtx_POST_INC (Pmode,
3320 gen_rtx_REG (Pmode,
3321 SP_REGNO)));
3323 rv = 1;
3325 else if (split_all)
3327 /* if d[di] == s[si] for any di < si, we'll early clobber. */
3328 for (di = 0; di < parts - 1; di++)
3329 for (si = di + 1; si < parts; si++)
3330 if (reg_mentioned_p (d[di], s[si]))
3331 rev = 1;
3333 if (rev)
3334 for (si = 0; si < parts; si++)
3336 ops[opi++] = d[si];
3337 ops[opi++] = s[si];
3339 else
3340 for (si = parts - 1; si >= 0; si--)
3342 ops[opi++] = d[si];
3343 ops[opi++] = s[si];
3345 rv = 1;
3347 /* Now emit any moves we may have accumulated. */
3348 if (rv && split_all != 3)
3350 int i;
3351 for (i = 2; i < opi; i += 2)
3352 emit_move_insn (ops[i], ops[i + 1]);
3354 return rv;
3357 /* The m32c has a number of opcodes that act like memcpy, strcmp, and
3358 the like. For the R8C they expect one of the addresses to be in
3359 R1L:An so we need to arrange for that. Otherwise, it's just a
3360 matter of picking out the operands we want and emitting the right
3361 pattern for them. All these expanders, which correspond to
3362 patterns in blkmov.md, must return nonzero if they expand the insn,
3363 or zero if they should FAIL. */
3365 /* This is a memset() opcode. All operands are implied, so we need to
3366 arrange for them to be in the right registers. The opcode wants
3367 addresses, not [mem] syntax. $0 is the destination (MEM:BLK), $1
3368 the count (HI), and $2 the value (QI). */
3370 m32c_expand_setmemhi(rtx *operands)
3372 rtx desta, count, val;
3373 rtx desto, counto;
3375 desta = XEXP (operands[0], 0);
3376 count = operands[1];
3377 val = operands[2];
3379 desto = gen_reg_rtx (Pmode);
3380 counto = gen_reg_rtx (HImode);
3382 if (GET_CODE (desta) != REG
3383 || REGNO (desta) < FIRST_PSEUDO_REGISTER)
3384 desta = copy_to_mode_reg (Pmode, desta);
3386 /* This looks like an arbitrary restriction, but this is by far the
3387 most common case. For counts 8..14 this actually results in
3388 smaller code with no speed penalty because the half-sized
3389 constant can be loaded with a shorter opcode. */
3390 if (GET_CODE (count) == CONST_INT
3391 && GET_CODE (val) == CONST_INT
3392 && ! (INTVAL (count) & 1)
3393 && (INTVAL (count) > 1)
3394 && (INTVAL (val) <= 7 && INTVAL (val) >= -8))
3396 unsigned v = INTVAL (val) & 0xff;
3397 v = v | (v << 8);
3398 count = copy_to_mode_reg (HImode, GEN_INT (INTVAL (count) / 2));
3399 val = copy_to_mode_reg (HImode, GEN_INT (v));
3400 if (TARGET_A16)
3401 emit_insn (gen_setmemhi_whi_op (desto, counto, val, desta, count));
3402 else
3403 emit_insn (gen_setmemhi_wpsi_op (desto, counto, val, desta, count));
3404 return 1;
3407 /* This is the generalized memset() case. */
3408 if (GET_CODE (val) != REG
3409 || REGNO (val) < FIRST_PSEUDO_REGISTER)
3410 val = copy_to_mode_reg (QImode, val);
3412 if (GET_CODE (count) != REG
3413 || REGNO (count) < FIRST_PSEUDO_REGISTER)
3414 count = copy_to_mode_reg (HImode, count);
3416 if (TARGET_A16)
3417 emit_insn (gen_setmemhi_bhi_op (desto, counto, val, desta, count));
3418 else
3419 emit_insn (gen_setmemhi_bpsi_op (desto, counto, val, desta, count));
3421 return 1;
3424 /* This is a memcpy() opcode. All operands are implied, so we need to
3425 arrange for them to be in the right registers. The opcode wants
3426 addresses, not [mem] syntax. $0 is the destination (MEM:BLK), $1
3427 is the source (MEM:BLK), and $2 the count (HI). */
3429 m32c_expand_movmemhi(rtx *operands)
3431 rtx desta, srca, count;
3432 rtx desto, srco, counto;
3434 desta = XEXP (operands[0], 0);
3435 srca = XEXP (operands[1], 0);
3436 count = operands[2];
3438 desto = gen_reg_rtx (Pmode);
3439 srco = gen_reg_rtx (Pmode);
3440 counto = gen_reg_rtx (HImode);
3442 if (GET_CODE (desta) != REG
3443 || REGNO (desta) < FIRST_PSEUDO_REGISTER)
3444 desta = copy_to_mode_reg (Pmode, desta);
3446 if (GET_CODE (srca) != REG
3447 || REGNO (srca) < FIRST_PSEUDO_REGISTER)
3448 srca = copy_to_mode_reg (Pmode, srca);
3450 /* Similar to setmem, but we don't need to check the value. */
3451 if (GET_CODE (count) == CONST_INT
3452 && ! (INTVAL (count) & 1)
3453 && (INTVAL (count) > 1))
3455 count = copy_to_mode_reg (HImode, GEN_INT (INTVAL (count) / 2));
3456 if (TARGET_A16)
3457 emit_insn (gen_movmemhi_whi_op (desto, srco, counto, desta, srca, count));
3458 else
3459 emit_insn (gen_movmemhi_wpsi_op (desto, srco, counto, desta, srca, count));
3460 return 1;
3463 /* This is the generalized memset() case. */
3464 if (GET_CODE (count) != REG
3465 || REGNO (count) < FIRST_PSEUDO_REGISTER)
3466 count = copy_to_mode_reg (HImode, count);
3468 if (TARGET_A16)
3469 emit_insn (gen_movmemhi_bhi_op (desto, srco, counto, desta, srca, count));
3470 else
3471 emit_insn (gen_movmemhi_bpsi_op (desto, srco, counto, desta, srca, count));
3473 return 1;
3476 /* This is a stpcpy() opcode. $0 is the destination (MEM:BLK) after
3477 the copy, which should point to the NUL at the end of the string,
3478 $1 is the destination (MEM:BLK), and $2 is the source (MEM:BLK).
3479 Since our opcode leaves the destination pointing *after* the NUL,
3480 we must emit an adjustment. */
3482 m32c_expand_movstr(rtx *operands)
3484 rtx desta, srca;
3485 rtx desto, srco;
3487 desta = XEXP (operands[1], 0);
3488 srca = XEXP (operands[2], 0);
3490 desto = gen_reg_rtx (Pmode);
3491 srco = gen_reg_rtx (Pmode);
3493 if (GET_CODE (desta) != REG
3494 || REGNO (desta) < FIRST_PSEUDO_REGISTER)
3495 desta = copy_to_mode_reg (Pmode, desta);
3497 if (GET_CODE (srca) != REG
3498 || REGNO (srca) < FIRST_PSEUDO_REGISTER)
3499 srca = copy_to_mode_reg (Pmode, srca);
3501 emit_insn (gen_movstr_op (desto, srco, desta, srca));
3502 /* desto ends up being a1, which allows this type of add through MOVA. */
3503 emit_insn (gen_addpsi3 (operands[0], desto, GEN_INT (-1)));
3505 return 1;
3508 /* This is a strcmp() opcode. $0 is the destination (HI) which holds
3509 <=>0 depending on the comparison, $1 is one string (MEM:BLK), and
3510 $2 is the other (MEM:BLK). We must do the comparison, and then
3511 convert the flags to a signed integer result. */
3513 m32c_expand_cmpstr(rtx *operands)
3515 rtx src1a, src2a;
3517 src1a = XEXP (operands[1], 0);
3518 src2a = XEXP (operands[2], 0);
3520 if (GET_CODE (src1a) != REG
3521 || REGNO (src1a) < FIRST_PSEUDO_REGISTER)
3522 src1a = copy_to_mode_reg (Pmode, src1a);
3524 if (GET_CODE (src2a) != REG
3525 || REGNO (src2a) < FIRST_PSEUDO_REGISTER)
3526 src2a = copy_to_mode_reg (Pmode, src2a);
3528 emit_insn (gen_cmpstrhi_op (src1a, src2a, src1a, src2a));
3529 emit_insn (gen_cond_to_int (operands[0]));
3531 return 1;
3535 typedef rtx (*shift_gen_func)(rtx, rtx, rtx);
3537 static shift_gen_func
3538 shift_gen_func_for (int mode, int code)
3540 #define GFF(m,c,f) if (mode == m && code == c) return f
3541 GFF(QImode, ASHIFT, gen_ashlqi3_i);
3542 GFF(QImode, ASHIFTRT, gen_ashrqi3_i);
3543 GFF(QImode, LSHIFTRT, gen_lshrqi3_i);
3544 GFF(HImode, ASHIFT, gen_ashlhi3_i);
3545 GFF(HImode, ASHIFTRT, gen_ashrhi3_i);
3546 GFF(HImode, LSHIFTRT, gen_lshrhi3_i);
3547 GFF(PSImode, ASHIFT, gen_ashlpsi3_i);
3548 GFF(PSImode, ASHIFTRT, gen_ashrpsi3_i);
3549 GFF(PSImode, LSHIFTRT, gen_lshrpsi3_i);
3550 GFF(SImode, ASHIFT, TARGET_A16 ? gen_ashlsi3_16 : gen_ashlsi3_24);
3551 GFF(SImode, ASHIFTRT, TARGET_A16 ? gen_ashrsi3_16 : gen_ashrsi3_24);
3552 GFF(SImode, LSHIFTRT, TARGET_A16 ? gen_lshrsi3_16 : gen_lshrsi3_24);
3553 #undef GFF
3554 gcc_unreachable ();
3557 /* The m32c only has one shift, but it takes a signed count. GCC
3558 doesn't want this, so we fake it by negating any shift count when
3559 we're pretending to shift the other way. Also, the shift count is
3560 limited to -8..8. It's slightly better to use two shifts for 9..15
3561 than to load the count into r1h, so we do that too. */
3563 m32c_prepare_shift (rtx * operands, int scale, int shift_code)
3565 enum machine_mode mode = GET_MODE (operands[0]);
3566 shift_gen_func func = shift_gen_func_for (mode, shift_code);
3567 rtx temp;
3569 if (GET_CODE (operands[2]) == CONST_INT)
3571 int maxc = TARGET_A24 && (mode == PSImode || mode == SImode) ? 32 : 8;
3572 int count = INTVAL (operands[2]) * scale;
3574 while (count > maxc)
3576 temp = gen_reg_rtx (mode);
3577 emit_insn (func (temp, operands[1], GEN_INT (maxc)));
3578 operands[1] = temp;
3579 count -= maxc;
3581 while (count < -maxc)
3583 temp = gen_reg_rtx (mode);
3584 emit_insn (func (temp, operands[1], GEN_INT (-maxc)));
3585 operands[1] = temp;
3586 count += maxc;
3588 emit_insn (func (operands[0], operands[1], GEN_INT (count)));
3589 return 1;
3592 temp = gen_reg_rtx (QImode);
3593 if (scale < 0)
3594 /* The pattern has a NEG that corresponds to this. */
3595 emit_move_insn (temp, gen_rtx_NEG (QImode, operands[2]));
3596 else if (TARGET_A16 && mode == SImode)
3597 /* We do this because the code below may modify this, we don't
3598 want to modify the origin of this value. */
3599 emit_move_insn (temp, operands[2]);
3600 else
3601 /* We'll only use it for the shift, no point emitting a move. */
3602 temp = operands[2];
3604 if (TARGET_A16 && GET_MODE_SIZE (mode) == 4)
3606 /* The m16c has a limit of -16..16 for SI shifts, even when the
3607 shift count is in a register. Since there are so many targets
3608 of these shifts, it's better to expand the RTL here than to
3609 call a helper function.
3611 The resulting code looks something like this:
3613 cmp.b r1h,-16
3614 jge.b 1f
3615 shl.l -16,dest
3616 add.b r1h,16
3617 1f: cmp.b r1h,16
3618 jle.b 1f
3619 shl.l 16,dest
3620 sub.b r1h,16
3621 1f: shl.l r1h,dest
3623 We take advantage of the fact that "negative" shifts are
3624 undefined to skip one of the comparisons. */
3626 rtx count;
3627 rtx label, lref, insn, tempvar;
3629 emit_move_insn (operands[0], operands[1]);
3631 count = temp;
3632 label = gen_label_rtx ();
3633 lref = gen_rtx_LABEL_REF (VOIDmode, label);
3634 LABEL_NUSES (label) ++;
3636 tempvar = gen_reg_rtx (mode);
3638 if (shift_code == ASHIFT)
3640 /* This is a left shift. We only need check positive counts. */
3641 emit_jump_insn (gen_cbranchqi4 (gen_rtx_LE (VOIDmode, 0, 0),
3642 count, GEN_INT (16), label));
3643 emit_insn (func (tempvar, operands[0], GEN_INT (8)));
3644 emit_insn (func (operands[0], tempvar, GEN_INT (8)));
3645 insn = emit_insn (gen_addqi3 (count, count, GEN_INT (-16)));
3646 emit_label_after (label, insn);
3648 else
3650 /* This is a right shift. We only need check negative counts. */
3651 emit_jump_insn (gen_cbranchqi4 (gen_rtx_GE (VOIDmode, 0, 0),
3652 count, GEN_INT (-16), label));
3653 emit_insn (func (tempvar, operands[0], GEN_INT (-8)));
3654 emit_insn (func (operands[0], tempvar, GEN_INT (-8)));
3655 insn = emit_insn (gen_addqi3 (count, count, GEN_INT (16)));
3656 emit_label_after (label, insn);
3658 operands[1] = operands[0];
3659 emit_insn (func (operands[0], operands[0], count));
3660 return 1;
3663 operands[2] = temp;
3664 return 0;
3667 /* The m32c has a limited range of operations that work on PSImode
3668 values; we have to expand to SI, do the math, and truncate back to
3669 PSI. Yes, this is expensive, but hopefully gcc will learn to avoid
3670 those cases. */
3671 void
3672 m32c_expand_neg_mulpsi3 (rtx * operands)
3674 /* operands: a = b * i */
3675 rtx temp1; /* b as SI */
3676 rtx scale /* i as SI */;
3677 rtx temp2; /* a*b as SI */
3679 temp1 = gen_reg_rtx (SImode);
3680 temp2 = gen_reg_rtx (SImode);
3681 if (GET_CODE (operands[2]) != CONST_INT)
3683 scale = gen_reg_rtx (SImode);
3684 emit_insn (gen_zero_extendpsisi2 (scale, operands[2]));
3686 else
3687 scale = copy_to_mode_reg (SImode, operands[2]);
3689 emit_insn (gen_zero_extendpsisi2 (temp1, operands[1]));
3690 temp2 = expand_simple_binop (SImode, MULT, temp1, scale, temp2, 1, OPTAB_LIB);
3691 emit_insn (gen_truncsipsi2 (operands[0], temp2));
3694 static rtx compare_op0, compare_op1;
3696 void
3697 m32c_pend_compare (rtx *operands)
3699 compare_op0 = operands[0];
3700 compare_op1 = operands[1];
3703 void
3704 m32c_unpend_compare (void)
3706 switch (GET_MODE (compare_op0))
3708 case QImode:
3709 emit_insn (gen_cmpqi_op (compare_op0, compare_op1));
3710 case HImode:
3711 emit_insn (gen_cmphi_op (compare_op0, compare_op1));
3712 case PSImode:
3713 emit_insn (gen_cmppsi_op (compare_op0, compare_op1));
3714 default:
3715 /* Just to silence the "missing case" warnings. */ ;
3719 void
3720 m32c_expand_scc (int code, rtx *operands)
3722 enum machine_mode mode = TARGET_A16 ? QImode : HImode;
3724 emit_insn (gen_rtx_SET (mode,
3725 operands[0],
3726 gen_rtx_fmt_ee (code,
3727 mode,
3728 compare_op0,
3729 compare_op1)));
3732 /* Pattern Output Functions */
3734 /* Returns a (OP (reg:CC FLG_REGNO) (const_int 0)) from some other
3735 match_operand rtx's OP. */
3737 m32c_cmp_flg_0 (rtx cmp)
3739 return gen_rtx_fmt_ee (GET_CODE (cmp),
3740 GET_MODE (cmp),
3741 gen_rtx_REG (CCmode, FLG_REGNO),
3742 GEN_INT (0));
3746 m32c_expand_movcc (rtx *operands)
3748 rtx rel = operands[1];
3749 rtx cmp;
3751 if (GET_CODE (rel) != EQ && GET_CODE (rel) != NE)
3752 return 1;
3753 if (GET_CODE (operands[2]) != CONST_INT
3754 || GET_CODE (operands[3]) != CONST_INT)
3755 return 1;
3756 emit_insn (gen_cmpqi(XEXP (rel, 0), XEXP (rel, 1)));
3757 if (GET_CODE (rel) == NE)
3759 rtx tmp = operands[2];
3760 operands[2] = operands[3];
3761 operands[3] = tmp;
3764 cmp = gen_rtx_fmt_ee (GET_CODE (rel),
3765 GET_MODE (rel),
3766 compare_op0,
3767 compare_op1);
3769 emit_move_insn (operands[0],
3770 gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]),
3771 cmp,
3772 operands[2],
3773 operands[3]));
3774 return 0;
3777 /* Used for the "insv" pattern. Return nonzero to fail, else done. */
3779 m32c_expand_insv (rtx *operands)
3781 rtx op0, src0, p;
3782 int mask;
3784 if (INTVAL (operands[1]) != 1)
3785 return 1;
3787 /* Our insv opcode (bset, bclr) can only insert a one-bit constant. */
3788 if (GET_CODE (operands[3]) != CONST_INT)
3789 return 1;
3790 if (INTVAL (operands[3]) != 0
3791 && INTVAL (operands[3]) != 1
3792 && INTVAL (operands[3]) != -1)
3793 return 1;
3795 mask = 1 << INTVAL (operands[2]);
3797 op0 = operands[0];
3798 if (GET_CODE (op0) == SUBREG
3799 && SUBREG_BYTE (op0) == 0)
3801 rtx sub = SUBREG_REG (op0);
3802 if (GET_MODE (sub) == HImode || GET_MODE (sub) == QImode)
3803 op0 = sub;
3806 if (!can_create_pseudo_p ()
3807 || (GET_CODE (op0) == MEM && MEM_VOLATILE_P (op0)))
3808 src0 = op0;
3809 else
3811 src0 = gen_reg_rtx (GET_MODE (op0));
3812 emit_move_insn (src0, op0);
3815 if (GET_MODE (op0) == HImode
3816 && INTVAL (operands[2]) >= 8
3817 && GET_MODE (op0) == MEM)
3819 /* We are little endian. */
3820 rtx new_mem = gen_rtx_MEM (QImode, plus_constant (XEXP (op0, 0), 1));
3821 MEM_COPY_ATTRIBUTES (new_mem, op0);
3822 mask >>= 8;
3825 /* First, we generate a mask with the correct polarity. If we are
3826 storing a zero, we want an AND mask, so invert it. */
3827 if (INTVAL (operands[3]) == 0)
3829 /* Storing a zero, use an AND mask */
3830 if (GET_MODE (op0) == HImode)
3831 mask ^= 0xffff;
3832 else
3833 mask ^= 0xff;
3835 /* Now we need to properly sign-extend the mask in case we need to
3836 fall back to an AND or OR opcode. */
3837 if (GET_MODE (op0) == HImode)
3839 if (mask & 0x8000)
3840 mask -= 0x10000;
3842 else
3844 if (mask & 0x80)
3845 mask -= 0x100;
3848 switch ( (INTVAL (operands[3]) ? 4 : 0)
3849 + ((GET_MODE (op0) == HImode) ? 2 : 0)
3850 + (TARGET_A24 ? 1 : 0))
3852 case 0: p = gen_andqi3_16 (op0, src0, GEN_INT (mask)); break;
3853 case 1: p = gen_andqi3_24 (op0, src0, GEN_INT (mask)); break;
3854 case 2: p = gen_andhi3_16 (op0, src0, GEN_INT (mask)); break;
3855 case 3: p = gen_andhi3_24 (op0, src0, GEN_INT (mask)); break;
3856 case 4: p = gen_iorqi3_16 (op0, src0, GEN_INT (mask)); break;
3857 case 5: p = gen_iorqi3_24 (op0, src0, GEN_INT (mask)); break;
3858 case 6: p = gen_iorhi3_16 (op0, src0, GEN_INT (mask)); break;
3859 case 7: p = gen_iorhi3_24 (op0, src0, GEN_INT (mask)); break;
3860 default: p = NULL_RTX; break; /* Not reached, but silences a warning. */
3863 emit_insn (p);
3864 return 0;
3867 const char *
3868 m32c_scc_pattern(rtx *operands, RTX_CODE code)
3870 static char buf[30];
3871 if (GET_CODE (operands[0]) == REG
3872 && REGNO (operands[0]) == R0_REGNO)
3874 if (code == EQ)
3875 return "stzx\t#1,#0,r0l";
3876 if (code == NE)
3877 return "stzx\t#0,#1,r0l";
3879 sprintf(buf, "bm%s\t0,%%h0\n\tand.b\t#1,%%0", GET_RTX_NAME (code));
3880 return buf;
3883 /* Encode symbol attributes of a SYMBOL_REF into its
3884 SYMBOL_REF_FLAGS. */
3885 static void
3886 m32c_encode_section_info (tree decl, rtx rtl, int first)
3888 int extra_flags = 0;
3890 default_encode_section_info (decl, rtl, first);
3891 if (TREE_CODE (decl) == FUNCTION_DECL
3892 && m32c_special_page_vector_p (decl))
3894 extra_flags = SYMBOL_FLAG_FUNCVEC_FUNCTION;
3896 if (extra_flags)
3897 SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= extra_flags;
3900 /* Returns TRUE if the current function is a leaf, and thus we can
3901 determine which registers an interrupt function really needs to
3902 save. The logic below is mostly about finding the insn sequence
3903 that's the function, versus any sequence that might be open for the
3904 current insn. */
3905 static int
3906 m32c_leaf_function_p (void)
3908 rtx saved_first, saved_last;
3909 struct sequence_stack *seq;
3910 int rv;
3912 saved_first = crtl->emit.x_first_insn;
3913 saved_last = crtl->emit.x_last_insn;
3914 for (seq = crtl->emit.sequence_stack; seq && seq->next; seq = seq->next)
3916 if (seq)
3918 crtl->emit.x_first_insn = seq->first;
3919 crtl->emit.x_last_insn = seq->last;
3922 rv = leaf_function_p ();
3924 crtl->emit.x_first_insn = saved_first;
3925 crtl->emit.x_last_insn = saved_last;
3926 return rv;
3929 /* Returns TRUE if the current function needs to use the ENTER/EXIT
3930 opcodes. If the function doesn't need the frame base or stack
3931 pointer, it can use the simpler RTS opcode. */
3932 static bool
3933 m32c_function_needs_enter (void)
3935 rtx insn;
3936 struct sequence_stack *seq;
3937 rtx sp = gen_rtx_REG (Pmode, SP_REGNO);
3938 rtx fb = gen_rtx_REG (Pmode, FB_REGNO);
3940 insn = get_insns ();
3941 for (seq = crtl->emit.sequence_stack;
3942 seq;
3943 insn = seq->first, seq = seq->next);
3945 while (insn)
3947 if (reg_mentioned_p (sp, insn))
3948 return true;
3949 if (reg_mentioned_p (fb, insn))
3950 return true;
3951 insn = NEXT_INSN (insn);
3953 return false;
3956 /* Mark all the subexpressions of the PARALLEL rtx PAR as
3957 frame-related. Return PAR.
3959 dwarf2out.c:dwarf2out_frame_debug_expr ignores sub-expressions of a
3960 PARALLEL rtx other than the first if they do not have the
3961 FRAME_RELATED flag set on them. So this function is handy for
3962 marking up 'enter' instructions. */
3963 static rtx
3964 m32c_all_frame_related (rtx par)
3966 int len = XVECLEN (par, 0);
3967 int i;
3969 for (i = 0; i < len; i++)
3970 F (XVECEXP (par, 0, i));
3972 return par;
3975 /* Emits the prologue. See the frame layout comment earlier in this
3976 file. We can reserve up to 256 bytes with the ENTER opcode, beyond
3977 that we manually update sp. */
3978 void
3979 m32c_emit_prologue (void)
3981 int frame_size, extra_frame_size = 0, reg_save_size;
3982 int complex_prologue = 0;
3984 cfun->machine->is_leaf = m32c_leaf_function_p ();
3985 if (interrupt_p (cfun->decl))
3987 cfun->machine->is_interrupt = 1;
3988 complex_prologue = 1;
3991 reg_save_size = m32c_pushm_popm (PP_justcount);
3993 if (interrupt_p (cfun->decl))
3994 emit_insn (gen_pushm (GEN_INT (cfun->machine->intr_pushm)));
3996 frame_size =
3997 m32c_initial_elimination_offset (FB_REGNO, SP_REGNO) - reg_save_size;
3998 if (frame_size == 0
3999 && !cfun->machine->is_interrupt
4000 && !m32c_function_needs_enter ())
4001 cfun->machine->use_rts = 1;
4003 if (frame_size > 254)
4005 extra_frame_size = frame_size - 254;
4006 frame_size = 254;
4008 if (cfun->machine->use_rts == 0)
4009 F (emit_insn (m32c_all_frame_related
4010 (TARGET_A16
4011 ? gen_prologue_enter_16 (GEN_INT (frame_size + 2))
4012 : gen_prologue_enter_24 (GEN_INT (frame_size + 4)))));
4014 if (extra_frame_size)
4016 complex_prologue = 1;
4017 if (TARGET_A16)
4018 F (emit_insn (gen_addhi3 (gen_rtx_REG (HImode, SP_REGNO),
4019 gen_rtx_REG (HImode, SP_REGNO),
4020 GEN_INT (-extra_frame_size))));
4021 else
4022 F (emit_insn (gen_addpsi3 (gen_rtx_REG (PSImode, SP_REGNO),
4023 gen_rtx_REG (PSImode, SP_REGNO),
4024 GEN_INT (-extra_frame_size))));
4027 complex_prologue += m32c_pushm_popm (PP_pushm);
4029 /* This just emits a comment into the .s file for debugging. */
4030 if (complex_prologue)
4031 emit_insn (gen_prologue_end ());
4034 /* Likewise, for the epilogue. The only exception is that, for
4035 interrupts, we must manually unwind the frame as the REIT opcode
4036 doesn't do that. */
4037 void
4038 m32c_emit_epilogue (void)
4040 /* This just emits a comment into the .s file for debugging. */
4041 if (m32c_pushm_popm (PP_justcount) > 0 || cfun->machine->is_interrupt)
4042 emit_insn (gen_epilogue_start ());
4044 m32c_pushm_popm (PP_popm);
4046 if (cfun->machine->is_interrupt)
4048 enum machine_mode spmode = TARGET_A16 ? HImode : PSImode;
4050 emit_move_insn (gen_rtx_REG (spmode, A0_REGNO),
4051 gen_rtx_REG (spmode, FP_REGNO));
4052 emit_move_insn (gen_rtx_REG (spmode, SP_REGNO),
4053 gen_rtx_REG (spmode, A0_REGNO));
4054 if (TARGET_A16)
4055 emit_insn (gen_pophi_16 (gen_rtx_REG (HImode, FP_REGNO)));
4056 else
4057 emit_insn (gen_poppsi (gen_rtx_REG (PSImode, FP_REGNO)));
4058 emit_insn (gen_popm (GEN_INT (cfun->machine->intr_pushm)));
4059 if (TARGET_A16)
4060 emit_jump_insn (gen_epilogue_reit_16 ());
4061 else
4062 emit_jump_insn (gen_epilogue_reit_24 ());
4064 else if (cfun->machine->use_rts)
4065 emit_jump_insn (gen_epilogue_rts ());
4066 else if (TARGET_A16)
4067 emit_jump_insn (gen_epilogue_exitd_16 ());
4068 else
4069 emit_jump_insn (gen_epilogue_exitd_24 ());
4070 emit_barrier ();
4073 void
4074 m32c_emit_eh_epilogue (rtx ret_addr)
4076 /* R0[R2] has the stack adjustment. R1[R3] has the address to
4077 return to. We have to fudge the stack, pop everything, pop SP
4078 (fudged), and return (fudged). This is actually easier to do in
4079 assembler, so punt to libgcc. */
4080 emit_jump_insn (gen_eh_epilogue (ret_addr, cfun->machine->eh_stack_adjust));
4081 /* emit_clobber (gen_rtx_REG (HImode, R0L_REGNO)); */
4082 emit_barrier ();
4085 /* Indicate which flags must be properly set for a given conditional. */
4086 static int
4087 flags_needed_for_conditional (rtx cond)
4089 switch (GET_CODE (cond))
4091 case LE:
4092 case GT:
4093 return FLAGS_OSZ;
4094 case LEU:
4095 case GTU:
4096 return FLAGS_ZC;
4097 case LT:
4098 case GE:
4099 return FLAGS_OS;
4100 case LTU:
4101 case GEU:
4102 return FLAGS_C;
4103 case EQ:
4104 case NE:
4105 return FLAGS_Z;
4106 default:
4107 return FLAGS_N;
4111 #define DEBUG_CMP 0
4113 /* Returns true if a compare insn is redundant because it would only
4114 set flags that are already set correctly. */
4115 static bool
4116 m32c_compare_redundant (rtx cmp, rtx *operands)
4118 int flags_needed;
4119 int pflags;
4120 rtx prev, pp, next;
4121 rtx op0, op1, op2;
4122 #if DEBUG_CMP
4123 int prev_icode, i;
4124 #endif
4126 op0 = operands[0];
4127 op1 = operands[1];
4128 op2 = operands[2];
4130 #if DEBUG_CMP
4131 fprintf(stderr, "\n\033[32mm32c_compare_redundant\033[0m\n");
4132 debug_rtx(cmp);
4133 for (i=0; i<2; i++)
4135 fprintf(stderr, "operands[%d] = ", i);
4136 debug_rtx(operands[i]);
4138 #endif
4140 next = next_nonnote_insn (cmp);
4141 if (!next || !INSN_P (next))
4143 #if DEBUG_CMP
4144 fprintf(stderr, "compare not followed by insn\n");
4145 debug_rtx(next);
4146 #endif
4147 return false;
4149 if (GET_CODE (PATTERN (next)) == SET
4150 && GET_CODE (XEXP ( PATTERN (next), 1)) == IF_THEN_ELSE)
4152 next = XEXP (XEXP (PATTERN (next), 1), 0);
4154 else if (GET_CODE (PATTERN (next)) == SET)
4156 /* If this is a conditional, flags_needed will be something
4157 other than FLAGS_N, which we test below. */
4158 next = XEXP (PATTERN (next), 1);
4160 else
4162 #if DEBUG_CMP
4163 fprintf(stderr, "compare not followed by conditional\n");
4164 debug_rtx(next);
4165 #endif
4166 return false;
4168 #if DEBUG_CMP
4169 fprintf(stderr, "conditional is: ");
4170 debug_rtx(next);
4171 #endif
4173 flags_needed = flags_needed_for_conditional (next);
4174 if (flags_needed == FLAGS_N)
4176 #if DEBUG_CMP
4177 fprintf(stderr, "compare not followed by conditional\n");
4178 debug_rtx(next);
4179 #endif
4180 return false;
4183 /* Compare doesn't set overflow and carry the same way that
4184 arithmetic instructions do, so we can't replace those. */
4185 if (flags_needed & FLAGS_OC)
4186 return false;
4188 prev = cmp;
4189 do {
4190 prev = prev_nonnote_insn (prev);
4191 if (!prev)
4193 #if DEBUG_CMP
4194 fprintf(stderr, "No previous insn.\n");
4195 #endif
4196 return false;
4198 if (!INSN_P (prev))
4200 #if DEBUG_CMP
4201 fprintf(stderr, "Previous insn is a non-insn.\n");
4202 #endif
4203 return false;
4205 pp = PATTERN (prev);
4206 if (GET_CODE (pp) != SET)
4208 #if DEBUG_CMP
4209 fprintf(stderr, "Previous insn is not a SET.\n");
4210 #endif
4211 return false;
4213 pflags = get_attr_flags (prev);
4215 /* Looking up attributes of previous insns corrupted the recog
4216 tables. */
4217 INSN_UID (cmp) = -1;
4218 recog (PATTERN (cmp), cmp, 0);
4220 if (pflags == FLAGS_N
4221 && reg_mentioned_p (op0, pp))
4223 #if DEBUG_CMP
4224 fprintf(stderr, "intermediate non-flags insn uses op:\n");
4225 debug_rtx(prev);
4226 #endif
4227 return false;
4229 } while (pflags == FLAGS_N);
4230 #if DEBUG_CMP
4231 fprintf(stderr, "previous flag-setting insn:\n");
4232 debug_rtx(prev);
4233 debug_rtx(pp);
4234 #endif
4236 if (GET_CODE (pp) == SET
4237 && GET_CODE (XEXP (pp, 0)) == REG
4238 && REGNO (XEXP (pp, 0)) == FLG_REGNO
4239 && GET_CODE (XEXP (pp, 1)) == COMPARE)
4241 /* Adjacent cbranches must have the same operands to be
4242 redundant. */
4243 rtx pop0 = XEXP (XEXP (pp, 1), 0);
4244 rtx pop1 = XEXP (XEXP (pp, 1), 1);
4245 #if DEBUG_CMP
4246 fprintf(stderr, "adjacent cbranches\n");
4247 debug_rtx(pop0);
4248 debug_rtx(pop1);
4249 #endif
4250 if (rtx_equal_p (op0, pop0)
4251 && rtx_equal_p (op1, pop1))
4252 return true;
4253 #if DEBUG_CMP
4254 fprintf(stderr, "prev cmp not same\n");
4255 #endif
4256 return false;
4259 /* Else the previous insn must be a SET, with either the source or
4260 dest equal to operands[0], and operands[1] must be zero. */
4262 if (!rtx_equal_p (op1, const0_rtx))
4264 #if DEBUG_CMP
4265 fprintf(stderr, "operands[1] not const0_rtx\n");
4266 #endif
4267 return false;
4269 if (GET_CODE (pp) != SET)
4271 #if DEBUG_CMP
4272 fprintf (stderr, "pp not set\n");
4273 #endif
4274 return false;
4276 if (!rtx_equal_p (op0, SET_SRC (pp))
4277 && !rtx_equal_p (op0, SET_DEST (pp)))
4279 #if DEBUG_CMP
4280 fprintf(stderr, "operands[0] not found in set\n");
4281 #endif
4282 return false;
4285 #if DEBUG_CMP
4286 fprintf(stderr, "cmp flags %x prev flags %x\n", flags_needed, pflags);
4287 #endif
4288 if ((pflags & flags_needed) == flags_needed)
4289 return true;
4291 return false;
4294 /* Return the pattern for a compare. This will be commented out if
4295 the compare is redundant, else a normal pattern is returned. Thus,
4296 the assembler output says where the compare would have been. */
4297 char *
4298 m32c_output_compare (rtx insn, rtx *operands)
4300 static char templ[] = ";cmp.b\t%1,%0";
4301 /* ^ 5 */
4303 templ[5] = " bwll"[GET_MODE_SIZE(GET_MODE(operands[0]))];
4304 if (m32c_compare_redundant (insn, operands))
4306 #if DEBUG_CMP
4307 fprintf(stderr, "cbranch: cmp not needed\n");
4308 #endif
4309 return templ;
4312 #if DEBUG_CMP
4313 fprintf(stderr, "cbranch: cmp needed: `%s'\n", templ);
4314 #endif
4315 return templ + 1;
4318 #undef TARGET_ENCODE_SECTION_INFO
4319 #define TARGET_ENCODE_SECTION_INFO m32c_encode_section_info
4321 /* The Global `targetm' Variable. */
4323 struct gcc_target targetm = TARGET_INITIALIZER;
4325 #include "gt-m32c.h"