tm.texi (LEGITIMIZE_ADDRESS): Revise documentation.
[official-gcc.git] / gcc / config / i386 / i386.h
blob4aafd9c92fe4c5e9a4b4391676b6f89828f4d047
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
27 /* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
42 /* Redefines for option macros. */
44 #define TARGET_64BIT OPTION_ISA_64BIT
45 #define TARGET_MMX OPTION_ISA_MMX
46 #define TARGET_3DNOW OPTION_ISA_3DNOW
47 #define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
48 #define TARGET_SSE OPTION_ISA_SSE
49 #define TARGET_SSE2 OPTION_ISA_SSE2
50 #define TARGET_SSE3 OPTION_ISA_SSE3
51 #define TARGET_SSSE3 OPTION_ISA_SSSE3
52 #define TARGET_SSE4_1 OPTION_ISA_SSE4_1
53 #define TARGET_SSE4_2 OPTION_ISA_SSE4_2
54 #define TARGET_AVX OPTION_ISA_AVX
55 #define TARGET_FMA OPTION_ISA_FMA
56 #define TARGET_SSE4A OPTION_ISA_SSE4A
57 #define TARGET_SSE5 OPTION_ISA_SSE5
58 #define TARGET_ROUND OPTION_ISA_ROUND
59 #define TARGET_ABM OPTION_ISA_ABM
60 #define TARGET_POPCNT OPTION_ISA_POPCNT
61 #define TARGET_SAHF OPTION_ISA_SAHF
62 #define TARGET_AES OPTION_ISA_AES
63 #define TARGET_PCLMUL OPTION_ISA_PCLMUL
64 #define TARGET_CMPXCHG16B OPTION_ISA_CX16
67 /* SSE5 and SSE4.1 define the same round instructions */
68 #define OPTION_MASK_ISA_ROUND (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_SSE5)
69 #define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
71 #include "config/vxworks-dummy.h"
73 /* Algorithm to expand string function with. */
74 enum stringop_alg
76 no_stringop,
77 libcall,
78 rep_prefix_1_byte,
79 rep_prefix_4_byte,
80 rep_prefix_8_byte,
81 loop_1_byte,
82 loop,
83 unrolled_loop
86 #define NAX_STRINGOP_ALGS 4
88 /* Specify what algorithm to use for stringops on known size.
89 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
90 known at compile time or estimated via feedback, the SIZE array
91 is walked in order until MAX is greater then the estimate (or -1
92 means infinity). Corresponding ALG is used then.
93 For example initializer:
94 {{256, loop}, {-1, rep_prefix_4_byte}}
95 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
96 be used otherwise. */
97 struct stringop_algs
99 const enum stringop_alg unknown_size;
100 const struct stringop_strategy {
101 const int max;
102 const enum stringop_alg alg;
103 } size [NAX_STRINGOP_ALGS];
106 /* Define the specific costs for a given cpu */
108 struct processor_costs {
109 const int add; /* cost of an add instruction */
110 const int lea; /* cost of a lea instruction */
111 const int shift_var; /* variable shift costs */
112 const int shift_const; /* constant shift costs */
113 const int mult_init[5]; /* cost of starting a multiply
114 in QImode, HImode, SImode, DImode, TImode*/
115 const int mult_bit; /* cost of multiply per each bit set */
116 const int divide[5]; /* cost of a divide/mod
117 in QImode, HImode, SImode, DImode, TImode*/
118 int movsx; /* The cost of movsx operation. */
119 int movzx; /* The cost of movzx operation. */
120 const int large_insn; /* insns larger than this cost more */
121 const int move_ratio; /* The threshold of number of scalar
122 memory-to-memory move insns. */
123 const int movzbl_load; /* cost of loading using movzbl */
124 const int int_load[3]; /* cost of loading integer registers
125 in QImode, HImode and SImode relative
126 to reg-reg move (2). */
127 const int int_store[3]; /* cost of storing integer register
128 in QImode, HImode and SImode */
129 const int fp_move; /* cost of reg,reg fld/fst */
130 const int fp_load[3]; /* cost of loading FP register
131 in SFmode, DFmode and XFmode */
132 const int fp_store[3]; /* cost of storing FP register
133 in SFmode, DFmode and XFmode */
134 const int mmx_move; /* cost of moving MMX register. */
135 const int mmx_load[2]; /* cost of loading MMX register
136 in SImode and DImode */
137 const int mmx_store[2]; /* cost of storing MMX register
138 in SImode and DImode */
139 const int sse_move; /* cost of moving SSE register. */
140 const int sse_load[3]; /* cost of loading SSE register
141 in SImode, DImode and TImode*/
142 const int sse_store[3]; /* cost of storing SSE register
143 in SImode, DImode and TImode*/
144 const int mmxsse_to_integer; /* cost of moving mmxsse register to
145 integer and vice versa. */
146 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
147 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
148 const int prefetch_block; /* bytes moved to cache for prefetch. */
149 const int simultaneous_prefetches; /* number of parallel prefetch
150 operations. */
151 const int branch_cost; /* Default value for BRANCH_COST. */
152 const int fadd; /* cost of FADD and FSUB instructions. */
153 const int fmul; /* cost of FMUL instruction. */
154 const int fdiv; /* cost of FDIV instruction. */
155 const int fabs; /* cost of FABS instruction. */
156 const int fchs; /* cost of FCHS instruction. */
157 const int fsqrt; /* cost of FSQRT instruction. */
158 /* Specify what algorithm
159 to use for stringops on unknown size. */
160 struct stringop_algs memcpy[2], memset[2];
161 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
162 load and store. */
163 const int scalar_load_cost; /* Cost of scalar load. */
164 const int scalar_store_cost; /* Cost of scalar store. */
165 const int vec_stmt_cost; /* Cost of any vector operation, excluding
166 load, store, vector-to-scalar and
167 scalar-to-vector operation. */
168 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
169 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
170 const int vec_align_load_cost; /* Cost of aligned vector load. */
171 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
172 const int vec_store_cost; /* Cost of vector store. */
173 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
174 cost model. */
175 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
176 vectorizer cost model. */
179 extern const struct processor_costs *ix86_cost;
180 extern const struct processor_costs ix86_size_cost;
182 #define ix86_cur_cost() \
183 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
185 /* Macros used in the machine description to test the flags. */
187 /* configure can arrange to make this 2, to force a 486. */
189 #ifndef TARGET_CPU_DEFAULT
190 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
191 #endif
193 #ifndef TARGET_FPMATH_DEFAULT
194 #define TARGET_FPMATH_DEFAULT \
195 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
196 #endif
198 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
200 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
201 compile-time constant. */
202 #ifdef IN_LIBGCC2
203 #undef TARGET_64BIT
204 #ifdef __x86_64__
205 #define TARGET_64BIT 1
206 #else
207 #define TARGET_64BIT 0
208 #endif
209 #else
210 #ifndef TARGET_BI_ARCH
211 #undef TARGET_64BIT
212 #if TARGET_64BIT_DEFAULT
213 #define TARGET_64BIT 1
214 #else
215 #define TARGET_64BIT 0
216 #endif
217 #endif
218 #endif
220 #define HAS_LONG_COND_BRANCH 1
221 #define HAS_LONG_UNCOND_BRANCH 1
223 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
224 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
225 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
226 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
227 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
228 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
229 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
230 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
231 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
232 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
233 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
234 #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
235 #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
236 #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
237 #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
238 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
239 #define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
241 /* Feature tests against the various tunings. */
242 enum ix86_tune_indices {
243 X86_TUNE_USE_LEAVE,
244 X86_TUNE_PUSH_MEMORY,
245 X86_TUNE_ZERO_EXTEND_WITH_AND,
246 X86_TUNE_UNROLL_STRLEN,
247 X86_TUNE_DEEP_BRANCH_PREDICTION,
248 X86_TUNE_BRANCH_PREDICTION_HINTS,
249 X86_TUNE_DOUBLE_WITH_ADD,
250 X86_TUNE_USE_SAHF,
251 X86_TUNE_MOVX,
252 X86_TUNE_PARTIAL_REG_STALL,
253 X86_TUNE_PARTIAL_FLAG_REG_STALL,
254 X86_TUNE_USE_HIMODE_FIOP,
255 X86_TUNE_USE_SIMODE_FIOP,
256 X86_TUNE_USE_MOV0,
257 X86_TUNE_USE_CLTD,
258 X86_TUNE_USE_XCHGB,
259 X86_TUNE_SPLIT_LONG_MOVES,
260 X86_TUNE_READ_MODIFY_WRITE,
261 X86_TUNE_READ_MODIFY,
262 X86_TUNE_PROMOTE_QIMODE,
263 X86_TUNE_FAST_PREFIX,
264 X86_TUNE_SINGLE_STRINGOP,
265 X86_TUNE_QIMODE_MATH,
266 X86_TUNE_HIMODE_MATH,
267 X86_TUNE_PROMOTE_QI_REGS,
268 X86_TUNE_PROMOTE_HI_REGS,
269 X86_TUNE_ADD_ESP_4,
270 X86_TUNE_ADD_ESP_8,
271 X86_TUNE_SUB_ESP_4,
272 X86_TUNE_SUB_ESP_8,
273 X86_TUNE_INTEGER_DFMODE_MOVES,
274 X86_TUNE_PARTIAL_REG_DEPENDENCY,
275 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
276 X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL,
277 X86_TUNE_SSE_SPLIT_REGS,
278 X86_TUNE_SSE_TYPELESS_STORES,
279 X86_TUNE_SSE_LOAD0_BY_PXOR,
280 X86_TUNE_MEMORY_MISMATCH_STALL,
281 X86_TUNE_PROLOGUE_USING_MOVE,
282 X86_TUNE_EPILOGUE_USING_MOVE,
283 X86_TUNE_SHIFT1,
284 X86_TUNE_USE_FFREEP,
285 X86_TUNE_INTER_UNIT_MOVES,
286 X86_TUNE_INTER_UNIT_CONVERSIONS,
287 X86_TUNE_FOUR_JUMP_LIMIT,
288 X86_TUNE_SCHEDULE,
289 X86_TUNE_USE_BT,
290 X86_TUNE_USE_INCDEC,
291 X86_TUNE_PAD_RETURNS,
292 X86_TUNE_EXT_80387_CONSTANTS,
293 X86_TUNE_SHORTEN_X87_SSE,
294 X86_TUNE_AVOID_VECTOR_DECODE,
295 X86_TUNE_PROMOTE_HIMODE_IMUL,
296 X86_TUNE_SLOW_IMUL_IMM32_MEM,
297 X86_TUNE_SLOW_IMUL_IMM8,
298 X86_TUNE_MOVE_M1_VIA_OR,
299 X86_TUNE_NOT_UNPAIRABLE,
300 X86_TUNE_NOT_VECTORMODE,
301 X86_TUNE_USE_VECTOR_FP_CONVERTS,
302 X86_TUNE_USE_VECTOR_CONVERTS,
303 X86_TUNE_FUSE_CMP_AND_BRANCH,
304 X86_TUNE_OPT_AGU,
306 X86_TUNE_LAST
309 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
311 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
312 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
313 #define TARGET_ZERO_EXTEND_WITH_AND \
314 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
315 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
316 #define TARGET_DEEP_BRANCH_PREDICTION \
317 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
318 #define TARGET_BRANCH_PREDICTION_HINTS \
319 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
320 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
321 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
322 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
323 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
324 #define TARGET_PARTIAL_FLAG_REG_STALL \
325 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
326 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
327 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
328 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
329 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
330 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
331 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
332 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
333 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
334 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
335 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
336 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
337 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
338 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
339 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
340 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
341 #define TARGET_ADD_ESP_4 ix86_tune_features[X86_TUNE_ADD_ESP_4]
342 #define TARGET_ADD_ESP_8 ix86_tune_features[X86_TUNE_ADD_ESP_8]
343 #define TARGET_SUB_ESP_4 ix86_tune_features[X86_TUNE_SUB_ESP_4]
344 #define TARGET_SUB_ESP_8 ix86_tune_features[X86_TUNE_SUB_ESP_8]
345 #define TARGET_INTEGER_DFMODE_MOVES \
346 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
347 #define TARGET_PARTIAL_REG_DEPENDENCY \
348 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
349 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
350 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
351 #define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
352 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL]
353 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
354 #define TARGET_SSE_TYPELESS_STORES \
355 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
356 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
357 #define TARGET_MEMORY_MISMATCH_STALL \
358 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
359 #define TARGET_PROLOGUE_USING_MOVE \
360 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
361 #define TARGET_EPILOGUE_USING_MOVE \
362 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
363 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
364 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
365 #define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
366 #define TARGET_INTER_UNIT_CONVERSIONS\
367 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
368 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
369 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
370 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
371 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
372 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
373 #define TARGET_EXT_80387_CONSTANTS \
374 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
375 #define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
376 #define TARGET_AVOID_VECTOR_DECODE \
377 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
378 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
379 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
380 #define TARGET_SLOW_IMUL_IMM32_MEM \
381 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
382 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
383 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
384 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
385 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
386 #define TARGET_USE_VECTOR_FP_CONVERTS \
387 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
388 #define TARGET_USE_VECTOR_CONVERTS \
389 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
390 #define TARGET_FUSE_CMP_AND_BRANCH \
391 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
392 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
394 /* Feature tests against the various architecture variations. */
395 enum ix86_arch_indices {
396 X86_ARCH_CMOVE, /* || TARGET_SSE */
397 X86_ARCH_CMPXCHG,
398 X86_ARCH_CMPXCHG8B,
399 X86_ARCH_XADD,
400 X86_ARCH_BSWAP,
402 X86_ARCH_LAST
405 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
407 #define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
408 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
409 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
410 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
411 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
413 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
415 extern int x86_prefetch_sse;
417 #define TARGET_PREFETCH_SSE x86_prefetch_sse
419 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
421 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
422 #define TARGET_MIX_SSE_I387 \
423 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
425 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
426 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
427 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
428 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
430 extern int ix86_isa_flags;
432 #ifndef TARGET_64BIT_DEFAULT
433 #define TARGET_64BIT_DEFAULT 0
434 #endif
435 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
436 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
437 #endif
439 /* Fence to use after loop using storent. */
441 extern tree x86_mfence;
442 #define FENCE_FOLLOWING_MOVNT x86_mfence
444 /* Once GDB has been enhanced to deal with functions without frame
445 pointers, we can change this to allow for elimination of
446 the frame pointer in leaf functions. */
447 #define TARGET_DEFAULT 0
449 /* Extra bits to force. */
450 #define TARGET_SUBTARGET_DEFAULT 0
451 #define TARGET_SUBTARGET_ISA_DEFAULT 0
453 /* Extra bits to force on w/ 32-bit mode. */
454 #define TARGET_SUBTARGET32_DEFAULT 0
455 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
457 /* Extra bits to force on w/ 64-bit mode. */
458 #define TARGET_SUBTARGET64_DEFAULT 0
459 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
461 /* This is not really a target flag, but is done this way so that
462 it's analogous to similar code for Mach-O on PowerPC. darwin.h
463 redefines this to 1. */
464 #define TARGET_MACHO 0
466 /* Likewise, for the Windows 64-bit ABI. */
467 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
469 /* Available call abi. */
470 enum calling_abi
472 SYSV_ABI = 0,
473 MS_ABI = 1
476 /* The abi used by target. */
477 extern enum calling_abi ix86_abi;
479 /* The default abi used by target. */
480 #define DEFAULT_ABI SYSV_ABI
482 /* Subtargets may reset this to 1 in order to enable 96-bit long double
483 with the rounding mode forced to 53 bits. */
484 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
486 /* Sometimes certain combinations of command options do not make
487 sense on a particular target machine. You can define a macro
488 `OVERRIDE_OPTIONS' to take account of this. This macro, if
489 defined, is executed once just after all the command options have
490 been parsed.
492 Don't use this macro to turn on various extra optimizations for
493 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
495 #define OVERRIDE_OPTIONS override_options (true)
497 /* Define this to change the optimizations performed by default. */
498 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
499 optimization_options ((LEVEL), (SIZE))
501 /* -march=native handling only makes sense with compiler running on
502 an x86 or x86_64 chip. If changing this condition, also change
503 the condition in driver-i386.c. */
504 #if defined(__i386__) || defined(__x86_64__)
505 /* In driver-i386.c. */
506 extern const char *host_detect_local_cpu (int argc, const char **argv);
507 #define EXTRA_SPEC_FUNCTIONS \
508 { "local_cpu_detect", host_detect_local_cpu },
509 #define HAVE_LOCAL_CPU_DETECT
510 #endif
512 #if TARGET_64BIT_DEFAULT
513 #define OPT_ARCH64 "!m32"
514 #define OPT_ARCH32 "m32"
515 #else
516 #define OPT_ARCH64 "m64"
517 #define OPT_ARCH32 "!m64"
518 #endif
520 /* Support for configure-time defaults of some command line options.
521 The order here is important so that -march doesn't squash the
522 tune or cpu values. */
523 #define OPTION_DEFAULT_SPECS \
524 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
525 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
526 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
527 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
528 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
529 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
530 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
531 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
532 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
534 /* Specs for the compiler proper */
536 #ifndef CC1_CPU_SPEC
537 #define CC1_CPU_SPEC_1 "\
538 %{mcpu=*:-mtune=%* \
539 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n} \
540 %<mcpu=* \
541 %{mintel-syntax:-masm=intel \
542 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
543 %{mno-intel-syntax:-masm=att \
544 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
546 #ifndef HAVE_LOCAL_CPU_DETECT
547 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
548 #else
549 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
550 "%{march=native:%<march=native %:local_cpu_detect(arch) \
551 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
552 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
553 #endif
554 #endif
556 /* Target CPU builtins. */
557 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
559 /* Target Pragmas. */
560 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
562 enum target_cpu_default
564 TARGET_CPU_DEFAULT_generic = 0,
566 TARGET_CPU_DEFAULT_i386,
567 TARGET_CPU_DEFAULT_i486,
568 TARGET_CPU_DEFAULT_pentium,
569 TARGET_CPU_DEFAULT_pentium_mmx,
570 TARGET_CPU_DEFAULT_pentiumpro,
571 TARGET_CPU_DEFAULT_pentium2,
572 TARGET_CPU_DEFAULT_pentium3,
573 TARGET_CPU_DEFAULT_pentium4,
574 TARGET_CPU_DEFAULT_pentium_m,
575 TARGET_CPU_DEFAULT_prescott,
576 TARGET_CPU_DEFAULT_nocona,
577 TARGET_CPU_DEFAULT_core2,
578 TARGET_CPU_DEFAULT_atom,
580 TARGET_CPU_DEFAULT_geode,
581 TARGET_CPU_DEFAULT_k6,
582 TARGET_CPU_DEFAULT_k6_2,
583 TARGET_CPU_DEFAULT_k6_3,
584 TARGET_CPU_DEFAULT_athlon,
585 TARGET_CPU_DEFAULT_athlon_sse,
586 TARGET_CPU_DEFAULT_k8,
587 TARGET_CPU_DEFAULT_amdfam10,
589 TARGET_CPU_DEFAULT_max
592 #ifndef CC1_SPEC
593 #define CC1_SPEC "%(cc1_cpu) "
594 #endif
596 /* This macro defines names of additional specifications to put in the
597 specs that can be used in various specifications like CC1_SPEC. Its
598 definition is an initializer with a subgrouping for each command option.
600 Each subgrouping contains a string constant, that defines the
601 specification name, and a string constant that used by the GCC driver
602 program.
604 Do not define this macro if it does not need to do anything. */
606 #ifndef SUBTARGET_EXTRA_SPECS
607 #define SUBTARGET_EXTRA_SPECS
608 #endif
610 #define EXTRA_SPECS \
611 { "cc1_cpu", CC1_CPU_SPEC }, \
612 SUBTARGET_EXTRA_SPECS
615 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
616 FPU, assume that the fpcw is set to extended precision; when using
617 only SSE, rounding is correct; when using both SSE and the FPU,
618 the rounding precision is indeterminate, since either may be chosen
619 apparently at random. */
620 #define TARGET_FLT_EVAL_METHOD \
621 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
623 /* Whether to allow x87 floating-point arithmetic on MODE (one of
624 SFmode, DFmode and XFmode) in the current excess precision
625 configuration. */
626 #define X87_ENABLE_ARITH(MODE) \
627 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
629 /* Likewise, whether to allow direct conversions from integer mode
630 IMODE (HImode, SImode or DImode) to MODE. */
631 #define X87_ENABLE_FLOAT(MODE, IMODE) \
632 (flag_excess_precision == EXCESS_PRECISION_FAST \
633 || (MODE) == XFmode \
634 || ((MODE) == DFmode && (IMODE) == SImode) \
635 || (IMODE) == HImode)
637 /* target machine storage layout */
639 #define SHORT_TYPE_SIZE 16
640 #define INT_TYPE_SIZE 32
641 #define FLOAT_TYPE_SIZE 32
642 #define LONG_TYPE_SIZE BITS_PER_WORD
643 #define DOUBLE_TYPE_SIZE 64
644 #define LONG_LONG_TYPE_SIZE 64
645 #define LONG_DOUBLE_TYPE_SIZE 80
647 #define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
649 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
650 #define MAX_BITS_PER_WORD 64
651 #else
652 #define MAX_BITS_PER_WORD 32
653 #endif
655 /* Define this if most significant byte of a word is the lowest numbered. */
656 /* That is true on the 80386. */
658 #define BITS_BIG_ENDIAN 0
660 /* Define this if most significant byte of a word is the lowest numbered. */
661 /* That is not true on the 80386. */
662 #define BYTES_BIG_ENDIAN 0
664 /* Define this if most significant word of a multiword number is the lowest
665 numbered. */
666 /* Not true for 80386 */
667 #define WORDS_BIG_ENDIAN 0
669 /* Width of a word, in units (bytes). */
670 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
671 #ifdef IN_LIBGCC2
672 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
673 #else
674 #define MIN_UNITS_PER_WORD 4
675 #endif
677 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
678 #define PARM_BOUNDARY BITS_PER_WORD
680 /* Boundary (in *bits*) on which stack pointer should be aligned. */
681 #define STACK_BOUNDARY \
682 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
684 /* Stack boundary of the main function guaranteed by OS. */
685 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
687 /* Minimum stack boundary. */
688 #define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
690 /* Boundary (in *bits*) on which the stack pointer prefers to be
691 aligned; the compiler cannot rely on having this alignment. */
692 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
694 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
695 both 32bit and 64bit, to support codes that need 128 bit stack
696 alignment for SSE instructions, but can't realign the stack. */
697 #define PREFERRED_STACK_BOUNDARY_DEFAULT 128
699 /* 1 if -mstackrealign should be turned on by default. It will
700 generate an alternate prologue and epilogue that realigns the
701 runtime stack if nessary. This supports mixing codes that keep a
702 4-byte aligned stack, as specified by i386 psABI, with codes that
703 need a 16-byte aligned stack, as required by SSE instructions. If
704 STACK_REALIGN_DEFAULT is 1 and PREFERRED_STACK_BOUNDARY_DEFAULT is
705 128, stacks for all functions may be realigned. */
706 #define STACK_REALIGN_DEFAULT 0
708 /* Boundary (in *bits*) on which the incoming stack is aligned. */
709 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
711 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
712 mandatory for the 64-bit ABI, and may or may not be true for other
713 operating systems. */
714 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
716 /* Minimum allocation boundary for the code of a function. */
717 #define FUNCTION_BOUNDARY 8
719 /* C++ stores the virtual bit in the lowest bit of function pointers. */
720 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
722 /* Alignment of field after `int : 0' in a structure. */
724 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
726 /* Minimum size in bits of the largest boundary to which any
727 and all fundamental data types supported by the hardware
728 might need to be aligned. No data type wants to be aligned
729 rounder than this.
731 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
732 and Pentium Pro XFmode values at 128 bit boundaries. */
734 #define BIGGEST_ALIGNMENT (TARGET_AVX ? 256: 128)
736 /* Maximum stack alignment. */
737 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
739 /* Alignment value for attribute ((aligned)). It is a constant since
740 it is the part of the ABI. We shouldn't change it with -mavx. */
741 #define ATTRIBUTE_ALIGNED_VALUE 128
743 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
744 #define ALIGN_MODE_128(MODE) \
745 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
747 /* The published ABIs say that doubles should be aligned on word
748 boundaries, so lower the alignment for structure fields unless
749 -malign-double is set. */
751 /* ??? Blah -- this macro is used directly by libobjc. Since it
752 supports no vector modes, cut out the complexity and fall back
753 on BIGGEST_FIELD_ALIGNMENT. */
754 #ifdef IN_TARGET_LIBS
755 #ifdef __x86_64__
756 #define BIGGEST_FIELD_ALIGNMENT 128
757 #else
758 #define BIGGEST_FIELD_ALIGNMENT 32
759 #endif
760 #else
761 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
762 x86_field_alignment (FIELD, COMPUTED)
763 #endif
765 /* If defined, a C expression to compute the alignment given to a
766 constant that is being placed in memory. EXP is the constant
767 and ALIGN is the alignment that the object would ordinarily have.
768 The value of this macro is used instead of that alignment to align
769 the object.
771 If this macro is not defined, then ALIGN is used.
773 The typical use of this macro is to increase alignment for string
774 constants to be word aligned so that `strcpy' calls that copy
775 constants can be done inline. */
777 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
779 /* If defined, a C expression to compute the alignment for a static
780 variable. TYPE is the data type, and ALIGN is the alignment that
781 the object would ordinarily have. The value of this macro is used
782 instead of that alignment to align the object.
784 If this macro is not defined, then ALIGN is used.
786 One use of this macro is to increase alignment of medium-size
787 data to make it all fit in fewer cache lines. Another is to
788 cause character arrays to be word-aligned so that `strcpy' calls
789 that copy constants to character arrays can be done inline. */
791 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
793 /* If defined, a C expression to compute the alignment for a local
794 variable. TYPE is the data type, and ALIGN is the alignment that
795 the object would ordinarily have. The value of this macro is used
796 instead of that alignment to align the object.
798 If this macro is not defined, then ALIGN is used.
800 One use of this macro is to increase alignment of medium-size
801 data to make it all fit in fewer cache lines. */
803 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
804 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
806 /* If defined, a C expression to compute the alignment for stack slot.
807 TYPE is the data type, MODE is the widest mode available, and ALIGN
808 is the alignment that the slot would ordinarily have. The value of
809 this macro is used instead of that alignment to align the slot.
811 If this macro is not defined, then ALIGN is used when TYPE is NULL,
812 Otherwise, LOCAL_ALIGNMENT will be used.
814 One use of this macro is to set alignment of stack slot to the
815 maximum alignment of all possible modes which the slot may have. */
817 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
818 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
820 /* If defined, a C expression to compute the alignment for a local
821 variable DECL.
823 If this macro is not defined, then
824 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
826 One use of this macro is to increase alignment of medium-size
827 data to make it all fit in fewer cache lines. */
829 #define LOCAL_DECL_ALIGNMENT(DECL) \
830 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
833 /* If defined, a C expression that gives the alignment boundary, in
834 bits, of an argument with the specified mode and type. If it is
835 not defined, `PARM_BOUNDARY' is used for all arguments. */
837 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
838 ix86_function_arg_boundary ((MODE), (TYPE))
840 /* Set this nonzero if move instructions will actually fail to work
841 when given unaligned data. */
842 #define STRICT_ALIGNMENT 0
844 /* If bit field type is int, don't let it cross an int,
845 and give entire struct the alignment of an int. */
846 /* Required on the 386 since it doesn't have bit-field insns. */
847 #define PCC_BITFIELD_TYPE_MATTERS 1
849 /* Standard register usage. */
851 /* This processor has special stack-like registers. See reg-stack.c
852 for details. */
854 #define STACK_REGS
856 #define IS_STACK_MODE(MODE) \
857 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
858 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
859 || (MODE) == XFmode)
861 /* Number of actual hardware registers.
862 The hardware registers are assigned numbers for the compiler
863 from 0 to just below FIRST_PSEUDO_REGISTER.
864 All registers that the compiler knows about must be given numbers,
865 even those that are not normally considered general registers.
867 In the 80386 we give the 8 general purpose registers the numbers 0-7.
868 We number the floating point registers 8-15.
869 Note that registers 0-7 can be accessed as a short or int,
870 while only 0-3 may be used with byte `mov' instructions.
872 Reg 16 does not correspond to any hardware register, but instead
873 appears in the RTL as an argument pointer prior to reload, and is
874 eliminated during reloading in favor of either the stack or frame
875 pointer. */
877 #define FIRST_PSEUDO_REGISTER 53
879 /* Number of hardware registers that go into the DWARF-2 unwind info.
880 If not defined, equals FIRST_PSEUDO_REGISTER. */
882 #define DWARF_FRAME_REGISTERS 17
884 /* 1 for registers that have pervasive standard uses
885 and are not available for the register allocator.
886 On the 80386, the stack pointer is such, as is the arg pointer.
888 The value is zero if the register is not fixed on either 32 or
889 64 bit targets, one if the register if fixed on both 32 and 64
890 bit targets, two if it is only fixed on 32bit targets and three
891 if its only fixed on 64bit targets.
892 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
894 #define FIXED_REGISTERS \
895 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
896 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
897 /*arg,flags,fpsr,fpcr,frame*/ \
898 1, 1, 1, 1, 1, \
899 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
900 0, 0, 0, 0, 0, 0, 0, 0, \
901 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
902 0, 0, 0, 0, 0, 0, 0, 0, \
903 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
904 2, 2, 2, 2, 2, 2, 2, 2, \
905 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
906 2, 2, 2, 2, 2, 2, 2, 2 }
909 /* 1 for registers not available across function calls.
910 These must include the FIXED_REGISTERS and also any
911 registers that can be used without being saved.
912 The latter must include the registers where values are returned
913 and the register where structure-value addresses are passed.
914 Aside from that, you can include as many other registers as you like.
916 The value is zero if the register is not call used on either 32 or
917 64 bit targets, one if the register if call used on both 32 and 64
918 bit targets, two if it is only call used on 32bit targets and three
919 if its only call used on 64bit targets.
920 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
922 #define CALL_USED_REGISTERS \
923 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
924 { 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
925 /*arg,flags,fpsr,fpcr,frame*/ \
926 1, 1, 1, 1, 1, \
927 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
928 1, 1, 1, 1, 1, 1, 1, 1, \
929 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
930 1, 1, 1, 1, 1, 1, 1, 1, \
931 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
932 1, 1, 1, 1, 2, 2, 2, 2, \
933 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
934 1, 1, 1, 1, 1, 1, 1, 1 }
936 /* Order in which to allocate registers. Each register must be
937 listed once, even those in FIXED_REGISTERS. List frame pointer
938 late and fixed registers last. Note that, in general, we prefer
939 registers listed in CALL_USED_REGISTERS, keeping the others
940 available for storage of persistent values.
942 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
943 so this is just empty initializer for array. */
945 #define REG_ALLOC_ORDER \
946 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
947 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
948 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
949 48, 49, 50, 51, 52 }
951 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
952 to be rearranged based on a particular function. When using sse math,
953 we want to allocate SSE before x87 registers and vice versa. */
955 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
958 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
960 /* Macro to conditionally modify fixed_regs/call_used_regs. */
961 #define CONDITIONAL_REGISTER_USAGE \
962 do { \
963 int i; \
964 unsigned int j; \
965 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
967 if (fixed_regs[i] > 1) \
968 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
969 if (call_used_regs[i] > 1) \
970 call_used_regs[i] = (call_used_regs[i] \
971 == (TARGET_64BIT ? 3 : 2)); \
973 j = PIC_OFFSET_TABLE_REGNUM; \
974 if (j != INVALID_REGNUM) \
975 fixed_regs[j] = call_used_regs[j] = 1; \
976 if (TARGET_64BIT \
977 && ((cfun && cfun->machine->call_abi == MS_ABI) \
978 || (!cfun && ix86_abi == MS_ABI))) \
980 call_used_regs[SI_REG] = 0; \
981 call_used_regs[DI_REG] = 0; \
982 call_used_regs[XMM6_REG] = 0; \
983 call_used_regs[XMM7_REG] = 0; \
984 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
985 call_used_regs[i] = 0; \
987 if (! TARGET_MMX) \
988 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
989 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
990 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
991 if (! TARGET_SSE) \
992 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
993 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
994 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
995 if (! (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387)) \
996 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
997 if (TEST_HARD_REG_BIT (reg_class_contents[(int)FLOAT_REGS], i)) \
998 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
999 if (! TARGET_64BIT) \
1001 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
1002 reg_names[i] = ""; \
1003 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
1004 reg_names[i] = ""; \
1006 } while (0)
1008 /* Return number of consecutive hard regs needed starting at reg REGNO
1009 to hold something of mode MODE.
1010 This is ordinarily the length in words of a value of mode MODE
1011 but can be less for certain modes in special long registers.
1013 Actually there are no two word move instructions for consecutive
1014 registers. And only registers 0-3 may have mov byte instructions
1015 applied to them.
1018 #define HARD_REGNO_NREGS(REGNO, MODE) \
1019 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1020 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1021 : ((MODE) == XFmode \
1022 ? (TARGET_64BIT ? 2 : 3) \
1023 : (MODE) == XCmode \
1024 ? (TARGET_64BIT ? 4 : 6) \
1025 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1027 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1028 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1029 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1030 ? 0 \
1031 : ((MODE) == XFmode || (MODE) == XCmode)) \
1032 : 0)
1034 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1036 #define VALID_AVX256_REG_MODE(MODE) \
1037 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1038 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
1040 #define VALID_SSE2_REG_MODE(MODE) \
1041 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1042 || (MODE) == V2DImode || (MODE) == DFmode)
1044 #define VALID_SSE_REG_MODE(MODE) \
1045 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1046 || (MODE) == SFmode || (MODE) == TFmode)
1048 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1049 ((MODE) == V2SFmode || (MODE) == SFmode)
1051 #define VALID_MMX_REG_MODE(MODE) \
1052 ((MODE == V1DImode) || (MODE) == DImode \
1053 || (MODE) == V2SImode || (MODE) == SImode \
1054 || (MODE) == V4HImode || (MODE) == V8QImode)
1056 /* ??? No autovectorization into MMX or 3DNOW until we can reliably
1057 place emms and femms instructions.
1058 FIXME: AVX has 32byte floating point vector operations and 16byte
1059 integer vector operations. But vectorizer doesn't support
1060 different sizes for integer and floating point vectors. We limit
1061 vector size to 16byte. */
1062 #define UNITS_PER_SIMD_WORD(MODE) \
1063 (TARGET_AVX ? (((MODE) == DFmode || (MODE) == SFmode) ? 16 : 16) \
1064 : (TARGET_SSE ? 16 : UNITS_PER_WORD))
1066 #define VALID_DFP_MODE_P(MODE) \
1067 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1069 #define VALID_FP_MODE_P(MODE) \
1070 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1071 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1073 #define VALID_INT_MODE_P(MODE) \
1074 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1075 || (MODE) == DImode \
1076 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1077 || (MODE) == CDImode \
1078 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1079 || (MODE) == TFmode || (MODE) == TCmode)))
1081 /* Return true for modes passed in SSE registers. */
1082 #define SSE_REG_MODE_P(MODE) \
1083 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
1084 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
1085 || (MODE) == V4SFmode || (MODE) == V4SImode || (MODE) == V32QImode \
1086 || (MODE) == V16HImode || (MODE) == V8SImode || (MODE) == V4DImode \
1087 || (MODE) == V8SFmode || (MODE) == V4DFmode)
1089 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1091 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1092 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1094 /* Value is 1 if it is a good idea to tie two pseudo registers
1095 when one has mode MODE1 and one has mode MODE2.
1096 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1097 for any hard reg, then this must be 0 for correct output. */
1099 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
1101 /* It is possible to write patterns to move flags; but until someone
1102 does it, */
1103 #define AVOID_CCMODE_COPIES
1105 /* Specify the modes required to caller save a given hard regno.
1106 We do this on i386 to prevent flags from being saved at all.
1108 Kill any attempts to combine saving of modes. */
1110 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1111 (CC_REGNO_P (REGNO) ? VOIDmode \
1112 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1113 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1114 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1115 : (MODE) == QImode && (REGNO) > BX_REG && !TARGET_64BIT ? SImode \
1116 : (MODE))
1118 /* Specify the registers used for certain standard purposes.
1119 The values of these macros are register numbers. */
1121 /* on the 386 the pc register is %eip, and is not usable as a general
1122 register. The ordinary mov instructions won't work */
1123 /* #define PC_REGNUM */
1125 /* Register to use for pushing function arguments. */
1126 #define STACK_POINTER_REGNUM 7
1128 /* Base register for access to local variables of the function. */
1129 #define HARD_FRAME_POINTER_REGNUM 6
1131 /* Base register for access to local variables of the function. */
1132 #define FRAME_POINTER_REGNUM 20
1134 /* First floating point reg */
1135 #define FIRST_FLOAT_REG 8
1137 /* First & last stack-like regs */
1138 #define FIRST_STACK_REG FIRST_FLOAT_REG
1139 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1141 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1142 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1144 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1145 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1147 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1148 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1150 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1151 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1153 /* Value should be nonzero if functions must have frame pointers.
1154 Zero means the frame pointer need not be set up (and parms
1155 may be accessed via the stack pointer) in functions that seem suitable.
1156 This is computed in `reload', in reload1.c. */
1157 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1159 /* Override this in other tm.h files to cope with various OS lossage
1160 requiring a frame pointer. */
1161 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1162 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1163 #endif
1165 /* Make sure we can access arbitrary call frames. */
1166 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1168 /* Base register for access to arguments of the function. */
1169 #define ARG_POINTER_REGNUM 16
1171 /* Register in which static-chain is passed to a function.
1172 We do use ECX as static chain register for 32 bit ABI. On the
1173 64bit ABI, ECX is an argument register, so we use R10 instead. */
1174 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? R10_REG : CX_REG)
1176 /* Register to hold the addressing base for position independent
1177 code access to data items. We don't use PIC pointer for 64bit
1178 mode. Define the regnum to dummy value to prevent gcc from
1179 pessimizing code dealing with EBX.
1181 To avoid clobbering a call-saved register unnecessarily, we renumber
1182 the pic register when possible. The change is visible after the
1183 prologue has been emitted. */
1185 #define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
1187 #define PIC_OFFSET_TABLE_REGNUM \
1188 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1189 || !flag_pic ? INVALID_REGNUM \
1190 : reload_completed ? REGNO (pic_offset_table_rtx) \
1191 : REAL_PIC_OFFSET_TABLE_REGNUM)
1193 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1195 /* This is overridden by <cygwin.h>. */
1196 #define MS_AGGREGATE_RETURN 0
1198 /* This is overridden by <netware.h>. */
1199 #define KEEP_AGGREGATE_RETURN_POINTER 0
1201 /* Define the classes of registers for register constraints in the
1202 machine description. Also define ranges of constants.
1204 One of the classes must always be named ALL_REGS and include all hard regs.
1205 If there is more than one class, another class must be named NO_REGS
1206 and contain no registers.
1208 The name GENERAL_REGS must be the name of a class (or an alias for
1209 another name such as ALL_REGS). This is the class of registers
1210 that is allowed by "g" or "r" in a register constraint.
1211 Also, registers outside this class are allocated only when
1212 instructions express preferences for them.
1214 The classes must be numbered in nondecreasing order; that is,
1215 a larger-numbered class must never be contained completely
1216 in a smaller-numbered class.
1218 For any two classes, it is very desirable that there be another
1219 class that represents their union.
1221 It might seem that class BREG is unnecessary, since no useful 386
1222 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1223 and the "b" register constraint is useful in asms for syscalls.
1225 The flags, fpsr and fpcr registers are in no class. */
1227 enum reg_class
1229 NO_REGS,
1230 AREG, DREG, CREG, BREG, SIREG, DIREG,
1231 AD_REGS, /* %eax/%edx for DImode */
1232 Q_REGS, /* %eax %ebx %ecx %edx */
1233 NON_Q_REGS, /* %esi %edi %ebp %esp */
1234 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1235 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1236 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1237 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1238 FLOAT_REGS,
1239 SSE_FIRST_REG,
1240 SSE_REGS,
1241 MMX_REGS,
1242 FP_TOP_SSE_REGS,
1243 FP_SECOND_SSE_REGS,
1244 FLOAT_SSE_REGS,
1245 FLOAT_INT_REGS,
1246 INT_SSE_REGS,
1247 FLOAT_INT_SSE_REGS,
1248 ALL_REGS, LIM_REG_CLASSES
1251 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1253 #define INTEGER_CLASS_P(CLASS) \
1254 reg_class_subset_p ((CLASS), GENERAL_REGS)
1255 #define FLOAT_CLASS_P(CLASS) \
1256 reg_class_subset_p ((CLASS), FLOAT_REGS)
1257 #define SSE_CLASS_P(CLASS) \
1258 reg_class_subset_p ((CLASS), SSE_REGS)
1259 #define MMX_CLASS_P(CLASS) \
1260 ((CLASS) == MMX_REGS)
1261 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1262 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1263 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1264 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1265 #define MAYBE_SSE_CLASS_P(CLASS) \
1266 reg_classes_intersect_p (SSE_REGS, (CLASS))
1267 #define MAYBE_MMX_CLASS_P(CLASS) \
1268 reg_classes_intersect_p (MMX_REGS, (CLASS))
1270 #define Q_CLASS_P(CLASS) \
1271 reg_class_subset_p ((CLASS), Q_REGS)
1273 /* Give names of register classes as strings for dump file. */
1275 #define REG_CLASS_NAMES \
1276 { "NO_REGS", \
1277 "AREG", "DREG", "CREG", "BREG", \
1278 "SIREG", "DIREG", \
1279 "AD_REGS", \
1280 "Q_REGS", "NON_Q_REGS", \
1281 "INDEX_REGS", \
1282 "LEGACY_REGS", \
1283 "GENERAL_REGS", \
1284 "FP_TOP_REG", "FP_SECOND_REG", \
1285 "FLOAT_REGS", \
1286 "SSE_FIRST_REG", \
1287 "SSE_REGS", \
1288 "MMX_REGS", \
1289 "FP_TOP_SSE_REGS", \
1290 "FP_SECOND_SSE_REGS", \
1291 "FLOAT_SSE_REGS", \
1292 "FLOAT_INT_REGS", \
1293 "INT_SSE_REGS", \
1294 "FLOAT_INT_SSE_REGS", \
1295 "ALL_REGS" }
1297 /* Define which registers fit in which classes.
1298 This is an initializer for a vector of HARD_REG_SET
1299 of length N_REG_CLASSES. */
1301 #define REG_CLASS_CONTENTS \
1302 { { 0x00, 0x0 }, \
1303 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1304 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1305 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1306 { 0x03, 0x0 }, /* AD_REGS */ \
1307 { 0x0f, 0x0 }, /* Q_REGS */ \
1308 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1309 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1310 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1311 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1312 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1313 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1314 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
1315 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1316 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1317 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1318 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1319 { 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1320 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1321 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1322 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1323 { 0xffffffff,0x1fffff } \
1326 /* The following macro defines cover classes for Integrated Register
1327 Allocator. Cover classes is a set of non-intersected register
1328 classes covering all hard registers used for register allocation
1329 purpose. Any move between two registers of a cover class should be
1330 cheaper than load or store of the registers. The macro value is
1331 array of register classes with LIM_REG_CLASSES used as the end
1332 marker. */
1334 #define IRA_COVER_CLASSES \
1336 GENERAL_REGS, FLOAT_REGS, MMX_REGS, SSE_REGS, LIM_REG_CLASSES \
1339 /* The same information, inverted:
1340 Return the class number of the smallest class containing
1341 reg number REGNO. This could be a conditional expression
1342 or could index an array. */
1344 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1346 /* When defined, the compiler allows registers explicitly used in the
1347 rtl to be used as spill registers but prevents the compiler from
1348 extending the lifetime of these registers. */
1350 #define SMALL_REGISTER_CLASSES 1
1352 #define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG)
1354 #define GENERAL_REGNO_P(N) \
1355 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
1357 #define GENERAL_REG_P(X) \
1358 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1360 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1362 #define REX_INT_REGNO_P(N) \
1363 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1364 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1366 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1367 #define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1368 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1369 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1371 #define X87_FLOAT_MODE_P(MODE) \
1372 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1374 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1375 #define SSE_REGNO_P(N) \
1376 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1377 || REX_SSE_REGNO_P (N))
1379 #define REX_SSE_REGNO_P(N) \
1380 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1382 #define SSE_REGNO(N) \
1383 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1385 #define SSE_FLOAT_MODE_P(MODE) \
1386 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1388 #define SSE_VEC_FLOAT_MODE_P(MODE) \
1389 ((TARGET_SSE && (MODE) == V4SFmode) || (TARGET_SSE2 && (MODE) == V2DFmode))
1391 #define AVX_FLOAT_MODE_P(MODE) \
1392 (TARGET_AVX && ((MODE) == SFmode || (MODE) == DFmode))
1394 #define AVX128_VEC_FLOAT_MODE_P(MODE) \
1395 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode))
1397 #define AVX256_VEC_FLOAT_MODE_P(MODE) \
1398 (TARGET_AVX && ((MODE) == V8SFmode || (MODE) == V4DFmode))
1400 #define AVX_VEC_FLOAT_MODE_P(MODE) \
1401 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1402 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1404 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1405 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1407 #define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
1408 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1410 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1412 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1413 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1415 /* The class value for index registers, and the one for base regs. */
1417 #define INDEX_REG_CLASS INDEX_REGS
1418 #define BASE_REG_CLASS GENERAL_REGS
1420 /* Place additional restrictions on the register class to use when it
1421 is necessary to be able to hold a value of mode MODE in a reload
1422 register for which class CLASS would ordinarily be used. */
1424 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1425 ((MODE) == QImode && !TARGET_64BIT \
1426 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1427 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1428 ? Q_REGS : (CLASS))
1430 /* Given an rtx X being reloaded into a reg required to be
1431 in class CLASS, return the class of reg to actually use.
1432 In general this is just CLASS; but on some machines
1433 in some cases it is preferable to use a more restrictive class.
1434 On the 80386 series, we prevent floating constants from being
1435 reloaded into floating registers (since no move-insn can do that)
1436 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1438 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1439 QImode must go into class Q_REGS.
1440 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1441 movdf to do mem-to-mem moves through integer regs. */
1443 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1444 ix86_preferred_reload_class ((X), (CLASS))
1446 /* Discourage putting floating-point values in SSE registers unless
1447 SSE math is being used, and likewise for the 387 registers. */
1449 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1450 ix86_preferred_output_reload_class ((X), (CLASS))
1452 /* If we are copying between general and FP registers, we need a memory
1453 location. The same is true for SSE and MMX registers. */
1454 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1455 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1457 /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1458 There is no need to emit full 64 bit move on 64 bit targets
1459 for integral modes that can be moved using 32 bit move. */
1460 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1461 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1462 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1463 : MODE)
1465 /* Return the maximum number of consecutive registers
1466 needed to represent mode MODE in a register of class CLASS. */
1467 /* On the 80386, this is the size of MODE in words,
1468 except in the FP regs, where a single reg is always enough. */
1469 #define CLASS_MAX_NREGS(CLASS, MODE) \
1470 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1471 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1472 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1473 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1475 /* A C expression whose value is nonzero if pseudos that have been
1476 assigned to registers of class CLASS would likely be spilled
1477 because registers of CLASS are needed for spill registers.
1479 The default value of this macro returns 1 if CLASS has exactly one
1480 register and zero otherwise. On most machines, this default
1481 should be used. Only define this macro to some other expression
1482 if pseudo allocated by `local-alloc.c' end up in memory because
1483 their hard registers were needed for spill registers. If this
1484 macro returns nonzero for those classes, those pseudos will only
1485 be allocated by `global.c', which knows how to reallocate the
1486 pseudo to another register. If there would not be another
1487 register available for reallocation, you should not change the
1488 definition of this macro since the only effect of such a
1489 definition would be to slow down register allocation. */
1491 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1492 (((CLASS) == AREG) \
1493 || ((CLASS) == DREG) \
1494 || ((CLASS) == CREG) \
1495 || ((CLASS) == BREG) \
1496 || ((CLASS) == AD_REGS) \
1497 || ((CLASS) == SIREG) \
1498 || ((CLASS) == DIREG) \
1499 || ((CLASS) == FP_TOP_REG) \
1500 || ((CLASS) == FP_SECOND_REG))
1502 /* Return a class of registers that cannot change FROM mode to TO mode. */
1504 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1505 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1507 /* Stack layout; function entry, exit and calling. */
1509 /* Define this if pushing a word on the stack
1510 makes the stack pointer a smaller address. */
1511 #define STACK_GROWS_DOWNWARD
1513 /* Define this to nonzero if the nominal address of the stack frame
1514 is at the high-address end of the local variables;
1515 that is, each additional local variable allocated
1516 goes at a more negative offset in the frame. */
1517 #define FRAME_GROWS_DOWNWARD 1
1519 /* Offset within stack frame to start allocating local variables at.
1520 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1521 first local allocated. Otherwise, it is the offset to the BEGINNING
1522 of the first local allocated. */
1523 #define STARTING_FRAME_OFFSET 0
1525 /* If we generate an insn to push BYTES bytes,
1526 this says how many the stack pointer really advances by.
1527 On 386, we have pushw instruction that decrements by exactly 2 no
1528 matter what the position was, there is no pushb.
1529 But as CIE data alignment factor on this arch is -4, we need to make
1530 sure all stack pointer adjustments are in multiple of 4.
1532 For 64bit ABI we round up to 8 bytes.
1535 #define PUSH_ROUNDING(BYTES) \
1536 (TARGET_64BIT \
1537 ? (((BYTES) + 7) & (-8)) \
1538 : (((BYTES) + 3) & (-4)))
1540 /* If defined, the maximum amount of space required for outgoing arguments will
1541 be computed and placed into the variable
1542 `crtl->outgoing_args_size'. No space will be pushed onto the
1543 stack for each call; instead, the function prologue should increase the stack
1544 frame size by this amount.
1546 MS ABI seem to require 16 byte alignment everywhere except for function
1547 prologue and apilogue. This is not possible without
1548 ACCUMULATE_OUTGOING_ARGS. */
1550 #define ACCUMULATE_OUTGOING_ARGS \
1551 (TARGET_ACCUMULATE_OUTGOING_ARGS || ix86_cfun_abi () == MS_ABI)
1553 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1554 instructions to pass outgoing arguments. */
1556 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1558 /* We want the stack and args grow in opposite directions, even if
1559 PUSH_ARGS is 0. */
1560 #define PUSH_ARGS_REVERSED 1
1562 /* Offset of first parameter from the argument pointer register value. */
1563 #define FIRST_PARM_OFFSET(FNDECL) 0
1565 /* Define this macro if functions should assume that stack space has been
1566 allocated for arguments even when their values are passed in registers.
1568 The value of this macro is the size, in bytes, of the area reserved for
1569 arguments passed in registers for the function represented by FNDECL.
1571 This space can be allocated by the caller, or be a part of the
1572 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1573 which. */
1574 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1576 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1577 (ix86_function_type_abi (FNTYPE) == MS_ABI)
1579 /* Value is the number of bytes of arguments automatically
1580 popped when returning from a subroutine call.
1581 FUNDECL is the declaration node of the function (as a tree),
1582 FUNTYPE is the data type of the function (as a tree),
1583 or for a library call it is an identifier node for the subroutine name.
1584 SIZE is the number of bytes of arguments passed on the stack.
1586 On the 80386, the RTD insn may be used to pop them if the number
1587 of args is fixed, but if the number is variable then the caller
1588 must pop them all. RTD can't be used for library calls now
1589 because the library is compiled with the Unix compiler.
1590 Use of RTD is a selectable option, since it is incompatible with
1591 standard Unix calling sequences. If the option is not selected,
1592 the caller must always pop the args.
1594 The attribute stdcall is equivalent to RTD on a per module basis. */
1596 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1597 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1599 #define FUNCTION_VALUE_REGNO_P(N) ix86_function_value_regno_p (N)
1601 /* Define how to find the value returned by a library function
1602 assuming the value has mode MODE. */
1604 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1606 /* Define the size of the result block used for communication between
1607 untyped_call and untyped_return. The block contains a DImode value
1608 followed by the block used by fnsave and frstor. */
1610 #define APPLY_RESULT_SIZE (8+108)
1612 /* 1 if N is a possible register number for function argument passing. */
1613 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1615 /* Define a data type for recording info about an argument list
1616 during the scan of that argument list. This data type should
1617 hold all necessary information about the function itself
1618 and about the args processed so far, enough to enable macros
1619 such as FUNCTION_ARG to determine where the next arg should go. */
1621 typedef struct ix86_args {
1622 int words; /* # words passed so far */
1623 int nregs; /* # registers available for passing */
1624 int regno; /* next available register number */
1625 int fastcall; /* fastcall calling convention is used */
1626 int sse_words; /* # sse words passed so far */
1627 int sse_nregs; /* # sse registers available for passing */
1628 int warn_avx; /* True when we want to warn about AVX ABI. */
1629 int warn_sse; /* True when we want to warn about SSE ABI. */
1630 int warn_mmx; /* True when we want to warn about MMX ABI. */
1631 int sse_regno; /* next available sse register number */
1632 int mmx_words; /* # mmx words passed so far */
1633 int mmx_nregs; /* # mmx registers available for passing */
1634 int mmx_regno; /* next available mmx register number */
1635 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1636 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1637 be passed in SSE registers. Otherwise 0. */
1638 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1639 MS_ABI for ms abi. */
1640 } CUMULATIVE_ARGS;
1642 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1643 for a call to a function whose data type is FNTYPE.
1644 For a library call, FNTYPE is 0. */
1646 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1647 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1649 /* Update the data in CUM to advance over an argument
1650 of mode MODE and data type TYPE.
1651 (TYPE is null for libcalls where that information may not be available.) */
1653 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1654 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1656 /* Define where to put the arguments to a function.
1657 Value is zero to push the argument on the stack,
1658 or a hard register in which to store the argument.
1660 MODE is the argument's machine mode.
1661 TYPE is the data type of the argument (as a tree).
1662 This is null for libcalls where that information may
1663 not be available.
1664 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1665 the preceding args and about the function being called.
1666 NAMED is nonzero if this argument is a named parameter
1667 (otherwise it is an extra parameter matching an ellipsis). */
1669 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1670 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1672 #define TARGET_ASM_FILE_END ix86_file_end
1673 #define NEED_INDICATE_EXEC_STACK 0
1675 /* Output assembler code to FILE to increment profiler label # LABELNO
1676 for profiling a function entry. */
1678 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1680 #define MCOUNT_NAME "_mcount"
1682 #define PROFILE_COUNT_REGISTER "edx"
1684 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1685 the stack pointer does not matter. The value is tested only in
1686 functions that have frame pointers.
1687 No definition is equivalent to always zero. */
1688 /* Note on the 386 it might be more efficient not to define this since
1689 we have to restore it ourselves from the frame pointer, in order to
1690 use pop */
1692 #define EXIT_IGNORE_STACK 1
1694 /* Output assembler code for a block containing the constant parts
1695 of a trampoline, leaving space for the variable parts. */
1697 /* On the 386, the trampoline contains two instructions:
1698 mov #STATIC,ecx
1699 jmp FUNCTION
1700 The trampoline is generated entirely at runtime. The operand of JMP
1701 is the address of FUNCTION relative to the instruction following the
1702 JMP (which is 5 bytes long). */
1704 /* Length in units of the trampoline for entering a nested function. */
1706 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1708 /* Emit RTL insns to initialize the variable parts of a trampoline.
1709 FNADDR is an RTX for the address of the function's pure code.
1710 CXT is an RTX for the static chain value for the function. */
1712 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1713 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1715 /* Definitions for register eliminations.
1717 This is an array of structures. Each structure initializes one pair
1718 of eliminable registers. The "from" register number is given first,
1719 followed by "to". Eliminations of the same "from" register are listed
1720 in order of preference.
1722 There are two registers that can always be eliminated on the i386.
1723 The frame pointer and the arg pointer can be replaced by either the
1724 hard frame pointer or to the stack pointer, depending upon the
1725 circumstances. The hard frame pointer is not used before reload and
1726 so it is not eligible for elimination. */
1728 #define ELIMINABLE_REGS \
1729 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1730 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1731 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1732 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1734 /* Given FROM and TO register numbers, say whether this elimination is
1735 allowed. */
1737 #define CAN_ELIMINATE(FROM, TO) ix86_can_eliminate ((FROM), (TO))
1739 /* Define the offset between two registers, one to be eliminated, and the other
1740 its replacement, at the start of a routine. */
1742 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1743 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1745 /* Addressing modes, and classification of registers for them. */
1747 /* Macros to check register numbers against specific register classes. */
1749 /* These assume that REGNO is a hard or pseudo reg number.
1750 They give nonzero only if REGNO is a hard reg of the suitable class
1751 or a pseudo reg currently allocated to a suitable hard reg.
1752 Since they use reg_renumber, they are safe only once reg_renumber
1753 has been allocated, which happens in local-alloc.c. */
1755 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1756 ((REGNO) < STACK_POINTER_REGNUM \
1757 || REX_INT_REGNO_P (REGNO) \
1758 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1759 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1761 #define REGNO_OK_FOR_BASE_P(REGNO) \
1762 (GENERAL_REGNO_P (REGNO) \
1763 || (REGNO) == ARG_POINTER_REGNUM \
1764 || (REGNO) == FRAME_POINTER_REGNUM \
1765 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1767 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1768 and check its validity for a certain class.
1769 We have two alternate definitions for each of them.
1770 The usual definition accepts all pseudo regs; the other rejects
1771 them unless they have been allocated suitable hard regs.
1772 The symbol REG_OK_STRICT causes the latter definition to be used.
1774 Most source files want to accept pseudo regs in the hope that
1775 they will get allocated to the class that the insn wants them to be in.
1776 Source files for reload pass need to be strict.
1777 After reload, it makes no difference, since pseudo regs have
1778 been eliminated by then. */
1781 /* Non strict versions, pseudos are ok. */
1782 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1783 (REGNO (X) < STACK_POINTER_REGNUM \
1784 || REX_INT_REGNO_P (REGNO (X)) \
1785 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1787 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1788 (GENERAL_REGNO_P (REGNO (X)) \
1789 || REGNO (X) == ARG_POINTER_REGNUM \
1790 || REGNO (X) == FRAME_POINTER_REGNUM \
1791 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1793 /* Strict versions, hard registers only */
1794 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1795 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1797 #ifndef REG_OK_STRICT
1798 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1799 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1801 #else
1802 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1803 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1804 #endif
1806 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1807 that is a valid memory address for an instruction.
1808 The MODE argument is the machine mode for the MEM expression
1809 that wants to use this address.
1811 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1812 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1814 See legitimize_pic_address in i386.c for details as to what
1815 constitutes a legitimate address when -fpic is used. */
1817 #define MAX_REGS_PER_ADDRESS 2
1819 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1821 /* Nonzero if the constant value X is a legitimate general operand.
1822 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1824 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1826 #ifdef REG_OK_STRICT
1827 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1828 do { \
1829 if (legitimate_address_p ((MODE), (X), 1)) \
1830 goto ADDR; \
1831 } while (0)
1833 #else
1834 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1835 do { \
1836 if (legitimate_address_p ((MODE), (X), 0)) \
1837 goto ADDR; \
1838 } while (0)
1840 #endif
1842 /* If defined, a C expression to determine the base term of address X.
1843 This macro is used in only one place: `find_base_term' in alias.c.
1845 It is always safe for this macro to not be defined. It exists so
1846 that alias analysis can understand machine-dependent addresses.
1848 The typical use of this macro is to handle addresses containing
1849 a label_ref or symbol_ref within an UNSPEC. */
1851 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1853 /* Nonzero if the constant value X is a legitimate general operand
1854 when generating PIC code. It is given that flag_pic is on and
1855 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1857 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1859 #define SYMBOLIC_CONST(X) \
1860 (GET_CODE (X) == SYMBOL_REF \
1861 || GET_CODE (X) == LABEL_REF \
1862 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1864 /* Max number of args passed in registers. If this is more than 3, we will
1865 have problems with ebx (register #4), since it is a caller save register and
1866 is also used as the pic register in ELF. So for now, don't allow more than
1867 3 registers to be passed in registers. */
1869 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1870 #define X86_64_REGPARM_MAX 6
1871 #define X64_REGPARM_MAX 4
1872 #define X86_32_REGPARM_MAX 3
1874 #define X86_64_SSE_REGPARM_MAX 8
1875 #define X64_SSE_REGPARM_MAX 4
1876 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? 3 : 0)
1878 #define REGPARM_MAX \
1879 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X64_REGPARM_MAX \
1880 : X86_64_REGPARM_MAX) \
1881 : X86_32_REGPARM_MAX)
1883 #define SSE_REGPARM_MAX \
1884 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X64_SSE_REGPARM_MAX \
1885 : X86_64_SSE_REGPARM_MAX) \
1886 : X86_32_SSE_REGPARM_MAX)
1888 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1891 /* Specify the machine mode that this machine uses
1892 for the index in the tablejump instruction. */
1893 #define CASE_VECTOR_MODE \
1894 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1896 /* Define this as 1 if `char' should by default be signed; else as 0. */
1897 #define DEFAULT_SIGNED_CHAR 1
1899 /* Max number of bytes we can move from memory to memory
1900 in one reasonably fast instruction. */
1901 #define MOVE_MAX 16
1903 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1904 move efficiently, as opposed to MOVE_MAX which is the maximum
1905 number of bytes we can move with a single instruction. */
1906 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
1908 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1909 move-instruction pairs, we will do a movmem or libcall instead.
1910 Increasing the value will always make code faster, but eventually
1911 incurs high cost in increased code size.
1913 If you don't define this, a reasonable default is used. */
1915 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1917 /* If a clear memory operation would take CLEAR_RATIO or more simple
1918 move-instruction sequences, we will do a clrmem or libcall instead. */
1920 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1922 /* Define if shifts truncate the shift count
1923 which implies one can omit a sign-extension or zero-extension
1924 of a shift count. */
1925 /* On i386, shifts do truncate the count. But bit opcodes don't. */
1927 /* #define SHIFT_COUNT_TRUNCATED */
1929 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1930 is done just by pretending it is already truncated. */
1931 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1933 /* A macro to update M and UNSIGNEDP when an object whose type is
1934 TYPE and which has the specified mode and signedness is to be
1935 stored in a register. This macro is only called when TYPE is a
1936 scalar type.
1938 On i386 it is sometimes useful to promote HImode and QImode
1939 quantities to SImode. The choice depends on target type. */
1941 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1942 do { \
1943 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1944 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1945 (MODE) = SImode; \
1946 } while (0)
1948 /* Specify the machine mode that pointers have.
1949 After generation of rtl, the compiler makes no further distinction
1950 between pointers and any other objects of this machine mode. */
1951 #define Pmode (TARGET_64BIT ? DImode : SImode)
1953 /* A function address in a call instruction
1954 is a byte address (for indexing purposes)
1955 so give the MEM rtx a byte's mode. */
1956 #define FUNCTION_MODE QImode
1958 /* A C expression for the cost of moving data from a register in class FROM to
1959 one in class TO. The classes are expressed using the enumeration values
1960 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1961 interpreted relative to that.
1963 It is not required that the cost always equal 2 when FROM is the same as TO;
1964 on some machines it is expensive to move between registers if they are not
1965 general registers. */
1967 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1968 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
1970 /* A C expression for the cost of moving data of mode M between a
1971 register and memory. A value of 2 is the default; this cost is
1972 relative to those in `REGISTER_MOVE_COST'.
1974 If moving between registers and memory is more expensive than
1975 between two registers, you should define this macro to express the
1976 relative cost. */
1978 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1979 ix86_memory_move_cost ((MODE), (CLASS), (IN))
1981 /* A C expression for the cost of a branch instruction. A value of 1
1982 is the default; other values are interpreted relative to that. */
1984 #define BRANCH_COST(speed_p, predictable_p) \
1985 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1987 /* Define this macro as a C expression which is nonzero if accessing
1988 less than a word of memory (i.e. a `char' or a `short') is no
1989 faster than accessing a word of memory, i.e., if such access
1990 require more than one instruction or if there is no difference in
1991 cost between byte and (aligned) word loads.
1993 When this macro is not defined, the compiler will access a field by
1994 finding the smallest containing object; when it is defined, a
1995 fullword load will be used if alignment permits. Unless bytes
1996 accesses are faster than word accesses, using word accesses is
1997 preferable since it may eliminate subsequent memory access if
1998 subsequent accesses occur to other fields in the same word of the
1999 structure, but to different bytes. */
2001 #define SLOW_BYTE_ACCESS 0
2003 /* Nonzero if access to memory by shorts is slow and undesirable. */
2004 #define SLOW_SHORT_ACCESS 0
2006 /* Define this macro to be the value 1 if unaligned accesses have a
2007 cost many times greater than aligned accesses, for example if they
2008 are emulated in a trap handler.
2010 When this macro is nonzero, the compiler will act as if
2011 `STRICT_ALIGNMENT' were nonzero when generating code for block
2012 moves. This can cause significantly more instructions to be
2013 produced. Therefore, do not set this macro nonzero if unaligned
2014 accesses only add a cycle or two to the time for a memory access.
2016 If the value of this macro is always zero, it need not be defined. */
2018 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2020 /* Define this macro if it is as good or better to call a constant
2021 function address than to call an address kept in a register.
2023 Desirable on the 386 because a CALL with a constant address is
2024 faster than one with a register address. */
2026 #define NO_FUNCTION_CSE
2028 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2029 return the mode to be used for the comparison.
2031 For floating-point equality comparisons, CCFPEQmode should be used.
2032 VOIDmode should be used in all other cases.
2034 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2035 possible, to allow for more combinations. */
2037 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2039 /* Return nonzero if MODE implies a floating point inequality can be
2040 reversed. */
2042 #define REVERSIBLE_CC_MODE(MODE) 1
2044 /* A C expression whose value is reversed condition code of the CODE for
2045 comparison done in CC_MODE mode. */
2046 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
2049 /* Control the assembler format that we output, to the extent
2050 this does not vary between assemblers. */
2052 /* How to refer to registers in assembler output.
2053 This sequence is indexed by compiler's hard-register-number (see above). */
2055 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
2056 For non floating point regs, the following are the HImode names.
2058 For float regs, the stack top is sometimes referred to as "%st(0)"
2059 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
2061 #define HI_REGISTER_NAMES \
2062 {"ax","dx","cx","bx","si","di","bp","sp", \
2063 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2064 "argp", "flags", "fpsr", "fpcr", "frame", \
2065 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2066 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
2067 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2068 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2070 #define REGISTER_NAMES HI_REGISTER_NAMES
2072 /* Table of additional register names to use in user input. */
2074 #define ADDITIONAL_REGISTER_NAMES \
2075 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2076 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2077 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2078 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2079 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2080 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
2082 /* Note we are omitting these since currently I don't know how
2083 to get gcc to use these, since they want the same but different
2084 number as al, and ax.
2087 #define QI_REGISTER_NAMES \
2088 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2090 /* These parallel the array above, and can be used to access bits 8:15
2091 of regs 0 through 3. */
2093 #define QI_HIGH_REGISTER_NAMES \
2094 {"ah", "dh", "ch", "bh", }
2096 /* How to renumber registers for dbx and gdb. */
2098 #define DBX_REGISTER_NUMBER(N) \
2099 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2101 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2102 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2103 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2105 /* Before the prologue, RA is at 0(%esp). */
2106 #define INCOMING_RETURN_ADDR_RTX \
2107 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2109 /* After the prologue, RA is at -4(AP) in the current frame. */
2110 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2111 ((COUNT) == 0 \
2112 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2113 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2115 /* PC is dbx register 8; let's use that column for RA. */
2116 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2118 /* Before the prologue, the top of the frame is at 4(%esp). */
2119 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2121 /* Describe how we implement __builtin_eh_return. */
2122 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2123 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2126 /* Select a format to encode pointers in exception handling data. CODE
2127 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2128 true if the symbol may be affected by dynamic relocations.
2130 ??? All x86 object file formats are capable of representing this.
2131 After all, the relocation needed is the same as for the call insn.
2132 Whether or not a particular assembler allows us to enter such, I
2133 guess we'll have to see. */
2134 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2135 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2137 /* This is how to output an insn to push a register on the stack.
2138 It need not be very fast code. */
2140 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2141 do { \
2142 if (TARGET_64BIT) \
2143 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2144 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2145 else \
2146 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2147 } while (0)
2149 /* This is how to output an insn to pop a register from the stack.
2150 It need not be very fast code. */
2152 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2153 do { \
2154 if (TARGET_64BIT) \
2155 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2156 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2157 else \
2158 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2159 } while (0)
2161 /* This is how to output an element of a case-vector that is absolute. */
2163 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2164 ix86_output_addr_vec_elt ((FILE), (VALUE))
2166 /* This is how to output an element of a case-vector that is relative. */
2168 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2169 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2171 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is
2172 true. */
2174 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2176 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2178 if (TARGET_AVX) \
2179 (PTR) += 1; \
2180 else \
2181 (PTR) += 2; \
2185 /* A C statement or statements which output an assembler instruction
2186 opcode to the stdio stream STREAM. The macro-operand PTR is a
2187 variable of type `char *' which points to the opcode name in
2188 its "internal" form--the form that is written in the machine
2189 description. */
2191 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2192 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2194 /* Under some conditions we need jump tables in the text section,
2195 because the assembler cannot handle label differences between
2196 sections. This is the case for x86_64 on Mach-O for example. */
2198 #define JUMP_TABLES_IN_TEXT_SECTION \
2199 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2200 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2202 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2203 and switch back. For x86 we do this only to save a few bytes that
2204 would otherwise be unused in the text section. */
2205 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2206 asm (SECTION_OP "\n\t" \
2207 "call " USER_LABEL_PREFIX #FUNC "\n" \
2208 TEXT_SECTION_ASM_OP);
2210 /* Print operand X (an rtx) in assembler syntax to file FILE.
2211 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2212 Effect of various CODE letters is described in i386.c near
2213 print_operand function. */
2215 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2216 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&' || (CODE) == ';')
2218 #define PRINT_OPERAND(FILE, X, CODE) \
2219 print_operand ((FILE), (X), (CODE))
2221 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2222 print_operand_address ((FILE), (ADDR))
2224 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2225 do { \
2226 if (! output_addr_const_extra (FILE, (X))) \
2227 goto FAIL; \
2228 } while (0);
2230 /* Which processor to schedule for. The cpu attribute defines a list that
2231 mirrors this list, so changes to i386.md must be made at the same time. */
2233 enum processor_type
2235 PROCESSOR_I386 = 0, /* 80386 */
2236 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2237 PROCESSOR_PENTIUM,
2238 PROCESSOR_PENTIUMPRO,
2239 PROCESSOR_GEODE,
2240 PROCESSOR_K6,
2241 PROCESSOR_ATHLON,
2242 PROCESSOR_PENTIUM4,
2243 PROCESSOR_K8,
2244 PROCESSOR_NOCONA,
2245 PROCESSOR_CORE2,
2246 PROCESSOR_GENERIC32,
2247 PROCESSOR_GENERIC64,
2248 PROCESSOR_AMDFAM10,
2249 PROCESSOR_ATOM,
2250 PROCESSOR_max
2253 extern enum processor_type ix86_tune;
2254 extern enum processor_type ix86_arch;
2256 enum fpmath_unit
2258 FPMATH_387 = 1,
2259 FPMATH_SSE = 2
2262 extern enum fpmath_unit ix86_fpmath;
2264 enum tls_dialect
2266 TLS_DIALECT_GNU,
2267 TLS_DIALECT_GNU2,
2268 TLS_DIALECT_SUN
2271 extern enum tls_dialect ix86_tls_dialect;
2273 enum cmodel {
2274 CM_32, /* The traditional 32-bit ABI. */
2275 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2276 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2277 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2278 CM_LARGE, /* No assumptions. */
2279 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
2280 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2281 CM_LARGE_PIC /* No assumptions. */
2284 extern enum cmodel ix86_cmodel;
2286 /* Size of the RED_ZONE area. */
2287 #define RED_ZONE_SIZE 128
2288 /* Reserved area of the red zone for temporaries. */
2289 #define RED_ZONE_RESERVE 8
2291 enum asm_dialect {
2292 ASM_ATT,
2293 ASM_INTEL
2296 extern enum asm_dialect ix86_asm_dialect;
2297 extern unsigned int ix86_preferred_stack_boundary;
2298 extern unsigned int ix86_incoming_stack_boundary;
2299 extern int ix86_branch_cost, ix86_section_threshold;
2301 /* Smallest class containing REGNO. */
2302 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2304 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2305 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
2307 /* To properly truncate FP values into integers, we need to set i387 control
2308 word. We can't emit proper mode switching code before reload, as spills
2309 generated by reload may truncate values incorrectly, but we still can avoid
2310 redundant computation of new control word by the mode switching pass.
2311 The fldcw instructions are still emitted redundantly, but this is probably
2312 not going to be noticeable problem, as most CPUs do have fast path for
2313 the sequence.
2315 The machinery is to emit simple truncation instructions and split them
2316 before reload to instructions having USEs of two memory locations that
2317 are filled by this code to old and new control word.
2319 Post-reload pass may be later used to eliminate the redundant fildcw if
2320 needed. */
2322 enum ix86_entity
2324 I387_TRUNC = 0,
2325 I387_FLOOR,
2326 I387_CEIL,
2327 I387_MASK_PM,
2328 MAX_386_ENTITIES
2331 enum ix86_stack_slot
2333 SLOT_VIRTUAL = 0,
2334 SLOT_TEMP,
2335 SLOT_CW_STORED,
2336 SLOT_CW_TRUNC,
2337 SLOT_CW_FLOOR,
2338 SLOT_CW_CEIL,
2339 SLOT_CW_MASK_PM,
2340 MAX_386_STACK_LOCALS
2343 /* Define this macro if the port needs extra instructions inserted
2344 for mode switching in an optimizing compilation. */
2346 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2347 ix86_optimize_mode_switching[(ENTITY)]
2349 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2350 initializer for an array of integers. Each initializer element N
2351 refers to an entity that needs mode switching, and specifies the
2352 number of different modes that might need to be set for this
2353 entity. The position of the initializer in the initializer -
2354 starting counting at zero - determines the integer that is used to
2355 refer to the mode-switched entity in question. */
2357 #define NUM_MODES_FOR_MODE_SWITCHING \
2358 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2360 /* ENTITY is an integer specifying a mode-switched entity. If
2361 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2362 return an integer value not larger than the corresponding element
2363 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2364 must be switched into prior to the execution of INSN. */
2366 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2368 /* This macro specifies the order in which modes for ENTITY are
2369 processed. 0 is the highest priority. */
2371 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2373 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2374 is the set of hard registers live at the point where the insn(s)
2375 are to be inserted. */
2377 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2378 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
2379 ? emit_i387_cw_initialization (MODE), 0 \
2380 : 0)
2383 /* Avoid renaming of stack registers, as doing so in combination with
2384 scheduling just increases amount of live registers at time and in
2385 the turn amount of fxch instructions needed.
2387 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
2389 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2390 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
2393 #define FASTCALL_PREFIX '@'
2395 struct GTY(()) machine_function {
2396 struct stack_local_entry *stack_locals;
2397 const char *some_ld_name;
2398 int varargs_gpr_size;
2399 int varargs_fpr_size;
2400 int accesses_prev_frame;
2401 int optimize_mode_switching[MAX_386_ENTITIES];
2402 int needs_cld;
2403 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2404 expander to determine the style used. */
2405 int use_fast_prologue_epilogue;
2406 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2407 for. */
2408 int use_fast_prologue_epilogue_nregs;
2409 /* If true, the current function needs the default PIC register, not
2410 an alternate register (on x86) and must not use the red zone (on
2411 x86_64), even if it's a leaf function. We don't want the
2412 function to be regarded as non-leaf because TLS calls need not
2413 affect register allocation. This flag is set when a TLS call
2414 instruction is expanded within a function, and never reset, even
2415 if all such instructions are optimized away. Use the
2416 ix86_current_function_calls_tls_descriptor macro for a better
2417 approximation. */
2418 int tls_descriptor_call_expanded_p;
2419 /* This value is used for amd64 targets and specifies the current abi
2420 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2421 enum calling_abi call_abi;
2424 #define ix86_stack_locals (cfun->machine->stack_locals)
2425 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2426 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2427 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2428 #define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2429 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2430 (cfun->machine->tls_descriptor_call_expanded_p)
2431 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2432 calls are optimized away, we try to detect cases in which it was
2433 optimized away. Since such instructions (use (reg REG_SP)), we can
2434 verify whether there's any such instruction live by testing that
2435 REG_SP is live. */
2436 #define ix86_current_function_calls_tls_descriptor \
2437 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2439 /* Control behavior of x86_file_start. */
2440 #define X86_FILE_START_VERSION_DIRECTIVE false
2441 #define X86_FILE_START_FLTUSED false
2443 /* Flag to mark data that is in the large address area. */
2444 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2445 #define SYMBOL_REF_FAR_ADDR_P(X) \
2446 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2448 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2449 have defined always, to avoid ifdefing. */
2450 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2451 #define SYMBOL_REF_DLLIMPORT_P(X) \
2452 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2454 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2455 #define SYMBOL_REF_DLLEXPORT_P(X) \
2456 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2458 /* Model costs for vectorizer. */
2460 /* Cost of conditional branch. */
2461 #undef TARG_COND_BRANCH_COST
2462 #define TARG_COND_BRANCH_COST ix86_cost->branch_cost
2464 /* Enum through the target specific extra va_list types.
2465 Please, do not iterate the base va_list type name. */
2466 #define TARGET_ENUM_VA_LIST(IDX, PNAME, PTYPE) \
2467 (TARGET_64BIT ? ix86_enum_va_list (IDX, PNAME, PTYPE) : 0)
2469 /* Cost of any scalar operation, excluding load and store. */
2470 #undef TARG_SCALAR_STMT_COST
2471 #define TARG_SCALAR_STMT_COST ix86_cost->scalar_stmt_cost
2473 /* Cost of scalar load. */
2474 #undef TARG_SCALAR_LOAD_COST
2475 #define TARG_SCALAR_LOAD_COST ix86_cost->scalar_load_cost
2477 /* Cost of scalar store. */
2478 #undef TARG_SCALAR_STORE_COST
2479 #define TARG_SCALAR_STORE_COST ix86_cost->scalar_store_cost
2481 /* Cost of any vector operation, excluding load, store or vector to scalar
2482 operation. */
2483 #undef TARG_VEC_STMT_COST
2484 #define TARG_VEC_STMT_COST ix86_cost->vec_stmt_cost
2486 /* Cost of vector to scalar operation. */
2487 #undef TARG_VEC_TO_SCALAR_COST
2488 #define TARG_VEC_TO_SCALAR_COST ix86_cost->vec_to_scalar_cost
2490 /* Cost of scalar to vector operation. */
2491 #undef TARG_SCALAR_TO_VEC_COST
2492 #define TARG_SCALAR_TO_VEC_COST ix86_cost->scalar_to_vec_cost
2494 /* Cost of aligned vector load. */
2495 #undef TARG_VEC_LOAD_COST
2496 #define TARG_VEC_LOAD_COST ix86_cost->vec_align_load_cost
2498 /* Cost of misaligned vector load. */
2499 #undef TARG_VEC_UNALIGNED_LOAD_COST
2500 #define TARG_VEC_UNALIGNED_LOAD_COST ix86_cost->vec_unalign_load_cost
2502 /* Cost of vector store. */
2503 #undef TARG_VEC_STORE_COST
2504 #define TARG_VEC_STORE_COST ix86_cost->vec_store_cost
2506 /* Cost of conditional taken branch for vectorizer cost model. */
2507 #undef TARG_COND_TAKEN_BRANCH_COST
2508 #define TARG_COND_TAKEN_BRANCH_COST ix86_cost->cond_taken_branch_cost
2510 /* Cost of conditional not taken branch for vectorizer cost model. */
2511 #undef TARG_COND_NOT_TAKEN_BRANCH_COST
2512 #define TARG_COND_NOT_TAKEN_BRANCH_COST ix86_cost->cond_not_taken_branch_cost
2515 Local variables:
2516 version-control: t
2517 End: