1 /* An expandable hash tables datatype.
2 Copyright (C) 1999, 2000 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING.LIB. If
18 not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 /* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
24 Elements in the table are generic pointers.
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
38 #include <sys/types.h>
50 #include "libiberty.h"
53 /* This macro defines reserved value for empty table entry. */
55 #define EMPTY_ENTRY ((PTR) 0)
57 /* This macro defines reserved value for table entry which contained
60 #define DELETED_ENTRY ((PTR) 1)
62 static unsigned long higher_prime_number
PARAMS ((unsigned long));
63 static hashval_t hash_pointer
PARAMS ((const void *));
64 static int eq_pointer
PARAMS ((const void *, const void *));
65 static int htab_expand
PARAMS ((htab_t
));
66 static PTR
*find_empty_slot_for_expand
PARAMS ((htab_t
, hashval_t
));
68 /* At some point, we could make these be NULL, and modify the
69 hash-table routines to handle NULL specially; that would avoid
70 function-call overhead for the common case of hashing pointers. */
71 htab_hash htab_hash_pointer
= hash_pointer
;
72 htab_eq htab_eq_pointer
= eq_pointer
;
74 /* The following function returns a nearest prime number which is
75 greater than N, and near a power of two. */
78 higher_prime_number (n
)
81 /* These are primes that are near, but slightly smaller than, a
83 static unsigned long primes
[] = {
117 unsigned long* low
= &primes
[0];
118 unsigned long* high
= &primes
[sizeof(primes
) / sizeof(primes
[0])];
122 unsigned long* mid
= low
+ (high
- low
) / 2;
129 /* If we've run out of primes, abort. */
132 fprintf (stderr
, "Cannot find prime bigger than %lu\n", n
);
139 /* Returns a hash code for P. */
145 return (hashval_t
) ((long)p
>> 3);
148 /* Returns non-zero if P1 and P2 are equal. */
158 /* This function creates table with length slightly longer than given
159 source length. Created hash table is initiated as empty (all the
160 hash table entries are EMPTY_ENTRY). The function returns the
161 created hash table. Memory allocation must not fail. */
164 htab_create (size
, hash_f
, eq_f
, del_f
)
172 size
= higher_prime_number (size
);
173 result
= (htab_t
) xcalloc (1, sizeof (struct htab
));
174 result
->entries
= (PTR
*) xcalloc (size
, sizeof (PTR
));
176 result
->hash_f
= hash_f
;
178 result
->del_f
= del_f
;
179 result
->return_allocation_failure
= 0;
183 /* This function creates table with length slightly longer than given
184 source length. The created hash table is initiated as empty (all the
185 hash table entries are EMPTY_ENTRY). The function returns the created
186 hash table. Memory allocation may fail; it may return NULL. */
189 htab_try_create (size
, hash_f
, eq_f
, del_f
)
197 size
= higher_prime_number (size
);
198 result
= (htab_t
) calloc (1, sizeof (struct htab
));
202 result
->entries
= (PTR
*) calloc (size
, sizeof (PTR
));
203 if (result
->entries
== NULL
)
210 result
->hash_f
= hash_f
;
212 result
->del_f
= del_f
;
213 result
->return_allocation_failure
= 1;
217 /* This function frees all memory allocated for given hash table.
218 Naturally the hash table must already exist. */
227 for (i
= htab
->size
- 1; i
>= 0; i
--)
228 if (htab
->entries
[i
] != EMPTY_ENTRY
229 && htab
->entries
[i
] != DELETED_ENTRY
)
230 (*htab
->del_f
) (htab
->entries
[i
]);
232 free (htab
->entries
);
236 /* This function clears all entries in the given hash table. */
245 for (i
= htab
->size
- 1; i
>= 0; i
--)
246 if (htab
->entries
[i
] != EMPTY_ENTRY
247 && htab
->entries
[i
] != DELETED_ENTRY
)
248 (*htab
->del_f
) (htab
->entries
[i
]);
250 memset (htab
->entries
, 0, htab
->size
* sizeof (PTR
));
253 /* Similar to htab_find_slot, but without several unwanted side effects:
254 - Does not call htab->eq_f when it finds an existing entry.
255 - Does not change the count of elements/searches/collisions in the
257 This function also assumes there are no deleted entries in the table.
258 HASH is the hash value for the element to be inserted. */
261 find_empty_slot_for_expand (htab
, hash
)
265 size_t size
= htab
->size
;
266 hashval_t hash2
= 1 + hash
% (size
- 2);
267 unsigned int index
= hash
% size
;
271 PTR
*slot
= htab
->entries
+ index
;
273 if (*slot
== EMPTY_ENTRY
)
275 else if (*slot
== DELETED_ENTRY
)
284 /* The following function changes size of memory allocated for the
285 entries and repeatedly inserts the table elements. The occupancy
286 of the table after the call will be about 50%. Naturally the hash
287 table must already exist. Remember also that the place of the
288 table entries is changed. If memory allocation failures are allowed,
289 this function will return zero, indicating that the table could not be
290 expanded. If all goes well, it will return a non-zero value. */
300 oentries
= htab
->entries
;
301 olimit
= oentries
+ htab
->size
;
303 htab
->size
= higher_prime_number (htab
->size
* 2);
305 if (htab
->return_allocation_failure
)
307 PTR
*nentries
= (PTR
*) calloc (htab
->size
, sizeof (PTR
*));
308 if (nentries
== NULL
)
310 htab
->entries
= nentries
;
313 htab
->entries
= (PTR
*) xcalloc (htab
->size
, sizeof (PTR
*));
315 htab
->n_elements
-= htab
->n_deleted
;
323 if (x
!= EMPTY_ENTRY
&& x
!= DELETED_ENTRY
)
325 PTR
*q
= find_empty_slot_for_expand (htab
, (*htab
->hash_f
) (x
));
338 /* This function searches for a hash table entry equal to the given
339 element. It cannot be used to insert or delete an element. */
342 htab_find_with_hash (htab
, element
, hash
)
356 entry
= htab
->entries
[index
];
357 if (entry
== EMPTY_ENTRY
358 || (entry
!= DELETED_ENTRY
&& (*htab
->eq_f
) (entry
, element
)))
361 hash2
= 1 + hash
% (size
- 2);
370 entry
= htab
->entries
[index
];
371 if (entry
== EMPTY_ENTRY
372 || (entry
!= DELETED_ENTRY
&& (*htab
->eq_f
) (entry
, element
)))
377 /* Like htab_find_slot_with_hash, but compute the hash value from the
381 htab_find (htab
, element
)
385 return htab_find_with_hash (htab
, element
, (*htab
->hash_f
) (element
));
388 /* This function searches for a hash table slot containing an entry
389 equal to the given element. To delete an entry, call this with
390 INSERT = 0, then call htab_clear_slot on the slot returned (possibly
391 after doing some checks). To insert an entry, call this with
392 INSERT = 1, then write the value you want into the returned slot.
393 When inserting an entry, NULL may be returned if memory allocation
397 htab_find_slot_with_hash (htab
, element
, hash
, insert
)
401 enum insert_option insert
;
403 PTR
*first_deleted_slot
;
408 if (insert
== INSERT
&& htab
->size
* 3 <= htab
->n_elements
* 4
409 && htab_expand (htab
) == 0)
413 hash2
= 1 + hash
% (size
- 2);
417 first_deleted_slot
= NULL
;
421 PTR entry
= htab
->entries
[index
];
422 if (entry
== EMPTY_ENTRY
)
424 if (insert
== NO_INSERT
)
429 if (first_deleted_slot
)
431 *first_deleted_slot
= EMPTY_ENTRY
;
432 return first_deleted_slot
;
435 return &htab
->entries
[index
];
438 if (entry
== DELETED_ENTRY
)
440 if (!first_deleted_slot
)
441 first_deleted_slot
= &htab
->entries
[index
];
443 else if ((*htab
->eq_f
) (entry
, element
))
444 return &htab
->entries
[index
];
453 /* Like htab_find_slot_with_hash, but compute the hash value from the
457 htab_find_slot (htab
, element
, insert
)
460 enum insert_option insert
;
462 return htab_find_slot_with_hash (htab
, element
, (*htab
->hash_f
) (element
),
466 /* This function deletes an element with the given value from hash
467 table. If there is no matching element in the hash table, this
468 function does nothing. */
471 htab_remove_elt (htab
, element
)
477 slot
= htab_find_slot (htab
, element
, NO_INSERT
);
478 if (*slot
== EMPTY_ENTRY
)
482 (*htab
->del_f
) (*slot
);
484 *slot
= DELETED_ENTRY
;
488 /* This function clears a specified slot in a hash table. It is
489 useful when you've already done the lookup and don't want to do it
493 htab_clear_slot (htab
, slot
)
497 if (slot
< htab
->entries
|| slot
>= htab
->entries
+ htab
->size
498 || *slot
== EMPTY_ENTRY
|| *slot
== DELETED_ENTRY
)
502 (*htab
->del_f
) (*slot
);
504 *slot
= DELETED_ENTRY
;
508 /* This function scans over the entire hash table calling
509 CALLBACK for each live entry. If CALLBACK returns false,
510 the iteration stops. INFO is passed as CALLBACK's second
514 htab_traverse (htab
, callback
, info
)
519 PTR
*slot
= htab
->entries
;
520 PTR
*limit
= slot
+ htab
->size
;
526 if (x
!= EMPTY_ENTRY
&& x
!= DELETED_ENTRY
)
527 if (!(*callback
) (slot
, info
))
530 while (++slot
< limit
);
533 /* Return the current size of given hash table. */
542 /* Return the current number of elements in given hash table. */
548 return htab
->n_elements
- htab
->n_deleted
;
551 /* Return the fraction of fixed collisions during all work with given
555 htab_collisions (htab
)
558 if (htab
->searches
== 0)
561 return (double) htab
->collisions
/ (double) htab
->searches
;