tree.h (enum tree_code_class): Add tcc_vl_exp.
[official-gcc.git] / gcc / tree-chrec.c
blob119a35b97c28d943ee476552a890a1043f7315bc
1 /* Chains of recurrences.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This file implements operations on chains of recurrences. Chains
23 of recurrences are used for modeling evolution functions of scalar
24 variables.
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "ggc.h"
32 #include "tree.h"
33 #include "real.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-flow.h"
37 #include "tree-chrec.h"
38 #include "tree-pass.h"
39 #include "params.h"
40 #include "tree-scalar-evolution.h"
44 /* Extended folder for chrecs. */
46 /* Determines whether CST is not a constant evolution. */
48 static inline bool
49 is_not_constant_evolution (tree cst)
51 return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
54 /* Fold CODE for a polynomial function and a constant. */
56 static inline tree
57 chrec_fold_poly_cst (enum tree_code code,
58 tree type,
59 tree poly,
60 tree cst)
62 gcc_assert (poly);
63 gcc_assert (cst);
64 gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
65 gcc_assert (!is_not_constant_evolution (cst));
66 gcc_assert (type == chrec_type (poly));
68 switch (code)
70 case PLUS_EXPR:
71 return build_polynomial_chrec
72 (CHREC_VARIABLE (poly),
73 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
74 CHREC_RIGHT (poly));
76 case MINUS_EXPR:
77 return build_polynomial_chrec
78 (CHREC_VARIABLE (poly),
79 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
80 CHREC_RIGHT (poly));
82 case MULT_EXPR:
83 return build_polynomial_chrec
84 (CHREC_VARIABLE (poly),
85 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
86 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
88 default:
89 return chrec_dont_know;
93 /* Fold the addition of two polynomial functions. */
95 static inline tree
96 chrec_fold_plus_poly_poly (enum tree_code code,
97 tree type,
98 tree poly0,
99 tree poly1)
101 tree left, right;
102 struct loop *loop0 = get_chrec_loop (poly0);
103 struct loop *loop1 = get_chrec_loop (poly1);
105 gcc_assert (poly0);
106 gcc_assert (poly1);
107 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
108 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
109 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
110 gcc_assert (type == chrec_type (poly0));
113 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
114 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
115 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
116 if (flow_loop_nested_p (loop0, loop1))
118 if (code == PLUS_EXPR)
119 return build_polynomial_chrec
120 (CHREC_VARIABLE (poly1),
121 chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
122 CHREC_RIGHT (poly1));
123 else
124 return build_polynomial_chrec
125 (CHREC_VARIABLE (poly1),
126 chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
127 chrec_fold_multiply (type, CHREC_RIGHT (poly1),
128 SCALAR_FLOAT_TYPE_P (type)
129 ? build_real (type, dconstm1)
130 : build_int_cst_type (type, -1)));
133 if (flow_loop_nested_p (loop1, loop0))
135 if (code == PLUS_EXPR)
136 return build_polynomial_chrec
137 (CHREC_VARIABLE (poly0),
138 chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
139 CHREC_RIGHT (poly0));
140 else
141 return build_polynomial_chrec
142 (CHREC_VARIABLE (poly0),
143 chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
144 CHREC_RIGHT (poly0));
147 /* This function should never be called for chrecs of loops that
148 do not belong to the same loop nest. */
149 gcc_assert (loop0 == loop1);
151 if (code == PLUS_EXPR)
153 left = chrec_fold_plus
154 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
155 right = chrec_fold_plus
156 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
158 else
160 left = chrec_fold_minus
161 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
162 right = chrec_fold_minus
163 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
166 if (chrec_zerop (right))
167 return left;
168 else
169 return build_polynomial_chrec
170 (CHREC_VARIABLE (poly0), left, right);
175 /* Fold the multiplication of two polynomial functions. */
177 static inline tree
178 chrec_fold_multiply_poly_poly (tree type,
179 tree poly0,
180 tree poly1)
182 tree t0, t1, t2;
183 int var;
184 struct loop *loop0 = get_chrec_loop (poly0);
185 struct loop *loop1 = get_chrec_loop (poly1);
187 gcc_assert (poly0);
188 gcc_assert (poly1);
189 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
190 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
191 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
192 gcc_assert (type == chrec_type (poly0));
194 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
195 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
196 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
197 if (flow_loop_nested_p (loop0, loop1))
198 /* poly0 is a constant wrt. poly1. */
199 return build_polynomial_chrec
200 (CHREC_VARIABLE (poly1),
201 chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
202 CHREC_RIGHT (poly1));
204 if (flow_loop_nested_p (loop1, loop0))
205 /* poly1 is a constant wrt. poly0. */
206 return build_polynomial_chrec
207 (CHREC_VARIABLE (poly0),
208 chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
209 CHREC_RIGHT (poly0));
211 gcc_assert (loop0 == loop1);
213 /* poly0 and poly1 are two polynomials in the same variable,
214 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
216 /* "a*c". */
217 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
219 /* "a*d + b*c + b*d". */
220 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
221 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
222 CHREC_RIGHT (poly0),
223 CHREC_LEFT (poly1)));
224 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
225 CHREC_RIGHT (poly0),
226 CHREC_RIGHT (poly1)));
227 /* "2*b*d". */
228 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
229 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
230 ? build_real (type, dconst2)
231 : build_int_cst (type, 2), t2);
233 var = CHREC_VARIABLE (poly0);
234 return build_polynomial_chrec (var, t0,
235 build_polynomial_chrec (var, t1, t2));
238 /* When the operands are automatically_generated_chrec_p, the fold has
239 to respect the semantics of the operands. */
241 static inline tree
242 chrec_fold_automatically_generated_operands (tree op0,
243 tree op1)
245 if (op0 == chrec_dont_know
246 || op1 == chrec_dont_know)
247 return chrec_dont_know;
249 if (op0 == chrec_known
250 || op1 == chrec_known)
251 return chrec_known;
253 if (op0 == chrec_not_analyzed_yet
254 || op1 == chrec_not_analyzed_yet)
255 return chrec_not_analyzed_yet;
257 /* The default case produces a safe result. */
258 return chrec_dont_know;
261 /* Fold the addition of two chrecs. */
263 static tree
264 chrec_fold_plus_1 (enum tree_code code, tree type,
265 tree op0, tree op1)
267 if (automatically_generated_chrec_p (op0)
268 || automatically_generated_chrec_p (op1))
269 return chrec_fold_automatically_generated_operands (op0, op1);
271 switch (TREE_CODE (op0))
273 case POLYNOMIAL_CHREC:
274 switch (TREE_CODE (op1))
276 case POLYNOMIAL_CHREC:
277 return chrec_fold_plus_poly_poly (code, type, op0, op1);
279 default:
280 if (code == PLUS_EXPR)
281 return build_polynomial_chrec
282 (CHREC_VARIABLE (op0),
283 chrec_fold_plus (type, CHREC_LEFT (op0), op1),
284 CHREC_RIGHT (op0));
285 else
286 return build_polynomial_chrec
287 (CHREC_VARIABLE (op0),
288 chrec_fold_minus (type, CHREC_LEFT (op0), op1),
289 CHREC_RIGHT (op0));
292 default:
293 switch (TREE_CODE (op1))
295 case POLYNOMIAL_CHREC:
296 if (code == PLUS_EXPR)
297 return build_polynomial_chrec
298 (CHREC_VARIABLE (op1),
299 chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
300 CHREC_RIGHT (op1));
301 else
302 return build_polynomial_chrec
303 (CHREC_VARIABLE (op1),
304 chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
305 chrec_fold_multiply (type, CHREC_RIGHT (op1),
306 SCALAR_FLOAT_TYPE_P (type)
307 ? build_real (type, dconstm1)
308 : build_int_cst_type (type, -1)));
310 default:
312 int size = 0;
313 if ((tree_contains_chrecs (op0, &size)
314 || tree_contains_chrecs (op1, &size))
315 && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
316 return build2 (code, type, op0, op1);
317 else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
318 return fold_build2 (code, type,
319 fold_convert (type, op0),
320 fold_convert (type, op1));
321 else
322 return chrec_dont_know;
328 /* Fold the addition of two chrecs. */
330 tree
331 chrec_fold_plus (tree type,
332 tree op0,
333 tree op1)
335 if (automatically_generated_chrec_p (op0)
336 || automatically_generated_chrec_p (op1))
337 return chrec_fold_automatically_generated_operands (op0, op1);
339 if (integer_zerop (op0))
340 return op1;
341 if (integer_zerop (op1))
342 return op0;
344 return chrec_fold_plus_1 (PLUS_EXPR, type, op0, op1);
347 /* Fold the subtraction of two chrecs. */
349 tree
350 chrec_fold_minus (tree type,
351 tree op0,
352 tree op1)
354 if (automatically_generated_chrec_p (op0)
355 || automatically_generated_chrec_p (op1))
356 return chrec_fold_automatically_generated_operands (op0, op1);
358 if (integer_zerop (op1))
359 return op0;
361 return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
364 /* Fold the multiplication of two chrecs. */
366 tree
367 chrec_fold_multiply (tree type,
368 tree op0,
369 tree op1)
371 if (automatically_generated_chrec_p (op0)
372 || automatically_generated_chrec_p (op1))
373 return chrec_fold_automatically_generated_operands (op0, op1);
375 switch (TREE_CODE (op0))
377 case POLYNOMIAL_CHREC:
378 switch (TREE_CODE (op1))
380 case POLYNOMIAL_CHREC:
381 return chrec_fold_multiply_poly_poly (type, op0, op1);
383 default:
384 if (integer_onep (op1))
385 return op0;
386 if (integer_zerop (op1))
387 return build_int_cst (type, 0);
389 return build_polynomial_chrec
390 (CHREC_VARIABLE (op0),
391 chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
392 chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
395 default:
396 if (integer_onep (op0))
397 return op1;
399 if (integer_zerop (op0))
400 return build_int_cst (type, 0);
402 switch (TREE_CODE (op1))
404 case POLYNOMIAL_CHREC:
405 return build_polynomial_chrec
406 (CHREC_VARIABLE (op1),
407 chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
408 chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
410 default:
411 if (integer_onep (op1))
412 return op0;
413 if (integer_zerop (op1))
414 return build_int_cst (type, 0);
415 return fold_build2 (MULT_EXPR, type, op0, op1);
422 /* Operations. */
424 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
425 calculation overflows, otherwise return C(n,k) with type TYPE. */
427 static tree
428 tree_fold_binomial (tree type, tree n, unsigned int k)
430 unsigned HOST_WIDE_INT lidx, lnum, ldenom, lres, ldum;
431 HOST_WIDE_INT hidx, hnum, hdenom, hres, hdum;
432 unsigned int i;
433 tree res;
435 /* Handle the most frequent cases. */
436 if (k == 0)
437 return build_int_cst (type, 1);
438 if (k == 1)
439 return fold_convert (type, n);
441 /* Check that k <= n. */
442 if (TREE_INT_CST_HIGH (n) == 0
443 && TREE_INT_CST_LOW (n) < k)
444 return NULL_TREE;
446 /* Numerator = n. */
447 lnum = TREE_INT_CST_LOW (n);
448 hnum = TREE_INT_CST_HIGH (n);
450 /* Denominator = 2. */
451 ldenom = 2;
452 hdenom = 0;
454 /* Index = Numerator-1. */
455 if (lnum == 0)
457 hidx = hnum - 1;
458 lidx = ~ (unsigned HOST_WIDE_INT) 0;
460 else
462 hidx = hnum;
463 lidx = lnum - 1;
466 /* Numerator = Numerator*Index = n*(n-1). */
467 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
468 return NULL_TREE;
470 for (i = 3; i <= k; i++)
472 /* Index--. */
473 if (lidx == 0)
475 hidx--;
476 lidx = ~ (unsigned HOST_WIDE_INT) 0;
478 else
479 lidx--;
481 /* Numerator *= Index. */
482 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
483 return NULL_TREE;
485 /* Denominator *= i. */
486 mul_double (ldenom, hdenom, i, 0, &ldenom, &hdenom);
489 /* Result = Numerator / Denominator. */
490 div_and_round_double (EXACT_DIV_EXPR, 1, lnum, hnum, ldenom, hdenom,
491 &lres, &hres, &ldum, &hdum);
493 res = build_int_cst_wide (type, lres, hres);
494 return int_fits_type_p (res, type) ? res : NULL_TREE;
497 /* Helper function. Use the Newton's interpolating formula for
498 evaluating the value of the evolution function. */
500 static tree
501 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
503 tree arg0, arg1, binomial_n_k;
504 tree type = TREE_TYPE (chrec);
505 struct loop *var_loop = get_loop (var);
507 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
508 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
509 chrec = CHREC_LEFT (chrec);
511 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
512 && CHREC_VARIABLE (chrec) == var)
514 arg0 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
515 if (arg0 == chrec_dont_know)
516 return chrec_dont_know;
517 binomial_n_k = tree_fold_binomial (type, n, k);
518 if (!binomial_n_k)
519 return chrec_dont_know;
520 arg1 = fold_build2 (MULT_EXPR, type,
521 CHREC_LEFT (chrec), binomial_n_k);
522 return chrec_fold_plus (type, arg0, arg1);
525 binomial_n_k = tree_fold_binomial (type, n, k);
526 if (!binomial_n_k)
527 return chrec_dont_know;
529 return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
532 /* Evaluates "CHREC (X)" when the varying variable is VAR.
533 Example: Given the following parameters,
535 var = 1
536 chrec = {3, +, 4}_1
537 x = 10
539 The result is given by the Newton's interpolating formula:
540 3 * \binom{10}{0} + 4 * \binom{10}{1}.
543 tree
544 chrec_apply (unsigned var,
545 tree chrec,
546 tree x)
548 tree type = chrec_type (chrec);
549 tree res = chrec_dont_know;
551 if (automatically_generated_chrec_p (chrec)
552 || automatically_generated_chrec_p (x)
554 /* When the symbols are defined in an outer loop, it is possible
555 to symbolically compute the apply, since the symbols are
556 constants with respect to the varying loop. */
557 || chrec_contains_symbols_defined_in_loop (chrec, var))
558 return chrec_dont_know;
560 if (dump_file && (dump_flags & TDF_DETAILS))
561 fprintf (dump_file, "(chrec_apply \n");
563 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
564 x = build_real_from_int_cst (type, x);
566 if (evolution_function_is_affine_p (chrec))
568 /* "{a, +, b} (x)" -> "a + b*x". */
569 x = chrec_convert (type, x, NULL_TREE);
570 res = chrec_fold_multiply (type, CHREC_RIGHT (chrec), x);
571 if (!integer_zerop (CHREC_LEFT (chrec)))
572 res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
575 else if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
576 res = chrec;
578 else if (TREE_CODE (x) == INTEGER_CST
579 && tree_int_cst_sgn (x) == 1)
580 /* testsuite/.../ssa-chrec-38.c. */
581 res = chrec_evaluate (var, chrec, x, 0);
582 else
583 res = chrec_dont_know;
585 if (dump_file && (dump_flags & TDF_DETAILS))
587 fprintf (dump_file, " (varying_loop = %d\n", var);
588 fprintf (dump_file, ")\n (chrec = ");
589 print_generic_expr (dump_file, chrec, 0);
590 fprintf (dump_file, ")\n (x = ");
591 print_generic_expr (dump_file, x, 0);
592 fprintf (dump_file, ")\n (res = ");
593 print_generic_expr (dump_file, res, 0);
594 fprintf (dump_file, "))\n");
597 return res;
600 /* Replaces the initial condition in CHREC with INIT_COND. */
602 tree
603 chrec_replace_initial_condition (tree chrec,
604 tree init_cond)
606 if (automatically_generated_chrec_p (chrec))
607 return chrec;
609 gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
611 switch (TREE_CODE (chrec))
613 case POLYNOMIAL_CHREC:
614 return build_polynomial_chrec
615 (CHREC_VARIABLE (chrec),
616 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
617 CHREC_RIGHT (chrec));
619 default:
620 return init_cond;
624 /* Returns the initial condition of a given CHREC. */
626 tree
627 initial_condition (tree chrec)
629 if (automatically_generated_chrec_p (chrec))
630 return chrec;
632 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
633 return initial_condition (CHREC_LEFT (chrec));
634 else
635 return chrec;
638 /* Returns a univariate function that represents the evolution in
639 LOOP_NUM. Mask the evolution of any other loop. */
641 tree
642 hide_evolution_in_other_loops_than_loop (tree chrec,
643 unsigned loop_num)
645 struct loop *loop = get_loop (loop_num), *chloop;
646 if (automatically_generated_chrec_p (chrec))
647 return chrec;
649 switch (TREE_CODE (chrec))
651 case POLYNOMIAL_CHREC:
652 chloop = get_chrec_loop (chrec);
654 if (chloop == loop)
655 return build_polynomial_chrec
656 (loop_num,
657 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
658 loop_num),
659 CHREC_RIGHT (chrec));
661 else if (flow_loop_nested_p (chloop, loop))
662 /* There is no evolution in this loop. */
663 return initial_condition (chrec);
665 else
667 gcc_assert (flow_loop_nested_p (loop, chloop));
668 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
669 loop_num);
672 default:
673 return chrec;
677 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
678 true, otherwise returns the initial condition in LOOP_NUM. */
680 static tree
681 chrec_component_in_loop_num (tree chrec,
682 unsigned loop_num,
683 bool right)
685 tree component;
686 struct loop *loop = get_loop (loop_num), *chloop;
688 if (automatically_generated_chrec_p (chrec))
689 return chrec;
691 switch (TREE_CODE (chrec))
693 case POLYNOMIAL_CHREC:
694 chloop = get_chrec_loop (chrec);
696 if (chloop == loop)
698 if (right)
699 component = CHREC_RIGHT (chrec);
700 else
701 component = CHREC_LEFT (chrec);
703 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
704 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
705 return component;
707 else
708 return build_polynomial_chrec
709 (loop_num,
710 chrec_component_in_loop_num (CHREC_LEFT (chrec),
711 loop_num,
712 right),
713 component);
716 else if (flow_loop_nested_p (chloop, loop))
717 /* There is no evolution part in this loop. */
718 return NULL_TREE;
720 else
722 gcc_assert (flow_loop_nested_p (loop, chloop));
723 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
724 loop_num,
725 right);
728 default:
729 if (right)
730 return NULL_TREE;
731 else
732 return chrec;
736 /* Returns the evolution part in LOOP_NUM. Example: the call
737 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
738 {1, +, 2}_1 */
740 tree
741 evolution_part_in_loop_num (tree chrec,
742 unsigned loop_num)
744 return chrec_component_in_loop_num (chrec, loop_num, true);
747 /* Returns the initial condition in LOOP_NUM. Example: the call
748 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
749 {0, +, 1}_1 */
751 tree
752 initial_condition_in_loop_num (tree chrec,
753 unsigned loop_num)
755 return chrec_component_in_loop_num (chrec, loop_num, false);
758 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
759 This function is essentially used for setting the evolution to
760 chrec_dont_know, for example after having determined that it is
761 impossible to say how many times a loop will execute. */
763 tree
764 reset_evolution_in_loop (unsigned loop_num,
765 tree chrec,
766 tree new_evol)
768 struct loop *loop = get_loop (loop_num);
770 gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
772 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
773 && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
775 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
776 new_evol);
777 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
778 new_evol);
779 return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
780 build_int_cst (NULL_TREE, CHREC_VARIABLE (chrec)),
781 left, right);
784 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
785 && CHREC_VARIABLE (chrec) == loop_num)
786 chrec = CHREC_LEFT (chrec);
788 return build_polynomial_chrec (loop_num, chrec, new_evol);
791 /* Merges two evolution functions that were found by following two
792 alternate paths of a conditional expression. */
794 tree
795 chrec_merge (tree chrec1,
796 tree chrec2)
798 if (chrec1 == chrec_dont_know
799 || chrec2 == chrec_dont_know)
800 return chrec_dont_know;
802 if (chrec1 == chrec_known
803 || chrec2 == chrec_known)
804 return chrec_known;
806 if (chrec1 == chrec_not_analyzed_yet)
807 return chrec2;
808 if (chrec2 == chrec_not_analyzed_yet)
809 return chrec1;
811 if (eq_evolutions_p (chrec1, chrec2))
812 return chrec1;
814 return chrec_dont_know;
819 /* Observers. */
821 /* Helper function for is_multivariate_chrec. */
823 static bool
824 is_multivariate_chrec_rec (tree chrec, unsigned int rec_var)
826 if (chrec == NULL_TREE)
827 return false;
829 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
831 if (CHREC_VARIABLE (chrec) != rec_var)
832 return true;
833 else
834 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
835 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
837 else
838 return false;
841 /* Determine whether the given chrec is multivariate or not. */
843 bool
844 is_multivariate_chrec (tree chrec)
846 if (chrec == NULL_TREE)
847 return false;
849 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
850 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
851 CHREC_VARIABLE (chrec))
852 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
853 CHREC_VARIABLE (chrec)));
854 else
855 return false;
858 /* Determines whether the chrec contains symbolic names or not. */
860 bool
861 chrec_contains_symbols (tree chrec)
863 int i, n;
865 if (chrec == NULL_TREE)
866 return false;
868 if (TREE_CODE (chrec) == SSA_NAME
869 || TREE_CODE (chrec) == VAR_DECL
870 || TREE_CODE (chrec) == PARM_DECL
871 || TREE_CODE (chrec) == FUNCTION_DECL
872 || TREE_CODE (chrec) == LABEL_DECL
873 || TREE_CODE (chrec) == RESULT_DECL
874 || TREE_CODE (chrec) == FIELD_DECL)
875 return true;
877 n = TREE_OPERAND_LENGTH (chrec);
878 for (i = 0; i < n; i++)
879 if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
880 return true;
881 return false;
884 /* Determines whether the chrec contains undetermined coefficients. */
886 bool
887 chrec_contains_undetermined (tree chrec)
889 int i, n;
891 if (chrec == chrec_dont_know
892 || chrec == chrec_not_analyzed_yet
893 || chrec == NULL_TREE)
894 return true;
896 n = TREE_OPERAND_LENGTH (chrec);
897 for (i = 0; i < n; i++)
898 if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
899 return true;
900 return false;
903 /* Determines whether the tree EXPR contains chrecs, and increment
904 SIZE if it is not a NULL pointer by an estimation of the depth of
905 the tree. */
907 bool
908 tree_contains_chrecs (tree expr, int *size)
910 int i, n;
912 if (expr == NULL_TREE)
913 return false;
915 if (size)
916 (*size)++;
918 if (tree_is_chrec (expr))
919 return true;
921 n = TREE_OPERAND_LENGTH (expr);
922 for (i = 0; i < n; i++)
923 if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
924 return true;
925 return false;
928 /* Recursive helper function. */
930 static bool
931 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
933 if (evolution_function_is_constant_p (chrec))
934 return true;
936 if (TREE_CODE (chrec) == SSA_NAME
937 && expr_invariant_in_loop_p (get_loop (loopnum), chrec))
938 return true;
940 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
942 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
943 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
944 loopnum)
945 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
946 loopnum))
947 return false;
948 return true;
951 switch (TREE_OPERAND_LENGTH (chrec))
953 case 2:
954 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
955 loopnum))
956 return false;
958 case 1:
959 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
960 loopnum))
961 return false;
962 return true;
964 default:
965 return false;
968 return false;
971 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
973 bool
974 evolution_function_is_invariant_p (tree chrec, int loopnum)
976 if (evolution_function_is_constant_p (chrec))
977 return true;
979 if (current_loops != NULL)
980 return evolution_function_is_invariant_rec_p (chrec, loopnum);
982 return false;
985 /* Determine whether the given tree is an affine multivariate
986 evolution. */
988 bool
989 evolution_function_is_affine_multivariate_p (tree chrec)
991 if (chrec == NULL_TREE)
992 return false;
994 switch (TREE_CODE (chrec))
996 case POLYNOMIAL_CHREC:
997 if (evolution_function_is_constant_p (CHREC_LEFT (chrec)))
999 if (evolution_function_is_constant_p (CHREC_RIGHT (chrec)))
1000 return true;
1001 else
1003 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1004 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1005 != CHREC_VARIABLE (chrec)
1006 && evolution_function_is_affine_multivariate_p
1007 (CHREC_RIGHT (chrec)))
1008 return true;
1009 else
1010 return false;
1013 else
1015 if (evolution_function_is_constant_p (CHREC_RIGHT (chrec))
1016 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1017 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1018 && evolution_function_is_affine_multivariate_p
1019 (CHREC_LEFT (chrec)))
1020 return true;
1021 else
1022 return false;
1025 default:
1026 return false;
1030 /* Determine whether the given tree is a function in zero or one
1031 variables. */
1033 bool
1034 evolution_function_is_univariate_p (tree chrec)
1036 if (chrec == NULL_TREE)
1037 return true;
1039 switch (TREE_CODE (chrec))
1041 case POLYNOMIAL_CHREC:
1042 switch (TREE_CODE (CHREC_LEFT (chrec)))
1044 case POLYNOMIAL_CHREC:
1045 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1046 return false;
1047 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1048 return false;
1049 break;
1051 default:
1052 break;
1055 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1057 case POLYNOMIAL_CHREC:
1058 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1059 return false;
1060 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1061 return false;
1062 break;
1064 default:
1065 break;
1068 default:
1069 return true;
1073 /* Returns the number of variables of CHREC. Example: the call
1074 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1076 unsigned
1077 nb_vars_in_chrec (tree chrec)
1079 if (chrec == NULL_TREE)
1080 return 0;
1082 switch (TREE_CODE (chrec))
1084 case POLYNOMIAL_CHREC:
1085 return 1 + nb_vars_in_chrec
1086 (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1088 default:
1089 return 0;
1093 /* Returns true if TYPE is a type in that we cannot directly perform
1094 arithmetics, even though it is a scalar type. */
1096 static bool
1097 avoid_arithmetics_in_type_p (tree type)
1099 /* Ada frontend uses subtypes -- an arithmetic cannot be directly performed
1100 in the subtype, but a base type must be used, and the result then can
1101 be casted to the subtype. */
1102 if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE)
1103 return true;
1105 return false;
1108 static tree chrec_convert_1 (tree, tree, tree, bool);
1110 /* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1111 the scev corresponds to. AT_STMT is the statement at that the scev is
1112 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
1113 the rules for overflow of the given language apply (e.g., that signed
1114 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1115 tests, but also to enforce that the result follows them. Returns true if the
1116 conversion succeeded, false otherwise. */
1118 bool
1119 convert_affine_scev (struct loop *loop, tree type,
1120 tree *base, tree *step, tree at_stmt,
1121 bool use_overflow_semantics)
1123 tree ct = TREE_TYPE (*step);
1124 bool enforce_overflow_semantics;
1125 bool must_check_src_overflow, must_check_rslt_overflow;
1126 tree new_base, new_step;
1128 /* If we cannot perform arithmetic in TYPE, avoid creating an scev. */
1129 if (avoid_arithmetics_in_type_p (type))
1130 return false;
1132 /* In general,
1133 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1134 but we must check some assumptions.
1136 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1137 of CT is smaller than the precision of TYPE. For example, when we
1138 cast unsigned char [254, +, 1] to unsigned, the values on left side
1139 are 254, 255, 0, 1, ..., but those on the right side are
1140 254, 255, 256, 257, ...
1141 2) In case that we must also preserve the fact that signed ivs do not
1142 overflow, we must additionally check that the new iv does not wrap.
1143 For example, unsigned char [125, +, 1] casted to signed char could
1144 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1145 which would confuse optimizers that assume that this does not
1146 happen. */
1147 must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1149 enforce_overflow_semantics = (use_overflow_semantics
1150 && nowrap_type_p (type));
1151 if (enforce_overflow_semantics)
1153 /* We can avoid checking whether the result overflows in the following
1154 cases:
1156 -- must_check_src_overflow is true, and the range of TYPE is superset
1157 of the range of CT -- i.e., in all cases except if CT signed and
1158 TYPE unsigned.
1159 -- both CT and TYPE have the same precision and signedness, and we
1160 verify instead that the source does not overflow (this may be
1161 easier than verifying it for the result, as we may use the
1162 information about the semantics of overflow in CT). */
1163 if (must_check_src_overflow)
1165 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1166 must_check_rslt_overflow = true;
1167 else
1168 must_check_rslt_overflow = false;
1170 else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1171 && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1173 must_check_rslt_overflow = false;
1174 must_check_src_overflow = true;
1176 else
1177 must_check_rslt_overflow = true;
1179 else
1180 must_check_rslt_overflow = false;
1182 if (must_check_src_overflow
1183 && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1184 use_overflow_semantics))
1185 return false;
1187 new_base = chrec_convert_1 (type, *base, at_stmt,
1188 use_overflow_semantics);
1189 /* The step must be sign extended, regardless of the signedness
1190 of CT and TYPE. This only needs to be handled specially when
1191 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1192 (with values 100, 99, 98, ...) from becoming signed or unsigned
1193 [100, +, 255] with values 100, 355, ...; the sign-extension is
1194 performed by default when CT is signed. */
1195 new_step = *step;
1196 if (TYPE_PRECISION (type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1197 new_step = chrec_convert_1 (signed_type_for (ct), new_step, at_stmt,
1198 use_overflow_semantics);
1199 new_step = chrec_convert_1 (type, new_step, at_stmt, use_overflow_semantics);
1201 if (automatically_generated_chrec_p (new_base)
1202 || automatically_generated_chrec_p (new_step))
1203 return false;
1205 if (must_check_rslt_overflow
1206 /* Note that in this case we cannot use the fact that signed variables
1207 do not overflow, as this is what we are verifying for the new iv. */
1208 && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1209 return false;
1211 *base = new_base;
1212 *step = new_step;
1213 return true;
1217 /* Convert CHREC to TYPE. When the analyzer knows the context in
1218 which the CHREC is built, it sets AT_STMT to the statement that
1219 contains the definition of the analyzed variable, otherwise the
1220 conversion is less accurate: the information is used for
1221 determining a more accurate estimation of the number of iterations.
1222 By default AT_STMT could be safely set to NULL_TREE.
1224 The following rule is always true: TREE_TYPE (chrec) ==
1225 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1226 An example of what could happen when adding two chrecs and the type
1227 of the CHREC_RIGHT is different than CHREC_LEFT is:
1229 {(uint) 0, +, (uchar) 10} +
1230 {(uint) 0, +, (uchar) 250}
1232 that would produce a wrong result if CHREC_RIGHT is not (uint):
1234 {(uint) 0, +, (uchar) 4}
1236 instead of
1238 {(uint) 0, +, (uint) 260}
1241 tree
1242 chrec_convert (tree type, tree chrec, tree at_stmt)
1244 return chrec_convert_1 (type, chrec, at_stmt, true);
1247 /* Convert CHREC to TYPE. When the analyzer knows the context in
1248 which the CHREC is built, it sets AT_STMT to the statement that
1249 contains the definition of the analyzed variable, otherwise the
1250 conversion is less accurate: the information is used for
1251 determining a more accurate estimation of the number of iterations.
1252 By default AT_STMT could be safely set to NULL_TREE.
1254 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1255 the rules for overflow of the given language apply (e.g., that signed
1256 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1257 tests, but also to enforce that the result follows them. */
1259 static tree
1260 chrec_convert_1 (tree type, tree chrec, tree at_stmt,
1261 bool use_overflow_semantics)
1263 tree ct, res;
1264 tree base, step;
1265 struct loop *loop;
1267 if (automatically_generated_chrec_p (chrec))
1268 return chrec;
1270 ct = chrec_type (chrec);
1271 if (ct == type)
1272 return chrec;
1274 if (!evolution_function_is_affine_p (chrec))
1275 goto keep_cast;
1277 loop = get_chrec_loop (chrec);
1278 base = CHREC_LEFT (chrec);
1279 step = CHREC_RIGHT (chrec);
1281 if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1282 use_overflow_semantics))
1283 return build_polynomial_chrec (loop->num, base, step);
1285 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1286 keep_cast:
1287 res = fold_convert (type, chrec);
1289 /* Don't propagate overflows. */
1290 if (CONSTANT_CLASS_P (res))
1291 TREE_OVERFLOW (res) = 0;
1293 /* But reject constants that don't fit in their type after conversion.
1294 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1295 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1296 and can cause problems later when computing niters of loops. Note
1297 that we don't do the check before converting because we don't want
1298 to reject conversions of negative chrecs to unsigned types. */
1299 if (TREE_CODE (res) == INTEGER_CST
1300 && TREE_CODE (type) == INTEGER_TYPE
1301 && !int_fits_type_p (res, type))
1302 res = chrec_dont_know;
1304 return res;
1307 /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1308 chrec if something else than what chrec_convert would do happens, NULL_TREE
1309 otherwise. */
1311 tree
1312 chrec_convert_aggressive (tree type, tree chrec)
1314 tree inner_type, left, right, lc, rc;
1316 if (automatically_generated_chrec_p (chrec)
1317 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1318 return NULL_TREE;
1320 inner_type = TREE_TYPE (chrec);
1321 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1322 return NULL_TREE;
1324 /* If we cannot perform arithmetic in TYPE, avoid creating an scev. */
1325 if (avoid_arithmetics_in_type_p (type))
1326 return NULL_TREE;
1328 left = CHREC_LEFT (chrec);
1329 right = CHREC_RIGHT (chrec);
1330 lc = chrec_convert_aggressive (type, left);
1331 if (!lc)
1332 lc = chrec_convert (type, left, NULL_TREE);
1333 rc = chrec_convert_aggressive (type, right);
1334 if (!rc)
1335 rc = chrec_convert (type, right, NULL_TREE);
1337 return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1340 /* Returns true when CHREC0 == CHREC1. */
1342 bool
1343 eq_evolutions_p (tree chrec0,
1344 tree chrec1)
1346 if (chrec0 == NULL_TREE
1347 || chrec1 == NULL_TREE
1348 || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1349 return false;
1351 if (chrec0 == chrec1)
1352 return true;
1354 switch (TREE_CODE (chrec0))
1356 case INTEGER_CST:
1357 return operand_equal_p (chrec0, chrec1, 0);
1359 case POLYNOMIAL_CHREC:
1360 return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1361 && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1362 && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1363 default:
1364 return false;
1368 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1369 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1370 which of these cases happens. */
1372 enum ev_direction
1373 scev_direction (tree chrec)
1375 tree step;
1377 if (!evolution_function_is_affine_p (chrec))
1378 return EV_DIR_UNKNOWN;
1380 step = CHREC_RIGHT (chrec);
1381 if (TREE_CODE (step) != INTEGER_CST)
1382 return EV_DIR_UNKNOWN;
1384 if (tree_int_cst_sign_bit (step))
1385 return EV_DIR_DECREASES;
1386 else
1387 return EV_DIR_GROWS;