1 /* Type based alias analysis.
2 Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 /* This pass determines which types in the program contain only
23 instances that are completely encapsulated by the compilation unit.
24 Those types that are encapsulated must also pass the further
25 requirement that there be no bad operations on any instances of
28 A great deal of freedom in compilation is allowed for the instances
29 of those types that pass these conditions.
32 /* The code in this module is called by the ipa pass manager. It
33 should be one of the later passes since its information is used by
34 the rest of the compilation. */
38 #include "coretypes.h"
41 #include "tree-flow.h"
42 #include "tree-inline.h"
43 #include "tree-pass.h"
44 #include "langhooks.h"
45 #include "pointer-set.h"
47 #include "ipa-utils.h"
48 #include "ipa-type-escape.h"
50 #include "tree-gimple.h"
55 #include "diagnostic.h"
56 #include "langhooks.h"
58 /* Some of the aliasing is called very early, before this phase is
59 called. To assure that this is not a problem, we keep track of if
60 this phase has been run. */
61 static bool initialized
= false;
63 /* This bitmap contains the set of local vars that are the lhs of
64 calls to mallocs. These variables, when seen on the rhs as part of
65 a cast, the cast are not marked as doing bad things to the type
66 even though they are generally of the form
67 "foo = (type_of_foo)void_temp". */
68 static bitmap results_of_malloc
;
70 /* Scratch bitmap for avoiding work. */
71 static bitmap been_there_done_that
;
72 static bitmap bitmap_tmp
;
74 /* There are two levels of escape that types can undergo.
76 EXPOSED_PARAMETER - some instance of the variable is
77 passed by value into an externally visible function or some
78 instance of the variable is passed out of an externally visible
79 function as a return value. In this case any of the fields of the
80 variable that are pointer types end up having their types marked as
83 FULL_ESCAPE - when bad things happen to good types. One of the
84 following things happens to the type: (a) either an instance of the
85 variable has its address passed to an externally visible function,
86 (b) the address is taken and some bad cast happens to the address
87 or (c) explicit arithmetic is done to the address.
96 /* The following two bit vectors global_types_* correspond to
97 previous cases above. During the analysis phase, a bit is set in
98 one of these vectors if an operation of the offending class is
99 discovered to happen on the associated type. */
101 static bitmap global_types_exposed_parameter
;
102 static bitmap global_types_full_escape
;
104 /* All of the types seen in this compilation unit. */
105 static bitmap global_types_seen
;
106 /* Reverse map to take a canon uid and map it to a canon type. Uid's
107 are never manipulated unless they are associated with a canon
109 static splay_tree uid_to_canon_type
;
111 /* Internal structure of type mapping code. This maps a canon type
112 name to its canon type. */
113 static splay_tree all_canon_types
;
115 /* Map from type clones to the single canon type. */
116 static splay_tree type_to_canon_type
;
118 /* A splay tree of bitmaps. An element X in the splay tree has a bit
119 set in its bitmap at TYPE_UID (TYPE_MAIN_VARIANT (Y)) if there was
120 an operation in the program of the form "&X.Y". */
121 static splay_tree uid_to_addressof_down_map
;
123 /* A splay tree of bitmaps. An element Y in the splay tree has a bit
124 set in its bitmap at TYPE_UID (TYPE_MAIN_VARIANT (X)) if there was
125 an operation in the program of the form "&X.Y". */
126 static splay_tree uid_to_addressof_up_map
;
128 /* Tree to hold the subtype maps used to mark subtypes of escaped
130 static splay_tree uid_to_subtype_map
;
132 /* Records tree nodes seen in cgraph_create_edges. Simply using
133 walk_tree_without_duplicates doesn't guarantee each node is visited
134 once because it gets a new htab upon each recursive call from
136 static struct pointer_set_t
*visited_nodes
;
138 static bitmap_obstack ipa_obstack
;
140 /* Get the name of TYPE or return the string "<UNNAMED>". */
142 get_name_of_type (tree type
)
144 tree name
= TYPE_NAME (type
);
147 /* Unnamed type, do what you like here. */
148 return (char*)"<UNNAMED>";
150 /* It will be a TYPE_DECL in the case of a typedef, otherwise, an
152 if (TREE_CODE (name
) == TYPE_DECL
)
154 /* Each DECL has a DECL_NAME field which contains an
155 IDENTIFIER_NODE. (Some decls, most often labels, may have
156 zero as the DECL_NAME). */
157 if (DECL_NAME (name
))
158 return (char*)IDENTIFIER_POINTER (DECL_NAME (name
));
160 /* Unnamed type, do what you like here. */
161 return (char*)"<UNNAMED>";
163 else if (TREE_CODE (name
) == IDENTIFIER_NODE
)
164 return (char*)IDENTIFIER_POINTER (name
);
166 return (char*)"<UNNAMED>";
175 /* Splay tree comparison function on type_brand_s structures. */
178 compare_type_brand (splay_tree_key sk1
, splay_tree_key sk2
)
180 struct type_brand_s
* k1
= (struct type_brand_s
*) sk1
;
181 struct type_brand_s
* k2
= (struct type_brand_s
*) sk2
;
183 int value
= strcmp(k1
->name
, k2
->name
);
185 return k2
->seq
- k1
->seq
;
190 /* All of the "unique_type" code is a hack to get around the sleazy
191 implementation used to compile more than file. Currently gcc does
192 not get rid of multiple instances of the same type that have been
193 collected from different compilation units. */
194 /* This is a trivial algorithm for removing duplicate types. This
195 would not work for any language that used structural equivalence as
196 the basis of its type system. */
197 /* Return either TYPE if this is first time TYPE has been seen an
198 compatible TYPE that has already been processed. */
201 discover_unique_type (tree type
)
203 struct type_brand_s
* brand
= XNEW (struct type_brand_s
);
205 splay_tree_node result
;
207 brand
->name
= get_name_of_type (type
);
212 result
= splay_tree_lookup (all_canon_types
, (splay_tree_key
) brand
);
216 /* Create an alias since this is just the same as
218 tree other_type
= (tree
) result
->value
;
219 if (lang_hooks
.types_compatible_p (type
, other_type
) == 1)
222 /* Insert this new type as an alias for other_type. */
223 splay_tree_insert (type_to_canon_type
,
224 (splay_tree_key
) type
,
225 (splay_tree_value
) other_type
);
228 /* Not compatible, look for next instance with same name. */
232 /* No more instances, create new one since this is the first
233 time we saw this type. */
235 /* Insert the new brand. */
236 splay_tree_insert (all_canon_types
,
237 (splay_tree_key
) brand
,
238 (splay_tree_value
) type
);
240 /* Insert this new type as an alias for itself. */
241 splay_tree_insert (type_to_canon_type
,
242 (splay_tree_key
) type
,
243 (splay_tree_value
) type
);
245 /* Insert the uid for reverse lookup; */
246 splay_tree_insert (uid_to_canon_type
,
247 (splay_tree_key
) TYPE_UID (type
),
248 (splay_tree_value
) type
);
250 bitmap_set_bit (global_types_seen
, TYPE_UID (type
));
256 /* Return true if TYPE is one of the type classes that we are willing
257 to analyze. This skips the goofy types like arrays of pointers to
260 type_to_consider (tree type
)
262 /* Strip the *'s off. */
263 type
= TYPE_MAIN_VARIANT (type
);
264 while (POINTER_TYPE_P (type
) || TREE_CODE (type
) == ARRAY_TYPE
)
265 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
267 switch (TREE_CODE (type
))
273 case QUAL_UNION_TYPE
:
286 /* Get the canon type of TYPE. If SEE_THRU_PTRS is true, remove all
287 the POINTER_TOs and if SEE_THRU_ARRAYS is true, remove all of the
288 ARRAY_OFs and POINTER_TOs. */
291 get_canon_type (tree type
, bool see_thru_ptrs
, bool see_thru_arrays
)
293 splay_tree_node result
;
294 /* Strip the *'s off. */
295 if (!type
|| !type_to_consider (type
))
298 type
= TYPE_MAIN_VARIANT (type
);
300 while (POINTER_TYPE_P (type
) || TREE_CODE (type
) == ARRAY_TYPE
)
301 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
303 else if (see_thru_ptrs
)
304 while (POINTER_TYPE_P (type
))
305 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
307 result
= splay_tree_lookup(type_to_canon_type
, (splay_tree_key
) type
);
310 return discover_unique_type (type
);
311 else return (tree
) result
->value
;
314 /* Same as GET_CANON_TYPE, except return the TYPE_ID rather than the
318 get_canon_type_uid (tree type
, bool see_thru_ptrs
, bool see_thru_arrays
)
320 type
= get_canon_type (type
, see_thru_ptrs
, see_thru_arrays
);
322 return TYPE_UID(type
);
326 /* Return 0 if TYPE is a record or union type. Return a positive
327 number if TYPE is a pointer to a record or union. The number is
328 the number of pointer types stripped to get to the record or union
329 type. Return -1 if TYPE is none of the above. */
332 ipa_type_escape_star_count_of_interesting_type (tree type
)
335 /* Strip the *'s off. */
338 type
= TYPE_MAIN_VARIANT (type
);
339 while (POINTER_TYPE_P (type
))
341 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
345 /* We are interested in records, and unions only. */
346 if (TREE_CODE (type
) == RECORD_TYPE
347 || TREE_CODE (type
) == QUAL_UNION_TYPE
348 || TREE_CODE (type
) == UNION_TYPE
)
355 /* Return 0 if TYPE is a record or union type. Return a positive
356 number if TYPE is a pointer to a record or union. The number is
357 the number of pointer types stripped to get to the record or union
358 type. Return -1 if TYPE is none of the above. */
361 ipa_type_escape_star_count_of_interesting_or_array_type (tree type
)
364 /* Strip the *'s off. */
367 type
= TYPE_MAIN_VARIANT (type
);
368 while (POINTER_TYPE_P (type
) || TREE_CODE (type
) == ARRAY_TYPE
)
370 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
374 /* We are interested in records, and unions only. */
375 if (TREE_CODE (type
) == RECORD_TYPE
376 || TREE_CODE (type
) == QUAL_UNION_TYPE
377 || TREE_CODE (type
) == UNION_TYPE
)
384 /* Return true if the record, or union TYPE passed in escapes this
385 compilation unit. Note that all of the pointer-to's are removed
386 before testing since these may not be correct. */
389 ipa_type_escape_type_contained_p (tree type
)
393 return !bitmap_bit_p (global_types_full_escape
,
394 get_canon_type_uid (type
, true, false));
397 /* Return true if a modification to a field of type FIELD_TYPE cannot
398 clobber a record of RECORD_TYPE. */
401 ipa_type_escape_field_does_not_clobber_p (tree record_type
, tree field_type
)
403 splay_tree_node result
;
409 /* Strip off all of the pointer tos on the record type. Strip the
410 same number of pointer tos from the field type. If the field
411 type has fewer, it could not have been aliased. */
412 record_type
= TYPE_MAIN_VARIANT (record_type
);
413 field_type
= TYPE_MAIN_VARIANT (field_type
);
414 while (POINTER_TYPE_P (record_type
))
416 record_type
= TYPE_MAIN_VARIANT (TREE_TYPE (record_type
));
417 if (POINTER_TYPE_P (field_type
))
418 field_type
= TYPE_MAIN_VARIANT (TREE_TYPE (field_type
));
420 /* However, if field_type is a union, this quick test is not
421 correct since one of the variants of the union may be a
422 pointer to type and we cannot see across that here. So we
423 just strip the remaining pointer tos off the record type
424 and fall thru to the more precise code. */
425 if (TREE_CODE (field_type
) == QUAL_UNION_TYPE
426 || TREE_CODE (field_type
) == UNION_TYPE
)
428 while (POINTER_TYPE_P (record_type
))
429 record_type
= TYPE_MAIN_VARIANT (TREE_TYPE (record_type
));
436 record_type
= get_canon_type (record_type
, true, true);
437 /* The record type must be contained. The field type may
439 if (!ipa_type_escape_type_contained_p (record_type
))
442 uid
= TYPE_UID (record_type
);
443 result
= splay_tree_lookup (uid_to_addressof_down_map
, (splay_tree_key
) uid
);
447 bitmap field_type_map
= (bitmap
) result
->value
;
448 uid
= get_canon_type_uid (field_type
, true, true);
449 /* If the bit is there, the address was taken. If not, it
451 return !bitmap_bit_p (field_type_map
, uid
);
454 /* No bitmap means no addresses were taken. */
459 /* Add TYPE to the suspect type set. Return true if the bit needed to
463 mark_type (tree type
, enum escape_t escape_status
)
468 type
= get_canon_type (type
, true, true);
472 switch (escape_status
)
474 case EXPOSED_PARAMETER
:
475 map
= global_types_exposed_parameter
;
478 map
= global_types_full_escape
;
482 uid
= TYPE_UID (type
);
483 if (bitmap_bit_p (map
, uid
))
487 bitmap_set_bit (map
, uid
);
488 if (escape_status
== FULL_ESCAPE
)
490 /* Efficiency hack. When things are bad, do not mess around
491 with this type anymore. */
492 bitmap_set_bit (global_types_exposed_parameter
, uid
);
498 /* Add interesting TYPE to the suspect type set. If the set is
499 EXPOSED_PARAMETER and the TYPE is a pointer type, the set is
500 changed to FULL_ESCAPE. */
503 mark_interesting_type (tree type
, enum escape_t escape_status
)
506 if (ipa_type_escape_star_count_of_interesting_type (type
) >= 0)
508 if ((escape_status
== EXPOSED_PARAMETER
)
509 && POINTER_TYPE_P (type
))
510 /* EXPOSED_PARAMETERs are only structs or unions are passed by
511 value. Anything passed by reference to an external
512 function fully exposes the type. */
513 mark_type (type
, FULL_ESCAPE
);
515 mark_type (type
, escape_status
);
519 /* Return true if PARENT is supertype of CHILD. Both types must be
520 known to be structures or unions. */
523 parent_type_p (tree parent
, tree child
)
526 tree binfo
, base_binfo
;
527 if (TYPE_BINFO (parent
))
528 for (binfo
= TYPE_BINFO (parent
), i
= 0;
529 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
531 tree binfotype
= BINFO_TYPE (base_binfo
);
532 if (binfotype
== child
)
534 else if (parent_type_p (binfotype
, child
))
537 if (TREE_CODE (parent
) == UNION_TYPE
538 || TREE_CODE (parent
) == QUAL_UNION_TYPE
)
541 /* Search all of the variants in the union to see if one of them
543 for (field
= TYPE_FIELDS (parent
);
545 field
= TREE_CHAIN (field
))
548 if (TREE_CODE (field
) != FIELD_DECL
)
551 field_type
= TREE_TYPE (field
);
552 if (field_type
== child
)
556 /* If we did not find it, recursively ask the variants if one of
557 their children is the child type. */
558 for (field
= TYPE_FIELDS (parent
);
560 field
= TREE_CHAIN (field
))
563 if (TREE_CODE (field
) != FIELD_DECL
)
566 field_type
= TREE_TYPE (field
);
567 if (TREE_CODE (field_type
) == RECORD_TYPE
568 || TREE_CODE (field_type
) == QUAL_UNION_TYPE
569 || TREE_CODE (field_type
) == UNION_TYPE
)
570 if (parent_type_p (field_type
, child
))
575 if (TREE_CODE (parent
) == RECORD_TYPE
)
578 for (field
= TYPE_FIELDS (parent
);
580 field
= TREE_CHAIN (field
))
583 if (TREE_CODE (field
) != FIELD_DECL
)
586 field_type
= TREE_TYPE (field
);
587 if (field_type
== child
)
589 /* You can only cast to the first field so if it does not
591 if (TREE_CODE (field_type
) == RECORD_TYPE
592 || TREE_CODE (field_type
) == QUAL_UNION_TYPE
593 || TREE_CODE (field_type
) == UNION_TYPE
)
595 if (parent_type_p (field_type
, child
))
605 /* Return the number of pointer tos for TYPE and return TYPE with all
606 of these stripped off. */
609 count_stars (tree
* type_ptr
)
611 tree type
= *type_ptr
;
613 type
= TYPE_MAIN_VARIANT (type
);
614 while (POINTER_TYPE_P (type
))
616 type
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
631 /* Check the cast FROM_TYPE to TO_TYPE. This function requires that
632 the two types have already passed the
633 ipa_type_escape_star_count_of_interesting_type test. */
635 static enum cast_type
636 check_cast_type (tree to_type
, tree from_type
)
638 int to_stars
= count_stars (&to_type
);
639 int from_stars
= count_stars (&from_type
);
640 if (to_stars
!= from_stars
)
643 if (to_type
== from_type
)
646 if (parent_type_p (to_type
, from_type
)) return CT_UP
;
647 if (parent_type_p (from_type
, to_type
)) return CT_DOWN
;
651 /* Check a cast FROM this variable, TO_TYPE. Mark the escaping types
654 check_cast (tree to_type
, tree from
)
656 tree from_type
= get_canon_type (TREE_TYPE (from
), false, false);
657 bool to_interesting_type
, from_interesting_type
;
659 to_type
= get_canon_type (to_type
, false, false);
660 if (!from_type
|| !to_type
|| from_type
== to_type
)
663 to_interesting_type
=
664 ipa_type_escape_star_count_of_interesting_type (to_type
) >= 0;
665 from_interesting_type
=
666 ipa_type_escape_star_count_of_interesting_type (from_type
) >= 0;
668 if (to_interesting_type
)
669 if (from_interesting_type
)
671 /* Both types are interesting. This can be one of four types
672 of cast: useless, up, down, or sideways. We do not care
673 about up or useless. Sideways casts are always bad and
674 both sides get marked as escaping. Downcasts are not
675 interesting here because if type is marked as escaping, all
676 of its subtypes escape. */
677 switch (check_cast_type (to_type
, from_type
))
685 mark_type (to_type
, FULL_ESCAPE
);
686 mark_type (from_type
, FULL_ESCAPE
);
692 /* If this is a cast from the local that is a result from a
693 call to malloc, do not mark the cast as bad. */
694 if (DECL_P (from
) && !bitmap_bit_p (results_of_malloc
, DECL_UID (from
)))
695 mark_type (to_type
, FULL_ESCAPE
);
697 else if (from_interesting_type
)
698 mark_type (from_type
, FULL_ESCAPE
);
701 /* Register the parameter and return types of function FN. The type
702 ESCAPES if the function is visible outside of the compilation
705 check_function_parameter_and_return_types (tree fn
, bool escapes
)
709 if (TYPE_ARG_TYPES (TREE_TYPE (fn
)))
711 for (arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
712 arg
&& TREE_VALUE (arg
) != void_type_node
;
713 arg
= TREE_CHAIN (arg
))
715 tree type
= get_canon_type (TREE_VALUE (arg
), false, false);
717 mark_interesting_type (type
, EXPOSED_PARAMETER
);
722 /* FIXME - According to Geoff Keating, we should never have to
723 do this; the front ends should always process the arg list
724 from the TYPE_ARG_LIST. However, Geoff is wrong, this code
725 does seem to be live. */
727 for (arg
= DECL_ARGUMENTS (fn
); arg
; arg
= TREE_CHAIN (arg
))
729 tree type
= get_canon_type (TREE_TYPE (arg
), false, false);
731 mark_interesting_type (type
, EXPOSED_PARAMETER
);
736 tree type
= get_canon_type (TREE_TYPE (TREE_TYPE (fn
)), false, false);
737 mark_interesting_type (type
, EXPOSED_PARAMETER
);
741 /* Return true if the variable T is the right kind of static variable to
742 perform compilation unit scope escape analysis. */
745 has_proper_scope_for_analysis (tree t
)
747 /* If the variable has the "used" attribute, treat it as if it had a
748 been touched by the devil. */
749 tree type
= get_canon_type (TREE_TYPE (t
), false, false);
752 if (lookup_attribute ("used", DECL_ATTRIBUTES (t
)))
754 mark_interesting_type (type
, FULL_ESCAPE
);
758 /* Do not want to do anything with volatile except mark any
759 function that uses one to be not const or pure. */
760 if (TREE_THIS_VOLATILE (t
))
763 /* Do not care about a local automatic that is not static. */
764 if (!TREE_STATIC (t
) && !DECL_EXTERNAL (t
))
767 if (DECL_EXTERNAL (t
) || TREE_PUBLIC (t
))
769 /* If the front end set the variable to be READONLY and
770 constant, we can allow this variable in pure or const
771 functions but the scope is too large for our analysis to set
772 these bits ourselves. */
774 if (TREE_READONLY (t
)
776 && is_gimple_min_invariant (DECL_INITIAL (t
)))
777 ; /* Read of a constant, do not change the function state. */
780 /* The type escapes for all public and externs. */
781 mark_interesting_type (type
, FULL_ESCAPE
);
786 /* If T is a VAR_DECL for a static that we are interested in, add the
787 uid to the bitmap. */
790 check_operand (tree t
)
794 /* This is an assignment from a function, register the types as
796 if (TREE_CODE (t
) == FUNCTION_DECL
)
797 check_function_parameter_and_return_types (t
, true);
799 else if (TREE_CODE (t
) == VAR_DECL
)
800 has_proper_scope_for_analysis (t
);
803 /* Examine tree T for references. */
808 if ((TREE_CODE (t
) == EXC_PTR_EXPR
) || (TREE_CODE (t
) == FILTER_EXPR
))
811 while (TREE_CODE (t
) == REALPART_EXPR
812 || TREE_CODE (t
) == IMAGPART_EXPR
813 || handled_component_p (t
))
815 if (TREE_CODE (t
) == ARRAY_REF
)
816 check_operand (TREE_OPERAND (t
, 1));
817 t
= TREE_OPERAND (t
, 0);
820 if (INDIRECT_REF_P (t
))
821 /* || TREE_CODE (t) == MEM_REF) */
822 check_tree (TREE_OPERAND (t
, 0));
824 if (SSA_VAR_P (t
) || (TREE_CODE (t
) == FUNCTION_DECL
))
828 /* Create an address_of edge FROM_TYPE.TO_TYPE. */
830 mark_interesting_addressof (tree to_type
, tree from_type
)
835 splay_tree_node result
;
837 from_type
= get_canon_type (from_type
, false, false);
838 to_type
= get_canon_type (to_type
, false, false);
840 if (!from_type
|| !to_type
)
843 from_uid
= TYPE_UID (from_type
);
844 to_uid
= TYPE_UID (to_type
);
846 gcc_assert (ipa_type_escape_star_count_of_interesting_type (from_type
) == 0);
848 /* Process the Y into X map pointer. */
849 result
= splay_tree_lookup (uid_to_addressof_down_map
,
850 (splay_tree_key
) from_uid
);
853 type_map
= (bitmap
) result
->value
;
856 type_map
= BITMAP_ALLOC (&ipa_obstack
);
857 splay_tree_insert (uid_to_addressof_down_map
,
859 (splay_tree_value
)type_map
);
861 bitmap_set_bit (type_map
, TYPE_UID (to_type
));
863 /* Process the X into Y reverse map pointer. */
865 splay_tree_lookup (uid_to_addressof_up_map
, (splay_tree_key
) to_uid
);
868 type_map
= (bitmap
) result
->value
;
871 type_map
= BITMAP_ALLOC (&ipa_obstack
);
872 splay_tree_insert (uid_to_addressof_up_map
,
874 (splay_tree_value
)type_map
);
876 bitmap_set_bit (type_map
, TYPE_UID (to_type
));
879 /* Scan tree T to see if there are any addresses taken in within T. */
882 look_for_address_of (tree t
)
884 if (TREE_CODE (t
) == ADDR_EXPR
)
886 tree x
= get_base_var (t
);
887 tree cref
= TREE_OPERAND (t
, 0);
889 /* If we have an expression of the form "&a.b.c.d", mark a.b,
890 b.c and c.d. as having its address taken. */
891 tree fielddecl
= NULL_TREE
;
894 if (TREE_CODE (cref
) == COMPONENT_REF
)
896 fielddecl
= TREE_OPERAND (cref
, 1);
897 mark_interesting_addressof (TREE_TYPE (fielddecl
),
898 DECL_FIELD_CONTEXT (fielddecl
));
900 else if (TREE_CODE (cref
) == ARRAY_REF
)
901 get_canon_type (TREE_TYPE (cref
), false, false);
903 cref
= TREE_OPERAND (cref
, 0);
906 if (TREE_CODE (x
) == VAR_DECL
)
907 has_proper_scope_for_analysis (x
);
912 /* Scan tree T to see if there are any casts within it.
913 LHS Is the LHS of the expression involving the cast. */
916 look_for_casts (tree lhs
__attribute__((unused
)), tree t
)
918 if (is_gimple_cast (t
) || TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
920 tree castfromvar
= TREE_OPERAND (t
, 0);
921 check_cast (TREE_TYPE (t
), castfromvar
);
924 while (handled_component_p (t
))
926 t
= TREE_OPERAND (t
, 0);
927 if (TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
929 /* This may be some part of a component ref.
930 IE it may be a.b.VIEW_CONVERT_EXPR<weird_type>(c).d, AFAIK.
931 castfromref will give you a.b.c, not a. */
932 tree castfromref
= TREE_OPERAND (t
, 0);
933 check_cast (TREE_TYPE (t
), castfromref
);
935 else if (TREE_CODE (t
) == COMPONENT_REF
)
936 get_canon_type (TREE_TYPE (TREE_OPERAND (t
, 1)), false, false);
940 /* Check to see if T is a read or address of operation on a static var
941 we are interested in analyzing. */
944 check_rhs_var (tree t
)
946 look_for_address_of (t
);
950 /* Check to see if T is an assignment to a static var we are
951 interested in analyzing. */
954 check_lhs_var (tree t
)
959 /* This is a scaled down version of get_asm_expr_operands from
960 tree_ssa_operands.c. The version there runs much later and assumes
961 that aliasing information is already available. Here we are just
962 trying to find if the set of inputs and outputs contain references
963 or address of operations to local. FN is the function being
964 analyzed and STMT is the actual asm statement. */
967 get_asm_expr_operands (tree stmt
)
969 int noutputs
= list_length (ASM_OUTPUTS (stmt
));
970 const char **oconstraints
971 = (const char **) alloca ((noutputs
) * sizeof (const char *));
974 const char *constraint
;
975 bool allows_mem
, allows_reg
, is_inout
;
977 for (i
=0, link
= ASM_OUTPUTS (stmt
); link
; ++i
, link
= TREE_CHAIN (link
))
979 oconstraints
[i
] = constraint
980 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
981 parse_output_constraint (&constraint
, i
, 0, 0,
982 &allows_mem
, &allows_reg
, &is_inout
);
984 check_lhs_var (TREE_VALUE (link
));
987 for (link
= ASM_INPUTS (stmt
); link
; link
= TREE_CHAIN (link
))
990 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
991 parse_input_constraint (&constraint
, 0, 0, noutputs
, 0,
992 oconstraints
, &allows_mem
, &allows_reg
);
994 check_rhs_var (TREE_VALUE (link
));
997 /* There is no code here to check for asm memory clobbers. The
998 casual maintainer might think that such code would be necessary,
999 but that appears to be wrong. In other parts of the compiler,
1000 the asm memory clobbers are assumed to only clobber variables
1001 that are addressable. All types with addressable instances are
1002 assumed to already escape. So, we are protected here. */
1005 /* Check the parameters of a function call to CALL_EXPR to mark the
1006 types that pass across the function boundary. Also check to see if
1007 this is either an indirect call, a call outside the compilation
1011 check_call (tree call_expr
)
1013 int flags
= call_expr_flags(call_expr
);
1015 tree callee_t
= get_callee_fndecl (call_expr
);
1016 struct cgraph_node
* callee
;
1017 enum availability avail
= AVAIL_NOT_AVAILABLE
;
1018 call_expr_arg_iterator iter
;
1020 FOR_EACH_CALL_EXPR_ARG (operand
, iter
, call_expr
)
1021 check_rhs_var (operand
);
1026 tree last_arg_type
= NULL
;
1027 callee
= cgraph_node(callee_t
);
1028 avail
= cgraph_function_body_availability (callee
);
1030 /* Check that there are no implicit casts in the passing of
1032 if (TYPE_ARG_TYPES (TREE_TYPE (callee_t
)))
1034 for (arg_type
= TYPE_ARG_TYPES (TREE_TYPE (callee_t
)),
1035 operand
= first_call_expr_arg (call_expr
, &iter
);
1036 arg_type
&& TREE_VALUE (arg_type
) != void_type_node
;
1037 arg_type
= TREE_CHAIN (arg_type
),
1038 operand
= next_call_expr_arg (&iter
))
1042 last_arg_type
= TREE_VALUE(arg_type
);
1043 check_cast (last_arg_type
, operand
);
1046 /* The code reaches here for some unfortunate
1047 builtin functions that do not have a list of
1054 /* FIXME - According to Geoff Keating, we should never
1055 have to do this; the front ends should always process
1056 the arg list from the TYPE_ARG_LIST. */
1057 for (arg_type
= DECL_ARGUMENTS (callee_t
),
1058 operand
= first_call_expr_arg (call_expr
, &iter
);
1060 arg_type
= TREE_CHAIN (arg_type
),
1061 operand
= next_call_expr_arg (&iter
))
1065 last_arg_type
= TREE_TYPE(arg_type
);
1066 check_cast (last_arg_type
, operand
);
1069 /* The code reaches here for some unfortunate
1070 builtin functions that do not have a list of
1076 /* In the case where we have a var_args function, we need to
1077 check the remaining parameters against the last argument. */
1078 arg_type
= last_arg_type
;
1080 operand
!= NULL_TREE
;
1081 operand
= next_call_expr_arg (&iter
))
1084 check_cast (arg_type
, operand
);
1087 /* The code reaches here for some unfortunate
1088 builtin functions that do not have a list of
1089 argument types. Most of these functions have
1090 been marked as having their parameters not
1091 escape, but for the rest, the type is doomed. */
1092 tree type
= get_canon_type (TREE_TYPE (operand
), false, false);
1093 mark_interesting_type (type
, FULL_ESCAPE
);
1098 /* The callee is either unknown (indirect call) or there is just no
1099 scannable code for it (external call) . We look to see if there
1100 are any bits available for the callee (such as by declaration or
1101 because it is builtin) and process solely on the basis of those
1104 if (avail
== AVAIL_NOT_AVAILABLE
|| avail
== AVAIL_OVERWRITABLE
)
1106 /* If this is a direct call to an external function, mark all of
1107 the parameter and return types. */
1108 FOR_EACH_CALL_EXPR_ARG (operand
, iter
, call_expr
)
1110 tree type
= get_canon_type (TREE_TYPE (operand
), false, false);
1111 mark_interesting_type (type
, EXPOSED_PARAMETER
);
1117 get_canon_type (TREE_TYPE (TREE_TYPE (callee_t
)), false, false);
1118 mark_interesting_type (type
, EXPOSED_PARAMETER
);
1121 return (flags
& ECF_MALLOC
);
1124 /* CODE is the operation on OP0 and OP1. OP0 is the operand that we
1125 *know* is a pointer type. OP1 may be a pointer type. */
1127 okay_pointer_operation (enum tree_code code
, tree op0
, tree op1
)
1129 tree op0type
= TYPE_MAIN_VARIANT (TREE_TYPE (op0
));
1130 tree op1type
= TYPE_MAIN_VARIANT (TREE_TYPE (op1
));
1131 if (POINTER_TYPE_P (op1type
))
1138 /* TODO: Handle multiples of op0 size as well */
1139 if (operand_equal_p (size_in_bytes (op0type
), op1
, 0))
1149 /* TP is the part of the tree currently under the microscope.
1150 WALK_SUBTREES is part of the walk_tree api but is unused here.
1151 DATA is cgraph_node of the function being walked. */
1153 /* FIXME: When this is converted to run over SSA form, this code
1154 should be converted to use the operand scanner. */
1157 scan_for_refs (tree
*tp
, int *walk_subtrees
, void *data
)
1159 struct cgraph_node
*fn
= data
;
1162 switch (TREE_CODE (t
))
1165 if (DECL_INITIAL (t
))
1166 walk_tree (&DECL_INITIAL (t
), scan_for_refs
, fn
, visited_nodes
);
1170 case GIMPLE_MODIFY_STMT
:
1172 /* First look on the lhs and see what variable is stored to */
1173 tree lhs
= GIMPLE_STMT_OPERAND (t
, 0);
1174 tree rhs
= GIMPLE_STMT_OPERAND (t
, 1);
1176 check_lhs_var (lhs
);
1177 check_cast (TREE_TYPE (lhs
), rhs
);
1179 /* For the purposes of figuring out what the cast affects */
1181 /* Next check the operands on the rhs to see if they are ok. */
1182 switch (TREE_CODE_CLASS (TREE_CODE (rhs
)))
1186 tree op0
= TREE_OPERAND (rhs
, 0);
1187 tree type0
= get_canon_type (TREE_TYPE (op0
), false, false);
1188 tree op1
= TREE_OPERAND (rhs
, 1);
1189 tree type1
= get_canon_type (TREE_TYPE (op1
), false, false);
1191 /* If this is pointer arithmetic of any bad sort, then
1192 we need to mark the types as bad. For binary
1193 operations, no binary operator we currently support
1194 is always "safe" in regard to what it would do to
1195 pointers for purposes of determining which types
1196 escape, except operations of the size of the type.
1197 It is possible that min and max under the right set
1198 of circumstances and if the moon is in the correct
1199 place could be safe, but it is hard to see how this
1200 is worth the effort. */
1202 if (type0
&& POINTER_TYPE_P (type0
)
1203 && !okay_pointer_operation (TREE_CODE (rhs
), op0
, op1
))
1204 mark_interesting_type (type0
, FULL_ESCAPE
);
1205 if (type1
&& POINTER_TYPE_P (type1
)
1206 && !okay_pointer_operation (TREE_CODE (rhs
), op1
, op0
))
1207 mark_interesting_type (type1
, FULL_ESCAPE
);
1209 look_for_casts (lhs
, op0
);
1210 look_for_casts (lhs
, op1
);
1211 check_rhs_var (op0
);
1212 check_rhs_var (op1
);
1217 tree op0
= TREE_OPERAND (rhs
, 0);
1218 tree type0
= get_canon_type (TREE_TYPE (op0
), false, false);
1219 /* For unary operations, if the operation is NEGATE or
1220 ABS on a pointer, this is also considered pointer
1221 arithmetic and thus, bad for business. */
1222 if (type0
&& (TREE_CODE (op0
) == NEGATE_EXPR
1223 || TREE_CODE (op0
) == ABS_EXPR
)
1224 && POINTER_TYPE_P (type0
))
1226 mark_interesting_type (type0
, FULL_ESCAPE
);
1228 check_rhs_var (op0
);
1229 look_for_casts (lhs
, op0
);
1230 look_for_casts (lhs
, rhs
);
1235 look_for_casts (lhs
, rhs
);
1236 check_rhs_var (rhs
);
1238 case tcc_declaration
:
1239 check_rhs_var (rhs
);
1241 case tcc_expression
:
1242 switch (TREE_CODE (rhs
))
1245 look_for_casts (lhs
, TREE_OPERAND (rhs
, 0));
1246 check_rhs_var (rhs
);
1253 switch (TREE_CODE (rhs
))
1256 /* If this is a call to malloc, squirrel away the
1257 result so we do mark the resulting cast as being
1259 if (check_call (rhs
))
1261 if (TREE_CODE (lhs
) == SSA_NAME
)
1262 lhs
= SSA_NAME_VAR (lhs
);
1263 bitmap_set_bit (results_of_malloc
, DECL_UID (lhs
));
1278 /* This case is here to find addresses on rhs of constructors in
1279 decl_initial of static variables. */
1290 get_asm_expr_operands (t
);
1301 /* The init routine for analyzing global static variable usage. See
1302 comments at top for description. */
1306 bitmap_obstack_initialize (&ipa_obstack
);
1307 global_types_exposed_parameter
= BITMAP_ALLOC (&ipa_obstack
);
1308 global_types_full_escape
= BITMAP_ALLOC (&ipa_obstack
);
1309 global_types_seen
= BITMAP_ALLOC (&ipa_obstack
);
1310 results_of_malloc
= BITMAP_ALLOC (&ipa_obstack
);
1312 uid_to_canon_type
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1313 all_canon_types
= splay_tree_new (compare_type_brand
, 0, 0);
1314 type_to_canon_type
= splay_tree_new (splay_tree_compare_pointers
, 0, 0);
1315 uid_to_subtype_map
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1316 uid_to_addressof_down_map
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1317 uid_to_addressof_up_map
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
1319 /* There are some shared nodes, in particular the initializers on
1320 static declarations. We do not need to scan them more than once
1321 since all we would be interested in are the addressof
1323 visited_nodes
= pointer_set_create ();
1327 /* Check out the rhs of a static or global initialization VNODE to see
1328 if any of them contain addressof operations. Note that some of
1329 these variables may not even be referenced in the code in this
1330 compilation unit but their right hand sides may contain references
1331 to variables defined within this unit. */
1334 analyze_variable (struct varpool_node
*vnode
)
1336 tree global
= vnode
->decl
;
1337 tree type
= get_canon_type (TREE_TYPE (global
), false, false);
1339 /* If this variable has exposure beyond the compilation unit, add
1340 its type to the global types. */
1342 if (vnode
->externally_visible
)
1343 mark_interesting_type (type
, FULL_ESCAPE
);
1345 gcc_assert (TREE_CODE (global
) == VAR_DECL
);
1347 if (DECL_INITIAL (global
))
1348 walk_tree (&DECL_INITIAL (global
), scan_for_refs
, NULL
, visited_nodes
);
1351 /* This is the main routine for finding the reference patterns for
1352 global variables within a function FN. */
1355 analyze_function (struct cgraph_node
*fn
)
1357 tree decl
= fn
->decl
;
1358 check_function_parameter_and_return_types (decl
,
1359 fn
->local
.externally_visible
);
1361 fprintf (dump_file
, "\n local analysis of %s", cgraph_node_name (fn
));
1364 struct function
*this_cfun
= DECL_STRUCT_FUNCTION (decl
);
1365 basic_block this_block
;
1367 FOR_EACH_BB_FN (this_block
, this_cfun
)
1369 block_stmt_iterator bsi
;
1370 for (bsi
= bsi_start (this_block
); !bsi_end_p (bsi
); bsi_next (&bsi
))
1371 walk_tree (bsi_stmt_ptr (bsi
), scan_for_refs
,
1376 /* There may be const decls with interesting right hand sides. */
1377 if (DECL_STRUCT_FUNCTION (decl
))
1380 for (step
= DECL_STRUCT_FUNCTION (decl
)->unexpanded_var_list
;
1382 step
= TREE_CHAIN (step
))
1384 tree var
= TREE_VALUE (step
);
1385 if (TREE_CODE (var
) == VAR_DECL
1386 && DECL_INITIAL (var
)
1387 && !TREE_STATIC (var
))
1388 walk_tree (&DECL_INITIAL (var
), scan_for_refs
,
1390 get_canon_type (TREE_TYPE (var
), false, false);
1397 /* Convert a type_UID into a type. */
1399 type_for_uid (int uid
)
1401 splay_tree_node result
=
1402 splay_tree_lookup (uid_to_canon_type
, (splay_tree_key
) uid
);
1405 return (tree
) result
->value
;
1409 /* Return the a bitmap with the subtypes of the type for UID. If it
1410 does not exist, return either NULL or a new bitmap depending on the
1414 subtype_map_for_uid (int uid
, bool create
)
1416 splay_tree_node result
= splay_tree_lookup (uid_to_subtype_map
,
1417 (splay_tree_key
) uid
);
1420 return (bitmap
) result
->value
;
1423 bitmap subtype_map
= BITMAP_ALLOC (&ipa_obstack
);
1424 splay_tree_insert (uid_to_subtype_map
,
1426 (splay_tree_value
)subtype_map
);
1432 /* Mark all of the supertypes and field types of TYPE as being seen.
1433 Also accumulate the subtypes for each type so that
1434 close_types_full_escape can mark a subtype as escaping if the
1435 supertype escapes. */
1438 close_type_seen (tree type
)
1442 tree binfo
, base_binfo
;
1444 /* See thru all pointer tos and array ofs. */
1445 type
= get_canon_type (type
, true, true);
1449 uid
= TYPE_UID (type
);
1451 if (bitmap_bit_p (been_there_done_that
, uid
))
1453 bitmap_set_bit (been_there_done_that
, uid
);
1455 /* If we are doing a language with a type hierarchy, mark all of
1456 the superclasses. */
1457 if (TYPE_BINFO (type
))
1458 for (binfo
= TYPE_BINFO (type
), i
= 0;
1459 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
1461 tree binfo_type
= BINFO_TYPE (base_binfo
);
1462 bitmap subtype_map
= subtype_map_for_uid
1463 (TYPE_UID (TYPE_MAIN_VARIANT (binfo_type
)), true);
1464 bitmap_set_bit (subtype_map
, uid
);
1465 close_type_seen (get_canon_type (binfo_type
, true, true));
1468 /* If the field is a struct or union type, mark all of the
1470 for (field
= TYPE_FIELDS (type
);
1472 field
= TREE_CHAIN (field
))
1475 if (TREE_CODE (field
) != FIELD_DECL
)
1478 field_type
= TREE_TYPE (field
);
1479 if (ipa_type_escape_star_count_of_interesting_or_array_type (field_type
) >= 0)
1480 close_type_seen (get_canon_type (field_type
, true, true));
1484 /* Take a TYPE that has been passed by value to an external function
1485 and mark all of the fields that have pointer types as escaping. For
1486 any of the non pointer types that are structures or unions,
1487 recurse. TYPE is never a pointer type. */
1490 close_type_exposed_parameter (tree type
)
1495 type
= get_canon_type (type
, false, false);
1498 uid
= TYPE_UID (type
);
1499 gcc_assert (!POINTER_TYPE_P (type
));
1501 if (bitmap_bit_p (been_there_done_that
, uid
))
1503 bitmap_set_bit (been_there_done_that
, uid
);
1505 /* If the field is a struct or union type, mark all of the
1507 for (field
= TYPE_FIELDS (type
);
1509 field
= TREE_CHAIN (field
))
1513 if (TREE_CODE (field
) != FIELD_DECL
)
1516 field_type
= get_canon_type (TREE_TYPE (field
), false, false);
1517 mark_interesting_type (field_type
, EXPOSED_PARAMETER
);
1519 /* Only recurse for non pointer types of structures and unions. */
1520 if (ipa_type_escape_star_count_of_interesting_type (field_type
) == 0)
1521 close_type_exposed_parameter (field_type
);
1525 /* The next function handles the case where a type fully escapes.
1526 This means that not only does the type itself escape,
1528 a) the type of every field recursively escapes
1529 b) the type of every subtype escapes as well as the super as well
1530 as all of the pointer to types for each field.
1532 Note that pointer to types are not marked as escaping. If the
1533 pointed to type escapes, the pointer to type also escapes.
1535 Take a TYPE that has had the address taken for an instance of it
1536 and mark all of the types for its fields as having their addresses
1540 close_type_full_escape (tree type
)
1545 tree binfo
, base_binfo
;
1548 splay_tree_node address_result
;
1550 /* Strip off any pointer or array types. */
1551 type
= get_canon_type (type
, true, true);
1554 uid
= TYPE_UID (type
);
1556 if (bitmap_bit_p (been_there_done_that
, uid
))
1558 bitmap_set_bit (been_there_done_that
, uid
);
1560 subtype_map
= subtype_map_for_uid (uid
, false);
1562 /* If we are doing a language with a type hierarchy, mark all of
1563 the superclasses. */
1564 if (TYPE_BINFO (type
))
1565 for (binfo
= TYPE_BINFO (type
), i
= 0;
1566 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
1568 tree binfotype
= BINFO_TYPE (base_binfo
);
1569 binfotype
= mark_type (binfotype
, FULL_ESCAPE
);
1570 close_type_full_escape (binfotype
);
1573 /* Mark as escaped any types that have been down casted to
1576 EXECUTE_IF_SET_IN_BITMAP (subtype_map
, 0, i
, bi
)
1578 tree subtype
= type_for_uid (i
);
1579 subtype
= mark_type (subtype
, FULL_ESCAPE
);
1580 close_type_full_escape (subtype
);
1583 /* If the field is a struct or union type, mark all of the
1585 for (field
= TYPE_FIELDS (type
);
1587 field
= TREE_CHAIN (field
))
1590 if (TREE_CODE (field
) != FIELD_DECL
)
1593 field_type
= TREE_TYPE (field
);
1594 if (ipa_type_escape_star_count_of_interesting_or_array_type (field_type
) >= 0)
1596 field_type
= mark_type (field_type
, FULL_ESCAPE
);
1597 close_type_full_escape (field_type
);
1601 /* For all of the types A that contain this type B and were part of
1602 an expression like "&...A.B...", mark the A's as escaping. */
1603 address_result
= splay_tree_lookup (uid_to_addressof_up_map
,
1604 (splay_tree_key
) uid
);
1607 bitmap containing_classes
= (bitmap
) address_result
->value
;
1608 EXECUTE_IF_SET_IN_BITMAP (containing_classes
, 0, i
, bi
)
1610 close_type_full_escape (type_for_uid (i
));
1615 /* Transitively close the addressof bitmap for the type with UID.
1616 This means that if we had a.b and b.c, a would have both b and c in
1620 close_addressof_down (int uid
)
1623 splay_tree_node result
=
1624 splay_tree_lookup (uid_to_addressof_down_map
, (splay_tree_key
) uid
);
1630 map
= (bitmap
) result
->value
;
1634 if (bitmap_bit_p (been_there_done_that
, uid
))
1636 bitmap_set_bit (been_there_done_that
, uid
);
1638 /* If the type escapes, get rid of the addressof map, it will not be
1640 if (bitmap_bit_p (global_types_full_escape
, uid
))
1643 splay_tree_remove (uid_to_addressof_down_map
, (splay_tree_key
) uid
);
1647 /* The new_map will have all of the bits for the enclosed fields and
1648 will have the unique id version of the old map. */
1649 new_map
= BITMAP_ALLOC (&ipa_obstack
);
1651 EXECUTE_IF_SET_IN_BITMAP (map
, 0, i
, bi
)
1653 bitmap submap
= close_addressof_down (i
);
1654 bitmap_set_bit (new_map
, i
);
1656 bitmap_ior_into (new_map
, submap
);
1658 result
->value
= (splay_tree_value
) new_map
;
1665 /* The main entry point for type escape analysis. */
1668 type_escape_execute (void)
1670 struct cgraph_node
*node
;
1671 struct varpool_node
*vnode
;
1674 splay_tree_node result
;
1678 /* Process all of the variables first. */
1679 FOR_EACH_STATIC_VARIABLE (vnode
)
1680 analyze_variable (vnode
);
1682 /* Process all of the functions. next
1684 We do not want to process any of the clones so we check that this
1685 is a master clone. However, we do need to process any
1686 AVAIL_OVERWRITABLE functions (these are never clones) because
1687 they may cause a type variable to escape.
1689 for (node
= cgraph_nodes
; node
; node
= node
->next
)
1691 && (cgraph_is_master_clone (node
)
1692 || (cgraph_function_body_availability (node
) == AVAIL_OVERWRITABLE
)))
1693 analyze_function (node
);
1696 pointer_set_destroy (visited_nodes
);
1697 visited_nodes
= NULL
;
1699 /* Do all of the closures to discover which types escape the
1700 compilation unit. */
1702 been_there_done_that
= BITMAP_ALLOC (&ipa_obstack
);
1703 bitmap_tmp
= BITMAP_ALLOC (&ipa_obstack
);
1705 /* Examine the types that we have directly seen in scanning the code
1706 and add to that any contained types or superclasses. */
1708 bitmap_copy (bitmap_tmp
, global_types_seen
);
1709 EXECUTE_IF_SET_IN_BITMAP (bitmap_tmp
, 0, i
, bi
)
1711 tree type
= type_for_uid (i
);
1712 /* Only look at records and unions and pointer tos. */
1713 if (ipa_type_escape_star_count_of_interesting_or_array_type (type
) >= 0)
1714 close_type_seen (type
);
1716 bitmap_clear (been_there_done_that
);
1718 /* Examine all of the types passed by value and mark any enclosed
1719 pointer types as escaping. */
1720 bitmap_copy (bitmap_tmp
, global_types_exposed_parameter
);
1721 EXECUTE_IF_SET_IN_BITMAP (bitmap_tmp
, 0, i
, bi
)
1723 close_type_exposed_parameter (type_for_uid (i
));
1725 bitmap_clear (been_there_done_that
);
1727 /* Close the types for escape. If something escapes, then any
1728 enclosed types escape as well as any subtypes. */
1729 bitmap_copy (bitmap_tmp
, global_types_full_escape
);
1730 EXECUTE_IF_SET_IN_BITMAP (bitmap_tmp
, 0, i
, bi
)
1732 close_type_full_escape (type_for_uid (i
));
1734 bitmap_clear (been_there_done_that
);
1736 /* Before this pass, the uid_to_addressof_down_map for type X
1737 contained an entry for Y if there had been an operation of the
1738 form &X.Y. This step adds all of the fields contained within Y
1739 (recursively) to X's map. */
1741 result
= splay_tree_min (uid_to_addressof_down_map
);
1744 int uid
= result
->key
;
1745 /* Close the addressof map, i.e. copy all of the transitive
1746 substructures up to this level. */
1747 close_addressof_down (uid
);
1748 result
= splay_tree_successor (uid_to_addressof_down_map
, uid
);
1751 /* Do not need the array types and pointer types in the persistent
1753 result
= splay_tree_min (all_canon_types
);
1756 tree type
= (tree
) result
->value
;
1757 tree key
= (tree
) result
->key
;
1758 if (POINTER_TYPE_P (type
)
1759 || TREE_CODE (type
) == ARRAY_TYPE
)
1761 splay_tree_remove (all_canon_types
, (splay_tree_key
) result
->key
);
1762 splay_tree_remove (type_to_canon_type
, (splay_tree_key
) type
);
1763 splay_tree_remove (uid_to_canon_type
, (splay_tree_key
) TYPE_UID (type
));
1764 bitmap_clear_bit (global_types_seen
, TYPE_UID (type
));
1766 result
= splay_tree_successor (all_canon_types
, (splay_tree_key
) key
);
1771 EXECUTE_IF_SET_IN_BITMAP (global_types_seen
, 0, i
, bi
)
1773 /* The pointer types are in the global_types_full_escape
1774 bitmap but not in the backwards map. They also contain
1775 no useful information since they are not marked. */
1776 tree type
= type_for_uid (i
);
1777 fprintf(dump_file
, "type %d ", i
);
1778 print_generic_expr (dump_file
, type
, 0);
1779 if (bitmap_bit_p (global_types_full_escape
, i
))
1780 fprintf(dump_file
, " escaped\n");
1782 fprintf(dump_file
, " contained\n");
1786 /* Get rid of uid_to_addressof_up_map and its bitmaps. */
1787 result
= splay_tree_min (uid_to_addressof_up_map
);
1790 int uid
= (int)result
->key
;
1791 bitmap bm
= (bitmap
)result
->value
;
1794 splay_tree_remove (uid_to_addressof_up_map
, (splay_tree_key
) uid
);
1795 result
= splay_tree_successor (uid_to_addressof_up_map
, uid
);
1798 /* Get rid of the subtype map. */
1799 result
= splay_tree_min (uid_to_subtype_map
);
1802 bitmap b
= (bitmap
)result
->value
;
1804 splay_tree_remove (uid_to_subtype_map
, result
->key
);
1805 result
= splay_tree_min (uid_to_subtype_map
);
1807 splay_tree_delete (uid_to_subtype_map
);
1808 uid_to_subtype_map
= NULL
;
1810 BITMAP_FREE (global_types_exposed_parameter
);
1811 BITMAP_FREE (been_there_done_that
);
1812 BITMAP_FREE (bitmap_tmp
);
1813 BITMAP_FREE (results_of_malloc
);
1818 gate_type_escape_vars (void)
1820 return (flag_unit_at_a_time
!= 0 && flag_ipa_type_escape
1821 /* Don't bother doing anything if the program has errors. */
1822 && !(errorcount
|| sorrycount
));
1825 struct tree_opt_pass pass_ipa_type_escape
=
1827 "type-escape-var", /* name */
1828 gate_type_escape_vars
, /* gate */
1829 type_escape_execute
, /* execute */
1832 0, /* static_pass_number */
1833 TV_IPA_TYPE_ESCAPE
, /* tv_id */
1834 0, /* properties_required */
1835 0, /* properties_provided */
1836 0, /* properties_destroyed */
1837 0, /* todo_flags_start */
1838 0, /* todo_flags_finish */