1 /* Functions related to invoking methods and overloaded functions.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) and
6 modified by Brendan Kehoe (brendan@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to
22 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
26 /* High-level class interface. */
30 #include "coretypes.h"
39 #include "diagnostic.h"
43 #include "langhooks.h"
45 /* The various kinds of conversion. */
47 typedef enum conversion_kind
{
61 /* The rank of the conversion. Order of the enumerals matters; better
62 conversions should come earlier in the list. */
64 typedef enum conversion_rank
{
75 /* An implicit conversion sequence, in the sense of [over.best.ics].
76 The first conversion to be performed is at the end of the chain.
77 That conversion is always a cr_identity conversion. */
79 typedef struct conversion conversion
;
81 /* The kind of conversion represented by this step. */
83 /* The rank of this conversion. */
85 BOOL_BITFIELD user_conv_p
: 1;
86 BOOL_BITFIELD ellipsis_p
: 1;
87 BOOL_BITFIELD this_p
: 1;
88 BOOL_BITFIELD bad_p
: 1;
89 /* If KIND is ck_ref_bind ck_base_conv, true to indicate that a
90 temporary should be created to hold the result of the
92 BOOL_BITFIELD need_temporary_p
: 1;
93 /* If KIND is ck_identity or ck_base_conv, true to indicate that the
94 copy constructor must be accessible, even though it is not being
96 BOOL_BITFIELD check_copy_constructor_p
: 1;
97 /* If KIND is ck_ptr or ck_pmem, true to indicate that a conversion
98 from a pointer-to-derived to pointer-to-base is being performed. */
99 BOOL_BITFIELD base_p
: 1;
100 /* The type of the expression resulting from the conversion. */
103 /* The next conversion in the chain. Since the conversions are
104 arranged from outermost to innermost, the NEXT conversion will
105 actually be performed before this conversion. This variant is
106 used only when KIND is neither ck_identity nor ck_ambig. */
108 /* The expression at the beginning of the conversion chain. This
109 variant is used only if KIND is ck_identity or ck_ambig. */
112 /* The function candidate corresponding to this conversion
113 sequence. This field is only used if KIND is ck_user. */
114 struct z_candidate
*cand
;
117 #define CONVERSION_RANK(NODE) \
118 ((NODE)->bad_p ? cr_bad \
119 : (NODE)->ellipsis_p ? cr_ellipsis \
120 : (NODE)->user_conv_p ? cr_user \
123 static struct obstack conversion_obstack
;
124 static bool conversion_obstack_initialized
;
126 static struct z_candidate
* tourney (struct z_candidate
*);
127 static int equal_functions (tree
, tree
);
128 static int joust (struct z_candidate
*, struct z_candidate
*, bool);
129 static int compare_ics (conversion
*, conversion
*);
130 static tree
build_over_call (struct z_candidate
*, int);
131 static tree
build_java_interface_fn_ref (tree
, tree
);
132 #define convert_like(CONV, EXPR) \
133 convert_like_real ((CONV), (EXPR), NULL_TREE, 0, 0, \
134 /*issue_conversion_warnings=*/true, \
136 #define convert_like_with_context(CONV, EXPR, FN, ARGNO) \
137 convert_like_real ((CONV), (EXPR), (FN), (ARGNO), 0, \
138 /*issue_conversion_warnings=*/true, \
140 static tree
convert_like_real (conversion
*, tree
, tree
, int, int, bool,
142 static void op_error (enum tree_code
, enum tree_code
, tree
, tree
,
144 static tree
build_object_call (tree
, tree
);
145 static tree
resolve_args (tree
);
146 static struct z_candidate
*build_user_type_conversion_1 (tree
, tree
, int);
147 static void print_z_candidate (const char *, struct z_candidate
*);
148 static void print_z_candidates (struct z_candidate
*);
149 static tree
build_this (tree
);
150 static struct z_candidate
*splice_viable (struct z_candidate
*, bool, bool *);
151 static bool any_strictly_viable (struct z_candidate
*);
152 static struct z_candidate
*add_template_candidate
153 (struct z_candidate
**, tree
, tree
, tree
, tree
, tree
,
154 tree
, tree
, int, unification_kind_t
);
155 static struct z_candidate
*add_template_candidate_real
156 (struct z_candidate
**, tree
, tree
, tree
, tree
, tree
,
157 tree
, tree
, int, tree
, unification_kind_t
);
158 static struct z_candidate
*add_template_conv_candidate
159 (struct z_candidate
**, tree
, tree
, tree
, tree
, tree
, tree
);
160 static void add_builtin_candidates
161 (struct z_candidate
**, enum tree_code
, enum tree_code
,
163 static void add_builtin_candidate
164 (struct z_candidate
**, enum tree_code
, enum tree_code
,
165 tree
, tree
, tree
, tree
*, tree
*, int);
166 static bool is_complete (tree
);
167 static void build_builtin_candidate
168 (struct z_candidate
**, tree
, tree
, tree
, tree
*, tree
*,
170 static struct z_candidate
*add_conv_candidate
171 (struct z_candidate
**, tree
, tree
, tree
, tree
, tree
);
172 static struct z_candidate
*add_function_candidate
173 (struct z_candidate
**, tree
, tree
, tree
, tree
, tree
, int);
174 static conversion
*implicit_conversion (tree
, tree
, tree
, bool, int);
175 static conversion
*standard_conversion (tree
, tree
, tree
, bool, int);
176 static conversion
*reference_binding (tree
, tree
, tree
, int);
177 static conversion
*build_conv (conversion_kind
, tree
, conversion
*);
178 static bool is_subseq (conversion
*, conversion
*);
179 static tree
maybe_handle_ref_bind (conversion
**);
180 static void maybe_handle_implicit_object (conversion
**);
181 static struct z_candidate
*add_candidate
182 (struct z_candidate
**, tree
, tree
, size_t,
183 conversion
**, tree
, tree
, int);
184 static tree
source_type (conversion
*);
185 static void add_warning (struct z_candidate
*, struct z_candidate
*);
186 static bool reference_related_p (tree
, tree
);
187 static bool reference_compatible_p (tree
, tree
);
188 static conversion
*convert_class_to_reference (tree
, tree
, tree
);
189 static conversion
*direct_reference_binding (tree
, conversion
*);
190 static bool promoted_arithmetic_type_p (tree
);
191 static conversion
*conditional_conversion (tree
, tree
);
192 static char *name_as_c_string (tree
, tree
, bool *);
193 static tree
call_builtin_trap (void);
194 static tree
prep_operand (tree
);
195 static void add_candidates (tree
, tree
, tree
, bool, tree
, tree
,
196 int, struct z_candidate
**);
197 static conversion
*merge_conversion_sequences (conversion
*, conversion
*);
198 static bool magic_varargs_p (tree
);
199 typedef void (*diagnostic_fn_t
) (const char *, ...) ATTRIBUTE_GCC_CXXDIAG(1,2);
200 static tree
build_temp (tree
, tree
, int, diagnostic_fn_t
*);
201 static void check_constructor_callable (tree
, tree
);
203 /* Returns nonzero iff the destructor name specified in NAME matches BASETYPE.
204 NAME can take many forms... */
207 check_dtor_name (tree basetype
, tree name
)
209 /* Just accept something we've already complained about. */
210 if (name
== error_mark_node
)
213 if (TREE_CODE (name
) == TYPE_DECL
)
214 name
= TREE_TYPE (name
);
215 else if (TYPE_P (name
))
217 else if (TREE_CODE (name
) == IDENTIFIER_NODE
)
219 if ((IS_AGGR_TYPE (basetype
) && name
== constructor_name (basetype
))
220 || (TREE_CODE (basetype
) == ENUMERAL_TYPE
221 && name
== TYPE_IDENTIFIER (basetype
)))
224 name
= get_type_value (name
);
230 template <class T> struct S { ~S(); };
234 NAME will be a class template. */
235 gcc_assert (DECL_CLASS_TEMPLATE_P (name
));
241 return same_type_p (TYPE_MAIN_VARIANT (basetype
), TYPE_MAIN_VARIANT (name
));
244 /* We want the address of a function or method. We avoid creating a
245 pointer-to-member function. */
248 build_addr_func (tree function
)
250 tree type
= TREE_TYPE (function
);
252 /* We have to do these by hand to avoid real pointer to member
254 if (TREE_CODE (type
) == METHOD_TYPE
)
256 if (TREE_CODE (function
) == OFFSET_REF
)
258 tree object
= build_address (TREE_OPERAND (function
, 0));
259 return get_member_function_from_ptrfunc (&object
,
260 TREE_OPERAND (function
, 1));
262 function
= build_address (function
);
265 function
= decay_conversion (function
);
270 /* Build a CALL_EXPR, we can handle FUNCTION_TYPEs, METHOD_TYPEs, or
271 POINTER_TYPE to those. Note, pointer to member function types
272 (TYPE_PTRMEMFUNC_P) must be handled by our callers. */
275 build_call (tree function
, tree parms
)
277 int is_constructor
= 0;
284 function
= build_addr_func (function
);
286 gcc_assert (TYPE_PTR_P (TREE_TYPE (function
)));
287 fntype
= TREE_TYPE (TREE_TYPE (function
));
288 gcc_assert (TREE_CODE (fntype
) == FUNCTION_TYPE
289 || TREE_CODE (fntype
) == METHOD_TYPE
);
290 result_type
= TREE_TYPE (fntype
);
292 if (TREE_CODE (function
) == ADDR_EXPR
293 && TREE_CODE (TREE_OPERAND (function
, 0)) == FUNCTION_DECL
)
295 decl
= TREE_OPERAND (function
, 0);
296 if (!TREE_USED (decl
))
298 /* We invoke build_call directly for several library
299 functions. These may have been declared normally if
300 we're building libgcc, so we can't just check
302 gcc_assert (DECL_ARTIFICIAL (decl
)
303 || !strncmp (IDENTIFIER_POINTER (DECL_NAME (decl
)),
311 /* We check both the decl and the type; a function may be known not to
312 throw without being declared throw(). */
313 nothrow
= ((decl
&& TREE_NOTHROW (decl
))
314 || TYPE_NOTHROW_P (TREE_TYPE (TREE_TYPE (function
))));
316 if (decl
&& TREE_THIS_VOLATILE (decl
) && cfun
)
317 current_function_returns_abnormally
= 1;
319 if (decl
&& TREE_DEPRECATED (decl
))
320 warn_deprecated_use (decl
);
321 require_complete_eh_spec_types (fntype
, decl
);
323 if (decl
&& DECL_CONSTRUCTOR_P (decl
))
326 /* Don't pass empty class objects by value. This is useful
327 for tags in STL, which are used to control overload resolution.
328 We don't need to handle other cases of copying empty classes. */
329 if (! decl
|| ! DECL_BUILT_IN (decl
))
330 for (tmp
= parms
; tmp
; tmp
= TREE_CHAIN (tmp
))
331 if (is_empty_class (TREE_TYPE (TREE_VALUE (tmp
)))
332 && ! TREE_ADDRESSABLE (TREE_TYPE (TREE_VALUE (tmp
))))
334 tree t
= build0 (EMPTY_CLASS_EXPR
, TREE_TYPE (TREE_VALUE (tmp
)));
335 TREE_VALUE (tmp
) = build2 (COMPOUND_EXPR
, TREE_TYPE (t
),
336 TREE_VALUE (tmp
), t
);
339 function
= build_call_list (result_type
, function
, parms
);
340 TREE_HAS_CONSTRUCTOR (function
) = is_constructor
;
341 TREE_NOTHROW (function
) = nothrow
;
346 /* Build something of the form ptr->method (args)
347 or object.method (args). This can also build
348 calls to constructors, and find friends.
350 Member functions always take their class variable
353 INSTANCE is a class instance.
355 NAME is the name of the method desired, usually an IDENTIFIER_NODE.
357 PARMS help to figure out what that NAME really refers to.
359 BASETYPE_PATH, if non-NULL, contains a chain from the type of INSTANCE
360 down to the real instance type to use for access checking. We need this
361 information to get protected accesses correct.
363 FLAGS is the logical disjunction of zero or more LOOKUP_
364 flags. See cp-tree.h for more info.
366 If this is all OK, calls build_function_call with the resolved
369 This function must also handle being called to perform
370 initialization, promotion/coercion of arguments, and
371 instantiation of default parameters.
373 Note that NAME may refer to an instance variable name. If
374 `operator()()' is defined for the type of that field, then we return
377 /* New overloading code. */
379 typedef struct z_candidate z_candidate
;
381 typedef struct candidate_warning candidate_warning
;
382 struct candidate_warning
{
384 candidate_warning
*next
;
388 /* The FUNCTION_DECL that will be called if this candidate is
389 selected by overload resolution. */
391 /* The arguments to use when calling this function. */
393 /* The implicit conversion sequences for each of the arguments to
396 /* The number of implicit conversion sequences. */
398 /* If FN is a user-defined conversion, the standard conversion
399 sequence from the type returned by FN to the desired destination
401 conversion
*second_conv
;
403 /* If FN is a member function, the binfo indicating the path used to
404 qualify the name of FN at the call site. This path is used to
405 determine whether or not FN is accessible if it is selected by
406 overload resolution. The DECL_CONTEXT of FN will always be a
407 (possibly improper) base of this binfo. */
409 /* If FN is a non-static member function, the binfo indicating the
410 subobject to which the `this' pointer should be converted if FN
411 is selected by overload resolution. The type pointed to the by
412 the `this' pointer must correspond to the most derived class
413 indicated by the CONVERSION_PATH. */
414 tree conversion_path
;
416 candidate_warning
*warnings
;
420 /* Returns true iff T is a null pointer constant in the sense of
424 null_ptr_cst_p (tree t
)
428 A null pointer constant is an integral constant expression
429 (_expr.const_) rvalue of integer type that evaluates to zero. */
430 t
= integral_constant_value (t
);
433 if (CP_INTEGRAL_TYPE_P (TREE_TYPE (t
)) && integer_zerop (t
))
436 if (!TREE_OVERFLOW (t
))
442 /* Returns nonzero if PARMLIST consists of only default parms and/or
446 sufficient_parms_p (tree parmlist
)
448 for (; parmlist
&& parmlist
!= void_list_node
;
449 parmlist
= TREE_CHAIN (parmlist
))
450 if (!TREE_PURPOSE (parmlist
))
455 /* Allocate N bytes of memory from the conversion obstack. The memory
456 is zeroed before being returned. */
459 conversion_obstack_alloc (size_t n
)
462 if (!conversion_obstack_initialized
)
464 gcc_obstack_init (&conversion_obstack
);
465 conversion_obstack_initialized
= true;
467 p
= obstack_alloc (&conversion_obstack
, n
);
472 /* Dynamically allocate a conversion. */
475 alloc_conversion (conversion_kind kind
)
478 c
= (conversion
*) conversion_obstack_alloc (sizeof (conversion
));
483 #ifdef ENABLE_CHECKING
485 /* Make sure that all memory on the conversion obstack has been
489 validate_conversion_obstack (void)
491 if (conversion_obstack_initialized
)
492 gcc_assert ((obstack_next_free (&conversion_obstack
)
493 == obstack_base (&conversion_obstack
)));
496 #endif /* ENABLE_CHECKING */
498 /* Dynamically allocate an array of N conversions. */
501 alloc_conversions (size_t n
)
503 return (conversion
**) conversion_obstack_alloc (n
* sizeof (conversion
*));
507 build_conv (conversion_kind code
, tree type
, conversion
*from
)
510 conversion_rank rank
= CONVERSION_RANK (from
);
512 /* We can't use buildl1 here because CODE could be USER_CONV, which
513 takes two arguments. In that case, the caller is responsible for
514 filling in the second argument. */
515 t
= alloc_conversion (code
);
538 t
->user_conv_p
= (code
== ck_user
|| from
->user_conv_p
);
539 t
->bad_p
= from
->bad_p
;
544 /* Build a representation of the identity conversion from EXPR to
545 itself. The TYPE should match the type of EXPR, if EXPR is non-NULL. */
548 build_identity_conv (tree type
, tree expr
)
552 c
= alloc_conversion (ck_identity
);
559 /* Converting from EXPR to TYPE was ambiguous in the sense that there
560 were multiple user-defined conversions to accomplish the job.
561 Build a conversion that indicates that ambiguity. */
564 build_ambiguous_conv (tree type
, tree expr
)
568 c
= alloc_conversion (ck_ambig
);
576 strip_top_quals (tree t
)
578 if (TREE_CODE (t
) == ARRAY_TYPE
)
580 return cp_build_qualified_type (t
, 0);
583 /* Returns the standard conversion path (see [conv]) from type FROM to type
584 TO, if any. For proper handling of null pointer constants, you must
585 also pass the expression EXPR to convert from. If C_CAST_P is true,
586 this conversion is coming from a C-style cast. */
589 standard_conversion (tree to
, tree from
, tree expr
, bool c_cast_p
,
592 enum tree_code fcode
, tcode
;
594 bool fromref
= false;
596 to
= non_reference (to
);
597 if (TREE_CODE (from
) == REFERENCE_TYPE
)
600 from
= TREE_TYPE (from
);
602 to
= strip_top_quals (to
);
603 from
= strip_top_quals (from
);
605 if ((TYPE_PTRFN_P (to
) || TYPE_PTRMEMFUNC_P (to
))
606 && expr
&& type_unknown_p (expr
))
608 expr
= instantiate_type (to
, expr
, tf_conv
);
609 if (expr
== error_mark_node
)
611 from
= TREE_TYPE (expr
);
614 fcode
= TREE_CODE (from
);
615 tcode
= TREE_CODE (to
);
617 conv
= build_identity_conv (from
, expr
);
618 if (fcode
== FUNCTION_TYPE
)
620 from
= build_pointer_type (from
);
621 fcode
= TREE_CODE (from
);
622 conv
= build_conv (ck_lvalue
, from
, conv
);
624 else if (fcode
== ARRAY_TYPE
)
626 from
= build_pointer_type (TREE_TYPE (from
));
627 fcode
= TREE_CODE (from
);
628 conv
= build_conv (ck_lvalue
, from
, conv
);
630 else if (fromref
|| (expr
&& lvalue_p (expr
)))
635 bitfield_type
= is_bitfield_expr_with_lowered_type (expr
);
637 from
= strip_top_quals (bitfield_type
);
639 conv
= build_conv (ck_rvalue
, from
, conv
);
642 /* Allow conversion between `__complex__' data types. */
643 if (tcode
== COMPLEX_TYPE
&& fcode
== COMPLEX_TYPE
)
645 /* The standard conversion sequence to convert FROM to TO is
646 the standard conversion sequence to perform componentwise
648 conversion
*part_conv
= standard_conversion
649 (TREE_TYPE (to
), TREE_TYPE (from
), NULL_TREE
, c_cast_p
, flags
);
653 conv
= build_conv (part_conv
->kind
, to
, conv
);
654 conv
->rank
= part_conv
->rank
;
662 if (same_type_p (from
, to
))
665 if ((tcode
== POINTER_TYPE
|| TYPE_PTR_TO_MEMBER_P (to
))
666 && expr
&& null_ptr_cst_p (expr
))
667 conv
= build_conv (ck_std
, to
, conv
);
668 else if ((tcode
== INTEGER_TYPE
&& fcode
== POINTER_TYPE
)
669 || (tcode
== POINTER_TYPE
&& fcode
== INTEGER_TYPE
))
671 /* For backwards brain damage compatibility, allow interconversion of
672 pointers and integers with a pedwarn. */
673 conv
= build_conv (ck_std
, to
, conv
);
676 else if (tcode
== ENUMERAL_TYPE
&& fcode
== INTEGER_TYPE
)
678 /* For backwards brain damage compatibility, allow interconversion of
679 enums and integers with a pedwarn. */
680 conv
= build_conv (ck_std
, to
, conv
);
683 else if ((tcode
== POINTER_TYPE
&& fcode
== POINTER_TYPE
)
684 || (TYPE_PTRMEM_P (to
) && TYPE_PTRMEM_P (from
)))
689 if (tcode
== POINTER_TYPE
690 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (from
),
693 else if (VOID_TYPE_P (TREE_TYPE (to
))
694 && !TYPE_PTRMEM_P (from
)
695 && TREE_CODE (TREE_TYPE (from
)) != FUNCTION_TYPE
)
697 from
= build_pointer_type
698 (cp_build_qualified_type (void_type_node
,
699 cp_type_quals (TREE_TYPE (from
))));
700 conv
= build_conv (ck_ptr
, from
, conv
);
702 else if (TYPE_PTRMEM_P (from
))
704 tree fbase
= TYPE_PTRMEM_CLASS_TYPE (from
);
705 tree tbase
= TYPE_PTRMEM_CLASS_TYPE (to
);
707 if (DERIVED_FROM_P (fbase
, tbase
)
708 && (same_type_ignoring_top_level_qualifiers_p
709 (TYPE_PTRMEM_POINTED_TO_TYPE (from
),
710 TYPE_PTRMEM_POINTED_TO_TYPE (to
))))
712 from
= build_ptrmem_type (tbase
,
713 TYPE_PTRMEM_POINTED_TO_TYPE (from
));
714 conv
= build_conv (ck_pmem
, from
, conv
);
716 else if (!same_type_p (fbase
, tbase
))
719 else if (IS_AGGR_TYPE (TREE_TYPE (from
))
720 && IS_AGGR_TYPE (TREE_TYPE (to
))
723 An rvalue of type "pointer to cv D," where D is a
724 class type, can be converted to an rvalue of type
725 "pointer to cv B," where B is a base class (clause
726 _class.derived_) of D. If B is an inaccessible
727 (clause _class.access_) or ambiguous
728 (_class.member.lookup_) base class of D, a program
729 that necessitates this conversion is ill-formed.
730 Therefore, we use DERIVED_FROM_P, and do not check
731 access or uniqueness. */
732 && DERIVED_FROM_P (TREE_TYPE (to
), TREE_TYPE (from
))
733 /* If FROM is not yet complete, then we must be parsing
734 the body of a class. We know what's derived from
735 what, but we can't actually perform a
736 derived-to-base conversion. For example, in:
738 struct D : public B {
739 static const int i = sizeof((B*)(D*)0);
742 the D*-to-B* conversion is a reinterpret_cast, not a
744 && COMPLETE_TYPE_P (TREE_TYPE (from
)))
747 cp_build_qualified_type (TREE_TYPE (to
),
748 cp_type_quals (TREE_TYPE (from
)));
749 from
= build_pointer_type (from
);
750 conv
= build_conv (ck_ptr
, from
, conv
);
754 if (tcode
== POINTER_TYPE
)
756 to_pointee
= TREE_TYPE (to
);
757 from_pointee
= TREE_TYPE (from
);
761 to_pointee
= TYPE_PTRMEM_POINTED_TO_TYPE (to
);
762 from_pointee
= TYPE_PTRMEM_POINTED_TO_TYPE (from
);
765 if (same_type_p (from
, to
))
767 else if (c_cast_p
&& comp_ptr_ttypes_const (to
, from
))
768 /* In a C-style cast, we ignore CV-qualification because we
769 are allowed to perform a static_cast followed by a
771 conv
= build_conv (ck_qual
, to
, conv
);
772 else if (!c_cast_p
&& comp_ptr_ttypes (to_pointee
, from_pointee
))
773 conv
= build_conv (ck_qual
, to
, conv
);
774 else if (expr
&& string_conv_p (to
, expr
, 0))
775 /* converting from string constant to char *. */
776 conv
= build_conv (ck_qual
, to
, conv
);
777 else if (ptr_reasonably_similar (to_pointee
, from_pointee
))
779 conv
= build_conv (ck_ptr
, to
, conv
);
787 else if (TYPE_PTRMEMFUNC_P (to
) && TYPE_PTRMEMFUNC_P (from
))
789 tree fromfn
= TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (from
));
790 tree tofn
= TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (to
));
791 tree fbase
= TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (fromfn
)));
792 tree tbase
= TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (tofn
)));
794 if (!DERIVED_FROM_P (fbase
, tbase
)
795 || !same_type_p (TREE_TYPE (fromfn
), TREE_TYPE (tofn
))
796 || !compparms (TREE_CHAIN (TYPE_ARG_TYPES (fromfn
)),
797 TREE_CHAIN (TYPE_ARG_TYPES (tofn
)))
798 || cp_type_quals (fbase
) != cp_type_quals (tbase
))
801 from
= cp_build_qualified_type (tbase
, cp_type_quals (fbase
));
802 from
= build_method_type_directly (from
,
804 TREE_CHAIN (TYPE_ARG_TYPES (fromfn
)));
805 from
= build_ptrmemfunc_type (build_pointer_type (from
));
806 conv
= build_conv (ck_pmem
, from
, conv
);
809 else if (tcode
== BOOLEAN_TYPE
)
813 An rvalue of arithmetic, enumeration, pointer, or pointer to
814 member type can be converted to an rvalue of type bool. */
815 if (ARITHMETIC_TYPE_P (from
)
816 || fcode
== ENUMERAL_TYPE
817 || fcode
== POINTER_TYPE
818 || TYPE_PTR_TO_MEMBER_P (from
))
820 conv
= build_conv (ck_std
, to
, conv
);
821 if (fcode
== POINTER_TYPE
822 || TYPE_PTRMEM_P (from
)
823 || (TYPE_PTRMEMFUNC_P (from
)
824 && conv
->rank
< cr_pbool
))
825 conv
->rank
= cr_pbool
;
831 /* We don't check for ENUMERAL_TYPE here because there are no standard
832 conversions to enum type. */
833 else if (tcode
== INTEGER_TYPE
|| tcode
== BOOLEAN_TYPE
834 || tcode
== REAL_TYPE
)
836 if (! (INTEGRAL_CODE_P (fcode
) || fcode
== REAL_TYPE
))
838 conv
= build_conv (ck_std
, to
, conv
);
840 /* Give this a better rank if it's a promotion. */
841 if (same_type_p (to
, type_promotes_to (from
))
842 && conv
->u
.next
->rank
<= cr_promotion
)
843 conv
->rank
= cr_promotion
;
845 else if (fcode
== VECTOR_TYPE
&& tcode
== VECTOR_TYPE
846 && vector_types_convertible_p (from
, to
, false))
847 return build_conv (ck_std
, to
, conv
);
848 else if (!(flags
& LOOKUP_CONSTRUCTOR_CALLABLE
)
849 && IS_AGGR_TYPE (to
) && IS_AGGR_TYPE (from
)
850 && is_properly_derived_from (from
, to
))
852 if (conv
->kind
== ck_rvalue
)
854 conv
= build_conv (ck_base
, to
, conv
);
855 /* The derived-to-base conversion indicates the initialization
856 of a parameter with base type from an object of a derived
857 type. A temporary object is created to hold the result of
859 conv
->need_temporary_p
= true;
867 /* Returns nonzero if T1 is reference-related to T2. */
870 reference_related_p (tree t1
, tree t2
)
872 t1
= TYPE_MAIN_VARIANT (t1
);
873 t2
= TYPE_MAIN_VARIANT (t2
);
877 Given types "cv1 T1" and "cv2 T2," "cv1 T1" is reference-related
878 to "cv2 T2" if T1 is the same type as T2, or T1 is a base class
880 return (same_type_p (t1
, t2
)
881 || (CLASS_TYPE_P (t1
) && CLASS_TYPE_P (t2
)
882 && DERIVED_FROM_P (t1
, t2
)));
885 /* Returns nonzero if T1 is reference-compatible with T2. */
888 reference_compatible_p (tree t1
, tree t2
)
892 "cv1 T1" is reference compatible with "cv2 T2" if T1 is
893 reference-related to T2 and cv1 is the same cv-qualification as,
894 or greater cv-qualification than, cv2. */
895 return (reference_related_p (t1
, t2
)
896 && at_least_as_qualified_p (t1
, t2
));
899 /* Determine whether or not the EXPR (of class type S) can be
900 converted to T as in [over.match.ref]. */
903 convert_class_to_reference (tree t
, tree s
, tree expr
)
909 struct z_candidate
*candidates
;
910 struct z_candidate
*cand
;
913 conversions
= lookup_conversions (s
);
919 Assuming that "cv1 T" is the underlying type of the reference
920 being initialized, and "cv S" is the type of the initializer
921 expression, with S a class type, the candidate functions are
924 --The conversion functions of S and its base classes are
925 considered. Those that are not hidden within S and yield type
926 "reference to cv2 T2", where "cv1 T" is reference-compatible
927 (_dcl.init.ref_) with "cv2 T2", are candidate functions.
929 The argument list has one argument, which is the initializer
934 /* Conceptually, we should take the address of EXPR and put it in
935 the argument list. Unfortunately, however, that can result in
936 error messages, which we should not issue now because we are just
937 trying to find a conversion operator. Therefore, we use NULL,
938 cast to the appropriate type. */
939 arglist
= build_int_cst (build_pointer_type (s
), 0);
940 arglist
= build_tree_list (NULL_TREE
, arglist
);
942 reference_type
= build_reference_type (t
);
946 tree fns
= TREE_VALUE (conversions
);
948 for (; fns
; fns
= OVL_NEXT (fns
))
950 tree f
= OVL_CURRENT (fns
);
951 tree t2
= TREE_TYPE (TREE_TYPE (f
));
955 /* If this is a template function, try to get an exact
957 if (TREE_CODE (f
) == TEMPLATE_DECL
)
959 cand
= add_template_candidate (&candidates
,
965 TREE_PURPOSE (conversions
),
971 /* Now, see if the conversion function really returns
972 an lvalue of the appropriate type. From the
973 point of view of unification, simply returning an
974 rvalue of the right type is good enough. */
976 t2
= TREE_TYPE (TREE_TYPE (f
));
977 if (TREE_CODE (t2
) != REFERENCE_TYPE
978 || !reference_compatible_p (t
, TREE_TYPE (t2
)))
980 candidates
= candidates
->next
;
985 else if (TREE_CODE (t2
) == REFERENCE_TYPE
986 && reference_compatible_p (t
, TREE_TYPE (t2
)))
987 cand
= add_function_candidate (&candidates
, f
, s
, arglist
,
989 TREE_PURPOSE (conversions
),
994 conversion
*identity_conv
;
995 /* Build a standard conversion sequence indicating the
996 binding from the reference type returned by the
997 function to the desired REFERENCE_TYPE. */
999 = build_identity_conv (TREE_TYPE (TREE_TYPE
1000 (TREE_TYPE (cand
->fn
))),
1003 = (direct_reference_binding
1004 (reference_type
, identity_conv
));
1005 cand
->second_conv
->bad_p
|= cand
->convs
[0]->bad_p
;
1008 conversions
= TREE_CHAIN (conversions
);
1011 candidates
= splice_viable (candidates
, pedantic
, &any_viable_p
);
1012 /* If none of the conversion functions worked out, let our caller
1017 cand
= tourney (candidates
);
1021 /* Now that we know that this is the function we're going to use fix
1022 the dummy first argument. */
1023 cand
->args
= tree_cons (NULL_TREE
,
1025 TREE_CHAIN (cand
->args
));
1027 /* Build a user-defined conversion sequence representing the
1029 conv
= build_conv (ck_user
,
1030 TREE_TYPE (TREE_TYPE (cand
->fn
)),
1031 build_identity_conv (TREE_TYPE (expr
), expr
));
1034 /* Merge it with the standard conversion sequence from the
1035 conversion function's return type to the desired type. */
1036 cand
->second_conv
= merge_conversion_sequences (conv
, cand
->second_conv
);
1038 if (cand
->viable
== -1)
1041 return cand
->second_conv
;
1044 /* A reference of the indicated TYPE is being bound directly to the
1045 expression represented by the implicit conversion sequence CONV.
1046 Return a conversion sequence for this binding. */
1049 direct_reference_binding (tree type
, conversion
*conv
)
1053 gcc_assert (TREE_CODE (type
) == REFERENCE_TYPE
);
1054 gcc_assert (TREE_CODE (conv
->type
) != REFERENCE_TYPE
);
1056 t
= TREE_TYPE (type
);
1060 When a parameter of reference type binds directly
1061 (_dcl.init.ref_) to an argument expression, the implicit
1062 conversion sequence is the identity conversion, unless the
1063 argument expression has a type that is a derived class of the
1064 parameter type, in which case the implicit conversion sequence is
1065 a derived-to-base Conversion.
1067 If the parameter binds directly to the result of applying a
1068 conversion function to the argument expression, the implicit
1069 conversion sequence is a user-defined conversion sequence
1070 (_over.ics.user_), with the second standard conversion sequence
1071 either an identity conversion or, if the conversion function
1072 returns an entity of a type that is a derived class of the
1073 parameter type, a derived-to-base conversion. */
1074 if (!same_type_ignoring_top_level_qualifiers_p (t
, conv
->type
))
1076 /* Represent the derived-to-base conversion. */
1077 conv
= build_conv (ck_base
, t
, conv
);
1078 /* We will actually be binding to the base-class subobject in
1079 the derived class, so we mark this conversion appropriately.
1080 That way, convert_like knows not to generate a temporary. */
1081 conv
->need_temporary_p
= false;
1083 return build_conv (ck_ref_bind
, type
, conv
);
1086 /* Returns the conversion path from type FROM to reference type TO for
1087 purposes of reference binding. For lvalue binding, either pass a
1088 reference type to FROM or an lvalue expression to EXPR. If the
1089 reference will be bound to a temporary, NEED_TEMPORARY_P is set for
1090 the conversion returned. */
1093 reference_binding (tree rto
, tree rfrom
, tree expr
, int flags
)
1095 conversion
*conv
= NULL
;
1096 tree to
= TREE_TYPE (rto
);
1100 cp_lvalue_kind lvalue_p
= clk_none
;
1102 if (TREE_CODE (to
) == FUNCTION_TYPE
&& expr
&& type_unknown_p (expr
))
1104 expr
= instantiate_type (to
, expr
, tf_none
);
1105 if (expr
== error_mark_node
)
1107 from
= TREE_TYPE (expr
);
1110 if (TREE_CODE (from
) == REFERENCE_TYPE
)
1112 /* Anything with reference type is an lvalue. */
1113 lvalue_p
= clk_ordinary
;
1114 from
= TREE_TYPE (from
);
1117 lvalue_p
= real_lvalue_p (expr
);
1119 /* Figure out whether or not the types are reference-related and
1120 reference compatible. We have do do this after stripping
1121 references from FROM. */
1122 related_p
= reference_related_p (to
, from
);
1123 compatible_p
= reference_compatible_p (to
, from
);
1125 if (lvalue_p
&& compatible_p
)
1129 If the initializer expression
1131 -- is an lvalue (but not an lvalue for a bit-field), and "cv1 T1"
1132 is reference-compatible with "cv2 T2,"
1134 the reference is bound directly to the initializer expression
1136 conv
= build_identity_conv (from
, expr
);
1137 conv
= direct_reference_binding (rto
, conv
);
1138 if ((lvalue_p
& clk_bitfield
) != 0
1139 || ((lvalue_p
& clk_packed
) != 0 && !TYPE_PACKED (to
)))
1140 /* For the purposes of overload resolution, we ignore the fact
1141 this expression is a bitfield or packed field. (In particular,
1142 [over.ics.ref] says specifically that a function with a
1143 non-const reference parameter is viable even if the
1144 argument is a bitfield.)
1146 However, when we actually call the function we must create
1147 a temporary to which to bind the reference. If the
1148 reference is volatile, or isn't const, then we cannot make
1149 a temporary, so we just issue an error when the conversion
1151 conv
->need_temporary_p
= true;
1155 else if (CLASS_TYPE_P (from
) && !(flags
& LOOKUP_NO_CONVERSION
))
1159 If the initializer expression
1161 -- has a class type (i.e., T2 is a class type) can be
1162 implicitly converted to an lvalue of type "cv3 T3," where
1163 "cv1 T1" is reference-compatible with "cv3 T3". (this
1164 conversion is selected by enumerating the applicable
1165 conversion functions (_over.match.ref_) and choosing the
1166 best one through overload resolution. (_over.match_).
1168 the reference is bound to the lvalue result of the conversion
1169 in the second case. */
1170 conv
= convert_class_to_reference (to
, from
, expr
);
1175 /* From this point on, we conceptually need temporaries, even if we
1176 elide them. Only the cases above are "direct bindings". */
1177 if (flags
& LOOKUP_NO_TEMP_BIND
)
1182 When a parameter of reference type is not bound directly to an
1183 argument expression, the conversion sequence is the one required
1184 to convert the argument expression to the underlying type of the
1185 reference according to _over.best.ics_. Conceptually, this
1186 conversion sequence corresponds to copy-initializing a temporary
1187 of the underlying type with the argument expression. Any
1188 difference in top-level cv-qualification is subsumed by the
1189 initialization itself and does not constitute a conversion. */
1193 Otherwise, the reference shall be to a non-volatile const type. */
1194 if (!CP_TYPE_CONST_NON_VOLATILE_P (to
))
1199 If the initializer expression is an rvalue, with T2 a class type,
1200 and "cv1 T1" is reference-compatible with "cv2 T2", the reference
1201 is bound in one of the following ways:
1203 -- The reference is bound to the object represented by the rvalue
1204 or to a sub-object within that object.
1208 We use the first alternative. The implicit conversion sequence
1209 is supposed to be same as we would obtain by generating a
1210 temporary. Fortunately, if the types are reference compatible,
1211 then this is either an identity conversion or the derived-to-base
1212 conversion, just as for direct binding. */
1213 if (CLASS_TYPE_P (from
) && compatible_p
)
1215 conv
= build_identity_conv (from
, expr
);
1216 conv
= direct_reference_binding (rto
, conv
);
1217 if (!(flags
& LOOKUP_CONSTRUCTOR_CALLABLE
))
1218 conv
->u
.next
->check_copy_constructor_p
= true;
1224 Otherwise, a temporary of type "cv1 T1" is created and
1225 initialized from the initializer expression using the rules for a
1226 non-reference copy initialization. If T1 is reference-related to
1227 T2, cv1 must be the same cv-qualification as, or greater
1228 cv-qualification than, cv2; otherwise, the program is ill-formed. */
1229 if (related_p
&& !at_least_as_qualified_p (to
, from
))
1232 conv
= implicit_conversion (to
, from
, expr
, /*c_cast_p=*/false,
1237 conv
= build_conv (ck_ref_bind
, rto
, conv
);
1238 /* This reference binding, unlike those above, requires the
1239 creation of a temporary. */
1240 conv
->need_temporary_p
= true;
1245 /* Returns the implicit conversion sequence (see [over.ics]) from type
1246 FROM to type TO. The optional expression EXPR may affect the
1247 conversion. FLAGS are the usual overloading flags. Only
1248 LOOKUP_NO_CONVERSION is significant. If C_CAST_P is true, this
1249 conversion is coming from a C-style cast. */
1252 implicit_conversion (tree to
, tree from
, tree expr
, bool c_cast_p
,
1257 if (from
== error_mark_node
|| to
== error_mark_node
1258 || expr
== error_mark_node
)
1261 if (TREE_CODE (to
) == REFERENCE_TYPE
)
1262 conv
= reference_binding (to
, from
, expr
, flags
);
1264 conv
= standard_conversion (to
, from
, expr
, c_cast_p
, flags
);
1269 if (expr
!= NULL_TREE
1270 && (IS_AGGR_TYPE (from
)
1271 || IS_AGGR_TYPE (to
))
1272 && (flags
& LOOKUP_NO_CONVERSION
) == 0)
1274 struct z_candidate
*cand
;
1276 cand
= build_user_type_conversion_1
1277 (to
, expr
, LOOKUP_ONLYCONVERTING
);
1279 conv
= cand
->second_conv
;
1281 /* We used to try to bind a reference to a temporary here, but that
1282 is now handled by the recursive call to this function at the end
1283 of reference_binding. */
1290 /* Add a new entry to the list of candidates. Used by the add_*_candidate
1293 static struct z_candidate
*
1294 add_candidate (struct z_candidate
**candidates
,
1296 size_t num_convs
, conversion
**convs
,
1297 tree access_path
, tree conversion_path
,
1300 struct z_candidate
*cand
= (struct z_candidate
*)
1301 conversion_obstack_alloc (sizeof (struct z_candidate
));
1305 cand
->convs
= convs
;
1306 cand
->num_convs
= num_convs
;
1307 cand
->access_path
= access_path
;
1308 cand
->conversion_path
= conversion_path
;
1309 cand
->viable
= viable
;
1310 cand
->next
= *candidates
;
1316 /* Create an overload candidate for the function or method FN called with
1317 the argument list ARGLIST and add it to CANDIDATES. FLAGS is passed on
1318 to implicit_conversion.
1320 CTYPE, if non-NULL, is the type we want to pretend this function
1321 comes from for purposes of overload resolution. */
1323 static struct z_candidate
*
1324 add_function_candidate (struct z_candidate
**candidates
,
1325 tree fn
, tree ctype
, tree arglist
,
1326 tree access_path
, tree conversion_path
,
1329 tree parmlist
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1332 tree parmnode
, argnode
;
1336 /* At this point we should not see any functions which haven't been
1337 explicitly declared, except for friend functions which will have
1338 been found using argument dependent lookup. */
1339 gcc_assert (!DECL_ANTICIPATED (fn
) || DECL_HIDDEN_FRIEND_P (fn
));
1341 /* The `this', `in_chrg' and VTT arguments to constructors are not
1342 considered in overload resolution. */
1343 if (DECL_CONSTRUCTOR_P (fn
))
1345 parmlist
= skip_artificial_parms_for (fn
, parmlist
);
1346 orig_arglist
= arglist
;
1347 arglist
= skip_artificial_parms_for (fn
, arglist
);
1350 orig_arglist
= arglist
;
1352 len
= list_length (arglist
);
1353 convs
= alloc_conversions (len
);
1355 /* 13.3.2 - Viable functions [over.match.viable]
1356 First, to be a viable function, a candidate function shall have enough
1357 parameters to agree in number with the arguments in the list.
1359 We need to check this first; otherwise, checking the ICSes might cause
1360 us to produce an ill-formed template instantiation. */
1362 parmnode
= parmlist
;
1363 for (i
= 0; i
< len
; ++i
)
1365 if (parmnode
== NULL_TREE
|| parmnode
== void_list_node
)
1367 parmnode
= TREE_CHAIN (parmnode
);
1370 if (i
< len
&& parmnode
)
1373 /* Make sure there are default args for the rest of the parms. */
1374 else if (!sufficient_parms_p (parmnode
))
1380 /* Second, for F to be a viable function, there shall exist for each
1381 argument an implicit conversion sequence that converts that argument
1382 to the corresponding parameter of F. */
1384 parmnode
= parmlist
;
1387 for (i
= 0; i
< len
; ++i
)
1389 tree arg
= TREE_VALUE (argnode
);
1390 tree argtype
= lvalue_type (arg
);
1394 if (parmnode
== void_list_node
)
1397 is_this
= (i
== 0 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn
)
1398 && ! DECL_CONSTRUCTOR_P (fn
));
1402 tree parmtype
= TREE_VALUE (parmnode
);
1404 /* The type of the implicit object parameter ('this') for
1405 overload resolution is not always the same as for the
1406 function itself; conversion functions are considered to
1407 be members of the class being converted, and functions
1408 introduced by a using-declaration are considered to be
1409 members of the class that uses them.
1411 Since build_over_call ignores the ICS for the `this'
1412 parameter, we can just change the parm type. */
1413 if (ctype
&& is_this
)
1416 = build_qualified_type (ctype
,
1417 TYPE_QUALS (TREE_TYPE (parmtype
)));
1418 parmtype
= build_pointer_type (parmtype
);
1421 t
= implicit_conversion (parmtype
, argtype
, arg
,
1422 /*c_cast_p=*/false, flags
);
1426 t
= build_identity_conv (argtype
, arg
);
1427 t
->ellipsis_p
= true;
1444 parmnode
= TREE_CHAIN (parmnode
);
1445 argnode
= TREE_CHAIN (argnode
);
1449 return add_candidate (candidates
, fn
, orig_arglist
, len
, convs
,
1450 access_path
, conversion_path
, viable
);
1453 /* Create an overload candidate for the conversion function FN which will
1454 be invoked for expression OBJ, producing a pointer-to-function which
1455 will in turn be called with the argument list ARGLIST, and add it to
1456 CANDIDATES. FLAGS is passed on to implicit_conversion.
1458 Actually, we don't really care about FN; we care about the type it
1459 converts to. There may be multiple conversion functions that will
1460 convert to that type, and we rely on build_user_type_conversion_1 to
1461 choose the best one; so when we create our candidate, we record the type
1462 instead of the function. */
1464 static struct z_candidate
*
1465 add_conv_candidate (struct z_candidate
**candidates
, tree fn
, tree obj
,
1466 tree arglist
, tree access_path
, tree conversion_path
)
1468 tree totype
= TREE_TYPE (TREE_TYPE (fn
));
1469 int i
, len
, viable
, flags
;
1470 tree parmlist
, parmnode
, argnode
;
1473 for (parmlist
= totype
; TREE_CODE (parmlist
) != FUNCTION_TYPE
; )
1474 parmlist
= TREE_TYPE (parmlist
);
1475 parmlist
= TYPE_ARG_TYPES (parmlist
);
1477 len
= list_length (arglist
) + 1;
1478 convs
= alloc_conversions (len
);
1479 parmnode
= parmlist
;
1482 flags
= LOOKUP_NORMAL
;
1484 /* Don't bother looking up the same type twice. */
1485 if (*candidates
&& (*candidates
)->fn
== totype
)
1488 for (i
= 0; i
< len
; ++i
)
1490 tree arg
= i
== 0 ? obj
: TREE_VALUE (argnode
);
1491 tree argtype
= lvalue_type (arg
);
1495 t
= implicit_conversion (totype
, argtype
, arg
, /*c_cast_p=*/false,
1497 else if (parmnode
== void_list_node
)
1500 t
= implicit_conversion (TREE_VALUE (parmnode
), argtype
, arg
,
1501 /*c_cast_p=*/false, flags
);
1504 t
= build_identity_conv (argtype
, arg
);
1505 t
->ellipsis_p
= true;
1519 parmnode
= TREE_CHAIN (parmnode
);
1520 argnode
= TREE_CHAIN (argnode
);
1526 if (!sufficient_parms_p (parmnode
))
1529 return add_candidate (candidates
, totype
, arglist
, len
, convs
,
1530 access_path
, conversion_path
, viable
);
1534 build_builtin_candidate (struct z_candidate
**candidates
, tree fnname
,
1535 tree type1
, tree type2
, tree
*args
, tree
*argtypes
,
1547 num_convs
= args
[2] ? 3 : (args
[1] ? 2 : 1);
1548 convs
= alloc_conversions (num_convs
);
1550 for (i
= 0; i
< 2; ++i
)
1555 t
= implicit_conversion (types
[i
], argtypes
[i
], args
[i
],
1556 /*c_cast_p=*/false, flags
);
1560 /* We need something for printing the candidate. */
1561 t
= build_identity_conv (types
[i
], NULL_TREE
);
1568 /* For COND_EXPR we rearranged the arguments; undo that now. */
1571 convs
[2] = convs
[1];
1572 convs
[1] = convs
[0];
1573 t
= implicit_conversion (boolean_type_node
, argtypes
[2], args
[2],
1574 /*c_cast_p=*/false, flags
);
1581 add_candidate (candidates
, fnname
, /*args=*/NULL_TREE
,
1583 /*access_path=*/NULL_TREE
,
1584 /*conversion_path=*/NULL_TREE
,
1589 is_complete (tree t
)
1591 return COMPLETE_TYPE_P (complete_type (t
));
1594 /* Returns nonzero if TYPE is a promoted arithmetic type. */
1597 promoted_arithmetic_type_p (tree type
)
1601 In this section, the term promoted integral type is used to refer
1602 to those integral types which are preserved by integral promotion
1603 (including e.g. int and long but excluding e.g. char).
1604 Similarly, the term promoted arithmetic type refers to promoted
1605 integral types plus floating types. */
1606 return ((INTEGRAL_TYPE_P (type
)
1607 && same_type_p (type_promotes_to (type
), type
))
1608 || TREE_CODE (type
) == REAL_TYPE
);
1611 /* Create any builtin operator overload candidates for the operator in
1612 question given the converted operand types TYPE1 and TYPE2. The other
1613 args are passed through from add_builtin_candidates to
1614 build_builtin_candidate.
1616 TYPE1 and TYPE2 may not be permissible, and we must filter them.
1617 If CODE is requires candidates operands of the same type of the kind
1618 of which TYPE1 and TYPE2 are, we add both candidates
1619 CODE (TYPE1, TYPE1) and CODE (TYPE2, TYPE2). */
1622 add_builtin_candidate (struct z_candidate
**candidates
, enum tree_code code
,
1623 enum tree_code code2
, tree fnname
, tree type1
,
1624 tree type2
, tree
*args
, tree
*argtypes
, int flags
)
1628 case POSTINCREMENT_EXPR
:
1629 case POSTDECREMENT_EXPR
:
1630 args
[1] = integer_zero_node
;
1631 type2
= integer_type_node
;
1640 /* 4 For every pair T, VQ), where T is an arithmetic or enumeration type,
1641 and VQ is either volatile or empty, there exist candidate operator
1642 functions of the form
1643 VQ T& operator++(VQ T&);
1644 T operator++(VQ T&, int);
1645 5 For every pair T, VQ), where T is an enumeration type or an arithmetic
1646 type other than bool, and VQ is either volatile or empty, there exist
1647 candidate operator functions of the form
1648 VQ T& operator--(VQ T&);
1649 T operator--(VQ T&, int);
1650 6 For every pair T, VQ), where T is a cv-qualified or cv-unqualified
1651 complete object type, and VQ is either volatile or empty, there exist
1652 candidate operator functions of the form
1653 T*VQ& operator++(T*VQ&);
1654 T*VQ& operator--(T*VQ&);
1655 T* operator++(T*VQ&, int);
1656 T* operator--(T*VQ&, int); */
1658 case POSTDECREMENT_EXPR
:
1659 case PREDECREMENT_EXPR
:
1660 if (TREE_CODE (type1
) == BOOLEAN_TYPE
)
1662 case POSTINCREMENT_EXPR
:
1663 case PREINCREMENT_EXPR
:
1664 if (ARITHMETIC_TYPE_P (type1
) || TYPE_PTROB_P (type1
))
1666 type1
= build_reference_type (type1
);
1671 /* 7 For every cv-qualified or cv-unqualified complete object type T, there
1672 exist candidate operator functions of the form
1676 8 For every function type T, there exist candidate operator functions of
1678 T& operator*(T*); */
1681 if (TREE_CODE (type1
) == POINTER_TYPE
1682 && (TYPE_PTROB_P (type1
)
1683 || TREE_CODE (TREE_TYPE (type1
)) == FUNCTION_TYPE
))
1687 /* 9 For every type T, there exist candidate operator functions of the form
1690 10For every promoted arithmetic type T, there exist candidate operator
1691 functions of the form
1695 case UNARY_PLUS_EXPR
: /* unary + */
1696 if (TREE_CODE (type1
) == POINTER_TYPE
)
1699 if (ARITHMETIC_TYPE_P (type1
))
1703 /* 11For every promoted integral type T, there exist candidate operator
1704 functions of the form
1708 if (INTEGRAL_TYPE_P (type1
))
1712 /* 12For every quintuple C1, C2, T, CV1, CV2), where C2 is a class type, C1
1713 is the same type as C2 or is a derived class of C2, T is a complete
1714 object type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
1715 there exist candidate operator functions of the form
1716 CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
1717 where CV12 is the union of CV1 and CV2. */
1720 if (TREE_CODE (type1
) == POINTER_TYPE
1721 && TYPE_PTR_TO_MEMBER_P (type2
))
1723 tree c1
= TREE_TYPE (type1
);
1724 tree c2
= TYPE_PTRMEM_CLASS_TYPE (type2
);
1726 if (IS_AGGR_TYPE (c1
) && DERIVED_FROM_P (c2
, c1
)
1727 && (TYPE_PTRMEMFUNC_P (type2
)
1728 || is_complete (TYPE_PTRMEM_POINTED_TO_TYPE (type2
))))
1733 /* 13For every pair of promoted arithmetic types L and R, there exist can-
1734 didate operator functions of the form
1739 bool operator<(L, R);
1740 bool operator>(L, R);
1741 bool operator<=(L, R);
1742 bool operator>=(L, R);
1743 bool operator==(L, R);
1744 bool operator!=(L, R);
1745 where LR is the result of the usual arithmetic conversions between
1748 14For every pair of types T and I, where T is a cv-qualified or cv-
1749 unqualified complete object type and I is a promoted integral type,
1750 there exist candidate operator functions of the form
1751 T* operator+(T*, I);
1752 T& operator[](T*, I);
1753 T* operator-(T*, I);
1754 T* operator+(I, T*);
1755 T& operator[](I, T*);
1757 15For every T, where T is a pointer to complete object type, there exist
1758 candidate operator functions of the form112)
1759 ptrdiff_t operator-(T, T);
1761 16For every pointer or enumeration type T, there exist candidate operator
1762 functions of the form
1763 bool operator<(T, T);
1764 bool operator>(T, T);
1765 bool operator<=(T, T);
1766 bool operator>=(T, T);
1767 bool operator==(T, T);
1768 bool operator!=(T, T);
1770 17For every pointer to member type T, there exist candidate operator
1771 functions of the form
1772 bool operator==(T, T);
1773 bool operator!=(T, T); */
1776 if (TYPE_PTROB_P (type1
) && TYPE_PTROB_P (type2
))
1778 if (TYPE_PTROB_P (type1
) && INTEGRAL_TYPE_P (type2
))
1780 type2
= ptrdiff_type_node
;
1784 case TRUNC_DIV_EXPR
:
1785 if (ARITHMETIC_TYPE_P (type1
) && ARITHMETIC_TYPE_P (type2
))
1791 if ((TYPE_PTRMEMFUNC_P (type1
) && TYPE_PTRMEMFUNC_P (type2
))
1792 || (TYPE_PTRMEM_P (type1
) && TYPE_PTRMEM_P (type2
)))
1794 if (TYPE_PTR_TO_MEMBER_P (type1
) && null_ptr_cst_p (args
[1]))
1799 if (TYPE_PTR_TO_MEMBER_P (type2
) && null_ptr_cst_p (args
[0]))
1811 if (ARITHMETIC_TYPE_P (type1
) && ARITHMETIC_TYPE_P (type2
))
1813 if (TYPE_PTR_P (type1
) && TYPE_PTR_P (type2
))
1815 if (TREE_CODE (type1
) == ENUMERAL_TYPE
1816 && TREE_CODE (type2
) == ENUMERAL_TYPE
)
1818 if (TYPE_PTR_P (type1
)
1819 && null_ptr_cst_p (args
[1])
1820 && !uses_template_parms (type1
))
1825 if (null_ptr_cst_p (args
[0])
1826 && TYPE_PTR_P (type2
)
1827 && !uses_template_parms (type2
))
1835 if (ARITHMETIC_TYPE_P (type1
) && ARITHMETIC_TYPE_P (type2
))
1838 if (INTEGRAL_TYPE_P (type1
) && TYPE_PTROB_P (type2
))
1840 type1
= ptrdiff_type_node
;
1843 if (TYPE_PTROB_P (type1
) && INTEGRAL_TYPE_P (type2
))
1845 type2
= ptrdiff_type_node
;
1850 /* 18For every pair of promoted integral types L and R, there exist candi-
1851 date operator functions of the form
1858 where LR is the result of the usual arithmetic conversions between
1861 case TRUNC_MOD_EXPR
:
1867 if (INTEGRAL_TYPE_P (type1
) && INTEGRAL_TYPE_P (type2
))
1871 /* 19For every triple L, VQ, R), where L is an arithmetic or enumeration
1872 type, VQ is either volatile or empty, and R is a promoted arithmetic
1873 type, there exist candidate operator functions of the form
1874 VQ L& operator=(VQ L&, R);
1875 VQ L& operator*=(VQ L&, R);
1876 VQ L& operator/=(VQ L&, R);
1877 VQ L& operator+=(VQ L&, R);
1878 VQ L& operator-=(VQ L&, R);
1880 20For every pair T, VQ), where T is any type and VQ is either volatile
1881 or empty, there exist candidate operator functions of the form
1882 T*VQ& operator=(T*VQ&, T*);
1884 21For every pair T, VQ), where T is a pointer to member type and VQ is
1885 either volatile or empty, there exist candidate operator functions of
1887 VQ T& operator=(VQ T&, T);
1889 22For every triple T, VQ, I), where T is a cv-qualified or cv-
1890 unqualified complete object type, VQ is either volatile or empty, and
1891 I is a promoted integral type, there exist candidate operator func-
1893 T*VQ& operator+=(T*VQ&, I);
1894 T*VQ& operator-=(T*VQ&, I);
1896 23For every triple L, VQ, R), where L is an integral or enumeration
1897 type, VQ is either volatile or empty, and R is a promoted integral
1898 type, there exist candidate operator functions of the form
1900 VQ L& operator%=(VQ L&, R);
1901 VQ L& operator<<=(VQ L&, R);
1902 VQ L& operator>>=(VQ L&, R);
1903 VQ L& operator&=(VQ L&, R);
1904 VQ L& operator^=(VQ L&, R);
1905 VQ L& operator|=(VQ L&, R); */
1912 if (TYPE_PTROB_P (type1
) && INTEGRAL_TYPE_P (type2
))
1914 type2
= ptrdiff_type_node
;
1918 case TRUNC_DIV_EXPR
:
1919 if (ARITHMETIC_TYPE_P (type1
) && ARITHMETIC_TYPE_P (type2
))
1923 case TRUNC_MOD_EXPR
:
1929 if (INTEGRAL_TYPE_P (type1
) && INTEGRAL_TYPE_P (type2
))
1934 if (ARITHMETIC_TYPE_P (type1
) && ARITHMETIC_TYPE_P (type2
))
1936 if ((TYPE_PTRMEMFUNC_P (type1
) && TYPE_PTRMEMFUNC_P (type2
))
1937 || (TYPE_PTR_P (type1
) && TYPE_PTR_P (type2
))
1938 || (TYPE_PTRMEM_P (type1
) && TYPE_PTRMEM_P (type2
))
1939 || ((TYPE_PTRMEMFUNC_P (type1
)
1940 || TREE_CODE (type1
) == POINTER_TYPE
)
1941 && null_ptr_cst_p (args
[1])))
1951 type1
= build_reference_type (type1
);
1957 For every pair of promoted arithmetic types L and R, there
1958 exist candidate operator functions of the form
1960 LR operator?(bool, L, R);
1962 where LR is the result of the usual arithmetic conversions
1963 between types L and R.
1965 For every type T, where T is a pointer or pointer-to-member
1966 type, there exist candidate operator functions of the form T
1967 operator?(bool, T, T); */
1969 if (promoted_arithmetic_type_p (type1
)
1970 && promoted_arithmetic_type_p (type2
))
1974 /* Otherwise, the types should be pointers. */
1975 if (!(TYPE_PTR_P (type1
) || TYPE_PTR_TO_MEMBER_P (type1
))
1976 || !(TYPE_PTR_P (type2
) || TYPE_PTR_TO_MEMBER_P (type2
)))
1979 /* We don't check that the two types are the same; the logic
1980 below will actually create two candidates; one in which both
1981 parameter types are TYPE1, and one in which both parameter
1989 /* If we're dealing with two pointer types or two enumeral types,
1990 we need candidates for both of them. */
1991 if (type2
&& !same_type_p (type1
, type2
)
1992 && TREE_CODE (type1
) == TREE_CODE (type2
)
1993 && (TREE_CODE (type1
) == REFERENCE_TYPE
1994 || (TYPE_PTR_P (type1
) && TYPE_PTR_P (type2
))
1995 || (TYPE_PTRMEM_P (type1
) && TYPE_PTRMEM_P (type2
))
1996 || TYPE_PTRMEMFUNC_P (type1
)
1997 || IS_AGGR_TYPE (type1
)
1998 || TREE_CODE (type1
) == ENUMERAL_TYPE
))
2000 build_builtin_candidate
2001 (candidates
, fnname
, type1
, type1
, args
, argtypes
, flags
);
2002 build_builtin_candidate
2003 (candidates
, fnname
, type2
, type2
, args
, argtypes
, flags
);
2007 build_builtin_candidate
2008 (candidates
, fnname
, type1
, type2
, args
, argtypes
, flags
);
2012 type_decays_to (tree type
)
2014 if (TREE_CODE (type
) == ARRAY_TYPE
)
2015 return build_pointer_type (TREE_TYPE (type
));
2016 if (TREE_CODE (type
) == FUNCTION_TYPE
)
2017 return build_pointer_type (type
);
2021 /* There are three conditions of builtin candidates:
2023 1) bool-taking candidates. These are the same regardless of the input.
2024 2) pointer-pair taking candidates. These are generated for each type
2025 one of the input types converts to.
2026 3) arithmetic candidates. According to the standard, we should generate
2027 all of these, but I'm trying not to...
2029 Here we generate a superset of the possible candidates for this particular
2030 case. That is a subset of the full set the standard defines, plus some
2031 other cases which the standard disallows. add_builtin_candidate will
2032 filter out the invalid set. */
2035 add_builtin_candidates (struct z_candidate
**candidates
, enum tree_code code
,
2036 enum tree_code code2
, tree fnname
, tree
*args
,
2041 tree type
, argtypes
[3];
2042 /* TYPES[i] is the set of possible builtin-operator parameter types
2043 we will consider for the Ith argument. These are represented as
2044 a TREE_LIST; the TREE_VALUE of each node is the potential
2048 for (i
= 0; i
< 3; ++i
)
2051 argtypes
[i
] = lvalue_type (args
[i
]);
2053 argtypes
[i
] = NULL_TREE
;
2058 /* 4 For every pair T, VQ), where T is an arithmetic or enumeration type,
2059 and VQ is either volatile or empty, there exist candidate operator
2060 functions of the form
2061 VQ T& operator++(VQ T&); */
2063 case POSTINCREMENT_EXPR
:
2064 case PREINCREMENT_EXPR
:
2065 case POSTDECREMENT_EXPR
:
2066 case PREDECREMENT_EXPR
:
2071 /* 24There also exist candidate operator functions of the form
2072 bool operator!(bool);
2073 bool operator&&(bool, bool);
2074 bool operator||(bool, bool); */
2076 case TRUTH_NOT_EXPR
:
2077 build_builtin_candidate
2078 (candidates
, fnname
, boolean_type_node
,
2079 NULL_TREE
, args
, argtypes
, flags
);
2082 case TRUTH_ORIF_EXPR
:
2083 case TRUTH_ANDIF_EXPR
:
2084 build_builtin_candidate
2085 (candidates
, fnname
, boolean_type_node
,
2086 boolean_type_node
, args
, argtypes
, flags
);
2108 types
[0] = types
[1] = NULL_TREE
;
2110 for (i
= 0; i
< 2; ++i
)
2114 else if (IS_AGGR_TYPE (argtypes
[i
]))
2118 if (i
== 0 && code
== MODIFY_EXPR
&& code2
== NOP_EXPR
)
2121 convs
= lookup_conversions (argtypes
[i
]);
2123 if (code
== COND_EXPR
)
2125 if (real_lvalue_p (args
[i
]))
2126 types
[i
] = tree_cons
2127 (NULL_TREE
, build_reference_type (argtypes
[i
]), types
[i
]);
2129 types
[i
] = tree_cons
2130 (NULL_TREE
, TYPE_MAIN_VARIANT (argtypes
[i
]), types
[i
]);
2136 for (; convs
; convs
= TREE_CHAIN (convs
))
2138 type
= TREE_TYPE (TREE_TYPE (OVL_CURRENT (TREE_VALUE (convs
))));
2141 && (TREE_CODE (type
) != REFERENCE_TYPE
2142 || CP_TYPE_CONST_P (TREE_TYPE (type
))))
2145 if (code
== COND_EXPR
&& TREE_CODE (type
) == REFERENCE_TYPE
)
2146 types
[i
] = tree_cons (NULL_TREE
, type
, types
[i
]);
2148 type
= non_reference (type
);
2149 if (i
!= 0 || ! ref1
)
2151 type
= TYPE_MAIN_VARIANT (type_decays_to (type
));
2152 if (enum_p
&& TREE_CODE (type
) == ENUMERAL_TYPE
)
2153 types
[i
] = tree_cons (NULL_TREE
, type
, types
[i
]);
2154 if (INTEGRAL_TYPE_P (type
))
2155 type
= type_promotes_to (type
);
2158 if (! value_member (type
, types
[i
]))
2159 types
[i
] = tree_cons (NULL_TREE
, type
, types
[i
]);
2164 if (code
== COND_EXPR
&& real_lvalue_p (args
[i
]))
2165 types
[i
] = tree_cons
2166 (NULL_TREE
, build_reference_type (argtypes
[i
]), types
[i
]);
2167 type
= non_reference (argtypes
[i
]);
2168 if (i
!= 0 || ! ref1
)
2170 type
= TYPE_MAIN_VARIANT (type_decays_to (type
));
2171 if (enum_p
&& TREE_CODE (type
) == ENUMERAL_TYPE
)
2172 types
[i
] = tree_cons (NULL_TREE
, type
, types
[i
]);
2173 if (INTEGRAL_TYPE_P (type
))
2174 type
= type_promotes_to (type
);
2176 types
[i
] = tree_cons (NULL_TREE
, type
, types
[i
]);
2180 /* Run through the possible parameter types of both arguments,
2181 creating candidates with those parameter types. */
2182 for (; types
[0]; types
[0] = TREE_CHAIN (types
[0]))
2185 for (type
= types
[1]; type
; type
= TREE_CHAIN (type
))
2186 add_builtin_candidate
2187 (candidates
, code
, code2
, fnname
, TREE_VALUE (types
[0]),
2188 TREE_VALUE (type
), args
, argtypes
, flags
);
2190 add_builtin_candidate
2191 (candidates
, code
, code2
, fnname
, TREE_VALUE (types
[0]),
2192 NULL_TREE
, args
, argtypes
, flags
);
2197 /* If TMPL can be successfully instantiated as indicated by
2198 EXPLICIT_TARGS and ARGLIST, adds the instantiation to CANDIDATES.
2200 TMPL is the template. EXPLICIT_TARGS are any explicit template
2201 arguments. ARGLIST is the arguments provided at the call-site.
2202 The RETURN_TYPE is the desired type for conversion operators. If
2203 OBJ is NULL_TREE, FLAGS and CTYPE are as for add_function_candidate.
2204 If an OBJ is supplied, FLAGS and CTYPE are ignored, and OBJ is as for
2205 add_conv_candidate. */
2207 static struct z_candidate
*
2208 add_template_candidate_real (struct z_candidate
**candidates
, tree tmpl
,
2209 tree ctype
, tree explicit_targs
, tree arglist
,
2210 tree return_type
, tree access_path
,
2211 tree conversion_path
, int flags
, tree obj
,
2212 unification_kind_t strict
)
2214 int ntparms
= DECL_NTPARMS (tmpl
);
2215 tree targs
= make_tree_vec (ntparms
);
2216 tree args_without_in_chrg
= arglist
;
2217 struct z_candidate
*cand
;
2221 /* We don't do deduction on the in-charge parameter, the VTT
2222 parameter or 'this'. */
2223 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (tmpl
))
2224 args_without_in_chrg
= TREE_CHAIN (args_without_in_chrg
);
2226 if ((DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (tmpl
)
2227 || DECL_BASE_CONSTRUCTOR_P (tmpl
))
2228 && CLASSTYPE_VBASECLASSES (DECL_CONTEXT (tmpl
)))
2229 args_without_in_chrg
= TREE_CHAIN (args_without_in_chrg
);
2231 i
= fn_type_unification (tmpl
, explicit_targs
, targs
,
2232 args_without_in_chrg
,
2233 return_type
, strict
, flags
);
2238 fn
= instantiate_template (tmpl
, targs
, tf_none
);
2239 if (fn
== error_mark_node
)
2244 A member function template is never instantiated to perform the
2245 copy of a class object to an object of its class type.
2247 It's a little unclear what this means; the standard explicitly
2248 does allow a template to be used to copy a class. For example,
2253 template <class T> A(const T&);
2256 void g () { A a (f ()); }
2258 the member template will be used to make the copy. The section
2259 quoted above appears in the paragraph that forbids constructors
2260 whose only parameter is (a possibly cv-qualified variant of) the
2261 class type, and a logical interpretation is that the intent was
2262 to forbid the instantiation of member templates which would then
2264 if (DECL_CONSTRUCTOR_P (fn
) && list_length (arglist
) == 2)
2266 tree arg_types
= FUNCTION_FIRST_USER_PARMTYPE (fn
);
2267 if (arg_types
&& same_type_p (TYPE_MAIN_VARIANT (TREE_VALUE (arg_types
)),
2272 if (obj
!= NULL_TREE
)
2273 /* Aha, this is a conversion function. */
2274 cand
= add_conv_candidate (candidates
, fn
, obj
, access_path
,
2275 conversion_path
, arglist
);
2277 cand
= add_function_candidate (candidates
, fn
, ctype
,
2278 arglist
, access_path
,
2279 conversion_path
, flags
);
2280 if (DECL_TI_TEMPLATE (fn
) != tmpl
)
2281 /* This situation can occur if a member template of a template
2282 class is specialized. Then, instantiate_template might return
2283 an instantiation of the specialization, in which case the
2284 DECL_TI_TEMPLATE field will point at the original
2285 specialization. For example:
2287 template <class T> struct S { template <class U> void f(U);
2288 template <> void f(int) {}; };
2292 Here, TMPL will be template <class U> S<double>::f(U).
2293 And, instantiate template will give us the specialization
2294 template <> S<double>::f(int). But, the DECL_TI_TEMPLATE field
2295 for this will point at template <class T> template <> S<T>::f(int),
2296 so that we can find the definition. For the purposes of
2297 overload resolution, however, we want the original TMPL. */
2298 cand
->template_decl
= tree_cons (tmpl
, targs
, NULL_TREE
);
2300 cand
->template_decl
= DECL_TEMPLATE_INFO (fn
);
2306 static struct z_candidate
*
2307 add_template_candidate (struct z_candidate
**candidates
, tree tmpl
, tree ctype
,
2308 tree explicit_targs
, tree arglist
, tree return_type
,
2309 tree access_path
, tree conversion_path
, int flags
,
2310 unification_kind_t strict
)
2313 add_template_candidate_real (candidates
, tmpl
, ctype
,
2314 explicit_targs
, arglist
, return_type
,
2315 access_path
, conversion_path
,
2316 flags
, NULL_TREE
, strict
);
2320 static struct z_candidate
*
2321 add_template_conv_candidate (struct z_candidate
**candidates
, tree tmpl
,
2322 tree obj
, tree arglist
, tree return_type
,
2323 tree access_path
, tree conversion_path
)
2326 add_template_candidate_real (candidates
, tmpl
, NULL_TREE
, NULL_TREE
,
2327 arglist
, return_type
, access_path
,
2328 conversion_path
, 0, obj
, DEDUCE_CONV
);
2331 /* The CANDS are the set of candidates that were considered for
2332 overload resolution. Return the set of viable candidates. If none
2333 of the candidates were viable, set *ANY_VIABLE_P to true. STRICT_P
2334 is true if a candidate should be considered viable only if it is
2337 static struct z_candidate
*
2338 splice_viable (struct z_candidate
*cands
,
2342 struct z_candidate
*viable
;
2343 struct z_candidate
**last_viable
;
2344 struct z_candidate
**cand
;
2347 last_viable
= &viable
;
2348 *any_viable_p
= false;
2353 struct z_candidate
*c
= *cand
;
2354 if (strict_p
? c
->viable
== 1 : c
->viable
)
2359 last_viable
= &c
->next
;
2360 *any_viable_p
= true;
2366 return viable
? viable
: cands
;
2370 any_strictly_viable (struct z_candidate
*cands
)
2372 for (; cands
; cands
= cands
->next
)
2373 if (cands
->viable
== 1)
2378 /* OBJ is being used in an expression like "OBJ.f (...)". In other
2379 words, it is about to become the "this" pointer for a member
2380 function call. Take the address of the object. */
2383 build_this (tree obj
)
2385 /* In a template, we are only concerned about the type of the
2386 expression, so we can take a shortcut. */
2387 if (processing_template_decl
)
2388 return build_address (obj
);
2390 return build_unary_op (ADDR_EXPR
, obj
, 0);
2393 /* Returns true iff functions are equivalent. Equivalent functions are
2394 not '==' only if one is a function-local extern function or if
2395 both are extern "C". */
2398 equal_functions (tree fn1
, tree fn2
)
2400 if (DECL_LOCAL_FUNCTION_P (fn1
) || DECL_LOCAL_FUNCTION_P (fn2
)
2401 || DECL_EXTERN_C_FUNCTION_P (fn1
))
2402 return decls_match (fn1
, fn2
);
2406 /* Print information about one overload candidate CANDIDATE. MSGSTR
2407 is the text to print before the candidate itself.
2409 NOTE: Unlike most diagnostic functions in GCC, MSGSTR is expected
2410 to have been run through gettext by the caller. This wart makes
2411 life simpler in print_z_candidates and for the translators. */
2414 print_z_candidate (const char *msgstr
, struct z_candidate
*candidate
)
2416 if (TREE_CODE (candidate
->fn
) == IDENTIFIER_NODE
)
2418 if (candidate
->num_convs
== 3)
2419 inform ("%s %D(%T, %T, %T) <built-in>", msgstr
, candidate
->fn
,
2420 candidate
->convs
[0]->type
,
2421 candidate
->convs
[1]->type
,
2422 candidate
->convs
[2]->type
);
2423 else if (candidate
->num_convs
== 2)
2424 inform ("%s %D(%T, %T) <built-in>", msgstr
, candidate
->fn
,
2425 candidate
->convs
[0]->type
,
2426 candidate
->convs
[1]->type
);
2428 inform ("%s %D(%T) <built-in>", msgstr
, candidate
->fn
,
2429 candidate
->convs
[0]->type
);
2431 else if (TYPE_P (candidate
->fn
))
2432 inform ("%s %T <conversion>", msgstr
, candidate
->fn
);
2433 else if (candidate
->viable
== -1)
2434 inform ("%s %+#D <near match>", msgstr
, candidate
->fn
);
2436 inform ("%s %+#D", msgstr
, candidate
->fn
);
2440 print_z_candidates (struct z_candidate
*candidates
)
2443 struct z_candidate
*cand1
;
2444 struct z_candidate
**cand2
;
2446 /* There may be duplicates in the set of candidates. We put off
2447 checking this condition as long as possible, since we have no way
2448 to eliminate duplicates from a set of functions in less than n^2
2449 time. Now we are about to emit an error message, so it is more
2450 permissible to go slowly. */
2451 for (cand1
= candidates
; cand1
; cand1
= cand1
->next
)
2453 tree fn
= cand1
->fn
;
2454 /* Skip builtin candidates and conversion functions. */
2455 if (TREE_CODE (fn
) != FUNCTION_DECL
)
2457 cand2
= &cand1
->next
;
2460 if (TREE_CODE ((*cand2
)->fn
) == FUNCTION_DECL
2461 && equal_functions (fn
, (*cand2
)->fn
))
2462 *cand2
= (*cand2
)->next
;
2464 cand2
= &(*cand2
)->next
;
2471 str
= _("candidates are:");
2472 print_z_candidate (str
, candidates
);
2473 if (candidates
->next
)
2475 /* Indent successive candidates by the width of the translation
2476 of the above string. */
2477 size_t len
= gcc_gettext_width (str
) + 1;
2478 char *spaces
= (char *) alloca (len
);
2479 memset (spaces
, ' ', len
-1);
2480 spaces
[len
- 1] = '\0';
2482 candidates
= candidates
->next
;
2485 print_z_candidate (spaces
, candidates
);
2486 candidates
= candidates
->next
;
2492 /* USER_SEQ is a user-defined conversion sequence, beginning with a
2493 USER_CONV. STD_SEQ is the standard conversion sequence applied to
2494 the result of the conversion function to convert it to the final
2495 desired type. Merge the two sequences into a single sequence,
2496 and return the merged sequence. */
2499 merge_conversion_sequences (conversion
*user_seq
, conversion
*std_seq
)
2503 gcc_assert (user_seq
->kind
== ck_user
);
2505 /* Find the end of the second conversion sequence. */
2507 while ((*t
)->kind
!= ck_identity
)
2508 t
= &((*t
)->u
.next
);
2510 /* Replace the identity conversion with the user conversion
2514 /* The entire sequence is a user-conversion sequence. */
2515 std_seq
->user_conv_p
= true;
2520 /* Returns the best overload candidate to perform the requested
2521 conversion. This function is used for three the overloading situations
2522 described in [over.match.copy], [over.match.conv], and [over.match.ref].
2523 If TOTYPE is a REFERENCE_TYPE, we're trying to find an lvalue binding as
2524 per [dcl.init.ref], so we ignore temporary bindings. */
2526 static struct z_candidate
*
2527 build_user_type_conversion_1 (tree totype
, tree expr
, int flags
)
2529 struct z_candidate
*candidates
, *cand
;
2530 tree fromtype
= TREE_TYPE (expr
);
2531 tree ctors
= NULL_TREE
;
2532 tree conv_fns
= NULL_TREE
;
2533 conversion
*conv
= NULL
;
2534 tree args
= NULL_TREE
;
2537 /* We represent conversion within a hierarchy using RVALUE_CONV and
2538 BASE_CONV, as specified by [over.best.ics]; these become plain
2539 constructor calls, as specified in [dcl.init]. */
2540 gcc_assert (!IS_AGGR_TYPE (fromtype
) || !IS_AGGR_TYPE (totype
)
2541 || !DERIVED_FROM_P (totype
, fromtype
));
2543 if (IS_AGGR_TYPE (totype
))
2544 ctors
= lookup_fnfields (totype
, complete_ctor_identifier
, 0);
2546 if (IS_AGGR_TYPE (fromtype
))
2547 conv_fns
= lookup_conversions (fromtype
);
2550 flags
|= LOOKUP_NO_CONVERSION
;
2556 ctors
= BASELINK_FUNCTIONS (ctors
);
2558 t
= build_int_cst (build_pointer_type (totype
), 0);
2559 args
= build_tree_list (NULL_TREE
, expr
);
2560 /* We should never try to call the abstract or base constructor
2562 gcc_assert (!DECL_HAS_IN_CHARGE_PARM_P (OVL_CURRENT (ctors
))
2563 && !DECL_HAS_VTT_PARM_P (OVL_CURRENT (ctors
)));
2564 args
= tree_cons (NULL_TREE
, t
, args
);
2566 for (; ctors
; ctors
= OVL_NEXT (ctors
))
2568 tree ctor
= OVL_CURRENT (ctors
);
2569 if (DECL_NONCONVERTING_P (ctor
))
2572 if (TREE_CODE (ctor
) == TEMPLATE_DECL
)
2573 cand
= add_template_candidate (&candidates
, ctor
, totype
,
2574 NULL_TREE
, args
, NULL_TREE
,
2575 TYPE_BINFO (totype
),
2576 TYPE_BINFO (totype
),
2580 cand
= add_function_candidate (&candidates
, ctor
, totype
,
2581 args
, TYPE_BINFO (totype
),
2582 TYPE_BINFO (totype
),
2586 cand
->second_conv
= build_identity_conv (totype
, NULL_TREE
);
2590 args
= build_tree_list (NULL_TREE
, build_this (expr
));
2592 for (; conv_fns
; conv_fns
= TREE_CHAIN (conv_fns
))
2595 tree conversion_path
= TREE_PURPOSE (conv_fns
);
2596 int convflags
= LOOKUP_NO_CONVERSION
;
2598 /* If we are called to convert to a reference type, we are trying to
2599 find an lvalue binding, so don't even consider temporaries. If
2600 we don't find an lvalue binding, the caller will try again to
2601 look for a temporary binding. */
2602 if (TREE_CODE (totype
) == REFERENCE_TYPE
)
2603 convflags
|= LOOKUP_NO_TEMP_BIND
;
2605 for (fns
= TREE_VALUE (conv_fns
); fns
; fns
= OVL_NEXT (fns
))
2607 tree fn
= OVL_CURRENT (fns
);
2609 /* [over.match.funcs] For conversion functions, the function
2610 is considered to be a member of the class of the implicit
2611 object argument for the purpose of defining the type of
2612 the implicit object parameter.
2614 So we pass fromtype as CTYPE to add_*_candidate. */
2616 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
2617 cand
= add_template_candidate (&candidates
, fn
, fromtype
,
2620 TYPE_BINFO (fromtype
),
2625 cand
= add_function_candidate (&candidates
, fn
, fromtype
,
2627 TYPE_BINFO (fromtype
),
2634 = implicit_conversion (totype
,
2635 TREE_TYPE (TREE_TYPE (cand
->fn
)),
2637 /*c_cast_p=*/false, convflags
);
2639 cand
->second_conv
= ics
;
2643 else if (candidates
->viable
== 1 && ics
->bad_p
)
2649 candidates
= splice_viable (candidates
, pedantic
, &any_viable_p
);
2653 cand
= tourney (candidates
);
2656 if (flags
& LOOKUP_COMPLAIN
)
2658 error ("conversion from %qT to %qT is ambiguous",
2660 print_z_candidates (candidates
);
2663 cand
= candidates
; /* any one will do */
2664 cand
->second_conv
= build_ambiguous_conv (totype
, expr
);
2665 cand
->second_conv
->user_conv_p
= true;
2666 if (!any_strictly_viable (candidates
))
2667 cand
->second_conv
->bad_p
= true;
2668 /* If there are viable candidates, don't set ICS_BAD_FLAG; an
2669 ambiguous conversion is no worse than another user-defined
2675 /* Build the user conversion sequence. */
2678 (DECL_CONSTRUCTOR_P (cand
->fn
)
2679 ? totype
: non_reference (TREE_TYPE (TREE_TYPE (cand
->fn
)))),
2680 build_identity_conv (TREE_TYPE (expr
), expr
));
2683 /* Combine it with the second conversion sequence. */
2684 cand
->second_conv
= merge_conversion_sequences (conv
,
2687 if (cand
->viable
== -1)
2688 cand
->second_conv
->bad_p
= true;
2694 build_user_type_conversion (tree totype
, tree expr
, int flags
)
2696 struct z_candidate
*cand
2697 = build_user_type_conversion_1 (totype
, expr
, flags
);
2701 if (cand
->second_conv
->kind
== ck_ambig
)
2702 return error_mark_node
;
2703 expr
= convert_like (cand
->second_conv
, expr
);
2704 return convert_from_reference (expr
);
2709 /* Do any initial processing on the arguments to a function call. */
2712 resolve_args (tree args
)
2715 for (t
= args
; t
; t
= TREE_CHAIN (t
))
2717 tree arg
= TREE_VALUE (t
);
2719 if (error_operand_p (arg
))
2720 return error_mark_node
;
2721 else if (VOID_TYPE_P (TREE_TYPE (arg
)))
2723 error ("invalid use of void expression");
2724 return error_mark_node
;
2726 else if (invalid_nonstatic_memfn_p (arg
))
2727 return error_mark_node
;
2732 /* Perform overload resolution on FN, which is called with the ARGS.
2734 Return the candidate function selected by overload resolution, or
2735 NULL if the event that overload resolution failed. In the case
2736 that overload resolution fails, *CANDIDATES will be the set of
2737 candidates considered, and ANY_VIABLE_P will be set to true or
2738 false to indicate whether or not any of the candidates were
2741 The ARGS should already have gone through RESOLVE_ARGS before this
2742 function is called. */
2744 static struct z_candidate
*
2745 perform_overload_resolution (tree fn
,
2747 struct z_candidate
**candidates
,
2750 struct z_candidate
*cand
;
2751 tree explicit_targs
= NULL_TREE
;
2752 int template_only
= 0;
2755 *any_viable_p
= true;
2757 /* Check FN and ARGS. */
2758 gcc_assert (TREE_CODE (fn
) == FUNCTION_DECL
2759 || TREE_CODE (fn
) == TEMPLATE_DECL
2760 || TREE_CODE (fn
) == OVERLOAD
2761 || TREE_CODE (fn
) == TEMPLATE_ID_EXPR
);
2762 gcc_assert (!args
|| TREE_CODE (args
) == TREE_LIST
);
2764 if (TREE_CODE (fn
) == TEMPLATE_ID_EXPR
)
2766 explicit_targs
= TREE_OPERAND (fn
, 1);
2767 fn
= TREE_OPERAND (fn
, 0);
2771 /* Add the various candidate functions. */
2772 add_candidates (fn
, args
, explicit_targs
, template_only
,
2773 /*conversion_path=*/NULL_TREE
,
2774 /*access_path=*/NULL_TREE
,
2778 *candidates
= splice_viable (*candidates
, pedantic
, any_viable_p
);
2782 cand
= tourney (*candidates
);
2786 /* Return an expression for a call to FN (a namespace-scope function,
2787 or a static member function) with the ARGS. */
2790 build_new_function_call (tree fn
, tree args
, bool koenig_p
)
2792 struct z_candidate
*candidates
, *cand
;
2797 args
= resolve_args (args
);
2798 if (args
== error_mark_node
)
2799 return error_mark_node
;
2801 /* If this function was found without using argument dependent
2802 lookup, then we want to ignore any undeclared friend
2808 fn
= remove_hidden_names (fn
);
2811 error ("no matching function for call to %<%D(%A)%>",
2812 DECL_NAME (OVL_CURRENT (orig_fn
)), args
);
2813 return error_mark_node
;
2817 /* Get the high-water mark for the CONVERSION_OBSTACK. */
2818 p
= conversion_obstack_alloc (0);
2820 cand
= perform_overload_resolution (fn
, args
, &candidates
, &any_viable_p
);
2824 if (!any_viable_p
&& candidates
&& ! candidates
->next
)
2825 return build_function_call (candidates
->fn
, args
);
2826 if (TREE_CODE (fn
) == TEMPLATE_ID_EXPR
)
2827 fn
= TREE_OPERAND (fn
, 0);
2829 error ("no matching function for call to %<%D(%A)%>",
2830 DECL_NAME (OVL_CURRENT (fn
)), args
);
2832 error ("call of overloaded %<%D(%A)%> is ambiguous",
2833 DECL_NAME (OVL_CURRENT (fn
)), args
);
2835 print_z_candidates (candidates
);
2836 result
= error_mark_node
;
2839 result
= build_over_call (cand
, LOOKUP_NORMAL
);
2841 /* Free all the conversions we allocated. */
2842 obstack_free (&conversion_obstack
, p
);
2847 /* Build a call to a global operator new. FNNAME is the name of the
2848 operator (either "operator new" or "operator new[]") and ARGS are
2849 the arguments provided. *SIZE points to the total number of bytes
2850 required by the allocation, and is updated if that is changed here.
2851 *COOKIE_SIZE is non-NULL if a cookie should be used. If this
2852 function determines that no cookie should be used, after all,
2853 *COOKIE_SIZE is set to NULL_TREE. If FN is non-NULL, it will be
2854 set, upon return, to the allocation function called. */
2857 build_operator_new_call (tree fnname
, tree args
,
2858 tree
*size
, tree
*cookie_size
,
2862 struct z_candidate
*candidates
;
2863 struct z_candidate
*cand
;
2868 args
= tree_cons (NULL_TREE
, *size
, args
);
2869 args
= resolve_args (args
);
2870 if (args
== error_mark_node
)
2877 If this lookup fails to find the name, or if the allocated type
2878 is not a class type, the allocation function's name is looked
2879 up in the global scope.
2881 we disregard block-scope declarations of "operator new". */
2882 fns
= lookup_function_nonclass (fnname
, args
, /*block_p=*/false);
2884 /* Figure out what function is being called. */
2885 cand
= perform_overload_resolution (fns
, args
, &candidates
, &any_viable_p
);
2887 /* If no suitable function could be found, issue an error message
2892 error ("no matching function for call to %<%D(%A)%>",
2893 DECL_NAME (OVL_CURRENT (fns
)), args
);
2895 error ("call of overloaded %<%D(%A)%> is ambiguous",
2896 DECL_NAME (OVL_CURRENT (fns
)), args
);
2898 print_z_candidates (candidates
);
2899 return error_mark_node
;
2902 /* If a cookie is required, add some extra space. Whether
2903 or not a cookie is required cannot be determined until
2904 after we know which function was called. */
2907 bool use_cookie
= true;
2908 if (!abi_version_at_least (2))
2910 tree placement
= TREE_CHAIN (args
);
2911 /* In G++ 3.2, the check was implemented incorrectly; it
2912 looked at the placement expression, rather than the
2913 type of the function. */
2914 if (placement
&& !TREE_CHAIN (placement
)
2915 && same_type_p (TREE_TYPE (TREE_VALUE (placement
)),
2923 arg_types
= TYPE_ARG_TYPES (TREE_TYPE (cand
->fn
));
2924 /* Skip the size_t parameter. */
2925 arg_types
= TREE_CHAIN (arg_types
);
2926 /* Check the remaining parameters (if any). */
2928 && TREE_CHAIN (arg_types
) == void_list_node
2929 && same_type_p (TREE_VALUE (arg_types
),
2933 /* If we need a cookie, adjust the number of bytes allocated. */
2936 /* Update the total size. */
2937 *size
= size_binop (PLUS_EXPR
, *size
, *cookie_size
);
2938 /* Update the argument list to reflect the adjusted size. */
2939 TREE_VALUE (args
) = *size
;
2942 *cookie_size
= NULL_TREE
;
2945 /* Tell our caller which function we decided to call. */
2949 /* Build the CALL_EXPR. */
2950 return build_over_call (cand
, LOOKUP_NORMAL
);
2954 build_object_call (tree obj
, tree args
)
2956 struct z_candidate
*candidates
= 0, *cand
;
2957 tree fns
, convs
, mem_args
= NULL_TREE
;
2958 tree type
= TREE_TYPE (obj
);
2960 tree result
= NULL_TREE
;
2963 if (TYPE_PTRMEMFUNC_P (type
))
2965 /* It's no good looking for an overloaded operator() on a
2966 pointer-to-member-function. */
2967 error ("pointer-to-member function %E cannot be called without an object; consider using .* or ->*", obj
);
2968 return error_mark_node
;
2971 if (TYPE_BINFO (type
))
2973 fns
= lookup_fnfields (TYPE_BINFO (type
), ansi_opname (CALL_EXPR
), 1);
2974 if (fns
== error_mark_node
)
2975 return error_mark_node
;
2980 args
= resolve_args (args
);
2982 if (args
== error_mark_node
)
2983 return error_mark_node
;
2985 /* Get the high-water mark for the CONVERSION_OBSTACK. */
2986 p
= conversion_obstack_alloc (0);
2990 tree base
= BINFO_TYPE (BASELINK_BINFO (fns
));
2991 mem_args
= tree_cons (NULL_TREE
, build_this (obj
), args
);
2993 for (fns
= BASELINK_FUNCTIONS (fns
); fns
; fns
= OVL_NEXT (fns
))
2995 tree fn
= OVL_CURRENT (fns
);
2996 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
2997 add_template_candidate (&candidates
, fn
, base
, NULL_TREE
,
2998 mem_args
, NULL_TREE
,
3001 LOOKUP_NORMAL
, DEDUCE_CALL
);
3003 add_function_candidate
3004 (&candidates
, fn
, base
, mem_args
, TYPE_BINFO (type
),
3005 TYPE_BINFO (type
), LOOKUP_NORMAL
);
3009 convs
= lookup_conversions (type
);
3011 for (; convs
; convs
= TREE_CHAIN (convs
))
3013 tree fns
= TREE_VALUE (convs
);
3014 tree totype
= TREE_TYPE (TREE_TYPE (OVL_CURRENT (fns
)));
3016 if ((TREE_CODE (totype
) == POINTER_TYPE
3017 && TREE_CODE (TREE_TYPE (totype
)) == FUNCTION_TYPE
)
3018 || (TREE_CODE (totype
) == REFERENCE_TYPE
3019 && TREE_CODE (TREE_TYPE (totype
)) == FUNCTION_TYPE
)
3020 || (TREE_CODE (totype
) == REFERENCE_TYPE
3021 && TREE_CODE (TREE_TYPE (totype
)) == POINTER_TYPE
3022 && TREE_CODE (TREE_TYPE (TREE_TYPE (totype
))) == FUNCTION_TYPE
))
3023 for (; fns
; fns
= OVL_NEXT (fns
))
3025 tree fn
= OVL_CURRENT (fns
);
3026 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
3027 add_template_conv_candidate
3028 (&candidates
, fn
, obj
, args
, totype
,
3029 /*access_path=*/NULL_TREE
,
3030 /*conversion_path=*/NULL_TREE
);
3032 add_conv_candidate (&candidates
, fn
, obj
, args
,
3033 /*conversion_path=*/NULL_TREE
,
3034 /*access_path=*/NULL_TREE
);
3038 candidates
= splice_viable (candidates
, pedantic
, &any_viable_p
);
3041 error ("no match for call to %<(%T) (%A)%>", TREE_TYPE (obj
), args
);
3042 print_z_candidates (candidates
);
3043 result
= error_mark_node
;
3047 cand
= tourney (candidates
);
3050 error ("call of %<(%T) (%A)%> is ambiguous", TREE_TYPE (obj
), args
);
3051 print_z_candidates (candidates
);
3052 result
= error_mark_node
;
3054 /* Since cand->fn will be a type, not a function, for a conversion
3055 function, we must be careful not to unconditionally look at
3057 else if (TREE_CODE (cand
->fn
) == FUNCTION_DECL
3058 && DECL_OVERLOADED_OPERATOR_P (cand
->fn
) == CALL_EXPR
)
3059 result
= build_over_call (cand
, LOOKUP_NORMAL
);
3062 obj
= convert_like_with_context (cand
->convs
[0], obj
, cand
->fn
, -1);
3063 obj
= convert_from_reference (obj
);
3064 result
= build_function_call (obj
, args
);
3068 /* Free all the conversions we allocated. */
3069 obstack_free (&conversion_obstack
, p
);
3075 op_error (enum tree_code code
, enum tree_code code2
,
3076 tree arg1
, tree arg2
, tree arg3
, const char *problem
)
3080 if (code
== MODIFY_EXPR
)
3081 opname
= assignment_operator_name_info
[code2
].name
;
3083 opname
= operator_name_info
[code
].name
;
3088 error ("%s for ternary %<operator?:%> in %<%E ? %E : %E%>",
3089 problem
, arg1
, arg2
, arg3
);
3092 case POSTINCREMENT_EXPR
:
3093 case POSTDECREMENT_EXPR
:
3094 error ("%s for %<operator%s%> in %<%E%s%>", problem
, opname
, arg1
, opname
);
3098 error ("%s for %<operator[]%> in %<%E[%E]%>", problem
, arg1
, arg2
);
3103 error ("%s for %qs in %<%s %E%>", problem
, opname
, opname
, arg1
);
3108 error ("%s for %<operator%s%> in %<%E %s %E%>",
3109 problem
, opname
, arg1
, opname
, arg2
);
3111 error ("%s for %<operator%s%> in %<%s%E%>",
3112 problem
, opname
, opname
, arg1
);
3117 /* Return the implicit conversion sequence that could be used to
3118 convert E1 to E2 in [expr.cond]. */
3121 conditional_conversion (tree e1
, tree e2
)
3123 tree t1
= non_reference (TREE_TYPE (e1
));
3124 tree t2
= non_reference (TREE_TYPE (e2
));
3130 If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
3131 implicitly converted (clause _conv_) to the type "reference to
3132 T2", subject to the constraint that in the conversion the
3133 reference must bind directly (_dcl.init.ref_) to E1. */
3134 if (real_lvalue_p (e2
))
3136 conv
= implicit_conversion (build_reference_type (t2
),
3140 LOOKUP_NO_TEMP_BIND
);
3147 If E1 and E2 have class type, and the underlying class types are
3148 the same or one is a base class of the other: E1 can be converted
3149 to match E2 if the class of T2 is the same type as, or a base
3150 class of, the class of T1, and the cv-qualification of T2 is the
3151 same cv-qualification as, or a greater cv-qualification than, the
3152 cv-qualification of T1. If the conversion is applied, E1 is
3153 changed to an rvalue of type T2 that still refers to the original
3154 source class object (or the appropriate subobject thereof). */
3155 if (CLASS_TYPE_P (t1
) && CLASS_TYPE_P (t2
)
3156 && ((good_base
= DERIVED_FROM_P (t2
, t1
)) || DERIVED_FROM_P (t1
, t2
)))
3158 if (good_base
&& at_least_as_qualified_p (t2
, t1
))
3160 conv
= build_identity_conv (t1
, e1
);
3161 if (!same_type_p (TYPE_MAIN_VARIANT (t1
),
3162 TYPE_MAIN_VARIANT (t2
)))
3163 conv
= build_conv (ck_base
, t2
, conv
);
3165 conv
= build_conv (ck_rvalue
, t2
, conv
);
3174 Otherwise: E1 can be converted to match E2 if E1 can be implicitly
3175 converted to the type that expression E2 would have if E2 were
3176 converted to an rvalue (or the type it has, if E2 is an rvalue). */
3177 return implicit_conversion (t2
, t1
, e1
, /*c_cast_p=*/false,
3181 /* Implement [expr.cond]. ARG1, ARG2, and ARG3 are the three
3182 arguments to the conditional expression. */
3185 build_conditional_expr (tree arg1
, tree arg2
, tree arg3
)
3189 tree result
= NULL_TREE
;
3190 tree result_type
= NULL_TREE
;
3191 bool lvalue_p
= true;
3192 struct z_candidate
*candidates
= 0;
3193 struct z_candidate
*cand
;
3196 /* As a G++ extension, the second argument to the conditional can be
3197 omitted. (So that `a ? : c' is roughly equivalent to `a ? a :
3198 c'.) If the second operand is omitted, make sure it is
3199 calculated only once. */
3203 pedwarn ("ISO C++ forbids omitting the middle term of a ?: expression");
3205 /* Make sure that lvalues remain lvalues. See g++.oliva/ext1.C. */
3206 if (real_lvalue_p (arg1
))
3207 arg2
= arg1
= stabilize_reference (arg1
);
3209 arg2
= arg1
= save_expr (arg1
);
3214 The first expr ession is implicitly converted to bool (clause
3216 arg1
= perform_implicit_conversion (boolean_type_node
, arg1
);
3218 /* If something has already gone wrong, just pass that fact up the
3220 if (error_operand_p (arg1
)
3221 || error_operand_p (arg2
)
3222 || error_operand_p (arg3
))
3223 return error_mark_node
;
3227 If either the second or the third operand has type (possibly
3228 cv-qualified) void, then the lvalue-to-rvalue (_conv.lval_),
3229 array-to-pointer (_conv.array_), and function-to-pointer
3230 (_conv.func_) standard conversions are performed on the second
3231 and third operands. */
3232 arg2_type
= is_bitfield_expr_with_lowered_type (arg2
);
3234 arg2_type
= TREE_TYPE (arg2
);
3235 arg3_type
= is_bitfield_expr_with_lowered_type (arg3
);
3237 arg3_type
= TREE_TYPE (arg3
);
3238 if (VOID_TYPE_P (arg2_type
) || VOID_TYPE_P (arg3_type
))
3240 /* Do the conversions. We don't these for `void' type arguments
3241 since it can't have any effect and since decay_conversion
3242 does not handle that case gracefully. */
3243 if (!VOID_TYPE_P (arg2_type
))
3244 arg2
= decay_conversion (arg2
);
3245 if (!VOID_TYPE_P (arg3_type
))
3246 arg3
= decay_conversion (arg3
);
3247 arg2_type
= TREE_TYPE (arg2
);
3248 arg3_type
= TREE_TYPE (arg3
);
3252 One of the following shall hold:
3254 --The second or the third operand (but not both) is a
3255 throw-expression (_except.throw_); the result is of the
3256 type of the other and is an rvalue.
3258 --Both the second and the third operands have type void; the
3259 result is of type void and is an rvalue.
3261 We must avoid calling force_rvalue for expressions of type
3262 "void" because it will complain that their value is being
3264 if (TREE_CODE (arg2
) == THROW_EXPR
3265 && TREE_CODE (arg3
) != THROW_EXPR
)
3267 if (!VOID_TYPE_P (arg3_type
))
3268 arg3
= force_rvalue (arg3
);
3269 arg3_type
= TREE_TYPE (arg3
);
3270 result_type
= arg3_type
;
3272 else if (TREE_CODE (arg2
) != THROW_EXPR
3273 && TREE_CODE (arg3
) == THROW_EXPR
)
3275 if (!VOID_TYPE_P (arg2_type
))
3276 arg2
= force_rvalue (arg2
);
3277 arg2_type
= TREE_TYPE (arg2
);
3278 result_type
= arg2_type
;
3280 else if (VOID_TYPE_P (arg2_type
) && VOID_TYPE_P (arg3_type
))
3281 result_type
= void_type_node
;
3284 if (VOID_TYPE_P (arg2_type
))
3285 error ("second operand to the conditional operator "
3286 "is of type %<void%>, "
3287 "but the third operand is neither a throw-expression "
3288 "nor of type %<void%>");
3290 error ("third operand to the conditional operator "
3291 "is of type %<void%>, "
3292 "but the second operand is neither a throw-expression "
3293 "nor of type %<void%>");
3294 return error_mark_node
;
3298 goto valid_operands
;
3302 Otherwise, if the second and third operand have different types,
3303 and either has (possibly cv-qualified) class type, an attempt is
3304 made to convert each of those operands to the type of the other. */
3305 else if (!same_type_p (arg2_type
, arg3_type
)
3306 && (CLASS_TYPE_P (arg2_type
) || CLASS_TYPE_P (arg3_type
)))
3311 /* Get the high-water mark for the CONVERSION_OBSTACK. */
3312 p
= conversion_obstack_alloc (0);
3314 conv2
= conditional_conversion (arg2
, arg3
);
3315 conv3
= conditional_conversion (arg3
, arg2
);
3319 If both can be converted, or one can be converted but the
3320 conversion is ambiguous, the program is ill-formed. If
3321 neither can be converted, the operands are left unchanged and
3322 further checking is performed as described below. If exactly
3323 one conversion is possible, that conversion is applied to the
3324 chosen operand and the converted operand is used in place of
3325 the original operand for the remainder of this section. */
3326 if ((conv2
&& !conv2
->bad_p
3327 && conv3
&& !conv3
->bad_p
)
3328 || (conv2
&& conv2
->kind
== ck_ambig
)
3329 || (conv3
&& conv3
->kind
== ck_ambig
))
3331 error ("operands to ?: have different types %qT and %qT",
3332 arg2_type
, arg3_type
);
3333 result
= error_mark_node
;
3335 else if (conv2
&& (!conv2
->bad_p
|| !conv3
))
3337 arg2
= convert_like (conv2
, arg2
);
3338 arg2
= convert_from_reference (arg2
);
3339 arg2_type
= TREE_TYPE (arg2
);
3340 /* Even if CONV2 is a valid conversion, the result of the
3341 conversion may be invalid. For example, if ARG3 has type
3342 "volatile X", and X does not have a copy constructor
3343 accepting a "volatile X&", then even if ARG2 can be
3344 converted to X, the conversion will fail. */
3345 if (error_operand_p (arg2
))
3346 result
= error_mark_node
;
3348 else if (conv3
&& (!conv3
->bad_p
|| !conv2
))
3350 arg3
= convert_like (conv3
, arg3
);
3351 arg3
= convert_from_reference (arg3
);
3352 arg3_type
= TREE_TYPE (arg3
);
3353 if (error_operand_p (arg3
))
3354 result
= error_mark_node
;
3357 /* Free all the conversions we allocated. */
3358 obstack_free (&conversion_obstack
, p
);
3363 /* If, after the conversion, both operands have class type,
3364 treat the cv-qualification of both operands as if it were the
3365 union of the cv-qualification of the operands.
3367 The standard is not clear about what to do in this
3368 circumstance. For example, if the first operand has type
3369 "const X" and the second operand has a user-defined
3370 conversion to "volatile X", what is the type of the second
3371 operand after this step? Making it be "const X" (matching
3372 the first operand) seems wrong, as that discards the
3373 qualification without actually performing a copy. Leaving it
3374 as "volatile X" seems wrong as that will result in the
3375 conditional expression failing altogether, even though,
3376 according to this step, the one operand could be converted to
3377 the type of the other. */
3378 if ((conv2
|| conv3
)
3379 && CLASS_TYPE_P (arg2_type
)
3380 && TYPE_QUALS (arg2_type
) != TYPE_QUALS (arg3_type
))
3381 arg2_type
= arg3_type
=
3382 cp_build_qualified_type (arg2_type
,
3383 TYPE_QUALS (arg2_type
)
3384 | TYPE_QUALS (arg3_type
));
3389 If the second and third operands are lvalues and have the same
3390 type, the result is of that type and is an lvalue. */
3391 if (real_lvalue_p (arg2
)
3392 && real_lvalue_p (arg3
)
3393 && same_type_p (arg2_type
, arg3_type
))
3395 result_type
= arg2_type
;
3396 goto valid_operands
;
3401 Otherwise, the result is an rvalue. If the second and third
3402 operand do not have the same type, and either has (possibly
3403 cv-qualified) class type, overload resolution is used to
3404 determine the conversions (if any) to be applied to the operands
3405 (_over.match.oper_, _over.built_). */
3407 if (!same_type_p (arg2_type
, arg3_type
)
3408 && (CLASS_TYPE_P (arg2_type
) || CLASS_TYPE_P (arg3_type
)))
3414 /* Rearrange the arguments so that add_builtin_candidate only has
3415 to know about two args. In build_builtin_candidates, the
3416 arguments are unscrambled. */
3420 add_builtin_candidates (&candidates
,
3423 ansi_opname (COND_EXPR
),
3429 If the overload resolution fails, the program is
3431 candidates
= splice_viable (candidates
, pedantic
, &any_viable_p
);
3434 op_error (COND_EXPR
, NOP_EXPR
, arg1
, arg2
, arg3
, "no match");
3435 print_z_candidates (candidates
);
3436 return error_mark_node
;
3438 cand
= tourney (candidates
);
3441 op_error (COND_EXPR
, NOP_EXPR
, arg1
, arg2
, arg3
, "no match");
3442 print_z_candidates (candidates
);
3443 return error_mark_node
;
3448 Otherwise, the conversions thus determined are applied, and
3449 the converted operands are used in place of the original
3450 operands for the remainder of this section. */
3451 conv
= cand
->convs
[0];
3452 arg1
= convert_like (conv
, arg1
);
3453 conv
= cand
->convs
[1];
3454 arg2
= convert_like (conv
, arg2
);
3455 conv
= cand
->convs
[2];
3456 arg3
= convert_like (conv
, arg3
);
3461 Lvalue-to-rvalue (_conv.lval_), array-to-pointer (_conv.array_),
3462 and function-to-pointer (_conv.func_) standard conversions are
3463 performed on the second and third operands.
3465 We need to force the lvalue-to-rvalue conversion here for class types,
3466 so we get TARGET_EXPRs; trying to deal with a COND_EXPR of class rvalues
3467 that isn't wrapped with a TARGET_EXPR plays havoc with exception
3470 arg2
= force_rvalue (arg2
);
3471 if (!CLASS_TYPE_P (arg2_type
))
3472 arg2_type
= TREE_TYPE (arg2
);
3474 arg3
= force_rvalue (arg3
);
3475 if (!CLASS_TYPE_P (arg2_type
))
3476 arg3_type
= TREE_TYPE (arg3
);
3478 if (arg2
== error_mark_node
|| arg3
== error_mark_node
)
3479 return error_mark_node
;
3483 After those conversions, one of the following shall hold:
3485 --The second and third operands have the same type; the result is of
3487 if (same_type_p (arg2_type
, arg3_type
))
3488 result_type
= arg2_type
;
3491 --The second and third operands have arithmetic or enumeration
3492 type; the usual arithmetic conversions are performed to bring
3493 them to a common type, and the result is of that type. */
3494 else if ((ARITHMETIC_TYPE_P (arg2_type
)
3495 || TREE_CODE (arg2_type
) == ENUMERAL_TYPE
)
3496 && (ARITHMETIC_TYPE_P (arg3_type
)
3497 || TREE_CODE (arg3_type
) == ENUMERAL_TYPE
))
3499 /* In this case, there is always a common type. */
3500 result_type
= type_after_usual_arithmetic_conversions (arg2_type
,
3503 if (TREE_CODE (arg2_type
) == ENUMERAL_TYPE
3504 && TREE_CODE (arg3_type
) == ENUMERAL_TYPE
)
3505 warning (0, "enumeral mismatch in conditional expression: %qT vs %qT",
3506 arg2_type
, arg3_type
);
3507 else if (extra_warnings
3508 && ((TREE_CODE (arg2_type
) == ENUMERAL_TYPE
3509 && !same_type_p (arg3_type
, type_promotes_to (arg2_type
)))
3510 || (TREE_CODE (arg3_type
) == ENUMERAL_TYPE
3511 && !same_type_p (arg2_type
, type_promotes_to (arg3_type
)))))
3512 warning (0, "enumeral and non-enumeral type in conditional expression");
3514 arg2
= perform_implicit_conversion (result_type
, arg2
);
3515 arg3
= perform_implicit_conversion (result_type
, arg3
);
3519 --The second and third operands have pointer type, or one has
3520 pointer type and the other is a null pointer constant; pointer
3521 conversions (_conv.ptr_) and qualification conversions
3522 (_conv.qual_) are performed to bring them to their composite
3523 pointer type (_expr.rel_). The result is of the composite
3526 --The second and third operands have pointer to member type, or
3527 one has pointer to member type and the other is a null pointer
3528 constant; pointer to member conversions (_conv.mem_) and
3529 qualification conversions (_conv.qual_) are performed to bring
3530 them to a common type, whose cv-qualification shall match the
3531 cv-qualification of either the second or the third operand.
3532 The result is of the common type. */
3533 else if ((null_ptr_cst_p (arg2
)
3534 && (TYPE_PTR_P (arg3_type
) || TYPE_PTR_TO_MEMBER_P (arg3_type
)))
3535 || (null_ptr_cst_p (arg3
)
3536 && (TYPE_PTR_P (arg2_type
) || TYPE_PTR_TO_MEMBER_P (arg2_type
)))
3537 || (TYPE_PTR_P (arg2_type
) && TYPE_PTR_P (arg3_type
))
3538 || (TYPE_PTRMEM_P (arg2_type
) && TYPE_PTRMEM_P (arg3_type
))
3539 || (TYPE_PTRMEMFUNC_P (arg2_type
) && TYPE_PTRMEMFUNC_P (arg3_type
)))
3541 result_type
= composite_pointer_type (arg2_type
, arg3_type
, arg2
,
3542 arg3
, "conditional expression");
3543 if (result_type
== error_mark_node
)
3544 return error_mark_node
;
3545 arg2
= perform_implicit_conversion (result_type
, arg2
);
3546 arg3
= perform_implicit_conversion (result_type
, arg3
);
3551 error ("operands to ?: have different types %qT and %qT",
3552 arg2_type
, arg3_type
);
3553 return error_mark_node
;
3557 result
= fold_if_not_in_template (build3 (COND_EXPR
, result_type
, arg1
,
3559 /* We can't use result_type below, as fold might have returned a
3564 /* Expand both sides into the same slot, hopefully the target of
3565 the ?: expression. We used to check for TARGET_EXPRs here,
3566 but now we sometimes wrap them in NOP_EXPRs so the test would
3568 if (CLASS_TYPE_P (TREE_TYPE (result
)))
3569 result
= get_target_expr (result
);
3570 /* If this expression is an rvalue, but might be mistaken for an
3571 lvalue, we must add a NON_LVALUE_EXPR. */
3572 result
= rvalue (result
);
3578 /* OPERAND is an operand to an expression. Perform necessary steps
3579 required before using it. If OPERAND is NULL_TREE, NULL_TREE is
3583 prep_operand (tree operand
)
3587 if (CLASS_TYPE_P (TREE_TYPE (operand
))
3588 && CLASSTYPE_TEMPLATE_INSTANTIATION (TREE_TYPE (operand
)))
3589 /* Make sure the template type is instantiated now. */
3590 instantiate_class_template (TYPE_MAIN_VARIANT (TREE_TYPE (operand
)));
3596 /* Add each of the viable functions in FNS (a FUNCTION_DECL or
3597 OVERLOAD) to the CANDIDATES, returning an updated list of
3598 CANDIDATES. The ARGS are the arguments provided to the call,
3599 without any implicit object parameter. The EXPLICIT_TARGS are
3600 explicit template arguments provided. TEMPLATE_ONLY is true if
3601 only template functions should be considered. CONVERSION_PATH,
3602 ACCESS_PATH, and FLAGS are as for add_function_candidate. */
3605 add_candidates (tree fns
, tree args
,
3606 tree explicit_targs
, bool template_only
,
3607 tree conversion_path
, tree access_path
,
3609 struct z_candidate
**candidates
)
3612 tree non_static_args
;
3614 ctype
= conversion_path
? BINFO_TYPE (conversion_path
) : NULL_TREE
;
3615 /* Delay creating the implicit this parameter until it is needed. */
3616 non_static_args
= NULL_TREE
;
3623 fn
= OVL_CURRENT (fns
);
3624 /* Figure out which set of arguments to use. */
3625 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn
))
3627 /* If this function is a non-static member, prepend the implicit
3628 object parameter. */
3629 if (!non_static_args
)
3630 non_static_args
= tree_cons (NULL_TREE
,
3631 build_this (TREE_VALUE (args
)),
3633 fn_args
= non_static_args
;
3636 /* Otherwise, just use the list of arguments provided. */
3639 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
3640 add_template_candidate (candidates
,
3650 else if (!template_only
)
3651 add_function_candidate (candidates
,
3658 fns
= OVL_NEXT (fns
);
3663 build_new_op (enum tree_code code
, int flags
, tree arg1
, tree arg2
, tree arg3
,
3666 struct z_candidate
*candidates
= 0, *cand
;
3667 tree arglist
, fnname
;
3669 tree result
= NULL_TREE
;
3670 bool result_valid_p
= false;
3671 enum tree_code code2
= NOP_EXPR
;
3677 if (error_operand_p (arg1
)
3678 || error_operand_p (arg2
)
3679 || error_operand_p (arg3
))
3680 return error_mark_node
;
3682 if (code
== MODIFY_EXPR
)
3684 code2
= TREE_CODE (arg3
);
3686 fnname
= ansi_assopname (code2
);
3689 fnname
= ansi_opname (code
);
3691 arg1
= prep_operand (arg1
);
3697 case VEC_DELETE_EXPR
:
3699 /* Use build_op_new_call and build_op_delete_call instead. */
3703 return build_object_call (arg1
, arg2
);
3709 arg2
= prep_operand (arg2
);
3710 arg3
= prep_operand (arg3
);
3712 if (code
== COND_EXPR
)
3714 if (arg2
== NULL_TREE
3715 || TREE_CODE (TREE_TYPE (arg2
)) == VOID_TYPE
3716 || TREE_CODE (TREE_TYPE (arg3
)) == VOID_TYPE
3717 || (! IS_OVERLOAD_TYPE (TREE_TYPE (arg2
))
3718 && ! IS_OVERLOAD_TYPE (TREE_TYPE (arg3
))))
3721 else if (! IS_OVERLOAD_TYPE (TREE_TYPE (arg1
))
3722 && (! arg2
|| ! IS_OVERLOAD_TYPE (TREE_TYPE (arg2
))))
3725 if (code
== POSTINCREMENT_EXPR
|| code
== POSTDECREMENT_EXPR
)
3726 arg2
= integer_zero_node
;
3728 arglist
= NULL_TREE
;
3730 arglist
= tree_cons (NULL_TREE
, arg3
, arglist
);
3732 arglist
= tree_cons (NULL_TREE
, arg2
, arglist
);
3733 arglist
= tree_cons (NULL_TREE
, arg1
, arglist
);
3735 /* Get the high-water mark for the CONVERSION_OBSTACK. */
3736 p
= conversion_obstack_alloc (0);
3738 /* Add namespace-scope operators to the list of functions to
3740 add_candidates (lookup_function_nonclass (fnname
, arglist
, /*block_p=*/true),
3741 arglist
, NULL_TREE
, false, NULL_TREE
, NULL_TREE
,
3742 flags
, &candidates
);
3743 /* Add class-member operators to the candidate set. */
3744 if (CLASS_TYPE_P (TREE_TYPE (arg1
)))
3748 fns
= lookup_fnfields (TREE_TYPE (arg1
), fnname
, 1);
3749 if (fns
== error_mark_node
)
3751 result
= error_mark_node
;
3752 goto user_defined_result_ready
;
3755 add_candidates (BASELINK_FUNCTIONS (fns
), arglist
,
3757 BASELINK_BINFO (fns
),
3758 TYPE_BINFO (TREE_TYPE (arg1
)),
3759 flags
, &candidates
);
3762 /* Rearrange the arguments for ?: so that add_builtin_candidate only has
3763 to know about two args; a builtin candidate will always have a first
3764 parameter of type bool. We'll handle that in
3765 build_builtin_candidate. */
3766 if (code
== COND_EXPR
)
3776 args
[2] = NULL_TREE
;
3779 add_builtin_candidates (&candidates
, code
, code2
, fnname
, args
, flags
);
3785 /* For these, the built-in candidates set is empty
3786 [over.match.oper]/3. We don't want non-strict matches
3787 because exact matches are always possible with built-in
3788 operators. The built-in candidate set for COMPONENT_REF
3789 would be empty too, but since there are no such built-in
3790 operators, we accept non-strict matches for them. */
3795 strict_p
= pedantic
;
3799 candidates
= splice_viable (candidates
, strict_p
, &any_viable_p
);
3804 case POSTINCREMENT_EXPR
:
3805 case POSTDECREMENT_EXPR
:
3806 /* Look for an `operator++ (int)'. If they didn't have
3807 one, then we fall back to the old way of doing things. */
3808 if (flags
& LOOKUP_COMPLAIN
)
3809 pedwarn ("no %<%D(int)%> declared for postfix %qs, "
3810 "trying prefix operator instead",
3812 operator_name_info
[code
].name
);
3813 if (code
== POSTINCREMENT_EXPR
)
3814 code
= PREINCREMENT_EXPR
;
3816 code
= PREDECREMENT_EXPR
;
3817 result
= build_new_op (code
, flags
, arg1
, NULL_TREE
, NULL_TREE
,
3821 /* The caller will deal with these. */
3826 result_valid_p
= true;
3830 if (flags
& LOOKUP_COMPLAIN
)
3832 op_error (code
, code2
, arg1
, arg2
, arg3
, "no match");
3833 print_z_candidates (candidates
);
3835 result
= error_mark_node
;
3841 cand
= tourney (candidates
);
3844 if (flags
& LOOKUP_COMPLAIN
)
3846 op_error (code
, code2
, arg1
, arg2
, arg3
, "ambiguous overload");
3847 print_z_candidates (candidates
);
3849 result
= error_mark_node
;
3851 else if (TREE_CODE (cand
->fn
) == FUNCTION_DECL
)
3854 *overloaded_p
= true;
3856 result
= build_over_call (cand
, LOOKUP_NORMAL
);
3860 /* Give any warnings we noticed during overload resolution. */
3863 struct candidate_warning
*w
;
3864 for (w
= cand
->warnings
; w
; w
= w
->next
)
3865 joust (cand
, w
->loser
, 1);
3868 /* Check for comparison of different enum types. */
3877 if (TREE_CODE (TREE_TYPE (arg1
)) == ENUMERAL_TYPE
3878 && TREE_CODE (TREE_TYPE (arg2
)) == ENUMERAL_TYPE
3879 && (TYPE_MAIN_VARIANT (TREE_TYPE (arg1
))
3880 != TYPE_MAIN_VARIANT (TREE_TYPE (arg2
))))
3882 warning (0, "comparison between %q#T and %q#T",
3883 TREE_TYPE (arg1
), TREE_TYPE (arg2
));
3890 /* We need to strip any leading REF_BIND so that bitfields
3891 don't cause errors. This should not remove any important
3892 conversions, because builtins don't apply to class
3893 objects directly. */
3894 conv
= cand
->convs
[0];
3895 if (conv
->kind
== ck_ref_bind
)
3896 conv
= conv
->u
.next
;
3897 arg1
= convert_like (conv
, arg1
);
3900 conv
= cand
->convs
[1];
3901 if (conv
->kind
== ck_ref_bind
)
3902 conv
= conv
->u
.next
;
3903 arg2
= convert_like (conv
, arg2
);
3907 conv
= cand
->convs
[2];
3908 if (conv
->kind
== ck_ref_bind
)
3909 conv
= conv
->u
.next
;
3910 arg3
= convert_like (conv
, arg3
);
3915 user_defined_result_ready
:
3917 /* Free all the conversions we allocated. */
3918 obstack_free (&conversion_obstack
, p
);
3920 if (result
|| result_valid_p
)
3927 return build_modify_expr (arg1
, code2
, arg2
);
3930 return build_indirect_ref (arg1
, "unary *");
3935 case TRUNC_DIV_EXPR
:
3946 case TRUNC_MOD_EXPR
:
3950 case TRUTH_ANDIF_EXPR
:
3951 case TRUTH_ORIF_EXPR
:
3952 return cp_build_binary_op (code
, arg1
, arg2
);
3954 case UNARY_PLUS_EXPR
:
3957 case TRUTH_NOT_EXPR
:
3958 case PREINCREMENT_EXPR
:
3959 case POSTINCREMENT_EXPR
:
3960 case PREDECREMENT_EXPR
:
3961 case POSTDECREMENT_EXPR
:
3964 return build_unary_op (code
, arg1
, candidates
!= 0);
3967 return build_array_ref (arg1
, arg2
);
3970 return build_conditional_expr (arg1
, arg2
, arg3
);
3973 return build_m_component_ref (build_indirect_ref (arg1
, NULL
), arg2
);
3975 /* The caller will deal with these. */
3987 /* Build a call to operator delete. This has to be handled very specially,
3988 because the restrictions on what signatures match are different from all
3989 other call instances. For a normal delete, only a delete taking (void *)
3990 or (void *, size_t) is accepted. For a placement delete, only an exact
3991 match with the placement new is accepted.
3993 CODE is either DELETE_EXPR or VEC_DELETE_EXPR.
3994 ADDR is the pointer to be deleted.
3995 SIZE is the size of the memory block to be deleted.
3996 GLOBAL_P is true if the delete-expression should not consider
3997 class-specific delete operators.
3998 PLACEMENT is the corresponding placement new call, or NULL_TREE.
3999 If PLACEMENT is non-NULL, then ALLOC_FN is the allocation function
4000 called to perform the placement new. */
4003 build_op_delete_call (enum tree_code code
, tree addr
, tree size
,
4004 bool global_p
, tree placement
,
4007 tree fn
= NULL_TREE
;
4008 tree fns
, fnname
, argtypes
, args
, type
;
4011 if (addr
== error_mark_node
)
4012 return error_mark_node
;
4014 type
= strip_array_types (TREE_TYPE (TREE_TYPE (addr
)));
4016 fnname
= ansi_opname (code
);
4018 if (CLASS_TYPE_P (type
)
4019 && COMPLETE_TYPE_P (complete_type (type
))
4023 If the result of the lookup is ambiguous or inaccessible, or if
4024 the lookup selects a placement deallocation function, the
4025 program is ill-formed.
4027 Therefore, we ask lookup_fnfields to complain about ambiguity. */
4029 fns
= lookup_fnfields (TYPE_BINFO (type
), fnname
, 1);
4030 if (fns
== error_mark_node
)
4031 return error_mark_node
;
4036 if (fns
== NULL_TREE
)
4037 fns
= lookup_name_nonclass (fnname
);
4041 /* Get the parameter types for the allocation function that is
4043 gcc_assert (alloc_fn
!= NULL_TREE
);
4044 argtypes
= TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn
)));
4045 /* Also the second argument. */
4046 args
= TREE_CHAIN (TREE_OPERAND (placement
, 1));
4050 /* First try it without the size argument. */
4051 argtypes
= void_list_node
;
4055 /* Strip const and volatile from addr. */
4056 addr
= cp_convert (ptr_type_node
, addr
);
4058 /* We make two tries at finding a matching `operator delete'. On
4059 the first pass, we look for a one-operator (or placement)
4060 operator delete. If we're not doing placement delete, then on
4061 the second pass we look for a two-argument delete. */
4062 for (pass
= 0; pass
< (placement
? 1 : 2); ++pass
)
4064 /* Go through the `operator delete' functions looking for one
4065 with a matching type. */
4066 for (fn
= BASELINK_P (fns
) ? BASELINK_FUNCTIONS (fns
) : fns
;
4072 /* The first argument must be "void *". */
4073 t
= TYPE_ARG_TYPES (TREE_TYPE (OVL_CURRENT (fn
)));
4074 if (!same_type_p (TREE_VALUE (t
), ptr_type_node
))
4077 /* On the first pass, check the rest of the arguments. */
4083 if (!same_type_p (TREE_VALUE (a
), TREE_VALUE (t
)))
4091 /* On the second pass, the second argument must be
4094 && same_type_p (TREE_VALUE (t
), size_type_node
)
4095 && TREE_CHAIN (t
) == void_list_node
)
4099 /* If we found a match, we're done. */
4104 /* If we have a matching function, call it. */
4107 /* Make sure we have the actual function, and not an
4109 fn
= OVL_CURRENT (fn
);
4111 /* If the FN is a member function, make sure that it is
4113 if (DECL_CLASS_SCOPE_P (fn
))
4114 perform_or_defer_access_check (TYPE_BINFO (type
), fn
, fn
);
4117 args
= tree_cons (NULL_TREE
, addr
, args
);
4119 args
= tree_cons (NULL_TREE
, addr
,
4120 build_tree_list (NULL_TREE
, size
));
4124 /* The placement args might not be suitable for overload
4125 resolution at this point, so build the call directly. */
4127 return build_cxx_call (fn
, args
);
4130 return build_function_call (fn
, args
);
4133 /* If we are doing placement delete we do nothing if we don't find a
4134 matching op delete. */
4138 error ("no suitable %<operator %s%> for %qT",
4139 operator_name_info
[(int)code
].name
, type
);
4140 return error_mark_node
;
4143 /* If the current scope isn't allowed to access DECL along
4144 BASETYPE_PATH, give an error. The most derived class in
4145 BASETYPE_PATH is the one used to qualify DECL. DIAG_DECL is
4146 the declaration to use in the error diagnostic. */
4149 enforce_access (tree basetype_path
, tree decl
, tree diag_decl
)
4151 gcc_assert (TREE_CODE (basetype_path
) == TREE_BINFO
);
4153 if (!accessible_p (basetype_path
, decl
, true))
4155 if (TREE_PRIVATE (decl
))
4156 error ("%q+#D is private", diag_decl
);
4157 else if (TREE_PROTECTED (decl
))
4158 error ("%q+#D is protected", diag_decl
);
4160 error ("%q+#D is inaccessible", diag_decl
);
4161 error ("within this context");
4168 /* Check that a callable constructor to initialize a temporary of
4169 TYPE from an EXPR exists. */
4172 check_constructor_callable (tree type
, tree expr
)
4174 build_special_member_call (NULL_TREE
,
4175 complete_ctor_identifier
,
4176 build_tree_list (NULL_TREE
, expr
),
4178 LOOKUP_NORMAL
| LOOKUP_ONLYCONVERTING
4179 | LOOKUP_NO_CONVERSION
4180 | LOOKUP_CONSTRUCTOR_CALLABLE
);
4183 /* Initialize a temporary of type TYPE with EXPR. The FLAGS are a
4184 bitwise or of LOOKUP_* values. If any errors are warnings are
4185 generated, set *DIAGNOSTIC_FN to "error" or "warning",
4186 respectively. If no diagnostics are generated, set *DIAGNOSTIC_FN
4190 build_temp (tree expr
, tree type
, int flags
,
4191 diagnostic_fn_t
*diagnostic_fn
)
4195 savew
= warningcount
, savee
= errorcount
;
4196 expr
= build_special_member_call (NULL_TREE
,
4197 complete_ctor_identifier
,
4198 build_tree_list (NULL_TREE
, expr
),
4200 if (warningcount
> savew
)
4201 *diagnostic_fn
= warning0
;
4202 else if (errorcount
> savee
)
4203 *diagnostic_fn
= error
;
4205 *diagnostic_fn
= NULL
;
4210 /* Perform the conversions in CONVS on the expression EXPR. FN and
4211 ARGNUM are used for diagnostics. ARGNUM is zero based, -1
4212 indicates the `this' argument of a method. INNER is nonzero when
4213 being called to continue a conversion chain. It is negative when a
4214 reference binding will be applied, positive otherwise. If
4215 ISSUE_CONVERSION_WARNINGS is true, warnings about suspicious
4216 conversions will be emitted if appropriate. If C_CAST_P is true,
4217 this conversion is coming from a C-style cast; in that case,
4218 conversions to inaccessible bases are permitted. */
4221 convert_like_real (conversion
*convs
, tree expr
, tree fn
, int argnum
,
4222 int inner
, bool issue_conversion_warnings
,
4225 tree totype
= convs
->type
;
4226 diagnostic_fn_t diagnostic_fn
;
4229 && convs
->kind
!= ck_user
4230 && convs
->kind
!= ck_ambig
4231 && convs
->kind
!= ck_ref_bind
)
4233 conversion
*t
= convs
;
4234 for (; t
; t
= convs
->u
.next
)
4236 if (t
->kind
== ck_user
|| !t
->bad_p
)
4238 expr
= convert_like_real (t
, expr
, fn
, argnum
, 1,
4239 /*issue_conversion_warnings=*/false,
4240 /*c_cast_p=*/false);
4243 else if (t
->kind
== ck_ambig
)
4244 return convert_like_real (t
, expr
, fn
, argnum
, 1,
4245 /*issue_conversion_warnings=*/false,
4246 /*c_cast_p=*/false);
4247 else if (t
->kind
== ck_identity
)
4250 pedwarn ("invalid conversion from %qT to %qT", TREE_TYPE (expr
), totype
);
4252 pedwarn (" initializing argument %P of %qD", argnum
, fn
);
4253 return cp_convert (totype
, expr
);
4256 if (issue_conversion_warnings
)
4258 tree t
= non_reference (totype
);
4260 /* Issue warnings about peculiar, but valid, uses of NULL. */
4261 if (expr
== null_node
&& TREE_CODE (t
) != BOOLEAN_TYPE
&& ARITHMETIC_TYPE_P (t
))
4264 warning (OPT_Wconversion
, "passing NULL to non-pointer argument %P of %qD",
4267 warning (OPT_Wconversion
, "converting to non-pointer type %qT from NULL", t
);
4270 /* Warn about assigning a floating-point type to an integer type. */
4271 if (TREE_CODE (TREE_TYPE (expr
)) == REAL_TYPE
4272 && TREE_CODE (t
) == INTEGER_TYPE
)
4275 warning (OPT_Wconversion
, "passing %qT for argument %P to %qD",
4276 TREE_TYPE (expr
), argnum
, fn
);
4278 warning (OPT_Wconversion
, "converting to %qT from %qT", t
, TREE_TYPE (expr
));
4282 switch (convs
->kind
)
4286 struct z_candidate
*cand
= convs
->cand
;
4287 tree convfn
= cand
->fn
;
4290 if (DECL_CONSTRUCTOR_P (convfn
))
4292 tree t
= build_int_cst (build_pointer_type (DECL_CONTEXT (convfn
)),
4295 args
= build_tree_list (NULL_TREE
, expr
);
4296 /* We should never try to call the abstract or base constructor
4298 gcc_assert (!DECL_HAS_IN_CHARGE_PARM_P (convfn
)
4299 && !DECL_HAS_VTT_PARM_P (convfn
));
4300 args
= tree_cons (NULL_TREE
, t
, args
);
4303 args
= build_this (expr
);
4304 expr
= build_over_call (cand
, LOOKUP_NORMAL
);
4306 /* If this is a constructor or a function returning an aggr type,
4307 we need to build up a TARGET_EXPR. */
4308 if (DECL_CONSTRUCTOR_P (convfn
))
4309 expr
= build_cplus_new (totype
, expr
);
4311 /* The result of the call is then used to direct-initialize the object
4312 that is the destination of the copy-initialization. [dcl.init]
4314 Note that this step is not reflected in the conversion sequence;
4315 it affects the semantics when we actually perform the
4316 conversion, but is not considered during overload resolution.
4318 If the target is a class, that means call a ctor. */
4319 if (IS_AGGR_TYPE (totype
)
4320 && (inner
>= 0 || !lvalue_p (expr
)))
4324 /* Core issue 84, now a DR, says that we don't
4325 allow UDCs for these args (which deliberately
4326 breaks copy-init of an auto_ptr<Base> from an
4327 auto_ptr<Derived>). */
4328 LOOKUP_NORMAL
|LOOKUP_ONLYCONVERTING
|LOOKUP_NO_CONVERSION
,
4335 (" initializing argument %P of %qD from result of %qD",
4336 argnum
, fn
, convfn
);
4339 (" initializing temporary from result of %qD", convfn
);
4341 expr
= build_cplus_new (totype
, expr
);
4346 if (type_unknown_p (expr
))
4347 expr
= instantiate_type (totype
, expr
, tf_warning_or_error
);
4348 /* Convert a constant to its underlying value, unless we are
4349 about to bind it to a reference, in which case we need to
4350 leave it as an lvalue. */
4352 expr
= decl_constant_value (expr
);
4353 if (convs
->check_copy_constructor_p
)
4354 check_constructor_callable (totype
, expr
);
4357 /* Call build_user_type_conversion again for the error. */
4358 return build_user_type_conversion
4359 (totype
, convs
->u
.expr
, LOOKUP_NORMAL
);
4365 expr
= convert_like_real (convs
->u
.next
, expr
, fn
, argnum
,
4366 convs
->kind
== ck_ref_bind
? -1 : 1,
4367 /*issue_conversion_warnings=*/false,
4369 if (expr
== error_mark_node
)
4370 return error_mark_node
;
4372 switch (convs
->kind
)
4375 expr
= convert_bitfield_to_declared_type (expr
);
4376 if (! IS_AGGR_TYPE (totype
))
4378 /* Else fall through. */
4380 if (convs
->kind
== ck_base
&& !convs
->need_temporary_p
)
4382 /* We are going to bind a reference directly to a base-class
4383 subobject of EXPR. */
4384 if (convs
->check_copy_constructor_p
)
4385 check_constructor_callable (TREE_TYPE (expr
), expr
);
4386 /* Build an expression for `*((base*) &expr)'. */
4387 expr
= build_unary_op (ADDR_EXPR
, expr
, 0);
4388 expr
= convert_to_base (expr
, build_pointer_type (totype
),
4389 !c_cast_p
, /*nonnull=*/true);
4390 expr
= build_indirect_ref (expr
, "implicit conversion");
4394 /* Copy-initialization where the cv-unqualified version of the source
4395 type is the same class as, or a derived class of, the class of the
4396 destination [is treated as direct-initialization]. [dcl.init] */
4397 expr
= build_temp (expr
, totype
, LOOKUP_NORMAL
|LOOKUP_ONLYCONVERTING
,
4399 if (diagnostic_fn
&& fn
)
4400 diagnostic_fn (" initializing argument %P of %qD", argnum
, fn
);
4401 return build_cplus_new (totype
, expr
);
4405 tree ref_type
= totype
;
4407 /* If necessary, create a temporary. */
4408 if (convs
->need_temporary_p
|| !lvalue_p (expr
))
4410 tree type
= convs
->u
.next
->type
;
4411 cp_lvalue_kind lvalue
= real_lvalue_p (expr
);
4413 if (!CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (ref_type
)))
4415 /* If the reference is volatile or non-const, we
4416 cannot create a temporary. */
4417 if (lvalue
& clk_bitfield
)
4418 error ("cannot bind bitfield %qE to %qT",
4420 else if (lvalue
& clk_packed
)
4421 error ("cannot bind packed field %qE to %qT",
4424 error ("cannot bind rvalue %qE to %qT", expr
, ref_type
);
4425 return error_mark_node
;
4427 /* If the source is a packed field, and we must use a copy
4428 constructor, then building the target expr will require
4429 binding the field to the reference parameter to the
4430 copy constructor, and we'll end up with an infinite
4431 loop. If we can use a bitwise copy, then we'll be
4433 if ((lvalue
& clk_packed
)
4434 && CLASS_TYPE_P (type
)
4435 && !TYPE_HAS_TRIVIAL_INIT_REF (type
))
4437 error ("cannot bind packed field %qE to %qT",
4439 return error_mark_node
;
4441 expr
= build_target_expr_with_type (expr
, type
);
4444 /* Take the address of the thing to which we will bind the
4446 expr
= build_unary_op (ADDR_EXPR
, expr
, 1);
4447 if (expr
== error_mark_node
)
4448 return error_mark_node
;
4450 /* Convert it to a pointer to the type referred to by the
4451 reference. This will adjust the pointer if a derived to
4452 base conversion is being performed. */
4453 expr
= cp_convert (build_pointer_type (TREE_TYPE (ref_type
)),
4455 /* Convert the pointer to the desired reference type. */
4456 return build_nop (ref_type
, expr
);
4460 return decay_conversion (expr
);
4463 /* Warn about deprecated conversion if appropriate. */
4464 string_conv_p (totype
, expr
, 1);
4469 expr
= convert_to_base (expr
, totype
, !c_cast_p
,
4471 return build_nop (totype
, expr
);
4474 return convert_ptrmem (totype
, expr
, /*allow_inverse_p=*/false,
4481 if (issue_conversion_warnings
)
4482 expr
= convert_and_check (totype
, expr
);
4484 expr
= convert (totype
, expr
);
4489 /* Build a call to __builtin_trap. */
4492 call_builtin_trap (void)
4494 tree fn
= implicit_built_in_decls
[BUILT_IN_TRAP
];
4496 gcc_assert (fn
!= NULL
);
4497 fn
= build_call (fn
, NULL_TREE
);
4501 /* ARG is being passed to a varargs function. Perform any conversions
4502 required. Return the converted value. */
4505 convert_arg_to_ellipsis (tree arg
)
4509 The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4510 standard conversions are performed. */
4511 arg
= decay_conversion (arg
);
4514 If the argument has integral or enumeration type that is subject
4515 to the integral promotions (_conv.prom_), or a floating point
4516 type that is subject to the floating point promotion
4517 (_conv.fpprom_), the value of the argument is converted to the
4518 promoted type before the call. */
4519 if (TREE_CODE (TREE_TYPE (arg
)) == REAL_TYPE
4520 && (TYPE_PRECISION (TREE_TYPE (arg
))
4521 < TYPE_PRECISION (double_type_node
)))
4522 arg
= convert_to_real (double_type_node
, arg
);
4523 else if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (arg
)))
4524 arg
= perform_integral_promotions (arg
);
4526 arg
= require_complete_type (arg
);
4528 if (arg
!= error_mark_node
4529 && !pod_type_p (TREE_TYPE (arg
)))
4531 /* Undefined behavior [expr.call] 5.2.2/7. We used to just warn
4532 here and do a bitwise copy, but now cp_expr_size will abort if we
4534 If the call appears in the context of a sizeof expression,
4535 there is no need to emit a warning, since the expression won't be
4536 evaluated. We keep the builtin_trap just as a safety check. */
4537 if (!skip_evaluation
)
4538 warning (0, "cannot pass objects of non-POD type %q#T through %<...%>; "
4539 "call will abort at runtime", TREE_TYPE (arg
));
4540 arg
= call_builtin_trap ();
4541 arg
= build2 (COMPOUND_EXPR
, integer_type_node
, arg
,
4548 /* va_arg (EXPR, TYPE) is a builtin. Make sure it is not abused. */
4551 build_x_va_arg (tree expr
, tree type
)
4553 if (processing_template_decl
)
4554 return build_min (VA_ARG_EXPR
, type
, expr
);
4556 type
= complete_type_or_else (type
, NULL_TREE
);
4558 if (expr
== error_mark_node
|| !type
)
4559 return error_mark_node
;
4561 if (! pod_type_p (type
))
4563 /* Remove reference types so we don't ICE later on. */
4564 tree type1
= non_reference (type
);
4565 /* Undefined behavior [expr.call] 5.2.2/7. */
4566 warning (0, "cannot receive objects of non-POD type %q#T through %<...%>; "
4567 "call will abort at runtime", type
);
4568 expr
= convert (build_pointer_type (type1
), null_node
);
4569 expr
= build2 (COMPOUND_EXPR
, TREE_TYPE (expr
),
4570 call_builtin_trap (), expr
);
4571 expr
= build_indirect_ref (expr
, NULL
);
4575 return build_va_arg (expr
, type
);
4578 /* TYPE has been given to va_arg. Apply the default conversions which
4579 would have happened when passed via ellipsis. Return the promoted
4580 type, or the passed type if there is no change. */
4583 cxx_type_promotes_to (tree type
)
4587 /* Perform the array-to-pointer and function-to-pointer
4589 type
= type_decays_to (type
);
4591 promote
= type_promotes_to (type
);
4592 if (same_type_p (type
, promote
))
4598 /* ARG is a default argument expression being passed to a parameter of
4599 the indicated TYPE, which is a parameter to FN. Do any required
4600 conversions. Return the converted value. */
4603 convert_default_arg (tree type
, tree arg
, tree fn
, int parmnum
)
4605 /* If the ARG is an unparsed default argument expression, the
4606 conversion cannot be performed. */
4607 if (TREE_CODE (arg
) == DEFAULT_ARG
)
4609 error ("the default argument for parameter %d of %qD has "
4610 "not yet been parsed",
4612 return error_mark_node
;
4615 if (fn
&& DECL_TEMPLATE_INFO (fn
))
4616 arg
= tsubst_default_argument (fn
, type
, arg
);
4618 arg
= break_out_target_exprs (arg
);
4620 if (TREE_CODE (arg
) == CONSTRUCTOR
)
4622 arg
= digest_init (type
, arg
);
4623 arg
= convert_for_initialization (0, type
, arg
, LOOKUP_NORMAL
,
4624 "default argument", fn
, parmnum
);
4628 /* This could get clobbered by the following call. */
4629 if (TREE_HAS_CONSTRUCTOR (arg
))
4630 arg
= copy_node (arg
);
4632 arg
= convert_for_initialization (0, type
, arg
, LOOKUP_NORMAL
,
4633 "default argument", fn
, parmnum
);
4634 arg
= convert_for_arg_passing (type
, arg
);
4640 /* Returns the type which will really be used for passing an argument of
4644 type_passed_as (tree type
)
4646 /* Pass classes with copy ctors by invisible reference. */
4647 if (TREE_ADDRESSABLE (type
))
4649 type
= build_reference_type (type
);
4650 /* There are no other pointers to this temporary. */
4651 type
= build_qualified_type (type
, TYPE_QUAL_RESTRICT
);
4653 else if (targetm
.calls
.promote_prototypes (type
)
4654 && INTEGRAL_TYPE_P (type
)
4655 && COMPLETE_TYPE_P (type
)
4656 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type
),
4657 TYPE_SIZE (integer_type_node
)))
4658 type
= integer_type_node
;
4663 /* Actually perform the appropriate conversion. */
4666 convert_for_arg_passing (tree type
, tree val
)
4668 if (val
== error_mark_node
)
4670 /* Pass classes with copy ctors by invisible reference. */
4671 else if (TREE_ADDRESSABLE (type
))
4672 val
= build1 (ADDR_EXPR
, build_reference_type (type
), val
);
4673 else if (targetm
.calls
.promote_prototypes (type
)
4674 && INTEGRAL_TYPE_P (type
)
4675 && COMPLETE_TYPE_P (type
)
4676 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type
),
4677 TYPE_SIZE (integer_type_node
)))
4678 val
= perform_integral_promotions (val
);
4679 if (warn_missing_format_attribute
)
4681 tree rhstype
= TREE_TYPE (val
);
4682 const enum tree_code coder
= TREE_CODE (rhstype
);
4683 const enum tree_code codel
= TREE_CODE (type
);
4684 if ((codel
== POINTER_TYPE
|| codel
== REFERENCE_TYPE
)
4686 && check_missing_format_attribute (type
, rhstype
))
4687 warning (OPT_Wmissing_format_attribute
,
4688 "argument of function call might be a candidate for a format attribute");
4693 /* Returns true iff FN is a function with magic varargs, i.e. ones for
4694 which no conversions at all should be done. This is true for some
4695 builtins which don't act like normal functions. */
4698 magic_varargs_p (tree fn
)
4700 if (DECL_BUILT_IN (fn
))
4701 switch (DECL_FUNCTION_CODE (fn
))
4703 case BUILT_IN_CLASSIFY_TYPE
:
4704 case BUILT_IN_CONSTANT_P
:
4705 case BUILT_IN_NEXT_ARG
:
4706 case BUILT_IN_STDARG_START
:
4707 case BUILT_IN_VA_START
:
4716 /* Subroutine of the various build_*_call functions. Overload resolution
4717 has chosen a winning candidate CAND; build up a CALL_EXPR accordingly.
4718 ARGS is a TREE_LIST of the unconverted arguments to the call. FLAGS is a
4719 bitmask of various LOOKUP_* flags which apply to the call itself. */
4722 build_over_call (struct z_candidate
*cand
, int flags
)
4725 tree args
= cand
->args
;
4726 conversion
**convs
= cand
->convs
;
4728 tree converted_args
= NULL_TREE
;
4729 tree parm
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
4734 /* In a template, there is no need to perform all of the work that
4735 is normally done. We are only interested in the type of the call
4736 expression, i.e., the return type of the function. Any semantic
4737 errors will be deferred until the template is instantiated. */
4738 if (processing_template_decl
)
4742 return_type
= TREE_TYPE (TREE_TYPE (fn
));
4743 expr
= build_call_list (return_type
, fn
, args
);
4744 if (TREE_THIS_VOLATILE (fn
) && cfun
)
4745 current_function_returns_abnormally
= 1;
4746 if (!VOID_TYPE_P (return_type
))
4747 require_complete_type (return_type
);
4748 return convert_from_reference (expr
);
4751 /* Give any warnings we noticed during overload resolution. */
4754 struct candidate_warning
*w
;
4755 for (w
= cand
->warnings
; w
; w
= w
->next
)
4756 joust (cand
, w
->loser
, 1);
4759 if (DECL_FUNCTION_MEMBER_P (fn
))
4761 /* If FN is a template function, two cases must be considered.
4766 template <class T> void f();
4768 template <class T> struct B {
4772 struct C : A, B<int> {
4774 using B<int>::g; // #2
4777 In case #1 where `A::f' is a member template, DECL_ACCESS is
4778 recorded in the primary template but not in its specialization.
4779 We check access of FN using its primary template.
4781 In case #2, where `B<int>::g' has a DECL_TEMPLATE_INFO simply
4782 because it is a member of class template B, DECL_ACCESS is
4783 recorded in the specialization `B<int>::g'. We cannot use its
4784 primary template because `B<T>::g' and `B<int>::g' may have
4785 different access. */
4786 if (DECL_TEMPLATE_INFO (fn
)
4787 && DECL_MEMBER_TEMPLATE_P (DECL_TI_TEMPLATE (fn
)))
4788 perform_or_defer_access_check (cand
->access_path
,
4789 DECL_TI_TEMPLATE (fn
), fn
);
4791 perform_or_defer_access_check (cand
->access_path
, fn
, fn
);
4794 if (args
&& TREE_CODE (args
) != TREE_LIST
)
4795 args
= build_tree_list (NULL_TREE
, args
);
4798 /* The implicit parameters to a constructor are not considered by overload
4799 resolution, and must be of the proper type. */
4800 if (DECL_CONSTRUCTOR_P (fn
))
4802 converted_args
= tree_cons (NULL_TREE
, TREE_VALUE (arg
), converted_args
);
4803 arg
= TREE_CHAIN (arg
);
4804 parm
= TREE_CHAIN (parm
);
4805 /* We should never try to call the abstract constructor. */
4806 gcc_assert (!DECL_HAS_IN_CHARGE_PARM_P (fn
));
4808 if (DECL_HAS_VTT_PARM_P (fn
))
4810 converted_args
= tree_cons
4811 (NULL_TREE
, TREE_VALUE (arg
), converted_args
);
4812 arg
= TREE_CHAIN (arg
);
4813 parm
= TREE_CHAIN (parm
);
4816 /* Bypass access control for 'this' parameter. */
4817 else if (TREE_CODE (TREE_TYPE (fn
)) == METHOD_TYPE
)
4819 tree parmtype
= TREE_VALUE (parm
);
4820 tree argtype
= TREE_TYPE (TREE_VALUE (arg
));
4824 if (convs
[i
]->bad_p
)
4825 pedwarn ("passing %qT as %<this%> argument of %q#D discards qualifiers",
4826 TREE_TYPE (argtype
), fn
);
4828 /* [class.mfct.nonstatic]: If a nonstatic member function of a class
4829 X is called for an object that is not of type X, or of a type
4830 derived from X, the behavior is undefined.
4832 So we can assume that anything passed as 'this' is non-null, and
4833 optimize accordingly. */
4834 gcc_assert (TREE_CODE (parmtype
) == POINTER_TYPE
);
4835 /* Convert to the base in which the function was declared. */
4836 gcc_assert (cand
->conversion_path
!= NULL_TREE
);
4837 converted_arg
= build_base_path (PLUS_EXPR
,
4839 cand
->conversion_path
,
4841 /* Check that the base class is accessible. */
4842 if (!accessible_base_p (TREE_TYPE (argtype
),
4843 BINFO_TYPE (cand
->conversion_path
), true))
4844 error ("%qT is not an accessible base of %qT",
4845 BINFO_TYPE (cand
->conversion_path
),
4846 TREE_TYPE (argtype
));
4847 /* If fn was found by a using declaration, the conversion path
4848 will be to the derived class, not the base declaring fn. We
4849 must convert from derived to base. */
4850 base_binfo
= lookup_base (TREE_TYPE (TREE_TYPE (converted_arg
)),
4851 TREE_TYPE (parmtype
), ba_unique
, NULL
);
4852 converted_arg
= build_base_path (PLUS_EXPR
, converted_arg
,
4855 converted_args
= tree_cons (NULL_TREE
, converted_arg
, converted_args
);
4856 parm
= TREE_CHAIN (parm
);
4857 arg
= TREE_CHAIN (arg
);
4863 parm
= TREE_CHAIN (parm
), arg
= TREE_CHAIN (arg
), ++i
)
4865 tree type
= TREE_VALUE (parm
);
4869 /* Don't make a copy here if build_call is going to. */
4870 if (conv
->kind
== ck_rvalue
4871 && !TREE_ADDRESSABLE (complete_type (type
)))
4872 conv
= conv
->u
.next
;
4874 val
= convert_like_with_context
4875 (conv
, TREE_VALUE (arg
), fn
, i
- is_method
);
4877 val
= convert_for_arg_passing (type
, val
);
4878 converted_args
= tree_cons (NULL_TREE
, val
, converted_args
);
4881 /* Default arguments */
4882 for (; parm
&& parm
!= void_list_node
; parm
= TREE_CHAIN (parm
), i
++)
4884 = tree_cons (NULL_TREE
,
4885 convert_default_arg (TREE_VALUE (parm
),
4886 TREE_PURPOSE (parm
),
4891 for (; arg
; arg
= TREE_CHAIN (arg
))
4893 tree a
= TREE_VALUE (arg
);
4894 if (magic_varargs_p (fn
))
4895 /* Do no conversions for magic varargs. */;
4897 a
= convert_arg_to_ellipsis (a
);
4898 converted_args
= tree_cons (NULL_TREE
, a
, converted_args
);
4901 converted_args
= nreverse (converted_args
);
4903 check_function_arguments (TYPE_ATTRIBUTES (TREE_TYPE (fn
)),
4904 converted_args
, TYPE_ARG_TYPES (TREE_TYPE (fn
)));
4906 /* Avoid actually calling copy constructors and copy assignment operators,
4909 if (! flag_elide_constructors
)
4910 /* Do things the hard way. */;
4911 else if (cand
->num_convs
== 1 && DECL_COPY_CONSTRUCTOR_P (fn
))
4914 arg
= skip_artificial_parms_for (fn
, converted_args
);
4915 arg
= TREE_VALUE (arg
);
4917 /* Pull out the real argument, disregarding const-correctness. */
4919 while (TREE_CODE (targ
) == NOP_EXPR
4920 || TREE_CODE (targ
) == NON_LVALUE_EXPR
4921 || TREE_CODE (targ
) == CONVERT_EXPR
)
4922 targ
= TREE_OPERAND (targ
, 0);
4923 if (TREE_CODE (targ
) == ADDR_EXPR
)
4925 targ
= TREE_OPERAND (targ
, 0);
4926 if (!same_type_ignoring_top_level_qualifiers_p
4927 (TREE_TYPE (TREE_TYPE (arg
)), TREE_TYPE (targ
)))
4936 arg
= build_indirect_ref (arg
, 0);
4938 /* [class.copy]: the copy constructor is implicitly defined even if
4939 the implementation elided its use. */
4940 if (TYPE_HAS_COMPLEX_INIT_REF (DECL_CONTEXT (fn
)))
4943 /* If we're creating a temp and we already have one, don't create a
4944 new one. If we're not creating a temp but we get one, use
4945 INIT_EXPR to collapse the temp into our target. Otherwise, if the
4946 ctor is trivial, do a bitwise copy with a simple TARGET_EXPR for a
4947 temp or an INIT_EXPR otherwise. */
4948 if (integer_zerop (TREE_VALUE (args
)))
4950 if (TREE_CODE (arg
) == TARGET_EXPR
)
4952 else if (TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn
)))
4953 return build_target_expr_with_type (arg
, DECL_CONTEXT (fn
));
4955 else if (TREE_CODE (arg
) == TARGET_EXPR
4956 || TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn
)))
4958 tree to
= stabilize_reference
4959 (build_indirect_ref (TREE_VALUE (args
), 0));
4961 val
= build2 (INIT_EXPR
, DECL_CONTEXT (fn
), to
, arg
);
4965 else if (DECL_OVERLOADED_OPERATOR_P (fn
) == NOP_EXPR
4967 && TYPE_HAS_TRIVIAL_ASSIGN_REF (DECL_CONTEXT (fn
)))
4969 tree to
= stabilize_reference
4970 (build_indirect_ref (TREE_VALUE (converted_args
), 0));
4971 tree type
= TREE_TYPE (to
);
4972 tree as_base
= CLASSTYPE_AS_BASE (type
);
4974 arg
= TREE_VALUE (TREE_CHAIN (converted_args
));
4975 if (tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (as_base
)))
4977 arg
= build_indirect_ref (arg
, 0);
4978 val
= build2 (MODIFY_EXPR
, TREE_TYPE (to
), to
, arg
);
4982 /* We must only copy the non-tail padding parts.
4983 Use __builtin_memcpy for the bitwise copy. */
4987 args
= tree_cons (NULL
, TYPE_SIZE_UNIT (as_base
), NULL
);
4988 args
= tree_cons (NULL
, arg
, args
);
4989 t
= build_unary_op (ADDR_EXPR
, to
, 0);
4990 args
= tree_cons (NULL
, t
, args
);
4991 t
= implicit_built_in_decls
[BUILT_IN_MEMCPY
];
4992 t
= build_call (t
, args
);
4994 t
= convert (TREE_TYPE (TREE_VALUE (args
)), t
);
4995 val
= build_indirect_ref (t
, 0);
5003 if (DECL_VINDEX (fn
) && (flags
& LOOKUP_NONVIRTUAL
) == 0)
5005 tree t
, *p
= &TREE_VALUE (converted_args
);
5006 tree binfo
= lookup_base (TREE_TYPE (TREE_TYPE (*p
)),
5009 gcc_assert (binfo
&& binfo
!= error_mark_node
);
5011 *p
= build_base_path (PLUS_EXPR
, *p
, binfo
, 1);
5012 if (TREE_SIDE_EFFECTS (*p
))
5013 *p
= save_expr (*p
);
5014 t
= build_pointer_type (TREE_TYPE (fn
));
5015 if (DECL_CONTEXT (fn
) && TYPE_JAVA_INTERFACE (DECL_CONTEXT (fn
)))
5016 fn
= build_java_interface_fn_ref (fn
, *p
);
5018 fn
= build_vfn_ref (*p
, DECL_VINDEX (fn
));
5021 else if (DECL_INLINE (fn
))
5022 fn
= inline_conversion (fn
);
5024 fn
= build_addr_func (fn
);
5026 return build_cxx_call (fn
, converted_args
);
5029 /* Build and return a call to FN, using ARGS. This function performs
5030 no overload resolution, conversion, or other high-level
5034 build_cxx_call (tree fn
, tree args
)
5038 fn
= build_call (fn
, args
);
5040 /* If this call might throw an exception, note that fact. */
5041 fndecl
= get_callee_fndecl (fn
);
5042 if ((!fndecl
|| !TREE_NOTHROW (fndecl
))
5043 && at_function_scope_p ()
5045 cp_function_chain
->can_throw
= 1;
5047 /* Some built-in function calls will be evaluated at compile-time in
5049 fn
= fold_if_not_in_template (fn
);
5051 if (VOID_TYPE_P (TREE_TYPE (fn
)))
5054 fn
= require_complete_type (fn
);
5055 if (fn
== error_mark_node
)
5056 return error_mark_node
;
5058 if (IS_AGGR_TYPE (TREE_TYPE (fn
)))
5059 fn
= build_cplus_new (TREE_TYPE (fn
), fn
);
5060 return convert_from_reference (fn
);
5063 static GTY(()) tree java_iface_lookup_fn
;
5065 /* Make an expression which yields the address of the Java interface
5066 method FN. This is achieved by generating a call to libjava's
5067 _Jv_LookupInterfaceMethodIdx(). */
5070 build_java_interface_fn_ref (tree fn
, tree instance
)
5072 tree lookup_args
, lookup_fn
, method
, idx
;
5073 tree klass_ref
, iface
, iface_ref
;
5076 if (!java_iface_lookup_fn
)
5078 tree endlink
= build_void_list_node ();
5079 tree t
= tree_cons (NULL_TREE
, ptr_type_node
,
5080 tree_cons (NULL_TREE
, ptr_type_node
,
5081 tree_cons (NULL_TREE
, java_int_type_node
,
5083 java_iface_lookup_fn
5084 = add_builtin_function ("_Jv_LookupInterfaceMethodIdx",
5085 build_function_type (ptr_type_node
, t
),
5086 0, NOT_BUILT_IN
, NULL
, NULL_TREE
);
5089 /* Look up the pointer to the runtime java.lang.Class object for `instance'.
5090 This is the first entry in the vtable. */
5091 klass_ref
= build_vtbl_ref (build_indirect_ref (instance
, 0),
5094 /* Get the java.lang.Class pointer for the interface being called. */
5095 iface
= DECL_CONTEXT (fn
);
5096 iface_ref
= lookup_field (iface
, get_identifier ("class$"), 0, false);
5097 if (!iface_ref
|| TREE_CODE (iface_ref
) != VAR_DECL
5098 || DECL_CONTEXT (iface_ref
) != iface
)
5100 error ("could not find class$ field in java interface type %qT",
5102 return error_mark_node
;
5104 iface_ref
= build_address (iface_ref
);
5105 iface_ref
= convert (build_pointer_type (iface
), iface_ref
);
5107 /* Determine the itable index of FN. */
5109 for (method
= TYPE_METHODS (iface
); method
; method
= TREE_CHAIN (method
))
5111 if (!DECL_VIRTUAL_P (method
))
5117 idx
= build_int_cst (NULL_TREE
, i
);
5119 lookup_args
= tree_cons (NULL_TREE
, klass_ref
,
5120 tree_cons (NULL_TREE
, iface_ref
,
5121 build_tree_list (NULL_TREE
, idx
)));
5122 lookup_fn
= build1 (ADDR_EXPR
,
5123 build_pointer_type (TREE_TYPE (java_iface_lookup_fn
)),
5124 java_iface_lookup_fn
);
5125 return build_call_list (ptr_type_node
, lookup_fn
, lookup_args
);
5128 /* Returns the value to use for the in-charge parameter when making a
5129 call to a function with the indicated NAME.
5131 FIXME:Can't we find a neater way to do this mapping? */
5134 in_charge_arg_for_name (tree name
)
5136 if (name
== base_ctor_identifier
5137 || name
== base_dtor_identifier
)
5138 return integer_zero_node
;
5139 else if (name
== complete_ctor_identifier
)
5140 return integer_one_node
;
5141 else if (name
== complete_dtor_identifier
)
5142 return integer_two_node
;
5143 else if (name
== deleting_dtor_identifier
)
5144 return integer_three_node
;
5146 /* This function should only be called with one of the names listed
5152 /* Build a call to a constructor, destructor, or an assignment
5153 operator for INSTANCE, an expression with class type. NAME
5154 indicates the special member function to call; ARGS are the
5155 arguments. BINFO indicates the base of INSTANCE that is to be
5156 passed as the `this' parameter to the member function called.
5158 FLAGS are the LOOKUP_* flags to use when processing the call.
5160 If NAME indicates a complete object constructor, INSTANCE may be
5161 NULL_TREE. In this case, the caller will call build_cplus_new to
5162 store the newly constructed object into a VAR_DECL. */
5165 build_special_member_call (tree instance
, tree name
, tree args
,
5166 tree binfo
, int flags
)
5169 /* The type of the subobject to be constructed or destroyed. */
5172 gcc_assert (name
== complete_ctor_identifier
5173 || name
== base_ctor_identifier
5174 || name
== complete_dtor_identifier
5175 || name
== base_dtor_identifier
5176 || name
== deleting_dtor_identifier
5177 || name
== ansi_assopname (NOP_EXPR
));
5180 /* Resolve the name. */
5181 if (!complete_type_or_else (binfo
, NULL_TREE
))
5182 return error_mark_node
;
5184 binfo
= TYPE_BINFO (binfo
);
5187 gcc_assert (binfo
!= NULL_TREE
);
5189 class_type
= BINFO_TYPE (binfo
);
5191 /* Handle the special case where INSTANCE is NULL_TREE. */
5192 if (name
== complete_ctor_identifier
&& !instance
)
5194 instance
= build_int_cst (build_pointer_type (class_type
), 0);
5195 instance
= build1 (INDIRECT_REF
, class_type
, instance
);
5199 if (name
== complete_dtor_identifier
5200 || name
== base_dtor_identifier
5201 || name
== deleting_dtor_identifier
)
5202 gcc_assert (args
== NULL_TREE
);
5204 /* Convert to the base class, if necessary. */
5205 if (!same_type_ignoring_top_level_qualifiers_p
5206 (TREE_TYPE (instance
), BINFO_TYPE (binfo
)))
5208 if (name
!= ansi_assopname (NOP_EXPR
))
5209 /* For constructors and destructors, either the base is
5210 non-virtual, or it is virtual but we are doing the
5211 conversion from a constructor or destructor for the
5212 complete object. In either case, we can convert
5214 instance
= convert_to_base_statically (instance
, binfo
);
5216 /* However, for assignment operators, we must convert
5217 dynamically if the base is virtual. */
5218 instance
= build_base_path (PLUS_EXPR
, instance
,
5219 binfo
, /*nonnull=*/1);
5223 gcc_assert (instance
!= NULL_TREE
);
5225 fns
= lookup_fnfields (binfo
, name
, 1);
5227 /* When making a call to a constructor or destructor for a subobject
5228 that uses virtual base classes, pass down a pointer to a VTT for
5230 if ((name
== base_ctor_identifier
5231 || name
== base_dtor_identifier
)
5232 && CLASSTYPE_VBASECLASSES (class_type
))
5237 /* If the current function is a complete object constructor
5238 or destructor, then we fetch the VTT directly.
5239 Otherwise, we look it up using the VTT we were given. */
5240 vtt
= TREE_CHAIN (CLASSTYPE_VTABLES (current_class_type
));
5241 vtt
= decay_conversion (vtt
);
5242 vtt
= build3 (COND_EXPR
, TREE_TYPE (vtt
),
5243 build2 (EQ_EXPR
, boolean_type_node
,
5244 current_in_charge_parm
, integer_zero_node
),
5247 gcc_assert (BINFO_SUBVTT_INDEX (binfo
));
5248 sub_vtt
= build2 (PLUS_EXPR
, TREE_TYPE (vtt
), vtt
,
5249 BINFO_SUBVTT_INDEX (binfo
));
5251 args
= tree_cons (NULL_TREE
, sub_vtt
, args
);
5254 return build_new_method_call (instance
, fns
, args
,
5255 TYPE_BINFO (BINFO_TYPE (binfo
)),
5256 flags
, /*fn=*/NULL
);
5259 /* Return the NAME, as a C string. The NAME indicates a function that
5260 is a member of TYPE. *FREE_P is set to true if the caller must
5261 free the memory returned.
5263 Rather than go through all of this, we should simply set the names
5264 of constructors and destructors appropriately, and dispense with
5265 ctor_identifier, dtor_identifier, etc. */
5268 name_as_c_string (tree name
, tree type
, bool *free_p
)
5272 /* Assume that we will not allocate memory. */
5274 /* Constructors and destructors are special. */
5275 if (IDENTIFIER_CTOR_OR_DTOR_P (name
))
5278 = (char *) IDENTIFIER_POINTER (constructor_name (type
));
5279 /* For a destructor, add the '~'. */
5280 if (name
== complete_dtor_identifier
5281 || name
== base_dtor_identifier
5282 || name
== deleting_dtor_identifier
)
5284 pretty_name
= concat ("~", pretty_name
, NULL
);
5285 /* Remember that we need to free the memory allocated. */
5289 else if (IDENTIFIER_TYPENAME_P (name
))
5291 pretty_name
= concat ("operator ",
5292 type_as_string (TREE_TYPE (name
),
5293 TFF_PLAIN_IDENTIFIER
),
5295 /* Remember that we need to free the memory allocated. */
5299 pretty_name
= (char *) IDENTIFIER_POINTER (name
);
5304 /* Build a call to "INSTANCE.FN (ARGS)". If FN_P is non-NULL, it will
5305 be set, upon return, to the function called. */
5308 build_new_method_call (tree instance
, tree fns
, tree args
,
5309 tree conversion_path
, int flags
,
5312 struct z_candidate
*candidates
= 0, *cand
;
5313 tree explicit_targs
= NULL_TREE
;
5314 tree basetype
= NULL_TREE
;
5317 tree mem_args
= NULL_TREE
, instance_ptr
;
5323 int template_only
= 0;
5330 gcc_assert (instance
!= NULL_TREE
);
5332 /* We don't know what function we're going to call, yet. */
5336 if (error_operand_p (instance
)
5337 || error_operand_p (fns
)
5338 || args
== error_mark_node
)
5339 return error_mark_node
;
5341 if (!BASELINK_P (fns
))
5343 error ("call to non-function %qD", fns
);
5344 return error_mark_node
;
5347 orig_instance
= instance
;
5351 /* Dismantle the baselink to collect all the information we need. */
5352 if (!conversion_path
)
5353 conversion_path
= BASELINK_BINFO (fns
);
5354 access_binfo
= BASELINK_ACCESS_BINFO (fns
);
5355 optype
= BASELINK_OPTYPE (fns
);
5356 fns
= BASELINK_FUNCTIONS (fns
);
5357 if (TREE_CODE (fns
) == TEMPLATE_ID_EXPR
)
5359 explicit_targs
= TREE_OPERAND (fns
, 1);
5360 fns
= TREE_OPERAND (fns
, 0);
5363 gcc_assert (TREE_CODE (fns
) == FUNCTION_DECL
5364 || TREE_CODE (fns
) == TEMPLATE_DECL
5365 || TREE_CODE (fns
) == OVERLOAD
);
5366 fn
= get_first_fn (fns
);
5367 name
= DECL_NAME (fn
);
5369 basetype
= TYPE_MAIN_VARIANT (TREE_TYPE (instance
));
5370 gcc_assert (CLASS_TYPE_P (basetype
));
5372 if (processing_template_decl
)
5374 instance
= build_non_dependent_expr (instance
);
5375 args
= build_non_dependent_args (orig_args
);
5378 /* The USER_ARGS are the arguments we will display to users if an
5379 error occurs. The USER_ARGS should not include any
5380 compiler-generated arguments. The "this" pointer hasn't been
5381 added yet. However, we must remove the VTT pointer if this is a
5382 call to a base-class constructor or destructor. */
5384 if (IDENTIFIER_CTOR_OR_DTOR_P (name
))
5386 /* Callers should explicitly indicate whether they want to construct
5387 the complete object or just the part without virtual bases. */
5388 gcc_assert (name
!= ctor_identifier
);
5389 /* Similarly for destructors. */
5390 gcc_assert (name
!= dtor_identifier
);
5391 /* Remove the VTT pointer, if present. */
5392 if ((name
== base_ctor_identifier
|| name
== base_dtor_identifier
)
5393 && CLASSTYPE_VBASECLASSES (basetype
))
5394 user_args
= TREE_CHAIN (user_args
);
5397 /* Process the argument list. */
5398 args
= resolve_args (args
);
5399 if (args
== error_mark_node
)
5400 return error_mark_node
;
5402 instance_ptr
= build_this (instance
);
5404 /* It's OK to call destructors on cv-qualified objects. Therefore,
5405 convert the INSTANCE_PTR to the unqualified type, if necessary. */
5406 if (DECL_DESTRUCTOR_P (fn
))
5408 tree type
= build_pointer_type (basetype
);
5409 if (!same_type_p (type
, TREE_TYPE (instance_ptr
)))
5410 instance_ptr
= build_nop (type
, instance_ptr
);
5411 name
= complete_dtor_identifier
;
5414 class_type
= (conversion_path
? BINFO_TYPE (conversion_path
) : NULL_TREE
);
5415 mem_args
= tree_cons (NULL_TREE
, instance_ptr
, args
);
5417 /* Get the high-water mark for the CONVERSION_OBSTACK. */
5418 p
= conversion_obstack_alloc (0);
5420 for (fn
= fns
; fn
; fn
= OVL_NEXT (fn
))
5422 tree t
= OVL_CURRENT (fn
);
5425 /* We can end up here for copy-init of same or base class. */
5426 if ((flags
& LOOKUP_ONLYCONVERTING
)
5427 && DECL_NONCONVERTING_P (t
))
5430 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (t
))
5431 this_arglist
= mem_args
;
5433 this_arglist
= args
;
5435 if (TREE_CODE (t
) == TEMPLATE_DECL
)
5436 /* A member template. */
5437 add_template_candidate (&candidates
, t
,
5440 this_arglist
, optype
,
5445 else if (! template_only
)
5446 add_function_candidate (&candidates
, t
,
5454 candidates
= splice_viable (candidates
, pedantic
, &any_viable_p
);
5457 if (!COMPLETE_TYPE_P (basetype
))
5458 cxx_incomplete_type_error (instance_ptr
, basetype
);
5464 pretty_name
= name_as_c_string (name
, basetype
, &free_p
);
5465 error ("no matching function for call to %<%T::%s(%A)%#V%>",
5466 basetype
, pretty_name
, user_args
,
5467 TREE_TYPE (TREE_TYPE (instance_ptr
)));
5471 print_z_candidates (candidates
);
5472 call
= error_mark_node
;
5476 cand
= tourney (candidates
);
5482 pretty_name
= name_as_c_string (name
, basetype
, &free_p
);
5483 error ("call of overloaded %<%s(%A)%> is ambiguous", pretty_name
,
5485 print_z_candidates (candidates
);
5488 call
= error_mark_node
;
5494 if (!(flags
& LOOKUP_NONVIRTUAL
)
5495 && DECL_PURE_VIRTUAL_P (fn
)
5496 && instance
== current_class_ref
5497 && (DECL_CONSTRUCTOR_P (current_function_decl
)
5498 || DECL_DESTRUCTOR_P (current_function_decl
)))
5499 /* This is not an error, it is runtime undefined
5501 warning (0, (DECL_CONSTRUCTOR_P (current_function_decl
) ?
5502 "abstract virtual %q#D called from constructor"
5503 : "abstract virtual %q#D called from destructor"),
5506 if (TREE_CODE (TREE_TYPE (fn
)) == METHOD_TYPE
5507 && is_dummy_object (instance_ptr
))
5509 error ("cannot call member function %qD without object",
5511 call
= error_mark_node
;
5515 if (DECL_VINDEX (fn
) && ! (flags
& LOOKUP_NONVIRTUAL
)
5516 && resolves_to_fixed_type_p (instance
, 0))
5517 flags
|= LOOKUP_NONVIRTUAL
;
5518 /* Now we know what function is being called. */
5521 /* Build the actual CALL_EXPR. */
5522 call
= build_over_call (cand
, flags
);
5523 /* In an expression of the form `a->f()' where `f' turns
5524 out to be a static member function, `a' is
5525 none-the-less evaluated. */
5526 if (TREE_CODE (TREE_TYPE (fn
)) != METHOD_TYPE
5527 && !is_dummy_object (instance_ptr
)
5528 && TREE_SIDE_EFFECTS (instance_ptr
))
5529 call
= build2 (COMPOUND_EXPR
, TREE_TYPE (call
),
5530 instance_ptr
, call
);
5535 if (processing_template_decl
&& call
!= error_mark_node
)
5536 call
= (build_min_non_dep_call_list
5538 build_min_nt (COMPONENT_REF
, orig_instance
, orig_fns
, NULL_TREE
),
5541 /* Free all the conversions we allocated. */
5542 obstack_free (&conversion_obstack
, p
);
5547 /* Returns true iff standard conversion sequence ICS1 is a proper
5548 subsequence of ICS2. */
5551 is_subseq (conversion
*ics1
, conversion
*ics2
)
5553 /* We can assume that a conversion of the same code
5554 between the same types indicates a subsequence since we only get
5555 here if the types we are converting from are the same. */
5557 while (ics1
->kind
== ck_rvalue
5558 || ics1
->kind
== ck_lvalue
)
5559 ics1
= ics1
->u
.next
;
5563 while (ics2
->kind
== ck_rvalue
5564 || ics2
->kind
== ck_lvalue
)
5565 ics2
= ics2
->u
.next
;
5567 if (ics2
->kind
== ck_user
5568 || ics2
->kind
== ck_ambig
5569 || ics2
->kind
== ck_identity
)
5570 /* At this point, ICS1 cannot be a proper subsequence of
5571 ICS2. We can get a USER_CONV when we are comparing the
5572 second standard conversion sequence of two user conversion
5576 ics2
= ics2
->u
.next
;
5578 if (ics2
->kind
== ics1
->kind
5579 && same_type_p (ics2
->type
, ics1
->type
)
5580 && same_type_p (ics2
->u
.next
->type
,
5581 ics1
->u
.next
->type
))
5586 /* Returns nonzero iff DERIVED is derived from BASE. The inputs may
5587 be any _TYPE nodes. */
5590 is_properly_derived_from (tree derived
, tree base
)
5592 if (!IS_AGGR_TYPE_CODE (TREE_CODE (derived
))
5593 || !IS_AGGR_TYPE_CODE (TREE_CODE (base
)))
5596 /* We only allow proper derivation here. The DERIVED_FROM_P macro
5597 considers every class derived from itself. */
5598 return (!same_type_ignoring_top_level_qualifiers_p (derived
, base
)
5599 && DERIVED_FROM_P (base
, derived
));
5602 /* We build the ICS for an implicit object parameter as a pointer
5603 conversion sequence. However, such a sequence should be compared
5604 as if it were a reference conversion sequence. If ICS is the
5605 implicit conversion sequence for an implicit object parameter,
5606 modify it accordingly. */
5609 maybe_handle_implicit_object (conversion
**ics
)
5613 /* [over.match.funcs]
5615 For non-static member functions, the type of the
5616 implicit object parameter is "reference to cv X"
5617 where X is the class of which the function is a
5618 member and cv is the cv-qualification on the member
5619 function declaration. */
5620 conversion
*t
= *ics
;
5621 tree reference_type
;
5623 /* The `this' parameter is a pointer to a class type. Make the
5624 implicit conversion talk about a reference to that same class
5626 reference_type
= TREE_TYPE (t
->type
);
5627 reference_type
= build_reference_type (reference_type
);
5629 if (t
->kind
== ck_qual
)
5631 if (t
->kind
== ck_ptr
)
5633 t
= build_identity_conv (TREE_TYPE (t
->type
), NULL_TREE
);
5634 t
= direct_reference_binding (reference_type
, t
);
5639 /* If *ICS is a REF_BIND set *ICS to the remainder of the conversion,
5640 and return the type to which the reference refers. Otherwise,
5641 leave *ICS unchanged and return NULL_TREE. */
5644 maybe_handle_ref_bind (conversion
**ics
)
5646 if ((*ics
)->kind
== ck_ref_bind
)
5648 conversion
*old_ics
= *ics
;
5649 tree type
= TREE_TYPE (old_ics
->type
);
5650 *ics
= old_ics
->u
.next
;
5651 (*ics
)->user_conv_p
= old_ics
->user_conv_p
;
5652 (*ics
)->bad_p
= old_ics
->bad_p
;
5659 /* Compare two implicit conversion sequences according to the rules set out in
5660 [over.ics.rank]. Return values:
5662 1: ics1 is better than ics2
5663 -1: ics2 is better than ics1
5664 0: ics1 and ics2 are indistinguishable */
5667 compare_ics (conversion
*ics1
, conversion
*ics2
)
5673 tree deref_from_type1
= NULL_TREE
;
5674 tree deref_from_type2
= NULL_TREE
;
5675 tree deref_to_type1
= NULL_TREE
;
5676 tree deref_to_type2
= NULL_TREE
;
5677 conversion_rank rank1
, rank2
;
5679 /* REF_BINDING is nonzero if the result of the conversion sequence
5680 is a reference type. In that case TARGET_TYPE is the
5681 type referred to by the reference. */
5685 /* Handle implicit object parameters. */
5686 maybe_handle_implicit_object (&ics1
);
5687 maybe_handle_implicit_object (&ics2
);
5689 /* Handle reference parameters. */
5690 target_type1
= maybe_handle_ref_bind (&ics1
);
5691 target_type2
= maybe_handle_ref_bind (&ics2
);
5695 When comparing the basic forms of implicit conversion sequences (as
5696 defined in _over.best.ics_)
5698 --a standard conversion sequence (_over.ics.scs_) is a better
5699 conversion sequence than a user-defined conversion sequence
5700 or an ellipsis conversion sequence, and
5702 --a user-defined conversion sequence (_over.ics.user_) is a
5703 better conversion sequence than an ellipsis conversion sequence
5704 (_over.ics.ellipsis_). */
5705 rank1
= CONVERSION_RANK (ics1
);
5706 rank2
= CONVERSION_RANK (ics2
);
5710 else if (rank1
< rank2
)
5713 if (rank1
== cr_bad
)
5715 /* XXX Isn't this an extension? */
5716 /* Both ICS are bad. We try to make a decision based on what
5717 would have happened if they'd been good. */
5718 if (ics1
->user_conv_p
> ics2
->user_conv_p
5719 || ics1
->rank
> ics2
->rank
)
5721 else if (ics1
->user_conv_p
< ics2
->user_conv_p
5722 || ics1
->rank
< ics2
->rank
)
5725 /* We couldn't make up our minds; try to figure it out below. */
5728 if (ics1
->ellipsis_p
)
5729 /* Both conversions are ellipsis conversions. */
5732 /* User-defined conversion sequence U1 is a better conversion sequence
5733 than another user-defined conversion sequence U2 if they contain the
5734 same user-defined conversion operator or constructor and if the sec-
5735 ond standard conversion sequence of U1 is better than the second
5736 standard conversion sequence of U2. */
5738 if (ics1
->user_conv_p
)
5743 for (t1
= ics1
; t1
->kind
!= ck_user
; t1
= t1
->u
.next
)
5744 if (t1
->kind
== ck_ambig
)
5746 for (t2
= ics2
; t2
->kind
!= ck_user
; t2
= t2
->u
.next
)
5747 if (t2
->kind
== ck_ambig
)
5750 if (t1
->cand
->fn
!= t2
->cand
->fn
)
5753 /* We can just fall through here, after setting up
5754 FROM_TYPE1 and FROM_TYPE2. */
5755 from_type1
= t1
->type
;
5756 from_type2
= t2
->type
;
5763 /* We're dealing with two standard conversion sequences.
5767 Standard conversion sequence S1 is a better conversion
5768 sequence than standard conversion sequence S2 if
5770 --S1 is a proper subsequence of S2 (comparing the conversion
5771 sequences in the canonical form defined by _over.ics.scs_,
5772 excluding any Lvalue Transformation; the identity
5773 conversion sequence is considered to be a subsequence of
5774 any non-identity conversion sequence */
5777 while (t1
->kind
!= ck_identity
)
5779 from_type1
= t1
->type
;
5782 while (t2
->kind
!= ck_identity
)
5784 from_type2
= t2
->type
;
5787 if (same_type_p (from_type1
, from_type2
))
5789 if (is_subseq (ics1
, ics2
))
5791 if (is_subseq (ics2
, ics1
))
5794 /* Otherwise, one sequence cannot be a subsequence of the other; they
5795 don't start with the same type. This can happen when comparing the
5796 second standard conversion sequence in two user-defined conversion
5803 --the rank of S1 is better than the rank of S2 (by the rules
5806 Standard conversion sequences are ordered by their ranks: an Exact
5807 Match is a better conversion than a Promotion, which is a better
5808 conversion than a Conversion.
5810 Two conversion sequences with the same rank are indistinguishable
5811 unless one of the following rules applies:
5813 --A conversion that is not a conversion of a pointer, or pointer
5814 to member, to bool is better than another conversion that is such
5817 The ICS_STD_RANK automatically handles the pointer-to-bool rule,
5818 so that we do not have to check it explicitly. */
5819 if (ics1
->rank
< ics2
->rank
)
5821 else if (ics2
->rank
< ics1
->rank
)
5824 to_type1
= ics1
->type
;
5825 to_type2
= ics2
->type
;
5827 if (TYPE_PTR_P (from_type1
)
5828 && TYPE_PTR_P (from_type2
)
5829 && TYPE_PTR_P (to_type1
)
5830 && TYPE_PTR_P (to_type2
))
5832 deref_from_type1
= TREE_TYPE (from_type1
);
5833 deref_from_type2
= TREE_TYPE (from_type2
);
5834 deref_to_type1
= TREE_TYPE (to_type1
);
5835 deref_to_type2
= TREE_TYPE (to_type2
);
5837 /* The rules for pointers to members A::* are just like the rules
5838 for pointers A*, except opposite: if B is derived from A then
5839 A::* converts to B::*, not vice versa. For that reason, we
5840 switch the from_ and to_ variables here. */
5841 else if ((TYPE_PTRMEM_P (from_type1
) && TYPE_PTRMEM_P (from_type2
)
5842 && TYPE_PTRMEM_P (to_type1
) && TYPE_PTRMEM_P (to_type2
))
5843 || (TYPE_PTRMEMFUNC_P (from_type1
)
5844 && TYPE_PTRMEMFUNC_P (from_type2
)
5845 && TYPE_PTRMEMFUNC_P (to_type1
)
5846 && TYPE_PTRMEMFUNC_P (to_type2
)))
5848 deref_to_type1
= TYPE_PTRMEM_CLASS_TYPE (from_type1
);
5849 deref_to_type2
= TYPE_PTRMEM_CLASS_TYPE (from_type2
);
5850 deref_from_type1
= TYPE_PTRMEM_CLASS_TYPE (to_type1
);
5851 deref_from_type2
= TYPE_PTRMEM_CLASS_TYPE (to_type2
);
5854 if (deref_from_type1
!= NULL_TREE
5855 && IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type1
))
5856 && IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type2
)))
5858 /* This was one of the pointer or pointer-like conversions.
5862 --If class B is derived directly or indirectly from class A,
5863 conversion of B* to A* is better than conversion of B* to
5864 void*, and conversion of A* to void* is better than
5865 conversion of B* to void*. */
5866 if (TREE_CODE (deref_to_type1
) == VOID_TYPE
5867 && TREE_CODE (deref_to_type2
) == VOID_TYPE
)
5869 if (is_properly_derived_from (deref_from_type1
,
5872 else if (is_properly_derived_from (deref_from_type2
,
5876 else if (TREE_CODE (deref_to_type1
) == VOID_TYPE
5877 || TREE_CODE (deref_to_type2
) == VOID_TYPE
)
5879 if (same_type_p (deref_from_type1
, deref_from_type2
))
5881 if (TREE_CODE (deref_to_type2
) == VOID_TYPE
)
5883 if (is_properly_derived_from (deref_from_type1
,
5887 /* We know that DEREF_TO_TYPE1 is `void' here. */
5888 else if (is_properly_derived_from (deref_from_type1
,
5893 else if (IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type1
))
5894 && IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type2
)))
5898 --If class B is derived directly or indirectly from class A
5899 and class C is derived directly or indirectly from B,
5901 --conversion of C* to B* is better than conversion of C* to
5904 --conversion of B* to A* is better than conversion of C* to
5906 if (same_type_p (deref_from_type1
, deref_from_type2
))
5908 if (is_properly_derived_from (deref_to_type1
,
5911 else if (is_properly_derived_from (deref_to_type2
,
5915 else if (same_type_p (deref_to_type1
, deref_to_type2
))
5917 if (is_properly_derived_from (deref_from_type2
,
5920 else if (is_properly_derived_from (deref_from_type1
,
5926 else if (CLASS_TYPE_P (non_reference (from_type1
))
5927 && same_type_p (from_type1
, from_type2
))
5929 tree from
= non_reference (from_type1
);
5933 --binding of an expression of type C to a reference of type
5934 B& is better than binding an expression of type C to a
5935 reference of type A&
5937 --conversion of C to B is better than conversion of C to A, */
5938 if (is_properly_derived_from (from
, to_type1
)
5939 && is_properly_derived_from (from
, to_type2
))
5941 if (is_properly_derived_from (to_type1
, to_type2
))
5943 else if (is_properly_derived_from (to_type2
, to_type1
))
5947 else if (CLASS_TYPE_P (non_reference (to_type1
))
5948 && same_type_p (to_type1
, to_type2
))
5950 tree to
= non_reference (to_type1
);
5954 --binding of an expression of type B to a reference of type
5955 A& is better than binding an expression of type C to a
5956 reference of type A&,
5958 --conversion of B to A is better than conversion of C to A */
5959 if (is_properly_derived_from (from_type1
, to
)
5960 && is_properly_derived_from (from_type2
, to
))
5962 if (is_properly_derived_from (from_type2
, from_type1
))
5964 else if (is_properly_derived_from (from_type1
, from_type2
))
5971 --S1 and S2 differ only in their qualification conversion and yield
5972 similar types T1 and T2 (_conv.qual_), respectively, and the cv-
5973 qualification signature of type T1 is a proper subset of the cv-
5974 qualification signature of type T2 */
5975 if (ics1
->kind
== ck_qual
5976 && ics2
->kind
== ck_qual
5977 && same_type_p (from_type1
, from_type2
))
5978 return comp_cv_qual_signature (to_type1
, to_type2
);
5982 --S1 and S2 are reference bindings (_dcl.init.ref_), and the
5983 types to which the references refer are the same type except for
5984 top-level cv-qualifiers, and the type to which the reference
5985 initialized by S2 refers is more cv-qualified than the type to
5986 which the reference initialized by S1 refers */
5988 if (target_type1
&& target_type2
5989 && same_type_ignoring_top_level_qualifiers_p (to_type1
, to_type2
))
5990 return comp_cv_qualification (target_type2
, target_type1
);
5992 /* Neither conversion sequence is better than the other. */
5996 /* The source type for this standard conversion sequence. */
5999 source_type (conversion
*t
)
6001 for (;; t
= t
->u
.next
)
6003 if (t
->kind
== ck_user
6004 || t
->kind
== ck_ambig
6005 || t
->kind
== ck_identity
)
6011 /* Note a warning about preferring WINNER to LOSER. We do this by storing
6012 a pointer to LOSER and re-running joust to produce the warning if WINNER
6013 is actually used. */
6016 add_warning (struct z_candidate
*winner
, struct z_candidate
*loser
)
6018 candidate_warning
*cw
= (candidate_warning
*)
6019 conversion_obstack_alloc (sizeof (candidate_warning
));
6021 cw
->next
= winner
->warnings
;
6022 winner
->warnings
= cw
;
6025 /* Compare two candidates for overloading as described in
6026 [over.match.best]. Return values:
6028 1: cand1 is better than cand2
6029 -1: cand2 is better than cand1
6030 0: cand1 and cand2 are indistinguishable */
6033 joust (struct z_candidate
*cand1
, struct z_candidate
*cand2
, bool warn
)
6036 int off1
= 0, off2
= 0;
6040 /* Candidates that involve bad conversions are always worse than those
6042 if (cand1
->viable
> cand2
->viable
)
6044 if (cand1
->viable
< cand2
->viable
)
6047 /* If we have two pseudo-candidates for conversions to the same type,
6048 or two candidates for the same function, arbitrarily pick one. */
6049 if (cand1
->fn
== cand2
->fn
6050 && (IS_TYPE_OR_DECL_P (cand1
->fn
)))
6053 /* a viable function F1
6054 is defined to be a better function than another viable function F2 if
6055 for all arguments i, ICSi(F1) is not a worse conversion sequence than
6056 ICSi(F2), and then */
6058 /* for some argument j, ICSj(F1) is a better conversion sequence than
6061 /* For comparing static and non-static member functions, we ignore
6062 the implicit object parameter of the non-static function. The
6063 standard says to pretend that the static function has an object
6064 parm, but that won't work with operator overloading. */
6065 len
= cand1
->num_convs
;
6066 if (len
!= cand2
->num_convs
)
6068 int static_1
= DECL_STATIC_FUNCTION_P (cand1
->fn
);
6069 int static_2
= DECL_STATIC_FUNCTION_P (cand2
->fn
);
6071 gcc_assert (static_1
!= static_2
);
6082 for (i
= 0; i
< len
; ++i
)
6084 conversion
*t1
= cand1
->convs
[i
+ off1
];
6085 conversion
*t2
= cand2
->convs
[i
+ off2
];
6086 int comp
= compare_ics (t1
, t2
);
6091 && (CONVERSION_RANK (t1
) + CONVERSION_RANK (t2
)
6092 == cr_std
+ cr_promotion
)
6093 && t1
->kind
== ck_std
6094 && t2
->kind
== ck_std
6095 && TREE_CODE (t1
->type
) == INTEGER_TYPE
6096 && TREE_CODE (t2
->type
) == INTEGER_TYPE
6097 && (TYPE_PRECISION (t1
->type
)
6098 == TYPE_PRECISION (t2
->type
))
6099 && (TYPE_UNSIGNED (t1
->u
.next
->type
)
6100 || (TREE_CODE (t1
->u
.next
->type
)
6103 tree type
= t1
->u
.next
->type
;
6105 struct z_candidate
*w
, *l
;
6107 type1
= t1
->type
, type2
= t2
->type
,
6108 w
= cand1
, l
= cand2
;
6110 type1
= t2
->type
, type2
= t1
->type
,
6111 w
= cand2
, l
= cand1
;
6115 warning (OPT_Wsign_promo
, "passing %qT chooses %qT over %qT",
6116 type
, type1
, type2
);
6117 warning (OPT_Wsign_promo
, " in call to %qD", w
->fn
);
6123 if (winner
&& comp
!= winner
)
6132 /* warn about confusing overload resolution for user-defined conversions,
6133 either between a constructor and a conversion op, or between two
6135 if (winner
&& warn_conversion
&& cand1
->second_conv
6136 && (!DECL_CONSTRUCTOR_P (cand1
->fn
) || !DECL_CONSTRUCTOR_P (cand2
->fn
))
6137 && winner
!= compare_ics (cand1
->second_conv
, cand2
->second_conv
))
6139 struct z_candidate
*w
, *l
;
6140 bool give_warning
= false;
6143 w
= cand1
, l
= cand2
;
6145 w
= cand2
, l
= cand1
;
6147 /* We don't want to complain about `X::operator T1 ()'
6148 beating `X::operator T2 () const', when T2 is a no less
6149 cv-qualified version of T1. */
6150 if (DECL_CONTEXT (w
->fn
) == DECL_CONTEXT (l
->fn
)
6151 && !DECL_CONSTRUCTOR_P (w
->fn
) && !DECL_CONSTRUCTOR_P (l
->fn
))
6153 tree t
= TREE_TYPE (TREE_TYPE (l
->fn
));
6154 tree f
= TREE_TYPE (TREE_TYPE (w
->fn
));
6156 if (TREE_CODE (t
) == TREE_CODE (f
) && POINTER_TYPE_P (t
))
6161 if (!comp_ptr_ttypes (t
, f
))
6162 give_warning
= true;
6165 give_warning
= true;
6171 tree source
= source_type (w
->convs
[0]);
6172 if (! DECL_CONSTRUCTOR_P (w
->fn
))
6173 source
= TREE_TYPE (source
);
6174 warning (OPT_Wconversion
, "choosing %qD over %qD", w
->fn
, l
->fn
);
6175 warning (OPT_Wconversion
, " for conversion from %qT to %qT",
6176 source
, w
->second_conv
->type
);
6177 inform (" because conversion sequence for the argument is better");
6187 F1 is a non-template function and F2 is a template function
6190 if (!cand1
->template_decl
&& cand2
->template_decl
)
6192 else if (cand1
->template_decl
&& !cand2
->template_decl
)
6196 F1 and F2 are template functions and the function template for F1 is
6197 more specialized than the template for F2 according to the partial
6200 if (cand1
->template_decl
&& cand2
->template_decl
)
6202 winner
= more_specialized_fn
6203 (TI_TEMPLATE (cand1
->template_decl
),
6204 TI_TEMPLATE (cand2
->template_decl
),
6205 /* [temp.func.order]: The presence of unused ellipsis and default
6206 arguments has no effect on the partial ordering of function
6207 templates. add_function_candidate() will not have
6208 counted the "this" argument for constructors. */
6209 cand1
->num_convs
+ DECL_CONSTRUCTOR_P (cand1
->fn
));
6215 the context is an initialization by user-defined conversion (see
6216 _dcl.init_ and _over.match.user_) and the standard conversion
6217 sequence from the return type of F1 to the destination type (i.e.,
6218 the type of the entity being initialized) is a better conversion
6219 sequence than the standard conversion sequence from the return type
6220 of F2 to the destination type. */
6222 if (cand1
->second_conv
)
6224 winner
= compare_ics (cand1
->second_conv
, cand2
->second_conv
);
6229 /* Check whether we can discard a builtin candidate, either because we
6230 have two identical ones or matching builtin and non-builtin candidates.
6232 (Pedantically in the latter case the builtin which matched the user
6233 function should not be added to the overload set, but we spot it here.
6236 ... the builtin candidates include ...
6237 - do not have the same parameter type list as any non-template
6238 non-member candidate. */
6240 if (TREE_CODE (cand1
->fn
) == IDENTIFIER_NODE
6241 || TREE_CODE (cand2
->fn
) == IDENTIFIER_NODE
)
6243 for (i
= 0; i
< len
; ++i
)
6244 if (!same_type_p (cand1
->convs
[i
]->type
,
6245 cand2
->convs
[i
]->type
))
6247 if (i
== cand1
->num_convs
)
6249 if (cand1
->fn
== cand2
->fn
)
6250 /* Two built-in candidates; arbitrarily pick one. */
6252 else if (TREE_CODE (cand1
->fn
) == IDENTIFIER_NODE
)
6253 /* cand1 is built-in; prefer cand2. */
6256 /* cand2 is built-in; prefer cand1. */
6261 /* If the two functions are the same (this can happen with declarations
6262 in multiple scopes and arg-dependent lookup), arbitrarily choose one. */
6263 if (DECL_P (cand1
->fn
) && DECL_P (cand2
->fn
)
6264 && equal_functions (cand1
->fn
, cand2
->fn
))
6269 /* Extension: If the worst conversion for one candidate is worse than the
6270 worst conversion for the other, take the first. */
6273 conversion_rank rank1
= cr_identity
, rank2
= cr_identity
;
6274 struct z_candidate
*w
= 0, *l
= 0;
6276 for (i
= 0; i
< len
; ++i
)
6278 if (CONVERSION_RANK (cand1
->convs
[i
+off1
]) > rank1
)
6279 rank1
= CONVERSION_RANK (cand1
->convs
[i
+off1
]);
6280 if (CONVERSION_RANK (cand2
->convs
[i
+ off2
]) > rank2
)
6281 rank2
= CONVERSION_RANK (cand2
->convs
[i
+ off2
]);
6284 winner
= 1, w
= cand1
, l
= cand2
;
6286 winner
= -1, w
= cand2
, l
= cand1
;
6292 ISO C++ says that these are ambiguous, even \
6293 though the worst conversion for the first is better than \
6294 the worst conversion for the second:");
6295 print_z_candidate (_("candidate 1:"), w
);
6296 print_z_candidate (_("candidate 2:"), l
);
6304 gcc_assert (!winner
);
6308 /* Given a list of candidates for overloading, find the best one, if any.
6309 This algorithm has a worst case of O(2n) (winner is last), and a best
6310 case of O(n/2) (totally ambiguous); much better than a sorting
6313 static struct z_candidate
*
6314 tourney (struct z_candidate
*candidates
)
6316 struct z_candidate
*champ
= candidates
, *challenger
;
6318 int champ_compared_to_predecessor
= 0;
6320 /* Walk through the list once, comparing each current champ to the next
6321 candidate, knocking out a candidate or two with each comparison. */
6323 for (challenger
= champ
->next
; challenger
; )
6325 fate
= joust (champ
, challenger
, 0);
6327 challenger
= challenger
->next
;
6332 champ
= challenger
->next
;
6335 champ_compared_to_predecessor
= 0;
6340 champ_compared_to_predecessor
= 1;
6343 challenger
= champ
->next
;
6347 /* Make sure the champ is better than all the candidates it hasn't yet
6348 been compared to. */
6350 for (challenger
= candidates
;
6352 && !(champ_compared_to_predecessor
&& challenger
->next
== champ
);
6353 challenger
= challenger
->next
)
6355 fate
= joust (champ
, challenger
, 0);
6363 /* Returns nonzero if things of type FROM can be converted to TO. */
6366 can_convert (tree to
, tree from
)
6368 return can_convert_arg (to
, from
, NULL_TREE
, LOOKUP_NORMAL
);
6371 /* Returns nonzero if ARG (of type FROM) can be converted to TO. */
6374 can_convert_arg (tree to
, tree from
, tree arg
, int flags
)
6380 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6381 p
= conversion_obstack_alloc (0);
6383 t
= implicit_conversion (to
, from
, arg
, /*c_cast_p=*/false,
6385 ok_p
= (t
&& !t
->bad_p
);
6387 /* Free all the conversions we allocated. */
6388 obstack_free (&conversion_obstack
, p
);
6393 /* Like can_convert_arg, but allows dubious conversions as well. */
6396 can_convert_arg_bad (tree to
, tree from
, tree arg
)
6401 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6402 p
= conversion_obstack_alloc (0);
6403 /* Try to perform the conversion. */
6404 t
= implicit_conversion (to
, from
, arg
, /*c_cast_p=*/false,
6406 /* Free all the conversions we allocated. */
6407 obstack_free (&conversion_obstack
, p
);
6412 /* Convert EXPR to TYPE. Return the converted expression.
6414 Note that we allow bad conversions here because by the time we get to
6415 this point we are committed to doing the conversion. If we end up
6416 doing a bad conversion, convert_like will complain. */
6419 perform_implicit_conversion (tree type
, tree expr
)
6424 if (error_operand_p (expr
))
6425 return error_mark_node
;
6427 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6428 p
= conversion_obstack_alloc (0);
6430 conv
= implicit_conversion (type
, TREE_TYPE (expr
), expr
,
6435 error ("could not convert %qE to %qT", expr
, type
);
6436 expr
= error_mark_node
;
6438 else if (processing_template_decl
)
6440 /* In a template, we are only concerned about determining the
6441 type of non-dependent expressions, so we do not have to
6442 perform the actual conversion. */
6443 if (TREE_TYPE (expr
) != type
)
6444 expr
= build_nop (type
, expr
);
6447 expr
= convert_like (conv
, expr
);
6449 /* Free all the conversions we allocated. */
6450 obstack_free (&conversion_obstack
, p
);
6455 /* Convert EXPR to TYPE (as a direct-initialization) if that is
6456 permitted. If the conversion is valid, the converted expression is
6457 returned. Otherwise, NULL_TREE is returned, except in the case
6458 that TYPE is a class type; in that case, an error is issued. If
6459 C_CAST_P is true, then this direction initialization is taking
6460 place as part of a static_cast being attempted as part of a C-style
6464 perform_direct_initialization_if_possible (tree type
,
6471 if (type
== error_mark_node
|| error_operand_p (expr
))
6472 return error_mark_node
;
6475 If the destination type is a (possibly cv-qualified) class type:
6477 -- If the initialization is direct-initialization ...,
6478 constructors are considered. ... If no constructor applies, or
6479 the overload resolution is ambiguous, the initialization is
6481 if (CLASS_TYPE_P (type
))
6483 expr
= build_special_member_call (NULL_TREE
, complete_ctor_identifier
,
6484 build_tree_list (NULL_TREE
, expr
),
6485 type
, LOOKUP_NORMAL
);
6486 return build_cplus_new (type
, expr
);
6489 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6490 p
= conversion_obstack_alloc (0);
6492 conv
= implicit_conversion (type
, TREE_TYPE (expr
), expr
,
6495 if (!conv
|| conv
->bad_p
)
6498 expr
= convert_like_real (conv
, expr
, NULL_TREE
, 0, 0,
6499 /*issue_conversion_warnings=*/false,
6502 /* Free all the conversions we allocated. */
6503 obstack_free (&conversion_obstack
, p
);
6508 /* DECL is a VAR_DECL whose type is a REFERENCE_TYPE. The reference
6509 is being bound to a temporary. Create and return a new VAR_DECL
6510 with the indicated TYPE; this variable will store the value to
6511 which the reference is bound. */
6514 make_temporary_var_for_ref_to_temp (tree decl
, tree type
)
6518 /* Create the variable. */
6519 var
= create_temporary_var (type
);
6521 /* Register the variable. */
6522 if (TREE_STATIC (decl
))
6524 /* Namespace-scope or local static; give it a mangled name. */
6527 TREE_STATIC (var
) = 1;
6528 name
= mangle_ref_init_variable (decl
);
6529 DECL_NAME (var
) = name
;
6530 SET_DECL_ASSEMBLER_NAME (var
, name
);
6531 var
= pushdecl_top_level (var
);
6534 /* Create a new cleanup level if necessary. */
6535 maybe_push_cleanup_level (type
);
6540 /* Convert EXPR to the indicated reference TYPE, in a way suitable for
6541 initializing a variable of that TYPE. If DECL is non-NULL, it is
6542 the VAR_DECL being initialized with the EXPR. (In that case, the
6543 type of DECL will be TYPE.) If DECL is non-NULL, then CLEANUP must
6544 also be non-NULL, and with *CLEANUP initialized to NULL. Upon
6545 return, if *CLEANUP is no longer NULL, it will be an expression
6546 that should be pushed as a cleanup after the returned expression
6547 is used to initialize DECL.
6549 Return the converted expression. */
6552 initialize_reference (tree type
, tree expr
, tree decl
, tree
*cleanup
)
6557 if (type
== error_mark_node
|| error_operand_p (expr
))
6558 return error_mark_node
;
6560 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6561 p
= conversion_obstack_alloc (0);
6563 conv
= reference_binding (type
, TREE_TYPE (expr
), expr
, LOOKUP_NORMAL
);
6564 if (!conv
|| conv
->bad_p
)
6566 if (!(TYPE_QUALS (TREE_TYPE (type
)) & TYPE_QUAL_CONST
)
6567 && !real_lvalue_p (expr
))
6568 error ("invalid initialization of non-const reference of "
6569 "type %qT from a temporary of type %qT",
6570 type
, TREE_TYPE (expr
));
6572 error ("invalid initialization of reference of type "
6573 "%qT from expression of type %qT", type
,
6575 return error_mark_node
;
6578 /* If DECL is non-NULL, then this special rule applies:
6582 The temporary to which the reference is bound or the temporary
6583 that is the complete object to which the reference is bound
6584 persists for the lifetime of the reference.
6586 The temporaries created during the evaluation of the expression
6587 initializing the reference, except the temporary to which the
6588 reference is bound, are destroyed at the end of the
6589 full-expression in which they are created.
6591 In that case, we store the converted expression into a new
6592 VAR_DECL in a new scope.
6594 However, we want to be careful not to create temporaries when
6595 they are not required. For example, given:
6598 struct D : public B {};
6602 there is no need to copy the return value from "f"; we can just
6603 extend its lifetime. Similarly, given:
6606 struct T { operator S(); };
6610 we can extend the lifetime of the return value of the conversion
6612 gcc_assert (conv
->kind
== ck_ref_bind
);
6616 tree base_conv_type
;
6618 /* Skip over the REF_BIND. */
6619 conv
= conv
->u
.next
;
6620 /* If the next conversion is a BASE_CONV, skip that too -- but
6621 remember that the conversion was required. */
6622 if (conv
->kind
== ck_base
)
6624 if (conv
->check_copy_constructor_p
)
6625 check_constructor_callable (TREE_TYPE (expr
), expr
);
6626 base_conv_type
= conv
->type
;
6627 conv
= conv
->u
.next
;
6630 base_conv_type
= NULL_TREE
;
6631 /* Perform the remainder of the conversion. */
6632 expr
= convert_like_real (conv
, expr
,
6633 /*fn=*/NULL_TREE
, /*argnum=*/0,
6635 /*issue_conversion_warnings=*/true,
6636 /*c_cast_p=*/false);
6637 if (error_operand_p (expr
))
6638 expr
= error_mark_node
;
6641 if (!real_lvalue_p (expr
))
6646 /* Create the temporary variable. */
6647 type
= TREE_TYPE (expr
);
6648 var
= make_temporary_var_for_ref_to_temp (decl
, type
);
6649 layout_decl (var
, 0);
6650 /* If the rvalue is the result of a function call it will be
6651 a TARGET_EXPR. If it is some other construct (such as a
6652 member access expression where the underlying object is
6653 itself the result of a function call), turn it into a
6654 TARGET_EXPR here. It is important that EXPR be a
6655 TARGET_EXPR below since otherwise the INIT_EXPR will
6656 attempt to make a bitwise copy of EXPR to initialize
6658 if (TREE_CODE (expr
) != TARGET_EXPR
)
6659 expr
= get_target_expr (expr
);
6660 /* Create the INIT_EXPR that will initialize the temporary
6662 init
= build2 (INIT_EXPR
, type
, var
, expr
);
6663 if (at_function_scope_p ())
6665 add_decl_expr (var
);
6666 *cleanup
= cxx_maybe_build_cleanup (var
);
6668 /* We must be careful to destroy the temporary only
6669 after its initialization has taken place. If the
6670 initialization throws an exception, then the
6671 destructor should not be run. We cannot simply
6672 transform INIT into something like:
6674 (INIT, ({ CLEANUP_STMT; }))
6676 because emit_local_var always treats the
6677 initializer as a full-expression. Thus, the
6678 destructor would run too early; it would run at the
6679 end of initializing the reference variable, rather
6680 than at the end of the block enclosing the
6683 The solution is to pass back a cleanup expression
6684 which the caller is responsible for attaching to
6685 the statement tree. */
6689 rest_of_decl_compilation (var
, /*toplev=*/1, at_eof
);
6690 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
))
6691 static_aggregates
= tree_cons (NULL_TREE
, var
,
6694 /* Use its address to initialize the reference variable. */
6695 expr
= build_address (var
);
6697 expr
= convert_to_base (expr
,
6698 build_pointer_type (base_conv_type
),
6699 /*check_access=*/true,
6701 expr
= build2 (COMPOUND_EXPR
, TREE_TYPE (expr
), init
, expr
);
6704 /* Take the address of EXPR. */
6705 expr
= build_unary_op (ADDR_EXPR
, expr
, 0);
6706 /* If a BASE_CONV was required, perform it now. */
6708 expr
= (perform_implicit_conversion
6709 (build_pointer_type (base_conv_type
), expr
));
6710 expr
= build_nop (type
, expr
);
6714 /* Perform the conversion. */
6715 expr
= convert_like (conv
, expr
);
6717 /* Free all the conversions we allocated. */
6718 obstack_free (&conversion_obstack
, p
);
6723 #include "gt-cp-call.h"