1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Paolo Bonzini and Steven Bosscher.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
26 #include "diagnostic-core.h"
29 #include "sparseset.h"
33 #include "insn-config.h"
37 #include "basic-block.h"
42 #include "tree-pass.h"
47 /* This pass does simple forward propagation and simplification when an
48 operand of an insn can only come from a single def. This pass uses
49 df.c, so it is global. However, we only do limited analysis of
50 available expressions.
52 1) The pass tries to propagate the source of the def into the use,
53 and checks if the result is independent of the substituted value.
54 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
55 zero, independent of the source register.
57 In particular, we propagate constants into the use site. Sometimes
58 RTL expansion did not put the constant in the same insn on purpose,
59 to satisfy a predicate, and the result will fail to be recognized;
60 but this happens rarely and in this case we can still create a
61 REG_EQUAL note. For multi-word operations, this
63 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
64 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
65 (set (subreg:SI (reg:DI 122) 0)
66 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
67 (set (subreg:SI (reg:DI 122) 4)
68 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
70 can be simplified to the much simpler
72 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
73 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
75 This particular propagation is also effective at putting together
76 complex addressing modes. We are more aggressive inside MEMs, in
77 that all definitions are propagated if the use is in a MEM; if the
78 result is a valid memory address we check address_cost to decide
79 whether the substitution is worthwhile.
81 2) The pass propagates register copies. This is not as effective as
82 the copy propagation done by CSE's canon_reg, which works by walking
83 the instruction chain, it can help the other transformations.
85 We should consider removing this optimization, and instead reorder the
86 RTL passes, because GCSE does this transformation too. With some luck,
87 the CSE pass at the end of rest_of_handle_gcse could also go away.
89 3) The pass looks for paradoxical subregs that are actually unnecessary.
92 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
93 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
94 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
95 (subreg:SI (reg:QI 121) 0)))
97 are very common on machines that can only do word-sized operations.
98 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
99 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
100 we can replace the paradoxical subreg with simply (reg:WIDE M). The
101 above will simplify this to
103 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
104 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
105 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
107 where the first two insns are now dead.
109 We used to use reaching definitions to find which uses have a
110 single reaching definition (sounds obvious...), but this is too
111 complex a problem in nasty testcases like PR33928. Now we use the
112 multiple definitions problem in df-problems.c. The similarity
113 between that problem and SSA form creation is taken further, in
114 that fwprop does a dominator walk to create its chains; however,
115 instead of creating a PHI function where multiple definitions meet
116 I just punt and record only singleton use-def chains, which is
117 all that is needed by fwprop. */
120 static int num_changes
;
123 DEF_VEC_ALLOC_P(df_ref
,heap
);
124 static VEC(df_ref
,heap
) *use_def_ref
;
125 static VEC(df_ref
,heap
) *reg_defs
;
126 static VEC(df_ref
,heap
) *reg_defs_stack
;
128 /* The MD bitmaps are trimmed to include only live registers to cut
129 memory usage on testcases like insn-recog.c. Track live registers
130 in the basic block and do not perform forward propagation if the
131 destination is a dead pseudo occurring in a note. */
132 static bitmap local_md
;
133 static bitmap local_lr
;
135 /* Return the only def in USE's use-def chain, or NULL if there is
136 more than one def in the chain. */
139 get_def_for_use (df_ref use
)
141 return VEC_index (df_ref
, use_def_ref
, DF_REF_ID (use
));
145 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
146 TOP_FLAG says which artificials uses should be used, when DEF_REC
147 is an artificial def vector. LOCAL_MD is modified as after a
148 df_md_simulate_* function; we do more or less the same processing
149 done there, so we do not use those functions. */
151 #define DF_MD_GEN_FLAGS \
152 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
155 process_defs (df_ref
*def_rec
, int top_flag
)
158 while ((def
= *def_rec
++) != NULL
)
160 df_ref curr_def
= VEC_index (df_ref
, reg_defs
, DF_REF_REGNO (def
));
163 if ((DF_REF_FLAGS (def
) & DF_REF_AT_TOP
) != top_flag
)
166 dregno
= DF_REF_REGNO (def
);
168 VEC_safe_push (df_ref
, heap
, reg_defs_stack
, curr_def
);
171 /* Do not store anything if "transitioning" from NULL to NULL. But
172 otherwise, push a special entry on the stack to tell the
173 leave_block callback that the entry in reg_defs was NULL. */
174 if (DF_REF_FLAGS (def
) & DF_MD_GEN_FLAGS
)
177 VEC_safe_push (df_ref
, heap
, reg_defs_stack
, def
);
180 if (DF_REF_FLAGS (def
) & DF_MD_GEN_FLAGS
)
182 bitmap_set_bit (local_md
, dregno
);
183 VEC_replace (df_ref
, reg_defs
, dregno
, NULL
);
187 bitmap_clear_bit (local_md
, dregno
);
188 VEC_replace (df_ref
, reg_defs
, dregno
, def
);
194 /* Fill the use_def_ref vector with values for the uses in USE_REC,
195 taking reaching definitions info from LOCAL_MD and REG_DEFS.
196 TOP_FLAG says which artificials uses should be used, when USE_REC
197 is an artificial use vector. */
200 process_uses (df_ref
*use_rec
, int top_flag
)
203 while ((use
= *use_rec
++) != NULL
)
204 if ((DF_REF_FLAGS (use
) & DF_REF_AT_TOP
) == top_flag
)
206 unsigned int uregno
= DF_REF_REGNO (use
);
207 if (VEC_index (df_ref
, reg_defs
, uregno
)
208 && !bitmap_bit_p (local_md
, uregno
)
209 && bitmap_bit_p (local_lr
, uregno
))
210 VEC_replace (df_ref
, use_def_ref
, DF_REF_ID (use
),
211 VEC_index (df_ref
, reg_defs
, uregno
));
217 single_def_use_enter_block (struct dom_walk_data
*walk_data ATTRIBUTE_UNUSED
,
220 int bb_index
= bb
->index
;
221 struct df_md_bb_info
*md_bb_info
= df_md_get_bb_info (bb_index
);
222 struct df_lr_bb_info
*lr_bb_info
= df_lr_get_bb_info (bb_index
);
225 bitmap_copy (local_md
, &md_bb_info
->in
);
226 bitmap_copy (local_lr
, &lr_bb_info
->in
);
228 /* Push a marker for the leave_block callback. */
229 VEC_safe_push (df_ref
, heap
, reg_defs_stack
, NULL
);
231 process_uses (df_get_artificial_uses (bb_index
), DF_REF_AT_TOP
);
232 process_defs (df_get_artificial_defs (bb_index
), DF_REF_AT_TOP
);
234 /* We don't call df_simulate_initialize_forwards, as it may overestimate
235 the live registers if there are unused artificial defs. We prefer
236 liveness to be underestimated. */
238 FOR_BB_INSNS (bb
, insn
)
241 unsigned int uid
= INSN_UID (insn
);
242 process_uses (DF_INSN_UID_USES (uid
), 0);
243 process_uses (DF_INSN_UID_EQ_USES (uid
), 0);
244 process_defs (DF_INSN_UID_DEFS (uid
), 0);
245 df_simulate_one_insn_forwards (bb
, insn
, local_lr
);
248 process_uses (df_get_artificial_uses (bb_index
), 0);
249 process_defs (df_get_artificial_defs (bb_index
), 0);
252 /* Pop the definitions created in this basic block when leaving its
256 single_def_use_leave_block (struct dom_walk_data
*walk_data ATTRIBUTE_UNUSED
,
257 basic_block bb ATTRIBUTE_UNUSED
)
260 while ((saved_def
= VEC_pop (df_ref
, reg_defs_stack
)) != NULL
)
262 unsigned int dregno
= DF_REF_REGNO (saved_def
);
264 /* See also process_defs. */
265 if (saved_def
== VEC_index (df_ref
, reg_defs
, dregno
))
266 VEC_replace (df_ref
, reg_defs
, dregno
, NULL
);
268 VEC_replace (df_ref
, reg_defs
, dregno
, saved_def
);
273 /* Build a vector holding the reaching definitions of uses reached by a
274 single dominating definition. */
277 build_single_def_use_links (void)
279 struct dom_walk_data walk_data
;
281 /* We use the multiple definitions problem to compute our restricted
283 df_set_flags (DF_EQ_NOTES
);
284 df_md_add_problem ();
285 df_note_add_problem ();
287 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES
);
289 use_def_ref
= VEC_alloc (df_ref
, heap
, DF_USES_TABLE_SIZE ());
290 VEC_safe_grow_cleared (df_ref
, heap
, use_def_ref
, DF_USES_TABLE_SIZE ());
292 reg_defs
= VEC_alloc (df_ref
, heap
, max_reg_num ());
293 VEC_safe_grow_cleared (df_ref
, heap
, reg_defs
, max_reg_num ());
295 reg_defs_stack
= VEC_alloc (df_ref
, heap
, n_basic_blocks
* 10);
296 local_md
= BITMAP_ALLOC (NULL
);
297 local_lr
= BITMAP_ALLOC (NULL
);
299 /* Walk the dominator tree looking for single reaching definitions
300 dominating the uses. This is similar to how SSA form is built. */
301 walk_data
.dom_direction
= CDI_DOMINATORS
;
302 walk_data
.initialize_block_local_data
= NULL
;
303 walk_data
.before_dom_children
= single_def_use_enter_block
;
304 walk_data
.after_dom_children
= single_def_use_leave_block
;
306 init_walk_dominator_tree (&walk_data
);
307 walk_dominator_tree (&walk_data
, ENTRY_BLOCK_PTR
);
308 fini_walk_dominator_tree (&walk_data
);
310 BITMAP_FREE (local_lr
);
311 BITMAP_FREE (local_md
);
312 VEC_free (df_ref
, heap
, reg_defs
);
313 VEC_free (df_ref
, heap
, reg_defs_stack
);
317 /* Do not try to replace constant addresses or addresses of local and
318 argument slots. These MEM expressions are made only once and inserted
319 in many instructions, as well as being used to control symbol table
320 output. It is not safe to clobber them.
322 There are some uncommon cases where the address is already in a register
323 for some reason, but we cannot take advantage of that because we have
324 no easy way to unshare the MEM. In addition, looking up all stack
325 addresses is costly. */
328 can_simplify_addr (rtx addr
)
332 if (CONSTANT_ADDRESS_P (addr
))
335 if (GET_CODE (addr
) == PLUS
)
336 reg
= XEXP (addr
, 0);
341 || (REGNO (reg
) != FRAME_POINTER_REGNUM
342 && REGNO (reg
) != HARD_FRAME_POINTER_REGNUM
343 && REGNO (reg
) != ARG_POINTER_REGNUM
));
346 /* Returns a canonical version of X for the address, from the point of view,
347 that all multiplications are represented as MULT instead of the multiply
348 by a power of 2 being represented as ASHIFT.
350 Every ASHIFT we find has been made by simplify_gen_binary and was not
351 there before, so it is not shared. So we can do this in place. */
354 canonicalize_address (rtx x
)
357 switch (GET_CODE (x
))
360 if (CONST_INT_P (XEXP (x
, 1))
361 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (GET_MODE (x
))
362 && INTVAL (XEXP (x
, 1)) >= 0)
364 HOST_WIDE_INT shift
= INTVAL (XEXP (x
, 1));
366 XEXP (x
, 1) = gen_int_mode ((HOST_WIDE_INT
) 1 << shift
,
374 if (GET_CODE (XEXP (x
, 0)) == PLUS
375 || GET_CODE (XEXP (x
, 0)) == ASHIFT
376 || GET_CODE (XEXP (x
, 0)) == CONST
)
377 canonicalize_address (XEXP (x
, 0));
391 /* OLD is a memory address. Return whether it is good to use NEW instead,
392 for a memory access in the given MODE. */
395 should_replace_address (rtx old_rtx
, rtx new_rtx
, enum machine_mode mode
,
396 addr_space_t as
, bool speed
)
400 if (rtx_equal_p (old_rtx
, new_rtx
)
401 || !memory_address_addr_space_p (mode
, new_rtx
, as
))
404 /* Copy propagation is always ok. */
405 if (REG_P (old_rtx
) && REG_P (new_rtx
))
408 /* Prefer the new address if it is less expensive. */
409 gain
= (address_cost (old_rtx
, mode
, as
, speed
)
410 - address_cost (new_rtx
, mode
, as
, speed
));
412 /* If the addresses have equivalent cost, prefer the new address
413 if it has the highest `rtx_cost'. That has the potential of
414 eliminating the most insns without additional costs, and it
415 is the same that cse.c used to do. */
417 gain
= rtx_cost (new_rtx
, SET
, speed
) - rtx_cost (old_rtx
, SET
, speed
);
423 /* Flags for the last parameter of propagate_rtx_1. */
426 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
427 if it is false, propagate_rtx_1 returns false if, for at least
428 one occurrence OLD, it failed to collapse the result to a constant.
429 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
430 collapse to zero if replacing (reg:M B) with (reg:M A).
432 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
433 propagate_rtx_1 just tries to make cheaper and valid memory
437 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
438 outside memory addresses. This is needed because propagate_rtx_1 does
439 not do any analysis on memory; thus it is very conservative and in general
440 it will fail if non-read-only MEMs are found in the source expression.
442 PR_HANDLE_MEM is set when the source of the propagation was not
443 another MEM. Then, it is safe not to treat non-read-only MEMs as
444 ``opaque'' objects. */
447 /* Set when costs should be optimized for speed. */
448 PR_OPTIMIZE_FOR_SPEED
= 4
452 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
453 resulting expression. Replace *PX with a new RTL expression if an
454 occurrence of OLD was found.
456 This is only a wrapper around simplify-rtx.c: do not add any pattern
457 matching code here. (The sole exception is the handling of LO_SUM, but
458 that is because there is no simplify_gen_* function for LO_SUM). */
461 propagate_rtx_1 (rtx
*px
, rtx old_rtx
, rtx new_rtx
, int flags
)
463 rtx x
= *px
, tem
= NULL_RTX
, op0
, op1
, op2
;
464 enum rtx_code code
= GET_CODE (x
);
465 enum machine_mode mode
= GET_MODE (x
);
466 enum machine_mode op_mode
;
467 bool can_appear
= (flags
& PR_CAN_APPEAR
) != 0;
468 bool valid_ops
= true;
470 if (!(flags
& PR_HANDLE_MEM
) && MEM_P (x
) && !MEM_READONLY_P (x
))
472 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
473 they have side effects or not). */
474 *px
= (side_effects_p (x
)
475 ? gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
)
476 : gen_rtx_SCRATCH (GET_MODE (x
)));
480 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
481 address, and we are *not* inside one. */
488 /* If this is an expression, try recursive substitution. */
489 switch (GET_RTX_CLASS (code
))
493 op_mode
= GET_MODE (op0
);
494 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
495 if (op0
== XEXP (x
, 0))
497 tem
= simplify_gen_unary (code
, mode
, op0
, op_mode
);
504 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
505 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
506 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
508 tem
= simplify_gen_binary (code
, mode
, op0
, op1
);
512 case RTX_COMM_COMPARE
:
515 op_mode
= GET_MODE (op0
) != VOIDmode
? GET_MODE (op0
) : GET_MODE (op1
);
516 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
517 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
518 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
520 tem
= simplify_gen_relational (code
, mode
, op_mode
, op0
, op1
);
524 case RTX_BITFIELD_OPS
:
528 op_mode
= GET_MODE (op0
);
529 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
530 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
531 valid_ops
&= propagate_rtx_1 (&op2
, old_rtx
, new_rtx
, flags
);
532 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1) && op2
== XEXP (x
, 2))
534 if (op_mode
== VOIDmode
)
535 op_mode
= GET_MODE (op0
);
536 tem
= simplify_gen_ternary (code
, mode
, op_mode
, op0
, op1
, op2
);
540 /* The only case we try to handle is a SUBREG. */
544 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
545 if (op0
== XEXP (x
, 0))
547 tem
= simplify_gen_subreg (mode
, op0
, GET_MODE (SUBREG_REG (x
)),
553 if (code
== MEM
&& x
!= new_rtx
)
558 /* There are some addresses that we cannot work on. */
559 if (!can_simplify_addr (op0
))
562 op0
= new_op0
= targetm
.delegitimize_address (op0
);
563 valid_ops
&= propagate_rtx_1 (&new_op0
, old_rtx
, new_rtx
,
564 flags
| PR_CAN_APPEAR
);
566 /* Dismiss transformation that we do not want to carry on. */
569 || !(GET_MODE (new_op0
) == GET_MODE (op0
)
570 || GET_MODE (new_op0
) == VOIDmode
))
573 canonicalize_address (new_op0
);
575 /* Copy propagations are always ok. Otherwise check the costs. */
576 if (!(REG_P (old_rtx
) && REG_P (new_rtx
))
577 && !should_replace_address (op0
, new_op0
, GET_MODE (x
),
579 flags
& PR_OPTIMIZE_FOR_SPEED
))
582 tem
= replace_equiv_address_nv (x
, new_op0
);
585 else if (code
== LO_SUM
)
590 /* The only simplification we do attempts to remove references to op0
591 or make it constant -- in both cases, op0's invalidity will not
592 make the result invalid. */
593 propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
| PR_CAN_APPEAR
);
594 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
595 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
598 /* (lo_sum (high x) x) -> x */
599 if (GET_CODE (op0
) == HIGH
&& rtx_equal_p (XEXP (op0
, 0), op1
))
602 tem
= gen_rtx_LO_SUM (mode
, op0
, op1
);
604 /* OP1 is likely not a legitimate address, otherwise there would have
605 been no LO_SUM. We want it to disappear if it is invalid, return
606 false in that case. */
607 return memory_address_p (mode
, tem
);
610 else if (code
== REG
)
612 if (rtx_equal_p (x
, old_rtx
))
624 /* No change, no trouble. */
630 /* The replacement we made so far is valid, if all of the recursive
631 replacements were valid, or we could simplify everything to
633 return valid_ops
|| can_appear
|| CONSTANT_P (tem
);
637 /* for_each_rtx traversal function that returns 1 if BODY points to
638 a non-constant mem. */
641 varying_mem_p (rtx
*body
, void *data ATTRIBUTE_UNUSED
)
644 return MEM_P (x
) && !MEM_READONLY_P (x
);
648 /* Replace all occurrences of OLD in X with NEW and try to simplify the
649 resulting expression (in mode MODE). Return a new expression if it is
650 a constant, otherwise X.
652 Simplifications where occurrences of NEW collapse to a constant are always
653 accepted. All simplifications are accepted if NEW is a pseudo too.
654 Otherwise, we accept simplifications that have a lower or equal cost. */
657 propagate_rtx (rtx x
, enum machine_mode mode
, rtx old_rtx
, rtx new_rtx
,
664 if (REG_P (new_rtx
) && REGNO (new_rtx
) < FIRST_PSEUDO_REGISTER
)
668 if (REG_P (new_rtx
) || CONSTANT_P (new_rtx
))
669 flags
|= PR_CAN_APPEAR
;
670 if (!for_each_rtx (&new_rtx
, varying_mem_p
, NULL
))
671 flags
|= PR_HANDLE_MEM
;
674 flags
|= PR_OPTIMIZE_FOR_SPEED
;
677 collapsed
= propagate_rtx_1 (&tem
, old_rtx
, copy_rtx (new_rtx
), flags
);
678 if (tem
== x
|| !collapsed
)
681 /* gen_lowpart_common will not be able to process VOIDmode entities other
683 if (GET_MODE (tem
) == VOIDmode
&& !CONST_INT_P (tem
))
686 if (GET_MODE (tem
) == VOIDmode
)
687 tem
= rtl_hooks
.gen_lowpart_no_emit (mode
, tem
);
689 gcc_assert (GET_MODE (tem
) == mode
);
697 /* Return true if the register from reference REF is killed
698 between FROM to (but not including) TO. */
701 local_ref_killed_between_p (df_ref ref
, rtx from
, rtx to
)
705 for (insn
= from
; insn
!= to
; insn
= NEXT_INSN (insn
))
711 for (def_rec
= DF_INSN_DEFS (insn
); *def_rec
; def_rec
++)
713 df_ref def
= *def_rec
;
714 if (DF_REF_REGNO (ref
) == DF_REF_REGNO (def
))
722 /* Check if the given DEF is available in INSN. This would require full
723 computation of available expressions; we check only restricted conditions:
724 - if DEF is the sole definition of its register, go ahead;
725 - in the same basic block, we check for no definitions killing the
726 definition of DEF_INSN;
727 - if USE's basic block has DEF's basic block as the sole predecessor,
728 we check if the definition is killed after DEF_INSN or before
729 TARGET_INSN insn, in their respective basic blocks. */
731 use_killed_between (df_ref use
, rtx def_insn
, rtx target_insn
)
733 basic_block def_bb
= BLOCK_FOR_INSN (def_insn
);
734 basic_block target_bb
= BLOCK_FOR_INSN (target_insn
);
738 /* We used to have a def reaching a use that is _before_ the def,
739 with the def not dominating the use even though the use and def
740 are in the same basic block, when a register may be used
741 uninitialized in a loop. This should not happen anymore since
742 we do not use reaching definitions, but still we test for such
743 cases and assume that DEF is not available. */
744 if (def_bb
== target_bb
745 ? DF_INSN_LUID (def_insn
) >= DF_INSN_LUID (target_insn
)
746 : !dominated_by_p (CDI_DOMINATORS
, target_bb
, def_bb
))
749 /* Check if the reg in USE has only one definition. We already
750 know that this definition reaches use, or we wouldn't be here.
751 However, this is invalid for hard registers because if they are
752 live at the beginning of the function it does not mean that we
753 have an uninitialized access. */
754 regno
= DF_REF_REGNO (use
);
755 def
= DF_REG_DEF_CHAIN (regno
);
757 && DF_REF_NEXT_REG (def
) == NULL
758 && regno
>= FIRST_PSEUDO_REGISTER
)
761 /* Check locally if we are in the same basic block. */
762 if (def_bb
== target_bb
)
763 return local_ref_killed_between_p (use
, def_insn
, target_insn
);
765 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
766 if (single_pred_p (target_bb
)
767 && single_pred (target_bb
) == def_bb
)
771 /* See if USE is killed between DEF_INSN and the last insn in the
772 basic block containing DEF_INSN. */
773 x
= df_bb_regno_last_def_find (def_bb
, regno
);
774 if (x
&& DF_INSN_LUID (DF_REF_INSN (x
)) >= DF_INSN_LUID (def_insn
))
777 /* See if USE is killed between TARGET_INSN and the first insn in the
778 basic block containing TARGET_INSN. */
779 x
= df_bb_regno_first_def_find (target_bb
, regno
);
780 if (x
&& DF_INSN_LUID (DF_REF_INSN (x
)) < DF_INSN_LUID (target_insn
))
786 /* Otherwise assume the worst case. */
791 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
792 would require full computation of available expressions;
793 we check only restricted conditions, see use_killed_between. */
795 all_uses_available_at (rtx def_insn
, rtx target_insn
)
798 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (def_insn
);
799 rtx def_set
= single_set (def_insn
);
801 gcc_assert (def_set
);
803 /* If target_insn comes right after def_insn, which is very common
804 for addresses, we can use a quicker test. */
805 if (NEXT_INSN (def_insn
) == target_insn
806 && REG_P (SET_DEST (def_set
)))
808 rtx def_reg
= SET_DEST (def_set
);
810 /* If the insn uses the reg that it defines, the substitution is
812 for (use_rec
= DF_INSN_INFO_USES (insn_info
); *use_rec
; use_rec
++)
814 df_ref use
= *use_rec
;
815 if (rtx_equal_p (DF_REF_REG (use
), def_reg
))
818 for (use_rec
= DF_INSN_INFO_EQ_USES (insn_info
); *use_rec
; use_rec
++)
820 df_ref use
= *use_rec
;
821 if (rtx_equal_p (DF_REF_REG (use
), def_reg
))
827 rtx def_reg
= REG_P (SET_DEST (def_set
)) ? SET_DEST (def_set
) : NULL_RTX
;
829 /* Look at all the uses of DEF_INSN, and see if they are not
830 killed between DEF_INSN and TARGET_INSN. */
831 for (use_rec
= DF_INSN_INFO_USES (insn_info
); *use_rec
; use_rec
++)
833 df_ref use
= *use_rec
;
834 if (def_reg
&& rtx_equal_p (DF_REF_REG (use
), def_reg
))
836 if (use_killed_between (use
, def_insn
, target_insn
))
839 for (use_rec
= DF_INSN_INFO_EQ_USES (insn_info
); *use_rec
; use_rec
++)
841 df_ref use
= *use_rec
;
842 if (def_reg
&& rtx_equal_p (DF_REF_REG (use
), def_reg
))
844 if (use_killed_between (use
, def_insn
, target_insn
))
853 static df_ref
*active_defs
;
854 #ifdef ENABLE_CHECKING
855 static sparseset active_defs_check
;
858 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
859 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
860 too, for checking purposes. */
863 register_active_defs (df_ref
*use_rec
)
867 df_ref use
= *use_rec
++;
868 df_ref def
= get_def_for_use (use
);
869 int regno
= DF_REF_REGNO (use
);
871 #ifdef ENABLE_CHECKING
872 sparseset_set_bit (active_defs_check
, regno
);
874 active_defs
[regno
] = def
;
879 /* Build the use->def links that we use to update the dataflow info
880 for new uses. Note that building the links is very cheap and if
881 it were done earlier, they could be used to rule out invalid
882 propagations (in addition to what is done in all_uses_available_at).
883 I'm not doing this yet, though. */
886 update_df_init (rtx def_insn
, rtx insn
)
888 #ifdef ENABLE_CHECKING
889 sparseset_clear (active_defs_check
);
891 register_active_defs (DF_INSN_USES (def_insn
));
892 register_active_defs (DF_INSN_USES (insn
));
893 register_active_defs (DF_INSN_EQ_USES (insn
));
897 /* Update the USE_DEF_REF array for the given use, using the active definitions
898 in the ACTIVE_DEFS array to match pseudos to their def. */
901 update_uses (df_ref
*use_rec
)
905 df_ref use
= *use_rec
++;
906 int regno
= DF_REF_REGNO (use
);
908 /* Set up the use-def chain. */
909 if (DF_REF_ID (use
) >= (int) VEC_length (df_ref
, use_def_ref
))
910 VEC_safe_grow_cleared (df_ref
, heap
, use_def_ref
,
911 DF_REF_ID (use
) + 1);
913 #ifdef ENABLE_CHECKING
914 gcc_assert (sparseset_bit_p (active_defs_check
, regno
));
916 VEC_replace (df_ref
, use_def_ref
, DF_REF_ID (use
), active_defs
[regno
]);
921 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
922 uses if NOTES_ONLY is true. */
925 update_df (rtx insn
, rtx note
)
927 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (insn
);
931 df_uses_create (&XEXP (note
, 0), insn
, DF_REF_IN_NOTE
);
932 df_notes_rescan (insn
);
936 df_uses_create (&PATTERN (insn
), insn
, 0);
937 df_insn_rescan (insn
);
938 update_uses (DF_INSN_INFO_USES (insn_info
));
941 update_uses (DF_INSN_INFO_EQ_USES (insn_info
));
945 /* Try substituting NEW into LOC, which originated from forward propagation
946 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
947 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
948 new insn is not recognized. Return whether the substitution was
952 try_fwprop_subst (df_ref use
, rtx
*loc
, rtx new_rtx
, rtx def_insn
, bool set_reg_equal
)
954 rtx insn
= DF_REF_INSN (use
);
955 rtx set
= single_set (insn
);
957 bool speed
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
));
961 update_df_init (def_insn
, insn
);
963 /* forward_propagate_subreg may be operating on an instruction with
964 multiple sets. If so, assume the cost of the new instruction is
965 not greater than the old one. */
967 old_cost
= rtx_cost (SET_SRC (set
), SET
, speed
);
970 fprintf (dump_file
, "\nIn insn %d, replacing\n ", INSN_UID (insn
));
971 print_inline_rtx (dump_file
, *loc
, 2);
972 fprintf (dump_file
, "\n with ");
973 print_inline_rtx (dump_file
, new_rtx
, 2);
974 fprintf (dump_file
, "\n");
977 validate_unshare_change (insn
, loc
, new_rtx
, true);
978 if (!verify_changes (0))
981 fprintf (dump_file
, "Changes to insn %d not recognized\n",
986 else if (DF_REF_TYPE (use
) == DF_REF_REG_USE
988 && rtx_cost (SET_SRC (set
), SET
, speed
) > old_cost
)
991 fprintf (dump_file
, "Changes to insn %d not profitable\n",
999 fprintf (dump_file
, "Changed insn %d\n", INSN_UID (insn
));
1005 confirm_change_group ();
1012 /* Can also record a simplified value in a REG_EQUAL note,
1013 making a new one if one does not already exist. */
1017 fprintf (dump_file
, " Setting REG_EQUAL note\n");
1019 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (new_rtx
));
1023 if ((ok
|| note
) && !CONSTANT_P (new_rtx
))
1024 update_df (insn
, note
);
1029 /* For the given single_set INSN, containing SRC known to be a
1030 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1031 is redundant due to the register being set by a LOAD_EXTEND_OP
1032 load from memory. */
1035 free_load_extend (rtx src
, rtx insn
)
1039 df_ref use
= 0, def
;
1041 reg
= XEXP (src
, 0);
1042 #ifdef LOAD_EXTEND_OP
1043 if (LOAD_EXTEND_OP (GET_MODE (reg
)) != GET_CODE (src
))
1047 for (use_vec
= DF_INSN_USES (insn
); *use_vec
; use_vec
++)
1051 if (!DF_REF_IS_ARTIFICIAL (use
)
1052 && DF_REF_TYPE (use
) == DF_REF_REG_USE
1053 && DF_REF_REG (use
) == reg
)
1059 def
= get_def_for_use (use
);
1063 if (DF_REF_IS_ARTIFICIAL (def
))
1066 if (NONJUMP_INSN_P (DF_REF_INSN (def
)))
1068 rtx patt
= PATTERN (DF_REF_INSN (def
));
1070 if (GET_CODE (patt
) == SET
1071 && GET_CODE (SET_SRC (patt
)) == MEM
1072 && rtx_equal_p (SET_DEST (patt
), reg
))
1078 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1081 forward_propagate_subreg (df_ref use
, rtx def_insn
, rtx def_set
)
1083 rtx use_reg
= DF_REF_REG (use
);
1086 /* Only consider subregs... */
1087 enum machine_mode use_mode
= GET_MODE (use_reg
);
1088 if (GET_CODE (use_reg
) != SUBREG
1089 || !REG_P (SET_DEST (def_set
)))
1092 /* If this is a paradoxical SUBREG... */
1093 if (GET_MODE_SIZE (use_mode
)
1094 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg
))))
1096 /* If this is a paradoxical SUBREG, we have no idea what value the
1097 extra bits would have. However, if the operand is equivalent to
1098 a SUBREG whose operand is the same as our mode, and all the modes
1099 are within a word, we can just use the inner operand because
1100 these SUBREGs just say how to treat the register. */
1101 use_insn
= DF_REF_INSN (use
);
1102 src
= SET_SRC (def_set
);
1103 if (GET_CODE (src
) == SUBREG
1104 && REG_P (SUBREG_REG (src
))
1105 && GET_MODE (SUBREG_REG (src
)) == use_mode
1106 && subreg_lowpart_p (src
)
1107 && all_uses_available_at (def_insn
, use_insn
))
1108 return try_fwprop_subst (use
, DF_REF_LOC (use
), SUBREG_REG (src
),
1112 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1113 is the low part of the reg being extended then just use the inner
1114 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1115 be removed due to it matching a LOAD_EXTEND_OP load from memory. */
1116 else if (subreg_lowpart_p (use_reg
))
1118 use_insn
= DF_REF_INSN (use
);
1119 src
= SET_SRC (def_set
);
1120 if ((GET_CODE (src
) == ZERO_EXTEND
1121 || GET_CODE (src
) == SIGN_EXTEND
)
1122 && REG_P (XEXP (src
, 0))
1123 && GET_MODE (XEXP (src
, 0)) == use_mode
1124 && !free_load_extend (src
, def_insn
)
1125 && all_uses_available_at (def_insn
, use_insn
))
1126 return try_fwprop_subst (use
, DF_REF_LOC (use
), XEXP (src
, 0),
1133 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1136 forward_propagate_asm (df_ref use
, rtx def_insn
, rtx def_set
, rtx reg
)
1138 rtx use_insn
= DF_REF_INSN (use
), src
, use_pat
, asm_operands
, new_rtx
, *loc
;
1142 gcc_assert ((DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
) == 0);
1144 src
= SET_SRC (def_set
);
1145 use_pat
= PATTERN (use_insn
);
1147 /* In __asm don't replace if src might need more registers than
1148 reg, as that could increase register pressure on the __asm. */
1149 use_vec
= DF_INSN_USES (def_insn
);
1150 if (use_vec
[0] && use_vec
[1])
1153 update_df_init (def_insn
, use_insn
);
1154 speed_p
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
));
1155 asm_operands
= NULL_RTX
;
1156 switch (GET_CODE (use_pat
))
1159 asm_operands
= use_pat
;
1162 if (MEM_P (SET_DEST (use_pat
)))
1164 loc
= &SET_DEST (use_pat
);
1165 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
, src
, speed_p
);
1167 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1169 asm_operands
= SET_SRC (use_pat
);
1172 for (i
= 0; i
< XVECLEN (use_pat
, 0); i
++)
1173 if (GET_CODE (XVECEXP (use_pat
, 0, i
)) == SET
)
1175 if (MEM_P (SET_DEST (XVECEXP (use_pat
, 0, i
))))
1177 loc
= &SET_DEST (XVECEXP (use_pat
, 0, i
));
1178 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
,
1181 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1183 asm_operands
= SET_SRC (XVECEXP (use_pat
, 0, i
));
1185 else if (GET_CODE (XVECEXP (use_pat
, 0, i
)) == ASM_OPERANDS
)
1186 asm_operands
= XVECEXP (use_pat
, 0, i
);
1192 gcc_assert (asm_operands
&& GET_CODE (asm_operands
) == ASM_OPERANDS
);
1193 for (i
= 0; i
< ASM_OPERANDS_INPUT_LENGTH (asm_operands
); i
++)
1195 loc
= &ASM_OPERANDS_INPUT (asm_operands
, i
);
1196 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
, src
, speed_p
);
1198 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1201 if (num_changes_pending () == 0 || !apply_change_group ())
1204 update_df (use_insn
, NULL
);
1209 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1213 forward_propagate_and_simplify (df_ref use
, rtx def_insn
, rtx def_set
)
1215 rtx use_insn
= DF_REF_INSN (use
);
1216 rtx use_set
= single_set (use_insn
);
1217 rtx src
, reg
, new_rtx
, *loc
;
1219 enum machine_mode mode
;
1222 if (INSN_CODE (use_insn
) < 0)
1223 asm_use
= asm_noperands (PATTERN (use_insn
));
1225 if (!use_set
&& asm_use
< 0 && !DEBUG_INSN_P (use_insn
))
1228 /* Do not propagate into PC, CC0, etc. */
1229 if (use_set
&& GET_MODE (SET_DEST (use_set
)) == VOIDmode
)
1232 /* If def and use are subreg, check if they match. */
1233 reg
= DF_REF_REG (use
);
1234 if (GET_CODE (reg
) == SUBREG
1235 && GET_CODE (SET_DEST (def_set
)) == SUBREG
1236 && (SUBREG_BYTE (SET_DEST (def_set
)) != SUBREG_BYTE (reg
)
1237 || GET_MODE (SET_DEST (def_set
)) != GET_MODE (reg
)))
1240 /* Check if the def had a subreg, but the use has the whole reg. */
1241 if (REG_P (reg
) && GET_CODE (SET_DEST (def_set
)) == SUBREG
)
1244 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1245 previous case, the optimization is possible and often useful indeed. */
1246 if (GET_CODE (reg
) == SUBREG
&& REG_P (SET_DEST (def_set
)))
1247 reg
= SUBREG_REG (reg
);
1249 /* Check if the substitution is valid (last, because it's the most
1250 expensive check!). */
1251 src
= SET_SRC (def_set
);
1252 if (!CONSTANT_P (src
) && !all_uses_available_at (def_insn
, use_insn
))
1255 /* Check if the def is loading something from the constant pool; in this
1256 case we would undo optimization such as compress_float_constant.
1257 Still, we can set a REG_EQUAL note. */
1258 if (MEM_P (src
) && MEM_READONLY_P (src
))
1260 rtx x
= avoid_constant_pool_reference (src
);
1261 if (x
!= src
&& use_set
)
1263 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1264 rtx old_rtx
= note
? XEXP (note
, 0) : SET_SRC (use_set
);
1265 rtx new_rtx
= simplify_replace_rtx (old_rtx
, src
, x
);
1266 if (old_rtx
!= new_rtx
)
1267 set_unique_reg_note (use_insn
, REG_EQUAL
, copy_rtx (new_rtx
));
1273 return forward_propagate_asm (use
, def_insn
, def_set
, reg
);
1275 /* Else try simplifying. */
1277 if (DF_REF_TYPE (use
) == DF_REF_REG_MEM_STORE
)
1279 loc
= &SET_DEST (use_set
);
1280 set_reg_equal
= false;
1284 loc
= &INSN_VAR_LOCATION_LOC (use_insn
);
1285 set_reg_equal
= false;
1289 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1290 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
1291 loc
= &XEXP (note
, 0);
1293 loc
= &SET_SRC (use_set
);
1295 /* Do not replace an existing REG_EQUAL note if the insn is not
1296 recognized. Either we're already replacing in the note, or we'll
1297 separately try plugging the definition in the note and simplifying.
1298 And only install a REQ_EQUAL note when the destination is a REG,
1299 as the note would be invalid otherwise. */
1300 set_reg_equal
= (note
== NULL_RTX
&& REG_P (SET_DEST (use_set
)));
1303 if (GET_MODE (*loc
) == VOIDmode
)
1304 mode
= GET_MODE (SET_DEST (use_set
));
1306 mode
= GET_MODE (*loc
);
1308 new_rtx
= propagate_rtx (*loc
, mode
, reg
, src
,
1309 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
)));
1314 return try_fwprop_subst (use
, loc
, new_rtx
, def_insn
, set_reg_equal
);
1318 /* Given a use USE of an insn, if it has a single reaching
1319 definition, try to forward propagate it into that insn. */
1322 forward_propagate_into (df_ref use
)
1325 rtx def_insn
, def_set
, use_insn
;
1328 if (DF_REF_FLAGS (use
) & DF_REF_READ_WRITE
)
1330 if (DF_REF_IS_ARTIFICIAL (use
))
1333 /* Only consider uses that have a single definition. */
1334 def
= get_def_for_use (use
);
1337 if (DF_REF_FLAGS (def
) & DF_REF_READ_WRITE
)
1339 if (DF_REF_IS_ARTIFICIAL (def
))
1342 /* Do not propagate loop invariant definitions inside the loop. */
1343 if (DF_REF_BB (def
)->loop_father
!= DF_REF_BB (use
)->loop_father
)
1346 /* Check if the use is still present in the insn! */
1347 use_insn
= DF_REF_INSN (use
);
1348 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
1349 parent
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1351 parent
= PATTERN (use_insn
);
1353 if (!reg_mentioned_p (DF_REF_REG (use
), parent
))
1356 def_insn
= DF_REF_INSN (def
);
1357 if (multiple_sets (def_insn
))
1359 def_set
= single_set (def_insn
);
1363 /* Only try one kind of propagation. If two are possible, we'll
1364 do it on the following iterations. */
1365 if (!forward_propagate_and_simplify (use
, def_insn
, def_set
))
1366 forward_propagate_subreg (use
, def_insn
, def_set
);
1374 calculate_dominance_info (CDI_DOMINATORS
);
1376 /* We do not always want to propagate into loops, so we have to find
1377 loops and be careful about them. But we have to call flow_loops_find
1378 before df_analyze, because flow_loops_find may introduce new jump
1379 insns (sadly) if we are not working in cfglayout mode. */
1380 loop_optimizer_init (0);
1382 build_single_def_use_links ();
1383 df_set_flags (DF_DEFER_INSN_RESCAN
);
1385 active_defs
= XNEWVEC (df_ref
, max_reg_num ());
1386 #ifdef ENABLE_CHECKING
1387 active_defs_check
= sparseset_alloc (max_reg_num ());
1394 loop_optimizer_finalize ();
1396 VEC_free (df_ref
, heap
, use_def_ref
);
1398 #ifdef ENABLE_CHECKING
1399 sparseset_free (active_defs_check
);
1402 free_dominance_info (CDI_DOMINATORS
);
1404 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1408 "\nNumber of successful forward propagations: %d\n\n",
1413 /* Main entry point. */
1418 return optimize
> 0 && flag_forward_propagate
;
1428 /* Go through all the uses. df_uses_create will create new ones at the
1429 end, and we'll go through them as well.
1431 Do not forward propagate addresses into loops until after unrolling.
1432 CSE did so because it was able to fix its own mess, but we are not. */
1434 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
1436 df_ref use
= DF_USES_GET (i
);
1438 if (DF_REF_TYPE (use
) == DF_REF_REG_USE
1439 || DF_REF_BB (use
)->loop_father
== NULL
1440 /* The outer most loop is not really a loop. */
1441 || loop_outer (DF_REF_BB (use
)->loop_father
) == NULL
)
1442 forward_propagate_into (use
);
1449 struct rtl_opt_pass pass_rtl_fwprop
=
1453 "fwprop1", /* name */
1454 gate_fwprop
, /* gate */
1455 fwprop
, /* execute */
1458 0, /* static_pass_number */
1459 TV_FWPROP
, /* tv_id */
1460 0, /* properties_required */
1461 0, /* properties_provided */
1462 0, /* properties_destroyed */
1463 0, /* todo_flags_start */
1464 TODO_df_finish
| TODO_verify_rtl_sharing
|
1465 TODO_dump_func
/* todo_flags_finish */
1475 /* Go through all the uses. df_uses_create will create new ones at the
1476 end, and we'll go through them as well. */
1477 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
1479 df_ref use
= DF_USES_GET (i
);
1481 if (DF_REF_TYPE (use
) != DF_REF_REG_USE
1482 && DF_REF_BB (use
)->loop_father
!= NULL
1483 /* The outer most loop is not really a loop. */
1484 && loop_outer (DF_REF_BB (use
)->loop_father
) != NULL
)
1485 forward_propagate_into (use
);
1493 struct rtl_opt_pass pass_rtl_fwprop_addr
=
1497 "fwprop2", /* name */
1498 gate_fwprop
, /* gate */
1499 fwprop_addr
, /* execute */
1502 0, /* static_pass_number */
1503 TV_FWPROP
, /* tv_id */
1504 0, /* properties_required */
1505 0, /* properties_provided */
1506 0, /* properties_destroyed */
1507 0, /* todo_flags_start */
1508 TODO_df_finish
| TODO_verify_rtl_sharing
|
1509 TODO_dump_func
/* todo_flags_finish */