2014-06-16 Yury Gribov <y.gribov@samsung.com>
[official-gcc.git] / gcc / asan.c
blob19e15247766de6bc1d3f56b1d11ea3dec3fe44ed
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tree.h"
26 #include "hash-table.h"
27 #include "basic-block.h"
28 #include "tree-ssa-alias.h"
29 #include "internal-fn.h"
30 #include "gimple-expr.h"
31 #include "is-a.h"
32 #include "gimple.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "calls.h"
36 #include "varasm.h"
37 #include "stor-layout.h"
38 #include "tree-iterator.h"
39 #include "cgraph.h"
40 #include "stringpool.h"
41 #include "tree-ssanames.h"
42 #include "tree-pass.h"
43 #include "asan.h"
44 #include "gimple-pretty-print.h"
45 #include "target.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "output.h"
49 #include "tm_p.h"
50 #include "langhooks.h"
51 #include "alloc-pool.h"
52 #include "cfgloop.h"
53 #include "gimple-builder.h"
54 #include "ubsan.h"
55 #include "predict.h"
56 #include "params.h"
57 #include "builtins.h"
59 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
60 with <2x slowdown on average.
62 The tool consists of two parts:
63 instrumentation module (this file) and a run-time library.
64 The instrumentation module adds a run-time check before every memory insn.
65 For a 8- or 16- byte load accessing address X:
66 ShadowAddr = (X >> 3) + Offset
67 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
68 if (ShadowValue)
69 __asan_report_load8(X);
70 For a load of N bytes (N=1, 2 or 4) from address X:
71 ShadowAddr = (X >> 3) + Offset
72 ShadowValue = *(char*)ShadowAddr;
73 if (ShadowValue)
74 if ((X & 7) + N - 1 > ShadowValue)
75 __asan_report_loadN(X);
76 Stores are instrumented similarly, but using __asan_report_storeN functions.
77 A call too __asan_init_vN() is inserted to the list of module CTORs.
78 N is the version number of the AddressSanitizer API. The changes between the
79 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
81 The run-time library redefines malloc (so that redzone are inserted around
82 the allocated memory) and free (so that reuse of free-ed memory is delayed),
83 provides __asan_report* and __asan_init_vN functions.
85 Read more:
86 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
88 The current implementation supports detection of out-of-bounds and
89 use-after-free in the heap, on the stack and for global variables.
91 [Protection of stack variables]
93 To understand how detection of out-of-bounds and use-after-free works
94 for stack variables, lets look at this example on x86_64 where the
95 stack grows downward:
97 int
98 foo ()
100 char a[23] = {0};
101 int b[2] = {0};
103 a[5] = 1;
104 b[1] = 2;
106 return a[5] + b[1];
109 For this function, the stack protected by asan will be organized as
110 follows, from the top of the stack to the bottom:
112 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
114 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
115 the next slot be 32 bytes aligned; this one is called Partial
116 Redzone; this 32 bytes alignment is an asan constraint]
118 Slot 3/ [24 bytes for variable 'a']
120 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
122 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
124 Slot 6/ [8 bytes for variable 'b']
126 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
127 'LEFT RedZone']
129 The 32 bytes of LEFT red zone at the bottom of the stack can be
130 decomposed as such:
132 1/ The first 8 bytes contain a magical asan number that is always
133 0x41B58AB3.
135 2/ The following 8 bytes contains a pointer to a string (to be
136 parsed at runtime by the runtime asan library), which format is
137 the following:
139 "<function-name> <space> <num-of-variables-on-the-stack>
140 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
141 <length-of-var-in-bytes> ){n} "
143 where '(...){n}' means the content inside the parenthesis occurs 'n'
144 times, with 'n' being the number of variables on the stack.
146 3/ The following 8 bytes contain the PC of the current function which
147 will be used by the run-time library to print an error message.
149 4/ The following 8 bytes are reserved for internal use by the run-time.
151 The shadow memory for that stack layout is going to look like this:
153 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
154 The F1 byte pattern is a magic number called
155 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
156 the memory for that shadow byte is part of a the LEFT red zone
157 intended to seat at the bottom of the variables on the stack.
159 - content of shadow memory 8 bytes for slots 6 and 5:
160 0xF4F4F400. The F4 byte pattern is a magic number
161 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
162 memory region for this shadow byte is a PARTIAL red zone
163 intended to pad a variable A, so that the slot following
164 {A,padding} is 32 bytes aligned.
166 Note that the fact that the least significant byte of this
167 shadow memory content is 00 means that 8 bytes of its
168 corresponding memory (which corresponds to the memory of
169 variable 'b') is addressable.
171 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
172 The F2 byte pattern is a magic number called
173 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
174 region for this shadow byte is a MIDDLE red zone intended to
175 seat between two 32 aligned slots of {variable,padding}.
177 - content of shadow memory 8 bytes for slot 3 and 2:
178 0xF4000000. This represents is the concatenation of
179 variable 'a' and the partial red zone following it, like what we
180 had for variable 'b'. The least significant 3 bytes being 00
181 means that the 3 bytes of variable 'a' are addressable.
183 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
184 The F3 byte pattern is a magic number called
185 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
186 region for this shadow byte is a RIGHT red zone intended to seat
187 at the top of the variables of the stack.
189 Note that the real variable layout is done in expand_used_vars in
190 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
191 stack variables as well as the different red zones, emits some
192 prologue code to populate the shadow memory as to poison (mark as
193 non-accessible) the regions of the red zones and mark the regions of
194 stack variables as accessible, and emit some epilogue code to
195 un-poison (mark as accessible) the regions of red zones right before
196 the function exits.
198 [Protection of global variables]
200 The basic idea is to insert a red zone between two global variables
201 and install a constructor function that calls the asan runtime to do
202 the populating of the relevant shadow memory regions at load time.
204 So the global variables are laid out as to insert a red zone between
205 them. The size of the red zones is so that each variable starts on a
206 32 bytes boundary.
208 Then a constructor function is installed so that, for each global
209 variable, it calls the runtime asan library function
210 __asan_register_globals_with an instance of this type:
212 struct __asan_global
214 // Address of the beginning of the global variable.
215 const void *__beg;
217 // Initial size of the global variable.
218 uptr __size;
220 // Size of the global variable + size of the red zone. This
221 // size is 32 bytes aligned.
222 uptr __size_with_redzone;
224 // Name of the global variable.
225 const void *__name;
227 // Name of the module where the global variable is declared.
228 const void *__module_name;
230 // 1 if it has dynamic initialization, 0 otherwise.
231 uptr __has_dynamic_init;
234 A destructor function that calls the runtime asan library function
235 _asan_unregister_globals is also installed. */
237 alias_set_type asan_shadow_set = -1;
239 /* Pointer types to 1 resp. 2 byte integers in shadow memory. A separate
240 alias set is used for all shadow memory accesses. */
241 static GTY(()) tree shadow_ptr_types[2];
243 /* Decl for __asan_option_detect_stack_use_after_return. */
244 static GTY(()) tree asan_detect_stack_use_after_return;
246 /* Number of instrumentations in current function so far. */
248 static int asan_num_accesses;
250 /* Check whether we should replace inline instrumentation with calls. */
252 static inline bool
253 use_calls_p ()
255 return ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD < INT_MAX
256 && asan_num_accesses >= ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD;
259 /* Hashtable support for memory references used by gimple
260 statements. */
262 /* This type represents a reference to a memory region. */
263 struct asan_mem_ref
265 /* The expression of the beginning of the memory region. */
266 tree start;
268 /* The size of the access. */
269 HOST_WIDE_INT access_size;
272 static alloc_pool asan_mem_ref_alloc_pool;
274 /* This creates the alloc pool used to store the instances of
275 asan_mem_ref that are stored in the hash table asan_mem_ref_ht. */
277 static alloc_pool
278 asan_mem_ref_get_alloc_pool ()
280 if (asan_mem_ref_alloc_pool == NULL)
281 asan_mem_ref_alloc_pool = create_alloc_pool ("asan_mem_ref",
282 sizeof (asan_mem_ref),
283 10);
284 return asan_mem_ref_alloc_pool;
288 /* Initializes an instance of asan_mem_ref. */
290 static void
291 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
293 ref->start = start;
294 ref->access_size = access_size;
297 /* Allocates memory for an instance of asan_mem_ref into the memory
298 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
299 START is the address of (or the expression pointing to) the
300 beginning of memory reference. ACCESS_SIZE is the size of the
301 access to the referenced memory. */
303 static asan_mem_ref*
304 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
306 asan_mem_ref *ref =
307 (asan_mem_ref *) pool_alloc (asan_mem_ref_get_alloc_pool ());
309 asan_mem_ref_init (ref, start, access_size);
310 return ref;
313 /* This builds and returns a pointer to the end of the memory region
314 that starts at START and of length LEN. */
316 tree
317 asan_mem_ref_get_end (tree start, tree len)
319 if (len == NULL_TREE || integer_zerop (len))
320 return start;
322 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
325 /* Return a tree expression that represents the end of the referenced
326 memory region. Beware that this function can actually build a new
327 tree expression. */
329 tree
330 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
332 return asan_mem_ref_get_end (ref->start, len);
335 struct asan_mem_ref_hasher
336 : typed_noop_remove <asan_mem_ref>
338 typedef asan_mem_ref value_type;
339 typedef asan_mem_ref compare_type;
341 static inline hashval_t hash (const value_type *);
342 static inline bool equal (const value_type *, const compare_type *);
345 /* Hash a memory reference. */
347 inline hashval_t
348 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
350 hashval_t h = iterative_hash_expr (mem_ref->start, 0);
351 h = iterative_hash_host_wide_int (mem_ref->access_size, h);
352 return h;
355 /* Compare two memory references. We accept the length of either
356 memory references to be NULL_TREE. */
358 inline bool
359 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
360 const asan_mem_ref *m2)
362 return (m1->access_size == m2->access_size
363 && operand_equal_p (m1->start, m2->start, 0));
366 static hash_table <asan_mem_ref_hasher> asan_mem_ref_ht;
368 /* Returns a reference to the hash table containing memory references.
369 This function ensures that the hash table is created. Note that
370 this hash table is updated by the function
371 update_mem_ref_hash_table. */
373 static hash_table <asan_mem_ref_hasher> &
374 get_mem_ref_hash_table ()
376 if (!asan_mem_ref_ht.is_created ())
377 asan_mem_ref_ht.create (10);
379 return asan_mem_ref_ht;
382 /* Clear all entries from the memory references hash table. */
384 static void
385 empty_mem_ref_hash_table ()
387 if (asan_mem_ref_ht.is_created ())
388 asan_mem_ref_ht.empty ();
391 /* Free the memory references hash table. */
393 static void
394 free_mem_ref_resources ()
396 if (asan_mem_ref_ht.is_created ())
397 asan_mem_ref_ht.dispose ();
399 if (asan_mem_ref_alloc_pool)
401 free_alloc_pool (asan_mem_ref_alloc_pool);
402 asan_mem_ref_alloc_pool = NULL;
406 /* Return true iff the memory reference REF has been instrumented. */
408 static bool
409 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
411 asan_mem_ref r;
412 asan_mem_ref_init (&r, ref, access_size);
414 return (get_mem_ref_hash_table ().find (&r) != NULL);
417 /* Return true iff the memory reference REF has been instrumented. */
419 static bool
420 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
422 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
425 /* Return true iff access to memory region starting at REF and of
426 length LEN has been instrumented. */
428 static bool
429 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
431 /* First let's see if the address of the beginning of REF has been
432 instrumented. */
433 if (!has_mem_ref_been_instrumented (ref))
434 return false;
436 if (len != 0)
438 /* Let's see if the end of the region has been instrumented. */
439 if (!has_mem_ref_been_instrumented (asan_mem_ref_get_end (ref, len),
440 ref->access_size))
441 return false;
443 return true;
446 /* Set REF to the memory reference present in a gimple assignment
447 ASSIGNMENT. Return true upon successful completion, false
448 otherwise. */
450 static bool
451 get_mem_ref_of_assignment (const gimple assignment,
452 asan_mem_ref *ref,
453 bool *ref_is_store)
455 gcc_assert (gimple_assign_single_p (assignment));
457 if (gimple_store_p (assignment)
458 && !gimple_clobber_p (assignment))
460 ref->start = gimple_assign_lhs (assignment);
461 *ref_is_store = true;
463 else if (gimple_assign_load_p (assignment))
465 ref->start = gimple_assign_rhs1 (assignment);
466 *ref_is_store = false;
468 else
469 return false;
471 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
472 return true;
475 /* Return the memory references contained in a gimple statement
476 representing a builtin call that has to do with memory access. */
478 static bool
479 get_mem_refs_of_builtin_call (const gimple call,
480 asan_mem_ref *src0,
481 tree *src0_len,
482 bool *src0_is_store,
483 asan_mem_ref *src1,
484 tree *src1_len,
485 bool *src1_is_store,
486 asan_mem_ref *dst,
487 tree *dst_len,
488 bool *dst_is_store,
489 bool *dest_is_deref)
491 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
493 tree callee = gimple_call_fndecl (call);
494 tree source0 = NULL_TREE, source1 = NULL_TREE,
495 dest = NULL_TREE, len = NULL_TREE;
496 bool is_store = true, got_reference_p = false;
497 HOST_WIDE_INT access_size = 1;
499 switch (DECL_FUNCTION_CODE (callee))
501 /* (s, s, n) style memops. */
502 case BUILT_IN_BCMP:
503 case BUILT_IN_MEMCMP:
504 source0 = gimple_call_arg (call, 0);
505 source1 = gimple_call_arg (call, 1);
506 len = gimple_call_arg (call, 2);
507 break;
509 /* (src, dest, n) style memops. */
510 case BUILT_IN_BCOPY:
511 source0 = gimple_call_arg (call, 0);
512 dest = gimple_call_arg (call, 1);
513 len = gimple_call_arg (call, 2);
514 break;
516 /* (dest, src, n) style memops. */
517 case BUILT_IN_MEMCPY:
518 case BUILT_IN_MEMCPY_CHK:
519 case BUILT_IN_MEMMOVE:
520 case BUILT_IN_MEMMOVE_CHK:
521 case BUILT_IN_MEMPCPY:
522 case BUILT_IN_MEMPCPY_CHK:
523 dest = gimple_call_arg (call, 0);
524 source0 = gimple_call_arg (call, 1);
525 len = gimple_call_arg (call, 2);
526 break;
528 /* (dest, n) style memops. */
529 case BUILT_IN_BZERO:
530 dest = gimple_call_arg (call, 0);
531 len = gimple_call_arg (call, 1);
532 break;
534 /* (dest, x, n) style memops*/
535 case BUILT_IN_MEMSET:
536 case BUILT_IN_MEMSET_CHK:
537 dest = gimple_call_arg (call, 0);
538 len = gimple_call_arg (call, 2);
539 break;
541 case BUILT_IN_STRLEN:
542 source0 = gimple_call_arg (call, 0);
543 len = gimple_call_lhs (call);
544 break ;
546 /* And now the __atomic* and __sync builtins.
547 These are handled differently from the classical memory memory
548 access builtins above. */
550 case BUILT_IN_ATOMIC_LOAD_1:
551 case BUILT_IN_ATOMIC_LOAD_2:
552 case BUILT_IN_ATOMIC_LOAD_4:
553 case BUILT_IN_ATOMIC_LOAD_8:
554 case BUILT_IN_ATOMIC_LOAD_16:
555 is_store = false;
556 /* fall through. */
558 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
559 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
560 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
561 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
562 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
564 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
565 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
566 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
567 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
568 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
570 case BUILT_IN_SYNC_FETCH_AND_OR_1:
571 case BUILT_IN_SYNC_FETCH_AND_OR_2:
572 case BUILT_IN_SYNC_FETCH_AND_OR_4:
573 case BUILT_IN_SYNC_FETCH_AND_OR_8:
574 case BUILT_IN_SYNC_FETCH_AND_OR_16:
576 case BUILT_IN_SYNC_FETCH_AND_AND_1:
577 case BUILT_IN_SYNC_FETCH_AND_AND_2:
578 case BUILT_IN_SYNC_FETCH_AND_AND_4:
579 case BUILT_IN_SYNC_FETCH_AND_AND_8:
580 case BUILT_IN_SYNC_FETCH_AND_AND_16:
582 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
583 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
584 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
585 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
586 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
588 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
589 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
590 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
591 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
593 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
594 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
595 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
596 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
597 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
599 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
600 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
601 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
602 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
603 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
605 case BUILT_IN_SYNC_OR_AND_FETCH_1:
606 case BUILT_IN_SYNC_OR_AND_FETCH_2:
607 case BUILT_IN_SYNC_OR_AND_FETCH_4:
608 case BUILT_IN_SYNC_OR_AND_FETCH_8:
609 case BUILT_IN_SYNC_OR_AND_FETCH_16:
611 case BUILT_IN_SYNC_AND_AND_FETCH_1:
612 case BUILT_IN_SYNC_AND_AND_FETCH_2:
613 case BUILT_IN_SYNC_AND_AND_FETCH_4:
614 case BUILT_IN_SYNC_AND_AND_FETCH_8:
615 case BUILT_IN_SYNC_AND_AND_FETCH_16:
617 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
618 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
619 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
620 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
621 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
623 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
624 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
625 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
626 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
628 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
629 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
630 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
631 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
632 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
634 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
635 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
636 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
637 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
638 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
640 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
641 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
642 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
643 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
644 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
646 case BUILT_IN_SYNC_LOCK_RELEASE_1:
647 case BUILT_IN_SYNC_LOCK_RELEASE_2:
648 case BUILT_IN_SYNC_LOCK_RELEASE_4:
649 case BUILT_IN_SYNC_LOCK_RELEASE_8:
650 case BUILT_IN_SYNC_LOCK_RELEASE_16:
652 case BUILT_IN_ATOMIC_EXCHANGE_1:
653 case BUILT_IN_ATOMIC_EXCHANGE_2:
654 case BUILT_IN_ATOMIC_EXCHANGE_4:
655 case BUILT_IN_ATOMIC_EXCHANGE_8:
656 case BUILT_IN_ATOMIC_EXCHANGE_16:
658 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
659 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
660 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
661 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
662 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
664 case BUILT_IN_ATOMIC_STORE_1:
665 case BUILT_IN_ATOMIC_STORE_2:
666 case BUILT_IN_ATOMIC_STORE_4:
667 case BUILT_IN_ATOMIC_STORE_8:
668 case BUILT_IN_ATOMIC_STORE_16:
670 case BUILT_IN_ATOMIC_ADD_FETCH_1:
671 case BUILT_IN_ATOMIC_ADD_FETCH_2:
672 case BUILT_IN_ATOMIC_ADD_FETCH_4:
673 case BUILT_IN_ATOMIC_ADD_FETCH_8:
674 case BUILT_IN_ATOMIC_ADD_FETCH_16:
676 case BUILT_IN_ATOMIC_SUB_FETCH_1:
677 case BUILT_IN_ATOMIC_SUB_FETCH_2:
678 case BUILT_IN_ATOMIC_SUB_FETCH_4:
679 case BUILT_IN_ATOMIC_SUB_FETCH_8:
680 case BUILT_IN_ATOMIC_SUB_FETCH_16:
682 case BUILT_IN_ATOMIC_AND_FETCH_1:
683 case BUILT_IN_ATOMIC_AND_FETCH_2:
684 case BUILT_IN_ATOMIC_AND_FETCH_4:
685 case BUILT_IN_ATOMIC_AND_FETCH_8:
686 case BUILT_IN_ATOMIC_AND_FETCH_16:
688 case BUILT_IN_ATOMIC_NAND_FETCH_1:
689 case BUILT_IN_ATOMIC_NAND_FETCH_2:
690 case BUILT_IN_ATOMIC_NAND_FETCH_4:
691 case BUILT_IN_ATOMIC_NAND_FETCH_8:
692 case BUILT_IN_ATOMIC_NAND_FETCH_16:
694 case BUILT_IN_ATOMIC_XOR_FETCH_1:
695 case BUILT_IN_ATOMIC_XOR_FETCH_2:
696 case BUILT_IN_ATOMIC_XOR_FETCH_4:
697 case BUILT_IN_ATOMIC_XOR_FETCH_8:
698 case BUILT_IN_ATOMIC_XOR_FETCH_16:
700 case BUILT_IN_ATOMIC_OR_FETCH_1:
701 case BUILT_IN_ATOMIC_OR_FETCH_2:
702 case BUILT_IN_ATOMIC_OR_FETCH_4:
703 case BUILT_IN_ATOMIC_OR_FETCH_8:
704 case BUILT_IN_ATOMIC_OR_FETCH_16:
706 case BUILT_IN_ATOMIC_FETCH_ADD_1:
707 case BUILT_IN_ATOMIC_FETCH_ADD_2:
708 case BUILT_IN_ATOMIC_FETCH_ADD_4:
709 case BUILT_IN_ATOMIC_FETCH_ADD_8:
710 case BUILT_IN_ATOMIC_FETCH_ADD_16:
712 case BUILT_IN_ATOMIC_FETCH_SUB_1:
713 case BUILT_IN_ATOMIC_FETCH_SUB_2:
714 case BUILT_IN_ATOMIC_FETCH_SUB_4:
715 case BUILT_IN_ATOMIC_FETCH_SUB_8:
716 case BUILT_IN_ATOMIC_FETCH_SUB_16:
718 case BUILT_IN_ATOMIC_FETCH_AND_1:
719 case BUILT_IN_ATOMIC_FETCH_AND_2:
720 case BUILT_IN_ATOMIC_FETCH_AND_4:
721 case BUILT_IN_ATOMIC_FETCH_AND_8:
722 case BUILT_IN_ATOMIC_FETCH_AND_16:
724 case BUILT_IN_ATOMIC_FETCH_NAND_1:
725 case BUILT_IN_ATOMIC_FETCH_NAND_2:
726 case BUILT_IN_ATOMIC_FETCH_NAND_4:
727 case BUILT_IN_ATOMIC_FETCH_NAND_8:
728 case BUILT_IN_ATOMIC_FETCH_NAND_16:
730 case BUILT_IN_ATOMIC_FETCH_XOR_1:
731 case BUILT_IN_ATOMIC_FETCH_XOR_2:
732 case BUILT_IN_ATOMIC_FETCH_XOR_4:
733 case BUILT_IN_ATOMIC_FETCH_XOR_8:
734 case BUILT_IN_ATOMIC_FETCH_XOR_16:
736 case BUILT_IN_ATOMIC_FETCH_OR_1:
737 case BUILT_IN_ATOMIC_FETCH_OR_2:
738 case BUILT_IN_ATOMIC_FETCH_OR_4:
739 case BUILT_IN_ATOMIC_FETCH_OR_8:
740 case BUILT_IN_ATOMIC_FETCH_OR_16:
742 dest = gimple_call_arg (call, 0);
743 /* DEST represents the address of a memory location.
744 instrument_derefs wants the memory location, so lets
745 dereference the address DEST before handing it to
746 instrument_derefs. */
747 if (TREE_CODE (dest) == ADDR_EXPR)
748 dest = TREE_OPERAND (dest, 0);
749 else if (TREE_CODE (dest) == SSA_NAME || TREE_CODE (dest) == INTEGER_CST)
750 dest = build2 (MEM_REF, TREE_TYPE (TREE_TYPE (dest)),
751 dest, build_int_cst (TREE_TYPE (dest), 0));
752 else
753 gcc_unreachable ();
755 access_size = int_size_in_bytes (TREE_TYPE (dest));
758 default:
759 /* The other builtins memory access are not instrumented in this
760 function because they either don't have any length parameter,
761 or their length parameter is just a limit. */
762 break;
765 if (len != NULL_TREE)
767 if (source0 != NULL_TREE)
769 src0->start = source0;
770 src0->access_size = access_size;
771 *src0_len = len;
772 *src0_is_store = false;
775 if (source1 != NULL_TREE)
777 src1->start = source1;
778 src1->access_size = access_size;
779 *src1_len = len;
780 *src1_is_store = false;
783 if (dest != NULL_TREE)
785 dst->start = dest;
786 dst->access_size = access_size;
787 *dst_len = len;
788 *dst_is_store = true;
791 got_reference_p = true;
793 else if (dest)
795 dst->start = dest;
796 dst->access_size = access_size;
797 *dst_len = NULL_TREE;
798 *dst_is_store = is_store;
799 *dest_is_deref = true;
800 got_reference_p = true;
803 return got_reference_p;
806 /* Return true iff a given gimple statement has been instrumented.
807 Note that the statement is "defined" by the memory references it
808 contains. */
810 static bool
811 has_stmt_been_instrumented_p (gimple stmt)
813 if (gimple_assign_single_p (stmt))
815 bool r_is_store;
816 asan_mem_ref r;
817 asan_mem_ref_init (&r, NULL, 1);
819 if (get_mem_ref_of_assignment (stmt, &r, &r_is_store))
820 return has_mem_ref_been_instrumented (&r);
822 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
824 asan_mem_ref src0, src1, dest;
825 asan_mem_ref_init (&src0, NULL, 1);
826 asan_mem_ref_init (&src1, NULL, 1);
827 asan_mem_ref_init (&dest, NULL, 1);
829 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
830 bool src0_is_store = false, src1_is_store = false,
831 dest_is_store = false, dest_is_deref = false;
832 if (get_mem_refs_of_builtin_call (stmt,
833 &src0, &src0_len, &src0_is_store,
834 &src1, &src1_len, &src1_is_store,
835 &dest, &dest_len, &dest_is_store,
836 &dest_is_deref))
838 if (src0.start != NULL_TREE
839 && !has_mem_ref_been_instrumented (&src0, src0_len))
840 return false;
842 if (src1.start != NULL_TREE
843 && !has_mem_ref_been_instrumented (&src1, src1_len))
844 return false;
846 if (dest.start != NULL_TREE
847 && !has_mem_ref_been_instrumented (&dest, dest_len))
848 return false;
850 return true;
853 return false;
856 /* Insert a memory reference into the hash table. */
858 static void
859 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
861 hash_table <asan_mem_ref_hasher> ht = get_mem_ref_hash_table ();
863 asan_mem_ref r;
864 asan_mem_ref_init (&r, ref, access_size);
866 asan_mem_ref **slot = ht.find_slot (&r, INSERT);
867 if (*slot == NULL)
868 *slot = asan_mem_ref_new (ref, access_size);
871 /* Initialize shadow_ptr_types array. */
873 static void
874 asan_init_shadow_ptr_types (void)
876 asan_shadow_set = new_alias_set ();
877 shadow_ptr_types[0] = build_distinct_type_copy (signed_char_type_node);
878 TYPE_ALIAS_SET (shadow_ptr_types[0]) = asan_shadow_set;
879 shadow_ptr_types[0] = build_pointer_type (shadow_ptr_types[0]);
880 shadow_ptr_types[1] = build_distinct_type_copy (short_integer_type_node);
881 TYPE_ALIAS_SET (shadow_ptr_types[1]) = asan_shadow_set;
882 shadow_ptr_types[1] = build_pointer_type (shadow_ptr_types[1]);
883 initialize_sanitizer_builtins ();
886 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
888 static tree
889 asan_pp_string (pretty_printer *pp)
891 const char *buf = pp_formatted_text (pp);
892 size_t len = strlen (buf);
893 tree ret = build_string (len + 1, buf);
894 TREE_TYPE (ret)
895 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
896 build_index_type (size_int (len)));
897 TREE_READONLY (ret) = 1;
898 TREE_STATIC (ret) = 1;
899 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
902 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
904 static rtx
905 asan_shadow_cst (unsigned char shadow_bytes[4])
907 int i;
908 unsigned HOST_WIDE_INT val = 0;
909 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
910 for (i = 0; i < 4; i++)
911 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
912 << (BITS_PER_UNIT * i);
913 return gen_int_mode (val, SImode);
916 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
917 though. */
919 static void
920 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
922 rtx insn, insns, top_label, end, addr, tmp, jump;
924 start_sequence ();
925 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
926 insns = get_insns ();
927 end_sequence ();
928 for (insn = insns; insn; insn = NEXT_INSN (insn))
929 if (CALL_P (insn))
930 break;
931 if (insn == NULL_RTX)
933 emit_insn (insns);
934 return;
937 gcc_assert ((len & 3) == 0);
938 top_label = gen_label_rtx ();
939 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
940 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
941 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
942 emit_label (top_label);
944 emit_move_insn (shadow_mem, const0_rtx);
945 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
946 true, OPTAB_LIB_WIDEN);
947 if (tmp != addr)
948 emit_move_insn (addr, tmp);
949 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
950 jump = get_last_insn ();
951 gcc_assert (JUMP_P (jump));
952 add_int_reg_note (jump, REG_BR_PROB, REG_BR_PROB_BASE * 80 / 100);
955 void
956 asan_function_start (void)
958 section *fnsec = function_section (current_function_decl);
959 switch_to_section (fnsec);
960 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
961 current_function_funcdef_no);
964 /* Insert code to protect stack vars. The prologue sequence should be emitted
965 directly, epilogue sequence returned. BASE is the register holding the
966 stack base, against which OFFSETS array offsets are relative to, OFFSETS
967 array contains pairs of offsets in reverse order, always the end offset
968 of some gap that needs protection followed by starting offset,
969 and DECLS is an array of representative decls for each var partition.
970 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
971 elements long (OFFSETS include gap before the first variable as well
972 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
973 register which stack vars DECL_RTLs are based on. Either BASE should be
974 assigned to PBASE, when not doing use after return protection, or
975 corresponding address based on __asan_stack_malloc* return value. */
978 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
979 HOST_WIDE_INT *offsets, tree *decls, int length)
981 rtx shadow_base, shadow_mem, ret, mem, orig_base, lab;
982 char buf[30];
983 unsigned char shadow_bytes[4];
984 HOST_WIDE_INT base_offset = offsets[length - 1];
985 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
986 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
987 HOST_WIDE_INT last_offset, last_size;
988 int l;
989 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
990 tree str_cst, decl, id;
991 int use_after_return_class = -1;
993 if (shadow_ptr_types[0] == NULL_TREE)
994 asan_init_shadow_ptr_types ();
996 /* First of all, prepare the description string. */
997 pretty_printer asan_pp;
999 pp_decimal_int (&asan_pp, length / 2 - 1);
1000 pp_space (&asan_pp);
1001 for (l = length - 2; l; l -= 2)
1003 tree decl = decls[l / 2 - 1];
1004 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1005 pp_space (&asan_pp);
1006 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1007 pp_space (&asan_pp);
1008 if (DECL_P (decl) && DECL_NAME (decl))
1010 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1011 pp_space (&asan_pp);
1012 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1014 else
1015 pp_string (&asan_pp, "9 <unknown>");
1016 pp_space (&asan_pp);
1018 str_cst = asan_pp_string (&asan_pp);
1020 /* Emit the prologue sequence. */
1021 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1022 && ASAN_USE_AFTER_RETURN)
1024 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1025 /* __asan_stack_malloc_N guarantees alignment
1026 N < 6 ? (64 << N) : 4096 bytes. */
1027 if (alignb > (use_after_return_class < 6
1028 ? (64U << use_after_return_class) : 4096U))
1029 use_after_return_class = -1;
1030 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1031 base_align_bias = ((asan_frame_size + alignb - 1)
1032 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1034 /* Align base if target is STRICT_ALIGNMENT. */
1035 if (STRICT_ALIGNMENT)
1036 base = expand_binop (Pmode, and_optab, base,
1037 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1038 << ASAN_SHADOW_SHIFT)
1039 / BITS_PER_UNIT), Pmode), NULL_RTX,
1040 1, OPTAB_DIRECT);
1042 if (use_after_return_class == -1 && pbase)
1043 emit_move_insn (pbase, base);
1045 base = expand_binop (Pmode, add_optab, base,
1046 gen_int_mode (base_offset - base_align_bias, Pmode),
1047 NULL_RTX, 1, OPTAB_DIRECT);
1048 orig_base = NULL_RTX;
1049 if (use_after_return_class != -1)
1051 if (asan_detect_stack_use_after_return == NULL_TREE)
1053 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1054 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1055 integer_type_node);
1056 SET_DECL_ASSEMBLER_NAME (decl, id);
1057 TREE_ADDRESSABLE (decl) = 1;
1058 DECL_ARTIFICIAL (decl) = 1;
1059 DECL_IGNORED_P (decl) = 1;
1060 DECL_EXTERNAL (decl) = 1;
1061 TREE_STATIC (decl) = 1;
1062 TREE_PUBLIC (decl) = 1;
1063 TREE_USED (decl) = 1;
1064 asan_detect_stack_use_after_return = decl;
1066 orig_base = gen_reg_rtx (Pmode);
1067 emit_move_insn (orig_base, base);
1068 ret = expand_normal (asan_detect_stack_use_after_return);
1069 lab = gen_label_rtx ();
1070 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1071 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1072 VOIDmode, 0, lab, very_likely);
1073 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1074 use_after_return_class);
1075 ret = init_one_libfunc (buf);
1076 rtx addr = convert_memory_address (ptr_mode, base);
1077 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 2,
1078 GEN_INT (asan_frame_size
1079 + base_align_bias),
1080 TYPE_MODE (pointer_sized_int_node),
1081 addr, ptr_mode);
1082 ret = convert_memory_address (Pmode, ret);
1083 emit_move_insn (base, ret);
1084 emit_label (lab);
1085 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1086 gen_int_mode (base_align_bias
1087 - base_offset, Pmode),
1088 NULL_RTX, 1, OPTAB_DIRECT));
1090 mem = gen_rtx_MEM (ptr_mode, base);
1091 mem = adjust_address (mem, VOIDmode, base_align_bias);
1092 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1093 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1094 emit_move_insn (mem, expand_normal (str_cst));
1095 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1096 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1097 id = get_identifier (buf);
1098 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1099 VAR_DECL, id, char_type_node);
1100 SET_DECL_ASSEMBLER_NAME (decl, id);
1101 TREE_ADDRESSABLE (decl) = 1;
1102 TREE_READONLY (decl) = 1;
1103 DECL_ARTIFICIAL (decl) = 1;
1104 DECL_IGNORED_P (decl) = 1;
1105 TREE_STATIC (decl) = 1;
1106 TREE_PUBLIC (decl) = 0;
1107 TREE_USED (decl) = 1;
1108 DECL_INITIAL (decl) = decl;
1109 TREE_ASM_WRITTEN (decl) = 1;
1110 TREE_ASM_WRITTEN (id) = 1;
1111 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1112 shadow_base = expand_binop (Pmode, lshr_optab, base,
1113 GEN_INT (ASAN_SHADOW_SHIFT),
1114 NULL_RTX, 1, OPTAB_DIRECT);
1115 shadow_base
1116 = plus_constant (Pmode, shadow_base,
1117 targetm.asan_shadow_offset ()
1118 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1119 gcc_assert (asan_shadow_set != -1
1120 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1121 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1122 set_mem_alias_set (shadow_mem, asan_shadow_set);
1123 if (STRICT_ALIGNMENT)
1124 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1125 prev_offset = base_offset;
1126 for (l = length; l; l -= 2)
1128 if (l == 2)
1129 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1130 offset = offsets[l - 1];
1131 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1133 int i;
1134 HOST_WIDE_INT aoff
1135 = base_offset + ((offset - base_offset)
1136 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1137 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1138 (aoff - prev_offset)
1139 >> ASAN_SHADOW_SHIFT);
1140 prev_offset = aoff;
1141 for (i = 0; i < 4; i++, aoff += (1 << ASAN_SHADOW_SHIFT))
1142 if (aoff < offset)
1144 if (aoff < offset - (1 << ASAN_SHADOW_SHIFT) + 1)
1145 shadow_bytes[i] = 0;
1146 else
1147 shadow_bytes[i] = offset - aoff;
1149 else
1150 shadow_bytes[i] = ASAN_STACK_MAGIC_PARTIAL;
1151 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1152 offset = aoff;
1154 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1156 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1157 (offset - prev_offset)
1158 >> ASAN_SHADOW_SHIFT);
1159 prev_offset = offset;
1160 memset (shadow_bytes, cur_shadow_byte, 4);
1161 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1162 offset += ASAN_RED_ZONE_SIZE;
1164 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1166 do_pending_stack_adjust ();
1168 /* Construct epilogue sequence. */
1169 start_sequence ();
1171 lab = NULL_RTX;
1172 if (use_after_return_class != -1)
1174 rtx lab2 = gen_label_rtx ();
1175 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1176 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1177 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1178 VOIDmode, 0, lab2, very_likely);
1179 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1180 set_mem_alias_set (shadow_mem, asan_shadow_set);
1181 mem = gen_rtx_MEM (ptr_mode, base);
1182 mem = adjust_address (mem, VOIDmode, base_align_bias);
1183 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1184 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1185 if (use_after_return_class < 5
1186 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1187 BITS_PER_UNIT, true))
1188 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1189 BITS_PER_UNIT, true, 0);
1190 else if (use_after_return_class >= 5
1191 || !set_storage_via_setmem (shadow_mem,
1192 GEN_INT (sz),
1193 gen_int_mode (c, QImode),
1194 BITS_PER_UNIT, BITS_PER_UNIT,
1195 -1, sz, sz, sz))
1197 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1198 use_after_return_class);
1199 ret = init_one_libfunc (buf);
1200 rtx addr = convert_memory_address (ptr_mode, base);
1201 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1202 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1203 GEN_INT (asan_frame_size + base_align_bias),
1204 TYPE_MODE (pointer_sized_int_node),
1205 orig_addr, ptr_mode);
1207 lab = gen_label_rtx ();
1208 emit_jump (lab);
1209 emit_label (lab2);
1212 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1213 set_mem_alias_set (shadow_mem, asan_shadow_set);
1215 if (STRICT_ALIGNMENT)
1216 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1218 prev_offset = base_offset;
1219 last_offset = base_offset;
1220 last_size = 0;
1221 for (l = length; l; l -= 2)
1223 offset = base_offset + ((offsets[l - 1] - base_offset)
1224 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1225 if (last_offset + last_size != offset)
1227 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1228 (last_offset - prev_offset)
1229 >> ASAN_SHADOW_SHIFT);
1230 prev_offset = last_offset;
1231 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1232 last_offset = offset;
1233 last_size = 0;
1235 last_size += base_offset + ((offsets[l - 2] - base_offset)
1236 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1237 - offset;
1239 if (last_size)
1241 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1242 (last_offset - prev_offset)
1243 >> ASAN_SHADOW_SHIFT);
1244 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1247 do_pending_stack_adjust ();
1248 if (lab)
1249 emit_label (lab);
1251 ret = get_insns ();
1252 end_sequence ();
1253 return ret;
1256 /* Return true if DECL, a global var, might be overridden and needs
1257 therefore a local alias. */
1259 static bool
1260 asan_needs_local_alias (tree decl)
1262 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1265 /* Return true if DECL is a VAR_DECL that should be protected
1266 by Address Sanitizer, by appending a red zone with protected
1267 shadow memory after it and aligning it to at least
1268 ASAN_RED_ZONE_SIZE bytes. */
1270 bool
1271 asan_protect_global (tree decl)
1273 if (!ASAN_GLOBALS)
1274 return false;
1276 rtx rtl, symbol;
1278 if (TREE_CODE (decl) == STRING_CST)
1280 /* Instrument all STRING_CSTs except those created
1281 by asan_pp_string here. */
1282 if (shadow_ptr_types[0] != NULL_TREE
1283 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1284 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1285 return false;
1286 return true;
1288 if (TREE_CODE (decl) != VAR_DECL
1289 /* TLS vars aren't statically protectable. */
1290 || DECL_THREAD_LOCAL_P (decl)
1291 /* Externs will be protected elsewhere. */
1292 || DECL_EXTERNAL (decl)
1293 || !DECL_RTL_SET_P (decl)
1294 /* Comdat vars pose an ABI problem, we can't know if
1295 the var that is selected by the linker will have
1296 padding or not. */
1297 || DECL_ONE_ONLY (decl)
1298 /* Similarly for common vars. People can use -fno-common. */
1299 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1300 /* Don't protect if using user section, often vars placed
1301 into user section from multiple TUs are then assumed
1302 to be an array of such vars, putting padding in there
1303 breaks this assumption. */
1304 || (DECL_SECTION_NAME (decl) != NULL
1305 && !symtab_get_node (decl)->implicit_section)
1306 || DECL_SIZE (decl) == 0
1307 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1308 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1309 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE)
1310 return false;
1312 rtl = DECL_RTL (decl);
1313 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1314 return false;
1315 symbol = XEXP (rtl, 0);
1317 if (CONSTANT_POOL_ADDRESS_P (symbol)
1318 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1319 return false;
1321 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1322 return false;
1324 #ifndef ASM_OUTPUT_DEF
1325 if (asan_needs_local_alias (decl))
1326 return false;
1327 #endif
1329 return true;
1332 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1333 IS_STORE is either 1 (for a store) or 0 (for a load). */
1335 static tree
1336 report_error_func (bool is_store, HOST_WIDE_INT size_in_bytes, int *nargs)
1338 static enum built_in_function report[2][6]
1339 = { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1340 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1341 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1342 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1343 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1344 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } };
1345 if (size_in_bytes == -1)
1347 *nargs = 2;
1348 return builtin_decl_implicit (report[is_store][5]);
1350 *nargs = 1;
1351 return builtin_decl_implicit (report[is_store][exact_log2 (size_in_bytes)]);
1354 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1355 IS_STORE is either 1 (for a store) or 0 (for a load). */
1357 static tree
1358 check_func (bool is_store, int size_in_bytes, int *nargs)
1360 static enum built_in_function check[2][6]
1361 = { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1362 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1363 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1364 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1365 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1366 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } };
1367 if (size_in_bytes == -1)
1369 *nargs = 2;
1370 return builtin_decl_implicit (check[is_store][5]);
1372 *nargs = 1;
1373 return builtin_decl_implicit (check[is_store][exact_log2 (size_in_bytes)]);
1376 /* Split the current basic block and create a condition statement
1377 insertion point right before or after the statement pointed to by
1378 ITER. Return an iterator to the point at which the caller might
1379 safely insert the condition statement.
1381 THEN_BLOCK must be set to the address of an uninitialized instance
1382 of basic_block. The function will then set *THEN_BLOCK to the
1383 'then block' of the condition statement to be inserted by the
1384 caller.
1386 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1387 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1389 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1390 block' of the condition statement to be inserted by the caller.
1392 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1393 statements starting from *ITER, and *THEN_BLOCK is a new empty
1394 block.
1396 *ITER is adjusted to point to always point to the first statement
1397 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1398 same as what ITER was pointing to prior to calling this function,
1399 if BEFORE_P is true; otherwise, it is its following statement. */
1401 gimple_stmt_iterator
1402 create_cond_insert_point (gimple_stmt_iterator *iter,
1403 bool before_p,
1404 bool then_more_likely_p,
1405 bool create_then_fallthru_edge,
1406 basic_block *then_block,
1407 basic_block *fallthrough_block)
1409 gimple_stmt_iterator gsi = *iter;
1411 if (!gsi_end_p (gsi) && before_p)
1412 gsi_prev (&gsi);
1414 basic_block cur_bb = gsi_bb (*iter);
1416 edge e = split_block (cur_bb, gsi_stmt (gsi));
1418 /* Get a hold on the 'condition block', the 'then block' and the
1419 'else block'. */
1420 basic_block cond_bb = e->src;
1421 basic_block fallthru_bb = e->dest;
1422 basic_block then_bb = create_empty_bb (cond_bb);
1423 if (current_loops)
1425 add_bb_to_loop (then_bb, cond_bb->loop_father);
1426 loops_state_set (LOOPS_NEED_FIXUP);
1429 /* Set up the newly created 'then block'. */
1430 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1431 int fallthrough_probability
1432 = then_more_likely_p
1433 ? PROB_VERY_UNLIKELY
1434 : PROB_ALWAYS - PROB_VERY_UNLIKELY;
1435 e->probability = PROB_ALWAYS - fallthrough_probability;
1436 if (create_then_fallthru_edge)
1437 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1439 /* Set up the fallthrough basic block. */
1440 e = find_edge (cond_bb, fallthru_bb);
1441 e->flags = EDGE_FALSE_VALUE;
1442 e->count = cond_bb->count;
1443 e->probability = fallthrough_probability;
1445 /* Update dominance info for the newly created then_bb; note that
1446 fallthru_bb's dominance info has already been updated by
1447 split_bock. */
1448 if (dom_info_available_p (CDI_DOMINATORS))
1449 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1451 *then_block = then_bb;
1452 *fallthrough_block = fallthru_bb;
1453 *iter = gsi_start_bb (fallthru_bb);
1455 return gsi_last_bb (cond_bb);
1458 /* Insert an if condition followed by a 'then block' right before the
1459 statement pointed to by ITER. The fallthrough block -- which is the
1460 else block of the condition as well as the destination of the
1461 outcoming edge of the 'then block' -- starts with the statement
1462 pointed to by ITER.
1464 COND is the condition of the if.
1466 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1467 'then block' is higher than the probability of the edge to the
1468 fallthrough block.
1470 Upon completion of the function, *THEN_BB is set to the newly
1471 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1472 fallthrough block.
1474 *ITER is adjusted to still point to the same statement it was
1475 pointing to initially. */
1477 static void
1478 insert_if_then_before_iter (gimple cond,
1479 gimple_stmt_iterator *iter,
1480 bool then_more_likely_p,
1481 basic_block *then_bb,
1482 basic_block *fallthrough_bb)
1484 gimple_stmt_iterator cond_insert_point =
1485 create_cond_insert_point (iter,
1486 /*before_p=*/true,
1487 then_more_likely_p,
1488 /*create_then_fallthru_edge=*/true,
1489 then_bb,
1490 fallthrough_bb);
1491 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1494 /* Build
1495 (base_addr >> ASAN_SHADOW_SHIFT) + targetm.asan_shadow_offset (). */
1497 static tree
1498 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1499 tree base_addr, tree shadow_ptr_type)
1501 tree t, uintptr_type = TREE_TYPE (base_addr);
1502 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1503 gimple g;
1505 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1506 g = gimple_build_assign_with_ops (RSHIFT_EXPR,
1507 make_ssa_name (uintptr_type, NULL),
1508 base_addr, t);
1509 gimple_set_location (g, location);
1510 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1512 t = build_int_cst (uintptr_type, targetm.asan_shadow_offset ());
1513 g = gimple_build_assign_with_ops (PLUS_EXPR,
1514 make_ssa_name (uintptr_type, NULL),
1515 gimple_assign_lhs (g), t);
1516 gimple_set_location (g, location);
1517 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1519 g = gimple_build_assign_with_ops (NOP_EXPR,
1520 make_ssa_name (shadow_ptr_type, NULL),
1521 gimple_assign_lhs (g), NULL_TREE);
1522 gimple_set_location (g, location);
1523 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1525 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1526 build_int_cst (shadow_ptr_type, 0));
1527 g = gimple_build_assign_with_ops (MEM_REF,
1528 make_ssa_name (shadow_type, NULL),
1529 t, NULL_TREE);
1530 gimple_set_location (g, location);
1531 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1532 return gimple_assign_lhs (g);
1535 /* BASE can already be an SSA_NAME; in that case, do not create a
1536 new SSA_NAME for it. */
1538 static tree
1539 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1540 bool before_p)
1542 if (TREE_CODE (base) == SSA_NAME)
1543 return base;
1544 gimple g
1545 = gimple_build_assign_with_ops (TREE_CODE (base),
1546 make_ssa_name (TREE_TYPE (base), NULL),
1547 base, NULL_TREE);
1548 gimple_set_location (g, loc);
1549 if (before_p)
1550 gsi_insert_before (iter, g, GSI_SAME_STMT);
1551 else
1552 gsi_insert_after (iter, g, GSI_NEW_STMT);
1553 return gimple_assign_lhs (g);
1556 /* Instrument the memory access instruction using callbacks.
1557 Parameters are similar to BUILD_CHECK_STMT. */
1559 static void
1560 build_check_stmt_with_calls (location_t loc, tree base, tree len,
1561 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1562 bool before_p, bool is_store, bool is_scalar_access)
1564 gimple_stmt_iterator gsi = *iter;
1565 tree base_ssa = maybe_create_ssa_name (loc, base, &gsi, before_p);
1567 gimple g
1568 = gimple_build_assign_with_ops (NOP_EXPR,
1569 make_ssa_name (pointer_sized_int_node, NULL),
1570 base_ssa, NULL_TREE);
1571 gimple_set_location (g, loc);
1572 if (before_p)
1573 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
1574 else
1575 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1576 tree base_addr = gimple_assign_lhs (g);
1578 int nargs;
1579 tree fun
1580 = check_func (is_store, is_scalar_access ? size_in_bytes : -1, &nargs);
1581 if (nargs == 1)
1582 g = gimple_build_call (fun, 1, base_addr);
1583 else
1585 gcc_assert (nargs == 2);
1586 g = gimple_build_assign_with_ops (NOP_EXPR,
1587 make_ssa_name (pointer_sized_int_node,
1588 NULL),
1589 len, NULL_TREE);
1590 gimple_set_location (g, loc);
1591 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1592 tree sz_arg = gimple_assign_lhs (g);
1593 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
1595 gimple_set_location (g, loc);
1596 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1598 if (!before_p)
1600 gsi_next (&gsi);
1601 *iter = gsi;
1605 /* Instrument the memory access instruction BASE. Insert new
1606 statements before or after ITER.
1608 Note that the memory access represented by BASE can be either an
1609 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1610 location. IS_STORE is TRUE for a store, FALSE for a load.
1611 BEFORE_P is TRUE for inserting the instrumentation code before
1612 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1613 for a scalar memory access and FALSE for memory region access.
1614 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1615 length. ALIGN tells alignment of accessed memory object.
1617 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1618 memory region have already been instrumented.
1620 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1621 statement it was pointing to prior to calling this function,
1622 otherwise, it points to the statement logically following it. */
1624 static void
1625 build_check_stmt (location_t location, tree base, tree len,
1626 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1627 bool non_zero_len_p, bool before_p, bool is_store,
1628 bool is_scalar_access, unsigned int align = 0,
1629 bool start_instrumented = false,
1630 bool end_instrumented = false)
1632 gimple_stmt_iterator gsi = *iter;
1633 gimple g;
1634 tree uintptr_type
1635 = build_nonstandard_integer_type (TYPE_PRECISION (TREE_TYPE (base)), 1);
1637 gcc_assert (!(size_in_bytes > 0 && !non_zero_len_p));
1639 if (len)
1640 len = unshare_expr (len);
1641 else
1643 gcc_assert (size_in_bytes != -1);
1644 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1647 if (size_in_bytes > 1)
1649 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1650 || size_in_bytes > 16)
1651 size_in_bytes = -1;
1652 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1654 /* On non-strict alignment targets, if
1655 16-byte access is just 8-byte aligned,
1656 this will result in misaligned shadow
1657 memory 2 byte load, but otherwise can
1658 be handled using one read. */
1659 if (size_in_bytes != 16
1660 || STRICT_ALIGNMENT
1661 || align < 8 * BITS_PER_UNIT)
1662 size_in_bytes = -1;
1666 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
1668 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
1669 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1671 base = unshare_expr (base);
1673 if (use_calls_p ())
1675 gsi = *iter;
1676 build_check_stmt_with_calls (location, base, len, size_in_bytes, iter,
1677 before_p, is_store, is_scalar_access);
1678 return;
1681 ++asan_num_accesses;
1683 if (!non_zero_len_p)
1685 gcc_assert (before_p);
1687 /* So, the length of the memory area to asan-protect is
1688 non-constant. Let's guard the generated instrumentation code
1689 like:
1691 if (len != 0)
1693 //asan instrumentation code goes here.
1695 // falltrough instructions, starting with *ITER. */
1697 g = gimple_build_cond (NE_EXPR,
1698 len,
1699 build_int_cst (TREE_TYPE (len), 0),
1700 NULL_TREE, NULL_TREE);
1701 gimple_set_location (g, location);
1703 basic_block then_bb, fallthrough_bb;
1704 insert_if_then_before_iter (g, iter, /*then_more_likely_p=*/true,
1705 &then_bb, &fallthrough_bb);
1706 /* Note that fallthrough_bb starts with the statement that was
1707 pointed to by ITER. */
1709 /* The 'then block' of the 'if (len != 0) condition is where
1710 we'll generate the asan instrumentation code now. */
1711 gsi = gsi_last_bb (then_bb);
1712 build_check_stmt (location, base, len, size_in_bytes, &gsi,
1713 /*non_zero_len_p*/true, /*before_p*/true, is_store,
1714 is_scalar_access, align,
1715 start_instrumented, end_instrumented);
1716 return;
1719 /* Get an iterator on the point where we can add the condition
1720 statement for the instrumentation. */
1721 basic_block then_bb, else_bb;
1722 gsi = create_cond_insert_point (&gsi, before_p,
1723 /*then_more_likely_p=*/false,
1724 /*create_then_fallthru_edge=*/false,
1725 &then_bb,
1726 &else_bb);
1728 tree base_ssa = maybe_create_ssa_name (location, base, &gsi,
1729 /*before_p*/false);
1731 g = gimple_build_assign_with_ops (NOP_EXPR,
1732 make_ssa_name (uintptr_type, NULL),
1733 base_ssa, NULL_TREE);
1734 gimple_set_location (g, location);
1735 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1736 tree base_addr = gimple_assign_lhs (g);
1738 tree t;
1739 if (real_size_in_bytes >= 8)
1741 tree shadow = build_shadow_mem_access (&gsi, location, base_addr,
1742 shadow_ptr_type);
1743 t = shadow;
1745 else
1747 /* Slow path for 1, 2 and 4 byte accesses. */
1749 if (!start_instrumented)
1751 /* Test (shadow != 0)
1752 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
1753 tree shadow = build_shadow_mem_access (&gsi, location, base_addr,
1754 shadow_ptr_type);
1755 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
1756 gimple_seq seq = NULL;
1757 gimple_seq_add_stmt (&seq, shadow_test);
1758 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, base_addr, 7));
1759 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
1760 gimple_seq_last (seq)));
1761 if (real_size_in_bytes > 1)
1762 gimple_seq_add_stmt (&seq,
1763 build_assign (PLUS_EXPR, gimple_seq_last (seq),
1764 real_size_in_bytes - 1));
1765 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
1766 gimple_seq_last (seq),
1767 shadow));
1768 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
1769 gimple_seq_last (seq)));
1770 t = gimple_assign_lhs (gimple_seq_last (seq));
1771 gimple_seq_set_location (seq, location);
1772 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
1775 /* For non-constant, misaligned or otherwise weird access sizes,
1776 check first and last byte. */
1777 if (size_in_bytes == -1 && !end_instrumented)
1779 g = gimple_build_assign_with_ops (MINUS_EXPR,
1780 make_ssa_name (uintptr_type, NULL),
1781 len,
1782 build_int_cst (uintptr_type, 1));
1783 gimple_set_location (g, location);
1784 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1785 tree last = gimple_assign_lhs (g);
1786 g = gimple_build_assign_with_ops (PLUS_EXPR,
1787 make_ssa_name (uintptr_type, NULL),
1788 base_addr,
1789 last);
1790 gimple_set_location (g, location);
1791 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1792 tree base_end_addr = gimple_assign_lhs (g);
1794 tree shadow = build_shadow_mem_access (&gsi, location, base_end_addr,
1795 shadow_ptr_type);
1796 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
1797 gimple_seq seq = NULL;
1798 gimple_seq_add_stmt (&seq, shadow_test);
1799 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
1800 base_end_addr, 7));
1801 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
1802 gimple_seq_last (seq)));
1803 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
1804 gimple_seq_last (seq),
1805 shadow));
1806 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
1807 gimple_seq_last (seq)));
1808 if (!start_instrumented)
1809 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
1810 gimple_seq_last (seq)));
1811 t = gimple_assign_lhs (gimple_seq_last (seq));
1812 gimple_seq_set_location (seq, location);
1813 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
1817 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
1818 NULL_TREE, NULL_TREE);
1819 gimple_set_location (g, location);
1820 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1822 /* Generate call to the run-time library (e.g. __asan_report_load8). */
1823 gsi = gsi_start_bb (then_bb);
1824 int nargs;
1825 tree fun = report_error_func (is_store, is_scalar_access ? size_in_bytes : -1,
1826 &nargs);
1827 if (nargs == 1)
1828 g = gimple_build_call (fun, 1, base_addr);
1829 else
1831 gcc_assert (nargs == 2);
1832 g = gimple_build_assign_with_ops (NOP_EXPR,
1833 make_ssa_name (pointer_sized_int_node,
1834 NULL),
1835 len, NULL_TREE);
1836 gimple_set_location (g, location);
1837 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1838 tree sz_arg = gimple_assign_lhs (g);
1839 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
1841 gimple_set_location (g, location);
1842 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1844 *iter = gsi_start_bb (else_bb);
1847 /* If T represents a memory access, add instrumentation code before ITER.
1848 LOCATION is source code location.
1849 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
1851 static void
1852 instrument_derefs (gimple_stmt_iterator *iter, tree t,
1853 location_t location, bool is_store)
1855 if (is_store && !ASAN_INSTRUMENT_WRITES)
1856 return;
1857 if (!is_store && !ASAN_INSTRUMENT_READS)
1858 return;
1860 tree type, base;
1861 HOST_WIDE_INT size_in_bytes;
1863 type = TREE_TYPE (t);
1864 switch (TREE_CODE (t))
1866 case ARRAY_REF:
1867 case COMPONENT_REF:
1868 case INDIRECT_REF:
1869 case MEM_REF:
1870 case VAR_DECL:
1871 break;
1872 /* FALLTHRU */
1873 default:
1874 return;
1877 size_in_bytes = int_size_in_bytes (type);
1878 if (size_in_bytes <= 0)
1879 return;
1881 HOST_WIDE_INT bitsize, bitpos;
1882 tree offset;
1883 enum machine_mode mode;
1884 int volatilep = 0, unsignedp = 0;
1885 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset,
1886 &mode, &unsignedp, &volatilep, false);
1887 if (((size_in_bytes & (size_in_bytes - 1)) == 0
1888 && (bitpos % (size_in_bytes * BITS_PER_UNIT)))
1889 || bitsize != size_in_bytes * BITS_PER_UNIT)
1891 if (TREE_CODE (t) == COMPONENT_REF
1892 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
1894 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
1895 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
1896 TREE_OPERAND (t, 0), repr,
1897 NULL_TREE), location, is_store);
1899 return;
1901 if (bitpos % BITS_PER_UNIT)
1902 return;
1904 if (TREE_CODE (inner) == VAR_DECL
1905 && offset == NULL_TREE
1906 && bitpos >= 0
1907 && DECL_SIZE (inner)
1908 && tree_fits_shwi_p (DECL_SIZE (inner))
1909 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
1911 if (DECL_THREAD_LOCAL_P (inner))
1912 return;
1913 if (!TREE_STATIC (inner))
1915 /* Automatic vars in the current function will be always
1916 accessible. */
1917 if (decl_function_context (inner) == current_function_decl)
1918 return;
1920 /* Always instrument external vars, they might be dynamically
1921 initialized. */
1922 else if (!DECL_EXTERNAL (inner))
1924 /* For static vars if they are known not to be dynamically
1925 initialized, they will be always accessible. */
1926 varpool_node *vnode = varpool_get_node (inner);
1927 if (vnode && !vnode->dynamically_initialized)
1928 return;
1932 base = build_fold_addr_expr (t);
1933 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
1935 unsigned int align = get_object_alignment (t);
1936 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
1937 /*non_zero_len_p*/size_in_bytes > 0, /*before_p=*/true,
1938 is_store, /*is_scalar_access*/true, align);
1939 update_mem_ref_hash_table (base, size_in_bytes);
1940 update_mem_ref_hash_table (t, size_in_bytes);
1945 /* Instrument an access to a contiguous memory region that starts at
1946 the address pointed to by BASE, over a length of LEN (expressed in
1947 the sizeof (*BASE) bytes). ITER points to the instruction before
1948 which the instrumentation instructions must be inserted. LOCATION
1949 is the source location that the instrumentation instructions must
1950 have. If IS_STORE is true, then the memory access is a store;
1951 otherwise, it's a load. */
1953 static void
1954 instrument_mem_region_access (tree base, tree len,
1955 gimple_stmt_iterator *iter,
1956 location_t location, bool is_store)
1958 if (!POINTER_TYPE_P (TREE_TYPE (base))
1959 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
1960 || integer_zerop (len))
1961 return;
1963 /* If the beginning of the memory region has already been
1964 instrumented, do not instrument it. */
1965 bool start_instrumented = has_mem_ref_been_instrumented (base, 1);
1967 /* If the end of the memory region has already been instrumented, do
1968 not instrument it. */
1969 tree end = asan_mem_ref_get_end (base, len);
1970 bool end_instrumented = has_mem_ref_been_instrumented (end, 1);
1972 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1974 build_check_stmt (location, base, len, size_in_bytes, iter,
1975 /*non_zero_len_p*/size_in_bytes > 0, /*before_p*/true,
1976 is_store, /*is_scalar_access*/false, /*align*/0,
1977 start_instrumented, end_instrumented);
1979 update_mem_ref_hash_table (base, 1);
1980 if (size_in_bytes != -1)
1981 update_mem_ref_hash_table (end, 1);
1983 *iter = gsi_for_stmt (gsi_stmt (*iter));
1986 /* Instrument the call (to the builtin strlen function) pointed to by
1987 ITER.
1989 This function instruments the access to the first byte of the
1990 argument, right before the call. After the call it instruments the
1991 access to the last byte of the argument; it uses the result of the
1992 call to deduce the offset of that last byte.
1994 Upon completion, iff the call has actually been instrumented, this
1995 function returns TRUE and *ITER points to the statement logically
1996 following the built-in strlen function call *ITER was initially
1997 pointing to. Otherwise, the function returns FALSE and *ITER
1998 remains unchanged. */
2000 static bool
2001 instrument_strlen_call (gimple_stmt_iterator *iter)
2003 gimple call = gsi_stmt (*iter);
2004 gcc_assert (is_gimple_call (call));
2006 tree callee = gimple_call_fndecl (call);
2007 gcc_assert (is_builtin_fn (callee)
2008 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2009 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN);
2011 tree len = gimple_call_lhs (call);
2012 if (len == NULL)
2013 /* Some passes might clear the return value of the strlen call;
2014 bail out in that case. Return FALSE as we are not advancing
2015 *ITER. */
2016 return false;
2017 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (len)));
2019 location_t loc = gimple_location (call);
2020 tree str_arg = gimple_call_arg (call, 0);
2022 tree cptr_type = build_pointer_type (char_type_node);
2023 gimple str_arg_ssa =
2024 gimple_build_assign_with_ops (NOP_EXPR,
2025 make_ssa_name (cptr_type, NULL),
2026 str_arg, NULL);
2027 gimple_set_location (str_arg_ssa, loc);
2028 gsi_insert_before (iter, str_arg_ssa, GSI_SAME_STMT);
2030 build_check_stmt (loc, gimple_assign_lhs (str_arg_ssa), NULL_TREE, 1, iter,
2031 /*non_zero_len_p*/true, /*before_p=*/true,
2032 /*is_store=*/false, /*is_scalar_access*/false, /*align*/0);
2034 gimple stmt =
2035 gimple_build_assign_with_ops (PLUS_EXPR,
2036 make_ssa_name (TREE_TYPE (len), NULL),
2037 len,
2038 build_int_cst (TREE_TYPE (len), 1));
2039 gimple_set_location (stmt, loc);
2040 gsi_insert_after (iter, stmt, GSI_NEW_STMT);
2042 build_check_stmt (loc, gimple_assign_lhs (stmt), len, 1, iter,
2043 /*non_zero_len_p*/true, /*before_p=*/false,
2044 /*is_store=*/false, /*is_scalar_access*/false, /*align*/0);
2046 return true;
2049 /* Instrument the call to a built-in memory access function that is
2050 pointed to by the iterator ITER.
2052 Upon completion, return TRUE iff *ITER has been advanced to the
2053 statement following the one it was originally pointing to. */
2055 static bool
2056 instrument_builtin_call (gimple_stmt_iterator *iter)
2058 if (!ASAN_MEMINTRIN)
2059 return false;
2061 bool iter_advanced_p = false;
2062 gimple call = gsi_stmt (*iter);
2064 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
2066 tree callee = gimple_call_fndecl (call);
2067 location_t loc = gimple_location (call);
2069 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN)
2070 iter_advanced_p = instrument_strlen_call (iter);
2071 else
2073 asan_mem_ref src0, src1, dest;
2074 asan_mem_ref_init (&src0, NULL, 1);
2075 asan_mem_ref_init (&src1, NULL, 1);
2076 asan_mem_ref_init (&dest, NULL, 1);
2078 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
2079 bool src0_is_store = false, src1_is_store = false,
2080 dest_is_store = false, dest_is_deref = false;
2082 if (get_mem_refs_of_builtin_call (call,
2083 &src0, &src0_len, &src0_is_store,
2084 &src1, &src1_len, &src1_is_store,
2085 &dest, &dest_len, &dest_is_store,
2086 &dest_is_deref))
2088 if (dest_is_deref)
2090 instrument_derefs (iter, dest.start, loc, dest_is_store);
2091 gsi_next (iter);
2092 iter_advanced_p = true;
2094 else if (src0_len || src1_len || dest_len)
2096 if (src0.start != NULL_TREE)
2097 instrument_mem_region_access (src0.start, src0_len,
2098 iter, loc, /*is_store=*/false);
2099 if (src1.start != NULL_TREE)
2100 instrument_mem_region_access (src1.start, src1_len,
2101 iter, loc, /*is_store=*/false);
2102 if (dest.start != NULL_TREE)
2103 instrument_mem_region_access (dest.start, dest_len,
2104 iter, loc, /*is_store=*/true);
2105 *iter = gsi_for_stmt (call);
2106 gsi_next (iter);
2107 iter_advanced_p = true;
2111 return iter_advanced_p;
2114 /* Instrument the assignment statement ITER if it is subject to
2115 instrumentation. Return TRUE iff instrumentation actually
2116 happened. In that case, the iterator ITER is advanced to the next
2117 logical expression following the one initially pointed to by ITER,
2118 and the relevant memory reference that which access has been
2119 instrumented is added to the memory references hash table. */
2121 static bool
2122 maybe_instrument_assignment (gimple_stmt_iterator *iter)
2124 gimple s = gsi_stmt (*iter);
2126 gcc_assert (gimple_assign_single_p (s));
2128 tree ref_expr = NULL_TREE;
2129 bool is_store, is_instrumented = false;
2131 if (gimple_store_p (s))
2133 ref_expr = gimple_assign_lhs (s);
2134 is_store = true;
2135 instrument_derefs (iter, ref_expr,
2136 gimple_location (s),
2137 is_store);
2138 is_instrumented = true;
2141 if (gimple_assign_load_p (s))
2143 ref_expr = gimple_assign_rhs1 (s);
2144 is_store = false;
2145 instrument_derefs (iter, ref_expr,
2146 gimple_location (s),
2147 is_store);
2148 is_instrumented = true;
2151 if (is_instrumented)
2152 gsi_next (iter);
2154 return is_instrumented;
2157 /* Instrument the function call pointed to by the iterator ITER, if it
2158 is subject to instrumentation. At the moment, the only function
2159 calls that are instrumented are some built-in functions that access
2160 memory. Look at instrument_builtin_call to learn more.
2162 Upon completion return TRUE iff *ITER was advanced to the statement
2163 following the one it was originally pointing to. */
2165 static bool
2166 maybe_instrument_call (gimple_stmt_iterator *iter)
2168 gimple stmt = gsi_stmt (*iter);
2169 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2171 if (is_builtin && instrument_builtin_call (iter))
2172 return true;
2174 if (gimple_call_noreturn_p (stmt))
2176 if (is_builtin)
2178 tree callee = gimple_call_fndecl (stmt);
2179 switch (DECL_FUNCTION_CODE (callee))
2181 case BUILT_IN_UNREACHABLE:
2182 case BUILT_IN_TRAP:
2183 /* Don't instrument these. */
2184 return false;
2187 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2188 gimple g = gimple_build_call (decl, 0);
2189 gimple_set_location (g, gimple_location (stmt));
2190 gsi_insert_before (iter, g, GSI_SAME_STMT);
2192 return false;
2195 /* Walk each instruction of all basic block and instrument those that
2196 represent memory references: loads, stores, or function calls.
2197 In a given basic block, this function avoids instrumenting memory
2198 references that have already been instrumented. */
2200 static void
2201 transform_statements (void)
2203 basic_block bb, last_bb = NULL;
2204 gimple_stmt_iterator i;
2205 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2207 FOR_EACH_BB_FN (bb, cfun)
2209 basic_block prev_bb = bb;
2211 if (bb->index >= saved_last_basic_block) continue;
2213 /* Flush the mem ref hash table, if current bb doesn't have
2214 exactly one predecessor, or if that predecessor (skipping
2215 over asan created basic blocks) isn't the last processed
2216 basic block. Thus we effectively flush on extended basic
2217 block boundaries. */
2218 while (single_pred_p (prev_bb))
2220 prev_bb = single_pred (prev_bb);
2221 if (prev_bb->index < saved_last_basic_block)
2222 break;
2224 if (prev_bb != last_bb)
2225 empty_mem_ref_hash_table ();
2226 last_bb = bb;
2228 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2230 gimple s = gsi_stmt (i);
2232 if (has_stmt_been_instrumented_p (s))
2233 gsi_next (&i);
2234 else if (gimple_assign_single_p (s)
2235 && maybe_instrument_assignment (&i))
2236 /* Nothing to do as maybe_instrument_assignment advanced
2237 the iterator I. */;
2238 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2239 /* Nothing to do as maybe_instrument_call
2240 advanced the iterator I. */;
2241 else
2243 /* No instrumentation happened.
2245 If the current instruction is a function call that
2246 might free something, let's forget about the memory
2247 references that got instrumented. Otherwise we might
2248 miss some instrumentation opportunities. */
2249 if (is_gimple_call (s) && !nonfreeing_call_p (s))
2250 empty_mem_ref_hash_table ();
2252 gsi_next (&i);
2256 free_mem_ref_resources ();
2259 /* Build
2260 __asan_before_dynamic_init (module_name)
2262 __asan_after_dynamic_init ()
2263 call. */
2265 tree
2266 asan_dynamic_init_call (bool after_p)
2268 tree fn = builtin_decl_implicit (after_p
2269 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2270 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2271 tree module_name_cst = NULL_TREE;
2272 if (!after_p)
2274 pretty_printer module_name_pp;
2275 pp_string (&module_name_pp, main_input_filename);
2277 if (shadow_ptr_types[0] == NULL_TREE)
2278 asan_init_shadow_ptr_types ();
2279 module_name_cst = asan_pp_string (&module_name_pp);
2280 module_name_cst = fold_convert (const_ptr_type_node,
2281 module_name_cst);
2284 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2287 /* Build
2288 struct __asan_global
2290 const void *__beg;
2291 uptr __size;
2292 uptr __size_with_redzone;
2293 const void *__name;
2294 const void *__module_name;
2295 uptr __has_dynamic_init;
2296 } type. */
2298 static tree
2299 asan_global_struct (void)
2301 static const char *field_names[6]
2302 = { "__beg", "__size", "__size_with_redzone",
2303 "__name", "__module_name", "__has_dynamic_init" };
2304 tree fields[6], ret;
2305 int i;
2307 ret = make_node (RECORD_TYPE);
2308 for (i = 0; i < 6; i++)
2310 fields[i]
2311 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2312 get_identifier (field_names[i]),
2313 (i == 0 || i == 3) ? const_ptr_type_node
2314 : pointer_sized_int_node);
2315 DECL_CONTEXT (fields[i]) = ret;
2316 if (i)
2317 DECL_CHAIN (fields[i - 1]) = fields[i];
2319 TYPE_FIELDS (ret) = fields[0];
2320 TYPE_NAME (ret) = get_identifier ("__asan_global");
2321 layout_type (ret);
2322 return ret;
2325 /* Append description of a single global DECL into vector V.
2326 TYPE is __asan_global struct type as returned by asan_global_struct. */
2328 static void
2329 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2331 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2332 unsigned HOST_WIDE_INT size;
2333 tree str_cst, module_name_cst, refdecl = decl;
2334 vec<constructor_elt, va_gc> *vinner = NULL;
2336 pretty_printer asan_pp, module_name_pp;
2338 if (DECL_NAME (decl))
2339 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2340 else
2341 pp_string (&asan_pp, "<unknown>");
2342 str_cst = asan_pp_string (&asan_pp);
2344 pp_string (&module_name_pp, main_input_filename);
2345 module_name_cst = asan_pp_string (&module_name_pp);
2347 if (asan_needs_local_alias (decl))
2349 char buf[20];
2350 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2351 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2352 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2353 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2354 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2355 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2356 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2357 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2358 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2359 TREE_STATIC (refdecl) = 1;
2360 TREE_PUBLIC (refdecl) = 0;
2361 TREE_USED (refdecl) = 1;
2362 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2365 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2366 fold_convert (const_ptr_type_node,
2367 build_fold_addr_expr (refdecl)));
2368 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2369 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2370 size += asan_red_zone_size (size);
2371 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2372 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2373 fold_convert (const_ptr_type_node, str_cst));
2374 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2375 fold_convert (const_ptr_type_node, module_name_cst));
2376 varpool_node *vnode = varpool_get_node (decl);
2377 int has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2378 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2379 build_int_cst (uptr, has_dynamic_init));
2380 init = build_constructor (type, vinner);
2381 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2384 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2385 void
2386 initialize_sanitizer_builtins (void)
2388 tree decl;
2390 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2391 return;
2393 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2394 tree BT_FN_VOID_PTR
2395 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2396 tree BT_FN_VOID_CONST_PTR
2397 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2398 tree BT_FN_VOID_PTR_PTR
2399 = build_function_type_list (void_type_node, ptr_type_node,
2400 ptr_type_node, NULL_TREE);
2401 tree BT_FN_VOID_PTR_PTR_PTR
2402 = build_function_type_list (void_type_node, ptr_type_node,
2403 ptr_type_node, ptr_type_node, NULL_TREE);
2404 tree BT_FN_VOID_PTR_PTRMODE
2405 = build_function_type_list (void_type_node, ptr_type_node,
2406 pointer_sized_int_node, NULL_TREE);
2407 tree BT_FN_VOID_INT
2408 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2409 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2410 tree BT_FN_IX_CONST_VPTR_INT[5];
2411 tree BT_FN_IX_VPTR_IX_INT[5];
2412 tree BT_FN_VOID_VPTR_IX_INT[5];
2413 tree vptr
2414 = build_pointer_type (build_qualified_type (void_type_node,
2415 TYPE_QUAL_VOLATILE));
2416 tree cvptr
2417 = build_pointer_type (build_qualified_type (void_type_node,
2418 TYPE_QUAL_VOLATILE
2419 |TYPE_QUAL_CONST));
2420 tree boolt
2421 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2422 int i;
2423 for (i = 0; i < 5; i++)
2425 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2426 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2427 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2428 integer_type_node, integer_type_node,
2429 NULL_TREE);
2430 BT_FN_IX_CONST_VPTR_INT[i]
2431 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2432 BT_FN_IX_VPTR_IX_INT[i]
2433 = build_function_type_list (ix, vptr, ix, integer_type_node,
2434 NULL_TREE);
2435 BT_FN_VOID_VPTR_IX_INT[i]
2436 = build_function_type_list (void_type_node, vptr, ix,
2437 integer_type_node, NULL_TREE);
2439 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2440 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2441 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2442 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2443 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2444 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2445 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2446 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2447 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2448 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2449 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2450 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2451 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2452 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2453 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2454 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2455 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2456 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2457 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2458 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2459 #undef ATTR_NOTHROW_LEAF_LIST
2460 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2461 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2462 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2463 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2464 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2465 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2466 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2467 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2468 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2469 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2470 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2471 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2472 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2473 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2474 #undef DEF_SANITIZER_BUILTIN
2475 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2476 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2477 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2478 set_call_expr_flags (decl, ATTRS); \
2479 set_builtin_decl (ENUM, decl, true);
2481 #include "sanitizer.def"
2483 #undef DEF_SANITIZER_BUILTIN
2486 /* Called via htab_traverse. Count number of emitted
2487 STRING_CSTs in the constant hash table. */
2489 static int
2490 count_string_csts (void **slot, void *data)
2492 struct constant_descriptor_tree *desc
2493 = (struct constant_descriptor_tree *) *slot;
2494 if (TREE_CODE (desc->value) == STRING_CST
2495 && TREE_ASM_WRITTEN (desc->value)
2496 && asan_protect_global (desc->value))
2497 ++*((unsigned HOST_WIDE_INT *) data);
2498 return 1;
2501 /* Helper structure to pass two parameters to
2502 add_string_csts. */
2504 struct asan_add_string_csts_data
2506 tree type;
2507 vec<constructor_elt, va_gc> *v;
2510 /* Called via htab_traverse. Call asan_add_global
2511 on emitted STRING_CSTs from the constant hash table. */
2513 static int
2514 add_string_csts (void **slot, void *data)
2516 struct constant_descriptor_tree *desc
2517 = (struct constant_descriptor_tree *) *slot;
2518 if (TREE_CODE (desc->value) == STRING_CST
2519 && TREE_ASM_WRITTEN (desc->value)
2520 && asan_protect_global (desc->value))
2522 struct asan_add_string_csts_data *aascd
2523 = (struct asan_add_string_csts_data *) data;
2524 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2525 aascd->type, aascd->v);
2527 return 1;
2530 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2531 invoke ggc_collect. */
2532 static GTY(()) tree asan_ctor_statements;
2534 /* Module-level instrumentation.
2535 - Insert __asan_init_vN() into the list of CTORs.
2536 - TODO: insert redzones around globals.
2539 void
2540 asan_finish_file (void)
2542 varpool_node *vnode;
2543 unsigned HOST_WIDE_INT gcount = 0;
2545 if (shadow_ptr_types[0] == NULL_TREE)
2546 asan_init_shadow_ptr_types ();
2547 /* Avoid instrumenting code in the asan ctors/dtors.
2548 We don't need to insert padding after the description strings,
2549 nor after .LASAN* array. */
2550 flag_sanitize &= ~SANITIZE_ADDRESS;
2552 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2553 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2554 FOR_EACH_DEFINED_VARIABLE (vnode)
2555 if (TREE_ASM_WRITTEN (vnode->decl)
2556 && asan_protect_global (vnode->decl))
2557 ++gcount;
2558 htab_t const_desc_htab = constant_pool_htab ();
2559 htab_traverse (const_desc_htab, count_string_csts, &gcount);
2560 if (gcount)
2562 tree type = asan_global_struct (), var, ctor;
2563 tree dtor_statements = NULL_TREE;
2564 vec<constructor_elt, va_gc> *v;
2565 char buf[20];
2567 type = build_array_type_nelts (type, gcount);
2568 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2569 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2570 type);
2571 TREE_STATIC (var) = 1;
2572 TREE_PUBLIC (var) = 0;
2573 DECL_ARTIFICIAL (var) = 1;
2574 DECL_IGNORED_P (var) = 1;
2575 vec_alloc (v, gcount);
2576 FOR_EACH_DEFINED_VARIABLE (vnode)
2577 if (TREE_ASM_WRITTEN (vnode->decl)
2578 && asan_protect_global (vnode->decl))
2579 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2580 struct asan_add_string_csts_data aascd;
2581 aascd.type = TREE_TYPE (type);
2582 aascd.v = v;
2583 htab_traverse (const_desc_htab, add_string_csts, &aascd);
2584 ctor = build_constructor (type, v);
2585 TREE_CONSTANT (ctor) = 1;
2586 TREE_STATIC (ctor) = 1;
2587 DECL_INITIAL (var) = ctor;
2588 varpool_assemble_decl (varpool_node_for_decl (var));
2590 fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2591 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2592 append_to_statement_list (build_call_expr (fn, 2,
2593 build_fold_addr_expr (var),
2594 gcount_tree),
2595 &asan_ctor_statements);
2597 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2598 append_to_statement_list (build_call_expr (fn, 2,
2599 build_fold_addr_expr (var),
2600 gcount_tree),
2601 &dtor_statements);
2602 cgraph_build_static_cdtor ('D', dtor_statements,
2603 MAX_RESERVED_INIT_PRIORITY - 1);
2605 cgraph_build_static_cdtor ('I', asan_ctor_statements,
2606 MAX_RESERVED_INIT_PRIORITY - 1);
2607 flag_sanitize |= SANITIZE_ADDRESS;
2610 /* Instrument the current function. */
2612 static unsigned int
2613 asan_instrument (void)
2615 if (shadow_ptr_types[0] == NULL_TREE)
2616 asan_init_shadow_ptr_types ();
2617 asan_num_accesses = 0;
2618 transform_statements ();
2619 return 0;
2622 static bool
2623 gate_asan (void)
2625 return (flag_sanitize & SANITIZE_ADDRESS) != 0
2626 && !lookup_attribute ("no_sanitize_address",
2627 DECL_ATTRIBUTES (current_function_decl));
2630 namespace {
2632 const pass_data pass_data_asan =
2634 GIMPLE_PASS, /* type */
2635 "asan", /* name */
2636 OPTGROUP_NONE, /* optinfo_flags */
2637 true, /* has_execute */
2638 TV_NONE, /* tv_id */
2639 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2640 0, /* properties_provided */
2641 0, /* properties_destroyed */
2642 0, /* todo_flags_start */
2643 TODO_update_ssa, /* todo_flags_finish */
2646 class pass_asan : public gimple_opt_pass
2648 public:
2649 pass_asan (gcc::context *ctxt)
2650 : gimple_opt_pass (pass_data_asan, ctxt)
2653 /* opt_pass methods: */
2654 opt_pass * clone () { return new pass_asan (m_ctxt); }
2655 virtual bool gate (function *) { return gate_asan (); }
2656 virtual unsigned int execute (function *) { return asan_instrument (); }
2658 }; // class pass_asan
2660 } // anon namespace
2662 gimple_opt_pass *
2663 make_pass_asan (gcc::context *ctxt)
2665 return new pass_asan (ctxt);
2668 namespace {
2670 const pass_data pass_data_asan_O0 =
2672 GIMPLE_PASS, /* type */
2673 "asan0", /* name */
2674 OPTGROUP_NONE, /* optinfo_flags */
2675 true, /* has_execute */
2676 TV_NONE, /* tv_id */
2677 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2678 0, /* properties_provided */
2679 0, /* properties_destroyed */
2680 0, /* todo_flags_start */
2681 TODO_update_ssa, /* todo_flags_finish */
2684 class pass_asan_O0 : public gimple_opt_pass
2686 public:
2687 pass_asan_O0 (gcc::context *ctxt)
2688 : gimple_opt_pass (pass_data_asan_O0, ctxt)
2691 /* opt_pass methods: */
2692 virtual bool gate (function *) { return !optimize && gate_asan (); }
2693 virtual unsigned int execute (function *) { return asan_instrument (); }
2695 }; // class pass_asan_O0
2697 } // anon namespace
2699 gimple_opt_pass *
2700 make_pass_asan_O0 (gcc::context *ctxt)
2702 return new pass_asan_O0 (ctxt);
2705 /* Perform optimization of sanitize functions. */
2707 namespace {
2709 const pass_data pass_data_sanopt =
2711 GIMPLE_PASS, /* type */
2712 "sanopt", /* name */
2713 OPTGROUP_NONE, /* optinfo_flags */
2714 true, /* has_execute */
2715 TV_NONE, /* tv_id */
2716 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2717 0, /* properties_provided */
2718 0, /* properties_destroyed */
2719 0, /* todo_flags_start */
2720 TODO_update_ssa, /* todo_flags_finish */
2723 class pass_sanopt : public gimple_opt_pass
2725 public:
2726 pass_sanopt (gcc::context *ctxt)
2727 : gimple_opt_pass (pass_data_sanopt, ctxt)
2730 /* opt_pass methods: */
2731 virtual bool gate (function *) { return flag_sanitize; }
2732 virtual unsigned int execute (function *);
2734 }; // class pass_sanopt
2736 unsigned int
2737 pass_sanopt::execute (function *fun)
2739 basic_block bb;
2741 FOR_EACH_BB_FN (bb, fun)
2743 gimple_stmt_iterator gsi;
2744 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2746 gimple stmt = gsi_stmt (gsi);
2748 if (!is_gimple_call (stmt))
2749 continue;
2751 if (gimple_call_internal_p (stmt))
2752 switch (gimple_call_internal_fn (stmt))
2754 case IFN_UBSAN_NULL:
2755 ubsan_expand_null_ifn (gsi);
2756 break;
2757 default:
2758 break;
2761 if (dump_file && (dump_flags & TDF_DETAILS))
2763 fprintf (dump_file, "Optimized\n ");
2764 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2765 fprintf (dump_file, "\n");
2769 return 0;
2772 } // anon namespace
2774 gimple_opt_pass *
2775 make_pass_sanopt (gcc::context *ctxt)
2777 return new pass_sanopt (ctxt);
2780 #include "gt-asan.h"