1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
90 #include "coretypes.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
100 #include "insn-config.h"
102 #include "emit-rtl.h"
104 #include "diagnostic.h"
106 #include "stor-layout.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
115 #include "tree-pretty-print.h"
116 #include "rtl-iter.h"
117 #include "fibonacci_heap.h"
118 #include "print-rtl.h"
120 typedef fibonacci_heap
<long, basic_block_def
> bb_heap_t
;
121 typedef fibonacci_node
<long, basic_block_def
> bb_heap_node_t
;
123 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
124 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
125 Currently the value is the same as IDENTIFIER_NODE, which has such
126 a property. If this compile time assertion ever fails, make sure that
127 the new tree code that equals (int) VALUE has the same property. */
128 extern char check_value_val
[(int) VALUE
== (int) IDENTIFIER_NODE
? 1 : -1];
130 /* Type of micro operation. */
131 enum micro_operation_type
133 MO_USE
, /* Use location (REG or MEM). */
134 MO_USE_NO_VAR
,/* Use location which is not associated with a variable
135 or the variable is not trackable. */
136 MO_VAL_USE
, /* Use location which is associated with a value. */
137 MO_VAL_LOC
, /* Use location which appears in a debug insn. */
138 MO_VAL_SET
, /* Set location associated with a value. */
139 MO_SET
, /* Set location. */
140 MO_COPY
, /* Copy the same portion of a variable from one
141 location to another. */
142 MO_CLOBBER
, /* Clobber location. */
143 MO_CALL
, /* Call insn. */
144 MO_ADJUST
/* Adjust stack pointer. */
148 static const char * const ATTRIBUTE_UNUSED
149 micro_operation_type_name
[] = {
162 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
163 Notes emitted as AFTER_CALL are to take effect during the call,
164 rather than after the call. */
167 EMIT_NOTE_BEFORE_INSN
,
168 EMIT_NOTE_AFTER_INSN
,
169 EMIT_NOTE_AFTER_CALL_INSN
172 /* Structure holding information about micro operation. */
173 struct micro_operation
175 /* Type of micro operation. */
176 enum micro_operation_type type
;
178 /* The instruction which the micro operation is in, for MO_USE,
179 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
180 instruction or note in the original flow (before any var-tracking
181 notes are inserted, to simplify emission of notes), for MO_SET
186 /* Location. For MO_SET and MO_COPY, this is the SET that
187 performs the assignment, if known, otherwise it is the target
188 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
189 CONCAT of the VALUE and the LOC associated with it. For
190 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
191 associated with it. */
194 /* Stack adjustment. */
195 HOST_WIDE_INT adjust
;
200 /* A declaration of a variable, or an RTL value being handled like a
202 typedef void *decl_or_value
;
204 /* Return true if a decl_or_value DV is a DECL or NULL. */
206 dv_is_decl_p (decl_or_value dv
)
208 return !dv
|| (int) TREE_CODE ((tree
) dv
) != (int) VALUE
;
211 /* Return true if a decl_or_value is a VALUE rtl. */
213 dv_is_value_p (decl_or_value dv
)
215 return dv
&& !dv_is_decl_p (dv
);
218 /* Return the decl in the decl_or_value. */
220 dv_as_decl (decl_or_value dv
)
222 gcc_checking_assert (dv_is_decl_p (dv
));
226 /* Return the value in the decl_or_value. */
228 dv_as_value (decl_or_value dv
)
230 gcc_checking_assert (dv_is_value_p (dv
));
234 /* Return the opaque pointer in the decl_or_value. */
236 dv_as_opaque (decl_or_value dv
)
242 /* Description of location of a part of a variable. The content of a physical
243 register is described by a chain of these structures.
244 The chains are pretty short (usually 1 or 2 elements) and thus
245 chain is the best data structure. */
248 /* Pointer to next member of the list. */
251 /* The rtx of register. */
254 /* The declaration corresponding to LOC. */
257 /* Offset from start of DECL. */
258 HOST_WIDE_INT offset
;
261 /* Structure for chaining the locations. */
262 struct location_chain
264 /* Next element in the chain. */
265 location_chain
*next
;
267 /* The location (REG, MEM or VALUE). */
270 /* The "value" stored in this location. */
274 enum var_init_status init
;
277 /* A vector of loc_exp_dep holds the active dependencies of a one-part
278 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
279 location of DV. Each entry is also part of VALUE' s linked-list of
280 backlinks back to DV. */
283 /* The dependent DV. */
285 /* The dependency VALUE or DECL_DEBUG. */
287 /* The next entry in VALUE's backlinks list. */
288 struct loc_exp_dep
*next
;
289 /* A pointer to the pointer to this entry (head or prev's next) in
290 the doubly-linked list. */
291 struct loc_exp_dep
**pprev
;
295 /* This data structure holds information about the depth of a variable
299 /* This measures the complexity of the expanded expression. It
300 grows by one for each level of expansion that adds more than one
303 /* This counts the number of ENTRY_VALUE expressions in an
304 expansion. We want to minimize their use. */
308 /* This data structure is allocated for one-part variables at the time
309 of emitting notes. */
312 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
313 computation used the expansion of this variable, and that ought
314 to be notified should this variable change. If the DV's cur_loc
315 expanded to NULL, all components of the loc list are regarded as
316 active, so that any changes in them give us a chance to get a
317 location. Otherwise, only components of the loc that expanded to
318 non-NULL are regarded as active dependencies. */
319 loc_exp_dep
*backlinks
;
320 /* This holds the LOC that was expanded into cur_loc. We need only
321 mark a one-part variable as changed if the FROM loc is removed,
322 or if it has no known location and a loc is added, or if it gets
323 a change notification from any of its active dependencies. */
325 /* The depth of the cur_loc expression. */
327 /* Dependencies actively used when expand FROM into cur_loc. */
328 vec
<loc_exp_dep
, va_heap
, vl_embed
> deps
;
331 /* Structure describing one part of variable. */
334 /* Chain of locations of the part. */
335 location_chain
*loc_chain
;
337 /* Location which was last emitted to location list. */
342 /* The offset in the variable, if !var->onepart. */
343 HOST_WIDE_INT offset
;
345 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
346 struct onepart_aux
*onepaux
;
350 /* Maximum number of location parts. */
351 #define MAX_VAR_PARTS 16
353 /* Enumeration type used to discriminate various types of one-part
357 /* Not a one-part variable. */
359 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
361 /* A DEBUG_EXPR_DECL. */
367 /* Structure describing where the variable is located. */
370 /* The declaration of the variable, or an RTL value being handled
371 like a declaration. */
374 /* Reference count. */
377 /* Number of variable parts. */
380 /* What type of DV this is, according to enum onepart_enum. */
381 ENUM_BITFIELD (onepart_enum
) onepart
: CHAR_BIT
;
383 /* True if this variable_def struct is currently in the
384 changed_variables hash table. */
385 bool in_changed_variables
;
387 /* The variable parts. */
388 variable_part var_part
[1];
391 /* Pointer to the BB's information specific to variable tracking pass. */
392 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
394 /* Return MEM_OFFSET (MEM) as a HOST_WIDE_INT, or 0 if we can't. */
396 static inline HOST_WIDE_INT
397 int_mem_offset (const_rtx mem
)
399 HOST_WIDE_INT offset
;
400 if (MEM_OFFSET_KNOWN_P (mem
) && MEM_OFFSET (mem
).is_constant (&offset
))
405 #if CHECKING_P && (GCC_VERSION >= 2007)
407 /* Access VAR's Ith part's offset, checking that it's not a one-part
409 #define VAR_PART_OFFSET(var, i) __extension__ \
410 (*({ variable *const __v = (var); \
411 gcc_checking_assert (!__v->onepart); \
412 &__v->var_part[(i)].aux.offset; }))
414 /* Access VAR's one-part auxiliary data, checking that it is a
415 one-part variable. */
416 #define VAR_LOC_1PAUX(var) __extension__ \
417 (*({ variable *const __v = (var); \
418 gcc_checking_assert (__v->onepart); \
419 &__v->var_part[0].aux.onepaux; }))
422 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
423 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
426 /* These are accessor macros for the one-part auxiliary data. When
427 convenient for users, they're guarded by tests that the data was
429 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
430 ? VAR_LOC_1PAUX (var)->backlinks \
432 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
433 ? &VAR_LOC_1PAUX (var)->backlinks \
435 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
436 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
437 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
438 ? &VAR_LOC_1PAUX (var)->deps \
443 typedef unsigned int dvuid
;
445 /* Return the uid of DV. */
448 dv_uid (decl_or_value dv
)
450 if (dv_is_value_p (dv
))
451 return CSELIB_VAL_PTR (dv_as_value (dv
))->uid
;
453 return DECL_UID (dv_as_decl (dv
));
456 /* Compute the hash from the uid. */
458 static inline hashval_t
459 dv_uid2hash (dvuid uid
)
464 /* The hash function for a mask table in a shared_htab chain. */
466 static inline hashval_t
467 dv_htab_hash (decl_or_value dv
)
469 return dv_uid2hash (dv_uid (dv
));
472 static void variable_htab_free (void *);
474 /* Variable hashtable helpers. */
476 struct variable_hasher
: pointer_hash
<variable
>
478 typedef void *compare_type
;
479 static inline hashval_t
hash (const variable
*);
480 static inline bool equal (const variable
*, const void *);
481 static inline void remove (variable
*);
484 /* The hash function for variable_htab, computes the hash value
485 from the declaration of variable X. */
488 variable_hasher::hash (const variable
*v
)
490 return dv_htab_hash (v
->dv
);
493 /* Compare the declaration of variable X with declaration Y. */
496 variable_hasher::equal (const variable
*v
, const void *y
)
498 decl_or_value dv
= CONST_CAST2 (decl_or_value
, const void *, y
);
500 return (dv_as_opaque (v
->dv
) == dv_as_opaque (dv
));
503 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
506 variable_hasher::remove (variable
*var
)
508 variable_htab_free (var
);
511 typedef hash_table
<variable_hasher
> variable_table_type
;
512 typedef variable_table_type::iterator variable_iterator_type
;
514 /* Structure for passing some other parameters to function
515 emit_note_insn_var_location. */
516 struct emit_note_data
518 /* The instruction which the note will be emitted before/after. */
521 /* Where the note will be emitted (before/after insn)? */
522 enum emit_note_where where
;
524 /* The variables and values active at this point. */
525 variable_table_type
*vars
;
528 /* Structure holding a refcounted hash table. If refcount > 1,
529 it must be first unshared before modified. */
532 /* Reference count. */
535 /* Actual hash table. */
536 variable_table_type
*htab
;
539 /* Structure holding the IN or OUT set for a basic block. */
542 /* Adjustment of stack offset. */
543 HOST_WIDE_INT stack_adjust
;
545 /* Attributes for registers (lists of attrs). */
546 attrs
*regs
[FIRST_PSEUDO_REGISTER
];
548 /* Variable locations. */
551 /* Vars that is being traversed. */
552 shared_hash
*traversed_vars
;
555 /* The structure (one for each basic block) containing the information
556 needed for variable tracking. */
557 struct variable_tracking_info
559 /* The vector of micro operations. */
560 vec
<micro_operation
> mos
;
562 /* The IN and OUT set for dataflow analysis. */
566 /* The permanent-in dataflow set for this block. This is used to
567 hold values for which we had to compute entry values. ??? This
568 should probably be dynamically allocated, to avoid using more
569 memory in non-debug builds. */
572 /* Has the block been visited in DFS? */
575 /* Has the block been flooded in VTA? */
580 /* Alloc pool for struct attrs_def. */
581 object_allocator
<attrs
> attrs_pool ("attrs pool");
583 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
585 static pool_allocator var_pool
586 ("variable_def pool", sizeof (variable
) +
587 (MAX_VAR_PARTS
- 1) * sizeof (((variable
*)NULL
)->var_part
[0]));
589 /* Alloc pool for struct variable_def with a single var_part entry. */
590 static pool_allocator valvar_pool
591 ("small variable_def pool", sizeof (variable
));
593 /* Alloc pool for struct location_chain. */
594 static object_allocator
<location_chain
> location_chain_pool
595 ("location_chain pool");
597 /* Alloc pool for struct shared_hash. */
598 static object_allocator
<shared_hash
> shared_hash_pool ("shared_hash pool");
600 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
601 object_allocator
<loc_exp_dep
> loc_exp_dep_pool ("loc_exp_dep pool");
603 /* Changed variables, notes will be emitted for them. */
604 static variable_table_type
*changed_variables
;
606 /* Shall notes be emitted? */
607 static bool emit_notes
;
609 /* Values whose dynamic location lists have gone empty, but whose
610 cselib location lists are still usable. Use this to hold the
611 current location, the backlinks, etc, during emit_notes. */
612 static variable_table_type
*dropped_values
;
614 /* Empty shared hashtable. */
615 static shared_hash
*empty_shared_hash
;
617 /* Scratch register bitmap used by cselib_expand_value_rtx. */
618 static bitmap scratch_regs
= NULL
;
620 #ifdef HAVE_window_save
621 struct GTY(()) parm_reg
{
627 /* Vector of windowed parameter registers, if any. */
628 static vec
<parm_reg
, va_gc
> *windowed_parm_regs
= NULL
;
631 /* Variable used to tell whether cselib_process_insn called our hook. */
632 static bool cselib_hook_called
;
634 /* Local function prototypes. */
635 static void stack_adjust_offset_pre_post (rtx
, HOST_WIDE_INT
*,
637 static void insn_stack_adjust_offset_pre_post (rtx_insn
*, HOST_WIDE_INT
*,
639 static bool vt_stack_adjustments (void);
641 static void init_attrs_list_set (attrs
**);
642 static void attrs_list_clear (attrs
**);
643 static attrs
*attrs_list_member (attrs
*, decl_or_value
, HOST_WIDE_INT
);
644 static void attrs_list_insert (attrs
**, decl_or_value
, HOST_WIDE_INT
, rtx
);
645 static void attrs_list_copy (attrs
**, attrs
*);
646 static void attrs_list_union (attrs
**, attrs
*);
648 static variable
**unshare_variable (dataflow_set
*set
, variable
**slot
,
649 variable
*var
, enum var_init_status
);
650 static void vars_copy (variable_table_type
*, variable_table_type
*);
651 static tree
var_debug_decl (tree
);
652 static void var_reg_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
653 static void var_reg_delete_and_set (dataflow_set
*, rtx
, bool,
654 enum var_init_status
, rtx
);
655 static void var_reg_delete (dataflow_set
*, rtx
, bool);
656 static void var_regno_delete (dataflow_set
*, int);
657 static void var_mem_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
658 static void var_mem_delete_and_set (dataflow_set
*, rtx
, bool,
659 enum var_init_status
, rtx
);
660 static void var_mem_delete (dataflow_set
*, rtx
, bool);
662 static void dataflow_set_init (dataflow_set
*);
663 static void dataflow_set_clear (dataflow_set
*);
664 static void dataflow_set_copy (dataflow_set
*, dataflow_set
*);
665 static int variable_union_info_cmp_pos (const void *, const void *);
666 static void dataflow_set_union (dataflow_set
*, dataflow_set
*);
667 static location_chain
*find_loc_in_1pdv (rtx
, variable
*,
668 variable_table_type
*);
669 static bool canon_value_cmp (rtx
, rtx
);
670 static int loc_cmp (rtx
, rtx
);
671 static bool variable_part_different_p (variable_part
*, variable_part
*);
672 static bool onepart_variable_different_p (variable
*, variable
*);
673 static bool variable_different_p (variable
*, variable
*);
674 static bool dataflow_set_different (dataflow_set
*, dataflow_set
*);
675 static void dataflow_set_destroy (dataflow_set
*);
677 static bool track_expr_p (tree
, bool);
678 static void add_uses_1 (rtx
*, void *);
679 static void add_stores (rtx
, const_rtx
, void *);
680 static bool compute_bb_dataflow (basic_block
);
681 static bool vt_find_locations (void);
683 static void dump_attrs_list (attrs
*);
684 static void dump_var (variable
*);
685 static void dump_vars (variable_table_type
*);
686 static void dump_dataflow_set (dataflow_set
*);
687 static void dump_dataflow_sets (void);
689 static void set_dv_changed (decl_or_value
, bool);
690 static void variable_was_changed (variable
*, dataflow_set
*);
691 static variable
**set_slot_part (dataflow_set
*, rtx
, variable
**,
692 decl_or_value
, HOST_WIDE_INT
,
693 enum var_init_status
, rtx
);
694 static void set_variable_part (dataflow_set
*, rtx
,
695 decl_or_value
, HOST_WIDE_INT
,
696 enum var_init_status
, rtx
, enum insert_option
);
697 static variable
**clobber_slot_part (dataflow_set
*, rtx
,
698 variable
**, HOST_WIDE_INT
, rtx
);
699 static void clobber_variable_part (dataflow_set
*, rtx
,
700 decl_or_value
, HOST_WIDE_INT
, rtx
);
701 static variable
**delete_slot_part (dataflow_set
*, rtx
, variable
**,
703 static void delete_variable_part (dataflow_set
*, rtx
,
704 decl_or_value
, HOST_WIDE_INT
);
705 static void emit_notes_in_bb (basic_block
, dataflow_set
*);
706 static void vt_emit_notes (void);
708 static void vt_add_function_parameters (void);
709 static bool vt_initialize (void);
710 static void vt_finalize (void);
712 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
715 stack_adjust_offset_pre_post_cb (rtx
, rtx op
, rtx dest
, rtx src
, rtx srcoff
,
718 if (dest
!= stack_pointer_rtx
)
721 switch (GET_CODE (op
))
725 ((HOST_WIDE_INT
*)arg
)[0] -= INTVAL (srcoff
);
729 ((HOST_WIDE_INT
*)arg
)[1] -= INTVAL (srcoff
);
733 /* We handle only adjustments by constant amount. */
734 gcc_assert (GET_CODE (src
) == PLUS
735 && CONST_INT_P (XEXP (src
, 1))
736 && XEXP (src
, 0) == stack_pointer_rtx
);
737 ((HOST_WIDE_INT
*)arg
)[GET_CODE (op
) == POST_MODIFY
]
738 -= INTVAL (XEXP (src
, 1));
745 /* Given a SET, calculate the amount of stack adjustment it contains
746 PRE- and POST-modifying stack pointer.
747 This function is similar to stack_adjust_offset. */
750 stack_adjust_offset_pre_post (rtx pattern
, HOST_WIDE_INT
*pre
,
753 rtx src
= SET_SRC (pattern
);
754 rtx dest
= SET_DEST (pattern
);
757 if (dest
== stack_pointer_rtx
)
759 /* (set (reg sp) (plus (reg sp) (const_int))) */
760 code
= GET_CODE (src
);
761 if (! (code
== PLUS
|| code
== MINUS
)
762 || XEXP (src
, 0) != stack_pointer_rtx
763 || !CONST_INT_P (XEXP (src
, 1)))
767 *post
+= INTVAL (XEXP (src
, 1));
769 *post
-= INTVAL (XEXP (src
, 1));
772 HOST_WIDE_INT res
[2] = { 0, 0 };
773 for_each_inc_dec (pattern
, stack_adjust_offset_pre_post_cb
, res
);
778 /* Given an INSN, calculate the amount of stack adjustment it contains
779 PRE- and POST-modifying stack pointer. */
782 insn_stack_adjust_offset_pre_post (rtx_insn
*insn
, HOST_WIDE_INT
*pre
,
790 pattern
= PATTERN (insn
);
791 if (RTX_FRAME_RELATED_P (insn
))
793 rtx expr
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
795 pattern
= XEXP (expr
, 0);
798 if (GET_CODE (pattern
) == SET
)
799 stack_adjust_offset_pre_post (pattern
, pre
, post
);
800 else if (GET_CODE (pattern
) == PARALLEL
801 || GET_CODE (pattern
) == SEQUENCE
)
805 /* There may be stack adjustments inside compound insns. Search
807 for ( i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
808 if (GET_CODE (XVECEXP (pattern
, 0, i
)) == SET
)
809 stack_adjust_offset_pre_post (XVECEXP (pattern
, 0, i
), pre
, post
);
813 /* Compute stack adjustments for all blocks by traversing DFS tree.
814 Return true when the adjustments on all incoming edges are consistent.
815 Heavily borrowed from pre_and_rev_post_order_compute. */
818 vt_stack_adjustments (void)
820 edge_iterator
*stack
;
823 /* Initialize entry block. */
824 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->visited
= true;
825 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->in
.stack_adjust
826 = INCOMING_FRAME_SP_OFFSET
;
827 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->out
.stack_adjust
828 = INCOMING_FRAME_SP_OFFSET
;
830 /* Allocate stack for back-tracking up CFG. */
831 stack
= XNEWVEC (edge_iterator
, n_basic_blocks_for_fn (cfun
) + 1);
834 /* Push the first edge on to the stack. */
835 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
);
843 /* Look at the edge on the top of the stack. */
845 src
= ei_edge (ei
)->src
;
846 dest
= ei_edge (ei
)->dest
;
848 /* Check if the edge destination has been visited yet. */
849 if (!VTI (dest
)->visited
)
852 HOST_WIDE_INT pre
, post
, offset
;
853 VTI (dest
)->visited
= true;
854 VTI (dest
)->in
.stack_adjust
= offset
= VTI (src
)->out
.stack_adjust
;
856 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
857 for (insn
= BB_HEAD (dest
);
858 insn
!= NEXT_INSN (BB_END (dest
));
859 insn
= NEXT_INSN (insn
))
862 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
863 offset
+= pre
+ post
;
866 VTI (dest
)->out
.stack_adjust
= offset
;
868 if (EDGE_COUNT (dest
->succs
) > 0)
869 /* Since the DEST node has been visited for the first
870 time, check its successors. */
871 stack
[sp
++] = ei_start (dest
->succs
);
875 /* We can end up with different stack adjustments for the exit block
876 of a shrink-wrapped function if stack_adjust_offset_pre_post
877 doesn't understand the rtx pattern used to restore the stack
878 pointer in the epilogue. For example, on s390(x), the stack
879 pointer is often restored via a load-multiple instruction
880 and so no stack_adjust offset is recorded for it. This means
881 that the stack offset at the end of the epilogue block is the
882 same as the offset before the epilogue, whereas other paths
883 to the exit block will have the correct stack_adjust.
885 It is safe to ignore these differences because (a) we never
886 use the stack_adjust for the exit block in this pass and
887 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
888 function are correct.
890 We must check whether the adjustments on other edges are
892 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
893 && VTI (dest
)->in
.stack_adjust
!= VTI (src
)->out
.stack_adjust
)
899 if (! ei_one_before_end_p (ei
))
900 /* Go to the next edge. */
901 ei_next (&stack
[sp
- 1]);
903 /* Return to previous level if there are no more edges. */
912 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
913 hard_frame_pointer_rtx is being mapped to it and offset for it. */
914 static rtx cfa_base_rtx
;
915 static HOST_WIDE_INT cfa_base_offset
;
917 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
918 or hard_frame_pointer_rtx. */
921 compute_cfa_pointer (poly_int64 adjustment
)
923 return plus_constant (Pmode
, cfa_base_rtx
, adjustment
+ cfa_base_offset
);
926 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
927 or -1 if the replacement shouldn't be done. */
928 static poly_int64 hard_frame_pointer_adjustment
= -1;
930 /* Data for adjust_mems callback. */
932 struct adjust_mem_data
935 machine_mode mem_mode
;
936 HOST_WIDE_INT stack_adjust
;
937 auto_vec
<rtx
> side_effects
;
940 /* Helper for adjust_mems. Return true if X is suitable for
941 transformation of wider mode arithmetics to narrower mode. */
944 use_narrower_mode_test (rtx x
, const_rtx subreg
)
946 subrtx_var_iterator::array_type array
;
947 FOR_EACH_SUBRTX_VAR (iter
, array
, x
, NONCONST
)
951 iter
.skip_subrtxes ();
953 switch (GET_CODE (x
))
956 if (cselib_lookup (x
, GET_MODE (SUBREG_REG (subreg
)), 0, VOIDmode
))
958 if (!validate_subreg (GET_MODE (subreg
), GET_MODE (x
), x
,
959 subreg_lowpart_offset (GET_MODE (subreg
),
968 if (GET_MODE (XEXP (x
, 1)) != VOIDmode
)
970 enum machine_mode mode
= GET_MODE (subreg
);
971 rtx op1
= XEXP (x
, 1);
972 enum machine_mode op1_mode
= GET_MODE (op1
);
973 if (GET_MODE_PRECISION (as_a
<scalar_int_mode
> (mode
))
974 < GET_MODE_PRECISION (as_a
<scalar_int_mode
> (op1_mode
)))
976 poly_uint64 byte
= subreg_lowpart_offset (mode
, op1_mode
);
977 if (GET_CODE (op1
) == SUBREG
|| GET_CODE (op1
) == CONCAT
)
979 if (!simplify_subreg (mode
, op1
, op1_mode
, byte
))
982 else if (!validate_subreg (mode
, op1_mode
, op1
, byte
))
986 iter
.substitute (XEXP (x
, 0));
995 /* Transform X into narrower mode MODE from wider mode WMODE. */
998 use_narrower_mode (rtx x
, scalar_int_mode mode
, scalar_int_mode wmode
)
1002 return lowpart_subreg (mode
, x
, wmode
);
1003 switch (GET_CODE (x
))
1006 return lowpart_subreg (mode
, x
, wmode
);
1010 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
1011 op1
= use_narrower_mode (XEXP (x
, 1), mode
, wmode
);
1012 return simplify_gen_binary (GET_CODE (x
), mode
, op0
, op1
);
1014 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
1016 /* Ensure shift amount is not wider than mode. */
1017 if (GET_MODE (op1
) == VOIDmode
)
1018 op1
= lowpart_subreg (mode
, op1
, wmode
);
1019 else if (GET_MODE_PRECISION (mode
)
1020 < GET_MODE_PRECISION (as_a
<scalar_int_mode
> (GET_MODE (op1
))))
1021 op1
= lowpart_subreg (mode
, op1
, GET_MODE (op1
));
1022 return simplify_gen_binary (ASHIFT
, mode
, op0
, op1
);
1028 /* Helper function for adjusting used MEMs. */
1031 adjust_mems (rtx loc
, const_rtx old_rtx
, void *data
)
1033 struct adjust_mem_data
*amd
= (struct adjust_mem_data
*) data
;
1034 rtx mem
, addr
= loc
, tem
;
1035 machine_mode mem_mode_save
;
1037 scalar_int_mode tem_mode
, tem_subreg_mode
;
1039 switch (GET_CODE (loc
))
1042 /* Don't do any sp or fp replacements outside of MEM addresses
1044 if (amd
->mem_mode
== VOIDmode
&& amd
->store
)
1046 if (loc
== stack_pointer_rtx
1047 && !frame_pointer_needed
1049 return compute_cfa_pointer (amd
->stack_adjust
);
1050 else if (loc
== hard_frame_pointer_rtx
1051 && frame_pointer_needed
1052 && maybe_ne (hard_frame_pointer_adjustment
, -1)
1054 return compute_cfa_pointer (hard_frame_pointer_adjustment
);
1055 gcc_checking_assert (loc
!= virtual_incoming_args_rtx
);
1061 mem
= targetm
.delegitimize_address (mem
);
1062 if (mem
!= loc
&& !MEM_P (mem
))
1063 return simplify_replace_fn_rtx (mem
, old_rtx
, adjust_mems
, data
);
1066 addr
= XEXP (mem
, 0);
1067 mem_mode_save
= amd
->mem_mode
;
1068 amd
->mem_mode
= GET_MODE (mem
);
1069 store_save
= amd
->store
;
1071 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1072 amd
->store
= store_save
;
1073 amd
->mem_mode
= mem_mode_save
;
1075 addr
= targetm
.delegitimize_address (addr
);
1076 if (addr
!= XEXP (mem
, 0))
1077 mem
= replace_equiv_address_nv (mem
, addr
);
1079 mem
= avoid_constant_pool_reference (mem
);
1083 size
= GET_MODE_SIZE (amd
->mem_mode
);
1084 addr
= plus_constant (GET_MODE (loc
), XEXP (loc
, 0),
1085 GET_CODE (loc
) == PRE_INC
? size
: -size
);
1090 addr
= XEXP (loc
, 0);
1091 gcc_assert (amd
->mem_mode
!= VOIDmode
&& amd
->mem_mode
!= BLKmode
);
1092 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1093 size
= GET_MODE_SIZE (amd
->mem_mode
);
1094 tem
= plus_constant (GET_MODE (loc
), XEXP (loc
, 0),
1095 (GET_CODE (loc
) == PRE_INC
1096 || GET_CODE (loc
) == POST_INC
) ? size
: -size
);
1097 store_save
= amd
->store
;
1099 tem
= simplify_replace_fn_rtx (tem
, old_rtx
, adjust_mems
, data
);
1100 amd
->store
= store_save
;
1101 amd
->side_effects
.safe_push (gen_rtx_SET (XEXP (loc
, 0), tem
));
1104 addr
= XEXP (loc
, 1);
1108 addr
= XEXP (loc
, 0);
1109 gcc_assert (amd
->mem_mode
!= VOIDmode
);
1110 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1111 store_save
= amd
->store
;
1113 tem
= simplify_replace_fn_rtx (XEXP (loc
, 1), old_rtx
,
1115 amd
->store
= store_save
;
1116 amd
->side_effects
.safe_push (gen_rtx_SET (XEXP (loc
, 0), tem
));
1119 /* First try without delegitimization of whole MEMs and
1120 avoid_constant_pool_reference, which is more likely to succeed. */
1121 store_save
= amd
->store
;
1123 addr
= simplify_replace_fn_rtx (SUBREG_REG (loc
), old_rtx
, adjust_mems
,
1125 amd
->store
= store_save
;
1126 mem
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1127 if (mem
== SUBREG_REG (loc
))
1132 tem
= simplify_gen_subreg (GET_MODE (loc
), mem
,
1133 GET_MODE (SUBREG_REG (loc
)),
1137 tem
= simplify_gen_subreg (GET_MODE (loc
), addr
,
1138 GET_MODE (SUBREG_REG (loc
)),
1140 if (tem
== NULL_RTX
)
1141 tem
= gen_rtx_raw_SUBREG (GET_MODE (loc
), addr
, SUBREG_BYTE (loc
));
1143 if (MAY_HAVE_DEBUG_BIND_INSNS
1144 && GET_CODE (tem
) == SUBREG
1145 && (GET_CODE (SUBREG_REG (tem
)) == PLUS
1146 || GET_CODE (SUBREG_REG (tem
)) == MINUS
1147 || GET_CODE (SUBREG_REG (tem
)) == MULT
1148 || GET_CODE (SUBREG_REG (tem
)) == ASHIFT
)
1149 && is_a
<scalar_int_mode
> (GET_MODE (tem
), &tem_mode
)
1150 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (tem
)),
1152 && (GET_MODE_PRECISION (tem_mode
)
1153 < GET_MODE_PRECISION (tem_subreg_mode
))
1154 && subreg_lowpart_p (tem
)
1155 && use_narrower_mode_test (SUBREG_REG (tem
), tem
))
1156 return use_narrower_mode (SUBREG_REG (tem
), tem_mode
, tem_subreg_mode
);
1159 /* Don't do any replacements in second and following
1160 ASM_OPERANDS of inline-asm with multiple sets.
1161 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1162 and ASM_OPERANDS_LABEL_VEC need to be equal between
1163 all the ASM_OPERANDs in the insn and adjust_insn will
1165 if (ASM_OPERANDS_OUTPUT_IDX (loc
) != 0)
1174 /* Helper function for replacement of uses. */
1177 adjust_mem_uses (rtx
*x
, void *data
)
1179 rtx new_x
= simplify_replace_fn_rtx (*x
, NULL_RTX
, adjust_mems
, data
);
1181 validate_change (NULL_RTX
, x
, new_x
, true);
1184 /* Helper function for replacement of stores. */
1187 adjust_mem_stores (rtx loc
, const_rtx expr
, void *data
)
1191 rtx new_dest
= simplify_replace_fn_rtx (SET_DEST (expr
), NULL_RTX
,
1193 if (new_dest
!= SET_DEST (expr
))
1195 rtx xexpr
= CONST_CAST_RTX (expr
);
1196 validate_change (NULL_RTX
, &SET_DEST (xexpr
), new_dest
, true);
1201 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1202 replace them with their value in the insn and add the side-effects
1203 as other sets to the insn. */
1206 adjust_insn (basic_block bb
, rtx_insn
*insn
)
1210 #ifdef HAVE_window_save
1211 /* If the target machine has an explicit window save instruction, the
1212 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1213 if (RTX_FRAME_RELATED_P (insn
)
1214 && find_reg_note (insn
, REG_CFA_WINDOW_SAVE
, NULL_RTX
))
1216 unsigned int i
, nregs
= vec_safe_length (windowed_parm_regs
);
1217 rtx rtl
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (nregs
* 2));
1220 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs
, i
, p
)
1222 XVECEXP (rtl
, 0, i
* 2)
1223 = gen_rtx_SET (p
->incoming
, p
->outgoing
);
1224 /* Do not clobber the attached DECL, but only the REG. */
1225 XVECEXP (rtl
, 0, i
* 2 + 1)
1226 = gen_rtx_CLOBBER (GET_MODE (p
->outgoing
),
1227 gen_raw_REG (GET_MODE (p
->outgoing
),
1228 REGNO (p
->outgoing
)));
1231 validate_change (NULL_RTX
, &PATTERN (insn
), rtl
, true);
1236 adjust_mem_data amd
;
1237 amd
.mem_mode
= VOIDmode
;
1238 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
1241 note_stores (PATTERN (insn
), adjust_mem_stores
, &amd
);
1244 if (GET_CODE (PATTERN (insn
)) == PARALLEL
1245 && asm_noperands (PATTERN (insn
)) > 0
1246 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1251 /* inline-asm with multiple sets is tiny bit more complicated,
1252 because the 3 vectors in ASM_OPERANDS need to be shared between
1253 all ASM_OPERANDS in the instruction. adjust_mems will
1254 not touch ASM_OPERANDS other than the first one, asm_noperands
1255 test above needs to be called before that (otherwise it would fail)
1256 and afterwards this code fixes it up. */
1257 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
1258 body
= PATTERN (insn
);
1259 set0
= XVECEXP (body
, 0, 0);
1260 gcc_checking_assert (GET_CODE (set0
) == SET
1261 && GET_CODE (SET_SRC (set0
)) == ASM_OPERANDS
1262 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0
)) == 0);
1263 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
1264 if (GET_CODE (XVECEXP (body
, 0, i
)) != SET
)
1268 set
= XVECEXP (body
, 0, i
);
1269 gcc_checking_assert (GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
1270 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set
))
1272 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set
))
1273 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
))
1274 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set
))
1275 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
))
1276 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set
))
1277 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
)))
1279 rtx newsrc
= shallow_copy_rtx (SET_SRC (set
));
1280 ASM_OPERANDS_INPUT_VEC (newsrc
)
1281 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
));
1282 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc
)
1283 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
));
1284 ASM_OPERANDS_LABEL_VEC (newsrc
)
1285 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
));
1286 validate_change (NULL_RTX
, &SET_SRC (set
), newsrc
, true);
1291 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
1293 /* For read-only MEMs containing some constant, prefer those
1295 set
= single_set (insn
);
1296 if (set
&& MEM_P (SET_SRC (set
)) && MEM_READONLY_P (SET_SRC (set
)))
1298 rtx note
= find_reg_equal_equiv_note (insn
);
1300 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1301 validate_change (NULL_RTX
, &SET_SRC (set
), XEXP (note
, 0), true);
1304 if (!amd
.side_effects
.is_empty ())
1309 pat
= &PATTERN (insn
);
1310 if (GET_CODE (*pat
) == COND_EXEC
)
1311 pat
= &COND_EXEC_CODE (*pat
);
1312 if (GET_CODE (*pat
) == PARALLEL
)
1313 oldn
= XVECLEN (*pat
, 0);
1316 unsigned int newn
= amd
.side_effects
.length ();
1317 new_pat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (oldn
+ newn
));
1318 if (GET_CODE (*pat
) == PARALLEL
)
1319 for (i
= 0; i
< oldn
; i
++)
1320 XVECEXP (new_pat
, 0, i
) = XVECEXP (*pat
, 0, i
);
1322 XVECEXP (new_pat
, 0, 0) = *pat
;
1326 FOR_EACH_VEC_ELT_REVERSE (amd
.side_effects
, j
, effect
)
1327 XVECEXP (new_pat
, 0, j
+ oldn
) = effect
;
1328 validate_change (NULL_RTX
, pat
, new_pat
, true);
1332 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1334 dv_as_rtx (decl_or_value dv
)
1338 if (dv_is_value_p (dv
))
1339 return dv_as_value (dv
);
1341 decl
= dv_as_decl (dv
);
1343 gcc_checking_assert (TREE_CODE (decl
) == DEBUG_EXPR_DECL
);
1344 return DECL_RTL_KNOWN_SET (decl
);
1347 /* Return nonzero if a decl_or_value must not have more than one
1348 variable part. The returned value discriminates among various
1349 kinds of one-part DVs ccording to enum onepart_enum. */
1350 static inline onepart_enum
1351 dv_onepart_p (decl_or_value dv
)
1355 if (!MAY_HAVE_DEBUG_BIND_INSNS
)
1358 if (dv_is_value_p (dv
))
1359 return ONEPART_VALUE
;
1361 decl
= dv_as_decl (dv
);
1363 if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
1364 return ONEPART_DEXPR
;
1366 if (target_for_debug_bind (decl
) != NULL_TREE
)
1367 return ONEPART_VDECL
;
1372 /* Return the variable pool to be used for a dv of type ONEPART. */
1373 static inline pool_allocator
&
1374 onepart_pool (onepart_enum onepart
)
1376 return onepart
? valvar_pool
: var_pool
;
1379 /* Allocate a variable_def from the corresponding variable pool. */
1380 static inline variable
*
1381 onepart_pool_allocate (onepart_enum onepart
)
1383 return (variable
*) onepart_pool (onepart
).allocate ();
1386 /* Build a decl_or_value out of a decl. */
1387 static inline decl_or_value
1388 dv_from_decl (tree decl
)
1392 gcc_checking_assert (dv_is_decl_p (dv
));
1396 /* Build a decl_or_value out of a value. */
1397 static inline decl_or_value
1398 dv_from_value (rtx value
)
1402 gcc_checking_assert (dv_is_value_p (dv
));
1406 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1407 static inline decl_or_value
1412 switch (GET_CODE (x
))
1415 dv
= dv_from_decl (DEBUG_EXPR_TREE_DECL (x
));
1416 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x
)) == x
);
1420 dv
= dv_from_value (x
);
1430 extern void debug_dv (decl_or_value dv
);
1433 debug_dv (decl_or_value dv
)
1435 if (dv_is_value_p (dv
))
1436 debug_rtx (dv_as_value (dv
));
1438 debug_generic_stmt (dv_as_decl (dv
));
1441 static void loc_exp_dep_clear (variable
*var
);
1443 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1446 variable_htab_free (void *elem
)
1449 variable
*var
= (variable
*) elem
;
1450 location_chain
*node
, *next
;
1452 gcc_checking_assert (var
->refcount
> 0);
1455 if (var
->refcount
> 0)
1458 for (i
= 0; i
< var
->n_var_parts
; i
++)
1460 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= next
)
1465 var
->var_part
[i
].loc_chain
= NULL
;
1467 if (var
->onepart
&& VAR_LOC_1PAUX (var
))
1469 loc_exp_dep_clear (var
);
1470 if (VAR_LOC_DEP_LST (var
))
1471 VAR_LOC_DEP_LST (var
)->pprev
= NULL
;
1472 XDELETE (VAR_LOC_1PAUX (var
));
1473 /* These may be reused across functions, so reset
1475 if (var
->onepart
== ONEPART_DEXPR
)
1476 set_dv_changed (var
->dv
, true);
1478 onepart_pool (var
->onepart
).remove (var
);
1481 /* Initialize the set (array) SET of attrs to empty lists. */
1484 init_attrs_list_set (attrs
**set
)
1488 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1492 /* Make the list *LISTP empty. */
1495 attrs_list_clear (attrs
**listp
)
1499 for (list
= *listp
; list
; list
= next
)
1507 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1510 attrs_list_member (attrs
*list
, decl_or_value dv
, HOST_WIDE_INT offset
)
1512 for (; list
; list
= list
->next
)
1513 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
) && list
->offset
== offset
)
1518 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1521 attrs_list_insert (attrs
**listp
, decl_or_value dv
,
1522 HOST_WIDE_INT offset
, rtx loc
)
1524 attrs
*list
= new attrs
;
1527 list
->offset
= offset
;
1528 list
->next
= *listp
;
1532 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1535 attrs_list_copy (attrs
**dstp
, attrs
*src
)
1537 attrs_list_clear (dstp
);
1538 for (; src
; src
= src
->next
)
1540 attrs
*n
= new attrs
;
1543 n
->offset
= src
->offset
;
1549 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1552 attrs_list_union (attrs
**dstp
, attrs
*src
)
1554 for (; src
; src
= src
->next
)
1556 if (!attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1557 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1561 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1565 attrs_list_mpdv_union (attrs
**dstp
, attrs
*src
, attrs
*src2
)
1567 gcc_assert (!*dstp
);
1568 for (; src
; src
= src
->next
)
1570 if (!dv_onepart_p (src
->dv
))
1571 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1573 for (src
= src2
; src
; src
= src
->next
)
1575 if (!dv_onepart_p (src
->dv
)
1576 && !attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1577 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1581 /* Shared hashtable support. */
1583 /* Return true if VARS is shared. */
1586 shared_hash_shared (shared_hash
*vars
)
1588 return vars
->refcount
> 1;
1591 /* Return the hash table for VARS. */
1593 static inline variable_table_type
*
1594 shared_hash_htab (shared_hash
*vars
)
1599 /* Return true if VAR is shared, or maybe because VARS is shared. */
1602 shared_var_p (variable
*var
, shared_hash
*vars
)
1604 /* Don't count an entry in the changed_variables table as a duplicate. */
1605 return ((var
->refcount
> 1 + (int) var
->in_changed_variables
)
1606 || shared_hash_shared (vars
));
1609 /* Copy variables into a new hash table. */
1611 static shared_hash
*
1612 shared_hash_unshare (shared_hash
*vars
)
1614 shared_hash
*new_vars
= new shared_hash
;
1615 gcc_assert (vars
->refcount
> 1);
1616 new_vars
->refcount
= 1;
1617 new_vars
->htab
= new variable_table_type (vars
->htab
->elements () + 3);
1618 vars_copy (new_vars
->htab
, vars
->htab
);
1623 /* Increment reference counter on VARS and return it. */
1625 static inline shared_hash
*
1626 shared_hash_copy (shared_hash
*vars
)
1632 /* Decrement reference counter and destroy hash table if not shared
1636 shared_hash_destroy (shared_hash
*vars
)
1638 gcc_checking_assert (vars
->refcount
> 0);
1639 if (--vars
->refcount
== 0)
1646 /* Unshare *PVARS if shared and return slot for DV. If INS is
1647 INSERT, insert it if not already present. */
1649 static inline variable
**
1650 shared_hash_find_slot_unshare_1 (shared_hash
**pvars
, decl_or_value dv
,
1651 hashval_t dvhash
, enum insert_option ins
)
1653 if (shared_hash_shared (*pvars
))
1654 *pvars
= shared_hash_unshare (*pvars
);
1655 return shared_hash_htab (*pvars
)->find_slot_with_hash (dv
, dvhash
, ins
);
1658 static inline variable
**
1659 shared_hash_find_slot_unshare (shared_hash
**pvars
, decl_or_value dv
,
1660 enum insert_option ins
)
1662 return shared_hash_find_slot_unshare_1 (pvars
, dv
, dv_htab_hash (dv
), ins
);
1665 /* Return slot for DV, if it is already present in the hash table.
1666 If it is not present, insert it only VARS is not shared, otherwise
1669 static inline variable
**
1670 shared_hash_find_slot_1 (shared_hash
*vars
, decl_or_value dv
, hashval_t dvhash
)
1672 return shared_hash_htab (vars
)->find_slot_with_hash (dv
, dvhash
,
1673 shared_hash_shared (vars
)
1674 ? NO_INSERT
: INSERT
);
1677 static inline variable
**
1678 shared_hash_find_slot (shared_hash
*vars
, decl_or_value dv
)
1680 return shared_hash_find_slot_1 (vars
, dv
, dv_htab_hash (dv
));
1683 /* Return slot for DV only if it is already present in the hash table. */
1685 static inline variable
**
1686 shared_hash_find_slot_noinsert_1 (shared_hash
*vars
, decl_or_value dv
,
1689 return shared_hash_htab (vars
)->find_slot_with_hash (dv
, dvhash
, NO_INSERT
);
1692 static inline variable
**
1693 shared_hash_find_slot_noinsert (shared_hash
*vars
, decl_or_value dv
)
1695 return shared_hash_find_slot_noinsert_1 (vars
, dv
, dv_htab_hash (dv
));
1698 /* Return variable for DV or NULL if not already present in the hash
1701 static inline variable
*
1702 shared_hash_find_1 (shared_hash
*vars
, decl_or_value dv
, hashval_t dvhash
)
1704 return shared_hash_htab (vars
)->find_with_hash (dv
, dvhash
);
1707 static inline variable
*
1708 shared_hash_find (shared_hash
*vars
, decl_or_value dv
)
1710 return shared_hash_find_1 (vars
, dv
, dv_htab_hash (dv
));
1713 /* Return true if TVAL is better than CVAL as a canonival value. We
1714 choose lowest-numbered VALUEs, using the RTX address as a
1715 tie-breaker. The idea is to arrange them into a star topology,
1716 such that all of them are at most one step away from the canonical
1717 value, and the canonical value has backlinks to all of them, in
1718 addition to all the actual locations. We don't enforce this
1719 topology throughout the entire dataflow analysis, though.
1723 canon_value_cmp (rtx tval
, rtx cval
)
1726 || CSELIB_VAL_PTR (tval
)->uid
< CSELIB_VAL_PTR (cval
)->uid
;
1729 static bool dst_can_be_shared
;
1731 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1734 unshare_variable (dataflow_set
*set
, variable
**slot
, variable
*var
,
1735 enum var_init_status initialized
)
1740 new_var
= onepart_pool_allocate (var
->onepart
);
1741 new_var
->dv
= var
->dv
;
1742 new_var
->refcount
= 1;
1744 new_var
->n_var_parts
= var
->n_var_parts
;
1745 new_var
->onepart
= var
->onepart
;
1746 new_var
->in_changed_variables
= false;
1748 if (! flag_var_tracking_uninit
)
1749 initialized
= VAR_INIT_STATUS_INITIALIZED
;
1751 for (i
= 0; i
< var
->n_var_parts
; i
++)
1753 location_chain
*node
;
1754 location_chain
**nextp
;
1756 if (i
== 0 && var
->onepart
)
1758 /* One-part auxiliary data is only used while emitting
1759 notes, so propagate it to the new variable in the active
1760 dataflow set. If we're not emitting notes, this will be
1762 gcc_checking_assert (!VAR_LOC_1PAUX (var
) || emit_notes
);
1763 VAR_LOC_1PAUX (new_var
) = VAR_LOC_1PAUX (var
);
1764 VAR_LOC_1PAUX (var
) = NULL
;
1767 VAR_PART_OFFSET (new_var
, i
) = VAR_PART_OFFSET (var
, i
);
1768 nextp
= &new_var
->var_part
[i
].loc_chain
;
1769 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
1771 location_chain
*new_lc
;
1773 new_lc
= new location_chain
;
1774 new_lc
->next
= NULL
;
1775 if (node
->init
> initialized
)
1776 new_lc
->init
= node
->init
;
1778 new_lc
->init
= initialized
;
1779 if (node
->set_src
&& !(MEM_P (node
->set_src
)))
1780 new_lc
->set_src
= node
->set_src
;
1782 new_lc
->set_src
= NULL
;
1783 new_lc
->loc
= node
->loc
;
1786 nextp
= &new_lc
->next
;
1789 new_var
->var_part
[i
].cur_loc
= var
->var_part
[i
].cur_loc
;
1792 dst_can_be_shared
= false;
1793 if (shared_hash_shared (set
->vars
))
1794 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
, NO_INSERT
);
1795 else if (set
->traversed_vars
&& set
->vars
!= set
->traversed_vars
)
1796 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
1798 if (var
->in_changed_variables
)
1801 = changed_variables
->find_slot_with_hash (var
->dv
,
1802 dv_htab_hash (var
->dv
),
1804 gcc_assert (*cslot
== (void *) var
);
1805 var
->in_changed_variables
= false;
1806 variable_htab_free (var
);
1808 new_var
->in_changed_variables
= true;
1813 /* Copy all variables from hash table SRC to hash table DST. */
1816 vars_copy (variable_table_type
*dst
, variable_table_type
*src
)
1818 variable_iterator_type hi
;
1821 FOR_EACH_HASH_TABLE_ELEMENT (*src
, var
, variable
, hi
)
1825 dstp
= dst
->find_slot_with_hash (var
->dv
, dv_htab_hash (var
->dv
),
1831 /* Map a decl to its main debug decl. */
1834 var_debug_decl (tree decl
)
1836 if (decl
&& VAR_P (decl
) && DECL_HAS_DEBUG_EXPR_P (decl
))
1838 tree debugdecl
= DECL_DEBUG_EXPR (decl
);
1839 if (DECL_P (debugdecl
))
1846 /* Set the register LOC to contain DV, OFFSET. */
1849 var_reg_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1850 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
1851 enum insert_option iopt
)
1854 bool decl_p
= dv_is_decl_p (dv
);
1857 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
1859 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
1860 if (dv_as_opaque (node
->dv
) == dv_as_opaque (dv
)
1861 && node
->offset
== offset
)
1864 attrs_list_insert (&set
->regs
[REGNO (loc
)], dv
, offset
, loc
);
1865 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
1868 /* Return true if we should track a location that is OFFSET bytes from
1869 a variable. Store the constant offset in *OFFSET_OUT if so. */
1872 track_offset_p (poly_int64 offset
, HOST_WIDE_INT
*offset_out
)
1874 HOST_WIDE_INT const_offset
;
1875 if (!offset
.is_constant (&const_offset
)
1876 || !IN_RANGE (const_offset
, 0, MAX_VAR_PARTS
- 1))
1878 *offset_out
= const_offset
;
1882 /* Return the offset of a register that track_offset_p says we
1885 static HOST_WIDE_INT
1886 get_tracked_reg_offset (rtx loc
)
1888 HOST_WIDE_INT offset
;
1889 if (!track_offset_p (REG_OFFSET (loc
), &offset
))
1894 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1897 var_reg_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1900 tree decl
= REG_EXPR (loc
);
1901 HOST_WIDE_INT offset
= get_tracked_reg_offset (loc
);
1903 var_reg_decl_set (set
, loc
, initialized
,
1904 dv_from_decl (decl
), offset
, set_src
, INSERT
);
1907 static enum var_init_status
1908 get_init_value (dataflow_set
*set
, rtx loc
, decl_or_value dv
)
1912 enum var_init_status ret_val
= VAR_INIT_STATUS_UNKNOWN
;
1914 if (! flag_var_tracking_uninit
)
1915 return VAR_INIT_STATUS_INITIALIZED
;
1917 var
= shared_hash_find (set
->vars
, dv
);
1920 for (i
= 0; i
< var
->n_var_parts
&& ret_val
== VAR_INIT_STATUS_UNKNOWN
; i
++)
1922 location_chain
*nextp
;
1923 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
; nextp
= nextp
->next
)
1924 if (rtx_equal_p (nextp
->loc
, loc
))
1926 ret_val
= nextp
->init
;
1935 /* Delete current content of register LOC in dataflow set SET and set
1936 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1937 MODIFY is true, any other live copies of the same variable part are
1938 also deleted from the dataflow set, otherwise the variable part is
1939 assumed to be copied from another location holding the same
1943 var_reg_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
1944 enum var_init_status initialized
, rtx set_src
)
1946 tree decl
= REG_EXPR (loc
);
1947 HOST_WIDE_INT offset
= get_tracked_reg_offset (loc
);
1951 decl
= var_debug_decl (decl
);
1953 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
1954 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
1956 nextp
= &set
->regs
[REGNO (loc
)];
1957 for (node
= *nextp
; node
; node
= next
)
1960 if (dv_as_opaque (node
->dv
) != decl
|| node
->offset
!= offset
)
1962 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1969 nextp
= &node
->next
;
1973 clobber_variable_part (set
, loc
, dv_from_decl (decl
), offset
, set_src
);
1974 var_reg_set (set
, loc
, initialized
, set_src
);
1977 /* Delete the association of register LOC in dataflow set SET with any
1978 variables that aren't onepart. If CLOBBER is true, also delete any
1979 other live copies of the same variable part, and delete the
1980 association with onepart dvs too. */
1983 var_reg_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
1985 attrs
**nextp
= &set
->regs
[REGNO (loc
)];
1988 HOST_WIDE_INT offset
;
1989 if (clobber
&& track_offset_p (REG_OFFSET (loc
), &offset
))
1991 tree decl
= REG_EXPR (loc
);
1993 decl
= var_debug_decl (decl
);
1995 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
1998 for (node
= *nextp
; node
; node
= next
)
2001 if (clobber
|| !dv_onepart_p (node
->dv
))
2003 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
2008 nextp
= &node
->next
;
2012 /* Delete content of register with number REGNO in dataflow set SET. */
2015 var_regno_delete (dataflow_set
*set
, int regno
)
2017 attrs
**reg
= &set
->regs
[regno
];
2020 for (node
= *reg
; node
; node
= next
)
2023 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
2029 /* Return true if I is the negated value of a power of two. */
2031 negative_power_of_two_p (HOST_WIDE_INT i
)
2033 unsigned HOST_WIDE_INT x
= -(unsigned HOST_WIDE_INT
)i
;
2034 return pow2_or_zerop (x
);
2037 /* Strip constant offsets and alignments off of LOC. Return the base
2041 vt_get_canonicalize_base (rtx loc
)
2043 while ((GET_CODE (loc
) == PLUS
2044 || GET_CODE (loc
) == AND
)
2045 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
2046 && (GET_CODE (loc
) != AND
2047 || negative_power_of_two_p (INTVAL (XEXP (loc
, 1)))))
2048 loc
= XEXP (loc
, 0);
2053 /* This caches canonicalized addresses for VALUEs, computed using
2054 information in the global cselib table. */
2055 static hash_map
<rtx
, rtx
> *global_get_addr_cache
;
2057 /* This caches canonicalized addresses for VALUEs, computed using
2058 information from the global cache and information pertaining to a
2059 basic block being analyzed. */
2060 static hash_map
<rtx
, rtx
> *local_get_addr_cache
;
2062 static rtx
vt_canonicalize_addr (dataflow_set
*, rtx
);
2064 /* Return the canonical address for LOC, that must be a VALUE, using a
2065 cached global equivalence or computing it and storing it in the
2069 get_addr_from_global_cache (rtx
const loc
)
2073 gcc_checking_assert (GET_CODE (loc
) == VALUE
);
2076 rtx
*slot
= &global_get_addr_cache
->get_or_insert (loc
, &existed
);
2080 x
= canon_rtx (get_addr (loc
));
2082 /* Tentative, avoiding infinite recursion. */
2087 rtx nx
= vt_canonicalize_addr (NULL
, x
);
2090 /* The table may have moved during recursion, recompute
2092 *global_get_addr_cache
->get (loc
) = x
= nx
;
2099 /* Return the canonical address for LOC, that must be a VALUE, using a
2100 cached local equivalence or computing it and storing it in the
2104 get_addr_from_local_cache (dataflow_set
*set
, rtx
const loc
)
2111 gcc_checking_assert (GET_CODE (loc
) == VALUE
);
2114 rtx
*slot
= &local_get_addr_cache
->get_or_insert (loc
, &existed
);
2118 x
= get_addr_from_global_cache (loc
);
2120 /* Tentative, avoiding infinite recursion. */
2123 /* Recurse to cache local expansion of X, or if we need to search
2124 for a VALUE in the expansion. */
2127 rtx nx
= vt_canonicalize_addr (set
, x
);
2130 slot
= local_get_addr_cache
->get (loc
);
2136 dv
= dv_from_rtx (x
);
2137 var
= shared_hash_find (set
->vars
, dv
);
2141 /* Look for an improved equivalent expression. */
2142 for (l
= var
->var_part
[0].loc_chain
; l
; l
= l
->next
)
2144 rtx base
= vt_get_canonicalize_base (l
->loc
);
2145 if (GET_CODE (base
) == VALUE
2146 && canon_value_cmp (base
, loc
))
2148 rtx nx
= vt_canonicalize_addr (set
, l
->loc
);
2151 slot
= local_get_addr_cache
->get (loc
);
2161 /* Canonicalize LOC using equivalences from SET in addition to those
2162 in the cselib static table. It expects a VALUE-based expression,
2163 and it will only substitute VALUEs with other VALUEs or
2164 function-global equivalences, so that, if two addresses have base
2165 VALUEs that are locally or globally related in ways that
2166 memrefs_conflict_p cares about, they will both canonicalize to
2167 expressions that have the same base VALUE.
2169 The use of VALUEs as canonical base addresses enables the canonical
2170 RTXs to remain unchanged globally, if they resolve to a constant,
2171 or throughout a basic block otherwise, so that they can be cached
2172 and the cache needs not be invalidated when REGs, MEMs or such
2176 vt_canonicalize_addr (dataflow_set
*set
, rtx oloc
)
2178 poly_int64 ofst
= 0, term
;
2179 machine_mode mode
= GET_MODE (oloc
);
2186 while (GET_CODE (loc
) == PLUS
2187 && poly_int_rtx_p (XEXP (loc
, 1), &term
))
2190 loc
= XEXP (loc
, 0);
2193 /* Alignment operations can't normally be combined, so just
2194 canonicalize the base and we're done. We'll normally have
2195 only one stack alignment anyway. */
2196 if (GET_CODE (loc
) == AND
2197 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
2198 && negative_power_of_two_p (INTVAL (XEXP (loc
, 1))))
2200 x
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2201 if (x
!= XEXP (loc
, 0))
2202 loc
= gen_rtx_AND (mode
, x
, XEXP (loc
, 1));
2206 if (GET_CODE (loc
) == VALUE
)
2209 loc
= get_addr_from_local_cache (set
, loc
);
2211 loc
= get_addr_from_global_cache (loc
);
2213 /* Consolidate plus_constants. */
2214 while (maybe_ne (ofst
, 0)
2215 && GET_CODE (loc
) == PLUS
2216 && poly_int_rtx_p (XEXP (loc
, 1), &term
))
2219 loc
= XEXP (loc
, 0);
2226 x
= canon_rtx (loc
);
2233 /* Add OFST back in. */
2234 if (maybe_ne (ofst
, 0))
2236 /* Don't build new RTL if we can help it. */
2237 if (strip_offset (oloc
, &term
) == loc
&& known_eq (term
, ofst
))
2240 loc
= plus_constant (mode
, loc
, ofst
);
2246 /* Return true iff there's a true dependence between MLOC and LOC.
2247 MADDR must be a canonicalized version of MLOC's address. */
2250 vt_canon_true_dep (dataflow_set
*set
, rtx mloc
, rtx maddr
, rtx loc
)
2252 if (GET_CODE (loc
) != MEM
)
2255 rtx addr
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2256 if (!canon_true_dependence (mloc
, GET_MODE (mloc
), maddr
, loc
, addr
))
2262 /* Hold parameters for the hashtab traversal function
2263 drop_overlapping_mem_locs, see below. */
2265 struct overlapping_mems
2271 /* Remove all MEMs that overlap with COMS->LOC from the location list
2272 of a hash table entry for a onepart variable. COMS->ADDR must be a
2273 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2274 canonicalized itself. */
2277 drop_overlapping_mem_locs (variable
**slot
, overlapping_mems
*coms
)
2279 dataflow_set
*set
= coms
->set
;
2280 rtx mloc
= coms
->loc
, addr
= coms
->addr
;
2281 variable
*var
= *slot
;
2283 if (var
->onepart
!= NOT_ONEPART
)
2285 location_chain
*loc
, **locp
;
2286 bool changed
= false;
2289 gcc_assert (var
->n_var_parts
== 1);
2291 if (shared_var_p (var
, set
->vars
))
2293 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
2294 if (vt_canon_true_dep (set
, mloc
, addr
, loc
->loc
))
2300 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
2302 gcc_assert (var
->n_var_parts
== 1);
2305 if (VAR_LOC_1PAUX (var
))
2306 cur_loc
= VAR_LOC_FROM (var
);
2308 cur_loc
= var
->var_part
[0].cur_loc
;
2310 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
2313 if (!vt_canon_true_dep (set
, mloc
, addr
, loc
->loc
))
2320 /* If we have deleted the location which was last emitted
2321 we have to emit new location so add the variable to set
2322 of changed variables. */
2323 if (cur_loc
== loc
->loc
)
2326 var
->var_part
[0].cur_loc
= NULL
;
2327 if (VAR_LOC_1PAUX (var
))
2328 VAR_LOC_FROM (var
) = NULL
;
2333 if (!var
->var_part
[0].loc_chain
)
2339 variable_was_changed (var
, set
);
2345 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2348 clobber_overlapping_mems (dataflow_set
*set
, rtx loc
)
2350 struct overlapping_mems coms
;
2352 gcc_checking_assert (GET_CODE (loc
) == MEM
);
2355 coms
.loc
= canon_rtx (loc
);
2356 coms
.addr
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2358 set
->traversed_vars
= set
->vars
;
2359 shared_hash_htab (set
->vars
)
2360 ->traverse
<overlapping_mems
*, drop_overlapping_mem_locs
> (&coms
);
2361 set
->traversed_vars
= NULL
;
2364 /* Set the location of DV, OFFSET as the MEM LOC. */
2367 var_mem_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
2368 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
2369 enum insert_option iopt
)
2371 if (dv_is_decl_p (dv
))
2372 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
2374 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
2377 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2379 Adjust the address first if it is stack pointer based. */
2382 var_mem_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
2385 tree decl
= MEM_EXPR (loc
);
2386 HOST_WIDE_INT offset
= int_mem_offset (loc
);
2388 var_mem_decl_set (set
, loc
, initialized
,
2389 dv_from_decl (decl
), offset
, set_src
, INSERT
);
2392 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2393 dataflow set SET to LOC. If MODIFY is true, any other live copies
2394 of the same variable part are also deleted from the dataflow set,
2395 otherwise the variable part is assumed to be copied from another
2396 location holding the same part.
2397 Adjust the address first if it is stack pointer based. */
2400 var_mem_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
2401 enum var_init_status initialized
, rtx set_src
)
2403 tree decl
= MEM_EXPR (loc
);
2404 HOST_WIDE_INT offset
= int_mem_offset (loc
);
2406 clobber_overlapping_mems (set
, loc
);
2407 decl
= var_debug_decl (decl
);
2409 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
2410 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
2413 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, set_src
);
2414 var_mem_set (set
, loc
, initialized
, set_src
);
2417 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2418 true, also delete any other live copies of the same variable part.
2419 Adjust the address first if it is stack pointer based. */
2422 var_mem_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
2424 tree decl
= MEM_EXPR (loc
);
2425 HOST_WIDE_INT offset
= int_mem_offset (loc
);
2427 clobber_overlapping_mems (set
, loc
);
2428 decl
= var_debug_decl (decl
);
2430 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
2431 delete_variable_part (set
, loc
, dv_from_decl (decl
), offset
);
2434 /* Return true if LOC should not be expanded for location expressions,
2438 unsuitable_loc (rtx loc
)
2440 switch (GET_CODE (loc
))
2454 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2458 val_bind (dataflow_set
*set
, rtx val
, rtx loc
, bool modified
)
2463 var_regno_delete (set
, REGNO (loc
));
2464 var_reg_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2465 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2467 else if (MEM_P (loc
))
2469 struct elt_loc_list
*l
= CSELIB_VAL_PTR (val
)->locs
;
2472 clobber_overlapping_mems (set
, loc
);
2474 if (l
&& GET_CODE (l
->loc
) == VALUE
)
2475 l
= canonical_cselib_val (CSELIB_VAL_PTR (l
->loc
))->locs
;
2477 /* If this MEM is a global constant, we don't need it in the
2478 dynamic tables. ??? We should test this before emitting the
2479 micro-op in the first place. */
2481 if (GET_CODE (l
->loc
) == MEM
&& XEXP (l
->loc
, 0) == XEXP (loc
, 0))
2487 var_mem_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2488 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2492 /* Other kinds of equivalences are necessarily static, at least
2493 so long as we do not perform substitutions while merging
2496 set_variable_part (set
, loc
, dv_from_value (val
), 0,
2497 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2501 /* Bind a value to a location it was just stored in. If MODIFIED
2502 holds, assume the location was modified, detaching it from any
2503 values bound to it. */
2506 val_store (dataflow_set
*set
, rtx val
, rtx loc
, rtx_insn
*insn
,
2509 cselib_val
*v
= CSELIB_VAL_PTR (val
);
2511 gcc_assert (cselib_preserved_value_p (v
));
2515 fprintf (dump_file
, "%i: ", insn
? INSN_UID (insn
) : 0);
2516 print_inline_rtx (dump_file
, loc
, 0);
2517 fprintf (dump_file
, " evaluates to ");
2518 print_inline_rtx (dump_file
, val
, 0);
2521 struct elt_loc_list
*l
;
2522 for (l
= v
->locs
; l
; l
= l
->next
)
2524 fprintf (dump_file
, "\n%i: ", INSN_UID (l
->setting_insn
));
2525 print_inline_rtx (dump_file
, l
->loc
, 0);
2528 fprintf (dump_file
, "\n");
2531 gcc_checking_assert (!unsuitable_loc (loc
));
2533 val_bind (set
, val
, loc
, modified
);
2536 /* Clear (canonical address) slots that reference X. */
2539 local_get_addr_clear_given_value (rtx
const &, rtx
*slot
, rtx x
)
2541 if (vt_get_canonicalize_base (*slot
) == x
)
2546 /* Reset this node, detaching all its equivalences. Return the slot
2547 in the variable hash table that holds dv, if there is one. */
2550 val_reset (dataflow_set
*set
, decl_or_value dv
)
2552 variable
*var
= shared_hash_find (set
->vars
, dv
) ;
2553 location_chain
*node
;
2556 if (!var
|| !var
->n_var_parts
)
2559 gcc_assert (var
->n_var_parts
== 1);
2561 if (var
->onepart
== ONEPART_VALUE
)
2563 rtx x
= dv_as_value (dv
);
2565 /* Relationships in the global cache don't change, so reset the
2566 local cache entry only. */
2567 rtx
*slot
= local_get_addr_cache
->get (x
);
2570 /* If the value resolved back to itself, odds are that other
2571 values may have cached it too. These entries now refer
2572 to the old X, so detach them too. Entries that used the
2573 old X but resolved to something else remain ok as long as
2574 that something else isn't also reset. */
2576 local_get_addr_cache
2577 ->traverse
<rtx
, local_get_addr_clear_given_value
> (x
);
2583 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2584 if (GET_CODE (node
->loc
) == VALUE
2585 && canon_value_cmp (node
->loc
, cval
))
2588 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2589 if (GET_CODE (node
->loc
) == VALUE
&& cval
!= node
->loc
)
2591 /* Redirect the equivalence link to the new canonical
2592 value, or simply remove it if it would point at
2595 set_variable_part (set
, cval
, dv_from_value (node
->loc
),
2596 0, node
->init
, node
->set_src
, NO_INSERT
);
2597 delete_variable_part (set
, dv_as_value (dv
),
2598 dv_from_value (node
->loc
), 0);
2603 decl_or_value cdv
= dv_from_value (cval
);
2605 /* Keep the remaining values connected, accumulating links
2606 in the canonical value. */
2607 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2609 if (node
->loc
== cval
)
2611 else if (GET_CODE (node
->loc
) == REG
)
2612 var_reg_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
2613 node
->set_src
, NO_INSERT
);
2614 else if (GET_CODE (node
->loc
) == MEM
)
2615 var_mem_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
2616 node
->set_src
, NO_INSERT
);
2618 set_variable_part (set
, node
->loc
, cdv
, 0,
2619 node
->init
, node
->set_src
, NO_INSERT
);
2623 /* We remove this last, to make sure that the canonical value is not
2624 removed to the point of requiring reinsertion. */
2626 delete_variable_part (set
, dv_as_value (dv
), dv_from_value (cval
), 0);
2628 clobber_variable_part (set
, NULL
, dv
, 0, NULL
);
2631 /* Find the values in a given location and map the val to another
2632 value, if it is unique, or add the location as one holding the
2636 val_resolve (dataflow_set
*set
, rtx val
, rtx loc
, rtx_insn
*insn
)
2638 decl_or_value dv
= dv_from_value (val
);
2640 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2643 fprintf (dump_file
, "%i: ", INSN_UID (insn
));
2645 fprintf (dump_file
, "head: ");
2646 print_inline_rtx (dump_file
, val
, 0);
2647 fputs (" is at ", dump_file
);
2648 print_inline_rtx (dump_file
, loc
, 0);
2649 fputc ('\n', dump_file
);
2652 val_reset (set
, dv
);
2654 gcc_checking_assert (!unsuitable_loc (loc
));
2658 attrs
*node
, *found
= NULL
;
2660 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
2661 if (dv_is_value_p (node
->dv
)
2662 && GET_MODE (dv_as_value (node
->dv
)) == GET_MODE (loc
))
2666 /* Map incoming equivalences. ??? Wouldn't it be nice if
2667 we just started sharing the location lists? Maybe a
2668 circular list ending at the value itself or some
2670 set_variable_part (set
, dv_as_value (node
->dv
),
2671 dv_from_value (val
), node
->offset
,
2672 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2673 set_variable_part (set
, val
, node
->dv
, node
->offset
,
2674 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2677 /* If we didn't find any equivalence, we need to remember that
2678 this value is held in the named register. */
2682 /* ??? Attempt to find and merge equivalent MEMs or other
2685 val_bind (set
, val
, loc
, false);
2688 /* Initialize dataflow set SET to be empty.
2689 VARS_SIZE is the initial size of hash table VARS. */
2692 dataflow_set_init (dataflow_set
*set
)
2694 init_attrs_list_set (set
->regs
);
2695 set
->vars
= shared_hash_copy (empty_shared_hash
);
2696 set
->stack_adjust
= 0;
2697 set
->traversed_vars
= NULL
;
2700 /* Delete the contents of dataflow set SET. */
2703 dataflow_set_clear (dataflow_set
*set
)
2707 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2708 attrs_list_clear (&set
->regs
[i
]);
2710 shared_hash_destroy (set
->vars
);
2711 set
->vars
= shared_hash_copy (empty_shared_hash
);
2714 /* Copy the contents of dataflow set SRC to DST. */
2717 dataflow_set_copy (dataflow_set
*dst
, dataflow_set
*src
)
2721 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2722 attrs_list_copy (&dst
->regs
[i
], src
->regs
[i
]);
2724 shared_hash_destroy (dst
->vars
);
2725 dst
->vars
= shared_hash_copy (src
->vars
);
2726 dst
->stack_adjust
= src
->stack_adjust
;
2729 /* Information for merging lists of locations for a given offset of variable.
2731 struct variable_union_info
2733 /* Node of the location chain. */
2736 /* The sum of positions in the input chains. */
2739 /* The position in the chain of DST dataflow set. */
2743 /* Buffer for location list sorting and its allocated size. */
2744 static struct variable_union_info
*vui_vec
;
2745 static int vui_allocated
;
2747 /* Compare function for qsort, order the structures by POS element. */
2750 variable_union_info_cmp_pos (const void *n1
, const void *n2
)
2752 const struct variable_union_info
*const i1
=
2753 (const struct variable_union_info
*) n1
;
2754 const struct variable_union_info
*const i2
=
2755 ( const struct variable_union_info
*) n2
;
2757 if (i1
->pos
!= i2
->pos
)
2758 return i1
->pos
- i2
->pos
;
2760 return (i1
->pos_dst
- i2
->pos_dst
);
2763 /* Compute union of location parts of variable *SLOT and the same variable
2764 from hash table DATA. Compute "sorted" union of the location chains
2765 for common offsets, i.e. the locations of a variable part are sorted by
2766 a priority where the priority is the sum of the positions in the 2 chains
2767 (if a location is only in one list the position in the second list is
2768 defined to be larger than the length of the chains).
2769 When we are updating the location parts the newest location is in the
2770 beginning of the chain, so when we do the described "sorted" union
2771 we keep the newest locations in the beginning. */
2774 variable_union (variable
*src
, dataflow_set
*set
)
2780 dstp
= shared_hash_find_slot (set
->vars
, src
->dv
);
2781 if (!dstp
|| !*dstp
)
2785 dst_can_be_shared
= false;
2787 dstp
= shared_hash_find_slot_unshare (&set
->vars
, src
->dv
, INSERT
);
2791 /* Continue traversing the hash table. */
2797 gcc_assert (src
->n_var_parts
);
2798 gcc_checking_assert (src
->onepart
== dst
->onepart
);
2800 /* We can combine one-part variables very efficiently, because their
2801 entries are in canonical order. */
2804 location_chain
**nodep
, *dnode
, *snode
;
2806 gcc_assert (src
->n_var_parts
== 1
2807 && dst
->n_var_parts
== 1);
2809 snode
= src
->var_part
[0].loc_chain
;
2812 restart_onepart_unshared
:
2813 nodep
= &dst
->var_part
[0].loc_chain
;
2819 int r
= dnode
? loc_cmp (dnode
->loc
, snode
->loc
) : 1;
2823 location_chain
*nnode
;
2825 if (shared_var_p (dst
, set
->vars
))
2827 dstp
= unshare_variable (set
, dstp
, dst
,
2828 VAR_INIT_STATUS_INITIALIZED
);
2830 goto restart_onepart_unshared
;
2833 *nodep
= nnode
= new location_chain
;
2834 nnode
->loc
= snode
->loc
;
2835 nnode
->init
= snode
->init
;
2836 if (!snode
->set_src
|| MEM_P (snode
->set_src
))
2837 nnode
->set_src
= NULL
;
2839 nnode
->set_src
= snode
->set_src
;
2840 nnode
->next
= dnode
;
2844 gcc_checking_assert (rtx_equal_p (dnode
->loc
, snode
->loc
));
2847 snode
= snode
->next
;
2849 nodep
= &dnode
->next
;
2856 gcc_checking_assert (!src
->onepart
);
2858 /* Count the number of location parts, result is K. */
2859 for (i
= 0, j
= 0, k
= 0;
2860 i
< src
->n_var_parts
&& j
< dst
->n_var_parts
; k
++)
2862 if (VAR_PART_OFFSET (src
, i
) == VAR_PART_OFFSET (dst
, j
))
2867 else if (VAR_PART_OFFSET (src
, i
) < VAR_PART_OFFSET (dst
, j
))
2872 k
+= src
->n_var_parts
- i
;
2873 k
+= dst
->n_var_parts
- j
;
2875 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2876 thus there are at most MAX_VAR_PARTS different offsets. */
2877 gcc_checking_assert (dst
->onepart
? k
== 1 : k
<= MAX_VAR_PARTS
);
2879 if (dst
->n_var_parts
!= k
&& shared_var_p (dst
, set
->vars
))
2881 dstp
= unshare_variable (set
, dstp
, dst
, VAR_INIT_STATUS_UNKNOWN
);
2885 i
= src
->n_var_parts
- 1;
2886 j
= dst
->n_var_parts
- 1;
2887 dst
->n_var_parts
= k
;
2889 for (k
--; k
>= 0; k
--)
2891 location_chain
*node
, *node2
;
2893 if (i
>= 0 && j
>= 0
2894 && VAR_PART_OFFSET (src
, i
) == VAR_PART_OFFSET (dst
, j
))
2896 /* Compute the "sorted" union of the chains, i.e. the locations which
2897 are in both chains go first, they are sorted by the sum of
2898 positions in the chains. */
2901 struct variable_union_info
*vui
;
2903 /* If DST is shared compare the location chains.
2904 If they are different we will modify the chain in DST with
2905 high probability so make a copy of DST. */
2906 if (shared_var_p (dst
, set
->vars
))
2908 for (node
= src
->var_part
[i
].loc_chain
,
2909 node2
= dst
->var_part
[j
].loc_chain
; node
&& node2
;
2910 node
= node
->next
, node2
= node2
->next
)
2912 if (!((REG_P (node2
->loc
)
2913 && REG_P (node
->loc
)
2914 && REGNO (node2
->loc
) == REGNO (node
->loc
))
2915 || rtx_equal_p (node2
->loc
, node
->loc
)))
2917 if (node2
->init
< node
->init
)
2918 node2
->init
= node
->init
;
2924 dstp
= unshare_variable (set
, dstp
, dst
,
2925 VAR_INIT_STATUS_UNKNOWN
);
2926 dst
= (variable
*)*dstp
;
2931 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2934 for (node
= dst
->var_part
[j
].loc_chain
; node
; node
= node
->next
)
2939 /* The most common case, much simpler, no qsort is needed. */
2940 location_chain
*dstnode
= dst
->var_part
[j
].loc_chain
;
2941 dst
->var_part
[k
].loc_chain
= dstnode
;
2942 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (dst
, j
);
2944 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2945 if (!((REG_P (dstnode
->loc
)
2946 && REG_P (node
->loc
)
2947 && REGNO (dstnode
->loc
) == REGNO (node
->loc
))
2948 || rtx_equal_p (dstnode
->loc
, node
->loc
)))
2950 location_chain
*new_node
;
2952 /* Copy the location from SRC. */
2953 new_node
= new location_chain
;
2954 new_node
->loc
= node
->loc
;
2955 new_node
->init
= node
->init
;
2956 if (!node
->set_src
|| MEM_P (node
->set_src
))
2957 new_node
->set_src
= NULL
;
2959 new_node
->set_src
= node
->set_src
;
2960 node2
->next
= new_node
;
2967 if (src_l
+ dst_l
> vui_allocated
)
2969 vui_allocated
= MAX (vui_allocated
* 2, src_l
+ dst_l
);
2970 vui_vec
= XRESIZEVEC (struct variable_union_info
, vui_vec
,
2975 /* Fill in the locations from DST. */
2976 for (node
= dst
->var_part
[j
].loc_chain
, jj
= 0; node
;
2977 node
= node
->next
, jj
++)
2980 vui
[jj
].pos_dst
= jj
;
2982 /* Pos plus value larger than a sum of 2 valid positions. */
2983 vui
[jj
].pos
= jj
+ src_l
+ dst_l
;
2986 /* Fill in the locations from SRC. */
2988 for (node
= src
->var_part
[i
].loc_chain
, ii
= 0; node
;
2989 node
= node
->next
, ii
++)
2991 /* Find location from NODE. */
2992 for (jj
= 0; jj
< dst_l
; jj
++)
2994 if ((REG_P (vui
[jj
].lc
->loc
)
2995 && REG_P (node
->loc
)
2996 && REGNO (vui
[jj
].lc
->loc
) == REGNO (node
->loc
))
2997 || rtx_equal_p (vui
[jj
].lc
->loc
, node
->loc
))
2999 vui
[jj
].pos
= jj
+ ii
;
3003 if (jj
>= dst_l
) /* The location has not been found. */
3005 location_chain
*new_node
;
3007 /* Copy the location from SRC. */
3008 new_node
= new location_chain
;
3009 new_node
->loc
= node
->loc
;
3010 new_node
->init
= node
->init
;
3011 if (!node
->set_src
|| MEM_P (node
->set_src
))
3012 new_node
->set_src
= NULL
;
3014 new_node
->set_src
= node
->set_src
;
3015 vui
[n
].lc
= new_node
;
3016 vui
[n
].pos_dst
= src_l
+ dst_l
;
3017 vui
[n
].pos
= ii
+ src_l
+ dst_l
;
3024 /* Special case still very common case. For dst_l == 2
3025 all entries dst_l ... n-1 are sorted, with for i >= dst_l
3026 vui[i].pos == i + src_l + dst_l. */
3027 if (vui
[0].pos
> vui
[1].pos
)
3029 /* Order should be 1, 0, 2... */
3030 dst
->var_part
[k
].loc_chain
= vui
[1].lc
;
3031 vui
[1].lc
->next
= vui
[0].lc
;
3034 vui
[0].lc
->next
= vui
[2].lc
;
3035 vui
[n
- 1].lc
->next
= NULL
;
3038 vui
[0].lc
->next
= NULL
;
3043 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
3044 if (n
>= 3 && vui
[2].pos
< vui
[1].pos
)
3046 /* Order should be 0, 2, 1, 3... */
3047 vui
[0].lc
->next
= vui
[2].lc
;
3048 vui
[2].lc
->next
= vui
[1].lc
;
3051 vui
[1].lc
->next
= vui
[3].lc
;
3052 vui
[n
- 1].lc
->next
= NULL
;
3055 vui
[1].lc
->next
= NULL
;
3060 /* Order should be 0, 1, 2... */
3062 vui
[n
- 1].lc
->next
= NULL
;
3065 for (; ii
< n
; ii
++)
3066 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
3070 qsort (vui
, n
, sizeof (struct variable_union_info
),
3071 variable_union_info_cmp_pos
);
3073 /* Reconnect the nodes in sorted order. */
3074 for (ii
= 1; ii
< n
; ii
++)
3075 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
3076 vui
[n
- 1].lc
->next
= NULL
;
3077 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
3080 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (dst
, j
);
3085 else if ((i
>= 0 && j
>= 0
3086 && VAR_PART_OFFSET (src
, i
) < VAR_PART_OFFSET (dst
, j
))
3089 dst
->var_part
[k
] = dst
->var_part
[j
];
3092 else if ((i
>= 0 && j
>= 0
3093 && VAR_PART_OFFSET (src
, i
) > VAR_PART_OFFSET (dst
, j
))
3096 location_chain
**nextp
;
3098 /* Copy the chain from SRC. */
3099 nextp
= &dst
->var_part
[k
].loc_chain
;
3100 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
3102 location_chain
*new_lc
;
3104 new_lc
= new location_chain
;
3105 new_lc
->next
= NULL
;
3106 new_lc
->init
= node
->init
;
3107 if (!node
->set_src
|| MEM_P (node
->set_src
))
3108 new_lc
->set_src
= NULL
;
3110 new_lc
->set_src
= node
->set_src
;
3111 new_lc
->loc
= node
->loc
;
3114 nextp
= &new_lc
->next
;
3117 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (src
, i
);
3120 dst
->var_part
[k
].cur_loc
= NULL
;
3123 if (flag_var_tracking_uninit
)
3124 for (i
= 0; i
< src
->n_var_parts
&& i
< dst
->n_var_parts
; i
++)
3126 location_chain
*node
, *node2
;
3127 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
3128 for (node2
= dst
->var_part
[i
].loc_chain
; node2
; node2
= node2
->next
)
3129 if (rtx_equal_p (node
->loc
, node2
->loc
))
3131 if (node
->init
> node2
->init
)
3132 node2
->init
= node
->init
;
3136 /* Continue traversing the hash table. */
3140 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3143 dataflow_set_union (dataflow_set
*dst
, dataflow_set
*src
)
3147 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3148 attrs_list_union (&dst
->regs
[i
], src
->regs
[i
]);
3150 if (dst
->vars
== empty_shared_hash
)
3152 shared_hash_destroy (dst
->vars
);
3153 dst
->vars
= shared_hash_copy (src
->vars
);
3157 variable_iterator_type hi
;
3160 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src
->vars
),
3162 variable_union (var
, dst
);
3166 /* Whether the value is currently being expanded. */
3167 #define VALUE_RECURSED_INTO(x) \
3168 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3170 /* Whether no expansion was found, saving useless lookups.
3171 It must only be set when VALUE_CHANGED is clear. */
3172 #define NO_LOC_P(x) \
3173 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3175 /* Whether cur_loc in the value needs to be (re)computed. */
3176 #define VALUE_CHANGED(x) \
3177 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3178 /* Whether cur_loc in the decl needs to be (re)computed. */
3179 #define DECL_CHANGED(x) TREE_VISITED (x)
3181 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3182 user DECLs, this means they're in changed_variables. Values and
3183 debug exprs may be left with this flag set if no user variable
3184 requires them to be evaluated. */
3187 set_dv_changed (decl_or_value dv
, bool newv
)
3189 switch (dv_onepart_p (dv
))
3193 NO_LOC_P (dv_as_value (dv
)) = false;
3194 VALUE_CHANGED (dv_as_value (dv
)) = newv
;
3199 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv
))) = false;
3203 DECL_CHANGED (dv_as_decl (dv
)) = newv
;
3208 /* Return true if DV needs to have its cur_loc recomputed. */
3211 dv_changed_p (decl_or_value dv
)
3213 return (dv_is_value_p (dv
)
3214 ? VALUE_CHANGED (dv_as_value (dv
))
3215 : DECL_CHANGED (dv_as_decl (dv
)));
3218 /* Return a location list node whose loc is rtx_equal to LOC, in the
3219 location list of a one-part variable or value VAR, or in that of
3220 any values recursively mentioned in the location lists. VARS must
3221 be in star-canonical form. */
3223 static location_chain
*
3224 find_loc_in_1pdv (rtx loc
, variable
*var
, variable_table_type
*vars
)
3226 location_chain
*node
;
3227 enum rtx_code loc_code
;
3232 gcc_checking_assert (var
->onepart
);
3234 if (!var
->n_var_parts
)
3237 gcc_checking_assert (loc
!= dv_as_opaque (var
->dv
));
3239 loc_code
= GET_CODE (loc
);
3240 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3245 if (GET_CODE (node
->loc
) != loc_code
)
3247 if (GET_CODE (node
->loc
) != VALUE
)
3250 else if (loc
== node
->loc
)
3252 else if (loc_code
!= VALUE
)
3254 if (rtx_equal_p (loc
, node
->loc
))
3259 /* Since we're in star-canonical form, we don't need to visit
3260 non-canonical nodes: one-part variables and non-canonical
3261 values would only point back to the canonical node. */
3262 if (dv_is_value_p (var
->dv
)
3263 && !canon_value_cmp (node
->loc
, dv_as_value (var
->dv
)))
3265 /* Skip all subsequent VALUEs. */
3266 while (node
->next
&& GET_CODE (node
->next
->loc
) == VALUE
)
3269 gcc_checking_assert (!canon_value_cmp (node
->loc
,
3270 dv_as_value (var
->dv
)));
3271 if (loc
== node
->loc
)
3277 gcc_checking_assert (node
== var
->var_part
[0].loc_chain
);
3278 gcc_checking_assert (!node
->next
);
3280 dv
= dv_from_value (node
->loc
);
3281 rvar
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
3282 return find_loc_in_1pdv (loc
, rvar
, vars
);
3285 /* ??? Gotta look in cselib_val locations too. */
3290 /* Hash table iteration argument passed to variable_merge. */
3293 /* The set in which the merge is to be inserted. */
3295 /* The set that we're iterating in. */
3297 /* The set that may contain the other dv we are to merge with. */
3299 /* Number of onepart dvs in src. */
3300 int src_onepart_cnt
;
3303 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3304 loc_cmp order, and it is maintained as such. */
3307 insert_into_intersection (location_chain
**nodep
, rtx loc
,
3308 enum var_init_status status
)
3310 location_chain
*node
;
3313 for (node
= *nodep
; node
; nodep
= &node
->next
, node
= *nodep
)
3314 if ((r
= loc_cmp (node
->loc
, loc
)) == 0)
3316 node
->init
= MIN (node
->init
, status
);
3322 node
= new location_chain
;
3325 node
->set_src
= NULL
;
3326 node
->init
= status
;
3327 node
->next
= *nodep
;
3331 /* Insert in DEST the intersection of the locations present in both
3332 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3333 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3337 intersect_loc_chains (rtx val
, location_chain
**dest
, struct dfset_merge
*dsm
,
3338 location_chain
*s1node
, variable
*s2var
)
3340 dataflow_set
*s1set
= dsm
->cur
;
3341 dataflow_set
*s2set
= dsm
->src
;
3342 location_chain
*found
;
3346 location_chain
*s2node
;
3348 gcc_checking_assert (s2var
->onepart
);
3350 if (s2var
->n_var_parts
)
3352 s2node
= s2var
->var_part
[0].loc_chain
;
3354 for (; s1node
&& s2node
;
3355 s1node
= s1node
->next
, s2node
= s2node
->next
)
3356 if (s1node
->loc
!= s2node
->loc
)
3358 else if (s1node
->loc
== val
)
3361 insert_into_intersection (dest
, s1node
->loc
,
3362 MIN (s1node
->init
, s2node
->init
));
3366 for (; s1node
; s1node
= s1node
->next
)
3368 if (s1node
->loc
== val
)
3371 if ((found
= find_loc_in_1pdv (s1node
->loc
, s2var
,
3372 shared_hash_htab (s2set
->vars
))))
3374 insert_into_intersection (dest
, s1node
->loc
,
3375 MIN (s1node
->init
, found
->init
));
3379 if (GET_CODE (s1node
->loc
) == VALUE
3380 && !VALUE_RECURSED_INTO (s1node
->loc
))
3382 decl_or_value dv
= dv_from_value (s1node
->loc
);
3383 variable
*svar
= shared_hash_find (s1set
->vars
, dv
);
3386 if (svar
->n_var_parts
== 1)
3388 VALUE_RECURSED_INTO (s1node
->loc
) = true;
3389 intersect_loc_chains (val
, dest
, dsm
,
3390 svar
->var_part
[0].loc_chain
,
3392 VALUE_RECURSED_INTO (s1node
->loc
) = false;
3397 /* ??? gotta look in cselib_val locations too. */
3399 /* ??? if the location is equivalent to any location in src,
3400 searched recursively
3402 add to dst the values needed to represent the equivalence
3404 telling whether locations S is equivalent to another dv's
3407 for each location D in the list
3409 if S and D satisfy rtx_equal_p, then it is present
3411 else if D is a value, recurse without cycles
3413 else if S and D have the same CODE and MODE
3415 for each operand oS and the corresponding oD
3417 if oS and oD are not equivalent, then S an D are not equivalent
3419 else if they are RTX vectors
3421 if any vector oS element is not equivalent to its respective oD,
3422 then S and D are not equivalent
3430 /* Return -1 if X should be before Y in a location list for a 1-part
3431 variable, 1 if Y should be before X, and 0 if they're equivalent
3432 and should not appear in the list. */
3435 loc_cmp (rtx x
, rtx y
)
3438 RTX_CODE code
= GET_CODE (x
);
3448 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3449 if (REGNO (x
) == REGNO (y
))
3451 else if (REGNO (x
) < REGNO (y
))
3464 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3465 return loc_cmp (XEXP (x
, 0), XEXP (y
, 0));
3471 if (GET_CODE (x
) == VALUE
)
3473 if (GET_CODE (y
) != VALUE
)
3475 /* Don't assert the modes are the same, that is true only
3476 when not recursing. (subreg:QI (value:SI 1:1) 0)
3477 and (subreg:QI (value:DI 2:2) 0) can be compared,
3478 even when the modes are different. */
3479 if (canon_value_cmp (x
, y
))
3485 if (GET_CODE (y
) == VALUE
)
3488 /* Entry value is the least preferable kind of expression. */
3489 if (GET_CODE (x
) == ENTRY_VALUE
)
3491 if (GET_CODE (y
) != ENTRY_VALUE
)
3493 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3494 return loc_cmp (ENTRY_VALUE_EXP (x
), ENTRY_VALUE_EXP (y
));
3497 if (GET_CODE (y
) == ENTRY_VALUE
)
3500 if (GET_CODE (x
) == GET_CODE (y
))
3501 /* Compare operands below. */;
3502 else if (GET_CODE (x
) < GET_CODE (y
))
3507 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3509 if (GET_CODE (x
) == DEBUG_EXPR
)
3511 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
3512 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)))
3514 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
3515 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)));
3519 fmt
= GET_RTX_FORMAT (code
);
3520 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
3524 if (XWINT (x
, i
) == XWINT (y
, i
))
3526 else if (XWINT (x
, i
) < XWINT (y
, i
))
3533 if (XINT (x
, i
) == XINT (y
, i
))
3535 else if (XINT (x
, i
) < XINT (y
, i
))
3541 r
= compare_sizes_for_sort (SUBREG_BYTE (x
), SUBREG_BYTE (y
));
3548 /* Compare the vector length first. */
3549 if (XVECLEN (x
, i
) == XVECLEN (y
, i
))
3550 /* Compare the vectors elements. */;
3551 else if (XVECLEN (x
, i
) < XVECLEN (y
, i
))
3556 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3557 if ((r
= loc_cmp (XVECEXP (x
, i
, j
),
3558 XVECEXP (y
, i
, j
))))
3563 if ((r
= loc_cmp (XEXP (x
, i
), XEXP (y
, i
))))
3569 if (XSTR (x
, i
) == XSTR (y
, i
))
3575 if ((r
= strcmp (XSTR (x
, i
), XSTR (y
, i
))) == 0)
3583 /* These are just backpointers, so they don't matter. */
3590 /* It is believed that rtx's at this level will never
3591 contain anything but integers and other rtx's,
3592 except for within LABEL_REFs and SYMBOL_REFs. */
3596 if (CONST_WIDE_INT_P (x
))
3598 /* Compare the vector length first. */
3599 if (CONST_WIDE_INT_NUNITS (x
) >= CONST_WIDE_INT_NUNITS (y
))
3601 else if (CONST_WIDE_INT_NUNITS (x
) < CONST_WIDE_INT_NUNITS (y
))
3604 /* Compare the vectors elements. */;
3605 for (j
= CONST_WIDE_INT_NUNITS (x
) - 1; j
>= 0 ; j
--)
3607 if (CONST_WIDE_INT_ELT (x
, j
) < CONST_WIDE_INT_ELT (y
, j
))
3609 if (CONST_WIDE_INT_ELT (x
, j
) > CONST_WIDE_INT_ELT (y
, j
))
3617 /* Check the order of entries in one-part variables. */
3620 canonicalize_loc_order_check (variable
**slot
,
3621 dataflow_set
*data ATTRIBUTE_UNUSED
)
3623 variable
*var
= *slot
;
3624 location_chain
*node
, *next
;
3626 #ifdef ENABLE_RTL_CHECKING
3628 for (i
= 0; i
< var
->n_var_parts
; i
++)
3629 gcc_assert (var
->var_part
[0].cur_loc
== NULL
);
3630 gcc_assert (!var
->in_changed_variables
);
3636 gcc_assert (var
->n_var_parts
== 1);
3637 node
= var
->var_part
[0].loc_chain
;
3640 while ((next
= node
->next
))
3642 gcc_assert (loc_cmp (node
->loc
, next
->loc
) < 0);
3649 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3650 more likely to be chosen as canonical for an equivalence set.
3651 Ensure less likely values can reach more likely neighbors, making
3652 the connections bidirectional. */
3655 canonicalize_values_mark (variable
**slot
, dataflow_set
*set
)
3657 variable
*var
= *slot
;
3658 decl_or_value dv
= var
->dv
;
3660 location_chain
*node
;
3662 if (!dv_is_value_p (dv
))
3665 gcc_checking_assert (var
->n_var_parts
== 1);
3667 val
= dv_as_value (dv
);
3669 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3670 if (GET_CODE (node
->loc
) == VALUE
)
3672 if (canon_value_cmp (node
->loc
, val
))
3673 VALUE_RECURSED_INTO (val
) = true;
3676 decl_or_value odv
= dv_from_value (node
->loc
);
3678 oslot
= shared_hash_find_slot_noinsert (set
->vars
, odv
);
3680 set_slot_part (set
, val
, oslot
, odv
, 0,
3681 node
->init
, NULL_RTX
);
3683 VALUE_RECURSED_INTO (node
->loc
) = true;
3690 /* Remove redundant entries from equivalence lists in onepart
3691 variables, canonicalizing equivalence sets into star shapes. */
3694 canonicalize_values_star (variable
**slot
, dataflow_set
*set
)
3696 variable
*var
= *slot
;
3697 decl_or_value dv
= var
->dv
;
3698 location_chain
*node
;
3708 gcc_checking_assert (var
->n_var_parts
== 1);
3710 if (dv_is_value_p (dv
))
3712 cval
= dv_as_value (dv
);
3713 if (!VALUE_RECURSED_INTO (cval
))
3715 VALUE_RECURSED_INTO (cval
) = false;
3725 gcc_assert (var
->n_var_parts
== 1);
3727 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3728 if (GET_CODE (node
->loc
) == VALUE
)
3731 if (VALUE_RECURSED_INTO (node
->loc
))
3733 if (canon_value_cmp (node
->loc
, cval
))
3742 if (!has_marks
|| dv_is_decl_p (dv
))
3745 /* Keep it marked so that we revisit it, either after visiting a
3746 child node, or after visiting a new parent that might be
3748 VALUE_RECURSED_INTO (val
) = true;
3750 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3751 if (GET_CODE (node
->loc
) == VALUE
3752 && VALUE_RECURSED_INTO (node
->loc
))
3756 VALUE_RECURSED_INTO (cval
) = false;
3757 dv
= dv_from_value (cval
);
3758 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
3761 gcc_assert (dv_is_decl_p (var
->dv
));
3762 /* The canonical value was reset and dropped.
3764 clobber_variable_part (set
, NULL
, var
->dv
, 0, NULL
);
3768 gcc_assert (dv_is_value_p (var
->dv
));
3769 if (var
->n_var_parts
== 0)
3771 gcc_assert (var
->n_var_parts
== 1);
3775 VALUE_RECURSED_INTO (val
) = false;
3780 /* Push values to the canonical one. */
3781 cdv
= dv_from_value (cval
);
3782 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3784 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3785 if (node
->loc
!= cval
)
3787 cslot
= set_slot_part (set
, node
->loc
, cslot
, cdv
, 0,
3788 node
->init
, NULL_RTX
);
3789 if (GET_CODE (node
->loc
) == VALUE
)
3791 decl_or_value ndv
= dv_from_value (node
->loc
);
3793 set_variable_part (set
, cval
, ndv
, 0, node
->init
, NULL_RTX
,
3796 if (canon_value_cmp (node
->loc
, val
))
3798 /* If it could have been a local minimum, it's not any more,
3799 since it's now neighbor to cval, so it may have to push
3800 to it. Conversely, if it wouldn't have prevailed over
3801 val, then whatever mark it has is fine: if it was to
3802 push, it will now push to a more canonical node, but if
3803 it wasn't, then it has already pushed any values it might
3805 VALUE_RECURSED_INTO (node
->loc
) = true;
3806 /* Make sure we visit node->loc by ensuring we cval is
3808 VALUE_RECURSED_INTO (cval
) = true;
3810 else if (!VALUE_RECURSED_INTO (node
->loc
))
3811 /* If we have no need to "recurse" into this node, it's
3812 already "canonicalized", so drop the link to the old
3814 clobber_variable_part (set
, cval
, ndv
, 0, NULL
);
3816 else if (GET_CODE (node
->loc
) == REG
)
3818 attrs
*list
= set
->regs
[REGNO (node
->loc
)], **listp
;
3820 /* Change an existing attribute referring to dv so that it
3821 refers to cdv, removing any duplicate this might
3822 introduce, and checking that no previous duplicates
3823 existed, all in a single pass. */
3827 if (list
->offset
== 0
3828 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3829 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3836 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3839 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3844 if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3846 *listp
= list
->next
;
3852 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (dv
));
3855 else if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3857 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3862 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3864 *listp
= list
->next
;
3870 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (cdv
));
3879 if (list
->offset
== 0
3880 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3881 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3890 set_slot_part (set
, val
, cslot
, cdv
, 0,
3891 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
);
3893 slot
= clobber_slot_part (set
, cval
, slot
, 0, NULL
);
3895 /* Variable may have been unshared. */
3897 gcc_checking_assert (var
->n_var_parts
&& var
->var_part
[0].loc_chain
->loc
== cval
3898 && var
->var_part
[0].loc_chain
->next
== NULL
);
3900 if (VALUE_RECURSED_INTO (cval
))
3901 goto restart_with_cval
;
3906 /* Bind one-part variables to the canonical value in an equivalence
3907 set. Not doing this causes dataflow convergence failure in rare
3908 circumstances, see PR42873. Unfortunately we can't do this
3909 efficiently as part of canonicalize_values_star, since we may not
3910 have determined or even seen the canonical value of a set when we
3911 get to a variable that references another member of the set. */
3914 canonicalize_vars_star (variable
**slot
, dataflow_set
*set
)
3916 variable
*var
= *slot
;
3917 decl_or_value dv
= var
->dv
;
3918 location_chain
*node
;
3923 location_chain
*cnode
;
3925 if (!var
->onepart
|| var
->onepart
== ONEPART_VALUE
)
3928 gcc_assert (var
->n_var_parts
== 1);
3930 node
= var
->var_part
[0].loc_chain
;
3932 if (GET_CODE (node
->loc
) != VALUE
)
3935 gcc_assert (!node
->next
);
3938 /* Push values to the canonical one. */
3939 cdv
= dv_from_value (cval
);
3940 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3944 gcc_assert (cvar
->n_var_parts
== 1);
3946 cnode
= cvar
->var_part
[0].loc_chain
;
3948 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3949 that are not “more canonical” than it. */
3950 if (GET_CODE (cnode
->loc
) != VALUE
3951 || !canon_value_cmp (cnode
->loc
, cval
))
3954 /* CVAL was found to be non-canonical. Change the variable to point
3955 to the canonical VALUE. */
3956 gcc_assert (!cnode
->next
);
3959 slot
= set_slot_part (set
, cval
, slot
, dv
, 0,
3960 node
->init
, node
->set_src
);
3961 clobber_slot_part (set
, cval
, slot
, 0, node
->set_src
);
3966 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3967 corresponding entry in DSM->src. Multi-part variables are combined
3968 with variable_union, whereas onepart dvs are combined with
3972 variable_merge_over_cur (variable
*s1var
, struct dfset_merge
*dsm
)
3974 dataflow_set
*dst
= dsm
->dst
;
3976 variable
*s2var
, *dvar
= NULL
;
3977 decl_or_value dv
= s1var
->dv
;
3978 onepart_enum onepart
= s1var
->onepart
;
3981 location_chain
*node
, **nodep
;
3983 /* If the incoming onepart variable has an empty location list, then
3984 the intersection will be just as empty. For other variables,
3985 it's always union. */
3986 gcc_checking_assert (s1var
->n_var_parts
3987 && s1var
->var_part
[0].loc_chain
);
3990 return variable_union (s1var
, dst
);
3992 gcc_checking_assert (s1var
->n_var_parts
== 1);
3994 dvhash
= dv_htab_hash (dv
);
3995 if (dv_is_value_p (dv
))
3996 val
= dv_as_value (dv
);
4000 s2var
= shared_hash_find_1 (dsm
->src
->vars
, dv
, dvhash
);
4003 dst_can_be_shared
= false;
4007 dsm
->src_onepart_cnt
--;
4008 gcc_assert (s2var
->var_part
[0].loc_chain
4009 && s2var
->onepart
== onepart
4010 && s2var
->n_var_parts
== 1);
4012 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4016 gcc_assert (dvar
->refcount
== 1
4017 && dvar
->onepart
== onepart
4018 && dvar
->n_var_parts
== 1);
4019 nodep
= &dvar
->var_part
[0].loc_chain
;
4027 if (!dstslot
&& !onepart_variable_different_p (s1var
, s2var
))
4029 dstslot
= shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
,
4031 *dstslot
= dvar
= s2var
;
4036 dst_can_be_shared
= false;
4038 intersect_loc_chains (val
, nodep
, dsm
,
4039 s1var
->var_part
[0].loc_chain
, s2var
);
4045 dvar
= onepart_pool_allocate (onepart
);
4048 dvar
->n_var_parts
= 1;
4049 dvar
->onepart
= onepart
;
4050 dvar
->in_changed_variables
= false;
4051 dvar
->var_part
[0].loc_chain
= node
;
4052 dvar
->var_part
[0].cur_loc
= NULL
;
4054 VAR_LOC_1PAUX (dvar
) = NULL
;
4056 VAR_PART_OFFSET (dvar
, 0) = 0;
4059 = shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
, dvhash
,
4061 gcc_assert (!*dstslot
);
4069 nodep
= &dvar
->var_part
[0].loc_chain
;
4070 while ((node
= *nodep
))
4072 location_chain
**nextp
= &node
->next
;
4074 if (GET_CODE (node
->loc
) == REG
)
4078 for (list
= dst
->regs
[REGNO (node
->loc
)]; list
; list
= list
->next
)
4079 if (GET_MODE (node
->loc
) == GET_MODE (list
->loc
)
4080 && dv_is_value_p (list
->dv
))
4084 attrs_list_insert (&dst
->regs
[REGNO (node
->loc
)],
4086 /* If this value became canonical for another value that had
4087 this register, we want to leave it alone. */
4088 else if (dv_as_value (list
->dv
) != val
)
4090 dstslot
= set_slot_part (dst
, dv_as_value (list
->dv
),
4092 node
->init
, NULL_RTX
);
4093 dstslot
= delete_slot_part (dst
, node
->loc
, dstslot
, 0);
4095 /* Since nextp points into the removed node, we can't
4096 use it. The pointer to the next node moved to nodep.
4097 However, if the variable we're walking is unshared
4098 during our walk, we'll keep walking the location list
4099 of the previously-shared variable, in which case the
4100 node won't have been removed, and we'll want to skip
4101 it. That's why we test *nodep here. */
4107 /* Canonicalization puts registers first, so we don't have to
4113 if (dvar
!= *dstslot
)
4115 nodep
= &dvar
->var_part
[0].loc_chain
;
4119 /* Mark all referenced nodes for canonicalization, and make sure
4120 we have mutual equivalence links. */
4121 VALUE_RECURSED_INTO (val
) = true;
4122 for (node
= *nodep
; node
; node
= node
->next
)
4123 if (GET_CODE (node
->loc
) == VALUE
)
4125 VALUE_RECURSED_INTO (node
->loc
) = true;
4126 set_variable_part (dst
, val
, dv_from_value (node
->loc
), 0,
4127 node
->init
, NULL
, INSERT
);
4130 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4131 gcc_assert (*dstslot
== dvar
);
4132 canonicalize_values_star (dstslot
, dst
);
4133 gcc_checking_assert (dstslot
4134 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
4140 bool has_value
= false, has_other
= false;
4142 /* If we have one value and anything else, we're going to
4143 canonicalize this, so make sure all values have an entry in
4144 the table and are marked for canonicalization. */
4145 for (node
= *nodep
; node
; node
= node
->next
)
4147 if (GET_CODE (node
->loc
) == VALUE
)
4149 /* If this was marked during register canonicalization,
4150 we know we have to canonicalize values. */
4165 if (has_value
&& has_other
)
4167 for (node
= *nodep
; node
; node
= node
->next
)
4169 if (GET_CODE (node
->loc
) == VALUE
)
4171 decl_or_value dv
= dv_from_value (node
->loc
);
4172 variable
**slot
= NULL
;
4174 if (shared_hash_shared (dst
->vars
))
4175 slot
= shared_hash_find_slot_noinsert (dst
->vars
, dv
);
4177 slot
= shared_hash_find_slot_unshare (&dst
->vars
, dv
,
4181 variable
*var
= onepart_pool_allocate (ONEPART_VALUE
);
4184 var
->n_var_parts
= 1;
4185 var
->onepart
= ONEPART_VALUE
;
4186 var
->in_changed_variables
= false;
4187 var
->var_part
[0].loc_chain
= NULL
;
4188 var
->var_part
[0].cur_loc
= NULL
;
4189 VAR_LOC_1PAUX (var
) = NULL
;
4193 VALUE_RECURSED_INTO (node
->loc
) = true;
4197 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4198 gcc_assert (*dstslot
== dvar
);
4199 canonicalize_values_star (dstslot
, dst
);
4200 gcc_checking_assert (dstslot
4201 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
4207 if (!onepart_variable_different_p (dvar
, s2var
))
4209 variable_htab_free (dvar
);
4210 *dstslot
= dvar
= s2var
;
4213 else if (s2var
!= s1var
&& !onepart_variable_different_p (dvar
, s1var
))
4215 variable_htab_free (dvar
);
4216 *dstslot
= dvar
= s1var
;
4218 dst_can_be_shared
= false;
4221 dst_can_be_shared
= false;
4226 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4227 multi-part variable. Unions of multi-part variables and
4228 intersections of one-part ones will be handled in
4229 variable_merge_over_cur(). */
4232 variable_merge_over_src (variable
*s2var
, struct dfset_merge
*dsm
)
4234 dataflow_set
*dst
= dsm
->dst
;
4235 decl_or_value dv
= s2var
->dv
;
4237 if (!s2var
->onepart
)
4239 variable
**dstp
= shared_hash_find_slot (dst
->vars
, dv
);
4245 dsm
->src_onepart_cnt
++;
4249 /* Combine dataflow set information from SRC2 into DST, using PDST
4250 to carry over information across passes. */
4253 dataflow_set_merge (dataflow_set
*dst
, dataflow_set
*src2
)
4255 dataflow_set cur
= *dst
;
4256 dataflow_set
*src1
= &cur
;
4257 struct dfset_merge dsm
;
4259 size_t src1_elems
, src2_elems
;
4260 variable_iterator_type hi
;
4263 src1_elems
= shared_hash_htab (src1
->vars
)->elements ();
4264 src2_elems
= shared_hash_htab (src2
->vars
)->elements ();
4265 dataflow_set_init (dst
);
4266 dst
->stack_adjust
= cur
.stack_adjust
;
4267 shared_hash_destroy (dst
->vars
);
4268 dst
->vars
= new shared_hash
;
4269 dst
->vars
->refcount
= 1;
4270 dst
->vars
->htab
= new variable_table_type (MAX (src1_elems
, src2_elems
));
4272 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4273 attrs_list_mpdv_union (&dst
->regs
[i
], src1
->regs
[i
], src2
->regs
[i
]);
4278 dsm
.src_onepart_cnt
= 0;
4280 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm
.src
->vars
),
4282 variable_merge_over_src (var
, &dsm
);
4283 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm
.cur
->vars
),
4285 variable_merge_over_cur (var
, &dsm
);
4287 if (dsm
.src_onepart_cnt
)
4288 dst_can_be_shared
= false;
4290 dataflow_set_destroy (src1
);
4293 /* Mark register equivalences. */
4296 dataflow_set_equiv_regs (dataflow_set
*set
)
4299 attrs
*list
, **listp
;
4301 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4303 rtx canon
[NUM_MACHINE_MODES
];
4305 /* If the list is empty or one entry, no need to canonicalize
4307 if (set
->regs
[i
] == NULL
|| set
->regs
[i
]->next
== NULL
)
4310 memset (canon
, 0, sizeof (canon
));
4312 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
4313 if (list
->offset
== 0 && dv_is_value_p (list
->dv
))
4315 rtx val
= dv_as_value (list
->dv
);
4316 rtx
*cvalp
= &canon
[(int)GET_MODE (val
)];
4319 if (canon_value_cmp (val
, cval
))
4323 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
4324 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
4326 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
4331 if (dv_is_value_p (list
->dv
))
4333 rtx val
= dv_as_value (list
->dv
);
4338 VALUE_RECURSED_INTO (val
) = true;
4339 set_variable_part (set
, val
, dv_from_value (cval
), 0,
4340 VAR_INIT_STATUS_INITIALIZED
,
4344 VALUE_RECURSED_INTO (cval
) = true;
4345 set_variable_part (set
, cval
, list
->dv
, 0,
4346 VAR_INIT_STATUS_INITIALIZED
, NULL
, NO_INSERT
);
4349 for (listp
= &set
->regs
[i
]; (list
= *listp
);
4350 listp
= list
? &list
->next
: listp
)
4351 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
4353 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
4359 if (dv_is_value_p (list
->dv
))
4361 rtx val
= dv_as_value (list
->dv
);
4362 if (!VALUE_RECURSED_INTO (val
))
4366 slot
= shared_hash_find_slot_noinsert (set
->vars
, list
->dv
);
4367 canonicalize_values_star (slot
, set
);
4374 /* Remove any redundant values in the location list of VAR, which must
4375 be unshared and 1-part. */
4378 remove_duplicate_values (variable
*var
)
4380 location_chain
*node
, **nodep
;
4382 gcc_assert (var
->onepart
);
4383 gcc_assert (var
->n_var_parts
== 1);
4384 gcc_assert (var
->refcount
== 1);
4386 for (nodep
= &var
->var_part
[0].loc_chain
; (node
= *nodep
); )
4388 if (GET_CODE (node
->loc
) == VALUE
)
4390 if (VALUE_RECURSED_INTO (node
->loc
))
4392 /* Remove duplicate value node. */
4393 *nodep
= node
->next
;
4398 VALUE_RECURSED_INTO (node
->loc
) = true;
4400 nodep
= &node
->next
;
4403 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4404 if (GET_CODE (node
->loc
) == VALUE
)
4406 gcc_assert (VALUE_RECURSED_INTO (node
->loc
));
4407 VALUE_RECURSED_INTO (node
->loc
) = false;
4412 /* Hash table iteration argument passed to variable_post_merge. */
4413 struct dfset_post_merge
4415 /* The new input set for the current block. */
4417 /* Pointer to the permanent input set for the current block, or
4419 dataflow_set
**permp
;
4422 /* Create values for incoming expressions associated with one-part
4423 variables that don't have value numbers for them. */
4426 variable_post_merge_new_vals (variable
**slot
, dfset_post_merge
*dfpm
)
4428 dataflow_set
*set
= dfpm
->set
;
4429 variable
*var
= *slot
;
4430 location_chain
*node
;
4432 if (!var
->onepart
|| !var
->n_var_parts
)
4435 gcc_assert (var
->n_var_parts
== 1);
4437 if (dv_is_decl_p (var
->dv
))
4439 bool check_dupes
= false;
4442 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4444 if (GET_CODE (node
->loc
) == VALUE
)
4445 gcc_assert (!VALUE_RECURSED_INTO (node
->loc
));
4446 else if (GET_CODE (node
->loc
) == REG
)
4448 attrs
*att
, **attp
, **curp
= NULL
;
4450 if (var
->refcount
!= 1)
4452 slot
= unshare_variable (set
, slot
, var
,
4453 VAR_INIT_STATUS_INITIALIZED
);
4458 for (attp
= &set
->regs
[REGNO (node
->loc
)]; (att
= *attp
);
4460 if (att
->offset
== 0
4461 && GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
4463 if (dv_is_value_p (att
->dv
))
4465 rtx cval
= dv_as_value (att
->dv
);
4470 else if (dv_as_opaque (att
->dv
) == dv_as_opaque (var
->dv
))
4478 if ((*curp
)->offset
== 0
4479 && GET_MODE ((*curp
)->loc
) == GET_MODE (node
->loc
)
4480 && dv_as_opaque ((*curp
)->dv
) == dv_as_opaque (var
->dv
))
4483 curp
= &(*curp
)->next
;
4494 *dfpm
->permp
= XNEW (dataflow_set
);
4495 dataflow_set_init (*dfpm
->permp
);
4498 for (att
= (*dfpm
->permp
)->regs
[REGNO (node
->loc
)];
4499 att
; att
= att
->next
)
4500 if (GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
4502 gcc_assert (att
->offset
== 0
4503 && dv_is_value_p (att
->dv
));
4504 val_reset (set
, att
->dv
);
4511 cval
= dv_as_value (cdv
);
4515 /* Create a unique value to hold this register,
4516 that ought to be found and reused in
4517 subsequent rounds. */
4519 gcc_assert (!cselib_lookup (node
->loc
,
4520 GET_MODE (node
->loc
), 0,
4522 v
= cselib_lookup (node
->loc
, GET_MODE (node
->loc
), 1,
4524 cselib_preserve_value (v
);
4525 cselib_invalidate_rtx (node
->loc
);
4527 cdv
= dv_from_value (cval
);
4530 "Created new value %u:%u for reg %i\n",
4531 v
->uid
, v
->hash
, REGNO (node
->loc
));
4534 var_reg_decl_set (*dfpm
->permp
, node
->loc
,
4535 VAR_INIT_STATUS_INITIALIZED
,
4536 cdv
, 0, NULL
, INSERT
);
4542 /* Remove attribute referring to the decl, which now
4543 uses the value for the register, already existing or
4544 to be added when we bring perm in. */
4552 remove_duplicate_values (var
);
4558 /* Reset values in the permanent set that are not associated with the
4559 chosen expression. */
4562 variable_post_merge_perm_vals (variable
**pslot
, dfset_post_merge
*dfpm
)
4564 dataflow_set
*set
= dfpm
->set
;
4565 variable
*pvar
= *pslot
, *var
;
4566 location_chain
*pnode
;
4570 gcc_assert (dv_is_value_p (pvar
->dv
)
4571 && pvar
->n_var_parts
== 1);
4572 pnode
= pvar
->var_part
[0].loc_chain
;
4575 && REG_P (pnode
->loc
));
4579 var
= shared_hash_find (set
->vars
, dv
);
4582 /* Although variable_post_merge_new_vals may have made decls
4583 non-star-canonical, values that pre-existed in canonical form
4584 remain canonical, and newly-created values reference a single
4585 REG, so they are canonical as well. Since VAR has the
4586 location list for a VALUE, using find_loc_in_1pdv for it is
4587 fine, since VALUEs don't map back to DECLs. */
4588 if (find_loc_in_1pdv (pnode
->loc
, var
, shared_hash_htab (set
->vars
)))
4590 val_reset (set
, dv
);
4593 for (att
= set
->regs
[REGNO (pnode
->loc
)]; att
; att
= att
->next
)
4594 if (att
->offset
== 0
4595 && GET_MODE (att
->loc
) == GET_MODE (pnode
->loc
)
4596 && dv_is_value_p (att
->dv
))
4599 /* If there is a value associated with this register already, create
4601 if (att
&& dv_as_value (att
->dv
) != dv_as_value (dv
))
4603 rtx cval
= dv_as_value (att
->dv
);
4604 set_variable_part (set
, cval
, dv
, 0, pnode
->init
, NULL
, INSERT
);
4605 set_variable_part (set
, dv_as_value (dv
), att
->dv
, 0, pnode
->init
,
4610 attrs_list_insert (&set
->regs
[REGNO (pnode
->loc
)],
4612 variable_union (pvar
, set
);
4618 /* Just checking stuff and registering register attributes for
4622 dataflow_post_merge_adjust (dataflow_set
*set
, dataflow_set
**permp
)
4624 struct dfset_post_merge dfpm
;
4629 shared_hash_htab (set
->vars
)
4630 ->traverse
<dfset_post_merge
*, variable_post_merge_new_vals
> (&dfpm
);
4632 shared_hash_htab ((*permp
)->vars
)
4633 ->traverse
<dfset_post_merge
*, variable_post_merge_perm_vals
> (&dfpm
);
4634 shared_hash_htab (set
->vars
)
4635 ->traverse
<dataflow_set
*, canonicalize_values_star
> (set
);
4636 shared_hash_htab (set
->vars
)
4637 ->traverse
<dataflow_set
*, canonicalize_vars_star
> (set
);
4640 /* Return a node whose loc is a MEM that refers to EXPR in the
4641 location list of a one-part variable or value VAR, or in that of
4642 any values recursively mentioned in the location lists. */
4644 static location_chain
*
4645 find_mem_expr_in_1pdv (tree expr
, rtx val
, variable_table_type
*vars
)
4647 location_chain
*node
;
4650 location_chain
*where
= NULL
;
4655 gcc_assert (GET_CODE (val
) == VALUE
4656 && !VALUE_RECURSED_INTO (val
));
4658 dv
= dv_from_value (val
);
4659 var
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
4664 gcc_assert (var
->onepart
);
4666 if (!var
->n_var_parts
)
4669 VALUE_RECURSED_INTO (val
) = true;
4671 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4672 if (MEM_P (node
->loc
)
4673 && MEM_EXPR (node
->loc
) == expr
4674 && int_mem_offset (node
->loc
) == 0)
4679 else if (GET_CODE (node
->loc
) == VALUE
4680 && !VALUE_RECURSED_INTO (node
->loc
)
4681 && (where
= find_mem_expr_in_1pdv (expr
, node
->loc
, vars
)))
4684 VALUE_RECURSED_INTO (val
) = false;
4689 /* Return TRUE if the value of MEM may vary across a call. */
4692 mem_dies_at_call (rtx mem
)
4694 tree expr
= MEM_EXPR (mem
);
4700 decl
= get_base_address (expr
);
4708 return (may_be_aliased (decl
)
4709 || (!TREE_READONLY (decl
) && is_global_var (decl
)));
4712 /* Remove all MEMs from the location list of a hash table entry for a
4713 one-part variable, except those whose MEM attributes map back to
4714 the variable itself, directly or within a VALUE. */
4717 dataflow_set_preserve_mem_locs (variable
**slot
, dataflow_set
*set
)
4719 variable
*var
= *slot
;
4721 if (var
->onepart
== ONEPART_VDECL
|| var
->onepart
== ONEPART_DEXPR
)
4723 tree decl
= dv_as_decl (var
->dv
);
4724 location_chain
*loc
, **locp
;
4725 bool changed
= false;
4727 if (!var
->n_var_parts
)
4730 gcc_assert (var
->n_var_parts
== 1);
4732 if (shared_var_p (var
, set
->vars
))
4734 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4736 /* We want to remove dying MEMs that don't refer to DECL. */
4737 if (GET_CODE (loc
->loc
) == MEM
4738 && (MEM_EXPR (loc
->loc
) != decl
4739 || int_mem_offset (loc
->loc
) != 0)
4740 && mem_dies_at_call (loc
->loc
))
4742 /* We want to move here MEMs that do refer to DECL. */
4743 else if (GET_CODE (loc
->loc
) == VALUE
4744 && find_mem_expr_in_1pdv (decl
, loc
->loc
,
4745 shared_hash_htab (set
->vars
)))
4752 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4754 gcc_assert (var
->n_var_parts
== 1);
4757 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4760 rtx old_loc
= loc
->loc
;
4761 if (GET_CODE (old_loc
) == VALUE
)
4763 location_chain
*mem_node
4764 = find_mem_expr_in_1pdv (decl
, loc
->loc
,
4765 shared_hash_htab (set
->vars
));
4767 /* ??? This picks up only one out of multiple MEMs that
4768 refer to the same variable. Do we ever need to be
4769 concerned about dealing with more than one, or, given
4770 that they should all map to the same variable
4771 location, their addresses will have been merged and
4772 they will be regarded as equivalent? */
4775 loc
->loc
= mem_node
->loc
;
4776 loc
->set_src
= mem_node
->set_src
;
4777 loc
->init
= MIN (loc
->init
, mem_node
->init
);
4781 if (GET_CODE (loc
->loc
) != MEM
4782 || (MEM_EXPR (loc
->loc
) == decl
4783 && int_mem_offset (loc
->loc
) == 0)
4784 || !mem_dies_at_call (loc
->loc
))
4786 if (old_loc
!= loc
->loc
&& emit_notes
)
4788 if (old_loc
== var
->var_part
[0].cur_loc
)
4791 var
->var_part
[0].cur_loc
= NULL
;
4800 if (old_loc
== var
->var_part
[0].cur_loc
)
4803 var
->var_part
[0].cur_loc
= NULL
;
4810 if (!var
->var_part
[0].loc_chain
)
4816 variable_was_changed (var
, set
);
4822 /* Remove all MEMs from the location list of a hash table entry for a
4823 onepart variable. */
4826 dataflow_set_remove_mem_locs (variable
**slot
, dataflow_set
*set
)
4828 variable
*var
= *slot
;
4830 if (var
->onepart
!= NOT_ONEPART
)
4832 location_chain
*loc
, **locp
;
4833 bool changed
= false;
4836 gcc_assert (var
->n_var_parts
== 1);
4838 if (shared_var_p (var
, set
->vars
))
4840 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4841 if (GET_CODE (loc
->loc
) == MEM
4842 && mem_dies_at_call (loc
->loc
))
4848 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4850 gcc_assert (var
->n_var_parts
== 1);
4853 if (VAR_LOC_1PAUX (var
))
4854 cur_loc
= VAR_LOC_FROM (var
);
4856 cur_loc
= var
->var_part
[0].cur_loc
;
4858 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4861 if (GET_CODE (loc
->loc
) != MEM
4862 || !mem_dies_at_call (loc
->loc
))
4869 /* If we have deleted the location which was last emitted
4870 we have to emit new location so add the variable to set
4871 of changed variables. */
4872 if (cur_loc
== loc
->loc
)
4875 var
->var_part
[0].cur_loc
= NULL
;
4876 if (VAR_LOC_1PAUX (var
))
4877 VAR_LOC_FROM (var
) = NULL
;
4882 if (!var
->var_part
[0].loc_chain
)
4888 variable_was_changed (var
, set
);
4894 /* Remove all variable-location information about call-clobbered
4895 registers, as well as associations between MEMs and VALUEs. */
4898 dataflow_set_clear_at_call (dataflow_set
*set
, rtx_insn
*call_insn
)
4901 hard_reg_set_iterator hrsi
;
4902 HARD_REG_SET invalidated_regs
;
4904 get_call_reg_set_usage (call_insn
, &invalidated_regs
,
4905 regs_invalidated_by_call
);
4907 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs
, 0, r
, hrsi
)
4908 var_regno_delete (set
, r
);
4910 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4912 set
->traversed_vars
= set
->vars
;
4913 shared_hash_htab (set
->vars
)
4914 ->traverse
<dataflow_set
*, dataflow_set_preserve_mem_locs
> (set
);
4915 set
->traversed_vars
= set
->vars
;
4916 shared_hash_htab (set
->vars
)
4917 ->traverse
<dataflow_set
*, dataflow_set_remove_mem_locs
> (set
);
4918 set
->traversed_vars
= NULL
;
4923 variable_part_different_p (variable_part
*vp1
, variable_part
*vp2
)
4925 location_chain
*lc1
, *lc2
;
4927 for (lc1
= vp1
->loc_chain
; lc1
; lc1
= lc1
->next
)
4929 for (lc2
= vp2
->loc_chain
; lc2
; lc2
= lc2
->next
)
4931 if (REG_P (lc1
->loc
) && REG_P (lc2
->loc
))
4933 if (REGNO (lc1
->loc
) == REGNO (lc2
->loc
))
4936 if (rtx_equal_p (lc1
->loc
, lc2
->loc
))
4945 /* Return true if one-part variables VAR1 and VAR2 are different.
4946 They must be in canonical order. */
4949 onepart_variable_different_p (variable
*var1
, variable
*var2
)
4951 location_chain
*lc1
, *lc2
;
4956 gcc_assert (var1
->n_var_parts
== 1
4957 && var2
->n_var_parts
== 1);
4959 lc1
= var1
->var_part
[0].loc_chain
;
4960 lc2
= var2
->var_part
[0].loc_chain
;
4962 gcc_assert (lc1
&& lc2
);
4966 if (loc_cmp (lc1
->loc
, lc2
->loc
))
4975 /* Return true if one-part variables VAR1 and VAR2 are different.
4976 They must be in canonical order. */
4979 dump_onepart_variable_differences (variable
*var1
, variable
*var2
)
4981 location_chain
*lc1
, *lc2
;
4983 gcc_assert (var1
!= var2
);
4984 gcc_assert (dump_file
);
4985 gcc_assert (dv_as_opaque (var1
->dv
) == dv_as_opaque (var2
->dv
));
4986 gcc_assert (var1
->n_var_parts
== 1
4987 && var2
->n_var_parts
== 1);
4989 lc1
= var1
->var_part
[0].loc_chain
;
4990 lc2
= var2
->var_part
[0].loc_chain
;
4992 gcc_assert (lc1
&& lc2
);
4996 switch (loc_cmp (lc1
->loc
, lc2
->loc
))
4999 fprintf (dump_file
, "removed: ");
5000 print_rtl_single (dump_file
, lc1
->loc
);
5006 fprintf (dump_file
, "added: ");
5007 print_rtl_single (dump_file
, lc2
->loc
);
5019 fprintf (dump_file
, "removed: ");
5020 print_rtl_single (dump_file
, lc1
->loc
);
5026 fprintf (dump_file
, "added: ");
5027 print_rtl_single (dump_file
, lc2
->loc
);
5032 /* Return true if variables VAR1 and VAR2 are different. */
5035 variable_different_p (variable
*var1
, variable
*var2
)
5042 if (var1
->onepart
!= var2
->onepart
)
5045 if (var1
->n_var_parts
!= var2
->n_var_parts
)
5048 if (var1
->onepart
&& var1
->n_var_parts
)
5050 gcc_checking_assert (dv_as_opaque (var1
->dv
) == dv_as_opaque (var2
->dv
)
5051 && var1
->n_var_parts
== 1);
5052 /* One-part values have locations in a canonical order. */
5053 return onepart_variable_different_p (var1
, var2
);
5056 for (i
= 0; i
< var1
->n_var_parts
; i
++)
5058 if (VAR_PART_OFFSET (var1
, i
) != VAR_PART_OFFSET (var2
, i
))
5060 if (variable_part_different_p (&var1
->var_part
[i
], &var2
->var_part
[i
]))
5062 if (variable_part_different_p (&var2
->var_part
[i
], &var1
->var_part
[i
]))
5068 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5071 dataflow_set_different (dataflow_set
*old_set
, dataflow_set
*new_set
)
5073 variable_iterator_type hi
;
5075 bool diffound
= false;
5076 bool details
= (dump_file
&& (dump_flags
& TDF_DETAILS
));
5088 if (old_set
->vars
== new_set
->vars
)
5091 if (shared_hash_htab (old_set
->vars
)->elements ()
5092 != shared_hash_htab (new_set
->vars
)->elements ())
5095 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set
->vars
),
5098 variable_table_type
*htab
= shared_hash_htab (new_set
->vars
);
5099 variable
*var2
= htab
->find_with_hash (var1
->dv
, dv_htab_hash (var1
->dv
));
5103 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5105 fprintf (dump_file
, "dataflow difference found: removal of:\n");
5110 else if (variable_different_p (var1
, var2
))
5114 fprintf (dump_file
, "dataflow difference found: "
5115 "old and new follow:\n");
5117 if (dv_onepart_p (var1
->dv
))
5118 dump_onepart_variable_differences (var1
, var2
);
5125 /* There's no need to traverse the second hashtab unless we want to
5126 print the details. If both have the same number of elements and
5127 the second one had all entries found in the first one, then the
5128 second can't have any extra entries. */
5132 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (new_set
->vars
),
5135 variable_table_type
*htab
= shared_hash_htab (old_set
->vars
);
5136 variable
*var2
= htab
->find_with_hash (var1
->dv
, dv_htab_hash (var1
->dv
));
5141 fprintf (dump_file
, "dataflow difference found: addition of:\n");
5153 /* Free the contents of dataflow set SET. */
5156 dataflow_set_destroy (dataflow_set
*set
)
5160 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5161 attrs_list_clear (&set
->regs
[i
]);
5163 shared_hash_destroy (set
->vars
);
5167 /* Return true if T is a tracked parameter with non-degenerate record type. */
5170 tracked_record_parameter_p (tree t
)
5172 if (TREE_CODE (t
) != PARM_DECL
)
5175 if (DECL_MODE (t
) == BLKmode
)
5178 tree type
= TREE_TYPE (t
);
5179 if (TREE_CODE (type
) != RECORD_TYPE
)
5182 if (TYPE_FIELDS (type
) == NULL_TREE
5183 || DECL_CHAIN (TYPE_FIELDS (type
)) == NULL_TREE
)
5189 /* Shall EXPR be tracked? */
5192 track_expr_p (tree expr
, bool need_rtl
)
5197 if (TREE_CODE (expr
) == DEBUG_EXPR_DECL
)
5198 return DECL_RTL_SET_P (expr
);
5200 /* If EXPR is not a parameter or a variable do not track it. */
5201 if (!VAR_P (expr
) && TREE_CODE (expr
) != PARM_DECL
)
5204 /* It also must have a name... */
5205 if (!DECL_NAME (expr
) && need_rtl
)
5208 /* ... and a RTL assigned to it. */
5209 decl_rtl
= DECL_RTL_IF_SET (expr
);
5210 if (!decl_rtl
&& need_rtl
)
5213 /* If this expression is really a debug alias of some other declaration, we
5214 don't need to track this expression if the ultimate declaration is
5217 if (VAR_P (realdecl
) && DECL_HAS_DEBUG_EXPR_P (realdecl
))
5219 realdecl
= DECL_DEBUG_EXPR (realdecl
);
5220 if (!DECL_P (realdecl
))
5222 if (handled_component_p (realdecl
)
5223 || (TREE_CODE (realdecl
) == MEM_REF
5224 && TREE_CODE (TREE_OPERAND (realdecl
, 0)) == ADDR_EXPR
))
5226 HOST_WIDE_INT bitsize
, bitpos
;
5229 = get_ref_base_and_extent_hwi (realdecl
, &bitpos
,
5230 &bitsize
, &reverse
);
5232 || !DECL_P (innerdecl
)
5233 || DECL_IGNORED_P (innerdecl
)
5234 /* Do not track declarations for parts of tracked record
5235 parameters since we want to track them as a whole. */
5236 || tracked_record_parameter_p (innerdecl
)
5237 || TREE_STATIC (innerdecl
)
5239 || bitpos
+ bitsize
> 256)
5249 /* Do not track EXPR if REALDECL it should be ignored for debugging
5251 if (DECL_IGNORED_P (realdecl
))
5254 /* Do not track global variables until we are able to emit correct location
5256 if (TREE_STATIC (realdecl
))
5259 /* When the EXPR is a DECL for alias of some variable (see example)
5260 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5261 DECL_RTL contains SYMBOL_REF.
5264 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5267 if (decl_rtl
&& MEM_P (decl_rtl
)
5268 && contains_symbol_ref_p (XEXP (decl_rtl
, 0)))
5271 /* If RTX is a memory it should not be very large (because it would be
5272 an array or struct). */
5273 if (decl_rtl
&& MEM_P (decl_rtl
))
5275 /* Do not track structures and arrays. */
5276 if ((GET_MODE (decl_rtl
) == BLKmode
5277 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl
)))
5278 && !tracked_record_parameter_p (realdecl
))
5280 if (MEM_SIZE_KNOWN_P (decl_rtl
)
5281 && maybe_gt (MEM_SIZE (decl_rtl
), MAX_VAR_PARTS
))
5285 DECL_CHANGED (expr
) = 0;
5286 DECL_CHANGED (realdecl
) = 0;
5290 /* Determine whether a given LOC refers to the same variable part as
5294 same_variable_part_p (rtx loc
, tree expr
, poly_int64 offset
)
5299 if (! DECL_P (expr
))
5304 expr2
= REG_EXPR (loc
);
5305 offset2
= REG_OFFSET (loc
);
5307 else if (MEM_P (loc
))
5309 expr2
= MEM_EXPR (loc
);
5310 offset2
= int_mem_offset (loc
);
5315 if (! expr2
|| ! DECL_P (expr2
))
5318 expr
= var_debug_decl (expr
);
5319 expr2
= var_debug_decl (expr2
);
5321 return (expr
== expr2
&& known_eq (offset
, offset2
));
5324 /* LOC is a REG or MEM that we would like to track if possible.
5325 If EXPR is null, we don't know what expression LOC refers to,
5326 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5327 LOC is an lvalue register.
5329 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5330 is something we can track. When returning true, store the mode of
5331 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5332 from EXPR in *OFFSET_OUT (if nonnull). */
5335 track_loc_p (rtx loc
, tree expr
, poly_int64 offset
, bool store_reg_p
,
5336 machine_mode
*mode_out
, HOST_WIDE_INT
*offset_out
)
5340 if (expr
== NULL
|| !track_expr_p (expr
, true))
5343 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5344 whole subreg, but only the old inner part is really relevant. */
5345 mode
= GET_MODE (loc
);
5346 if (REG_P (loc
) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc
)))
5348 machine_mode pseudo_mode
;
5350 pseudo_mode
= PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc
));
5351 if (paradoxical_subreg_p (mode
, pseudo_mode
))
5353 offset
+= byte_lowpart_offset (pseudo_mode
, mode
);
5358 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5359 Do the same if we are storing to a register and EXPR occupies
5360 the whole of register LOC; in that case, the whole of EXPR is
5361 being changed. We exclude complex modes from the second case
5362 because the real and imaginary parts are represented as separate
5363 pseudo registers, even if the whole complex value fits into one
5365 if ((paradoxical_subreg_p (mode
, DECL_MODE (expr
))
5367 && !COMPLEX_MODE_P (DECL_MODE (expr
))
5368 && hard_regno_nregs (REGNO (loc
), DECL_MODE (expr
)) == 1))
5369 && known_eq (offset
+ byte_lowpart_offset (DECL_MODE (expr
), mode
), 0))
5371 mode
= DECL_MODE (expr
);
5375 HOST_WIDE_INT const_offset
;
5376 if (!track_offset_p (offset
, &const_offset
))
5382 *offset_out
= const_offset
;
5386 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5387 want to track. When returning nonnull, make sure that the attributes
5388 on the returned value are updated. */
5391 var_lowpart (machine_mode mode
, rtx loc
)
5395 if (GET_MODE (loc
) == mode
)
5398 if (!REG_P (loc
) && !MEM_P (loc
))
5401 poly_uint64 offset
= byte_lowpart_offset (mode
, GET_MODE (loc
));
5404 return adjust_address_nv (loc
, mode
, offset
);
5406 poly_uint64 reg_offset
= subreg_lowpart_offset (mode
, GET_MODE (loc
));
5407 regno
= REGNO (loc
) + subreg_regno_offset (REGNO (loc
), GET_MODE (loc
),
5409 return gen_rtx_REG_offset (loc
, mode
, regno
, offset
);
5412 /* Carry information about uses and stores while walking rtx. */
5414 struct count_use_info
5416 /* The insn where the RTX is. */
5419 /* The basic block where insn is. */
5422 /* The array of n_sets sets in the insn, as determined by cselib. */
5423 struct cselib_set
*sets
;
5426 /* True if we're counting stores, false otherwise. */
5430 /* Find a VALUE corresponding to X. */
5432 static inline cselib_val
*
5433 find_use_val (rtx x
, machine_mode mode
, struct count_use_info
*cui
)
5439 /* This is called after uses are set up and before stores are
5440 processed by cselib, so it's safe to look up srcs, but not
5441 dsts. So we look up expressions that appear in srcs or in
5442 dest expressions, but we search the sets array for dests of
5446 /* Some targets represent memset and memcpy patterns
5447 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5448 (set (mem:BLK ...) (const_int ...)) or
5449 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5450 in that case, otherwise we end up with mode mismatches. */
5451 if (mode
== BLKmode
&& MEM_P (x
))
5453 for (i
= 0; i
< cui
->n_sets
; i
++)
5454 if (cui
->sets
[i
].dest
== x
)
5455 return cui
->sets
[i
].src_elt
;
5458 return cselib_lookup (x
, mode
, 0, VOIDmode
);
5464 /* Replace all registers and addresses in an expression with VALUE
5465 expressions that map back to them, unless the expression is a
5466 register. If no mapping is or can be performed, returns NULL. */
5469 replace_expr_with_values (rtx loc
)
5471 if (REG_P (loc
) || GET_CODE (loc
) == ENTRY_VALUE
)
5473 else if (MEM_P (loc
))
5475 cselib_val
*addr
= cselib_lookup (XEXP (loc
, 0),
5476 get_address_mode (loc
), 0,
5479 return replace_equiv_address_nv (loc
, addr
->val_rtx
);
5484 return cselib_subst_to_values (loc
, VOIDmode
);
5487 /* Return true if X contains a DEBUG_EXPR. */
5490 rtx_debug_expr_p (const_rtx x
)
5492 subrtx_iterator::array_type array
;
5493 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
5494 if (GET_CODE (*iter
) == DEBUG_EXPR
)
5499 /* Determine what kind of micro operation to choose for a USE. Return
5500 MO_CLOBBER if no micro operation is to be generated. */
5502 static enum micro_operation_type
5503 use_type (rtx loc
, struct count_use_info
*cui
, machine_mode
*modep
)
5507 if (cui
&& cui
->sets
)
5509 if (GET_CODE (loc
) == VAR_LOCATION
)
5511 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc
), false))
5513 rtx ploc
= PAT_VAR_LOCATION_LOC (loc
);
5514 if (! VAR_LOC_UNKNOWN_P (ploc
))
5516 cselib_val
*val
= cselib_lookup (ploc
, GET_MODE (loc
), 1,
5519 /* ??? flag_float_store and volatile mems are never
5520 given values, but we could in theory use them for
5522 gcc_assert (val
|| 1);
5530 if (REG_P (loc
) || MEM_P (loc
))
5533 *modep
= GET_MODE (loc
);
5537 || (find_use_val (loc
, GET_MODE (loc
), cui
)
5538 && cselib_lookup (XEXP (loc
, 0),
5539 get_address_mode (loc
), 0,
5545 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5547 if (val
&& !cselib_preserved_value_p (val
))
5555 gcc_assert (REGNO (loc
) < FIRST_PSEUDO_REGISTER
);
5557 if (loc
== cfa_base_rtx
)
5559 expr
= REG_EXPR (loc
);
5562 return MO_USE_NO_VAR
;
5563 else if (target_for_debug_bind (var_debug_decl (expr
)))
5565 else if (track_loc_p (loc
, expr
, REG_OFFSET (loc
),
5566 false, modep
, NULL
))
5569 return MO_USE_NO_VAR
;
5571 else if (MEM_P (loc
))
5573 expr
= MEM_EXPR (loc
);
5577 else if (target_for_debug_bind (var_debug_decl (expr
)))
5579 else if (track_loc_p (loc
, expr
, int_mem_offset (loc
),
5581 /* Multi-part variables shouldn't refer to one-part
5582 variable names such as VALUEs (never happens) or
5583 DEBUG_EXPRs (only happens in the presence of debug
5585 && (!MAY_HAVE_DEBUG_BIND_INSNS
5586 || !rtx_debug_expr_p (XEXP (loc
, 0))))
5595 /* Log to OUT information about micro-operation MOPT involving X in
5599 log_op_type (rtx x
, basic_block bb
, rtx_insn
*insn
,
5600 enum micro_operation_type mopt
, FILE *out
)
5602 fprintf (out
, "bb %i op %i insn %i %s ",
5603 bb
->index
, VTI (bb
)->mos
.length (),
5604 INSN_UID (insn
), micro_operation_type_name
[mopt
]);
5605 print_inline_rtx (out
, x
, 2);
5609 /* Tell whether the CONCAT used to holds a VALUE and its location
5610 needs value resolution, i.e., an attempt of mapping the location
5611 back to other incoming values. */
5612 #define VAL_NEEDS_RESOLUTION(x) \
5613 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5614 /* Whether the location in the CONCAT is a tracked expression, that
5615 should also be handled like a MO_USE. */
5616 #define VAL_HOLDS_TRACK_EXPR(x) \
5617 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5618 /* Whether the location in the CONCAT should be handled like a MO_COPY
5620 #define VAL_EXPR_IS_COPIED(x) \
5621 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5622 /* Whether the location in the CONCAT should be handled like a
5623 MO_CLOBBER as well. */
5624 #define VAL_EXPR_IS_CLOBBERED(x) \
5625 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5627 /* All preserved VALUEs. */
5628 static vec
<rtx
> preserved_values
;
5630 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5633 preserve_value (cselib_val
*val
)
5635 cselib_preserve_value (val
);
5636 preserved_values
.safe_push (val
->val_rtx
);
5639 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5640 any rtxes not suitable for CONST use not replaced by VALUEs
5644 non_suitable_const (const_rtx x
)
5646 subrtx_iterator::array_type array
;
5647 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
5649 const_rtx x
= *iter
;
5650 switch (GET_CODE (x
))
5661 if (!MEM_READONLY_P (x
))
5671 /* Add uses (register and memory references) LOC which will be tracked
5672 to VTI (bb)->mos. */
5675 add_uses (rtx loc
, struct count_use_info
*cui
)
5677 machine_mode mode
= VOIDmode
;
5678 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5680 if (type
!= MO_CLOBBER
)
5682 basic_block bb
= cui
->bb
;
5686 mo
.u
.loc
= type
== MO_USE
? var_lowpart (mode
, loc
) : loc
;
5687 mo
.insn
= cui
->insn
;
5689 if (type
== MO_VAL_LOC
)
5692 rtx vloc
= PAT_VAR_LOCATION_LOC (oloc
);
5695 gcc_assert (cui
->sets
);
5698 && !REG_P (XEXP (vloc
, 0))
5699 && !MEM_P (XEXP (vloc
, 0)))
5702 machine_mode address_mode
= get_address_mode (mloc
);
5704 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0,
5707 if (val
&& !cselib_preserved_value_p (val
))
5708 preserve_value (val
);
5711 if (CONSTANT_P (vloc
)
5712 && (GET_CODE (vloc
) != CONST
|| non_suitable_const (vloc
)))
5713 /* For constants don't look up any value. */;
5714 else if (!VAR_LOC_UNKNOWN_P (vloc
) && !unsuitable_loc (vloc
)
5715 && (val
= find_use_val (vloc
, GET_MODE (oloc
), cui
)))
5718 enum micro_operation_type type2
;
5720 bool resolvable
= REG_P (vloc
) || MEM_P (vloc
);
5723 nloc
= replace_expr_with_values (vloc
);
5727 oloc
= shallow_copy_rtx (oloc
);
5728 PAT_VAR_LOCATION_LOC (oloc
) = nloc
;
5731 oloc
= gen_rtx_CONCAT (mode
, val
->val_rtx
, oloc
);
5733 type2
= use_type (vloc
, 0, &mode2
);
5735 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5736 || type2
== MO_CLOBBER
);
5738 if (type2
== MO_CLOBBER
5739 && !cselib_preserved_value_p (val
))
5741 VAL_NEEDS_RESOLUTION (oloc
) = resolvable
;
5742 preserve_value (val
);
5745 else if (!VAR_LOC_UNKNOWN_P (vloc
))
5747 oloc
= shallow_copy_rtx (oloc
);
5748 PAT_VAR_LOCATION_LOC (oloc
) = gen_rtx_UNKNOWN_VAR_LOC ();
5753 else if (type
== MO_VAL_USE
)
5755 machine_mode mode2
= VOIDmode
;
5756 enum micro_operation_type type2
;
5757 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5758 rtx vloc
, oloc
= loc
, nloc
;
5760 gcc_assert (cui
->sets
);
5763 && !REG_P (XEXP (oloc
, 0))
5764 && !MEM_P (XEXP (oloc
, 0)))
5767 machine_mode address_mode
= get_address_mode (mloc
);
5769 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0,
5772 if (val
&& !cselib_preserved_value_p (val
))
5773 preserve_value (val
);
5776 type2
= use_type (loc
, 0, &mode2
);
5778 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5779 || type2
== MO_CLOBBER
);
5781 if (type2
== MO_USE
)
5782 vloc
= var_lowpart (mode2
, loc
);
5786 /* The loc of a MO_VAL_USE may have two forms:
5788 (concat val src): val is at src, a value-based
5791 (concat (concat val use) src): same as above, with use as
5792 the MO_USE tracked value, if it differs from src.
5796 gcc_checking_assert (REG_P (loc
) || MEM_P (loc
));
5797 nloc
= replace_expr_with_values (loc
);
5802 oloc
= gen_rtx_CONCAT (mode2
, val
->val_rtx
, vloc
);
5804 oloc
= val
->val_rtx
;
5806 mo
.u
.loc
= gen_rtx_CONCAT (mode
, oloc
, nloc
);
5808 if (type2
== MO_USE
)
5809 VAL_HOLDS_TRACK_EXPR (mo
.u
.loc
) = 1;
5810 if (!cselib_preserved_value_p (val
))
5812 VAL_NEEDS_RESOLUTION (mo
.u
.loc
) = 1;
5813 preserve_value (val
);
5817 gcc_assert (type
== MO_USE
|| type
== MO_USE_NO_VAR
);
5819 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5820 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
5821 VTI (bb
)->mos
.safe_push (mo
);
5825 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5828 add_uses_1 (rtx
*x
, void *cui
)
5830 subrtx_var_iterator::array_type array
;
5831 FOR_EACH_SUBRTX_VAR (iter
, array
, *x
, NONCONST
)
5832 add_uses (*iter
, (struct count_use_info
*) cui
);
5835 /* This is the value used during expansion of locations. We want it
5836 to be unbounded, so that variables expanded deep in a recursion
5837 nest are fully evaluated, so that their values are cached
5838 correctly. We avoid recursion cycles through other means, and we
5839 don't unshare RTL, so excess complexity is not a problem. */
5840 #define EXPR_DEPTH (INT_MAX)
5841 /* We use this to keep too-complex expressions from being emitted as
5842 location notes, and then to debug information. Users can trade
5843 compile time for ridiculously complex expressions, although they're
5844 seldom useful, and they may often have to be discarded as not
5845 representable anyway. */
5846 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5848 /* Attempt to reverse the EXPR operation in the debug info and record
5849 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5850 no longer live we can express its value as VAL - 6. */
5853 reverse_op (rtx val
, const_rtx expr
, rtx_insn
*insn
)
5857 struct elt_loc_list
*l
;
5861 if (GET_CODE (expr
) != SET
)
5864 if (!REG_P (SET_DEST (expr
)) || GET_MODE (val
) != GET_MODE (SET_DEST (expr
)))
5867 src
= SET_SRC (expr
);
5868 switch (GET_CODE (src
))
5875 if (!REG_P (XEXP (src
, 0)))
5880 if (!REG_P (XEXP (src
, 0)) && !MEM_P (XEXP (src
, 0)))
5887 if (!SCALAR_INT_MODE_P (GET_MODE (src
)) || XEXP (src
, 0) == cfa_base_rtx
)
5890 v
= cselib_lookup (XEXP (src
, 0), GET_MODE (XEXP (src
, 0)), 0, VOIDmode
);
5891 if (!v
|| !cselib_preserved_value_p (v
))
5894 /* Use canonical V to avoid creating multiple redundant expressions
5895 for different VALUES equivalent to V. */
5896 v
= canonical_cselib_val (v
);
5898 /* Adding a reverse op isn't useful if V already has an always valid
5899 location. Ignore ENTRY_VALUE, while it is always constant, we should
5900 prefer non-ENTRY_VALUE locations whenever possible. */
5901 for (l
= v
->locs
, count
= 0; l
; l
= l
->next
, count
++)
5902 if (CONSTANT_P (l
->loc
)
5903 && (GET_CODE (l
->loc
) != CONST
|| !references_value_p (l
->loc
, 0)))
5905 /* Avoid creating too large locs lists. */
5906 else if (count
== PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE
))
5909 switch (GET_CODE (src
))
5913 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5915 ret
= gen_rtx_fmt_e (GET_CODE (src
), GET_MODE (val
), val
);
5919 ret
= gen_lowpart_SUBREG (GET_MODE (v
->val_rtx
), val
);
5931 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5933 arg
= XEXP (src
, 1);
5934 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5936 arg
= cselib_expand_value_rtx (arg
, scratch_regs
, 5);
5937 if (arg
== NULL_RTX
)
5939 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5942 ret
= simplify_gen_binary (code
, GET_MODE (val
), val
, arg
);
5948 cselib_add_permanent_equiv (v
, ret
, insn
);
5951 /* Add stores (register and memory references) LOC which will be tracked
5952 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5953 CUIP->insn is instruction which the LOC is part of. */
5956 add_stores (rtx loc
, const_rtx expr
, void *cuip
)
5958 machine_mode mode
= VOIDmode
, mode2
;
5959 struct count_use_info
*cui
= (struct count_use_info
*)cuip
;
5960 basic_block bb
= cui
->bb
;
5962 rtx oloc
= loc
, nloc
, src
= NULL
;
5963 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5964 bool track_p
= false;
5966 bool resolve
, preserve
;
5968 if (type
== MO_CLOBBER
)
5975 gcc_assert (loc
!= cfa_base_rtx
);
5976 if ((GET_CODE (expr
) == CLOBBER
&& type
!= MO_VAL_SET
)
5977 || !(track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
5978 || GET_CODE (expr
) == CLOBBER
)
5980 mo
.type
= MO_CLOBBER
;
5982 if (GET_CODE (expr
) == SET
5983 && (SET_DEST (expr
) == loc
5984 || (GET_CODE (SET_DEST (expr
)) == STRICT_LOW_PART
5985 && XEXP (SET_DEST (expr
), 0) == loc
))
5986 && !unsuitable_loc (SET_SRC (expr
))
5987 && find_use_val (loc
, mode
, cui
))
5989 gcc_checking_assert (type
== MO_VAL_SET
);
5990 mo
.u
.loc
= gen_rtx_SET (loc
, SET_SRC (expr
));
5995 if (GET_CODE (expr
) == SET
5996 && SET_DEST (expr
) == loc
5997 && GET_CODE (SET_SRC (expr
)) != ASM_OPERANDS
)
5998 src
= var_lowpart (mode2
, SET_SRC (expr
));
5999 loc
= var_lowpart (mode2
, loc
);
6008 rtx xexpr
= gen_rtx_SET (loc
, src
);
6009 if (same_variable_part_p (src
, REG_EXPR (loc
), REG_OFFSET (loc
)))
6011 /* If this is an instruction copying (part of) a parameter
6012 passed by invisible reference to its register location,
6013 pretend it's a SET so that the initial memory location
6014 is discarded, as the parameter register can be reused
6015 for other purposes and we do not track locations based
6016 on generic registers. */
6019 && TREE_CODE (REG_EXPR (loc
)) == PARM_DECL
6020 && DECL_MODE (REG_EXPR (loc
)) != BLKmode
6021 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc
)))
6022 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc
)), 0)
6033 mo
.insn
= cui
->insn
;
6035 else if (MEM_P (loc
)
6036 && ((track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
6039 if (MEM_P (loc
) && type
== MO_VAL_SET
6040 && !REG_P (XEXP (loc
, 0))
6041 && !MEM_P (XEXP (loc
, 0)))
6044 machine_mode address_mode
= get_address_mode (mloc
);
6045 cselib_val
*val
= cselib_lookup (XEXP (mloc
, 0),
6049 if (val
&& !cselib_preserved_value_p (val
))
6050 preserve_value (val
);
6053 if (GET_CODE (expr
) == CLOBBER
|| !track_p
)
6055 mo
.type
= MO_CLOBBER
;
6056 mo
.u
.loc
= track_p
? var_lowpart (mode2
, loc
) : loc
;
6060 if (GET_CODE (expr
) == SET
6061 && SET_DEST (expr
) == loc
6062 && GET_CODE (SET_SRC (expr
)) != ASM_OPERANDS
)
6063 src
= var_lowpart (mode2
, SET_SRC (expr
));
6064 loc
= var_lowpart (mode2
, loc
);
6073 rtx xexpr
= gen_rtx_SET (loc
, src
);
6074 if (same_variable_part_p (SET_SRC (xexpr
),
6076 int_mem_offset (loc
)))
6083 mo
.insn
= cui
->insn
;
6088 if (type
!= MO_VAL_SET
)
6089 goto log_and_return
;
6091 v
= find_use_val (oloc
, mode
, cui
);
6094 goto log_and_return
;
6096 resolve
= preserve
= !cselib_preserved_value_p (v
);
6098 /* We cannot track values for multiple-part variables, so we track only
6099 locations for tracked record parameters. */
6103 && tracked_record_parameter_p (REG_EXPR (loc
)))
6105 /* Although we don't use the value here, it could be used later by the
6106 mere virtue of its existence as the operand of the reverse operation
6107 that gave rise to it (typically extension/truncation). Make sure it
6108 is preserved as required by vt_expand_var_loc_chain. */
6111 goto log_and_return
;
6114 if (loc
== stack_pointer_rtx
6115 && maybe_ne (hard_frame_pointer_adjustment
, -1)
6117 cselib_set_value_sp_based (v
);
6119 nloc
= replace_expr_with_values (oloc
);
6123 if (GET_CODE (PATTERN (cui
->insn
)) == COND_EXEC
)
6125 cselib_val
*oval
= cselib_lookup (oloc
, GET_MODE (oloc
), 0, VOIDmode
);
6129 gcc_assert (REG_P (oloc
) || MEM_P (oloc
));
6131 if (oval
&& !cselib_preserved_value_p (oval
))
6133 micro_operation moa
;
6135 preserve_value (oval
);
6137 moa
.type
= MO_VAL_USE
;
6138 moa
.u
.loc
= gen_rtx_CONCAT (mode
, oval
->val_rtx
, oloc
);
6139 VAL_NEEDS_RESOLUTION (moa
.u
.loc
) = 1;
6140 moa
.insn
= cui
->insn
;
6142 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6143 log_op_type (moa
.u
.loc
, cui
->bb
, cui
->insn
,
6144 moa
.type
, dump_file
);
6145 VTI (bb
)->mos
.safe_push (moa
);
6150 else if (resolve
&& GET_CODE (mo
.u
.loc
) == SET
)
6152 if (REG_P (SET_SRC (expr
)) || MEM_P (SET_SRC (expr
)))
6153 nloc
= replace_expr_with_values (SET_SRC (expr
));
6157 /* Avoid the mode mismatch between oexpr and expr. */
6158 if (!nloc
&& mode
!= mode2
)
6160 nloc
= SET_SRC (expr
);
6161 gcc_assert (oloc
== SET_DEST (expr
));
6164 if (nloc
&& nloc
!= SET_SRC (mo
.u
.loc
))
6165 oloc
= gen_rtx_SET (oloc
, nloc
);
6168 if (oloc
== SET_DEST (mo
.u
.loc
))
6169 /* No point in duplicating. */
6171 if (!REG_P (SET_SRC (mo
.u
.loc
)))
6177 if (GET_CODE (mo
.u
.loc
) == SET
6178 && oloc
== SET_DEST (mo
.u
.loc
))
6179 /* No point in duplicating. */
6185 loc
= gen_rtx_CONCAT (mode
, v
->val_rtx
, oloc
);
6187 if (mo
.u
.loc
!= oloc
)
6188 loc
= gen_rtx_CONCAT (GET_MODE (mo
.u
.loc
), loc
, mo
.u
.loc
);
6190 /* The loc of a MO_VAL_SET may have various forms:
6192 (concat val dst): dst now holds val
6194 (concat val (set dst src)): dst now holds val, copied from src
6196 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6197 after replacing mems and non-top-level regs with values.
6199 (concat (concat val dstv) (set dst src)): dst now holds val,
6200 copied from src. dstv is a value-based representation of dst, if
6201 it differs from dst. If resolution is needed, src is a REG, and
6202 its mode is the same as that of val.
6204 (concat (concat val (set dstv srcv)) (set dst src)): src
6205 copied to dst, holding val. dstv and srcv are value-based
6206 representations of dst and src, respectively.
6210 if (GET_CODE (PATTERN (cui
->insn
)) != COND_EXEC
)
6211 reverse_op (v
->val_rtx
, expr
, cui
->insn
);
6216 VAL_HOLDS_TRACK_EXPR (loc
) = 1;
6219 VAL_NEEDS_RESOLUTION (loc
) = resolve
;
6222 if (mo
.type
== MO_CLOBBER
)
6223 VAL_EXPR_IS_CLOBBERED (loc
) = 1;
6224 if (mo
.type
== MO_COPY
)
6225 VAL_EXPR_IS_COPIED (loc
) = 1;
6227 mo
.type
= MO_VAL_SET
;
6230 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6231 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
6232 VTI (bb
)->mos
.safe_push (mo
);
6235 /* Arguments to the call. */
6236 static rtx call_arguments
;
6238 /* Compute call_arguments. */
6241 prepare_call_arguments (basic_block bb
, rtx_insn
*insn
)
6244 rtx prev
, cur
, next
;
6245 rtx this_arg
= NULL_RTX
;
6246 tree type
= NULL_TREE
, t
, fndecl
= NULL_TREE
;
6247 tree obj_type_ref
= NULL_TREE
;
6248 CUMULATIVE_ARGS args_so_far_v
;
6249 cumulative_args_t args_so_far
;
6251 memset (&args_so_far_v
, 0, sizeof (args_so_far_v
));
6252 args_so_far
= pack_cumulative_args (&args_so_far_v
);
6253 call
= get_call_rtx_from (insn
);
6256 if (GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
6258 rtx symbol
= XEXP (XEXP (call
, 0), 0);
6259 if (SYMBOL_REF_DECL (symbol
))
6260 fndecl
= SYMBOL_REF_DECL (symbol
);
6262 if (fndecl
== NULL_TREE
)
6263 fndecl
= MEM_EXPR (XEXP (call
, 0));
6265 && TREE_CODE (TREE_TYPE (fndecl
)) != FUNCTION_TYPE
6266 && TREE_CODE (TREE_TYPE (fndecl
)) != METHOD_TYPE
)
6268 if (fndecl
&& TYPE_ARG_TYPES (TREE_TYPE (fndecl
)))
6269 type
= TREE_TYPE (fndecl
);
6270 if (fndecl
&& TREE_CODE (fndecl
) != FUNCTION_DECL
)
6272 if (TREE_CODE (fndecl
) == INDIRECT_REF
6273 && TREE_CODE (TREE_OPERAND (fndecl
, 0)) == OBJ_TYPE_REF
)
6274 obj_type_ref
= TREE_OPERAND (fndecl
, 0);
6279 for (t
= TYPE_ARG_TYPES (type
); t
&& t
!= void_list_node
;
6281 if (TREE_CODE (TREE_VALUE (t
)) == REFERENCE_TYPE
6282 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t
))))
6284 if ((t
== NULL
|| t
== void_list_node
) && obj_type_ref
== NULL_TREE
)
6288 int nargs ATTRIBUTE_UNUSED
= list_length (TYPE_ARG_TYPES (type
));
6289 link
= CALL_INSN_FUNCTION_USAGE (insn
);
6290 #ifndef PCC_STATIC_STRUCT_RETURN
6291 if (aggregate_value_p (TREE_TYPE (type
), type
)
6292 && targetm
.calls
.struct_value_rtx (type
, 0) == 0)
6294 tree struct_addr
= build_pointer_type (TREE_TYPE (type
));
6295 machine_mode mode
= TYPE_MODE (struct_addr
);
6297 INIT_CUMULATIVE_ARGS (args_so_far_v
, type
, NULL_RTX
, fndecl
,
6299 reg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6301 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
6303 if (reg
== NULL_RTX
)
6305 for (; link
; link
= XEXP (link
, 1))
6306 if (GET_CODE (XEXP (link
, 0)) == USE
6307 && MEM_P (XEXP (XEXP (link
, 0), 0)))
6309 link
= XEXP (link
, 1);
6316 INIT_CUMULATIVE_ARGS (args_so_far_v
, type
, NULL_RTX
, fndecl
,
6318 if (obj_type_ref
&& TYPE_ARG_TYPES (type
) != void_list_node
)
6321 t
= TYPE_ARG_TYPES (type
);
6322 mode
= TYPE_MODE (TREE_VALUE (t
));
6323 this_arg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6324 TREE_VALUE (t
), true);
6325 if (this_arg
&& !REG_P (this_arg
))
6326 this_arg
= NULL_RTX
;
6327 else if (this_arg
== NULL_RTX
)
6329 for (; link
; link
= XEXP (link
, 1))
6330 if (GET_CODE (XEXP (link
, 0)) == USE
6331 && MEM_P (XEXP (XEXP (link
, 0), 0)))
6333 this_arg
= XEXP (XEXP (link
, 0), 0);
6341 t
= type
? TYPE_ARG_TYPES (type
) : NULL_TREE
;
6343 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
6344 if (GET_CODE (XEXP (link
, 0)) == USE
)
6346 rtx item
= NULL_RTX
;
6347 x
= XEXP (XEXP (link
, 0), 0);
6348 if (GET_MODE (link
) == VOIDmode
6349 || GET_MODE (link
) == BLKmode
6350 || (GET_MODE (link
) != GET_MODE (x
)
6351 && ((GET_MODE_CLASS (GET_MODE (link
)) != MODE_INT
6352 && GET_MODE_CLASS (GET_MODE (link
)) != MODE_PARTIAL_INT
)
6353 || (GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
6354 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_PARTIAL_INT
))))
6355 /* Can't do anything for these, if the original type mode
6356 isn't known or can't be converted. */;
6359 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
6360 scalar_int_mode mode
;
6361 if (val
&& cselib_preserved_value_p (val
))
6362 item
= val
->val_rtx
;
6363 else if (is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
))
6365 opt_scalar_int_mode mode_iter
;
6366 FOR_EACH_WIDER_MODE (mode_iter
, mode
)
6368 mode
= mode_iter
.require ();
6369 if (GET_MODE_BITSIZE (mode
) > BITS_PER_WORD
)
6372 rtx reg
= simplify_subreg (mode
, x
, GET_MODE (x
), 0);
6373 if (reg
== NULL_RTX
|| !REG_P (reg
))
6375 val
= cselib_lookup (reg
, mode
, 0, VOIDmode
);
6376 if (val
&& cselib_preserved_value_p (val
))
6378 item
= val
->val_rtx
;
6389 if (!frame_pointer_needed
)
6391 struct adjust_mem_data amd
;
6392 amd
.mem_mode
= VOIDmode
;
6393 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
6395 mem
= simplify_replace_fn_rtx (mem
, NULL_RTX
, adjust_mems
,
6397 gcc_assert (amd
.side_effects
.is_empty ());
6399 val
= cselib_lookup (mem
, GET_MODE (mem
), 0, VOIDmode
);
6400 if (val
&& cselib_preserved_value_p (val
))
6401 item
= val
->val_rtx
;
6402 else if (GET_MODE_CLASS (GET_MODE (mem
)) != MODE_INT
6403 && GET_MODE_CLASS (GET_MODE (mem
)) != MODE_PARTIAL_INT
)
6405 /* For non-integer stack argument see also if they weren't
6406 initialized by integers. */
6407 scalar_int_mode imode
;
6408 if (int_mode_for_mode (GET_MODE (mem
)).exists (&imode
)
6409 && imode
!= GET_MODE (mem
))
6411 val
= cselib_lookup (adjust_address_nv (mem
, imode
, 0),
6412 imode
, 0, VOIDmode
);
6413 if (val
&& cselib_preserved_value_p (val
))
6414 item
= lowpart_subreg (GET_MODE (x
), val
->val_rtx
,
6422 if (GET_MODE (item
) != GET_MODE (link
))
6423 item
= lowpart_subreg (GET_MODE (link
), item
, GET_MODE (item
));
6424 if (GET_MODE (x2
) != GET_MODE (link
))
6425 x2
= lowpart_subreg (GET_MODE (link
), x2
, GET_MODE (x2
));
6426 item
= gen_rtx_CONCAT (GET_MODE (link
), x2
, item
);
6428 = gen_rtx_EXPR_LIST (VOIDmode
, item
, call_arguments
);
6430 if (t
&& t
!= void_list_node
)
6432 tree argtype
= TREE_VALUE (t
);
6433 machine_mode mode
= TYPE_MODE (argtype
);
6435 if (pass_by_reference (&args_so_far_v
, mode
, argtype
, true))
6437 argtype
= build_pointer_type (argtype
);
6438 mode
= TYPE_MODE (argtype
);
6440 reg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6442 if (TREE_CODE (argtype
) == REFERENCE_TYPE
6443 && INTEGRAL_TYPE_P (TREE_TYPE (argtype
))
6446 && GET_MODE (reg
) == mode
6447 && (GET_MODE_CLASS (mode
) == MODE_INT
6448 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
6450 && REGNO (x
) == REGNO (reg
)
6451 && GET_MODE (x
) == mode
6454 machine_mode indmode
6455 = TYPE_MODE (TREE_TYPE (argtype
));
6456 rtx mem
= gen_rtx_MEM (indmode
, x
);
6457 cselib_val
*val
= cselib_lookup (mem
, indmode
, 0, VOIDmode
);
6458 if (val
&& cselib_preserved_value_p (val
))
6460 item
= gen_rtx_CONCAT (indmode
, mem
, val
->val_rtx
);
6461 call_arguments
= gen_rtx_EXPR_LIST (VOIDmode
, item
,
6466 struct elt_loc_list
*l
;
6469 /* Try harder, when passing address of a constant
6470 pool integer it can be easily read back. */
6471 item
= XEXP (item
, 1);
6472 if (GET_CODE (item
) == SUBREG
)
6473 item
= SUBREG_REG (item
);
6474 gcc_assert (GET_CODE (item
) == VALUE
);
6475 val
= CSELIB_VAL_PTR (item
);
6476 for (l
= val
->locs
; l
; l
= l
->next
)
6477 if (GET_CODE (l
->loc
) == SYMBOL_REF
6478 && TREE_CONSTANT_POOL_ADDRESS_P (l
->loc
)
6479 && SYMBOL_REF_DECL (l
->loc
)
6480 && DECL_INITIAL (SYMBOL_REF_DECL (l
->loc
)))
6482 initial
= DECL_INITIAL (SYMBOL_REF_DECL (l
->loc
));
6483 if (tree_fits_shwi_p (initial
))
6485 item
= GEN_INT (tree_to_shwi (initial
));
6486 item
= gen_rtx_CONCAT (indmode
, mem
, item
);
6488 = gen_rtx_EXPR_LIST (VOIDmode
, item
,
6495 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
6501 /* Add debug arguments. */
6503 && TREE_CODE (fndecl
) == FUNCTION_DECL
6504 && DECL_HAS_DEBUG_ARGS_P (fndecl
))
6506 vec
<tree
, va_gc
> **debug_args
= decl_debug_args_lookup (fndecl
);
6511 for (ix
= 0; vec_safe_iterate (*debug_args
, ix
, ¶m
); ix
+= 2)
6514 tree dtemp
= (**debug_args
)[ix
+ 1];
6515 machine_mode mode
= DECL_MODE (dtemp
);
6516 item
= gen_rtx_DEBUG_PARAMETER_REF (mode
, param
);
6517 item
= gen_rtx_CONCAT (mode
, item
, DECL_RTL_KNOWN_SET (dtemp
));
6518 call_arguments
= gen_rtx_EXPR_LIST (VOIDmode
, item
,
6524 /* Reverse call_arguments chain. */
6526 for (cur
= call_arguments
; cur
; cur
= next
)
6528 next
= XEXP (cur
, 1);
6529 XEXP (cur
, 1) = prev
;
6532 call_arguments
= prev
;
6534 x
= get_call_rtx_from (insn
);
6537 x
= XEXP (XEXP (x
, 0), 0);
6538 if (GET_CODE (x
) == SYMBOL_REF
)
6539 /* Don't record anything. */;
6540 else if (CONSTANT_P (x
))
6542 x
= gen_rtx_CONCAT (GET_MODE (x
) == VOIDmode
? Pmode
: GET_MODE (x
),
6545 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6549 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
6550 if (val
&& cselib_preserved_value_p (val
))
6552 x
= gen_rtx_CONCAT (GET_MODE (x
), pc_rtx
, val
->val_rtx
);
6554 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6561 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref
)));
6562 rtx clobbered
= gen_rtx_MEM (mode
, this_arg
);
6564 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref
));
6566 clobbered
= plus_constant (mode
, clobbered
,
6567 token
* GET_MODE_SIZE (mode
));
6568 clobbered
= gen_rtx_MEM (mode
, clobbered
);
6569 x
= gen_rtx_CONCAT (mode
, gen_rtx_CLOBBER (VOIDmode
, pc_rtx
), clobbered
);
6571 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6575 /* Callback for cselib_record_sets_hook, that records as micro
6576 operations uses and stores in an insn after cselib_record_sets has
6577 analyzed the sets in an insn, but before it modifies the stored
6578 values in the internal tables, unless cselib_record_sets doesn't
6579 call it directly (perhaps because we're not doing cselib in the
6580 first place, in which case sets and n_sets will be 0). */
6583 add_with_sets (rtx_insn
*insn
, struct cselib_set
*sets
, int n_sets
)
6585 basic_block bb
= BLOCK_FOR_INSN (insn
);
6587 struct count_use_info cui
;
6588 micro_operation
*mos
;
6590 cselib_hook_called
= true;
6595 cui
.n_sets
= n_sets
;
6597 n1
= VTI (bb
)->mos
.length ();
6598 cui
.store_p
= false;
6599 note_uses (&PATTERN (insn
), add_uses_1
, &cui
);
6600 n2
= VTI (bb
)->mos
.length () - 1;
6601 mos
= VTI (bb
)->mos
.address ();
6603 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6607 while (n1
< n2
&& mos
[n1
].type
== MO_USE
)
6609 while (n1
< n2
&& mos
[n2
].type
!= MO_USE
)
6612 std::swap (mos
[n1
], mos
[n2
]);
6615 n2
= VTI (bb
)->mos
.length () - 1;
6618 while (n1
< n2
&& mos
[n1
].type
!= MO_VAL_LOC
)
6620 while (n1
< n2
&& mos
[n2
].type
== MO_VAL_LOC
)
6623 std::swap (mos
[n1
], mos
[n2
]);
6632 mo
.u
.loc
= call_arguments
;
6633 call_arguments
= NULL_RTX
;
6635 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6636 log_op_type (PATTERN (insn
), bb
, insn
, mo
.type
, dump_file
);
6637 VTI (bb
)->mos
.safe_push (mo
);
6640 n1
= VTI (bb
)->mos
.length ();
6641 /* This will record NEXT_INSN (insn), such that we can
6642 insert notes before it without worrying about any
6643 notes that MO_USEs might emit after the insn. */
6645 note_stores (PATTERN (insn
), add_stores
, &cui
);
6646 n2
= VTI (bb
)->mos
.length () - 1;
6647 mos
= VTI (bb
)->mos
.address ();
6649 /* Order the MO_VAL_USEs first (note_stores does nothing
6650 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6651 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6654 while (n1
< n2
&& mos
[n1
].type
== MO_VAL_USE
)
6656 while (n1
< n2
&& mos
[n2
].type
!= MO_VAL_USE
)
6659 std::swap (mos
[n1
], mos
[n2
]);
6662 n2
= VTI (bb
)->mos
.length () - 1;
6665 while (n1
< n2
&& mos
[n1
].type
== MO_CLOBBER
)
6667 while (n1
< n2
&& mos
[n2
].type
!= MO_CLOBBER
)
6670 std::swap (mos
[n1
], mos
[n2
]);
6674 static enum var_init_status
6675 find_src_status (dataflow_set
*in
, rtx src
)
6677 tree decl
= NULL_TREE
;
6678 enum var_init_status status
= VAR_INIT_STATUS_UNINITIALIZED
;
6680 if (! flag_var_tracking_uninit
)
6681 status
= VAR_INIT_STATUS_INITIALIZED
;
6683 if (src
&& REG_P (src
))
6684 decl
= var_debug_decl (REG_EXPR (src
));
6685 else if (src
&& MEM_P (src
))
6686 decl
= var_debug_decl (MEM_EXPR (src
));
6689 status
= get_init_value (in
, src
, dv_from_decl (decl
));
6694 /* SRC is the source of an assignment. Use SET to try to find what
6695 was ultimately assigned to SRC. Return that value if known,
6696 otherwise return SRC itself. */
6699 find_src_set_src (dataflow_set
*set
, rtx src
)
6701 tree decl
= NULL_TREE
; /* The variable being copied around. */
6702 rtx set_src
= NULL_RTX
; /* The value for "decl" stored in "src". */
6704 location_chain
*nextp
;
6708 if (src
&& REG_P (src
))
6709 decl
= var_debug_decl (REG_EXPR (src
));
6710 else if (src
&& MEM_P (src
))
6711 decl
= var_debug_decl (MEM_EXPR (src
));
6715 decl_or_value dv
= dv_from_decl (decl
);
6717 var
= shared_hash_find (set
->vars
, dv
);
6721 for (i
= 0; i
< var
->n_var_parts
&& !found
; i
++)
6722 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
&& !found
;
6723 nextp
= nextp
->next
)
6724 if (rtx_equal_p (nextp
->loc
, src
))
6726 set_src
= nextp
->set_src
;
6736 /* Compute the changes of variable locations in the basic block BB. */
6739 compute_bb_dataflow (basic_block bb
)
6742 micro_operation
*mo
;
6744 dataflow_set old_out
;
6745 dataflow_set
*in
= &VTI (bb
)->in
;
6746 dataflow_set
*out
= &VTI (bb
)->out
;
6748 dataflow_set_init (&old_out
);
6749 dataflow_set_copy (&old_out
, out
);
6750 dataflow_set_copy (out
, in
);
6752 if (MAY_HAVE_DEBUG_BIND_INSNS
)
6753 local_get_addr_cache
= new hash_map
<rtx
, rtx
>;
6755 FOR_EACH_VEC_ELT (VTI (bb
)->mos
, i
, mo
)
6757 rtx_insn
*insn
= mo
->insn
;
6762 dataflow_set_clear_at_call (out
, insn
);
6767 rtx loc
= mo
->u
.loc
;
6770 var_reg_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
6771 else if (MEM_P (loc
))
6772 var_mem_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
6778 rtx loc
= mo
->u
.loc
;
6782 if (GET_CODE (loc
) == CONCAT
)
6784 val
= XEXP (loc
, 0);
6785 vloc
= XEXP (loc
, 1);
6793 var
= PAT_VAR_LOCATION_DECL (vloc
);
6795 clobber_variable_part (out
, NULL_RTX
,
6796 dv_from_decl (var
), 0, NULL_RTX
);
6799 if (VAL_NEEDS_RESOLUTION (loc
))
6800 val_resolve (out
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
6801 set_variable_part (out
, val
, dv_from_decl (var
), 0,
6802 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
6805 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
6806 set_variable_part (out
, PAT_VAR_LOCATION_LOC (vloc
),
6807 dv_from_decl (var
), 0,
6808 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
6815 rtx loc
= mo
->u
.loc
;
6816 rtx val
, vloc
, uloc
;
6818 vloc
= uloc
= XEXP (loc
, 1);
6819 val
= XEXP (loc
, 0);
6821 if (GET_CODE (val
) == CONCAT
)
6823 uloc
= XEXP (val
, 1);
6824 val
= XEXP (val
, 0);
6827 if (VAL_NEEDS_RESOLUTION (loc
))
6828 val_resolve (out
, val
, vloc
, insn
);
6830 val_store (out
, val
, uloc
, insn
, false);
6832 if (VAL_HOLDS_TRACK_EXPR (loc
))
6834 if (GET_CODE (uloc
) == REG
)
6835 var_reg_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
6837 else if (GET_CODE (uloc
) == MEM
)
6838 var_mem_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
6846 rtx loc
= mo
->u
.loc
;
6847 rtx val
, vloc
, uloc
;
6851 uloc
= XEXP (vloc
, 1);
6852 val
= XEXP (vloc
, 0);
6855 if (GET_CODE (uloc
) == SET
)
6857 dstv
= SET_DEST (uloc
);
6858 srcv
= SET_SRC (uloc
);
6866 if (GET_CODE (val
) == CONCAT
)
6868 dstv
= vloc
= XEXP (val
, 1);
6869 val
= XEXP (val
, 0);
6872 if (GET_CODE (vloc
) == SET
)
6874 srcv
= SET_SRC (vloc
);
6876 gcc_assert (val
!= srcv
);
6877 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
6879 dstv
= vloc
= SET_DEST (vloc
);
6881 if (VAL_NEEDS_RESOLUTION (loc
))
6882 val_resolve (out
, val
, srcv
, insn
);
6884 else if (VAL_NEEDS_RESOLUTION (loc
))
6886 gcc_assert (GET_CODE (uloc
) == SET
6887 && GET_CODE (SET_SRC (uloc
)) == REG
);
6888 val_resolve (out
, val
, SET_SRC (uloc
), insn
);
6891 if (VAL_HOLDS_TRACK_EXPR (loc
))
6893 if (VAL_EXPR_IS_CLOBBERED (loc
))
6896 var_reg_delete (out
, uloc
, true);
6897 else if (MEM_P (uloc
))
6899 gcc_assert (MEM_P (dstv
));
6900 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (uloc
));
6901 var_mem_delete (out
, dstv
, true);
6906 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
6907 rtx src
= NULL
, dst
= uloc
;
6908 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
6910 if (GET_CODE (uloc
) == SET
)
6912 src
= SET_SRC (uloc
);
6913 dst
= SET_DEST (uloc
);
6918 if (flag_var_tracking_uninit
)
6920 status
= find_src_status (in
, src
);
6922 if (status
== VAR_INIT_STATUS_UNKNOWN
)
6923 status
= find_src_status (out
, src
);
6926 src
= find_src_set_src (in
, src
);
6930 var_reg_delete_and_set (out
, dst
, !copied_p
,
6932 else if (MEM_P (dst
))
6934 gcc_assert (MEM_P (dstv
));
6935 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (dst
));
6936 var_mem_delete_and_set (out
, dstv
, !copied_p
,
6941 else if (REG_P (uloc
))
6942 var_regno_delete (out
, REGNO (uloc
));
6943 else if (MEM_P (uloc
))
6945 gcc_checking_assert (GET_CODE (vloc
) == MEM
);
6946 gcc_checking_assert (dstv
== vloc
);
6948 clobber_overlapping_mems (out
, vloc
);
6951 val_store (out
, val
, dstv
, insn
, true);
6957 rtx loc
= mo
->u
.loc
;
6960 if (GET_CODE (loc
) == SET
)
6962 set_src
= SET_SRC (loc
);
6963 loc
= SET_DEST (loc
);
6967 var_reg_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
6969 else if (MEM_P (loc
))
6970 var_mem_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
6977 rtx loc
= mo
->u
.loc
;
6978 enum var_init_status src_status
;
6981 if (GET_CODE (loc
) == SET
)
6983 set_src
= SET_SRC (loc
);
6984 loc
= SET_DEST (loc
);
6987 if (! flag_var_tracking_uninit
)
6988 src_status
= VAR_INIT_STATUS_INITIALIZED
;
6991 src_status
= find_src_status (in
, set_src
);
6993 if (src_status
== VAR_INIT_STATUS_UNKNOWN
)
6994 src_status
= find_src_status (out
, set_src
);
6997 set_src
= find_src_set_src (in
, set_src
);
7000 var_reg_delete_and_set (out
, loc
, false, src_status
, set_src
);
7001 else if (MEM_P (loc
))
7002 var_mem_delete_and_set (out
, loc
, false, src_status
, set_src
);
7008 rtx loc
= mo
->u
.loc
;
7011 var_reg_delete (out
, loc
, false);
7012 else if (MEM_P (loc
))
7013 var_mem_delete (out
, loc
, false);
7019 rtx loc
= mo
->u
.loc
;
7022 var_reg_delete (out
, loc
, true);
7023 else if (MEM_P (loc
))
7024 var_mem_delete (out
, loc
, true);
7029 out
->stack_adjust
+= mo
->u
.adjust
;
7034 if (MAY_HAVE_DEBUG_BIND_INSNS
)
7036 delete local_get_addr_cache
;
7037 local_get_addr_cache
= NULL
;
7039 dataflow_set_equiv_regs (out
);
7040 shared_hash_htab (out
->vars
)
7041 ->traverse
<dataflow_set
*, canonicalize_values_mark
> (out
);
7042 shared_hash_htab (out
->vars
)
7043 ->traverse
<dataflow_set
*, canonicalize_values_star
> (out
);
7045 shared_hash_htab (out
->vars
)
7046 ->traverse
<dataflow_set
*, canonicalize_loc_order_check
> (out
);
7048 changed
= dataflow_set_different (&old_out
, out
);
7049 dataflow_set_destroy (&old_out
);
7053 /* Find the locations of variables in the whole function. */
7056 vt_find_locations (void)
7058 bb_heap_t
*worklist
= new bb_heap_t (LONG_MIN
);
7059 bb_heap_t
*pending
= new bb_heap_t (LONG_MIN
);
7060 sbitmap in_worklist
, in_pending
;
7067 int htabmax
= PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE
);
7068 bool success
= true;
7070 timevar_push (TV_VAR_TRACKING_DATAFLOW
);
7071 /* Compute reverse completion order of depth first search of the CFG
7072 so that the data-flow runs faster. */
7073 rc_order
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
);
7074 bb_order
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
7075 pre_and_rev_post_order_compute (NULL
, rc_order
, false);
7076 for (i
= 0; i
< n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
; i
++)
7077 bb_order
[rc_order
[i
]] = i
;
7080 auto_sbitmap
visited (last_basic_block_for_fn (cfun
));
7081 in_worklist
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
7082 in_pending
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
7083 bitmap_clear (in_worklist
);
7085 FOR_EACH_BB_FN (bb
, cfun
)
7086 pending
->insert (bb_order
[bb
->index
], bb
);
7087 bitmap_ones (in_pending
);
7089 while (success
&& !pending
->empty ())
7091 std::swap (worklist
, pending
);
7092 std::swap (in_worklist
, in_pending
);
7094 bitmap_clear (visited
);
7096 while (!worklist
->empty ())
7098 bb
= worklist
->extract_min ();
7099 bitmap_clear_bit (in_worklist
, bb
->index
);
7100 gcc_assert (!bitmap_bit_p (visited
, bb
->index
));
7101 if (!bitmap_bit_p (visited
, bb
->index
))
7105 int oldinsz
, oldoutsz
;
7107 bitmap_set_bit (visited
, bb
->index
);
7109 if (VTI (bb
)->in
.vars
)
7112 -= shared_hash_htab (VTI (bb
)->in
.vars
)->size ()
7113 + shared_hash_htab (VTI (bb
)->out
.vars
)->size ();
7114 oldinsz
= shared_hash_htab (VTI (bb
)->in
.vars
)->elements ();
7116 = shared_hash_htab (VTI (bb
)->out
.vars
)->elements ();
7119 oldinsz
= oldoutsz
= 0;
7121 if (MAY_HAVE_DEBUG_BIND_INSNS
)
7123 dataflow_set
*in
= &VTI (bb
)->in
, *first_out
= NULL
;
7124 bool first
= true, adjust
= false;
7126 /* Calculate the IN set as the intersection of
7127 predecessor OUT sets. */
7129 dataflow_set_clear (in
);
7130 dst_can_be_shared
= true;
7132 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7133 if (!VTI (e
->src
)->flooded
)
7134 gcc_assert (bb_order
[bb
->index
]
7135 <= bb_order
[e
->src
->index
]);
7138 dataflow_set_copy (in
, &VTI (e
->src
)->out
);
7139 first_out
= &VTI (e
->src
)->out
;
7144 dataflow_set_merge (in
, &VTI (e
->src
)->out
);
7150 dataflow_post_merge_adjust (in
, &VTI (bb
)->permp
);
7153 /* Merge and merge_adjust should keep entries in
7155 shared_hash_htab (in
->vars
)
7156 ->traverse
<dataflow_set
*,
7157 canonicalize_loc_order_check
> (in
);
7159 if (dst_can_be_shared
)
7161 shared_hash_destroy (in
->vars
);
7162 in
->vars
= shared_hash_copy (first_out
->vars
);
7166 VTI (bb
)->flooded
= true;
7170 /* Calculate the IN set as union of predecessor OUT sets. */
7171 dataflow_set_clear (&VTI (bb
)->in
);
7172 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7173 dataflow_set_union (&VTI (bb
)->in
, &VTI (e
->src
)->out
);
7176 changed
= compute_bb_dataflow (bb
);
7177 htabsz
+= shared_hash_htab (VTI (bb
)->in
.vars
)->size ()
7178 + shared_hash_htab (VTI (bb
)->out
.vars
)->size ();
7180 if (htabmax
&& htabsz
> htabmax
)
7182 if (MAY_HAVE_DEBUG_BIND_INSNS
)
7183 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
7184 "variable tracking size limit exceeded with "
7185 "%<-fvar-tracking-assignments%>, retrying without");
7187 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
7188 "variable tracking size limit exceeded");
7195 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7197 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
7200 if (bitmap_bit_p (visited
, e
->dest
->index
))
7202 if (!bitmap_bit_p (in_pending
, e
->dest
->index
))
7204 /* Send E->DEST to next round. */
7205 bitmap_set_bit (in_pending
, e
->dest
->index
);
7206 pending
->insert (bb_order
[e
->dest
->index
],
7210 else if (!bitmap_bit_p (in_worklist
, e
->dest
->index
))
7212 /* Add E->DEST to current round. */
7213 bitmap_set_bit (in_worklist
, e
->dest
->index
);
7214 worklist
->insert (bb_order
[e
->dest
->index
],
7222 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7224 (int)shared_hash_htab (VTI (bb
)->in
.vars
)->size (),
7226 (int)shared_hash_htab (VTI (bb
)->out
.vars
)->size (),
7228 (int)worklist
->nodes (), (int)pending
->nodes (),
7231 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7233 fprintf (dump_file
, "BB %i IN:\n", bb
->index
);
7234 dump_dataflow_set (&VTI (bb
)->in
);
7235 fprintf (dump_file
, "BB %i OUT:\n", bb
->index
);
7236 dump_dataflow_set (&VTI (bb
)->out
);
7242 if (success
&& MAY_HAVE_DEBUG_BIND_INSNS
)
7243 FOR_EACH_BB_FN (bb
, cfun
)
7244 gcc_assert (VTI (bb
)->flooded
);
7249 sbitmap_free (in_worklist
);
7250 sbitmap_free (in_pending
);
7252 timevar_pop (TV_VAR_TRACKING_DATAFLOW
);
7256 /* Print the content of the LIST to dump file. */
7259 dump_attrs_list (attrs
*list
)
7261 for (; list
; list
= list
->next
)
7263 if (dv_is_decl_p (list
->dv
))
7264 print_mem_expr (dump_file
, dv_as_decl (list
->dv
));
7266 print_rtl_single (dump_file
, dv_as_value (list
->dv
));
7267 fprintf (dump_file
, "+" HOST_WIDE_INT_PRINT_DEC
, list
->offset
);
7269 fprintf (dump_file
, "\n");
7272 /* Print the information about variable *SLOT to dump file. */
7275 dump_var_tracking_slot (variable
**slot
, void *data ATTRIBUTE_UNUSED
)
7277 variable
*var
= *slot
;
7281 /* Continue traversing the hash table. */
7285 /* Print the information about variable VAR to dump file. */
7288 dump_var (variable
*var
)
7291 location_chain
*node
;
7293 if (dv_is_decl_p (var
->dv
))
7295 const_tree decl
= dv_as_decl (var
->dv
);
7297 if (DECL_NAME (decl
))
7299 fprintf (dump_file
, " name: %s",
7300 IDENTIFIER_POINTER (DECL_NAME (decl
)));
7301 if (dump_flags
& TDF_UID
)
7302 fprintf (dump_file
, "D.%u", DECL_UID (decl
));
7304 else if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
7305 fprintf (dump_file
, " name: D#%u", DEBUG_TEMP_UID (decl
));
7307 fprintf (dump_file
, " name: D.%u", DECL_UID (decl
));
7308 fprintf (dump_file
, "\n");
7312 fputc (' ', dump_file
);
7313 print_rtl_single (dump_file
, dv_as_value (var
->dv
));
7316 for (i
= 0; i
< var
->n_var_parts
; i
++)
7318 fprintf (dump_file
, " offset %ld\n",
7319 (long)(var
->onepart
? 0 : VAR_PART_OFFSET (var
, i
)));
7320 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
7322 fprintf (dump_file
, " ");
7323 if (node
->init
== VAR_INIT_STATUS_UNINITIALIZED
)
7324 fprintf (dump_file
, "[uninit]");
7325 print_rtl_single (dump_file
, node
->loc
);
7330 /* Print the information about variables from hash table VARS to dump file. */
7333 dump_vars (variable_table_type
*vars
)
7335 if (!vars
->is_empty ())
7337 fprintf (dump_file
, "Variables:\n");
7338 vars
->traverse
<void *, dump_var_tracking_slot
> (NULL
);
7342 /* Print the dataflow set SET to dump file. */
7345 dump_dataflow_set (dataflow_set
*set
)
7349 fprintf (dump_file
, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC
"\n",
7351 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
7355 fprintf (dump_file
, "Reg %d:", i
);
7356 dump_attrs_list (set
->regs
[i
]);
7359 dump_vars (shared_hash_htab (set
->vars
));
7360 fprintf (dump_file
, "\n");
7363 /* Print the IN and OUT sets for each basic block to dump file. */
7366 dump_dataflow_sets (void)
7370 FOR_EACH_BB_FN (bb
, cfun
)
7372 fprintf (dump_file
, "\nBasic block %d:\n", bb
->index
);
7373 fprintf (dump_file
, "IN:\n");
7374 dump_dataflow_set (&VTI (bb
)->in
);
7375 fprintf (dump_file
, "OUT:\n");
7376 dump_dataflow_set (&VTI (bb
)->out
);
7380 /* Return the variable for DV in dropped_values, inserting one if
7381 requested with INSERT. */
7383 static inline variable
*
7384 variable_from_dropped (decl_or_value dv
, enum insert_option insert
)
7387 variable
*empty_var
;
7388 onepart_enum onepart
;
7390 slot
= dropped_values
->find_slot_with_hash (dv
, dv_htab_hash (dv
), insert
);
7398 gcc_checking_assert (insert
== INSERT
);
7400 onepart
= dv_onepart_p (dv
);
7402 gcc_checking_assert (onepart
== ONEPART_VALUE
|| onepart
== ONEPART_DEXPR
);
7404 empty_var
= onepart_pool_allocate (onepart
);
7406 empty_var
->refcount
= 1;
7407 empty_var
->n_var_parts
= 0;
7408 empty_var
->onepart
= onepart
;
7409 empty_var
->in_changed_variables
= false;
7410 empty_var
->var_part
[0].loc_chain
= NULL
;
7411 empty_var
->var_part
[0].cur_loc
= NULL
;
7412 VAR_LOC_1PAUX (empty_var
) = NULL
;
7413 set_dv_changed (dv
, true);
7420 /* Recover the one-part aux from dropped_values. */
7422 static struct onepart_aux
*
7423 recover_dropped_1paux (variable
*var
)
7427 gcc_checking_assert (var
->onepart
);
7429 if (VAR_LOC_1PAUX (var
))
7430 return VAR_LOC_1PAUX (var
);
7432 if (var
->onepart
== ONEPART_VDECL
)
7435 dvar
= variable_from_dropped (var
->dv
, NO_INSERT
);
7440 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (dvar
);
7441 VAR_LOC_1PAUX (dvar
) = NULL
;
7443 return VAR_LOC_1PAUX (var
);
7446 /* Add variable VAR to the hash table of changed variables and
7447 if it has no locations delete it from SET's hash table. */
7450 variable_was_changed (variable
*var
, dataflow_set
*set
)
7452 hashval_t hash
= dv_htab_hash (var
->dv
);
7458 /* Remember this decl or VALUE has been added to changed_variables. */
7459 set_dv_changed (var
->dv
, true);
7461 slot
= changed_variables
->find_slot_with_hash (var
->dv
, hash
, INSERT
);
7465 variable
*old_var
= *slot
;
7466 gcc_assert (old_var
->in_changed_variables
);
7467 old_var
->in_changed_variables
= false;
7468 if (var
!= old_var
&& var
->onepart
)
7470 /* Restore the auxiliary info from an empty variable
7471 previously created for changed_variables, so it is
7473 gcc_checking_assert (!VAR_LOC_1PAUX (var
));
7474 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (old_var
);
7475 VAR_LOC_1PAUX (old_var
) = NULL
;
7477 variable_htab_free (*slot
);
7480 if (set
&& var
->n_var_parts
== 0)
7482 onepart_enum onepart
= var
->onepart
;
7483 variable
*empty_var
= NULL
;
7484 variable
**dslot
= NULL
;
7486 if (onepart
== ONEPART_VALUE
|| onepart
== ONEPART_DEXPR
)
7488 dslot
= dropped_values
->find_slot_with_hash (var
->dv
,
7489 dv_htab_hash (var
->dv
),
7495 gcc_checking_assert (!empty_var
->in_changed_variables
);
7496 if (!VAR_LOC_1PAUX (var
))
7498 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (empty_var
);
7499 VAR_LOC_1PAUX (empty_var
) = NULL
;
7502 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var
));
7508 empty_var
= onepart_pool_allocate (onepart
);
7509 empty_var
->dv
= var
->dv
;
7510 empty_var
->refcount
= 1;
7511 empty_var
->n_var_parts
= 0;
7512 empty_var
->onepart
= onepart
;
7515 empty_var
->refcount
++;
7520 empty_var
->refcount
++;
7521 empty_var
->in_changed_variables
= true;
7525 empty_var
->var_part
[0].loc_chain
= NULL
;
7526 empty_var
->var_part
[0].cur_loc
= NULL
;
7527 VAR_LOC_1PAUX (empty_var
) = VAR_LOC_1PAUX (var
);
7528 VAR_LOC_1PAUX (var
) = NULL
;
7534 if (var
->onepart
&& !VAR_LOC_1PAUX (var
))
7535 recover_dropped_1paux (var
);
7537 var
->in_changed_variables
= true;
7544 if (var
->n_var_parts
== 0)
7549 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
7552 if (shared_hash_shared (set
->vars
))
7553 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
,
7555 shared_hash_htab (set
->vars
)->clear_slot (slot
);
7561 /* Look for the index in VAR->var_part corresponding to OFFSET.
7562 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7563 referenced int will be set to the index that the part has or should
7564 have, if it should be inserted. */
7567 find_variable_location_part (variable
*var
, HOST_WIDE_INT offset
,
7568 int *insertion_point
)
7577 if (insertion_point
)
7578 *insertion_point
= 0;
7580 return var
->n_var_parts
- 1;
7583 /* Find the location part. */
7585 high
= var
->n_var_parts
;
7588 pos
= (low
+ high
) / 2;
7589 if (VAR_PART_OFFSET (var
, pos
) < offset
)
7596 if (insertion_point
)
7597 *insertion_point
= pos
;
7599 if (pos
< var
->n_var_parts
&& VAR_PART_OFFSET (var
, pos
) == offset
)
7606 set_slot_part (dataflow_set
*set
, rtx loc
, variable
**slot
,
7607 decl_or_value dv
, HOST_WIDE_INT offset
,
7608 enum var_init_status initialized
, rtx set_src
)
7611 location_chain
*node
, *next
;
7612 location_chain
**nextp
;
7614 onepart_enum onepart
;
7619 onepart
= var
->onepart
;
7621 onepart
= dv_onepart_p (dv
);
7623 gcc_checking_assert (offset
== 0 || !onepart
);
7624 gcc_checking_assert (loc
!= dv_as_opaque (dv
));
7626 if (! flag_var_tracking_uninit
)
7627 initialized
= VAR_INIT_STATUS_INITIALIZED
;
7631 /* Create new variable information. */
7632 var
= onepart_pool_allocate (onepart
);
7635 var
->n_var_parts
= 1;
7636 var
->onepart
= onepart
;
7637 var
->in_changed_variables
= false;
7639 VAR_LOC_1PAUX (var
) = NULL
;
7641 VAR_PART_OFFSET (var
, 0) = offset
;
7642 var
->var_part
[0].loc_chain
= NULL
;
7643 var
->var_part
[0].cur_loc
= NULL
;
7646 nextp
= &var
->var_part
[0].loc_chain
;
7652 gcc_assert (dv_as_opaque (var
->dv
) == dv_as_opaque (dv
));
7656 if (GET_CODE (loc
) == VALUE
)
7658 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7659 nextp
= &node
->next
)
7660 if (GET_CODE (node
->loc
) == VALUE
)
7662 if (node
->loc
== loc
)
7667 if (canon_value_cmp (node
->loc
, loc
))
7675 else if (REG_P (node
->loc
) || MEM_P (node
->loc
))
7683 else if (REG_P (loc
))
7685 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7686 nextp
= &node
->next
)
7687 if (REG_P (node
->loc
))
7689 if (REGNO (node
->loc
) < REGNO (loc
))
7693 if (REGNO (node
->loc
) == REGNO (loc
))
7706 else if (MEM_P (loc
))
7708 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7709 nextp
= &node
->next
)
7710 if (REG_P (node
->loc
))
7712 else if (MEM_P (node
->loc
))
7714 if ((r
= loc_cmp (XEXP (node
->loc
, 0), XEXP (loc
, 0))) >= 0)
7726 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7727 nextp
= &node
->next
)
7728 if ((r
= loc_cmp (node
->loc
, loc
)) >= 0)
7736 if (shared_var_p (var
, set
->vars
))
7738 slot
= unshare_variable (set
, slot
, var
, initialized
);
7740 for (nextp
= &var
->var_part
[0].loc_chain
; c
;
7741 nextp
= &(*nextp
)->next
)
7743 gcc_assert ((!node
&& !*nextp
) || node
->loc
== (*nextp
)->loc
);
7750 gcc_assert (dv_as_decl (var
->dv
) == dv_as_decl (dv
));
7752 pos
= find_variable_location_part (var
, offset
, &inspos
);
7756 node
= var
->var_part
[pos
].loc_chain
;
7759 && ((REG_P (node
->loc
) && REG_P (loc
)
7760 && REGNO (node
->loc
) == REGNO (loc
))
7761 || rtx_equal_p (node
->loc
, loc
)))
7763 /* LOC is in the beginning of the chain so we have nothing
7765 if (node
->init
< initialized
)
7766 node
->init
= initialized
;
7767 if (set_src
!= NULL
)
7768 node
->set_src
= set_src
;
7774 /* We have to make a copy of a shared variable. */
7775 if (shared_var_p (var
, set
->vars
))
7777 slot
= unshare_variable (set
, slot
, var
, initialized
);
7784 /* We have not found the location part, new one will be created. */
7786 /* We have to make a copy of the shared variable. */
7787 if (shared_var_p (var
, set
->vars
))
7789 slot
= unshare_variable (set
, slot
, var
, initialized
);
7793 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7794 thus there are at most MAX_VAR_PARTS different offsets. */
7795 gcc_assert (var
->n_var_parts
< MAX_VAR_PARTS
7796 && (!var
->n_var_parts
|| !onepart
));
7798 /* We have to move the elements of array starting at index
7799 inspos to the next position. */
7800 for (pos
= var
->n_var_parts
; pos
> inspos
; pos
--)
7801 var
->var_part
[pos
] = var
->var_part
[pos
- 1];
7804 gcc_checking_assert (!onepart
);
7805 VAR_PART_OFFSET (var
, pos
) = offset
;
7806 var
->var_part
[pos
].loc_chain
= NULL
;
7807 var
->var_part
[pos
].cur_loc
= NULL
;
7810 /* Delete the location from the list. */
7811 nextp
= &var
->var_part
[pos
].loc_chain
;
7812 for (node
= var
->var_part
[pos
].loc_chain
; node
; node
= next
)
7815 if ((REG_P (node
->loc
) && REG_P (loc
)
7816 && REGNO (node
->loc
) == REGNO (loc
))
7817 || rtx_equal_p (node
->loc
, loc
))
7819 /* Save these values, to assign to the new node, before
7820 deleting this one. */
7821 if (node
->init
> initialized
)
7822 initialized
= node
->init
;
7823 if (node
->set_src
!= NULL
&& set_src
== NULL
)
7824 set_src
= node
->set_src
;
7825 if (var
->var_part
[pos
].cur_loc
== node
->loc
)
7826 var
->var_part
[pos
].cur_loc
= NULL
;
7832 nextp
= &node
->next
;
7835 nextp
= &var
->var_part
[pos
].loc_chain
;
7838 /* Add the location to the beginning. */
7839 node
= new location_chain
;
7841 node
->init
= initialized
;
7842 node
->set_src
= set_src
;
7843 node
->next
= *nextp
;
7846 /* If no location was emitted do so. */
7847 if (var
->var_part
[pos
].cur_loc
== NULL
)
7848 variable_was_changed (var
, set
);
7853 /* Set the part of variable's location in the dataflow set SET. The
7854 variable part is specified by variable's declaration in DV and
7855 offset OFFSET and the part's location by LOC. IOPT should be
7856 NO_INSERT if the variable is known to be in SET already and the
7857 variable hash table must not be resized, and INSERT otherwise. */
7860 set_variable_part (dataflow_set
*set
, rtx loc
,
7861 decl_or_value dv
, HOST_WIDE_INT offset
,
7862 enum var_init_status initialized
, rtx set_src
,
7863 enum insert_option iopt
)
7867 if (iopt
== NO_INSERT
)
7868 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7871 slot
= shared_hash_find_slot (set
->vars
, dv
);
7873 slot
= shared_hash_find_slot_unshare (&set
->vars
, dv
, iopt
);
7875 set_slot_part (set
, loc
, slot
, dv
, offset
, initialized
, set_src
);
7878 /* Remove all recorded register locations for the given variable part
7879 from dataflow set SET, except for those that are identical to loc.
7880 The variable part is specified by variable's declaration or value
7881 DV and offset OFFSET. */
7884 clobber_slot_part (dataflow_set
*set
, rtx loc
, variable
**slot
,
7885 HOST_WIDE_INT offset
, rtx set_src
)
7887 variable
*var
= *slot
;
7888 int pos
= find_variable_location_part (var
, offset
, NULL
);
7892 location_chain
*node
, *next
;
7894 /* Remove the register locations from the dataflow set. */
7895 next
= var
->var_part
[pos
].loc_chain
;
7896 for (node
= next
; node
; node
= next
)
7899 if (node
->loc
!= loc
7900 && (!flag_var_tracking_uninit
7903 || !rtx_equal_p (set_src
, node
->set_src
)))
7905 if (REG_P (node
->loc
))
7907 attrs
*anode
, *anext
;
7910 /* Remove the variable part from the register's
7911 list, but preserve any other variable parts
7912 that might be regarded as live in that same
7914 anextp
= &set
->regs
[REGNO (node
->loc
)];
7915 for (anode
= *anextp
; anode
; anode
= anext
)
7917 anext
= anode
->next
;
7918 if (dv_as_opaque (anode
->dv
) == dv_as_opaque (var
->dv
)
7919 && anode
->offset
== offset
)
7925 anextp
= &anode
->next
;
7929 slot
= delete_slot_part (set
, node
->loc
, slot
, offset
);
7937 /* Remove all recorded register locations for the given variable part
7938 from dataflow set SET, except for those that are identical to loc.
7939 The variable part is specified by variable's declaration or value
7940 DV and offset OFFSET. */
7943 clobber_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
7944 HOST_WIDE_INT offset
, rtx set_src
)
7948 if (!dv_as_opaque (dv
)
7949 || (!dv_is_value_p (dv
) && ! DECL_P (dv_as_decl (dv
))))
7952 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7956 clobber_slot_part (set
, loc
, slot
, offset
, set_src
);
7959 /* Delete the part of variable's location from dataflow set SET. The
7960 variable part is specified by its SET->vars slot SLOT and offset
7961 OFFSET and the part's location by LOC. */
7964 delete_slot_part (dataflow_set
*set
, rtx loc
, variable
**slot
,
7965 HOST_WIDE_INT offset
)
7967 variable
*var
= *slot
;
7968 int pos
= find_variable_location_part (var
, offset
, NULL
);
7972 location_chain
*node
, *next
;
7973 location_chain
**nextp
;
7977 if (shared_var_p (var
, set
->vars
))
7979 /* If the variable contains the location part we have to
7980 make a copy of the variable. */
7981 for (node
= var
->var_part
[pos
].loc_chain
; node
;
7984 if ((REG_P (node
->loc
) && REG_P (loc
)
7985 && REGNO (node
->loc
) == REGNO (loc
))
7986 || rtx_equal_p (node
->loc
, loc
))
7988 slot
= unshare_variable (set
, slot
, var
,
7989 VAR_INIT_STATUS_UNKNOWN
);
7996 if (pos
== 0 && var
->onepart
&& VAR_LOC_1PAUX (var
))
7997 cur_loc
= VAR_LOC_FROM (var
);
7999 cur_loc
= var
->var_part
[pos
].cur_loc
;
8001 /* Delete the location part. */
8003 nextp
= &var
->var_part
[pos
].loc_chain
;
8004 for (node
= *nextp
; node
; node
= next
)
8007 if ((REG_P (node
->loc
) && REG_P (loc
)
8008 && REGNO (node
->loc
) == REGNO (loc
))
8009 || rtx_equal_p (node
->loc
, loc
))
8011 /* If we have deleted the location which was last emitted
8012 we have to emit new location so add the variable to set
8013 of changed variables. */
8014 if (cur_loc
== node
->loc
)
8017 var
->var_part
[pos
].cur_loc
= NULL
;
8018 if (pos
== 0 && var
->onepart
&& VAR_LOC_1PAUX (var
))
8019 VAR_LOC_FROM (var
) = NULL
;
8026 nextp
= &node
->next
;
8029 if (var
->var_part
[pos
].loc_chain
== NULL
)
8033 while (pos
< var
->n_var_parts
)
8035 var
->var_part
[pos
] = var
->var_part
[pos
+ 1];
8040 variable_was_changed (var
, set
);
8046 /* Delete the part of variable's location from dataflow set SET. The
8047 variable part is specified by variable's declaration or value DV
8048 and offset OFFSET and the part's location by LOC. */
8051 delete_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
8052 HOST_WIDE_INT offset
)
8054 variable
**slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
8058 delete_slot_part (set
, loc
, slot
, offset
);
8062 /* Structure for passing some other parameters to function
8063 vt_expand_loc_callback. */
8064 struct expand_loc_callback_data
8066 /* The variables and values active at this point. */
8067 variable_table_type
*vars
;
8069 /* Stack of values and debug_exprs under expansion, and their
8071 auto_vec
<rtx
, 4> expanding
;
8073 /* Stack of values and debug_exprs whose expansion hit recursion
8074 cycles. They will have VALUE_RECURSED_INTO marked when added to
8075 this list. This flag will be cleared if any of its dependencies
8076 resolves to a valid location. So, if the flag remains set at the
8077 end of the search, we know no valid location for this one can
8079 auto_vec
<rtx
, 4> pending
;
8081 /* The maximum depth among the sub-expressions under expansion.
8082 Zero indicates no expansion so far. */
8086 /* Allocate the one-part auxiliary data structure for VAR, with enough
8087 room for COUNT dependencies. */
8090 loc_exp_dep_alloc (variable
*var
, int count
)
8094 gcc_checking_assert (var
->onepart
);
8096 /* We can be called with COUNT == 0 to allocate the data structure
8097 without any dependencies, e.g. for the backlinks only. However,
8098 if we are specifying a COUNT, then the dependency list must have
8099 been emptied before. It would be possible to adjust pointers or
8100 force it empty here, but this is better done at an earlier point
8101 in the algorithm, so we instead leave an assertion to catch
8103 gcc_checking_assert (!count
8104 || VAR_LOC_DEP_VEC (var
) == NULL
8105 || VAR_LOC_DEP_VEC (var
)->is_empty ());
8107 if (VAR_LOC_1PAUX (var
) && VAR_LOC_DEP_VEC (var
)->space (count
))
8110 allocsize
= offsetof (struct onepart_aux
, deps
)
8111 + vec
<loc_exp_dep
, va_heap
, vl_embed
>::embedded_size (count
);
8113 if (VAR_LOC_1PAUX (var
))
8115 VAR_LOC_1PAUX (var
) = XRESIZEVAR (struct onepart_aux
,
8116 VAR_LOC_1PAUX (var
), allocsize
);
8117 /* If the reallocation moves the onepaux structure, the
8118 back-pointer to BACKLINKS in the first list member will still
8119 point to its old location. Adjust it. */
8120 if (VAR_LOC_DEP_LST (var
))
8121 VAR_LOC_DEP_LST (var
)->pprev
= VAR_LOC_DEP_LSTP (var
);
8125 VAR_LOC_1PAUX (var
) = XNEWVAR (struct onepart_aux
, allocsize
);
8126 *VAR_LOC_DEP_LSTP (var
) = NULL
;
8127 VAR_LOC_FROM (var
) = NULL
;
8128 VAR_LOC_DEPTH (var
).complexity
= 0;
8129 VAR_LOC_DEPTH (var
).entryvals
= 0;
8131 VAR_LOC_DEP_VEC (var
)->embedded_init (count
);
8134 /* Remove all entries from the vector of active dependencies of VAR,
8135 removing them from the back-links lists too. */
8138 loc_exp_dep_clear (variable
*var
)
8140 while (VAR_LOC_DEP_VEC (var
) && !VAR_LOC_DEP_VEC (var
)->is_empty ())
8142 loc_exp_dep
*led
= &VAR_LOC_DEP_VEC (var
)->last ();
8144 led
->next
->pprev
= led
->pprev
;
8146 *led
->pprev
= led
->next
;
8147 VAR_LOC_DEP_VEC (var
)->pop ();
8151 /* Insert an active dependency from VAR on X to the vector of
8152 dependencies, and add the corresponding back-link to X's list of
8153 back-links in VARS. */
8156 loc_exp_insert_dep (variable
*var
, rtx x
, variable_table_type
*vars
)
8162 dv
= dv_from_rtx (x
);
8164 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8165 an additional look up? */
8166 xvar
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8170 xvar
= variable_from_dropped (dv
, NO_INSERT
);
8171 gcc_checking_assert (xvar
);
8174 /* No point in adding the same backlink more than once. This may
8175 arise if say the same value appears in two complex expressions in
8176 the same loc_list, or even more than once in a single
8178 if (VAR_LOC_DEP_LST (xvar
) && VAR_LOC_DEP_LST (xvar
)->dv
== var
->dv
)
8181 if (var
->onepart
== NOT_ONEPART
)
8182 led
= new loc_exp_dep
;
8186 memset (&empty
, 0, sizeof (empty
));
8187 VAR_LOC_DEP_VEC (var
)->quick_push (empty
);
8188 led
= &VAR_LOC_DEP_VEC (var
)->last ();
8193 loc_exp_dep_alloc (xvar
, 0);
8194 led
->pprev
= VAR_LOC_DEP_LSTP (xvar
);
8195 led
->next
= *led
->pprev
;
8197 led
->next
->pprev
= &led
->next
;
8201 /* Create active dependencies of VAR on COUNT values starting at
8202 VALUE, and corresponding back-links to the entries in VARS. Return
8203 true if we found any pending-recursion results. */
8206 loc_exp_dep_set (variable
*var
, rtx result
, rtx
*value
, int count
,
8207 variable_table_type
*vars
)
8209 bool pending_recursion
= false;
8211 gcc_checking_assert (VAR_LOC_DEP_VEC (var
) == NULL
8212 || VAR_LOC_DEP_VEC (var
)->is_empty ());
8214 /* Set up all dependencies from last_child (as set up at the end of
8215 the loop above) to the end. */
8216 loc_exp_dep_alloc (var
, count
);
8222 if (!pending_recursion
)
8223 pending_recursion
= !result
&& VALUE_RECURSED_INTO (x
);
8225 loc_exp_insert_dep (var
, x
, vars
);
8228 return pending_recursion
;
8231 /* Notify the back-links of IVAR that are pending recursion that we
8232 have found a non-NIL value for it, so they are cleared for another
8233 attempt to compute a current location. */
8236 notify_dependents_of_resolved_value (variable
*ivar
, variable_table_type
*vars
)
8238 loc_exp_dep
*led
, *next
;
8240 for (led
= VAR_LOC_DEP_LST (ivar
); led
; led
= next
)
8242 decl_or_value dv
= led
->dv
;
8247 if (dv_is_value_p (dv
))
8249 rtx value
= dv_as_value (dv
);
8251 /* If we have already resolved it, leave it alone. */
8252 if (!VALUE_RECURSED_INTO (value
))
8255 /* Check that VALUE_RECURSED_INTO, true from the test above,
8256 implies NO_LOC_P. */
8257 gcc_checking_assert (NO_LOC_P (value
));
8259 /* We won't notify variables that are being expanded,
8260 because their dependency list is cleared before
8262 NO_LOC_P (value
) = false;
8263 VALUE_RECURSED_INTO (value
) = false;
8265 gcc_checking_assert (dv_changed_p (dv
));
8269 gcc_checking_assert (dv_onepart_p (dv
) != NOT_ONEPART
);
8270 if (!dv_changed_p (dv
))
8274 var
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8277 var
= variable_from_dropped (dv
, NO_INSERT
);
8280 notify_dependents_of_resolved_value (var
, vars
);
8283 next
->pprev
= led
->pprev
;
8291 static rtx
vt_expand_loc_callback (rtx x
, bitmap regs
,
8292 int max_depth
, void *data
);
8294 /* Return the combined depth, when one sub-expression evaluated to
8295 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8297 static inline expand_depth
8298 update_depth (expand_depth saved_depth
, expand_depth best_depth
)
8300 /* If we didn't find anything, stick with what we had. */
8301 if (!best_depth
.complexity
)
8304 /* If we found hadn't found anything, use the depth of the current
8305 expression. Do NOT add one extra level, we want to compute the
8306 maximum depth among sub-expressions. We'll increment it later,
8308 if (!saved_depth
.complexity
)
8311 /* Combine the entryval count so that regardless of which one we
8312 return, the entryval count is accurate. */
8313 best_depth
.entryvals
= saved_depth
.entryvals
8314 = best_depth
.entryvals
+ saved_depth
.entryvals
;
8316 if (saved_depth
.complexity
< best_depth
.complexity
)
8322 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8323 DATA for cselib expand callback. If PENDRECP is given, indicate in
8324 it whether any sub-expression couldn't be fully evaluated because
8325 it is pending recursion resolution. */
8328 vt_expand_var_loc_chain (variable
*var
, bitmap regs
, void *data
,
8331 struct expand_loc_callback_data
*elcd
8332 = (struct expand_loc_callback_data
*) data
;
8333 location_chain
*loc
, *next
;
8335 int first_child
, result_first_child
, last_child
;
8336 bool pending_recursion
;
8337 rtx loc_from
= NULL
;
8338 struct elt_loc_list
*cloc
= NULL
;
8339 expand_depth depth
= { 0, 0 }, saved_depth
= elcd
->depth
;
8340 int wanted_entryvals
, found_entryvals
= 0;
8342 /* Clear all backlinks pointing at this, so that we're not notified
8343 while we're active. */
8344 loc_exp_dep_clear (var
);
8347 if (var
->onepart
== ONEPART_VALUE
)
8349 cselib_val
*val
= CSELIB_VAL_PTR (dv_as_value (var
->dv
));
8351 gcc_checking_assert (cselib_preserved_value_p (val
));
8356 first_child
= result_first_child
= last_child
8357 = elcd
->expanding
.length ();
8359 wanted_entryvals
= found_entryvals
;
8361 /* Attempt to expand each available location in turn. */
8362 for (next
= loc
= var
->n_var_parts
? var
->var_part
[0].loc_chain
: NULL
;
8363 loc
|| cloc
; loc
= next
)
8365 result_first_child
= last_child
;
8369 loc_from
= cloc
->loc
;
8372 if (unsuitable_loc (loc_from
))
8377 loc_from
= loc
->loc
;
8381 gcc_checking_assert (!unsuitable_loc (loc_from
));
8383 elcd
->depth
.complexity
= elcd
->depth
.entryvals
= 0;
8384 result
= cselib_expand_value_rtx_cb (loc_from
, regs
, EXPR_DEPTH
,
8385 vt_expand_loc_callback
, data
);
8386 last_child
= elcd
->expanding
.length ();
8390 depth
= elcd
->depth
;
8392 gcc_checking_assert (depth
.complexity
8393 || result_first_child
== last_child
);
8395 if (last_child
- result_first_child
!= 1)
8397 if (!depth
.complexity
&& GET_CODE (result
) == ENTRY_VALUE
)
8402 if (depth
.complexity
<= EXPR_USE_DEPTH
)
8404 if (depth
.entryvals
<= wanted_entryvals
)
8406 else if (!found_entryvals
|| depth
.entryvals
< found_entryvals
)
8407 found_entryvals
= depth
.entryvals
;
8413 /* Set it up in case we leave the loop. */
8414 depth
.complexity
= depth
.entryvals
= 0;
8416 result_first_child
= first_child
;
8419 if (!loc_from
&& wanted_entryvals
< found_entryvals
)
8421 /* We found entries with ENTRY_VALUEs and skipped them. Since
8422 we could not find any expansions without ENTRY_VALUEs, but we
8423 found at least one with them, go back and get an entry with
8424 the minimum number ENTRY_VALUE count that we found. We could
8425 avoid looping, but since each sub-loc is already resolved,
8426 the re-expansion should be trivial. ??? Should we record all
8427 attempted locs as dependencies, so that we retry the
8428 expansion should any of them change, in the hope it can give
8429 us a new entry without an ENTRY_VALUE? */
8430 elcd
->expanding
.truncate (first_child
);
8434 /* Register all encountered dependencies as active. */
8435 pending_recursion
= loc_exp_dep_set
8436 (var
, result
, elcd
->expanding
.address () + result_first_child
,
8437 last_child
- result_first_child
, elcd
->vars
);
8439 elcd
->expanding
.truncate (first_child
);
8441 /* Record where the expansion came from. */
8442 gcc_checking_assert (!result
|| !pending_recursion
);
8443 VAR_LOC_FROM (var
) = loc_from
;
8444 VAR_LOC_DEPTH (var
) = depth
;
8446 gcc_checking_assert (!depth
.complexity
== !result
);
8448 elcd
->depth
= update_depth (saved_depth
, depth
);
8450 /* Indicate whether any of the dependencies are pending recursion
8453 *pendrecp
= pending_recursion
;
8455 if (!pendrecp
|| !pending_recursion
)
8456 var
->var_part
[0].cur_loc
= result
;
8461 /* Callback for cselib_expand_value, that looks for expressions
8462 holding the value in the var-tracking hash tables. Return X for
8463 standard processing, anything else is to be used as-is. */
8466 vt_expand_loc_callback (rtx x
, bitmap regs
,
8467 int max_depth ATTRIBUTE_UNUSED
,
8470 struct expand_loc_callback_data
*elcd
8471 = (struct expand_loc_callback_data
*) data
;
8475 bool pending_recursion
= false;
8476 bool from_empty
= false;
8478 switch (GET_CODE (x
))
8481 subreg
= cselib_expand_value_rtx_cb (SUBREG_REG (x
), regs
,
8483 vt_expand_loc_callback
, data
);
8488 result
= simplify_gen_subreg (GET_MODE (x
), subreg
,
8489 GET_MODE (SUBREG_REG (x
)),
8492 /* Invalid SUBREGs are ok in debug info. ??? We could try
8493 alternate expansions for the VALUE as well. */
8494 if (!result
&& GET_MODE (subreg
) != VOIDmode
)
8495 result
= gen_rtx_raw_SUBREG (GET_MODE (x
), subreg
, SUBREG_BYTE (x
));
8501 dv
= dv_from_rtx (x
);
8508 elcd
->expanding
.safe_push (x
);
8510 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8511 gcc_checking_assert (!VALUE_RECURSED_INTO (x
) || NO_LOC_P (x
));
8515 gcc_checking_assert (VALUE_RECURSED_INTO (x
) || !dv_changed_p (dv
));
8519 var
= elcd
->vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8524 var
= variable_from_dropped (dv
, INSERT
);
8527 gcc_checking_assert (var
);
8529 if (!dv_changed_p (dv
))
8531 gcc_checking_assert (!NO_LOC_P (x
));
8532 gcc_checking_assert (var
->var_part
[0].cur_loc
);
8533 gcc_checking_assert (VAR_LOC_1PAUX (var
));
8534 gcc_checking_assert (VAR_LOC_1PAUX (var
)->depth
.complexity
);
8536 elcd
->depth
= update_depth (elcd
->depth
, VAR_LOC_1PAUX (var
)->depth
);
8538 return var
->var_part
[0].cur_loc
;
8541 VALUE_RECURSED_INTO (x
) = true;
8542 /* This is tentative, but it makes some tests simpler. */
8543 NO_LOC_P (x
) = true;
8545 gcc_checking_assert (var
->n_var_parts
== 1 || from_empty
);
8547 result
= vt_expand_var_loc_chain (var
, regs
, data
, &pending_recursion
);
8549 if (pending_recursion
)
8551 gcc_checking_assert (!result
);
8552 elcd
->pending
.safe_push (x
);
8556 NO_LOC_P (x
) = !result
;
8557 VALUE_RECURSED_INTO (x
) = false;
8558 set_dv_changed (dv
, false);
8561 notify_dependents_of_resolved_value (var
, elcd
->vars
);
8567 /* While expanding variables, we may encounter recursion cycles
8568 because of mutual (possibly indirect) dependencies between two
8569 particular variables (or values), say A and B. If we're trying to
8570 expand A when we get to B, which in turn attempts to expand A, if
8571 we can't find any other expansion for B, we'll add B to this
8572 pending-recursion stack, and tentatively return NULL for its
8573 location. This tentative value will be used for any other
8574 occurrences of B, unless A gets some other location, in which case
8575 it will notify B that it is worth another try at computing a
8576 location for it, and it will use the location computed for A then.
8577 At the end of the expansion, the tentative NULL locations become
8578 final for all members of PENDING that didn't get a notification.
8579 This function performs this finalization of NULL locations. */
8582 resolve_expansions_pending_recursion (vec
<rtx
, va_heap
> *pending
)
8584 while (!pending
->is_empty ())
8586 rtx x
= pending
->pop ();
8589 if (!VALUE_RECURSED_INTO (x
))
8592 gcc_checking_assert (NO_LOC_P (x
));
8593 VALUE_RECURSED_INTO (x
) = false;
8594 dv
= dv_from_rtx (x
);
8595 gcc_checking_assert (dv_changed_p (dv
));
8596 set_dv_changed (dv
, false);
8600 /* Initialize expand_loc_callback_data D with variable hash table V.
8601 It must be a macro because of alloca (vec stack). */
8602 #define INIT_ELCD(d, v) \
8606 (d).depth.complexity = (d).depth.entryvals = 0; \
8609 /* Finalize expand_loc_callback_data D, resolved to location L. */
8610 #define FINI_ELCD(d, l) \
8613 resolve_expansions_pending_recursion (&(d).pending); \
8614 (d).pending.release (); \
8615 (d).expanding.release (); \
8617 if ((l) && MEM_P (l)) \
8618 (l) = targetm.delegitimize_address (l); \
8622 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8623 equivalences in VARS, updating their CUR_LOCs in the process. */
8626 vt_expand_loc (rtx loc
, variable_table_type
*vars
)
8628 struct expand_loc_callback_data data
;
8631 if (!MAY_HAVE_DEBUG_BIND_INSNS
)
8634 INIT_ELCD (data
, vars
);
8636 result
= cselib_expand_value_rtx_cb (loc
, scratch_regs
, EXPR_DEPTH
,
8637 vt_expand_loc_callback
, &data
);
8639 FINI_ELCD (data
, result
);
8644 /* Expand the one-part VARiable to a location, using the equivalences
8645 in VARS, updating their CUR_LOCs in the process. */
8648 vt_expand_1pvar (variable
*var
, variable_table_type
*vars
)
8650 struct expand_loc_callback_data data
;
8653 gcc_checking_assert (var
->onepart
&& var
->n_var_parts
== 1);
8655 if (!dv_changed_p (var
->dv
))
8656 return var
->var_part
[0].cur_loc
;
8658 INIT_ELCD (data
, vars
);
8660 loc
= vt_expand_var_loc_chain (var
, scratch_regs
, &data
, NULL
);
8662 gcc_checking_assert (data
.expanding
.is_empty ());
8664 FINI_ELCD (data
, loc
);
8669 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8670 additional parameters: WHERE specifies whether the note shall be emitted
8671 before or after instruction INSN. */
8674 emit_note_insn_var_location (variable
**varp
, emit_note_data
*data
)
8676 variable
*var
= *varp
;
8677 rtx_insn
*insn
= data
->insn
;
8678 enum emit_note_where where
= data
->where
;
8679 variable_table_type
*vars
= data
->vars
;
8682 int i
, j
, n_var_parts
;
8684 enum var_init_status initialized
= VAR_INIT_STATUS_UNINITIALIZED
;
8685 HOST_WIDE_INT last_limit
;
8686 HOST_WIDE_INT offsets
[MAX_VAR_PARTS
];
8687 rtx loc
[MAX_VAR_PARTS
];
8691 gcc_checking_assert (var
->onepart
== NOT_ONEPART
8692 || var
->onepart
== ONEPART_VDECL
);
8694 decl
= dv_as_decl (var
->dv
);
8700 for (i
= 0; i
< var
->n_var_parts
; i
++)
8701 if (var
->var_part
[i
].cur_loc
== NULL
&& var
->var_part
[i
].loc_chain
)
8702 var
->var_part
[i
].cur_loc
= var
->var_part
[i
].loc_chain
->loc
;
8703 for (i
= 0; i
< var
->n_var_parts
; i
++)
8705 machine_mode mode
, wider_mode
;
8707 HOST_WIDE_INT offset
, size
, wider_size
;
8709 if (i
== 0 && var
->onepart
)
8711 gcc_checking_assert (var
->n_var_parts
== 1);
8713 initialized
= VAR_INIT_STATUS_INITIALIZED
;
8714 loc2
= vt_expand_1pvar (var
, vars
);
8718 if (last_limit
< VAR_PART_OFFSET (var
, i
))
8723 else if (last_limit
> VAR_PART_OFFSET (var
, i
))
8725 offset
= VAR_PART_OFFSET (var
, i
);
8726 loc2
= var
->var_part
[i
].cur_loc
;
8727 if (loc2
&& GET_CODE (loc2
) == MEM
8728 && GET_CODE (XEXP (loc2
, 0)) == VALUE
)
8730 rtx depval
= XEXP (loc2
, 0);
8732 loc2
= vt_expand_loc (loc2
, vars
);
8735 loc_exp_insert_dep (var
, depval
, vars
);
8742 gcc_checking_assert (GET_CODE (loc2
) != VALUE
);
8743 for (lc
= var
->var_part
[i
].loc_chain
; lc
; lc
= lc
->next
)
8744 if (var
->var_part
[i
].cur_loc
== lc
->loc
)
8746 initialized
= lc
->init
;
8752 offsets
[n_var_parts
] = offset
;
8758 loc
[n_var_parts
] = loc2
;
8759 mode
= GET_MODE (var
->var_part
[i
].cur_loc
);
8760 if (mode
== VOIDmode
&& var
->onepart
)
8761 mode
= DECL_MODE (decl
);
8762 /* We ony track subparts of constant-sized objects, since at present
8763 there's no representation for polynomial pieces. */
8764 if (!GET_MODE_SIZE (mode
).is_constant (&size
))
8769 last_limit
= offsets
[n_var_parts
] + size
;
8771 /* Attempt to merge adjacent registers or memory. */
8772 for (j
= i
+ 1; j
< var
->n_var_parts
; j
++)
8773 if (last_limit
<= VAR_PART_OFFSET (var
, j
))
8775 if (j
< var
->n_var_parts
8776 && GET_MODE_WIDER_MODE (mode
).exists (&wider_mode
)
8777 && GET_MODE_SIZE (wider_mode
).is_constant (&wider_size
)
8778 && var
->var_part
[j
].cur_loc
8779 && mode
== GET_MODE (var
->var_part
[j
].cur_loc
)
8780 && (REG_P (loc
[n_var_parts
]) || MEM_P (loc
[n_var_parts
]))
8781 && last_limit
== (var
->onepart
? 0 : VAR_PART_OFFSET (var
, j
))
8782 && (loc2
= vt_expand_loc (var
->var_part
[j
].cur_loc
, vars
))
8783 && GET_CODE (loc
[n_var_parts
]) == GET_CODE (loc2
))
8788 if (REG_P (loc
[n_var_parts
])
8789 && hard_regno_nregs (REGNO (loc
[n_var_parts
]), mode
) * 2
8790 == hard_regno_nregs (REGNO (loc
[n_var_parts
]), wider_mode
)
8791 && end_hard_regno (mode
, REGNO (loc
[n_var_parts
]))
8794 if (! WORDS_BIG_ENDIAN
&& ! BYTES_BIG_ENDIAN
)
8795 new_loc
= simplify_subreg (wider_mode
, loc
[n_var_parts
],
8797 else if (WORDS_BIG_ENDIAN
&& BYTES_BIG_ENDIAN
)
8798 new_loc
= simplify_subreg (wider_mode
, loc2
, mode
, 0);
8801 if (!REG_P (new_loc
)
8802 || REGNO (new_loc
) != REGNO (loc
[n_var_parts
]))
8805 REG_ATTRS (new_loc
) = REG_ATTRS (loc
[n_var_parts
]);
8808 else if (MEM_P (loc
[n_var_parts
])
8809 && GET_CODE (XEXP (loc2
, 0)) == PLUS
8810 && REG_P (XEXP (XEXP (loc2
, 0), 0))
8811 && poly_int_rtx_p (XEXP (XEXP (loc2
, 0), 1), &offset2
))
8813 poly_int64 end1
= size
;
8814 rtx base1
= strip_offset_and_add (XEXP (loc
[n_var_parts
], 0),
8816 if (rtx_equal_p (base1
, XEXP (XEXP (loc2
, 0), 0))
8817 && known_eq (end1
, offset2
))
8818 new_loc
= adjust_address_nv (loc
[n_var_parts
],
8824 loc
[n_var_parts
] = new_loc
;
8826 last_limit
= offsets
[n_var_parts
] + wider_size
;
8832 poly_uint64 type_size_unit
8833 = tree_to_poly_uint64 (TYPE_SIZE_UNIT (TREE_TYPE (decl
)));
8834 if (maybe_lt (poly_uint64 (last_limit
), type_size_unit
))
8837 if (! flag_var_tracking_uninit
)
8838 initialized
= VAR_INIT_STATUS_INITIALIZED
;
8842 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, NULL_RTX
, initialized
);
8843 else if (n_var_parts
== 1)
8847 if (offsets
[0] || GET_CODE (loc
[0]) == PARALLEL
)
8848 expr_list
= gen_rtx_EXPR_LIST (VOIDmode
, loc
[0], GEN_INT (offsets
[0]));
8852 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, expr_list
, initialized
);
8854 else if (n_var_parts
)
8858 for (i
= 0; i
< n_var_parts
; i
++)
8860 = gen_rtx_EXPR_LIST (VOIDmode
, loc
[i
], GEN_INT (offsets
[i
]));
8862 parallel
= gen_rtx_PARALLEL (VOIDmode
,
8863 gen_rtvec_v (n_var_parts
, loc
));
8864 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
,
8865 parallel
, initialized
);
8868 if (where
!= EMIT_NOTE_BEFORE_INSN
)
8870 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
8871 if (where
== EMIT_NOTE_AFTER_CALL_INSN
)
8872 NOTE_DURING_CALL_P (note
) = true;
8876 /* Make sure that the call related notes come first. */
8877 while (NEXT_INSN (insn
)
8879 && NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
8880 && NOTE_DURING_CALL_P (insn
))
8881 insn
= NEXT_INSN (insn
);
8883 && NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
8884 && NOTE_DURING_CALL_P (insn
))
8885 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
8887 note
= emit_note_before (NOTE_INSN_VAR_LOCATION
, insn
);
8889 NOTE_VAR_LOCATION (note
) = note_vl
;
8891 set_dv_changed (var
->dv
, false);
8892 gcc_assert (var
->in_changed_variables
);
8893 var
->in_changed_variables
= false;
8894 changed_variables
->clear_slot (varp
);
8896 /* Continue traversing the hash table. */
8900 /* While traversing changed_variables, push onto DATA (a stack of RTX
8901 values) entries that aren't user variables. */
8904 var_track_values_to_stack (variable
**slot
,
8905 vec
<rtx
, va_heap
> *changed_values_stack
)
8907 variable
*var
= *slot
;
8909 if (var
->onepart
== ONEPART_VALUE
)
8910 changed_values_stack
->safe_push (dv_as_value (var
->dv
));
8911 else if (var
->onepart
== ONEPART_DEXPR
)
8912 changed_values_stack
->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var
->dv
)));
8917 /* Remove from changed_variables the entry whose DV corresponds to
8918 value or debug_expr VAL. */
8920 remove_value_from_changed_variables (rtx val
)
8922 decl_or_value dv
= dv_from_rtx (val
);
8926 slot
= changed_variables
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8929 var
->in_changed_variables
= false;
8930 changed_variables
->clear_slot (slot
);
8933 /* If VAL (a value or debug_expr) has backlinks to variables actively
8934 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8935 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8936 have dependencies of their own to notify. */
8939 notify_dependents_of_changed_value (rtx val
, variable_table_type
*htab
,
8940 vec
<rtx
, va_heap
> *changed_values_stack
)
8945 decl_or_value dv
= dv_from_rtx (val
);
8947 slot
= changed_variables
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8950 slot
= htab
->find_slot_with_hash (dv
, dv_htab_hash (dv
), NO_INSERT
);
8952 slot
= dropped_values
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8956 while ((led
= VAR_LOC_DEP_LST (var
)))
8958 decl_or_value ldv
= led
->dv
;
8961 /* Deactivate and remove the backlink, as it was “used up”. It
8962 makes no sense to attempt to notify the same entity again:
8963 either it will be recomputed and re-register an active
8964 dependency, or it will still have the changed mark. */
8966 led
->next
->pprev
= led
->pprev
;
8968 *led
->pprev
= led
->next
;
8972 if (dv_changed_p (ldv
))
8975 switch (dv_onepart_p (ldv
))
8979 set_dv_changed (ldv
, true);
8980 changed_values_stack
->safe_push (dv_as_rtx (ldv
));
8984 ivar
= htab
->find_with_hash (ldv
, dv_htab_hash (ldv
));
8985 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar
));
8986 variable_was_changed (ivar
, NULL
);
8991 ivar
= htab
->find_with_hash (ldv
, dv_htab_hash (ldv
));
8994 int i
= ivar
->n_var_parts
;
8997 rtx loc
= ivar
->var_part
[i
].cur_loc
;
8999 if (loc
&& GET_CODE (loc
) == MEM
9000 && XEXP (loc
, 0) == val
)
9002 variable_was_changed (ivar
, NULL
);
9015 /* Take out of changed_variables any entries that don't refer to use
9016 variables. Back-propagate change notifications from values and
9017 debug_exprs to their active dependencies in HTAB or in
9018 CHANGED_VARIABLES. */
9021 process_changed_values (variable_table_type
*htab
)
9025 auto_vec
<rtx
, 20> changed_values_stack
;
9027 /* Move values from changed_variables to changed_values_stack. */
9029 ->traverse
<vec
<rtx
, va_heap
>*, var_track_values_to_stack
>
9030 (&changed_values_stack
);
9032 /* Back-propagate change notifications in values while popping
9033 them from the stack. */
9034 for (n
= i
= changed_values_stack
.length ();
9035 i
> 0; i
= changed_values_stack
.length ())
9037 val
= changed_values_stack
.pop ();
9038 notify_dependents_of_changed_value (val
, htab
, &changed_values_stack
);
9040 /* This condition will hold when visiting each of the entries
9041 originally in changed_variables. We can't remove them
9042 earlier because this could drop the backlinks before we got a
9043 chance to use them. */
9046 remove_value_from_changed_variables (val
);
9052 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
9053 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
9054 the notes shall be emitted before of after instruction INSN. */
9057 emit_notes_for_changes (rtx_insn
*insn
, enum emit_note_where where
,
9060 emit_note_data data
;
9061 variable_table_type
*htab
= shared_hash_htab (vars
);
9063 if (changed_variables
->is_empty ())
9066 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9067 process_changed_values (htab
);
9074 ->traverse
<emit_note_data
*, emit_note_insn_var_location
> (&data
);
9077 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9078 same variable in hash table DATA or is not there at all. */
9081 emit_notes_for_differences_1 (variable
**slot
, variable_table_type
*new_vars
)
9083 variable
*old_var
, *new_var
;
9086 new_var
= new_vars
->find_with_hash (old_var
->dv
, dv_htab_hash (old_var
->dv
));
9090 /* Variable has disappeared. */
9091 variable
*empty_var
= NULL
;
9093 if (old_var
->onepart
== ONEPART_VALUE
9094 || old_var
->onepart
== ONEPART_DEXPR
)
9096 empty_var
= variable_from_dropped (old_var
->dv
, NO_INSERT
);
9099 gcc_checking_assert (!empty_var
->in_changed_variables
);
9100 if (!VAR_LOC_1PAUX (old_var
))
9102 VAR_LOC_1PAUX (old_var
) = VAR_LOC_1PAUX (empty_var
);
9103 VAR_LOC_1PAUX (empty_var
) = NULL
;
9106 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var
));
9112 empty_var
= onepart_pool_allocate (old_var
->onepart
);
9113 empty_var
->dv
= old_var
->dv
;
9114 empty_var
->refcount
= 0;
9115 empty_var
->n_var_parts
= 0;
9116 empty_var
->onepart
= old_var
->onepart
;
9117 empty_var
->in_changed_variables
= false;
9120 if (empty_var
->onepart
)
9122 /* Propagate the auxiliary data to (ultimately)
9123 changed_variables. */
9124 empty_var
->var_part
[0].loc_chain
= NULL
;
9125 empty_var
->var_part
[0].cur_loc
= NULL
;
9126 VAR_LOC_1PAUX (empty_var
) = VAR_LOC_1PAUX (old_var
);
9127 VAR_LOC_1PAUX (old_var
) = NULL
;
9129 variable_was_changed (empty_var
, NULL
);
9130 /* Continue traversing the hash table. */
9133 /* Update cur_loc and one-part auxiliary data, before new_var goes
9134 through variable_was_changed. */
9135 if (old_var
!= new_var
&& new_var
->onepart
)
9137 gcc_checking_assert (VAR_LOC_1PAUX (new_var
) == NULL
);
9138 VAR_LOC_1PAUX (new_var
) = VAR_LOC_1PAUX (old_var
);
9139 VAR_LOC_1PAUX (old_var
) = NULL
;
9140 new_var
->var_part
[0].cur_loc
= old_var
->var_part
[0].cur_loc
;
9142 if (variable_different_p (old_var
, new_var
))
9143 variable_was_changed (new_var
, NULL
);
9145 /* Continue traversing the hash table. */
9149 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9153 emit_notes_for_differences_2 (variable
**slot
, variable_table_type
*old_vars
)
9155 variable
*old_var
, *new_var
;
9158 old_var
= old_vars
->find_with_hash (new_var
->dv
, dv_htab_hash (new_var
->dv
));
9162 for (i
= 0; i
< new_var
->n_var_parts
; i
++)
9163 new_var
->var_part
[i
].cur_loc
= NULL
;
9164 variable_was_changed (new_var
, NULL
);
9167 /* Continue traversing the hash table. */
9171 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9175 emit_notes_for_differences (rtx_insn
*insn
, dataflow_set
*old_set
,
9176 dataflow_set
*new_set
)
9178 shared_hash_htab (old_set
->vars
)
9179 ->traverse
<variable_table_type
*, emit_notes_for_differences_1
>
9180 (shared_hash_htab (new_set
->vars
));
9181 shared_hash_htab (new_set
->vars
)
9182 ->traverse
<variable_table_type
*, emit_notes_for_differences_2
>
9183 (shared_hash_htab (old_set
->vars
));
9184 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, new_set
->vars
);
9187 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9190 next_non_note_insn_var_location (rtx_insn
*insn
)
9194 insn
= NEXT_INSN (insn
);
9197 || NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
)
9204 /* Emit the notes for changes of location parts in the basic block BB. */
9207 emit_notes_in_bb (basic_block bb
, dataflow_set
*set
)
9210 micro_operation
*mo
;
9212 dataflow_set_clear (set
);
9213 dataflow_set_copy (set
, &VTI (bb
)->in
);
9215 FOR_EACH_VEC_ELT (VTI (bb
)->mos
, i
, mo
)
9217 rtx_insn
*insn
= mo
->insn
;
9218 rtx_insn
*next_insn
= next_non_note_insn_var_location (insn
);
9223 dataflow_set_clear_at_call (set
, insn
);
9224 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_CALL_INSN
, set
->vars
);
9226 rtx arguments
= mo
->u
.loc
, *p
= &arguments
;
9229 XEXP (XEXP (*p
, 0), 1)
9230 = vt_expand_loc (XEXP (XEXP (*p
, 0), 1),
9231 shared_hash_htab (set
->vars
));
9232 /* If expansion is successful, keep it in the list. */
9233 if (XEXP (XEXP (*p
, 0), 1))
9235 XEXP (XEXP (*p
, 0), 1)
9236 = copy_rtx_if_shared (XEXP (XEXP (*p
, 0), 1));
9239 /* Otherwise, if the following item is data_value for it,
9241 else if (XEXP (*p
, 1)
9242 && REG_P (XEXP (XEXP (*p
, 0), 0))
9243 && MEM_P (XEXP (XEXP (XEXP (*p
, 1), 0), 0))
9244 && REG_P (XEXP (XEXP (XEXP (XEXP (*p
, 1), 0), 0),
9246 && REGNO (XEXP (XEXP (*p
, 0), 0))
9247 == REGNO (XEXP (XEXP (XEXP (XEXP (*p
, 1), 0),
9249 *p
= XEXP (XEXP (*p
, 1), 1);
9250 /* Just drop this item. */
9254 add_reg_note (insn
, REG_CALL_ARG_LOCATION
, arguments
);
9260 rtx loc
= mo
->u
.loc
;
9263 var_reg_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
9265 var_mem_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
9267 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
9273 rtx loc
= mo
->u
.loc
;
9277 if (GET_CODE (loc
) == CONCAT
)
9279 val
= XEXP (loc
, 0);
9280 vloc
= XEXP (loc
, 1);
9288 var
= PAT_VAR_LOCATION_DECL (vloc
);
9290 clobber_variable_part (set
, NULL_RTX
,
9291 dv_from_decl (var
), 0, NULL_RTX
);
9294 if (VAL_NEEDS_RESOLUTION (loc
))
9295 val_resolve (set
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
9296 set_variable_part (set
, val
, dv_from_decl (var
), 0,
9297 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
9300 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
9301 set_variable_part (set
, PAT_VAR_LOCATION_LOC (vloc
),
9302 dv_from_decl (var
), 0,
9303 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
9306 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
9312 rtx loc
= mo
->u
.loc
;
9313 rtx val
, vloc
, uloc
;
9315 vloc
= uloc
= XEXP (loc
, 1);
9316 val
= XEXP (loc
, 0);
9318 if (GET_CODE (val
) == CONCAT
)
9320 uloc
= XEXP (val
, 1);
9321 val
= XEXP (val
, 0);
9324 if (VAL_NEEDS_RESOLUTION (loc
))
9325 val_resolve (set
, val
, vloc
, insn
);
9327 val_store (set
, val
, uloc
, insn
, false);
9329 if (VAL_HOLDS_TRACK_EXPR (loc
))
9331 if (GET_CODE (uloc
) == REG
)
9332 var_reg_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
9334 else if (GET_CODE (uloc
) == MEM
)
9335 var_mem_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
9339 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
9345 rtx loc
= mo
->u
.loc
;
9346 rtx val
, vloc
, uloc
;
9350 uloc
= XEXP (vloc
, 1);
9351 val
= XEXP (vloc
, 0);
9354 if (GET_CODE (uloc
) == SET
)
9356 dstv
= SET_DEST (uloc
);
9357 srcv
= SET_SRC (uloc
);
9365 if (GET_CODE (val
) == CONCAT
)
9367 dstv
= vloc
= XEXP (val
, 1);
9368 val
= XEXP (val
, 0);
9371 if (GET_CODE (vloc
) == SET
)
9373 srcv
= SET_SRC (vloc
);
9375 gcc_assert (val
!= srcv
);
9376 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
9378 dstv
= vloc
= SET_DEST (vloc
);
9380 if (VAL_NEEDS_RESOLUTION (loc
))
9381 val_resolve (set
, val
, srcv
, insn
);
9383 else if (VAL_NEEDS_RESOLUTION (loc
))
9385 gcc_assert (GET_CODE (uloc
) == SET
9386 && GET_CODE (SET_SRC (uloc
)) == REG
);
9387 val_resolve (set
, val
, SET_SRC (uloc
), insn
);
9390 if (VAL_HOLDS_TRACK_EXPR (loc
))
9392 if (VAL_EXPR_IS_CLOBBERED (loc
))
9395 var_reg_delete (set
, uloc
, true);
9396 else if (MEM_P (uloc
))
9398 gcc_assert (MEM_P (dstv
));
9399 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (uloc
));
9400 var_mem_delete (set
, dstv
, true);
9405 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
9406 rtx src
= NULL
, dst
= uloc
;
9407 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
9409 if (GET_CODE (uloc
) == SET
)
9411 src
= SET_SRC (uloc
);
9412 dst
= SET_DEST (uloc
);
9417 status
= find_src_status (set
, src
);
9419 src
= find_src_set_src (set
, src
);
9423 var_reg_delete_and_set (set
, dst
, !copied_p
,
9425 else if (MEM_P (dst
))
9427 gcc_assert (MEM_P (dstv
));
9428 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (dst
));
9429 var_mem_delete_and_set (set
, dstv
, !copied_p
,
9434 else if (REG_P (uloc
))
9435 var_regno_delete (set
, REGNO (uloc
));
9436 else if (MEM_P (uloc
))
9438 gcc_checking_assert (GET_CODE (vloc
) == MEM
);
9439 gcc_checking_assert (vloc
== dstv
);
9441 clobber_overlapping_mems (set
, vloc
);
9444 val_store (set
, val
, dstv
, insn
, true);
9446 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9453 rtx loc
= mo
->u
.loc
;
9456 if (GET_CODE (loc
) == SET
)
9458 set_src
= SET_SRC (loc
);
9459 loc
= SET_DEST (loc
);
9463 var_reg_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
9466 var_mem_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
9469 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9476 rtx loc
= mo
->u
.loc
;
9477 enum var_init_status src_status
;
9480 if (GET_CODE (loc
) == SET
)
9482 set_src
= SET_SRC (loc
);
9483 loc
= SET_DEST (loc
);
9486 src_status
= find_src_status (set
, set_src
);
9487 set_src
= find_src_set_src (set
, set_src
);
9490 var_reg_delete_and_set (set
, loc
, false, src_status
, set_src
);
9492 var_mem_delete_and_set (set
, loc
, false, src_status
, set_src
);
9494 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9501 rtx loc
= mo
->u
.loc
;
9504 var_reg_delete (set
, loc
, false);
9506 var_mem_delete (set
, loc
, false);
9508 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
9514 rtx loc
= mo
->u
.loc
;
9517 var_reg_delete (set
, loc
, true);
9519 var_mem_delete (set
, loc
, true);
9521 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9527 set
->stack_adjust
+= mo
->u
.adjust
;
9533 /* Emit notes for the whole function. */
9536 vt_emit_notes (void)
9541 gcc_assert (changed_variables
->is_empty ());
9543 /* Free memory occupied by the out hash tables, as they aren't used
9545 FOR_EACH_BB_FN (bb
, cfun
)
9546 dataflow_set_clear (&VTI (bb
)->out
);
9548 /* Enable emitting notes by functions (mainly by set_variable_part and
9549 delete_variable_part). */
9552 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9553 dropped_values
= new variable_table_type (cselib_get_next_uid () * 2);
9555 dataflow_set_init (&cur
);
9557 FOR_EACH_BB_FN (bb
, cfun
)
9559 /* Emit the notes for changes of variable locations between two
9560 subsequent basic blocks. */
9561 emit_notes_for_differences (BB_HEAD (bb
), &cur
, &VTI (bb
)->in
);
9563 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9564 local_get_addr_cache
= new hash_map
<rtx
, rtx
>;
9566 /* Emit the notes for the changes in the basic block itself. */
9567 emit_notes_in_bb (bb
, &cur
);
9569 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9570 delete local_get_addr_cache
;
9571 local_get_addr_cache
= NULL
;
9573 /* Free memory occupied by the in hash table, we won't need it
9575 dataflow_set_clear (&VTI (bb
)->in
);
9579 shared_hash_htab (cur
.vars
)
9580 ->traverse
<variable_table_type
*, emit_notes_for_differences_1
>
9581 (shared_hash_htab (empty_shared_hash
));
9583 dataflow_set_destroy (&cur
);
9585 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9586 delete dropped_values
;
9587 dropped_values
= NULL
;
9592 /* If there is a declaration and offset associated with register/memory RTL
9593 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9596 vt_get_decl_and_offset (rtx rtl
, tree
*declp
, poly_int64
*offsetp
)
9600 if (REG_ATTRS (rtl
))
9602 *declp
= REG_EXPR (rtl
);
9603 *offsetp
= REG_OFFSET (rtl
);
9607 else if (GET_CODE (rtl
) == PARALLEL
)
9609 tree decl
= NULL_TREE
;
9610 HOST_WIDE_INT offset
= MAX_VAR_PARTS
;
9611 int len
= XVECLEN (rtl
, 0), i
;
9613 for (i
= 0; i
< len
; i
++)
9615 rtx reg
= XEXP (XVECEXP (rtl
, 0, i
), 0);
9616 if (!REG_P (reg
) || !REG_ATTRS (reg
))
9619 decl
= REG_EXPR (reg
);
9620 if (REG_EXPR (reg
) != decl
)
9622 HOST_WIDE_INT this_offset
;
9623 if (!track_offset_p (REG_OFFSET (reg
), &this_offset
))
9625 offset
= MIN (offset
, this_offset
);
9635 else if (MEM_P (rtl
))
9637 if (MEM_ATTRS (rtl
))
9639 *declp
= MEM_EXPR (rtl
);
9640 *offsetp
= int_mem_offset (rtl
);
9647 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9651 record_entry_value (cselib_val
*val
, rtx rtl
)
9653 rtx ev
= gen_rtx_ENTRY_VALUE (GET_MODE (rtl
));
9655 ENTRY_VALUE_EXP (ev
) = rtl
;
9657 cselib_add_permanent_equiv (val
, ev
, get_insns ());
9660 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9663 vt_add_function_parameter (tree parm
)
9665 rtx decl_rtl
= DECL_RTL_IF_SET (parm
);
9666 rtx incoming
= DECL_INCOMING_RTL (parm
);
9672 bool incoming_ok
= true;
9674 if (TREE_CODE (parm
) != PARM_DECL
)
9677 if (!decl_rtl
|| !incoming
)
9680 if (GET_MODE (decl_rtl
) == BLKmode
|| GET_MODE (incoming
) == BLKmode
)
9683 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9684 rewrite the incoming location of parameters passed on the stack
9685 into MEMs based on the argument pointer, so that incoming doesn't
9686 depend on a pseudo. */
9687 poly_int64 incoming_offset
= 0;
9688 if (MEM_P (incoming
)
9689 && (strip_offset (XEXP (incoming
, 0), &incoming_offset
)
9690 == crtl
->args
.internal_arg_pointer
))
9692 HOST_WIDE_INT off
= -FIRST_PARM_OFFSET (current_function_decl
);
9694 = replace_equiv_address_nv (incoming
,
9695 plus_constant (Pmode
,
9697 off
+ incoming_offset
));
9700 #ifdef HAVE_window_save
9701 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9702 If the target machine has an explicit window save instruction, the
9703 actual entry value is the corresponding OUTGOING_REGNO instead. */
9704 if (HAVE_window_save
&& !crtl
->uses_only_leaf_regs
)
9706 if (REG_P (incoming
)
9707 && HARD_REGISTER_P (incoming
)
9708 && OUTGOING_REGNO (REGNO (incoming
)) != REGNO (incoming
))
9711 p
.incoming
= incoming
;
9713 = gen_rtx_REG_offset (incoming
, GET_MODE (incoming
),
9714 OUTGOING_REGNO (REGNO (incoming
)), 0);
9715 p
.outgoing
= incoming
;
9716 vec_safe_push (windowed_parm_regs
, p
);
9718 else if (GET_CODE (incoming
) == PARALLEL
)
9721 = gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (XVECLEN (incoming
, 0)));
9724 for (i
= 0; i
< XVECLEN (incoming
, 0); i
++)
9726 rtx reg
= XEXP (XVECEXP (incoming
, 0, i
), 0);
9729 reg
= gen_rtx_REG_offset (reg
, GET_MODE (reg
),
9730 OUTGOING_REGNO (REGNO (reg
)), 0);
9732 XVECEXP (outgoing
, 0, i
)
9733 = gen_rtx_EXPR_LIST (VOIDmode
, reg
,
9734 XEXP (XVECEXP (incoming
, 0, i
), 1));
9735 vec_safe_push (windowed_parm_regs
, p
);
9738 incoming
= outgoing
;
9740 else if (MEM_P (incoming
)
9741 && REG_P (XEXP (incoming
, 0))
9742 && HARD_REGISTER_P (XEXP (incoming
, 0)))
9744 rtx reg
= XEXP (incoming
, 0);
9745 if (OUTGOING_REGNO (REGNO (reg
)) != REGNO (reg
))
9749 reg
= gen_raw_REG (GET_MODE (reg
), OUTGOING_REGNO (REGNO (reg
)));
9751 vec_safe_push (windowed_parm_regs
, p
);
9752 incoming
= replace_equiv_address_nv (incoming
, reg
);
9758 if (!vt_get_decl_and_offset (incoming
, &decl
, &offset
))
9760 incoming_ok
= false;
9761 if (MEM_P (incoming
))
9763 /* This means argument is passed by invisible reference. */
9769 if (!vt_get_decl_and_offset (decl_rtl
, &decl
, &offset
))
9771 offset
+= byte_lowpart_offset (GET_MODE (incoming
),
9772 GET_MODE (decl_rtl
));
9781 /* If that DECL_RTL wasn't a pseudo that got spilled to
9782 memory, bail out. Otherwise, the spill slot sharing code
9783 will force the memory to reference spill_slot_decl (%sfp),
9784 so we don't match above. That's ok, the pseudo must have
9785 referenced the entire parameter, so just reset OFFSET. */
9786 if (decl
!= get_spill_slot_decl (false))
9791 HOST_WIDE_INT const_offset
;
9792 if (!track_loc_p (incoming
, parm
, offset
, false, &mode
, &const_offset
))
9795 out
= &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->out
;
9797 dv
= dv_from_decl (parm
);
9799 if (target_for_debug_bind (parm
)
9800 /* We can't deal with these right now, because this kind of
9801 variable is single-part. ??? We could handle parallels
9802 that describe multiple locations for the same single
9803 value, but ATM we don't. */
9804 && GET_CODE (incoming
) != PARALLEL
)
9809 /* ??? We shouldn't ever hit this, but it may happen because
9810 arguments passed by invisible reference aren't dealt with
9811 above: incoming-rtl will have Pmode rather than the
9812 expected mode for the type. */
9816 lowpart
= var_lowpart (mode
, incoming
);
9820 val
= cselib_lookup_from_insn (lowpart
, mode
, true,
9821 VOIDmode
, get_insns ());
9823 /* ??? Float-typed values in memory are not handled by
9827 preserve_value (val
);
9828 set_variable_part (out
, val
->val_rtx
, dv
, const_offset
,
9829 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9830 dv
= dv_from_value (val
->val_rtx
);
9833 if (MEM_P (incoming
))
9835 val
= cselib_lookup_from_insn (XEXP (incoming
, 0), mode
, true,
9836 VOIDmode
, get_insns ());
9839 preserve_value (val
);
9840 incoming
= replace_equiv_address_nv (incoming
, val
->val_rtx
);
9845 if (REG_P (incoming
))
9847 incoming
= var_lowpart (mode
, incoming
);
9848 gcc_assert (REGNO (incoming
) < FIRST_PSEUDO_REGISTER
);
9849 attrs_list_insert (&out
->regs
[REGNO (incoming
)], dv
, const_offset
,
9851 set_variable_part (out
, incoming
, dv
, const_offset
,
9852 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9853 if (dv_is_value_p (dv
))
9855 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv
)), incoming
);
9856 if (TREE_CODE (TREE_TYPE (parm
)) == REFERENCE_TYPE
9857 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm
))))
9859 machine_mode indmode
9860 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm
)));
9861 rtx mem
= gen_rtx_MEM (indmode
, incoming
);
9862 cselib_val
*val
= cselib_lookup_from_insn (mem
, indmode
, true,
9867 preserve_value (val
);
9868 record_entry_value (val
, mem
);
9869 set_variable_part (out
, mem
, dv_from_value (val
->val_rtx
), 0,
9870 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9875 else if (GET_CODE (incoming
) == PARALLEL
&& !dv_onepart_p (dv
))
9879 /* The following code relies on vt_get_decl_and_offset returning true for
9880 incoming, which might not be always the case. */
9883 for (i
= 0; i
< XVECLEN (incoming
, 0); i
++)
9885 rtx reg
= XEXP (XVECEXP (incoming
, 0, i
), 0);
9886 /* vt_get_decl_and_offset has already checked that the offset
9887 is a valid variable part. */
9888 const_offset
= get_tracked_reg_offset (reg
);
9889 gcc_assert (REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
9890 attrs_list_insert (&out
->regs
[REGNO (reg
)], dv
, const_offset
, reg
);
9891 set_variable_part (out
, reg
, dv
, const_offset
,
9892 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9895 else if (MEM_P (incoming
))
9897 incoming
= var_lowpart (mode
, incoming
);
9898 set_variable_part (out
, incoming
, dv
, const_offset
,
9899 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9903 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9906 vt_add_function_parameters (void)
9910 for (parm
= DECL_ARGUMENTS (current_function_decl
);
9911 parm
; parm
= DECL_CHAIN (parm
))
9912 vt_add_function_parameter (parm
);
9914 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl
)))
9916 tree vexpr
= DECL_VALUE_EXPR (DECL_RESULT (current_function_decl
));
9918 if (TREE_CODE (vexpr
) == INDIRECT_REF
)
9919 vexpr
= TREE_OPERAND (vexpr
, 0);
9921 if (TREE_CODE (vexpr
) == PARM_DECL
9922 && DECL_ARTIFICIAL (vexpr
)
9923 && !DECL_IGNORED_P (vexpr
)
9924 && DECL_NAMELESS (vexpr
))
9925 vt_add_function_parameter (vexpr
);
9929 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9930 ensure it isn't flushed during cselib_reset_table.
9931 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9932 has been eliminated. */
9935 vt_init_cfa_base (void)
9939 #ifdef FRAME_POINTER_CFA_OFFSET
9940 cfa_base_rtx
= frame_pointer_rtx
;
9941 cfa_base_offset
= -FRAME_POINTER_CFA_OFFSET (current_function_decl
);
9943 cfa_base_rtx
= arg_pointer_rtx
;
9944 cfa_base_offset
= -ARG_POINTER_CFA_OFFSET (current_function_decl
);
9946 if (cfa_base_rtx
== hard_frame_pointer_rtx
9947 || !fixed_regs
[REGNO (cfa_base_rtx
)])
9949 cfa_base_rtx
= NULL_RTX
;
9952 if (!MAY_HAVE_DEBUG_BIND_INSNS
)
9955 /* Tell alias analysis that cfa_base_rtx should share
9956 find_base_term value with stack pointer or hard frame pointer. */
9957 if (!frame_pointer_needed
)
9958 vt_equate_reg_base_value (cfa_base_rtx
, stack_pointer_rtx
);
9959 else if (!crtl
->stack_realign_tried
)
9960 vt_equate_reg_base_value (cfa_base_rtx
, hard_frame_pointer_rtx
);
9962 val
= cselib_lookup_from_insn (cfa_base_rtx
, GET_MODE (cfa_base_rtx
), 1,
9963 VOIDmode
, get_insns ());
9964 preserve_value (val
);
9965 cselib_preserve_cfa_base_value (val
, REGNO (cfa_base_rtx
));
9968 /* Reemit INSN, a MARKER_DEBUG_INSN, as a note. */
9971 reemit_marker_as_note (rtx_insn
*insn
)
9973 gcc_checking_assert (DEBUG_MARKER_INSN_P (insn
));
9975 enum insn_note kind
= INSN_DEBUG_MARKER_KIND (insn
);
9979 case NOTE_INSN_BEGIN_STMT
:
9980 case NOTE_INSN_INLINE_ENTRY
:
9982 rtx_insn
*note
= NULL
;
9983 if (cfun
->debug_nonbind_markers
)
9985 note
= emit_note_before (kind
, insn
);
9986 NOTE_MARKER_LOCATION (note
) = INSN_LOCATION (insn
);
9997 /* Allocate and initialize the data structures for variable tracking
9998 and parse the RTL to get the micro operations. */
10001 vt_initialize (void)
10004 poly_int64 fp_cfa_offset
= -1;
10006 alloc_aux_for_blocks (sizeof (variable_tracking_info
));
10008 empty_shared_hash
= shared_hash_pool
.allocate ();
10009 empty_shared_hash
->refcount
= 1;
10010 empty_shared_hash
->htab
= new variable_table_type (1);
10011 changed_variables
= new variable_table_type (10);
10013 /* Init the IN and OUT sets. */
10014 FOR_ALL_BB_FN (bb
, cfun
)
10016 VTI (bb
)->visited
= false;
10017 VTI (bb
)->flooded
= false;
10018 dataflow_set_init (&VTI (bb
)->in
);
10019 dataflow_set_init (&VTI (bb
)->out
);
10020 VTI (bb
)->permp
= NULL
;
10023 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10025 cselib_init (CSELIB_RECORD_MEMORY
| CSELIB_PRESERVE_CONSTANTS
);
10026 scratch_regs
= BITMAP_ALLOC (NULL
);
10027 preserved_values
.create (256);
10028 global_get_addr_cache
= new hash_map
<rtx
, rtx
>;
10032 scratch_regs
= NULL
;
10033 global_get_addr_cache
= NULL
;
10036 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10042 #ifdef FRAME_POINTER_CFA_OFFSET
10043 reg
= frame_pointer_rtx
;
10044 ofst
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
10046 reg
= arg_pointer_rtx
;
10047 ofst
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
10050 ofst
-= INCOMING_FRAME_SP_OFFSET
;
10052 val
= cselib_lookup_from_insn (reg
, GET_MODE (reg
), 1,
10053 VOIDmode
, get_insns ());
10054 preserve_value (val
);
10055 if (reg
!= hard_frame_pointer_rtx
&& fixed_regs
[REGNO (reg
)])
10056 cselib_preserve_cfa_base_value (val
, REGNO (reg
));
10057 expr
= plus_constant (GET_MODE (stack_pointer_rtx
),
10058 stack_pointer_rtx
, -ofst
);
10059 cselib_add_permanent_equiv (val
, expr
, get_insns ());
10063 val
= cselib_lookup_from_insn (stack_pointer_rtx
,
10064 GET_MODE (stack_pointer_rtx
), 1,
10065 VOIDmode
, get_insns ());
10066 preserve_value (val
);
10067 expr
= plus_constant (GET_MODE (reg
), reg
, ofst
);
10068 cselib_add_permanent_equiv (val
, expr
, get_insns ());
10072 /* In order to factor out the adjustments made to the stack pointer or to
10073 the hard frame pointer and thus be able to use DW_OP_fbreg operations
10074 instead of individual location lists, we're going to rewrite MEMs based
10075 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
10076 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
10077 resp. arg_pointer_rtx. We can do this either when there is no frame
10078 pointer in the function and stack adjustments are consistent for all
10079 basic blocks or when there is a frame pointer and no stack realignment.
10080 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
10081 has been eliminated. */
10082 if (!frame_pointer_needed
)
10086 if (!vt_stack_adjustments ())
10089 #ifdef FRAME_POINTER_CFA_OFFSET
10090 reg
= frame_pointer_rtx
;
10092 reg
= arg_pointer_rtx
;
10094 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10097 if (GET_CODE (elim
) == PLUS
)
10098 elim
= XEXP (elim
, 0);
10099 if (elim
== stack_pointer_rtx
)
10100 vt_init_cfa_base ();
10103 else if (!crtl
->stack_realign_tried
)
10107 #ifdef FRAME_POINTER_CFA_OFFSET
10108 reg
= frame_pointer_rtx
;
10109 fp_cfa_offset
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
10111 reg
= arg_pointer_rtx
;
10112 fp_cfa_offset
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
10114 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10117 if (GET_CODE (elim
) == PLUS
)
10119 fp_cfa_offset
-= rtx_to_poly_int64 (XEXP (elim
, 1));
10120 elim
= XEXP (elim
, 0);
10122 if (elim
!= hard_frame_pointer_rtx
)
10123 fp_cfa_offset
= -1;
10126 fp_cfa_offset
= -1;
10129 /* If the stack is realigned and a DRAP register is used, we're going to
10130 rewrite MEMs based on it representing incoming locations of parameters
10131 passed on the stack into MEMs based on the argument pointer. Although
10132 we aren't going to rewrite other MEMs, we still need to initialize the
10133 virtual CFA pointer in order to ensure that the argument pointer will
10134 be seen as a constant throughout the function.
10136 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10137 else if (stack_realign_drap
)
10141 #ifdef FRAME_POINTER_CFA_OFFSET
10142 reg
= frame_pointer_rtx
;
10144 reg
= arg_pointer_rtx
;
10146 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10149 if (GET_CODE (elim
) == PLUS
)
10150 elim
= XEXP (elim
, 0);
10151 if (elim
== hard_frame_pointer_rtx
)
10152 vt_init_cfa_base ();
10156 hard_frame_pointer_adjustment
= -1;
10158 vt_add_function_parameters ();
10160 FOR_EACH_BB_FN (bb
, cfun
)
10163 HOST_WIDE_INT pre
, post
= 0;
10164 basic_block first_bb
, last_bb
;
10166 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10168 cselib_record_sets_hook
= add_with_sets
;
10169 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10170 fprintf (dump_file
, "first value: %i\n",
10171 cselib_get_next_uid ());
10178 if (bb
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
10179 || ! single_pred_p (bb
->next_bb
))
10181 e
= find_edge (bb
, bb
->next_bb
);
10182 if (! e
|| (e
->flags
& EDGE_FALLTHRU
) == 0)
10188 /* Add the micro-operations to the vector. */
10189 FOR_BB_BETWEEN (bb
, first_bb
, last_bb
->next_bb
, next_bb
)
10191 HOST_WIDE_INT offset
= VTI (bb
)->out
.stack_adjust
;
10192 VTI (bb
)->out
.stack_adjust
= VTI (bb
)->in
.stack_adjust
;
10195 FOR_BB_INSNS_SAFE (bb
, insn
, next
)
10199 if (!frame_pointer_needed
)
10201 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
10204 micro_operation mo
;
10205 mo
.type
= MO_ADJUST
;
10208 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10209 log_op_type (PATTERN (insn
), bb
, insn
,
10210 MO_ADJUST
, dump_file
);
10211 VTI (bb
)->mos
.safe_push (mo
);
10215 cselib_hook_called
= false;
10216 adjust_insn (bb
, insn
);
10218 if (!frame_pointer_needed
&& pre
)
10219 VTI (bb
)->out
.stack_adjust
+= pre
;
10221 if (DEBUG_MARKER_INSN_P (insn
))
10223 reemit_marker_as_note (insn
);
10227 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10230 prepare_call_arguments (bb
, insn
);
10231 cselib_process_insn (insn
);
10232 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10234 if (dump_flags
& TDF_SLIM
)
10235 dump_insn_slim (dump_file
, insn
);
10237 print_rtl_single (dump_file
, insn
);
10238 dump_cselib_table (dump_file
);
10241 if (!cselib_hook_called
)
10242 add_with_sets (insn
, 0, 0);
10243 cancel_changes (0);
10245 if (!frame_pointer_needed
&& post
)
10247 micro_operation mo
;
10248 mo
.type
= MO_ADJUST
;
10249 mo
.u
.adjust
= post
;
10251 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10252 log_op_type (PATTERN (insn
), bb
, insn
,
10253 MO_ADJUST
, dump_file
);
10254 VTI (bb
)->mos
.safe_push (mo
);
10255 VTI (bb
)->out
.stack_adjust
+= post
;
10258 if (maybe_ne (fp_cfa_offset
, -1)
10259 && known_eq (hard_frame_pointer_adjustment
, -1)
10260 && fp_setter_insn (insn
))
10262 vt_init_cfa_base ();
10263 hard_frame_pointer_adjustment
= fp_cfa_offset
;
10264 /* Disassociate sp from fp now. */
10265 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10268 cselib_invalidate_rtx (stack_pointer_rtx
);
10269 v
= cselib_lookup (stack_pointer_rtx
, Pmode
, 1,
10271 if (v
&& !cselib_preserved_value_p (v
))
10273 cselib_set_value_sp_based (v
);
10274 preserve_value (v
);
10280 gcc_assert (offset
== VTI (bb
)->out
.stack_adjust
);
10285 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10287 cselib_preserve_only_values ();
10288 cselib_reset_table (cselib_get_next_uid ());
10289 cselib_record_sets_hook
= NULL
;
10293 hard_frame_pointer_adjustment
= -1;
10294 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->flooded
= true;
10295 cfa_base_rtx
= NULL_RTX
;
10299 /* This is *not* reset after each function. It gives each
10300 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10301 a unique label number. */
10303 static int debug_label_num
= 1;
10305 /* Remove from the insn stream a single debug insn used for
10306 variable tracking at assignments. */
10309 delete_vta_debug_insn (rtx_insn
*insn
)
10311 if (DEBUG_MARKER_INSN_P (insn
))
10313 reemit_marker_as_note (insn
);
10317 tree decl
= INSN_VAR_LOCATION_DECL (insn
);
10318 if (TREE_CODE (decl
) == LABEL_DECL
10319 && DECL_NAME (decl
)
10320 && !DECL_RTL_SET_P (decl
))
10322 PUT_CODE (insn
, NOTE
);
10323 NOTE_KIND (insn
) = NOTE_INSN_DELETED_DEBUG_LABEL
;
10324 NOTE_DELETED_LABEL_NAME (insn
)
10325 = IDENTIFIER_POINTER (DECL_NAME (decl
));
10326 SET_DECL_RTL (decl
, insn
);
10327 CODE_LABEL_NUMBER (insn
) = debug_label_num
++;
10330 delete_insn (insn
);
10333 /* Remove from the insn stream all debug insns used for variable
10334 tracking at assignments. USE_CFG should be false if the cfg is no
10338 delete_vta_debug_insns (bool use_cfg
)
10341 rtx_insn
*insn
, *next
;
10343 if (!MAY_HAVE_DEBUG_INSNS
)
10347 FOR_EACH_BB_FN (bb
, cfun
)
10349 FOR_BB_INSNS_SAFE (bb
, insn
, next
)
10350 if (DEBUG_INSN_P (insn
))
10351 delete_vta_debug_insn (insn
);
10354 for (insn
= get_insns (); insn
; insn
= next
)
10356 next
= NEXT_INSN (insn
);
10357 if (DEBUG_INSN_P (insn
))
10358 delete_vta_debug_insn (insn
);
10362 /* Run a fast, BB-local only version of var tracking, to take care of
10363 information that we don't do global analysis on, such that not all
10364 information is lost. If SKIPPED holds, we're skipping the global
10365 pass entirely, so we should try to use information it would have
10366 handled as well.. */
10369 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED
)
10371 /* ??? Just skip it all for now. */
10372 delete_vta_debug_insns (true);
10375 /* Free the data structures needed for variable tracking. */
10382 FOR_EACH_BB_FN (bb
, cfun
)
10384 VTI (bb
)->mos
.release ();
10387 FOR_ALL_BB_FN (bb
, cfun
)
10389 dataflow_set_destroy (&VTI (bb
)->in
);
10390 dataflow_set_destroy (&VTI (bb
)->out
);
10391 if (VTI (bb
)->permp
)
10393 dataflow_set_destroy (VTI (bb
)->permp
);
10394 XDELETE (VTI (bb
)->permp
);
10397 free_aux_for_blocks ();
10398 delete empty_shared_hash
->htab
;
10399 empty_shared_hash
->htab
= NULL
;
10400 delete changed_variables
;
10401 changed_variables
= NULL
;
10402 attrs_pool
.release ();
10403 var_pool
.release ();
10404 location_chain_pool
.release ();
10405 shared_hash_pool
.release ();
10407 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10409 if (global_get_addr_cache
)
10410 delete global_get_addr_cache
;
10411 global_get_addr_cache
= NULL
;
10412 loc_exp_dep_pool
.release ();
10413 valvar_pool
.release ();
10414 preserved_values
.release ();
10416 BITMAP_FREE (scratch_regs
);
10417 scratch_regs
= NULL
;
10420 #ifdef HAVE_window_save
10421 vec_free (windowed_parm_regs
);
10425 XDELETEVEC (vui_vec
);
10430 /* The entry point to variable tracking pass. */
10432 static inline unsigned int
10433 variable_tracking_main_1 (void)
10437 /* We won't be called as a separate pass if flag_var_tracking is not
10438 set, but final may call us to turn debug markers into notes. */
10439 if ((!flag_var_tracking
&& MAY_HAVE_DEBUG_INSNS
)
10440 || flag_var_tracking_assignments
< 0
10441 /* Var-tracking right now assumes the IR doesn't contain
10442 any pseudos at this point. */
10443 || targetm
.no_register_allocation
)
10445 delete_vta_debug_insns (true);
10449 if (!flag_var_tracking
)
10452 if (n_basic_blocks_for_fn (cfun
) > 500
10453 && n_edges_for_fn (cfun
) / n_basic_blocks_for_fn (cfun
) >= 20)
10455 vt_debug_insns_local (true);
10459 mark_dfs_back_edges ();
10460 if (!vt_initialize ())
10463 vt_debug_insns_local (true);
10467 success
= vt_find_locations ();
10469 if (!success
&& flag_var_tracking_assignments
> 0)
10473 delete_vta_debug_insns (true);
10475 /* This is later restored by our caller. */
10476 flag_var_tracking_assignments
= 0;
10478 success
= vt_initialize ();
10479 gcc_assert (success
);
10481 success
= vt_find_locations ();
10487 vt_debug_insns_local (false);
10491 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10493 dump_dataflow_sets ();
10494 dump_reg_info (dump_file
);
10495 dump_flow_info (dump_file
, dump_flags
);
10498 timevar_push (TV_VAR_TRACKING_EMIT
);
10500 timevar_pop (TV_VAR_TRACKING_EMIT
);
10503 vt_debug_insns_local (false);
10508 variable_tracking_main (void)
10511 int save
= flag_var_tracking_assignments
;
10513 ret
= variable_tracking_main_1 ();
10515 flag_var_tracking_assignments
= save
;
10522 const pass_data pass_data_variable_tracking
=
10524 RTL_PASS
, /* type */
10525 "vartrack", /* name */
10526 OPTGROUP_NONE
, /* optinfo_flags */
10527 TV_VAR_TRACKING
, /* tv_id */
10528 0, /* properties_required */
10529 0, /* properties_provided */
10530 0, /* properties_destroyed */
10531 0, /* todo_flags_start */
10532 0, /* todo_flags_finish */
10535 class pass_variable_tracking
: public rtl_opt_pass
10538 pass_variable_tracking (gcc::context
*ctxt
)
10539 : rtl_opt_pass (pass_data_variable_tracking
, ctxt
)
10542 /* opt_pass methods: */
10543 virtual bool gate (function
*)
10545 return (flag_var_tracking
&& !targetm
.delay_vartrack
);
10548 virtual unsigned int execute (function
*)
10550 return variable_tracking_main ();
10553 }; // class pass_variable_tracking
10555 } // anon namespace
10558 make_pass_variable_tracking (gcc::context
*ctxt
)
10560 return new pass_variable_tracking (ctxt
);